THE ARCHITECTURE
OF COMPUTER HARDWVARE, SYSTEMS SOFTVWARE,
& NETWORKING

An information technology approach e fifth edition

Irv Englander

7

A sic R Gl M

WILEY

The Self-Operating Napkin

The professor walks in his sleep, strolls through a
cactus field in his bare feet, and screams out an
idea for self-operating napkin.

As you raise spoon of soup (A) to your mouth
it pulls string (B), thereby jerking ladle (C) which
throws cracker (D) past parrot (E). Parrot jumps
after cracker and perch (F) tilts, upsetting seeds
(G) into pail (H). Extra weight in pail pulls cord

Rube Goldberg™ and a © of Rube Goldberg, Inc.
Distributed by United Media.

(I) which opens and lights automatic cigar lighter
(J), setting off sky-rocket (K) which causes sickle
(L) to cut string (M) and allow pendulum with
attached napkin to swing back and forth thereby
wiping off your chin.

After the meal, substitute harmonica for the
napkin and you’ll be able to entertain the guests
with a little music.

FIFTH EDITION

THE ARCHITECTURE OF
COMPUTER HARDWARE,
SYSTEMS SOFTWARE,

& NETWORKING

AN INFORMATION TECHNOLOGY APPROACH

Irv Englander

Bentley University

WILEY

Publisher: Don Fowley

Editor: Beth Lang Golub

Project Manager: Katie Singleton

Editorial Assistant: Jayne Ziemba

Photo Editor: Felicia Ruocco

Cover Designer: Maureen Eide

Associate Production Manager: Joyce Poh
Senior Production Editor: Jolene Ling
Production Management Services: Laserwords
Cover Credit: Norm Christiansen

This book was set by Laserwords Private Limited.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008,
we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and
ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications
and procurement, ethical conduct within our business and among our vendors, and community and charitable
support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2014, 2009, 2003 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,
website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008,
website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook
for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please
contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Englander, Irv.

The architecture of computer hardware, systems software, & networking : an information technology approach/
Irv Englander, Bentley University.—Fifth edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-32263-5 (paper)

1. Computers. 2. Systems software. I. Title.

QA76.5.E566 2014

005.4’3--dc23

2013027578

Printed in the United States of America

10987654321

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

To four outstanding teachers and great human beings:

With your guidance, inspiration, and patience, you showed me
that everything is possible.

Dr. Sidney H. Englander (1900-1980)
and Mildred K. Englander (1906-2008),
in memoriam my father and mother

Albert L. Daugherty, in memoriam
teacher of Science in Cleveland Heights, Ohio
from 1927 to 1970

Edith B. Malin, in memoriam
teacher of English in Cleveland Heights, Ohio
from 1924 to 1958

BRIEF CONTENTS

PART ONE
AN OVERVIEW OF COMPUTER SYSTEMS 2

B CHAPTER1 Computersand Systems 4

B CHAPTER2 An Introduction to System Concepts and Systems
Architecture 38

PART TWO
DATA IN THE COMPUTER 70

B CHAPTER3 Number Systems 72
B CHAPTER4 Data Formats 100

B CHAPTERS5 Representing Numerical Data 136

PART THREE

COMPUTER ARCHITECTURE
AND HARDWARE OPERATION 176

B CHAPTER 6 The Little Man Computer 178
B CHAPTER7 The CPUand Memory 194

B CHAPTERS8 CPU and Memory: Design, Enhancement,
and Implementation 234

B CHAPTERY9 Input/Output 266

iv

BRIEF CONTENTS V

B CHAPTER10 Computer Peripherals 294

B CHAPTER11 Modern Computer Systems 332

PART FOUR
NETWORKS AND DATA COMMUNICATIONS 358

B CHAPTER12 Networks and Data Communications—an Overview 360
B CHAPTER13 Ethernet and TCP/IP Networking 400

B CHAPTER14 Communication Channel Technology 442

PART FIVE
THE SOFTWARE COMPONENT 474

B CHAPTER15 Operating Systems: An Overview 476
B CHAPTER16 The User View of Operating Systems 510
B CHAPTER17 File Management 544

B CHAPTER18 The Internal Operating System 586

SUPPLEMENTARY CHAPTERS

On the Web at www.wiley.com/college/englander

B SUPPLEMENTARY CHAPTER1 An Introduction to Digital
Computer Logic

B SUPPLEMENTARY CHAPTER2 System Examples

B SUPPLEMENTARY CHAPTER3 Instruction Addressing
Modes

B SUPPLEMENTARY CHAPTER4 Programming Tools

http://www.wiley.com/college/englander

CONTENTS

Preface xviii
About the Author xxv

PART ONE
AN OVERVIEW OF COMPUTER SYSTEMS 2

B CHAPTER1 Computersand Systems 4

1.0 Introduction 5
1.1 The Starting Point 9
1.2 Components of the Computer System 11
The Hardware Component 13
The Software Component 16
The Communication Component 18
The Computer System 18
1.3 The Concept of Virtualization 20
1.4 Protocols and Standards 20
1.5 Overview of This Book 22
1.6 A Brief Architectural History of the Computer 23
Early Work 24
Computer Hardware 25
Operating Systems 28
Communication, Networks, and the Internet 33
Summary and Review 34 For Further Reading 34
Key Concepts and Terms 35 Reading Review Questions 35
Exercises 36

B CHAPTER2 An Introduction to System Concepts and Systems
Architecture 38

2.0 Introduction 39

2.1 The General Concept of Systems 40

2.2 IT System Architectures 47
Distributed Processing Systems 49

The Role of the System Architect 59
vi

CONTENTS vii

Google: A System Architecture Example 60

Another Example: Facebook’s Application Architecture 64
Summary and Review 65 For Further Reading 66
Key Concepts and Terms 66 Reading Review Questions 67
Exercises 67

PART TWO
DATA IN THE COMPUTER 70

B CHAPTER3 Number Systems 72

3.0 Introduction 73
3.1 Numbers as a Physical Representation 74
3.2 Counting in Different Bases 74
3.3 Performing Arithmetic in Different Number Bases 78
3.4 Numeric Conversion Between Number Bases 82
An Alternative Conversion Method 83
3.5 Hexadecimal Numbers and Arithmetic 85
3.6 A Special Conversion Case—Number Bases that are Related 87
3.7 Fractions 88
Fractional Conversion Methods 90
3.8 Mixed Number Conversions 93
Summary and Review 94 For Further Reading 94
Key Concepts and Terms 95 Reading Review Questions 95
Exercises 96

B CHAPTER4 Data Formats 100

4.0 Introduction 101
4.1 General Considerations 101
4.2 Alphanumeric Character Data 104
4.3 Visual Data 111
Bitmap Images 112
Object Images 116
Representing Characters as Images 119
Video Images 120
44 AudioData 120
4.5 Data Compression 124
4.6 Page Description Languages 125
4.7 Internal Computer Data Format 126
Numerical Character to Integer Conversion 128
Summary and Review 129 For Further Reading 130
Key Concepts and Terms 130 Reading Review Questions 131
Exercises 132

viii CONTENTS

B CHAPTERS5

PART THREE

Representing Numerical Data 136

5.0 Introduction 137
5.1 Unsigned Binary and Binary-Coded Decimal
Representations 138
5.2 Representations for Signed Integers 141
Sign-and-Magnitude Representation 141
Nine’s Decimal and 1’s Binary Complementary
Representations 143
Ten’s Complement and 2’s Complement 149
Overflow and Carry Conditions 152
Other Bases 153
Summary of Rules for Complementary Numbers 153
5.3 Real Numbers 154
A Review of Exponential Notation 154
Floating Point Format 156
Normalization and Formatting of Floating Point Numbers
A Programming Example 161
Floating Point Calculations 162
Floating Point in the Computer 164
Conversion between Base 10 and Base2 166
5.4 Programming Considerations 167
Summary and Review 168 For Further Reading 169
Key Concepts and Terms 169 Reading Review Questions 169
Exercises 170

COMPUTER ARCHITECTURE AND HARDWARE

OPERATION
B CHAPTERG

176

The Little Man Computer 178

6.0 Introduction 179

6.1 Layout of the Little Man Computer 179

6.2 Operation of the LMC 181

6.3 A Simple Program 182

6.4 An Extended Instruction Set 184

6.5 The Instruction Cycle 187

6.6 A Note Regarding Computer Architectures 190
Summary and Review 190

Key Concepts and Terms 191 Reading Review Questions 191

Exercises 191

158

B CHAPTER?7

B CHAPTERS8

CONTENTS

The CPU and Memory 194

7.0 Introduction 195
7.1 The Components of the CPU 196
7.2 The Concept of Registers 197
7.3 The Memory Unit 200
The Operation of Memory 200
Memory Capacity and Addressing Limitations 204
Primary Memory Characteristics and Implementation 205
7.4 The Fetch-Execute Instruction Cycle 207
7.5 Buses 210
Bus Characteristics 210
7.6 Classification of Instructions 214

Data Movement Instructions (Loap, storg, and Other
Moves) 215

Arithmetic Instructions 217

Boolean Logic Instructions 218

Single Operand Manipulation Instructions 218

Bit Manipulation Instructions 218

Shift and Rotate Instructions 218

Program Control Instructions 219

Stack Instructions 220

Multiple Data Instructions 223

Other Instructions 224
7.7 Instruction Word Formats 224
7.8 Instruction Word Requirements and Constraints 226
Summary and Review 229 For Further Reading 229
Key Concepts and Terms 230 Reading Review Questions 230
Exercises 231

CPU and Memory: Design, Enhancement,
and Implementation 234

8.0 Introduction 235
8.1 CPU Architectures 236
Overview 236
Traditional Modern Architectures 237
8.2 CPU Features and Enhancements 238
Introduction 238
Fetch-Execute Cycle Timing Issues 239
A Model for Improved CPU Performance 241
Scalar and Superscalar Processor Organization 245
8.3 Memory Enhancements 248

ix

X CONTENTS

B CHAPTERY

B CHAPTER10

Wide Path Memory Access 249

Memory Interleaving 249

Cache Memory 250
8.4 The Compleat Modern Superscalar CPU 254
8.5 Multiprocessing 256
8.6 A Few Comments on Implementation 260
Summary and Review 260 For Further Reading 261
Key Concepts and Terms 262 Reading Review Questions
Exercises 263

Input/Output 266

9.0 Introduction 267
9.1 Characteristics of Typical I/O Devices 268
9.2 ProgrammedI/O 273
9.3 Interrupts 275
Servicing Interrupts 275
The Uses of Interrupts 277
Multiple Interrupts and Prioritization =~ 282
9.4 Direct Memory Access 286
9.5 1/O Controllers 289
Summary and Review 291 For Further Reading 292
Key Concepts and Terms 292 Reading Review Questions
Exercises 293

Computer Peripherals 294

10.0 Introduction 295
10.1 The Hierarchy of Storage 296
10.2 Solid-State Memory 298
10.3 Magnetic Disks 299
Disk Arrays 306
10.4 Optical Disk Storage 307
10.5 Magnetic Tape 309
10.6 Displays 310
Basic Display Design 310
Graphical Processing Units (GPUs) 312
Liquid Crystal Display Technology 316
OLED Display Technology 317
10.7 Printers 317
Laser Printers 319
Inkjet Printers 320
10.8 User Input Devices 320

262

292

B CHAPTER11

PART FOUR

CONTENTS

Keyboards 320
Pointing Devices 321
Alternative Sources of Alphanumeric Input 322
Scanners 324
Multimedia Input 324
Mobile Devices 325
10.9 Network Communication Devices 326
Summary and Review 327 For Further Reading 327
Key Concepts and Terms 328 Reading Review Questions 328
Exercises 329

Modern Computer Systems 332

11.0 Introduction 333
11.1 Putting All the Pieces Together 335
11.2 System Architecture 340
Basic System Interconnection Requirements 341
BusI/O 343
Channel Architecture 347
Blurring the Line 349
11.3 Computer Interconnection: A Brief Overview 349
11.4 Clusters 350
Overview 350
Classification and Configuration 350
Beowulf Clusters 352
11.5 High-Performance Computing 353
Grid Computing 354
Summary and Review 354 For Further Reading 355
Key Concepts and Terms 355 Reading Review Questions 356
Exercises 356

NETWORKS AND DATA COMMUNICATIONS 358
B CHAPTER12 Networks and Data Communications—An

Overview 360

12.0 Introduction 361

12.1 The Impact of Networking on Business Processes and User
Access to Knowledge and Services 362

12.2 A Simple View of Data Communications 363

12.3 Basic Data Communication Concepts 366
Messages 366

Xi

Xii CONTENTS

Packets 367
General Channel Characteristics 369
12.4 Networks 373
Network Topology 373
Types of Networks 376
Network Interconnection 390
12.5 Standards 393
Summary and Review 395 For Further Reading 396
Key Concepts and Terms 396 Reading Review Questions 397
Exercises 397

B CHAPTER13 Ethernet and TCP/IP Networking 400

13.0 Introduction 401
13.1 TCP/IP, OSI, and Other Communication Protocol Models 402
13.2 Program Applications Versus Network Applications 406
13.3 The Physical and Data Link Layers 407
The Physical Layer 408
The Data Link Layer 408
Hub-Based Ethernet 410
Switched Ethernet 411
Wireless Ethernet (Wi-Fi) 411
13.4 The Network Layer 413
13.5 The Transport Layer 416
13.6 IP Addresses 421
IPv4 and DHCP 421
IPv6 425
13.7 Domain Names and DNS Services 425
13.8 Quality of Service 430
13.9 Network Security 431
Physical and Logical Access Restriction 432
Encryption 432
13.10 Alternative Protocols 433
A Comparison of TCP/IP and OSI 433
Other Protocol Suites and Components 434
SCSI Over IP 434
Cellular Technology 435
MPLS 435
SONET/SDH 436
Frame Relay 436
Summary and Review 436 For Further Reading 437
Key Concepts and Terms 437 Reading Review Questions 438
Exercises 439

CONTENTS

B CHAPTER14 Communication Channel Technology 442

PART FIVE

14.0 Introduction 443
14.1 Communication Channel Technology 444
14.2 The Fundamentals of Signaling Technology 447
Analog Signaling 448
Digital Signaling 456
Modems 461
14.3 Transmission Media and Signaling Methods 462
14.4 Alternative Technologies 464
Cellular Technology 464
Wi-Fi 466
Bluetooth 466
Summary and Review 467 For Further Reading 468
Key Concepts and Terms 468 Reading Review Questions 469

Exercises 470

THE SOFTWARE COMPONENT 474
B CHAPTER15 Operating Systems: An Overview 476

15.0 Introduction 477
15.1 The Barebones Computer System 478
15.2 The Operating Systems Concept: An Introduction 479
15.3 Services and Facilities 485
User Interface and Command Execution Services 486
File Management 487
Input/Output Services 489
Process Control Management 489
Memory Management 490
Scheduling and Dispatch 491
Secondary Storage Management 493
Network and Communications Support Services 494
Security and Protection Services 494
System Administration Support 495
15.4 Organization 499
15.5 Types of Computer Systems 502
Summary and Review 506 For Further Reading 506
Key Concepts and Terms 507 Reading Review Questions 507

Exercises 508

xiii

Xiv CONTENTS

B CHAPTER16 The User View of Operating Systems 510

B CHAPTER17

16.0
16.1
16.2

16.3

16.4
16.5

16.6

Introduction 511
Purpose of the User Interface 512
User Functions and Program Services 514
Program Execution 514
File Commands 515
Disk and Other I/O Device Commands 516
Security and Data Integrity Protection 516
Interuser Communication and Data Sharing Operations 517
System Status Information and User Administration 518
Program Services 519
Types of User Interface 519
The Command Line Interface 520
Batch System Commands 522
Graphical User Interfaces 523
Touchless Gesture- and Voice-Based Interfaces 528
Trade-offs in the User Interface 529
Software Considerations 530
X Window and Other Graphics Display Methodologies 532
Command and Scripting Languages 535
The Elements of a Command Language 536
The Command Language Start-up Sequence Files 537
Services to Programs 538

Summary and Review 540 For Further Reading 540

Key Concepts and Terms 540 Reading Review Questions 541

Exercises 541

File Management 544

17.0
17.1
17.2
17.3

17.4

Introduction 545
The Logical and Physical View of Files 545
The Role of the File Management System 550
Logical File Access Methods 555
Sequential File Access 555
Random Access 556
Indexed Access 557
Physical File Storage 557
Contiguous Storage Allocation 558
Noncontiguous Storage Allocation 559
Indexed Allocation 561
Free Space Management 564
Tape Allocation 565

B CHAPTERI1S8

CONTENTS XV

CD, DVD, and Flash Drive Allocation 566
17.5 File Systems, Volumes, Disks, Partitions, and Storage Pools 566
17.6 The Directory Structure 569
Tree-Structured Directories 570
Acyclic-Graph Directories 573
17.7 Network File Access 576
17.8 Storage Area Networks 578
17.9 File Protection 578
17.10 Journaling File Systems 581
Summary and Review 581 For Further Reading 582
Key Concepts and Terms 582 Reading Review Questions 583
Exercises 584

The Internal Operating System 586

18.0 Introduction 587
18.1 Fundamental OS Requirements 588
Example: A Simple Multitasking Operating System 590
18.2 Starting the Computer System: The Bootstrap 592
18.3 Processes and Threads 595
Process Creation 597
Process States 598
Threads 600
18.4 Basic Loading and Execution Operations 600
18.5 CPU Scheduling and Dispatching 601
High-Level Scheduler 601
Dispatching 603
Nonpreemptive Dispatch Algorithms 605
Preemptive Dispatch Algorithms 606
18.6 Memory Management 608
Memory Partitioning 608
18.7 Virtual Storage 610
Overview 610
Pages and Frames 610
The Concept of Virtual Storage 616
Page Faults 617
Working Sets and the Concept of Locality 619
Page Sharing 620
Page Replacement Algorithms 620
Thrashing 624
Page Table Implementation 624
Segmentation 626
Process Separation 627

XVi CONTENTS

18.8 Secondary Storage Scheduling 627
First-Come, First-Served Scheduling 627
Shortest Distance First Scheduling 628
Scan Scheduling 628
n-Step c-Scan Scheduling 628

18.9 Network Operating System Services 629
OS Protocol Support and Other Services 629

18.10 Other Operating System Issues 632
Deadlock 632
Other Issues 632

18.11 Virtual Machines 634

Summary and Review 636 For Further Reading 636

Key Concepts and Terms 637 Reading Review Questions 638

Exercises 639
Bibliography 645
Index 657

SUPPLEMENTARY CHAPTERS

On the Web at www.wiley.com/college/englander

Bl SUPPLEMENTARY CHAPTER1 An Introduction to Digital
Computer Logic

§1.0 Introduction

S§1.1 Boolean Algebra

S§1.2 Gates and Combinatorial Logic
S$1.3 Sequential Logic Circuits

Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions
Exercises

B SUPPLEMENTARY CHAPTER2 System Examples

$2.0 Introduction
S$2.1 Hardware Examples

The x86 Family

The POWER Family

The IBM System 360/370/390/zSeries Family
§2.2 Operating System Examples

The Microsoft Windows Family

UNIX and Linux

The IBM z/OS Operating System

http://www.wiley.com/college/englander

CONTENTS xvii

§2.3 Networking Examples

Google
Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions
Exercises
B SUPPLEMENTARY CHAPTER3 Instruction Addressing

Modes

$3.0 Introduction
§3.1 Register Addressing
§3.2 Alternatives to Absolute Addressing
§3.3 Alternatives to Direct Addressing
Immediate Addressing
Indirect Addressing
Register Indirect Addressing
Indexed Addressing
Indirect Indexed and Indirect Indexed Addressing
Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions
Exercises

B SUPPLEMENTARY CHAPTER4 Programming Tools

$4.0 Introduction
$4.1 Program Editing and Entry
$4.2 The Concept of Program Translation
§4.3 Assembly Language and the Assembler
Operation of the Assembler
Assembly Language Formats
Features and Extensions
Relocatability
S$4.4 Program Language Description and Rules
A Description of Written English
Programming Language Rules
Computer Language Descriptions
The Compilation Process
Interpreters
$4.5 Linking and Loading
$4.6 Debuggers
Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions
Exercises

PREFACE

xviii

Google, news sources, millions of Web sites and blogs, even YouTube, offer access to

information in nearly any subject that triggers your curiosity and interest. Nonetheless,
I continue to believe that for deep understanding of something, nothing beats the integrated
approach and focus of an old-fashioned printed-on-paper textbook. Well—maybe the e-book
equivalent, but, still, a textbook.

When I open a new book, in any subject, the first thing I want to know is what the book
has to offer that makes it worth my while to read it. I would like to try to help you answer that
question for the book that you're holding in your hand or on your tablet.

The information systems and technology fields are wonderfully exciting places to be! It
seems as though every day brings new developments that alter the ways we create and work
with information. Of course, with this excitement comes a challenge. To be a successful player
in IS or IT, we have to be adaptable and flexible.

Much of the change occurs around computer system technology. The computer is, after
all, at the foundation of information systems. A deep understanding of computer systems is,
therefore, an essential element of success. We must be able to understand each new development,
assess its value, and place it in the context of our knowledge of computer systems.

The subject of this book is the architecture of computer systems. Computer architecture is
about the structure and operation of digital computers and computer-based devices. Computer
architecture is concerned with the operational methods of the hardware; with the services
provided by operating system software; with the acquisition, processing, storage, and output of
data; and with the interaction between computer-based devices.

There is a tendency for people in information systems and technology to neglect a study
of computer architecture. After all, the technology changes so rapidly—is it really worth trying
to understand something that may be out of date by the time I finish this book? There is no
question that computer technology has evolved rapidly. The computer in a smartphone is far
more powerful than the mainframe computer of twenty-five years ago, with memory, disk and
flash storage capacity, display and multimedia capability, and ease of use that would have been
unthinkable just a few years ago. Even more important, connecting systems to work together is
now routine and simple.

Interestingly enough, however, as profound as advances in the technology have been, the
concepts of computer architecture that really matter have changed only nominally over the
last seventy years. The new technologies are based on a foundation of architectural concepts
that were developed many years ago. The architecture of a modern computer system was
developed in the 1940s. The instruction set in a modern personal computer or smartphone is
nearly identical to that of computers built in the 1950s and 1960s. Modern operating system

T he modern world offers a lot of readily available online resources for learning. Wikipedia,

PREFACE XiX

techniques were developed in the 1960s. The graphical user interface is based on a 1960s’
project. The Internet is built from concepts developed more than forty years ago.

So you see that an understanding of computer architecture makes it possible to “ride the
wave” of technological change, secure in the feeling that you are equipped to deal with new
developments as they occur, and to have fun doing so. When you are done reading this book,
you will have substantial knowledge about how a computer works and a good understanding of
the operating concepts, the hardware, and system software that make up a computer. You will
see the interaction between computers and between data and the computer. Plus, you will have
learned lots of jargon that you can show off at parties and job interviews.

This textbook is designed for a wide range of readers, both undergraduate and graduate.
The material is specifically directed toward IS and IT majors. There are no explicit prerequisites,
although the book assumes that the student is familiar with a personal computer. It also assumes
(but does not require) some basic programming skills: although there is no programming in
the book, program code is occasionally used as an example to clarify an idea, and a knowledge
of programming is helpful at understanding instruction set design and program execution
concepts. The material in this textbook conforms to the criteria of the IT Infrastructure courses
and core concepts, as described in the ACM and AIS standard 152010 and IT2008 curricula.
Although the material in this book may be useful as background for system design and
implementation project courses, the course can be placed anywhere in the curriculum.

Most instructors will not cover the entire textbook in a single semester. The organization
of this book is designed to allow an instructor to cover the major topic areas in different levels
of depth, depending on the experience and needs of the students. On the other hand, it is my
intention that this book will serve a student as a useful reference long after the formal course is
completed. It is designed for use as a book where a professional can look up the basic concepts
that clarify new developments as they occur.

This text is the outgrowth of courses that I have taught to CIS majors and minors at
Bentley University at both the undergraduate and graduate levels for more than thirty years.
Student responses to the material and the approach have generally been very enthusiastic. Many
students have returned after graduation to tell me that their knowledge in this area has directly
contributed to their career development. Along the way, student comments have also been
extremely helpful to me in the book’s continuing evolution.

Those familiar with previous editions will notice that the organization of recent editions
has undergone substantial revision to reflect current technological practices and trends.
In particular, it is no longer reasonable to discuss computers as individual units without
also considering the networks that tie them together; computer networking is now covered
thoroughly in its own section, and there is an increased emphasis on the integration and synergy
of the various components of the computer system and on the system as a whole. Still, the basic
philosophy, organization, and approach remain essentially similar to those of the first edition,
reflecting the unchanging nature of the underlying principles.

ORGANIZATION OF THE FIFTH EDITION,
NOTING CHANGES FROM PREVIOUS EDITIONS

The biggest challenge for me as the author of this book has been to preserve the guiding principles
established in the first edition, while reflecting the major changes in the way computers are

XX

PREFACE

used, in the rapid deployment of new technology, and in the resulting evolution of IS/IT
curriculum to reflect those changes. The fifth edition is a substantial, though incremental,
update to previous editions. It reflects the rapid growth in the use of tablets and smartphones as
important computing devices. The material on networking has been substantially reorganized.
Still, users of previous editions will find that much of the material is familiar; after all, the way
in which computers are used in IS/IT may have changed, but the basic guiding principles of
computer architecture are essentially the same as they have been for many years.

This book is organized into five parts totaling eighteen chapters, plus four additional
supplementary chapters that are posted on the Web. The first part serves as an introduction
and overview of the role of the computer in information systems; it introduces the concept of
a system and provides a brief introduction to each of the components that make up a modern
computer system. Each of the remaining four parts deals with a single architectural aspect of
the computer system.

Part Two discusses the role and representation of data in the computer. Here, we consider
numbers, text, sound, images, video, and other data forms. Part Three presents the hardware
architecture and operational concepts. It introduces the components of a computer and shows
how they collaborate to execute computer instructions, discusses the nature of a computer
instruction set, and explores the interaction between the CPU, memory, and I/O peripheral
devices. Part Four presents a thorough introduction to the basics of computer networking. Part
Five discusses the system software, the programs that function to make the resources of the
computer system, and other interconnected computer systems and components, accessible to
the user and to application programs.

The approach within each group of chapters is layered. Each new layer builds upon the
previous material to add depth and understanding to the reader’s knowledge. Each topic section
consists of a short introduction that places the topic to be discussed into the context of the
computer system as a whole and then lays out in detail the organization of the chapters within
the section. Each topic area is introduced as gently as possible, using ideas and examples that are
already familiar to students. Successive material is progressive and accumulative. In addition
to the numerous examples that are used throughout the text, the supplementary chapters
offer substantial case studies that show application of the text material to current examples
of importance. Overall, the approach is gentle, progressive, and accumulative. As much as
possible, each section is self-contained.

An overview of the organization of each part follows. A few comments about the differences
between the fourth and fifth editions are included for those who are familiar with the previous
edition. More details can be found in the introductions to each section.

Part One consists of two chapters that present a short overview of computing and placing
architectural concepts into the context of information technology. Chapter 1 introduces the
components of a computer system and shows the relationships among the components. In the
new edition, I have assumed that today’s students are more familiar with computer technology
and terminology than previous generations, so there is less introduction of “IT101”-type
material. Chapter 1 also presents a simple model of computing and discusses the importance
of standards and protocols in the development of computer systems. This chapter concludes
with a short history of computers from the architectural point of view. Chapter 2 focuses on the
concepts of systems, models, and system architectures, using various types of computer systems
as examples. There are several relatively small but important additions and updates in this
chapter. In Section 2.2, there is an increased emphasis on n-tier architectures and distributed

PREFACE XXi

computing. Section 2.2 also contains a new section on cloud computing, which is presented as
a variation of the client-server concept. A new Facebook application architecture example has
also been added.

Chapters 3 through 5 comprise Part Two. Chapter 3 introduces number systems and basic
number system operations; it then explores the relationships between numbers in different
number bases and the conversion techniques between the different representations. Chapter 4
investigates different types of data formats, including alphanumeric, image, video, and audio
formats. It considers the relationship between numerical and character-based representations.
Previously, Chapter 4 also introduced various devices and data formats used for data input and
output. Much of that material has been moved to Chapter 10 since it is more directly related to
the devices themselves. Chapter 5 studies the various formats that are used to represent and to
perform calculations on integer and floating point numbers.

Part Three discusses the hardware architecture and operational aspects of the computer.
Chapter 6 begins the study with the introduction of the Little Man Computer, a simple model that
provides a surprisingly accurate representation of the CPU and memory. The model is used to
develop the concept of an instruction set and to explain the basic principles of the von Neumann
architecture. Chapter 7 extends the discussion to a real computer. It introduces the components
of the CPU and shows their relationship to the Little Man Computer model. It introduces the
bus concept, explains the operation of memory, presents the instruction fetch—execute cycle,
and discusses the instruction set. It identifies important classes of instructions and discusses
the ways in which instructions can be categorized. The ARM instruction set is offered as an
illustration of a typical current CPU model.

Chapter 8 expands the material in Chapter 7 to consider more advanced features of the CPU
and memory. It offers an overview of various CPU architectures. It continues with a discussion
of techniques for improving memory access, particularly cache memory, and an introduction
to current CPU organization, design, and implementation techniques, including pipelining and
superscalar processing. This chapter also introduces multiprocessing (or multicore, in current
terminology) concepts. Chapter 8 received basic updating from the previous edition, including
elimination of the VLIW and EPIC architectures that never caught on.

Chapter 9 presents the principles of I/O operation, and Chapter 10 illustrates how I/O
is performed in various I/O devices. With the advent of powerful tablets and smartphones,
Chapter 10 received a substantial overhaul. Solid-state storage is of increased importance, and
Section 10.2 has been expanded to increase the coverage. Section 10.3, the display section,
has a new discussion of graphical processing units. CRTs have been eliminated altogether.
The discussions of text-mode display processing and different types of raster scans have
been minimized. The discussion of printers in Section 10.4 now considers only laser and
inkjet technologies. Section 10.8, user input devices, now includes the alternative sources of
alphanumeric input, moved from Chapter 4, plus more on touch screens and voice input. There
is an additional section discussing the sensors available on mobile devices, including GPS,
accelerometers, gyroscopes, magnetic field sensors, and near-field communication sensors.

Chapter 11 discusses the computer system as a whole. It discusses the interconnection
techniques and integration of the various hardware components. Chapter 11 has been updated
to reflect modern systems, including mobile systems and radically changed bus architecture
technology. The new, just-introduced Intel Haswell architecture and System on a Chip concepts
are included. Firewire was removed; the Thunderbird port is introduced in its place. Chapter 11

XX

PREFACE

also addresses the interconnection of computers to increase the performance and reliability of
a computer with a specific focus on clustering and grid computing.

Three supplementary chapters on the Web provide additional resources to support the
chapters in Part Three. Supplementary Chapter 1 (SC1) offers an introduction to Boolean
algebra, combinatorial logic, and sequential logic for those readers that would like a deeper
understanding of the computer in its simplest and most elegant form. Supplementary Chapter 2
(SC2) offers three detailed case studies of important architectures: the Intel x86 family, the Power
computer, and the IBM zSystem. As of this writing, this supplement is currently being updated.
Supplementary Chapter 3 (SC3) discusses alternative approaches to instruction addressing.

Part Four, Chapters 12-14, presents a thorough introduction to networking. For the fifth
edition, Chapters 12 and 13 received a major reorganization; to a much lesser extent, Chapter 14
is also affected by the change. The goal was a more unified and systematic presentation of
networking material.

Chapter 12 introduces the concept of a communication channel and explores its charac-
teristics and configurations. This includes the communication channel model, the concept of
links, packets, basic channel characteristics, network topology, types of networks (LAN, MAN,
etc.), and basic network interconnection and routing. All of the material related to protocols
and movement of data through the network has been moved to Chapter 13. The chapter is
retitled as Networks and Data Communications— An Overview.

Chapter 13 now focuses on the passage of data packets through a network. The chapter
is now titled Ethernet and TCP/IP Networking. Section 13.1 introduces TCP/IP and OSI and
the concept of layered communication. Section 13.2 describes the differences between program
applications and network applications. Following these two sections, the next three sections
carefully describe the process of moving packets, one layer at a time, from the bottom-up. It
should be noted that wireless networking has been moved from Chapter 14 and is now included
as part of the Ethernet discussion. Sections 13.6 and 13.7 explain IPv4 and IPv6 addressing and
DHCP, and DNS, respectively. Quality of Service and network security are briefly introduced
in Sections 13.8 and 13.9. The chapter concludes with a discussion of alternative protocols,
including a comparison of OSI and TCP/IP, as well as brief discussions of MPLS, cellular
technology, and other protocol suites.

Chapter 14 focuses primarily on communication channel technology, including analog
and digital signaling, modulation and data conversion techniques between analog and digital,
and the characteristics of transmission media. Sections 14.1-14.3 are relatively unchanged.
Section 14.4, however, is mostly new. Titled Alternative Technologies, it offers advanced
introductions to the radio technologies of LTE cellular technology, Wi-Fi, and Bluetooth.

Part Five is dedicated to a discussion of system software. Chapter 15 provides an overview
of the operating system. It explains the different roles played by the operating system and
introduces the facilities and services provided. Chapter 16 presents the role of the operating
system from the viewpoint of the user of a system. The fifth edition offers new screenshots of
Windows 8 and recent versions of Linux. Chapter 17 discusses the all-important topic of file
systems, including an introduction to Microsoft’s new Resilient File System, intended to replace
NTES. Chapter 18 discusses the operating system as a resource manager, with an in-depth
discussion of memory management, scheduling, process control, network services, and other
basic operating system services. Chapter 18 includes a detailed introduction to virtual memory
technique, rewritten for the fifth edition, with a new, detailed, worked-out example, carefully
illustrating the different page replacement algorithms. The chapter also includes an introduction

PREFACE XXiii

to virtual machines. In addition to its hardware discussions, Supplementary Chapter 2, when
completed, will also provide current Windows, UNIX/Linux, and z/OS case studies.

A fourth supplementary chapter provides an introduction to the system development
software that is used for the preparation and execution of programs.

This book has been a continuing labor of love. My primary goal has been to create and
maintain a textbook that explains computer architecture in a way that conveys to you, the
reader, the sense of excitement and fun that I believe makes a career in information systems
and technology so satistying. I hope that I have succeeded to some extent.

ADDITIONAL RESOURCES

Additional resources for students and instructors may be found at the textbook’s Web
site, www.wiley.com/college/englander. I can also be reached directly by e-mail at
ienglander@bentley.edu. Although I am happy to communicate with students, I am unable to
supply tutorial help or answers to review questions and exercises in this book.

ACKNOWLEDGMENTS

I've discovered that a major, ongoing textbook project is a formidable task. Many individuals
have helped to make the task manageable—and kept me going when, from time to time, I
became convinced that textbooks really do appear by magic and are not written by humans. It
is impossible to thank people adequately for all their help and support. First and foremost, a
special thank you to four friends who have helped me survive through all five editions, Wilson
Wong, Ray Brackett, Luis Fernandez, and Rich Braun. Their continuing backup has been
amazing! I couldn’t have asked for a better support team. Dinner is ready and the champagne
is on ice. Yet again!

My continuing thanks, too, to Stuart Madnick. Stuart, your technical inspiration and
personal encouragement was invaluable to me when I struggled to get the first edition of this
book going. You helped me to believe that this project was actually possible and worthwhile.
That support has continued to inspire me through every subsequent edition.

Next, I thank the many colleagues at Bentley University who shared their ideas, experiences,
and encouragement. In particular, colleagues Wilson Wong, David Yates, Doug Robertson, and
Mary Ann Robbert have all offered contributions that have substantially improved the book
over five editions. A special thank you, David, for your helpful technical discussions and reviews
of the data communications material in the fourth and fifth editions, and to you, Wilson,
for serving as a technical reviewer for the last three (!) editions, providing many comments,
rewrites, examples, and suggestions for clarification, and for creating many of the ancillary
materials for the book.

Thanks to the editors, production people, and marketing personnel at John Wiley & Sons
and the editors and production people at SPi Global. Sometimes the process is difficult, but
we always managed to get through it in a way that made the book better. I consider myself
fortunate to have worked with such committed people. Particular thanks to Beth Lang Golub,
Katie Singleton, and Felicia Ruocco for your ongoing efforts to make this book perfect, even
though we all know it’s impossible!

http://www.wiley.com/college/englander
mailto:ienglander@bentley.edu

XXiv

PREFACE

I would like to acknowledge the reviewers who have given of their time and effort over
many editions to assure that this book was as good as it could be: Dr. Stu Westin, The
University of Rhode Island; Alan Pinck, Algonquin College; Mark Jacobi, Programme Director
for Undergrad Computing at Sheffield Hallam University; Dr. Dave Protheroe, South Bank
University, London; Julius Ilinskas, Kaunas University of Technology; Anthony Richardson,
United States Army Informations Systems Engineering Command; Renee A. Weather, Old
Dominion University; Jack Claff, Southern Cross University; Jan L. Harrington, Marist College;
YoungJoon Byun, California State University, Monterey Bay; William Myers, Belmont Abbey
College; Barbara T. Grabowski, Benedictine College; G.E. Strouse, York College of Pennsylvania;
Martin J. Doyle, Temple University; Richard Socash, Metropolitan State College of Denver;
and Fred Cathers, Franklin University. Your comments, suggestions, and constructive criticism
have made a real difference in the quality of this book. Thank you.

Thank you, too, to the reviewers of the current edition: Bob Brown, Southern Polytechnic
State University; Ming-Hsing Chiu, Dillard University; Angela Clark, University of South
Alabama; Chin-Tser Huang, University of South Carolina; Theresa Kraft, Capella University;
Ng Shu Min, HELP University College; Carl Nehlig, Tulane University; Leasa Perkins,
University of Maryland University College; and Mahbubur Syed, Minnesota State University,
as well as to testbank author Ronald Munsee, University of Maryland University College, and
to users from around the world who responded to the 2011 user survey.

Many colleagues offered corrections to previous editions that have had important impact
on the quality of the current edition. To each and everyone, your assistance in eliminating errors
has been much appreciated. Among these, I especially wish to acknowledge David Feinstein
and his crew at the University of South Alabama, Gordon Grimsey of AIT in Auckland, New
Zealand, and Stu Westin of University of Rhode Island for efforts well above and beyond the
call of duty. Stu has also generously made his excellent Little Man Simulator publicly available,
for which I am truly grateful. Thanks for everything, Stu.

Numerous students, too many to name you all, also offered corrections, made suggestions,
and provided ideas. Please accept my deepest appreciation and thanks.

I hope that I have not forgotten anyone. If I have, I apologize.

I have strived to make this book as technically accurate as is humanly possible. Nonetheless,
I know that errors have a way of creeping in when one least expects them. I would greatly
appreciate hearing from readers who find errors that need correction. Your comments and
suggestions about the book are also welcome.

Irv Englander

Boston, Massachusetts

ABOUT THE AUTHOR

for more than fifty years. He has designed logic circuits, developed integrated circuits,

developed computer architectures, designed computer-controlled systems, designed
operating systems, developed application software, created the initial system design for a
large water-monitoring system, performed software auditing and verification of critical control
software, and developed and specified hardware components and application software as a
consultant for business systems large and small.

As an educator, he has contributed papers and given workshops on end-user computing,
e-commerce, and on various aspects of IS and IT pedagogy. He was an invited contributor and
reviewer for the IS-97 and IS-2002 information systems curricula, and continues to publish
and take an interest in the technical infrastructure components of the IS/IT curriculum. He is
actively involved in the application of new technology to information systems. Most recently he
served as a faculty advisor to a low-cost supercomputing student research project, which was
presented at the ACM/IEEE Computer Society Supercomputing Conference SC13.

Dr. Englander has a Ph.D. from MIT in Computer Science. His doctoral thesis was based
on the design of a large image-processing software laboratory. At MIT, he won the Supervised
Investors Award for outstanding teaching. He holds the rank of Professor Emeritus of Computer
Information Systems at Bentley University, where he taught full-time for thirty-three years.

D r. Irv Englander has been involved in many different aspects of the computing field

XXV

] ONE

A computer-based information system is made up of a number of different elements:

The data element. Data is the fundamental representation of facts and observations.
Data is processed by a computer system to provide the information that is the very
reason for the computer’s existence. As you know, data can take on a number of
different forms: numbers, text, images, and sounds. But it’s all numbers in the
computer.

The hardware element. Computer hardware processes the data by executing
instructions, storing data, and moving data and information between the various
input and output devices that make the system and the information accessible to the
users.

The software element. Software consists of the system and application programs that
define the instructions that are executed by the hardware. The software determines
the work to be performed and controls operation of the system.

The communication element. Modern computer information systems depend on the
ability to share processing operations and data among different computers and users,
located both locally and remotely. Data communication provides this capability.

The combination of hardware, software, communication, and data make up the architecture
of a computer system. The architecture of computer systems is remarkably similar whether the
system is a playstation, a personal computer that sits on your lap while you work, an embedded
computer that controls the functions in your cell phone or in your car, or a large mainframe
system that is never actually seen by the hundreds of users who access it every day.

Amazingly, the changes in computer technology that you've seen in just the last few years
are essentially superficial; the basic architecture of computer systems has changed surprisingly
little over the last sixty years. The latest IBM mainframe computer executes essentially the same
instruction set as the mainframe computer of 1965. The basic communication techniques used
in today’s systems were developed in the 1970s. As new as it might seem, the Internet celebrated
its fortieth anniversary in 2010. All of this is surprising considering the growth of computing,

AN OVERVIEW OF
COMPUTER SYSTEMS

the rapid change of technology, and the increased performance, functionality, and ease of use
of today’s systems. This makes the study of computer architecture extremely valuable as a
foundation upon which to understand new developments in computing as they occur.

Computer system architecture is the subject of this textbook. Each element of the system
is addressed in its own section of the text, always with an eye to the system as a whole.

Part I is made up of two chapters that present an overview of systems, and of the computer
system in particular.

Chapter 1 addresses a number of issues, including:

B The ways in which a knowledge of computer architecture enhances our abilities as
computer users and professionals

B Asimplified view of typical computer system architectures
The basic components that make up a computer system
B The fundamental operations that are performed by computer systems.

Chapter 1 concludes with a brief architectural history of the computer.

An encompassing theme throughout this text is that of systems and system architecture.
The words “system” and “architecture” appear throughout this book: we talk about information
systems, computer systems, operating systems, file systems, software architecture, I/O architec-
ture, network architecture and more. You will probably take a course in System Analysis and
Design sometime in your college career.

Although most people have an instinctive understanding of what a system is, it is more
important for us as system professionals to understand the concepts of systems and system
architecture at a deeper level than the average person. Chapter 2 offers careful definitions and
examples of the concept of systems and system architecture, both generally and in the specific
context of the computer systems that are the focus of this book.

CHAPTER |

COMPUTERS AND SYSTEMS

ENATLISH,
SPOKER

L ____'_':__ — T J

X)/ £5. I MEED some“‘? PLAG, SIMPLE EXGUSH, | TRAME 1 “THE COMPUTER co- ¥ THE 1 [THIS 1 THE KEYBOARD. Y DISK, |
FEEMER, | onE Toexeam Tms | | cerTRm, M. . PSISTS OF FOUR MAIN | MOWTOR. Tms [5 THE CONTROL _ | DRIVES)
mag T | CoMPUTER 15 PLAI W

'\ f——= | GARTS, THIS IS THE
HELP DUT L |

SIMALE ERGLISY, ,ll i MORITOR,,

THE COMPUTER CAR €0 . UNLESS oy 60 FOR
MOTHIMG URTIL Sl . THE HARD sk, .. QR
COMVERT “OUR P T

AM XT WITH A Z0-MEGA-
BYTE HARDCARD, TAKING ‘

ME, FEEMER MAS
LAPSED INTO HIS
MATWE ToMGUE.

GRLY 1Yz SLOTS, WITH
Gl K O THE MOTHER -
EUARD, ALLOWING FUILL
laccecs 10 AL RAM-RESL-
DENT MEMORY D THE | -
LATEST UPGRADES on ., X
ALL MERU- DRIEN m—”
[TEGRATED SO TWARE |)

| SE—

e
i

CATHY © 1986 Cathy Guisewite. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved

1.0 INTRODUCTION

Welcome to the wonderful modern world of computers. Where the technology changes
daily. Or does it?

It’s true that the computer of today looks nothing like the computer of even five or
ten years ago. It is nearly impossible today to escape the immediate and ubiquitous reach
of computers and computer-based systems and devices. There is probably a smartphone
in your pocket or on your desk. For many of you, your laptop or tablet is sitting nearby as
you read this paragraph. (Or, maybe you’re even reading this paragraph on your tablet or
E-book.) Furthermore, your smartphone probably has more computing power than most
of the computers on the market ten years ago. It fits easily in your pocket or purse. It weighs
less than 1/100 of that old desktop computer and has at least ten times as much memory!

And that’s not all. Your car has several embedded computers controlling various
automotive functions, and perhaps a touch screen for hands-free telephone, navigation, the
radio, Internet access, and more. Which is almost unnecessary, because you can probably
tell it what you want verbally anyway. Even your microwave oven and the machine that
launders your clothes depend on computers to function. As you are likely aware, most
of these machines can talk to each other, using the Internet or some other networking
technology. Just for fun, Figure 1.1 shows pictures typical of a 2005 laptop, a 2013
smartphone, and a current embedded computer that controls many functions in your car.

Although the focus of this book is on IT systems, our discussion of computer
hardware, software, and networking applies equally well to workplace computers, tablets,
smartphones, and, even, computers embedded in other equipment. In this figure, we have
three seemingly very different looking pieces of equipment working on different types
of applications. And yet, it’s hopefully obvious to you that these three systems share a
lot in common. They are all computer based. All contain at least one central processing
unit (CPU, some contain more) and memory. All provide a facility for interacting with
long-term storage and other devices and with users. What may be less obvious to you
is that the programs that they run are also essentially similar, differing mostly in the
details required by the different components of the particular system and by the nature of
the applications. For example, systems may have different amounts of memory, different
types of displays, different I/O devices, and different operating systems, as well as running
different types of applications and serving different purposes.

In fact, a modern IT system may contain elements of many different types of systems,
with networking that ties everything together.

When creating an IT system, our concerns are whether the various components
provide the features and performance that the users require. To be an effective designer
and user, you have to understand the specifications, their importance and their meaning;
the terminology; and the jargon. Which features are important to the users? Is this the right
combination of features that you need in your computer to have the computer perform
the work that you wish to get done? Are there features missing that we need? Perhaps we
are paying too much for the performance that we need. Or maybe we need more. What
other information about this system would allow you to make a more informed decision?

5

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.1

Computer Devices, Old and New

© 2007 Hewlett-Packard Company

Photo by David Shepperd

Delphi Automotive

There is obviously no need to understand the inner workings of most modern computer-based
systems to operate them adequately. Indeed, in many cases, the presence of the computer is
hidden from us, or embedded, and its operation is invisible to us as users. We don’t need to
know how a computer works to read an E-book.

Even as experienced users, we can run standard software packages on a personal computer
or apps on a smartphone without understanding exactly how they work; we can program a
computer in a high-level or a scripting language without understanding the details of how the
machine executes the individual instructions; we can design and implement Web pages without
understanding how the Web browser gets its pages from a Web server or how the Web server
creates those pages; we can purchase a tablet or a laptop computer from a salesperson without
understanding the specifications of the system.

And yet, there is something missing. Perhaps the software doesn’t do exactly what we want,
and we don’t understand the machine well enough to risk fooling around with the software’s
options. Perhaps if we understood the system better we might have written and configured the
program to be faster and more efficient. Perhaps we could create Web pages that load faster
and work better. Perhaps the salesperson did not sell us the optimum system for our job. Or
perhaps it’s nothing more than a sense of excitement that’s missing. But that’s important, too!

CHAPTER | COMPUTERS AND SYSTEMS 7

You are reading this book because you are a student studying to become a computer
professional, or maybe you are simply a user wanting a deeper understanding of what the
computer is all about. In either case, you know you’ll be interacting with computer systems in
some form or other for the rest of your life. It’s nice (as well as useful) to know something about
the tools of the trade. More important, understanding the computer system’s operations has an
immediate benefit: it will allow you to use the machine more effectively.

As a user, you will be more aware of the capabilities, strengths, and limitations of a
computer system. You will have a better understanding of the commands that you use. You
will understand what is taking place during the operation of the program applications that
you use. You will be able to make better informed decisions about your computer equipment
and application programs. You will understand more clearly what an operating system is, and
how to use it effectively and to your advantage. You will know when it is preferable to do a
job manually, and when the computer should be used. You will understand the most efficient
way to “go online”, and what benefits might be gained from your home network. You will
improve your ability to communicate with system analysts, programmers, and other computer
specialists.

As a programmer, it will allow you to write better programs. You will be able to use the
characteristics of the machine to make your programs operate more effectively. For example,
choosing the appropriate data type for a variable can result in significantly faster performance.
Soon you will know why this is so, and how to make the appropriate choices.

You will discover that some computers will process nested loops much more quickly if the
index variables are reversed. A rather surprising idea, perhaps, and you’ll understand why this
is true.

You will understand why programs written in a compiled language like C++ usually
run much faster than those written in interpreted program languages like BASIC or scripting
languages like JavaScript. Similarly, you’ll see why the basic layout of a program can have a
major impact on the program’s run-time efficiency.

As a systems architect or system analyst, you will be responsible for the design and
implementation of systems that meet an organization’s information technology (IT) needs,
recognizing that the differences in the cost and capabilities of the components that you select
may have significant impact on the organization. With the knowledge gained here you will be
in a better position to determine and justify the set of computer system components and the
system architecture that are appropriate for a particular job and to determine the trade-offs
with other possible system architectures.

You’ll be able to assist management in making intelligent decisions about system strategy:
should the company adopt a large mainframe/virtual machine system approach for its Web
servers, or would a system consisting of a network of off-the-shelf blade servers provide
better performance at lower cost? You’ll be better prepared to analyze the best way to provide
appropriate facilities to meet the needs of your users. In an era of fast-changing technology,
you’ll be more able to differentiate between simple technological obsolescence that does not
affect the organization’s requirements significantly and major advances that suggest a real need
to replace older equipment. You will understand the trade-offs inherent in the use of cloud and
other remote services.

When selecting computers, you would like to purchase the computers that best meet the
needs of the organization’s applications and the users. You must be able to read and understand
the technical specifications in order to compare different alternatives and to match the system

8

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

to the users’ needs. This book will teach you what you need to know to specify and purchase
a system intelligently. You’ll know the differences between various CPU technologies and the
advantages and disadvantages of each. You will learn what peripheral hardware is appropriate
for your organization’s files and the trade-offs between different file system formats, what
is required to build an intranet, and what the speed, size, and performance limitations of a
particular system are. You’ll be able to compare the features of OS/X, Windows, and Linux
knowledgeably and decide which ones are important to you. You'll be able to apply your basic
understanding of computers to new technologies and concepts such as mobile IT, new network
protocols, virtual machines and cloud services as they appear. You'll learn to understand the
jargon used by computer salespeople and judge the validity of their sales claims.

As a networking professional, you are responsible for the design, maintenance, support,
and management of the networks that connect your computer systems together and provide
the required interfaces to the outside world. You must be able to specify network layouts
that optimize your equipment and network resources. Your understanding of basic network
configurations and protocols will allow you to control and provide sufficient and appropriate
access to your users in an efficient manner. This text offers the basic tools as a starting point to
prepare for a career in networking.

As a Web services designer, you must be able to make intelligent decisions to optimize your
Web system configurations, page designs, data formatting and scripting language choices, and
operating systems to optimize customer accessibility to your Web services.

As a system administrator or manager, your job is to maximize the availability and efficiency
of your systems. You will need to understand the reports generated by your systems and be
able to use the information in those reports to make changes to the systems that will optimize
system performance. You will need to know when additional resources are required, and be
able to specify appropriate choices. You will need to specify and configure operating system
parameters, set up file systems, select cloud services, manage system and user PC upgrades
in a fast-changing environment, reconfigure networks, provide and ensure the robustness of
system security, and perform many other system management tasks. The configuration of large
systems can be very challenging. This text will give you an understanding of operating system
tools that is essential to the effective management of systems.

In brief, when you complete this book, you will understand what computer hardware and
software are and how programs and data interact with the computer system. You will understand
the computer hardware, software, and communication components that are required to make
up a computer system and what the role of each component in the system is.

You will have a better understanding of what is happening inside the computer when you
interact with the computer as a user. You will be able to write programs that are more efficient.
You will be able to understand the function of the different components of the computer system
and to specify the computer equipment and resources you need in a meaningful way. You will
understand the options that you have as a system administrator or Web services or network
designer.

In an era in which technology changes extremely rapidly, the architecture of the computer
system rests on a solid foundation that has changed only slightly and gradually over the last
sixty years. Understanding the foundations of computer system architecture makes it possible
to flow comfortably with technological change and to understand changes in the context
of the improvements that they make and the needs that they meet. In fact, interviews with
former students and with IT executives and other IT professionals clearly indicate that a deep

CHAPTER | COMPUTERS AND SYSTEMS 9

understanding of the basic concepts presented here is fundamental to long-term survival and
growth in the field of information technology and I'T management.

This type of understanding is at the very foundation of being a competent and successful
system analyst, system architect, system administrator, or programmer. It may not be necessary
to understand the workings of an automobile engine in order to drive a car, but you can bet
that a top-notch race car driver knows his or her engine thoroughly and can use it to win races.
Like the professional race car driver, it is our intention to help you to use your computer engine
effectively to succeed in using your computer in a winning way. The typical end user might not
care about how their computer system works, but you do.

These are the goals of this book. So let’s get started!

1.1 THE STARTING POINT

Before we begin our detailed study of the architecture of computer systems, let us briefly review
some of the fundamental principles, characteristics, and requirements that guide computer
system design and operation. The fundamentals described here apply to computers in general,
regardless of size or purpose, from the smallest embedded device to the largest mainframe
computer.

In a simple scenario, you use your tablet, laptop, or desktop personal computer to word
process a document. You probably use a pointing device such as a mouse or stylus or finger
to move around the document and to control the features of the word processor software
application, and you use a keyboard or touch screen to enter and modify the document text
data. The word processor application program, together with your document, appears on a
screen. Ultimately, you might print the document on a printer. You store the document on a
disk or flash drive or some other storage device.

The fundamentals of a typical computer system are readily exposed in this simple example.
Your pointing device movements and clicks and your text data entry represent input to the
system. The computer processes the input and provides output to the screen, and, perhaps,
to a printer. The computer system also provides a storage medium of some sort, usually flash
memory or a hard disk, to store the text for future access. In simplest terms, your computer
receives input from you, processes it, and outputs results to the screen. Your input takes the form
of commands and data. The commands and programs tell the computer how to process the data.

Now consider a second, slightly more complex example. Your task in this example is to
access a Web page on the Internet. Again, your input to the computer is via keyboard and
pointer control device. When you type the Web page URL, however, your computer sends a
message to another computer that contains Web server software. That computer, in turn, sends
a Web page file that is interpreted by the browser on your computer and presented on your
screen. You are probably already aware that HyperText Transfer Protocol (HTTP) is used as a
standard for Web message exchanges.

The elements of this example differ only slightly from the first example. Your command
inputs tell a Web browser software application on your computer what processing is to take
place; in this case, your desire to access a Web page. The output from your computer is a
message to a Web server on the remote computer requesting the data that represents the Web
page. Your computer receives the data as input from the network; the Web browser processes
the data and presents the Web page output on the screen. Figure 1.2 illustrates the layout for
this example.

10 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.2

Typical Web Browser Application Use

User

Web Browser

Web Server

/

\ Page Request Page Request 4

Message Message

L - 5

(http) Communication
Channel

(http)

R E—

HTML HTML

file file

The major differences between this and the first example are the source of the input data
and the fact that network connectivity is required between the two computers. Instead of the
keyboard, the input data to be processed by your Web browser comes from a communication
channel. (Note that the exact nature of the channel is not important for this discussion.) In both
cases, your computer receives data input to process, and control input, usually HTML or XML,
that determines how the data is to be processed, performs the processing, and provides output.

These two examples contain all of the key elements found in any IT system, large or small.

An IT system consists of one or more computer systems; multiple computer systems
are connected together using some type of network interconnectivity. As a matter of
necessity, network interfaces must conform to standard agreements, known as
protocols, for messages to be understood by both computers during a message
exchange between a pair of computers. The network itself can take on a variety of
forms, provided that the interface requirements are met, and are determined by such
characteristics as performance, convenience, and cost.

The work performed by an individual computer system within the I'T system can be
characterized by input, processing, and output. This characterization is often
represented by the Input-Process-Output (IPO) model shown in Figure 1.3. Storage
is also represented within this model. Alternatively, storage can be interpreted as
output to be saved for use as future input. Storage is also used to hold the software
programs that determine the processing operations to be performed. The ability to
store programs and data on a temporary, short-term, or long-term basis is
fundamental to the system. In Chapter 2, Section 2.2, we will show that all IT systems
can ultimately be characterized by the same basic IPO model at all levels, from a
single computer to a complex aggregation of computers, although the complexity of
large systems may obscure the model and make it more difficult to determine the
actual inputs, outputs, and processing operations. The IPO model provides an
important basic tool for system analysis and design practices.

CHAPTER | COMPUTERS AND SYSTEMS |1

FIGURE 1.3
A Computer Process

Storage

e e

Input Process Output

B The components of an individual computer system consist of processing hardware,
input devices, output devices, storage devices, application software, and operating
system software. The task of the operating system software is to provide overall
control of the individual system, including management of input, output, and file
storage functions. The medium of exchange, both with users and between computers
within a larger system, is data. (Note that the messages between computers in the
second example are a form of data.) Figure 1.4 is a simple illustration of computer
systems embedded in a larger IT system.

Figure 1.5 summarizes the basic operations that are performed during computer processing.
These operations, in turn, can be reduced to the primitive operations that are also familiar to
you from your understanding of programming languages. The primitive processing operations
common to high-level programming languages are shown in Figure 1.6.

1.2 COMPONENTS OF THE COMPUTER SYSTEM

As noted in the previous section, there are three components required for the implementation
of a computerized input-process-output model:

1. The computer hardware, which provides the physical mechanisms to input and
output data, to manipulate and process data, and to electronically control the various
input, output, and storage components.

2. The software, both application and system, which provides instructions that tell the
hardware exactly what tasks are to be performed and in what order.

3. The data that is being manipulated and processed. This data may be numeric, it may
be alphanumeric, it may be graphic, or it may take some other form, but in all cases it
must be representable in a form that the computer can manipulate.

In modern systems, input entry, output display, and storage of the data and software used
for processing often take place at a location different from the computer where the actual
processing occurs. In many installations, actual processing is distributed among computer

12

FIGURE 1.4

A Simplified IT Computer System Layout

Intranet Database Apps. Internet
web server server server web server

Firewall

To Internet

Order
Fulfillment

Purchasing

Inventory E Warehousing

Printer E Shipping

Research &
planning

Marketing

Accounts
receivable

Accounts
payable

Printer

CHAPTER | COMPUTERS AND SYSTEMS 13

FIGURE 1.5

Basic Computer Operations

= |nput/output
® Basic arithmetic and logical calculations

= Data transformation or translation (e.g., program compilation, foreign
language translation, file updating)

® Data sorting
® Searching for data matches
® Data storage and retrieval

® Data movement (e.g., movement of text or file data to make room for
insertion of additional data)

FIGURE 1.6

Basic High-Level Language Constructs

= |nput/output (including file storage and retrieval)
= Arithmetic and logical assignment statements
= True/false decision branching (IF-THEN-ELSE or IF-GOTO)

= | oops and/or unconditional branching (WHILE-DO, REPEAT-UNTIL,
FOR, GOTO)

systems, with particular results passed to the individual systems that require them. Therefore,
we must also consider a fourth component:

4. The communication component, which consists of hardware and software that
transport programs and data between interconnected computer systems.

The hardware and system software components make up the architecture of the computer
system. The communication component connects individual computer systems together. The
data component and also the application software, while fundamental to the operation of the
computer system, are supplied to the computer system by the user or vendor, rather than
being a part of the architecture of the computer system itself. (It is useful to note, however,
that application software and data structure are often considered as part of the overall system
architecture when one considers the architecture from the perspective of the organization. We
explore this issue briefly in Chapter 2. Note, however, that the focus of this book is primarily on
computer system architecture, rather than on organizational system architecture.)

The Hardware Component

The most visible part of the computer system is obviously the hardware that makes up the
system. Consider the computer system upon which you write and execute your programs. You
use a keyboard or touch screen and a pointing device to provide input of your program text and

14 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

data, as well as for commands to the computer. A display screen is commonly used to observe
output. A printer is frequently available as an alternative output to the screen. These are all
physical components.

Calculations and other operations in your program are performed by one or more central
processing units (CPUs), or “cores” inside the computer. Memory is provided to hold your
programs and data while processing is taking place. Other input and output devices, such as
a disk and SD plug-in cards, are used to provide long-term storage of your program and data
files. Data and programs are transferred between the various input/output (I/O) devices and
memory for the CPUs to use.

The CPUs, memory, and all the input, output, and storage devices form the hardware part
of a computer system. The hardware forms the tangible part of the system. It is physical—you
can touch it, which is what the word “tangible” means. A typical hardware block diagram for
a computer is seen in Figure 1.7. In addition to the input and output devices shown in this
diagram, Figure 1.8 lists some other input and output devices that are frequently seen as part of
computer systems. The diagram in Figure 1.7 actually applies equally well to large mainframe
computers, small personal computers and tablets, and even devices with computers embedded
in them, such as PDAs, iPods, GPSs, and cell phones. Large and small computers differ primarily
in the number of cores, the amount of memory, speed, capacity, and the selection of input and
output devices provided. The basic hardware components and design are very similar.

FIGURE 1.7
A Typical Personal Computer System
~USB
Network & WiFi Interface
interfaces L
\«zf Hard disk, solid
A" BN

state drive, or
flash memory

CPU

.
=G Printer
core(s) Memory
Keyboard L

|/0 interface l:
Computer

O Speaker

Mouse, touchpad
or touchscreen

Monitor
or display

Video
camera

FIGURE 1.8

Other Common Input/Output Devices

CHAPTER | COMPUTERS AND SYSTEMS |5

Conceptually, a CPU itself is often viewed as a composition of three primary subunits:

1. The arithmetic/logic unit (ALU) where arithmetic and Boolean logical calculations
are performed.

2. The control unit (CU), which controls the processing of instructions and the
movement of internal CPU data from one part of the CPU to another.

3. The interface unit, which moves program instructions and data between the CPU
and other hardware components.

(In modern CPUs, the actual implementation is usually modified somewhat to achieve higher
performance, although the basic concepts are carefully preserved. More about that later, in
Chapter 8.)

The interface unit interconnects the CPU with memory and also with the various I/O
modules. It can also be used to connect multiple CPU cores together. In many computer systems,
a bus interconnects the CPU, memory, and all of the I/O components. A bus is simply a bundle
of wires that carry signals and power between different components. In other systems, the I/O
modules are connected to the CPU through one or more separate processors known as channels.

The main memory, often known as primary storage, working storage, or RAM (for random
access memory), holds programs and data for access by the CPU. Primary storage is made
up of a large number of cells, each numbered and individually addressable. Each cell holds a
single binary number representing part of a data value or part of an instruction. The smallest
addressable size of the cell in most current computers is 8 bits, known as a byte of memory.
Eight bits of memory can only hold 256 different patterns, so neighboring cells in memory
are nearly always combined to form groupings with a larger number of bits. In many systems,
for example, 4 bytes of memory combine to form a 32-bit word. Modern computers address
memory at least 4 bytes (a “32-bit” computer) or 8 bytes (a “64-bit” computer) at a time to take
advantage of larger instruction and data groupings.

The amount of primary storage determines the maximum number of instructions and data
words that can be loaded into memory from a peripheral device at one time. For example, a
computer with 2 gigabytes (GB), actually 2,147,483,648 bytes,! of memory would not be able
to execute a program that requires 2.7 GB for
its instructions and data unless some means is
provided within the computer to load the pro-
gram in sections as each section of the program
is needed.

Page and document scanners
RFID and NearFieldCommunication readers

The amount of primary storage provided

TV and radio tuners

GPS receivers

Cellular and Bluetooth communication technology
SD, SmartCard, etc. card readers

Fingerprint readers

Graphics tablets

Other mobile devices: accelerometers, gyroscopes, etc.

in a typical computer has increased rapidly
as computer technology improves. Whereas 64
kilobytes (KB) of memory was considered a large
amount in 1980, even the least expensive per-
sonal computers today usually have 2 gigabytes
(GB) of memory or more. Large computers
may provide many gigabytes of primary storage.
There are programs on the market that require

11 Kilobyte actually equals 1024 bytes. Thus, 1 MB = 1024 x 1024 = 1,048,576 bytes X 2048 = 2,147,483,648 bytes.

16 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

hundreds of megabytes (MB) or gigabytes (GB) of memory to execute. The inexpensive
availability of increased amounts of memory has allowed the design of very sophisticated
programs that would not have been possible just a few years ago.

The same is true for secondary storage. Even small personal computers provide long term
storage using hard disks or solid stage storage devices with storage measured in tens or hundreds
or thousands of gigabytes. The storage of images and video, in particular, requires tremendous
amounts of storage capacity. It is not uncommon to see arrays of hard disks, even on some
personal computers, providing tens or hundreds of trillions of bytes (specified as terabytes) of
long-term storage.

The instructions that form a particular program are stored within the primary storage, then
brought into the CPU and executed. Conceptually, instructions are brought in and executed
one at a time, although modern systems overlap the execution of instructions to some extent.
Instructions must be in primary storage in order to be executed. The control unit interprets
each instruction and determines the appropriate course of action.

Each instruction is designed to perform a simple task. Instructions exist to perform basic
arithmetic, to move data from one place in the computer to another, to perform I/O, and to
accomplish many other tasks. The computer’s power comes from the ability to execute these
simple instructions at extremely high speeds, measured in billions or trillions of instructions
executed per second. As you are already aware, it is necessary to translate high-level language
programs into the language of the machine for execution of the program to take place. It
may require tens, hundreds, or even thousands of individual machine instructions to form the
machine language equivalent of a single high-level language statement. Program instructions
are normally executed sequentially, unless an instruction itself tells the computer to change
the order of processing. The instruction set used with a particular CPU is part of the design
of the CPU and cannot normally be executed on a different type of CPU unless the different
CPU was designed to be instruction set compatible. However, as you shall see, most instruction
sets perform similar types of operations. As a result, it is possible to write programs that will
emulate the instruction set from one computer on a computer with a different instruction set,
although a program written for the original machine may execute slowly on the machine with
the emulator.

The data that is manipulated by these instructions is also stored in memory while being
processed. The idea that the program instructions and data are both stored in memory while
being processed is known as the stored program concept. This important concept is attributed
primarily to John von Neumann, a famous computer scientist. It forms the basis for the
computer architecture that is standard to nearly every existing computer.

The Software Component

In addition to the hardware requirement, your computer system also requires software. Software
consists of the programs that tell the computer what to do. To do useful work, your system
must execute instructions from some program.

There are two major categories of software: system software and application software.
System software helps you to manage your files, to load and execute programs, and to accept
your commands. The system software programs that manage the computer are collectively
known as an operating system, and differ from the application programs, such as Microsoft

FIGURE 1.9

Simplified Operating System
Block Diagram

User
interface

!

CHAPTER | COMPUTERS AND SYSTEMS |7

Word, or Firefox, or the programs that you write, that you normally run
to get your work done. Windows, Linux, MAC OS X, iOS, and Android
are the best known examples of an operating system. Others include Unix,
Oracle Solaris, and IBM z/OS.

User The operating system is an essential part of the computer system.

Like the hardware, it is made up of many components. A simplified

Application representation of an operating system is shown in Figure 1.9. The most
program obvious element is the user interface that allows you to execute programs,
enter commands, and manipulate files. The user interface accepts input
from a keyboard and, in most modern systems, a mouse, touch screen, or
other pointing device. The user interface also does output presentation on
the display. On some systems, the output display might be simple text, but

more likely the display includes a graphical user interface with a windowing

Application programming system, and various gadgets for manipulating the windows.
interface The operating system’s application programming interface (API),
t acts as an interface for application programs and utilities to access the
File internal services provided by the operating system. These include file
management Kernel services, I/O services, data communication services, user interface services,
system program execution services, and more.2
Many of the internal services are provided by the kernel module,
[{—f 1 which contains the most important operating system processing functions.
1/0 Network The remaining services are provided by other modules that are controlled
drivers module by the kernel. The kernel manages memory by locating and allocating
¢ space to programs that need it, schedules time for each application
to execute, provides communication between programs that are being
Hardware Network

executed, manages and arranges services and resources that are provided
by other modules, and provides security.

The file management system allocates and manages secondary storage space and translates
file requests from their name-based form into specific I/O requests. The actual storage and
retrieval of the files is performed by the I/O drivers that comprise the I/O component of the
operating system. Each I/O driver controls one or more hardware devices of similar type.

The network module controls interactions between the computer system and the network(s)
to which it is attached.

Traditionally, the operating system software has nearly always been stored on a hard disk,
but on some smaller modern systems, especially lightweight laptops and embedded systems
such as cell phones, tablets, and E-books, a solid-state disk or SD card is normally used instead.
On a few systems the operating system is actually provided as a network or cloud-based service
when the system is turned on. In either case, the bootstrap or IPL (Initial Program Load)
program in the operating system is stored within the computer using a type of memory known
as ROM, or read-only memory. The bootstrap program provides the tools to test the system and
to load the remainder of the operating system from the disk or network. Although the physical
medium where the software is stored can be touched, the software itself is considered intangible.

2The same term (API) is also sometimes used to describe the services provided by one application to another.
For example, Amazon and Google are among many companies whose application software provides API tools to allow
users to extend the functionality of the original software.

I8 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Together, the hardware and system software provide a working computer system environ-
ment. Application software, communication support, and user data complete the picture.

The Communication Component

Very few modern computers or computer-based devices operate independently. Instead, they
are tied to other computers directly, by modem, or through a network connection of some
sort. The computers may be located physically close to each other, or they may be separated,
even by thousands of miles. To work together, computers must have means to communicate
with each other. The communication component requires both hardware and software to
achieve this goal. Additional hardware components physically connect computers together into
multiprocessing systems, or clusters, or networks, or, via telephone, satellite, microwave, or
other network technology, to computers at other remote locations. A communication channel
provides the connection between computers. The channel may be a wire cable, a fiber-optic
cable, a telephone line, or a wireless technology, such as infrared light, cellular phone, or
radio-based technology such as Wi-Fi or Bluetooth. Special I/O hardware, consisting of a device
such as a modem or network interface card (NIC) within the computer, serves as an interface
between the computer and the communication channel. There may be additional hardware
within the channel itself.

The communication component also requires additional software within the operating
system of each computer to make it possible for each computer to understand what the other
computers that they are connected with are saying. This software establishes the connections,
controls the flow of data, and directs the data to the proper applications for use.

The Computer System

To review, our general description of the computer is valid for all general-purpose computer
systems, and also for most devices with computers embedded in them, regardless of brand
name or size. In more general terms, every computer system consists of at least one CPU,
where all the processing takes place; memory to hold the programs and data while they are
being processed; and some form of I/O, usually one or more keyboards, pointer devices,
and flat-screen display devices plus one or more forms of long-term storage, usually disks or
solid-state storage, network (“cloud”) storage, CDs or DVDs, and USB or SD plug-in memory.
Most modern computer systems provide more than one CPU (or “core”) within the computer
system. A single CPU can process only one instruction at a time; the use of multiple CPUs can
increase processing speed by allowing instructions that do not affect each other to be executed
in parallel.

The validity of our general description is true regardless of how complex or simple the
computer system may seem.

As a specific example, the large zEnterprise IBM mainframe computer shown in Figure 1.10
can provide complex Web services to thousands of users at a time. IBM mainframes can have
dozens of CPUs working together, with a minimum of 32 GB up to 3 terabytes (TB) of primary
storage. They are capable of executing instructions at a rate of tens of billions of instructions
per second! The powerful z/OS operating system can keep track of hundreds or thousands

FIGURE 1.10

IBM System z10 EC Mainframe Computer

Courtesy of International Business Machines Corporation.

Unauthorized use not permitted

CHAPTER | COMPUTERS AND SYSTEMS 19

of simultaneous users and divides the time among them to
satisfy their differing requirements. In addition to the CPU,
there are manylarge I/O devices—including tape drives and
high-speed printers—and disks that store essentially un-
limited amounts of data. The computer alone weighs over
5000 pounds/2200 kilograms!

In contrast, the tablet shown in Figure 1.11 is designed
for personal use. Everything is self-contained in one pack-
age. This system only has 2 GB of primary RAM storage
and operates at a small fraction of the speed of the zEnter-
prise. Long-term storage is limited to 128 GB of solid-state
memory. The entire system, complete with display screen,
built-in webcams, multiple network connections, including
an optional cellular connection, and battery, weighs about
1.5 pounds (0.9 kilograms, if you prefer).

Although these two systems seem very different, the
difference is actually one of magnitude and application,
not of concept. The large system operates much faster, can
support much more memory, and handles more input and
output much faster. It has operating system software that
allows many users to share thislarger resource. Nonetheless,
the fundamental system architecture is remarkably similar
in both cases. Even the actual processing performed by the
CPU is similar.

In fact, today’s CPU operates in the same fundamental
way as its CPU counterpart of sixty years ago, even though

the construction is very different. Since computers all operate so similarly, regardless of size
or type, it is not difficult today to transfer data between these different systems, allowing each
system to do part of the processing for higher overall efficiency. This concept is known as
distributed computing. The fact that different types of computers can work together, share
files, and communicate successfully is known as open computing. Communication technology

FIGURE I.11
A Tablet Computer

Photo by author

fulfills the requirements that make open and distributed com-
puting possible and convenient.

Computers are sometimes divided into categories: main-
frame computers, midsized servers, workstations, personal
desktop and laptop computers, and mobile computing devices,
but these categories are less significant than they once were.
The capability of today’s personal computer far exceeds the
capabilities of a mainframe computer of just a few years ago.
Oracle SPARC computers are an example of workstations that
are frequently used as though they were midsized servers, or
even small mainframes. Rather than attempting to categorize a
particular computer, it is usually more productive to describe
its capabilities in comparison to other systems being discussed
or considered.

20

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

1.3 THE CONCEPT OF VIRTUALIZATION

The word “virtual” appears frequently throughout the computer literature in many different
contexts. To name a few applications of the word that appear in this text, there are virtual
computers, a Java Virtual Machine (JVM), virtual memory, and virtual networks. Sometimes, a
synonymous word, logical, is used instead: in networking we have logical connections. Virtual
storage consists of a relationship between logical memory and physical memory.

It is not important at this point that you understand any of the specific concepts mentioned
above. (In fact, we realize that you probably don’t.) Since the words virtual and logical represent
a number of important concepts in IT, however, we introduce them here.

In optics, a virtual image is the reflection that you see when you stand in front of a regular
mirror. (See, for example, the cartoon at the beginning of Chapter 18.) You know that the image
isn’t real. For one thing, it’s behind the wall that the mirror is mounted on. For another, you
can’t touch it. In early, time-shared computing, a large central computer commonly supplied
computing services to users at terminals located remotely from the computer. In a sense, it
seemed as though the user had access to a computer that was all her own. Starting in the early
1970s, IBM offered the VM (virtual machine) operating system to support this concept. (The
centralized time-sharing approach is similar, in many ways, to today’s cloud computing—one
of the goals of this text is to convince you that most of today’s “new and exciting” technologies
are simply reworkings of ideas that have been around for a long time!)

The American Heritage Dictionary offers two applicable definitions of virtual that together
describe the usage of the word in modern computing:

B existing or resulting in essence or effect though not in actual fact, form, or name;
B created, simulated, or carried on by means of a computer or computer network.

Wikipedia defines virtualization as “a broad term that refers to the abstraction of computer
resources’.

In essence, virtual and logical are used to refer to something that appears as though it is
something different. Thus, the Java Virtual Machine uses software to simulate a real computer
that works well with the Java programming language, even though the actual computer executes
a different set of instructions than the JVM. A logical connection in networking offers the
appearance of a direct communication link for passing data between two computers, even
though the actual connection might involve a complex series of interconnections involving
many computers and other devices and a variety of software to make it all look simple. The
virtualization of a computer allows a single computer to appear as a multiplicity of computers,
each with its own operating system and hardware resources. A single mainframe set up as a cloud
service might provide hundreds or thousands of virtual computers to users all over the world.

1.4 PROTOCOLS AND STANDARDS

Standards and protocols are of great importance in computer systems. Standards are agreements
among interested parties, often manufacturers, to assure that various system components will
work together interchangeably. Standards make it possible to build a computer with components
from different suppliers, for example, knowing that a graphics card will plug properly into a
connector on a motherboard and that the image representations will be consistent between the
connector, the CPU, memory, and the display monitor.

CHAPTER | COMPUTERS AND SYSTEMS 21

Standards apply to every aspect of computing: hardware, software, data, and communica-
tions; the voltage of a power supply; the physical spacing of pins on a connector; the format
of a file; and the pulses generated by a mouse. Computer language standards, such as Java and
SQL, allow programs written on one type of computer to execute properly and consistently on
another, and also make it possible for programmers to work together to create and maintain
programs.

Similarly, data format and data presentation standards, such as the PNG and JPEG image
format standards, the Unicode text format standard, and the HTML and XML Web presentation
standards, allow different systems to manipulate and display data in a consistent manner.

Standards can arise in many different ways. Many standards occur naturally: a proprietary
data format, belonging to a single vendor, becomes a de facto standard due to the popularity of
the product. The PDF print description language is an example of such a standard. The format
was designed by Adobe Corporation to provide a way of communicating high-quality printed
output between computers and printers. Other standards are created because of a perceived
need in an area where no standard exists.

Often a committee will form to investigate the requirements and create the standard.
The MPEG-2 and MPEG-4 standards, which establish the means for the transmission and
processing of digital video images, occurred in this way. The committee that designed the
standard, made up primarily of motion picture engineers and video researchers, continues to
develop the standard as improved techniques evolve. The JPEG photographic standard and
MP3 and MP4 sound standards are other examples of standards that were developed formally.
Similarly, each version of HTTP has been formalized after many years of discussion by parties
interested in Web communication. A nonstandard protocol or data format is limited in use to
its supporters and may or may not become a standard, depending on its general acceptance. For
example, DVD videos encoded in the proprietary DVD-ROM format will play on some DVD
players, but not on others.

Protocols define the specific agreed-upon sets of ground rules that make it possible for a
communication to take place. Except for special applications, most computers perform their
operations such that each hardware or software computer unit will understand what other
computer units that they are connected with are saying. Protocols exist for communications
between computers, for the communications between various I/O devices and a computer,
and for communications between many software programs. A protocol specification defines
such communication features as data representation, signaling characteristics, message format,
meanings of messages, identification and authentication, and error detection. Protocols in a
client-server system assure that requests are understood and fulfilled and that responses are
interpreted correctly.

Since the use of a proprietary protocol would be limited to those with permission to use it,
protocols are almost always eventually standardized. Although not always the case, protocols
that are not standardized tend to die out from lack of use. In fact, international standards
are often created to ensure that the protocols are universally compatible. As an example,
HTTP, HyperText Transfer Protocol, guides communication between Web servers and Web
browsers on the Internet. The movement of data through the Internet is controlled by a suite
of protocols called TCP/IP (Transmission Control Protocol/Internet Protocol). Storage devices
communicate with a computer using a protocol called SATA. There are thousands of such
protocols.

22

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

New protocols and other standards are proposed and created and standardized as the
need arises. XML, RSS, and SIP are all examples of protocols developed recently to meet new
and changing demands. Satellite telecasting, near-universal telephone communication, wireless
communications, and the Internet all demonstrate powerful and useful technologies made
possible by protocols and standards. Indeed, the Internet is a measure of the success to which
protocols that govern intercommunication between computer hardware and software have
been standardized throughout the world. Discussions of various protocols and standards will
occur regularly throughout this book.

1.5 OVERVIEW OF THIS BOOK

The focus of this book is upon the architecture and organization of computers, computer
systems, and computer-based IT systems, including everything from the smallest mobile device
to the largest mainframe. Technically, there is a slight difference in definition between the terms
“computer architecture” and “computer organization”. In this book we will usually not attempt
to differentiate these terms and will use them interchangeably.

In this book we will be concerned with all four components of computer systems: hardware,
software, data, and interconnectivity, and with the interactions between each component, with
other systems, and with users. We will also look initially at the larger picture: the organization of
computer systems as components, themselves, to form enterprise IT systems. Chapter 2 of this
first part is concerned with the system as a whole. The remainder of this book is divided into
four additional parts, consisting of discussions of number systems and the representation of
data in the computer, the hardware that makes up the computer, the networks that interconnect
computers, and the system software that the computer uses.

Our first step will be to examine the concept of systems in general. We will look at the
characteristics and qualities that define a system. We will then use that basic understanding to
look at the characteristics of computer-based IT systems and show how the various elements and
requirements of computer systems fit into the system concept. Part 1 illustrates fundamental
IT architecture concepts with several examples of IT system architectures.

In Part 2, we will look at the different forms the input data may take, and we will consider
the translation processes required to convert data into forms that the computer hardware and
software can process. You will see how the various data types that are familiar to you from
programming languages are stored and manipulated inside the computer. You’ll learn the
many different ways in which math calculations can be performed, and the advantages and
disadvantages of each. You will see the difference between a number and the alphanumeric
representation of a number, and understand why that difference can be critical in whether
a program works or not. You will be able to relate the size of a word processing text to the
storage capability of the computer’s disk. You’ll understand how computers process and handle
multimedia data, graphics, photographs, audio, and video.

In Part 3, we will take a detailed look at the various components of the hardware and
how they fit together. Using an extremely simple model, you will learn how the CPU works,
how different I/O devices work, and even how text and graphics manage to appear, seemingly
by magic, on the display screen. You will learn what makes some computers faster and more
powerful than others, and what that means. You will learn about different ways of connecting
I/O devices to the computer and see why you get a fast response from some devices, a slow

CHAPTER | COMPUTERS AND SYSTEMS 23

response from others. You’ll learn about USB ports. We'll even explain the difference between
PCI and PCI Express buses.

Most important, you will have the opportunity to see what a simple, program-obedient
machine the computer really is. You will learn about the limitations of a computer. We all tend
to think of the computer as a resource of infinite capacity, speed, and perhaps even intelligence,
but of course that’s not true. We will consider how these limitations affect your work as a user,
and as a means of specifying a system that will meet your needs and requirements.

Part 4 will provide a careful introduction to the foundational principles of communication
and networking. We will consider the basic communication technologies, networking hardware,
software, channelsand channel media, protocols, and methodologies that are required to support
communication between computer systems in an IT system environment.

In the final part, we will consider the software that is used to control the computer’s basic
processing capabilities. Although computer software falls into two categories, operating system
software and application software, we will focus exclusively on the system software. We will be
concerned with control and efficient use of the computer hardware, fair and effective allocation
of computer resources to different programs, security, storage management and file system
structure, system administration, security, user interfaces, and more.

There are also four supplementary chapters covering topics that are somewhat outside the
scope of the text, but important and interesting nonetheless. The first supplementary chapter
introduces the fundamental logic that makes up a computer. The second supplementary chapter
provides case studies that describe the hardware and system software of important real-world
computer systems. These examples include the x86 family of PC hardware, the Microsoft
Windows family of operating systems, Linux operating systems, and IBM mainframe hardware
and software. The remaining two supplementary chapters, on CPU instruction addressing modes
and on programming tools, have been maintained and updated from previous editions. The
supplementary chapters can be found on the book’s website, www.wiley.com/college/englander.

Additional related topics of current interest may also be found on the book’s website. The
website also contains numerous links to reference materials, both general to computing as well
as specific to individual topics discussed within the book.

1.6 A BRIEF ARCHITECTURAL HISTORY
OF THE COMPUTER

Although a study of the history of computing is generally outside the scope of this book,
a brief introduction is useful in showing the wide-ranging and quirky path by which IT
has arrived to its present position. It is of particular interest to note that nearly all of the
revolutionary concepts that define computer systems today were developed between forty-
and sixty-five years ago; today’s advances are more evolutionary and incremental in nature.
Today’s smartphone processes instructions that are remarkably similar to those of mainframe
computers in the 1960s. Some current cell and network technologies are based on inventions
from World War II. This suggests that an understanding of the basic concepts that we are
presenting in this book should serve you, the reader, well in your ability to understand the
importance and significance of future developments as they occur.

http://www.wiley.com/college/englander

24 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Early Work

FIGURE 1.12

It is not possible, nor particularly useful, to identify the date of the “invention” of the computer.
Indeed it has always been the aspiration of humankind to create devices that would simplify
people’s work. Thus, it is not surprising that people were envisioning mechanical devices to
simplify the jobs of routine data processing and calculation even in ancient times. In fact,
there is recent evidence of the existence of an ancient computing device used for astronomical
calculations. Instead, this discussion covers just a few of the major developments related to
computer architecture.

In this context, one could consider the abacus, already in use as early as 500 BC by the
ancient Greeks and Romans, to be an early predecessor of the computer. Certainly, the abacus
was capable of performing calculations and storing data. Actually, if one were to build a binary
numbered abacus, its calculations would very closely resemble those of the computer.

The abacus remained in common use until the 1500s and, in fact, is still considered an
effective calculating tool in some cultures today. In the late 1500s, though, European inventors
again began to put their minds to the problem of automatic calculation. Blaise Pascal, a noted
French mathematician of the 1600s, invented a calculating machine in 1642 at the age of
nineteen, although he was never able to construct the machine. In 1801, Joseph Marie Jacquard
invented a loom that used punched cards to control the patterns woven into cloth. The program
provided by the punched cards controlled rods that raised and lowered different threads in the
correct sequence to print a particular pattern. This is the first documented application of the
use of some form of storage to hold a program for the use of a semiautomated, programmable
machine.

Charles Babbage, an English mathematician who lived in the early 1800s, spent much of his
own personal fortune attempting to build a mechanical calculating machine that he called an

“analytical engine”. The analytical engine resem-
bles the modern computer in many conceptual
ways. A photo of an early version of the analytical

Babbage’s Analytical Engine

engine is shown in Figure 1.12. Babbage’s machine
envisioned the use of Jacquard’s punched cards for
input data and for the program, provided mem-
ory for internal storage, performed calculations as
specified by the program using a central process-
ing unit known as a “mill”, and printed output.
Augusta Ada Byron, Countess of Lovelace and the
daughter of the poet Lord Byron, worked closely
with Babbage and developed many of the funda-
mental ideas of programming and program design,
including the concepts of branches and loops.

A block diagram of the Babbage analytical
engine is shown in Figure 1.13. The mill was
capable of selecting one of four arithmetic opera-
tions, and of testing the sign of a number with
a different program branch specified for each
result. The sequence of operation was specified

Courtesy of International Business Machines Corporation

FIGURE 1.13

Block Diagram of Babbage’'s Analytical Engine

CHAPTER | COMPUTERS AND SYSTEMS 25

by instructions on the operation cards. The opera-
tion cards could be advanced or reversed as a means
of implementing a sort of “goto” instruction. The

_ . second set of cards, known as variable cards, were to

T?Ael_nl]')” Data ;rnrlgétoor;e) E:rgt?)ruiréﬂ be used Fo specifyl particular mc?mory locations for
the data involved in the calculations.

_ Babbage envisioned a memory of one thou-

Instructions sand 50-digit decimal numbers. Each digit was to be

Operation Variable stored using a ten-toothed gear known as a counter

cards cards wheel. Although the analytical engine was never

completed, it should be apparent to you that it con-

Source: Computer Architecture and Organization, 2e., J. Hayes, copyright
1988 by McGraw-Hill Companies p. 14.

Program

tains all the essential elements of today’s computers.
At approximately the same time, another English
mathematician, George Boole, developed the binary
theory of logic that bears his name, Boolean logic.
He also recognized the relationship between binary arithmetic and Boolean logic that makes
possible the circuitry that implements the modern electronic computer.

Computer Hardware

In the late 1930s and early 1940s, several different groups of researchers independently
developed versions of the modern electronic computer. The Mark I, built in 1937 by Howard H.
Aiken and associates at Harvard University with help and funding from IBM, used thousands
of mechanical relays; relays are binary switches controlled by electrical currents to perform
Boolean logic. Although binary relays were used for computation, the fundamental design was
decimal. Storage consisted of seventy-two 23-digit decimal numbers, stored on counter wheels.
An additional counter wheel digit held the sign, using the digit 0 for plus and 9 for minus.
The design appears to be based directly on Babbage’s original concepts and use of mechanical
calculator parts from IBM accounting machines. A similar electromechanical computer was
designed and built by Conrad Zuse in Germany at about the same time.

The first totally electronic digital computer was apparently devised by John V. Atanasoff,
a physicist at [owa State College, in 1937. The machine was built in 1939 by Atanasoff and a
graduate student, Clifford Berry, using electronic vacuum tubes as the switching components.
The machine was known as ABC, for Atanasoft-Berry Computer. It is claimed that Atanasoff
worked out the original details as he drove restlessly late one winter night from his house
in Jowa to a bar in neighboring Illinois. The machine was not intended as a general-purpose
computer, but was built to solve physics equations that Atanasoft was working on at the time.
There is some doubt as to whether the machine ever worked completely.

ABC was a binary-based machine, just like today’s computers. It consisted of an ALU
with thirty units that could do addition and subtraction, a rotating drum memory that held
thirty binary numbers of 50 digits each, and punched card input. Each punched card held
five 15-digit decimal numbers. These numbers were converted to binary as they entered the
machine. Despite its limitations, ABC was an important pathmark that led to later significant
advances in computer design. It is only recently that Atanasoff has begun to receive recognition
for his achievement.

26

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Much of the effort that culminated in a successful general-purpose computer architecture
resulted from a wartime need for the solution to difficult mathematical formulas related to
ballistic missile trajectories and other World War II research. The ENIAC (for Electronic
Numerical Integrator and Computer, believe it or not) is generally considered to be the first
all-electronic digital computer. It was designed and built between 1943 and 1946 by John
W. Mauchly and J. Presper Eckert at the University of Pennsylvania, using the concepts that
Mauchly had seen in Atanasoff’s machine, although this was not publicly known at the time.

ENIAC had very limited storage capability, with only twenty locations each capable of
holding a 10-digit decimal number. An additional one hundred numbers could be stored
in read-only memory. Calculations were performed using decimal arithmetic. Ten electronic
vacuum tube binary switches were used for each digit, with only one switch in the “ON” position
to represent the value of the digit. Input and output used punched cards. The system could also
provide printed output.

Programs could not be stored internally, but were hard wired with external “patch panels”
and toggle switches. It took many hours to change programs, and, of course, debugging was
a nightmare. Nonetheless, ENIAC was an important machine, some say the most important
machine, especially since it led directly to the development of the UNIVAC I, the first
commercially available computer, in 1951.

ENIAC contained eighteen thousand vacuum tubes, occupied a floor space of more than
fifteen thousand square feet, and weighed more than thirty tons. A photograph of ENIAC, taken
from The New York Times of February 15, 1946, is shown in Figure 1.14. Even in its day, ENIAC
was recognized as an important achievement. ENIAC operated successfully until 1955, when
it was dismantled, but not destroyed. Parts of the computer can be seen at the Smithsonian
Institute, at the U.S. Military Academy at West Point, at the Moore School of the University of
Pennsylvania, and at the University of Michigan.

FIGURE 1.14
The ENIAC

Photo used with permission of Unisys Corporation

CHAPTER | COMPUTERS AND SYSTEMS 27

In 1945, John von Neumann, a consultant on the ENIAC project, proposed a computer that
included a number of significant improvements over the ENIAC design. The most important
of these were

1. A memory that would hold both programs and data, the so-called stored program
concept. This solved the difficult problem of rewiring the control panels for changing
programs on the ENTAC.

2. Binary processing of data. This simplified the design of the computer and allowed the
use of binary memory for both instructions and data. It also recognized the natural
relationship between the ON/OFF nature of switches and calculation in the binary
number system, using Boolean logic.

The CPU was to include ALU, memory, and CU components. The control unit read
instructions from memory and executed them. A method of handling I/O through the
control unit was also established. The instruction set contained instructions representing all the
essential features of a modern computer. In other words, von Neumann’s machine contained
every major feature considered essential to modern computer architecture. Modern computer
architecture is still referred to as von Neumann architecture.

Due to political intrigue and controversy, two different versions of von Neumann’s
architecture were designed and built, EDVAC at the University of Pennsylvania and IAS at the
Princeton University Institute for Advanced Studies (hence the unusual name). Both machines
were completed in 1951-1952. The success of EDVAC and IAS led to the development of many
offspring, mostly with odd names, and to several commercial computers, including the first
IBM computers.

At this point, von Neumann’s architecture was firmly established. It remains the prevalent
standard to this day and provides the foundation for the remainder of the material in this book.
Although there have been significant advances in technology, and improvements in design
that have resulted, today’s designs still reflect the work done prior to 1951 on ABC, ENIAC,
EDVAGC, and IAS.

All of these early electronic computers relied on the electronic vacuum tube for their
operation. Vacuum tubes were bulky, made of glass, fragile, short-lived, and required large
amounts of power to operate. Vacuum tubes require an internal electric heater to function,
and the heaters tend to fail quickly, resulting in what was known as a “burned out” tube.
Furthermore, the heat generated by the large number of tubes used in a computer required a
massive forced-air or water-cooling system. A report reprinted by computer historian James
Cortada [CORT87] states that the average error-free operating time for ENIAC was only 5.6
hours. Such bulky, maintenance-requiring systems could not have attained the prevalence that
computers have in our society. The technological breakthrough that made possible today’s small,
sophisticated computers was the invention of the transistor and, subsequently, the integration
of transistors and other electronic components with the development of the integrated circuit.

The invention of the integrated circuit led to smaller, faster, more powerful computers as
well as a new, compact, inexpensive form of memory, RAM. Although many of these computers
played an important role in the evolution of today’s computers, two specific developments stand
out from the rest: (1) development of the first widely accepted personal computer, by IBM in
1981, and (2) design of the Intel 8008 microprocessor, predecessor to the x86 CPU family, in
1972. The impact of these two developments is felt to this day. Even smartphones and other
mobile devices reflect these developments.

28

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Companies have developed better ways of moving data between different parts of the
computer, better ways of handling memory, and methods for increasing the speed of instruction
execution. As we noted before, there is a lot more processing power in today’s smallest mobile
device than there was in the largest mainframe computer in the 1970s. Nonetheless, the basic
architecture of today’s machines is remarkably similar to that developed in the 1940s.

Operating Systems

Given how easy it is to communicate with computers today, it is hard to picture a time when
the user had to do everything by hand, one step at a time. We take it for granted that we can
type commands at a keyboard or move a mouse and launch programs, copy files, send text to a
printer, and perform myriad other computer tasks. We power up and bootstrap our systems by
pressing a switch.

It was not always this way. Early computers had no operating systems. The user, who was
also the programmer, entered a program by setting it, one word at a time, with switches on
the front panel, one switch per bit, or by plugging wires into a patch panel that resembled a
cribbage board. Not a pleasant operation! Needless to say, early computers were single-user
systems. Much of the computer’s time was tied up with this primitive form of program and data
entry. In fact, as late as the mid-1970s, there were still vendors producing computer systems
with no operating system and computer hardware that was still bootstrapped by entering the
bootstrap program, one instruction at a time into switches on the front panel of the computer.

The history of system software, particularly operating systems, is much less well defined
than that of hardware. According to Cortada [CORT87],

Without more sophisticated operating systems, scientists would not have been
able to take full advantage of the power of the transistor and later of the
[microprocessor] chip in building the computers known today. Yet their
contribution to the overall evolution of digital computers has been overlooked by
historians of data processing.

Part of the reason, undoubtedly, is that software evolved gradually, rather than as a series of
important individually identifiable steps. The first operating systems and high-level program-
ming languages appeared in the early 1950s, particularly associated with IBM and MIT, but
with only a few exceptions, these efforts have not been associated with individual people or
projects.

The need for operating system software came from the increasing computer power that
resulted from the rapid development of new computers in the 1950s. Although the hardware
architecture has not changed substantially since that time, improved technology has resulted
in a continuum of ever-increasing computer capability that continues to this day. It has been
necessary to continually modify and improve operating system architecture to take advantage
of that power and make it available to the user. Computing has changed from single-user batch
processing (where only a single user, with a single program, could access the machine at one
time), to multiple-user batch job submission (where each user’s “job” was submitted to the
computer by an operator for sequential runs), to multiuser batch job execution (where the
computer executed several jobs simultaneously, thereby keeping the CPU busy while I/O took
place on another user’s job), to multiuser online computing (where each user had direct access
to the computer), to single-user interactive personal computing, to today’s powerful interactive

CHAPTER | COMPUTERS AND SYSTEMS 29

networked systems, with multitasking, easy-to-use touch screens and graphical interfaces, the
ability to move data between applications, and near-instant access to other computers all over
the world.

Each of these developments, plus various hardware developments—minicomputers, PCs,
new I/O devices, multimedia—have required additional operating system sophistication; in
each case, designers have responded to the need.

The early computers were used primarily by scientists and engineers to solve technical
problems. The next generation of computers, in the late 1950s, provided a punched card reader
for input and a printer for output. Soon after, magnetic tape systems became available. The
first “high-level” languages, primarily assembly language, then FORTRAN, made it possible
to write programs in a language other than binary, and offline card punch machines allowed
programmers to prepare their programs for entry without tying up the machine. Algol, COBOL,
and Lisp followed shortly after. New technology improved the reliability of the computers. All
these advances combined to make the computer system practical for business commercial use,
especially for large businesses.

Still, these computers were single-user batch systems. Initially, users submitted the cards
that they had prepared to the computer for execution. Later, separate, offline systems were
developed that allowed the cards to be grouped together onto a magnetic tape for processing
together. Programs were then submitted to the computer room in the form of jobs. A job
consisted of one or more program card decks, together with the required data decks for
each program. An output tape could also be used to support printing offline. As an example,
Figure 1.15 shows a job that compiles and executes a FORTRAN program.

I/O routines were needed to operate the card readers, tape drives, and printers. The earliest
operating systems consisted of just these I/O routines, but gradually operating systems evolved
to perform other services. Computer time was very expensive, hundreds of dollars per minute,
and in growing demand. To increase availability, control of the computer was placed in the
hands of an operator, who fed the punched cards, mounted tapes, and generally tried to keep
the system busy and efficient. The operating system provided a monitor that fed jobs to the

FIGURE 1.15
Job Card Deck Used to Compile and Execute a FORTRAN Program
[$END
I
[$DATA
[$RUN
[$LOAD
|
[$FORTRAN Data for the run

$JOB ENGLANDER

Program to compile

30

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

system and supported the operator by notifying him or her of necessary actions, such as loading
a new tape, setting switches on the panel, removing printout, and so on. As system demand
increased, the monitor expanded to include accounting and simple, priority-based scheduling

of jobs.

It is generally accepted that the first operating system was built by General Motors
Research Laboratories in 1953-1954 for their IBM 701 computer. Other early systems included
the FORTRAN Monitor System (FMS), IBSYS, and Share Operating System (SOS).> Many
important breakthroughs in operating system design occurred in the early 1960s. These
breakthroughs laid the groundwork for the operating system as we know it today.

In 1963, Burroughs released its Master Control Program (MCP). MCP contained
many of the features of modern systems, including high-level language facilities and
support for multiprocessing (with two identical CPUs). Most important, MCP
supported virtual storage, as well as powerful multitasking capabilities.

IBM introduced OS/360 as the operating system for its new System/360 in 1964.
08/360 provided a powerful language to expedite batch processing, JCL, or Job
Control Language, and a simple form of multiprogramming that made it possible to
load several jobs into memory, so that other jobs could use the CPU when one job
was busy with I/O. By this time, disks were also becoming available, and the system
was capable of reading cards onto disk while the CPU executed its jobs; thus, when a
job completed, the operating system could load another job from disk into memory,
ready to run. This improved the OS scheduling capability. JCL is still used for batch
processing! The enormous success of the IBM OS/360 and its successors firmly
established the basis of an operating system as a fundamental part of the

computer.

In 1962, a group at MIT known as Project MAC introduced the concept of
time-sharing with an experimental operating system called CTSS. Project MAC was
one of the seminal centers for the development of computer science. Shortly
thereafter, MIT, Bell Labs, and GE formed a partnership to develop a major
time-sharing system. The system was called MULTICS (Multiplexed Information and
Computing Service), and although MULTICS never fully realized its dream of
becoming a major computer utility, many of the most important multitasking
concepts and algorithms were developed by the MULTICS team. It was supplied for
many years as the operating system for Honeywell computer systems.

When Bell Labs withdrew from the MULTICS project, Ken Thompson, a MULTICS
researcher, turned to the development of a small personal operating system, which he
called Unics, later UNIX, to contrast it from MULTICS. He was later joined by
Dennis Ritchie. The original UNIX development was performed on a Digital PDP-7
minicomputer and later moved to a PDP-11 minicomputer, then to the Digital VAX
computer. These were popular computer systems supplied by the Digital Equipment
Corporation between 1964 and 1992. Originally, the system was written in assembly
language, but Ritchie developed a new high-level language, which he called C, and the
operating system was largely rewritten in C.

3Share was a consortium of system programmers who used IBM systems and who met to discuss problems and
develop solutions. SOS was produced by a team of consortium members.

CHAPTER | COMPUTERS AND SYSTEMS 31

UNIX introduced many important OS concepts that are standard today, including the
hierarchical file system, the shell concept, redirection, piping, and the use of simple commands
that can be combined to perform powerful operations. Thompson and Ritchie included facilities
for document production and formatting, including such novelties as a spell checker and a
grammar checker. They created many inventive algorithms to improve operating system
performance, developed techniques for interprocess communication, and even provided tools
for networked and distributed processing. Many facets of operating systems that are taken for
granted today were originated in UNIX development.

UNIX earned a reputation for power and flexibility. Because it was written in C, it was also
easy to port it, that is, convert it for use, to other computers. As a result of these factors, UNIX
became an important operating system for universities and was ultimately adopted, in many
versions, by the commercial marketplace as well. UNIX and its direct derivatives, FreeBSD,
Linux, and Android, continue to be of great importance, particularly due to UNIX’s flexibility
in the area of networks and distributed systems.

B Another important innovation, some would say the most important development in
making the computer accessible to nontechnical users, was the development of the
concept of graphical user interfaces. Most historians would credit the invention of
the windows and mouse interface to Doug Englebart. This work was done, amazingly
enough, in the 1960s, at Stanford Research Institute. A practical windowing system
was built in the 1970s by Alan Kay and others at Xerox PARC (Palo Alto Research
Center), as part of a visionary computer concept known as the Dynabook project.
Conceptually, the Dynabook is the direct forerunner of today’s smartphones, tablets,
and E-books. The original intention of Dynabook was to develop a book-sized
personal computer with a high-resolution color display and wireless communication
that would provide computer capabilities (particularly secretarial), games, e-mail, and
areference library. Although the technology of the time was not sufficient to bring the
Dynabook as an entirety to fruition, the engineers at Xerox in the late 1970s built a
personal computer workstation with a graphical user interface known as Star. It is
believed that a visit to Xerox PARC by Steve Jobs, the founder of Apple, in 1979,
inspired the development of the Apple Lisa and, subsequently, the Apple
Macintosh.

The next important breakthrough in computer use occurred in 1982, with the introduction
of the IBM personal computer. The IBM PC was designed as a stand-alone, single-user computer
for the mass market. The IBM PC was supplied with a reasonably easy-to-use operating system,
PC-DOS, which was developed and also later marketed by Microsoft as MS-DOS. PC-DOS was
actually derived from an earlier personal computer operating system, CP/M (Control Program
for Microcomputers), but is important because of the tremendous success of the IBM PC and
its derivatives. Gradually, PC-DOS and MS-DOS became the prevalent operating system of the
era. With later versions, Microsoft made many improvements, including hierarchical directory
file storage, file redirection, better memory management, and an improved and expanded
command set. Many of these improvements were derived from UNIX innovations. With the
addition of Englebart and Kay’s user interface innovations, MS-DOS has gradually evolved into
Windows NT and Windows XP, and most recently, Windows 8.

Even with all these earlier innovations, there continue to be tremendous advances in
operating system software. Today’s systems, such as Windows 7 and 8, Linux and Android,

32 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

and Macintosh OS X and iOS, combine much more power on one hand with improved user
friendliness and ease of use on the other. There are several reasons for this:

There has been a great increase in computer speed and power. More powerful
integrated circuits have allowed the design of faster computers using multiple CPU
cores, faster clocks and larger internal data paths, together with techniques for
speeding up instruction execution. Even small personal computers can support
gigabytes of memory and many gigabytes or terabytes of longer-term storage. A
modern PC may contain as much as ten thousand times the memory or more and
execute instructions a million times as fast as the 1965 IBM OS/360 mainframe
computer. Thus, more capability can be built into the operating system without
sacrificing performance.

There have been fundamental improvements in computer hardware design. Many
modern computers are designed as an integrated unit, hardware and operating
system software together. Most computer hardware contains special features
intended to support a powerful operating system. Such features as cache memory,
vector processing, and virtual storage memory management hardware are intended
primarily for use by the operating system. These features used to be available only on
large mainframes. A protected mode of hardware instructions, accessible only to the
operating system, provides security and protection to the operating system and allows
the operating system to protect the system’s resources and users. Separate, auxiliary
graphics processing units relieve the CPU workload to provide sophisticated display
capabilities.

There have been fundamental improvements in operating system software design.
Operating system programs have grown in size and complexity. Increased memory
capacity has made a larger operating system feasible. Increased speed has made it
practical. Gradually, innovative operating system techniques from large computers
have drifted down to the level of the smallest computing device. In addition, program
design itself has helped the process. New languages, well designed for system
programming, and better programming methods such as object-oriented
programming have also contributed to the process.

There has been a shift in focus to creating operating systems that better serve the end
user. This has resulted in much current research on human-computer interfaces, and
on the ways in which humans work and use the computer. New work paradigms,
based on object-oriented programming and communication technologies, and new
interfaces continue to extend the role of the operating system. There is a new
willingness to include features that were not a part of earlier operating systems and to
modularize the operating system in different ways to improve the delivery of services
to the user and to the user’s application programs.

Networking has provided the opportunity for innovative research and development
in distributed computing, including client-server technology, shared processing, and
cloud computing. There is a continuing progression of new operating system
techniques, developed in response to the changing requirements of modern
distributed systems.

The rapid growth of the Internet, and of e-mail use, the Web, and multimedia in
particular, has created opportunities and the need for better methods of accessing,

CHAPTER | COMPUTERS AND SYSTEMS 33

retrieving, and sharing information between different systems. The results have
impacted network design, user interface design, distributed processing technology,
and open system standardization with corresponding effects in operating system
design.

Although today’s operating systems are highly complex and sophisticated, with many
capabilities made possible by modern technology, particularly fast processors, large amounts of
memory, and improved graphical I/O design, it is interesting to note that the major operating
system features that we take for granted today are all evolutions based on innovations of more
than thirty years ago.

Communication, Networks, and the Internet

With the development of large, multiterminal computer systems in the 1960s and 1970s, it
was natural that users would want to use the computer to communicate with each other and
to work collaboratively. Data was centrally stored in storage that was available to all, so it was
easily shared among users on the same system. It soon occurred to software developers that it
would be desirable to allow direct discussion among the users, both in real time and in the form
of messages that could be stored on the system and made available to users when they logged
in. Since data was centrally stored, the addition of message storage was a minor enhancement.
“Talk” facilities that allowed users to communicate in real time were added later. These were
similar to today’s text messaging, although some had split-screen capability that allowed two
users to send messages simultaneously. By 1965, some of these systems supported e-mail, and
in 1971, Ray Tomlinson created the standard username@hostname format that is still in use
today. As modems became available for users to log into their office systems from home and
computers became more affordable, software innovators developed bulletin board systems,
newsgroups, and discussion boards, where users could dial in and leave and retrieve messages.
Gradually, it became possible to support modems on multiple lines, and affordable real-time
“chat rooms” became possible.

During the same period, various developments occurred that made it possible to connect
different computers together into simple networks. Some were based on direct links between
modems on each computer. Others were based on early protocols, notably X.25, a packet-
switching protocol using phone lines. By 1980, these various innovations had evolved into a
number of international networks, as well as three companies, Compuserve, AOL, and Prodigy,
who offered e-mail, Usenet news, chat rooms, and other services to personal computer users.
(Ultimately, these developments have led to services such as Picasa, Facebook, twitter, gmail,
and outlook.com.)

All of this activity was, of course, a precursor to the Internet. Much of the modern history of
networking and communication can be traced back to two specific developments: (1) a research
project, ARPANET, whose goal was to connect computers at various universities and research
centers, funded starting in 1969 by the U.S. Defense Department and later by the National
Science Foundation and other groups, and (2) the development of the Ethernet by Robert
Metcalfe, David Boggs, and others, which started at Xerox PARC in 1973. The ARPANET
project was responsible for the design of TCP/IP, which was first tested in 1974, and issued as an
international standard in 1981. To give you perspective on the longevity of the basic computer
concepts discussed in this book, we call to your attention the fact that, with one exception, this

34

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

date, 1974, represents the newest major architectural concept presented in the next seventeen
chapters! (Wondering about the exception? Keep reading.)

Because ARPANET and its successors, CSNet and NSFNet, were funded by the U.S.
government, its use was initially limited to noncommercial activities. Gradually, other networks,
some of them commercial, joined the network in order to exchange e-mails and other data,
while the administrators of NSFNet chose to “look the other way”. Ultimately, the government
turned over its Internet resources to private interests in 1995; at that point the Internet became
commercial and expanded rapidly into the form that we know today.

Although it is only peripherally related to the architectural issues addressed in this book, we
would be remiss if we did not complete this discussion with a mention of Sir Tim Berners-Lee,
of CERN, the European organization for nuclear research, who in 1989-1991 developed with
Robert Cailliau the important concepts that became the World Wide Web and Marc Andreessen
of the University of Illinois, who, in 1993, developed Mosaic, the first graphical Web browser.

SUMMARY AND REVIEW

This chapter has presented a brief review of the basics of computing. We began by recalling the
input-process-output model for computing. Next we demonstrated the connection between
that model and the components of the computer system. We noted that implementation
of the model requires four components: hardware, software, communication, and data. The
architecture of the computer system is made up of the hardware and system software. In
addition, a communication component exists to enable interconnecting systems. We discussed
the general architecture of a computer and noted that the same description applies to CPUs
both modern and ancient, both large and small. We introduced the important concepts of
virtualization, standards and protocols, noting that these ideas will appear throughout the book.
The chapter concluded with a brief history of the computer from an architectural perspective.

FOR FURTHER READING

There are many good general introductory computer texts available for review if you feel you
need one. New books appear so rapidly that we are reluctant to recommend any particular
one. For alternative coverage of material in this book, you may find recent editions of various
books by Stallings [e.g., STAL09] or Tanenbaum [e.g., TANEO7] to be useful. Various chapters
offer additional suggestions that are specifically applicable to the material in those chapters.
The Web is also a rich source of knowledge. Two websites that we have found particularly
useful are wikipedia.org and howstuffworks.org. In addition to a wide range of material, these
websites also offer numerous references to facilitate further study. Other useful websites include
arstechnica.com and realworldtech.com.

The book by Rochester and Gantz [ROCHS83] is a fun way to explore the history of
computing. Historical facts are blended with other facts, anecdotes, humor, and miscellany
about computers. Although the book is (sadly) out of print, it is available in many libraries.
You can learn, in this book, about von Neumann’s party habits, about movies that became
video games, about computer scams and rip-offs, and lots of other interesting stuff. Perhaps
the most thorough discussion of computer history is found in the three-volume dictionary by
Cortada [CORT87]. Although Cortada is not really designed for casual reading, it provides

CHAPTER | COMPUTERS AND SYSTEMS 35

ready access and solid information on particular topics of interest. Much of the historical
discussion in this chapter was obtained from the Cortada volumes.

If you live or vacation in a city with a computer museum, you can enjoy another approach

to computer history. Computer museums even allow you to play with some of the older
computers. Well-known U.S. museums can be found in Mountain View, CA, Washington,
D.C., and within the Science Museum in Boston. The Wikipedia entry for computer museums
offers pointers to lists of computer museums scattered through the world.

KEY CONCEPTS AND TERMS

application programming hardware port (from one computer to
interface (API) input another)
arithmetic/logic unit (ALU) input-process-output (IPO) primary storage
bus model protocol
byte interface unit random access memory
central processing unit job (RAM)
(CPU) kernel read-only memory (ROM)
channel (1/0) . software
communication channel logical standards
control unit (CU) memory stored program concept
data deck modem submit (a job)
deck (program) network interface card (NIC) gyite (protocol)
distributed computing open computing virtual
embedded computer operating system von Neumann architecture
graphical user interface output word

READING REVIEW QUESTIONS

1.1

1.2

1.3

1.4

1.5

Any computer system, large or small, can be represented by the four elements of an IPO
model. Draw an IPO model; clearly label each of the four elements in your drawing.

One way to view an information technology system is to consider an IT system as
consisting of four major components or building blocks. This book takes this approach
by dividing the remainder of the book into parts, with a part devoted to each major type
of component. What are the four components of an IT system that you will study in
this book?

Explain the differences between primary storage and secondary storage. What is each
type used for?

The book divides the software component of a computer system into two major
categories. Identify each category and give an example of each that you are already
familiar with. Briefly explain the role of each category.

The book compares a large mainframe computer to a smartphone or tablet, and states
that the difference between them is one of magnitude, not of concept. Explain the
meaning of that statement.

36 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

EXERCISES

1.6

1.7

1.1

1.2

1.3

1.4

1.5

1.6
1.7

Virtualization is a concept that has taken on major importance in the early twenty-first
century. Explain what is meant by virtualization.

What is a protocol? What is a standard? Do all protocols have to be standards? Explain.
Are all standards protocols? Explain.

Look at the computer ads on the business pages of a large daily newspaper and make a
list of all the terms used that you don’t understand. Save this list and check it from time
to time during the semester. Cross out the items that you now understand and look up
the items that have been covered but which you still don’t understand.

For the computer that you normally use, identify which pieces constitute the hardware
and which pieces constitute the system software. Now think about the file system of
your computer. What part of the file system is hardware, what part software, and what
part data?

Suppose you would like to buy a computer for your own needs. What are the major
considerations and factors that would be important in your decision? What technical
factors would influence your decision? Now try to lay out a specification for your
machine. Consider and justify the features and options that you would like your
machine to have.

Write a small program in your favorite high-level language. Compile your program.
What is the ratio of high-level language statements to machine language statements? As
arough estimate, assume that each machine language statement requires approximately
4 bytes of file storage. Add various statements one at a time to your program and note
the change in size of the corresponding machine language program.

Locate a current reference that lists the important protocols that are members of the
TCP/IP protocol suite. Explain how each protocol contributes to the operation and use
of the Internet.

Protocols and standards are an important feature of networks. Why is this so?

Although there is substantial overlap between protocols and standards there are
protocols that are not standards and standards that are not protocols. With the help of a
dictionary, identify the differences between the definition of protocol and the definition
of standard; then, identify a specific example of a standard that is not a protocol; identify
a specific example of a protocol that is not a standard.

CHAPTER 2

AN INTRODUCTION TO
SYSTEM CONCEPTS AND
SYSTEMS ARCHITECTURE

‘Now, this is just a simulation of what the blocks
will look like once they're assembled.”

© C. Covert Darbyshire/The New Yorker Collection/www.cartoonbank.com

http://www.cartoonbank.com

2.0 INTRODUCTION

In this book, we discuss systems: computer systems, operating systems, file systems,
input/output (I/O) (sub)systems, network systems, and more. Each of these same systems
is also an element with a major role in the information technology (IT) systems that
form the backbone of modern organizations. Indeed, these elements—computer hardware,
software, data, and communication—together represent the infrastructure of every IT
system. If we are to understand the various types of systems that are the focus of this book,
it is important that we first understand the concept of “system” itself, and, then, equally
important, the basic architectures of the IT systems that use these elements. Only then is it
possible to see clearly the role of the various system elements in the larger IT picture as we
visit each in turn.

Use of the word “system” is obviously not unique to IT. In our daily lives, too, we
often use the word “system” to describe things in everyday language. Our homes have
electrical systems, plumbing systems, heating and air conditioning systems, and maybe for
some, even, home theatre systems. There are ignition, braking, fuel, exhaust, and electrical
systems in our cars. Our cities have water systems, sewer systems, and transportation
systems, to name a few. Philosophers and social scientists talk about social systems and
linguistic systems. The economy deals with banking systems, financial systems and trading
systems, and, for that matter, economic systems. The word “system” even appears in the
names of thousands of companies.

So it seems as though everyone knows what a system is, but what is a system? We
use the word “system” intuitively, without thinking about the meaning of the word,
so we obviously have an intuitive understanding of what a system is. IT professionals,
however, spend their careers analyzing, designing, developing, implementing, upgrading,
maintaining, administering, and using systems every day. It is therefore important that we
have a deeper, more formal understanding of system concepts.

In this chapter, we consider the concept of a system from an IT perspective. We
investigate the characteristics and composition of systems, explain the meaning of system
architecture, and show the fundamental role of systems, particularly various types of IT
systems, in business. We offer examples of different types of IT systems, and show how
IT systems work together to accomplish tasks and solve problems. We show how systems
can themselves be composed of subsystems, where the subsystems also fit the definition of
systems.

After you have studied this chapter, you should have a clear understanding of what a
system is, what kinds of systems are used in IT, the purpose and goals for each of these
systems, and how these systems fit together and interact with each other and with their
environment. You'll understand the concept of system architecture. This discussion will
set the stage for the remainder of the book, which considers individually and collectively
the specific computer-based systems and subsystems that constitute the primary tools and
components of business IT.

39

40

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

2.1 THE GENERAL CONCEPT OF SYSTEMS

The most important characteristic that is shared by all of the systems mentioned above, and,
indeed, by all systems, is that each is built up from a set of components that are linked together
to form what we think of as a single unit. The house plumbing system, for example, consists of
sinks, faucets, toilets, a hot water heater, bathtubs or showers, valves, and more, all connected
together by pipes. An IT system consists of groups of computer hardware, various I/O devices,
and application and system software, connected together by networks.

Often, the system is intended to serve a purpose or to produce results. The purpose of
the house plumbing system is to allow the residents of the home access to water to wash,
bathe, and drink. The purpose of an IT system is to allow organizations to process, access, and
share information. The results of a successful I'T system are documents, information, improved
business processes and productivity, profits, strategic plans, and the like. This is, in fact, the
“output” of the input-processing—output (IPO) model described in Chapter 1. In general,
though, there is no requirement that a system serve a specific, definable purpose. The fact that
the set of components may be considered as a single unit is sufficient to satisfy the concept of a
system. The solar system is an example of a system where the purpose is unspecified.

There is also no requirement that the components of a system be physical. The links
between components can also be physical or conceptual. In fact, the system itself may be
conceptual, rather than physical. The number system is an example of a conceptual system.
Computer operating systems are also conceptual, rather than physical. Business systems are also
conceptual, although some of the components that they contain may be physical. The words
tangible and intangible are sometimes used in place of physical and conceptual, respectively.
Intangible or conceptual components and systems include ideas, methods, principles and
policies, processes, software, and other abstractions. If, for example, the components in a system
represent steps (intangible) in a multistep process, the links may represent the need to complete
one step before the next is begun (also intangible).

Figure 2.1 illustrates a number of different systems to show you some of the possibilities.
Figure 2.1(a) is a model of a home plumbing system. This is a physical system. The components
are plumbing fixtures, linked by pipes. Figure 2.1(b) is a simplified representation of the solar
system. The sun and planets are physical; the links in this system are conceptual, specifically, the
distance of each planet from the sun, interplanetary and solar gravity, orbital relationships, the
distances between planets at a particular point in time, and other attributes. Figure 2.1(c) is a
diagram of a home networking system. The links in this case are a mixture of physical wires and
(intangible) wireless connections. Sometimes the nature of the links is important only in terms
of providing the proper interface connections to the components. Figure 2.1(d) is a simplified
diagram of part of the inventory control portion of a sales system. The relationships between
the components in this case are temporal (i.e., related to time). For example, inventory from a
previous sale must be deducted from stock before we process the next order; otherwise we can’t
promise the delivery of goods on the new order because we don’t know if we still have sufficient
goods in stock to fill the order.

With these pictures and ideas about systems in mind, we will define a system as follows:

A system is a collection of components linked together and organized in such a
way as to be recognizable as a single unit.

A general representation of a system is shown in Figure 2.2.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 41

FIGURE 2.1(a)

Plumbing System Diagram

Water supply system

T S |)

3/8" to ln T
= supply pipe .
= Shutoff
Air .
chamber \I/?aellvlgf
N
wi\

Shutoff

Main Drain

shutoff
Main service pipe Water
from water supply meter

The linked components that constitute a system also define a boundary for the system.
Anything outside the boundary represents the environment that the system operates or presents
itself within. The environment may interact with and affect the system in various ways. The
reverse is also true. The interface between the system and its environment is an important
characteristic of the system. If the interface is well defined, it is often possible to replace the
existing system with a different system, as long as the interface between the system and the
environment remains constant. This idea can have important implications when designing IT
systems. For example, in a particular I'T installation, a single large computer may be functionally
the same as a network of small computers. When we define inputs and outputs for a system, the
environment is the source of the input and also the receiver of the output.

Asan example of the relationship between a system and its environment, consider the rather
simplistic view of an e-business system illustrated in Figure 2.3. The organization represented
by this illustration purchases goods from suppliers and makes them available for sale. (The
value-adding component in the figure consists of various operations that make it worthwhile to
buy from this organization, rather than directly from the supplier. For example, Amazon.com
makes it possible to buy a wide variety of books from one source, rather than having to
place separate orders from a number of different suppliers.) The environment for this system

42 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.1(b)

The Solar System

Mercury Earth

fode

Venus
Sun

FIGURE 2.1(c)

Jupiter

Neptune

O

Uranus

A Typical Home Network System

Phone line|psL or cable Wireless
or cable modem router

Network-attached
storage (NAS)

Network-ready
printer

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 43

FIGURE 2.1(d)

Flow Diagram for Part of an Inventory Control System

Sales
order 1
[Check order Inventory
against
inventory
2b
2a Available;
Not available deduct from
inventory
Check against
To sales to Todwar]:erllgtljlse for inventory
notify customer order fulfillment reorder point
and shipping

To purchasing to [Stock < minimum]

determine availability
and shipping date To purchasing
for reorder

consists of customers who purchase from the system, suppliers to the system, governments
who control the legal aspects of the business and collect taxes, employees and prospective
employees, external support personnel (such as repair people), financial resources, and others.
The primary interfaces for this system are system input from suppliers and system output to
purchasers; however, there are additional, more subtle interfaces to be considered, including
legal, cultural, and financial interactions with the system. For example, sensitive cultural and
language issues that offend potential customers on a website might have an important impact
on an organization’s sales.

When analyzing a system, the components of the system may be treated as irreducible or
they may themselves be representable as systems. When considered in the context of a particular
system, these components would be viewed more accurately as subsystems. A business IT
system, for example, might have marketing, manufacturing, purchasing, inventory, finance,
and accounting subsystems, among others. Even these components might be expanded. The
marketing subsystem might be further broken down into sales, development, and advertising
components, as one possibility. The level of detail to be considered depends on the context in
which the system is being considered, discussed, evaluated, or used. The division of a system
or subsystem into its components and linkages is called decomposition. Decomposition is
inherently hierarchical. The ability to decompose a system hierarchically into subsequent sets
of components and subsystems is an important property of systems.

44 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.2
General Representation of a System
Environment Environment
Bounda
Interface undary
Interfyce .
Links/
Environment Components

Environment

The fundamental properties, and the patterns of relationships, connections, constraints,
and linkages among the components and between the system and its environment are
known collectively as the architecture of the system. Some people choose to differentiate
the architecture of a system from the organization of a system. The assumption is that the
architecture is fundamental to the meaning and value of the system, whereas the organization
is one of possibly many combinations of components and linkages that meets the requirements
of the architecture. The difference is subtle and often unimportant.

It is common to represent systems and their components by models or drawings on paper
or objects within a computer program. These representations are abstractions. They represent
the real system but are not actually the real system. (For example, the solar system does not
fit conveniently inside a computer!) It should be obvious to you that all of the illustrations of
systems in Figures 2.1, 2.2, and 2.3 are abstractions.

The primary reason for humans to group components into systems and to represent
them as abstractions is to simplify understanding and analysis, particularly if the individual
components are numerous and complex. We can study the relationships between the different
components without the distraction created by the details of individual components. We
can decompose, isolate, and study individual components when required. We can study the
interactions between the environment and the system as a whole. Effectively, our analyses
are simplified by eliminating factors that are not relevant in the context of our interests.

FIGURE 2.3

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 45

A Simple E-Business System

Employees &
prospective employees

Competitors

Purchasing &
receiving

~

Value-adding Cust
ustomers

Suppliers

processing

Finance and
accounting

Financial
Government, Culture, resources
law language

In a large network of computers, for example, we may be concerned primarily with the flow of
data between computers. The details of the individual computers are unimportant. In general,
dealing with models at the system level allows us to isolate and focus on the specific elements
of interest more easily, by treating other elements collectively.

To escape our fixation on information technology systems for an instant, consider, just for
fun, the solar system that we’ve used previously as an example. If we are studying the Milky Way
galaxy, it is convenient and sufficient to treat the solar system as a single irreducible component
in the galaxy. We might be interested in the location and movement of our Sun in the galaxy,
for example, but the structure of the planets is irrelevant to our study in this case. On the other
hand, if we are interested in studying the effects of the tides on a seashore where we are planning
to vacation, we will have to expand the “Earth” component and look at the specific effects of the
moon and other nearby objects as part of our analysis.

Consider, too, the role played by decomposition and the ability to isolate and study indi-
vidual components. A complex system may be divided into relatively independent components
and analyzed by different individuals, each a specialist in their own area. Thus, a plumber can
create a home water system component without concern for the details of the electrician’s
efforts. They can work together on the linkages that concern both of them, for example, the
wiring for the boiler in a hot water heating system. The system architect coordinates the
different efforts. The role of an IT system architect is similar: to work with finance experts on
the finance component, marketing experts on the marketing component, and so forth.

46

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

When the goal of a project is to implement a system of some type, it is sometimes convenient
to view the components of a system as modules that can be implemented independently, then
linked together to produce the final result. This technique can simplify analysis, design,
assembly, upgrading, and even repair. It also supports collaboration during the design process,
since individual components can be designed by different individuals using specifications for
the interfaces.

For example, a cell phone might consist of a computer control module, a memory module,
a display module, an audio I/O module, a radio transmitter/receiver module, a keypad/text
input module, and a wireless networking module. Each component might have been developed
by a different team. These modules, designed, constructed, and manufactured as individual
assemblies, properly interfaced, wired together, and mounted into a case, constitute the design
of a typical cell phone. They also represent the components that might appear in the system
diagram for a cell phone. The same approach might be taken with a computer system, with
a central processor module, a graphics display module, an audio module, a network module,
a hard drive controller module, and so on. Figure 2.4, for example, shows the basic system
hardware components that make up an iPhone.

FIGURE 2.4

iPhone Components

Flash memory

. R Communications
CPU —»i : GSM cell, WiFi, EDGE
-

Battery

Image courtesy of iFixit. Browse thousands of free repair manuals on iFixit.com

FIGURE 2.5(a)

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE ~ 47

Business Organization Chart

Corporate
exec. management

Marketing and I Human Finance
sales resources
System planning .
— Sales 1 & development — Employment — Accounting
L | Advertisi System | | Organizational | | Financial
vertising administration development planning
— Planning — User support — Contracts — Purchasing
|| Order | | Auditing &
fulfillment control

It is also important to realize that there may be many different representations for a system
to reflect the various uses of the system model. Returning to our IT roots, for an example,
the representation of the business system shown in Figure 2.5(a) is a traditional hierarchical
organization chart. The components are departments that perform various functions within the
business. In contrast, a partial model of the same business shown in Figure 2.5(b) represents the
application architecture of an IT system within this business. Take another look at Figure 1.4
for still another representation of a business. As another simple example, you could represent
a house by the physical appearance of its exterior, by the function and layout of its rooms, or
by the various subsystems, electrical, plumbing, heating, and so on that the house requires.
Presumably, each of these representations would be useful to a different participant. In fact,
we would expect an architect to provide all of these for use by the owner, the builder, and the
various contractors.

2.2 IT SYSTEM ARCHITECTURES

The use of system concepts is particularly applicable when discussing the various types of IT
systems. In general, the goal of IT systems is to assist organizations to meet the strategic needs of
the enterprise. Not surprisingly, IT systems are frequently complex, and the ability to separate
them naturally into subsystems or components of manageable size simplifies understanding
of the system as a whole. The analysis, design, and implementation of IT systems must take
place at different levels of detail and frequently require collaboration among many analysts

48 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.5(b)

Partial View of a Business Application Architecture

Marketing Executive
Information Information
System System

i
N—

Accounts

Customers receivable

Order entry
System

Orders Order ‘ _
fulfillment Financial

N~ Information
System

Products
N

/\)
N Purchasing

Suppliers
N

Accounts
payable

and designers. This corresponds well with the ability to decompose systems into components,
hierarchically, which allows us to concentrate at the appropriate levels of detail during each
step along the way. This approach is known as a top-down approach. The top-down approach
allows us to focus on the specific areas of interest without the distraction of details that are
irrelevant for the level that we’re studying. In this way, a system architect can analyze and
study the IT system as a whole, encapsulating the computer systems, software systems, network
architecture, and Web architecture that represent components, and focusing instead on the
large picture: the purpose of each component and the requirements for the interfaces and
linkages that connect and integrate them. With the IT system architecture firmly established, we

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 49

can consider the individual business functions, computer systems, and networks that will link
them together. For I'T system analysis, this is often sufficient, at least superficially, assuming that
the system architects actually understand the conditions and constraints imposed by details at
the lower levels.

Although there are other, equally valid, approaches to IT system analysis and design, and
many other important considerations as well, this approach suits the purposes of this book well
because it allows us to establish general requirements for IT systems and then to show how
the specific capabilities and characteristics of computer hardware, operating systems, networks,
and data fulfill those requirements.

With these ideas in mind, let us return to the simple word processing example from
Chapter 1 and reconsider it from a system architecture perspective. Recall that in this example
you are sitting at your computer (or maybe your tablet), typing text into a word processor. We
noted that the computer accepted input from your mouse and keyboard, processed it according
to rules established by the application software, and produced output, which appeared on a
display. From the system perspective, we can, for now, treat the whole computer, keyboard,
display, printer, storage, software, and all as a single component. You're the relevant part of the
environment for this discussion. Forgetting the issue of control for now, the system has an input
and an output. Both of these interface with you, the environment. The data for this interface is
alphanumeric text in human-readable form. Other input data to the document might include
graphics drawn with the mouse, photographic images from a digital camera, bar codes, or
music from an iPod or other audio source. We described this scenario earlier, in Chapter 1, as
input-process-output.

A system this simple is unlikely to meet all the needs of even the smallest enterprise or,
even, the least computer-literate individual. But it does serve as a starting point to recognizing
the value of a system approach to the understanding of information technology.

Distributed Processing Systems

When envisioning effective IT systems, designers typically must create system architectures
that are quite complex, with a large number of computers interconnected by networks of
communication channels, potentially disbursed over a large area, to support the organization’s
goals. In addition to the usual business functions, sales, marketing, accounting, finance,
inventory, strategic planning, and the like, the system must provide services to multiple
communities: management, employees, suppliers, customers, and more, representing the
system’s environment.

Since modern computer hardware, storage, networking equipment, and external IT
resources such as cloud services are plentiful and inexpensive, it is practical to distribute
computing capability to everyone within the organization who needs it, no matter where they
are, whether on-site or off-premises. Furthermore, the Internet and alternative structures,
such as mobile and satellite communications, make global data communication essential. Web
access, organization intranets, e-mail capability, video conferencing, analysis tools, such as
Microsoft Excel, and document preparation tools are widely available and are considered to
be essential business tools throughout most organizations. Collaboration between different
organizations, particularly in the area of automated business-to-business purchasing and sales,
is commonplace. The system must be able to reliably store and protect large amounts of
organizational data, with backup, archiving, and emergency-recovery capabilities. The system

50 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

must support a Web presence, and, most likely, mobile access as well. Access to the system must
be protected throughout with appropriate security.

In all but the smallest organizations, input data is collected from external sources, as well as
from various locations within the organization, possibly scattered widely. Input data is stored,
processed, and distributed as information where it is needed, again possibly widely.

Consider a few typical simple scenarios:

A global fast food chain collects data each day from each of its restaurants worldwide
to establish sales figures and determine sales trends. This allows the company to
determine which locations are most productive and which locations need assistance,
which items sell best and which need to be modified or replaced, and so on.

A large travel organization conducts much of its business online, using travel agents
located all over the world. It maintains Web servers that have immediate access to
large databases of client information and travel information, as well as continual and
instant access to airline and hotel reservation systems to determine current airfares,
seat availability, and hotel room availability. All of this information must be
immediately accessible to every agent and must be current at every instant. Even brief
system failures are very costly.

A large Web-based retail sales organization sells large quantities of a wide variety of
merchandise. (Think Amazon or Wal-Mart.) Orders initially come into a central
facility, where they are billed. Inventory is stored in warehouses in various countries
and local regional areas to expedite delivery and reduce delivery costs. The system
must be able to distribute orders to the various regional facilities efficiently; it must
also maintain appropriate levels of goods at each warehouse to match sales and must
be able to locate goods and arrange shipping in response to orders as they come in.
Inventory replenishment is handled by an automated purchasing IT system
component that is integrated with the IT systems of the suppliers. Purchase order data
is passed from the retailer to a supplier, which triggers order placement, billing and
shipment components in the supplier’s systems. Web technology is commonly used
to satisfy the need for data and communication compatibility between the systems.

Even conventional business order processing is inherently distributed within an
organization. A purchase order, for example, might be entered into the system by a
salesperson on the road; the order is checked by order fulfillment for inventory, then
distributed to the accounting department for a credit check and billing, and sent to
the warehousing area for packaging and shipping. Back orders and inventory
replenishment are sent to the purchasing department. For planning and marketing
purposes, data will be collected into a central location and processed into sales
figures, inventory planning and purchase requirements data, and the like. In a large
organization, these functions might be widely scattered over a city, country, or even
the world.

The emphasis in each of these scenarios is the flow and processing of data within an
organization or between organizations or between an organization and its environment.
The system architecture representation of such operations is called application architecture.
Application architecture is primarily concerned with the activities and processing of application
programs and the communications between them. Since the application architecture addresses
the fundamental business needs of the organization, the application architecture is typically the

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 51

primary consideration in IT system design. Therefore, the system requirements and constraints
set by the application architecture have major impact on the hardware architecture and network
architecture requirements for the system. Within the application architecture realm, the
selection and layout of computer systems and communication networks is of concern primarily
to the extent that it adequately supports the application software and its functionality. However,
additional factors such as scalability, convenience, information availability, data security,
system administration, power and space requirements, and cost may also play important roles
in computer and network architectural designs.

CLIENT-SERVER COMPUTING There are a variety of possible application architectures
that can satisfy the requirements of modern organizations. Most, however, are based on different
applications of a simple technological concept, the client-server model.

In a client-server configuration, a program on a client computer accepts services and
resources from a complementary program on a server computer. The services and resources
can include application programs, processing services, database services, Web services, file
services, print services, directory services, e-mail, remote access services, even computer system
initial start-up service. In most cases, the client-server relationship is between complementary
application programs. In certain cases, particularly for file services and printer sharing, the
services are provided by programs in the operating system. Basic communication and network
services are also provided by operating system programs.

Basic client-server architecture is illustrated in Figure 2.6. Notice that the link between
client and server is essentially irrelevant within the application architecture view of the system.
The “cloud” in the figure is intended to indicate only that there is a link of some kind between the
client and the server. The link can be a network connection, an intranet or Internet connection,
or some sort of direct connection. In fact, a single computer can act as both client and server, if
desired. (A situation where this is the case is described in Chapter 16.) Conversely, the “server”
might actually be a huge cluster of computers, as is the case with the Facebook architectures
described at the end of this chapter.

The client-server model describes the relationship and behavior of programs in one or two
computer systems under particular prescribed circumstances. It is important to understand
that the client-server model does not require any special computer hardware. Furthermore,

FIGURE 2.6
Basic Client—Server Architecture
Client Server
| s— |

Request Request
—_— —_—

e] e]
Service Service
response Communication response

channel

52

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

networking software within the operating system of each computer routinely provides basic
communication capabilities. The only “special” software required is the software within the
complementary application programs that provides the communications between the programs.
The requests and responses take the form of data messages between the client and server that
are understood by both application programs. As an example, slightly simplified, the HTTP
request message sent to a Web server by a Web browser requesting a Web page consists of the
word Get followed by a URL. If the request is successful, the message returned by the server
contains the HTML text for the page.

From the description and the figure, you can see that the Web browser-Web server
application described as an example in Chapter 1 fits the description of a client-server
application. We will return to this example momentarily.

A typical use of the client-server concept within an organization is shown in Figure 2.7.
In this case, a number of clients are sharing a number of servers, showing both the shared
server nature of client-server computing, as well as showing that there may be multiple servers
offering different services on the same network. Notice, also, that the server computer labeled

FIGURE 2.7
Clients and Servers on a Network
Database E-mail
Web server File server server
server
[——] = [——]
Application
Servers 2 server &
print server
Network

Clients

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 53

S2 in the figure is running two different server applications. Since computers are capable of
running multiple tasks concurrently, this is a possible scenario. The only limitations to running
multiple applications on a single server are the potential slowdowns that may result from the
load on the server computer and the traffic on the network to that server. Overall, there is a
multiple- multiple relationship between clients and servers: a server can serve multiple clients,
and a client can request services from multiple servers.

The use of client-server processing as a basis for IT system architecture has a number of
advantages:

B Providing services on a single computer or on a small number of computers in a
central location makes the resources and services easy to locate and available to
everyone who needs them, but also allows the IT administrators to protect the
resources and control and manage their use. The consistency of files and data can be
managed and assured.

For example, client-server technology can ensure that every user requesting a
particular program from a server will receive the same version of the program. As
another example, suppose a program has a license that limits the number of
simultaneous users. The program server can easily limit distribution of the program
appropriately.

B The amount of data to be stored, processed, and managed may be extremely large. It
is more efficient to equip a small number of computers with the power needed than to
require powerful computers at every station. As an example, the limited memory on a
smartphone would not be adequate to store all of the map data required to support a
global positioning system (GPS) application.

B Typically, humans request information from knowledgeable sources as they need it.
Thus, the client-server approach is naturally consistent with the way humans acquire
and use information.

The most familiar example of the use of client-server technology is the Web browser-Web
server model used in intranets and on the Internet. In its simplest form, this model is an
example of two-tier architecture. Two-tier architecture simply means that there are two
computers involved in the service. The key features of this architecture are a client computer
running the Web browser application, a server computer running the Web server application, a
communication link between them, and a set of standard protocols, in this case, HTTP, for the
communication between the Web applications, HTML for the data presentation requirements,
and, usually, the TCP/IP protocol suite for the networking communications.

In the simplest case, a Web browser requests a Web page that is stored as a pre-created
HTML file on the server. More commonly, the user is seeking specific information, and a
custom Web page must be created “on the fly”, using an application program that looks up the
required data in a database, processes the data as necessary, and formats it to build the desired
page dynamically.

Although it is possible to maintain the database and perform the additional database
processing and page creation on the same computer as the Web server, the Web server in a
large Internet-based business may have to respond to thousands of requests simultaneously.
Because response time is considered an important measure by most Web users, it is often more
practical to separate the database and page processing into a third computer system. The result,
shown in Figure 2.8, is called a three-tier architecture. Note that, in this case, the Web server

54 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.8
Three-Tier Database Architecture
Web Database
server server
HTTP CGI*
request — request N
—— —_—
S Database
~—e
HTTP CGl
response response
(HTML)

*CGIl: Common Gateway Interface

machine is a client to the database application and database server on the third computer. CGI,
the Common Gateway Interface, is a protocol for making communication between the Web
server and the database application possible. (In the figure, we have placed the page creation
application software on the database machine, but it could be located on the Web server instead
if doing so would balance the loads on the two machines better.) In some situations, it is
even desirable to extend this idea further. Within reason, separating different applications and
processing can result in better overall control, can simplify system upgrades, and can minimize
scalability issues. The most general case is known as an n-tier architecture.

Client-server architecture is a distributed processing methodology, in which some of the
processing is performed on the client system and some is performed on the server system. To
see this more clearly, consider the distribution of processing between the client and server in a
database application, in which the client requests specific information from a database stored
on a database server.

At one extreme, the client application provides little more than a request form and a means
to display the results. All of the processing is performed on the server. This might be appropriate
if there is little computing power in the client. Certain so-called “thin” clients or “end-user”
terminals and some mobile clients might meet this criterion, particularly for CPU-intensive
applications. Because this extreme case puts the entire processing load on the server, the system
designer will have to specify a more powerful computer for the server or farm the application
out to a cloud service (see the “Cloud Computing” section); additionally, the requirements of
the database server may limit the capability of the server computer system to perform other
tasks or to scale for increased usage.

At the other extreme, the database server application simply accesses data from the database
and passes all of the data to the client. The client application performs all of the processing. This
relieves the load on the server, and it is reasonable to assume that modern client computers
would be able to handle most database processing tasks relatively easily. However, the potential
transfer of large amounts of raw data from the server to the client for processing may put an
extra burden on the network instead, requiring the system designer to specify higher speed
network components at potentially higher cost and additional implementation difficulty.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 55

A well-designed system analysis will consider the different factors, the complexity of the
applications, expected network traffic, usage patterns, and the like. The optimum solution is
likely to fall somewhere in the middle, with some pieces of applications on the server, others on
the client.

One of the strengths of client—server architecture is its ability to enable different computer
hardware and software to work together. This provides flexibility in the selection of server and
client equipment tailored to the needs of both the organization and the individual users. One
difficulty that sometimes arises when different computers have to work together is potential
incompatibilities between the application software that resides on different equipment. This
problem is commonly solved with software called middleware. Middleware resides logically
between the servers and the clients. Typically, the middleware will reside physically on a
server with other applications, but on a large system it might be installed on its own server.
Either way, both clients and servers send all request and response messages to the middleware.
The middleware resolves problems between incompatible message and data formats before
forwarding the messages. It also manages system changes, such as the movement of a server
application program from one server to another. In this case, the middleware would forward
the message to the new server transparently. The middleware thus assures continued system
access and stability. In general, the use of middleware can improve system performance and
administration.

WEB-BASED COMPUTING The widespread success of the World Wide Web has resulted
in a large base of computer users familiar with Web techniques, powerful development tools
for creating Web sites and Web pages and for linking them with other applications, and
protocols and standards that offer a wide and flexible variety of techniques for the collection,
manipulation, and display of data and information. In addition, a powerful website is already
a critical component in the system strategy of most modern organizations. Much of the data
provided for the website is provided by architectural components of the organization’s systems
that are already in place.

Not surprisingly, these factors have led system designers to retrofit and integrate Web
technology into new and existing systems, creating modern systems that take advantage of Web
technology to collect, process, and present data more effectively to the users of the system.

The user of a Web-based system interacts with the system using a standard Web browser,
enters data into the system by filling out Web-style forms, and accesses data using Web pages
created by the system in a manner essentially identical to those used for the Internet. The
organization’s internal network, commonly called an intranet, is implemented using Web
technology. To the user, integration between the intranet and the Internet is relatively seamless,
limited only by the security measures designed into the system. This system architecture
offers a consistent and familiar interface to users; Web-enabled applications offer access to the
organization’s traditional applications through the Web. Web technology can even extend the
reach of these applications to employees in other parts of the world, using the Internet as the
communication channel.

Since Web technology is based on a client-server model, it requires only a simple extension
of the n-tier architecture to implement Web-based applications. As an example, Figure 2.9
shows a possible system architecture to implement Web-based e-mail. Note the similarity
between this example and the three-tier database application shown in Figure 2.8.

Many organizations also now find it possible and advantageous to create system archi-
tectures that integrate parts of their systems with other organizations using Web technology

56 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.9
Three-Tier Web-Based E-Mail Architecture
Web Mail
server server
HTTP CGI**
request = request == | R'cvd mail
E——— —_—
~—
HTTP CGl Sent mail
response response
(HTML)
SMTP*
to another
mail server

*SMTP: Simple Mail Transfer Protocol
**CGl: Common Gateway Interface

and Web standards as the medium of communication. For example, an organization can
integrate and automate its purchasing system with the order system of its suppliers to automate
control of its inventory, leading to reduced inventory costs, as well as to rapid replacement and
establishment of reliable stocks of inventory when they are needed. Internet standards such as
eXtended Markup Language (XML) allow the easy identification of relevant data within data
streams between interconnected systems, making these applications possible and practical. This
type of automation is a fundamental component of modern business-to-business operations.

CLOUD COMPUTING Cloud computing can be viewed as a simple, but potentially powerful
conceptual expansion of client-server computing. The basic premise of cloud computing is that
many functions of an organization’s data center can be moved to services on the Internet, “in
the cloud”. The concept of a cloud as a source of services derives from a traditional “textbook”
view of networking. In fact, Figures 2.6, 2.7, 2.8, and 2.9 in this textbook reflect the traditional
perspective. In this view, a client requests services from a server somewhere on a network, but
the user is not interested in the internals of the connection between the client and the server
(nor the configuration of the server, for that matter), so we draw the area where the connection
takes place as a cloud.

In its simplest form, a cloud service provides off-site storage facilities for an organization.
This service can be used as a backup resource or for immediate emergency recovery, for
example. It can also be used to give users access to files from anywhere the Internet is available.
Increased amounts of cloud storage can be readily acquired (for a fee, of course); so a client
organization can simply purchase file space as they need it.

Cloud computing is also used to provide additional computing capability when and where
it is needed. Software as a service (SaaS) provides software applications that run on a server,
delivering the results to the display on a client. In some cases, processing is divided between
the cloud server and the client: there will be corresponding applications on each; processing is
divided between the two.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 57

Platform as a service (PaaS) extends cloud services to the software facilities that one
would expect to find on a developer’s computer: Web and programming development tools,
facilities, a Web server, and operating system application program interface (API). This provides
everything a developer would need to create and run application software on a cloud platform,
without the hardware and software investments needed to support local development.

Finally, Infrastructure as a service (IaaS) offers cloud-based hardware emulation in the
form of virtual machines, networking, and the like. The user/developer interacts with the
virtual machine using a client application, or more commonly, a Web browser. Users can
add additional virtual machines for testing with different system configurations, for example,
providing considerable flexibility. Essentially, the user’s computer has been moved in its entirety
to the cloud, and can be configured as a different computer at will.

Figure 2.10 shows a direct comparison between the different levels of cloud service with
the computer model that we originally illustrated in Figure 1.9.

How does this differ from the client-server concepts that we previously discussed? Tech-
nically, there is little difference. In a way, you could think of services such as Picasa, YouTube,
and Facebook as cloud services. In each case, the service provides storage for your material and
an application that you can use to interact with the service. Your computer, smartphone, or
tablet can access the service using the Web from wherever you happen to be, again, similar to
cloud services. You might collaborate with colleagues using Google apps or Dropbox.

FIGURE 2.10
A Comparison Between Cloud Service Levels and Computer System
Layers
User
Application
Program -
P — oftware
User as a Service
Interface
Application Programming (Platform
Interface < as a Service
File
Management Kernel <
System
110 Network
Drivers Module k
¢ ¢ Infrastructure
Hardware Network < as a Service

58

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Not surprisingly, there is a lot of hype about cloud computing. In a simplistic way, cloud
computing is a throwback to the earliest days of computing. In the 1960s and 1970s, business
systems were built around a single mainframe computer facility that provided centralized
software and computer processing to the organization. Users worked at terminals that served
as input to the computer and display, but had no computer processing capability of their own.
All processing was done on the mainframe computer.

Beyond the hype, there are a number of advantages and a number of major risks to an
organization for I'T system architects to consider when making decisions about a system design
involving services in the cloud. On the plus side:

The client’s data center is simplified and the cost reduced. It is not necessary to
provide, support, and maintain individual copies of software for every user, nor to
develop software that is already available from a cloud service provider, nor to
purchase software that is only occasionally needed. Hardware purchase,
configuration, power management, and maintenance are all potentially reduced and
simplified.

Cloud services provide strong support for user collaboration, since multiple users can
easily access the same software, databases, tools, and data files from the cloud.

Properly designed, with the proper client applications, cloud services can be accessed
on a wide variety of client equipments, fixed or mobile, thick or thin, from anywhere
the Internet is available.

A cloud-based system is inherently scalable. Additional capabilities and services can
be made quickly available as needed. A client organization can add more memory to a
virtual machine, add more virtual machines, add more storage, etc.

A cloud-based system can continue to provide services and recovery during a client
emergency. For example, a building fire at the client site will not cause a service
outage to people working outside the building and eliminates the risk of data loss.
Maintenance downtime and outage are reduced or eliminated.

Cloud-based services can be useful for short-term projects with intensive computing
needs. R. Metz [METZ12] suggests that cloud services can significantly reduce the
investment required for an entrepreneur to develop a new IT product, reducing or
eliminating the need for venture capital in an IT start-up.

The use of Taa$ allows a developer to make risky changes to his virtual machine
environment without threatening the safety of production equipment.

And some significant risks:

The quality of security at the cloud service is critically important. Even the smallest
data leak or data theft can compromise a client organization’s future.

Cloud server outages or a loss of connectivity at any point in the link between client
and cloud service can impede the ability of users to work. Operations at the client
organization may be totally dependent on the reliability of every link in the
connection.

The client organization is dependent on the long-term commitment and viability of
the cloud service. There have been closures of cloud services, with resulting loss of
data to their clients. Changes in cloud service operating procedures can also result in
data loss.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 59

PEER-TO-PEER COMPUTING An alternative to client-server architecture is peer-to-peer
architecture. Peer-to-peer architecture treats the computers in a network as equals, with
the ability to share files and other resources and to move them between computers. With
appropriate permissions, any computer on the network can view the resources of any other
computer on the network and can share those resources. Since every computer is essentially
independent, it is difficult or impossible to establish centralized control to restrict inappropriate
access and to ensure data integrity. Even where the integrity of the system can be assured, it can
be difficult to know where a particular file is located and no assurance that the resource holding
that file is actually accessible when the file is needed. (The particular computer that holds the
file may be turned off.) The system also may have several versions of the file, each stored on a
different computer. Synchronization of different file versions is difficult to control and difficult
to maintain. Finally, since data may pass openly through many different machines, the users
of those machines may be able to steal data or inject viruses as the data passes through. All
of these reasons are sufficient to eliminate peer-to-peer computing from consideration in any
organizational situation where the computers in the network are controlled by more than one
individual or group. In other words, nearly always.

There is one exception: peer-to-peer computing is adequate, appropriate, and useful for
the movement of files between personal computers or to share a printer in a small office or
home network.

Peer-to-peer technology has also proven viable as an Internet file-sharing methodology
outside the organizational structure, particularly for the downloading of music and video. The
perceived advantage is that the heavy loads and network traffic associated with a server are
eliminated. (There are legal ramifications, also, for a server that is sharing copyrighted material
illegally.) This technique operates on the assumption that the computer searching for a file
is able to find another computer somewhere by broadcasting a request across the Internet
and establishing a connection with a nearby computer that can supply the file. Presumably,
that computer already has established connections with other systems. All of these systems
join together into a peer-to-peer network that can then share files. One serious downside to
this approach, noted above, is the fact that the computers in an open, essentially random,
peer-to-peer network can also be manipulated to spread viruses and steal identities. There are
several serious documented cases of both.

An alternative, hybrid model uses client-server technology to locate systems and files
that can then participate in peer-to-peer transactions. The hybrid model is used for instant
messaging, for Skype and other online phone systems, and for Napster and other legal file
download systems.

Although there have been research studies to determine if there is a place for peer-to-peer
technology in organizational computing, the security risks are high, the amount of control low,
and the overall usefulness limited. The results to date have been disappointing.

The Role of the System Architect

In Section 2.1, we suggested that there are different ways of viewing systems. From the
discussion within this section, you can see that the IT system architect must consider the system
from the perspectives of application architecture, data architecture, network architecture, and
computer architecture. Each of these addresses different aspects of the IT system as a whole.

60

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

For example, our consideration of different general application architectures—client-server,
web-based architecture, peer-to-peer architecture—ignored the networking that links the
various computers together. Similarly, we attempted to minimize the effects due to the specifics
of individual computer systems when exploring the various requirements of a system from the
perspective of application architecture.

Ultimately, it is the responsibility of the system architect to assess the particular needs of
an organization and create a system that meets those needs while attempting to achieve an
optimum balance of computer power, network capability, user convenience, and budget. To
do so, the architect will consider each aspect of the system: application architecture, network
requirements, specification of computer systems, and data requirements, just as the architect
designing a house considers flow of people through the house, overall use of space and room
layout, individual room layouts, mechanical systems, and aesthetic design as different views of
the overall architecture of the house.

Although the infrastructure design as defined by the computer hardware, system software,
and communication channels is subordinate to the fundamental business requirements that
determine a basic IT system architecture, the system architect must understand the features
and constraints that establish the feasibility and desirability of a particular infrastructure
configuration.

Google: A System Architecture Example

So far, we have considered basic system concepts and simple system architectures as examples.
Most IT business systems operate primarily within an organization, with limited collaboration
with other, partnered organizations and carefully controlled public access. At the opposite
extreme are massive systems that are widely open to the public. Google offers a primary
example of such a system.

The primary mission of Google is to provide powerful, fast search capability of material
on the Internet for billions of users all over the world. Income to the organization is provided
from advertising that is targeted to each user based on the specific nature of the user’s search.
The design of Google’s IT system architecture is obviously fundamental to Google’s ability to
achieve its mission and to meet reasonable income goals. In keeping with the focus of this book,
our primary interest is in the computer and network architectures that Google uses to meet its
system requirements; however, we will use this example to explore the relationship between the
basic system requirements, the I'T system architecture created to meet those requirements, and
the specific computer and network architectures that evolved from the system architecture.

Some of the basic requirements that the Google I'T system must satisfy include the following:

B [t must be capable of responding to millions of simultaneous requests from all over
the world with pertinent, ranked search results and appropriately targeted
advertising. Most desirably, the results and advertising would be matched in language,
geographic suitability, and culture as much as possible to the location of the user.

B The system must be able to troll the Internet systematically and thoroughly to retrieve
data and to organize the data in such a way as to make it readily available for response
to user requests. There must be a processing mechanism to establish a ranking of the
results to a request.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 61

B The system must respond to requests with a reliability as near to 100 percent as is
technically possible. Individual hardware and software component failures within the
system must not affect the system performance adversely.

B The system must be easily scalable to handle ever-increasing numbers of requests and
must be cost effective.

At the application level, the requirements identify three specific processing tasks that the
system must fulfill:

1. The system must accept search requests from users, identify and rank matches, create
a Web page, and serve it to the user.

2. The system must collect data—lots of data! This task “crawls the Web”, identifies the
search terms (every significant word) on every Web page it encounters, and maintains
an index database connecting each term to the corresponding page. It likewise stores
every Web page in a Web page database and assigns a ranking value to each entry.

3. The system must manage advertisements, identify appropriate advertisements in
response to user search requests, and make the advertisements available to the Web
page creation application mentioned in 1.

For this discussion, we will focus on the processing of search requests. When a user types
the Google URL www.google.com into her browser, the Web browser uses a service called
Domain Name Service (DNS) to identify the IP address of the Web server to which the request
is to be sent. Because Google must be able to handle several million requests per hour, Google
provides a number of alternative IP addresses representing different sites to which the request
may be redirected. Based on the approximate location from which the request was sent, the
request is routed by DNS to a Google data center near that location. Google maintains more
than forty separate data centers around the world to serve user requests.

A simplified system diagram of the application architecture for a Google data center is
shown in Figure 2.11. All of the data centers are architecturally identical, differing only in such
details as the number of processors and the hardware specifications for each processor. Each
data center processes requests independently. Multiple copies of all of the index word data and
Web page data are stored locally at every data center, and updated from master data at regular
intervals.

A request enters the system from the Internet and is distributed to a Google Web server
for processing. A request consists of words and phrases. There are many separate Web servers
available, so that many requests can be processed in parallel. The words are passed to a spell
checker, to an ad server, and to a pool consisting of a large number of index servers.

The spell checker checks each word and considers possible alternatives if it believes that
the user may have intended something different. When appropriate, the output of the spell
checker will become part of the response sent to the user. (“Did you mean. . . ” is familiar to
most Google users.) The ad checker searches for words in the advertising database that match
the user’s request and adds the corresponding advertisement(s) to the material that will be used
to create the response page.

The index servers look up each word from the request in the index database and compile a
list of matching pages for each word. The list is then adjusted for multiple words and phrases
and sorted in order of relevance, based on Google’s ranking algorithms. This list is then passed
back to the Web server.

http://www.google.com

62 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.11

Google Data Center Search Application Architecture

Index
databases

Internet

Interface to

Internet
Spell Web Servers Ad Checker
Checker
4 4 A
Index [, Web Page
| ————— Document
Servers S
ervers
Page
databases

Next, the Web server calls upon the document servers to look up each matching page in
the Web page database. The document servers return a URL, a title, and a short snippet of text
for each document to the Web server. Finally, the Web server creates an HTML document from
the spelling, ad, and matching page results and returns the page to the user’s Web browser.

Although the application processing just described is relatively straightforward, the imple-
mentation of this system presented a number of challenges to the system architects. The index
and document databases are both massive in size. Many searches will result in a large number
of “hits”; each hit must be evaluated and ranked. Each hit requires retrieval and processing of a
separate page from the document database. All of this processing must occur very quickly. And
the numbers of searches occurring simultaneously may also be extremely large.

Google’s system architects responded to these challenges by recognizing that each search
could be processed independently on a separate computer, except for certain bottlenecks. For
example, each search request arriving from the Internet could be steered by a computer to a
different Web browser. They also observed that the major bottleneck was the time required to
access the databases on disks, which had to be shared among all the searches taking place. Since
the data in the databases never changed as a result of a search, however, they reasoned that the
databases could also be replicated and accessed in parallel.

A simplified hardware representation of their solution is shown in Figure 2.12. Groups
of up to eighty computers are connected together in a network, then these networks, up to
sixty-four of them, are, themselves, connected together to form a larger network, sort of like a
miniature Internet of up to 5,120 computers. (There are additional switches and connections
built in for reliability that are not shown in the diagram.) Each computer acts as a server, with

FIGURE 2.12

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 63

Simplified Google System Hardware Architecture

To Internet

Network
switch

Up to 64
lines

Network
switch

Network
switch

=/

N o [=17 71N\

<—— Up to 80 PCs —>

— — / \Q\”tCh — . |=

<—— Up to 80 PCs — >

<—— Up to 80 PCs — >

different computers assigned to different pieces of the application architecture. Each data center
is equipped similarly.

Although the computers are manufactured specifically for Google, they are essentially
inexpensive commodity personal computers (PCs), similar to standard, medium-power, non-
state-of-the-art, off-the-shelf PCs. Each computer has a fairly large, but still off-the-shelf, hard
disk. The index and document databases are divided up among the hard disks on many
computers. (Google calls these partial databases shards.) This design allows different searches
to access different parts of the databases simultaneously. There are multiple copies of each
database, so that the failure of a PC or hard disk does not affect the overall ability of the system
to conduct searches. Each computer runs standard Linux operating system software, but the
application software was specially written by Google programmers.

Overall, this design allows a large number of searches to progress in parallel. The use of
inexpensive PC hardware makes the solution cost-effective. The system can be scaled easily by
adding more computers. Finally, the failure of a PC does not result in failure and, in fact, has
minimal effect on the performance of the system overall. Thus, this solution meets the original
requirements admirably. It is worth noting that a fundamental understanding of computer
infrastructure was key to the system architects’ solution.

This discussion provides a simple overview of the Google system. Hopefully you have
found even this brieflook at the Google system interesting and informative. There are a number
of other considerations in the Google system architecture that we have glossed over for now.

64 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

However, to understand the Google architecture better, it is first necessary to continue our
exploration of the hardware, software, and network components that make up the Google
system, as well as every other IT system. We will return for a more in-depth discussion of the
Google system architecture in Supplementary Chapter 2.

Another Example: Facebook’s Application Architecture

FIGURE 2.13

Just for fun, we end our sojourn into the representation and architecture of systems with a
brief look into the application architecture in place at Facebook. The application architecture
describes the operation and interfaces between Facebook and independently developed and
managed applications that work with Facebook, such as Farmville and Living Social. Figure 2.13
is a simplified system diagram of the basic platform architecture.

The architecture is represented in this diagram as a slightly modified n-tier architecture,
described by Facebook Director of Engineering Aditya Agarwal as “a standard basic Web service
with methods for accessing and contributing Facebook data.. ... It offers reliable and consistent
methods to exchange information between itself and third parties, handles relationships between
Facebook users, and offers methods of interactions between users”. [AGARI11].

Interaction with a Facebook application comes from a user’s web browser and is addressed
to a Facebook server, using standard HTTP. (“1” in the diagram.) Note, however, that Facebook
applications are not stored on Facebook’s servers. Instead, Facebook serves as an intermediary
between the user’s web browser and the application provider’s own Web service. Facebook
provides a specialized interface to the application’s server. The interface includes an application
program interface called the Graph API, as well as two special protocols, Facebook query
language (FQL) and Facebook Javascript (FBJS) that are used by the application to allow
information exchange between Facebook’s servers and the application server.

Thus, the Facebook server does not actually handle application requests, but simply passes
on user application requests directly to the appropriate application server (2).

Facebook Application Architecture

Application
) FACEBOOK request (HTTP)| - App| |CATION
Web Application SERVER @ SERVER
Browser request T
(HTTP) <o [
o < FQL or FBJS
) v 5
User @

®

Facebook page'
with application
result (HTML)

iframe
result (HTML)

FQL : Facebook Query Language
FBJS : Facebook Javascript

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE ~ 65

The application server can request information and services from the Graph API, using
FQL and/or Javascript (FBJS). (3). The API provides a wide variety of user information, as well
as tools for searching, manipulating pages, posting stories, and more. When the application has
the information that it needs and is ready to publish, it creates an “internal” frame for a Web
page, using HTML and the iframe tag. (4). Facebook adds standard Facebook page features and
returns the result to the user as an HTML response. (5).

Of course, this description understates the overall complexity of this system; Facebook
handles several billion user likes, comments, and requests every day, and processes hundreds
of terabytes of storage daily. As of April 2012, there were more than 2 million third-party
applications using Facebook Graph services. Facebook’s architecture is based entirely on open
source software, and Facebook is very open about its architecture and technology. If you are
interested, there is a lot of information on the Web about it in the form of written descriptions,
PowerPoint presentations, and video lectures, on YouTube and elsewhere by Facebook
design engineers. A good starting point is www.wikipedia.org/wiki/Facebook_Platform.
If you'd like to learn more about building Facebook applications, you can start at
developers.tacebook.com/docs/reference/api/.

SUMMARY AND REVIEW

When working with large concepts with defined boundaries, it is often easiest to think of them
in terms of systems. A system can be defined as a collection of components, linked together and
organized in such a way as to be recognizable as a single unit. The components themselves may
also be recognized as subsystems, to be further reduced into components, when appropriate.
The area outside the boundaries of a system is its environment. The system affects and is affected
by various elements of the environment. In many situations, the environment supplies inputs
to the system and receives outputs from the system. The patterns of relationships, connections,
constraints, and linkages among the components of a system and between a system and its
environment are known collectively as the architecture of the system.

Information technology systems are systems that support the strategy and operations
of organizations. The technological components of an IT system include computer hardware,
application software, operating system software, networks, and data. Other components include
personnel, policies, and more.

There are a number of different ways of viewing an IT system, including application
architecture, network architecture, software architecture, and hardware architecture. The
general architecture for an IT system includes all of these considerations.

Nearly all modern IT systems rely on distributed processing. Data comes from many sources
and information is required by users distributed throughout an organization and beyond. The
most common application architecture to support distributed processing is client-server
architecture, in which server computer systems provide various services—Web, database, file,
print, processing—to client computer systems. Client-server systems are convenient for users
and offer centralized control for the organization. Client-server architecture is commonly
organized in tiers, ranging from two-tier to n-tier. The alternative architecture to client-server
computing, peer-to-peer computing, is used outside of organizations as a means for sharing
files over the Internet, but is of limited use in organizational settings due to difficulties in
establishing stable data sources, security risks, and lack of central control. It is also possible to
create a hybrid architecture, with features from both client-server and peer-to-peer computing.

http://www.wikipedia.org/wiki/Facebook_Platform

66

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

A specific type of client-server architecture, Web-based computing, predominates the
IT scene, primarily because users are generally familiar with the use of Web browsers, the
technology is standardized and already in use in most organizations, and good development
tools for designing Web pages and accessing data are readily available. Both intranets and the
Internet provide user access. The services provided by Web-based servers can be extended
using cloud-based services. In addition to simple off-site storage, these include services at the
software, platform, and infrastructure level. There are many advantages and many risks in the
use of cloud-based services.

Protocols are the means used to communicate between computers. IT system protocols of
interest to us include network protocols such as TCP/IP, I/O protocols such as Universal Serial
Bus (USB) and Peripheral Component Interconnect (PCI)-Express, and application protocols
such as HTTP. Standards make it possible for different system components to work together.
Most modern standards are global. There are standards that are defined by interested groups
and de facto standards that arise from common usage.

The first step in IT system analysis and design is about finding an appropriate architecture
for a particular business situation. The task can be difficult and challenging. It is easy to see why
system architects need a deep understanding of the computer system and network components
that comprise the modern IT system to make the appropriate design, selections, and trade-offs.

Hopefully this short but concentrated chapter has prepared you for the remainder of the
book, which considers in detail the data, computer system hardware, operating systems, and
networks that make up the technological infrastructure of an IT system.

FOR FURTHER READING

Surprisingly, there are few books that discuss system concepts and system architecture in a truly
general way. Most books that claim to be about system architecture are actually specific to a
particular field, usually the field of information systems. One general book about systems is by
Laszlo [LASZ96]. Some IS systems design and analysis textbooks provide a brief introduction
to general system concepts. (Unfortunately, many don’t!) One example of a book that provides
a good introduction to system concepts is Stumpf [STAMO5]. Chapter 1 of Stampf covers many
of the topics in this chapter well. Wikipedia offers other references under the topic system. In
addition to many cloud-based topics on Wikipedia, Velte [VELT10] provides an excellent and
thorough introduction to cloud computing.

KEY CONCEPTS AND TERMS

abstraction infrastructure as a service shared server
application architecture (IaaS) software as a service (SaaS)
architecture interface subsystem
. Intranet
client-server (model) . system
X middleware . .
cloud computing . . three-tier architecture
o n-tier architecture
decomposition peer-to-peer architecture top-down approach

environment platform as a service (PaaS) two-tier architecture

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 67

READING REVIEW QUESTIONS

2.1
2.2
2.3

24
2.5

2.6

2.7

2.8

2.9
2.10

2.11

2.12

EXERCISES

2.1

2.2

What are the most important ideas, keywords, and phrases that are stated in the
definition of a system?

Explain the relationships among the following words: system, environment, boundary,
and interface.

Explain the following statement about systems: “Decomposition is inherently
hierarchical”.

Explain what is meant by the architecture of a system.

What does the top-down approach allow a system architect to do that might be more
difficult otherwise?

What is the primary concern of application architecture? Give an example of appli-
cation architecture, either your own, or one from the examples in the book. Explain
how this example fulfills the features and requirements of the concept of application
architecture.

Most modern computing in organizations is based on client-server models. Explain
why this tends to be the case. Give an example of client-server computing that you are
familiar with and explain the characteristics of your example that fulfill the concept of
client-server computing.

Web-based system architecture is a popular approach to many organizational systems
because it offers a number of advantages to the users and to the organization over
other types of systems. Discuss the primary advantages to this approach.

What are the principal responsibilities of a system architect?

Many system architects base their IT system designs on an n-tier architecture, where
n is a number with value 2 or greater. Explain the difference between a single-tier
architecture and an n-tier architecture. What are the main advantages claimed for an
n-tier architecture?

Explain cloud computing in simple terms. Briefly discuss the major advantages and
risks to an organization when considering the adoption of cloud computing.

Give a simple explanation and example for SaaS. Do the same for PaaS. Do the same
for JaaS.

The human body is an example of an object that can be represented as a system.
Consider the various ways in which you could represent the human body as a system.
Select a representation and identify the components that constitute the system. Select
one component and decompose it to the next subsystem level. Now consider a
completely different system representation of the human body and repeat this exercise.

Consider a representation of a work organization or school with which you are
familiar. Identify the major components that characterize the primary operations
within the organization and draw a diagram that represents the system’s organization.
Show and identify the links that connect the various components. Identify the major
environmental factors that impact the organization.

68

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

2.3

24

2.5

2.6

2.7

2.8

2.9

Consider this textbook. Using the detailed table of contents as a reference, we can
represent this textbook as a hierarchical system. As a first pass, we can define this book
by the five component parts that make up the body of the text. Identify by general name
the objects that constitute the next level of decomposition below the parts components.
Continue to do this for at least three more levels of the hierarchy.

Thinking in terms of systems allows us to analyze situations that are too complicated
for us to understand as a whole. What specific characteristics and features of system
thinking make this possible?

Figure 2.8 illustrates the basic architecture for a three-tier database system. This
system can be viewed as an IPO system. What is the input for this system? What
environmental element generates the input? (Hint: the Web browser computer is
within the system boundary.) What is the expected output from this system? What
environmental element receives the output? Briefly describe the processing that takes
place in this system.

Based on the illustration of an iPhone shown in Figure 2.4, draw a system model for
an iPhone.

It is common to represent network connections in IT systems as a cloud. (See, for
example, Figures 2.6, 2.7, 2.8, and 2.9). The cloud is obviously an abstraction as we
defined abstraction in this chapter. What does the cloud abstraction actually represent?

Suppose that you have been hired to develop a website-based sales system for a large
international retail sales firm. Discuss some environmental issues that are specific to
the Web design of your system that you must consider if your system is to be successful
at attracting and keeping purchasing customers.

Consider a home theatre system consisting of a television set, a receiver, a DVD
player, speakers, and any other components you wish to include. Draw a system
diagram for this system. Include both components and links. What are the inputs to
this system? What are the outputs? (Remember that the DVD player and receiver are
both components within the system.) Now draw a system diagram for the receiver
subsystem. Include both its primary components and the links between them. What
are the inputs and outputs for the receiver subsystem? Do these inputs and outputs
conform to the links connected to the receiver in your original system diagram?

Y] TWO

form of binary numbers, using only 1s and 0s. The situation is more complicated than

this, however, because those binary numbers represent both program instructions and
data, and they may represent the data in many different forms. Programming languages such
as Java, for example, allow a programmer to specify data in primitive form as integer numbers,
real numbers, characters, or Booleans. In addition, the files on your computer undoubtedly
include representations of graphical images, sounds, photo images and video, and who knows
what all else!

Each of the myriad different data types and objects uses its own format or formats for
storage in the computer. Manipulating data requires keeping track of which format is in use
for a particular set of data. Each numerical data format requires a different method for doing
arithmetic calculations, and there are a number of different formats for representations of images
and the like with different capabilities and manipulation requirements, which complicates data
handling even further. Naturally, the computer must be able to perform format conversions
between equivalent but different types. Most of this data-type record keeping must be handled
within programs; to the computer, the bits all look the same. Only the programs know what the
bits actually represent.

Each data type and format has its own uses, advantages, and disadvantages, determined by
the context in which it is being used. There is no single “ideal” data type. Knowing when to use
each type involves understanding what happens to the data within the computer. When you
understand the effect of your data-type choices upon the processing that will be required you
can write better, more efficient programs.

Each of the chapters in this section deals with a different aspect of data. We begin in
Chapter 3 by reviewing the basics of number systems, to offer you a better understanding of
how numbers work, the nature of counting, and how calculations are performed. You will learn
how to convert from one number base to another. Although the binary number system is used

‘- r ou are probably aware that all data in computers and other digital devices is stored in the

DATA IN THE COMPUTER

within computers, we must be able to convert between the system the computer uses and the
more familiar decimal system that we use. You will also have a chance to work with the octal
and hexadecimal number systems, which are closely related to the binary system. These are
frequently used for representing computer data and programs in machine form because they
are easy to read and easy to convert to and from binary form.

In Chapter 4 we will explore the ways in which data gets into the computer in the first
place and the different forms that it can take inside the computer. We will consider text, sound,
and images. You will study the difference between characters and other symbols stored as text
and the same symbols stored as images. You will see the different binary codes that are used to
represent symbols in text form. We will also consider the difference between numbers stored
as groups of numeric characters and those stored in actual numerical form. The chapter also
looks at the representations of graphics, photo images, and sound. We present several different
formats that are used for the manipulation and storage of image and sound data.

In Chapter 5 we will look at various ways in which numbers are stored and manipulated
in computers. We consider various forms of integers and real, or “floating point”, number
representations and calculations. We discuss the conversion process between real and integer
number representations. We look at the strengths and shortcomings of each type from the
perspectives of data storage requirements and calculation considerations. The discussion will
conclude by considering when the use of each of the different numerical types is appropriate.

71

CHAPTER 3

NUMBER SYSTEMS

“ ealf tham numbers, you can add them, subtract
iham, multiply them, divide tham .. find thair
square root. "

David H. Ahl, Creative Computing, Morristown, NJ

3.0 INTRODUCTION

As humans, we generally count and perform arithmetic using the decimal, or base 10,
number system. The base of a number system is simply the number of different digits,
including zero, that exist in the number system. In any particular set of circumstances, a
particular base might be chosen for convenience, efficiency, technological, or any other
reasons. Historically, it seems that the main reason we use base 10 is that humans have
ten fingers, which is as good a reason as any.

Any number can be represented equivalently in any base, and it is always possible to
convert a number from one base to another without changing its meaning or actual value,
although its appearance will be different.

Computers perform all of their operations using the binary, or base 2, number system.
All program code and data are stored and manipulated in binary form. Calculations are
performed using binary arithmetic. Each digit in a binary number is known as a bit (for
binary digit) and can have only one of two values, 0 or 1. Bits are commonly stored and
manipulated in groups of 8 (known as a byte), 16 (usually known as a halfword), 32 (a
word), or 64 bits (a doubleword). Sometimes other groupings are used.

The number of bits used in calculations affects the accuracy and size limitations of
numbers manipulated by the computer. And, in fact, in some programming languages, the
number of bits used can actually be specified by the programmer in declaration statements.
In the programming language Java, for example, the programmer can declare a signed
integer variable to be short (16 bits), int (32 bits), or long (64 bits) depending on the
anticipated size of the number being used and the required accuracy in calculations.

The knowledge of the size limits for calculations in a particular language is sometimes
extremely important, since some calculations can cause a numerical result that falls outside
the range provided for the number of bits used. In some cases this will produce erroneous
results, without warning to the end user of the program.

It is useful to understand how the binary number system is used within the computer.
Often, it is necessary to read numbers in the computer in their binary or equivalent
hexadecimal form. For example, colors in Visual Basic, Java, and many other languages can
be specified as a six-digit hexadecimal number, which represents a 24-bit binary number.

This chapter looks informally at number systems in general and explores the rela-
tionship between our commonplace decimal number system and number systems of other
bases. Our emphasis, of course, is upon base 2, the binary number system. The discussion
is kept more general, however, since it is also possible, and in fact common, to represent
computer numbers in base 8 (octal) or base 16 (hexadecimal). Occasionally, we even
consider numbers in other bases, just for fun, and also, perhaps, to emphasize the idea that
these techniques are completely general.

73

74 PART TWO DATA IN THE COMPUTER

3.1 NUMBERS AS A PHYSICAL REPRESENTATION

FIGURE 3.1

A Number of Oranges

As we embark upon our investigation of number systems, it is important to note that numbers
usually represent some physical meaning, for example, the number of dollars in our paycheck
or the number of stars in the universe. The different number systems that we use are equivalent.
The physical objects can be represented equivalently in any of them. Of course, it is possible to
convert between them.

In Figure 3.1, for example, there are a number of oranges, a number that you recognize as
5. In ancient cultures, the number might have been represented as

ITITI

or, when in Rome,

V
Similarly, in base 2, the number of oranges in Figure 3.1 is represented as
101,
And in base 3, the representation looks like this:
12,4

The point we are making is that each of the foregoing examples is simply a different way of
representing the same number of oranges. You probably already have experience in converting
between the standard decimal number system and Roman numerals. (Maybe you even wrote
a program to do so!) Once you understand the methods, it is just about as easy to convert
between base 10 and the other number bases that we shall use.

3.2 COUNTING IN DIFFERENT BASES

Let’s consider how we count in base 10, and what each
digit means. We begin with single digits,

WM — O

When we reach 9, we have exhausted all possible
single digits in the decimal number system; to proceed

CHAPTER 3 NUMBER SYSTEMS 75

further, we extend the numbers to the 10’s place:

10
11
12

It is productive to consider what “the 10’s place” really means.
The 10’s place simply represents a count of the number of times that we have cycled
through the entire group of 10 possible digits. Thus, continuing to count, we have
1 groupof10+0more
lgroupof 10+ 1more
lgroupof10+2

lgroupofl10+9
2groupsof 10+0

9groupsof10+9

At this point, we have used all combinations of two digits, and we need to move left another
digit. Before we do so, however, we should note that each group shown here represents a count
of 10, since there are 10 digits in the group. Thus, the number

43

really refers to
4x10+3

As we move leftward to the next digit, that is, the hundreds place, we are now counting
cycles of the rightmost two digits or, in other words, groups of 10 X 10, or 10%, or hundreds.
Thus, the number

527

really represents

five groups of (10x10)+
two groups of 10+ 7

76 PART TWO DATA IN THE COMPUTER

FIGURE 3.2

This is also represented as

5x10°+2x10"+7x10°.

This method can, of course, be extended indefinitely.

The same method, exactly, applies to any number base. The only change is the size of each
grouping. For example, in base 8, there are only eight different digits available (0, 1, 2, 3, 4, 5,
6, 7). Thus, each move left represents eight of the next rightmost grouping. The number

corresponds to

624,

Since 82 =64,,, 8! =8,,and 8° =1,

6x8%+2x8+4x80,

624 =6x64+2x8+4 =404

Each digit in a number has a weight, or importance, relative to its neighbors left and right.
The weight of a particular digit in a number is the multiplication factor used to determine the
overall value of the particular digit. For example, the weights of the digits in base 8, reading

from right to left are 1, 8, 64, 512, . . .

, or, if you prefer, 8%, 81, 82, 8%, Just as you would

expect, the weight of a digit in any base # is n times as large as the digit to its right and (1/n)th

as large as the digit to its left.

Figure 3.2 shows the corresponding method of counting in base 2. Note that each digit has
twice the weight of its next rightmost neighbor, just as in base 10 each digit had ten times the
weight of its right neighbor. This is what you would expect if you consider that there are only
two different values for digits in the binary cycle. You should spend enough time studying this

Counting in Base 2

DECIMAL

NUMBER EQUIVALENT EQUIVALENT
0 0 x 20 0
1 1 x 20 1
10 1x2t +ox2° 2
11 1x2b +1x20 3
100 1 x 22 4
101 1 x 22 +1x20 5
110 1x22+1x2! 6
111 1x22+1x2l+1x20 7
1000 1x23 8
1001 1x23 +1x20 9
1010 1x23 +1x2! 10

table until you understand every detail
thoroughly.

Note, too, that the steps that we have
followed do not really depend on the num-
ber base that we are using. We simply go
through a complete cycle, exhausting all
possible different digits in the base set,
and then move to the left one place and
count the cycles. We repeat this process as
necessary to represent the entire number.

In general, for any number base B,
each digit position represents a weight of
Btoapower, where the power is numbered
from the rightmost digit, starting with B°.
BY, of course, has a weight of one (known
as the units place) for any number base.

Thus, a simple way to determine
the decimal equivalent for a number
in any number base is to multiply each
digit by the weight in the given base that
corresponds to the position of the digit
for that number.

EXAMPLES

CHAPTER 3 NUMBER SYSTEMS 77

As an example,
142305, =

IX6°+4x6"+2x6°+3x6°+0x6+5=

777645184 +432+108+0+5=13505,
HEN

Similarly,
110010100, =

Ix28+1x27+0x2°40x2°+1x2"+0x234+1%x2%+
O0x2+0=
256 +128+16+4 =404,

You should probably work out these two examples and check your results against ours.

Often it is useful to be able to estimate quickly the value of a binary number. Since the
weight of each place in a binary number doubles as we move to the left, we can generate a rough
order-of-magnitude by considering only the weight for the leftmost bit or two. Starting from 1,
and doubling for each bit in the number to get the weight, you can see that the most significant
bit in the previous example has a value of 256. We can improve the estimate by adding half that
again for the next most significant bit, which gives the value of the number in the neighborhood
of 384, plus a little more for the additional bits. With a little practice, it is easy to estimate the
magnitudes of binary numbers almost instantly. This technique is often sufficient for checking
the results of calculations when debugging programs. (You might also want to consider it as a
way of doing quick checks on your solutions to exam problems!)

We will discuss number conversion between different bases more carefully later in the
chapter.

From the preceding discussion, it is fairly easy to determine the total range of possible
numbers—or, equivalently, the smallest and largest integers—for a given number of digits in a
particular number base. Since the weight of each digit is one larger than the largest value that
can be represented by all the digits to its right, then the range of possible values for n digits is
simply the weight of the nth digit, which is represented by the value

range = base”

Thus, if we want to know how many different numbers can be represented by two decimal
digits, the answer is 10>, We can represent one hundred different numbers (0 . . . 99) with two
decimal digits.

It’s obviously easier to simply memorize the formula; if you are told that you are working
with four-digit numbers in base 8, you know from the formula that you can represent 8*, or
4096 different numbers, ranging from 0 . . . 7777, or the decimal equivalent (0. . . 4095).

Just as a pocket calculator stores, manipulates, and displays numbers as a group of digits,
so computers store and manipulate numbers as groups of bits. Most computers work with
numbers 16 bits, 32 bits, or 64 bits at a time. Applying the preceding formula to a “16-bit”

78

FIGURE 3.3
Decimal Range for Selected Bit Widths

PART TWO DATA IN THE COMPUTER

number, you can represent 2!®=65,536 different number
values in each 16-bit location. If you wish to extend this
range, it is necessary to use some technique for increasing the

BITS DIGITS RANGE number of bits used to hold your numbers, such as using two
16-bit storage locations together to hold 32 bits. There are
0+ 2(0and 1) other methods used, which are discussed in Chapter 5, but
1+ 16 (Oto 15) note that, regardless of the technique used, there is no way to
24 256 store more than 65,536 different number values using 16 bits.
A table of base 10 equivalent ranges for several common
1o g Loz computer “word lengths” is shown in Figure 3.3. There is a
16 4+ 65,536 (64K) simple way to calculate the approximate range for a given
20 3 1,048,576 (1M) number of bits, since 2! is approximately 1000. To do so, we
break up the total number of bits into a sum that consists of
32 9+ 4,294,967,296 (4G) o

values where the range is easily figured out. The overall range
64 19 + Approx. 1.6 x 10%° is equal to the product of the subranges for each value. This

128 38 + Approx. 2.6 x 1038 method is best seen with examples.

For example, if you need to know the range for 18 bits,

you would break up the number 18 into the sum of 10 and 8,

then multiply the range for 10 bits to that for 8 bits. Since the range for 10 bits is approximately

1K (1024, actually) and 8 bits is 256, the range for 18 bits is approximately 256 K. Similarly, the

range for 32 bits would be (10-bit range) X (10-bit range) X (10-bit range) X (2-bit range) =1
Kx1Kx1Kx4=4 gigabytes. This technique becomes easy with a bit of practice.

Notice that it takes 18 bits to represent a little more than five decimal digits. In general,

approximately 3.3 bits are required for each equivalent decimal digit. This is true because 2%

is approximately equal to 10.

3.3 PERFORMING ARITHMETIC IN DIFFERENT
NUMBER BASES

Next, we consider simple arithmetic operations in various number bases. Let us begin by
looking at the simple base 10 addition table shown in Figure 3.4.
We add two numbers by finding one

FIGURE 3.4
in the row and the other in the column.
The Base 10 Addition Table The table entry at the intersection is the
result. For example, we have used the table
+ 0O 1 2 3 4 5 6 7 8 9 to demonstrate that the sum of 3 and 6 is 9.
ol o 1 2 3 4 5 6 7 8 9 Note that the extra digit sometimes required
becomes a carry that gets added into the next
1 12 3 4 5 6 7 8 9 10 left column during the addition process.
ol 2 3 4 5 6 7 8 9 10 11 More fundamentally, we are interested
in how the addition table is actually cre-
3 3 4 5 6 7 8 9 10 11 12 ated. Each column (or row) represents an
4l 24 5 6 7 8 9 10 11 12 13 increase of 1 from the previous column (or

row), which is equivalent to counting. Thus,
etc. starting from the leftmost column in the

EXAMPLE

CHAPTER 3 NUMBER SYSTEMS 79

FIGURE 3.5
The Base 8 Addition Table

+ 0 1 2 3 4 5 6 7
ol o 1 2 3 4 5 6 7
1l 1 2 3 4 5 6 7 10
2| 2 3 4 5 6 7 10 11
3] 3 4 5 6 7 10 11 12 (o“f"cﬁu“r's;’
4l 4 5 6 7 10 11 12 13
5] 5 6 7 10 11 12 13 14
6] 6 7 10 11 12 13 14 15
71 7 10 11 12 13 14 15 16

table, it is only necessary to count up 1 to find the next value. Since 3 + 6 =9, the next column
will have to carry to the next place, or 10, just as occurred when we demonstrated counting in
base 10, earlier. This knowledge should make it easy for you to create a base 8 addition table.
Try to create your own table before looking at the one in Figure 3.5.

Of special interest is the base 2 addition table:

+ 0 1
0 0 1
1 1 10

Clearly, addition in base 2 is going to be easy!

Addition in base 2 (or any other base, for that matter) then follows the usual methods of addi-
tion that you are familiar with, including the handling of carries that you already know. The only
difference is the particular addition table being used. There are practice problems representing
multidigit binary arithmetic and column arithmetic (Exercise 3.8) at the end of this chapter.

Add 11100001, and 101011, (superscripts are carried amounts).

Let’s use the estimation technique to see if our result is approximately correct. 11100001
is approximately 128+ 64 + 32, or 224. 101011 is approximately 32. Thus, the sum should be
about 256; 100001100 is indeed approximately 256, so at least we know that our calculation
is in the ballpark.

80 PART TWO DATA IN THE COMPUTER

FIGURE 3.6
The Base 10 Multiplication Table

x 0 1 2 3 4 5 6 7 8 9

0 «<—0—>

1 1 2 3 4 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36

10 15 20 25 30 35 40 45
18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 56 64 72
18 27 36 45 54 63 72 81

<« O —>»

© 00 N O g > w N
© 00 N O o b w DN
=
N

As an aside, it may be of interest to some readers to consider how this addition table
can be implemented in the computer using only Boolean logic, without performing any actual
arithmetic: the result bit (the bit in the column that corresponds to the inputs) can be represented
by the ExcLusive-or function of the two input bits. The excLusive-or function has a “1” as output

only if either input, but not both inputs, is a “1”. Similarly,

the carry bit is represented as an AND function on the

two input bits. (“1” as output if and only if both inputs

FIGURE 3.7 are a “17.) This approach is discussed in more detail in
The Base 8 Multiplication Table Supplementary Chapter 1.

The process of multiplication can be reduced con-

ceptually to multiple addition, so it should not surprise

x 0 et S5 6 7 you that multiplication tables in different number bases

0 <« 0—> are also reasonably straightforward. The major difference

1 12 3 4 5 6 7 in appearance results from the fact that the carry occurs
at different places.

2 T 2 4 6 10 12 14 16 The easiest way to create a multiplication table is to
treat multiplication as multiple addition: each column (or

S 0 g IR LA row) represents the addition of the value in the row (or

4 l 4 10 14 20 24 30 34 column) being created. Thus, in the following table, you
can see that 5 X 8 is equivalent to 5 X 7 + 5 = 40.

° 5 12 17 24 31 36 43 The familiar decimal multiplication table appears in

6 6 14 22 30 36 44 52 Figure 3.6, with the example just given indicated.

7 7 16 25 34 43 52 61 The same technique can be applied to the base 8

multiplication table (Figure 3.7).

EXAMPLE

CHAPTER 3 NUMBER SYSTEMS 81

Note in the foregoing table that 3 X 3 =3 X 2 + 3. Note, though, that counting up 3 from 6
(or adding 3 to 6) results in a carry after 7 is reached: 6 - 7 — 10 — 11.

The base 2 multiplication table is almost trivial, since 0 times anything is 0 and 1 times 1 is
itself:

X 0 1
0 0 0
1 0 1

Because the binary multiplication table is so simple, it turns out that multiplication can be
implemented in a computer fairly easily. There are only two possible results: if the multiplier is
0, the answer is 0, even if the multiplicand is a nonzero multidigit number. If the multiplier is
1, the multiplicand is brought down as the result. You might recognize the multiplication table
as a Boolean AND function.

If you recall that decimal multidigit multiplication is performed by multiplying the
multiplicand by each digit of the multiplier, shifting the result of each multiplication to line
up with the multiplier, and adding up the results, then you realize that multidigit binary
multiplication can be performed by simply shifting the multiplicand into whatever positions in
the multiplier are “1” bits and adding to the result. This is easily illustrated with an example:

Multiply

1101101 [multiplicand]
X 100110 [multiplier]

1101101 bits shifted to line up with 2's place of multiplier
1101101 4's place
1101101 32’s place

1000000101110 result (note the O at the end, since the 1's place is
zero and not brought down)

We note in passing that shifting a binary number one position to the left has the effect of
doubling its value. This is a result you would expect, since the shift is equivalent to multiplying
the value by a 1 in the 2’s place of the multiplier. This result is consistent with the fact that shift-
ing a decimal number to the left by one position will multiply its value by 10. In general, shifting
a number in any base left one digit multiplies its value by the base, and, conversely, shifting a
number right one digit divides its value by the base. Shifting right loses any fractional values
that result, however.

Although we have not mentioned subtraction or division, the methods are similar to those
that we have already discussed. In fact, the addition and multiplication tables can be directly
used for subtraction and division, respectively.

82 PART TWO DATA IN THE COMPUTER

3.4 NUMERIC CONVERSION BETWEEN
NUMBER BASES

EXAMPLE

EXAMPLE

Conversions between whole numbers in decimal (base 10) and any other number base are
relatively straightforward. With the exception of one special case discussed in Section 3.6, it is
impractical to convert directly between two nondecimal number bases. Instead, base 10 would
be used as an intermediary conversion base.

The easiest intuitive way to convert between base 10 and another number base is to
recognize the weight of each digit in the alternative number base and to multiply that weight by
the value of the digit in that position. The sum taken over all digits represents the base 10 value
of the number. This is easily seen in an example:

Convert the number
13754,

to base 10.
From the following diagram we can see the result easily:

(84) (83) (82) (81) (80)

4096 512 64 8 1 <«—weights
~N N /S
7 4 «—values

AR

4096 + 1536 + 448 + 40 + 4 = 61244,

We can use the same method in reverse to convert from base 10 to another base, although
the technique is not quite as simple. In this case, it is just a question of finding the value
corresponding to the weight of each digit such that the total will add up to the base 10 number
that we are trying to convert.

Note that the value for each digit must be the largest value that will not exceed the number
being converted. If this were not true, then there would be more than a full grouping of the next
less significant digit. This idea is best clarified by example:

Suppose that we are reverse converting the preceding example, and we assume that there are six
groups of 64 instead of seven. In this case, the 8's place and 1’s place combined must add up
to more than 64, and we've already seen that is impossible.

This provides a simple methodology for the conversion. Start with the digit whose weight
is the largest possible without exceeding the number to be converted. Determine the largest

CHAPTER 3 NUMBER SYSTEMS 83

value for that weight that does not exceed the number to be converted. Then, do the same for
each successive digit, working from left to right.

EXAMPLE

As an example, let us convert 6124, to base 5. The weights of each digit in base 5 are as
follows:
15625 3125 625 125 25 5 1

Clearly the 15625 digit is too large, so the result will be a six-digit base 5 number. The
number 3125 fits into 6124 only once; thus, the first digit is a 1, and the remainder to be
converted is 2999. Proceeding to the next digit, 625 goes into 2999 four times with a remainder
of 499, 125 into 499 three times with a remainder of 124, 25 into 124 four times, and so on.
We get a final result of

143444,

It would be useful for you to confirm the answer by converting the result back to base 10.

This method is particularly simple if you are converting from decimal to binary, since the
value that corresponds to a particular bit either fits (1) or it doesn’t (0). Consider the following
example:

EXAMPLE
Convert 3193, to binary. The weights in binary are 4096, 2048, 1024, 512, 256, 128, 64,

32,16,8,4,2,and 1.

Proceeding as before, the largest bit value in this conversion is the 2048 weight. Subtracting
2048 from 3193 leaves 1145 yet to be converted; thus, there is also a 1 in the 1024 place.
Now the remainder is 1145 — 1024 = 121. This means that there are Os in the 512, 256, and
128 places. Continuing, you should confirm that the final result is

110001111001,

Note that, in general, as the base gets smaller, the representation of a value requires more
digits and looks bigger.

An Alternative Conversion Method

Although the preceding methods are easy to understand, they are computationally difficult and
prone to mistakes. In this section we will consider methods that are usually simpler to compute
but are less intuitive. It is helpful to understand the reasons that these methods work, since the
reasoning adds insight to the entire concept of number manipulation.

BASE 10 TO ANOTHER BASE Note that when we divide a number by a number B the
remainder must take on a value between 0 and B — 1, which corresponds to the range for a
number in base B. Suppose we divide the number to be converted successively by the base, B,
that we are converting to, and look at the remainders of each division. We will do this until
there is nothing left to divide. Each successive remainder represents the value of a digit in the

84 PART TWO DATA IN THE COMPUTER

EXAMPLE

EXAMPLE

new base, reading the converted value from bottom to top digit in the new base. Again, let us
convert 6124, to base 5:

Least significant digit

Most significant digit
The answer is 143444, which agrees with our earlier result.

The first time that we perform the division, we are, in effect, determining how many groups
of 5 (or, in the general case, B) fit into the original number. The remainder is the number of
single units left over, which is, in other words, the units place of the converted number.

The original number has now been divided by 5, so the second division by 5 determines
how many groups of 52, or 25, fit into the number. The remainder in this case is the number of
5-groups that are left over, which is the second digit from the right.

Each time we divide by the base, we are increasing the power of the group being tested by
one, and we do this until there is no group left. Since the remainders correspond to the part
of the number that does not exactly fit the group, we can read the converted number easily by
reading the remainders from the bottom up.

Here’s another example:

Convert 8151, to base 16, also known as hexadecimal:

16) 8151 (7

16) 509 (13 in base 16, this is represented by the letter “D”
16) 31 (15 in base 16, this is represented by the letter “F”
1

The answer is 1FD7,4. We suggest that you verify this answer by using the technique of digit
weight multiplication to convert this answer back to decimal form.

ANOTHERNUMBER BASETO BASE10 An alternative method can also be used to convert
from other number bases to base 10. The technique is also computationally simple: starting
from the most significant digit, we multiply by the base, B, and add the next digit to the right.
We repeat this process until the least significant digit has been added.

CHAPTER 3 NUMBER SYSTEMS 85

EXAMPLE
Convert 137544 to base 10:

1
x 8
g+ 3 =11
x 8
88+ 7 =95
x 8
760 + 5 = 765

X 8
6120 + 4 = 612410

If you count the number of times that each digit in the example is multiplied by the base
number, in this case 8, you discover that the leftmost digit is multiplied by 8 four times, or 8*, and
that each successive digit is multiplied by 8 one less time, until you arrive at the rightmost digit,
which is not multiplied by the base number at all. Thus, each digit is multiplied by its proper
weight, and the result is what we would expect. In the next chapter, you will see that this method
is also useful for converting a sequence of digits in alphanumeric form to an actual number.

You have now been introduced to two different methods for performing conversions
in each direction, one intuitive and one formal or algorithmic. You should practice all four
methods; then you can use whichever two methods are easiest for you to remember.

3.5 HEXADECIMAL NUMBERS AND ARITHMETIC

The hexadecimal, or base 16, number representation system is important because it is commonly
used as a shorthand notation for binary numbers. The conversion technique between hexadec-
imal and binary notations is particularly simple because there is a direct relationship between
the two. Each hexadecimal number represents exactly 4 binary bits. Most computers store and
manipulate instructions and data using word sizes that are multiples of 4 bits. Therefore, the
hexadecimal notation is a convenient way to represent computer words. Of course, it is also
much easier to read and write than binary notation. The technique for converting between
binary and hexadecimal is shown later in this chapter.

Although hexadecimal numbers are represented and manipulated in the same way as those
of other bases, we must first provide symbols to represent the additional digits beyond 9 that
we require to represent sixteen different quantities with a single integer.

By convention, we use the digits 0-9, followed by the first six Latin alphabetical characters
A-F. Thus, the digits 0-9 have their familiar meaning; the letters A-F correspond to what in

86 PART TWO DATA IN THE COMPUTER

a decimal base would be quantities of 10-15, respectively. To count in hexadecimal, we count
from 0 to 9, then A to F, and then move left to the next digit. Since there are sixteen digits, each
place represents a power of 16. Thus, the number

2MAF

is equivalent to
2x16°+10x16°+4x16+15, or
108315,

Addition and multiplication tables can be created for the hexadecimal number system.
These tables each have sixteen rows and sixteen columns, as you would expect. The addition
table is shown in Figure 3.8. Before you look at the above-mentioned figure, you should try to
work the hexadecimal addition and multiplication tables out for yourself (see Exercise 3.7).

FIGURE 3.8
Hexadecimal Addition Table

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 2 3 4 5 6 7 8 9 A B C D E F 10
2 2 3 4 5 6 7 8 9 A B C D E F 10 11
3 3 4 5 6 7 8 9 A B C D E F 10 11 12
4 4 5 6 7 8 9 A B C D E F 10 11 12 13
5 5 6 7 8 9 A B C D E F 10 11 12 13 14
6 6 7 8 9 A B C D E F 10 11 12 13 14 15
7 7 8 9 A B C D E F 10 11 12 13 14 15 16
8 8 9 A B C D E F 10 11 12 13 14 15 16 17
9 9 A B C D E F 10 11 12 13 14 15 16 17 18
Al A B C D E F 10 11 12 13 14 15 16 17 18 19
B B C D E F 10 11 12 13 14 15 16 17 18 19 1A
C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

CHAPTER 3 NUMBER SYSTEMS 87

3.6 A SPECIAL CONVERSION CASE—NUMBER
BASES THAT ARE RELATED

EXAMPLE

A special possibility for conversion exists when one number base is an integer power of another.
In this case, a direct conversion can easily be made. In fact, with a bit of practice, the conversion
can be done mentally and the answer written down directly. These conversions work because a
grouping of several digits in the smaller number base corresponds, or maps, exactly to a single
digit in the larger number base.

Two particularly useful examples for computer work are the cases of conversion between
base 2 and base 8 and conversion between base 2 and base 16. Since 8 =2°, we can represent
binary numbers directly in base 8 using one octal digit to correspond to each three binary digits.
Similarly, it takes one hexadecimal digit to exactly represent 4 bits.

The advantage of representing binary numbers in hexadecimal or octal is obvious: it is
clearly much easier to read and manipulate four-digit hexadecimal numbers than 16-bit binary
numbers. Since the conversion between binary and octal and hexadecimal is so simple, it is
common to use hexadecimal or octal representation as a shorthand notation for binary. (Note
that base 8 and base 16 are not directly related to each other by power, but conversion could be
performed easily by using base 2 as an intermediary.)

Since the correspondence of binary and octal or hexadecimal is exact, the conversion
process simply consists of breaking the binary number into groups of three or four, starting
from the least significant bit (the unit bit), and converting each group independently. It may be
necessary to mentally add Os to the left end of the number to convert the most significant digit.
This is most easily illustrated with an example:

Let us convert
11010111011000

to hexadecimal.
Grouping the binary number by fours from the right, we have

0011 0101 1101 1000

or
35D8,,

Note that we added two zeros at the left end of the binary number to create groups of four.
The conversion in the other direction works identically. Thus,

275331,

becomes
010111101 011011 001,

For practice, now convert this value to hexadecimal. You should get 17AD9,, as an answer.

88 PART TWO DATA IN THE COMPUTER

Most computer manufacturers today prefer to use hexadecimal, since a 16-bit or 32-bit
number can be represented exactly by a four- or eight-digit hexadecimal number. (How many
octal digits would be required?) A few manufacturers still use octal representation for some
applications.

You might ask why it is necessary to represent data in binary form at all. After all, the
binary form is used within the computer, where it is usually invisible to the user. There are many
occasions, however, where the ability to read the binary data is very useful. Remember that
the computer stores both instructions and data in binary form. When debugging a program, it
may be desirable to be able to read the program’s instructions and to determine intermediate
data steps that the computer is using. Older computers used to provide binary dumps for this
purpose. Binary dumps were complete octal listings of everything stored in memory at the
time the dump was requested. Even today it is sometimes important, for example, to be able to
read the binary data from a disk to recover a lost or damaged file. Modern computer operating
systems and networks present a variety of troubleshooting data in hexadecimal form.

Conversions between binary and hexadecimal notation are used frequently. We strongly
recommend that you practice to become proficient at working with hexadecimal notation.

3.7 FRACTIONS

EXAMPLE

Up to this point we have limited our discussion to positive whole numbers, or, if you prefer, inte-
gers. (Negative numbers are discussed in Chapter 5.) The representation and conversion of frac-
tional numbers are somewhat more difficult because there is not necessarily an exact relationship
between fractional numbers in different number bases. More specifically, fractional numbers
that can be represented exactly in one number base may be impossible to represent exactly in
another. Thus, exact conversion may be impossible. A couple of simple examples will suffice:

The decimal fraction
0.1, 0r 1/10

cannot be represented exactly in binary form. There is no combination of bits that will add up
exactly to this fraction. The binary equivalent begins

0.0001100110011, ...
This binary fraction repeats endlessly with a repeat cycle of four. Similarly, the fraction
1/3

is not representable as a decimal value in base 10. In fact, we represent this fraction decimally
as
0.3333333...

As you will realize shortly, this fraction can be represented exactly in base 3 as

0.1,

CHAPTER 3 NUMBER SYSTEMS 89

Recall that the value of each digit to the left of a decimal point in base 10 has a weight ten
times that of its next right neighbor. This is obvious to you, since you already know that each
digit represents a group of ten objects in the next right neighbor. As you have already seen,
the same basic relationship holds for any number base: the weight of each digit is B times the
weight of its right neighbor. This fact has two important implications:

1. If we move the number point one place to the right in a number, the value of the
number will be multiplied by the base. A specific example will make this obvious:

139019 is ten times as large as 139.0q
139.0.
Lt

Moving the point right one space, therefore, multiplies the number by ten. Only a bit
less obvious (pun intended),

100, istwiceasbigas 10,

(Note: We have used the phrase “number point” because the word “decimal”
specifically implies base 10. More generally, the number point is known by the name
of its base, for example, binary point or hexadecimal point. It is sometimes also called
a radix point.)

2. The opposite is also true: if we move the number point to the left one place, the value
is divided by the base. Thus, each digit has strength 1/B of its left neighbor. This is
true on both sides of the number point.

246.8x
[

Moving the point to the left one space divides the value by ten.

Thus, for numbers to the right of the number point, successive digits have values 1/B, 1/B,
1/B%, and so on. In base 10, the digits then have value

.D; D, Dy Dy

L1

107t 1072 1072 107*

which is equivalent to

1/101/1001/1000 1/10,000

This should come as no surprise to you, since 1/10=0.1, 1/100=0.01, and so forth.
(Remember from algebra that B™F = 1/BF.)

90

PART TWO DATA IN THE COMPUTER

Then, a decimal number such as

0.2589

has value

2x(1/10)+5x(1/100)+8x(1/1000)+9x(1/10,000)

Similarly in base 2, each place to the right of the binary point is 1/2 the weight of its
left-hand neighbor. Thus, we have

B, B, By By

Pl

1/2 174 1/8 1/16 etc.

As an example,

0.101011

is equivalent to

1/2+1/8+1/32+1/64
which has decimal value

0.5+0.125+0.03125+0.015625=0.6718751¢

Since there is no general relationship between fractions of types 1/10% and 1/2, there is no
reason to assume that a number that is representable in base 10 will also be representable in
base 2. Commonly, it isn’t so. (The converse is not the case; since all fractions of the form 1/2%
can be represented in base 10, and since each bit represents a fraction of this form, fractions in
base 2 can always be converted exactly to fractions in base 10.) As we have already shown with
the value 0.1,,, many base 10 fractions result in endless base 2 fractions.

Incidentally, as review, consider the hexadecimal representation of the binary fraction
representing 0.1,,. Starting from the numeric point, which is the common element of all
number bases (B’ =1 in all bases), you group the bits into groups of four:

0.0001 100110011001 =0.1999,4

In this particular case, the repeat cycle of four happens to be the same as the hexadecimal
grouping of four, so the digit “9” repeats forever.

When fractional conversions from one base to another are performed, they are simply
stopped when the desired accuracy is attained (unless, of course, a rational solution exists).

Fractional Conversion Methods

The intuitive conversion methods previously discussed can be used with fractional numbers.

The computational methods have to be modified somewhat to work with fractional numbers.
Consider the intuitive methods first. The easiest way to convert a fractional number from

some base B to base 10 is to determine the appropriate weights for each digit, multiply each

EXAMPLE

EXAMPLE

CHAPTER 3 NUMBER SYSTEMS 91

digit by its weight, and add the values. You will note that this is identical to the method that we
introduced previously for integer conversion.

Convert 0.12201; to base 10.
The weights for base 3 fractions (we remind you that the rules work the same for any number
base!) are
1 1 1 1 1
3 9 27 81 243
Then, the result is
I1x1/3+2x1/9+2x1/27+1x1/243

Two different approaches could be taken at this point. Either we can convert each value to
decimal base, multiply, and add,

value =0.33333+0.22222 +0.07407 +0.00412 = 0.63374,,

or, more easily, we can find a common denominator, convert each fraction to the common
denominator, add, and then divide by the common denominator. Most easily, we can pick the
denominator of the least significant digit, in this case 243:

_814+2x27+2x9+1 _ 154 _
value = 513 =503 =0.63374

If you look at the numerator of the last equation carefully, you might notice that the numerator
consists of weighted digits, where the digits correspond to the weights of the fraction as if the
ternary point had been shifted five places right to make the fraction into a whole number. (The
base 3 number point is called a ternary point.) A shift five places to the right multiplies the number
by 3 -9 27 - 81 — 243; therefore, we have to divide by 243 to restore the original fraction.

Repeating this exercise with another, perhaps more practical, example should help to
solidify this method for you.

Convert 0.110011, to base 10.
Shifting the binary point six places to the right and converting, we have

numerator value=32+16+2+1=51

Shifting the binary back is equivalent to dividing by 2%, or 64. Dividing the numerator 51 by
64 yields
value=0.796875

The intuitive method for converting numbers from base 10 to another base can also be
used. This is the method shown earlier where you fit the largest product of weights for each digit
without exceeding the original number. In the case of fractions, however, you are working with
fractional decimal numbers, and the actual calculation may be time consuming and difficult
except in simple cases.

92

PART TWO DATA IN THE COMPUTER

EXAMPLE

EXAMPLE

Convert the number 0.1, to binary representation. The weights for binary fractions are

1 1 1 1 1
2 7 8 6 32 o

These are easier to use when converted into decimal form: 0.5, 0.25, 0.125, 0.0625, and
0.03125, respectively. The largest value that fits into 0.1, is 0.0625, which corresponds to a
value of 0.0001,. The remainder to be converted is 0.1 —0.0625=0.0375. Since 0.03125 fits
into this remainder, the next bit is also a 1: 0.00011,, and so on. As an exercise, you may want
to carry this conversion out a few more places.

To convert fractional numbers from base 10 to another base, it is usually easier to use a
variation on the division method shown earlier. Recall that for an integer, this involved dividing
the number repeatedly by the base value and retaining the remainders. Effectively, this method
works by shifting the radix point to the left one place each time we divide by the base value and
noticing what drops over the radix point, which is the remainder. The number point is initially
assumed to be to the right of the number.

When the value being converted is to the right of the number point, the procedure must
work exactly the opposite. We multiply the fraction by the base value repeatedly, and record,
then drop, the values that move to the left of the radix point. We repeat this procedure until the
desired number of digits of accuracy is attained or until the value being multiplied is zero. Each
time we multiply, we effectively expose the next digit.

For example, if the value in base 10 is 0.5, multiplying that by 2 would yield 1.0, which
says that in base 2 there would have been a 1 in the 1/2-bit location. Similarly, 0.25 would be
multiplied by 2, twice, to reach a value of 1.0, indicating a 1 in the 1/4-bit location. An example
of the procedure should clarify this explanation:

Convert 0.828125,, to base 2. Multiplying by 2, we get

.828125
2
.656250 The 1 is saved as result,
2 then dropped, and the
312500 Process repeated
2
.625000
2
.250000
2
.500000
2
.000000

=X O X | X O X — X —|X

CHAPTER 3 NUMBER SYSTEMS 93

The final result, reading the overflow values downward, is 0.110101,. This is an example of
a conversion that reaches closure. You will recall that we stated earlier that 0.1, is an example
of a number that does not convert exactly into base 2. The procedure for that case follows.

.100000
X 2
0.200000
X 2
0.400000
X 2
0.800000
X 2
1.600000
X 2
1.200000
X 2
10.400000

The repeating nature of this conversion is clear at this point.

Finally, we note that conversion between bases where one base is an integer power of the
other can be performed for fractions by grouping the digits in the smaller base as before. For
fractions, the grouping must be done from left to right; the method is otherwise identical.

EXAMPLE
To convert 0.1011, to base 8, group the digits by threes (since 23 =8) and convert each group

as usual. Note that it is necessary to supplement the second group with Os. As you would expect,
fractional zeros are appended to the right of the fraction.
Therefore,

0.101_100, = 0.54,

3.8 MIXED NUMBER CONVERSIONS

The usual arithmetic rules apply to fractional and mixed numbers. When adding and subtracting
these numbers, the radix points must line up. During multiplication and division, the radix point
is determined in exactly the same way as it would be in base 10. For multiplication in base 8, for
example, you would add the number of digits to the right of the radix in the multiplier and the
multiplicand; the total would be the number of digits to the right of the radix point in the result.

Extra caution is required when performing base conversions on numbers that contain both
integer and fractional parts. The two parts must be converted separately.

94

PART TWO DATA IN THE COMPUTER

The radix point is the fixed reference in a conversion. It does not move, since the digit to
its left is a unit digit in every base; that is, B? is always 1, regardless of B.

It is possible to shift a mixed number in order to make it an integer. Unfortunately, there
is a tendency to forget that the shift takes place in a particular base. A number shifted in base
2, say, cannot be converted and then shifted back in base 10 because the factor used in the shift
is 2k, which obviously has a different value than 10¥. Of course, it is possible to perform the
shift and then divide the converted number by the original shift value, but this is usually more
trouble than it’s worth.

Instead, it’s usually easier to remember that each part is converted separately, with the
radix point remaining fixed at its original location.

SUMMARY AND REVIEW

Counting in bases other than 10 is essentially similar to the familiar way of counting. Each digit
place represents a count of a group of digits from the next less significant digit place. The group
is of size B, where B is the base of the number system being used. The least significant digit,
of course, represents single units. Addition, subtraction, multiplication, and division for any
number base work similarly to base 10, although the arithmetic tables look different.

There are several different methods that can be used to convert whole numbers from base
B to base 10. The informal method is to recognize the base 10 values for each digit place and
simply to add the weighted values for each digit together. A more formal method converts from
base B to base 10 using successive multiplication by the present base and addition of the next
digit. The final total represents the base 10 solution to the conversion. Similar methods exist for
converting from base 10 to a different number base.

The conversion of number bases in which one base is an integer power of the other may be
performed by recognizing that multiple digit places in the smaller base represent a single-digit
place in the larger. Conversion is then done by grouping and converting each multiple set of
digits individually.

Fractional and mixed numbers must be handled more carefully. The integer and fractional
parts must be treated independently of each other. Although the conversion method is the
same, the choice of the multiplication or division operation is reversed for the fractional part.
Again, directly related bases can be converted by grouping digits in one base and converting
each group independently.

FOR FURTHER READING

Working in different number bases was part of a trend in the teaching of mathematics in the
1960s and 1970s known as “the new math”. The material is still taught in many elementary
schools.

Many libraries carry texts with such titles as “Elementary Math”. A good, brief review of
arithmetic as it applies to the computer can be found in the Schaum outline series book Essential
Computer Mathematics [LIPS82]. A funny introduction to “new math” can be found on the
recording “That Was the Year That Was” by Tom Lehrer [LEHR65]. Various animations of
this song can be found on YouTube. In addition, most books on computer arithmetic contain
substantial discussions of the topics covered in this chapter. Typical computer arithmetic books

CHAPTER 3 NUMBER SYSTEMS 95

include those by Spaniol [SPAN81] and Kulisch and Maranker [KULI81]. A clear and thorough
discussion of this material can be found in the computer architecture book by Patterson and
Hennessy [PATT12].

KEY CONCEPTS AND TERMS

base binary-octal conversion hexadecimal number
binary arithmetic bit left shift
binary number decimal point mixed number conversion
binary point decimal-binary conversion
binary-decimal conversion fractional conversion OCtz_ﬂ nul.nber
binary-hexadecimal hexadecimal-binary radix point

conversion conversion right shift

READING REVIEW QUESTIONS

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

3.10

3.12

3.13

In the book we show that 527,, represents 5x 10?+2 X 10! + 7 x 10°. What is the
representation for 52742 What would its equivalent base 10 value be?

How many different digits would you expect to find in base 62 What is the largest digit
in base 62 Let z represent that largest digit. What is the next value after 21z if you're
counting up by 1s? What is the next value after 4zz if you’re counting up by 1s?

Use the table in Figure 3.5 to add 215 and 33g. Use the table in Figure 3.5 to add 464
and 43;.

Use the base 2 addition table to add 10101, and 1110,. Use the base 2 multiplication
table to multiply 10101, and 1110,.

What are the first six weights in base 2?2 Using these weights, convert 100101, to
base 10.

What are the first three weights in base 162 Using these weights, convert 359, to
base 10. (Notice that the same technique works for any base, even if the base is larger
than 10.)

Using the weights in base 8, convert 212, into base 8. Convert 3212, into base 8.
Using the weights in base 16, convert 117,, into base 16. Convert 1170,, into base 16.
Use the division conversion method to convert 3212, into base 8. Confirm that your
answer is the same as that in question 7, above.

Use the division method to convert 1170, to base 16. Confirm that your answer is the
same as that in question 8, above.

Use the division method to convert 12345, to base 16. Verify your answer by using
the weights method to convert your answer back to base 10.

Use the division method to convert 12345, to base 2. Verify your answer by using the
weights method to convert your answer back to base 10.

Use the multiplication method to convert 1011, to base 10. Verify your answer by
using the weights method to convert the number back to base 2.

96 PART TWO DATA IN THE COMPUTER

EXERCISES

3.14

3.15

3.16

3.17

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Use the multiplication method to convert 1357, to base 10. Verify your answer by
using the division method to convert your answer back to base 16.

What number in base 10 is equivalent to D in base 16?7 What number in base 16 is
equivalent to the number 10 in base 10? Use the weights method to convert the number
5D, to base 10. Use the division method to convert your answer back to base 16.
Convert the number 101000101100, directly from binary to hexadecimal. Without
looking at the original number, convert your answer directly back to binary and
compare your final answer with the original number.

Convert the number 1111001101100, directly from binary to hexadecimal. Without
looking at the original number, convert your answer directly back to binary and
compare your final answer with the original number.

a. Determine the power of each digit for five-digit numbers in base 6.
b. Use your results from part (a) to convert the base 6 number 24531 to decimal.

Determine the power of each digit for four-digit numbers in base 16. Which place
digits in base 2 have the same power?

Convert the following hexadecimal numbers to decimal:

a. 4E
b. 3D7
c. 3D70

Some older computers used an 18-bit word to store numbers. What is the decimal
range for this word size?

How many bits will it take to represent the decimal number 3,175,000?2 How many
bytes will it take to store this number?

a. Create addition and multiplication tables for base 12 arithmetic. Use alphabetic
characters to represent digits 10 and larger.

b. Using your tables from part (a), perform the following addition:

25A84 1,
+ 70396,

c. Multiply the following numbers together:

2A61,
x Bl

a. Create the hexadecimal multiplication table.
b. Use the hexadecimal table in Figure 3.8 to perform the following addition:

2AB3
+ 35DC

CHAPTER 3 NUMBER SYSTEMS 97

c. Add the following numbers:
1FF9

+ F7

d. Multiply the following numbers:

2E26
x 4A

3.8 Add the following binary numbers:

101101101
+ 10011011

110111111
+110111111

11010011
+ 10001010

1101
1010
111

+ 101

e. Repeatthe previous additions by converting each number to hexadecimal, adding,
and converting the result back to binary.

3.9 Multiply the following binary numbers together:

1101
x 101

11011
x 1011

3.10 Perform the following binary divisions:

3 110)1010001001

b. 1011)11000000000

98

PART TWO DATA IN THE COMPUTER

3.11
3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

Using the powers of each digit in base 8, convert the decimal number 6026 to octal.

Using the powers of each digit in hexadecimal, convert the decimal number 6026 to
hexadecimal.

Using the division method, convert the following decimal numbers:
a. 13750 to base 12

b. 6026 to hexadecimal
¢. 3175tobase5

Using the division method, convert the following decimal numbers to binary:
a. 4098

b. 71269

c. 37

In each case, check your work by using the power of each digit to convert back to
decimal.

Using the multiplication method, convert the following numbers to decimal:
a. 1100010100100001,

b. C521
c. 3ADF
d. 24556,

Convert the following binary numbers directly to hexadecimal:
a. 101101110111010

b. 1111111111110001

c. 1111111101111

d. 110001100011001

Convert the following hexadecimal numbers to binary:

a. 4F6A
b. 9902
c. A3AB
d. 1000

Select a number base that would be suitable for direct conversion from base 3, and

convert the number 220112105 to that base.

a. Convert the base 4 number 13023031, directly to hexadecimal. Check your result
by converting both the original number and your answer to decimal.

b. Convert the hexadecimal number 9B62 4 directly to base 4; then convert both the
original number and your answer to binary to check your result.

Convert the base 3 number 2101025 to octal. What process did you use to do this

conversion?

Convert the octal number 277454 to hexadecimal. Do not use decimal as an interme-

diary for your conversion. Why does a direct octal-hexadecimal conversion not work

in this case? What can you use instead?

Using whatever programming language is appropriate for you, write a program that

converts a whole number input by the user from base 8 to base 10. Your program

should flag as an error any input that contains the digits 8 or 9.

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

CHAPTER 3 NUMBER SYSTEMS 99

Using whatever programming language is appropriate for you, write a program that
converts a whole number input from decimal to hexadecimal.

Using whatever programming language is appropriate for you, write a program that
converts whole numbers in either direction between binary and hexadecimal.
Convert the following numbers from decimal to hexadecimal. If the answer is irrational,
stop at four hexadecimal digits:

a. 0.6640625
b. 0.3333
c. 69/256

Convert the following numbers from their given base to decimal:
a. 0.1001001,

b. 0.3A2
c. 0.2A1,

Convert the following numbers from decimal to binary and then to hexadecimal:
a. 27.625

b. 4192.37761

What is the decimal value of the following binary numbers?
a. 1100101.1

b. 1110010.11

c. 11100101.1

Draw a flow diagram that shows step by step the process for converting a mixed
number in a base other than 10 to decimal.

Write a computer program in a language appropriate for you that converts mixed
numbers between decimal and binary in both directions.

CHAPTER 4

DATA FORMATS

\ \

Yy A 0N\
AN/,
[

i

Thomas Sperling, adapted by Benjamin Reece

4.0 INTRODUCTION

In Chapter 3 you had a chance to explore some of the properties of the binary number
system. You are already aware that for all computers and computer-based devices the
binary number system is the system of choice, both for all forms of data storage and for
all internal processing of operations. As human beings, we normally don’t choose to do
our work in binary form. Our communications are made up of language, images, and
sounds. For written communications, and for our own data storage, we most frequently use
alphanumeric characters and/or symbols, representing English or some other language. At
other times, we communicate with a photograph, a video, or a chart or diagram, or some
other image. Images may be black and white or color; they may be still frames or moving.
Sounds often represent a different, spoken, form of written language, but they may also
represent other possibilities, such as music, the roar of an engine, or a purr of satisfaction.
We perform calculations using numbers made up of a set of numeric characters. As a
reminder, standardization is an important consideration in a modern world where the
ability to share data is assumed.

In the past, most business data processing took the form of text and numbers.
Today, multimedia, consisting of images and sounds in the form of video conferencing,
PowerPoint presentations, VoIP telephony, Web advertising, YouTube, smartphone-based
news clips and photos on TV, and more is of at least equal importance. Since data within
the computer is limited to binary numbers, it is almost always necessary to convert our
words, numbers, images, and sounds into a different form in order to store and process
them in the computer.

In this chapter, we consider what it takes to get different types of data into computer-
usable form and the different ways in which the data may be represented, stored, and
processed.

4.1 GENERAL CONSIDERATIONS

At some point, original data, whether character, image, sound, or some other form,
must be brought initially into the computer and converted into an appropriate computer
representation so that it can be processed, stored, and used within the computer system.
The fundamental process is shown in Figure 4.1.

Different input devices are used for this purpose. The particular choice of input
device reflects the original form of the data, and also the desired data representation
within the computer. Some devices perform the conversion from external form to internal
representation within the input device. In other cases, the input device merely serves to
transform the data into a raw binary form that the computer can manipulate. Further
conversion is then performed by software within the computer.

There are varying degrees of difficulty associated with the input task. Normal keyboard
input, for example, is relatively straightforward. Since there are a discrete number of keys on
the keyboard, it is only necessary for the keyboard to generate a binary number code for each
key, which can then be identified as a simple representation of the desired character. On the

101

102 PART TWO DATA IN THE COMPUTER

FIGURE 4.1 other hand, input from a device that presents

Data Conversion and Representation a continuous range of dat?’ known as anglog

data, presents a more formidable task, particu-

Human Computer larly if the data is continuously changing with

for\r(n . P Computer time, which is the case with a video camera or
de,‘%“?)ﬂf’ Input representation microphone.

A Data | device Adequate representation of the sound input

1101000101010101.... from a microphone, for example, will require

hardware designed to convert the sound into

binary numbers and may require hundreds or
even thousands of separate pieces of data, each representing a sample of the sound at a single
instant in time. If the sound is to be processed within the computer into the form of words
in a document, the task becomes even more challenging, since the translation of sounds into
character form is very complex and difficult, requiring sophisticated, specialized software.

The internal representation of data within the computer reflects the complexity of the
input source, and also the type of processing that is to take place. There is no need to preserve
all the individual points that make up a photographic image, for example, if the goal is only
to extract and process the characters that are present on the page; it is only necessary to input
and represent the entire set of data long enough to extract the actual data that is to be used
or kept. On the other hand, if the image is to be used as a figure in an art book, it will be
necessary to represent the image, with all its details, as accurately as possible. For input forms
that represent a continuum of values, such as photographic images, video, and sound, the
quantity of binary numbers and the number of bits in each that are required to represent the
input data accurately will grow quite rapidly with increasing accuracy and resolution. In fact,
some form of algorithmic data compression will often be necessary to reduce the amount of
data to a manageable level, particularly if the data is to be downloaded or streamed over a
low-speed transmission device, such as a network with limited bandwidth.

Of course, once the input data is in computer form, it can be stored for future use, or
it can be moved between computers through networks or by using portable computer media
such as CD-ROM, flash drives, or, perhaps, even iPods. Images and sounds can be downloaded
from a website or attached to e-mail, for example. Provided that the receiving computer has the
appropriate software, it can store, display, and process a downloaded image just as though the
picture had been produced by an image scanner connected directly to its own input. You are
probably aware that it’s almost trivial to copy a photograph from your smartphone for a friend
to see on her tablet, for example.

For storage and transmission of data, a representation different from that used for internal
processing is often necessary. In addition to the actual data representing points in an image or
characters being displayed, the system must store and pass along information that describes or
interprets the meaning of the data. Such information is known as metadata. In some cases, the
description is simple: to read a pure text file may require only a single piece of information that
indicates the number of characters in the text or marks the end of the text. A graphic image or
sound requires a much more detailed description of the data. To reproduce the image, a system
must know the type of graphical image, the number of colors represented by each data point,
the method used to represent each color, the number of horizontal and vertical data points, the
order in which data points are stored, the relative scaling of each axis, the location of the image
on the screen, and much more. For a sound, the system must know how long a time period
each sample represents or sampling rate, the number of bits in each sample, and even, perhaps,
how the sound is to be used and coordinated with other sounds.

CHAPTER 4 DATA FORMATS 103

Individual programs can store and process data in any format that they want. The format
used to process and store text in an editor such as WordPad is different from that used
by Microsoft Word, for example. The formats used by individual programs are known as
proprietary formats. Proprietary formats are often suitable for an individual user or a group
of users working on similar computer systems. As noted in Chapter 1, proprietary standards
sometimes become de facto standards due to general user acceptance.

Note that it is important to distinguish between the data representation used within an
individual piece of software and the data representation used for the input, output, storage,
and exchange of data, however. Modern computer systems and networks interconnect many
different types of computers, input and output devices, and computer programs. A Web page
viewed on an iPad tablet might contain an image scanned on a Hewlett-Packard image scanner,
with Hypertext Markup Language (HTML) created on a Dell PC, and be served by an IBM
mainframe, for example.

Thus, it is critical throughout this discussion that standard data representations exist to be
used as interfaces between different programs, between a program and the I/O devices used
by the program, between interconnected hardware, and between systems that share data, using
various types of network interconnections or transportable media such as CD-ROMs. These
data representations must be recognized by a wide variety of hardware and software so that
they can be used by users working within different computer environments.

A well-designed data representation will reflect and simplify the ways in which the data is
to be processed and will encompass the widest possible user community. For example, the order
of the letters in the alphabet is commonly used for the sorting and selection of alphanumeric
business data. It makes sense, then, to choose a computer representation of alphabetic characters
that will simplify these operations within the computer. Furthermore, the representation of
alphanumeric characters will encompass as many of the world’s languages as possible to aid in
international communication.

There are many different standards in use for different types of data. A few of the common
ones are shown in Figure 4.2. We have not included the standard representations for numerical
data; those are discussed in the next chapter.

FIGURE 4.2

Some Common Data Representations

Type of data Standard(s)
Alphanumeric Unicode, ASCII, EBCDIC
Image (bitmap) GIF (graphical image format), TIFF

(tagged image file format), PNG
(portable network graphics), JPEG,

Image (object) PostScript, SWF (Adobe Flash), SVG
Outline graphics and fonts PostScript, TrueType

Sound WAV, AVI, MP3 or 4, MIDI, WMA, AAC
Page description and pdf (Adobe Portable Document Format),
markup HTML, XML

Video Quicktime, MPEG-2 or -4, H.264,

WMV, DivX, WebM

104 PART TWO DATA IN THE COMPUTER

This section described the general principles that govern the input and representation of
data. Next, we consider some of the most important data forms individually.

4.2 ALPHANUMERIC CHARACTER DATA

Much of the data that will be used in a computer are originally provided in human-readable
form, specifically in the form of letters of an alphabet, symbols representing a word, syllable, or
sound element, numbers, and punctuation, whether English or some other language. The text
of a word processing document, the numbers that we use as input to a calculation, the names
and addresses in a database, the transaction data that constitutes a credit card purchase, the
keywords, variable names, and formulas that make up a computer program, all are examples of
data input that is made up of letters, symbols, numbers, and punctuation.

Much of this data is initially input to the computer through a keyboard, although
alternative means, such as magnetic card stripes, document image scanning with optical
character recognition, radiofrequency identification (RFID) and near-field communication
technology, bar code and QR code scanning, and voice-to-text translation are also used. The
keyboard may be connected directly to a computer, or it may be part of a separate device, such
as a video terminal, an online cash register, the virtual keyboard on a smartphone or tablet, or
even a bank ATM. The data entered as characters, symbols, number digits, and punctuation
are known as alphanumeric data. The specific input devices and methods used to create
alphanumeric data are discussed in Chapter 10.

It is tempting to think of numeric characters as somehow different from other characters,
since numbers are often processed differently from text. Also, a number may consist of more
than a single digit, and you know from your programming courses that you can store and
process a number in numerical form within the computer. There is no processing capability in
the keyboard itself, however. Therefore, numbers must be entered into the computer just like
other characters, one digit at a time. At the time of entry, the number 1234.5 consists of the
alphanumeric characters “17, “27, “3”, “4”, “”, and “5”. Any conversion to numeric form will
take place within the computer itself, using software written for this purpose. For display, the
number will be converted back to character form.

The conversion between character and number is also not “automatic” within the computer.
There are times when we would prefer to keep the data in character form, for example, when
the numbers represent a phone number or an address to be stored and processed according to
text criteria. Since this choice is dependent on usage within a program, the decision is made by
the programmer using rules specified within the program language being used or by a database
designer specifying the data type of a particular entity. In C++ or Java, the type of variable must
be declared before the variable is used. When the data variable being read is numerical, the
compiler will build into the program a conversion routine that accepts numerical characters and
converts them into the appropriate numerical variable value. In general, numerical characters
must be converted into number form when calculations are to be performed. Some languages
do this automatically.

Since alphanumeric data must be stored and processed within the computer in binary form,
each character must be translated to a corresponding binary code representation as it enters

CHAPTER 4 DATA FORMATS 105

the computer. The choice of code used is arbitrary. Since the computer does not “recognize”
letters, but only binary numbers, it does not matter to the computer what code is selected.

What does matter is consistency. Most data output, including numbers, also exits the
computer in alphanumeric form, either through printed output or as output on a display screen.
Therefore, the output device must perform the same conversion in reverse. It is obviously
important that the input device and the output device recognize the same code. Although it
would be theoretically possible to write a program to change the input code so that a different
output code would result in the desired alphanumeric output, this is rarely done in practice.
Since data is frequently shared between different computers in networks, the use of a code that
is standardized among many different types of computers is highly desirable.

The data is also stored using the same alphanumeric code form. Consistent use of the same
code is required to allow later retrieval of the data, as well as for operations using data entered
into the computer at different times, such as during merge operations.

It also matters that the programs within the computer know something about the particular
data code that was used as input so that conversion of the characters that make up numbers
into the numbers themselves can be done correctly, and also so that such operations as sorting
can be done. It would not make a lot of sense to pick a code in which the letters of the alphabet
are scrambled, for example. By choosing a code in which the value of the binary number
representing a character corresponds to the placement of the character within the alphabet, we
can provide programs that sort data without even knowing what the data is, just by numerically
sorting the codes that correspond to each character.

Three alphanumeric codes are in common use. The three codes are known as Unicode,
ASCII (which stands for American Standard Code for Information Interchange, pronounced
“as-key” with a soft “s”), and EBCDIC (Extended Binary Coded Decimal Interchange Code,
pronounced “ebb-see-dick”). EBCDIC was developed by IBM. Its use is restricted mostly to
IBM and IBM-compatible mainframe computers and terminals. The Web makes EBCDIC
particularly unsuitable for current work. Nearly everyone today uses Unicode or ASCII. Still, it
will be many years before EBCDIC totally disappears from the landscape.

The translation table for ASCII code is shown in Figure 4.3. The EBCDIC code is somewhat
less standardized; the punctuation symbols have changed over the years. A recent EBCDIC
code table is shown in Figure 4.4. The codes for each symbol are given in hexadecimal, with the
most significant digit across the top and the least significant digit down the side. Both ASCII
and EBCDIC codes can be stored in a byte. For example, the ASCII value for “G” is 47,,. The
EBCDIC value for “G” is C7,4. When comparing the two tables, note that the standard ASCII
code was originally defined as a 7-bit code, so there are only 128 entries in the ASCII table.
EBCDIC is defined as an 8-bit code. The additional special characters in both tables are used as
process and communication control characters.

The ASCII code was originally developed as a standard by the American National Standards
Institute (ANSI). ANSI also has defined 8-bit extensions to the original ASCII codes that provide
various symbols, line shapes, and accented foreign letters for the additional 128 entries not
shown in the figure. Together, the 8-bit code is known as Latin-1. Latin-1 is an ISO (International
Standards Organization) standard.

Both ASCII and EBCDIC have limitations that reflect their origins. The 256 code values
that are available in an 8-bit word limit the number of possible characters severely. Both codes

106

PART TWO DATA IN THE COMPUTER

FIGURE 4.3
ASCII Code Table

ENad 0 1 2 3 4 5 6 7
0 NUL DLE space 0 @ B) p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 ! 2 B R b r
3 ETX DC3 # 3 © S ¢ S
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E u e u
6 ACK SYN & 6 F \% f v
7 BEL ETB ' 7 G W g w
8 BS CAN (8 H X h X
9 HT EM) 9 | Y i y
A LF SUB * 3 J yA j z
B VT ESC + ; K [k {
© FF FS , < L \ | |
D CR GS - = M] m }
E SO RS . > N a n ~
F S| us / ? 0 _) DEL

provide only the Latin alphabet, Arabic numerals, and standard punctuation characters that are
used in English; Latin-1 ASCII also includes a small set of accents and other special characters
that extend the set to major western European cultures. Older forms of EBCDIC omit certain
characters, in particular, the “[” and “]” characters that are used to represent subscripts in
the C and Java programming languages, the “A” character, used as a mathematical operator
in a number of languages, “{” and “}”, used to enclose code blocks in many languages, and
the “~” character, used for UNIX system commands and Internet and Internet URLs. These
shortcomings led to the development of a new, mostly 16-bit, international standard, Unicode,
which is quickly supplanting ASCII and EBCDIC for alphanumeric representation in most
modern systems. Unicode supports approximately a million characters, using a combination of
8-bit, 16-bit, and 32-bit words. The ASCII Latin-1 code set is a subset of Unicode, occupying
the values 0-255 in the Unicode table, and therefore conversion from ASCII to Unicode is
particularly simple: it is only necessary to extend the 8-bit code to 16 bits by setting the eight
most significant bits to zero. Unicode to ASCII conversion is also simple, provided that the
characters used are limited to the ASCII subset.

Unicode divides its character encodings into sixteen 16-bit code pages, called planes.
There is a base plane plus fifteen supplementary planes, which allows space for about a million
characters. Unicode defines three encoding methods, UTF-8, UTF-16, and UTF-32. UTF-8 and
UTF-16 use a variable number of bytes to encode characters. UTF-32 encodes all characters
using a 32-bit word for each. The most common form of Unicode, called UTF-16 can represent

107

CHAPTER 4 DATA FORMATS

FIGURE 4.4

An EBCDIC Code Table

EO

%

%

&

space

RSP

SHY

SYN

IR
PP
TRN

NBS
EOT
SBS
IT
RFF
cu3

DC4
NAK

SUB

DS
SOS

FS
WUS
BYP/INP

LF
ETB

ESC
SA
SFE
SM/SW

CSP

MFA
ENQ
ACK

BEL

DLE
DC1
DC2
DC3
ENP

NL

BS
POC
CAN

EM
UBS
CU1

IFS
IGS

IRS

IUS

NUL
SOH

STX

ETX
SEL

HT
RNL

DEL
GE
SPS

RPT
VT

FF
CR

SO
S|

+

108 PART TWO DATA IN THE COMPUTER

FIGURE 4.5

the 65,536 characters of the base plane directly, of which approximately forty-nine thousand
are defined to represent the world’s most used characters. An additional 6,400 16-bit codes are
reserved permanently for private use. Characters from the supplementary planes are encoded
as 32-bit words, using a method that translates each code into a pair of 16-bit surrogate codes, in
the range D800-DFFF. The most recent standard as of this writing, Unicode 6.1, defines about
one hundred ten thousand different characters.

Unicode is multilingual in the most global sense. It defines codes for the characters of
nearly every character-based alphabet of the world in modern use, as well as codes for a large
set of ideographs for the Chinese, Japanese, and Korean languages, codes for a wide range
of punctuation and symbols, codes for many obsolete and ancient languages, and various
control characters. It supports composite characters and syllabic clusters. Composite characters
are those made up of two or more different components, only one of which causes spacing
to occur. For example, some vowels in Hebrew appear beneath a corresponding consonant.
Syllabic clusters in certain languages are single characters, sometimes made up of composite
components, that make up an entire syllable. The private space is intended for user-defined
and software-specific characters, control characters, and symbols. Figure 4.5 shows the general
code table layout for the common, 2-byte, form of Unicode.

Two-byte Unicode Assignment Table

Code range

(in hexadecimal)

0000} h000-00FF Latin-I (ASCI)

1000-
2000-
3000

General character alphabets: Latin, Cyrillic, Greek, Hebrew, Arabic, Thai, etc.

} Symbols and dingbats: punctuation, math, technical, geometric shapes, etc.
~ } 3000-33FF miscellaneous punctuations, symbols, and phonetics for Chinese, Japanese, and Korean

4000- } Unassigned

5000-

. 4EQO-8FFF Chinese, Japanese, Korean ideographs

AO0O—-
BOOO—

} Mostly unassigned

CO00-) ACOO-D7AF Korean Hangui syllables
DOOO- | D800-DFFF space for surrogates

EO00—

Space for surrogates

FOOO — | EOOO-F8FF Private use

FCOO -} FCOO-FFFF Various special characters

CHAPTER 4 DATAFORMATS 109

Reflecting the pervasiveness of international communications, Unicode is replacing ASCII
as the alphanumeric code of choice for most systems and applications. Even IBM uses mostly
Unicode on its smaller computers, and provides hardware-based two-way Unicode-EBCDIC
conversion tables for its mainframes. Unicode is the standard for use in current operating
systems, including Windows, Linux, OS X, iOS, and Android. However, the vast amount of
archival data in storage and use assures that ASCII and EBCDIC will continue to exist for some
time to come.

Returning to the ASCII and EBCDIC tables, there are several interesting ideas to be
gathered by looking at the tables together. First, note, not surprisingly, that the codes for
particular alphanumeric characters are different in the two tables. This simply reemphasizes
that, if we use an ASCII terminal for the input, the output will also be in ASCII form unless
some translation took place within the computer. In other words, printing ASCII characters on
an EBCDIC terminal would produce garbage.

More important, note that both ASCII and EBCDIC are designed so that the order of
the letters is such that a simple numerical sort on the codes can be used within the computer
to perform alphabetization, provided that the software converts mixed upper- and lowercase
codes to one form or the other. The order of the codes in the representation table is known
as its collating sequence. The collating sequence is of great importance in routine character
processing, since much character processing centers on the sorting and selection of data.

Uppercase and lowercase letters, and letters and numbers, have different collating sequences
in ASCII and EBCDIC. Therefore, a computer program designed to sort ASCII-generated
characters will produce a different, and perhaps not desired, result when run with EBCDIC
input. Particularly note that small letters precede capitals in EBCDIC, but the reverse is true
in ASCII. The same situation arises for strings that are a mix of alphabetical characters and
numbers. In ASCII, the numbers collate first, in EBCDIC, last.

Both tables are divided into two classes of codes, specifically printing characters and control
characters. Printing characters actually produce output on the screen or on a printer. Control
characters are used to control the position of the output on the screen or paper, to cause
some action to occur, such as ringing a bell or deleting a character, or to communicate status
between the computer and an I/O device, such as the Control-“C” key combination, which is
used on many computers to interrupt the execution of a program. Except for position control
characters, the control characters in the ASCII table are struck by holding down the Control
key and striking a character. The code executed corresponds in table position to the position
of the same alphabetic character. Thus, the code for SOH is generated by the Control-“A” key
combination and SUB by the Control-“Z” key combination. Looking at the ASCII and EBCDIC
tables can you determine what control codes are generated by the tab key? An explanation
of each control character in the ASCII table is shown in Figure 4.6. Many of the names and
descriptions of codes in this table reflect the use of these codes for data communications. There
are also additional control codes in EBCDIC that are specific to IBM mainframes, but we won’t
define them here.

Unless the application program that is processing the text reformats or modifies the data
in some way, textual data is normally stored as a string of characters, including alphanumeric
characters, spaces, tabs, carriage returns, plus other control characters and escape sequences
that are relevant to the text. Some application programs, particularly word processors and
some text markup languages, add their own special character sequences for formatting
the text.

110

PART TWO DATA IN THE COMPUTER

FIGURE 4.6
Control Code Definitions [STAL96]

NUL
SOH

STX

ETX
EOT
ENQ

ACK

BEL
BS
HT
LF
VT
FF

CR
SO

|

(Null) No character; used to fill space DLE (Data Link Escape) Similar to escape, but
(Start of Heading) Indicates start of a used to change meaning of data control
header used during transmission characters; used to permit sending of data
(Start of Text) Indicates start of text characters with any bit combination
during transmission DC1, DC2, (Device Controls) Used for the control of
(End of Text) Similar to above DC3, DC4 devices or special terminal features

(End of Transmission) NAK I(AI\Cl:eRgative Acknowledgment) Opposite of
Enquiry) A request for response from a :

Eem%te Z)tationc;] the response is usually an SYN (Synchronous) Used to synchronize a
emtiEearien synchronous transmission system
(Acknowledge) A character sent by a STB (End of Transmission Block) Indicates end
receiving device as an affirmative response of a block of transmitted data

to a query by a sender CAN (Cancel) Cancel previous data

(Bell) Rings a bell EM (End of Medium) Indicates the physical
(Backspace) end of a medium such as tape

Mtz Tam) SUB (Substitute) Substitute a character for one
(Line Feed) sent in error : .

(Vertical Tab) ESC (Escape) .Prowdes extgnsmns to thg ;ode

by changing the meaning of a specified

(Form Feed) Moves cursor to the starting number of contiguous following characters
position of the next page, form, or screen FS, GS, (File, group, record, and united separators)
(Carriage return) RS, US Used in optional way by systems to provide
(Shift Out) Shift to an alternative separations within a data set

character set until SI is encountered DEL (Delete) Delete current character

(Shift In) see above

In Unicode, each standard UTF-16 alphanumeric character can be stored in 2 bytes; thus,
half the number of bytes in a pure text file (one with no images) is a good approximation of
the number of characters in the text. Similarly, the number of available bytes also defines the
capacity of a device to store textual and numerical data. Only a small percentage of the storage
space is needed to keep track of information about the various files; almost all the space is
thus available for the text itself. Thus, a 1 GB flash drive will hold about five hundred million
characters (including spaces—note that spaces are also characters, of course!). If you assume
that a page has about fifty rows of sixty characters, then the flash drive can hold about one
hundred sixty thousand pages of text or numbers.

In reality, the flash drive will probably hold less because most modern word processors
can combine text with graphics, page layout, font selection, and other features. And it probably
has a YouTube video or two on there, as well. Graphics and video, in particular, consume a lot
of disk space. Nonetheless, this book, graphics and all, fits comfortably on a single 1 GB flash
drive.

CHAPTER 4 DATAFORMATS |11

4.3 VISUAL DATA

Although alphanumeric data was long the traditional medium of business, improved computer
graphics technology, the growth of the Web, and the ease with which images and video
can be created, displayed, and communicated on smartphones and tablets have elevated the
importance of visual data in the business computing environment. Images can be scanned from
paper, painted or drawn using software, or captured from a digital camera or the camera on
a cellphone or tablet. Video capture is provided routinely on smartphones, tablets, and many
computers.

Photographs and biometric images can be stored within the computer to provide rapid iden-
tification of employees. Drawings can be generated rapidly and accurately using tools that range
from simple drawing and paint packages to sophisticated computer-aided design/computer-
aided manufacturing (CAD/CAM) systems. Charts and graphs provide easily understood
representations of business data and trends. Presentations and reports contain images and
video for impact. Multimedia of all kinds is central to the Web. Video and photographs are an
essential component of business sales and marketing on the Web and in mobile applications.

Consider still images first. Images come in many different shapes, sizes, textures, colors,
shadings, and levels of detail. Different processing requirements require different forms for
image data. All these differences make it difficult to define a single universal format that can be
used for images in the way that the standard alphanumeric codes are used for text. Instead, the
image will be formatted according to processing, display, application, storage, communication,
and user requirements.

Images used within the computer fall into two distinct categories. Different computer
representations, processing techniques, and tools are used for each category:

B Images such as photographs and paintings that are characterized by continuous
variations in shading, color, shape, and texture. Images within this category may be
entered into the computer using an image scanner, digital camera or mobile device,
or video camera frame grabber. They may also be produced within the computer
using a paint program. To maintain and reproduce the detail of these images, it is
necessary to represent and store each individual point within the image. We will refer
to such images as bitmap images. The Graphics Interchange Format (GIF), Portable
Network Graphics (PNG), and Joint Photographic Experts Group (JPEG) formats
commonly used on the Web are all examples of bitmap image formats.

B Images that are made up of graphical shapes such as lines and curves that can be
defined geometrically. The shapes themselves may be quite complex. Many computer
experts refer to these shapes as graphical objects. For these images, it is sufficient to
store geometrical information about each object and the relative position of each
object in the image. We will refer to these images as object images. They are also
known, somewhat incorrectly, as vector images, because the image is often (but not
always) made up of straight line segments called vectors. Object images are normally
produced within the computer using some sort of drawing or design package. They
may also result from other types of processing, for example, as data plots or graphs
representing the data in a spreadsheet. More rarely, they may occur as the result of
the translation by special software of scanned bitmap images that are simple enough
to reduce to object form.

112 PART TWO DATA IN THE COMPUTER

Most object image formats are proprietary. However, W3C, the international consortium
that oversees the Web, has defined a standard, SVG (scalable vector graphics), based on
eXtended Markup Language (XML) Web description language tags. Adobe Flash combines
both object and bitmap images and is also in popular use.

With only rare exceptions,! the nature of display technology makes it much more
convenient and cost effective to display and print all images as bitmaps. Object images are
converted to bitmap for display. Looking at an image, it can sometimes be difficult to determine
whether the original form is bitmap or object. It is possible, for example, to describe subtle
gradations of color within an image geometrically. The processing required to create movement
in computer-animated images may dictate the use of object images, even if the objects themselves
are very complex. The type of image representation is often chosen on the basis of the computer
processing to be performed on the image. The movies Shrek and Toy Story are amazing examples
of the possibilities of object images. (See Figure 4.12, for example.)

Sometimes, both types of image data occur within the same image. It is always possible to
store graphical objects in a bitmap format, but it is often desirable in such cases to maintain
each type of image separately. Most object image representations provide for the inclusion of
bitmap images within the representation.

Bitmap Images

Most images— photographs, graphical images, and the like—are described most easily using a
bitmap image format. The basic principle for representing an image as a digital bitmap is simple.
A rectangular image is divided into rows and columns, as shown in Figure 4.7. The junction
of each row and column is a point (actually a small area) in the image known as a pixel, for
pi[x]cture element. Corresponding to each pixel is a set of one or more binary numerical values

FIGURE 4.7
A 16 x 8 Bitmap Image Format
pixel(0,0) pixel(0,1)
\“0 "4
pixel(1,0)~ .
Row — IR Pixels
//
o
Q
pixel(7,15)

Pixels stored in the order p(0,0), p(0,1),... p(0,15), p(1,0),... p(1,15),... p(7,15)

'The exceptions are the circular scan screens used for radar display and ink plotters used for architectural and
engineering drawings.

FIGURE 4.8

A Display Raster Scan

CHAPTER 4 DATAFORMATS 113

that define the visual characteristics of that point. Most commonly,
color and color intensity are the primary characteristics of interest,
but secondary characteristics such as transparency may also be present.

The meaning and scales for these values are defined within the image

metadata that is included with the image, along with the number of

rows and columns, identification of the bitmap format in use, and other

relevant information about the image.

A pixel aspect ratio may also be included so that display of the

image may be adjusted if the pixel is rectangular rather than square. The
specific metadata included with an image is part of the definition for a

Horizontal
retrace
(move to
next row)

particular bitmap format.
Pixel data is normally stored from top to bottom, one row at a time,

Vertical starting from pixel(0, 0), the top, leftmost pixel, to pixel(n,,,, — 1, 1.y —
retrace 1), representing the pixel at the bottom right corner of the image. (For
(return to quirky reasons, this image would be known as an n_,; X n,,, image,
beginning for . L ..
next scan) instead of the other way around.) Because the representation is so similar

to the way in which television images are created, this layout is called

a raster, and the presentation of pixels as input or output, one pixel at

a time, in order, is called a raster scan. This is illustrated in Figure 4.8.
The actual pixel coordinates, pixel(row, column), do not need to be stored with their values,
because the pixels are stored in order, and the number of rows and columns is known and is
stored with the image.

The actual data value representing a pixel could be as simple as one bit, for an image
that is black and white (0 for black, 1 for white, for example) or quite complex. Each pixel in
a high-quality color image, for example, might consist of many bytes of data: a byte for red,
a byte for green, and a byte for blue, with additional bytes for other characteristics such as
transparency and color correction.

As a simple example, look at the image shown in Figure 4.9. Each point in the photograph
on the left is represented by a 4-bit code corresponding to one of sixteen gray levels. For this
image, hexadecimal F represents black, and hexadecimal 0 represents white. The representation
of the image shown on the right indicates the corresponding values for each pixel.

The storage and processing of bitmap images frequently requires a large amount of memory
and the processing of large arrays of data. A single-color picture containing 768 rows of 1024
pixels each (i.e., a 1024 X 768 image), with a separate byte to store each of three colors for
each pixel, would require nearly 2.4 MB of storage. An alternative representation method that
is useful for display purposes when the number of different colors is small reduces the memory
requirements by storing a code for each pixel, rather than the actual color values. The code
for each pixel is translated into actual color values using a color translation table known as a
palette that is stored as part of the image metadata. This method is discussed in Chapter 10.
Data compression may also be used to reduce storage and data transmission requirements.

The image represented within the computer is really only an approximation to the original
image, since the original image presents a continual range of intensity, and perhaps also of
color. The faithfulness of the computer representation depends on the size of the pixels and the
number of levels representing each pixel. Reducing the size of each pixel improves the possible
resolution, or detail level, of the representation by increasing the number of pixels per inch used
to represent a given area of the image. It also reduces the “stepping” effects seen on diagonal

114 PART TWO DATA IN THE COMPUTER

FIGURE 4.9

Image Pixel Data

e

EXAMPLE

- y mmmumnu ilﬂml m [LEUTREE
- 1 ZIESSATI PRSI 11 L mmmuummlm 11 22001007 Sstada
’-l ol = T m:u R 1 NIRRT 1 1] i e
- E QTSI BRI DMINER B2 ML R NLL O ERLERPEENIRUND LA 4201 UANIZELE) b
* -y RUUTERNOEDENI Y 1 B EUANZIIN M 0 w2 21 SR
L - aERnANZUTIINL Bl 1 mll !3 !l Zl |II l!f hore] I‘HIt 1804 1IN
% T it Ntz
- 7T - ASTIMSAZY 11232 S IMACSORNAITIZLIL LLIZIITIL 32 l!llﬂ! 11 2211 Hun S T
S i AFHEIZIITINII | ERAESAEAACAAATTETAON] k2 J2200 1 UMNAAD 0 ER R OMT AL D AN TTaTaN
) - 4 Iz e
- B !‘ . smﬂmmuwl:lnummamn 130 L WL [ESTIRRETESANNL 11 I TRl T334,
= " TR A | :
. 1Tz HE 1
-I ADTINTNINGT (NN NN 12X NSRRI lﬂ.l mwuan IHN! [E
TS I 1 N J'RI 1
1 349N 1 241}
T M ml l | 1
b 1] n 19971 121
O IR IR T | 159 DMTIIINT 11TRE 1 SRR |
T I NZNTRINADAEININ WG 1)) NS MDNDRIIDTT 11015 |
b I NI MIZUEOIEIA WTRILIIILIT? NERHIEIE 1 2l 12
. ~ DTN (ERENTIND EN D2 1] NN | IHIZHT Gesd 1H0L 2%
~ D PNIEE VT ZEIEIN IIEND 13 TN NI 1%
~ ASIEN INTHIZIIEIEN um 11371 1T WRNDNIIT NEIIINE | LT
~ SR st 2 2381 1 e
- SEIRTNTTILLIIN 3t 1 %% mooae
i~ i ‘vmm'z: 1 i |m-?z!| ooy
- 1L E 2N D miti 2
=3 SIMTIIIINNE 1Tl M 20 B I3ESEN 10L LSfesd NI I
w2 SUTTIINUTE BRTILE TI1E 1ZNMES Z2UNL LIS T el TN T .
-~ mmnn U i n 141 B
» T 1111 1335 a2 b 0L
B 1T Leets 1 2El o i1 il amun
~ SEEI I 1 1 bTE n i
TTMONTHI T) ISR NI E A SsEEI 0o onnm o

lines. Increasing the range of values available to describe each pixel increases the number of
different gray levels or colors available, which improves the overall accuracy of the colors or
gray tones in the image. The trade-off, of course, is in storage requirements and processing and
transmission time.

Bitmap representations are particularly useful when there is a great amount of detail within
an image, and for which the processing requirements are fairly simple. Typical processing
on bitmap images includes storage and display, cutting and pasting of pieces of the image,
and simple transformations of the image such as brightness and contrast changes, changing
a dimension, or color alterations. Most bitmap image processing involves little or no direct
processing of the objects illustrated within the image.

As an example of a bitmap image storage format, consider the popular Graphics Interchange Format
(GIF) method of storing images. GIF was first developed by CompuServe in 1987 as a proprietary
format that would allow users of the online service to store and exchange bitmap images on a vari-
ety of different computing platforms. A second, more flexible, form of GIF was released in 1989.
The later version, GIF89a, also allows a series of GIF images to be displayed sequentially at fixed
time intervals to create “animated GIF images”. The GIF format is used extensively on the Web.

GIF assumes the existence of a rectangular “screen” upon which is located one or more
rectangular images of possibly different sizes. Areas not covered with images are painted with
a background color. Figure 4.10 illustrates the layout of the screen and its images. The format
divides the picture information and data into a number of blocks, each of which describes
different aspects of the image. The first block, called the header block, identifies the file as a
GIF file and specifies the version of GIF that is being used.

Following the header block is a logical screen—descriptor block, which identifies the width
and height of the screen, describes an optional color table for the images on the screen (the
palette), indicates the number of bits per color available, identifies the background screen color,
and specifies the pixel aspect ratio.

CHAPTER 4 DATA FORMATS

FIGURE 4.10
GIF Screen Layout
Screen width
i » Screen
Background 74
Image 1
T Image
Screen i Image top Image 2 height
height 1 position Y
1
Image left ¥ i :
et i 1 1
position 1 1
Image 3 C C
i i
1 1
i i
. 1 1 J
1 1
! Image !
v width 1
FIGURE 4.11
GIF File Format Layout
Header | Logical screen | Global
block descriptor color Image 1 | Image 2
“GIFxxa” block table
6 bytes 6 bytes (optional)
Up to 768
bytes Image |
descriptor | Palette dmatge
block ata
9 bytes (optional) Determined (Depends
Up to 768 from
bytes descriptor

on size

of image)

115

Each image within the screen is then stored in its own block, headed by an image—descriptor
block. The image—descriptor block identifies the size and position of the image on the screen,
and also allows for a palette specific to the particular image, if desired. The block also contains
information that makes it possible to display individual images at different resolutions. The
actual pixel data for the image follows. The pixel data is compressed, using an algorithm called
LZW. LZW is called a lossless compression algorithm because it is reversible: the original data is
restored exactly upon expansion. The basic GIF file format layout is shown in Figure 4.11.

116 PART TWO DATA IN THE COMPUTER

Even though we have simplified the description, you can see that a graphical data format
can be quite complex. The complexity is required to provide all the information that will allow
the use of the image on a variety of different equipment.

There are a number of alternatives to the GIF format. In particular, the GIF format is limited
to 256 colors, which is often inadequate to display the details of a painting or photograph, for
example. PNG (Portable Network Graphics) format is the best-known losslessly compressed
alternative to GIF. PNG can store up to 48 bits of color per pixel, and additionally can store a
transparency percentage value and a correction factor for the color in a monitor or printer. Its
compression algorithm is often more efficient than that used with GIF. Unlike GIF, PNG stores
only a single image in a file.

A third popular alternative, JPEG (Joint Photographers Expert Group) format, employs
a lossy compression algorithm to reduce the amount of data stored and transmitted, but the
algorithm used reduces the image resolution under certain circumstances, particularly for
sharp edges and lines. This makes JPEG more suitable for the representation of highly detailed
photographs and paintings, but GIF and PNG are preferable for line drawings and simple
images.

The great majority of images on the Web are formatted with JPEG, PNG, or GIF. Other
bitmapped formats include TIFF, which is popular on Macintosh platforms, and BMP, a
Windows format.

Object Images

When an image is made up of geometrically definable shapes, it can be manipulated efficiently,
with great flexibility, and stored in a compact form. Although it might seem that such images
are rare, this turns out not to be the case.

Object images are made up of simple elements like straight lines, curved lines (known as
Bezier curves), circles and arcs of circles, ovals, and the like. Each of these elements can be
defined mathematically by a small number of parameters. For example, a circle requires only
three parameters, specifically, the X and Y coordinates locating the circle in the image, plus
the radius of the circle. A straight line needs the X and Y coordinates of its end points, or
alternatively, by its starting point, length, and direction. And so on. Object images are created
using drawing software, rather than paint software. They are also produced by various software
packages that display special graphic images, such as the charts in Microsoft Excel or the
flowcharts in project management software.

Because objects are defined mathematically, they can be easily moved around, scaled, and
rotated without losing their shape and identity. For example, an oval can be built from a
circle simply by scaling the horizontal and vertical dimensions differently. Closed objects can
be shaded and filled with patterns of color, also described mathematically. Object elements
can be combined or connected together to form more complex elements, and then those
elements can also be manipulated and combined. You might be surprised to learn that Shrek,
the image in Figure 4.12, is an example of an object image.

Object images have many advantages over bitmap images. They require far less storage
space. They can be manipulated easily, without losing their identity. Note, in contrast, that if
a bitmap image is reduced in size and reenlarged, the detail of the image is permanently lost.
When such a process is applied to a bitmapped straight line, the result is “jaggies”. Conversely,

FIGURE 4.12

CHAPTER 4 DATA FORMATS 117

images such as photographs and paintings

An Object Image

cannot be represented as object images at
all and must be represented as bitmaps.

Because regular printers and display
screens produce their images line by line,
from the top to the bottom of the screen
or paper, object images also cannot be
displayed or printed directly, except on
plotters. Instead, they must be converted
to bitmap images for display and printing.
This conversion can be performed within
the computer or may be passed on to
an output device that has the capability
to perform the conversion. A PostScript
printer is an example of such a device. To
display a line on a screen, for example, the
program would calculate each of the pixels
on the screen that the line passes through,
and mark them for display. This is a simple
calculation for a computer to perform. If
the line is moved or resized, it is only
necessary to perform the calculation again
to display the new image.

-
-

S

Dreamworks LLC/Photofest

/
P
il

The PostScript page description language is an example of a format that can be used to store,
transmit, display, and print object images. A page description is a list of procedures and
statements that describe each of the objects on a page. PostScript embeds page descriptions
within a programming language. Thus, an image consists of a program written in the PostScript
language.

The programming language is stored in ASCII or Unicode text form. Thus, PostScript files
can be stored and transmitted as any other text file. An interpreter program in the computer or
output device reads the PostScript language statements and uses them to create pages that can
then be printed or displayed. The interpreter produces an image that is the same, regardless of
the device it is displayed or printed on. Compensation for differences in device resolution and
pixel shape is built into the interpreter.

PostScript provides a large library of functions that facilitate every aspect of an object-based
image. There are functions that draw straight lines, Bezier curves, and arcs of a circle, functions
that join simple objects into more complex ones, translate an object to a different location on
the page, scale or distort an object, rotate an object, and create the mirror image of an object,
and functions that fill an object with a pattern, or adjust the width and color of a line. There are
methods for building and calling procedures, and IF-THEN-ELSE and loop programming structures.
The list goes on and on.

A simple program that draws a pair of shaded and concentric circles within a rectangle in
the middle of an 8 1/2 x 11-inch page is shown in Figure 4.13. This example shows a number
of features of the language. The page is laid out as an X, Y grid, with the origin at the lower
left corner. Each unit in the grid is 1/72 of an inch, which corresponds to 1 point in publishing.

118 PARTTWO DATA IN THE COMPUTER

FIGURE 4.13
A PostScript Program

288 396 translate % move origin to center of page

00 144 0 360 arc % define 2" radius black circle
fill

0.5 setgray % define 1" radius gray circle
00720 360 arc

fill

0 setgray % reset color to black

-216 -180 moveto % start at lower left corner

0 360 rmoveto % and define rectangle

432 0 rmoveto % ...one line at a time

0 -360 rmoveto

closepath % completes rectangle
stroke % draw outline instead of fill
showpage % produce the image

Each line contains a function, with a number of parameters that provide the specific details
for the function. The parameters precede the function call. Text following the % symbols are
comments.

The first line contains a translate function that moves the X, Y origin to the center of the
page. The parameters for this function, 288 and 396, represent the X and Y distances moved
in points. (Note that 288/72 = 4 inches in X and 396/72 = 5 inches in Y.) Each circle is
created with an arc function. The parameters for the arc function are X origin and Y origin for
the arc, radius, and starting and finishing angles in degrees. (0-360 produces a full circle.) You
should be able to follow the remainder of the program on your own. Note that the statements are
interpreted in sequence: the second, gray circle is layered on top of the first.

Arguably, the most important feature in PostScript is the inclusion of scalable font support for
the display of text. Font outline objects are specified in the same way as other objects. Each font
contains an object for each printable character in the extended ASCII character set. PostScript
includes objects for thirty-five standard fonts representing eight font families, plus two symbol
fonts, and others can be added. Unicode fonts are also available. Fonts can be manipulated like
other objects. Text and graphics can be intermixed in an image. The graphic display of text is
considered further in the next subsection.

Figure 4.14 shows another, more complicated, example of a PostScript program. This one
presents a pie chart with an expanded slice, and labels. The expanded slice includes a shadow
to improve its appearance. Each slice of the pie is drawn using a procedure called wedge. The
shadow is drawn by drawing the wedge three times, once in black, then moved a bit and drawn
in white and as an outline.

PostScript is a format for storing images in object form. Nonetheless, there are occasions
when it is necessary to embed a bitmap image into what is primarily an object-based image.
PostScript provides this capability. It even provides the ability to crop, enlarge, shrink, translate,
and rotate the embedded bitmap images, within the limits of the bitmap format, of course.

CHAPTER 4 DATAFORMATS |19

FIGURE 4.14
Another PostScript Program

% procedure to draw pie slice % add text to drawing
%arguments graylevel, start angle, finish angle O setgray
/wedge { 144 144 moveto
0 0 moveto (baseball cards) show
setgray —-30 200 (cash) show
/anglel exch def -216 108 (stocks) show
/angle2 exch def 32 scalefont
0 0 144 anglel angle2 arc (Personal Assets) show
0 O lineto
closepath } def showpage

%set up text font for printing
/Helvetica-Bold findfont

16 scalefont

setfont cash

baseball
.4 72 108 wedge fill % 108-72 = 36 = .1 circle | stocks cards
.8 108 360 wedge fill % 70% D
% print wedge in three parts
32 12 translate
0 0 72 wedge fill
gsave
-8 8 translate
10 72 wedge fill Personal Assets
0 setgray stroke
grestore

Representing Characters as Images

The representation of character-based data in a typical modern, graphically based systems
presents an additional challenge. In graphically based systems, it is necessary to distinguish
between characters and the object image-based representations of characters, known as glyphs.
Individual glyphs are based on a particular character in a particular font. In some cases, a
glyph may also depend on neighboring characters. Should the data be represented and stored
as characters or as glyphs? The answer depends on what the text is to be used for. Most text is
processed and stored primarily for its content. A typical word processor, for example, stores text
as character data, in Unicode format; fonts are embedded into the text file using special sequences
of characters stored with the data, often in a proprietary file format supported by the particular
application software. Conversion of the character data to glyphs for presentation is known as
rendering and is performed by a rendering engine program. The glyphs are then converted
to bitmap graphics for presentation according to the characteristics of the display device or
printer. For the rare occasion where the text is actually embedded within an image, the glyphs
that represent the characters may be combined, stored, and manipulated as an object image.

120 PART TWO DATA IN THE COMPUTER

Video Images

Although GIF images find occasional application for simple animation loops, there are a number
of additional considerations for the storage, transmission, and display of true video. The most
important consideration is the massive amount of data created by a video application. A video
camera producing full screen 1024 X 768 pixel true-color images at a frame rate of thirty frames
per second, for example, will generate 1024 pixels X 768 pixels X 3 bytes of color/image X 30
frames per second = 70.8 MB of data per second! A one-minute film clip would consume 4.25
GB of storage.

There are a number of possible solutions: reduce the size of the image, limit the number of
colors, or reduce the frame rate. Each of these options has obvious drawbacks. Although we do
these when possible, generally the realistic solution is to compress the video data.

If you consider video as a sequence of bitmap image frames, you quickly realize that the
images do not usually change much from frame to frame; furthermore, most of the changes
occur in only a small part of the image. Even in a fast-moving sport like soccer, the only object
that moves much in the 1/30 second between frames is the ball; the players move relatively little
in that short time span.

This suggests that it should be possible to reduce the amount of data needed to re-create
the video significantly, and indeed that is the case.

The result is a “repackaging” of the video data into a format that is not easily recognizable
by looking at the data. Instead, video is formatted at the input stage and converted back to
bitmap form in raster scan order for display by software at display time. The display process is
shown in Chapter 10.

The video format is determined by a codec, or encoder/decoder algorithm. There are a
number of different standards in use. The best-known codec standards are MPEG-2, MPEG-4,
and H.264. Microsoft Windows Media Video Format, On2 VP8, and Ogg Theora are popular
proprietary codecs. The codec is often embedded in a proprietary “container”. The container
serves as a superstructure to encode, decode, hold, and stream the video. It usually serves
both video and audio, and may support multiple codecs. Quicktime from Apple, WebM from
Google, and Flash Video from Adobe are well-known examples of containers.

The MPEG-2 and MPEG-4 formats store and transmit real-time video that produces movie
quality images, with the video data compressed to 10-60 MB or less of data per minute, even
for high-definition images. This reduction in data is critical for streaming video, i.e., video that
is transmitted through a network and displayed in real time as it is transmitted, since very few
networks are able to stream high-quality video without deep compression.

4.4 AUDIO DATA

Sound is an important component in modern computer applications. Sound is used as an
instructional tool, as an element of multimedia presentations, for computer-based
telephony—voice over IP (VoIP) tools, Skype, and the like, to signal events within the
computer, and to enhance the enjoyment of games. Sound can be stored in digital form on
CD-ROMs and other media and made available to accompany a film clip, illustrate the nuances
of a symphony, or reproduce the roar of a lion. Sound can be manipulated in the computer
to compose music and to create the sounds of different musical instruments, even an entire
orchestra.

CHAPTER 4 DATA FORMATS 121

Sound is normally digitized from an audio source, such as a microphone or amplifier,
although it is possible to purchase instrumentation that connects the computer directly to a
musical keyboard and synthesizer. For most users, the sound was previously digitized and
provided on a CD-ROM or downloaded from a Web site or other application.

Since the original sound wave is analog in nature, it is necessary to convert it to digital form
for use in the computer. The technique used is the same as that used for music CDs and many
other types of analog waveforms. The analog waveform is sampled electronically at regular time
intervals. Each time a sample is taken, the amplitude of the sample is measured by an electronic
circuit that converts the analog value to a binary equivalent. The circuit that performs this
function is known as an A-to-D converter. The largest possible sample, which represents the
positive peak of the loudest possible sound, is set to the maximum positive binary number
being used, and the most negative peak is set to the largest negative number. Binary 0 falls in
the middle. The amplitude scale is divided uniformly between the two limits. The sampling rate
is chosen to be high enough to capture every nuance in the signal being converted. For audio
signals, the sampling rate is normally around 50 kilohertz, or fifty thousand times a second.
The basic technique is illustrated in Figure 4.15. A typical audio signal is shown in the upper
diagram. A portion of the signal is shown in expanded form below. In this diagram, the signal
is allowed to fall between —64 and 64. Although we haven’t discussed the representation of
negative numbers yet, the consecutive values for the signal in this diagram will be the binary
equivalents to —22, —7, 426, 52, 49, and 2. The A-to-D conversion method is discussed more
thoroughly in Chapter 14.

FIGURE 4.15

Digitizing an Audio Waveform

Typical
audio
i 3 waveform
Amplitude / N
64 = . -
48 - = :
32 — ,/ \
16 / /] \ Section
E / expanded
0— »
_16 P
Samples t—s-

122

PART TWO DATA IN THE COMPUTER

EXAMPLE

Within the computer, most programs would probably treat this data as a one-dimensional
array of integers. Like graphics images, however, it is necessary to maintain, store, and transmit
metadata about the waveform, in addition to the waveform itself. To process and reproduce
the waveform, a program would have to know the maximum possible amplitude, the sampling
rate, and the total number of samples, at the very least. If several waveforms are stored
together, the system would have to identify each individual waveform somehow and establish
the relationships between the different waveforms. Are the waveforms played together, for
example, or one right after another?

As you might expect, there are a number of different codecs and file formats for storing
audio waveforms, each with its own features, advantages, and disadvantages. The .MOD format,
for example, is used primarily to store samples of sound that will be manipulated and combined
to produce a new sound. A .MOD file might store a sample of a piano tone. Software could
then manipulate the sample to reproduce all the different keys on the keyboard, it could alter
the loudness of each tone, and it could combine them to synthesize the piano lines in a piece of
music. Other instruments could be synthesized similarly. The MIDI format is used to coordinate
the sounds and signals between a computer and connected musical instruments, particularly
keyboards. MIDI software can “read” the keyboard and can also reproduce the sounds. The
.VOC format is a general sound format that includes special features such as markers within
the file that can be used to repeat (loop) a block or synchronize the different components of a
multimedia presentation. Block looping can extend a sound by repeating it over and over again.
The .WAYV format is a general-purpose format used primarily to store and reproduce snippets
of sound. MP3 and AAC are derivatives of the MPEG-2 and MPEG-4 specifications for the
transmission and storage of music. They have gained popularity because of the large numbers
of MP3- and AAC-encoded recordings posted on the Web and because of the availability of
low-cost portable devices that can download, store, decode, and reproduce MP3 and AAC data.

Like video, audio data can also be generated and stored locally or streamed from a network
or website. The data transmission and processing requirements for audio are much less stringent
than those for video, however. Audio is routinely streamed from the Web. There are numerous
websites broadcasting audio from radio stations and other sources, and streaming audio is also
used for Internet telephony.

The WAV format was designed by Microsoft as part of its multimedia specification. The format
supports 8- or 16-bit sound samples, sampled at 11.025kHz, 22.05kHz, or 44.1 kHz in mono
or stereo. The .WAV format is very simple and does not provide support for a lot of features, such
as the looping of sound blocks .WAV data is not compressed.

The format consists of a general header that identifies a “chunk” of data and specifies the
length of a data block within the chunk. The header is followed by the data block. The general
header is used for a number of different multimedia data types.

The layout of a .WAV file is shown in Figure 4.16. The data block is itself broken into
three parts. First, a 4-byte header identifies a sound file with the ASCII word “WAVE”. A format
chunk follows. This chunk contains such information as the method used to digitize the sound,
the sampling rate in samples per second, the data transfer rate in average number of bytes per
second, the number of bits per sample, and whether the sound is recorded in mono or stereo.
The actual data follows.

EXAMPLE

CHAPTER 4 DATA FORMATS 123

FIGURE 4.16
WAV Sound Format

Chunk id Length of Data (<length of chunk> bytes)
chunk

4 bytes 4 bytes

Format

WAVE chunk

Actual sound data

4 bytes (as needed)

If you have a personal computer that runs Windows and supports sound, you will probably
find .WAV files in one of your Windows directories. Look for the file fada.wav, which holds the
brief trumpet fanfare that sounds when Windows is started.

MP3 is the predominant digital audio data format for the storage and transmission of music. It
is characterized by reasonable audio quality and small file size. MP3 uses a number of different
tactics and options to achieve its small file sizes. These include options for different audio
sampling rates, fixed or variable bit rates, and a wide range of bit rates that represent different
levels of compression. The bit rate, measured in kbits/second is, of course, directly related to the
size of the file, however lower bit rates result in lower audio quality. The options chosen are made
by the creator of the file during the encoding process, based on the trade-off between tolerable
audio quality versus transmission rate or file size. An MP3 player must be capable of correctly
decoding and playing any of the format variations specified in the MP3 standard.

The primary contributor to the small MP3 file size is the use of psychoacoustic lossy
compression. The size of an MP3 file is typically about 1/10th the size of an equivalent
uncompressed .WAV file. Psychoacoustic compression is based on the assumption that there
are sounds that a listener cannot hear or will not notice, which can then be eliminated. As an
example, a soft sound in the background is not usually noticeable against a loud foreground
sound. The level of compression depends not only on the tolerable level of sound quality, but also
on the nature of the audio being compressed. A typical MP3 file samples the audio data 44,100
times per second, which is the same as the data rate used on audio CDs, and presents the data
to the listener at a rate of either 128 or 192 kb/second.

Figure 4.17 shows the structure of an MP3 file. The file consists of an optional ID field that
contains such information as song title and artist, followed by multiple data frames. Each frame
has a 32-byte header that describes the frame data, followed by an optional 2-byte error-checking
code, followed by the data itself. The header contains 2 bytes of synchronization and MP3 version
data followed by the bit rate, the audio sample rate, the type of data (for example, stereo or
monaural audio), copy protection, and other information. The MP3 standard requires that each
frame contains 384, 576, or 1152 audio samples of data. Note that this format allows the bit
rate to vary for each frame, allowing for more efficient compression, but more difficult encoding
procedures.

124 PART TWO DATA IN THE COMPUTER

FIGURE 4.17
MP3 Audio Data Format
MP3 frame MP3 frame MP3 frame
A A A
' Y N N\
ID Error
Field MP3 check MP3
: header : data
(optional) (optional)

N

32 bytes 2 bytes 384, 576,
or 1152

samples J

—

MP3 file

4.5 DATA COMPRESSION

The volume of multimedia data, particularly video, but also sound and even high-resolution
still images, often makes it impossible or impractical to store, transmit, and manipulate the data
in its normal form. Instead it is desirable or, in many cases, necessary to compress the data.
This is particularly true for video clips, real-time streaming video with sound, lengthy sound
clips, and images that are to be transmitted across the Internet through modem connections.
(It is also true of large data and program files of any type. Think .zip file, for example.)

There are many different data compression algorithms, but all fall into one of two categories,
lossless or lossy. A lossless algorithm compresses the data in such a way that the application of a
matching inverse algorithm restores the compressed data exactly to its original form. Lossy data
compression algorithms operate on the assumption that the user can accept a certain amount of
data degradation as a trade-off for the savings in a critical resource such as storage requirements
or data transmission time. Of course, only lossless data compression is acceptable for files
where the original data must be retained, including text files, program files, and numerical data
files, but lossy data compression is frequently acceptable in multimedia applications. In most
applications, lossy data compression ratios far exceed those possible with lossless compression.

Lossless data algorithms work by attempting to eliminate redundancies in the data. For
example, suppose that you have the following string of data:

05573200001473291000006682732732..

There are two simple steps you could take to reduce this string. First, you could reduce the
amount of data by counting the strings of consecutive 0s, and maintaining the count instead of
the string. The character is reproduced once, followed by its count:

0155732041473291056682732732...

CHAPTER 4 DATA FORMATS 125

Notice that we actually had to add a character when the 0 appeared singly in the string.
Otherwise, the inverse algorithm would have assumed that the first 0 appeared five times rather
than recognizing the data to be a single 0 followed by a 5.

As a second step, the algorithm attempts to identify larger sequences within the string.
These can be replaced with a single, identifiable value. In the example string, the sequence “7 3 2”
occurs repeatedly. Let us replace each instance of the sequence with the special character “Z”:

01552031472910566827°7...

Application of these two steps has reduced the sample string by more than 35 percent. A
separate attachment to the data would identify the replacements that were made, so that the
original data can be restored losslessly. For the example, the attachment would indicate that Os
were replaced by a single 0 followed by their count and the sequences “7 3 2” were replaced by
“Z”. You might wish to restore the original string in this example for practice.

There are many variations on the methods shown in the example. You should also notice
that the second step requires advance access to the entire sequence of data to identify the
repetitive sequences. Thus, it is not useful with streaming data. There are other variations that
are based on the known properties of the data stream that can be used, however. As we noted
earlier, for example, video codecs use the knowledge that the image is repeated at a frame rate
of, say, thirty times per second, and that in most instances, very little movement occurs within
small parts of the image between consecutive frames. GIF images and ZIP files are compressed
losslessly.

Lossy algorithms operate on the assumption that some data can be sacrificed without
significant effect, based on the application and on known properties of human perception. For
example, it is known that subtle color changes will not be noticeable in the area of an image
where the texture is particularly vivid. Therefore, it is acceptable to simplify the color data in
this circumstance. There is no attempt to recover the lost data. The amount of data reduction
possible in a particular circumstance is determined experimentally. Lossy algorithms can often
reduce the amount of data by a factor of 10:1 or more. JPEG and MP3 are examples of lossy
algorithms.

Video codecs use both variations on both forms of compression simultaneously. Some
video codecs even predict the movement from frame to frame to compress the data even further.
Reportedly, H.264 can achieve compression ratios of high-definition video by nearly 1000:1
with very little noticeable degradation in image quality.

In general, the use of data compression is a trade-off between the use of processing power
and the need to reduce the amount of data for transmission and storage. In most cases, the
higher the compression ratio, the greater the demand upon the computer processing resources.
At some point, the incremental improvement in compression to be achieved will no longer
justify the additional cost in processing or the degradation of the result.

4.6 PAGE DESCRIPTION LANGUAGES

A page description language is a language that describes the layout of objects on a displayed
or printed page. (In this context, we are using the word “object” in the more general object-
oriented programming language sense, rather than as a specific reference to object images.) Page
description languages incorporate various types of objects in various data formats, including,
usually, text, object images, and bitmap images. The page description language provides a means

126 PART TWO DATA IN THE COMPUTER

to position the various items on the page. Most page description languages also provide the
capability to extend the language to include new data formats and new objects using language
stubs called plug-ins. Most audio and video extensions fall into this category. Although there
are minor differences, page markup languages and typesetting languages are very similar in
capability to page description languages. The three expressions are often used interchangeably.

Some page description languages are extremely simple, with limited innate functionality.
HTML (HyperText Markup Language), for example, provides little more than a shell. Except
for text, most objects are stored in separate files, the details of layout are left mostly to the Web
browser that is recreating the page, and programming language capability and other features
are provided as extensions. We have already shown you many of the data formats that are used
with HTML. Others, such as PDF (Portable Document Format) and PostScript offer the ability
to recreate sophisticated pages with surprising faithfulness to the intentions of the original page
designer.

PDF, for example, incorporates its own bitmap formats, object image format, and text
format, all optimized for rapid page creation and presentation. It is often difficult to extract data
in their original data formats from a PDF file. Interestingly, PDF does not provide programming
language features. Instead, PDF is treated as a file format. The file contains objects, along with
page positioning information for each object, and that’s about it. It is presumed that any
program execution required to preprocess the objects in the file for presentation was done prior
to the creation of the file.

PostScript, on the other hand, contains a full-featured programming language that can be
processed at display time. In that sense, PDF is something of a subset of PostScript, though
with somewhat different goals and strengths. Many of the features of PDF are derived from
postprocessed PostScript. In particular, the object image descriptions in PDF are based on the
PostScript formats shown as examples earlier in this chapter.

4.7 INTERNAL COMPUTER DATA FORMAT

So now you have an idea of the various forms that data takes when it reaches the computer.
Once inside the computer, however, all data is simply stored as binary numbers of various sizes.
The interpretation of these binary numbers depends upon two factors:

B The actual operations that the computer processor is capable of performing;

B The data types that are supported by the programming language used to create the
application program.

As you will see in later chapters, computer processors provide instructions to manipulate
data, for searching and sorting, for example, and to manipulate and perform basic mathematical
operations on signed and unsigned integers. They also provide a means to point to data, using a
stored binary value as a pointer or locator to another stored binary number. Since these pointer
values are themselves stored as numbers, they can also be manipulated and used in calculations.
A pointer value might represent the index in an array, for example. Most recent computers also
provide instructions for the direct manipulation of floating point, or real, numbers. In other
computers, floating point numbers are manipulated using software procedures.

CHAPTER 4 DATAFORMATS 127

The processor instruction set also establishes formats for each data type that it supports.
If a number in the computer is supposed to be a floating point number, for example, the
instructions are designed to assume that the number is laid out in a particular format. Specific
formats that are used for integer and real numbers are discussed in Chapter 5.

Thus, the raw binary numbers stored in a computer can easily be interpreted to represent
data of a variety of different types and formats. C, Java, Visual Basic, and other languages all
provide a programmer with the capability to identify binary data with a particular data type.
Typically, there are five different simple data types:

B Boolean: two-valued variables or constants with values of true or false.

B char: the character data type. Each variable or constant holds a single alphanumeric
character code representing, for example, the single strike of a key. It is also common
to process groups of characters together as strings. Strings are simply arrays of
individual characters. The ASC function in Visual Basic shows the actual binary
number code representing a particular character. Thus, ASC(“A”) would show a
different value on an ASCII-based system from that shown on an EBCDIC
system.

B enumerated data types: user-defined simple data types, in which each possible value is
listed in the definition, for example,

type DayOfWeek = Mon, Tues, Wed, Thurs, Fri, Sat

B integer: positive or negative whole numbers. The string of characters representing a
number is converted internally by a conversion routine built into the program by the
compiler and stored and manipulated as a numerical value.

B real or float: numbers with a decimal portion, or numbers whose magnitude, either
small or large, exceeds the capability of the computer to process and store as an
integer. Again, the routine to convert a string of characters into a real number is built
into the program.

In addition to the simple data types, many programming languages, including C, but not
Java, support an explicit pointer variable data type. The value stored in a pointer variable is
a memory address within the computer. Other, more complex, data types, structures, arrays,
records, and other objects, for example, are made up of combinations of the simple data types.

The data types just listed correlate rather well with the instruction set capability of the
processor. The integer and real types can be processed directly. The character type is translated
into instructions that manipulate the data for basic character operations that are familiar to
you from your programming classes. Boolean and enumerated data types are treated within the
computer in a manner similar to integers. Most programming languages do not accept Boolean
and enumerated data as input, but the conversion would be relatively straightforward. It would
only be necessary to test the input character string against the various possibilities, and then set
the value to the correct choice (see Exercise 4.10).

Other languages may support a completely different set of data types. There are even some
languages that don’t recognize any data types explicitly at all, but simply treat data in a way
appropriate to the operation being performed.

128 PART TWO DATA IN THE COMPUTER

Numerical Character to Integer Conversion

EXAMPLE

FIGURE 4.18

As you've already seen, the typical high-level language numerical input statement
READ(value)

where value is the name of an integer variable, requires a software conversion from the actual
input, which is alphanumeric, to the numerical form specified for value. This conversion is
normally provided by program code contributed by the language compiler that becomes part of
your program. Some programmers choose instead to accept the input data in character form and
include their own code to convert the data to numerical form. This allows more programmer control
over the process; for example, the programmer might choose to provide more extensive error
checking and recovery than that of the internal conversion program. (Many internal conversion
programs simply crash if the user inputs an illegal character, say, a letter when a numeral is
expected.)

Whether internal or programmer supplied, the conversion process is similar. Just to deepen
your understanding of the conversion process, Figure 4.18 contains a simple pseudocode

A Pseudocode Procedure that Performs String Conversion

/Ivariables used
char key;
int number = O;

boolean error, stop;

{

stop = false;
error = false;
ReadAKey;

while (NOT stop && NOT error) {
number = 10 * number + (ASCIIVALUE(key) — 48);

ReadAKey;
} /lend while

if (error == true) {
printout('lllegal Character in Input');
else printout(‘input number is ' number);

} //end if
} //lend procedure

function ReadAKey(); {

read(key);

if (ASCIIVALUE(key) == 13 or ASCIIVALUE(key) == 32 or ASCIIVALUE(key) == 44)

stop = true;

else if ((key < '0") or (key > '9")) error = true;
} //end function ReadAKey

CHAPTER 4 DATA FORMATS 129

procedure that converts the string representing an unsigned integer into numerical form. This
code contains simple error checking and assumes that the number ends with a space (ASCII 32),
a comma (ASCII 44), or a carriage return (ASCII 13).

Conversion procedures for other data types are similar.

SUMMARY AND REVIEW

Alphanumeric data inputs and outputs are represented as codes, one code for each data value.
Three commonly used code systems for interactive input and output are Unicode, ASCII, and
EBCDIC. Within these codes, each character is represented by a binary number, usually stored
1 or 2 bytes per character.

The design and choice of a code is arbitrary; however, it is useful to have a code in which
the collating sequence is consistent with search and sort operations in the language represented.
Within the computer, programs must be aware of the code used to assure that data sorts,
number conversions, and other types of character manipulation are handled correctly. There
must also be agreement between input and output devices, so that the data is displayed correctly.
If necessary, translation programs can be used to translate from one representation to another.
When necessary, conversion programs within the computer convert the alphanumeric character
strings into other numeric forms. Numeric data must be converted back to Unicode, ASCII, or
EBCDIC form for output display, however. The most common source of alphanumeric data is
the keyboard.

Data from a keyboard enters the computer in the form of a character stream, which includes
nonprinting characters as well as printing characters. Image scanning with optical character
recognition, voice input, and various special devices, such as bar code readers, can also be used
to create alphanumeric data.

There are two different methods used for representing images in the computer. Bitmap
images consist of an array of pixel values. Each pixel represents the sampling of a small area
in the picture. Object images are made up of simple geometrical elements. Each element is
specified by its geometric parameters, its location in the picture, and other details.

Within the constraint that object images must be constructed geometrically, they are more
efficient in storage and more flexible for processing. They may be scaled, rotated, and otherwise
manipulated without the loss of shape or detail. Images with texture and shading, such as
photographs and painting, must be stored in bitmap image form. Generally, images must be
printed and displayed as bitmaps; so object images are converted to bitmap form by a page
description language interpreter before printing or display. There are many different formats
used for storing graphical images.

Video images are difficult to manage because of the massive amounts of data involved.
Video may be stored local to the system, or may be streamed from a network or website. Codecs
are used to compress the video for storage and transmission and to restore the video for display.
The quality of streamed video is limited by the capability of the network connection. Some
systems provide auxiliary hardware to process video.

Audio signals are represented in the computer by a sequence of values created by digitizing
the signal. The signal is sampled at regular time intervals. Each sample is then converted to an
equivalent binary value that is proportional to the amplitude of the sample. Again, different
formats are available for storing audio data, depending on the application.

130 PART TWO DATA IN THE COMPUTER

Audio signals may be streamed or stored locally. The requirements for audio transmission
and processing are far less stringent than for those of video.

For images, both still and video, as well as audio, data compression is often necessary.
Lossless data compression allows complete recovery of the original noncompressed data. Lossy
data compression does not allow recovery of the original data, but is designed to be perceived
as sufficient by the user.

Page description languages combine the characteristics of various specific data formats
together with data, indicating the position on the page to create data formats that can be used
for display and printing layouts.

Internally, all data, regardless of use, are stored as binary numbers. Instructions in the
computer support interpretation of these numbers as characters, integers, pointers, and in
many cases, floating point numbers.

FOR FURTHER READING

The general concepts of data formats are fairly straightforward, but additional character-based
exercises and practice can be found in the Schaum outline [LIPS82]. Individual codes can
be found in many references. The actual characters mapped to the keyboard are directly
observable using the Character Map accessory in Windows or the Key Caps desk accessory on
the Macintosh. Extensive information about Unicode is available from the Unicode website at
www.unicode.org.

For graphics formats, there are a number of good general books on graphics. Most of these
books describe the difference between bitmap and object graphics clearly, and most also discuss
some of the different graphics file formats and the trade-offs between them. Additionally, there
are more specialized books that are often useful in this area. Murray and Van Ryper [MURR96]
provide a detailed catalog of graphics formats. Rimmer [RIMMO93] discusses bitmapped graphics
at length.

Smith [SMIT90] presents an easy approach to the PostScript language. The three Adobe
books—[ADOB93], [ADOB99], and [ADOBS5], often called the “green book”, the “red book”,
and the “blue book”, respectively—are detailed but clear explanations of PostScript. Adobe also
offers the PDF Reference [ADOBO06]. A simple introduction to PDF is the PDF Primer White
Paper [PDFPO5].

There are many books on various aspects of video and on digital sound, but most are hard
to read; the Web is a better resource. Similarly, new data formats of all types occur as the need
arises. Because the need seems to arise continuously nowadays, your best source of current
information is undoubtedly the Web.

KEY CONCEPTS AND TERMS

A-to-D converter bitmap or raster image font

alphanumeric data codec glyph

analog collating sequence graphical objects
ANSI control code Graphics Interchange

ASCII EBCDIC Format (GIF)

http://www.unicode.org

H.264 video format

JPEG format

lossless data compression

lossy data compression

metadata

MP3

MPEG-2, MPEG-4 video
formats

numeric character versus
number

object or vector image

page description language

page markup language

palette

pixel

PostScript language

CHAPTER 4 DATA FORMATS

plug-ins

PNG format
proprietary format
raster scan
resolution
streaming video
typesetting language
Unicode

131

READING REVIEW QUESTIONS

4.1

4.2

4.3

4.4

4.5

4.6

4.7
4.8

4.9
4.10
4.11

4.12
4.13

4.14

When data is input to a computer, it is nearly always manipulated and stored in
some standard data format. Why is the use of data standards considered important, or
indeed, crucial in this case?

Name the three standards in common use for alphanumeric characters. Which standard
is designed to support all of the world’s written languages? Which language is used
primarily with legacy programs that execute on mainframe computers?

What is the relationship between the ASCII Latin-1 character set and its Unicode
equivalent that makes conversion between the two simple?

What is a collating sequence?

What are the major characteristics of a bitmap image? What are the major character-
istics of an object or vector image? Which is used for displays? What types of images
must be stored and manipulated as bitmap images? Why?

What is image metadata? Give an at least three examples of metadata that would be
required for a bitmap image.

Name two advantages to the use of object images.

What is the function of a video codec? What is the function of a video “container”?
Name at least two different codecs. Name at least two different containers.

Explain briefly how an A-to-D converter converts audio data into binary data.
Describe briefly the most important characteristics and features of an MP3 audio file.
Explain the difference between lossless and lossy data compression. Which type
normally provides a smaller file? What is “lost” in lossy audio data compression?
Under what circumstances is it impossible to use lossy data compression?

What is a page description language? Give an example of a page description language.
Name five simple data types that are provided in most high-level programming
languages.

Explain the difference between numeric characters and numbers. Under what condi-
tions would you expect the computer to use numeric characters? When would you
expect the computer to use numbers? When numeric data is entered at the keyboard,
which form is used? Which form is used for calculations? Which form is used for
display?

132 PART TWO DATA IN THE COMPUTER

EXERCISES

4.1

4.2

4.3

4.4

b.

Create a table that shows the ASCII and EBCDIC representations side-by-side
for each of the uppercase letters, lowercase letters, and numerals.

Does the hexadecimal representation show you a simple method for converting
individual numeric characters into their corresponding numerical values?

Does the hexadecimal representation suggest a simple method for changing
lowercase letters into their corresponding capital letters?

Can you use the same methods for EBCDIC as you do for ASCII? If so, what
changes would you need to make in a program to make (b) and (c) work?

What is the ASCII representation for the numeral —3.1415 in binary? in octal? in
hexadecimal? in decimal?

What is the EBCDIC representation for the numeral +1,250.1? (Include the
comma.)

What character string does the binary ASCII code

1010100 1101000 1101001 1110011 0100000 1101001 1110011
0100000 1000101 1000001 1010011 1011001 0100001

represent?

ASCII, Unicode, and EBCDIC are, of course, not the only possible codes. The
Sophomites from the planet Collegium use the rather strange code shown in Figure E4.1.
There are only thirteen characters in the Sophomite alphabet, and each character uses
a 5-bit code. In addition, there are four numeric digits, since the Sophomites have two
fingers on each hand and use base 4 for their arithmetic.

a.

Given the following binary code, what is the message being sent by the
Sophomites?

11001110100000111111000000100110111111110111110000000100100

b. You noticed in part (a) that this code does not delimit between characters. How
does one delimit this code? Suppose a bit was dropped during transmission. What
happens? Suppose a single bit was altered (0 to 1 or 1 to 0). What happens?

FIGURE E4.1
A 00001 | < 10000 <« 11111000
2 00010 [= 10011 | A 11111011
* 00100 [0 10101 | = 11111101
+ 01000 [¥ 10110 | ¥ 11111110
1. 01011 | x 11001
= 01101 | = 11010
e 0Ol110
4.5 As an alternative alphanumeric code, consider a code where punched holes in the

columns of a card represent alphanumeric codes. The punched hole represents a “17;

CHAPTER 4 DATA FORMATS 133

all other bits are “0”. The Hollerith code shown in Figure E4.2 is an example of such a
code. This code has been used to represent a message on the card in Figure E4.3. Each
row represents a code level from 0 to 12. Levels 12 and 11, which are not labeled on
the card, are the top row and next-to-top rows, respectively. Each column represents
a single character, so the card can hold one eighty-column line of text. (This card,
prevalent in the 1960s and 1970s as a means of data input, is the reason that text-based
displays are still limited to eighty characters per line.) Translate the card in Figure E4.3.

FIGURE E4.2
Punched Punched Punched Punched Punched
Character code Character code Character code Character code Character code
A 12,1 L 11,3 W 0,6 7 7 < 12,8,4
B 12,2 M 11,4 X 0,7 8 8 (12,8,5
© 12,3 N 11,5 Y 0,8 9 9 a5 12,8,6
D 12,4 0 11,6 VA 0,9 & 12 $ 11,8,3
E 12,5 P 11,7 0 0 - 11 * 11,8,4
F 12,6 Q 11,8 1 1 / 0,1) 11,8,5
G 12,7 R 11,9 2 2 # 8,3 , 0,8,3
H 12,8 S 0,2 3 3 @ 8,4 % 0,8,4
| 12,9 T 0,3 4 4 ‘ 8,5 blank none
J 11,1 u 0,4 5 5 = 8,6
K 11,2 V 0,5 6 6 12,8,3
FIGURE E4.3
\
i | | 1 11 11
I 1 1 m 111l |
000000000 R00000FOR00000000R00NNNCOONNOR00
1234567 891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
11

222022222222222222222222222222222Q02022
33J133333333333[333333333333]33
Q444400 aasaaassaalisaa0a08400004040004800000000004000000A0000400400004400040444044
5555555555 5555Q 0555550 05055055555555[555
66
77
88888 8888838]|38838]]8888888888888888388388388888888883888888888388888888888888888

90999
\ 12345678 910‘1BlN1|213141516171819202122232A25262728293031323334353637383%04142A3A44546A7484950515253545556575859605162636A6566675869707172737A757677787980 j
=]

134

PART TWO DATA IN THE COMPUTER

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

Without writing a program, predict the ORD (binary) value for your computer system
for the letter “A”, for the letter “B”, for the letter “C”. How did you know? Might the
value be different on a different system? Why or why not?

Write a program in your favorite language that will convert all ASCII uppercase
and lowercase letters to EBCDIC code. For an additional challenge, also convert the
punctuation symbols, indicating with a failure-to-convert message, those symbols that
are not represented in the EBCDIC system.

If you have access to a debug program, load a text file into computer memory from
your disk, and read the text from computer memory by translating the ASCII codes.
Suppose you have a program that reads an integer, followed by a character, using the
following prompt and READ statement:

WRITE(Enter an integer and a character :
READ (intval, charval);

When you run the program, you type in the following, in response to the prompt

Enter an integer and a character :
1257
z

When you check the value of charval, you discover that it does not contain “z”. Why
not? What would you expect to find there?

Write a program that accepts one of the seven values “MON?”, “TUE”, “WED”, “THU”,
“FRI”, “SAT”, and “SUN” as input and sets a variable named TODAY to the correct
value of type DayOfWeek, and then outputs the ORD value of TODAY to the screen.
(Does the ORD value give you a hint as to the internal representation of the enumerated
data type?)

Write a procedure similar to procedure Convert that converts a signed integer to a
character string for output.

Approximately how many pages of pure 16-bit Unicode text can a 650 MB CD-ROM
hold?

Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF, .PNG, and .BMP.

Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF and .RLE.

For Exercises 4.13 and 4.14, there are several books that describe graphics formats in
detail. One of these is Murray [MURR96].

Investigate several audio formats, and discuss the different features that each provides.
Also discuss how the choice of features provided in different formats affects the type
of processing that the format would be useful for.

If you have studied COBOL, discuss the difference between numeric characters and
numbers in the context of a COBOL program. Does COBOL distinguish clearly
between the two? If so, in what ways?

Provide a line-by-line explanation for the PostScript code in Figure 4.14.

4.18

4.19

4.20

4.21

4.22

CHAPTER 4 DATA FORMATS 135

Unicode is downward compatible with the Latin-1 version of 8-bit ASCII in the sense
that a Unicode text file that is limited to the Latin-1 character set will be read correctly
on a system that does not support Unicode, provided that an end delimiter is used,
rather than a character count as the measure of the length of the message. Why is this
so? (Hint: Consider the role of the ASCII NUL character.)

Use the Web as a resource to investigate MPEG-2 [or MPEG-4]. Explain the data

compression algorithm used by MPEG-2 [or MPEG-4].

The MP3 audio format is described as “almost CD quality”. What characteristic of

MP3 makes this description accurate?

Use the Web as a resource to study the PDF format.

a. Describe how PDF provides output that is consistent across different types of
devices, including printers and monitors of various resolutions.

b. Describe the format for storing, laying out, and managing the objects on a page.
Explain the advantages to the use of this format over other formats, such as that
used by HTML.

c. Explain how PDF manages the many different type fonts that might be found in
a document.

d. How does PDF manage bitmap images? Object images?

e. Explain how PDF differs from PostScript.

Describe at least three major limitations that PDF places on the end-user of a
PDF document.

Using the Web as a resource, create a table that compares the features and capabilities
of .PNG, .GIF, and .JPEG.

CHAPTER 5

REPRESENTING NUMERICAL
DATA

"It's OK, Mrs. Grumpworthy,
my brother's teaching me arithmetic
on our computer at home."

Thomas Sperling, adapted by Benjamin Reece

5.0 INTRODUCTION

As we have noted previously, the computer stores all data and program instructions in
binary form, using only groups of zeros and ones. No special provision is made for the
storage of the algebraic sign or decimal point that might be associated with a number; all
responsibility for interpretation of those zeros and ones is left to the programmers whose
programs store and manipulate those binary numbers. Thus, the binary numbers in a
computer might represent characters, numbers, graphics images, video, audio, program
instructions, or something else.

The ability of a computer to manipulate numbers of various kinds is, of course, of
particular importance to users. In Chapter 4, we observed that nearly every high-level
computing language provides a method for storage, manipulation, and calculation of
signed integer and real numbers. This chapter discusses methods of representing and
manipulating these numbers within the zeros-and-ones constraint of the computer.

We saw in Chapter 3 that unsigned integer numbers can be represented directly in
binary form, and this provides a clue as to how we might represent the integer data type in
the computer. There is a significant limitation, however: we have yet to show you a sign-free
way of handling negative numbers that is compatible with the capabilities of the computer.
In this chapter, we explore several different methods of storing and manipulating integers
that may encompass both positive and negative numbers.

Also, as you know, it is not always possible to express numbers in integer form. Real,
or floating point, numbers are used in the computer when the number to be expressed is
outside the integer range of the computer (too large or too small) or when the number
contains a decimal fraction.

Floating point numbers allow the computer to maintain a limited, fixed number
of digits of precision together with a power that shifts the point left or right within the
number to make the number larger or smaller, as necessary. The range of numbers that the
computer can handle in this way is huge. In a personal computer, for example, the range
of numbers that may be expressed this way may be +£[107*% < number <10**8] or more.

Performing calculations with floating point numbers provides an additional challenge.
There are trade-offs made for the convenience of using floating point numbers: a potential
loss of precision, as measured in terms of significant digits, larger storage requirements,
and slower calculations. In this chapter, we will also explore the properties of floating point
numbers, show how they are represented in the computer, consider how calculations are
performed, and learn how to convert between integer and floating point representations.
We also investigate the importance of the trade-offs required for the use of floating point
numbers and attempt to come up with some reasonable ground rules for deciding what
number format to specify in various programming situations.

We remind you that numbers are usually input as characters and must be converted
to a numerical format before they may be used in calculations. Numbers that will not be
used in calculations, such as zip codes or credit card numbers, are simply manipulated as
characters.

137

138 PART TWO DATA IN THE COMPUTER

5.1 UNSIGNED BINARY AND BINARY-CODED
DECIMAL REPRESENTATIONS

In conventional notation, numbers can be represented as a combination of a value, or magnitude,
a sign, plus or minus, and, if necessary, a decimal point. As a first step in our discussion, let’s
consider two different approaches for storing just the value of the number in the computer.

The most obvious approach is simply to recognize that there is a direct binary equivalent
for any decimal integer. We can simply store any positive or unsigned whole number as its
binary representation. This is the approach that we already discussed in Chapter 3. The range of
integers that we can store this way is determined by the number of bits available. Thus, an 8-bit
storage location can store any unsigned integer of value between 0 and 255, a 16-bit storage
location, 0-65535. If we must expand the range of integers to be handled, we can provide more
bits. A common way to do this is to use multiple storage locations. In Figure 5.1, for example,
four consecutive 1-byte storage locations are used to provide 32 bits of range. Used together,
these four locations can accept 232, or 4,294,967,296 different values.

The use of multiple storage locations to store a single binary number may increase the
difficulty of calculation and manipulation of these numbers because the calculation may have
to be done one part at a time, possibly with carries or borrows between the parts, but the
additional difficulty is not unreasonable. Most modern computers provide built-in instructions
that perform data calculations 32 bits or 64 bits at a time, storing the data automatically in
consecutive bytes. For other number ranges, and for computers without this capability, these
calculations can be performed using software procedures within the computer.

An alternative approach known as binary-coded decimal (BCD) may be used in some
applications. In this approach, the number is stored as a digit-by-digit binary representation
of the original decimal integer. Each decimal digit is individually converted to binary. This
requires 4 bits per digit. Thus, an 8-bit storage location could hold two binary-coded decimal
digits—in other words, one of one hundred different values from 00 to 99. For example, the
decimal value 68 would be represented in BCD as 01101000. (Of course you remember that
0110, = 6,, and 1000, = 8,,.) Four bits can hold sixteen different values, numbered 0 to F in

FIGURE 5.1
Storage of a 32-bit Data Word
Memory])
location <~ 1 byte——= bit bit
— 31 2423 1615 87 0
v Most significant | | | | |
bits (31-24)
32-bit Data word
M+1 bits 23-16

M+2 | bits 15-8 <:|—|

Least significant
M+3 bits (7-0)

M+ 4 Next data item
="

CHAPTER 5 REPRESENTING NUMERICAL DATA 139

FIGURE 5.2

Value Range for Binary versus Binary-Coded Decimal

No. of hits BCD range Binary range

4 0-9 1 digit 0=15 1+ digit

8 0-99 2 digits 0-255 2+ digits
12 0-999 3 digits 0-4,095 3+ digits
16 0-9,999 4 digits 0-65,535 4+ digits
20 0-99,999 5 digits 0-1 Million 6 digits
24 0-999,999 6 digits 0-16 Million 7+ digits
32 0-99,999,999 8digits 0-4 Billion 9+ digits
64 0-(10%-1) 16 digits 0-16 Quintillion 19+ digits

hexadecimal notation, but with BCD the values A to F are simply not used. The hexadecimal
and decimal values for 0 through 9 are equivalent.

The table in Figure 5.2 compares the decimal range of values that can be stored in binary
and BCD forms. Notice that for a given number of bits the range of values that can be held using
the BCD method is substantially less than the range using conventional binary representation.
You would expect this because the values A-F are being thrown away for each group of 4 bits.
The larger the total number of bits, the more pronounced the difference. With 20 bits, the range
for binary is an entire additional decimal digit over the BCD range.

Calculations in BCD are also more difficult, since the computer must break the number
into the 4-bit binary groupings corresponding to individual decimal digits and use base 10
arithmetic translated into base 2 to perform calculations. In other words, the calculation for
each 4-bit grouping must be treated individually, with arithmetic carries moving from grouping
to grouping. Any product or sum of any two BCD integers that exceeds 9 must be reconverted
to BCD each time to perform the carries from digit to digit.

EXAMPLE
One method of performing a “simple” one- by two-digit multiplication is shown as an example
in Figure 5.3. In the first step, each digit in the multiplicand is multiplied by the single-digit
multiplier. This yields the result 7 x 6 = 42 in the units
place and the result 7 x 7 = 49 in the 10’s place.
FIGURE 5.3 Numerically, this corresponds to the result achieved by
. S forming the multiplication in decimal, as is shown at
A Simple BCD Multiplication per '
P P o the left-hand side of the diagram.
76— 0111 01104 sums to BCD To continue, the binary values for 42 and 49 must
XAZ :: 10?(1313)“"_) 0100 0010 be converted back to BCD. This is done in the second
bin bed i ;
step. Now the BCD addition takes place. As in the
— v —
% 110001in + R decimal version, the sum of 9 and 4 results in a carry.
432 _Ac:ust Convert 13 01001101 0010 The binary value 13 must be converted to BCD 3, and
13 ~camy back to 8cD — + 0001 0011 the 1 added to the value 4 in the hundreds place. The
532 — 0101 0011 0010 place.

i final result is BCD value 532.
=532 in BCD

140

PART TWO DATA IN THE COMPUTER

EXAMPLE

If the number contains a decimal point, the same approach can be used, but the application
program must keep track of the decimal point’s location. For example, many business
applications have to maintain full accuracy for real numbers. In many cases, the real numbers
being used represent dollars and cents figures. You are aware from Chapter 3 that rational
decimal real numbers do not necessarily remain so when converted into binary form. Thus, it
is possible that a number converted from decimal to binary and back again may not be exactly
the same as the original number. You would not want to add two financial numbers and have
the result off by a few cents. (In fact, this was a problem with early versions of spreadsheet
programs!)

For this reason, business-oriented high-level languages such as COBOL provide formats
that allow the user to specify the number of desired decimal places exactly. Large computers
support these operations by providing additional instructions for converting, manipulating,
and performing arithmetic operations on numbers that are stored in a BCD format.

IBM zSeries computers support numbers stored in a BCD format called packed decimal format,
shown in Figure 5.4. Each decimal digit is stored in BCD form, two digits to a byte. The most
significant digit is stored first, in the high-order bits of the first byte. The sign is stored in the
low-order bits of the last byte. Up to thirty-one digits may be stored. The binary values 1100 and
1101 are used for the sign, representing “+" and “-", respectively. The value 1111 can be used
to indicate that the number is unsigned. Since these values do not represent any valid decimal
number, it is easy to detect an error, as well as to determine the end of the number. As we noted
earlier, the location of the decimal point is not stored and must be maintained by the application
program. Intel CPUs provide a more limited packed format that holds two digits (00-99) in a single

byte. As an example, the decimal number —324.6 would be stored in packed decimal form as
0000 0011 00100100 01101101

The leading Os are required to make the number fit exactly into 3 bytes. IBM provides
additional formats that store data one digit to a byte, but provides no instructions for performing
calculations in this format. This format is used primarily as a convenience for conversion between
text and packed decimal format. IBM also provides a compressed version of its packed decimal
format to save storage space.

FIGURE 5.4

Packed Decimal Format
Most
significant

digit Sign

//
1100 or
1101 or
1111
4 bits 4 bits I

-—— Up to 31 digits (16 bytes) —>

CHAPTER 5 REPRESENTING NUMERICAL DATA 141

Even with computer instructions that perform BCD arithmetic, BCD arithmetic is nearly
always much slower. As an alternative, some computers convert each BCD number to binary
form, perform the calculation, and then convert the result back to BCD.

Despite its drawbacks, binary-coded decimal representation is sometimes useful, especially
in business applications, where it is often desirable to have an exact digit-for-digit decimal
equivalent in order to mimic decimal arithmetic, as well as to maintain decimal rounding and
decimal precision. Translation between BCD and character form is also easier, since the last
4 bits of ASCII, EBCDIC, and Unicode numeric character forms correspond exactly to the BCD
representation of that digit. Thus, to convert from alphanumeric form to BCD you simply chop
off everything but the rightmost 4 bits of the character to get its BCD value. This makes BCD an
attractive option when the application involves a lot of input and output, but limited calculation.
Many business applications fit this description. In most cases, though, binary representation is
preferred and used.

5.2 REPRESENTATIONS FOR SIGNED INTEGERS

With the shortcomings of BCD, it shouldn’t surprise you that integers are nearly always stored
as binary numbers. As you have already seen, unsigned integers can be converted directly
to binary numbers and processed without any special care. The addition of a sign, however,
complicates the problem, because there is no obvious direct way to represent the sign in
binary notation. In fact, there are several different ways used to represent negative numbers in
binary form, depending on the processing that is to take place. The most common of these is
known as 2’s complement representation. Before we discuss 2’s complement representation,
we will take a look at two other, simpler methods: sign-and-magnitude representation and
1’s complement representation. Each of these latter methods has some serious limitations for
computer use, but understanding these methods and their limitations will clarify the reasoning
behind the use of 2’s complementation.

Sign-and-Magnitude Representation

FIGURE 5.5

Examples of Sign-and-Magnitude

Representation

0100101
e =

t 37

1100101
b

37

In daily usage, we represent signed integers by a plus or minus sign and a value. This
representation is known, not surprisingly, as sign-and-magnitude representation.

In the computer we cannot use a sign, but must restrict
ourselves to 0s and 1s. We could select a particular bit, however,
and assign to it values that we agree will represent the plus
and minus signs. For example, we could select the leftmost bit
and decide that a 0 in this place represents a plus sign and a

0000000000000001 1 represents a minus. This selection is entirely arbitrary, but if
(+1) used consistently, it is as reasonable as any other selection. In
fact, this is the representation usually selected. Figure 5.5 shows

1000000000000001 examples of this representation.
1) Note that since the leftmost digit is being used as a sign, it
1111111111111111 cannot represent any value. This means that the positive range
(=32767) of the signed integer using this technique is one-half as large as

the corresponding unsigned integer of the same number of bits.

142

PART TWO DATA IN THE COMPUTER

EXAMPLE

On the other hand, the signed integer also has a negative range of equal size to its positive
range, so we really haven’t lost any capability, but have simply shifted it to the negative region.
The total range remains the same, but is redistributed to represent numbers both positive and
negative, though in magnitude only half as large.

Suppose 32 bits are available for storage and manipulation of the number. In this case, we
will use 1 bit for the sign and 31 bits for the magnitude of the number. By convention, the
leftmost, or most significant, bit is usually used as a sign, with 0 corresponding to a plus sign
and 1 to a minus sign. The binary range for 32 bits is 0-4,294,967,295; we can represent the
numbers —2, 147, 483, 647 to +2,147,483,647 this way.

There are several inherent difficulties in performing calculations when using sign-and-
magnitude representation. Many of these difficulties arise because the value of the result of
an addition depends upon the signs and relative magnitudes of the inputs. This can be easily
seen from the following base 10 examples. Since the numbers are exactly equivalent, the same
problem of course occurs with binary addition.

Consider the base 10 sum of 4 and 2:

+2

6
The sum of 4 and -2, however, has a different numerical result:
4
=2
2
Notice that the addition method used depends on the signs of the operands. One method is
used if both signs agree; a different method is used if the signs differ. Even worse, the presence
of a second digit that can result in a carry or borrow changes the result yet again:
2
-4
=2
But

Interestingly enough, we have been so well trained that we alter our own mental algorithm
to fit the particular case without even thinking about it, so this situation might not even have
crossed your mind. The computer requires absolute definition of every possible condition,
however, so the algorithm must include every possibility; unfortunately, sign-and-magnitude
calculation algorithms are complex and difficult to implement in hardware.

In addition to the foregoing difficulty, there are two different binary values for 0,

00000000 and 10000000

CHAPTER 5 REPRESENTING NUMERICAL DATA 143

representing +0 and —O0, respectively. This seems like a minor annoyance, but the system must
test at the end of every calculation to assure that there is only a single value for 0. This is
necessary to allow program code that compares values or tests a value for 0 to work correctly.
Positive 0 is preferred because presenting —0 as an output result would also be confusing to the
typical user.

The one occurrence where sign-and-magnitude is a useful representation is when binary-
coded decimal is being used. Even though the calculation algorithms are necessarily complex,
other algorithms for representing signed integers that you will be introduced to in this chapter
are even more impractical when using BCD. Furthermore, as we have already discussed, BCD
calculation is complex in any case, so the additional complexity that results from handling
sign-and-magnitude representations is just more of the same.

With BCD, the leftmost bit can be used as a sign, just as in the case of binary. With binary,
however, using a sign bit cuts the range in half; the effect on range is much less pronounced
with BCD. (Remember, though, that BCD already has a much smaller range than binary for the
same number of bits.) The leftmost bit in an unsigned BCD integer only represents the values
8 or 9; therefore, using this bit as a sign bit still allows the computer 3 bits to represent the
leftmost digit as a number within the range 0-7.

As an example, the range for a signed 16-bit BCD integer would be

—7999 <value <+7999.

Nine’s Decimal and 1’s Binary Complementary Representations

For most purposes, computers use a different method of representing signed integers known as
complementary representation. With this method, the sign of the number is a natural result of
the method and does not need to be handled separately. Also, calculations using complementary
representation are consistent for all different signed combinations of input numbers. There
are two forms of complementary representation in common use. One, known as the radix
complement, is discussed in the next section. In this section, we will introduce a representation
known as diminished radix complementary representation, so called because the value used as
a basis for the complementary operation is diminished by one from the radix, or base. Thus,
base-10-diminished radix complementary representation uses the value 9 as its basis, and binary
uses 1. Although the computer obviously uses the 1’s representation, we will introduce the 9’s
representation first, since we have found that it is easier for most students to understand these
concepts in the more familiar decimal system.

NINE’S DECIMAL REPRESENTATION Let us begin by considering a different means of
representing negative and positive integers in the decimal number system. Suppose that we
manipulate the range of a three-digit decimal number system by splitting the three-digit decimal
range down the middle at 500. Arbitrarily, we will allow any number between 0 and 499 to
be considered positive. Positive numbers will simply represent themselves. This will allow the
value of positive numbers to be immediately identified. Numbers that begin with 5, 6,7, 8, or 9
in the most significant digit will be treated as representations of negative numbers. Figure 5.6
shows the shift in range.

One convenient way to assign a value to the negative numbers is to allow each digit to be
subtracted from the largest numeral in the radix. Thus, there is no carry, and each digit can
be converted independently of all others. Subtracting a value from some standard basis value

144 PART TWO DATA IN THE COMPUTER

FIGURE 5.6

Range-Shifting Decimal Integers

Representation

Number being
represented

FIGURE 5.7

Addition as a Counting Process

Representation

is known as taking the complement of the number.
Taking the complement of a number is almost like using
the basis value as a mirror. In the case of base 10 radix,
500 99910 499 the largest numeral is 9; thus, this method is called 9’s

-499 -00010 499

complementary representation.
Several examples of this technique are shown below.
If we now use the 9°’s complement technique to
assign the negative values to the chart in Figure 5.6,
you see that 998 corresponds to a value of —1 and
500 to the value —499. This results in the relationship
shown in Figure 5.7.
An important consideration in the choice of a

— —Increasing value —> +

+250 +250 representation is that it is consistent with the normal
500 6 4/; \399 999 ,0 17)6 \220 499 rules of arithmetic. For the representation to be valid,
it is necessary that, for any value within the range,
-499 -350 -100 -000|O 170 420 499
\+250/ \+250/ —(=value)=value
Number bein
representedg Simply stated, this says that if we complement the
value twice, it should return to its original value.
Since the complement is just
comp =basis—value
then complementing twice,
basis — (basis—value)=value
which confirms that this requirement is met.
EXAMPLES

Find the 9's complementary representation for the three-digit number —467.

999
—467

532

532 represents the value for —467. Notice that the three-digit value range is limited to 0-499,
since any larger number would start with a digit of 5 or greater, which is the indicator for a
negative number.

Find the 9's complementary representation for the four-digit number —467.

9999
-467

9532

CHAPTER 5 REPRESENTING NUMERICAL DATA 145

Notice that in this system, it is necessary to specify the number of digits, or word size, being
used. In a four-digit representation, the number (0)532 represents a positive integer, since it is
less than 4999 in value. Care is required in maintaining the correct number of digits.

What is the sign-and-magnitude value of the four-digit number represented in 9’s complement
by 37897

In this case, the leftmost digit is in the range 0—4. Therefore, the number is positive, and is
already in correct form. The answer is +3789.

This example emphasizes the difference between the representation of a number in comple-
mentary form and the operation of taking the complement of a number. The representation just
tells us what the number looks like in complementary form. The operation of finding the com-
plement of a number consists of performing the steps that are necessary to change the number
from one sign to the other. Note that if the value represents a negative number, it is necessary
to perform the operation if we wish to convert the number into sign-and-magnitude form.

What is the sign-and-magnitude value of the four-digit number represented by 99907
This value is negative. To get the sign-and-magnitude representation for this number, we
take the 9's complement:

9999
-9990

Therefore, 9990 represents the value —9.

Next, let’s consider the operation of addition when the numbers being added are in 9’s
complementary form. When you studied programming language, you learned that modular
arithmetic could be used to find the remainder of an integer division. You recall that in modular
arithmetic, the count repeats from 0 when a limit, called the modulus, is exceeded. Thus, as an
example, 4 mod 4 has the value 0 and 5 mod 4 has the value 1.

The 9’s complement scale shown in Figure 5.6 shares the most important characteristic of
modular arithmetic; namely, in counting upward (from left to right on the scale), when 999 is
reached, the next count results in a modular rotation to a value of 0. (Notice that when you
reach the right end of the scale, it continues by flowing around to the left end.)

Counting corresponds to addition; thus, to add a number to another is simply to count
upward from one number by the other. This idea is illustrated in Figure 5.7. As you can see
from the examples in this diagram, simple additions are straightforward and work correctly. To
understand how this process works in a “wraparound” situation, consider the example shown
in Figure 5.8. As you can see in this case, adding 699 to the value 200 leads to the position 899
by wrapping around the right end. Since 699 is equivalent to —300 and 899 is equivalent to
—100, 699 + 200 is equivalent to (—300) +200, and the result of the addition is correct.

146 PART TWO DATA IN THE COMPUTER

FIGURE 5.8

Addition with Wraparound
Representation

+699
500 999,0 200 499, 500 899 999
-499 -000)0 200 499|-499 -100 -000
. -300
Number being
represented
FIGURE 5.9

Addition with Modulus Crossing Representation
Representation

The reason this technique works can also be
seen in the diagram. The wraparound is equivalent
to extending the range to include the addition on the
scale.

The same final point should also be reached by
moving to the left 300 units, which is equivalent to
subtracting 300. In fact, the result is off by 1. This
occurs because we have again picked a scale with two
values for 0, namely, 0 for +0 and 999 for —0. This
means thatany count that crosses the modulus will be
short one count, since 0 will be counted twice. In
this particular example, the count to the right, which
is the addition 200 + 699, yielded the correct result,
since the modulus was not crossed. The count to
the left, the subtraction 200 — 300, is off by one
because of the double zero. We could correct for this
situation on the chart by moving left an additional
count any time the subtraction requires “borrowing”
from the modulus. For example, subtracting 200 —
300 requires treating the value 200 as though it were
1200 to stay within the 0-999 range. The borrow can
be used to indicate that an additional unit should be
subtracted.

Next, consider the situation shown in Figure 5.9. In this
case, counting to the right, or adding, also results in crossing the

300 (1099)
500 799 999,0 99 499
-499 -200 -000 0/100 499
—
Number being +300
represented
FIGURE 5.10

modulus, so an additional count must be added to obtain

the correct result. This is an easier situation, however. Since

End-Around Carry Procedure

the result of any sum that crosses the modulus must initially

799 contain a carry digit (the 1 in 1099 in the diagram), which is
799 _300 then dropped in the modular addition, it is easy to tell when the
100 1099 modulus has been crossed to the right. We can then simply add
899 S| the extra count in such cases.

No end-around carry
End-around carry

100 This leads to a simple procedure for adding two numbers
in 9’s complementary arithmetic: Add the two numbers. If the

result flows into the digit beyond the specified number of digits,
add the carry into the result. This is known as end-around carry. Figure 5.10 illustrates the
procedure. Notice that the result is now correct for both examples.

Although we could design a similar algorithm for subtraction, there is no practical reason
to do so. Instead, subtraction is performed by taking the complement of the subtrahend (the
item being subtracted) and adding to the minuend (the item being subtracted from). In this
way, the computer can use a single addition algorithm for all cases.

There is one further consideration. A fixed word size results in a range of some particular
fixed size; it is always possible to have a combination of numbers that adds to a result outside
the range. This condition is known as overflow. If we have a three-digit plus sign word size in a
sign-and-magnitude system, and add 500 to 500, the result overflows, since 1000 is outside the
range. The fourth digit would be evidence of overflow.

CHAPTER 5 REPRESENTING NUMERICAL DATA 147

It is just as easy to detect overflow in a 9’s complement system, even though the use of
modular arithmetic assures that an extra digit will never occur. In complementary arithmetic,
numbers that are out of range represent the opposite sign. Thus, if we add

300+ 300=600(i.e.,—399)

both inputs represent positive numbers, but the result is negative. Then the test for overflow is
this: If both inputs to an addition have the same sign, and the output sign is different, overflow
has occurred. Conversely, overflow in addition cannot occur if the input signs are different,
since the output will always be numerically smaller than the larger input.

ONE’S COMPLEMENT The computer can use the binary version of the same method of
representation that we have just discussed. In base 2, the largest digit is 1. Splitting the range
down the middle, as we did before, numbers that begin with 0 are defined to be positive;
numbers that begin with 1 are negative. Since

1 1
=0 and =1
1 0

the 1’s complement of a number is performed simply by changing every 0 to a 1 and every 1 to
a 0. How elegantly simple! This exchange of 0s and 1s is also known as inversion. (Of course,
this means that both 000. . . and 111. . . represent 0, specifically, +0 and —0, respectively.) The
1I’s complement scale for 8-bit binary numbers is shown in Figure 5.11.

Addition also works in the same way. To add two numbers, regardless of the implied sign
of either input, the computer simply adds the numbers as though they were unsigned integers.
If there is a carryover into the next bit beyond the leftmost specified bit, 1 is added to the result,
following the usual end-around carry rule. Subtraction is done by inverting the subtrahend (i.e.,
changing every 0 to 1 and every 1 to 0) and adding. Overflows are detected in the same way as
previously discussed: if both inputs are of the same sign, and the sign of the result is different,
overflow has occurred; the result is outside the range. Notice that this test can be performed
simply by looking at the leftmost bit of the two inputs and the result.

An important comment about conversion between signed binary and decimal integers in
their complementary form: although the technique used is identical between 9’s complement
decimal and 1’s complement binary, the modulus used in the two systems is obviously not the
same! For example, the modulus in three-digit decimal is 999, with a positive range of 499. The
modulus in 8-bit binary is 11111111, or 255,,, with a positive range of 01111111, or 127,,.

This means that you cannot convert directly between 9’s complement decimal and 1’s
complement binary. Instead, you must change the number to sign-and-magnitude represen-
tation, convert, and then change the result to the new complementary form. Of course, if
the number is positive, this process is trivial, since the complementary form is the same as

FIGURE 5.11
One’s Complement Representation

10000000 11111111,00000000 01111111
=127, -0,0| 049 127 5

148 PART TWO DATA IN THE COMPUTER

the sign-and-magnitude form. But you must remember to follow this procedure if the sign is
negative. Remember, too, that you must check for overflow to make sure that your number is
still in range in the new base.

Here are several examples of 1’s complement addition and subtraction, together with the
equivalent decimal results:

EXAMPLES
Add
00101101 = 45
00111010= 58
01100111 =103
HEN
Add the 16-bit numbers 0000000000101101 = 45
1111111111000101 =-58
1111111111110010=-13
Note that the addend 1111111111000101 is the inversion of the value in the previous
example with eight additional Os required to fill up 16 bits. The decimal result, —13, is found
by inverting 1111111111110010 to 0000000000001101 to get a positive magnitude and adding
up the bits.
EXAMPLES
Add
01101010 =106
11111101 = -2
Mo1100111
(end-around carry) L—— +1
01101000 =104
HEN
Subtract

01101010=106
—01011010= 90

Changing the sign of the addend by inverting

01101010
10100101

D00001111
(end-around carry) L—— +1
00010000 =16

CHAPTER 5 REPRESENTING NUMERICAL DATA 149

Add

01000000= 64
+01000001 = 65
10000001 =-126

This is an obvious example of overflow. The correct positive result, 129, exceeds the range
for 8 bits. Eight bits can store 256 numbers; splitting the range only allows positive values
0-127.

The overflow situation shown in the last example occurs commonly in the computer,
and some high-level languages do not check adequately. In some early versions of BASIC, for
example, the sum

16384 + 16386

will show an incorrect result of —32765 or —32766. (The latter result comes from the use of
a different complementary representation, which is discussed in the next section.) What has
happened is that overflow has occurred in a system that uses 16 bits for integer calculations.
The positive range limit for 16 bits is +32767 (a 0 for the sign plus fifteen 1s). Since the sum
of 16384 and 16386 is 32770, the calculation overflows. Unfortunately, the user may never
notice, especially if the overflowing calculation is buried in a long series of calculations. A good
programmer takes such possibilities into account when the program is written. (This type of
error caused some embarrassment when it showed up in an early version of Microsoft Excel.)

Ten’s Complement and 2’s Complement

FIGURE 5.12

Ten’s Complement Scale

Representation

Number being
represented

TEN’S COMPLEMENT You have seen that complementary representation can be effective
for the representation and calculation of signed integer numbers. As you are also aware, the
system that we have described, which uses the largest number in the base as its complementary
reflection point, suffers from some disadvantages that result from the dual zero on its scale.

By shifting the negative scale to the right by one,
we can create a complementary system that has only a
single zero. This is done by using the radix as a basis for
the complementary operation. In decimal base, this is
known as the 10’s complement representation. The use
500 99910 499 of this representation will simplify calculations. The

500 o001lo 499 tradg—o.ff iI.‘l using 10’s .complement representation is
that it is slightly more difficult to find the complement
of a number. A three-digit decimal scale is shown in
Figure 5.12. Be sure to notice the differences between
this diagram and Figure 5.6.

The theory and fundamental technique for 10’s complement is the same as that for 9’s
complement. The 10’s complement representation uses the modulus as its reflection point. The
modulus for a three-digit decimal representation is 1000, which is one larger than the largest
number in the system, 999.

150

PART TWO DATA IN THE COMPUTER

EXAMPLES

Complements are found by subtracting the value from the modulus, in this case, 1000. This
method assures a single zero, since (1000 — 0) mod 1000 is zero. Again, as with the previously
discussed complementary methods, notice that the complement of the complement results in
the original value. See the examples below and on the facing page.

There is an alternative method for complementing a 10’s complement number. First,
observe that

1000=999+1
You recall that the 9’s complement was found by subtracting each digit from 9:
9s comp =999 —value
From the previous equation, the 10’s complement can be rewritten as
10’s comp =1000-value=999+1—-value=999 —value+1

or, finally,
10°s comp =9’s comp + 1

This gives a simple alternative method for computing the 10’s complement value: find the
9’s complement, which is easy, and add 1 to the result. Either method gives the same result.
You can use whichever method you find more convenient. This alternative method is usually
easier computationally, especially when working with binary numbers, as you will see.

Addition in 10’s complement is particularly simple. Since there is only a single zero in 10’s
complement, sums that cross the modulus are unaffected. Thus, the carry that results when the
addition crosses the zero point is simply ignored. To add two numbers in 10’s complement,
one simply adds the digits; any carry beyond the specified number of digits is thrown away.
(Actually, in the computer, the carry is saved in a special “carry bit”, just in case it is to be used
to extend the addition to another group of bits for multiple-word additions.) Subtraction is
again performed by inverting the subtrahend and adding.

Find the 10’s complement of 247.

As a reminder, note that the question asks for the 10's complement of 247, not the
10’s complement representation. Since 247 represents a positive number, its 10’s complement
representation is, of course, 247.

The 10’s complement of 247 is

1000 - 247 =753

Since 247 is a positive representation, 753 represents the value —247.

Find the 10’s complement of 17.

As in the 9’s complement work, we always have to be conscious of the number of specified
digits. Since all the work so far has assumed that the numbers contain three digits, let's solve
this problem from that assumption:

1000-017 =983

CHAPTER 5 REPRESENTING NUMERICAL DATA |51

Find the sign and magnitude of the three-digit number with 10’s complement representation:
777
Since the number begins with a 7, it must be negative. Therefore,

1000-777 =223

The sign—magnitude value is —223.

The range of numbers in 10’s complement for three digits can be seen in Figure 5.12.
Of particular interest is the fact that the positive and negative regions are of different size:
there is one negative number, 500, that cannot be represented in the positive region. (The 10’s
complement of 500 is itself.) This peculiarity is a consequence of the fact that the total range of
numbers is even for any even-numbered base, regardless of word size (in this case, 10W). Since
one value is reserved for zero, the number of remaining values to be split between positive and
negative is odd and, thus, could not possibly be equal.

TWO’S COMPLEMENT Two’s complement representation for binary is, of course, similar
to 10’s complement representation for decimal. In binary form, the modulus consists of a base
2 “1” followed by the specified number of 0s. For 16 bits, for example, the modulus is

10000000000000000

As was true for the 10’s complement, the 2’s complement of a number can be found in one
of two ways: either subtract the value from the modulus or find the I’s complement by inverting
every 1 and 0 and adding 1 to the result.

The second method is particularly well suited to implementation in the computer, but you
can use whichever method you find more convenient.

Figure 5.13 shows an 8-bit scale for 2’s complement representation.

Two’s complement addition, like 10’s complement addition in decimal, consists of adding
the two numbers mod <the modulus>. This is particularly simple for the computer, since it
simply means eliminating any 1s that don’t fit into the number of bits in the word. Subtraction
and overflow are handled as we have already discussed.

As in 10’s complement, the range is unevenly divided between positive and negative. The
range for 16 bits, for example, is —32768 < value < 32767.

There are many 2’s complement problems at the end of the chapter for you to practice on.

The use of 2’s complement is much more common in computers than is 1’s complement,
but both methods are in use. The trade-off is made by the designers of a particular computer:
I’'s complement makes it easier to change the sign of a number, but addition requires an extra
end-around carry step. One’s complement has the additional drawback that the algorithm must

FIGURE 5.13

Two’s Complement Representation

10000000 11111111 ,00000000 01111111
=128, =10l 9% 127 5

152 PART TWO DATA IN THE COMPUTER

test for and convert —0 to 0 at the end of each operation. Two’s complement simplifies the
addition operation at the expense of an additional add operation any time the sign change
operation is required.

As a final note, before we conclude our discussion of binary complements, it is useful to
be able to predict approximate sizes of integers that are represented in complementary form
without going through the conversion. A few hints will help:

1. Positive numbers are always represented by themselves. Since they always start with 0,
they are easily identified.

2. Small negative numbers, that is, negative numbers close to 0, have representations
that start with large numbers of 1s. The number —2 in 8-bit 2’s complement, for
example, is represented by

11111110

whereas —128, the largest negative 2’s complement number, is represented by

10000000

This is evident from the scale in Figure 5.13.

3. Since there is only a difference in value of 1 between 1’s and 2’s complement
representations of negative numbers (positive numbers are, of course, identical in
both representations), you can get a quick idea of the value in either representation
simply by inverting all the 1s and Os and approximating the value from the result.

Overflow and Carry Conditions

We noted earlier in this discussion that overflows occur when the result of a calculation does
not fit into the fixed number of bits available for the result. In 2’s complement, an addition or
subtraction overflow occurs when the result overflows into the sign bit. Thus, overflows can
occur only when both operands have the same sign and can be detected by the fact that the sign
of the result is opposite to that of the operands.

Computers provide a flag that allows a programmer to test for an overflow condition. The
overflow flag is set or reset each time a calculation is performed by the computer. In addition,
the computer provides a carry flag that is used to correct for carries and borrows that occur
when large numbers must be separated into parts to perform additions and subtractions. For
example, if the computer has instructions that are capable of adding two 32-bit numbers, it
would be necessary to separate a 64-bit number into two parts, add the least significant part
of each, then add the most significant parts, together with any carry that was generated by the
previous addition. For normal, single-precision 2’s complement addition and subtraction the
carry bit is ignored.

Although overflow and carry procedures operate similarly, they are not quite the same,
and can occur independently of each other. The carry flag is set when the result of an addition
or subtraction exceeds the fixed number of bits allocated, without regard to sign. It is perhaps
easiest to see the difference between overflow and carry conditions with an example. This
example shows each of the four possible outcomes that can result from the addition of two 4-bit
2’s complement numbers.

CHAPTER 5 REPRESENTING NUMERICAL DATA 153

EXAMPLE
+H+(+2) (+4) + (+6)
0100 no overflow, 0100 overflow,
0010 no carry 0110 nocarry

0110 =(+6) theresultiscorrect 1010=(-6) theresultis incorrect

H+(=2) (=4) +(=6)
1100 no overflow, 1100 overflow,
1110 carry 1010 carry
11010 =(=6) ignoring carry, 10110 =(+6) ignoring the carry,
the result is correct the result is incorrect

If an overflow occurs on any but the most significant part of a multiple part addition, it is ignored
(see Exercise 5.13).

Other Bases

Any even-numbered base can be split the same way to represent signed integers in that base.
Either the modulus or the largest-digit value can be used as a mirror for the complementary
representation. Odd bases are more difficult: either the range must be split unevenly to use
the leftmost digit as an indicator, or the second left digit must be used together with the first
to indicate whether the represented number is positive or negative. We will not consider odd
bases any further.

Of particular interest are the corresponding 7’s and 8s complements in octal and 15s
and 16’s complements in hexadecimal. These correspond exactly to 1’s and 2’s complement in
binary, so you can use calculation in octal or hexadecimal as a shorthand for binary.

As an example, consider four-digit hexadecimal as a substitute for 16-bit binary. The
range will be split down the middle, so that numbers starting with 0-7,4 are positive and those
starting with 8—F are negative. But note that hex numbers starting with 8-F all have a binary
equivalent with 1 in the leftmost place, whereas 0-7 all start with 0. Therefore, they conform
exactly to the split in 16-bit binary.

You can carry the rest of the discussion by yourself, determining how to take the
complement, and how to add, from the foregoing discussions. There are practice examples at
the end of the chapter.

Finally, note that since binary-coded decimal is essentially a base 10 form, the use of
complementary representation for BCD would require algorithms that analyze the first digit to
determine the sign and then perform 9’s or 10’s complement procedures. Since the purpose of
BCD representation is usually to simplify the conversion process, it is generally not practical to
use complementary representation for signed integers in BCD.

Summary of Rules for Complementary Numbers

The following points summarize the rules for the representation and manipulation of com-
plementary numbers, both radix and diminished radix, in any even number base. For most
purposes, you will be interested only in 2’s complement and 16’s complement:

154 PART TWO DATA IN THE COMPUTER

1. Remember that the word “complement” is used in two different ways. To
complement a number, or take the complement of a number, means to change its
sign. To find the complementary representation of a number means to translate or
identify the representation of the number just as it is given.

2. Positive numbers are represented the same in complementary form as they would be
in sign-and-magnitude form. These numbers will start with 0, 1, ... N/2-1. For
binary numbers, positive numbers start with 0, negative with 1.

3. To go from negative sign-and-magnitude to complementary form, or to change the
sign of a number, simply subtract each number from the largest number in the base
(diminished radix) or from the value 100. . . , where each zero corresponds to a
number position (radix). Remember that implied zeros must be included in the
procedure. Alternatively, the radix form may be calculated by adding 1 to the
diminished radix form. For 2’s complement, it is usually easiest to invert every digit
and add 1 to the result.

4. To get the sign-and-magnitude representation for negative numbers, use the
procedure in (2) to get the magnitude. The sign will, of course, be negative.
Remember that the word size is fixed; there may be one or more implied Os at the
beginning of a number that mean the number is really positive.

5. To add two numbers, regardless of sign, simply add in the usual way. Carries beyond
the leftmost digit are ignored in radix form, added to the result in diminished radix
form. To subtract, take the complement of the subtrahend and add.

6. If we add two complementary numbers of the same sign and the result is of opposite
sign, the result is incorrect. Overflow has occurred.

5.3 REAL NUMBERS
A Review of Exponential Notation

Real numbers add an additional layer of complexity. Because the number contains a radix
point (decimal in base 10, binary in base 2), the use of complementary arithmetic must be
modified to account for the fractional part of the number. The representation of real numbers
in exponential notation simplifies the problem by separating the number into an integer, with
a separate exponent that places the radix point correctly. As before, we first present the
techniques in base 10, since working with decimal numbers is more familiar to you. Once you
have seen the methods used for the storage and manipulation of floating point numbers, we
will then extend our discussion to the binary number system. This discussion will include the
conversion of floating point numbers between the decimal and binary bases (which requires
some care) and the consideration of floating point formats used in actual computer systems.
Consider the whole number

12345

If we allow the use of exponents, there are many different ways in which we can represent
this number. Without changing anything, this number can be represented as

12345 % 10Y

If we introduce decimals, we can easily create other possible representations. Each of these
alternative representations is created by shifting the decimal point from its original location.

CHAPTER 5 REPRESENTING NUMERICAL DATA |55

Since each single-place shift represents a multiplication or division of the value by the base, we
can decrease or increase the exponent to compensate for the shift. For example, let us write the
number as a decimal fraction with the decimal point at the beginning:

0.12345x 10°

or, as another alternative,

123450000 x 1074

or even,

0.0012345x 10’

Of course, this last representation will be a poor choice if we are limited to five digits of
magnitude,

0.00123x 10’

since we will have sacrificed two digits of precision in exchange for the two zeros at the
beginning of the number which do not contribute anything to the precision of the number.
(You may recall from previous math courses that they are known as insignificant digits.) The
other representations do retain full precision, and any one of these representations would be
theoretically as good as any other. Thus, our choice of representation is somewhat arbitrary
and will be based on more practical considerations.

The way of representing numbers described here is known as exponential notation or,
alternatively, as scientific notation. Using the exponential notation for numbers requires the
specification of four separate components to define the number. These are:

1. The sign of the number (“+”, for our original example)

2. The magnitude of the number, known as the mantissa (12345)
3. The sign of the exponent (“+7)

4. The magnitude of the exponent (3, see below).

Two additional pieces of information are required to complete the picture:

5. The base of the exponent (in this case, 10)
6. The location of the decimal (or other base) radix point.

Both these latter factors are frequently unstated, yet extremely important. In the computer,
for example, the base of the exponent is usually, but not always, specified to be 2. In some
computers, 16 or 10 may be used instead, and it is obviously important to know which is being
used if you ever have to read the numbers in their binary form. The location of the decimal
point (or binary point, if we’re working in base 2) is also an essential piece of information. In
the computer, the binary point is set at a particular location in the number, most commonly
the beginning or the end of the number. Since its location never changes, it is not necessary to
actually store the point. Instead, the location of the binary point is implied.

Knowing the location of the point is, of course, essential. In the example that accompanies
the rules just given, the location of the decimal point was not specified. Reading the data
suggests that the number might be

+12345%x10*°

which, of course, is not correct if we’re still using the number from our original example. The
actual placement of the decimal point should be

12.345%10°

156 PART TWO DATA IN THE COMPUTER

Let us summarize these rules by showing another example, with each component specifically
marked. Assume that the number to be represented is

—0.0000003579

One possible representation of this number is

Sign of mantissa Sign of exponent

N\

~0.35790 x 10°®

Location of

i Base Exponent
decimal point Mantissa P

Floating Point Format

As was the case with integers, floating point numbers will be stored and manipulated in the
computer using a “standard”, predefined format. For practical reasons, a multiple of 8 bits is
usually selected as the word size. This will simplify the manipulation and arithmetic that is
performed with these numbers.

In the case of integers, the entire word is allocated to the magnitude of the integer and its
sign. For floating point numbers, the word must be divided: part of the space is reserved for the
exponent and its sign; the remainder is allocated to the mantissa and its sign. The base of the
exponent and the implied location of the binary point are standardized as part of the format
and, therefore, do not have to be stored at all.

You can understand that the format chosen is somewhat arbitrary, since you have already
seen that there are many different ways to represent a floating point number. Among the
decisions made by the designer of the format are the number of digits to use, the implied
location of the binary or decimal point, the base of the exponent, and the method of handling
the signs for the mantissa and the exponent.

For example, suppose that the standard word consists of space for seven decimal digits and
a sign:

SMMMMMMM
This format would allow the storage of any integer in the range
-9,999,999 < I <+9,999,999

with full, seven-digit precision. Numbers of magnitude larger than 9,999,999 result in overflow.
Numbers of magnitude less than 1 cannot be represented at all, except as 0.
For floating point numbers, we might assign the digits as follows:

SEEMMMMM
Sign of Two digits The remaining

mantissa for the five digits for
exponent the mantissa

In addition we have to specify the implied location for the decimal point.

CHAPTER 5 REPRESENTING NUMERICAL DATA |57

In this example we have “traded” two digits of exponent in exchange for the loss of two
digits of precision. We emphasize that we have not increased the number of values that can be
represented by seven digits. Seven digits can represent exactly 10,000,000 different values, no
matter how they are used. We have simply chosen to use those digits differently—to increase
the expressible range of values by giving up precision throughout the range. If we wish to
increase the precision, one option is to increase the number of digits.

There are other possible trades. We could, for example, increase the precision by another
digit by limiting the exponent to a single digit. This might not be as limiting as it first appears.
Since each increment or decrement of the exponent changes the number by a factor equivalent
to the base (in this case, 10), a fairly substantial range of numbers can be accommodated with
even a single digit, in this case 10° to 10°, or 1 billion to 1.

The sign digit will be used to store the sign of the mantissa. Any of the methods shown earlier
in this chapter for storing the sign and magnitude of integers could be used for the mantissa.
Most commonly, the mantissa is stored using sign-magnitude format. A few computers use
complementary notation.

Notice that we have made no specific provision for the sign of the exponent within the
proposed format. We must therefore use some method that includes the sign of the exponent
within the digits of the exponent itself. One method that you have already seen for doing this
is the complementary representation. (Since the exponent and mantissa are independent of
each other, and are used differently in calculations, there is no reason to assume that the same
representation would be used for both.)

The manipulations used in performing exponential arithmetic allow us to use a simple
method for solving this problem. If we pick a value somewhere in the middle of the possible
values for the exponent, for example, 50 when the exponent can take on values 0-99, and
declare that value to correspond to the exponent 0, then every value lower than that will be
negative and those above will be positive. Figure 5.14 shows the scale for this offset technique.

What we have done is offset, or bias, the value of the exponent by our chosen amount.
Thus, to convert from exponential form to the format used in our example, we add the offset to
the exponent, and store it in that form. Similarly, the stored form can be returned to our usual
exponential notation by subtracting the offset.

This method of storing the exponent is known as excess-N notation, where N is the chosen
midvalue. It is simpler to use for exponents than the complementary form, and appropriate
to the calculations required on exponents. In our example we have used excess-50 notation.
This allows us to store an exponential range of —50 to +49, corresponding to the stored values
00-99. We could, if we wished, pick a different offset value, which would expand our ability to
handle larger numbers at the expense of smaller numbers, or vice versa.

If we assume that the implied decimal point is located at the beginning of the five-digit
mantissa, excess-50 notation allows us a magnitude range of

0.00001 x 107°% < number < 0.99999 x 10**

FIGURE 5.14

Excess-50 Representation

Representation _0O 49,50 99
Exponent being -50 -1|0 49
represented

— ——Increasing value —— +

This is an obviously much larger range than that
possible using integers, and at the same time gives us
the ability to express decimal fractions. In practice, the
range may be slightly more restricted, since many format
designs require that the most significant digit not be 0,
even for very small numbers. In this case, the smallest

158 PART TWO DATA IN THE COMPUTER

FIGURE 5.15

Regions of Overflow and Underflow

~0.99999 x 10%°

l—l

expressible number becomes 0.10000 x 10~>°, not
a great limitation. The word consisting of all Os is
frequently reserved to represent the special value 0.0.
-107% 10% 0.99999 x 10%° If we were to pick a larger (or smaller) value for

Oy the offset, we could skew the range to store smaller

B

Overflow
region

EXAMPLES

T 1 — (or larger) numbers. Generally, values somewhere

Underflow Overflow in the midrange seem to satisfy the majority of

region region users, and there seems little reason to choose any
other offset value.

Notice that, like the integer, it is still possible, although very difficult, to create an overflow
by using a number of magnitude too large to be stored. With floating point numbers, it is also
possible to have underflow, where the number is a decimal fraction of magnitude too small
to be stored. The diagram in Figure 5.15 shows the regions of underflow and overflow for our
example. Note that in the diagram, 0.00001 X 107> is expressed equivalently as 107>°.

There is one more consideration. As you are already aware, the computer is actually capable
of storing only numbers, no signs or decimal points. We have already handled the decimal
point by establishing a fixed, implied point. We must also represent the sign of the number in a
way that takes this limitation into account.

Here are some examples of floating point decimal representations. The format used is that
shown on page 157: a sign, two digits of exponent stored excess-50, and five digits of mantissa.
The value 0 is used to represent a “+” sign; 5 has been arbitrarily chosen to represent a “~” sign,
just as 1 is usually chosen within the computer for the same purpose. The base is, of course, 10;
the implied decimal point is at the beginning of the mantissa. You should look at these examples
carefully to make sure that you understand all the details of the floating point format.

05324657 = 0.24657 x 10° = 246.57
54810000 = —0.10000 x 107 = —0.0010000

(Note that five significant digits are maintained.)

55555555 = —0.55555 x 10° = =55555
04925000 = 0.25000x 107" = 0.025000

Normalization and Formatting of Floating Point Numbers

The number of digits used will be determined by the desired precision of the numbers. To
maximize the precision for a given number of digits, numbers will be stored whenever possible
with no leading zeros. This means that, when necessary, numbers are shifted left by increasing
the exponent until leading zeros are eliminated. This process is called normalization.

Our standard format, then, will consist of a mantissa of fixed, predetermined size with a
decimal point placed at a fixed, predetermined location. The exponent will be adjusted so that
numbers will be stored in this format with no leading zeros.

EXAMPLES

CHAPTER 5 REPRESENTING NUMERICAL DATA 159

Asan example, let us set up a standard format that reflects the storage capabilities suggested
in the previous section. Our format will consist of a sign and five digits, with the decimal point
located at the beginning of the number:

MMMMMx 10FF

There are four steps required to convert any decimal number into this standard format:

1. Provide an exponent of 0 for the number, if an exponent was not already specified as
part of the number.

2. Shift the decimal point left or right by increasing or decreasing the exponent,
respectively, until the decimal point is in the proper position.

3. Shift the decimal point right, if necessary, by decreasing the exponent, until there are
no leading zeros in the mantissa.

4. Correct the precision by adding or discarding digits as necessary to meet the
specification. We discard or round any digits in excess of the specified precision by
eliminating the least significant digits. If the number has fewer than the specified
number of digits, we supply zeros at the end.

Once we have normalized the number and put it into a standard exponential form, we can
perform a fifth step to convert the result into the desired word format. To do this, we change
the exponent into excess-50 notation and place the digits into their correct locations in the
word.

Conversions between integer and floating point format are similar. The integer is treated as
a number with an implied radix point at the end of the number. In the computer, an additional
step may be required to convert the integer between complementary and sign-magnitude
format to make it compatible with floating point format.

Here are some examples of a decimal to floating point format conversion:

Convert the number
246.8035
into our standard format.
1. Adding an exponent makes the number
246.8035x 10"
2. We shift the decimal to the left three places, thereby increasing the exponent by 3:
0.2468035x 10°
3. Since the number is already normalized (no leading zeros), there is no adjustment

required.

4. There are seven digits, so we drop the two least significant digits, and the final
exponential representation is
0.24680 x 10°

5. The exponent is 3, which in excess-50 notation is represented as 53. If we represent a
“+" sign with the digit O, and a “~" sign with the digit 5 (this choice is totally arbitrary,
but we needed to select some digits since the sign itself cannot be stored), the final
stored result becomes

160 PART TWO DATA IN THE COMPUTER

The sign The mantissa
\ ———
05324680

/
Excess-50 exponent
HENE

Assume that the number to be converted is
1255%107°

=y

The number is already in exponential form.

2. We must shift the decimal to the left four places, so the number becomes
0.1255x 10*'
The positive exponent results from adding 4 to the original —3 exponent.
3. The number is normalized, so no additional adjustment is required.
4. A zero is added to provide five digits of precision. The final result in exponential form is

0.12550 x 10*
5. The exponent in excess-50 notation becomes 51, and the result in word format is
05112550

Assume that the number to be converted is

—0.00000075

1. Converting to exponential notation, we have
—0.00000075 x 10°

The decimal point is already in its correct position, so no modification is necessary.

N

3. Normalizing, the number becomes
-0.75x107°
4. And the final exponential result,
~0.75000x107°

5. In our word format, this becomes
54475000

Although the technique is simple and straightforward, it will still require some practice for
you to feel comfortable with it. We suggest that you practice with a friend, inventing numbers
for each other to put into a standard format.

Some students have a bit of difficulty remembering whether to increase or decrease the
exponent when shifting the number left or right. There is a simple method that may help you

CHAPTER 5 REPRESENTING NUMERICAL DATA 161

to remember which way to go: when you shift the decimal to the right, it makes the resulting
number larger. (For example, 1.5 becomes 15.) Thus, the exponent must become smaller to
keep the number the same as it was originally.

A Programming Example

Perhaps representing the steps as a pseudocode procedure will clarify these concepts even
further. The procedure in Figure 5.16 converts numbers in normal decimal format to the
floating point format

SEEMMMMM

The implied decimal point is at the beginning of the mantissa, and the sign is stored as 0
for positive, 5 for negative. The mantissa is stored in sign-magnitude format. The exponent is
stored in excess-50 format. The number 0.0 is treated as a special case, with an all-zero format.

We suggest that you trace through the procedure carefully, until you understand each step.

FIGURE 5.16
A Procedure to Convert Decimal Numbers to Floating Point Format

function ConvertToFloat();
//variables used:
real decimalin; //decimal number to be converted
//components of the output
integer sign, exponent, integermantissa;
float mantissa; //used for normalization
integer floatout; //final form of output
{
if (decimalin == 0.0) floatout = 0;
else {
if (decimalin > 0.0) sign = 0;
else sign = 50000000;
exponent = 50;
StandardizeNumber;
floatout = sign + exponent * 100000 + integermantissa;
b //end else

function StandardizeNumber(); f{
mantissa = abs (mantissa);
//adjust the decimal to fall between 0.1 and 1.0.
while (mantissa >= 1.00) {
mantissa = mantissa / 10.0;
exponent = exponent + 1;
} //end while
while (mantissa < 0.1) {
mantissa = mantissa * 10.0;
exponent = exponent - 1;
b //end while
integermantissa = round (10000.0 * mantissa)
} //end function StandardizeNumber
} //end ConvertToFloat

162 PART TWO DATA IN THE COMPUTER

Floating Point Calculations

EXAMPLE

Floating point arithmetic is obviously more complex than integer arithmetic. First, the exponent
and the mantissa have to be treated separately. Therefore, each has to be extracted from each
number being manipulated.

ADDITION AND SUBTRACTION You recall that in order to add or subtract numbers
that contain decimal fractions, it is necessary that the decimal points line up. When using
exponential notation, it is thus a requirement that the implied decimal point in both numbers
be in the same position; the exponents of both numbers must agree.

The easiest way to align the two numbers is to shift the number with the smaller exponent
to the right a sufficient number of spaces to increase the exponent to match the larger exponent.
This process inserts insignificant zeros at the beginning of the number. Note that this process
protects the precision of the result by maintaining all the digits of the larger number. It is the
least significant digits of the smaller number that will disappear.

Once alignment is complete, addition or subtraction of the mantissas can take place. It is
possible that the addition or subtraction may result in an overflow of the most significant digit.
In this case, the number must be shifted right and the exponent incremented to accommodate
the overflow. Otherwise, the exponent remains unchanged.

It is useful to notice that the exponent can be manipulated directly in its excess form, since
it is the difference in the two exponents that is of interest rather than the value of the exponent
itself. It is thus not necessary to change the exponents to their actual values in order to perform
addition or subtraction.

Add the two floating point numbers

05199520
04967850

Assume that these numbers are formatted using sign-and-magnitude notation for the man-
tissa and excess-50 notation for the exponent. The implied decimal point is at the beginning of
the mantissa, and base 10 is used for the exponent.

Shifting the lower mantissa right two places to align the exponent, the two numbers become

05199520
0510067850

Adding the mantissas, the new mantissa becomes
(1)0019850

We have put the 1 in parentheses to emphasize the fact that it is a carry beyond the original
left position of the mantissa. Therefore, we must again shift the mantissa right one place and
increment the exponent to accommodate this digit:

05210019(850)
Rounding the result to five places of precision, we finally get

05210020

EXAMPLE

EXAMPLE

CHAPTER 5 REPRESENTING NUMERICAL DATA 163

Checking the result,
05199520 = 0.99520 x 10" = 9.9520
04967850 = 0.67850x 107" = 0.06785
10.01985 = 0.1001985 x 10°

which converts to the result that we previously obtained.

MULTIPLICATION AND DIVISION Alignment is not necessary in order to perform
multiplication or division. Exponential numbers are multiplied (or divided) by multiplying
(dividing) the two mantissas and adding (subtracting) the two exponents. The sign is dealt with
separately in the usual way. This procedure is relatively straightforward. There are two special
considerations that must be handled, however:

1. Multiplication or division frequently results in a shifting of the decimal point (e.g.,
0.2 X 0.2 = 0.04) and normalization must be performed to restore the location of the
decimal point and to maintain the precision of the result.

2. We must adjust the excess value of the resulting exponent. Adding two exponents,
each of which contains an excess value, results in adding the excess value to itself, so
the final exponent must be adjusted by subtracting the excess value from the result.
Similarly, when we subtract the exponents, we subtract the excess value from itself,
and we must restore the excess value by adding it to the result.

This is seen easily with an example. Assume that we have two numbers with exponent 3. Each is
represented in excess-50 notation as 53. Adding the two exponents,

53
53

106

We have added the value 50 twice, and so we must subtract it out to get the correct
excess-50 result:

3. The multiplication of two five-digit normalized mantissas yields a ten-digit result. Only
five digits of this result are significant, however. To maintain full, five-digit precision,
we must first normalize and then round the normalized result back to five digits.

Multiply the two numbers

05220000
x04712500

Adding the exponents and subtracting the offset results in a new, excess-50 exponent of
52+47-50=149

164 PART TWO DATA IN THE COMPUTER

Multiplying the two mantissas,
0.20000% 0.12500 = 0.025000000

Normalizing the result by shifting the point one space to the right decreases the exponent by
one, giving a final result
04825000

Checking our work,
05220000 is equivalent to 0.20000 x 102,
04712500 is equivalent to 0.12500x107°

which multiplies out to
0.0250000000% 107"

Normalizing and rounding,
0.0250000000% 107 = 0.25000 x 1072

which corresponds to our previous result.

Floating Point in the Computer

EXAMPLES

The techniques discussed in the previous section can be applied directly to the storage of
floating point numbers in the computer simply by replacing the digits with bits. Typically, 4, 8,
or 16 bytes are used to represent a floating point number. In fact, the few differences that do
exist result from “tricks” that can be played when “0” and “1” are the only options.

A typical floating point format might look like the diagram in Figure 5.17. In this example,
32 bits (4 bytes) are used to provide a range of approximately 107# to 10738, With 8 bits, we can
provide 256 levels of exponent, so it makes sense to store the exponent in excess-128 notation.

Here are some examples of binary floating point format using this notation. Again we have
assumed that the binary point is at the start of the mantissa. The base of the exponent is 2.

0 10000001 11001100000000000000000 =
+11001100000000000000000

1 10000100 10000111100000000000000 =
—-10000111100000000000000

1 01111110 10101010101010101010101 =
—-0.0010101010101010101010101

Thanks to the nature of the binary system, the 23 bits of mantissa can be stretched to
provide 24 bits of precision, which corresponds to approximately seven decimal digits of
precision. Since the leading bit of the mantissa must be “1” if the number is normalized, there
is no need to store the most significant bit explicitly. Instead, the leading bit can be treated
implicitly, similar to the binary point.

CHAPTER 5 REPRESENTING NUMERICAL DATA 165

FIGURE 5.17 There are three potential disadvantages to using this
Typical Floating Point Format tri“ck,.’ First, the assumption that the leading bit is always
a “1” means that we cannot store numbers too small to
bit—>0_ 1 89 31 be normalized, which slightly limits the small end of the
range. Second, any format that may require a “0” in the
S [E----- E[M=====m=mmmmmmme M most significant bit for any reason cannot use this method.
msb Isb Finally, this method requires that we provide a separate
Sign of Mantissa way to store the number 0.0, since the requirement that the
mantissa leading bit be a “1” makes a mantissa of 0.0 an impossibility!
Excess-128 Since the additional bit doubles the available precision
exponent of the mantissa in all numbers, the slightly narrowed range
is usually considered an acceptable trade-off. The number
0.0 is handled by selecting a particular 32-bit word and
assigning it the value 0.0. Twenty-four bits of mantissa corresponds to approximately seven

decimal digits of precision.

Don’t forget that the base and implied binary point must also be specified.

There are many variations, providing different degrees of precision and exponential range,
but the basic techniques for handling floating point numbers in the computer are identical to
those that we have already discussed in the previous sections of this chapter.

IEEE 754 STANDARD Most current computers conform to IEEE 754 standard formats.
The IEEE Computer Society is a society of computer professionals. Among its tasks, the
IEEE Computer Society develops technical standards for use by the industry. The IEEE 754
standard defines formats for 16-, 32-, 64-, and 128-bit floating point arithmetic with a binary
exponent, as well as 64- and 128-bit formats using a decimal exponent. Instructions built into
modern computers utilize the standard to perform floating point arithmetic, normalization,
and conversion between integer and floating point representations internally under program
command. The standard also facilitates the portability of programs between different computers
that support the standard.
Typical of the standard is the 32-bit binary format shown
in Figure 5.18. The standard defines a format consisting of
FIGURE 5.18 32 bits, divided into a sign, 8 bits of exponent, and 23 bits of
|EEE Standard 32-bit Floating Point Value mantissa. Since normalized numbers must always start with a
Definition 1, the leading bit is not st.ored? but '1s 1nstea4 implied; this bit is
located to the left of the implied binary point. Thus, numbers
Exponent Mantissa Value are normalized to the form
0 +0 0 IMMMMMMM ...
0 not0 & 27 x o.M The exponent is formatted using excess-127 notation,
1-254 any + 28127 % 1M . e ~ ~
with an implied base of 2. This would theoretically allow
258 =0 t o an exponent range of 27127 to 2!28, In actuality, the stored
— not 0 NaN (Not a Number) exponent values 0 and 255 are used to indicate special values,

and the exponential range of this format is thus restricted to

2—126 to 2127

166 PART TWO DATA IN THE COMPUTER

The number 0.0 is defined by a mantissa of 0 together with the special exponential value 0.
The IEEE standard also allows the values +co0, very small denormalized numbers, and various
other special conditions. Overall, the standard allows approximately seven significant decimal
digits and an approximate value range of 10~ to 10°8.

The 64-bit standard supports approximately sixteen significant decimal digits and a range
of more than 1073% to 10°%. The 128-bit standard supports thirty-four decimal digits and a
range of more than 107%% to 10%°%°! The 16-bit format is extremely limited in both range and
precision, but is useful for simple graphics applications.

Conversion hetween Base 10 and Base 2

EXAMPLE

On occasion, you may find it useful to be able to convert real numbers between decimal
and binary representation. This task must be done carefully. There are two major areas that
sometimes cause students (and others!) difficulty:

1. The whole and fractional parts of numbers with an embedded decimal or binary point
must be converted separately.

2. Numbers in exponential form must be reduced to a pure decimal or binary mixed
number or fraction before the conversion can be performed.

We dealt with the first issue in Section 3.8. Recall, from that section, that when converting
from one base to another, one must deal with the different multipliers associated with each
successive digit. To the left of the radix point, the multipliers are integer, and there is a direct
relationship between the different bases. To the right of the point, the multipliers are fractional,
and there may or may not be a rational relationship between the multipliers in the different
bases.

The solution is to convert each side of the radix point separately using the techniques
discussed in Chapter 3. As an alternative, you can multiply the entire number in one base
by whatever number is required to make the entire number an integer, and then convert
the number in integer form. When this is complete, however, you must divide the converted
result by that same multiplier in the new base. It is not correct to simply shift the radix point
back, since each shift has a different value in the new base! Thus, if you shift a binary point
right by seven places, you have effectively multiplied the number by 128, and you must divide
the converted number by 128 in the new base. This latter method is best illustrated with an
example.

Convert the decimal number 253.75 to binary floating point form.

Begin by multiplying the number by 100 to form the integer value 25375. This is converted
to its binary equivalent 110001100011111, or 1.10001100011111 x 2%*. The IEEE 754
floating point equivalent representation for this integer would be

0] 10001101 |10001100011111

Sign , o ,
Excess-127 Mantissa (initial 1 is dropped)

Exponent =127 + 14

CHAPTER 5 REPRESENTING NUMERICAL DATA 167

One more step is required to complete the conversion. The result must be divided by the
binary floating point equivalent of 100,, to restore the original decimal value. 100,, converts
to binary 1100100,, or 010000101100100 in IEEE 754 form. The last step is to divide
the original result by this value, using floating point division. We will omit this step, as it is
both difficult and irrelevant to this discussion. Although this method looks more difficult than
converting the number directly as a mixed fraction, it is sometimes easier to implement within
the computer.

The problem with converting floating point numbers expressed in exponential notation is
essentially the same problem; however, the difficulty is more serious because it looks as though it
should be possible to convert a number, keeping the same exponent, and this is of course not true.

If you always remember that the exponent actually represents a multiplier of value B¢,
where B is the base and e is the actual exponent, then you will be less tempted to make this
mistake. Obviously it is incorrect to assume that this multiplier would have the same value for
a different B.

Instead, it is necessary to follow one of the two solutions just outlined: either reduce the
exponential notation to a standard mixed fraction and convert each side separately, or use the
value B¢ as a multiplier to be divided in the new base at the end of the conversion.

5.4 PROGRAMMING CONSIDERATIONS

In this chapter, you have been exposed to a number of different ways of storing and manipulating
numeric values. It should be of interest to you to consider how a programmer might make an
intelligent choice between the many different options available.

The trade-offs between integer and floating point are clear. Integer calculations are easier
for the computer to perform, have the potential to provide higher precision, and are obviously
much faster to execute. Integer values usually take up fewer storage locations. As you will see
later, it takes a certain amount of time to access each storage location; thus, the use of fewer
storage locations saves time, as well as space.

Clearly, the use of integer arithmetic is preferred whenever possible. Most modern high-
level languages provide two or more different integer word sizes, usually at least a “short” integer
of 16 bits and a “long” integer of 64 bits. Now that you understand the range limitations of
integer arithmetic, you are in a position to determine whether a particular variable or constant
can use the integer format, and whether special error checking may be required in your program.

The longer integer formats may require multiple-word calculation algorithms, and as such
are slower to execute than short formats. The short format is preferable when it is sufficient for
the values that you expect. It may also be necessary to consider the limitations of other systems
that the same program may have to operate on.

The use of real numbers is indicated whenever the variable or constant has a fractional
part, whenever the number can take on very large or very small values that are outside of integer
range, or whenever the required precision exceeds the number of different values that are
possible in the longest integer format available to you. (As you’ve seen, most systems provide a
floating point format of very high precision.) Of course, it is sometimes possible to multiply a
mixed number by some multiplier to make it integer, perform the calculations in integer form,

168 PART TWO DATA IN THE COMPUTER

and then divide back. If the number of calculations is large, and the numbers can be adjusted
to operate as integers, this can be a worthwhile option to consider, especially for the gain in
execution speed.

As with integers, it is desirable to use the real number with the least precision that is
sufficient for the task. Higher precision formats require more storage and usually must use
multiple-word floating point or packed decimal (BCD) calculation algorithms that are much
slower than the lower precision formats.

Recall that decimal fractions may convert into irrational binary fractions. For those
languages that provide the capability, the use of packed decimals represents an attractive
alternative to floating point for those business applications where exact calculations involving
mixed decimal numbers are required.

SUMMARY AND REVIEW

Computers store all data as binary numbers. There are a number of different ways to format
these binary numbers to represent the various types of numbers required for computer
processing. Conceptually, the simplest formats are sign-and-magnitude and binary-coded
decimal. Although BCD is sometimes used for business programming, both of these formatting
methods have shortcomings in terms of number manipulation and calculation.

Unsigned integers can of course be directly represented by their binary equivalents.
Complementary arithmetic is usually the method of choice for signed integers. Nine’s decimal
complement, and its binary equivalent 1’s complement, split the number range in two, using the
upper half of the range to represent negative numbers. Positive numbers represent themselves.
These representations are convenient and especially simple to use, since the complement is
found by subtracting the number from a row of the largest digits in the base. Binary complements
may be found by simply inverting the 0s and 1s in the number. Calculations are a bit more
difficult due to the existence of both positive and negative values for zero, but end-around carry
addition may be used for this purpose.

Ten’s complement and 2’s complement split the range similarly, but use a single value 0
for zero. This requires the use of a complement based on a value one larger than the largest
number in the base for the given number of digits. This “base value” will always consist of
a 1 followed by N zeros, where N is the number of digits being used. Complementation may
be taken by inverting the number as before, and adding 1 to the result, or by subtracting the
number from the base value. Calculation is straightforward, using modulo arithmetic. Most
computer arithmetic instructions are based on 2’s complement arithmetic.

Both I's and 2’s complement representations have the additional convenience that the sign
of a number may be readily identified, since a negative number always begins with a “1”. Small
negative numbers have large values, and vice versa. Complementary representations for other
even-numbered bases can be built similarly.

Numbers with a fractional part and numbers that are too large to fit within the constraints
of the integer data capacity are stored and manipulated in the computer as real, or floating point,
numbers. In effect, there is a trade-off between accuracy and range of acceptable numbers.

The usual floating point number format consists of a sign bit, an exponent, and a mantissa.
The sign and value of the exponent are usually represented in an excess-N format. The base of
the exponent is 2 for most systems, but some systems use a different base for the exponent. The
radix point is implied. When possible, the mantissa is normalized.

CHAPTER 5 REPRESENTING NUMERICAL DATA 169

In some systems, the leading bit is also implied, since normalization requires that the
leading bit of the mantissa be a 1.

Floating point numbers are subject to overflow or underflow, where the exponent of the
number is too large or too small to represent, respectively. Zero is treated as a special case.
Sometimes there is also a special representation for co.

Addition and subtraction require that the exponents in each number be equal. This is
equivalent to lining up the decimal point in conventional decimal arithmetic. In multiplication
and division, the exponents are added or subtracted, respectively. Special care must be taken
with exponents that are expressed in excess-N notation.

Most computers conform to the format defined in IEEE Standard 754. Other formats in
use include extra-precision formats and legacy formats.

FOR FURTHER READING

The representation and manipulation of integers and real numbers within the computer are
discussed in most computer architecture texts. A particularly effective discussion is found in
Stallings [STAL09]. This discussion presents detailed algorithms and hardware implementa-
tions for the various integer operations. A simpler discussion, with many examples, is found in
Lipschutz [LIPS82]. More comprehensive treatments of computer arithmetic can be found in
the two-volume collection of papers edited by Swartzlander [SWAR90] and in various textbooks
on the subject, including those by Kulisch and Maranker [KUL81] and Spaniol [SPANS1].
A classical reference on computer algorithms, which includes a substantial discussion on
computer arithmetic, is the book by Knuth [KNUT97]. One additional article of interest is the
article titled “What Every Computer Scientist Should Know About Floating-Point Arithmetic”
[GOLD91].

KEY CONCEPTS AND TERMS

binary-coded decimal (BCD) integer numbers real numbers

carry flag integer representation sign-and-magnitude
complement inversion representation
end-around carry mantissa signed integers
excess-N notation normalization 2’s complement
exponent I’s complement representation
exponential notation representation underflow

floating point format overflow unsigned integer
floating point numbers radix point wraparound

READING REVIEW QUESTIONS

5.1 Whatis the largest unsigned integer that can be stored as a 16-bit number?

5.2 What does BCD stand for? Explain at least two important disadvantages of storing
numbers in BCD format. Offer one advantage for using a BCD format for storing
numbers.

170 PART TWO DATA IN THE COMPUTER

EXERCISES

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.1

Give an example that shows the disadvantage of using a sign-and-magnitude format
for manipulating signed integers.

What is a quick way to identify negative numbers when using 1’s complement
arithmetic?

How do you change the sign of an integer stored in 1’s complement form? As an
example, the 8-bit representation for the value 19 is 00010011,. What is the 1’s
complement representation for —19?

How do you identify an overflow condition when you add two numbers in 1’s
complement form?

Explain the procedure for adding two numbers in 1’s complement form. As an example,
convert +38 and —24 to 8-bit 1’s complement form and add them. Convert your result
back to decimal and confirm that your answer is correct.

If you see a 2’s complement number whose value is 11111110,, what rough estimate
can you make about the number?

How do you change the sign of an integer stored in 2’s complement form? As an
example, the 8-bit representation for the value 19 is 00010011,. What is the 2’s
complement representation for —19?

How do you detect overflow when adding two numbers in 2’s complement form?
Explain the procedure for adding two numbers in 2’s complement form. As an example,
convert 438 and —24 to 8-bit 2’s complement form and add them. Convert your result
back to decimal and confirm that your answer is correct.

What is the relationship between complementary representation and sign-and-
magnitude representation for positive numbers?

Real numbers in a computer (or float, if you prefer), are most often represented in
exponential notation. Four separate components are needed to represent numbers in
this form. Identify each component in the number 1.2345 X 10~>. What is the advantage
of this type of representation, rather than storing the number as 0.000012345?

To represent a number in exponential form in the computer, two additional assump-
tions must be made about the number. What are those assumptions?

Exponents are normally stored in excess-N notation. Explain excess-N notation. If a
number is stored in excess-31 notation and the actual exponent is 2712, what value is
stored in the computer for the exponent?

When adding two floating point numbers, what must be true for the exponents of the
two numbers?

The IEEE provides a standard 32-bit format for floating point numbers. The format
for a number is specified as +1.M x 2F =127, Explain each part of this format.

Data was stored in the Digital PDP-9 computer using six-digit octal notation. Negative

numbers were stored in 8’s complement form.

a. How many bits does six-digit octal represent? Show that 8’s complement octal
and 2’s complement binary are exactly equivalent.

5.2

5.3

54

5.5

5.6

CHAPTER 5 REPRESENTING NUMERICAL DATA |71

b. What is the largest positive octal number that can be stored in this machine?

o

What does the number in (b) correspond to in decimal?

d. What s the largest possible negative number? Give your answer in both octal and
decimal forms.

a. Find the 16-bit 2’s complementary binary representation for the decimal number
1987.

b. Find the 16-bit 2’s complementary binary representation for the decimal number
—1987.

c. From your answer in (b), find the six-digit 16’s complement hexadecimal
representation for the decimal number —1987.

Data is stored in the R4-D4 computer using eight-digit base 4 notation. Negative
numbers are stored using 4’s complement.
a. What is the sign-and-magnitude value of the following 4’s complement number?

33333210,

Leave your answer in base 4.

b. Add the following eight-digit 4’s complement numbers. Then, show the sign-
and-magnitude values (in base 4) for each of the input numbers and for your
result.

13220231
120000

Convert the decimal number —19575 to a 15-bit 2’s complement binary number. What
happens when you perform this conversion? After the conversion is complete, what
values (base 2 and base 10) does the computer think it has?

What are the 16-bit 1’s and 2’s complements of the following binary numbers?
a. 10000

b. 100111100001001
¢c. 0100111000100100

Add the following decimal numbers by converting each to five-digit 10’s complemen-
tary form, adding, and converting back to sign and magnitude.

a.
24379
5098
b.
24379
-5098
c.
—24379

5098

172 PART TWO DATA IN THE COMPUTER

5.7 Subtract the second number from the first by taking the six-digit 10’s complement
of the second number and adding. Convert the result back to sign and magnitude if

necessary.
a.
37968
(=) 24109
b.
37968
(=)—70925
c.
— 10255
(=) —7586

5.8 The following decimal numbers are already in six-digit 10’s complementary form.
Add the numbers. Convert each number and your result to sign and magnitude, and
confirm your results.

* 1250
772950
b.
899211
999998
C.
970000
30000

5.9 Add the following two 12-bit binary 2’s complement numbers. Then, convert each
number to decimal and check the results.

a.
11001101101
111010111011

b.
101011001100
111111111100

5.10 Given the positive number 2468, what is the largest positive digit that you can add that
will not cause overflow in a four-digit decimal, 10’s complement number system?

5.11 In 12’s complement base 12, how would you know if a number is positive or negative?

5.12 Most computers provide separate instructions for performing unsigned additions and
complementary additions. Show that for unsigned additions, carry and overflow are
the same. (Hint: Consider the definition of overflow.)

5.13

5.14

5.15

5.16

5.17

5.18

CHAPTER 5 REPRESENTING NUMERICAL DATA 173

Consider a machine that performs calculations 4 bits at a time. Eight-bit 2’s complement
numbers can be added by adding the four least significant bits, followed by the four
most significant bits. The leftmost bit is used for the sign, as usual. With 8 bits for each
number, add —4 and —6, using 4-bit binary 2’s complement arithmetic. Did overflow
occur? Did carry occur? Verify your numerical result.

Add the following 16’s complement hexadecimal numbers
4F09
D3A5
Is your result positive or negative? How do you know? Convert each number to binary

and add the binary numbers. Convert the result back to hexadecimal. Is the result the
same?

In the Pink-Lemon-8 computer, real numbers are stored in the format
SEEMMM Mg

where all the digits, including the exponent, are in octal. The exponent is stored
excess-40g. The mantissa is stored as sign and magnitude, where the sign is 0 for a
positive number and 4 for a negative number. The implied octal point is at the end of
the mantissa: M M M M.

Consider the real number stored in this format as

4366621

a. What real number is being represented? Leave your answer in octal.

b. Convert your answer in part (a) to decimal. You may leave your answer in
fractional form if you wish.

c. What does changing the original exponent from 36 to 37 do to the magnitude of
the number? (Stating that it moves the octal point one place to the right or left is
not a sufficient answer.) What would be the new magnitude in decimal?

a. Convert the decimal number 19557 to floating point. Use the format

SEEMMM M. All digits are decimal. The exponent is stored excess-40 (not

excess-50). The implied decimal point is at the beginning of the mantissa. The

sign is 1 for a positive number, 7 for a negative number. Hint: Note carefully the
number of digits in the mantissa!

What is the range of numbers that can be stored in this format?

What is the floating point representation for —19557?

What is the six-digit 10’s complement representation for —19557?

What is the floating point representation for 0.0000019557?

Convert the number 123.57 X 10'° to the format SEEM M M M, with the exponent

stored excess-49. The implied decimal point is to the right of the first mantissa

digit.

& o0 T

b. What is the smallest number you can use with this format before underflow
occurs?

Real numbers in the R4-D4 computer are stored in the format

SEEMMMMM,

174 PART TWO DATA IN THE COMPUTER

where all the digits, including the exponent, are in base 4. The mantissa is stored as
sign and magnitude, where the sign is 0 for a positive number and 3 for a negative
number. The implied quadrinary (base 4!) point is at the beginning of the mantissa:

MMMMM

a. If you know that the exponent is stored in an excess-something format, what
would be a good choice of value for “something”?

b. Convert the real, decimal number 16.5 to base 4, and show its representation in
the format of the R4-D4 computer. Use the excess value that you determined in
part (a).

5.19 Convert the following binary and hexadecimal numbers to floating point format.

Assume a binary format consisting of a sign bit (negative = 1), a base 2, 8-bit, excess-

128 exponent, and 23 bits of mantissa, with the implied binary point to the right of the

first bit of the mantissa.

a. 110110.011011,

—1.1111001,
—4F7F, ¢
0.00000000111111,
0.1100 x 236
0.1100 x 2736

5.20 For the format used in Exercise 5.19, what decimal number is represented by each of
the following numbers in floating point format?
a. C2F00000,

b. 3C540000,
521 Represent the decimal number 171.625 in 32-bit IEEE 754 format.
5.22 Show the packed decimal format for the decimal number —129975.

5.23 The following decimal numbers are stored in excess-50 floating point format, with the
decimal point to the left of the first mantissa digit. Add them. A 9 is used as a negative
sign. Present your result in standard decimal sign-and-magnitude notation.

-0 N T

a.
05225731
04833300
b.
05012500
95325750

5.24 Using the same notation as in Exercise 5.23, multiply the following numbers. Present
your answer in standard decimal notation.
a.
05452500
04822200

CHAPTER 5 REPRESENTING NUMERICAL DATA |75

94650000
94450000
5.25 Using the same format found in Exercise 5.19, add and multiply the following floating

point numbers. Present your answers in both floating point and sign-and-magnitude
formats.

3DEC0000, ¢
C24C0000,,

5.26 Write a program in your favorite language that converts numbers represented in the

decimal floating point format
SEEMMMMM

into 10’s complementary integer form. Round any fractional decimal value.
5.27 What base is the student in the chapter cartoon using to perform his addition?

| THREE

architecture. The hardware architecture establishes the CPU instruction set and the type
of operations that are permitted. It defines the passage of data from one part of the
computer to another. It establishes the ground rules for input and output operations.

The next six chapters introduce the fundamental architectural concepts that define
computer operations and hardware organization. We will attempt to convey the basic simplicity
and elegance of computer instruction sets. We will expose the inner workings of computer
peripherals and show how the various pieces fit together to create a system.

For the past sixty plus years, and for the foreseeable future, basic computer architecture
conforms to the general principles established by von Neumann that were introduced in
Chapter 1. Chapter 6 introduces the principles of von Neumann architecture using a classic
model of the computer called the Little Man Computer as an example. The Little Man Computer
introduces the stored program concept, demonstrates the role of memory, describes the essential
instructions that make up a computer instruction set, and explains the simple set of operations
that implement an instruction set. We also show how the basic instructions of a computer work
together to make up a program.

In Chapter 7 we extend the ideas introduced in Chapter 6 to the operation of a real
computer. We consider the basic components of a CPU, explain the concept of a bus, discuss
the operation of memory, and show how each of these architectural elements fit together to
create a computer system. We also show the individual operations that make up the execution
of instructions, the so-called fetch-execute cycle. We also discuss the formats for instruction
words and present a general classification of the instruction set.

In Chapter 8 we consider the variations that distinguish one CPU architecture from
another. The major topics in Chapter 8 deal with CPU design and organization. We present
different CPU models, and compare them. We investigate variations on the traditional CPU
organization and explain the benefits to be gained. We look at improvements to memory and,
especially, the use of cache memory.

r I Y he basic operation of a computer, regardless of size or type, is defined by its hardware

COMPUTER ARCHITECTURE
AND HARDWARE OPERATION

In Chapter 9 we shift our focus to I/O. Chapter 9 introduces the various methods that are
used to move data between computer peripherals and memory, including the use of interrupts
and direct access paths between peripherals and memory as efficient ways to perform I/O with
minimal impact on the processing unit. We also introduce the concept of I/O modules as an
interface between the various I/O devices and the CPU and memory components.

Chapter 10 provides explanations of the requirements and operation of various I/O
peripheral components, including flash memory, disks, displays, tapes, printers, and other
components. This chapter also presents a hierarchical model of storage.

Chapter 11 integrates the major ideas of the previous five chapters and then explores
additional features and innovative techniques at the system level that have expanded the
performance and capability of computers. While these techniques are substantial extensions to
the basic design, they do not change the fundamental concepts and operating methods that are
discussed in the earlier chapters. Beyond the discussion of basic computer system hardware
architecture, the most important topics in this chapter are the modern buses and I/O channels
that are used to expand I/O capability, and the interconnection of computer systems into
clusters to increase computing power and improve reliability.

There are four additional supplementary chapters on the Web at www.wiley.com
/college/Englander. Three of these provide additional insight into material presented in Part 3.
Supplementary Chapter 1 offers an overview of Boolean algebra and the digital logic circuits
that are used to implement CPU hardware circuits. Supplementary Chapter 2 illustrates many of
the previous concepts with case studies of three important current systems, representing three
different approaches to computer design. Supplementary Chapter 3 expands on the discussion
of CPU-addressing techniques that is touched only briefly in Chapter 8.

177

http://www.wiley.com/college/Englander

CHAPTER 6

THE LITTLE MAN COMPUTER

SRATZIN i I (e
W Y roTiCo
! n"l IJ\? ST
. —_—
lh}' e

Used by permission of The Times Colonist, Victoria, B.C., Canada

6.0 INTRODUCTION

The power of a computer does not arise from complexity. Instead, the computer has the
ability to perform simple operations at an extremely high rate of speed. These operations
can be combined to provide the computer capabilities that you are familiar with.

Consistent with thisidea, the actual design of the computer is also simple, as you will see.

(The beauty of the design is that these simple operations can be used to solve extremely
complex problems. The programmer’s challenge, of course, is to produce the exact sequence
of operations to perform a particular task correctly under all possible circumstances, since
any error in selection or sequence of operations will result in a “buggy” program. With the
large number of instructions required by modern programs, it is not surprising that few of
today’s programs are truly bug-free.)

In this chapter, we will begin to explore the operations that the computer is capable
of performing and look at how those operations work together to provide the computer
with its power. To simplify our exploration, we will begin by introducing a model of the
computer; a model that operates in a very similar way to the real computer but that is easier
to understand instinctively. (Although the real computer uses binary numbers, the model
uses decimal numbers for ease of understanding.)

The model that we will use is called the Little Man Computer (LMC). The original
LMC was created by Dr. Stuart Madnick at MIT in 1965. In 1979, Dr. Madnick produced a
new version of the LMC, with a slightly modified instruction set; the later version is used
in this book. It is a strength of the original model that it operates so similarly to a real
computer that it is still an accurate representation of the way that computers work more
than forty-five years after its introduction.

Using this model we will introduce a simplified, but typical, set of instructions that a
computer can perform. We will show you exactly how these instructions are executed in
the Little Man Computer. Then we will demonstrate how these instructions are combined
to form programs.

6.1 LAYOUT OF THE LITTLE MAN COMPUTER

We begin by describing the physical layout of the Little Man Computer. A diagram for the
Little Man Computer appears in Figure 6.1.

The LMC consists of a walled mailroom, represented by the dark line surrounding the
model in the diagram. Inside the mailroom are several objects:

First, there is a series of one hundred mailboxes, each numbered with an address
ranging from 00 to 99. This numbering system is chosen because each mailbox address can
be represented by two digits, and this is the maximum number of mailboxes that can be
represented by two decimal digits.

Each mailbox is designed to hold a single slip of paper, upon which is written a
three-digit decimal number. Note carefully that the contents of a mailbox are not the same
as the address of a mailbox. This idea is consistent with what you already know about your
post office box: your post office box number identifies where you go to pick up your mail,
but this has no relationship to the actual contents of the letters that you find in that mailbox.

179

180

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.1
The Little Man Computer
Calculator
Mailboxes
T oo500] #]
HEEB 011199
HEEE 02]500
oEEd ! 231399
P v
In
Basket 52 A1
\—/ %6
97
98
_—j 99(123
Out/
Basket |

/ Little man

Reset button In§truction
location counter

Next, there is a calculator. . . basically a simple pocket calculator. The calculator can be
used to enter and temporarily hold numbers, and also to add and subtract. The display on the
calculator is three digits wide. At least for the purposes of this discussion, there is no provision
made for negative numbers, or for numbers larger than three digits. As you are already aware,
10’s complement arithmetic could be used for this purpose, but that is not of interest here.

Third, there is a two-digit hand counter, the type that you click to increment the count.
The reset button for the hand counter is located outside the mailroom. (There is also a set of
thumbwheels that the Little Man will be able to use to modify the value in the counter directly.
These will be used for the extended instructions described in Section 6.4.) We will call the hand
counter an instruction location counter.

Finally, there is the Little Man. It will be his role to perform certain tasks that will be defined
shortly.

Other than the reset button on the hand counter, the only interactions between the Little
Man Computer and the outside environment are through an in basket and an out basket.

A user outside of the mailroom can communicate with the Little Man in the mailroom by
putting a slip of paper with a three-digit number on it into the in basket, to be read by the Little
Man at the appropriate time. Similarly, the Little Man can write a three-digit number on a slip
of paper and leave it in the out basket, where it can be retrieved by the user.

Note that all communication between the Little Man Computer and the outside world
takes place using three-digit numbers. Except for the reset button on the instruction location

CHAPTER 6 THE LITTLE MAN COMPUTER 181

counter, no other form of communication is possible. The same is true within the mailroom: all
instructions to the Little Man must be conveyed as three-digit numbers.

6.2 OPERATION OF THE LMC

We would like the Little Man to do some useful work. For this purpose, we have invented a small
group of instructions that he can perform. Each instruction will consist of a single digit. We
will use the first digit of a three-digit number to tell the Little Man which operation to perform.
In some cases, the operation will require the Little Man to use a particular mailbox to store or
retrieve data (in the form of three-digit numbers, of course!). Since the instruction only requires
one digit, we can use the other two digits in a three-digit number to indicate the appropriate
mailbox address to be used as a part of the instruction. Thus, using the three digits on a slip of
paper, we can describe an instruction to the Little Man according to the following diagram:

VRN

instruction | mailbox address

The instruction part of the three-digit code is also known as an “operation code”, or op
code for short. The op code number assigned to a particular instruction is arbitrary, selected
by the computer designer based on various architectural and implementation factors. The op
codes used by the author conform to the 1979 version of the Little Man Computer model.

Now let’s define some instructions for the Little Man to perform:

LOAD instruction—op code 5
The Little Man walks over to the mailbox address specified in the instruction. He
reads the three-digit number located in that mailbox, and then walks over to the
calculator and punches that number into the calculator. The three-digit number in
the mailbox is left unchanged, but of course the original number in the calculator is
replaced by the new number.

STORE instruction—op code 3
This instruction is the reverse of the LoaD instruction. The Little Man walks over to
the calculator and reads the number there. He writes that number on a slip of paper
and puts it in the mailbox whose address was specified as the address part of the
instruction. The number in the calculator is unchanged; the original number in the
mailbox is replaced with the new value.

ADD instruction—op code 1
This instruction is very similar to the LoAD instruction. The Little Man walks over to
the mailbox address specified in the instruction. He reads the three-digit number
located in the mailbox and then walks over to the calculator and adds it to the number
already in the calculator. The number in the mailbox is unchanged.

SUBTRACT instruction—op code 2
This instruction is the same as the ApD instruction, except that the Little Man subtracts
the mailbox value from the value in the calculator. The result of a subtraction can
leave a negative value in the calculator. Chapter 5 discussed the use of complements to

182 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

implement negative values, but for simplicity, the LMC model ignores this solution.
For the purposes of our LMC model, we will simply assume that the calculator holds
and handles negative values correctly, and provides a minus sign as a flag to indicate
that the value is negative. The Little Man cannot handle negative numbers outside of
the calculator, however, because there is no provision in the model for storing the
negative sign within the constraint of the three-digit number system used.

INPUT instruction (or read, if you prefer) —op code 9, “address” 01
The Little Man walks over to the in basket and picks up the slip of paper in the basket.
He then walks over to the calculator and punches it into the calculator. The number is
no longer in the in basket, and the original calculator value has been replaced by the
new number. If there are multiple slips of paper in the basket, the Little Man picks
them up in the order in which they were submitted, but each vpUT instruction
handles only a single slip of paper; other input values must await the execution of
subsequent INPUT instructions. Some authors use the concept of a conveyor belt in
place of the in basket, to emphasize this point.

OUTPUT instruction (or print)—op code 9, “address” 02
The Little Man walks over to the calculator and writes down the number that he sees
there on a slip of paper. He then walks over to the out basket and places the slip of
paper there for the user outside the mailroom to retrieve. The original number in the
calculator is unchanged. Each outpurt instruction places a single slip of paper in the
out basket. Multiple outputs will require the use of multiple outpuT instructions.

Note that the wpuT and ouTPUT instructions do not use any mailboxes during execution,
since the procedure for each only involves the transfer of data between an in or out basket
and the calculator. Because this is true, the address part of the instruction can be used to
extend the capability of the instruction set, by using the same op code with different “address”
values to create a number of different instructions. In the LMC, 901 is the code for an mpuT
instruction, while 902 is used for an ouTpUT instruction. In a real computer, for example, the
instruction address might be used to specify the particular I/O device to be used for input or
output.

COFFEE BREAK (or HALT) instruction—op code 0
The Little Man takes a rest. The Little Man will ignore the address portion of the
instruction.

The instructions that we have defined so far fall into four categories:

B instructions that move data from one part of the LMC to another (LOAD, STORE)
B instructions that perform simple arithmetic (ADD, SUBTRACT)

B instructions that perform input and output (INPUT, OUTPUT)

B instructions that control the machine (COFFEE BREAK).

This is enough for now. We will discuss instructions 6, 7, and 8 later in this chapter.

6.3 A SIMPLE PROGRAM

Now let’s see how we can combine these instructions into a program to have the Little Man do
some useful work.

CHAPTER 6 THE LITTLE MAN COMPUTER 183

Before we do this, we need to store the instructions somewhere, and we need a method to
tell the Little Man where to find the particular instruction that he is supposed to perform at a
given time.

Without discussing how they got there, for now we will assume that the instructions are
stored in the mailboxes, starting at mailbox number 00. The Little Man will perform instructions
by looking at the value in the instruction location counter and executing the instruction found
in the mailbox whose address has that value. Each time the Little Man completes an instruction,
he will walk over to the instruction location counter and increment it. Again he will perform
the instruction specified by the counter. Thus, the Little Man will execute the instructions in the
mailboxes sequentially, starting from mailbox 00. Since the instruction location counter is reset
from outside the mailroom, the user can restart the program simply by resetting the counter to 00.

Now that we have a method for guiding the Little Man through a program of instruction
steps, let’s consider a simple program that will allow the user outside the mailroom to use the
Little Man Computer to add two numbers together. The user will place two numbers in the
in basket. The sum of the two will appear as a result in the out basket. The question is what
instructions we will need to provide to have the Little Man perform this operation.

INPUT 901
Since the Little Man must have access to the data, the first step, clearly, is to have the
Little Man read the first number from the in basket to the calculator. This instruction
leaves the first number to be added in the calculator.

STORE 99 399
Note that it is not possible for the Little Man to simply read another number into the
calculator. To do so would destroy the first number. Instead, we must first save the
first number somewhere.
Mailbox 99 was chosen simply because it is clearly out of the way of the program. Any
other location that is beyond the end of the program is equally acceptable.
Storing the number at a location that is within the program would destroy the
instruction at that location. This would mean that when the Little Man went to
perform that instruction, it wouldn’t be there.
More importantly, there is no way for the Little Man to distinguish between an
instruction and a piece of data—both are made up of three-digit numbers. Thus, if we
were to store data in a location that the Little Man is going to use as an instruction,
the Little Man would simply attempt to perform the data as though it were an
instruction. Since there is no way to predict what the data might contain, there is no
way to predict what the program might do.

The concept that there is no way to distinguish between instructions and data except
in the context of their use is a very important one in computing. For example, it
allows a programmer to treat an instruction as data, to modify it, and then to execute
the modified instruction.

INPUT 901
With the first number stored away, we are ready to have the Little Man read the
second number into the calculator.

ADD 99 199
This instruction adds the number that was stored previously in mailbox 99 to the
number that was inputted to the calculator.

184 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.2 Note that there is no specific reason to save the second

Program to Add Two Numbers

number. If we were going to perform some operation that
required the reuse of the second number, it could be stored

Mailbox code Instruction description somewhere.

00 901 INPUT In this program, h(?w'fever, we have l?oth numbers in Place
to perform the addition. The result is, of course, left in

01 399 STORE DATA
the calculator.

02 901 INPUT 2ND #

03 199 ADD 1ST # TO IT OUTPUT 902

04 902 OUTPUT RESULT All that remains is for us to have the Little Man output

05 000 STOP the result to the out basket.

g9 DATA

COFFEE BREAK 000

The program is complete, so we allow the Little Man
to take a rest.

These instructions are stored sequentially starting from mailbox 00, where the
Little Man will retrieve and execute them one at a time, in order. The program
is reshown in Figure 6.2.

Since we were careful to locate the data outside the program, this program can be rerun
simply by telling the Little Man to begin again.

6.4 AN EXTENDED INSTRUCTION SET

The instructions that we have defined must always be executed in the exact sequence specified.
Although this is sufficient for simple program segments that perform a sequence of operations,
it does not provide any means for branching or looping, both constructs that are very important
in programming. Let us extend the instruction set by adding three more instructions for this
purpose:

BRANCH UNCONDITIONALLY instruction (sometimes known as JUMP)—op

code 6
This instruction tells the Little Man to walk over to the instruction location counter
and actually change the counter to the location shown in the two address digits of the
instruction. The hand counter thumbwheels are used for this purpose. This means that
the next instruction that the Little Man will execute is located at that mailbox address.
This instruction is very similar, conceptually, to the GOTO instruction in BASIC. Its
execution will always result in a break in the sequence to another part of the program.
Note that this instruction also uses the address digits in an unusual way, since the
Little Man does not use the data at the address specified. Indeed, the Little Man
expects to find an instruction at that address, the next to be performed.

BRANCH ON ZERO instruction—op code 7
The Little Man will walk over to the calculator and will observe the number stored
there. If its current value is zero, he will walk over to the instruction location counter
and moditfy its value to correspond to the address specified within the instruction.
The next instruction executed by the Little Man will be located at that address.
If the value in the calculator is not zero, he will simply proceed to the next
instruction in the current sequence.

EXAMPLE

CHAPTER 6 THE LITTLE MAN COMPUTER 185

BRANCH ON POSITIVE instruction—op code 8
The Little Man will walk over to the calculator and will observe the number stored
there. Ifits current value is positive, he will walk over to the instruction location counter
and modity its value, to correspond to the address specified within the instruction.
The next instruction executed by the Little Man will be located at that address.
If the value in the calculator is negative, he will simply proceed to the next instruction
in sequence. Zero is considered to be a positive value.
Note that is it not necessary to provide BRANCH ON NEGATIVE Or BRANCH ON NONZERO
instructions. The instructions supplied can be used together to achieve equivalent
results.

These three instructions make it possible to break from the normal sequential processing of
instructions. Instructions of this type are used to perform branches and loops. As an example,
consider the following wHILE-DO loop, common to many programming languages:

WHILE Value =0DO0
Task;
NextStatement

This loop could be implemented using the Little Man BRaNCH instruction as follows. Assume
that these instructions are located starting at mailbox number 45 (comments are provided to
the right of each line):

45 LDA 90 590 90 is assumed to contain value

46 BRZ 48 748 Branch if the value is zero

47 BR 60 660 Exitloop; Jump to NextStatement
48 : This is where the task is located
59 BR 45 645 End to Task; loop to test again

60 Next statement

For convenience, we have introduced a set of abbreviations for each instruction in the
above example. These abbreviations are known as mnemonics (the first “m” is silent). Once you
learn to read these mnemonics, you’ll find that programs written with mnemonics are generally
easy to read. It is more common to write programs this way. For a while, we will continue to
print both the mnemonic and the numeric code, but eventually, we will stop printing the code.
Most programs are also written with comments, which help to clarify the code. The mnemonic
instructions that we will use are shown in Figure 6.3.

The par abbreviation shown in Figure 6.3 is a fake code, sometimes known as a pseudocode,
used to indicate that a particular mailbox will be used to store data. You will recall that the Little
Man does not distinguish between instructions and data in the mailboxes; both are treated
equally as three-digit numbers. To place a constant in a mailbox when we write a program we
can simply place the number in a mailbox. The DAT pseudocode may be included to make the
program easier to read.

Here is an example of a Little Man program that uses the BRANCH instructions to alter the flow of
the program. This program finds the positive difference between two numbers (sometimes known
as the absolute magnitude of the difference).

186

FIGURE 6.3

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Little Man Mnemonic Instruction Codes with Their
Corresponding OP Codes

Bxx
3xx
1xx
2XX
901
902
000
7XX
8xx
B6XX

Load

Store

Add

Subtract

Input

Output

Coffee break (or Halt)
Branch if zero
Branch if positive or zero
Branch unconditional
Data storage location

LMC Program to Find Positive Difference of Two

LDA
STO
ADD
SUB

IN

ouT
COB or HLT
BRZ
BRP
BR
DAT
FIGURE 6.4
Numbers
00 IN
01 STO
02 IN
03 STO
04 SUB
05 BRP
06 LDA
07 SUB
08 OuUT
09 COB
10 DAT
11 DAT

901
10 310
901
11 311
10 210
08 808 test
10 510 negative; reverse order
11 211
902 print result and
000 stop.
00 000 used for data
00 000 “

The program, shown in Figure 6.4, works as follows: the first four instructions simply input
and store the two numbers. The fifth instruction, in mailbox 04, subtracts the first number from
the second. Instruction 05 tests the result. If the result is positive, all that’s left to do is print out
the answer. So, the instruction can be used to branch to the printout instruction. If the answer
is negative, the subtraction is performed in the other order. Then, the result is output, and the
Little Man takes his break. Note that if the coB instruction is omitted (as in forgotten—this is a
very common error!), the Little Man will attempt to execute the data stored in locations 10 and
11. The main part of this program is the Little Man equivalent of an IF-THEN-ELSE statement
that you would find in most high-level programming languages. Please study the example until

you understand how it works in every detail.

CHAPTER 6 THE LITTLE MAN COMPUTER 187

The nine instructions that make up the instruction set that we have presented are sufficient
to perform the steps of any computer program, although not necessarily in the most efficient
way. It is important for you to realize that, although simplified, the Little Man instruction set
is very similar to the instruction sets that appear in most real computers. In real computers, as
in the Little Man Computer, most instruction steps are involved with the movement of data
between the equivalent of mailbox locations and calculators, with very simple calculations, and
with program branching.

The real computer differs mostly in the variations to these instructions that are provided,
and with the addition of a few instructions that provide programming convenience, particularly
multiplication and division instructions, and also instructions that shift the data in a word left
or right. (Note that the traditional method of performing multiplication can be done in the
computer using sHIFT and ADD instructions.)

We will discuss many of these variations when we look at the instruction sets in some real
computers, in Chapters 7, 9, 11, and Supplementary Chapters 2 and 3.

6.5 THE INSTRUCTION CYCLE

We will refer to the steps that the Little Man takes to perform an instruction as the instruction
cycle. This cycle, which is similar for all the instructions, can be broken into two parts:

1. The fetch portion of the cycle, in which the Little Man finds out what instruction he is
to execute, and

2. The execute portion of the cycle, in which he actually performs the work specified in
the instruction.

The fetch portion of the cycle is identical for every instruction. The Little Man walks
to the location counter and reads its value. He then goes to the mailbox with the address
that corresponds to that value and reads the three-digit number stored there. That three-digit
number is the instruction to be performed. This is depicted in the drawings of Figure 6.5.

The fetch portion of the cycle has to occur first: until the Little Man has performed the
fetch operation, he does not even know what instruction he will be executing!

The execute portion of each instruction is, of course, different for each instruction. But
even here, there are many similarities. The first six instructions in Figure 6.3 all require the
Little Man to move data from one place in the mailroom to another. The first four instructions
all involve the use of a second mailbox location for the data.

The LoAD instruction is typical. First, the Little Man fetches the instruction. To perform the
execute phase of the LoAD instruction, the Little Man first looks at the mailbox with the address
that is contained in the instruction. He reads the three-digit number on the slip of paper in
that mailbox and returns the slip of paper to its place. Then, he walks over to the calculator
and punches the number into the calculator. Finally, he walks over to the instruction location
counter and increments it. He has completed one instruction cycle and is ready to begin the
next. These steps are shown in Figure 6.6.

With the exception of the step in which the Little Man increments the location counter,
the steps must be performed in the exact sequence shown. (The location counter can be
incremented anytime after the fetch has occurred.) The fetch steps must occur before the
execution steps; within the fetch, the Little Man must look at the location counter before he can
pull the instruction from its mailbox.

188 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.5
The Fetch Portion of the Instruction Cycle
333
a=sl 25[589
[=0=]-1-]
@ A" | (1) The Little Man reads the address
\—/ ° from the location counter
222
\—/
£
[=1-1-1-]
-T-1-1-] 589
[=1-1-1-]
A" | (2) ... walks over to the mailbox that
—/ corresponds to the location counter
89[222
\—/
£
333
EEEE 7580
T | (3 ...and reads the number on the
— slip of paper. (He then puts the
slip of paper back, in case he
=/ 89222 should need to read it again later.)

Just as the sequence of instructions in a program is important—and you know that this is
true for any language, Java, C, Fortran, Little Man, or any other—so it is also true that the steps
within each instruction must be performed in a particular order.

Notice that the ApD and suBTRACT instructions are almost identical to the LoAD instruction.
The only difference occurs during the execute step, when the Little Man enters the number into

CHAPTER 6 THE LITTLE MAN COMPUTER 189

FIGURE 6.6
The Execute Portion of the Instruction Cycle (LOAD Instruction)
333
[=2-1-]1-]
oEEE 589
[=2-0-1-]
- | (1) The Little Man goes to the mailbox
address specified in the instruction he
AT previously fetched
\—/
222
\—/
333
L asas 559
[=0=]-]-]
(2) . .. he reads the number in that mailbox -
(he remembers to replace it in the case it's -
needed again)
\—/
222
\—/
589
~ £
R~ | (3) . .. he walks over to the calculator and
/ punches the number in
89[222
\—/
227
Gama 25[589)
[=1-0-1-]
T -
P
-
(4) ... finally, he walks over to the location
89222

counter and clicks it, which gets him -
ready to fetch the next instruction

the calculator. In the case of the arithmetic instructions, the Little Man adds or subtracts the
number that he is carrying into the calculator, rather than simply entering it.

The other instructions are slightly different, although not any more difficult to trace
through and understand. To improve your understanding, you should trace the steps of the
Little Man through the remaining six instructions.

190 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.6 A NOTE REGARDING COMPUTER
ARCHITECTURES

As we noted in Chapter 1, John von Neumann is usually considered to be the developer of the
computer as we know it today. Between 1945 and 1951, von Neumann set down a series of
guidelines that came to be known as the von Neumann architecture for computers. Although
other experimental computer architectures have been developed and built, the von Neumann
architecture continues to be the standard architecture for all computers and computer-based
devices; no other architecture has had any commercial success to date. It is significant that, in
a field where technological change occurs almost overnight, the architecture of computers is
virtually unchanged since 1951.
The major guidelines that define a von Neumann architecture include the following:

B Memory holds both programs and data; this is known as the stored program
concept. The stored program concept allows programs to be changed easily.

B Memory is addressed linearly; that is, there is a single sequential numeric address for
each and every memory location.

B Memory is addressed by the location number without regard to the data contained
within.
Instructions are executed sequentially unless an instruction or an outside event (such as the
user resetting the instruction location counter) causes a branch to occur.

In addition, von Neumann defined the functional organization of the computer to be made
up of a control unit that executes instructions, an arithmetic/logic unit that performs arithmetic
and logical calculations, and memory. The control unit and arithmetic/logic unit together make
up the CPU, or central processing unit.

If you check over the guidelines just given, you will observe that the Little Man Computer
is an example of a von Neumann architecture. In fact, we took care to point out features of the
von Neumann architecture during our discussion of the Little Man Computer.

SUMMARY AND REVIEW

The workings of the computer can be simulated by a simple model. The Little Man Computer
model consists of a Little Man in a mailroom with mailboxes, a calculator, and a counter. Input
and output baskets provide communication to the outside world. The Little Man Computer
meets all the qualifications of a von Neumann computer architecture.

The Little Man performs work by following simple instructions, which are described by
three-digit numbers. The first digit specifies an operation. The last two digits are used for various
purposes, but most commonly to point to an address. The instructions provide operations that
can move data between the mail slots and the calculator, move data between the calculator and
the input and output baskets, perform addition and subtraction, and allow the Little Man to
stop working. There are also instructions that cause the Little Man to change the order in which
instructions are executed, either unconditionally or based on the value in the calculator.

Both data and instructions are stored in individual mail slots. There is no differentiation
between the two except in the context of the particular operation taking place. The Little Man
normally executes instructions sequentially from the mail slots except when he encounters a
branching instruction. In that case, he notes the value in the calculator, if required, and resumes
executing instructions from the appropriate location.

CHAPTER 6 THE LITTLE MAN COMPUTER 191

The exact steps performed by the Little Man are important because they reflect closely the
steps performed in a real CPU in executing an instruction.

KEY CONCEPTS AND TERMS

instruction cycle mnemonics stored program concept
linear memory addressing op code von Neumann architecture
Little Man Computer (LMC) pseudocode

READING REVIEW QUESTIONS

EXERCISES

6.1

6.2

6.3
6.4
6.5

6.6

6.7

6.8

6.9
6.10

6.11
6.12

6.13

6.14

6.1

Without looking at the book, draw a Little Man Computer. Label each of the
components in your drawing.

Instructions in the Little Man Computer are three digits, divided into two parts. Show
the format of an LMC instruction.

Describe, step by step, what the Little Man does to execute a STORE instruction.
Describe, step by step, what the Little Man does to execute an INPUT instruction.
Extend the simple program shown in Section 6.3 to accept three inputs from a user,
add them, and output the result.

If a user wants to enter two numbers, what must the Little Man program do before she
enters the second number? Why?

Write a Little Man program that accepts two numbers as input and outputs the
numbers in reverse order.

Write a Little Man program that accepts two numbers as input, subtracts the first from
the second and outputs the result.

Explain carefully what the Little Man will do when he executes a jump instruction.
Explain carefully, step by step, what the Little Man will do when he executes a BRANCH
ON ZERO instruction.

Why is the instruction cycle called a cycle?

Even if he runs out of instructions to execute, the Little Man only stops trying to
execute instructions under one condition. What is that condition? What happens if
the Little Man runs out of instructions and that condition is not met?

The instruction cycle is divided into two phases. Name each phase. The first phase is
the same for every instruction. What is the purpose of the first phase that makes this
true? Explain what the Little Man does during the first phase.

What does the Little Man do during the second phase of a COFFEE BREAK Or HALT
instruction?

The steps that the Little Man performs are closely related to the way in which the CPU
actually executes instructions. Draw a flow chart that carefully describes the steps that
the Little Man follows to execute a branch instruction.

192

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.12

6.13

Repeat Exercise 6.1 for a subtract instruction.

Repeat Exercise 6.1 for a branch on positive instruction.

What are the criteria that define a von Neumann architecture? How does the example
in this chapter in which we enter and add two numbers illustrate each of the criteria?
Consider the example in this chapter in which we enter and add two numbers. Suppose
we had stored the first input entry in mailbox location 00. Would the program have
produced the same result? What would have happened if the program were executed
a second time? What characteristic of the computer makes this true?

Write a Little Man program that accepts three values as input and produces the largest
of the three as output.

Write a Little Man program to accept an indefinite number of input values. The output
value will be the largest of the input values. You should use the value 0 as a flag to
indicate the end of input.

Write a Little Man program that accepts three values as input and outputs them in
order of size, largest to smallest. (This is a more challenging variation on Exercise 6.6.)
Write a Little Man program that adds a column of input values and produces the sum

as output. The first input value will contain the number of values that follow as input
to be added.

Write a Little Man program that prints out the odd numbers from 1 to 99. No input is
required.

Write a Little Man program that prints out the sums of the odd values from 1 to 39.
The output will consist of 1, 1+3,14+3+5,1+3+5+7.... No input is required.

As an aside, do you notice anything interesting about the output results that are
produced by this series? (Hint: This series is sometimes used as part of an algorithm
for finding square roots of numbers.)

The following Little Man program is supposed to add two input numbers, subtract a
third input number from the sum, and output the result, i.e.,

OUT = IN1I + IN2 — IN3

mailbox mnemonic code numeric code
00 IN 901
01 STO 99 399
02 IN 901
03 ADD 99 199
04 STO 99 399
05 IN 901
06 SUB 99 299
07 ouT 902
08 COB 000

What is wrong with this program? Modify the program so that it produces the correct
result.

Suppose we have a need to handle both negative and positive data beyond the simple test
in the various conditional branch instructions. One way to do this would be to replace
the subtract instruction with a 10’s complement instruction. The comp instruction
complements the value in the calculator and leaves the value in the calculator.

6.14

6.15

6.16
6.17

6.18

6.19

6.20

6.21

CHAPTER 6 THE LITTLE MAN COMPUTER 193

a. How would subtraction be performed in this case?

b. Carefully trace the steps that the Little Man would perform to execute the new
COMP instruction.

c. What is the new range of values possible with this modification, and how are
these values represented in the Little Man Computer?

d. What would the Little Man do to execute a BRANCH ON POSITIVE instruction?

The programs that we have discussed in this chapter seem to have appeared in the
mailboxes by magic. Consider a more realistic alternative:

Suppose a small program is permanently stored in the last few mailbox locations.
A BRANCH instruction at location 00, also permanent, will start this program. This
program will accept input values and will store them at consecutive mailbox locations,
starting with mailbox 01. You may assume that these values represent the instructions
and data of a user’s program to be executed. When a 999 is received as input data, the
program jumps to location 01 where it will proceed to execute the values just entered.

The small program described here is known as a program loader, or, under certain
circumstances as a bootstrap. Write a Little Man program loader. (Hint: It may be
useful to remember that instructions and data are indistinguishable. Thus, instructions
could be treated as if they were data, if necessary.)

Show carefully how you would implement an Ir-ELSE statement using Little Man
instructions.

Show how you would implement a po-wHILE statement using Little Man instructions.

The input data values in our problems have always been entered in the order that they
were to be used. This is not always possible or convenient. Can you think of a simple
way to accept input data in the wrong order and still use it correctly?

Suppose the Little Man Computer had been implemented as a 16-bit binary machine.
Assume that the binary LMC provides the same instruction set, with the same op codes
(in binary, of course), and the same instruction format (op code followed by address).
How many bits would be required for the op code portion of the instruction? How
many mailboxes could the binary machine accommodate? What is the range of 2’s
complement data that this machine could handle?

The original version of the Little Man Computer used op code 7 (i.e., instruction
700) for a COFFEE BREAK instruction instead of op code 0. What is the advantage of
using 000 for the cos instruction instead of 700? (Hint: Consider what happens if the
programmer forgets to put a cos instruction at the end of a program.)

When we discussed conditional branching we claimed that a BRANCH NEGATIVE instruc-
tion is not necessary. Show a sequence of BRANCH instructions that will cause a program
to branch to location 50 if the value in the calculator is negative.

Show a sequence of instructions that will cause a program to branch to location 75 if
the value in the calculator is greater than zero.

CHAPTER 7

THE CPU AND MEMORY

AP N N

, THINK OF IT AS :
[3 THAT'S THE MY BRAIN 16
15 & SIMPLE iy ON-AND-OFF | 1iE4R THE WORD SWITCH.
DEVICE, REALLY. Nl SWITCHES. COMPUTER”...

W
b

WD \ l
f : RN

SHOE - NEW BUSINESS © (1993) MACNELLY. DISTRIBUTED BY KING FEATURES SYNDICATE

7.0 INTRODUCTION

The previous chapter provided a detailed introduction to the Little Man model of a
computer. In that chapter, we introduced a format, using a three-digit number divided
into op code and address fields, for the instructions that a computer can perform. We
introduced an instruction set that we indicated was representative of those found in a real
computer. We also showed the steps that are performed by the Little Man in order to
execute one of these instructions.

In this chapter and the next, we will extend these concepts to the real computer.
Our primary emphasis in this chapter is on the central processing unit (CPU), together
with memory. In the real computer, memory is actually separated both physically and
functionally from the CPU. Memory and the CPU are intimately related in the operation
of the computer, however, and so we will treat memory together with the CPU for the
convenience of our discussion. Since every instruction requires memory access,' it makes
sense to discuss the two together.

We will use the Little Man model and its instruction set as a guideline for our
discussion. The Little Man instruction set is fundamentally similar to the instruction sets of
many different computers. Of course, the Little Man instruction set is based on a decimal
number system, and the real CPU is binary, but this is a detail that won’t concern us for
most of this discussion. The CPU architectural model that we shall discuss is not based
on a particular make and model, but is typical of most computers. Chapter 8 will discuss
the implementation of this model in modern technology. In Supplementary Chapter 2, we
shall look specifically at several popular computer models.

In this chapter, you will see that the execution of instructions in the CPU together with
memory is nearly identical functionally to the Little Man Computer. There is a one-to-one
relationship between the various contents of the mailroom and the functional components
of the CPU plus memory. The major differences occur in the facts that the CPU instruction
set is created using binary numbers rather than decimal and that the instructions are
performed in a simple electronic way using logic based upon Boolean algebra instead of
having a Little Man running around a mailroom.

Sections 7.1 through 7.3 present a systematic introduction to the components of the
CPU and memory, offering a direct comparison with the components of the Little Man
Computer, and focusing on the concept of the register as a fundamental element of CPU
operation. In Section 7.4, we show how simple CPU and memory register operations serve
as the basic mechanism to implement the real computer’s instruction set.

In Section 7.5, we turn our attention to the third major computer system component,
the bus component. Buses provide the interconnection between various internal parts of
the CPU, and between the CPU and memory, as well as providing connections between
input and output devices, the CPU, and memory. There are many different types of buses
in a computer system, each optimized for a different type of task. Buses can connect two
components in a point-to-point configuration or may interconnect several modules in a

!Recall that in the LMC every instruction must be fetched from a mailbox to be executed. The same is true
in the real computer.
195

196 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.1

System Block Diagram

multipoint configuration. In general, the lines on buses carry signals that represent data,
addresses, and control functions. We consider the general requirements for a bus, the features,
advantages, and disadvantages of different types of buses. In Chapter 11, we will focus on the
specific buses that interconnect the various components of a computer system, and show you
the ways in which the buses connect different parts of an entire computer system together.

In Sections 7.6, 7.7, and 7.8, we return our attention to the CPU to discuss the characteristics
and features of the instruction sets provided in real computers: the different types of instructions,
the formats of instruction words, and the general requirements and restraints that are required
for instruction words.

You already understand from Chapter 6 how simple instructions can be combined to
form the programs that you write. When you complete this chapter, you will have a good
understanding of how those instructions are executed in a computer.

Before we begin, it is important that you understand the difference between primary
memory and secondary storage. Primary memory holds program instructions and data and
interacts directly with the CPU during program execution. It is equivalent to the mailboxes in
the Little Man Computer. Secondary storage is used for longer term storage and is managed
as I/0. The CPU does not have direct access to the locations in secondary storage and cannot
execute instructions from them. Program code and data in secondary storage must be moved to
primary memory for CPU execution. Secondary storage is much slower than primary memory,
uses different technology, and is usually accessed in blocks, rather than by individual locations.

The potential confusion between primary memory and secondary storage arises primarily
because of inadequate specifications by some manufacturers, particularly in the area of
smartphones and tablets. The “16 GB of memory” in a tablet, for example, is secondary storage,
not primary memory. In fact, a typical tablet has between 256 MB and 2 GB of primary memory,
which may or may not show up in the specifications seen by a user.

In this chapter, we are concerned only with primary memory. Secondary storage is discussed
in depth in Chapters 9 and 10.

7.1 THE COMPONENTS OF THE CPU

A simplified conceptual block diagram of a CPU with memory
is shown in Figure 7.1.2 For comparison purposes, the block

1/0
interface

CPU

diagram for the Little Man Computer is repeated in Figure 7.2,

with labels corresponding to the components in Figure 7.1.

ALU Note the similarities between the two figures. As noted

[| in Chapter 1, the computer unit is made up conceptually of
[| Memory three major components, the arithmetic/logic unit (ALU), the

Control unit

control unit (CU), and memory. The ALU and CU together are
known as the central processing unit (CPU). An input/output

Program counter (I/0) interface is also included in the diagram. The I/O interface

corresponds in function roughly to the input and output baskets,

although its implementation and operation differ from that of
the Little Man Computer in many respects.

2This diagram is first attributed to John von Neumann in 1945. As discussed in Chapter 8, current technology
results in a different internal organization for the components in the model; nevertheless, the basic execution of
instructions is still consistent with the original model.

CHAPTER 7 THE CPU AND MEMORY 197

FIGURE 7.2
The Little Man Computer

001500
ALU—|pmam 01]199
mmam| 02]500
03]399
/7 —
A
95
/N /0 96
interface Control 97
unit 98
__‘_/ 99|123
Memory

—r— Program
4_cougnter

The arithmetic/logic unit is the component of the CPU where data is held temporarily
and where calculations take place. It corresponds directly to the calculator in the Little Man
Computer.

The control unit controls and interprets the execution of instructions. It does so by
following a sequence of actions that correspond to the fetch—execute instruction cycle that
was described in the previous chapter. Most of these actions are retrievals of instructions from
memory followed by movements of data or addresses from one part of the CPU to another.

The control unit determines the particular instruction to be executed by reading the
contents of a program counter (PC), sometimes called an instruction pointer (IP), which is a
part of the control unit. Like the Little Man’s location counter, the program counter contains the
address of the current instruction or the next instruction to be executed. Normally, instructions
are executed sequentially. The sequence of instructions is modified by executing instructions
that change the contents of the program counter. The Little Man branch instructions are
examples of such instructions. A memory management unit within the control unit supervises
the fetching of instructions and data from memory. The I/O interface is also part of the control
unit. In some CPUs, these two functions are combined into a single bus interface unit. The
program counter in the CPU obviously corresponds to the location counter in the Little Man
Computer, and the control unit itself corresponds to the Little Man.

Memory, of course, corresponds directly to the mailboxes in the LMC.

7.2 THE CONCEPT OF REGISTERS

Before we discuss the way in which the CPU executes instructions, it is necessary to understand
the concept of a register. A register is a single, permanent storage location within the CPU
used for a particular, defined purpose. A register is used to hold a binary value temporarily

198

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

for storage, for manipulation, and/or for simple calculations. Note that each register is wired
within the CPU to perform its specific role. That is, unlike memory, where every address is just
like every other address, each register serves a particular purpose. The register’s size, the way it
is wired, and even the operations that take place in the register reflect the specific function that
the register performs in the computer.

Registers also differ from memory in that they are not addressed as a memory location
would be, but instead are manipulated directly by the control unit during the execution of
instructions. Registers may be as small as a single bit or as wide as several bytes, ranging usually
from 1 to 128 bits.

Registers are used in many different ways in a computer. Depending on the particular use
of a register, a register may hold data being processed, an instruction being executed, a memory
or I/O address to be accessed, or even special binary codes used for some other purpose, such as
codes that keep track of the status of the computer or the conditions of calculations that may be
used for conditional branch instructions. Some registers serve many different purposes, while
others are designed to perform a single, specialized task. There are even registers specifically
designed to hold a number in floating point format, or a set of related values representing a list
or vector, such as multiple pixels in an image.

Registers are basic working components of the CPU. You have already seen, in Chapter 6,
that the computer is unable to distinguish between a value that is used as a number in a program
and a value that is actually an instruction or address, except in the context of current use. When
we refer to the “data” in a register, we might be talking about any of these possibilities.

You have already become acquainted with two “registers” in the Little Man Computer,
namely, the calculator and the location counter.

In the CPU, the equivalent to the calculator is known as an accumulator. Even the short
example to add two numbers in Chapter 6 showed that it is often necessary to move data to and
from the accumulator to make room for other data. As a result, modern CPUs provide several
accumulators; these are often known as general-purpose registers. Some vendors also refer to
general-purpose registers as user-visible or program-visible registers to indicate that they may
be accessed by the instructions in user programs. Groups of similar registers are also sometimes
referred to collectively as a register file. General-purpose registers or accumulators are usually
considered to be a part of the arithmetic/logic unit, although some computer manufacturers
prefer to consider them as a separate register unit. As in the Little Man Computer, accumulator
or general-purpose registers hold the data that are used for arithmetic operations as well as
the results. In most computers, these registers are also used to transfer data between different
memory locations, and between I/O and memory, again similar to the LMC. As you will see in
Chapter 8, they can also be used for some other similar purposes.

The control unit contains several important registers.

B Asalready noted, the program counter register (PC or IP) holds the address of the
current instruction being executed.

B The instruction register (IR) holds the actual instruction being executed currently
by the computer. In the Little Man Computer, this register was not used; the Little
Man himself remembered the instruction he was executing. In a sense, his brain
served the function of the instruction register.

B The memory address register (MAR) holds the address of a memory location.

CHAPTER 7 THE CPU AND MEMORY 199

B The memory data register (MDR), sometimes known as the memory buffer register,
will hold a data value that is being stored to or retrieved from the memory location
currently addressed by the memory address register.

The last two registers will be discussed in more detail in the next section, when we explain
the workings of memory. Although the memory address register and memory data register are
part of the CPU, operationally these two registers are more closely associated with memory itself.

The control unit will also contain several 1-bit registers, sometimes known as flags, that
are used to allow the computer to keep track of special conditions such as arithmetic carry and
overflow, power failure, and internal computer error. Usually, several flags are grouped into
one or more status registers.

In addition, our typical CPU will contain an I/O interface that will handle input and output
data as it passes between the CPU and various input and output devices, much like the LMC in
and out baskets. For simplification, we will view the I/O interface as a pair of I/O registers, one
to hold an I/O address that addresses a particular I/O device, the other to hold the I/O data.
These registers operate similarly to the memory address and data registers. Later, in Chapter 9,
we will discuss a more common way of handling I/O that uses memory as an intermediate
storage location for I/O data.

Most instructions are executed by the sequenced movement of data between the different
registers in the ALU and the CU. Each instruction has its own sequence.

Most registers support four primary types of operations:

1. Registers can be loaded with values from other locations, in particular from other
registers or from memory locations. This operation destroys the previous value stored
in the destination register, but the source register or memory location remains
unchanged.

2. Data from another location can be added to or subtracted from the value previously
stored in a register, leaving the sum or difference in the register.

3. Datain a register can be shifted or rotated right or left by one or more bits. This
operation is important in the implementation of multiplication and division. The
details of the shift operation are discussed in Section 7.6.

4. The value of data in a register can be tested for certain conditions, such as zero,
positive, negative, or too large to fit in the register.

In addition, special provision is frequently made to load the value zero into a register, which
is known as clearing a register, and also to invert the Os and 1s (i.e., take the 1’s complement
of the value) in a register, an operation that is important when working with complementary
arithmetic. It is also common to provide for the addition of the value 1 to the value in a register.
This capability, which is known as incrementing the register, has many benefits, including
the ability to step the program counter, to count in for loops, and to index through arrays in
programs. Sometimes decrementing, or subtraction of 1, is also provided. The bit inversion and
incrementing operations are combined to form the 2’s complement of the value in a register.
Most computers provide a specific instruction for this purpose, and also provide instructions
for clearing, inverting, incrementing, and decrementing the general-purpose registers.

The control unit sets (“1”) or resets (“0”) status flags as a result of conditions that arise
during the execution of instructions.

Asan example, Figure 7.3 identifies the programmer-accessible registers in the IBM System z
computers, which includes a variety of IBM mainframe models. Internal registers, such as the

200 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.3

Programmer-Accessible Registers in IBM zSeries Computers

Register type

Number Size of each in hits Notes

General

Floating point
PSW

Control

Floating point
control

Access

16 64 For arithmetic, logical, and addressing operations;
adjoining registers may be joined to form up to eight
128-bit registers

16 64 Floating point arithmetic; registers may be joined to
form 128-bit registers

1 128 Combination program counter and status-flag register,
called the Program Status Word (PSW)

16 64 Various internal functions and parameters connected
with the operating system; accessible only to systems
programmers

1 32 Status, flags, etc. for floating point

16 32 Used for access to different address regions for virtual

storage

instruction, memory address, and memory buffer registers are not specifically identified in the
table, since they are dependent on the implementation of the particular model in the series.

7.3 THE MEMORY UNIT

The Operation of Memory

To understand the details of instruction execution for the real CPU, you need first to see how
instructions and data can be retrieved from memory. Real memory, like the mailboxes in the
Little Man Computer, consists of cells, each of which can hold a single value, and each of which
has a single address.

Two registers, the memory address register and the memory data register, act as an interface
between the CPU and memory. The memory data register is called the memory buffer register
by some computer manufacturers.

Figure 7.4 is a simplified representation of the relationship between the MAR, the MDR,
and memory. Each cell in the memory unit holds 1 bit of data. The cells in Figure 7.4 are
organized in rows. Each row consists of a group of one or more bytes. Each row represents the
data cells for one or more consecutive memory addresses, shown in the figure as addresses 000,
001,...,2" - 1.

The memory address register holds the address in the memory that is to be “opened” for
data. The MAR is connected to a decoder that interprets the address and activates a single
address line into the memory. There is a separate address line for each row of cells in the
memory; thus, if there are n bits of addressing, there will be 2 address lines. These are the
horizontal lines in the figure. (In actuality, the decoding process is somewhat more complex,
involving several levels of address decoding, since there may be several millions or billions of
addresses involved, but the concept described here is correct.)

CHAPTER 7 THE CPU AND MEMORY 201

FIGURE 7.4

The Relationship Between the MDR, the MAR, and Memory
——0One or more bytes—>-

H:I:I:H:I:I:
5 bit 0 000 il <
B N
o0 3 ™ Individual
" g | 001 \ memory
7) Dol cells
£ o Address -
° a line
: :
o
<
5 |[bitn-1 21 |
= i (]

RRNIREE

Memory data register

The memory data register is designed such that it is effectively connected to every cell in
the memory unit. Each bit of the MDR is connected in a column to the corresponding bit of
every location in memory (the vertical lines). However, the addressing method assures that
only a single row of cells is activated at any given time. Thus, the MDR only has access to the
values in that single row. A specific example of this is shown in Figure 7.5. (Note that in the
drawing msb stands for most significant bit and Isb for least significant bit.)

FIGURE 7.5
MAR-MDR Example
Isb
o A 0
%) =
& {O 8 1
= o)
3 ¢
- 1 5 | 49% - L. Active
g \1/ 2 line
5] 63
=

110001, = 1 ” [

Memory data register

202 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.6

A Visual Analogy for Memory
———— =
~— All cells

. Isb 0 dark
(0]
@ S I
g Lo |3

o
i) n 49
T 7 | & i3 0 g5 0 g KI5l 0 s KI 8
) g > ’
g 1 <] 63 . ’
[}
= msb

110001, = 49,

Memory data register

As a simple analogy to the operation we’ve just described, consider the memory as being
stored in a glass box, as shown in Figure 7.6. The memory data register has a window into
the box. The viewer, who represents each cell in the memory data register, can see the cells
in corresponding bit position for every location in memory through the window. The cells
themselves are light bulbs that can be turned on (1) or off (0). The output from the memory
address register is passed to an address decoder. The output from the address decoder in our
analogy consists of a series of lines, each of which can light up the bulbs in a single row of cells.
Only one line at a time can be activated—specifically, the one corresponding to the decoded
address. The active line will light the bulbs that correspond to “Is”, leaving the “0s” dark. The
viewer therefore will see only the single group of cells that is currently addressed by the memory
address register. We can extend the analogy to include a “master switch” that controls all the
lights, so that the data can be read only at the appropriate instant.

A more detailed picture of an individual memory cell is shown in Figure 7.7. Although this
diagram is a bit complicated, it may help to clarify how data is transferred between the MDR
and memory. There are three lines that control the memory cell: an address line, a read/write
line, and an activation line. The address line to a particular cell is turned on only if the computer
is addressing the data within that cell. The address lines can fluctuate temporarily when the
address is changed, so the activation line is turned on only after the address lines are stable. The
cell itself is active only for the brief instant that its address line and the activation line are both
turned on (on is usually represented by 1, off by 0). The read/write line determines whether the
data will be transferred from the cell to the MDR (read) or from the MDR to the cell (write).

CHAPTER 7 THE CPU AND MEMORY 203

FIGURE 7.7
An Individual Memory Cell

activate line = “1” SWITCH, R
R/W line = “1” (read) —~

address line = “1” W\
‘@D/ E READ

Data read
ONE
CELL l SWITCH is ON
Data written \
when WRITE
SWITCH is ON

address line = “1”
activate line = “1” MD\ 5 SWV\I/'II'?CllLEW
R/W line = “0” (write) N /

MDR line

This line works by setting a read/write switch into one of two positions. In the read position,
the switch connects the output of the cell to the MDR line. In the write position, the switch
connects the MDR line to the input of the cell, which transfers the data bit on the MDR line to
the cell for storage. (We’ve drawn the switch as a familiar light switch to make the figure clear,
but the actual switch is, of course, electronic.)

The interaction between the CPU and the memory registers takes place as follows: to
retrieve or store data at a particular memory location, the CPU copies an address from some
register in the CPU to the memory address register. Note that addresses are always moved to the
MAR; there would never be a reason for an address transfer from the MAR to another register
within the CPU, since the CPU controls memory transfers and is obviously aware of the memory
address being used. At the same time that the MAR is loaded, the CPU sends a message to the
memory unit indicating whether the memory transfer is a retrieval from memory or a store to
memory. This message is sent by setting the read/write line appropriately.

At the appropriate instant, the CPU momentarily turns on the switch that connects the
MDR with the register by using the activation line, and the transfer takes place between memory
and the MDR. The MDR is a two-way register. When the instruction being executed is to store
data, the data will be transferred from another register in the CPU to the MDR, and from there
it will be transferred into memory. The original data at that location will be destroyed, replaced
by the new data from the MDR. Conversely, when the instruction is to load data from memory,

204 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

the data is transferred from memory to the MDR, and it will subsequently be transferred to the
appropriate register in the CPU. In this case, the memory data are left intact, but the previous
data value in the MDR is replaced by the new data from memory.

Memory Capacity and Addressing Limitations

The number of possible memory locations in the Little Man Computer, one hundred locations,
was established by the two-digit address space in each instruction. The location counter also
addresses one hundred locations. There is no memory address register per se, but the Little Man
is certainly aware that each memory location requires two digits. In theory, a larger location
counter, say, three digits, would allow the Little Man to fetch more instructions, but notice that
his data fetches and stores are still limited to the one hundred locations that the two digits of
the address field in the instruction word can address.

Similarly, there are two factors that determine the capacity of memory in a real computer.
The number of bits in the memory address register determines how many different address
locations can be decoded, just as the two-digit addresses in the Little Man Computer resulted
in a maximum of one hundred mailboxes. For a memory address register of width k bits, the
number of possible memory addresses is

M= 2k

The other factor in establishing memory capacity is of course the number of bits in the
address field of the instruction set, which establishes how many memory locations can be
directly addressed from the instruction.

In the Little Man Computer, we have assumed that these two size factors are the same, but
in a real computer, that is not necessarily the case. Even if the size of the instruction address field
is sufficient to support a larger amount of memory, the number of physical memory locations
is, in fact, determined by the size of the memory address register. In the real computer, there are
alternative ways of extending the addresses specified within instructions so that we can reach
more addresses than the size of the instruction address field would, by itself, allow. The different
ways of establishing memory addresses within an instruction are called addressing modes. As an
example of one common method, consider a computer that can use one of the general-purpose
registers to hold an address. To find a memory location, the computer would use the value in
that register as a pointer to the address. Instead of an address field, the instruction needs only
to indicate which register contains the address. Using this technique, the addressing capability
of the computer is determined by the size of the register. For example, a computer with 64-bit
registers could address 264 addresses if the MAR were wide enough (and if that much physical
memory could be installed!) Such an extension would suggest that the MAR, and thus the actual
memory capacity, is normally at least as large as the instruction address field, but it may be
much larger. There is an additional brief discussion of simple addressing methods in Section 7.8.
Other, more sophisticated addressing methods are presented in Supplementary Chapter 3.

Ultimately, the width of the MAR determines the maximum amount of addressable
memory in the computer. Today, a typical memory address register will be at least 32 bits wide,
and probably much wider. Many modern CPUs support 64-bit memory addresses. A 32-bit
memory address allows a memory capacity of 4 gigabytes (GB) (4 X 10° byte-size spaces),
whereas 64 bits allows a memory capacity of 16 X 10'® bytes (16 exabytes or 16 billion gigabytes).
In modern computers, the ultimate size of memory is more likely limited by physical space for

CHAPTER 7 THE CPU AND MEMORY 205

the memory chips or by the time required to decode and access addresses in a large memory,
rather than by the capability of the CPU to address such a large memory.

Of course the size of memory also affects the speed of access. The time needed for the
address decoder to identify a single line out of four billion is necessarily larger than that required
for a memory that is much smaller.

As an aside, it is worth noting that early models of IBM’s largest mainframe computer
systems had a total memory capacity of only 512 KB (1/8000th the memory of a typical modern
PC with 4 GB of memory!) and that the original IBM PC came supplied with 64 KB of memory,
with a maximum capacity of 640 KB. In fact, Bill Gates, of Microsoft fame, was quoted at the
time as saying that he could see no need for more than 640 KB of memory, ever! Today, even a
cellphone or tablet typically provides 256 MB of operational memory or more.

The size of the data word to be retrieved or stored in a single operation is determined by
the size of the memory data register and by the width of the connection between memory and
the CPU. In most modern computers, data and instructions found in memory are addressed
in multiples of 8-bit bytes. This establishes the minimum instruction size as 8 bits. Most
instructions cannot fit practically into 8 bits. If one were to allow 3 bits for the op code (eight
instruction types), only 5 bits remain for addressing. Five bits allow 2° = 32 different addresses,
which is clearly insufficient address space. As a result, longer instructions of 16, 24, 32, or even
more bits will be stored in successive memory locations. In the interest of speed, it is generally
desirable to retrieve an entire instruction with a single fetch, if possible. Additionally, data to
be used in arithmetic calculations frequently requires the precision of several bytes. Therefore,
most modern computer memories are designed to allow the retrieval or storage of at least 4
and, more commonly, 8 or even 16, successive bytes in a single operation. Thus, the memory
data register is usually designed to retrieve the data or instruction(s) from a sequence of several
successive addresses all at once, and the MDR will be several bytes wide. The CPU can still
isolate individual bytes from the group for its use when necessary, however.

Primary Memory Characteristics and Implementation

Through the history of computing there have been several different types of primary memory
used, reflecting the technology and the system requirements and capabilities of the times. In
the 1960s and 1970s, the dominant technology was magnetic core memory, which used a tiny
core of magnetic material to hold a bit of data, and the largest machines might have had 512 KB
of memory. Today, the primary memory in most computer systems is dynamic RAM; the
amount of RAM in computer systems varies widely, from 256 MB to 2 GB in smartphones and
tablets, to 4-8 GB in typical modern personal computers to as much as 1 TB, or even more,
in large mainframe computers. RAM is an acronym that stands for random access memory,
which is a slight misnomer, since other types of semiconductor memory can also be accessed
randomly (i.e., their addresses can be accessed in any order). A more appropriate name would
be read-write memory.

Memory today is characterized by two predominant operational factors and by a number of
technical considerations. Operationally, the most important memory characteristic is whether
the memory is read—write capable or read-only. Almost as important is whether the memory is
volatile or nonvolatile. Nonvolatile memory retains its values when power is removed. Volatile
memory loses its contents when power is removed. Magnetic core memory was nonvolatile.
The RAM used for regular memory is volatile.

206

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Important technical considerations include the speed of memory access, the total amount
of memory that can be addressed, the data width, the power consumption and heat generation,
and the bit density (specified as the number of bits per square centimeter). Cost is an additional
factor.

Most current computers use a mix of static and dynamic RAM for memory. The difference
between static and dynamic RAM is in the technical design and is not of importance here.
However, dynamic RAM is less expensive, requires less electrical power, generates less heat,
and can be made smaller, with more bits of storage in a single integrated circuit. Dynamic RAM
also requires extra electronic circuitry that “refreshes” memory periodically; otherwise the data
fades away after a while and is lost. Static RAM does not require refreshing. Static RAM is
also faster to access than dynamic RAM and is therefore useful in very-high-speed computers
and for small amounts of high-speed memory, but static RAM is lower in bit density and more
expensive. Both dynamic and static RAMs are volatile: their contents are lost when power is
turned off.

At the time of this writing, dynamic RAM is standard for most applications. The amount
of data that can be stored in a single dynamic RAM chip has increased rapidly in the past few
years, going from 64 kilobits (kb) to 4 gigabits (GB) in fewer than twenty years. Four 2 GB
chips can implement 1 GB of dynamic memory. Most modern systems also provide a small
amount of static RAM memory that is used for high-speed access. This memory is known as
cache memory. The use of cache memory is discussed in Chapter 8.

Although current RAM technology is fast, inexpensive, and efficient, its volatility makes
some applications difficult or impossible. For example, nonvolatile RAM would make it
possible to shut off a computer without losing the programs and data in memory. This would
make it possible to restart the computer into its previous state without rebooting, would eliminate
the undesirable effects of power failures and laptop battery discharge, and would simplify
the use of computers in situations where power conservation is critical, such as in long-distance
space missions. The desire for nonvolatile RAM has led to considerable research on alternative
technologies for creating and producing nonvolatile RAM.

There are a small number of memory technologies in current use that are capable of
nonvolatile random access, but none in current large-scale production is capable of replacing
standard SRAM and DRAM for use as primary memory.

Atleast some of the program code used to start a computer must be present in a nonvolatile
segment of primary memory. (Otherwise there would be no program in memory to execute when
the computer is powered up!) This code is known as firmware. This program area in a PC may be
familiar to you as the BIOS, or Basic Input Output System, although a newer version, called EFI
or SEFI, for [Secure] Extensible Firmware Interface, is replacing the BIOS in newer machines.

ROM, or read-only memory, is used for situations such as this, where the software is built
semipermanently into the computer, is required as part of the computer’s software, and is not
expected to change over the life of the computer, except perhaps very infrequently. Early ROM
was made up of integrated circuits with fuses in them that could be blown. These fuses were
similar to, but much smaller than, the fuses that you might have in your home. A blown fuse
might represent a “0”, an intact fuse a “1”. Once blown, these devices could not be modified.

Foremost among current nonvolatile memory technologies is flash memory. Flash memory
serves as an inexpensive form of nonvolatile secondary storage for portable computer storage,
digital cameras, tablets, smartphones, and other electronic devices; however, with the exception
of the memory used at system startup (see below), it is generally considered unsuitable for

CHAPTER 7 THE CPU AND MEMORY 207

primary memory because it is not possible to write to a single memory location. Instead it is
necessary to erase and rewrite a large block of memory to make any changes in flash memory.
The rewrite time is extremely slow compared to standard RAM and the number of rewrites
over the lifetime of flash memory is somewhat limited. This limitation is less of a concern for
secondary storage.

Most flash memory is read in blocks; however, one type of flash memory can be read byte
by byte. Since firmware is rarely changed, this type of flash memory is suitable for use in the
case of startup, with the advantage that changes can be made when necessary.

7.4 THE FETCH-EXECUTE INSTRUCTION CYCLE

The fetch-execution instruction cycle is the basis for every capability of the computer. This
seems like a strong statement, but think about it: the purpose of the computer is to execute
instructions similar to those that we have already introduced. And, as you've already seen from
the Little Man Computer, the operation of every instruction is defined by its fetch-execute
instruction cycle. Ultimately, the operation of a computer as a whole is defined by the primary
operations that can be performed with registers, as explained in Section 7.2: to move data
between registers, to add o