

The Self-Operating Napkin

The professor walks in his sleep, strolls through a
cactus field in his bare feet, and screams out an
idea for self-operating napkin.

As you raise spoon of soup (A) to your mouth
it pulls string (B), thereby jerking ladle (C) which
throws cracker (D) past parrot (E). Parrot jumps
after cracker and perch (F) tilts, upsetting seeds
(G) into pail (H). Extra weight in pail pulls cord

(I) which opens and lights automatic cigar lighter
(J), setting off sky-rocket (K) which causes sickle
(L) to cut string (M) and allow pendulum with
attached napkin to swing back and forth thereby
wiping off your chin.

After the meal, substitute harmonica for the
napkin and you’ll be able to entertain the guests
with a little music.

Rube GoldbergT and aC of Rube Goldberg, Inc.

Distributed by United Media.

Englander f01.tex V2 - December 9, 2013 10:19 A.M. Page i

FIFTH EDITION

THE ARCHITECTURE OF
COMPUTER HARDWARE,
SYSTEMS SOFTWARE,
& NETWORKING

AN INFORMATION TECHNOLOGY APPROACH

Irv Englander
Bentley University

Englander f01.tex V2 - December 9, 2013 10:19 A.M. Page ii

Publisher: Don Fowley

Editor: Beth Lang Golub

Project Manager: Katie Singleton

Editorial Assistant: Jayne Ziemba

Photo Editor: Felicia Ruocco

Cover Designer: Maureen Eide

Associate Production Manager: Joyce Poh

Senior Production Editor: Jolene Ling

Production Management Services: Laserwords

Cover Credit: Norm Christiansen

This book was set by Laserwords Private Limited.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than

200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a

foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008,

we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and

ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications

and procurement, ethical conduct within our business and among our vendors, and community and charitable

support. For more information, please visit our website: www.wiley.com/go/citizenship.

CopyrightC 2014, 2009, 2003 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United

States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment

of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,

website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008,

website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their

courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.

Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of

charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook

for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please

contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Englander, Irv.

The architecture of computer hardware, systems software, & networking : an information technology approach/

Irv Englander, Bentley University.—Fifth edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-32263-5 (paper)

1. Computers. 2. Systems software. I. Title.

QA76.5.E566 2014

005.4’3--dc23

2013027578

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

Englander f01.tex V2 - December 9, 2013 10:19 A.M. Page iii

To four outstanding teachers and great human beings:

With your guidance, inspiration, and patience, you showed me
that everything is possible.

Dr. Sidney H. Englander (1900–1980)
and Mildred K. Englander (1906–2008),
in memoriam my father and mother

Albert L. Daugherty, in memoriam
teacher of Science in Cleveland Heights, Ohio

from 1927 to 1970

Edith B. Malin, in memoriam
teacher of English in Cleveland Heights, Ohio

from 1924 to 1958

Englander btoc.tex V2 - December 9, 2013 2:57 P.M. Page iv

BR I E F CON T EN T S

PART ONE
ANOVERVIEWOF COMPUTER SYSTEMS 2

n CHAPTER 1 Computers and Systems 4

n CHAPTER 2 An Introduction to System Concepts and Systems
Architecture 38

PART TWO
DATA IN THE COMPUTER 70

n CHAPTER 3 Number Systems 72

n CHAPTER 4 Data Formats 100

n CHAPTER 5 Representing Numerical Data 136

PART THREE
COMPUTER ARCHITECTURE
ANDHARDWARE OPERATION 176

n CHAPTER 6 The Little Man Computer 178

n CHAPTER 7 The CPU and Memory 194

n CHAPTER 8 CPU and Memory: Design, Enhancement,
and Implementation 234

n CHAPTER 9 Input/Output 266

iv

Englander btoc.tex V2 - December 9, 2013 2:57 P.M. Page v

BRIEF CONTENTS v

n CHAPTER10 Computer Peripherals 294

n CHAPTER11 Modern Computer Systems 332

PART FOUR
NETWORKS ANDDATA COMMUNICATIONS 358

n CHAPTER12 Networks and Data Communications—an Overview 360

n CHAPTER13 Ethernet and TCP/IP Networking 400

n CHAPTER14 Communication Channel Technology 442

PART FIVE
THE SOFTWARE COMPONENT 474

n CHAPTER15 Operating Systems: An Overview 476

n CHAPTER16 The User View of Operating Systems 510

n CHAPTER17 File Management 544

n CHAPTER18 The Internal Operating System 586

SUPPLEMENTARY CHAPTERS
On the Web at www.wiley.com/college/englander

n SUPPLEMENTARYCHAPTER1 An Introduction to Digital
Computer Logic

n SUPPLEMENTARYCHAPTER2 System Examples

n SUPPLEMENTARYCHAPTER3 Instruction Addressing
Modes

n SUPPLEMENTARYCHAPTER4 Programming Tools

http://www.wiley.com/college/englander

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page vi

CON T EN T S

Preface xviii

About the Author xxv

PART ONE
ANOVERVIEWOF COMPUTER SYSTEMS 2

n CHAPTER 1 Computers and Systems 4

1.0 Introduction 5
1.1 The Starting Point 9
1.2 Components of the Computer System 11

The Hardware Component 13
The Software Component 16
The Communication Component 18
The Computer System 18

1.3 The Concept of Virtualization 20
1.4 Protocols and Standards 20
1.5 Overview of This Book 22
1.6 A Brief Architectural History of the Computer 23

Early Work 24
Computer Hardware 25
Operating Systems 28
Communication, Networks, and the Internet 33

Summary and Review 34 For Further Reading 34

Key Concepts and Terms 35 Reading Review Questions 35

Exercises 36

n CHAPTER 2 An Introduction to System Concepts and Systems
Architecture 38

2.0 Introduction 39
2.1 The General Concept of Systems 40
2.2 IT System Architectures 47

Distributed Processing Systems 49
The Role of the System Architect 59

vi

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page vii

CONTENTS vii

Google: A System Architecture Example 60
Another Example: Facebook’s Application Architecture 64

Summary and Review 65 For Further Reading 66

Key Concepts and Terms 66 Reading Review Questions 67

Exercises 67

PART TWO
DATA IN THE COMPUTER 70

n CHAPTER 3 Number Systems 72

3.0 Introduction 73
3.1 Numbers as a Physical Representation 74
3.2 Counting in Different Bases 74
3.3 Performing Arithmetic in Different Number Bases 78
3.4 Numeric Conversion Between Number Bases 82

An Alternative Conversion Method 83
3.5 Hexadecimal Numbers and Arithmetic 85
3.6 A Special Conversion Case—Number Bases that are Related 87
3.7 Fractions 88

Fractional Conversion Methods 90
3.8 Mixed Number Conversions 93

Summary and Review 94 For Further Reading 94

Key Concepts and Terms 95 Reading Review Questions 95

Exercises 96

n CHAPTER 4 Data Formats 100

4.0 Introduction 101
4.1 General Considerations 101
4.2 Alphanumeric Character Data 104
4.3 Visual Data 111

Bitmap Images 112
Object Images 116
Representing Characters as Images 119
Video Images 120

4.4 Audio Data 120
4.5 Data Compression 124
4.6 Page Description Languages 125
4.7 Internal Computer Data Format 126

Numerical Character to Integer Conversion 128

Summary and Review 129 For Further Reading 130

Key Concepts and Terms 130 Reading Review Questions 131

Exercises 132

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page viii

viii CONTENTS

n CHAPTER 5 Representing Numerical Data 136

5.0 Introduction 137
5.1 Unsigned Binary and Binary-Coded Decimal

Representations 138
5.2 Representations for Signed Integers 141

Sign-and-Magnitude Representation 141

Nine’s Decimal and 1’s Binary Complementary
Representations 143

Ten’s Complement and 2’s Complement 149

Overflow and Carry Conditions 152

Other Bases 153

Summary of Rules for Complementary Numbers 153

5.3 Real Numbers 154
A Review of Exponential Notation 154

Floating Point Format 156

Normalization and Formatting of Floating Point Numbers 158

A Programming Example 161

Floating Point Calculations 162

Floating Point in the Computer 164

Conversion between Base 10 and Base 2 166

5.4 Programming Considerations 167

Summary and Review 168 For Further Reading 169

Key Concepts and Terms 169 Reading Review Questions 169

Exercises 170

PART THREE
COMPUTER ARCHITECTURE ANDHARDWARE
OPERATION 176

n CHAPTER 6 The Little Man Computer 178

6.0 Introduction 179
6.1 Layout of the Little Man Computer 179
6.2 Operation of the LMC 181
6.3 A Simple Program 182
6.4 An Extended Instruction Set 184
6.5 The Instruction Cycle 187
6.6 A Note Regarding Computer Architectures 190

Summary and Review 190

Key Concepts and Terms 191 Reading Review Questions 191

Exercises 191

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page ix

CONTENTS ix

n CHAPTER 7 The CPU and Memory 194

7.0 Introduction 195
7.1 The Components of the CPU 196
7.2 The Concept of Registers 197
7.3 The Memory Unit 200

The Operation of Memory 200

Memory Capacity and Addressing Limitations 204

Primary Memory Characteristics and Implementation 205

7.4 The Fetch–Execute Instruction Cycle 207
7.5 Buses 210

Bus Characteristics 210

7.6 Classification of Instructions 214
Data Movement Instructions (LOAD, STORE, and Other
Moves) 215

Arithmetic Instructions 217

Boolean Logic Instructions 218

Single Operand Manipulation Instructions 218

Bit Manipulation Instructions 218

Shift and Rotate Instructions 218

Program Control Instructions 219

Stack Instructions 220

Multiple Data Instructions 223

Other Instructions 224

7.7 InstructionWord Formats 224
7.8 InstructionWord Requirements and Constraints 226

Summary and Review 229 For Further Reading 229

Key Concepts and Terms 230 Reading Review Questions 230

Exercises 231

n CHAPTER 8 CPU and Memory: Design, Enhancement,
and Implementation 234

8.0 Introduction 235
8.1 CPU Architectures 236

Overview 236

Traditional Modern Architectures 237

8.2 CPU Features and Enhancements 238
Introduction 238

Fetch–Execute Cycle Timing Issues 239

A Model for Improved CPU Performance 241

Scalar and Superscalar Processor Organization 245

8.3 Memory Enhancements 248

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page x

x CONTENTS

Wide Path Memory Access 249

Memory Interleaving 249

Cache Memory 250

8.4 The Compleat Modern Superscalar CPU 254
8.5 Multiprocessing 256
8.6 A Few Comments on Implementation 260

Summary and Review 260 For Further Reading 261

Key Concepts and Terms 262 Reading Review Questions 262

Exercises 263

n CHAPTER 9 Input/Output 266

9.0 Introduction 267
9.1 Characteristics of Typical I/O Devices 268
9.2 Programmed I/O 273
9.3 Interrupts 275

Servicing Interrupts 275

The Uses of Interrupts 277

Multiple Interrupts and Prioritization 282

9.4 Direct Memory Access 286
9.5 I/O Controllers 289

Summary and Review 291 For Further Reading 292

Key Concepts and Terms 292 Reading Review Questions 292

Exercises 293

n CHAPTER10 Computer Peripherals 294

10.0 Introduction 295
10.1 The Hierarchy of Storage 296
10.2 Solid-State Memory 298
10.3 Magnetic Disks 299

Disk Arrays 306

10.4 Optical Disk Storage 307
10.5 Magnetic Tape 309
10.6 Displays 310

Basic Display Design 310

Graphical Processing Units (GPUs) 312

Liquid Crystal Display Technology 316

OLED Display Technology 317

10.7 Printers 317
Laser Printers 319

Inkjet Printers 320

10.8 User Input Devices 320

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xi

CONTENTS xi

Keyboards 320
Pointing Devices 321
Alternative Sources of Alphanumeric Input 322
Scanners 324
Multimedia Input 324
Mobile Devices 325

10.9 Network Communication Devices 326

Summary and Review 327 For Further Reading 327

Key Concepts and Terms 328 Reading Review Questions 328

Exercises 329

n CHAPTER11 Modern Computer Systems 332

11.0 Introduction 333
11.1 Putting All the Pieces Together 335
11.2 System Architecture 340

Basic System Interconnection Requirements 341
Bus I/O 343
Channel Architecture 347
Blurring the Line 349

11.3 Computer Interconnection: A Brief Overview 349
11.4 Clusters 350

Overview 350
Classification and Configuration 350
Beowulf Clusters 352

11.5 High-Performance Computing 353
Grid Computing 354

Summary and Review 354 For Further Reading 355

Key Concepts and Terms 355 Reading Review Questions 356

Exercises 356

PART FOUR
NETWORKS ANDDATA COMMUNICATIONS 358

n CHAPTER12 Networks and Data Communications—An
Overview 360

12.0 Introduction 361
12.1 The Impact of Networking on Business Processes and User

Access to Knowledge and Services 362
12.2 A Simple View of Data Communications 363
12.3 Basic Data Communication Concepts 366

Messages 366

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xii

xii CONTENTS

Packets 367
General Channel Characteristics 369

12.4 Networks 373
Network Topology 373
Types of Networks 376
Network Interconnection 390

12.5 Standards 393

Summary and Review 395 For Further Reading 396

Key Concepts and Terms 396 Reading Review Questions 397

Exercises 397

n CHAPTER13 Ethernet and TCP/IP Networking 400

13.0 Introduction 401
13.1 TCP/IP, OSI, and Other Communication Protocol Models 402
13.2 Program Applications Versus Network Applications 406
13.3 The Physical and Data Link Layers 407

The Physical Layer 408
The Data Link Layer 408
Hub-Based Ethernet 410
Switched Ethernet 411
Wireless Ethernet (Wi-Fi) 411

13.4 The Network Layer 413
13.5 The Transport Layer 416
13.6 IP Addresses 421

IPv4 and DHCP 421
IPv6 425

13.7 Domain Names and DNS Services 425
13.8 Quality of Service 430
13.9 Network Security 431

Physical and Logical Access Restriction 432
Encryption 432

13.10 Alternative Protocols 433
A Comparison of TCP/IP and OSI 433
Other Protocol Suites and Components 434
SCSI Over IP 434
Cellular Technology 435
MPLS 435
SONET/SDH 436
Frame Relay 436

Summary and Review 436 For Further Reading 437

Key Concepts and Terms 437 Reading Review Questions 438

Exercises 439

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xiii

CONTENTS xiii

n CHAPTER14 Communication Channel Technology 442

14.0 Introduction 443

14.1 Communication Channel Technology 444

14.2 The Fundamentals of Signaling Technology 447

Analog Signaling 448

Digital Signaling 456

Modems 461

14.3 Transmission Media and Signaling Methods 462

14.4 Alternative Technologies 464

Cellular Technology 464

Wi-Fi 466

Bluetooth 466

Summary and Review 467 For Further Reading 468

Key Concepts and Terms 468 Reading Review Questions 469

Exercises 470

PART FIVE
THE SOFTWARE COMPONENT 474

n CHAPTER15 Operating Systems: An Overview 476

15.0 Introduction 477

15.1 The Barebones Computer System 478

15.2 The Operating Systems Concept: An Introduction 479

15.3 Services and Facilities 485

User Interface and Command Execution Services 486

File Management 487

Input/Output Services 489

Process Control Management 489

Memory Management 490

Scheduling and Dispatch 491

Secondary Storage Management 493

Network and Communications Support Services 494

Security and Protection Services 494

System Administration Support 495

15.4 Organization 499

15.5 Types of Computer Systems 502

Summary and Review 506 For Further Reading 506

Key Concepts and Terms 507 Reading Review Questions 507

Exercises 508

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xiv

xiv CONTENTS

n CHAPTER16 The User View of Operating Systems 510

16.0 Introduction 511
16.1 Purpose of the User Interface 512
16.2 User Functions and Program Services 514

Program Execution 514

File Commands 515

Disk and Other I/O Device Commands 516

Security and Data Integrity Protection 516

Interuser Communication and Data Sharing Operations 517

System Status Information and User Administration 518

Program Services 519

16.3 Types of User Interface 519
The Command Line Interface 520

Batch System Commands 522

Graphical User Interfaces 523

Touchless Gesture- and Voice-Based Interfaces 528

Trade-offs in the User Interface 529

Software Considerations 530

16.4 XWindow and Other Graphics Display Methodologies 532
16.5 Command and Scripting Languages 535

The Elements of a Command Language 536

The Command Language Start-up Sequence Files 537

16.6 Services to Programs 538

Summary and Review 540 For Further Reading 540

Key Concepts and Terms 540 Reading Review Questions 541

Exercises 541

n CHAPTER17 File Management 544

17.0 Introduction 545
17.1 The Logical and Physical View of Files 545
17.2 The Role of the File Management System 550
17.3 Logical File Access Methods 555

Sequential File Access 555

Random Access 556

Indexed Access 557

17.4 Physical File Storage 557
Contiguous Storage Allocation 558

Noncontiguous Storage Allocation 559

Indexed Allocation 561

Free Space Management 564

Tape Allocation 565

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xv

CONTENTS xv

CD, DVD, and Flash Drive Allocation 566
17.5 File Systems, Volumes, Disks, Partitions, and Storage Pools 566
17.6 The Directory Structure 569

Tree-Structured Directories 570
Acyclic-Graph Directories 573

17.7 Network File Access 576
17.8 Storage Area Networks 578
17.9 File Protection 578
17.10 Journaling File Systems 581

Summary and Review 581 For Further Reading 582

Key Concepts and Terms 582 Reading Review Questions 583

Exercises 584

n CHAPTER18 The Internal Operating System 586

18.0 Introduction 587
18.1 Fundamental OS Requirements 588

Example: A Simple Multitasking Operating System 590
18.2 Starting the Computer System: The Bootstrap 592
18.3 Processes and Threads 595

Process Creation 597
Process States 598
Threads 600

18.4 Basic Loading and Execution Operations 600
18.5 CPU Scheduling and Dispatching 601

High-Level Scheduler 601
Dispatching 603
Nonpreemptive Dispatch Algorithms 605
Preemptive Dispatch Algorithms 606

18.6 Memory Management 608
Memory Partitioning 608

18.7 Virtual Storage 610
Overview 610
Pages and Frames 610
The Concept of Virtual Storage 616
Page Faults 617
Working Sets and the Concept of Locality 619
Page Sharing 620
Page Replacement Algorithms 620
Thrashing 624
Page Table Implementation 624
Segmentation 626
Process Separation 627

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xvi

xvi CONTENTS

18.8 Secondary Storage Scheduling 627
First-Come, First-Served Scheduling 627

Shortest Distance First Scheduling 628

Scan Scheduling 628

n-Step c-Scan Scheduling 628

18.9 Network Operating System Services 629
OS Protocol Support and Other Services 629

18.10 Other Operating System Issues 632
Deadlock 632

Other Issues 632

18.11 Virtual Machines 634

Summary and Review 636 For Further Reading 636

Key Concepts and Terms 637 Reading Review Questions 638

Exercises 639

Bibliography 645

Index 657

SUPPLEMENTARY CHAPTERS
On the Web at www.wiley.com/college/englander

n SUPPLEMENTARYCHAPTER1 An Introduction to Digital
Computer Logic

S1.0 Introduction
S1.1 Boolean Algebra
S1.2 Gates and Combinatorial Logic
S1.3 Sequential Logic Circuits

Summary and Review For Further Reading

Key Concepts and Terms Reading Review Questions

Exercises

n SUPPLEMENTARYCHAPTER2 System Examples

S2.0 Introduction
S2.1 Hardware Examples

The x86 Family

The POWER Family

The IBM System 360/370/390/zSeries Family

S2.2 Operating System Examples
The Microsoft Windows Family

UNIX and Linux

The IBM z/OS Operating System

http://www.wiley.com/college/englander

Englander ftoc.tex V2 - December 10, 2013 12:46 A.M. Page xvii

CONTENTS xvii

S2.3 Networking Examples
Google

Summary and Review For Further Reading

Key Concepts and Terms Reading Review Questions

Exercises

n SUPPLEMENTARYCHAPTER3 Instruction Addressing
Modes

S3.0 Introduction
S3.1 Register Addressing
S3.2 Alternatives to Absolute Addressing
S3.3 Alternatives to Direct Addressing

Immediate Addressing
Indirect Addressing
Register Indirect Addressing
Indexed Addressing
Indirect Indexed and Indirect Indexed Addressing

Summary and Review For Further Reading

Key Concepts and Terms Reading Review Questions

Exercises

n SUPPLEMENTARYCHAPTER4 Programming Tools

S4.0 Introduction
S4.1 Program Editing and Entry
S4.2 The Concept of Program Translation
S4.3 Assembly Language and the Assembler

Operation of the Assembler
Assembly Language Formats
Features and Extensions
Relocatability

S4.4 Program Language Description and Rules
A Description of Written English
Programming Language Rules
Computer Language Descriptions
The Compilation Process
Interpreters

S4.5 Linking and Loading
S4.6 Debuggers

Summary and Review For Further Reading

Key Concepts and Terms Reading Review Questions

Exercises

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xviii

P R E F A C E

T
hemodernworld offers a lot of readily available online resources for learning.Wikipedia,

Google, news sources, millions of Web sites and blogs, even YouTube, offer access to

information in nearly any subject that triggers your curiosity and interest. Nonetheless,

I continue to believe that for deep understanding of something, nothing beats the integrated

approach and focus of an old-fashioned printed-on-paper textbook. Well—maybe the e-book

equivalent, but, still, a textbook.

When I open a new book, in any subject, the first thing I want to know is what the book

has to offer that makes it worth my while to read it. I would like to try to help you answer that

question for the book that you’re holding in your hand or on your tablet.

The information systems and technology fields are wonderfully exciting places to be! It

seems as though every day brings new developments that alter the ways we create and work

with information. Of course, with this excitement comes a challenge. To be a successful player

in IS or IT, we have to be adaptable and flexible.

Much of the change occurs around computer system technology. The computer is, after

all, at the foundation of information systems. A deep understanding of computer systems is,

therefore, an essential element of success.Wemust be able to understand eachnewdevelopment,

assess its value, and place it in the context of our knowledge of computer systems.

The subject of this book is the architecture of computer systems. Computer architecture is

about the structure and operation of digital computers and computer-based devices. Computer

architecture is concerned with the operational methods of the hardware; with the services

provided by operating system software; with the acquisition, processing, storage, and output of

data; and with the interaction between computer-based devices.

There is a tendency for people in information systems and technology to neglect a study

of computer architecture. After all, the technology changes so rapidly—is it really worth trying

to understand something that may be out of date by the time I finish this book? There is no

question that computer technology has evolved rapidly. The computer in a smartphone is far

more powerful than the mainframe computer of twenty-five years ago, with memory, disk and

flash storage capacity, display and multimedia capability, and ease of use that would have been

unthinkable just a few years ago. Even more important, connecting systems to work together is

now routine and simple.

Interestingly enough, however, as profound as advances in the technology have been, the

concepts of computer architecture that really matter have changed only nominally over the

last seventy years. The new technologies are based on a foundation of architectural concepts

that were developed many years ago. The architecture of a modern computer system was

developed in the 1940s. The instruction set in a modern personal computer or smartphone is

nearly identical to that of computers built in the 1950s and 1960s. Modern operating system

xviii

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xix

PREFACE xix

techniques were developed in the 1960s. The graphical user interface is based on a 1960s’

project. The Internet is built from concepts developed more than forty years ago.

So you see that an understanding of computer architecture makes it possible to “ride the

wave” of technological change, secure in the feeling that you are equipped to deal with new

developments as they occur, and to have fun doing so. When you are done reading this book,

you will have substantial knowledge about how a computer works and a good understanding of

the operating concepts, the hardware, and system software that make up a computer. You will

see the interaction between computers and between data and the computer. Plus, you will have

learned lots of jargon that you can show off at parties and job interviews.

This textbook is designed for a wide range of readers, both undergraduate and graduate.

Thematerial is specifically directed toward IS and ITmajors. There are no explicit prerequisites,

although the book assumes that the student is familiar with a personal computer. It also assumes

(but does not require) some basic programming skills: although there is no programming in

the book, program code is occasionally used as an example to clarify an idea, and a knowledge

of programming is helpful at understanding instruction set design and program execution

concepts. The material in this textbook conforms to the criteria of the IT Infrastructure courses

and core concepts, as described in the ACM and AIS standard IS2010 and IT2008 curricula.

Although the material in this book may be useful as background for system design and

implementation project courses, the course can be placed anywhere in the curriculum.

Most instructors will not cover the entire textbook in a single semester. The organization

of this book is designed to allow an instructor to cover the major topic areas in different levels

of depth, depending on the experience and needs of the students. On the other hand, it is my

intention that this book will serve a student as a useful reference long after the formal course is

completed. It is designed for use as a book where a professional can look up the basic concepts

that clarify new developments as they occur.

This text is the outgrowth of courses that I have taught to CIS majors and minors at

Bentley University at both the undergraduate and graduate levels for more than thirty years.

Student responses to thematerial and the approach have generally been very enthusiastic. Many

students have returned after graduation to tell me that their knowledge in this area has directly

contributed to their career development. Along the way, student comments have also been

extremely helpful to me in the book’s continuing evolution.

Those familiar with previous editions will notice that the organization of recent editions

has undergone substantial revision to reflect current technological practices and trends.

In particular, it is no longer reasonable to discuss computers as individual units without

also considering the networks that tie them together; computer networking is now covered

thoroughly in its own section, and there is an increased emphasis on the integration and synergy

of the various components of the computer system and on the system as a whole. Still, the basic

philosophy, organization, and approach remain essentially similar to those of the first edition,

reflecting the unchanging nature of the underlying principles.

ORGANIZATION OF THE FIFTH EDITION,
NOTING CHANGES FROM PREVIOUS EDITIONS

Thebiggest challenge formeas the author of this bookhas been topreserve the guidingprinciples

established in the first edition, while reflecting the major changes in the way computers are

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xx

xx PREFACE

used, in the rapid deployment of new technology, and in the resulting evolution of IS/IT

curriculum to reflect those changes. The fifth edition is a substantial, though incremental,

update to previous editions. It reflects the rapid growth in the use of tablets and smartphones as

important computing devices. The material on networking has been substantially reorganized.

Still, users of previous editions will find that much of the material is familiar; after all, the way

in which computers are used in IS/IT may have changed, but the basic guiding principles of

computer architecture are essentially the same as they have been for many years.

This book is organized into five parts totaling eighteen chapters, plus four additional

supplementary chapters that are posted on the Web. The first part serves as an introduction

and overview of the role of the computer in information systems; it introduces the concept of

a system and provides a brief introduction to each of the components that make up a modern

computer system. Each of the remaining four parts deals with a single architectural aspect of

the computer system.

Part Two discusses the role and representation of data in the computer. Here, we consider

numbers, text, sound, images, video, and other data forms. Part Three presents the hardware

architecture and operational concepts. It introduces the components of a computer and shows

how they collaborate to execute computer instructions, discusses the nature of a computer

instruction set, and explores the interaction between the CPU, memory, and I/O peripheral

devices. Part Four presents a thorough introduction to the basics of computer networking. Part

Five discusses the system software, the programs that function to make the resources of the

computer system, and other interconnected computer systems and components, accessible to

the user and to application programs.

The approach within each group of chapters is layered. Each new layer builds upon the

previousmaterial to add depth and understanding to the reader’s knowledge. Each topic section

consists of a short introduction that places the topic to be discussed into the context of the

computer system as a whole and then lays out in detail the organization of the chapters within

the section. Each topic area is introduced as gently as possible, using ideas and examples that are

already familiar to students. Successive material is progressive and accumulative. In addition

to the numerous examples that are used throughout the text, the supplementary chapters

offer substantial case studies that show application of the text material to current examples

of importance. Overall, the approach is gentle, progressive, and accumulative. As much as

possible, each section is self-contained.

An overview of the organization of each part follows. A few comments about the differences

between the fourth and fifth editions are included for those who are familiar with the previous

edition. More details can be found in the introductions to each section.

Part One consists of two chapters that present a short overview of computing and placing

architectural concepts into the context of information technology. Chapter 1 introduces the

components of a computer system and shows the relationships among the components. In the

new edition, I have assumed that today’s students are more familiar with computer technology

and terminology than previous generations, so there is less introduction of “IT101”-type

material. Chapter 1 also presents a simple model of computing and discusses the importance

of standards and protocols in the development of computer systems. This chapter concludes

with a short history of computers from the architectural point of view. Chapter 2 focuses on the

concepts of systems, models, and system architectures, using various types of computer systems

as examples. There are several relatively small but important additions and updates in this

chapter. In Section 2.2, there is an increased emphasis on n-tier architectures and distributed

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xxi

PREFACE xxi

computing. Section 2.2 also contains a new section on cloud computing, which is presented as

a variation of the client–server concept. A new Facebook application architecture example has

also been added.

Chapters 3 through 5 comprise Part Two. Chapter 3 introduces number systems and basic

number system operations; it then explores the relationships between numbers in different

number bases and the conversion techniques between the different representations. Chapter 4

investigates different types of data formats, including alphanumeric, image, video, and audio

formats. It considers the relationship between numerical and character-based representations.

Previously, Chapter 4 also introduced various devices and data formats used for data input and

output. Much of that material has been moved to Chapter 10 since it is more directly related to

the devices themselves. Chapter 5 studies the various formats that are used to represent and to

perform calculations on integer and floating point numbers.

Part Three discusses the hardware architecture and operational aspects of the computer.

Chapter 6begins the studywith the introductionof theLittleManComputer, a simplemodel that

provides a surprisingly accurate representation of the CPU and memory. The model is used to

develop the concept of an instruction set and to explain the basic principles of the vonNeumann

architecture. Chapter 7 extends the discussion to a real computer. It introduces the components

of the CPU and shows their relationship to the Little Man Computer model. It introduces the

bus concept, explains the operation of memory, presents the instruction fetch–execute cycle,

and discusses the instruction set. It identifies important classes of instructions and discusses

the ways in which instructions can be categorized. The ARM instruction set is offered as an

illustration of a typical current CPU model.

Chapter 8 expands thematerial in Chapter 7 to considermore advanced features of theCPU

and memory. It offers an overview of various CPU architectures. It continues with a discussion

of techniques for improving memory access, particularly cache memory, and an introduction

to current CPU organization, design, and implementation techniques, including pipelining and

superscalar processing. This chapter also introduces multiprocessing (or multicore, in current

terminology) concepts. Chapter 8 received basic updating from the previous edition, including

elimination of the VLIW and EPIC architectures that never caught on.

Chapter 9 presents the principles of I/O operation, and Chapter 10 illustrates how I/O

is performed in various I/O devices. With the advent of powerful tablets and smartphones,

Chapter 10 received a substantial overhaul. Solid-state storage is of increased importance, and

Section 10.2 has been expanded to increase the coverage. Section 10.3, the display section,

has a new discussion of graphical processing units. CRTs have been eliminated altogether.

The discussions of text-mode display processing and different types of raster scans have

been minimized. The discussion of printers in Section 10.4 now considers only laser and

inkjet technologies. Section 10.8, user input devices, now includes the alternative sources of

alphanumeric input, moved fromChapter 4, plus more on touch screens and voice input. There

is an additional section discussing the sensors available on mobile devices, including GPS,

accelerometers, gyroscopes, magnetic field sensors, and near-field communication sensors.

Chapter 11 discusses the computer system as a whole. It discusses the interconnection

techniques and integration of the various hardware components. Chapter 11 has been updated

to reflect modern systems, including mobile systems and radically changed bus architecture

technology. The new, just-introduced Intel Haswell architecture and System on a Chip concepts

are included. Firewire was removed; the Thunderbird port is introduced in its place. Chapter 11

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xxii

xxii PREFACE

also addresses the interconnection of computers to increase the performance and reliability of

a computer with a specific focus on clustering and grid computing.

Three supplementary chapters on the Web provide additional resources to support the

chapters in Part Three. Supplementary Chapter 1 (SC1) offers an introduction to Boolean

algebra, combinatorial logic, and sequential logic for those readers that would like a deeper

understanding of the computer in its simplest andmost elegant form. Supplementary Chapter 2

(SC2) offers three detailed case studies of important architectures: the Intel x86 family, the Power

computer, and the IBM zSystem. As of this writing, this supplement is currently being updated.

Supplementary Chapter 3 (SC3) discusses alternative approaches to instruction addressing.

Part Four, Chapters 12–14, presents a thorough introduction to networking. For the fifth

edition, Chapters 12 and 13 received amajor reorganization; to amuch lesser extent, Chapter 14

is also affected by the change. The goal was a more unified and systematic presentation of

networking material.

Chapter 12 introduces the concept of a communication channel and explores its charac-

teristics and configurations. This includes the communication channel model, the concept of

links, packets, basic channel characteristics, network topology, types of networks (LAN, MAN,

etc.), and basic network interconnection and routing. All of the material related to protocols

and movement of data through the network has been moved to Chapter 13. The chapter is

retitled as Networks and Data Communications—An Overview.

Chapter 13 now focuses on the passage of data packets through a network. The chapter

is now titled Ethernet and TCP/IP Networking. Section 13.1 introduces TCP/IP and OSI and

the concept of layered communication. Section 13.2 describes the differences between program

applications and network applications. Following these two sections, the next three sections

carefully describe the process of moving packets, one layer at a time, from the bottom-up. It

should be noted that wireless networking has beenmoved fromChapter 14 and is now included

as part of the Ethernet discussion. Sections 13.6 and 13.7 explain IPv4 and IPv6 addressing and

DHCP, and DNS, respectively. Quality of Service and network security are briefly introduced

in Sections 13.8 and 13.9. The chapter concludes with a discussion of alternative protocols,

including a comparison of OSI and TCP/IP, as well as brief discussions of MPLS, cellular

technology, and other protocol suites.

Chapter 14 focuses primarily on communication channel technology, including analog

and digital signaling, modulation and data conversion techniques between analog and digital,

and the characteristics of transmission media. Sections 14.1–14.3 are relatively unchanged.

Section 14.4, however, is mostly new. Titled Alternative Technologies, it offers advanced

introductions to the radio technologies of LTE cellular technology, Wi-Fi, and Bluetooth.

Part Five is dedicated to a discussion of system software. Chapter 15 provides an overview

of the operating system. It explains the different roles played by the operating system and

introduces the facilities and services provided. Chapter 16 presents the role of the operating

system from the viewpoint of the user of a system. The fifth edition offers new screenshots of

Windows 8 and recent versions of Linux. Chapter 17 discusses the all-important topic of file

systems, including an introduction toMicrosoft’s new Resilient File System, intended to replace

NTFS. Chapter 18 discusses the operating system as a resource manager, with an in-depth

discussion of memory management, scheduling, process control, network services, and other

basic operating system services. Chapter 18 includes a detailed introduction to virtual memory

technique, rewritten for the fifth edition, with a new, detailed, worked-out example, carefully

illustrating the different page replacement algorithms. The chapter also includes an introduction

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xxiii

PREFACE xxiii

to virtual machines. In addition to its hardware discussions, Supplementary Chapter 2, when

completed, will also provide current Windows, UNIX/Linux, and z/OS case studies.

A fourth supplementary chapter provides an introduction to the system development

software that is used for the preparation and execution of programs.

This book has been a continuing labor of love. My primary goal has been to create and

maintain a textbook that explains computer architecture in a way that conveys to you, the

reader, the sense of excitement and fun that I believe makes a career in information systems

and technology so satisfying. I hope that I have succeeded to some extent.

ADDITIONAL RESOURCES
Additional resources for students and instructors may be found at the textbook’s Web

site, www.wiley.com/college/englander. I can also be reached directly by e-mail at

ienglander@bentley.edu. Although I am happy to communicate with students, I am unable to

supply tutorial help or answers to review questions and exercises in this book.

ACKNOWLEDGMENTS
I’ve discovered that a major, ongoing textbook project is a formidable task. Many individuals

have helped to make the task manageable—and kept me going when, from time to time, I

became convinced that textbooks really do appear by magic and are not written by humans. It

is impossible to thank people adequately for all their help and support. First and foremost, a

special thank you to four friends who have helped me survive through all five editions, Wilson

Wong, Ray Brackett, Luis Fernandez, and Rich Braun. Their continuing backup has been

amazing! I couldn’t have asked for a better support team. Dinner is ready and the champagne

is on ice. Yet again!

My continuing thanks, too, to Stuart Madnick. Stuart, your technical inspiration and

personal encouragement was invaluable to me when I struggled to get the first edition of this

book going. You helped me to believe that this project was actually possible and worthwhile.

That support has continued to inspire me through every subsequent edition.

Next, I thank themany colleagues at BentleyUniversity who shared their ideas, experiences,

and encouragement. In particular, colleaguesWilsonWong, David Yates, Doug Robertson, and

Mary Ann Robbert have all offered contributions that have substantially improved the book

over five editions. A special thank you, David, for your helpful technical discussions and reviews

of the data communications material in the fourth and fifth editions, and to you, Wilson,

for serving as a technical reviewer for the last three (!) editions, providing many comments,

rewrites, examples, and suggestions for clarification, and for creating many of the ancillary

materials for the book.

Thanks to the editors, production people, and marketing personnel at John Wiley & Sons

and the editors and production people at SPi Global. Sometimes the process is difficult, but

we always managed to get through it in a way that made the book better. I consider myself

fortunate to have worked with such committed people. Particular thanks to Beth Lang Golub,

Katie Singleton, and Felicia Ruocco for your ongoing efforts to make this book perfect, even

though we all know it’s impossible!

http://www.wiley.com/college/englander
mailto:ienglander@bentley.edu

Englander f02.tex V2 - December 9, 2013 2:51 P.M. Page xxiv

xxiv PREFACE

I would like to acknowledge the reviewers who have given of their time and effort over

many editions to assure that this book was as good as it could be: Dr. Stu Westin, The

University of Rhode Island; Alan Pinck, Algonquin College; Mark Jacobi, Programme Director

for Undergrad Computing at Sheffield Hallam University; Dr. Dave Protheroe, South Bank

University, London; Julius Ilinskas, Kaunas University of Technology; Anthony Richardson,

United States Army Informations Systems Engineering Command; Renee A. Weather, Old

Dominion University; Jack Claff, Southern Cross University; Jan L. Harrington, Marist College;

YoungJoon Byun, California State University, Monterey Bay; William Myers, Belmont Abbey

College; BarbaraT.Grabowski, BenedictineCollege;G.E. Strouse, YorkCollege of Pennsylvania;

Martin J. Doyle, Temple University; Richard Socash, Metropolitan State College of Denver;

and Fred Cathers, Franklin University. Your comments, suggestions, and constructive criticism

have made a real difference in the quality of this book. Thank you.

Thank you, too, to the reviewers of the current edition: Bob Brown, Southern Polytechnic

State University; Ming-Hsing Chiu, Dillard University; Angela Clark, University of South

Alabama; Chin-Tser Huang, University of South Carolina; Theresa Kraft, Capella University;

Ng Shu Min, HELP University College; Carl Nehlig, Tulane University; Leasa Perkins,

University of Maryland University College; and Mahbubur Syed, Minnesota State University,

as well as to testbank author Ronald Munsee, University of Maryland University College, and

to users from around the world who responded to the 2011 user survey.

Many colleagues offered corrections to previous editions that have had important impact

on the quality of the current edition. To each and everyone, your assistance in eliminating errors

has been much appreciated. Among these, I especially wish to acknowledge David Feinstein

and his crew at the University of South Alabama, Gordon Grimsey of AIT in Auckland, New

Zealand, and Stu Westin of University of Rhode Island for efforts well above and beyond the

call of duty. Stu has also generously made his excellent Little Man Simulator publicly available,

for which I am truly grateful. Thanks for everything, Stu.

Numerous students, too many to name you all, also offered corrections, made suggestions,

and provided ideas. Please accept my deepest appreciation and thanks.

I hope that I have not forgotten anyone. If I have, I apologize.

I have strived tomake this book as technically accurate as is humanly possible. Nonetheless,

I know that errors have a way of creeping in when one least expects them. I would greatly

appreciate hearing from readers who find errors that need correction. Your comments and

suggestions about the book are also welcome.

Irv Englander
Boston, Massachusetts

Englander f03.tex V2 - December 9, 2013 2:50 P.M. Page xxv

A BOU T TH E AU THOR

D
r. Irv Englander has been involved in many different aspects of the computing field

for more than fifty years. He has designed logic circuits, developed integrated circuits,

developed computer architectures, designed computer-controlled systems, designed

operating systems, developed application software, created the initial system design for a

large water-monitoring system, performed software auditing and verification of critical control

software, and developed and specified hardware components and application software as a

consultant for business systems large and small.

As an educator, he has contributed papers and given workshops on end-user computing,

e-commerce, and on various aspects of IS and IT pedagogy. He was an invited contributor and

reviewer for the IS-97 and IS-2002 information systems curricula, and continues to publish

and take an interest in the technical infrastructure components of the IS/IT curriculum. He is

actively involved in the application of new technology to information systems. Most recently he

served as a faculty advisor to a low-cost supercomputing student research project, which was

presented at the ACM/IEEE Computer Society Supercomputing Conference SC13.

Dr. Englander has a Ph.D. from MIT in Computer Science. His doctoral thesis was based

on the design of a large image-processing software laboratory. At MIT, he won the Supervised

InvestorsAward for outstanding teaching.He holds the rank of Professor Emeritus of Computer

Information Systems at Bentley University, where he taught full-time for thirty-three years.

xxv

Englander p01.tex V2 - November 30, 2013 9:04 A.M. Page 2

PART ONE

A computer-based information system is made up of a number of different elements:

n The data element. Data is the fundamental representation of facts and observations.

Data is processed by a computer system to provide the information that is the very

reason for the computer’s existence. As you know, data can take on a number of

different forms: numbers, text, images, and sounds. But it’s all numbers in the

computer.

n The hardware element. Computer hardware processes the data by executing

instructions, storing data, and moving data and information between the various

input and output devices that make the system and the information accessible to the

users.

n The software element. Software consists of the system and application programs that

define the instructions that are executed by the hardware. The software determines

the work to be performed and controls operation of the system.

n The communication element. Modern computer information systems depend on the

ability to share processing operations and data among different computers and users,

located both locally and remotely. Data communication provides this capability.

The combination of hardware, software, communication, and datamake up the architecture

of a computer system. The architecture of computer systems is remarkably similar whether the

system is a playstation, a personal computer that sits on your lap while you work, an embedded

computer that controls the functions in your cell phone or in your car, or a large mainframe

system that is never actually seen by the hundreds of users who access it every day.

Amazingly, the changes in computer technology that you’ve seen in just the last few years

are essentially superficial; the basic architecture of computer systems has changed surprisingly

little over the last sixty years. The latest IBMmainframe computer executes essentially the same

instruction set as the mainframe computer of 1965. The basic communication techniques used

in today’s systems were developed in the 1970s. As new as it might seem, the Internet celebrated

its fortieth anniversary in 2010. All of this is surprising considering the growth of computing,

Englander p01.tex V2 - November 30, 2013 9:04 A.M. Page 3

ANOVERVIEWOF

COMPUTER SYSTEMS

the rapid change of technology, and the increased performance, functionality, and ease of use

of today’s systems. This makes the study of computer architecture extremely valuable as a

foundation upon which to understand new developments in computing as they occur.

Computer system architecture is the subject of this textbook. Each element of the system

is addressed in its own section of the text, always with an eye to the system as a whole.

Part I is made up of two chapters that present an overview of systems, and of the computer

system in particular.

Chapter 1 addresses a number of issues, including:

n The ways in which a knowledge of computer architecture enhances our abilities as

computer users and professionals

n A simplified view of typical computer system architectures

n The basic components that make up a computer system

n The fundamental operations that are performed by computer systems.

Chapter 1 concludes with a brief architectural history of the computer.

An encompassing theme throughout this text is that of systems and system architecture.

The words “system” and “architecture” appear throughout this book: we talk about information

systems, computer systems, operating systems, file systems, software architecture, I/O architec-

ture, network architecture and more. You will probably take a course in System Analysis and

Design sometime in your college career.

Although most people have an instinctive understanding of what a system is, it is more

important for us as system professionals to understand the concepts of systems and system

architecture at a deeper level than the average person. Chapter 2 offers careful definitions and

examples of the concept of systems and system architecture, both generally and in the specific

context of the computer systems that are the focus of this book.

3

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 4

CHAPTER 1

COMPUTERS AND SYSTEMS

CATHYC 1986 Cathy Guisewite. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 5

1.0 INTRODUCTION
Welcome to the wonderful modern world of computers. Where the technology changes
daily. Or does it?

It’s true that the computer of today looks nothing like the computer of even five or
ten years ago. It is nearly impossible today to escape the immediate and ubiquitous reach
of computers and computer-based systems and devices. There is probably a smartphone
in your pocket or on your desk. For many of you, your laptop or tablet is sitting nearby as
you read this paragraph. (Or, maybe you’re even reading this paragraph on your tablet or
E-book.) Furthermore, your smartphone probably has more computing power than most
of the computers on themarket ten years ago. It fits easily in your pocket or purse. It weighs
less than 1/100 of that old desktop computer and has at least ten times as much memory!

And that’s not all. Your car has several embedded computers controlling various
automotive functions, and perhaps a touch screen for hands-free telephone, navigation, the
radio, Internet access, and more. Which is almost unnecessary, because you can probably
tell it what you want verbally anyway. Even your microwave oven and the machine that
launders your clothes depend on computers to function. As you are likely aware, most
of these machines can talk to each other, using the Internet or some other networking
technology. Just for fun, Figure 1.1 shows pictures typical of a 2005 laptop, a 2013
smartphone, and a current embedded computer that controls many functions in your car.

Although the focus of this book is on IT systems, our discussion of computer
hardware, software, and networking applies equally well to workplace computers, tablets,
smartphones, and, even, computers embedded in other equipment. In this figure, we have
three seemingly very different looking pieces of equipment working on different types
of applications. And yet, it’s hopefully obvious to you that these three systems share a
lot in common. They are all computer based. All contain at least one central processing
unit (CPU, some contain more) and memory. All provide a facility for interacting with
long-term storage and other devices and with users. What may be less obvious to you
is that the programs that they run are also essentially similar, differing mostly in the
details required by the different components of the particular system and by the nature of
the applications. For example, systems may have different amounts of memory, different
types of displays, different I/O devices, and different operating systems, as well as running
different types of applications and serving different purposes.

In fact, a modern IT system may contain elements of many different types of systems,
with networking that ties everything together.

When creating an IT system, our concerns are whether the various components
provide the features and performance that the users require. To be an effective designer
and user, you have to understand the specifications, their importance and their meaning;
the terminology; and the jargon.Which features are important to the users? Is this the right
combination of features that you need in your computer to have the computer perform
the work that you wish to get done? Are there features missing that we need? Perhaps we
are paying too much for the performance that we need. Or maybe we need more. What
other information about this system would allow you to make a more informed decision?

5

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 6

6 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.1

Computer Devices, Old and New

©
 2

00
7

H
ew

le
tt

-P
ac

ka
rd

 C
o

m
p

an
y

P
ho

to
 b

y
D

av
id

 S
he

p
p

er
d

D
el

p
hi

 A
ut

o
m

o
ti

ve

There is obviously no need to understand the inner workings of most modern computer-based
systems to operate them adequately. Indeed, in many cases, the presence of the computer is
hidden from us, or embedded, and its operation is invisible to us as users. We don’t need to
know how a computer works to read an E-book.

Even as experienced users, we can run standard software packages on a personal computer
or apps on a smartphone without understanding exactly how they work; we can program a
computer in a high-level or a scripting language without understanding the details of how the
machine executes the individual instructions; we can design and implementWeb pages without
understanding how the Web browser gets its pages from a Web server or how the Web server
creates those pages; we can purchase a tablet or a laptop computer from a salesperson without
understanding the specifications of the system.

And yet, there is somethingmissing. Perhaps the software doesn’t do exactly what we want,
and we don’t understand the machine well enough to risk fooling around with the software’s
options. Perhaps if we understood the system better we might have written and configured the
program to be faster and more efficient. Perhaps we could create Web pages that load faster
and work better. Perhaps the salesperson did not sell us the optimum system for our job. Or
perhaps it’s nothing more than a sense of excitement that’s missing. But that’s important, too!

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 7

CHAPTER 1 COMPUTERS AND SYSTEMS 7

You are reading this book because you are a student studying to become a computer

professional, or maybe you are simply a user wanting a deeper understanding of what the

computer is all about. In either case, you know you’ll be interacting with computer systems in

some form or other for the rest of your life. It’s nice (as well as useful) to know something about

the tools of the trade. More important, understanding the computer system’s operations has an

immediate benefit: it will allow you to use the machine more effectively.

As a user, you will be more aware of the capabilities, strengths, and limitations of a

computer system. You will have a better understanding of the commands that you use. You

will understand what is taking place during the operation of the program applications that

you use. You will be able to make better informed decisions about your computer equipment

and application programs. You will understand more clearly what an operating system is, and

how to use it effectively and to your advantage. You will know when it is preferable to do a

job manually, and when the computer should be used. You will understand the most efficient

way to “go online”, and what benefits might be gained from your home network. You will

improve your ability to communicate with system analysts, programmers, and other computer

specialists.

As a programmer, it will allow you to write better programs. You will be able to use the

characteristics of the machine to make your programs operate more effectively. For example,

choosing the appropriate data type for a variable can result in significantly faster performance.

Soon you will know why this is so, and how to make the appropriate choices.

You will discover that some computers will process nested loops much more quickly if the

index variables are reversed. A rather surprising idea, perhaps, and you’ll understand why this

is true.

You will understand why programs written in a compiled language like C++ usually

run much faster than those written in interpreted program languages like BASIC or scripting

languages like JavaScript. Similarly, you’ll see why the basic layout of a program can have a

major impact on the program’s run-time efficiency.

As a systems architect or system analyst, you will be responsible for the design and

implementation of systems that meet an organization’s information technology (IT) needs,

recognizing that the differences in the cost and capabilities of the components that you select

may have significant impact on the organization. With the knowledge gained here you will be

in a better position to determine and justify the set of computer system components and the

system architecture that are appropriate for a particular job and to determine the trade-offs

with other possible system architectures.

You’ll be able to assist management in making intelligent decisions about system strategy:

should the company adopt a large mainframe/virtual machine system approach for its Web

servers, or would a system consisting of a network of off-the-shelf blade servers provide

better performance at lower cost? You’ll be better prepared to analyze the best way to provide

appropriate facilities to meet the needs of your users. In an era of fast-changing technology,

you’ll be more able to differentiate between simple technological obsolescence that does not

affect the organization’s requirements significantly and major advances that suggest a real need

to replace older equipment. You will understand the trade-offs inherent in the use of cloud and

other remote services.

When selecting computers, you would like to purchase the computers that best meet the

needs of the organization’s applications and the users. Youmust be able to read and understand

the technical specifications in order to compare different alternatives and to match the system

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 8

8 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

to the users’ needs. This book will teach you what you need to know to specify and purchase

a system intelligently. You’ll know the differences between various CPU technologies and the

advantages and disadvantages of each. You will learn what peripheral hardware is appropriate

for your organization’s files and the trade-offs between different file system formats, what

is required to build an intranet, and what the speed, size, and performance limitations of a

particular system are. You’ll be able to compare the features of OS/X, Windows, and Linux

knowledgeably and decide which ones are important to you. You’ll be able to apply your basic

understanding of computers to new technologies and concepts such as mobile IT, new network

protocols, virtual machines and cloud services as they appear. You’ll learn to understand the

jargon used by computer salespeople and judge the validity of their sales claims.

As a networking professional, you are responsible for the design, maintenance, support,

and management of the networks that connect your computer systems together and provide

the required interfaces to the outside world. You must be able to specify network layouts

that optimize your equipment and network resources. Your understanding of basic network

configurations and protocols will allow you to control and provide sufficient and appropriate

access to your users in an efficient manner. This text offers the basic tools as a starting point to

prepare for a career in networking.

As aWeb services designer, you must be able to make intelligent decisions to optimize your

Web system configurations, page designs, data formatting and scripting language choices, and

operating systems to optimize customer accessibility to your Web services.

As a system administrator ormanager, your job is tomaximize the availability and efficiency

of your systems. You will need to understand the reports generated by your systems and be

able to use the information in those reports to make changes to the systems that will optimize

system performance. You will need to know when additional resources are required, and be

able to specify appropriate choices. You will need to specify and configure operating system

parameters, set up file systems, select cloud services, manage system and user PC upgrades

in a fast-changing environment, reconfigure networks, provide and ensure the robustness of

system security, and performmany other systemmanagement tasks. The configuration of large

systems can be very challenging. This text will give you an understanding of operating system

tools that is essential to the effective management of systems.

In brief, when you complete this book, you will understand what computer hardware and

software are andhowprograms anddata interactwith the computer system.Youwill understand

the computer hardware, software, and communication components that are required to make

up a computer system and what the role of each component in the system is.

You will have a better understanding of what is happening inside the computer when you

interact with the computer as a user. You will be able to write programs that are more efficient.

You will be able to understand the function of the different components of the computer system

and to specify the computer equipment and resources you need in a meaningful way. You will

understand the options that you have as a system administrator or Web services or network

designer.

In an era in which technology changes extremely rapidly, the architecture of the computer

system rests on a solid foundation that has changed only slightly and gradually over the last

sixty years. Understanding the foundations of computer system architecture makes it possible

to flow comfortably with technological change and to understand changes in the context

of the improvements that they make and the needs that they meet. In fact, interviews with

former students and with IT executives and other IT professionals clearly indicate that a deep

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 9

CHAPTER 1 COMPUTERS AND SYSTEMS 9

understanding of the basic concepts presented here is fundamental to long-term survival and
growth in the field of information technology and IT management.

This type of understanding is at the very foundation of being a competent and successful
system analyst, system architect, system administrator, or programmer. It may not be necessary
to understand the workings of an automobile engine in order to drive a car, but you can bet
that a top-notch race car driver knows his or her engine thoroughly and can use it to win races.
Like the professional race car driver, it is our intention to help you to use your computer engine
effectively to succeed in using your computer in a winning way. The typical end user might not
care about how their computer system works, but you do.

These are the goals of this book. So let’s get started!

1.1 THE STARTING POINT
Before we begin our detailed study of the architecture of computer systems, let us briefly review
some of the fundamental principles, characteristics, and requirements that guide computer
system design and operation. The fundamentals described here apply to computers in general,
regardless of size or purpose, from the smallest embedded device to the largest mainframe
computer.

In a simple scenario, you use your tablet, laptop, or desktop personal computer to word
process a document. You probably use a pointing device such as a mouse or stylus or finger
to move around the document and to control the features of the word processor software
application, and you use a keyboard or touch screen to enter and modify the document text
data. The word processor application program, together with your document, appears on a
screen. Ultimately, you might print the document on a printer. You store the document on a
disk or flash drive or some other storage device.

The fundamentals of a typical computer system are readily exposed in this simple example.
Your pointing device movements and clicks and your text data entry represent input to the
system. The computer processes the input and provides output to the screen, and, perhaps,
to a printer. The computer system also provides a storage medium of some sort, usually flash
memory or a hard disk, to store the text for future access. In simplest terms, your computer
receives input fromyou, processes it, and outputs results to the screen. Your input takes the form
of commands and data. The commands and programs tell the computer how to process the data.

Now consider a second, slightly more complex example. Your task in this example is to
access a Web page on the Internet. Again, your input to the computer is via keyboard and
pointer control device. When you type the Web page URL, however, your computer sends a
message to another computer that containsWeb server software. That computer, in turn, sends
a Web page file that is interpreted by the browser on your computer and presented on your
screen. You are probably already aware that HyperText Transfer Protocol (HTTP) is used as a
standard for Web message exchanges.

The elements of this example differ only slightly from the first example. Your command
inputs tell a Web browser software application on your computer what processing is to take
place; in this case, your desire to access a Web page. The output from your computer is a
message to a Web server on the remote computer requesting the data that represents the Web
page. Your computer receives the data as input from the network; the Web browser processes
the data and presents the Web page output on the screen. Figure 1.2 illustrates the layout for
this example.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 10

10 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.2

Typical Web Browser Application Use

Web Server
User

URL

HTML
file

Page Request
Message

(http)

(http)

Communication
Channel

HTML
file

Page Request
Message

Web Browser

The major differences between this and the first example are the source of the input data

and the fact that network connectivity is required between the two computers. Instead of the

keyboard, the input data to be processed by your Web browser comes from a communication

channel. (Note that the exact nature of the channel is not important for this discussion.) In both

cases, your computer receives data input to process, and control input, usually HTML or XML,

that determines how the data is to be processed, performs the processing, and provides output.

These two examples contain all of the key elements found in any IT system, large or small.

n An IT system consists of one or more computer systems; multiple computer systems

are connected together using some type of network interconnectivity. As a matter of

necessity, network interfaces must conform to standard agreements, known as

protocols, for messages to be understood by both computers during a message

exchange between a pair of computers. The network itself can take on a variety of

forms, provided that the interface requirements are met, and are determined by such

characteristics as performance, convenience, and cost.

n The work performed by an individual computer system within the IT system can be

characterized by input, processing, and output. This characterization is often

represented by the Input-Process-Output (IPO) model shown in Figure 1.3. Storage

is also represented within this model. Alternatively, storage can be interpreted as

output to be saved for use as future input. Storage is also used to hold the software

programs that determine the processing operations to be performed. The ability to

store programs and data on a temporary, short-term, or long-term basis is

fundamental to the system. In Chapter 2, Section 2.2, we will show that all IT systems

can ultimately be characterized by the same basic IPO model at all levels, from a

single computer to a complex aggregation of computers, although the complexity of

large systems may obscure the model and make it more difficult to determine the

actual inputs, outputs, and processing operations. The IPO model provides an

important basic tool for system analysis and design practices.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 11

CHAPTER 1 COMPUTERS AND SYSTEMS 11

FIGURE 1.3

A Computer Process

Input Process Output

Storage

n The components of an individual computer system consist of processing hardware,

input devices, output devices, storage devices, application software, and operating

system software. The task of the operating system software is to provide overall

control of the individual system, including management of input, output, and file

storage functions. The medium of exchange, both with users and between computers

within a larger system, is data. (Note that the messages between computers in the

second example are a form of data.) Figure 1.4 is a simple illustration of computer

systems embedded in a larger IT system.

Figure 1.5 summarizes the basic operations that are performedduring computer processing.

These operations, in turn, can be reduced to the primitive operations that are also familiar to

you from your understanding of programming languages. The primitive processing operations

common to high-level programming languages are shown in Figure 1.6.

1.2 COMPONENTS OF THE COMPUTER SYSTEM
As noted in the previous section, there are three components required for the implementation

of a computerized input-process-output model:

1. The computer hardware, which provides the physical mechanisms to input and

output data, to manipulate and process data, and to electronically control the various

input, output, and storage components.

2. The software, both application and system, which provides instructions that tell the

hardware exactly what tasks are to be performed and in what order.

3. The data that is being manipulated and processed. This data may be numeric, it may

be alphanumeric, it may be graphic, or it may take some other form, but in all cases it

must be representable in a form that the computer can manipulate.

In modern systems, input entry, output display, and storage of the data and software used

for processing often take place at a location different from the computer where the actual

processing occurs. In many installations, actual processing is distributed among computer

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 12

12

FIGURE 1.4

A Simplified IT Computer System Layout

Intranet
web server

Database
server

Apps.
server

Internet
web server

Firewall

To Internet

Sales

Order entry

Support

Accounts
payable

Accounting

Service

Sales

Web design

Finance

Financial
planning

Accounts
receivable

Credit

Marketing

Research &
planning

Printer

Printer

Printer

Printer

Advertising

Order
Fulfillment

Purchasing

Inventory Warehousing

Shipping

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 13

CHAPTER 1 COMPUTERS AND SYSTEMS 13

FIGURE 1.5

Basic Computer Operations

Input/output
Basic arithmetic and logical calculations
Data transformation or translation (e.g., program compilation, foreign
language translation, file updating)
Data sorting
Searching for data matches
Data storage and retrieval
Data movement (e.g., movement of text or file data to make room for
insertion of additional data)

◼

◼

◼

◼

◼

◼

◼

FIGURE 1.6

Basic High-Level Language Constructs

Input/output (including file storage and retrieval)
Arithmetic and logical assignment statements
True/false decision branching (IF-THEN-ELSE or IF-GOTO)
Loops and/or unconditional branching (WHILE-DO, REPEAT-UNTIL,
FOR, GOTO)

◼

◼

◼

◼

systems, with particular results passed to the individual systems that require them. Therefore,

we must also consider a fourth component:

4. The communication component, which consists of hardware and software that

transport programs and data between interconnected computer systems.

The hardware and system software components make up the architecture of the computer

system. The communication component connects individual computer systems together. The

data component and also the application software, while fundamental to the operation of the

computer system, are supplied to the computer system by the user or vendor, rather than

being a part of the architecture of the computer system itself. (It is useful to note, however,

that application software and data structure are often considered as part of the overall system

architecture when one considers the architecture from the perspective of the organization. We

explore this issue briefly in Chapter 2. Note, however, that the focus of this book is primarily on

computer system architecture, rather than on organizational system architecture.)

The Hardware Component

The most visible part of the computer system is obviously the hardware that makes up the

system. Consider the computer system upon which you write and execute your programs. You

use a keyboard or touch screen and a pointing device to provide input of your program text and

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 14

14 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

data, as well as for commands to the computer. A display screen is commonly used to observe
output. A printer is frequently available as an alternative output to the screen. These are all
physical components.

Calculations and other operations in your program are performed by one or more central
processing units (CPUs), or “cores” inside the computer. Memory is provided to hold your
programs and data while processing is taking place. Other input and output devices, such as
a disk and SD plug-in cards, are used to provide long-term storage of your program and data
files. Data and programs are transferred between the various input/output (I/O) devices and
memory for the CPUs to use.

The CPUs, memory, and all the input, output, and storage devices form the hardware part
of a computer system. The hardware forms the tangible part of the system. It is physical—you
can touch it, which is what the word “tangible” means. A typical hardware block diagram for
a computer is seen in Figure 1.7. In addition to the input and output devices shown in this
diagram, Figure 1.8 lists some other input and output devices that are frequently seen as part of
computer systems. The diagram in Figure 1.7 actually applies equally well to large mainframe
computers, small personal computers and tablets, and even devices with computers embedded
in them, such as PDAs, iPods, GPSs, and cell phones. Large and small computers differ primarily
in the number of cores, the amount of memory, speed, capacity, and the selection of input and
output devices provided. The basic hardware components and design are very similar.

FIGURE 1.7

A Typical Personal Computer System

Keyboard

Monitor
or display

I/O interface

Computer

Mouse, touchpad
or touchscreen

Video
camera

Speaker

Printer

Hard disk, solid
state drive, or
flash memory

USB
interface

Network & WiFi
interfaces

CPU
core(s) Memory

DATA

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 15

CHAPTER 1 COMPUTERS AND SYSTEMS 15

Conceptually, a CPU itself is often viewed as a composition of three primary subunits:

1. The arithmetic/logic unit (ALU) where arithmetic and Boolean logical calculations

are performed.

2. The control unit (CU), which controls the processing of instructions and the

movement of internal CPU data from one part of the CPU to another.

3. The interface unit, which moves program instructions and data between the CPU

and other hardware components.

(In modern CPUs, the actual implementation is usually modified somewhat to achieve higher

performance, although the basic concepts are carefully preserved. More about that later, in

Chapter 8.)

The interface unit interconnects the CPU with memory and also with the various I/O

modules. It can also be used to connectmultipleCPUcores together. Inmany computer systems,

a bus interconnects the CPU, memory, and all of the I/O components. A bus is simply a bundle

of wires that carry signals and power between different components. In other systems, the I/O

modules are connected to theCPU through one ormore separate processors known as channels.
Themainmemory, often known as primary storage, working storage, orRAM (for random

access memory), holds programs and data for access by the CPU. Primary storage is made

up of a large number of cells, each numbered and individually addressable. Each cell holds a

single binary number representing part of a data value or part of an instruction. The smallest

addressable size of the cell in most current computers is 8 bits, known as a byte of memory.

Eight bits of memory can only hold 256 different patterns, so neighboring cells in memory

are nearly always combined to form groupings with a larger number of bits. In many systems,

for example, 4 bytes of memory combine to form a 32-bit word. Modern computers address

memory at least 4 bytes (a “32-bit” computer) or 8 bytes (a “64-bit” computer) at a time to take

advantage of larger instruction and data groupings.

The amount of primary storage determines the maximum number of instructions and data

words that can be loaded into memory from a peripheral device at one time. For example, a

computer with 2 gigabytes (GB), actually 2,147,483,648 bytes,1 of memory would not be able

FIGURE 1.8

Other Common Input/Output Devices

• Page and document scanners
• RFID and NearFieldCommunication readers
• TV and radio tuners
• GPS receivers
• Cellular and Bluetooth communication technology
• SD, SmartCard, etc. card readers
• Fingerprint readers
• Graphics tablets
• Other mobile devices: accelerometers, gyroscopes, etc.

to execute a program that requires 2.7 GB for

its instructions and data unless some means is

provided within the computer to load the pro-

gram in sections as each section of the program

is needed.

The amount of primary storage provided

in a typical computer has increased rapidly

as computer technology improves. Whereas 64

kilobytes (KB) ofmemorywas considered a large

amount in 1980, even the least expensive per-

sonal computers today usually have 2 gigabytes

(GB) of memory or more. Large computers

may provide many gigabytes of primary storage.

There are programs on the market that require

11 Kilobyte actually equals 1024 bytes. Thus, 1MB= 1024 × 1024= 1,048,576 bytes × 2048= 2,147,483,648 bytes.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 16

16 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

hundreds of megabytes (MB) or gigabytes (GB) of memory to execute. The inexpensive

availability of increased amounts of memory has allowed the design of very sophisticated

programs that would not have been possible just a few years ago.

The same is true for secondary storage. Even small personal computers provide long term

storage using hard disks or solid stage storage devices with storagemeasured in tens or hundreds

or thousands of gigabytes. The storage of images and video, in particular, requires tremendous

amounts of storage capacity. It is not uncommon to see arrays of hard disks, even on some

personal computers, providing tens or hundreds of trillions of bytes (specified as terabytes) of

long-term storage.

The instructions that form a particular program are stored within the primary storage, then

brought into the CPU and executed. Conceptually, instructions are brought in and executed

one at a time, although modern systems overlap the execution of instructions to some extent.

Instructions must be in primary storage in order to be executed. The control unit interprets

each instruction and determines the appropriate course of action.

Each instruction is designed to perform a simple task. Instructions exist to perform basic

arithmetic, to move data from one place in the computer to another, to perform I/O, and to

accomplish many other tasks. The computer’s power comes from the ability to execute these

simple instructions at extremely high speeds, measured in billions or trillions of instructions

executed per second. As you are already aware, it is necessary to translate high-level language

programs into the language of the machine for execution of the program to take place. It

may require tens, hundreds, or even thousands of individual machine instructions to form the

machine language equivalent of a single high-level language statement. Program instructions

are normally executed sequentially, unless an instruction itself tells the computer to change

the order of processing. The instruction set used with a particular CPU is part of the design

of the CPU and cannot normally be executed on a different type of CPU unless the different

CPU was designed to be instruction set compatible. However, as you shall see, most instruction

sets perform similar types of operations. As a result, it is possible to write programs that will

emulate the instruction set from one computer on a computer with a different instruction set,

although a program written for the original machine may execute slowly on the machine with

the emulator.

The data that is manipulated by these instructions is also stored in memory while being

processed. The idea that the program instructions and data are both stored in memory while

being processed is known as the stored program concept. This important concept is attributed

primarily to John von Neumann, a famous computer scientist. It forms the basis for the

computer architecture that is standard to nearly every existing computer.

The Software Component

In addition to thehardware requirement, your computer systemalso requires software. Software
consists of the programs that tell the computer what to do. To do useful work, your system

must execute instructions from some program.

There are two major categories of software: system software and application software.

System software helps you to manage your files, to load and execute programs, and to accept

your commands. The system software programs that manage the computer are collectively

known as an operating system, and differ from the application programs, such as Microsoft

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 17

CHAPTER 1 COMPUTERS AND SYSTEMS 17

FIGURE 1.9

Simplified Operating System
Block Diagram

User

User
interface

Application
program

Application programming
interface

File
management

system

I/O
drivers

Hardware Network

Network
module

Kernel

Word, or Firefox, or the programs that you write, that you normally run
to get your work done. Windows, Linux, MAC OS X, iOS, and Android
are the best known examples of an operating system. Others include Unix,
Oracle Solaris, and IBM z/OS.

The operating system is an essential part of the computer system.
Like the hardware, it is made up of many components. A simplified
representation of an operating system is shown in Figure 1.9. The most
obvious element is the user interface that allows you to execute programs,
enter commands, and manipulate files. The user interface accepts input
from a keyboard and, in most modern systems, a mouse, touch screen, or
other pointing device. The user interface also does output presentation on
the display. On some systems, the output display might be simple text, but
more likely the display includes a graphical user interfacewith awindowing
system, and various gadgets for manipulating the windows.

The operating system’s application programming interface (API),
acts as an interface for application programs and utilities to access the
internal services provided by the operating system. These include file
services, I/O services, data communication services, user interface services,
program execution services, and more.2

Many of the internal services are provided by the kernel module,
which contains themost important operating system processing functions.
The remaining services are provided by other modules that are controlled
by the kernel. The kernel manages memory by locating and allocating
space to programs that need it, schedules time for each application
to execute, provides communication between programs that are being
executed, manages and arranges services and resources that are provided
by other modules, and provides security.

The file management system allocates and manages secondary storage space and translates
file requests from their name-based form into specific I/O requests. The actual storage and
retrieval of the files is performed by the I/O drivers that comprise the I/O component of the
operating system. Each I/O driver controls one or more hardware devices of similar type.

Thenetworkmodule controls interactions between the computer systemand thenetwork(s)
to which it is attached.

Traditionally, the operating system software has nearly always been stored on a hard disk,
but on some smaller modern systems, especially lightweight laptops and embedded systems
such as cell phones, tablets, and E-books, a solid-state disk or SD card is normally used instead.
On a few systems the operating system is actually provided as a network or cloud-based service
when the system is turned on. In either case, the bootstrap or IPL (Initial Program Load)
program in the operating system is stored within the computer using a type of memory known
asROM, or read-onlymemory. The bootstrap programprovides the tools to test the system and
to load the remainder of the operating system from the disk or network. Although the physical
mediumwhere the software is stored can be touched, the software itself is considered intangible.

2The same term (API) is also sometimes used to describe the services provided by one application to another.

For example, Amazon and Google are among many companies whose application software provides API tools to allow

users to extend the functionality of the original software.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 18

18 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Together, the hardware and system software provide a working computer system environ-

ment. Application software, communication support, and user data complete the picture.

The Communication Component

Very few modern computers or computer-based devices operate independently. Instead, they

are tied to other computers directly, by modem, or through a network connection of some

sort. The computers may be located physically close to each other, or they may be separated,

even by thousands of miles. To work together, computers must have means to communicate

with each other. The communication component requires both hardware and software to

achieve this goal. Additional hardware components physically connect computers together into

multiprocessing systems, or clusters, or networks, or, via telephone, satellite, microwave, or

other network technology, to computers at other remote locations. A communication channel
provides the connection between computers. The channel may be a wire cable, a fiber-optic

cable, a telephone line, or a wireless technology, such as infrared light, cellular phone, or

radio-based technology such asWi-Fi or Bluetooth. Special I/O hardware, consisting of a device

such as amodem or network interface card (NIC) within the computer, serves as an interface

between the computer and the communication channel. There may be additional hardware

within the channel itself.

The communication component also requires additional software within the operating

system of each computer to make it possible for each computer to understand what the other

computers that they are connected with are saying. This software establishes the connections,

controls the flow of data, and directs the data to the proper applications for use.

The Computer System

To review, our general description of the computer is valid for all general-purpose computer

systems, and also for most devices with computers embedded in them, regardless of brand

name or size. In more general terms, every computer system consists of at least one CPU,

where all the processing takes place; memory to hold the programs and data while they are

being processed; and some form of I/O, usually one or more keyboards, pointer devices,

and flat-screen display devices plus one or more forms of long-term storage, usually disks or

solid-state storage, network (“cloud”) storage, CDs or DVDs, and USB or SD plug-in memory.

Most modern computer systems provide more than one CPU (or “core”) within the computer

system. A single CPU can process only one instruction at a time; the use of multiple CPUs can

increase processing speed by allowing instructions that do not affect each other to be executed

in parallel.

The validity of our general description is true regardless of how complex or simple the

computer system may seem.

As a specific example, the large zEnterprise IBMmainframe computer shown in Figure 1.10

can provide complex Web services to thousands of users at a time. IBM mainframes can have

dozens of CPUs working together, with a minimum of 32 GB up to 3 terabytes (TB) of primary

storage. They are capable of executing instructions at a rate of tens of billions of instructions

per second! The powerful z/OS operating system can keep track of hundreds or thousands

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 19

CHAPTER 1 COMPUTERS AND SYSTEMS 19

FIGURE 1.10

IBM System z10 EC Mainframe Computer

C
o

ur
te

sy
 o

f
In

te
rn

at
io

na
l B

us
in

es
s

M
ac

hi
ne

s
C

o
rp

o
ra

ti
o

n.
U

na
ut

ho
ri

ze
d

 u
se

 n
o

t
p

er
m

it
te

d

of simultaneous users and divides the time among them to
satisfy their differing requirements. In addition to the CPU,
there aremany large I/Odevices—including tapedrives and
high-speed printers—and disks that store essentially un-
limited amounts of data. The computer alone weighs over
5000 pounds/2200 kilograms!

In contrast, the tablet shown in Figure 1.11 is designed
for personal use. Everything is self-contained in one pack-
age. This system only has 2 GB of primary RAM storage
and operates at a small fraction of the speed of the zEnter-
prise. Long-term storage is limited to 128 GB of solid-state
memory. The entire system, complete with display screen,
built-inwebcams,multiple network connections, including
an optional cellular connection, and battery, weighs about
1.5 pounds (0.9 kilograms, if you prefer).

Although these two systems seem very different, the
difference is actually one of magnitude and application,
not of concept. The large system operates much faster, can
support much more memory, and handles more input and
output much faster. It has operating system software that
allowsmanyusers to share this larger resource.Nonetheless,
the fundamental system architecture is remarkably similar
in both cases. Even the actual processing performed by the
CPU is similar.

In fact, today’s CPU operates in the same fundamental
way as its CPU counterpart of sixty years ago, even though

the construction is very different. Since computers all operate so similarly, regardless of size
or type, it is not difficult today to transfer data between these different systems, allowing each
system to do part of the processing for higher overall efficiency. This concept is known as
distributed computing. The fact that different types of computers can work together, share
files, and communicate successfully is known as open computing. Communication technology

FIGURE 1.11

A Tablet Computer

P
ho

to
 b

y
au

th
o

r

fulfills the requirements that make open and distributed com-
puting possible and convenient.

Computers are sometimes divided into categories: main-
frame computers, midsized servers, workstations, personal
desktop and laptop computers, and mobile computing devices,
but these categories are less significant than they once were.
The capability of today’s personal computer far exceeds the
capabilities of a mainframe computer of just a few years ago.
Oracle SPARC computers are an example of workstations that
are frequently used as though they were midsized servers, or
even small mainframes. Rather than attempting to categorize a
particular computer, it is usually more productive to describe
its capabilities in comparison to other systems being discussed
or considered.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 20

20 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

1.3 THE CONCEPT OF VIRTUALIZATION
The word “virtual” appears frequently throughout the computer literature in many different

contexts. To name a few applications of the word that appear in this text, there are virtual

computers, a Java VirtualMachine (JVM), virtualmemory, and virtual networks. Sometimes, a

synonymous word, logical, is used instead: in networking we have logical connections. Virtual

storage consists of a relationship between logicalmemory and physical memory.

It is not important at this point that you understand any of the specific concepts mentioned

above. (In fact, we realize that you probably don’t.) Since the words virtual and logical represent

a number of important concepts in IT, however, we introduce them here.

In optics, a virtual image is the reflection that you see when you stand in front of a regular

mirror. (See, for example, the cartoon at the beginning of Chapter 18.) You know that the image

isn’t real. For one thing, it’s behind the wall that the mirror is mounted on. For another, you

can’t touch it. In early, time-shared computing, a large central computer commonly supplied

computing services to users at terminals located remotely from the computer. In a sense, it

seemed as though the user had access to a computer that was all her own. Starting in the early

1970s, IBM offered the VM (virtual machine) operating system to support this concept. (The

centralized time-sharing approach is similar, in many ways, to today’s cloud computing—one

of the goals of this text is to convince you that most of today’s “new and exciting” technologies

are simply reworkings of ideas that have been around for a long time!)

The American Heritage Dictionary offers two applicable definitions of virtual that together

describe the usage of the word in modern computing:

n existing or resulting in essence or effect though not in actual fact, form, or name;

n created, simulated, or carried on by means of a computer or computer network.

Wikipedia defines virtualization as “a broad term that refers to the abstraction of computer

resources”.

In essence, virtual and logical are used to refer to something that appears as though it is

something different. Thus, the Java Virtual Machine uses software to simulate a real computer

that works well with the Java programming language, even though the actual computer executes

a different set of instructions than the JVM. A logical connection in networking offers the

appearance of a direct communication link for passing data between two computers, even

though the actual connection might involve a complex series of interconnections involving

many computers and other devices and a variety of software to make it all look simple. The

virtualization of a computer allows a single computer to appear as a multiplicity of computers,

eachwith its ownoperating system andhardware resources. A singlemainframe set up as a cloud

service might provide hundreds or thousands of virtual computers to users all over the world.

1.4 PROTOCOLS AND STANDARDS
Standards andprotocols are of great importance in computer systems.Standards are agreements

among interested parties, often manufacturers, to assure that various system components will

work together interchangeably. Standardsmake it possible to build a computerwith components

from different suppliers, for example, knowing that a graphics card will plug properly into a

connector on a motherboard and that the image representations will be consistent between the

connector, the CPU, memory, and the display monitor.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 21

CHAPTER 1 COMPUTERS AND SYSTEMS 21

Standards apply to every aspect of computing: hardware, software, data, and communica-

tions; the voltage of a power supply; the physical spacing of pins on a connector; the format

of a file; and the pulses generated by a mouse. Computer language standards, such as Java and

SQL, allow programs written on one type of computer to execute properly and consistently on

another, and also make it possible for programmers to work together to create and maintain

programs.

Similarly, data format and data presentation standards, such as the PNG and JPEG image

format standards, theUnicode text format standard, and theHTML andXMLWebpresentation

standards, allow different systems to manipulate and display data in a consistent manner.

Standards can arise in many different ways. Many standards occur naturally: a proprietary

data format, belonging to a single vendor, becomes a de facto standard due to the popularity of

the product. The PDF print description language is an example of such a standard. The format

was designed by Adobe Corporation to provide a way of communicating high-quality printed

output between computers and printers. Other standards are created because of a perceived

need in an area where no standard exists.

Often a committee will form to investigate the requirements and create the standard.

The MPEG-2 and MPEG-4 standards, which establish the means for the transmission and

processing of digital video images, occurred in this way. The committee that designed the

standard, made up primarily of motion picture engineers and video researchers, continues to

develop the standard as improved techniques evolve. The JPEG photographic standard and

MP3 and MP4 sound standards are other examples of standards that were developed formally.

Similarly, each version of HTTP has been formalized after many years of discussion by parties

interested in Web communication. A nonstandard protocol or data format is limited in use to

its supporters andmay or may not become a standard, depending on its general acceptance. For

example, DVD videos encoded in the proprietary DVD-ROM format will play on some DVD

players, but not on others.

Protocols define the specific agreed-upon sets of ground rules that make it possible for a

communication to take place. Except for special applications, most computers perform their

operations such that each hardware or software computer unit will understand what other

computer units that they are connected with are saying. Protocols exist for communications

between computers, for the communications between various I/O devices and a computer,

and for communications between many software programs. A protocol specification defines

such communication features as data representation, signaling characteristics, message format,

meanings of messages, identification and authentication, and error detection. Protocols in a

client–server system assure that requests are understood and fulfilled and that responses are

interpreted correctly.

Since the use of a proprietary protocol would be limited to those with permission to use it,

protocols are almost always eventually standardized. Although not always the case, protocols

that are not standardized tend to die out from lack of use. In fact, international standards

are often created to ensure that the protocols are universally compatible. As an example,

HTTP, HyperText Transfer Protocol, guides communication between Web servers and Web

browsers on the Internet. The movement of data through the Internet is controlled by a suite

of protocols called TCP/IP (Transmission Control Protocol/Internet Protocol). Storage devices

communicate with a computer using a protocol called SATA. There are thousands of such

protocols.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 22

22 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

New protocols and other standards are proposed and created and standardized as the

need arises. XML, RSS, and SIP are all examples of protocols developed recently to meet new

and changing demands. Satellite telecasting, near-universal telephone communication, wireless

communications, and the Internet all demonstrate powerful and useful technologies made

possible by protocols and standards. Indeed, the Internet is a measure of the success to which

protocols that govern intercommunication between computer hardware and software have

been standardized throughout the world. Discussions of various protocols and standards will

occur regularly throughout this book.

1.5 OVERVIEW OF THIS BOOK
The focus of this book is upon the architecture and organization of computers, computer

systems, and computer-based IT systems, including everything from the smallest mobile device

to the largest mainframe. Technically, there is a slight difference in definition between the terms

“computer architecture” and “computer organization”. In this book we will usually not attempt

to differentiate these terms and will use them interchangeably.

In this bookwewill be concernedwith all four components of computer systems: hardware,

software, data, and interconnectivity, and with the interactions between each component, with

other systems, and with users.Wewill also look initially at the larger picture: the organization of

computer systems as components, themselves, to form enterprise IT systems. Chapter 2 of this

first part is concerned with the system as a whole. The remainder of this book is divided into

four additional parts, consisting of discussions of number systems and the representation of

data in the computer, the hardware that makes up the computer, the networks that interconnect

computers, and the system software that the computer uses.

Our first step will be to examine the concept of systems in general. We will look at the

characteristics and qualities that define a system. We will then use that basic understanding to

look at the characteristics of computer-based IT systems and showhow the various elements and

requirements of computer systems fit into the system concept. Part 1 illustrates fundamental

IT architecture concepts with several examples of IT system architectures.

In Part 2, we will look at the different forms the input data may take, and we will consider

the translation processes required to convert data into forms that the computer hardware and

software can process. You will see how the various data types that are familiar to you from

programming languages are stored and manipulated inside the computer. You’ll learn the

many different ways in which math calculations can be performed, and the advantages and

disadvantages of each. You will see the difference between a number and the alphanumeric

representation of a number, and understand why that difference can be critical in whether

a program works or not. You will be able to relate the size of a word processing text to the

storage capability of the computer’s disk. You’ll understand how computers process and handle

multimedia data, graphics, photographs, audio, and video.

In Part 3, we will take a detailed look at the various components of the hardware and

how they fit together. Using an extremely simple model, you will learn how the CPU works,

how different I/O devices work, and even how text and graphics manage to appear, seemingly

by magic, on the display screen. You will learn what makes some computers faster and more

powerful than others, and what that means. You will learn about different ways of connecting

I/O devices to the computer and see why you get a fast response from some devices, a slow

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 23

CHAPTER 1 COMPUTERS AND SYSTEMS 23

response from others. You’ll learn about USB ports. We’ll even explain the difference between

PCI and PCI Express buses.

Most important, you will have the opportunity to see what a simple, program-obedient

machine the computer really is. You will learn about the limitations of a computer. We all tend

to think of the computer as a resource of infinite capacity, speed, and perhaps even intelligence,

but of course that’s not true. We will consider how these limitations affect your work as a user,

and as a means of specifying a system that will meet your needs and requirements.

Part 4 will provide a careful introduction to the foundational principles of communication

andnetworking.Wewill consider the basic communication technologies, networking hardware,

software, channels andchannelmedia, protocols, andmethodologies that are required to support

communication between computer systems in an IT system environment.

In the final part, we will consider the software that is used to control the computer’s basic

processing capabilities. Although computer software falls into two categories, operating system

software and application software, we will focus exclusively on the system software. We will be

concerned with control and efficient use of the computer hardware, fair and effective allocation

of computer resources to different programs, security, storage management and file system

structure, system administration, security, user interfaces, and more.

There are also four supplementary chapters covering topics that are somewhat outside the

scope of the text, but important and interesting nonetheless. The first supplementary chapter

introduces the fundamental logic thatmakes up a computer. The second supplementary chapter

provides case studies that describe the hardware and system software of important real-world

computer systems. These examples include the x86 family of PC hardware, the Microsoft

Windows family of operating systems, Linux operating systems, and IBMmainframe hardware

andsoftware.The remaining twosupplementary chapters, onCPUinstructionaddressingmodes

and on programming tools, have been maintained and updated from previous editions. The

supplementary chapters can be found on the book’s website, www.wiley.com/college/englander.

Additional related topics of current interest may also be found on the book’s website. The

website also contains numerous links to reference materials, both general to computing as well

as specific to individual topics discussed within the book.

1.6 A BRIEF ARCHITECTURAL HISTORY
OF THE COMPUTER

Although a study of the history of computing is generally outside the scope of this book,

a brief introduction is useful in showing the wide-ranging and quirky path by which IT

has arrived to its present position. It is of particular interest to note that nearly all of the

revolutionary concepts that define computer systems today were developed between forty-

and sixty-five years ago; today’s advances are more evolutionary and incremental in nature.

Today’s smartphone processes instructions that are remarkably similar to those of mainframe

computers in the 1960s. Some current cell and network technologies are based on inventions

from World War II. This suggests that an understanding of the basic concepts that we are

presenting in this book should serve you, the reader, well in your ability to understand the

importance and significance of future developments as they occur.

http://www.wiley.com/college/englander

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 24

24 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Early Work

It is not possible, nor particularly useful, to identify the date of the “invention” of the computer.

Indeed it has always been the aspiration of humankind to create devices that would simplify

people’s work. Thus, it is not surprising that people were envisioning mechanical devices to

simplify the jobs of routine data processing and calculation even in ancient times. In fact,

there is recent evidence of the existence of an ancient computing device used for astronomical

calculations. Instead, this discussion covers just a few of the major developments related to

computer architecture.

In this context, one could consider the abacus, already in use as early as 500 BC by the

ancient Greeks and Romans, to be an early predecessor of the computer. Certainly, the abacus

was capable of performing calculations and storing data. Actually, if one were to build a binary

numbered abacus, its calculations would very closely resemble those of the computer.

The abacus remained in common use until the 1500s and, in fact, is still considered an

effective calculating tool in some cultures today. In the late 1500s, though, European inventors

again began to put their minds to the problem of automatic calculation. Blaise Pascal, a noted

French mathematician of the 1600s, invented a calculating machine in 1642 at the age of

nineteen, although he was never able to construct the machine. In 1801, Joseph Marie Jacquard

invented a loom that used punched cards to control the patterns woven into cloth. The program

provided by the punched cards controlled rods that raised and lowered different threads in the

correct sequence to print a particular pattern. This is the first documented application of the

use of some form of storage to hold a program for the use of a semiautomated, programmable

machine.

Charles Babbage, an English mathematician who lived in the early 1800s, spent much of his

own personal fortune attempting to build a mechanical calculating machine that he called an

FIGURE 1.12

Babbage’s Analytical Engine

C
o

ur
te

sy
 o

f
In

te
rn

at
io

na
l B

us
in

es
s

M
ac

hi
ne

s
C

o
rp

o
ra

ti
o

n

“analytical engine”. The analytical engine resem-

bles the modern computer in many conceptual

ways. A photo of an early version of the analytical

engine is shown in Figure 1.12. Babbage’s machine

envisioned the use of Jacquard’s punched cards for

input data and for the program, provided mem-

ory for internal storage, performed calculations as

specified by the program using a central process-

ing unit known as a “mill”, and printed output.

Augusta Ada Byron, Countess of Lovelace and the

daughter of the poet Lord Byron, worked closely

with Babbage and developed many of the funda-

mental ideas of programming andprogramdesign,

including the concepts of branches and loops.

A block diagram of the Babbage analytical

engine is shown in Figure 1.13. The mill was

capable of selecting one of four arithmetic opera-

tions, and of testing the sign of a number with

a different program branch specified for each

result. The sequence of operation was specified

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 25

CHAPTER 1 COMPUTERS AND SYSTEMS 25

FIGURE 1.13

Block Diagram of Babbage’s Analytical Engine

Instructions

Program

DataThe mill
(ALU)

Operation
cards

Variable
cards

The store
(memory)

Printer and
card punch

Source: Computer Architecture and Organization, 2e., J. Hayes, copyright
1988 by McGraw-Hill Companies p. 14.

by instructions on the operation cards. The opera-

tion cards could be advanced or reversed as a means

of implementing a sort of “goto” instruction. The

second set of cards, known as variable cards, were to

be used to specify particular memory locations for

the data involved in the calculations.

Babbage envisioned a memory of one thou-

sand 50-digit decimal numbers. Each digit was to be

stored using a ten-toothed gear known as a counter

wheel. Although the analytical engine was never

completed, it should be apparent to you that it con-

tains all the essential elements of today’s computers.

At approximately the same time, another English

mathematician, George Boole, developed the binary

theory of logic that bears his name, Boolean logic.

He also recognized the relationship between binary arithmetic and Boolean logic that makes

possible the circuitry that implements the modern electronic computer.

Computer Hardware

In the late 1930s and early 1940s, several different groups of researchers independently

developed versions of the modern electronic computer. TheMark I, built in 1937 by Howard H.

Aiken and associates at Harvard University with help and funding from IBM, used thousands

of mechanical relays; relays are binary switches controlled by electrical currents to perform

Boolean logic. Although binary relays were used for computation, the fundamental design was

decimal. Storage consisted of seventy-two 23-digit decimal numbers, stored on counter wheels.

An additional counter wheel digit held the sign, using the digit 0 for plus and 9 for minus.

The design appears to be based directly on Babbage’s original concepts and use of mechanical

calculator parts from IBM accounting machines. A similar electromechanical computer was

designed and built by Conrad Zuse in Germany at about the same time.

The first totally electronic digital computer was apparently devised by John V. Atanasoff,

a physicist at Iowa State College, in 1937. The machine was built in 1939 by Atanasoff and a

graduate student, Clifford Berry, using electronic vacuum tubes as the switching components.

The machine was known as ABC, for Atanasoff-Berry Computer. It is claimed that Atanasoff

worked out the original details as he drove restlessly late one winter night from his house

in Iowa to a bar in neighboring Illinois. The machine was not intended as a general-purpose

computer, but was built to solve physics equations that Atanasoff was working on at the time.

There is some doubt as to whether the machine ever worked completely.

ABC was a binary-based machine, just like today’s computers. It consisted of an ALU

with thirty units that could do addition and subtraction, a rotating drum memory that held

thirty binary numbers of 50 digits each, and punched card input. Each punched card held

five 15-digit decimal numbers. These numbers were converted to binary as they entered the

machine. Despite its limitations, ABC was an important pathmark that led to later significant

advances in computer design. It is only recently that Atanasoff has begun to receive recognition

for his achievement.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 26

26 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Much of the effort that culminated in a successful general-purpose computer architecture

resulted from a wartime need for the solution to difficult mathematical formulas related to

ballistic missile trajectories and other World War II research. The ENIAC (for Electronic

Numerical Integrator and Computer, believe it or not) is generally considered to be the first

all-electronic digital computer. It was designed and built between 1943 and 1946 by John

W. Mauchly and J. Presper Eckert at the University of Pennsylvania, using the concepts that

Mauchly had seen in Atanasoff’s machine, although this was not publicly known at the time.

ENIAC had very limited storage capability, with only twenty locations each capable of

holding a 10-digit decimal number. An additional one hundred numbers could be stored

in read-only memory. Calculations were performed using decimal arithmetic. Ten electronic

vacuum tube binary switches were used for each digit, with only one switch in the “ON” position

to represent the value of the digit. Input and output used punched cards. The system could also

provide printed output.

Programs could not be stored internally, but were hard wired with external “patch panels”

and toggle switches. It took many hours to change programs, and, of course, debugging was

a nightmare. Nonetheless, ENIAC was an important machine, some say the most important

machine, especially since it led directly to the development of the UNIVAC I, the first

commercially available computer, in 1951.

ENIAC contained eighteen thousand vacuum tubes, occupied a floor space of more than

fifteen thousand square feet, and weighedmore than thirty tons. A photograph of ENIAC, taken

from The New York Times of February 15, 1946, is shown in Figure 1.14. Even in its day, ENIAC

was recognized as an important achievement. ENIAC operated successfully until 1955, when

it was dismantled, but not destroyed. Parts of the computer can be seen at the Smithsonian

Institute, at the U.S. Military Academy at West Point, at the Moore School of the University of

Pennsylvania, and at the University of Michigan.

FIGURE 1.14

The ENIAC
P

ho
to

 u
se

d
 w

it
h

p
er

m
is

si
o

n
o

f
U

ni
sy

s
C

o
rp

o
ra

ti
o

n

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 27

CHAPTER 1 COMPUTERS AND SYSTEMS 27

In 1945, John vonNeumann, a consultant on the ENIAC project, proposed a computer that

included a number of significant improvements over the ENIAC design. The most important

of these were

1. A memory that would hold both programs and data, the so-called stored program

concept. This solved the difficult problem of rewiring the control panels for changing

programs on the ENIAC.

2. Binary processing of data. This simplified the design of the computer and allowed the

use of binary memory for both instructions and data. It also recognized the natural

relationship between the ON/OFF nature of switches and calculation in the binary

number system, using Boolean logic.

The CPU was to include ALU, memory, and CU components. The control unit read

instructions from memory and executed them. A method of handling I/O through the

control unit was also established. The instruction set contained instructions representing all the

essential features of a modern computer. In other words, von Neumann’s machine contained

every major feature considered essential to modern computer architecture. Modern computer

architecture is still referred to as von Neumann architecture.
Due to political intrigue and controversy, two different versions of von Neumann’s

architecture were designed and built, EDVAC at the University of Pennsylvania and IAS at the

Princeton University Institute for Advanced Studies (hence the unusual name). Both machines

were completed in 1951–1952. The success of EDVAC and IAS led to the development of many

offspring, mostly with odd names, and to several commercial computers, including the first

IBM computers.

At this point, von Neumann’s architecture was firmly established. It remains the prevalent

standard to this day and provides the foundation for the remainder of the material in this book.

Although there have been significant advances in technology, and improvements in design

that have resulted, today’s designs still reflect the work done prior to 1951 on ABC, ENIAC,

EDVAC, and IAS.

All of these early electronic computers relied on the electronic vacuum tube for their

operation. Vacuum tubes were bulky, made of glass, fragile, short-lived, and required large

amounts of power to operate. Vacuum tubes require an internal electric heater to function,

and the heaters tend to fail quickly, resulting in what was known as a “burned out” tube.

Furthermore, the heat generated by the large number of tubes used in a computer required a

massive forced-air or water-cooling system. A report reprinted by computer historian James

Cortada [CORT87] states that the average error-free operating time for ENIAC was only 5.6

hours. Such bulky, maintenance-requiring systems could not have attained the prevalence that

computers have in our society. The technological breakthrough thatmade possible today’s small,

sophisticated computers was the invention of the transistor and, subsequently, the integration

of transistors and other electronic components with the development of the integrated circuit.

The invention of the integrated circuit led to smaller, faster, more powerful computers as

well as a new, compact, inexpensive form ofmemory, RAM. Althoughmany of these computers

played an important role in the evolution of today’s computers, two specific developments stand

out from the rest: (1) development of the first widely accepted personal computer, by IBM in

1981, and (2) design of the Intel 8008 microprocessor, predecessor to the x86 CPU family, in

1972. The impact of these two developments is felt to this day. Even smartphones and other

mobile devices reflect these developments.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 28

28 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Companies have developed better ways of moving data between different parts of the

computer, better ways of handlingmemory, andmethods for increasing the speed of instruction

execution. As we noted before, there is a lot more processing power in today’s smallest mobile

device than there was in the largest mainframe computer in the 1970s. Nonetheless, the basic

architecture of today’s machines is remarkably similar to that developed in the 1940s.

Operating Systems

Given how easy it is to communicate with computers today, it is hard to picture a time when

the user had to do everything by hand, one step at a time. We take it for granted that we can

type commands at a keyboard or move a mouse and launch programs, copy files, send text to a

printer, and performmyriad other computer tasks. We power up and bootstrap our systems by

pressing a switch.

It was not always this way. Early computers had no operating systems. The user, who was

also the programmer, entered a program by setting it, one word at a time, with switches on

the front panel, one switch per bit, or by plugging wires into a patch panel that resembled a

cribbage board. Not a pleasant operation! Needless to say, early computers were single-user

systems. Much of the computer’s time was tied up with this primitive form of program and data

entry. In fact, as late as the mid-1970s, there were still vendors producing computer systems

with no operating system and computer hardware that was still bootstrapped by entering the

bootstrap program, one instruction at a time into switches on the front panel of the computer.

The history of system software, particularly operating systems, is much less well defined

than that of hardware. According to Cortada [CORT87],

Without more sophisticated operating systems, scientists would not have been

able to take full advantage of the power of the transistor and later of the

[microprocessor] chip in building the computers known today. Yet their

contribution to the overall evolution of digital computers has been overlooked by

historians of data processing.

Part of the reason, undoubtedly, is that software evolved gradually, rather than as a series of

important individually identifiable steps. The first operating systems and high-level program-

ming languages appeared in the early 1950s, particularly associated with IBM and MIT, but

with only a few exceptions, these efforts have not been associated with individual people or

projects.

The need for operating system software came from the increasing computer power that

resulted from the rapid development of new computers in the 1950s. Although the hardware

architecture has not changed substantially since that time, improved technology has resulted

in a continuum of ever-increasing computer capability that continues to this day. It has been

necessary to continually modify and improve operating system architecture to take advantage

of that power and make it available to the user. Computing has changed from single-user batch

processing (where only a single user, with a single program, could access the machine at one

time), to multiple-user batch job submission (where each user’s “job” was submitted to the

computer by an operator for sequential runs), to multiuser batch job execution (where the

computer executed several jobs simultaneously, thereby keeping the CPU busy while I/O took

place on another user’s job), to multiuser online computing (where each user had direct access

to the computer), to single-user interactive personal computing, to today’s powerful interactive

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 29

CHAPTER 1 COMPUTERS AND SYSTEMS 29

networked systems, with multitasking, easy-to-use touch screens and graphical interfaces, the

ability to move data between applications, and near-instant access to other computers all over

the world.

Each of these developments, plus various hardware developments—minicomputers, PCs,

new I/O devices, multimedia—have required additional operating system sophistication; in

each case, designers have responded to the need.

The early computers were used primarily by scientists and engineers to solve technical

problems. The next generation of computers, in the late 1950s, provided a punched card reader

for input and a printer for output. Soon after, magnetic tape systems became available. The

first “high-level” languages, primarily assembly language, then FORTRAN, made it possible

to write programs in a language other than binary, and offline card punch machines allowed

programmers to prepare their programs for entry without tying up themachine. Algol, COBOL,

and Lisp followed shortly after. New technology improved the reliability of the computers. All

these advances combined to make the computer system practical for business commercial use,

especially for large businesses.

Still, these computers were single-user batch systems. Initially, users submitted the cards

that they had prepared to the computer for execution. Later, separate, offline systems were

developed that allowed the cards to be grouped together onto a magnetic tape for processing

together. Programs were then submitted to the computer room in the form of jobs. A job

consisted of one or more program card decks, together with the required data decks for

each program. An output tape could also be used to support printing offline. As an example,

Figure 1.15 shows a job that compiles and executes a FORTRAN program.

I/O routines were needed to operate the card readers, tape drives, and printers. The earliest

operating systems consisted of just these I/O routines, but gradually operating systems evolved

to perform other services. Computer time was very expensive, hundreds of dollars per minute,

and in growing demand. To increase availability, control of the computer was placed in the

hands of an operator, who fed the punched cards, mounted tapes, and generally tried to keep

the system busy and efficient. The operating system provided a monitor that fed jobs to the

FIGURE 1.15

Job Card Deck Used to Compile and Execute a FORTRAN Program

$JOB ENGLANDER
$FORTRAN

$LOAD
$RUN

$DATA

$END

Program to compile

Data for the run

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 30

30 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

system and supported the operator by notifying him or her of necessary actions, such as loading
a new tape, setting switches on the panel, removing printout, and so on. As system demand
increased, the monitor expanded to include accounting and simple, priority-based scheduling
of jobs.

It is generally accepted that the first operating system was built by General Motors
Research Laboratories in 1953–1954 for their IBM 701 computer. Other early systems included
the FORTRAN Monitor System (FMS), IBSYS, and Share Operating System (SOS).3 Many
important breakthroughs in operating system design occurred in the early 1960s. These
breakthroughs laid the groundwork for the operating system as we know it today.

n In 1963, Burroughs released its Master Control Program (MCP). MCP contained
many of the features of modern systems, including high-level language facilities and
support for multiprocessing (with two identical CPUs). Most important, MCP
supported virtual storage, as well as powerful multitasking capabilities.

n IBM introduced OS/360 as the operating system for its new System/360 in 1964.
OS/360 provided a powerful language to expedite batch processing, JCL, or Job
Control Language, and a simple form of multiprogramming that made it possible to
load several jobs into memory, so that other jobs could use the CPU when one job
was busy with I/O. By this time, disks were also becoming available, and the system
was capable of reading cards onto disk while the CPU executed its jobs; thus, when a
job completed, the operating system could load another job from disk into memory,
ready to run. This improved the OS scheduling capability. JCL is still used for batch
processing! The enormous success of the IBM OS/360 and its successors firmly
established the basis of an operating system as a fundamental part of the
computer.

n In 1962, a group at MIT known as Project MAC introduced the concept of
time-sharing with an experimental operating system called CTSS. Project MAC was
one of the seminal centers for the development of computer science. Shortly
thereafter, MIT, Bell Labs, and GE formed a partnership to develop a major
time-sharing system. The system was called MULTICS (Multiplexed Information and
Computing Service), and although MULTICS never fully realized its dream of
becoming a major computer utility, many of the most important multitasking
concepts and algorithms were developed by the MULTICS team. It was supplied for
many years as the operating system for Honeywell computer systems.

n When Bell Labs withdrew from the MULTICS project, Ken Thompson, a MULTICS
researcher, turned to the development of a small personal operating system, which he
called Unics, later UNIX, to contrast it fromMULTICS. He was later joined by
Dennis Ritchie. The original UNIX development was performed on a Digital PDP-7
minicomputer and later moved to a PDP-11 minicomputer, then to the Digital VAX
computer. These were popular computer systems supplied by the Digital Equipment
Corporation between 1964 and 1992. Originally, the system was written in assembly
language, but Ritchie developed a new high-level language, which he called C, and the
operating system was largely rewritten in C.

3Share was a consortium of system programmers who used IBM systems and who met to discuss problems and

develop solutions. SOS was produced by a team of consortium members.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 31

CHAPTER 1 COMPUTERS AND SYSTEMS 31

UNIX introduced many important OS concepts that are standard today, including the

hierarchical file system, the shell concept, redirection, piping, and the use of simple commands

that can be combined to performpowerful operations. Thompson andRitchie included facilities

for document production and formatting, including such novelties as a spell checker and a

grammar checker. They created many inventive algorithms to improve operating system

performance, developed techniques for interprocess communication, and even provided tools

for networked and distributed processing. Many facets of operating systems that are taken for

granted today were originated in UNIX development.

UNIX earned a reputation for power and flexibility. Because it was written in C, it was also

easy to port it, that is, convert it for use, to other computers. As a result of these factors, UNIX

became an important operating system for universities and was ultimately adopted, in many

versions, by the commercial marketplace as well. UNIX and its direct derivatives, FreeBSD,

Linux, and Android, continue to be of great importance, particularly due to UNIX’s flexibility

in the area of networks and distributed systems.

n Another important innovation, some would say the most important development in

making the computer accessible to nontechnical users, was the development of the

concept of graphical user interfaces. Most historians would credit the invention of

the windows and mouse interface to Doug Englebart. This work was done, amazingly

enough, in the 1960s, at Stanford Research Institute. A practical windowing system

was built in the 1970s by Alan Kay and others at Xerox PARC (Palo Alto Research

Center), as part of a visionary computer concept known as the Dynabook project.

Conceptually, the Dynabook is the direct forerunner of today’s smartphones, tablets,

and E-books. The original intention of Dynabook was to develop a book-sized

personal computer with a high-resolution color display and wireless communication

that would provide computer capabilities (particularly secretarial), games, e-mail, and

a reference library. Although the technology of the time was not sufficient to bring the

Dynabook as an entirety to fruition, the engineers at Xerox in the late 1970s built a

personal computer workstation with a graphical user interface known as Star. It is

believed that a visit to Xerox PARC by Steve Jobs, the founder of Apple, in 1979,

inspired the development of the Apple Lisa and, subsequently, the Apple

Macintosh.

The next important breakthrough in computer use occurred in 1982, with the introduction

of the IBMpersonal computer. The IBMPCwas designed as a stand-alone, single-user computer

for the mass market. The IBM PC was supplied with a reasonably easy-to-use operating system,

PC-DOS, which was developed and also later marketed by Microsoft as MS-DOS. PC-DOS was

actually derived from an earlier personal computer operating system, CP/M (Control Program

for Microcomputers), but is important because of the tremendous success of the IBM PC and

its derivatives. Gradually, PC-DOS and MS-DOS became the prevalent operating system of the

era. With later versions, Microsoft made many improvements, including hierarchical directory

file storage, file redirection, better memory management, and an improved and expanded

command set. Many of these improvements were derived from UNIX innovations. With the

addition of Englebart and Kay’s user interface innovations, MS-DOS has gradually evolved into

Windows NT and Windows XP, and most recently, Windows 8.

Even with all these earlier innovations, there continue to be tremendous advances in

operating system software. Today’s systems, such as Windows 7 and 8, Linux and Android,

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 32

32 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

and Macintosh OS X and iOS, combine much more power on one hand with improved user

friendliness and ease of use on the other. There are several reasons for this:

n There has been a great increase in computer speed and power. More powerful

integrated circuits have allowed the design of faster computers using multiple CPU

cores, faster clocks and larger internal data paths, together with techniques for

speeding up instruction execution. Even small personal computers can support

gigabytes of memory and many gigabytes or terabytes of longer-term storage. A

modern PC may contain as much as ten thousand times the memory or more and

execute instructions a million times as fast as the 1965 IBM OS/360 mainframe

computer. Thus, more capability can be built into the operating system without

sacrificing performance.

n There have been fundamental improvements in computer hardware design. Many

modern computers are designed as an integrated unit, hardware and operating

system software together. Most computer hardware contains special features

intended to support a powerful operating system. Such features as cache memory,

vector processing, and virtual storage memory management hardware are intended

primarily for use by the operating system. These features used to be available only on

large mainframes. A protected mode of hardware instructions, accessible only to the

operating system, provides security and protection to the operating system and allows

the operating system to protect the system’s resources and users. Separate, auxiliary

graphics processing units relieve the CPU workload to provide sophisticated display

capabilities.

n There have been fundamental improvements in operating system software design.

Operating system programs have grown in size and complexity. Increased memory

capacity has made a larger operating system feasible. Increased speed has made it

practical. Gradually, innovative operating system techniques from large computers

have drifted down to the level of the smallest computing device. In addition, program

design itself has helped the process. New languages, well designed for system

programming, and better programming methods such as object-oriented

programming have also contributed to the process.

n There has been a shift in focus to creating operating systems that better serve the end

user. This has resulted in much current research on human–computer interfaces, and

on the ways in which humans work and use the computer. New work paradigms,

based on object-oriented programming and communication technologies, and new

interfaces continue to extend the role of the operating system. There is a new

willingness to include features that were not a part of earlier operating systems and to

modularize the operating system in different ways to improve the delivery of services

to the user and to the user’s application programs.

n Networking has provided the opportunity for innovative research and development

in distributed computing, including client–server technology, shared processing, and

cloud computing. There is a continuing progression of new operating system

techniques, developed in response to the changing requirements of modern

distributed systems.

n The rapid growth of the Internet, and of e-mail use, the Web, and multimedia in

particular, has created opportunities and the need for better methods of accessing,

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 33

CHAPTER 1 COMPUTERS AND SYSTEMS 33

retrieving, and sharing information between different systems. The results have

impacted network design, user interface design, distributed processing technology,

and open system standardization with corresponding effects in operating system

design.

Although today’s operating systems are highly complex and sophisticated, with many

capabilities made possible by modern technology, particularly fast processors, large amounts of

memory, and improved graphical I/O design, it is interesting to note that the major operating

system features that we take for granted today are all evolutions based on innovations of more

than thirty years ago.

Communication, Networks, and the Internet

With the development of large, multiterminal computer systems in the 1960s and 1970s, it

was natural that users would want to use the computer to communicate with each other and

to work collaboratively. Data was centrally stored in storage that was available to all, so it was

easily shared among users on the same system. It soon occurred to software developers that it

would be desirable to allow direct discussion among the users, both in real time and in the form

of messages that could be stored on the system and made available to users when they logged

in. Since data was centrally stored, the addition of message storage was a minor enhancement.

“Talk” facilities that allowed users to communicate in real time were added later. These were

similar to today’s text messaging, although some had split-screen capability that allowed two

users to send messages simultaneously. By 1965, some of these systems supported e-mail, and

in 1971, Ray Tomlinson created the standard username@hostname format that is still in use

today. As modems became available for users to log into their office systems from home and

computers became more affordable, software innovators developed bulletin board systems,

newsgroups, and discussion boards, where users could dial in and leave and retrieve messages.

Gradually, it became possible to support modems on multiple lines, and affordable real-time

“chat rooms” became possible.

During the same period, various developments occurred that made it possible to connect

different computers together into simple networks. Some were based on direct links between

modems on each computer. Others were based on early protocols, notably X.25, a packet-

switching protocol using phone lines. By 1980, these various innovations had evolved into a

number of international networks, as well as three companies, Compuserve, AOL, and Prodigy,

who offered e-mail, Usenet news, chat rooms, and other services to personal computer users.

(Ultimately, these developments have led to services such as Picasa, Facebook, twitter, gmail,

and outlook.com.)

All of this activity was, of course, a precursor to the Internet.Much of themodern history of

networking and communication can be traced back to two specific developments: (1) a research

project, ARPANET, whose goal was to connect computers at various universities and research

centers, funded starting in 1969 by the U.S. Defense Department and later by the National

Science Foundation and other groups, and (2) the development of the Ethernet by Robert

Metcalfe, David Boggs, and others, which started at Xerox PARC in 1973. The ARPANET

project was responsible for the design of TCP/IP, which was first tested in 1974, and issued as an

international standard in 1981. To give you perspective on the longevity of the basic computer

concepts discussed in this book, we call to your attention the fact that, with one exception, this

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 34

34 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

date, 1974, represents the newest major architectural concept presented in the next seventeen

chapters! (Wondering about the exception? Keep reading.)

Because ARPANET and its successors, CSNet and NSFNet, were funded by the U.S.

government, its usewas initially limited to noncommercial activities. Gradually, other networks,

some of them commercial, joined the network in order to exchange e-mails and other data,

while the administrators of NSFNet chose to “look the other way”. Ultimately, the government

turned over its Internet resources to private interests in 1995; at that point the Internet became

commercial and expanded rapidly into the form that we know today.

Although it is only peripherally related to the architectural issues addressed in this book, we

would be remiss if we did not complete this discussion with a mention of Sir Tim Berners-Lee,

of CERN, the European organization for nuclear research, who in 1989–1991 developed with

Robert Cailliau the important concepts that became theWorldWideWeb andMarcAndreessen

of the University of Illinois, who, in 1993, developed Mosaic, the first graphical Web browser.

SUMMARY AND REVIEW
This chapter has presented a brief review of the basics of computing. We began by recalling the

input-process-output model for computing. Next we demonstrated the connection between

that model and the components of the computer system. We noted that implementation

of the model requires four components: hardware, software, communication, and data. The

architecture of the computer system is made up of the hardware and system software. In

addition, a communication component exists to enable interconnecting systems. We discussed

the general architecture of a computer and noted that the same description applies to CPUs

both modern and ancient, both large and small. We introduced the important concepts of

virtualization, standards and protocols, noting that these ideas will appear throughout the book.

The chapter concluded with a brief history of the computer from an architectural perspective.

FOR FURTHER READING
There are many good general introductory computer texts available for review if you feel you

need one. New books appear so rapidly that we are reluctant to recommend any particular

one. For alternative coverage of material in this book, you may find recent editions of various

books by Stallings [e.g., STAL09] or Tanenbaum [e.g., TANE07] to be useful. Various chapters

offer additional suggestions that are specifically applicable to the material in those chapters.

The Web is also a rich source of knowledge. Two websites that we have found particularly

useful are wikipedia.org and howstuffworks.org. In addition to a wide range of material, these

websites also offer numerous references to facilitate further study. Other useful websites include

arstechnica.com and realworldtech.com.

The book by Rochester and Gantz [ROCH83] is a fun way to explore the history of

computing. Historical facts are blended with other facts, anecdotes, humor, and miscellany

about computers. Although the book is (sadly) out of print, it is available in many libraries.

You can learn, in this book, about von Neumann’s party habits, about movies that became

video games, about computer scams and rip-offs, and lots of other interesting stuff. Perhaps

the most thorough discussion of computer history is found in the three-volume dictionary by

Cortada [CORT87]. Although Cortada is not really designed for casual reading, it provides

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 35

CHAPTER 1 COMPUTERS AND SYSTEMS 35

ready access and solid information on particular topics of interest. Much of the historical

discussion in this chapter was obtained from the Cortada volumes.

If you live or vacation in a city with a computer museum, you can enjoy another approach

to computer history. Computer museums even allow you to play with some of the older

computers. Well-known U.S. museums can be found in Mountain View, CA, Washington,

D.C., and within the Science Museum in Boston. The Wikipedia entry for computer museums

offers pointers to lists of computer museums scattered through the world.

KEY CONCEPTS AND TERMS
application programming

interface (API)

arithmetic/logic unit (ALU)

bus

byte

central processing unit

(CPU)

channel (I/O)

communication channel

control unit (CU)

data deck

deck (program)

distributed computing

embedded computer

graphical user interface

hardware

input

input-process-output (IPO)

model

interface unit

job

kernel

logical

memory

modem

network interface card (NIC)

open computing

operating system

output

port (from one computer to

another)

primary storage

protocol

random access memory

(RAM)

read-only memory (ROM)

software

standards

stored program concept

submit (a job)

suite (protocol)

virtual

von Neumann architecture

word

READING REVIEW QUESTIONS

1.1 Any computer system, large or small, can be represented by the four elements of an IPO

model. Draw an IPO model; clearly label each of the four elements in your drawing.

1.2 One way to view an information technology system is to consider an IT system as

consisting of four major components or building blocks. This book takes this approach

by dividing the remainder of the book into parts, with a part devoted to each major type

of component. What are the four components of an IT system that you will study in

this book?

1.3 Explain the differences between primary storage and secondary storage. What is each

type used for?

1.4 The book divides the software component of a computer system into two major

categories. Identify each category and give an example of each that you are already

familiar with. Briefly explain the role of each category.

1.5 The book compares a large mainframe computer to a smartphone or tablet, and states

that the difference between them is one of magnitude, not of concept. Explain the

meaning of that statement.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 36

36 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

1.6 Virtualization is a concept that has taken on major importance in the early twenty-first

century. Explain what is meant by virtualization.

1.7 What is a protocol? What is a standard? Do all protocols have to be standards? Explain.

Are all standards protocols? Explain.

EXERCISES

1.1 Look at the computer ads on the business pages of a large daily newspaper and make a

list of all the terms used that you don’t understand. Save this list and check it from time

to time during the semester. Cross out the items that you now understand and look up

the items that have been covered but which you still don’t understand.

1.2 For the computer that you normally use, identify which pieces constitute the hardware

and which pieces constitute the system software. Now think about the file system of

your computer. What part of the file system is hardware, what part software, and what

part data?

1.3 Suppose you would like to buy a computer for your own needs. What are the major

considerations and factors that would be important in your decision? What technical

factors would influence your decision? Now try to lay out a specification for your

machine. Consider and justify the features and options that you would like your

machine to have.

1.4 Write a small program in your favorite high-level language. Compile your program.

What is the ratio of high-level language statements to machine language statements? As

a rough estimate, assume that eachmachine language statement requires approximately

4 bytes of file storage. Add various statements one at a time to your program and note

the change in size of the corresponding machine language program.

1.5 Locate a current reference that lists the important protocols that are members of the

TCP/IP protocol suite. Explain how each protocol contributes to the operation and use

of the Internet.

1.6 Protocols and standards are an important feature of networks. Why is this so?

1.7 Although there is substantial overlap between protocols and standards there are

protocols that are not standards and standards that are not protocols. With the help of a

dictionary, identify the differences between the definition of protocol and the definition

of standard; then, identify a specific example of a standard that is not a protocol; identify

a specific example of a protocol that is not a standard.

Englander c01.tex V2 - November 28, 2013 9:38 P.M. Page 37

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 38

CHAPTER 2

AN INTRODUCTION TO
SYSTEM CONCEPTS AND
SYSTEMS ARCHITECTURE

C C. Covert Darbyshire/The New Yorker Collection/www.cartoonbank.com

http://www.cartoonbank.com

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 39

2.0 INTRODUCTION
In this book, we discuss systems: computer systems, operating systems, file systems,

input/output (I/O) (sub)systems, network systems, and more. Each of these same systems

is also an element with a major role in the information technology (IT) systems that

form the backbone ofmodern organizations. Indeed, these elements—computer hardware,

software, data, and communication—together represent the infrastructure of every IT

system. If we are to understand the various types of systems that are the focus of this book,

it is important that we first understand the concept of “system” itself, and, then, equally

important, the basic architectures of the IT systems that use these elements. Only then is it

possible to see clearly the role of the various system elements in the larger IT picture as we

visit each in turn.

Use of the word “system” is obviously not unique to IT. In our daily lives, too, we

often use the word “system” to describe things in everyday language. Our homes have

electrical systems, plumbing systems, heating and air conditioning systems, and maybe for

some, even, home theatre systems. There are ignition, braking, fuel, exhaust, and electrical

systems in our cars. Our cities have water systems, sewer systems, and transportation

systems, to name a few. Philosophers and social scientists talk about social systems and

linguistic systems. The economy deals with banking systems, financial systems and trading

systems, and, for that matter, economic systems. The word “system” even appears in the

names of thousands of companies.

So it seems as though everyone knows what a system is, but what is a system? We

use the word “system” intuitively, without thinking about the meaning of the word,

so we obviously have an intuitive understanding of what a system is. IT professionals,

however, spend their careers analyzing, designing, developing, implementing, upgrading,

maintaining, administering, and using systems every day. It is therefore important that we

have a deeper, more formal understanding of system concepts.

In this chapter, we consider the concept of a system from an IT perspective. We

investigate the characteristics and composition of systems, explain the meaning of system

architecture, and show the fundamental role of systems, particularly various types of IT

systems, in business. We offer examples of different types of IT systems, and show how

IT systems work together to accomplish tasks and solve problems. We show how systems

can themselves be composed of subsystems, where the subsystems also fit the definition of

systems.

After you have studied this chapter, you should have a clear understanding of what a

system is, what kinds of systems are used in IT, the purpose and goals for each of these

systems, and how these systems fit together and interact with each other and with their

environment. You’ll understand the concept of system architecture. This discussion will

set the stage for the remainder of the book, which considers individually and collectively

the specific computer-based systems and subsystems that constitute the primary tools and

components of business IT.

39

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 40

40 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

2.1 THE GENERAL CONCEPT OF SYSTEMS
The most important characteristic that is shared by all of the systems mentioned above, and,

indeed, by all systems, is that each is built up from a set of components that are linked together

to form what we think of as a single unit. The house plumbing system, for example, consists of

sinks, faucets, toilets, a hot water heater, bathtubs or showers, valves, and more, all connected

together by pipes. An IT system consists of groups of computer hardware, various I/O devices,

and application and system software, connected together by networks.

Often, the system is intended to serve a purpose or to produce results. The purpose of

the house plumbing system is to allow the residents of the home access to water to wash,

bathe, and drink. The purpose of an IT system is to allow organizations to process, access, and

share information. The results of a successful IT system are documents, information, improved

business processes and productivity, profits, strategic plans, and the like. This is, in fact, the

“output” of the input–processing–output (IPO) model described in Chapter 1. In general,

though, there is no requirement that a system serve a specific, definable purpose. The fact that

the set of components may be considered as a single unit is sufficient to satisfy the concept of a

system. The solar system is an example of a system where the purpose is unspecified.

There is also no requirement that the components of a system be physical. The links

between components can also be physical or conceptual. In fact, the system itself may be

conceptual, rather than physical. The number system is an example of a conceptual system.

Computer operating systems are also conceptual, rather than physical. Business systems are also

conceptual, although some of the components that they contain may be physical. The words

tangible and intangible are sometimes used in place of physical and conceptual, respectively.

Intangible or conceptual components and systems include ideas, methods, principles and

policies, processes, software, and other abstractions. If, for example, the components in a system

represent steps (intangible) in a multistep process, the links may represent the need to complete

one step before the next is begun (also intangible).

Figure 2.1 illustrates a number of different systems to show you some of the possibilities.

Figure 2.1(a) is a model of a home plumbing system. This is a physical system. The components

are plumbing fixtures, linked by pipes. Figure 2.1(b) is a simplified representation of the solar

system. The sun and planets are physical; the links in this system are conceptual, specifically, the

distance of each planet from the sun, interplanetary and solar gravity, orbital relationships, the

distances between planets at a particular point in time, and other attributes. Figure 2.1(c) is a

diagram of a home networking system. The links in this case are a mixture of physical wires and

(intangible) wireless connections. Sometimes the nature of the links is important only in terms

of providing the proper interface connections to the components. Figure 2.1(d) is a simplified

diagram of part of the inventory control portion of a sales system. The relationships between

the components in this case are temporal (i.e., related to time). For example, inventory from a

previous sale must be deducted from stock before we process the next order; otherwise we can’t

promise the delivery of goods on the new order because we don’t know if we still have sufficient

goods in stock to fill the order.

With these pictures and ideas about systems in mind, we will define a system as follows:

A system is a collection of components linked together and organized in such a

way as to be recognizable as a single unit.

A general representation of a system is shown in Figure 2.2.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 41

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 41

FIGURE 2.1(a)

Plumbing System Diagram

Drain

Water supply system

Air
chamber Relief

valve

Main
shutoff

Water
meter

Main service pipe
from water supply

Shutoff

 " to 1"

supply pipe

Shutoff

ShutoffShutoff

The linked components that constitute a system also define a boundary for the system.

Anything outside the boundary represents the environment that the systemoperates or presents

itself within. The environment may interact with and affect the system in various ways. The

reverse is also true. The interface between the system and its environment is an important

characteristic of the system. If the interface is well defined, it is often possible to replace the

existing system with a different system, as long as the interface between the system and the

environment remains constant. This idea can have important implications when designing IT

systems. For example, in a particular IT installation, a single large computermay be functionally

the same as a network of small computers. When we define inputs and outputs for a system, the

environment is the source of the input and also the receiver of the output.

As an example of the relationship between a systemand its environment, consider the rather

simplistic view of an e-business system illustrated in Figure 2.3. The organization represented

by this illustration purchases goods from suppliers and makes them available for sale. (The

value-adding component in the figure consists of various operations that make it worthwhile to

buy from this organization, rather than directly from the supplier. For example, Amazon.com

makes it possible to buy a wide variety of books from one source, rather than having to

place separate orders from a number of different suppliers.) The environment for this system

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 42

42 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.1(b)

The Solar System

Mercury
Jupiter

Neptune

Uranus
Saturn

Earth

Venus

Sun

Mars

FIGURE 2.1(c)

A Typical Home Network System

DSL or cable
modem

Phone line

or cable
Wireless
router

Network-ready
printerNetwork-attached

storage (NAS)

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 43

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 43

FIGURE 2.1(d)

Flow Diagram for Part of an Inventory Control System

Sales
order

Inventory
1

Check order
against

inventory

To sales to
notify customer

To purchasing to
determine availability

and shipping date

2a
Not available

2b
Available;

deduct from
inventory

3
Check against

inventory
reorder point

To warehouse for
order fulfillment

and shipping

To purchasing
for reorder

[Stock < minimum]

consists of customers who purchase from the system, suppliers to the system, governments

who control the legal aspects of the business and collect taxes, employees and prospective

employees, external support personnel (such as repair people), financial resources, and others.

The primary interfaces for this system are system input from suppliers and system output to

purchasers; however, there are additional, more subtle interfaces to be considered, including

legal, cultural, and financial interactions with the system. For example, sensitive cultural and

language issues that offend potential customers on a website might have an important impact

on an organization’s sales.

When analyzing a system, the components of the system may be treated as irreducible or

theymay themselves be representable as systems.When considered in the context of a particular

system, these components would be viewed more accurately as subsystems. A business IT

system, for example, might have marketing, manufacturing, purchasing, inventory, finance,

and accounting subsystems, among others. Even these components might be expanded. The

marketing subsystem might be further broken down into sales, development, and advertising

components, as one possibility. The level of detail to be considered depends on the context in

which the system is being considered, discussed, evaluated, or used. The division of a system

or subsystem into its components and linkages is called decomposition. Decomposition is

inherently hierarchical. The ability to decompose a system hierarchically into subsequent sets

of components and subsystems is an important property of systems.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 44

44 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.2

General Representation of a System

Environment Environment

Environment

Environment

Interface

Boundary

Components

Links

Interface

The fundamental properties, and the patterns of relationships, connections, constraints,

and linkages among the components and between the system and its environment are

known collectively as the architecture of the system. Some people choose to differentiate

the architecture of a system from the organization of a system. The assumption is that the

architecture is fundamental to the meaning and value of the system, whereas the organization

is one of possibly many combinations of components and linkages that meets the requirements

of the architecture. The difference is subtle and often unimportant.

It is common to represent systems and their components by models or drawings on paper

or objects within a computer program. These representations are abstractions. They represent
the real system but are not actually the real system. (For example, the solar system does not

fit conveniently inside a computer!) It should be obvious to you that all of the illustrations of

systems in Figures 2.1, 2.2, and 2.3 are abstractions.

The primary reason for humans to group components into systems and to represent

them as abstractions is to simplify understanding and analysis, particularly if the individual

components are numerous and complex. We can study the relationships between the different

components without the distraction created by the details of individual components. We

can decompose, isolate, and study individual components when required. We can study the

interactions between the environment and the system as a whole. Effectively, our analyses

are simplified by eliminating factors that are not relevant in the context of our interests.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 45

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 45

FIGURE 2.3

A Simple E-Business System

Employees &
prospective employees

Government,
law

Culture,
language

Financial
resources

Competitors

Suppliers Customers
Value-adding
processing Sales

Marketing

Finance and
accounting

Purchasing &
receiving

In a large network of computers, for example, we may be concerned primarily with the flow of

data between computers. The details of the individual computers are unimportant. In general,

dealing with models at the system level allows us to isolate and focus on the specific elements

of interest more easily, by treating other elements collectively.

To escape our fixation on information technology systems for an instant, consider, just for

fun, the solar system that we’ve used previously as an example. If we are studying theMilkyWay

galaxy, it is convenient and sufficient to treat the solar system as a single irreducible component

in the galaxy. We might be interested in the location and movement of our Sun in the galaxy,

for example, but the structure of the planets is irrelevant to our study in this case. On the other

hand, if we are interested in studying the effects of the tides on a seashore where we are planning

to vacation, we will have to expand the “Earth” component and look at the specific effects of the

moon and other nearby objects as part of our analysis.

Consider, too, the role played by decomposition and the ability to isolate and study indi-

vidual components. A complex systemmay be divided into relatively independent components

and analyzed by different individuals, each a specialist in their own area. Thus, a plumber can

create a home water system component without concern for the details of the electrician’s

efforts. They can work together on the linkages that concern both of them, for example, the

wiring for the boiler in a hot water heating system. The system architect coordinates the

different efforts. The role of an IT system architect is similar: to work with finance experts on

the finance component, marketing experts on the marketing component, and so forth.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 46

46 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

When the goal of a project is to implement a systemof some type, it is sometimes convenient

to view the components of a system as modules that can be implemented independently, then

linked together to produce the final result. This technique can simplify analysis, design,

assembly, upgrading, and even repair. It also supports collaboration during the design process,

since individual components can be designed by different individuals using specifications for

the interfaces.

For example, a cell phone might consist of a computer control module, a memory module,

a display module, an audio I/O module, a radio transmitter/receiver module, a keypad/text

input module, and a wireless networking module. Each component might have been developed

by a different team. These modules, designed, constructed, and manufactured as individual

assemblies, properly interfaced, wired together, and mounted into a case, constitute the design

of a typical cell phone. They also represent the components that might appear in the system

diagram for a cell phone. The same approach might be taken with a computer system, with

a central processor module, a graphics display module, an audio module, a network module,

a hard drive controller module, and so on. Figure 2.4, for example, shows the basic system

hardware components that make up an iPhone.

FIGURE 2.4

iPhone Components

Display (rear)

Battery

Communications
GSM cell, WiFi, EDGECPU

Flash memory

Im
ag

e
co

ur
te

sy
 o

f
iF

ix
it

. B
ro

w
se

 t
ho

us
an

d
s

o
f

fr
ee

 r
ep

ai
r

m
an

ua
ls

 o
n

iF
ix

it
.c

o
m

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 47

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 47

FIGURE 2.5(a)

Business Organization Chart

Corporate
exec. management

Marketing and
sales IT Human

resources Finance

System planning
& development

System
administration

User support

Employment

Organizational
development

Contracts

Sales

Advertising

Planning

Order
fulfillment

Accounting

Financial
planning

Purchasing

Auditing &
control

It is also important to realize that there may be many different representations for a system
to reflect the various uses of the system model. Returning to our IT roots, for an example,
the representation of the business system shown in Figure 2.5(a) is a traditional hierarchical
organization chart. The components are departments that perform various functions within the
business. In contrast, a partial model of the same business shown in Figure 2.5(b) represents the
application architecture of an IT system within this business. Take another look at Figure 1.4
for still another representation of a business. As another simple example, you could represent
a house by the physical appearance of its exterior, by the function and layout of its rooms, or
by the various subsystems, electrical, plumbing, heating, and so on that the house requires.
Presumably, each of these representations would be useful to a different participant. In fact,
we would expect an architect to provide all of these for use by the owner, the builder, and the
various contractors.

2.2 IT SYSTEM ARCHITECTURES
The use of system concepts is particularly applicable when discussing the various types of IT
systems. In general, the goal of IT systems is to assist organizations tomeet the strategic needs of
the enterprise. Not surprisingly, IT systems are frequently complex, and the ability to separate
them naturally into subsystems or components of manageable size simplifies understanding
of the system as a whole. The analysis, design, and implementation of IT systems must take
place at different levels of detail and frequently require collaboration among many analysts

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 48

48 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.5(b)

Partial View of a Business Application Architecture

Marketing
Information

System

Executive
Information

System

Financial
Information

System

Order entry
System

Accounts
receivableCustomers

Order
fulfillment

Accounts
payable

Purchasing

Orders

Products

Suppliers

and designers. This corresponds well with the ability to decompose systems into components,

hierarchically, which allows us to concentrate at the appropriate levels of detail during each

step along the way. This approach is known as a top-down approach. The top-down approach

allows us to focus on the specific areas of interest without the distraction of details that are

irrelevant for the level that we’re studying. In this way, a system architect can analyze and

study the IT system as a whole, encapsulating the computer systems, software systems, network

architecture, and Web architecture that represent components, and focusing instead on the

large picture: the purpose of each component and the requirements for the interfaces and

linkages that connect and integrate them.With the IT system architecture firmly established, we

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 49

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 49

can consider the individual business functions, computer systems, and networks that will link

them together. For IT system analysis, this is often sufficient, at least superficially, assuming that

the system architects actually understand the conditions and constraints imposed by details at

the lower levels.

Although there are other, equally valid, approaches to IT system analysis and design, and

many other important considerations as well, this approach suits the purposes of this book well

because it allows us to establish general requirements for IT systems and then to show how

the specific capabilities and characteristics of computer hardware, operating systems, networks,

and data fulfill those requirements.

With these ideas in mind, let us return to the simple word processing example from

Chapter 1 and reconsider it from a system architecture perspective. Recall that in this example

you are sitting at your computer (or maybe your tablet), typing text into a word processor. We

noted that the computer accepted input from your mouse and keyboard, processed it according

to rules established by the application software, and produced output, which appeared on a

display. From the system perspective, we can, for now, treat the whole computer, keyboard,

display, printer, storage, software, and all as a single component. You’re the relevant part of the

environment for this discussion. Forgetting the issue of control for now, the system has an input

and an output. Both of these interface with you, the environment. The data for this interface is

alphanumeric text in human-readable form. Other input data to the document might include

graphics drawn with the mouse, photographic images from a digital camera, bar codes, or

music from an iPod or other audio source. We described this scenario earlier, in Chapter 1, as

input-process-output.

A system this simple is unlikely to meet all the needs of even the smallest enterprise or,

even, the least computer-literate individual. But it does serve as a starting point to recognizing

the value of a system approach to the understanding of information technology.

Distributed Processing Systems

When envisioning effective IT systems, designers typically must create system architectures

that are quite complex, with a large number of computers interconnected by networks of

communication channels, potentially disbursed over a large area, to support the organization’s

goals. In addition to the usual business functions, sales, marketing, accounting, finance,

inventory, strategic planning, and the like, the system must provide services to multiple

communities: management, employees, suppliers, customers, and more, representing the

system’s environment.

Since modern computer hardware, storage, networking equipment, and external IT

resources such as cloud services are plentiful and inexpensive, it is practical to distribute

computing capability to everyone within the organization who needs it, no matter where they

are, whether on-site or off-premises. Furthermore, the Internet and alternative structures,

such as mobile and satellite communications, make global data communication essential. Web

access, organization intranets, e-mail capability, video conferencing, analysis tools, such as

Microsoft Excel, and document preparation tools are widely available and are considered to

be essential business tools throughout most organizations. Collaboration between different

organizations, particularly in the area of automated business-to-business purchasing and sales,

is commonplace. The system must be able to reliably store and protect large amounts of

organizational data, with backup, archiving, and emergency-recovery capabilities. The system

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 50

50 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

must support aWeb presence, and, most likely, mobile access as well. Access to the systemmust

be protected throughout with appropriate security.

In all but the smallest organizations, input data is collected from external sources, as well as

from various locations within the organization, possibly scattered widely. Input data is stored,

processed, and distributed as information where it is needed, again possibly widely.

Consider a few typical simple scenarios:

n A global fast food chain collects data each day from each of its restaurants worldwide

to establish sales figures and determine sales trends. This allows the company to

determine which locations are most productive and which locations need assistance,

which items sell best and which need to be modified or replaced, and so on.

n A large travel organization conducts much of its business online, using travel agents

located all over the world. It maintains Web servers that have immediate access to

large databases of client information and travel information, as well as continual and

instant access to airline and hotel reservation systems to determine current airfares,

seat availability, and hotel room availability. All of this information must be

immediately accessible to every agent and must be current at every instant. Even brief

system failures are very costly.

n A large Web-based retail sales organization sells large quantities of a wide variety of

merchandise. (Think Amazon or Wal-Mart.) Orders initially come into a central

facility, where they are billed. Inventory is stored in warehouses in various countries

and local regional areas to expedite delivery and reduce delivery costs. The system

must be able to distribute orders to the various regional facilities efficiently; it must

also maintain appropriate levels of goods at each warehouse to match sales and must

be able to locate goods and arrange shipping in response to orders as they come in.

Inventory replenishment is handled by an automated purchasing IT system

component that is integrated with the IT systems of the suppliers. Purchase order data

is passed from the retailer to a supplier, which triggers order placement, billing and

shipment components in the supplier’s systems. Web technology is commonly used

to satisfy the need for data and communication compatibility between the systems.

n Even conventional business order processing is inherently distributed within an

organization. A purchase order, for example, might be entered into the system by a

salesperson on the road; the order is checked by order fulfillment for inventory, then

distributed to the accounting department for a credit check and billing, and sent to

the warehousing area for packaging and shipping. Back orders and inventory

replenishment are sent to the purchasing department. For planning and marketing

purposes, data will be collected into a central location and processed into sales

figures, inventory planning and purchase requirements data, and the like. In a large

organization, these functions might be widely scattered over a city, country, or even

the world.

The emphasis in each of these scenarios is the flow and processing of data within an

organization or between organizations or between an organization and its environment.

The system architecture representation of such operations is called application architecture.
Application architecture is primarily concerned with the activities and processing of application

programs and the communications between them. Since the application architecture addresses

the fundamental business needs of the organization, the application architecture is typically the

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 51

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 51

primary consideration in IT system design. Therefore, the system requirements and constraints

set by the application architecture havemajor impact on the hardware architecture and network

architecture requirements for the system. Within the application architecture realm, the

selection and layout of computer systems and communication networks is of concern primarily

to the extent that it adequately supports the application software and its functionality. However,

additional factors such as scalability, convenience, information availability, data security,

system administration, power and space requirements, and cost may also play important roles

in computer and network architectural designs.

CLIENT–SERVER COMPUTING There are a variety of possible application architectures

that can satisfy the requirements ofmodern organizations.Most, however, are based on different

applications of a simple technological concept, the client–servermodel.

In a client–server configuration, a program on a client computer accepts services and

resources from a complementary program on a server computer. The services and resources

can include application programs, processing services, database services, Web services, file

services, print services, directory services, e-mail, remote access services, even computer system

initial start-up service. In most cases, the client–server relationship is between complementary

application programs. In certain cases, particularly for file services and printer sharing, the

services are provided by programs in the operating system. Basic communication and network

services are also provided by operating system programs.

Basic client–server architecture is illustrated in Figure 2.6. Notice that the link between

client and server is essentially irrelevant within the application architecture view of the system.

The “cloud” in the figure is intended to indicate only that there is a link of some kind between the

client and the server. The link can be a network connection, an intranet or Internet connection,

or some sort of direct connection. In fact, a single computer can act as both client and server, if

desired. (A situation where this is the case is described in Chapter 16.) Conversely, the “server”

might actually be a huge cluster of computers, as is the case with the Facebook architectures

described at the end of this chapter.

The client–server model describes the relationship and behavior of programs in one or two

computer systems under particular prescribed circumstances. It is important to understand

that the client–server model does not require any special computer hardware. Furthermore,

FIGURE 2.6

Basic Client–Server Architecture

Client
Server

Request Request

Service
response

Service
responseCommunication

channel

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 52

52 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

networking software within the operating system of each computer routinely provides basic

communication capabilities. The only “special” software required is the software within the

complementary applicationprograms that provides the communications between the programs.

The requests and responses take the form of data messages between the client and server that

are understood by both application programs. As an example, slightly simplified, the HTTP

request message sent to a Web server by a Web browser requesting a Web page consists of the

word GET followed by a URL. If the request is successful, the message returned by the server

contains the HTML text for the page.

From the description and the figure, you can see that the Web browser–Web server

application described as an example in Chapter 1 fits the description of a client–server

application. We will return to this example momentarily.

A typical use of the client–server concept within an organization is shown in Figure 2.7.

In this case, a number of clients are sharing a number of servers, showing both the shared
server nature of client–server computing, as well as showing that there may be multiple servers

offering different services on the same network. Notice, also, that the server computer labeled

FIGURE 2.7

Clients and Servers on a Network

Web
server

S2

Application
server &

print server

Network

Clients

Servers

Database
server

E-mail
serverFile server

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 53

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 53

S2 in the figure is running two different server applications. Since computers are capable of

running multiple tasks concurrently, this is a possible scenario. The only limitations to running

multiple applications on a single server are the potential slowdowns that may result from the

load on the server computer and the traffic on the network to that server. Overall, there is a

multiple–multiple relationship between clients and servers: a server can serve multiple clients,

and a client can request services from multiple servers.

The use of client–server processing as a basis for IT system architecture has a number of

advantages:

n Providing services on a single computer or on a small number of computers in a

central location makes the resources and services easy to locate and available to

everyone who needs them, but also allows the IT administrators to protect the

resources and control and manage their use. The consistency of files and data can be

managed and assured.

For example, client–server technology can ensure that every user requesting a

particular program from a server will receive the same version of the program. As

another example, suppose a program has a license that limits the number of

simultaneous users. The program server can easily limit distribution of the program

appropriately.

n The amount of data to be stored, processed, and managed may be extremely large. It

is more efficient to equip a small number of computers with the power needed than to

require powerful computers at every station. As an example, the limited memory on a

smartphone would not be adequate to store all of the map data required to support a

global positioning system (GPS) application.

n Typically, humans request information from knowledgeable sources as they need it.

Thus, the client–server approach is naturally consistent with the way humans acquire

and use information.

Themost familiar example of the use of client–server technology is theWeb browser–Web

server model used in intranets and on the Internet. In its simplest form, this model is an

example of two-tier architecture. Two-tier architecture simply means that there are two

computers involved in the service. The key features of this architecture are a client computer

running theWeb browser application, a server computer running theWeb server application, a

communication link between them, and a set of standard protocols, in this case, HTTP, for the

communication between the Web applications, HTML for the data presentation requirements,

and, usually, the TCP/IP protocol suite for the networking communications.

In the simplest case, a Web browser requests a Web page that is stored as a pre-created

HTML file on the server. More commonly, the user is seeking specific information, and a

customWeb page must be created “on the fly”, using an application program that looks up the

required data in a database, processes the data as necessary, and formats it to build the desired

page dynamically.

Although it is possible to maintain the database and perform the additional database

processing and page creation on the same computer as the Web server, the Web server in a

large Internet-based business may have to respond to thousands of requests simultaneously.

Because response time is considered an important measure by most Web users, it is often more

practical to separate the database and page processing into a third computer system. The result,

shown in Figure 2.8, is called a three-tier architecture. Note that, in this case, the Web server

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 54

54 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.8

Three-Tier Database Architecture

CGI*
request

HTTP
request

HTTP
response

CGI
response
(HTML)

Web
server

Database
server

Database

*CGI: Common Gateway Interface

machine is a client to the database application and database server on the third computer. CGI,

the Common Gateway Interface, is a protocol for making communication between the Web

server and the database application possible. (In the figure, we have placed the page creation

application software on the database machine, but it could be located on theWeb server instead

if doing so would balance the loads on the two machines better.) In some situations, it is

even desirable to extend this idea further. Within reason, separating different applications and

processing can result in better overall control, can simplify system upgrades, and can minimize

scalability issues. The most general case is known as an n-tier architecture.
Client–server architecture is a distributed processing methodology, in which some of the

processing is performed on the client system and some is performed on the server system. To

see this more clearly, consider the distribution of processing between the client and server in a

database application, in which the client requests specific information from a database stored

on a database server.

At one extreme, the client application provides little more than a request form and ameans

to display the results. All of the processing is performed on the server. Thismight be appropriate

if there is little computing power in the client. Certain so-called “thin” clients or “end-user”

terminals and some mobile clients might meet this criterion, particularly for CPU-intensive

applications. Because this extreme case puts the entire processing load on the server, the system

designer will have to specify a more powerful computer for the server or farm the application

out to a cloud service (see the “Cloud Computing” section); additionally, the requirements of

the database server may limit the capability of the server computer system to perform other

tasks or to scale for increased usage.

At the other extreme, the database server application simply accesses data from the database

and passes all of the data to the client. The client application performs all of the processing. This

relieves the load on the server, and it is reasonable to assume that modern client computers

would be able to handle most database processing tasks relatively easily. However, the potential

transfer of large amounts of raw data from the server to the client for processing may put an

extra burden on the network instead, requiring the system designer to specify higher speed

network components at potentially higher cost and additional implementation difficulty.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 55

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 55

A well-designed system analysis will consider the different factors, the complexity of the
applications, expected network traffic, usage patterns, and the like. The optimum solution is
likely to fall somewhere in the middle, with some pieces of applications on the server, others on
the client.

One of the strengths of client–server architecture is its ability to enable different computer
hardware and software to work together. This provides flexibility in the selection of server and
client equipment tailored to the needs of both the organization and the individual users. One
difficulty that sometimes arises when different computers have to work together is potential
incompatibilities between the application software that resides on different equipment. This
problem is commonly solved with software called middleware. Middleware resides logically
between the servers and the clients. Typically, the middleware will reside physically on a
server with other applications, but on a large system it might be installed on its own server.
Either way, both clients and servers send all request and response messages to the middleware.
The middleware resolves problems between incompatible message and data formats before
forwarding the messages. It also manages system changes, such as the movement of a server
application program from one server to another. In this case, the middleware would forward
the message to the new server transparently. The middleware thus assures continued system
access and stability. In general, the use of middleware can improve system performance and
administration.

WEB-BASED COMPUTING The widespread success of the World Wide Web has resulted
in a large base of computer users familiar with Web techniques, powerful development tools
for creating Web sites and Web pages and for linking them with other applications, and
protocols and standards that offer a wide and flexible variety of techniques for the collection,
manipulation, and display of data and information. In addition, a powerful website is already
a critical component in the system strategy of most modern organizations. Much of the data
provided for the website is provided by architectural components of the organization’s systems
that are already in place.

Not surprisingly, these factors have led system designers to retrofit and integrate Web
technology into new and existing systems, creating modern systems that take advantage ofWeb
technology to collect, process, and present data more effectively to the users of the system.

The user of a Web-based system interacts with the system using a standard Web browser,
enters data into the system by filling out Web-style forms, and accesses data using Web pages
created by the system in a manner essentially identical to those used for the Internet. The
organization’s internal network, commonly called an intranet, is implemented using Web
technology. To the user, integration between the intranet and the Internet is relatively seamless,
limited only by the security measures designed into the system. This system architecture
offers a consistent and familiar interface to users; Web-enabled applications offer access to the
organization’s traditional applications through the Web. Web technology can even extend the
reach of these applications to employees in other parts of the world, using the Internet as the
communication channel.

SinceWeb technology is based on a client–server model, it requires only a simple extension
of the n-tier architecture to implement Web-based applications. As an example, Figure 2.9
shows a possible system architecture to implement Web-based e-mail. Note the similarity
between this example and the three-tier database application shown in Figure 2.8.

Many organizations also now find it possible and advantageous to create system archi-
tectures that integrate parts of their systems with other organizations using Web technology

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 56

56 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.9

Three-Tier Web-Based E-Mail Architecture

CGI**
request

HTTP
request

HTTP
response

CGI
response
(HTML)

Web
server

Mail
server

R’cvd mail

Sent mail

SMTP*
to another
mail server

*SMTP: Simple Mail Transfer Protocol
**CGI: Common Gateway Interface

and Web standards as the medium of communication. For example, an organization can
integrate and automate its purchasing system with the order system of its suppliers to automate
control of its inventory, leading to reduced inventory costs, as well as to rapid replacement and
establishment of reliable stocks of inventory when they are needed. Internet standards such as
eXtended Markup Language (XML) allow the easy identification of relevant data within data
streams between interconnected systems, making these applications possible and practical. This
type of automation is a fundamental component of modern business-to-business operations.

CLOUDCOMPUTING Cloudcomputing canbeviewedas a simple, but potentially powerful
conceptual expansion of client–server computing. The basic premise of cloud computing is that
many functions of an organization’s data center can be moved to services on the Internet, “in
the cloud”. The concept of a cloud as a source of services derives from a traditional “textbook”
view of networking. In fact, Figures 2.6, 2.7, 2.8, and 2.9 in this textbook reflect the traditional
perspective. In this view, a client requests services from a server somewhere on a network, but
the user is not interested in the internals of the connection between the client and the server
(nor the configuration of the server, for that matter), so we draw the area where the connection
takes place as a cloud.

In its simplest form, a cloud service provides off-site storage facilities for an organization.
This service can be used as a backup resource or for immediate emergency recovery, for
example. It can also be used to give users access to files from anywhere the Internet is available.
Increased amounts of cloud storage can be readily acquired (for a fee, of course); so a client
organization can simply purchase file space as they need it.

Cloud computing is also used to provide additional computing capability when and where
it is needed. Software as a service (SaaS) provides software applications that run on a server,
delivering the results to the display on a client. In some cases, processing is divided between
the cloud server and the client: there will be corresponding applications on each; processing is
divided between the two.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 57

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 57

Platform as a service (PaaS) extends cloud services to the software facilities that one

would expect to find on a developer’s computer: Web and programming development tools,

facilities, aWeb server, and operating system application program interface (API). This provides

everything a developer would need to create and run application software on a cloud platform,

without the hardware and software investments needed to support local development.

Finally, Infrastructure as a service (IaaS) offers cloud-based hardware emulation in the

form of virtual machines, networking, and the like. The user/developer interacts with the

virtual machine using a client application, or more commonly, a Web browser. Users can

add additional virtual machines for testing with different system configurations, for example,

providing considerable flexibility. Essentially, the user’s computer has beenmoved in its entirety

to the cloud, and can be configured as a different computer at will.

Figure 2.10 shows a direct comparison between the different levels of cloud service with

the computer model that we originally illustrated in Figure 1.9.

How does this differ from the client–server concepts that we previously discussed? Tech-

nically, there is little difference. In a way, you could think of services such as Picasa, YouTube,

and Facebook as cloud services. In each case, the service provides storage for your material and

an application that you can use to interact with the service. Your computer, smartphone, or

tablet can access the service using the Web from wherever you happen to be, again, similar to

cloud services. You might collaborate with colleagues using Google apps or Dropbox.

FIGURE 2.10

A Comparison Between Cloud Service Levels and Computer System
Layers

Software
as a Service

User

User
Interface

Application
Program

Application Programming
Interface

File
Management

System

I/O
Drivers

Hardware Network

Network
Module

Kernel

Platform
as a Service

Infrastructure
as a Service

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 58

58 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Not surprisingly, there is a lot of hype about cloud computing. In a simplistic way, cloud

computing is a throwback to the earliest days of computing. In the 1960s and 1970s, business

systems were built around a single mainframe computer facility that provided centralized

software and computer processing to the organization. Users worked at terminals that served

as input to the computer and display, but had no computer processing capability of their own.

All processing was done on the mainframe computer.

Beyond the hype, there are a number of advantages and a number of major risks to an

organization for IT system architects to consider when making decisions about a system design

involving services in the cloud. On the plus side:

n The client’s data center is simplified and the cost reduced. It is not necessary to

provide, support, and maintain individual copies of software for every user, nor to

develop software that is already available from a cloud service provider, nor to

purchase software that is only occasionally needed. Hardware purchase,

configuration, power management, and maintenance are all potentially reduced and

simplified.

n Cloud services provide strong support for user collaboration, since multiple users can

easily access the same software, databases, tools, and data files from the cloud.

n Properly designed, with the proper client applications, cloud services can be accessed

on a wide variety of client equipments, fixed or mobile, thick or thin, from anywhere

the Internet is available.

n A cloud-based system is inherently scalable. Additional capabilities and services can

be made quickly available as needed. A client organization can add more memory to a

virtual machine, add more virtual machines, add more storage, etc.

n A cloud-based system can continue to provide services and recovery during a client

emergency. For example, a building fire at the client site will not cause a service

outage to people working outside the building and eliminates the risk of data loss.

Maintenance downtime and outage are reduced or eliminated.

n Cloud-based services can be useful for short-term projects with intensive computing

needs. R. Metz [METZ12] suggests that cloud services can significantly reduce the

investment required for an entrepreneur to develop a new IT product, reducing or

eliminating the need for venture capital in an IT start-up.

n The use of IaaS allows a developer to make risky changes to his virtual machine

environment without threatening the safety of production equipment.

And some significant risks:

n The quality of security at the cloud service is critically important. Even the smallest

data leak or data theft can compromise a client organization’s future.

n Cloud server outages or a loss of connectivity at any point in the link between client

and cloud service can impede the ability of users to work. Operations at the client

organization may be totally dependent on the reliability of every link in the

connection.

n The client organization is dependent on the long-term commitment and viability of

the cloud service. There have been closures of cloud services, with resulting loss of

data to their clients. Changes in cloud service operating procedures can also result in

data loss.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 59

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 59

PEER-TO-PEER COMPUTING An alternative to client–server architecture is peer-to-peer
architecture. Peer-to-peer architecture treats the computers in a network as equals, with

the ability to share files and other resources and to move them between computers. With

appropriate permissions, any computer on the network can view the resources of any other

computer on the network and can share those resources. Since every computer is essentially

independent, it is difficult or impossible to establish centralized control to restrict inappropriate

access and to ensure data integrity. Even where the integrity of the system can be assured, it can

be difficult to know where a particular file is located and no assurance that the resource holding

that file is actually accessible when the file is needed. (The particular computer that holds the

file may be turned off.) The system also may have several versions of the file, each stored on a

different computer. Synchronization of different file versions is difficult to control and difficult

to maintain. Finally, since data may pass openly through many different machines, the users

of those machines may be able to steal data or inject viruses as the data passes through. All

of these reasons are sufficient to eliminate peer-to-peer computing from consideration in any

organizational situation where the computers in the network are controlled by more than one

individual or group. In other words, nearly always.

There is one exception: peer-to-peer computing is adequate, appropriate, and useful for

the movement of files between personal computers or to share a printer in a small office or

home network.

Peer-to-peer technology has also proven viable as an Internet file-sharing methodology

outside the organizational structure, particularly for the downloading of music and video. The

perceived advantage is that the heavy loads and network traffic associated with a server are

eliminated. (There are legal ramifications, also, for a server that is sharing copyrighted material

illegally.) This technique operates on the assumption that the computer searching for a file

is able to find another computer somewhere by broadcasting a request across the Internet

and establishing a connection with a nearby computer that can supply the file. Presumably,

that computer already has established connections with other systems. All of these systems

join together into a peer-to-peer network that can then share files. One serious downside to

this approach, noted above, is the fact that the computers in an open, essentially random,

peer-to-peer network can also be manipulated to spread viruses and steal identities. There are

several serious documented cases of both.

An alternative, hybrid model uses client–server technology to locate systems and files

that can then participate in peer-to-peer transactions. The hybrid model is used for instant

messaging, for Skype and other online phone systems, and for Napster and other legal file

download systems.

Although there have been research studies to determine if there is a place for peer-to-peer

technology in organizational computing, the security risks are high, the amount of control low,

and the overall usefulness limited. The results to date have been disappointing.

The Role of the System Architect

In Section 2.1, we suggested that there are different ways of viewing systems. From the

discussion within this section, you can see that the IT system architect must consider the system

from the perspectives of application architecture, data architecture, network architecture, and

computer architecture. Each of these addresses different aspects of the IT system as a whole.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 60

60 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

For example, our consideration of different general application architectures—client–server,

web-based architecture, peer-to-peer architecture—ignored the networking that links the

various computers together. Similarly, we attempted to minimize the effects due to the specifics

of individual computer systems when exploring the various requirements of a system from the

perspective of application architecture.

Ultimately, it is the responsibility of the system architect to assess the particular needs of

an organization and create a system that meets those needs while attempting to achieve an

optimum balance of computer power, network capability, user convenience, and budget. To

do so, the architect will consider each aspect of the system: application architecture, network

requirements, specification of computer systems, and data requirements, just as the architect

designing a house considers flow of people through the house, overall use of space and room

layout, individual room layouts, mechanical systems, and aesthetic design as different views of

the overall architecture of the house.

Although the infrastructure design as defined by the computer hardware, system software,

and communication channels is subordinate to the fundamental business requirements that

determine a basic IT system architecture, the system architect must understand the features

and constraints that establish the feasibility and desirability of a particular infrastructure

configuration.

Google: A System Architecture Example

So far, we have considered basic system concepts and simple system architectures as examples.

Most IT business systems operate primarily within an organization, with limited collaboration

with other, partnered organizations and carefully controlled public access. At the opposite

extreme are massive systems that are widely open to the public. Google offers a primary

example of such a system.

The primary mission of Google is to provide powerful, fast search capability of material

on the Internet for billions of users all over the world. Income to the organization is provided

from advertising that is targeted to each user based on the specific nature of the user’s search.

The design of Google’s IT system architecture is obviously fundamental to Google’s ability to

achieve its mission and to meet reasonable income goals. In keeping with the focus of this book,

our primary interest is in the computer and network architectures that Google uses to meet its

system requirements; however, we will use this example to explore the relationship between the

basic system requirements, the IT system architecture created to meet those requirements, and

the specific computer and network architectures that evolved from the system architecture.

Someof the basic requirements that theGoogle IT systemmust satisfy include the following:

n It must be capable of responding to millions of simultaneous requests from all over

the world with pertinent, ranked search results and appropriately targeted

advertising. Most desirably, the results and advertising would be matched in language,

geographic suitability, and culture as much as possible to the location of the user.

n The system must be able to troll the Internet systematically and thoroughly to retrieve

data and to organize the data in such a way as to make it readily available for response

to user requests. There must be a processing mechanism to establish a ranking of the

results to a request.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 61

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 61

n The system must respond to requests with a reliability as near to 100 percent as is

technically possible. Individual hardware and software component failures within the

system must not affect the system performance adversely.

n The system must be easily scalable to handle ever-increasing numbers of requests and

must be cost effective.

At the application level, the requirements identify three specific processing tasks that the

system must fulfill:

1. The system must accept search requests from users, identify and rank matches, create

a Web page, and serve it to the user.

2. The system must collect data—lots of data! This task “crawls the Web”, identifies the

search terms (every significant word) on every Web page it encounters, and maintains

an index database connecting each term to the corresponding page. It likewise stores

every Web page in a Web page database and assigns a ranking value to each entry.

3. The system must manage advertisements, identify appropriate advertisements in

response to user search requests, and make the advertisements available to the Web

page creation application mentioned in 1.

For this discussion, we will focus on the processing of search requests. When a user types

the Google URL www.google.com into her browser, the Web browser uses a service called

Domain Name Service (DNS) to identify the IP address of the Web server to which the request

is to be sent. Because Google must be able to handle several million requests per hour, Google

provides a number of alternative IP addresses representing different sites to which the request

may be redirected. Based on the approximate location from which the request was sent, the

request is routed by DNS to a Google data center near that location. Google maintains more

than forty separate data centers around the world to serve user requests.

A simplified system diagram of the application architecture for a Google data center is

shown in Figure 2.11. All of the data centers are architecturally identical, differing only in such

details as the number of processors and the hardware specifications for each processor. Each

data center processes requests independently. Multiple copies of all of the index word data and

Web page data are stored locally at every data center, and updated from master data at regular

intervals.

A request enters the system from the Internet and is distributed to a Google Web server

for processing. A request consists of words and phrases. There are many separate Web servers

available, so that many requests can be processed in parallel. The words are passed to a spell

checker, to an ad server, and to a pool consisting of a large number of index servers.

The spell checker checks each word and considers possible alternatives if it believes that

the user may have intended something different. When appropriate, the output of the spell

checker will become part of the response sent to the user. (“Did you mean. . . ” is familiar to

most Google users.) The ad checker searches for words in the advertising database that match

the user’s request and adds the corresponding advertisement(s) to the material that will be used

to create the response page.

The index servers look up each word from the request in the index database and compile a

list of matching pages for each word. The list is then adjusted for multiple words and phrases

and sorted in order of relevance, based on Google’s ranking algorithms. This list is then passed

back to the Web server.

http://www.google.com

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 62

62 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.11

Google Data Center Search Application Architecture

Internet

Interface to
Internet

Spell
Checker

Index
Servers

Index
databases

Page
databases

Web Page
Document

Servers

Web Servers Ad Checker

Next, the Web server calls upon the document servers to look up each matching page in

the Web page database. The document servers return a URL, a title, and a short snippet of text

for each document to theWeb server. Finally, theWeb server creates an HTML document from

the spelling, ad, and matching page results and returns the page to the user’s Web browser.

Although the application processing just described is relatively straightforward, the imple-

mentation of this system presented a number of challenges to the system architects. The index

and document databases are both massive in size. Many searches will result in a large number

of “hits”; each hit must be evaluated and ranked. Each hit requires retrieval and processing of a

separate page from the document database. All of this processing must occur very quickly. And

the numbers of searches occurring simultaneously may also be extremely large.

Google’s system architects responded to these challenges by recognizing that each search

could be processed independently on a separate computer, except for certain bottlenecks. For

example, each search request arriving from the Internet could be steered by a computer to a

different Web browser. They also observed that the major bottleneck was the time required to

access the databases on disks, which had to be shared among all the searches taking place. Since

the data in the databases never changed as a result of a search, however, they reasoned that the

databases could also be replicated and accessed in parallel.

A simplified hardware representation of their solution is shown in Figure 2.12. Groups

of up to eighty computers are connected together in a network, then these networks, up to

sixty-four of them, are, themselves, connected together to form a larger network, sort of like a

miniature Internet of up to 5,120 computers. (There are additional switches and connections

built in for reliability that are not shown in the diagram.) Each computer acts as a server, with

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 63

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 63

FIGURE 2.12

Simplified Google System Hardware Architecture

Network
switch

Up to 80 PCs

Network
switch

Network
switch

Network
switch

Up to 64
lines

To Internet

Up to 80 PCs

Up to 80 PCs

different computers assigned to different pieces of the application architecture. Each data center

is equipped similarly.

Although the computers are manufactured specifically for Google, they are essentially

inexpensive commodity personal computers (PCs), similar to standard, medium-power, non-

state-of-the-art, off-the-shelf PCs. Each computer has a fairly large, but still off-the-shelf, hard

disk. The index and document databases are divided up among the hard disks on many

computers. (Google calls these partial databases shards.) This design allows different searches

to access different parts of the databases simultaneously. There are multiple copies of each

database, so that the failure of a PC or hard disk does not affect the overall ability of the system

to conduct searches. Each computer runs standard Linux operating system software, but the

application software was specially written by Google programmers.

Overall, this design allows a large number of searches to progress in parallel. The use of

inexpensive PC hardware makes the solution cost-effective. The system can be scaled easily by

adding more computers. Finally, the failure of a PC does not result in failure and, in fact, has

minimal effect on the performance of the system overall. Thus, this solution meets the original

requirements admirably. It is worth noting that a fundamental understanding of computer

infrastructure was key to the system architects’ solution.

This discussion provides a simple overview of the Google system. Hopefully you have

found even this brief look at the Google system interesting and informative. There are a number

of other considerations in the Google system architecture that we have glossed over for now.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 64

64 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

However, to understand the Google architecture better, it is first necessary to continue our
exploration of the hardware, software, and network components that make up the Google
system, as well as every other IT system. We will return for a more in-depth discussion of the
Google system architecture in Supplementary Chapter 2.

Another Example: Facebook’s Application Architecture

Just for fun, we end our sojourn into the representation and architecture of systems with a
brief look into the application architecture in place at Facebook. The application architecture
describes the operation and interfaces between Facebook and independently developed and
managed applications that work with Facebook, such as Farmville and Living Social. Figure 2.13
is a simplified system diagram of the basic platform architecture.

The architecture is represented in this diagram as a slightly modified n-tier architecture,
described by FacebookDirector of EngineeringAditya Agarwal as “a standard basicWeb service
with methods for accessing and contributing Facebook data It offers reliable and consistent
methods to exchange informationbetween itself and third parties, handles relationships between
Facebook users, and offers methods of interactions between users”. [AGAR11].

Interaction with a Facebook application comes from a user’s web browser and is addressed
to a Facebook server, using standard HTTP. (“1” in the diagram.) Note, however, that Facebook
applications are not stored on Facebook’s servers. Instead, Facebook serves as an intermediary
between the user’s web browser and the application provider’s own Web service. Facebook
provides a specialized interface to the application’s server. The interface includes an application
program interface called the Graph API, as well as two special protocols, Facebook query
language (FQL) and Facebook Javascript (FBJS) that are used by the application to allow
information exchange between Facebook’s servers and the application server.

Thus, the Facebook server does not actually handle application requests, but simply passes
on user application requests directly to the appropriate application server (2).

FIGURE 2.13

Facebook Application Architecture

Web
Browser

Application
request
(HTTP)

Application
request (HTTP)

iframe
result (HTML)

FQL : Facebook Query Language

FBJS : Facebook Javascript

Facebook page
with application
result (HTML)

FACEBOOK
SERVER

APPLICATION
SERVER

FQL or FBJSG
R

A
P

H
A

P
I

User

1

2

3
4

5

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 65

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 65

The application server can request information and services from the Graph API, using

FQL and/or Javascript (FBJS). (3). The API provides a wide variety of user information, as well

as tools for searching, manipulating pages, posting stories, and more. When the application has

the information that it needs and is ready to publish, it creates an “internal” frame for a Web

page, using HTML and the iframe tag. (4). Facebook adds standard Facebook page features and

returns the result to the user as an HTML response. (5).

Of course, this description understates the overall complexity of this system; Facebook

handles several billion user likes, comments, and requests every day, and processes hundreds

of terabytes of storage daily. As of April 2012, there were more than 2 million third-party

applications using Facebook Graph services. Facebook’s architecture is based entirely on open

source software, and Facebook is very open about its architecture and technology. If you are

interested, there is a lot of information on the Web about it in the form of written descriptions,

PowerPoint presentations, and video lectures, on YouTube and elsewhere by Facebook

design engineers. A good starting point is www.wikipedia.org/wiki/Facebook_Platform.

If you’d like to learn more about building Facebook applications, you can start at

developers.facebook.com/docs/reference/api/.

SUMMARY AND REVIEW
When working with large concepts with defined boundaries, it is often easiest to think of them

in terms of systems. A system can be defined as a collection of components, linked together and

organized in such a way as to be recognizable as a single unit. The components themselves may

also be recognized as subsystems, to be further reduced into components, when appropriate.

The area outside the boundaries of a system is its environment. The system affects and is affected

by various elements of the environment. In many situations, the environment supplies inputs

to the system and receives outputs from the system. The patterns of relationships, connections,

constraints, and linkages among the components of a system and between a system and its

environment are known collectively as the architecture of the system.

Information technology systems are systems that support the strategy and operations

of organizations. The technological components of an IT system include computer hardware,

application software, operating system software, networks, and data. Other components include

personnel, policies, and more.

There are a number of different ways of viewing an IT system, including application

architecture, network architecture, software architecture, and hardware architecture. The

general architecture for an IT system includes all of these considerations.

Nearly allmodern IT systems rely ondistributedprocessing.Data comes frommany sources

and information is required by users distributed throughout an organization and beyond. The

most common application architecture to support distributed processing is client–server

architecture, in which server computer systems provide various services—Web, database, file,

print, processing—to client computer systems. Client–server systems are convenient for users

and offer centralized control for the organization. Client–server architecture is commonly

organized in tiers, ranging from two-tier to n-tier. The alternative architecture to client–server

computing, peer-to-peer computing, is used outside of organizations as a means for sharing

files over the Internet, but is of limited use in organizational settings due to difficulties in

establishing stable data sources, security risks, and lack of central control. It is also possible to

create a hybrid architecture, with features from both client–server and peer-to-peer computing.

http://www.wikipedia.org/wiki/Facebook_Platform

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 66

66 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

A specific type of client–server architecture, Web-based computing, predominates the

IT scene, primarily because users are generally familiar with the use of Web browsers, the

technology is standardized and already in use in most organizations, and good development

tools for designing Web pages and accessing data are readily available. Both intranets and the

Internet provide user access. The services provided by Web-based servers can be extended

using cloud-based services. In addition to simple off-site storage, these include services at the

software, platform, and infrastructure level. There are many advantages and many risks in the

use of cloud-based services.

Protocols are the means used to communicate between computers. IT system protocols of

interest to us include network protocols such as TCP/IP, I/O protocols such as Universal Serial

Bus (USB) and Peripheral Component Interconnect (PCI)-Express, and application protocols

such as HTTP. Standards make it possible for different system components to work together.

Most modern standards are global. There are standards that are defined by interested groups

and de facto standards that arise from common usage.

The first step in IT system analysis and design is about finding an appropriate architecture

for a particular business situation. The task can be difficult and challenging. It is easy to see why

system architects need a deep understanding of the computer system and network components

that comprise the modern IT system to make the appropriate design, selections, and trade-offs.

Hopefully this short but concentrated chapter has prepared you for the remainder of the

book, which considers in detail the data, computer system hardware, operating systems, and

networks that make up the technological infrastructure of an IT system.

FOR FURTHER READING
Surprisingly, there are few books that discuss system concepts and system architecture in a truly

general way. Most books that claim to be about system architecture are actually specific to a

particular field, usually the field of information systems. One general book about systems is by

Laszlo [LASZ96]. Some IS systems design and analysis textbooks provide a brief introduction

to general system concepts. (Unfortunately, many don’t!) One example of a book that provides

a good introduction to system concepts is Stumpf [STAM05]. Chapter 1 of Stampf covers many

of the topics in this chapter well. Wikipedia offers other references under the topic system. In

addition to many cloud-based topics on Wikipedia, Velte [VELT10] provides an excellent and

thorough introduction to cloud computing.

KEY CONCEPTS AND TERMS
abstraction

application architecture

architecture

client–server (model)

cloud computing

decomposition

environment

infrastructure as a service
(IaaS)

interface
intranet
middleware
n-tier architecture
peer-to-peer architecture
platform as a service (PaaS)

shared server

software as a service (SaaS)

subsystem

system

three-tier architecture

top-down approach

two-tier architecture

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 67

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 67

READING REVIEW QUESTIONS

2.1 What are the most important ideas, keywords, and phrases that are stated in the

definition of a system?

2.2 Explain the relationships among the following words: system, environment, boundary,

and interface.

2.3 Explain the following statement about systems: “Decomposition is inherently

hierarchical”.

2.4 Explain what is meant by the architecture of a system.

2.5 What does the top-down approach allow a system architect to do that might be more

difficult otherwise?

2.6 What is the primary concern of application architecture? Give an example of appli-

cation architecture, either your own, or one from the examples in the book. Explain

how this example fulfills the features and requirements of the concept of application

architecture.

2.7 Most modern computing in organizations is based on client–server models. Explain

why this tends to be the case. Give an example of client–server computing that you are

familiar with and explain the characteristics of your example that fulfill the concept of

client–server computing.

2.8 Web-based system architecture is a popular approach to many organizational systems

because it offers a number of advantages to the users and to the organization over

other types of systems. Discuss the primary advantages to this approach.

2.9 What are the principal responsibilities of a system architect?

2.10 Many system architects base their IT system designs on an n-tier architecture, where

n is a number with value 2 or greater. Explain the difference between a single-tier

architecture and an n-tier architecture. What are the main advantages claimed for an

n-tier architecture?

2.11 Explain cloud computing in simple terms. Briefly discuss the major advantages and

risks to an organization when considering the adoption of cloud computing.

2.12 Give a simple explanation and example for SaaS. Do the same for PaaS. Do the same

for IaaS.

EXERCISES

2.1 The human body is an example of an object that can be represented as a system.

Consider the various ways in which you could represent the human body as a system.

Select a representation and identify the components that constitute the system. Select

one component and decompose it to the next subsystem level. Now consider a

completely different system representation of the human body and repeat this exercise.

2.2 Consider a representation of a work organization or school with which you are

familiar. Identify the major components that characterize the primary operations

within the organization and draw a diagram that represents the system’s organization.

Show and identify the links that connect the various components. Identify the major

environmental factors that impact the organization.

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 68

68 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

2.3 Consider this textbook. Using the detailed table of contents as a reference, we can

represent this textbook as a hierarchical system. As a first pass, we can define this book

by the five component parts thatmake up the body of the text. Identify by general name

the objects that constitute the next level of decomposition below the parts components.

Continue to do this for at least three more levels of the hierarchy.

2.4 Thinking in terms of systems allows us to analyze situations that are too complicated

for us to understand as a whole. What specific characteristics and features of system

thinking make this possible?

2.5 Figure 2.8 illustrates the basic architecture for a three-tier database system. This

system can be viewed as an IPO system. What is the input for this system? What

environmental element generates the input? (Hint: the Web browser computer is

within the system boundary.) What is the expected output from this system? What

environmental element receives the output? Briefly describe the processing that takes

place in this system.

2.6 Based on the illustration of an iPhone shown in Figure 2.4, draw a system model for

an iPhone.

2.7 It is common to represent network connections in IT systems as a cloud. (See, for

example, Figures 2.6, 2.7, 2.8, and 2.9). The cloud is obviously an abstraction as we

defined abstraction in this chapter.What does the cloud abstraction actually represent?

2.8 Suppose that you have been hired to develop a website-based sales system for a large

international retail sales firm. Discuss some environmental issues that are specific to

theWeb design of your system that youmust consider if your system is to be successful

at attracting and keeping purchasing customers.

2.9 Consider a home theatre system consisting of a television set, a receiver, a DVD

player, speakers, and any other components you wish to include. Draw a system

diagram for this system. Include both components and links. What are the inputs to

this system? What are the outputs? (Remember that the DVD player and receiver are

both components within the system.) Now draw a system diagram for the receiver

subsystem. Include both its primary components and the links between them. What

are the inputs and outputs for the receiver subsystem? Do these inputs and outputs

conform to the links connected to the receiver in your original system diagram?

Englander c02.tex V2 - November 28, 2013 9:39 P.M. Page 69

Englander p02.tex V2 - November 30, 2013 9:05 A.M. Page 70

PART TWO

Y
ouare probably aware that all data in computers and other digital devices is stored in the

form of binary numbers, using only 1s and 0s. The situation is more complicated than

this, however, because those binary numbers represent both program instructions and

data, and they may represent the data in many different forms. Programming languages such

as Java, for example, allow a programmer to specify data in primitive form as integer numbers,

real numbers, characters, or Booleans. In addition, the files on your computer undoubtedly

include representations of graphical images, sounds, photo images and video, and who knows

what all else!

Each of the myriad different data types and objects uses its own format or formats for

storage in the computer. Manipulating data requires keeping track of which format is in use

for a particular set of data. Each numerical data format requires a different method for doing

arithmetic calculations, and there are anumber of different formats for representations of images

and the like with different capabilities and manipulation requirements, which complicates data

handling even further. Naturally, the computer must be able to perform format conversions

between equivalent but different types. Most of this data-type record keeping must be handled

within programs; to the computer, the bits all look the same. Only the programs know what the

bits actually represent.

Each data type and format has its own uses, advantages, and disadvantages, determined by

the context in which it is being used. There is no single “ideal” data type. Knowing when to use

each type involves understanding what happens to the data within the computer. When you

understand the effect of your data-type choices upon the processing that will be required you

can write better, more efficient programs.

Each of the chapters in this section deals with a different aspect of data. We begin in

Chapter 3 by reviewing the basics of number systems, to offer you a better understanding of

how numbers work, the nature of counting, and how calculations are performed. You will learn

how to convert from one number base to another. Although the binary number system is used

Englander p02.tex V2 - November 30, 2013 9:05 A.M. Page 71

DATA IN THE COMPUTER

within computers, we must be able to convert between the system the computer uses and the

more familiar decimal system that we use. You will also have a chance to work with the octal

and hexadecimal number systems, which are closely related to the binary system. These are

frequently used for representing computer data and programs in machine form because they

are easy to read and easy to convert to and from binary form.

In Chapter 4 we will explore the ways in which data gets into the computer in the first

place and the different forms that it can take inside the computer. We will consider text, sound,

and images. You will study the difference between characters and other symbols stored as text

and the same symbols stored as images. You will see the different binary codes that are used to

represent symbols in text form. We will also consider the difference between numbers stored

as groups of numeric characters and those stored in actual numerical form. The chapter also

looks at the representations of graphics, photo images, and sound. We present several different

formats that are used for the manipulation and storage of image and sound data.

In Chapter 5 we will look at various ways in which numbers are stored and manipulated

in computers. We consider various forms of integers and real, or “floating point”, number

representations and calculations. We discuss the conversion process between real and integer

number representations. We look at the strengths and shortcomings of each type from the

perspectives of data storage requirements and calculation considerations. The discussion will

conclude by considering when the use of each of the different numerical types is appropriate.

71

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 72

CHAPTER 3

NUMBER SYSTEMS

David H. Ahl, Creative Computing, Morristown, NJ

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 73

3.0 INTRODUCTION
As humans, we generally count and perform arithmetic using the decimal, or base 10,

number system. The base of a number system is simply the number of different digits,

including zero, that exist in the number system. In any particular set of circumstances, a

particular base might be chosen for convenience, efficiency, technological, or any other

reasons. Historically, it seems that the main reason we use base 10 is that humans have

ten fingers, which is as good a reason as any.

Any number can be represented equivalently in any base, and it is always possible to

convert a number from one base to another without changing its meaning or actual value,

although its appearance will be different.

Computers perform all of their operations using the binary, or base 2, number system.

All program code and data are stored and manipulated in binary form. Calculations are

performed using binary arithmetic. Each digit in a binary number is known as a bit (for
binary digit) and can have only one of two values, 0 or 1. Bits are commonly stored and

manipulated in groups of 8 (known as a byte), 16 (usually known as a halfword), 32 (a

word), or 64 bits (a doubleword). Sometimes other groupings are used.

The number of bits used in calculations affects the accuracy and size limitations of

numbers manipulated by the computer. And, in fact, in some programming languages, the

number of bits used can actually be specified by the programmer in declaration statements.

In the programming language Java, for example, the programmer can declare a signed

integer variable to be short (16 bits), int (32 bits), or long (64 bits) depending on the

anticipated size of the number being used and the required accuracy in calculations.

The knowledge of the size limits for calculations in a particular language is sometimes

extremely important, since some calculations can cause a numerical result that falls outside

the range provided for the number of bits used. In some cases this will produce erroneous

results, without warning to the end user of the program.

It is useful to understand how the binary number system is used within the computer.

Often, it is necessary to read numbers in the computer in their binary or equivalent

hexadecimal form. For example, colors in Visual Basic, Java, andmany other languages can

be specified as a six-digit hexadecimal number, which represents a 24-bit binary number.

This chapter looks informally at number systems in general and explores the rela-

tionship between our commonplace decimal number system and number systems of other

bases. Our emphasis, of course, is upon base 2, the binary number system. The discussion

is kept more general, however, since it is also possible, and in fact common, to represent

computer numbers in base 8 (octal) or base 16 (hexadecimal). Occasionally, we even

consider numbers in other bases, just for fun, and also, perhaps, to emphasize the idea that

these techniques are completely general.

73

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 74

74 PART TWO DATA IN THE COMPUTER

3.1 NUMBERS AS A PHYSICAL REPRESENTATION
As we embark upon our investigation of number systems, it is important to note that numbers

usually represent some physical meaning, for example, the number of dollars in our paycheck

or the number of stars in the universe. The different number systems that we use are equivalent.

The physical objects can be represented equivalently in any of them. Of course, it is possible to

convert between them.

In Figure 3.1, for example, there are a number of oranges, a number that you recognize as

5. In ancient cultures, the number might have been represented as

I I I I I

or, when in Rome,

V

Similarly, in base 2, the number of oranges in Figure 3.1 is represented as

1012

And in base 3, the representation looks like this:

123

The point we are making is that each of the foregoing examples is simply a different way of

representing the same number of oranges. You probably already have experience in converting

between the standard decimal number system and Roman numerals. (Maybe you even wrote

a program to do so!) Once you understand the methods, it is just about as easy to convert

between base 10 and the other number bases that we shall use.

3.2 COUNTING IN DIFFERENT BASES

FIGURE 3.1

A Number of Oranges

Let’s consider how we count in base 10, and what each

digit means. We begin with single digits,

0
1
2
3
.

.

.

9

When we reach 9, we have exhausted all possible

single digits in the decimal number system; to proceed

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 75

CHAPTER 3 NUMBER SYSTEMS 75

further, we extend the numbers to the 10’s place:

10

11

12

.

.

.

It is productive to consider what “the 10’s place” really means.

The 10’s place simply represents a count of the number of times that we have cycled

through the entire group of 10 possible digits. Thus, continuing to count, we have

1 group of 10 + 0 more
1 group of 10 + 1 more
1 group of 10 + 2
.

.

.

1 group of 10 + 9
2 groups of 10 + 0
.

.

.

9 groups of 10 + 9

At this point, we have used all combinations of two digits, and we need tomove left another

digit. Before we do so, however, we should note that each group shown here represents a count

of 10, since there are 10 digits in the group. Thus, the number

43

really refers to

4 × 10 + 3

As we move leftward to the next digit, that is, the hundreds place, we are now counting

cycles of the rightmost two digits or, in other words, groups of 10× 10, or 102, or hundreds.

Thus, the number

527

really represents

five groups of (10 × 10) +
two groups of 10 + 7

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 76

76 PART TWO DATA IN THE COMPUTER

This is also represented as

5 × 102 + 2 × 101 + 7 × 100.
This method can, of course, be extended indefinitely.

The same method, exactly, applies to any number base. The only change is the size of each
grouping. For example, in base 8, there are only eight different digits available (0, 1, 2, 3, 4, 5,
6, 7). Thus, each move left represents eight of the next rightmost grouping. The number

6248
corresponds to

6 × 82 + 2 × 81 + 4 × 80.
Since 82 = 6410, 8

1 = 810, and 80 = 1,

6248 = 6 × 64 + 2 × 8 + 4 = 40410.

Each digit in a number has a weight, or importance, relative to its neighbors left and right.
The weight of a particular digit in a number is the multiplication factor used to determine the
overall value of the particular digit. For example, the weights of the digits in base 8, reading
from right to left are 1, 8, 64, 512, . . . , or, if you prefer, 80, 81, 82, 83, Just as you would
expect, the weight of a digit in any base n is n times as large as the digit to its right and (1/n)th
as large as the digit to its left.

Figure 3.2 shows the corresponding method of counting in base 2. Note that each digit has
twice the weight of its next rightmost neighbor, just as in base 10 each digit had ten times the
weight of its right neighbor. This is what you would expect if you consider that there are only
two different values for digits in the binary cycle. You should spend enough time studying this

FIGURE 3.2

Counting in Base 2

NUMBER EQUIVALENT
DECIMAL

EQUIVALENT

0

1

10

11

100

101

110

111

1000

1001

1010

0

1

2

3

4

5

6

7

8

9

10

0 × 20

1 × 20

1 × 21
+ 0 × 20

1 × 21
+ 1 × 20

1 × 22

1 × 22
+ 1 × 20

1 × 22
+ 1 × 21

1 × 22
+ 1 × 21

+ 1 × 20

1 × 23

1 × 23
+ 1 × 20

1 × 23
+ 1 × 21

table until you understand every detail
thoroughly.

Note, too, that the steps that we have
followeddonot really depend on the num-
ber base that we are using. We simply go
through a complete cycle, exhausting all
possible different digits in the base set,
and then move to the left one place and
count the cycles. We repeat this process as
necessary to represent the entire number.

In general, for any number base B,
each digit position represents a weight of
B to apower,where thepower is numbered
from the rightmost digit, starting with B0.
B0, of course, has a weight of one (known
as the units place) for any number base.

Thus, a simple way to determine
the decimal equivalent for a number
in any number base is to multiply each
digit by the weight in the given base that
corresponds to the position of the digit
for that number.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 77

CHAPTER 3 NUMBER SYSTEMS 77

EXAMPLES
As an example,

1423056 =

1 × 65 + 4 × 64 + 2 × 63 + 3 × 62 + 0 × 6 + 5 =

7776 + 5184 + 432 + 108 + 0 + 5 = 1350510

Similarly,
1100101002 =

1 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22+

0 × 2 + 0 =

256 + 128 + 16 + 4 = 40410

You should probably work out these two examples and check your results against ours.

Often it is useful to be able to estimate quickly the value of a binary number. Since the

weight of each place in a binary number doubles as we move to the left, we can generate a rough

order-of-magnitude by considering only the weight for the leftmost bit or two. Starting from 1,

and doubling for each bit in the number to get the weight, you can see that the most significant

bit in the previous example has a value of 256. We can improve the estimate by adding half that

again for the next most significant bit, which gives the value of the number in the neighborhood

of 384, plus a little more for the additional bits. With a little practice, it is easy to estimate the

magnitudes of binary numbers almost instantly. This technique is often sufficient for checking

the results of calculations when debugging programs. (You might also want to consider it as a

way of doing quick checks on your solutions to exam problems!)

We will discuss number conversion between different bases more carefully later in the

chapter.

From the preceding discussion, it is fairly easy to determine the total range of possible

numbers—or, equivalently, the smallest and largest integers—for a given number of digits in a

particular number base. Since the weight of each digit is one larger than the largest value that

can be represented by all the digits to its right, then the range of possible values for n digits is

simply the weight of the nth digit, which is represented by the value

range = basen

Thus, if we want to know how many different numbers can be represented by two decimal

digits, the answer is 102. We can represent one hundred different numbers (0 . . . 99) with two

decimal digits.

It’s obviously easier to simply memorize the formula; if you are told that you are working

with four-digit numbers in base 8, you know from the formula that you can represent 84, or

4096 different numbers, ranging from 0 . . . 77778, or the decimal equivalent (0 . . . 4095).

Just as a pocket calculator stores, manipulates, and displays numbers as a group of digits,

so computers store and manipulate numbers as groups of bits. Most computers work with

numbers 16 bits, 32 bits, or 64 bits at a time. Applying the preceding formula to a “16-bit”

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 78

78 PART TWO DATA IN THE COMPUTER

FIGURE 3.3

Decimal Range for Selected Bit Widths

BITS DIGITS RANGE

1

4

8

10

16

20

32

64

128

0

1

2

3

4

6

9

19

38

+

+

+

+

+

+

+

2 (0 and 1)

16 (0 to 15)

256 (0 and 1)

1,024 (0 and 1)

65,536 (64K)nd

1,048,576 (1M)

4,294,967,296 (4G)

Approx. 1.6 × 1019

Approx. 2.6 × 1038

number, you can represent 216 = 65,536 different number

values in each 16-bit location. If you wish to extend this

range, it is necessary to use some technique for increasing the

number of bits used to hold your numbers, such as using two

16-bit storage locations together to hold 32 bits. There are

other methods used, which are discussed in Chapter 5, but

note that, regardless of the technique used, there is no way to

store more than 65,536 different number values using 16 bits.

A table of base 10 equivalent ranges for several common

computer “word lengths” is shown in Figure 3.3. There is a

simple way to calculate the approximate range for a given

number of bits, since 210 is approximately 1000. To do so, we

break up the total number of bits into a sum that consists of

values where the range is easily figured out. The overall range

is equal to the product of the subranges for each value. This

method is best seen with examples.

For example, if you need to know the range for 18 bits,

you would break up the number 18 into the sum of 10 and 8,

then multiply the range for 10 bits to that for 8 bits. Since the range for 10 bits is approximately

1 K (1024, actually) and 8 bits is 256, the range for 18 bits is approximately 256 K. Similarly, the

range for 32 bits would be (10-bit range)× (10-bit range)× (10-bit range)× (2-bit range)= 1

K× 1 K× 1 K× 4= 4 gigabytes. This technique becomes easy with a bit of practice.

Notice that it takes 18 bits to represent a little more than five decimal digits. In general,

approximately 3.3 bits are required for each equivalent decimal digit. This is true because 23.3

is approximately equal to 10.

3.3 PERFORMING ARITHMETIC IN DIFFERENT
NUMBER BASES

Next, we consider simple arithmetic operations in various number bases. Let us begin by

looking at the simple base 10 addition table shown in Figure 3.4.

FIGURE 3.4

The Base 10 Addition Table

+

0

1

2

3

4

0

0

1

2

3

4

1

1

2

3

4

5

2

2

3

4

5

6

3

3

4

5

6

7

4

4

5

6

7

8

5

5

6

7

8

9

6

6

7

8

9

10

7

7

8

9

10

11

8

8

9

10

11

12

9

9

10

11

12

13

etc.

We add two numbers by finding one

in the row and the other in the column.

The table entry at the intersection is the

result. For example, we have used the table

to demonstrate that the sum of 3 and 6 is 9.

Note that the extra digit sometimes required

becomes a carry that gets added into the next

left column during the addition process.

More fundamentally, we are interested

in how the addition table is actually cre-

ated. Each column (or row) represents an

increase of 1 from the previous column (or

row), which is equivalent to counting. Thus,

starting from the leftmost column in the

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 79

CHAPTER 3 NUMBER SYSTEMS 79

FIGURE 3.5

The Base 8 Addition Table

+

0

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

1

1

2

3

4

5

6

7

10

2

2

3

4

5

6

7

10

11

3

3

4

5

6

7

10

11

12

4

4

5

6

7

10

11

12

13

5

5

6

7

10

11

12

13

14

6

6

7

10

11

12

13

14

15

7

7

10

11

12

13

14

15

16

(no 8 or 9,
of course)

table, it is only necessary to count up 1 to find the next value. Since 3+ 6= 9, the next column

will have to carry to the next place, or 10, just as occurred when we demonstrated counting in

base 10, earlier. This knowledge should make it easy for you to create a base 8 addition table.

Try to create your own table before looking at the one in Figure 3.5.

Of special interest is the base 2 addition table:

+

0

1

0

0

1

1

1

10

Clearly, addition in base 2 is going to be easy!

Addition inbase2 (or anyotherbase, for thatmatter) then follows theusualmethodsof addi-

tion that you are familiar with, including the handling of carries that you already know. The only

difference is the particular addition table being used. There are practice problems representing

multidigit binary arithmetic and column arithmetic (Exercise 3.8) at the end of this chapter.

EXAMPLE
Add 111000012 and 1010112 (superscripts are carried amounts).

11 1 0 0 01 01 1
110101

001100001

111

+

Let’s use the estimation technique to see if our result is approximately correct. 11100001
is approximately 128+64+32, or 224. 101011 is approximately 32. Thus, the sum should be
about 256; 100001100 is indeed approximately 256, so at least we know that our calculation
is in the ballpark.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 80

80 PART TWO DATA IN THE COMPUTER

FIGURE 3.6

The Base 10 Multiplication Table

×

0

1

2

3

4

5

6

7

8

9

0

0

0

1

1

2

3

4

5

6

7

8

9

2

2

4

6

8

10

12

14

16

18

3

3

6

9

12

15

18

21

24

27

4

4

8

12

16

20

24

28

32

36

5

5

10

15

20

25

30

35

40

45

6

6

12

18

24

30

36

42

48

54

7

7

14

21

28

35

42

49

56

63

8

8

16

24

32

40

48

56

64

72

9

9

18

27

36

45

54

63

72

81

As an aside, it may be of interest to some readers to consider how this addition table

can be implemented in the computer using only Boolean logic, without performing any actual

arithmetic: the result bit (the bit in the column that corresponds to the inputs) can be represented

by the EXCLUSIVE-OR function of the two input bits. The EXCLUSIVE-OR function has a “1” as output

FIGURE 3.7

The Base 8 Multiplication Table

×

0

1

2

3

4

5

6

7

0 1

1

2

3

4

5

6

7

2

2

4

6

10

12

14

16

3

3

6

11

14

17

22

25

4

4

10

14

20

24

30

34

5

5

12

17

24

31

36

43

6

6

14

22

30

36

44

52

7

7

16

25

34

43

52

61

0

0

only if either input, but not both inputs, is a “1”. Similarly,

the carry bit is represented as an AND function on the

two input bits. (“1” as output if and only if both inputs

are a “1”.) This approach is discussed in more detail in

Supplementary Chapter 1.

The process of multiplication can be reduced con-

ceptually to multiple addition, so it should not surprise

you that multiplication tables in different number bases

are also reasonably straightforward. The major difference

in appearance results from the fact that the carry occurs

at different places.

The easiest way to create a multiplication table is to

treat multiplication asmultiple addition: each column (or

row) represents the addition of the value in the row (or

column) being created. Thus, in the following table, you

can see that 5 × 8 is equivalent to 5 × 7 + 5 = 40.

The familiar decimal multiplication table appears in

Figure 3.6, with the example just given indicated.

The same technique can be applied to the base 8

multiplication table (Figure 3.7).

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 81

CHAPTER 3 NUMBER SYSTEMS 81

Note in the foregoing table that 3× 3= 3 × 2+ 3. Note, though, that counting up 3 from 6

(or adding 3 to 6) results in a carry after 7 is reached: 6→ 7→ 10→ 11.

The base 2 multiplication table is almost trivial, since 0 times anything is 0 and 1 times 1 is

itself:

0

0

0

1

0

1

×

0

1

Because the binary multiplication table is so simple, it turns out that multiplication can be

implemented in a computer fairly easily. There are only two possible results: if the multiplier is

0, the answer is 0, even if the multiplicand is a nonzero multidigit number. If the multiplier is

1, the multiplicand is brought down as the result. You might recognize the multiplication table

as a Boolean AND function.

If you recall that decimal multidigit multiplication is performed by multiplying the

multiplicand by each digit of the multiplier, shifting the result of each multiplication to line

up with the multiplier, and adding up the results, then you realize that multidigit binary

multiplication can be performed by simply shifting the multiplicand into whatever positions in

the multiplier are “1” bits and adding to the result. This is easily illustrated with an example:

EXAMPLE
Multiply

1101101
× 100110

 1101101
 1101101
 1101101

1000000101110

bits shifted to line up with 2’s place of multiplier
4’s place
32’s place

result (note the 0 at the end, since the 1’s place is
zero and not brought down)

[multiplicand]
[multiplier]

We note in passing that shifting a binary number one position to the left has the effect of

doubling its value. This is a result you would expect, since the shift is equivalent to multiplying

the value by a 1 in the 2’s place of the multiplier. This result is consistent with the fact that shift-

ing a decimal number to the left by one position will multiply its value by 10. In general, shifting
a number in any base left one digit multiplies its value by the base, and, conversely, shifting a
number right one digit divides its value by the base. Shifting right loses any fractional values

that result, however.

Although we have not mentioned subtraction or division, the methods are similar to those

that we have already discussed. In fact, the addition and multiplication tables can be directly

used for subtraction and division, respectively.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 82

82 PART TWO DATA IN THE COMPUTER

3.4 NUMERIC CONVERSION BETWEEN
NUMBER BASES

Conversions between whole numbers in decimal (base 10) and any other number base are

relatively straightforward. With the exception of one special case discussed in Section 3.6, it is

impractical to convert directly between two nondecimal number bases. Instead, base 10 would

be used as an intermediary conversion base.

The easiest intuitive way to convert between base 10 and another number base is to

recognize the weight of each digit in the alternative number base and to multiply that weight by

the value of the digit in that position. The sum taken over all digits represents the base 10 value

of the number. This is easily seen in an example:

EXAMPLE
Convert the number

137548

to base 10.
From the following diagram we can see the result easily:

(84)
4096

(83)
512

(82)
64

(81)
8

(80)
1

1

4096 + 1536 + 448 + 40 + 4 = 612410

× 3 7 5 4 values

weights

We can use the same method in reverse to convert from base 10 to another base, although

the technique is not quite as simple. In this case, it is just a question of finding the value

corresponding to the weight of each digit such that the total will add up to the base 10 number

that we are trying to convert.

Note that the value for each digit must be the largest value that will not exceed the number

being converted. If this were not true, then there would be more than a full grouping of the next

less significant digit. This idea is best clarified by example:

EXAMPLE
Suppose that we are reverse converting the preceding example, and we assume that there are six
groups of 64 instead of seven. In this case, the 8’s place and 1’s place combined must add up
to more than 64, and we’ve already seen that is impossible.

This provides a simple methodology for the conversion. Start with the digit whose weight

is the largest possible without exceeding the number to be converted. Determine the largest

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 83

CHAPTER 3 NUMBER SYSTEMS 83

value for that weight that does not exceed the number to be converted. Then, do the same for
each successive digit, working from left to right.

EXAMPLE
As an example, let us convert 612410 to base 5. The weights of each digit in base 5 are as
follows:

15625 3125 625 125 25 5 1

Clearly the 15625 digit is too large, so the result will be a six-digit base 5 number. The
number 3125 fits into 6124 only once; thus, the first digit is a 1, and the remainder to be
converted is 2999. Proceeding to the next digit, 625 goes into 2999 four times with a remainder
of 499, 125 into 499 three times with a remainder of 124, 25 into 124 four times, and so on.
We get a final result of

1434445

It would be useful for you to confirm the answer by converting the result back to base 10.

This method is particularly simple if you are converting from decimal to binary, since the
value that corresponds to a particular bit either fits (1) or it doesn’t (0). Consider the following
example:

EXAMPLE
Convert 319310 to binary. The weights in binary are 4096, 2048, 1024, 512, 256, 128, 64,
32, 16, 8, 4, 2, and 1.

Proceeding as before, the largest bit value in this conversion is the 2048 weight. Subtracting
2048 from 3193 leaves 1145 yet to be converted; thus, there is also a 1 in the 1024 place.
Now the remainder is 1145 − 1024 = 121. This means that there are 0s in the 512, 256, and
128 places. Continuing, you should confirm that the final result is

1100011110012

Note that, in general, as the base gets smaller, the representation of a value requires more
digits and looks bigger.

An Alternative Conversion Method

Although the preceding methods are easy to understand, they are computationally difficult and
prone to mistakes. In this section we will consider methods that are usually simpler to compute
but are less intuitive. It is helpful to understand the reasons that these methods work, since the
reasoning adds insight to the entire concept of number manipulation.

BASE 10 TO ANOTHER BASE Note that when we divide a number by a number B the
remainder must take on a value between 0 and B − 1, which corresponds to the range for a
number in base B. Suppose we divide the number to be converted successively by the base, B,
that we are converting to, and look at the remainders of each division. We will do this until
there is nothing left to divide. Each successive remainder represents the value of a digit in the

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 84

84 PART TWO DATA IN THE COMPUTER

new base, reading the converted value from bottom to top digit in the new base. Again, let us

convert 612410 to base 5:

EXAMPLE

5) 6124 (4 Least significant digit
5) 1224 (4
5) 244 (4
5) 48 (3
5) 9 (4
5) 1 (1 Most significant digit

0

The answer is 1434445, which agrees with our earlier result.

The first time that we perform the division, we are, in effect, determining howmany groups

of 5 (or, in the general case, B) fit into the original number. The remainder is the number of

single units left over, which is, in other words, the units place of the converted number.

The original number has now been divided by 5, so the second division by 5 determines

how many groups of 52, or 25, fit into the number. The remainder in this case is the number of

5-groups that are left over, which is the second digit from the right.

Each time we divide by the base, we are increasing the power of the group being tested by

one, and we do this until there is no group left. Since the remainders correspond to the part

of the number that does not exactly fit the group, we can read the converted number easily by

reading the remainders from the bottom up.

Here’s another example:

EXAMPLE
Convert 815110 to base 16, also known as hexadecimal:

16) 8151 (7
16) 509 (13 in base 16, this is represented by the letter “D”

in base 16, this is represented by the letter “F”16) 31 (15
1

The answer is 1FD716. We suggest that you verify this answer by using the technique of digit
weight multiplication to convert this answer back to decimal form.

ANOTHERNUMBERBASETOBASE 10 An alternativemethod can also be used to convert

from other number bases to base 10. The technique is also computationally simple: starting

from the most significant digit, we multiply by the base, B, and add the next digit to the right.

We repeat this process until the least significant digit has been added.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 85

CHAPTER 3 NUMBER SYSTEMS 85

EXAMPLE
Convert 137548 to base 10:

1

× 8

8 + 3 = 11

× 8

88 + 7 = 95

× 8

760 + 5 = 765

× 8

6120 + 4 = 612410

If you count the number of times that each digit in the example is multiplied by the base

number, in this case 8, you discover that the leftmost digit ismultiplied by 8 four times, or 84, and

that each successive digit is multiplied by 8 one less time, until you arrive at the rightmost digit,

which is not multiplied by the base number at all. Thus, each digit is multiplied by its proper

weight, and the result is what we would expect. In the next chapter, you will see that this method

is also useful for converting a sequence of digits in alphanumeric form to an actual number.

You have now been introduced to two different methods for performing conversions

in each direction, one intuitive and one formal or algorithmic. You should practice all four

methods; then you can use whichever two methods are easiest for you to remember.

3.5 HEXADECIMAL NUMBERS AND ARITHMETIC
Thehexadecimal, or base 16, number representation system is important because it is commonly

used as a shorthand notation for binary numbers. The conversion technique between hexadec-

imal and binary notations is particularly simple because there is a direct relationship between

the two. Each hexadecimal number represents exactly 4 binary bits. Most computers store and

manipulate instructions and data using word sizes that are multiples of 4 bits. Therefore, the

hexadecimal notation is a convenient way to represent computer words. Of course, it is also

much easier to read and write than binary notation. The technique for converting between

binary and hexadecimal is shown later in this chapter.

Although hexadecimal numbers are represented andmanipulated in the same way as those

of other bases, we must first provide symbols to represent the additional digits beyond 9 that

we require to represent sixteen different quantities with a single integer.

By convention, we use the digits 0–9, followed by the first six Latin alphabetical characters

A–F. Thus, the digits 0–9 have their familiar meaning; the letters A–F correspond to what in

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 86

86 PART TWO DATA IN THE COMPUTER

a decimal base would be quantities of 10–15, respectively. To count in hexadecimal, we count

from 0 to 9, then A to F, and then move left to the next digit. Since there are sixteen digits, each

place represents a power of 16. Thus, the number

2A4F16

is equivalent to

2 × 163 + 10 × 162 + 4 × 16 + 15, or
1083110

Addition and multiplication tables can be created for the hexadecimal number system.

These tables each have sixteen rows and sixteen columns, as you would expect. The addition

table is shown in Figure 3.8. Before you look at the above-mentioned figure, you should try to

work the hexadecimal addition and multiplication tables out for yourself (see Exercise 3.7).

FIGURE 3.8

Hexadecimal Addition Table

+

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

2

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

3

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

4

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

5

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

6

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

7

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

8

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

9

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

A

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

B

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

C

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

D

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

E

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

F

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 87

CHAPTER 3 NUMBER SYSTEMS 87

3.6 A SPECIAL CONVERSION CASE—NUMBER
BASES THAT ARE RELATED

A special possibility for conversion exists when one number base is an integer power of another.

In this case, a direct conversion can easily be made. In fact, with a bit of practice, the conversion

can be done mentally and the answer written down directly. These conversions work because a

grouping of several digits in the smaller number base corresponds, or maps, exactly to a single

digit in the larger number base.

Two particularly useful examples for computer work are the cases of conversion between

base 2 and base 8 and conversion between base 2 and base 16. Since 8= 23, we can represent

binary numbers directly in base 8 using one octal digit to correspond to each three binary digits.
Similarly, it takes one hexadecimal digit to exactly represent 4 bits.

The advantage of representing binary numbers in hexadecimal or octal is obvious: it is

clearly much easier to read and manipulate four-digit hexadecimal numbers than 16-bit binary

numbers. Since the conversion between binary and octal and hexadecimal is so simple, it is

common to use hexadecimal or octal representation as a shorthand notation for binary. (Note

that base 8 and base 16 are not directly related to each other by power, but conversion could be

performed easily by using base 2 as an intermediary.)

Since the correspondence of binary and octal or hexadecimal is exact, the conversion

process simply consists of breaking the binary number into groups of three or four, starting

from the least significant bit (the unit bit), and converting each group independently. It may be

necessary to mentally add 0s to the left end of the number to convert the most significant digit.

This is most easily illustrated with an example:

EXAMPLE
Let us convert

11010111011000

to hexadecimal.
Grouping the binary number by fours from the right, we have

0011 0101 1101 1000

or
35D816

Note that we added two zeros at the left end of the binary number to create groups of four.
The conversion in the other direction works identically. Thus,

2753318

becomes
010 111 101 011 011 0012

For practice, now convert this value to hexadecimal. You should get 17AD916 as an answer.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 88

88 PART TWO DATA IN THE COMPUTER

Most computer manufacturers today prefer to use hexadecimal, since a 16-bit or 32-bit

number can be represented exactly by a four- or eight-digit hexadecimal number. (How many

octal digits would be required?) A few manufacturers still use octal representation for some

applications.

You might ask why it is necessary to represent data in binary form at all. After all, the

binary form is used within the computer, where it is usually invisible to the user. There aremany

occasions, however, where the ability to read the binary data is very useful. Remember that

the computer stores both instructions and data in binary form. When debugging a program, it

may be desirable to be able to read the program’s instructions and to determine intermediate

data steps that the computer is using. Older computers used to provide binary dumps for this

purpose. Binary dumps were complete octal listings of everything stored in memory at the

time the dump was requested. Even today it is sometimes important, for example, to be able to

read the binary data from a disk to recover a lost or damaged file. Modern computer operating

systems and networks present a variety of troubleshooting data in hexadecimal form.

Conversions between binary and hexadecimal notation are used frequently. We strongly

recommend that you practice to become proficient at working with hexadecimal notation.

3.7 FRACTIONS
Up to this point we have limited our discussion to positive whole numbers, or, if you prefer, inte-

gers. (Negative numbers are discussed in Chapter 5.) The representation and conversion of frac-

tional numbers are somewhatmore difficult because there is not necessarily an exact relationship

between fractional numbers in different number bases. More specifically, fractional numbers

that can be represented exactly in one number base may be impossible to represent exactly in

another. Thus, exact conversion may be impossible. A couple of simple examples will suffice:

EXAMPLE
The decimal fraction

0.110 or 1∕10

cannot be represented exactly in binary form. There is no combination of bits that will add up
exactly to this fraction. The binary equivalent begins

0.00011001100112…

This binary fraction repeats endlessly with a repeat cycle of four. Similarly, the fraction

1∕3

is not representable as a decimal value in base 10. In fact, we represent this fraction decimally
as

0.3333333…

As you will realize shortly, this fraction can be represented exactly in base 3 as

0.13

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 89

CHAPTER 3 NUMBER SYSTEMS 89

Recall that the value of each digit to the left of a decimal point in base 10 has a weight ten

times that of its next right neighbor. This is obvious to you, since you already know that each

digit represents a group of ten objects in the next right neighbor. As you have already seen,

the same basic relationship holds for any number base: the weight of each digit is B times the

weight of its right neighbor. This fact has two important implications:

1. If we move the number point one place to the right in a number, the value of the

number will be multiplied by the base. A specific example will make this obvious:

139 0.×

139010 is ten times as large as 139.010

Moving the point right one space, therefore, multiplies the number by ten. Only a bit

less obvious (pun intended),

1002 is twice as big as 102

(Note: We have used the phrase “number point” because the word “decimal”

specifically implies base 10. More generally, the number point is known by the name

of its base, for example, binary point or hexadecimal point. It is sometimes also called

a radix point.)

2. The opposite is also true: if we move the number point to the left one place, the value

is divided by the base. Thus, each digit has strength 1/B of its left neighbor. This is

true on both sides of the number point.

246.8×

Moving the point to the left one space divides the value by ten.

Thus, for numbers to the right of the number point, successive digits have values 1/B, 1/B2,

1/B3, and so on. In base 10, the digits then have value

.D1 D2 D3 D4

10−1 10−2 10−3 10−4

which is equivalent to

1∕10 1∕100 1∕1000 1∕10,000

This should come as no surprise to you, since 1/10= 0.1, 1/100= 0.01, and so forth.

(Remember from algebra that B−k = 1/Bk.)

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 90

90 PART TWO DATA IN THE COMPUTER

Then, a decimal number such as
0.2589

has value
2 × (1∕10) + 5 × (1∕100) + 8 × (1∕1000) + 9 × (1∕10,000)

Similarly in base 2, each place to the right of the binary point is 1/2 the weight of its
left-hand neighbor. Thus, we have

.B1 B2 B3 B4

1/2 1/4 1/8 1/16 etc.

As an example,
0.101011

is equivalent to
1∕2 + 1∕8 + 1∕32 + 1∕64

which has decimal value

0.5 + 0.125 + 0.03125 + 0.015625 = 0.67187510

Since there is no general relationship between fractions of types 1/10k and 1/2k, there is no
reason to assume that a number that is representable in base 10 will also be representable in
base 2. Commonly, it isn’t so. (The converse is not the case; since all fractions of the form 1/2k

can be represented in base 10, and since each bit represents a fraction of this form, fractions in
base 2 can always be converted exactly to fractions in base 10.) As we have already shown with
the value 0.110, many base 10 fractions result in endless base 2 fractions.

Incidentally, as review, consider the hexadecimal representation of the binary fraction
representing 0.110. Starting from the numeric point, which is the common element of all
number bases (B0 = 1 in all bases), you group the bits into groups of four:

0.0001 1001 1001 1001 = 0.199916
In this particular case, the repeat cycle of four happens to be the same as the hexadecimal
grouping of four, so the digit “9” repeats forever.

When fractional conversions from one base to another are performed, they are simply
stopped when the desired accuracy is attained (unless, of course, a rational solution exists).

Fractional Conversion Methods

The intuitive conversion methods previously discussed can be used with fractional numbers.
The computational methods have to be modified somewhat to work with fractional numbers.

Consider the intuitive methods first. The easiest way to convert a fractional number from
some base B to base 10 is to determine the appropriate weights for each digit, multiply each

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 91

CHAPTER 3 NUMBER SYSTEMS 91

digit by its weight, and add the values. You will note that this is identical to the method that we

introduced previously for integer conversion.

EXAMPLE
Convert 0.122013 to base 10.

The weights for base 3 fractions (we remind you that the rules work the same for any number
base!) are

1
3

1
9

1
27

1
81

1
243

Then, the result is
1 × 1∕3 + 2 × 1∕9 + 2 × 1∕27 + 1 × 1∕243

Two different approaches could be taken at this point. Either we can convert each value to
decimal base, multiply, and add,

value = 0.33333 + 0.22222 + 0.07407 + 0.00412 = 0.6337410

or, more easily, we can find a common denominator, convert each fraction to the common
denominator, add, and then divide by the common denominator. Most easily, we can pick the
denominator of the least significant digit, in this case 243:

value = 81 + 2 × 27 + 2 × 9 + 1
243

= 154
243

= 0.63374

If you look at the numerator of the last equation carefully, you might notice that the numerator
consists of weighted digits, where the digits correspond to the weights of the fraction as if the
ternary point had been shifted five places right to make the fraction into a whole number. (The
base 3 number point is called a ternary point.) A shift five places to the right multiplies the number
by 3 →9→ 27→81 → 243; therefore, we have to divide by 243 to restore the original fraction.

Repeating this exercise with another, perhaps more practical, example should help to

solidify this method for you.

EXAMPLE
Convert 0.1100112 to base 10.

Shifting the binary point six places to the right and converting, we have

numerator value = 32 + 16 + 2 + 1 = 51

Shifting the binary back is equivalent to dividing by 26, or 64. Dividing the numerator 51 by
64 yields

value = 0.796875

The intuitive method for converting numbers from base 10 to another base can also be

used. This is themethod shown earlier where you fit the largest product of weights for each digit

without exceeding the original number. In the case of fractions, however, you are working with

fractional decimal numbers, and the actual calculation may be time consuming and difficult

except in simple cases.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 92

92 PART TWO DATA IN THE COMPUTER

EXAMPLE
Convert the number 0.110 to binary representation. The weights for binary fractions are

1
2

1
32

1
16

1
8

1
4

etc.

These are easier to use when converted into decimal form: 0.5, 0.25, 0.125, 0.0625, and
0.03125, respectively. The largest value that fits into 0.110 is 0.0625, which corresponds to a
value of 0.00012. The remainder to be converted is 0.1−0.0625=0.0375. Since 0.03125 fits
into this remainder, the next bit is also a 1: 0.000112, and so on. As an exercise, you may want
to carry this conversion out a few more places.

To convert fractional numbers from base 10 to another base, it is usually easier to use a
variation on the divisionmethod shown earlier. Recall that for an integer, this involved dividing
the number repeatedly by the base value and retaining the remainders. Effectively, this method
works by shifting the radix point to the left one place each time we divide by the base value and
noticing what drops over the radix point, which is the remainder. The number point is initially
assumed to be to the right of the number.

When the value being converted is to the right of the number point, the procedure must
work exactly the opposite. We multiply the fraction by the base value repeatedly, and record,
then drop, the values that move to the left of the radix point. We repeat this procedure until the
desired number of digits of accuracy is attained or until the value being multiplied is zero. Each
time we multiply, we effectively expose the next digit.

For example, if the value in base 10 is 0.5, multiplying that by 2 would yield 1.0, which
says that in base 2 there would have been a 1 in the 1/2-bit location. Similarly, 0.25 would be
multiplied by 2, twice, to reach a value of 1.0, indicating a 1 in the 1/4-bit location. An example
of the procedure should clarify this explanation:

EXAMPLE
Convert 0.82812510 to base 2. Multiplying by 2, we get

.828125
× 2
1.656250
× 2
1.312500
× 2
0.625000
× 2
1.250000
× 2
0.500000
× 2
1.000000

The 1 is saved as result,
then dropped, and the
process repeated

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 93

CHAPTER 3 NUMBER SYSTEMS 93

The final result, reading the overflow values downward, is 0.1101012. This is an example of
a conversion that reaches closure. You will recall that we stated earlier that 0.110 is an example
of a number that does not convert exactly into base 2. The procedure for that case follows.

.100000
× 2
0.200000
× 2
0.400000
× 2
0.800000
× 2
1.600000
× 2
1.200000
× 2
0.400000

The repeating nature of this conversion is clear at this point.

Finally, we note that conversion between bases where one base is an integer power of the

other can be performed for fractions by grouping the digits in the smaller base as before. For

fractions, the grouping must be done from left to right; the method is otherwise identical.

EXAMPLE
To convert 0.10112 to base 8, group the digits by threes (since 23 =8) and convert each group
as usual. Note that it is necessary to supplement the second group with 0s. As you would expect,
fractional zeros are appended to the right of the fraction.

Therefore,

0.101 1002 = 0.548

3.8 MIXED NUMBER CONVERSIONS
Theusual arithmetic rules apply to fractional andmixednumbers.When adding and subtracting

these numbers, the radix pointsmust line up.Duringmultiplication and division, the radix point

is determined in exactly the same way as it would be in base 10. For multiplication in base 8, for

example, you would add the number of digits to the right of the radix in the multiplier and the

multiplicand; the total would be the number of digits to the right of the radix point in the result.

Extra caution is required when performing base conversions on numbers that contain both

integer and fractional parts. The two parts must be converted separately.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 94

94 PART TWO DATA IN THE COMPUTER

The radix point is the fixed reference in a conversion. It does not move, since the digit to

its left is a unit digit in every base; that is, B0 is always 1, regardless of B.

It is possible to shift amixed number in order to make it an integer. Unfortunately, there

is a tendency to forget that the shift takes place in a particular base. A number shifted in base

2, say, cannot be converted and then shifted back in base 10 because the factor used in the shift

is 2k, which obviously has a different value than 10k. Of course, it is possible to perform the

shift and then divide the converted number by the original shift value, but this is usually more

trouble than it’s worth.

Instead, it’s usually easier to remember that each part is converted separately, with the

radix point remaining fixed at its original location.

SUMMARY AND REVIEW
Counting in bases other than 10 is essentially similar to the familiar way of counting. Each digit

place represents a count of a group of digits from the next less significant digit place. The group

is of size B, where B is the base of the number system being used. The least significant digit,

of course, represents single units. Addition, subtraction, multiplication, and division for any

number base work similarly to base 10, although the arithmetic tables look different.

There are several different methods that can be used to convert whole numbers from base

B to base 10. The informal method is to recognize the base 10 values for each digit place and

simply to add the weighted values for each digit together. A more formal method converts from

base B to base 10 using successive multiplication by the present base and addition of the next

digit. The final total represents the base 10 solution to the conversion. Similar methods exist for

converting from base 10 to a different number base.

The conversion of number bases in which one base is an integer power of the other may be

performed by recognizing that multiple digit places in the smaller base represent a single-digit

place in the larger. Conversion is then done by grouping and converting each multiple set of

digits individually.

Fractional and mixed numbers must be handled more carefully. The integer and fractional

parts must be treated independently of each other. Although the conversion method is the

same, the choice of the multiplication or division operation is reversed for the fractional part.

Again, directly related bases can be converted by grouping digits in one base and converting

each group independently.

FOR FURTHER READING
Working in different number bases was part of a trend in the teaching of mathematics in the

1960s and 1970s known as “the new math”. The material is still taught in many elementary

schools.

Many libraries carry texts with such titles as “Elementary Math”. A good, brief review of

arithmetic as it applies to the computer can be found in the Schaum outline series book Essential

Computer Mathematics [LIPS82]. A funny introduction to “new math” can be found on the

recording “That Was the Year That Was” by Tom Lehrer [LEHR65]. Various animations of

this song can be found on YouTube. In addition, most books on computer arithmetic contain

substantial discussions of the topics covered in this chapter. Typical computer arithmetic books

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 95

CHAPTER 3 NUMBER SYSTEMS 95

include those by Spaniol [SPAN81] andKulisch andMaranker [KULI81]. A clear and thorough
discussion of this material can be found in the computer architecture book by Patterson and
Hennessy [PATT12].

KEY CONCEPTS AND TERMS
base
binary arithmetic
binary number
binary point
binary–decimal conversion
binary–hexadecimal

conversion

binary–octal conversion
bit
decimal point
decimal–binary conversion
fractional conversion
hexadecimal–binary

conversion

hexadecimal number

left shift

mixed number conversion

octal number

radix point

right shift

READING REVIEW QUESTIONS

3.1 In the book we show that 52710 represents 5× 102 + 2× 101 + 7× 100. What is the
representation for 5278? What would its equivalent base 10 value be?

3.2 Howmany different digits would you expect to find in base 6? What is the largest digit
in base 6? Let z represent that largest digit. What is the next value after 21z if you’re
counting up by 1s? What is the next value after 4zz if you’re counting up by 1s?

3.3 Use the table in Figure 3.5 to add 218 and 338. Use the table in Figure 3.5 to add 468
and 438.

3.4 Use the base 2 addition table to add 101012 and 11102. Use the base 2 multiplication
table to multiply 101012 and 11102.

3.5 What are the first six weights in base 2? Using these weights, convert 1001012 to
base 10.

3.6 What are the first three weights in base 16? Using these weights, convert 35916 to
base 10. (Notice that the same technique works for any base, even if the base is larger
than 10.)

3.7 Using the weights in base 8, convert 21210 into base 8. Convert 321210 into base 8.

3.8 Using the weights in base 16, convert 11710 into base 16. Convert 117010 into base 16.

3.9 Use the division conversion method to convert 321210 into base 8. Confirm that your
answer is the same as that in question 7, above.

3.10 Use the division method to convert 117010 to base 16. Confirm that your answer is the
same as that in question 8, above.

3.11 Use the division method to convert 1234510 to base 16. Verify your answer by using
the weights method to convert your answer back to base 10.

3.12 Use the division method to convert 1234510 to base 2. Verify your answer by using the
weights method to convert your answer back to base 10.

3.13 Use the multiplication method to convert 10112 to base 10. Verify your answer by
using the weights method to convert the number back to base 2.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 96

96 PART TWO DATA IN THE COMPUTER

3.14 Use the multiplication method to convert 135716 to base 10. Verify your answer by

using the division method to convert your answer back to base 16.

3.15 What number in base 10 is equivalent to D in base 16? What number in base 16 is

equivalent to the number 10 in base 10? Use the weightsmethod to convert the number

5D16 to base 10. Use the division method to convert your answer back to base 16.

3.16 Convert the number 1010001011002 directly from binary to hexadecimal. Without

looking at the original number, convert your answer directly back to binary and

compare your final answer with the original number.

3.17 Convert the number 11110011011002 directly from binary to hexadecimal. Without

looking at the original number, convert your answer directly back to binary and

compare your final answer with the original number.

EXERCISES

3.1 a. Determine the power of each digit for five-digit numbers in base 6.

b. Use your results from part (a) to convert the base 6 number 245316 to decimal.

3.2 Determine the power of each digit for four-digit numbers in base 16. Which place

digits in base 2 have the same power?

3.3 Convert the following hexadecimal numbers to decimal:

a. 4E

b. 3D7

c. 3D70

3.4 Some older computers used an 18-bit word to store numbers. What is the decimal

range for this word size?

3.5 How many bits will it take to represent the decimal number 3,175,000? How many

bytes will it take to store this number?

3.6 a. Create addition and multiplication tables for base 12 arithmetic. Use alphabetic

characters to represent digits 10 and larger.

b. Using your tables from part (a), perform the following addition:

25A8412
+ 7039612

c. Multiply the following numbers together:

2A612
× B112

3.7 a. Create the hexadecimal multiplication table.

b. Use the hexadecimal table in Figure 3.8 to perform the following addition:

2AB3
+ 35DC

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 97

CHAPTER 3 NUMBER SYSTEMS 97

c. Add the following numbers:
1 FF9
+ F7

d. Multiply the following numbers:

2E26
× 4A

3.8 Add the following binary numbers:

a.
101101101

+ 10011011

b.
110111111

+110111111

c.
11010011

+ 10001010

d.
1101
1010
111

+ 101

e. Repeat the previous additions by converting each number to hexadecimal, adding,

and converting the result back to binary.

3.9 Multiply the following binary numbers together:

a.
1101

× 101

b.
11011

× 1011

3.10 Perform the following binary divisions:

a. 110 1010001001

b. 1011 11000000000

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 98

98 PART TWO DATA IN THE COMPUTER

3.11 Using the powers of each digit in base 8, convert the decimal number 6026 to octal.

3.12 Using the powers of each digit in hexadecimal, convert the decimal number 6026 to

hexadecimal.

3.13 Using the division method, convert the following decimal numbers:

a. 13750 to base 12

b. 6026 to hexadecimal

c. 3175 to base 5

3.14 Using the division method, convert the following decimal numbers to binary:

a. 4098

b. 71269

c. 37

In each case, check your work by using the power of each digit to convert back to

decimal.

3.15 Using the multiplication method, convert the following numbers to decimal:

a. 11000101001000012
b. C52116
c. 3ADF16
d. 245567

3.16 Convert the following binary numbers directly to hexadecimal:

a. 101101110111010

b. 1111111111110001

c. 1111111101111

d. 110001100011001

3.17 Convert the following hexadecimal numbers to binary:

a. 4F6A

b. 9902

c. A3AB

d. 1000

3.18 Select a number base that would be suitable for direct conversion from base 3, and

convert the number 220112103 to that base.

3.19 a. Convert the base 4 number 130230314 directly to hexadecimal. Check your result

by converting both the original number and your answer to decimal.

b. Convert the hexadecimal number 9B6216 directly to base 4; then convert both the

original number and your answer to binary to check your result.

3.20 Convert the base 3 number 2101023 to octal. What process did you use to do this

conversion?

3.21 Convert the octal number 277458 to hexadecimal. Do not use decimal as an interme-

diary for your conversion. Why does a direct octal-hexadecimal conversion not work

in this case? What can you use instead?

3.22 Using whatever programming language is appropriate for you, write a program that

converts a whole number input by the user from base 8 to base 10. Your program

should flag as an error any input that contains the digits 8 or 9.

Englander c03.tex V2 - November 28, 2013 9:41 P.M. Page 99

CHAPTER 3 NUMBER SYSTEMS 99

3.23 Using whatever programming language is appropriate for you, write a program that

converts a whole number input from decimal to hexadecimal.

3.24 Using whatever programming language is appropriate for you, write a program that

converts whole numbers in either direction between binary and hexadecimal.

3.25 Convert the followingnumbers fromdecimal to hexadecimal. If the answer is irrational,

stop at four hexadecimal digits:

a. 0.6640625

b. 0.3333

c. 69/256

3.26 Convert the following numbers from their given base to decimal:

a. 0.10010012
b. 0.3A216
c. 0.2A112

3.27 Convert the following numbers from decimal to binary and then to hexadecimal:

a. 27.625

b. 4192.37761

3.28 What is the decimal value of the following binary numbers?

a. 1100101.1

b. 1110010.11

c. 11100101.1

3.29 Draw a flow diagram that shows step by step the process for converting a mixed

number in a base other than 10 to decimal.

3.30 Write a computer program in a language appropriate for you that converts mixed

numbers between decimal and binary in both directions.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 100

CHAPTER 4

DATA FORMATS

Thomas Sperling, adapted by Benjamin Reece

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 101

4.0 INTRODUCTION
In Chapter 3 you had a chance to explore some of the properties of the binary number
system. You are already aware that for all computers and computer-based devices the
binary number system is the system of choice, both for all forms of data storage and for
all internal processing of operations. As human beings, we normally don’t choose to do
our work in binary form. Our communications are made up of language, images, and
sounds. For written communications, and for our own data storage, wemost frequently use
alphanumeric characters and/or symbols, representing English or some other language. At
other times, we communicate with a photograph, a video, or a chart or diagram, or some
other image. Images may be black and white or color; they may be still frames or moving.
Sounds often represent a different, spoken, form of written language, but they may also
represent other possibilities, such as music, the roar of an engine, or a purr of satisfaction.
We perform calculations using numbers made up of a set of numeric characters. As a
reminder, standardization is an important consideration in a modern world where the
ability to share data is assumed.

In the past, most business data processing took the form of text and numbers.
Today, multimedia, consisting of images and sounds in the form of video conferencing,
PowerPoint presentations, VoIP telephony,Web advertising, YouTube, smartphone-based
news clips and photos on TV, and more is of at least equal importance. Since data within
the computer is limited to binary numbers, it is almost always necessary to convert our
words, numbers, images, and sounds into a different form in order to store and process
them in the computer.

In this chapter, we consider what it takes to get different types of data into computer-
usable form and the different ways in which the data may be represented, stored, and
processed.

4.1 GENERAL CONSIDERATIONS
At some point, original data, whether character, image, sound, or some other form,
must be brought initially into the computer and converted into an appropriate computer
representation so that it can be processed, stored, and used within the computer system.
The fundamental process is shown in Figure 4.1.

Different input devices are used for this purpose. The particular choice of input
device reflects the original form of the data, and also the desired data representation
within the computer. Some devices perform the conversion from external form to internal
representation within the input device. In other cases, the input device merely serves to
transform the data into a raw binary form that the computer can manipulate. Further
conversion is then performed by software within the computer.

There are varying degrees of difficulty associated with the input task. Normal keyboard
input, for example, is relatively straightforward. Since there are a discrete number of keys on
the keyboard, it is only necessary for the keyboard to generate a binary number code for each
key, which can then be identified as a simple representation of the desired character. On the

101

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 102

102 PART TWO DATA IN THE COMPUTER

FIGURE 4.1

Data Conversion and Representation

Human
form

Data
Input
device

Computer
Computer

representation

1101000101010101....
“abc

defg
h34

5”

other hand, input from a device that presents
a continuous range of data, known as analog
data, presents a more formidable task, particu-
larly if the data is continuously changing with
time, which is the case with a video camera or
microphone.

Adequate representation of the sound input
from a microphone, for example, will require
hardware designed to convert the sound into
binary numbers and may require hundreds or

even thousands of separate pieces of data, each representing a sample of the sound at a single
instant in time. If the sound is to be processed within the computer into the form of words
in a document, the task becomes even more challenging, since the translation of sounds into
character form is very complex and difficult, requiring sophisticated, specialized software.

The internal representation of data within the computer reflects the complexity of the
input source, and also the type of processing that is to take place. There is no need to preserve
all the individual points that make up a photographic image, for example, if the goal is only
to extract and process the characters that are present on the page; it is only necessary to input
and represent the entire set of data long enough to extract the actual data that is to be used
or kept. On the other hand, if the image is to be used as a figure in an art book, it will be
necessary to represent the image, with all its details, as accurately as possible. For input forms
that represent a continuum of values, such as photographic images, video, and sound, the
quantity of binary numbers and the number of bits in each that are required to represent the
input data accurately will grow quite rapidly with increasing accuracy and resolution. In fact,
some form of algorithmic data compression will often be necessary to reduce the amount of
data to a manageable level, particularly if the data is to be downloaded or streamed over a
low-speed transmission device, such as a network with limited bandwidth.

Of course, once the input data is in computer form, it can be stored for future use, or
it can be moved between computers through networks or by using portable computer media
such as CD-ROM, flash drives, or, perhaps, even iPods. Images and sounds can be downloaded
from a website or attached to e-mail, for example. Provided that the receiving computer has the
appropriate software, it can store, display, and process a downloaded image just as though the
picture had been produced by an image scanner connected directly to its own input. You are
probably aware that it’s almost trivial to copy a photograph from your smartphone for a friend
to see on her tablet, for example.

For storage and transmission of data, a representation different from that used for internal
processing is often necessary. In addition to the actual data representing points in an image or
characters being displayed, the system must store and pass along information that describes or
interprets the meaning of the data. Such information is known asmetadata. In some cases, the
description is simple: to read a pure text file may require only a single piece of information that
indicates the number of characters in the text or marks the end of the text. A graphic image or
sound requires a much more detailed description of the data. To reproduce the image, a system
must know the type of graphical image, the number of colors represented by each data point,
the method used to represent each color, the number of horizontal and vertical data points, the
order in which data points are stored, the relative scaling of each axis, the location of the image
on the screen, and much more. For a sound, the system must know how long a time period
each sample represents or sampling rate, the number of bits in each sample, and even, perhaps,
how the sound is to be used and coordinated with other sounds.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 103

CHAPTER 4 DATA FORMATS 103

Individual programs can store and process data in any format that they want. The format

used to process and store text in an editor such as WordPad is different from that used

by Microsoft Word, for example. The formats used by individual programs are known as

proprietary formats. Proprietary formats are often suitable for an individual user or a group

of users working on similar computer systems. As noted in Chapter 1, proprietary standards

sometimes become de facto standards due to general user acceptance.

Note that it is important to distinguish between the data representation used within an

individual piece of software and the data representation used for the input, output, storage,

and exchange of data, however. Modern computer systems and networks interconnect many

different types of computers, input and output devices, and computer programs. A Web page

viewed on an iPad tablet might contain an image scanned on a Hewlett-Packard image scanner,

with Hypertext Markup Language (HTML) created on a Dell PC, and be served by an IBM

mainframe, for example.

Thus, it is critical throughout this discussion that standard data representations exist to be

used as interfaces between different programs, between a program and the I/O devices used

by the program, between interconnected hardware, and between systems that share data, using

various types of network interconnections or transportable media such as CD-ROMs. These

data representations must be recognized by a wide variety of hardware and software so that

they can be used by users working within different computer environments.

A well-designed data representation will reflect and simplify the ways in which the data is

to be processed and will encompass the widest possible user community. For example, the order

of the letters in the alphabet is commonly used for the sorting and selection of alphanumeric

business data. Itmakes sense, then, to choose a computer representation of alphabetic characters

that will simplify these operations within the computer. Furthermore, the representation of

alphanumeric characters will encompass as many of the world’s languages as possible to aid in

international communication.

There are many different standards in use for different types of data. A few of the common

ones are shown in Figure 4.2. We have not included the standard representations for numerical

data; those are discussed in the next chapter.

FIGURE 4.2

Some Common Data Representations

Alphanumeric
Image (bitmap)

Image (object)
Outline graphics and fonts
Sound
Page description and
markup
Video

Unicode, ASCII, EBCDIC
GIF (graphical image format), TIFF
(tagged image file format), PNG
(portable network graphics), JPEG,
PostScript, SWF (Adobe Flash), SVG
PostScript, TrueType
WAV, AVI, MP3 or 4, MIDI, WMA, AAC
pdf (Adobe Portable Document Format),
HTML, XML
Quicktime, MPEG-2 or -4, H.264,
WMV, DivX, WebM

Type of data Standard(s)

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 104

104 PART TWO DATA IN THE COMPUTER

This section described the general principles that govern the input and representation of

data. Next, we consider some of the most important data forms individually.

4.2 ALPHANUMERIC CHARACTER DATA
Much of the data that will be used in a computer are originally provided in human-readable

form, specifically in the form of letters of an alphabet, symbols representing a word, syllable, or

sound element, numbers, and punctuation, whether English or some other language. The text

of a word processing document, the numbers that we use as input to a calculation, the names

and addresses in a database, the transaction data that constitutes a credit card purchase, the

keywords, variable names, and formulas that make up a computer program, all are examples of

data input that is made up of letters, symbols, numbers, and punctuation.

Much of this data is initially input to the computer through a keyboard, although

alternative means, such as magnetic card stripes, document image scanning with optical

character recognition, radiofrequency identification (RFID) and near-field communication

technology, bar code and QR code scanning, and voice-to-text translation are also used. The

keyboard may be connected directly to a computer, or it may be part of a separate device, such

as a video terminal, an online cash register, the virtual keyboard on a smartphone or tablet, or

even a bank ATM. The data entered as characters, symbols, number digits, and punctuation

are known as alphanumeric data. The specific input devices and methods used to create

alphanumeric data are discussed in Chapter 10.

It is tempting to think of numeric characters as somehow different from other characters,

since numbers are often processed differently from text. Also, a number may consist of more

than a single digit, and you know from your programming courses that you can store and

process a number in numerical form within the computer. There is no processing capability in

the keyboard itself, however. Therefore, numbers must be entered into the computer just like

other characters, one digit at a time. At the time of entry, the number 1234.5 consists of the

alphanumeric characters “1”, “2”, “3”, “4”, “.”, and “5”. Any conversion to numeric form will

take place within the computer itself, using software written for this purpose. For display, the

number will be converted back to character form.

The conversion between character andnumber is also not “automatic”within the computer.

There are times when we would prefer to keep the data in character form, for example, when

the numbers represent a phone number or an address to be stored and processed according to

text criteria. Since this choice is dependent on usage within a program, the decision is made by

the programmer using rules specified within the program language being used or by a database

designer specifying the data type of a particular entity. In C++ or Java, the type of variable must

be declared before the variable is used. When the data variable being read is numerical, the

compiler will build into the program a conversion routine that accepts numerical characters and

converts them into the appropriate numerical variable value. In general, numerical characters

must be converted into number form when calculations are to be performed. Some languages

do this automatically.

Since alphanumeric datamust be stored and processed within the computer in binary form,

each character must be translated to a corresponding binary code representation as it enters

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 105

CHAPTER 4 DATA FORMATS 105

the computer. The choice of code used is arbitrary. Since the computer does not “recognize”

letters, but only binary numbers, it does not matter to the computer what code is selected.

What does matter is consistency. Most data output, including numbers, also exits the

computer in alphanumeric form, either through printed output or as output on a display screen.

Therefore, the output device must perform the same conversion in reverse. It is obviously

important that the input device and the output device recognize the same code. Although it

would be theoretically possible to write a program to change the input code so that a different

output code would result in the desired alphanumeric output, this is rarely done in practice.

Since data is frequently shared between different computers in networks, the use of a code that

is standardized among many different types of computers is highly desirable.

The data is also stored using the same alphanumeric code form. Consistent use of the same

code is required to allow later retrieval of the data, as well as for operations using data entered

into the computer at different times, such as during merge operations.

It alsomatters that the programswithin the computer know something about the particular

data code that was used as input so that conversion of the characters that make up numbers

into the numbers themselves can be done correctly, and also so that such operations as sorting

can be done. It would not make a lot of sense to pick a code in which the letters of the alphabet

are scrambled, for example. By choosing a code in which the value of the binary number

representing a character corresponds to the placement of the character within the alphabet, we

can provide programs that sort data without even knowing what the data is, just by numerically

sorting the codes that correspond to each character.

Three alphanumeric codes are in common use. The three codes are known as Unicode,
ASCII (which stands for American Standard Code for Information Interchange, pronounced

“as-key” with a soft “s”), and EBCDIC (Extended Binary Coded Decimal Interchange Code,

pronounced “ebb-see-dick”). EBCDIC was developed by IBM. Its use is restricted mostly to

IBM and IBM-compatible mainframe computers and terminals. The Web makes EBCDIC

particularly unsuitable for current work. Nearly everyone today uses Unicode or ASCII. Still, it

will be many years before EBCDIC totally disappears from the landscape.

The translation table for ASCII code is shown in Figure 4.3. The EBCDIC code is somewhat

less standardized; the punctuation symbols have changed over the years. A recent EBCDIC

code table is shown in Figure 4.4. The codes for each symbol are given in hexadecimal, with the

most significant digit across the top and the least significant digit down the side. Both ASCII

and EBCDIC codes can be stored in a byte. For example, the ASCII value for “G” is 4716. The

EBCDIC value for “G” is C716. When comparing the two tables, note that the standard ASCII

code was originally defined as a 7-bit code, so there are only 128 entries in the ASCII table.

EBCDIC is defined as an 8-bit code. The additional special characters in both tables are used as

process and communication control characters.

TheASCII codewas originally developed as a standard by theAmericanNational Standards

Institute (ANSI). ANSI also has defined 8-bit extensions to the original ASCII codes that provide
various symbols, line shapes, and accented foreign letters for the additional 128 entries not

shown in the figure. Together, the 8-bit code is known as Latin-1. Latin-1 is an ISO (International

Standards Organization) standard.

Both ASCII and EBCDIC have limitations that reflect their origins. The 256 code values

that are available in an 8-bit word limit the number of possible characters severely. Both codes

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 106

106 PART TWO DATA IN THE COMPUTER

FIGURE 4.3

ASCII Code Table

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

1

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

2

space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

3

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

6

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

7

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

MSD
LSD

provide only the Latin alphabet, Arabic numerals, and standard punctuation characters that are

used in English; Latin-1 ASCII also includes a small set of accents and other special characters
that extend the set to major western European cultures. Older forms of EBCDIC omit certain

characters, in particular, the “[” and “]” characters that are used to represent subscripts in

the C and Java programming languages, the “∧” character, used as a mathematical operator

in a number of languages, “{” and “}”, used to enclose code blocks in many languages, and

the “∼” character, used for UNIX system commands and Internet and Internet URLs. These

shortcomings led to the development of a new, mostly 16-bit, international standard, Unicode,

which is quickly supplanting ASCII and EBCDIC for alphanumeric representation in most

modern systems. Unicode supports approximately a million characters, using a combination of

8-bit, 16-bit, and 32-bit words. The ASCII Latin-1 code set is a subset of Unicode, occupying

the values 0–255 in the Unicode table, and therefore conversion from ASCII to Unicode is

particularly simple: it is only necessary to extend the 8-bit code to 16 bits by setting the eight
most significant bits to zero. Unicode to ASCII conversion is also simple, provided that the

characters used are limited to the ASCII subset.

Unicode divides its character encodings into sixteen 16-bit code pages, called planes.

There is a base plane plus fifteen supplementary planes, which allows space for about a million

characters. Unicode defines three encoding methods, UTF-8, UTF-16, and UTF-32. UTF-8 and

UTF-16 use a variable number of bytes to encode characters. UTF-32 encodes all characters

using a 32-bit word for each. The most common form of Unicode, called UTF-16 can represent

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 107

CHAPTER 4 DATA FORMATS 107

FIGURE 4.4

An EBCDIC Code Table

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

SEL

HT

RNL

DEL

GE

SPS

RPT

VT

FF

CR

SO

SI

1

DLE

DC1

DC2

DC3

ENP

NL

BS

POC

CAN

EM

UBS

CU1

IFS

IGS

IRS

IUS

2

DS

SOS

FS

WUS

BYP/INP

LF

ETB

ESC

SA

SFE

SM/SW

CSP

MFA

ENQ

ACK

BEL

3

SYN

IR

PP

TRN

NBS

EOT

SBS

IT

RFF

CU3

DC4

NAK

SUB

4

space

RSP

¢

.

<

(

+

|

5

&

!

$

*

)

;

¬

6

-

/

|

,

%

_

>

?

7

‘

:

#

@

’

=

“

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8

a

b

c

d

e

f

g

h

i

“

”

±

9

˚

j

k

l

m

n

o

p

q

r

A

~

s

t

u

v

w

x

y

z

B C

{

A

B

C

D

E

F

G

H

I

SHY

D

}

J

K

L

M

N

O

P

Q

R

E

÷

%

S

T

U

V

W

X

Y

Z

F

0

1

2

3

4

5

6

7

8

9

EO

^

[

]

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 108

108 PART TWO DATA IN THE COMPUTER

the 65,536 characters of the base plane directly, of which approximately forty-nine thousand

are defined to represent the world’s most used characters. An additional 6,400 16-bit codes are

reserved permanently for private use. Characters from the supplementary planes are encoded

as 32-bit words, using amethod that translates each code into a pair of 16-bit surrogate codes, in

the range D800-DFFF. The most recent standard as of this writing, Unicode 6.1, defines about

one hundred ten thousand different characters.

Unicode is multilingual in the most global sense. It defines codes for the characters of

nearly every character-based alphabet of the world in modern use, as well as codes for a large

set of ideographs for the Chinese, Japanese, and Korean languages, codes for a wide range

of punctuation and symbols, codes for many obsolete and ancient languages, and various

control characters. It supports composite characters and syllabic clusters. Composite characters

are those made up of two or more different components, only one of which causes spacing

to occur. For example, some vowels in Hebrew appear beneath a corresponding consonant.

Syllabic clusters in certain languages are single characters, sometimes made up of composite

components, that make up an entire syllable. The private space is intended for user-defined

and software-specific characters, control characters, and symbols. Figure 4.5 shows the general

code table layout for the common, 2-byte, form of Unicode.

FIGURE 4.5

Two-byte Unicode Assignment Table

0000

1000

2000

3000

4000

5000
•

•

•

A000

B000

C000

D000

E000

F000

FC00

Code range
(in hexadecimal)

0000–00FF Latin-I (ASCII)

General character alphabets: Latin, Cyrillic, Greek, Hebrew, Arabic, Thai, etc.

Symbols and dingbats: punctuation, math, technical, geometric shapes, etc.
3000–33FF miscellaneous punctuations, symbols, and phonetics for Chinese, Japanese, and Korean
Unassigned

Mostly unassigned

AC00–D7AF Korean Hangui syllables

D800-DFFF space for surrogates

E000–F8FF Private use
Space for surrogates

FC00–FFFF Various special characters

4E00–8FFF Chinese, Japanese, Korean ideographs

–

–

–

–

–

–

–

–

–

–

–

–

–

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 109

CHAPTER 4 DATA FORMATS 109

Reflecting the pervasiveness of international communications, Unicode is replacing ASCII

as the alphanumeric code of choice for most systems and applications. Even IBM uses mostly

Unicode on its smaller computers, and provides hardware-based two-way Unicode–EBCDIC

conversion tables for its mainframes. Unicode is the standard for use in current operating

systems, including Windows, Linux, OS X, iOS, and Android. However, the vast amount of

archival data in storage and use assures that ASCII and EBCDIC will continue to exist for some

time to come.

Returning to the ASCII and EBCDIC tables, there are several interesting ideas to be

gathered by looking at the tables together. First, note, not surprisingly, that the codes for

particular alphanumeric characters are different in the two tables. This simply reemphasizes

that, if we use an ASCII terminal for the input, the output will also be in ASCII form unless

some translation took place within the computer. In other words, printing ASCII characters on

an EBCDIC terminal would produce garbage.

More important, note that both ASCII and EBCDIC are designed so that the order of

the letters is such that a simple numerical sort on the codes can be used within the computer

to perform alphabetization, provided that the software converts mixed upper- and lowercase

codes to one form or the other. The order of the codes in the representation table is known

as its collating sequence. The collating sequence is of great importance in routine character

processing, since much character processing centers on the sorting and selection of data.

Uppercase and lowercase letters, and letters andnumbers, have different collating sequences

in ASCII and EBCDIC. Therefore, a computer program designed to sort ASCII-generated

characters will produce a different, and perhaps not desired, result when run with EBCDIC

input. Particularly note that small letters precede capitals in EBCDIC, but the reverse is true

in ASCII. The same situation arises for strings that are a mix of alphabetical characters and

numbers. In ASCII, the numbers collate first, in EBCDIC, last.

Both tables are divided into two classes of codes, specifically printing characters and control

characters. Printing characters actually produce output on the screen or on a printer. Control

characters are used to control the position of the output on the screen or paper, to cause

some action to occur, such as ringing a bell or deleting a character, or to communicate status

between the computer and an I/O device, such as the Control-“C” key combination, which is

used on many computers to interrupt the execution of a program. Except for position control

characters, the control characters in the ASCII table are struck by holding down the Control

key and striking a character. The code executed corresponds in table position to the position

of the same alphabetic character. Thus, the code for SOH is generated by the Control-“A” key

combination and SUB by the Control-“Z” key combination. Looking at the ASCII and EBCDIC

tables can you determine what control codes are generated by the tab key? An explanation

of each control character in the ASCII table is shown in Figure 4.6. Many of the names and

descriptions of codes in this table reflect the use of these codes for data communications. There

are also additional control codes in EBCDIC that are specific to IBMmainframes, but we won’t

define them here.

Unless the application program that is processing the text reformats or modifies the data

in some way, textual data is normally stored as a string of characters, including alphanumeric

characters, spaces, tabs, carriage returns, plus other control characters and escape sequences

that are relevant to the text. Some application programs, particularly word processors and

some text markup languages, add their own special character sequences for formatting

the text.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 110

110 PART TWO DATA IN THE COMPUTER

FIGURE 4.6

Control Code Definitions [STAL96]

NUL
SOH

STX

ETX
EOT
ENQ

ACK

BEL
BS
HT
LF
VT
FF

CR
SO

SI

DLE

DC1, DC2,
DC3, DC4
NAK

SYN

STB

CAN
EM

SUB

ESC

FS, GS,
RS, US

DEL

(Null) No character; used to fill space
(Start of Heading) Indicates start of a
header used during transmission
(Start of Text) Indicates start of text
during transmission
(End of Text) Similar to above
(End of Transmission)
(Enquiry) A request for response from a
remote station; the response is usually an
identification
(Acknowledge) A character sent by a
receiving device as an affirmative response
to a query by a sender
(Bell) Rings a bell
(Backspace)
(Horizontal Tab)
(Line Feed)
(Vertical Tab)
(Form Feed) Moves cursor to the starting
position of the next page, form, or screen
(Carriage return)
(Shift Out) Shift to an alternative
character set until SI is encountered
(Shift In) see above

(Data Link Escape) Similar to escape, but
used to change meaning of data control
characters; used to permit sending of data
characters with any bit combination
(Device Controls) Used for the control of
devices or special terminal features
(Negative Acknowledgment) Opposite of
ACK
(Synchronous) Used to synchronize a
synchronous transmission system
(End of Transmission Block) Indicates end
of a block of transmitted data
(Cancel) Cancel previous data
(End of Medium) Indicates the physical
end of a medium such as tape
(Substitute) Substitute a character for one
sent in error
(Escape) Provides extensions to the code
by changing the meaning of a specified
number of contiguous following characters
(File, group, record, and united separators)
Used in optional way by systems to provide
separations within a data set
(Delete) Delete current character

In Unicode, each standard UTF-16 alphanumeric character can be stored in 2 bytes; thus,

half the number of bytes in a pure text file (one with no images) is a good approximation of

the number of characters in the text. Similarly, the number of available bytes also defines the

capacity of a device to store textual and numerical data. Only a small percentage of the storage

space is needed to keep track of information about the various files; almost all the space is

thus available for the text itself. Thus, a 1 GB flash drive will hold about five hundred million

characters (including spaces—note that spaces are also characters, of course!). If you assume

that a page has about fifty rows of sixty characters, then the flash drive can hold about one

hundred sixty thousand pages of text or numbers.

In reality, the flash drive will probably hold less because most modern word processors

can combine text with graphics, page layout, font selection, and other features. And it probably

has a YouTube video or two on there, as well. Graphics and video, in particular, consume a lot

of disk space. Nonetheless, this book, graphics and all, fits comfortably on a single 1 GB flash

drive.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 111

CHAPTER 4 DATA FORMATS 111

4.3 VISUAL DATA
Although alphanumeric data was long the traditional medium of business, improved computer

graphics technology, the growth of the Web, and the ease with which images and video

can be created, displayed, and communicated on smartphones and tablets have elevated the

importance of visual data in the business computing environment. Images can be scanned from

paper, painted or drawn using software, or captured from a digital camera or the camera on

a cellphone or tablet. Video capture is provided routinely on smartphones, tablets, and many

computers.

Photographs andbiometric images canbe storedwithin the computer to provide rapid iden-

tification of employees. Drawings can be generated rapidly and accurately using tools that range

from simple drawing and paint packages to sophisticated computer-aided design/computer-

aided manufacturing (CAD/CAM) systems. Charts and graphs provide easily understood

representations of business data and trends. Presentations and reports contain images and

video for impact. Multimedia of all kinds is central to the Web. Video and photographs are an

essential component of business sales and marketing on the Web and in mobile applications.

Consider still images first. Images come in many different shapes, sizes, textures, colors,

shadings, and levels of detail. Different processing requirements require different forms for

image data. All these differences make it difficult to define a single universal format that can be

used for images in the way that the standard alphanumeric codes are used for text. Instead, the

image will be formatted according to processing, display, application, storage, communication,

and user requirements.

Images used within the computer fall into two distinct categories. Different computer

representations, processing techniques, and tools are used for each category:

n Images such as photographs and paintings that are characterized by continuous

variations in shading, color, shape, and texture. Images within this category may be

entered into the computer using an image scanner, digital camera or mobile device,

or video camera frame grabber. They may also be produced within the computer

using a paint program. To maintain and reproduce the detail of these images, it is

necessary to represent and store each individual point within the image. We will refer

to such images as bitmap images. The Graphics Interchange Format (GIF), Portable

Network Graphics (PNG), and Joint Photographic Experts Group (JPEG) formats

commonly used on the Web are all examples of bitmap image formats.

n Images that are made up of graphical shapes such as lines and curves that can be

defined geometrically. The shapes themselves may be quite complex. Many computer

experts refer to these shapes as graphical objects. For these images, it is sufficient to

store geometrical information about each object and the relative position of each

object in the image. We will refer to these images as object images. They are also
known, somewhat incorrectly, as vector images, because the image is often (but not

always) made up of straight line segments called vectors. Object images are normally

produced within the computer using some sort of drawing or design package. They

may also result from other types of processing, for example, as data plots or graphs

representing the data in a spreadsheet. More rarely, they may occur as the result of

the translation by special software of scanned bitmap images that are simple enough

to reduce to object form.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 112

112 PART TWO DATA IN THE COMPUTER

Most object image formats are proprietary. However, W3C, the international consortium

that oversees the Web, has defined a standard, SVG (scalable vector graphics), based on

eXtended Markup Language (XML) Web description language tags. Adobe Flash combines

both object and bitmap images and is also in popular use.

With only rare exceptions,1 the nature of display technology makes it much more

convenient and cost effective to display and print all images as bitmaps. Object images are

converted to bitmap for display. Looking at an image, it can sometimes be difficult to determine

whether the original form is bitmap or object. It is possible, for example, to describe subtle

gradations of color within an image geometrically. The processing required to create movement

in computer-animated imagesmaydictate the use of object images, even if the objects themselves

are very complex. The type of image representation is often chosen on the basis of the computer

processing to be performed on the image. Themovies Shrek andToy Story are amazing examples

of the possibilities of object images. (See Figure 4.12, for example.)

Sometimes, both types of image data occur within the same image. It is always possible to

store graphical objects in a bitmap format, but it is often desirable in such cases to maintain

each type of image separately. Most object image representations provide for the inclusion of

bitmap images within the representation.

Bitmap Images

Most images—photographs, graphical images, and the like—are described most easily using a

bitmap image format. The basic principle for representing an image as a digital bitmap is simple.

A rectangular image is divided into rows and columns, as shown in Figure 4.7. The junction

of each row and column is a point (actually a small area) in the image known as a pixel, for
pi[x]cture element. Corresponding to each pixel is a set of one or more binary numerical values

FIGURE 4.7

A 16 × 8 Bitmap Image Format

Pixels stored in the order p(0,0), p(0,1),... p(0,15), p(1,0),... p(1,15),... p(7,15)

pixel(0,0)

Row

pixel(7,15)

pixel(0,1)

pixel(1,0)
Pixels. . . .

1The exceptions are the circular scan screens used for radar display and ink plotters used for architectural and

engineering drawings.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 113

CHAPTER 4 DATA FORMATS 113

FIGURE 4.8

A Display Raster Scan

Horizontal
retrace

(move to
next row)

Vertical
retrace

(return to
beginning for

next scan)

that define the visual characteristics of that point. Most commonly,

color and color intensity are the primary characteristics of interest,

but secondary characteristics such as transparency may also be present.

The meaning and scales for these values are defined within the image

metadata that is included with the image, along with the number of

rows and columns, identification of the bitmap format in use, and other

relevant information about the image.

A pixel aspect ratio may also be included so that display of the

image may be adjusted if the pixel is rectangular rather than square. The

specific metadata included with an image is part of the definition for a

particular bitmap format.

Pixel data is normally stored from top to bottom, one row at a time,

starting from pixel(0, 0), the top, leftmost pixel, to pixel(nrow − 1, ncol −
1), representing the pixel at the bottom right corner of the image. (For

quirky reasons, this image would be known as an ncol × nrow image,

instead of the other way around.) Because the representation is so similar

to the way in which television images are created, this layout is called

a raster, and the presentation of pixels as input or output, one pixel at

a time, in order, is called a raster scan. This is illustrated in Figure 4.8.

The actual pixel coordinates, pixel(row, column), do not need to be stored with their values,

because the pixels are stored in order, and the number of rows and columns is known and is

stored with the image.

The actual data value representing a pixel could be as simple as one bit, for an image

that is black and white (0 for black, 1 for white, for example) or quite complex. Each pixel in

a high-quality color image, for example, might consist of many bytes of data: a byte for red,

a byte for green, and a byte for blue, with additional bytes for other characteristics such as

transparency and color correction.

As a simple example, look at the image shown in Figure 4.9. Each point in the photograph

on the left is represented by a 4-bit code corresponding to one of sixteen gray levels. For this

image, hexadecimal F represents black, and hexadecimal 0 represents white. The representation

of the image shown on the right indicates the corresponding values for each pixel.

The storage and processing of bitmap images frequently requires a large amount ofmemory

and the processing of large arrays of data. A single-color picture containing 768 rows of 1024

pixels each (i.e., a 1024 × 768 image), with a separate byte to store each of three colors for

each pixel, would require nearly 2.4MB of storage. An alternative representation method that

is useful for display purposes when the number of different colors is small reduces the memory

requirements by storing a code for each pixel, rather than the actual color values. The code

for each pixel is translated into actual color values using a color translation table known as a

palette that is stored as part of the image metadata. This method is discussed in Chapter 10.

Data compression may also be used to reduce storage and data transmission requirements.

The image represented within the computer is really only an approximation to the original

image, since the original image presents a continual range of intensity, and perhaps also of

color. The faithfulness of the computer representation depends on the size of the pixels and the

number of levels representing each pixel. Reducing the size of each pixel improves the possible

resolution, or detail level, of the representation by increasing the number of pixels per inch used

to represent a given area of the image. It also reduces the “stepping” effects seen on diagonal

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 114

114 PART TWO DATA IN THE COMPUTER

FIGURE 4.9

Image Pixel Data

lines. Increasing the range of values available to describe each pixel increases the number of

different gray levels or colors available, which improves the overall accuracy of the colors or

gray tones in the image. The trade-off, of course, is in storage requirements and processing and

transmission time.

Bitmap representations are particularly useful when there is a great amount of detail within

an image, and for which the processing requirements are fairly simple. Typical processing

on bitmap images includes storage and display, cutting and pasting of pieces of the image,

and simple transformations of the image such as brightness and contrast changes, changing

a dimension, or color alterations. Most bitmap image processing involves little or no direct

processing of the objects illustrated within the image.

EXAMPLE
As an example of a bitmap image storage format, consider the popular Graphics Interchange Format
(GIF) method of storing images. GIF was first developed by CompuServe in 1987 as a proprietary
format that would allow users of the online service to store and exchange bitmap images on a vari-
ety of different computing platforms. A second, more flexible, form of GIF was released in 1989.
The later version, GIF89a, also allows a series of GIF images to be displayed sequentially at fixed
time intervals to create “animated GIF images”. The GIF format is used extensively on the Web.

GIF assumes the existence of a rectangular “screen” upon which is located one or more
rectangular images of possibly different sizes. Areas not covered with images are painted with
a background color. Figure 4.10 illustrates the layout of the screen and its images. The format
divides the picture information and data into a number of blocks, each of which describes
different aspects of the image. The first block, called the header block, identifies the file as a
GIF file and specifies the version of GIF that is being used.

Following the header block is a logical screen–descriptor block, which identifies the width
and height of the screen, describes an optional color table for the images on the screen (the
palette), indicates the number of bits per color available, identifies the background screen color,
and specifies the pixel aspect ratio.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 115

CHAPTER 4 DATA FORMATS 115

FIGURE 4.10

GIF Screen Layout

Screen
height

Image left
position

Image top
position

Image 1

Image 2
Image
height

Image
width

Screen width

Background
Screen

Image 3

FIGURE 4.11

GIF File Format Layout

6 bytes 6 bytes (optional)
Up to 768

bytes

Header
block

“GIFxxa”

Global
color
table

Logical screen
descriptor

block

Image
descriptor

block

9 bytes (optional)
Up to 768

bytes

Determined
from

descriptor

(Depends
on size

of image)

Palette Image
data

Image 1 Image 2

Each image within the screen is then stored in its own block, headed by an image–descriptor
block. The image–descriptor block identifies the size and position of the image on the screen,
and also allows for a palette specific to the particular image, if desired. The block also contains
information that makes it possible to display individual images at different resolutions. The
actual pixel data for the image follows. The pixel data is compressed, using an algorithm called
LZW. LZW is called a lossless compression algorithm because it is reversible: the original data is
restored exactly upon expansion. The basic GIF file format layout is shown in Figure 4.11.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 116

116 PART TWO DATA IN THE COMPUTER

Even though we have simplified the description, you can see that a graphical data format

can be quite complex. The complexity is required to provide all the information that will allow

the use of the image on a variety of different equipment.

There are a number of alternatives to theGIF format. In particular, theGIF format is limited

to 256 colors, which is often inadequate to display the details of a painting or photograph, for

example. PNG (Portable Network Graphics) format is the best-known losslessly compressed

alternative to GIF. PNG can store up to 48 bits of color per pixel, and additionally can store a

transparency percentage value and a correction factor for the color in a monitor or printer. Its

compression algorithm is often more efficient than that used with GIF. Unlike GIF, PNG stores

only a single image in a file.

A third popular alternative, JPEG (Joint Photographers Expert Group) format, employs

a lossy compression algorithm to reduce the amount of data stored and transmitted, but the

algorithm used reduces the image resolution under certain circumstances, particularly for

sharp edges and lines. This makes JPEG more suitable for the representation of highly detailed

photographs and paintings, but GIF and PNG are preferable for line drawings and simple

images.

The great majority of images on the Web are formatted with JPEG, PNG, or GIF. Other

bitmapped formats include TIFF, which is popular on Macintosh platforms, and BMP, a

Windows format.

Object Images

When an image is made up of geometrically definable shapes, it can be manipulated efficiently,

with great flexibility, and stored in a compact form. Although it might seem that such images

are rare, this turns out not to be the case.

Object images are made up of simple elements like straight lines, curved lines (known as

Bezier curves), circles and arcs of circles, ovals, and the like. Each of these elements can be

defined mathematically by a small number of parameters. For example, a circle requires only

three parameters, specifically, the X and Y coordinates locating the circle in the image, plus

the radius of the circle. A straight line needs the X and Y coordinates of its end points, or

alternatively, by its starting point, length, and direction. And so on. Object images are created

using drawing software, rather than paint software. They are also produced by various software

packages that display special graphic images, such as the charts in Microsoft Excel or the

flowcharts in project management software.

Because objects are defined mathematically, they can be easily moved around, scaled, and

rotated without losing their shape and identity. For example, an oval can be built from a

circle simply by scaling the horizontal and vertical dimensions differently. Closed objects can

be shaded and filled with patterns of color, also described mathematically. Object elements

can be combined or connected together to form more complex elements, and then those

elements can also be manipulated and combined. You might be surprised to learn that Shrek,

the image in Figure 4.12, is an example of an object image.

Object images have many advantages over bitmap images. They require far less storage

space. They can be manipulated easily, without losing their identity. Note, in contrast, that if

a bitmap image is reduced in size and reenlarged, the detail of the image is permanently lost.

When such a process is applied to a bitmapped straight line, the result is “jaggies”. Conversely,

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 117

CHAPTER 4 DATA FORMATS 117

FIGURE 4.12

An Object Image

D
re

am
w

or
ks

 L
LC

/P
ho

to
fe

st

images such as photographs and paintings

cannot be represented as object images at

all and must be represented as bitmaps.

Because regular printers and display

screens produce their images line by line,

from the top to the bottom of the screen

or paper, object images also cannot be

displayed or printed directly, except on

plotters. Instead, they must be converted

to bitmap images for display and printing.

This conversion can be performed within

the computer or may be passed on to

an output device that has the capability

to perform the conversion. A PostScript

printer is an example of such a device. To

display a line on a screen, for example, the

programwould calculate each of the pixels

on the screen that the line passes through,

andmark them for display. This is a simple

calculation for a computer to perform. If

the line is moved or resized, it is only

necessary to perform the calculation again

to display the new image.

EXAMPLE
The PostScript page description language is an example of a format that can be used to store,
transmit, display, and print object images. A page description is a list of procedures and
statements that describe each of the objects on a page. PostScript embeds page descriptions
within a programming language. Thus, an image consists of a program written in the PostScript
language.

The programming language is stored in ASCII or Unicode text form. Thus, PostScript files
can be stored and transmitted as any other text file. An interpreter program in the computer or
output device reads the PostScript language statements and uses them to create pages that can
then be printed or displayed. The interpreter produces an image that is the same, regardless of
the device it is displayed or printed on. Compensation for differences in device resolution and
pixel shape is built into the interpreter.

PostScript provides a large library of functions that facilitate every aspect of an object-based
image. There are functions that draw straight lines, Bezier curves, and arcs of a circle, functions
that join simple objects into more complex ones, translate an object to a different location on
the page, scale or distort an object, rotate an object, and create the mirror image of an object,
and functions that fill an object with a pattern, or adjust the width and color of a line. There are
methods for building and calling procedures, and IF-THEN-ELSE and loop programming structures.
The list goes on and on.

A simple program that draws a pair of shaded and concentric circles within a rectangle in
the middle of an 8 1/2 × 11-inch page is shown in Figure 4.13. This example shows a number
of features of the language. The page is laid out as an X, Y grid, with the origin at the lower
left corner. Each unit in the grid is 1/72 of an inch, which corresponds to 1 point in publishing.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 118

118 PART TWO DATA IN THE COMPUTER

FIGURE 4.13

A PostScript Program

288 396 translate
0 0 144 0 360 arc
fill

0.5 setgray
0 0 72 0 360 arc
fill

0 setgray
-216 -180 moveto
0 360 rmoveto
432 0 rmoveto
0 -360 rmoveto
closepath
stroke

showpage

% move origin to center of page
% define 2" radius black circle

% define 1" radius gray circle

% reset color to black
% start at lower left corner
% and define rectangle
% ...one line at a time

% completes rectangle
% draw outline instead of fill

% produce the image

Each line contains a function, with a number of parameters that provide the specific details
for the function. The parameters precede the function call. Text following the % symbols are
comments.

The first line contains a translate function that moves the X, Y origin to the center of the
page. The parameters for this function, 288 and 396, represent the X and Y distances moved
in points. (Note that 288/72 = 4 inches in X and 396/72 = 5 inches in Y.) Each circle is
created with an arc function. The parameters for the arc function are X origin and Y origin for
the arc, radius, and starting and finishing angles in degrees. (0–360 produces a full circle.) You
should be able to follow the remainder of the program on your own. Note that the statements are
interpreted in sequence: the second, gray circle is layered on top of the first.

Arguably, the most important feature in PostScript is the inclusion of scalable font support for
the display of text. Font outline objects are specified in the same way as other objects. Each font
contains an object for each printable character in the extended ASCII character set. PostScript
includes objects for thirty-five standard fonts representing eight font families, plus two symbol
fonts, and others can be added. Unicode fonts are also available. Fonts can be manipulated like
other objects. Text and graphics can be intermixed in an image. The graphic display of text is
considered further in the next subsection.

Figure 4.14 shows another, more complicated, example of a PostScript program. This one
presents a pie chart with an expanded slice, and labels. The expanded slice includes a shadow
to improve its appearance. Each slice of the pie is drawn using a procedure called wedge. The
shadow is drawn by drawing the wedge three times, once in black, then moved a bit and drawn
in white and as an outline.

PostScript is a format for storing images in object form. Nonetheless, there are occasions
when it is necessary to embed a bitmap image into what is primarily an object-based image.
PostScript provides this capability. It even provides the ability to crop, enlarge, shrink, translate,
and rotate the embedded bitmap images, within the limits of the bitmap format, of course.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 119

CHAPTER 4 DATA FORMATS 119

FIGURE 4.14

Another PostScript Program

stocks

cash

Personal Assets

baseball
cards

% procedure to draw pie slice
%arguments graylevel, start angle, finish angle
/wedge {
 0 0 moveto
 setgray
 /angle1 exch def
 /angle2 exch def
 0 0 144 angle1 angle2 arc
 0 0 lineto
 closepath } def

%set up text font for printing
/Helvetica-Bold findfont
 16 scalefont
 setfont

.4 72 108 wedge fill % 108–72 = 36 = .1 circle

.8 108 360 wedge fill % 70%
% print wedge in three parts
32 12 translate
0 0 72 wedge fill
gsave
–8 8 translate
1 0 72 wedge fill
0 setgray stroke
grestore

% add text to drawing
0 setgray
144 144 moveto
(baseball cards) show
–30 200 (cash) show
–216 108 (stocks) show
32 scalefont
(Personal Assets) show

showpage

Representing Characters as Images

The representation of character-based data in a typical modern, graphically based systems
presents an additional challenge. In graphically based systems, it is necessary to distinguish
between characters and the object image-based representations of characters, known as glyphs.
Individual glyphs are based on a particular character in a particular font. In some cases, a
glyph may also depend on neighboring characters. Should the data be represented and stored
as characters or as glyphs? The answer depends on what the text is to be used for. Most text is
processed and stored primarily for its content. A typical word processor, for example, stores text
as character data, inUnicode format; fonts are embedded into the text file using special sequences
of characters stored with the data, often in a proprietary file format supported by the particular
application software. Conversion of the character data to glyphs for presentation is known as
rendering and is performed by a rendering engine program. The glyphs are then converted
to bitmap graphics for presentation according to the characteristics of the display device or
printer. For the rare occasion where the text is actually embedded within an image, the glyphs
that represent the characters may be combined, stored, and manipulated as an object image.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 120

120 PART TWO DATA IN THE COMPUTER

Video Images

AlthoughGIF images findoccasional application for simple animation loops, there are a number
of additional considerations for the storage, transmission, and display of true video. The most
important consideration is the massive amount of data created by a video application. A video
camera producing full screen 1024 × 768 pixel true-color images at a frame rate of thirty frames
per second, for example, will generate 1024 pixels × 768 pixels × 3 bytes of color/image × 30
frames per second = 70.8MB of data per second! A one-minute film clip would consume 4.25
GB of storage.

There are a number of possible solutions: reduce the size of the image, limit the number of
colors, or reduce the frame rate. Each of these options has obvious drawbacks. Although we do
these when possible, generally the realistic solution is to compress the video data.

If you consider video as a sequence of bitmap image frames, you quickly realize that the
images do not usually change much from frame to frame; furthermore, most of the changes
occur in only a small part of the image. Even in a fast-moving sport like soccer, the only object
that moves much in the 1/30 second between frames is the ball; the players move relatively little
in that short time span.

This suggests that it should be possible to reduce the amount of data needed to re-create
the video significantly, and indeed that is the case.

The result is a “repackaging” of the video data into a format that is not easily recognizable
by looking at the data. Instead, video is formatted at the input stage and converted back to
bitmap form in raster scan order for display by software at display time. The display process is
shown in Chapter 10.

The video format is determined by a codec, or encoder/decoder algorithm. There are a
number of different standards in use. The best-known codec standards areMPEG-2,MPEG-4,
and H.264. Microsoft Windows Media Video Format, On2 VP8, and Ogg Theora are popular
proprietary codecs. The codec is often embedded in a proprietary “container”. The container
serves as a superstructure to encode, decode, hold, and stream the video. It usually serves
both video and audio, and may support multiple codecs. Quicktime from Apple, WebM from
Google, and Flash Video from Adobe are well-known examples of containers.

TheMPEG-2 andMPEG-4 formats store and transmit real-time video that producesmovie
quality images, with the video data compressed to 10–60MB or less of data per minute, even
for high-definition images. This reduction in data is critical for streaming video, i.e., video that
is transmitted through a network and displayed in real time as it is transmitted, since very few
networks are able to stream high-quality video without deep compression.

4.4 AUDIO DATA
Sound is an important component in modern computer applications. Sound is used as an
instructional tool, as an element of multimedia presentations, for computer-based
telephony—voice over IP (VoIP) tools, Skype, and the like, to signal events within the
computer, and to enhance the enjoyment of games. Sound can be stored in digital form on
CD-ROMs and other media and made available to accompany a film clip, illustrate the nuances
of a symphony, or reproduce the roar of a lion. Sound can be manipulated in the computer
to compose music and to create the sounds of different musical instruments, even an entire
orchestra.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 121

CHAPTER 4 DATA FORMATS 121

Sound is normally digitized from an audio source, such as a microphone or amplifier,

although it is possible to purchase instrumentation that connects the computer directly to a

musical keyboard and synthesizer. For most users, the sound was previously digitized and

provided on a CD-ROM or downloaded from a Web site or other application.

Since the original sound wave is analog in nature, it is necessary to convert it to digital form

for use in the computer. The technique used is the same as that used for music CDs and many

other types of analog waveforms. The analog waveform is sampled electronically at regular time

intervals. Each time a sample is taken, the amplitude of the sample is measured by an electronic

circuit that converts the analog value to a binary equivalent. The circuit that performs this

function is known as an A-to-D converter. The largest possible sample, which represents the

positive peak of the loudest possible sound, is set to the maximum positive binary number

being used, and the most negative peak is set to the largest negative number. Binary 0 falls in

the middle. The amplitude scale is divided uniformly between the two limits. The sampling rate

is chosen to be high enough to capture every nuance in the signal being converted. For audio

signals, the sampling rate is normally around 50 kilohertz, or fifty thousand times a second.

The basic technique is illustrated in Figure 4.15. A typical audio signal is shown in the upper

diagram. A portion of the signal is shown in expanded form below. In this diagram, the signal

is allowed to fall between −64 and 64. Although we haven’t discussed the representation of

negative numbers yet, the consecutive values for the signal in this diagram will be the binary

equivalents to −22, −7, +26, 52, 49, and 2. The A-to-D conversion method is discussed more

thoroughly in Chapter 14.

FIGURE 4.15

Digitizing an Audio Waveform

Samples

Amplitude

Section
expanded

Typical
audio

waveform

64
48
32
16
0

–16

t

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 122

122 PART TWO DATA IN THE COMPUTER

Within the computer, most programs would probably treat this data as a one-dimensional

array of integers. Like graphics images, however, it is necessary to maintain, store, and transmit

metadata about the waveform, in addition to the waveform itself. To process and reproduce

the waveform, a program would have to know the maximum possible amplitude, the sampling

rate, and the total number of samples, at the very least. If several waveforms are stored

together, the system would have to identify each individual waveform somehow and establish

the relationships between the different waveforms. Are the waveforms played together, for

example, or one right after another?

As you might expect, there are a number of different codecs and file formats for storing

audio waveforms, each with its own features, advantages, and disadvantages. The .MOD format,

for example, is used primarily to store samples of sound that will be manipulated and combined

to produce a new sound. A .MOD file might store a sample of a piano tone. Software could

then manipulate the sample to reproduce all the different keys on the keyboard, it could alter

the loudness of each tone, and it could combine them to synthesize the piano lines in a piece of

music. Other instruments could be synthesized similarly. TheMIDI format is used to coordinate

the sounds and signals between a computer and connected musical instruments, particularly

keyboards. MIDI software can “read” the keyboard and can also reproduce the sounds. The

.VOC format is a general sound format that includes special features such as markers within

the file that can be used to repeat (loop) a block or synchronize the different components of a

multimedia presentation. Block looping can extend a sound by repeating it over and over again.

The .WAV format is a general-purpose format used primarily to store and reproduce snippets

of sound. MP3 and AAC are derivatives of the MPEG-2 and MPEG-4 specifications for the

transmission and storage of music. They have gained popularity because of the large numbers

of MP3- and AAC-encoded recordings posted on the Web and because of the availability of

low-cost portable devices that can download, store, decode, and reproduce MP3 and AAC data.

Like video, audio data can also be generated and stored locally or streamed from a network

orwebsite. The data transmission and processing requirements for audio aremuch less stringent

than those for video, however. Audio is routinely streamed from theWeb. There are numerous

websites broadcasting audio from radio stations and other sources, and streaming audio is also

used for Internet telephony.

EXAMPLE
The .WAV format was designed by Microsoft as part of its multimedia specification. The format
supports 8- or 16-bit sound samples, sampled at 11.025 kHz, 22.05 kHz, or 44.1 kHz in mono
or stereo. The .WAV format is very simple and does not provide support for a lot of features, such
as the looping of sound blocks .WAV data is not compressed.

The format consists of a general header that identifies a “chunk” of data and specifies the
length of a data block within the chunk. The header is followed by the data block. The general
header is used for a number of different multimedia data types.

The layout of a .WAV file is shown in Figure 4.16. The data block is itself broken into
three parts. First, a 4-byte header identifies a sound file with the ASCII word “WAVE”. A format
chunk follows. This chunk contains such information as the method used to digitize the sound,
the sampling rate in samples per second, the data transfer rate in average number of bytes per
second, the number of bits per sample, and whether the sound is recorded in mono or stereo.
The actual data follows.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 123

CHAPTER 4 DATA FORMATS 123

FIGURE 4.16

WAV Sound Format

Chunk id

4 bytes 4 bytes

4 bytes (as needed)

Data (<length of chunk> bytes)

WAVE Actual sound dataFormat
chunk

Length of
chunk

If you have a personal computer that runs Windows and supports sound, you will probably
find .WAV files in one of your Windows directories. Look for the file tada.wav, which holds the
brief trumpet fanfare that sounds when Windows is started.

EXAMPLE
MP3 is the predominant digital audio data format for the storage and transmission of music. It
is characterized by reasonable audio quality and small file size. MP3 uses a number of different
tactics and options to achieve its small file sizes. These include options for different audio
sampling rates, fixed or variable bit rates, and a wide range of bit rates that represent different
levels of compression. The bit rate, measured in kbits/second is, of course, directly related to the
size of the file, however lower bit rates result in lower audio quality. The options chosen are made
by the creator of the file during the encoding process, based on the trade-off between tolerable
audio quality versus transmission rate or file size. An MP3 player must be capable of correctly
decoding and playing any of the format variations specified in the MP3 standard.

The primary contributor to the small MP3 file size is the use of psychoacoustic lossy
compression. The size of an MP3 file is typically about 1/10th the size of an equivalent
uncompressed .WAV file. Psychoacoustic compression is based on the assumption that there
are sounds that a listener cannot hear or will not notice, which can then be eliminated. As an
example, a soft sound in the background is not usually noticeable against a loud foreground
sound. The level of compression depends not only on the tolerable level of sound quality, but also
on the nature of the audio being compressed. A typical MP3 file samples the audio data 44,100
times per second, which is the same as the data rate used on audio CDs, and presents the data
to the listener at a rate of either 128 or 192 kb/second.

Figure 4.17 shows the structure of an MP3 file. The file consists of an optional ID field that
contains such information as song title and artist, followed by multiple data frames. Each frame
has a 32-byte header that describes the frame data, followed by an optional 2-byte error-checking
code, followed by the data itself. The header contains 2 bytes of synchronization and MP3 version
data followed by the bit rate, the audio sample rate, the type of data (for example, stereo or
monaural audio), copy protection, and other information. The MP3 standard requires that each
frame contains 384, 576, or 1152 audio samples of data. Note that this format allows the bit
rate to vary for each frame, allowing for more efficient compression, but more difficult encoding
procedures.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 124

124 PART TWO DATA IN THE COMPUTER

FIGURE 4.17

MP3 Audio Data Format

...
ID

Field
(optional)

MP3
header

MP3
data

MP3 frameMP3 frameMP3 frame

32 bytes 2 bytes 384, 576,
or 1152
samples

MP3 file

Error
check

(optional)

4.5 DATA COMPRESSION
The volume of multimedia data, particularly video, but also sound and even high-resolution

still images, often makes it impossible or impractical to store, transmit, andmanipulate the data

in its normal form. Instead it is desirable or, in many cases, necessary to compress the data.

This is particularly true for video clips, real-time streaming video with sound, lengthy sound

clips, and images that are to be transmitted across the Internet through modem connections.

(It is also true of large data and program files of any type. Think .zip file, for example.)

There aremanydifferent data compression algorithms, but all fall into one of two categories,

lossless or lossy. A lossless algorithm compresses the data in such a way that the application of a

matching inverse algorithm restores the compressed data exactly to its original form. Lossy data

compression algorithms operate on the assumption that the user can accept a certain amount of

data degradation as a trade-off for the savings in a critical resource such as storage requirements

or data transmission time. Of course, only lossless data compression is acceptable for files

where the original data must be retained, including text files, program files, and numerical data

files, but lossy data compression is frequently acceptable in multimedia applications. In most

applications, lossy data compression ratios far exceed those possible with lossless compression.

Lossless data algorithms work by attempting to eliminate redundancies in the data. For

example, suppose that you have the following string of data:

0 5 5 7 3 2 0 0 0 0 1 4 7 3 2 9 1 0 0 0 0 0 6 6 8 2 7 3 2 7 3 2…

There are two simple steps you could take to reduce this string. First, you could reduce the

amount of data by counting the strings of consecutive 0s, and maintaining the count instead of

the string. The character is reproduced once, followed by its count:

0 1 5 5 7 3 2 0 4 1 4 7 3 2 9 1 0 5 6 6 8 2 7 3 2 7 3 2…

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 125

CHAPTER 4 DATA FORMATS 125

Notice that we actually had to add a character when the 0 appeared singly in the string.
Otherwise, the inverse algorithm would have assumed that the first 0 appeared five times rather
than recognizing the data to be a single 0 followed by a 5.

As a second step, the algorithm attempts to identify larger sequences within the string.
These can be replacedwith a single, identifiable value. In the example string, the sequence “7 3 2”
occurs repeatedly. Let us replace each instance of the sequence with the special character “Z”:

0 1 5 5 Z 0 3 1 4 Z 9 1 0 5 6 6 8 2 Z Z…

Application of these two steps has reduced the sample string by more than 35 percent. A
separate attachment to the data would identify the replacements that were made, so that the
original data can be restored losslessly. For the example, the attachment would indicate that 0s
were replaced by a single 0 followed by their count and the sequences “7 3 2” were replaced by
“Z”. You might wish to restore the original string in this example for practice.

There are many variations on the methods shown in the example. You should also notice
that the second step requires advance access to the entire sequence of data to identify the
repetitive sequences. Thus, it is not useful with streaming data. There are other variations that
are based on the known properties of the data stream that can be used, however. As we noted
earlier, for example, video codecs use the knowledge that the image is repeated at a frame rate
of, say, thirty times per second, and that in most instances, very little movement occurs within
small parts of the image between consecutive frames. GIF images and ZIP files are compressed
losslessly.

Lossy algorithms operate on the assumption that some data can be sacrificed without
significant effect, based on the application and on known properties of human perception. For
example, it is known that subtle color changes will not be noticeable in the area of an image
where the texture is particularly vivid. Therefore, it is acceptable to simplify the color data in
this circumstance. There is no attempt to recover the lost data. The amount of data reduction
possible in a particular circumstance is determined experimentally. Lossy algorithms can often
reduce the amount of data by a factor of 10:1 or more. JPEG and MP3 are examples of lossy
algorithms.

Video codecs use both variations on both forms of compression simultaneously. Some
video codecs even predict themovement from frame to frame to compress the data even further.
Reportedly, H.264 can achieve compression ratios of high-definition video by nearly 1000:1
with very little noticeable degradation in image quality.

In general, the use of data compression is a trade-off between the use of processing power
and the need to reduce the amount of data for transmission and storage. In most cases, the
higher the compression ratio, the greater the demand upon the computer processing resources.
At some point, the incremental improvement in compression to be achieved will no longer
justify the additional cost in processing or the degradation of the result.

4.6 PAGE DESCRIPTION LANGUAGES
A page description language is a language that describes the layout of objects on a displayed
or printed page. (In this context, we are using the word “object” in the more general object-
oriented programming language sense, rather than as a specific reference to object images.) Page
description languages incorporate various types of objects in various data formats, including,
usually, text, object images, and bitmap images. The page description language provides ameans

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 126

126 PART TWO DATA IN THE COMPUTER

to position the various items on the page. Most page description languages also provide the

capability to extend the language to include new data formats and new objects using language

stubs called plug-ins. Most audio and video extensions fall into this category. Although there

are minor differences, page markup languages and typesetting languages are very similar in

capability to page description languages. The three expressions are often used interchangeably.

Some page description languages are extremely simple, with limited innate functionality.

HTML (HyperText Markup Language), for example, provides little more than a shell. Except

for text, most objects are stored in separate files, the details of layout are left mostly to the Web

browser that is recreating the page, and programming language capability and other features

are provided as extensions. We have already shown you many of the data formats that are used

withHTML. Others, such asPDF (PortableDocument Format) and PostScript offer the ability
to recreate sophisticated pages with surprising faithfulness to the intentions of the original page

designer.

PDF, for example, incorporates its own bitmap formats, object image format, and text

format, all optimized for rapid page creation and presentation. It is often difficult to extract data

in their original data formats from a PDF file. Interestingly, PDF does not provide programming

language features. Instead, PDF is treated as a file format. The file contains objects, along with

page positioning information for each object, and that’s about it. It is presumed that any

program execution required to preprocess the objects in the file for presentation was done prior

to the creation of the file.

PostScript, on the other hand, contains a full-featured programming language that can be

processed at display time. In that sense, PDF is something of a subset of PostScript, though

with somewhat different goals and strengths. Many of the features of PDF are derived from

postprocessed PostScript. In particular, the object image descriptions in PDF are based on the

PostScript formats shown as examples earlier in this chapter.

4.7 INTERNAL COMPUTER DATA FORMAT
So now you have an idea of the various forms that data takes when it reaches the computer.

Once inside the computer, however, all data is simply stored as binary numbers of various sizes.

The interpretation of these binary numbers depends upon two factors:

n The actual operations that the computer processor is capable of performing;

n The data types that are supported by the programming language used to create the

application program.

As you will see in later chapters, computer processors provide instructions to manipulate

data, for searching and sorting, for example, and tomanipulate and perform basicmathematical

operations on signed and unsigned integers. They also provide a means to point to data, using a

stored binary value as a pointer or locator to another stored binary number. Since these pointer

values are themselves stored as numbers, they can also be manipulated and used in calculations.

A pointer value might represent the index in an array, for example. Most recent computers also

provide instructions for the direct manipulation of floating point, or real, numbers. In other

computers, floating point numbers are manipulated using software procedures.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 127

CHAPTER 4 DATA FORMATS 127

The processor instruction set also establishes formats for each data type that it supports.

If a number in the computer is supposed to be a floating point number, for example, the

instructions are designed to assume that the number is laid out in a particular format. Specific

formats that are used for integer and real numbers are discussed in Chapter 5.

Thus, the raw binary numbers stored in a computer can easily be interpreted to represent

data of a variety of different types and formats. C, Java, Visual Basic, and other languages all

provide a programmer with the capability to identify binary data with a particular data type.

Typically, there are five different simple data types:

n Boolean: two-valued variables or constants with values of true or false.

n char: the character data type. Each variable or constant holds a single alphanumeric

character code representing, for example, the single strike of a key. It is also common

to process groups of characters together as strings. Strings are simply arrays of

individual characters. The ASC function in Visual Basic shows the actual binary

number code representing a particular character. Thus, ASC(“A”) would show a

different value on an ASCII-based system from that shown on an EBCDIC

system.

n enumerated data types: user-defined simple data types, in which each possible value is

listed in the definition, for example,

type DayOfWeek = Mon, Tues, Wed, Thurs, Fri, Sat

n integer: positive or negative whole numbers. The string of characters representing a

number is converted internally by a conversion routine built into the program by the

compiler and stored and manipulated as a numerical value.

n real or float: numbers with a decimal portion, or numbers whose magnitude, either

small or large, exceeds the capability of the computer to process and store as an

integer. Again, the routine to convert a string of characters into a real number is built

into the program.

In addition to the simple data types, many programming languages, including C, but not

Java, support an explicit pointer variable data type. The value stored in a pointer variable is

a memory address within the computer. Other, more complex, data types, structures, arrays,

records, and other objects, for example, are made up of combinations of the simple data types.

The data types just listed correlate rather well with the instruction set capability of the

processor. The integer and real types can be processed directly. The character type is translated

into instructions that manipulate the data for basic character operations that are familiar to

you from your programming classes. Boolean and enumerated data types are treated within the

computer in a manner similar to integers. Most programming languages do not accept Boolean

and enumerated data as input, but the conversion would be relatively straightforward. It would

only be necessary to test the input character string against the various possibilities, and then set

the value to the correct choice (see Exercise 4.10).

Other languages may support a completely different set of data types. There are even some

languages that don’t recognize any data types explicitly at all, but simply treat data in a way

appropriate to the operation being performed.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 128

128 PART TWO DATA IN THE COMPUTER

Numerical Character to Integer Conversion

EXAMPLE
As you’ve already seen, the typical high-level language numerical input statement

READ(value)

where value is the name of an integer variable, requires a software conversion from the actual
input, which is alphanumeric, to the numerical form specified for value. This conversion is
normally provided by program code contributed by the language compiler that becomes part of
your program. Some programmers choose instead to accept the input data in character form and
include their own code to convert the data to numerical form. This allows more programmer control
over the process; for example, the programmer might choose to provide more extensive error
checking and recovery than that of the internal conversion program. (Many internal conversion
programs simply crash if the user inputs an illegal character, say, a letter when a numeral is
expected.)

Whether internal or programmer supplied, the conversion process is similar. Just to deepen
your understanding of the conversion process, Figure 4.18 contains a simple pseudocode

FIGURE 4.18

A Pseudocode Procedure that Performs String Conversion

//variables used
char key;
int number = 0;
boolean error, stop;
{
 stop = false;
 error = false;
 ReadAKey;
 while (NOT stop && NOT error) {
 number = 10 * number + (ASCIIVALUE(key) – 48);
 ReadAKey;
 } //end while
 if (error == true) {
 printout('Illegal Character in Input');
 else printout('input number is ' number);
 } //end if
} //end procedure

function ReadAKey(); {
 read(key);
 if (ASCIIVALUE(key) == 13 or ASCIIVALUE(key) == 32 or ASCIIVALUE(key) == 44)
 stop = true;
 else if ((key < '0') or (key > '9')) error = true;
} //end function ReadAKey

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 129

CHAPTER 4 DATA FORMATS 129

procedure that converts the string representing an unsigned integer into numerical form. This
code contains simple error checking and assumes that the number ends with a space (ASCII 32),
a comma (ASCII 44), or a carriage return (ASCII 13).

Conversion procedures for other data types are similar.

SUMMARY AND REVIEW
Alphanumeric data inputs and outputs are represented as codes, one code for each data value.

Three commonly used code systems for interactive input and output are Unicode, ASCII, and

EBCDIC. Within these codes, each character is represented by a binary number, usually stored

1 or 2 bytes per character.

The design and choice of a code is arbitrary; however, it is useful to have a code in which

the collating sequence is consistent with search and sort operations in the language represented.

Within the computer, programs must be aware of the code used to assure that data sorts,

number conversions, and other types of character manipulation are handled correctly. There

must also be agreement between input and output devices, so that the data is displayed correctly.

If necessary, translation programs can be used to translate from one representation to another.

Whennecessary, conversion programswithin the computer convert the alphanumeric character

strings into other numeric forms. Numeric data must be converted back to Unicode, ASCII, or

EBCDIC form for output display, however. The most common source of alphanumeric data is

the keyboard.

Data from a keyboard enters the computer in the formof a character stream, which includes

nonprinting characters as well as printing characters. Image scanning with optical character

recognition, voice input, and various special devices, such as bar code readers, can also be used

to create alphanumeric data.

There are two different methods used for representing images in the computer. Bitmap

images consist of an array of pixel values. Each pixel represents the sampling of a small area

in the picture. Object images are made up of simple geometrical elements. Each element is

specified by its geometric parameters, its location in the picture, and other details.

Within the constraint that object images must be constructed geometrically, they are more

efficient in storage and more flexible for processing. They may be scaled, rotated, and otherwise

manipulated without the loss of shape or detail. Images with texture and shading, such as

photographs and painting, must be stored in bitmap image form. Generally, images must be

printed and displayed as bitmaps; so object images are converted to bitmap form by a page

description language interpreter before printing or display. There are many different formats

used for storing graphical images.

Video images are difficult to manage because of the massive amounts of data involved.

Video may be stored local to the system, or may be streamed from a network or website. Codecs

are used to compress the video for storage and transmission and to restore the video for display.

The quality of streamed video is limited by the capability of the network connection. Some

systems provide auxiliary hardware to process video.

Audio signals are represented in the computer by a sequence of values created by digitizing

the signal. The signal is sampled at regular time intervals. Each sample is then converted to an

equivalent binary value that is proportional to the amplitude of the sample. Again, different

formats are available for storing audio data, depending on the application.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 130

130 PART TWO DATA IN THE COMPUTER

Audio signals may be streamed or stored locally. The requirements for audio transmission

and processing are far less stringent than for those of video.

For images, both still and video, as well as audio, data compression is often necessary.

Lossless data compression allows complete recovery of the original noncompressed data. Lossy

data compression does not allow recovery of the original data, but is designed to be perceived

as sufficient by the user.

Page description languages combine the characteristics of various specific data formats

together with data, indicating the position on the page to create data formats that can be used

for display and printing layouts.

Internally, all data, regardless of use, are stored as binary numbers. Instructions in the

computer support interpretation of these numbers as characters, integers, pointers, and in

many cases, floating point numbers.

FOR FURTHER READING
The general concepts of data formats are fairly straightforward, but additional character-based

exercises and practice can be found in the Schaum outline [LIPS82]. Individual codes can

be found in many references. The actual characters mapped to the keyboard are directly

observable using the Character Map accessory in Windows or the Key Caps desk accessory on

the Macintosh. Extensive information about Unicode is available from the Unicode website at

www.unicode.org.

For graphics formats, there are a number of good general books on graphics. Most of these

books describe the difference between bitmap and object graphics clearly, andmost also discuss

some of the different graphics file formats and the trade-offs between them. Additionally, there

are more specialized books that are often useful in this area. Murray and Van Ryper [MURR96]

provide adetailed catalogof graphics formats.Rimmer [RIMM93] discusses bitmappedgraphics

at length.

Smith [SMIT90] presents an easy approach to the PostScript language. The three Adobe

books—[ADOB93], [ADOB99], and [ADOB85], often called the “green book”, the “red book”,

and the “blue book”, respectively—are detailed but clear explanations of PostScript. Adobe also

offers the PDF Reference [ADOB06]. A simple introduction to PDF is the PDF Primer White

Paper [PDFP05].

There are many books on various aspects of video and on digital sound, but most are hard

to read; the Web is a better resource. Similarly, new data formats of all types occur as the need

arises. Because the need seems to arise continuously nowadays, your best source of current

information is undoubtedly the Web.

KEY CONCEPTS AND TERMS
A-to-D converter

alphanumeric data

analog

ANSI

ASCII

bitmap or raster image

codec

collating sequence

control code

EBCDIC

font

glyph

graphical objects

Graphics Interchange

Format (GIF)

http://www.unicode.org

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 131

CHAPTER 4 DATA FORMATS 131

H.264 video format

JPEG format

lossless data compression

lossy data compression

metadata

MP3

MPEG-2, MPEG-4 video

formats

numeric character versus

number

object or vector image

page description language

page markup language

palette

pixel

PostScript language

plug-ins

PNG format

proprietary format

raster scan

resolution

streaming video

typesetting language

Unicode

READING REVIEW QUESTIONS

4.1 When data is input to a computer, it is nearly always manipulated and stored in

some standard data format. Why is the use of data standards considered important, or

indeed, crucial in this case?

4.2 Name the three standards in commonuse for alphanumeric characters.Which standard

is designed to support all of the world’s written languages? Which language is used

primarily with legacy programs that execute on mainframe computers?

4.3 What is the relationship between the ASCII Latin-1 character set and its Unicode

equivalent that makes conversion between the two simple?

4.4 What is a collating sequence?

4.5 What are the major characteristics of a bitmap image? What are the major character-

istics of an object or vector image? Which is used for displays? What types of images

must be stored and manipulated as bitmap images? Why?

4.6 What is image metadata? Give an at least three examples of metadata that would be

required for a bitmap image.

4.7 Name two advantages to the use of object images.

4.8 What is the function of a video codec? What is the function of a video “container”?

Name at least two different codecs. Name at least two different containers.

4.9 Explain briefly how an A-to-D converter converts audio data into binary data.

4.10 Describe briefly the most important characteristics and features of an MP3 audio file.

4.11 Explain the difference between lossless and lossy data compression. Which type

normally provides a smaller file? What is “lost” in lossy audio data compression?

Under what circumstances is it impossible to use lossy data compression?

4.12 What is a page description language? Give an example of a page description language.

4.13 Name five simple data types that are provided in most high-level programming

languages.

4.14 Explain the difference between numeric characters and numbers. Under what condi-

tions would you expect the computer to use numeric characters? When would you

expect the computer to use numbers? When numeric data is entered at the keyboard,

which form is used? Which form is used for calculations? Which form is used for

display?

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 132

132 PART TWO DATA IN THE COMPUTER

EXERCISES

4.1 a. Create a table that shows the ASCII and EBCDIC representations side-by-side

for each of the uppercase letters, lowercase letters, and numerals.

b. Does the hexadecimal representation show you a simple method for converting

individual numeric characters into their corresponding numerical values?

c. Does the hexadecimal representation suggest a simple method for changing

lowercase letters into their corresponding capital letters?

d. Can you use the same methods for EBCDIC as you do for ASCII? If so, what

changes would you need to make in a program to make (b) and (c) work?

4.2 a. What is the ASCII representation for the numeral −3.1415 in binary? in octal? in

hexadecimal? in decimal?

b. What is the EBCDIC representation for the numeral +1,250.1? (Include the

comma.)

4.3 What character string does the binary ASCII code

1010100 1101000 1101001 1110011 0100000 1101001 1110011
0100000 1000101 1000001 1010011 1011001 0100001

represent?

4.4 ASCII, Unicode, and EBCDIC are, of course, not the only possible codes. The

Sophomites fromtheplanetCollegiumuse the rather strangecode shown inFigureE4.1.

There are only thirteen characters in the Sophomite alphabet, and each character uses

a 5-bit code. In addition, there are four numeric digits, since the Sophomites have two

fingers on each hand and use base 4 for their arithmetic.

a. Given the following binary code, what is the message being sent by the

Sophomites?

11001110100000111111000000100110111111110111110000000100100

b. You noticed in part (a) that this code does not delimit between characters. How

does one delimit this code? Suppose a bit was dropped during transmission.What

happens? Suppose a single bit was altered (0 to 1 or 1 to 0). What happens?

FIGURE E4.1

. .
+

00001
00010
00100
01000
01011
01101
01110

10000
10011
10101
10110
11001
11010

11111000
11111011
11111101
11111110

4.5 As an alternative alphanumeric code, consider a code where punched holes in the

columns of a card represent alphanumeric codes. The punched hole represents a “1”;

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 133

CHAPTER 4 DATA FORMATS 133

all other bits are “0”. The Hollerith code shown in Figure E4.2 is an example of such a

code. This code has been used to represent a message on the card in Figure E4.3. Each

row represents a code level from 0 to 12. Levels 12 and 11, which are not labeled on

the card, are the top row and next-to-top rows, respectively. Each column represents

a single character, so the card can hold one eighty-column line of text. (This card,

prevalent in the 1960s and 1970s as a means of data input, is the reason that text-based

displays are still limited to eighty characters per line.) Translate the card in Figure E4.3.

FIGURE E4.2

A
B
C
D
E
F
G
H
I
J
K

12,1
12,2
12,3
12,4
12,5
12,6
12,7
12,8
12,9
11,1
11,2

Character
Punched
code

L
M
N
O
P
Q
R
S
T
U
V

11,3
11,4
11,5
11,6
11,7
11,8
11,9
0,2
0,3
0,4
0,5

Character
Punched
code

W
X
Y
Z
0
1
2
3
4
5
6

0,6
0,7
0,8
0,9
0
1
2
3
4
5
6

Character
Punched
code

7
8
9
&
–
/
#
@
‘
=
.

7
8
9
12
11
0,1
8,3
8,4
8,5
8,6

12,8,3

Character
Punched
code

<
(
+
$
*
)
,
%

blank

12,8,4
12,8,5
12,8,6
11,8,3
11,8,4
11,8,5
0,8,3
0,8,4
none

Character
Punched
code

FIGURE E4.3

0
1

1

2

3

4

5

6

7

8

9
1

0
2

1

2

3

4

5

6

7

8

9
2

0
3

1

2

3

4

5

6

7

8

9
3

0
4

1

2

3

4

5

6

7

8

9
4

0
5

1

2

3

4

5

6

7

8

9
5

0
6

1

2

3

4

5

6

7

8

9
6

0
7

1

2

3

4

5

6

7

8

9
7

0
8

1

2

3

4

5

6

7

8

9
8

0
9

1

2

3

4

5

6

7

8

9
9

0
10

1

2

3

4

5

6

7

8

9
10

0
11

1

2

3

4

5

6

7

8

9
11

0
12

1

2

3

4

5

6

7

8

9
12

0
13

1

2

3

4

5

6

7

8

9
13

0
14

1

2

3

4

5

6

7

8

9
14

0
15

1

2

3

4

5

6

7

8

9
15

0
16

1

2

3

4

5

6

7

8

9
16

0
17

1

2

3

4

5

6

7

8

9
17

0
18

1

2

3

4

5

6

7

8

9
18

0
19

1

2

3

4

5

6

7

8

9
19

0
20

1

2

3

4

5

6

7

8

9
20

0
21

1

2

3

4

5

6

7

8

9
21

0
22

1

2

3

4

5

6

7

8

9
22

0
23

1

2

3

4

5

6

7

8

9
23

0
24

1

2

3

4

5

6

7

8

9
24

0
25

1

2

3

4

5

6

7

8

9
25

0
26

1

2

3

4

5

6

7

8

9
26

0
27

1

2

3

4

5

6

7

8

9
27

0
28

1

2

3

4

5

6

7

8

9
28

0
29

1

2

3

4

5

6

7

8

9
29

0
30

1

2

3

4

5

6

7

8

9
30

0
31

1

2

3

4

5

6

7

8

9
31

0
32

1

2

3

4

5

6

7

8

9
32

0
33

1

2

3

4

5

6

7

8

9
33

0
34

1

2

3

4

5

6

7

8

9
34

0
35

1

2

3

4

5

6

7

8

9
35

0
36

1

2

3

4

5

6

7

8

9
36

0
37

1

2

3

4

5

6

7

8

9
37

0
38

1

2

3

4

5

6

7

8

9
38

0
39

1

2

3

4

5

6

7

8

9
39

0
40

1

2

3

4

5

6

7

8

9
40

0
41

1

2

3

4

5

6

7

8

9
41

0
42

1

2

3

4

5

6

7

8

9
42

0
43

1

2

3

4

5

6

7

8

9
43

0
44

1

2

3

4

5

6

7

8

9
44

0
45

1

2

3

4

5

6

7

8

9
45

0
46

1

2

3

4

5

6

7

8

9
46

0
47

1

2

3

4

5

6

7

8

9
47

0
48

1

2

3

4

5

6

7

8

9
48

0
49

1

2

3

4

5

6

7

8

9
49

0
50

1

2

3

4

5

6

7

8

9
50

0
51

1

2

3

4

5

6

7

8

9
51

0
52

1

2

3

4

5

6

7

8

9
52

0
53

1

2

3

4

5

6

7

8

9
53

0
54

1

2

3

4

5

6

7

8

9
54

0
55

1

2

3

4

5

6

7

8

9
55

0
56

1

2

3

4

5

6

7

8

9
56

0
57

1

2

3

4

5

6

7

8

9
57

0
58

1

2

3

4

5

6

7

8

9
58

0
59

1

2

3

4

5

6

7

8

9
59

0
60

1

2

3

4

5

6

7

8

9
60

0
61

1

2

3

4

5

6

7

8

9
61

0
62

1

2

3

4

5

6

7

8

9
62

0
63

1

2

3

4

5

6

7

8

9
63

0
64

1

2

3

4

5

6

7

8

9
64

0
65

1

2

3

4

5

6

7

8

9
65

0
66

1

2

3

4

5

6

7

8

9
66

0
67

1

2

3

4

5

6

7

8

9
67

0
68

1

2

3

4

5

6

7

8

9
68

0
69

1

2

3

4

5

6

7

8

9
69

0
70

1

2

3

4

5

6

7

8

9
70

0
71

1

2

3

4

5

6

7

8

9
71

0
72

1

2

3

4

5

6

7

8

9
72

0
73

1

2

3

4

5

6

7

8

9
73

0
74

1

2

3

4

5

6

7

8

9
74

0
75

1

2

3

4

5

6

7

8

9
75

0
76

1

2

3

4

5

6

7

8

9
76

0
77

1

2

3

4

5

6

7

8

9
77

0
78

1

2

3

4

5

6

7

8

9
78

0
79

1

2

3

4

5

6

7

8

9
79

0
80

1

2

3

4

5

6

7

8

9
80

IBM

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 134

134 PART TWO DATA IN THE COMPUTER

4.6 Without writing a program, predict the ORD (binary) value for your computer system

for the letter “A”, for the letter “B”, for the letter “C”. How did you know? Might the

value be different on a different system? Why or why not?

4.7 Write a program in your favorite language that will convert all ASCII uppercase

and lowercase letters to EBCDIC code. For an additional challenge, also convert the

punctuation symbols, indicating with a failure-to-convert message, those symbols that

are not represented in the EBCDIC system.

4.8 If you have access to a debug program, load a text file into computer memory from

your disk, and read the text from computer memory by translating the ASCII codes.

4.9 Suppose you have a program that reads an integer, followed by a character, using the

following prompt and READ statement:

WRITE(Enter an integer and a character ∶
READ (intval, charval);

When you run the program, you type in the following, in response to the prompt

Enter an integer and a character ∶
1257
z

When you check the value of charval, you discover that it does not contain “z”. Why

not? What would you expect to find there?

4.10 Write a program that accepts one of the seven values “MON”, “TUE”, “WED”, “THU”,

“FRI”, “SAT”, and “SUN” as input and sets a variable named TODAY to the correct

value of type DayOfWeek, and then outputs the ORD value of TODAY to the screen.

(Does theORDvalue give you a hint as to the internal representation of the enumerated

data type?)

4.11 Write a procedure similar to procedure Convert that converts a signed integer to a

character string for output.

4.12 Approximately how many pages of pure 16-bit Unicode text can a 650MB CD-ROM

hold?

4.13 Find a book or article that describes the various bitmapped graphics formats, and

compare .GIF, .PNG, and .BMP.

4.14 Find a book or article that describes the various bitmapped graphics formats, and

compare .GIF and .RLE.

For Exercises 4.13 and 4.14, there are several books that describe graphics formats in

detail. One of these is Murray [MURR96].

4.15 Investigate several audio formats, and discuss the different features that each provides.

Also discuss how the choice of features provided in different formats affects the type

of processing that the format would be useful for.

4.16 If you have studied COBOL, discuss the difference between numeric characters and

numbers in the context of a COBOL program. Does COBOL distinguish clearly

between the two? If so, in what ways?

4.17 Provide a line-by-line explanation for the PostScript code in Figure 4.14.

Englander c04.tex V2 - November 28, 2013 9:42 P.M. Page 135

CHAPTER 4 DATA FORMATS 135

4.18 Unicode is downward compatible with the Latin-1 version of 8-bit ASCII in the sense

that a Unicode text file that is limited to the Latin-1 character set will be read correctly

on a system that does not support Unicode, provided that an end delimiter is used,

rather than a character count as the measure of the length of the message. Why is this

so? (Hint: Consider the role of the ASCII NUL character.)

4.19 Use the Web as a resource to investigate MPEG-2 [or MPEG-4]. Explain the data

compression algorithm used by MPEG-2 [or MPEG-4].

4.20 The MP3 audio format is described as “almost CD quality”. What characteristic of

MP3 makes this description accurate?

4.21 Use the Web as a resource to study the PDF format.

a. Describe how PDF provides output that is consistent across different types of

devices, including printers and monitors of various resolutions.

b. Describe the format for storing, laying out, and managing the objects on a page.

Explain the advantages to the use of this format over other formats, such as that

used by HTML.

c. Explain how PDF manages the many different type fonts that might be found in

a document.

d. How does PDF manage bitmap images? Object images?

e. Explain how PDF differs from PostScript.

f. Describe at least three major limitations that PDF places on the end-user of a

PDF document.

4.22 Using the Web as a resource, create a table that compares the features and capabilities

of .PNG, .GIF, and .JPEG.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 136

CHAPTER 5

REPRESENTING NUMERICAL
DATA

Thomas Sperling, adapted by Benjamin Reece

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 137

5.0 INTRODUCTION
As we have noted previously, the computer stores all data and program instructions in

binary form, using only groups of zeros and ones. No special provision is made for the

storage of the algebraic sign or decimal point that might be associated with a number; all

responsibility for interpretation of those zeros and ones is left to the programmers whose

programs store and manipulate those binary numbers. Thus, the binary numbers in a

computer might represent characters, numbers, graphics images, video, audio, program

instructions, or something else.

The ability of a computer to manipulate numbers of various kinds is, of course, of

particular importance to users. In Chapter 4, we observed that nearly every high-level

computing language provides a method for storage, manipulation, and calculation of

signed integer and real numbers. This chapter discusses methods of representing and

manipulating these numbers within the zeros-and-ones constraint of the computer.

We saw in Chapter 3 that unsigned integer numbers can be represented directly in

binary form, and this provides a clue as to how we might represent the integer data type in

the computer. There is a significant limitation, however: we have yet to show you a sign-free

way of handling negative numbers that is compatible with the capabilities of the computer.

In this chapter, we explore several different methods of storing and manipulating integers

that may encompass both positive and negative numbers.

Also, as you know, it is not always possible to express numbers in integer form. Real,
or floating point, numbers are used in the computer when the number to be expressed is

outside the integer range of the computer (too large or too small) or when the number

contains a decimal fraction.

Floating point numbers allow the computer to maintain a limited, fixed number

of digits of precision together with a power that shifts the point left or right within the

number to make the number larger or smaller, as necessary. The range of numbers that the

computer can handle in this way is huge. In a personal computer, for example, the range

of numbers that may be expressed this way may be ±[10−38 < number <10+38] or more.

Performing calculations with floating point numbers provides an additional challenge.

There are trade-offs made for the convenience of using floating point numbers: a potential

loss of precision, as measured in terms of significant digits, larger storage requirements,

and slower calculations. In this chapter, we will also explore the properties of floating point

numbers, show how they are represented in the computer, consider how calculations are

performed, and learn how to convert between integer and floating point representations.

We also investigate the importance of the trade-offs required for the use of floating point

numbers and attempt to come up with some reasonable ground rules for deciding what

number format to specify in various programming situations.

We remind you that numbers are usually input as characters and must be converted

to a numerical format before they may be used in calculations. Numbers that will not be

used in calculations, such as zip codes or credit card numbers, are simply manipulated as

characters.

137

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 138

138 PART TWO DATA IN THE COMPUTER

5.1 UNSIGNED BINARY AND BINARY-CODED
DECIMAL REPRESENTATIONS

In conventional notation, numbers canbe represented as a combinationof a value, ormagnitude,

a sign, plus or minus, and, if necessary, a decimal point. As a first step in our discussion, let’s

consider two different approaches for storing just the value of the number in the computer.

The most obvious approach is simply to recognize that there is a direct binary equivalent

for any decimal integer. We can simply store any positive or unsigned whole number as its

binary representation. This is the approach that we already discussed in Chapter 3. The range of

integers that we can store this way is determined by the number of bits available. Thus, an 8-bit

storage location can store any unsigned integer of value between 0 and 255, a 16-bit storage

location, 0–65535. If we must expand the range of integers to be handled, we can provide more

bits. A common way to do this is to use multiple storage locations. In Figure 5.1, for example,

four consecutive 1-byte storage locations are used to provide 32 bits of range. Used together,

these four locations can accept 232, or 4,294,967,296 different values.

The use of multiple storage locations to store a single binary number may increase the

difficulty of calculation and manipulation of these numbers because the calculation may have

to be done one part at a time, possibly with carries or borrows between the parts, but the

additional difficulty is not unreasonable. Most modern computers provide built-in instructions

that perform data calculations 32 bits or 64 bits at a time, storing the data automatically in

consecutive bytes. For other number ranges, and for computers without this capability, these

calculations can be performed using software procedures within the computer.

An alternative approach known as binary-coded decimal (BCD) may be used in some

applications. In this approach, the number is stored as a digit-by-digit binary representation

of the original decimal integer. Each decimal digit is individually converted to binary. This

requires 4 bits per digit. Thus, an 8-bit storage location could hold two binary-coded decimal

digits—in other words, one of one hundred different values from 00 to 99. For example, the

decimal value 68 would be represented in BCD as 01101000. (Of course you remember that

01102 = 610 and 10002 = 810.) Four bits can hold sixteen different values, numbered 0 to F in

FIGURE 5.1

Storage of a 32-bit Data Word

24 23 16 15 8 7

32-bit Data word

Memory
location 1 byte bit

31
bit
0

M

M + 1

M + 2

M + 3

M + 4

Most significant
bits (31–24)

Least significant
bits (7–0)

Next data item

bits 23–16

bits 15–8

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 139

CHAPTER 5 REPRESENTING NUMERICAL DATA 139

FIGURE 5.2

Value Range for Binary versus Binary-Coded Decimal

4
8
12
16
20
24
32
64

0–9
0–99
0–999
0–9,999
0–99,999
0–999,999
0–99,999,999
0–(1016

–1)

No. of bits BCD range

1 digit
2 digits
3 digits
4 digits
5 digits
6 digits
8 digits
16 digits

0–15
0–255
0–4,095
0–65,535
0–1 Million
0–16 Million
0–4 Billion
0–16 Quintillion

1+ digit
2+ digits
3+ digits
4+ digits
6 digits
7+ digits
9+ digits
19+ digits

Binary range

hexadecimal notation, but with BCD the values A to F are simply not used. The hexadecimal

and decimal values for 0 through 9 are equivalent.

The table in Figure 5.2 compares the decimal range of values that can be stored in binary

and BCD forms. Notice that for a given number of bits the range of values that can be held using

the BCD method is substantially less than the range using conventional binary representation.

You would expect this because the values A–F are being thrown away for each group of 4 bits.

The larger the total number of bits, the more pronounced the difference. With 20 bits, the range

for binary is an entire additional decimal digit over the BCD range.

Calculations in BCD are also more difficult, since the computer must break the number

into the 4-bit binary groupings corresponding to individual decimal digits and use base 10

arithmetic translated into base 2 to perform calculations. In other words, the calculation for

each 4-bit groupingmust be treated individually, with arithmetic carries moving from grouping

to grouping. Any product or sum of any two BCD integers that exceeds 9 must be reconverted

to BCD each time to perform the carries from digit to digit.

EXAMPLE
One method of performing a “simple” one- by two-digit multiplication is shown as an example
in Figure 5.3. In the first step, each digit in the multiplicand is multiplied by the single-digit

FIGURE 5.3

A Simple BCD Multiplication

76
 × 7

42
49

432
13
532

0111 0110
0111

101010
110001

0100 0010
+ 0100 1001

0100 1101 0010
+ 0001 0011

0101 0011 0010

1

= 532 in BCD

bcd

bcd

bin

bin

Adjust
carry

Convert partial
sums to BCD

bcd

bcd

Convert 13
back to BCD

multiplier. This yields the result 7 × 6 = 42 in the units
place and the result 7 × 7 = 49 in the 10’s place.
Numerically, this corresponds to the result achieved by
performing the multiplication in decimal, as is shown at
the left-hand side of the diagram.

To continue, the binary values for 42 and 49 must
be converted back to BCD. This is done in the second
step. Now the BCD addition takes place. As in the
decimal version, the sum of 9 and 4 results in a carry.
The binary value 13 must be converted to BCD 3, and
the 1 added to the value 4 in the hundreds place. The
final result is BCD value 532.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 140

140 PART TWO DATA IN THE COMPUTER

If the number contains a decimal point, the same approach can be used, but the application

program must keep track of the decimal point’s location. For example, many business

applications have to maintain full accuracy for real numbers. In many cases, the real numbers

being used represent dollars and cents figures. You are aware from Chapter 3 that rational

decimal real numbers do not necessarily remain so when converted into binary form. Thus, it

is possible that a number converted from decimal to binary and back again may not be exactly

the same as the original number. You would not want to add two financial numbers and have

the result off by a few cents. (In fact, this was a problem with early versions of spreadsheet

programs!)

For this reason, business-oriented high-level languages such as COBOL provide formats

that allow the user to specify the number of desired decimal places exactly. Large computers

support these operations by providing additional instructions for converting, manipulating,

and performing arithmetic operations on numbers that are stored in a BCD format.

EXAMPLE
IBM zSeries computers support numbers stored in a BCD format called packed decimal format,
shown in Figure 5.4. Each decimal digit is stored in BCD form, two digits to a byte. The most
significant digit is stored first, in the high-order bits of the first byte. The sign is stored in the
low-order bits of the last byte. Up to thirty-one digits may be stored. The binary values 1100 and
1101 are used for the sign, representing “+” and “−”, respectively. The value 1111 can be used
to indicate that the number is unsigned. Since these values do not represent any valid decimal
number, it is easy to detect an error, as well as to determine the end of the number. As we noted
earlier, the location of the decimal point is not stored and must be maintained by the application
program. Intel CPUs provide a more limited packed format that holds two digits (00–99) in a single
byte. As an example, the decimal number −324.6 would be stored in packed decimal form as

0000 0011 0010 0100 0110 1101

The leading 0s are required to make the number fit exactly into 3 bytes. IBM provides
additional formats that store data one digit to a byte, but provides no instructions for performing
calculations in this format. This format is used primarily as a convenience for conversion between
text and packed decimal format. IBM also provides a compressed version of its packed decimal
format to save storage space.

FIGURE 5.4

Packed Decimal Format

Sign

1100 or
1101 or
1111

Most
significant

digit

4 bits 4 bits
Up to 31 digits (16 bytes)

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 141

CHAPTER 5 REPRESENTING NUMERICAL DATA 141

Even with computer instructions that perform BCD arithmetic, BCD arithmetic is nearly

always much slower. As an alternative, some computers convert each BCD number to binary

form, perform the calculation, and then convert the result back to BCD.

Despite its drawbacks, binary-coded decimal representation is sometimes useful, especially

in business applications, where it is often desirable to have an exact digit-for-digit decimal

equivalent in order to mimic decimal arithmetic, as well as to maintain decimal rounding and

decimal precision. Translation between BCD and character form is also easier, since the last

4 bits of ASCII, EBCDIC, and Unicode numeric character forms correspond exactly to the BCD

representation of that digit. Thus, to convert from alphanumeric form to BCD you simply chop

off everything but the rightmost 4 bits of the character to get its BCD value. This makes BCD an

attractive optionwhen the application involves a lot of input and output, but limited calculation.

Many business applications fit this description. In most cases, though, binary representation is

preferred and used.

5.2 REPRESENTATIONS FOR SIGNED INTEGERS
With the shortcomings of BCD, it shouldn’t surprise you that integers are nearly always stored
as binary numbers. As you have already seen, unsigned integers can be converted directly

to binary numbers and processed without any special care. The addition of a sign, however,

complicates the problem, because there is no obvious direct way to represent the sign in

binary notation. In fact, there are several different ways used to represent negative numbers in

binary form, depending on the processing that is to take place. The most common of these is

known as 2’s complement representation. Before we discuss 2’s complement representation,

we will take a look at two other, simpler methods: sign-and-magnitude representation and

1’s complement representation. Each of these latter methods has some serious limitations for

computer use, but understanding these methods and their limitations will clarify the reasoning

behind the use of 2’s complementation.

Sign-and-Magnitude Representation

In daily usage, we represent signed integers by a plus or minus sign and a value. This

representation is known, not surprisingly, as sign-and-magnitude representation.

FIGURE 5.5

Examples of Sign-and-Magnitude
Representation

0100101

37
+

‒

1100101

37

0000000000000001
(+1)

1000000000000001
(‒1)

1111111111111111
(‒32767)

In the computer we cannot use a sign, but must restrict

ourselves to 0s and 1s. We could select a particular bit, however,

and assign to it values that we agree will represent the plus

and minus signs. For example, we could select the leftmost bit

and decide that a 0 in this place represents a plus sign and a

1 represents a minus. This selection is entirely arbitrary, but if

used consistently, it is as reasonable as any other selection. In

fact, this is the representation usually selected. Figure 5.5 shows

examples of this representation.

Note that since the leftmost digit is being used as a sign, it

cannot represent any value. This means that the positive range

of the signed integer using this technique is one-half as large as

the corresponding unsigned integer of the same number of bits.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 142

142 PART TWO DATA IN THE COMPUTER

On the other hand, the signed integer also has a negative range of equal size to its positive
range, so we really haven’t lost any capability, but have simply shifted it to the negative region.
The total range remains the same, but is redistributed to represent numbers both positive and
negative, though in magnitude only half as large.

Suppose 32 bits are available for storage and manipulation of the number. In this case, we
will use 1 bit for the sign and 31 bits for the magnitude of the number. By convention, the
leftmost, or most significant, bit is usually used as a sign, with 0 corresponding to a plus sign
and 1 to a minus sign. The binary range for 32 bits is 0–4,294,967,295; we can represent the
numbers −2, 147, 483, 647 to +2,147,483,647 this way.

There are several inherent difficulties in performing calculations when using sign-and-
magnitude representation. Many of these difficulties arise because the value of the result of
an addition depends upon the signs and relative magnitudes of the inputs. This can be easily
seen from the following base 10 examples. Since the numbers are exactly equivalent, the same
problem of course occurs with binary addition.

EXAMPLE
Consider the base 10 sum of 4 and 2:

4
+2
6

The sum of 4 and −2, however, has a different numerical result:

4
−2
2

Notice that the addition method used depends on the signs of the operands. One method is
used if both signs agree; a different method is used if the signs differ. Even worse, the presence
of a second digit that can result in a carry or borrow changes the result yet again:

2

−4
−2

But

12

−4
8

Interestingly enough, we have been so well trained that we alter our own mental algorithm
to fit the particular case without even thinking about it, so this situation might not even have
crossed your mind. The computer requires absolute definition of every possible condition,
however, so the algorithm must include every possibility; unfortunately, sign-and-magnitude
calculation algorithms are complex and difficult to implement in hardware.

In addition to the foregoing difficulty, there are two different binary values for 0,

00000000 and 10000000

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 143

CHAPTER 5 REPRESENTING NUMERICAL DATA 143

representing +0 and −0, respectively. This seems like a minor annoyance, but the system must
test at the end of every calculation to assure that there is only a single value for 0. This is
necessary to allow program code that compares values or tests a value for 0 to work correctly.
Positive 0 is preferred because presenting −0 as an output result would also be confusing to the
typical user.

The one occurrence where sign-and-magnitude is a useful representation is when binary-
coded decimal is being used. Even though the calculation algorithms are necessarily complex,
other algorithms for representing signed integers that you will be introduced to in this chapter
are even more impractical when using BCD. Furthermore, as we have already discussed, BCD
calculation is complex in any case, so the additional complexity that results from handling
sign-and-magnitude representations is just more of the same.

With BCD, the leftmost bit can be used as a sign, just as in the case of binary. With binary,
however, using a sign bit cuts the range in half; the effect on range is much less pronounced
with BCD. (Remember, though, that BCD already has a much smaller range than binary for the
same number of bits.) The leftmost bit in an unsigned BCD integer only represents the values
8 or 9; therefore, using this bit as a sign bit still allows the computer 3 bits to represent the
leftmost digit as a number within the range 0–7.

As an example, the range for a signed 16-bit BCD integer would be

−7999 ≤ value ≤ +7999.

Nine’s Decimal and 1’s Binary Complementary Representations

For most purposes, computers use a different method of representing signed integers known as
complementary representation. With this method, the sign of the number is a natural result of
themethod and does not need to be handled separately. Also, calculations using complementary
representation are consistent for all different signed combinations of input numbers. There
are two forms of complementary representation in common use. One, known as the radix
complement, is discussed in the next section. In this section, we will introduce a representation
known as diminished radix complementary representation, so called because the value used as
a basis for the complementary operation is diminished by one from the radix, or base. Thus,
base-10-diminished radix complementary representation uses the value 9 as its basis, and binary
uses 1. Although the computer obviously uses the 1’s representation, we will introduce the 9’s
representation first, since we have found that it is easier for most students to understand these
concepts in the more familiar decimal system.

NINE’S DECIMAL REPRESENTATION Let us begin by considering a different means of
representing negative and positive integers in the decimal number system. Suppose that we
manipulate the range of a three-digit decimal number system by splitting the three-digit decimal
range down the middle at 500. Arbitrarily, we will allow any number between 0 and 499 to
be considered positive. Positive numbers will simply represent themselves. This will allow the
value of positive numbers to be immediately identified. Numbers that begin with 5, 6, 7, 8, or 9
in the most significant digit will be treated as representations of negative numbers. Figure 5.6
shows the shift in range.

One convenient way to assign a value to the negative numbers is to allow each digit to be
subtracted from the largest numeral in the radix. Thus, there is no carry, and each digit can
be converted independently of all others. Subtracting a value from some standard basis value

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 144

144 PART TWO DATA IN THE COMPUTER

FIGURE 5.6

Range-Shifting Decimal Integers

Representation 500 999 0

-499 -000

499

4990Number being
represented – +Increasing value

is known as taking the complement of the number.

Taking the complement of a number is almost like using

the basis value as a mirror. In the case of base 10 radix,

the largest numeral is 9; thus, this method is called 9’s

complementary representation.

Several examples of this technique are shown below.

FIGURE 5.7

Addition as a Counting Process

Representation

500 649 899 999

-499 -350 -100 -000

499

499

0

0

Number being
represented

+250

170 420

170 420

+250

+250+250

If we now use the 9’s complement technique to

assign the negative values to the chart in Figure 5.6,

you see that 998 corresponds to a value of −1 and

500 to the value−499. This results in the relationship
shown in Figure 5.7.

An important consideration in the choice of a

representation is that it is consistent with the normal

rules of arithmetic. For the representation to be valid,

it is necessary that, for any value within the range,

−(−value) = value

Simply stated, this says that if we complement the

value twice, it should return to its original value.

Since the complement is just

comp = basis − value

then complementing twice,

basis − (basis − value) = value

which confirms that this requirement is met.

EXAMPLES
Find the 9’s complementary representation for the three-digit number −467.

999
−467
532

532 represents the value for −467. Notice that the three-digit value range is limited to 0–499,
since any larger number would start with a digit of 5 or greater, which is the indicator for a
negative number.

Find the 9’s complementary representation for the four-digit number −467.

9999
−467
9532

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 145

CHAPTER 5 REPRESENTING NUMERICAL DATA 145

Notice that in this system, it is necessary to specify the number of digits, or word size, being
used. In a four-digit representation, the number (0)532 represents a positive integer, since it is
less than 4999 in value. Care is required in maintaining the correct number of digits.

What is the sign-and-magnitude value of the four-digit number represented in 9’s complement
by 3789?

In this case, the leftmost digit is in the range 0–4. Therefore, the number is positive, and is
already in correct form. The answer is +3789.

This example emphasizes the difference between the representation of a number in comple-
mentary form and the operation of taking the complement of a number. The representation just
tells us what the number looks like in complementary form. The operation of finding the com-
plement of a number consists of performing the steps that are necessary to change the number
from one sign to the other. Note that if the value represents a negative number, it is necessary
to perform the operation if we wish to convert the number into sign-and-magnitude form.

What is the sign-and-magnitude value of the four-digit number represented by 9990?
This value is negative. To get the sign-and-magnitude representation for this number, we

take the 9’s complement:

9999

−9990
9

Therefore, 9990 represents the value −9.

Next, let’s consider the operation of addition when the numbers being added are in 9’s

complementary form. When you studied programming language, you learned that modular

arithmetic could be used to find the remainder of an integer division. You recall that inmodular

arithmetic, the count repeats from 0 when a limit, called the modulus, is exceeded. Thus, as an

example, 4 mod 4 has the value 0 and 5 mod 4 has the value 1.

The 9’s complement scale shown in Figure 5.6 shares the most important characteristic of

modular arithmetic; namely, in counting upward (from left to right on the scale), when 999 is

reached, the next count results in a modular rotation to a value of 0. (Notice that when you

reach the right end of the scale, it continues by flowing around to the left end.)

Counting corresponds to addition; thus, to add a number to another is simply to count

upward from one number by the other. This idea is illustrated in Figure 5.7. As you can see

from the examples in this diagram, simple additions are straightforward and work correctly. To

understand how this process works in a “wraparound” situation, consider the example shown

in Figure 5.8. As you can see in this case, adding 699 to the value 200 leads to the position 899

by wrapping around the right end. Since 699 is equivalent to −300 and 899 is equivalent to

−100, 699 + 200 is equivalent to (−300) +200, and the result of the addition is correct.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 146

146 PART TWO DATA IN THE COMPUTER

FIGURE 5.8

Addition with Wraparound

Representation

Number being
represented

500

-499

999 0 200

+699

-300
-000

499

499

999

-000

500

-4990 200

899

-100

The reason this technique works can also be

seen in the diagram. The wraparound is equivalent

to extending the range to include the addition on the

scale.

The same final point should also be reached by

moving to the left 300 units, which is equivalent to

subtracting 300. In fact, the result is off by 1. This

occurs because we have again picked a scale with two

values for 0, namely, 0 for +0 and 999 for −0. This
means that any count that crosses themoduluswill be

FIGURE 5.9

Addition with Modulus Crossing Representation

Representation

Number being
represented

500

-499

799

+300

+300

999

-000

499
(1099)

499

0

0-200
99

100

short one count, since 0 will be counted twice. In

this particular example, the count to the right, which

is the addition 200 + 699, yielded the correct result,

since the modulus was not crossed. The count to

the left, the subtraction 200 − 300, is off by one

because of the double zero. We could correct for this

situation on the chart by moving left an additional

count any time the subtraction requires “borrowing”

from the modulus. For example, subtracting 200 −
300 requires treating the value 200 as though it were

1200 to stay within the 0–999 range. The borrow can

be used to indicate that an additional unit should be

subtracted.

FIGURE 5.10

End-Around Carry Procedure

799
100
899

799
300

1099
1

100No end-around carry
End-around carry

Next, consider the situation shown in Figure 5.9. In this

case, counting to the right, or adding, also results in crossing the

modulus, so an additional count must be added to obtain

the correct result. This is an easier situation, however. Since

the result of any sum that crosses the modulus must initially

contain a carry digit (the 1 in 1099 in the diagram), which is

then dropped in the modular addition, it is easy to tell when the

modulus has been crossed to the right. We can then simply add

the extra count in such cases.

This leads to a simple procedure for adding two numbers

in 9’s complementary arithmetic: Add the two numbers. If the

result flows into the digit beyond the specified number of digits,

add the carry into the result. This is known as end-around carry. Figure 5.10 illustrates the

procedure. Notice that the result is now correct for both examples.

Although we could design a similar algorithm for subtraction, there is no practical reason

to do so. Instead, subtraction is performed by taking the complement of the subtrahend (the

item being subtracted) and adding to the minuend (the item being subtracted from). In this

way, the computer can use a single addition algorithm for all cases.

There is one further consideration. A fixed word size results in a range of some particular

fixed size; it is always possible to have a combination of numbers that adds to a result outside

the range. This condition is known as overflow. If we have a three-digit plus sign word size in a

sign-and-magnitude system, and add 500 to 500, the result overflows, since 1000 is outside the

range. The fourth digit would be evidence of overflow.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 147

CHAPTER 5 REPRESENTING NUMERICAL DATA 147

It is just as easy to detect overflow in a 9’s complement system, even though the use of
modular arithmetic assures that an extra digit will never occur. In complementary arithmetic,
numbers that are out of range represent the opposite sign. Thus, if we add

300 + 300 = 600 (i.e.,−399)
both inputs represent positive numbers, but the result is negative. Then the test for overflow is
this: If both inputs to an addition have the same sign, and the output sign is different, overflow
has occurred. Conversely, overflow in addition cannot occur if the input signs are different,
since the output will always be numerically smaller than the larger input.

ONE’S COMPLEMENT The computer can use the binary version of the same method of
representation that we have just discussed. In base 2, the largest digit is 1. Splitting the range
down the middle, as we did before, numbers that begin with 0 are defined to be positive;
numbers that begin with 1 are negative. Since

1 1
−0 and −1
1 0

the 1’s complement of a number is performed simply by changing every 0 to a 1 and every 1 to
a 0. How elegantly simple! This exchange of 0s and 1s is also known as inversion. (Of course,
this means that both 000. . . and 111. . . represent 0, specifically, +0 and −0, respectively.) The
1’s complement scale for 8-bit binary numbers is shown in Figure 5.11.

Addition also works in the same way. To add two numbers, regardless of the implied sign
of either input, the computer simply adds the numbers as though they were unsigned integers.
If there is a carryover into the next bit beyond the leftmost specified bit, 1 is added to the result,
following the usual end-around carry rule. Subtraction is done by inverting the subtrahend (i.e.,
changing every 0 to 1 and every 1 to 0) and adding. Overflows are detected in the same way as
previously discussed: if both inputs are of the same sign, and the sign of the result is different,
overflow has occurred; the result is outside the range. Notice that this test can be performed
simply by looking at the leftmost bit of the two inputs and the result.

An important comment about conversion between signed binary and decimal integers in
their complementary form: although the technique used is identical between 9’s complement
decimal and 1’s complement binary, the modulus used in the two systems is obviously not the
same! For example, the modulus in three-digit decimal is 999, with a positive range of 499. The
modulus in 8-bit binary is 11111111, or 25510, with a positive range of 01111111, or 12710.

This means that you cannot convert directly between 9’s complement decimal and 1’s
complement binary. Instead, you must change the number to sign-and-magnitude represen-
tation, convert, and then change the result to the new complementary form. Of course, if
the number is positive, this process is trivial, since the complementary form is the same as

FIGURE 5.11

One’s Complement Representation

10000000 11111111 00000000

–12710 –010

01111111

12710010

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 148

148 PART TWO DATA IN THE COMPUTER

the sign-and-magnitude form. But you must remember to follow this procedure if the sign is
negative. Remember, too, that you must check for overflow to make sure that your number is
still in range in the new base.

Here are several examples of 1’s complement addition and subtraction, together with the
equivalent decimal results:

EXAMPLES
Add

00101101 = 45

00111010 = 58

01100111 = 103

Add the 16-bit numbers 0000000000101101 = 45

1111111111000101 = −58
1111111111110010 = −13

Note that the addend 1111111111000101 is the inversion of the value in the previous
example with eight additional 0s required to fill up 16 bits. The decimal result, −13, is found
by inverting 1111111111110010 to 0000000000001101 to get a positive magnitude and adding
up the bits.

EXAMPLES
Add

01101010
11111101
101100111

+1
01101000

106
–2

104
(end-around carry)

=

=

=

Subtract

01101010 = 106

−01011010 = 90

Changing the sign of the addend by inverting

01101010
10100101

100001111
+1

00010000 = 16
(end-around carry)

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 149

CHAPTER 5 REPRESENTING NUMERICAL DATA 149

Add

01000000 = 64

+01000001 = 65

10000001 = −126

This is an obvious example of overflow. The correct positive result, 129, exceeds the range
for 8 bits. Eight bits can store 256 numbers; splitting the range only allows positive values
0–127.

The overflow situation shown in the last example occurs commonly in the computer,

and some high-level languages do not check adequately. In some early versions of BASIC, for

example, the sum

16384 + 16386

will show an incorrect result of −32765 or −32766. (The latter result comes from the use of

a different complementary representation, which is discussed in the next section.) What has

happened is that overflow has occurred in a system that uses 16 bits for integer calculations.

The positive range limit for 16 bits is +32767 (a 0 for the sign plus fifteen 1s). Since the sum

of 16384 and 16386 is 32770, the calculation overflows. Unfortunately, the user may never

notice, especially if the overflowing calculation is buried in a long series of calculations. A good

programmer takes such possibilities into account when the program is written. (This type of

error caused some embarrassment when it showed up in an early version of Microsoft Excel.)

Ten’s Complement and 2’s Complement

TEN’S COMPLEMENT You have seen that complementary representation can be effective

for the representation and calculation of signed integer numbers. As you are also aware, the

system that we have described, which uses the largest number in the base as its complementary

reflection point, suffers from some disadvantages that result from the dual zero on its scale.

FIGURE 5.12

Ten’s Complement Scale

Representation 500 999 0

-500 -001

499

4990Number being
represented – +

By shifting the negative scale to the right by one,

we can create a complementary system that has only a

single zero. This is done by using the radix as a basis for

the complementary operation. In decimal base, this is

known as the 10’s complement representation. The use

of this representation will simplify calculations. The

trade-off in using 10’s complement representation is

that it is slightly more difficult to find the complement

of a number. A three-digit decimal scale is shown in

Figure 5.12. Be sure to notice the differences between

this diagram and Figure 5.6.

The theory and fundamental technique for 10’s complement is the same as that for 9’s

complement. The 10’s complement representation uses the modulus as its reflection point. The

modulus for a three-digit decimal representation is 1000, which is one larger than the largest

number in the system, 999.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 150

150 PART TWO DATA IN THE COMPUTER

Complements are found by subtracting the value from themodulus, in this case, 1000. This
method assures a single zero, since (1000 − 0) mod 1000 is zero. Again, as with the previously
discussed complementary methods, notice that the complement of the complement results in
the original value. See the examples below and on the facing page.

There is an alternative method for complementing a 10’s complement number. First,
observe that

1000 = 999 + 1

You recall that the 9’s complement was found by subtracting each digit from 9:

9’s comp = 999 − value

From the previous equation, the 10’s complement can be rewritten as

10’s comp = 1000 − value = 999 + 1 − value = 999 − value + 1

or, finally,
10’s comp = 9’s comp + 1

This gives a simple alternative method for computing the 10’s complement value: find the
9’s complement, which is easy, and add 1 to the result. Either method gives the same result.
You can use whichever method you find more convenient. This alternative method is usually
easier computationally, especially when working with binary numbers, as you will see.

Addition in 10’s complement is particularly simple. Since there is only a single zero in 10’s
complement, sums that cross the modulus are unaffected. Thus, the carry that results when the
addition crosses the zero point is simply ignored. To add two numbers in 10’s complement,
one simply adds the digits; any carry beyond the specified number of digits is thrown away.
(Actually, in the computer, the carry is saved in a special “carry bit”, just in case it is to be used
to extend the addition to another group of bits for multiple-word additions.) Subtraction is
again performed by inverting the subtrahend and adding.

EXAMPLES
Find the 10’s complement of 247.

As a reminder, note that the question asks for the 10’s complement of 247, not the
10’s complement representation. Since 247 represents a positive number, its 10’s complement
representation is, of course, 247.

The 10’s complement of 247 is

1000 − 247 = 753

Since 247 is a positive representation, 753 represents the value −247.

Find the 10’s complement of 17.
As in the 9’s complement work, we always have to be conscious of the number of specified

digits. Since all the work so far has assumed that the numbers contain three digits, let’s solve
this problem from that assumption:

1000 − 017 = 983

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 151

CHAPTER 5 REPRESENTING NUMERICAL DATA 151

Find the sign and magnitude of the three-digit number with 10’s complement representation:
777

Since the number begins with a 7, it must be negative. Therefore,

1000 − 777 = 223

The sign–magnitude value is −223.

The range of numbers in 10’s complement for three digits can be seen in Figure 5.12.

Of particular interest is the fact that the positive and negative regions are of different size:

there is one negative number, 500, that cannot be represented in the positive region. (The 10’s

complement of 500 is itself.) This peculiarity is a consequence of the fact that the total range of

numbers is even for any even-numbered base, regardless of word size (in this case, 10W). Since

one value is reserved for zero, the number of remaining values to be split between positive and

negative is odd and, thus, could not possibly be equal.

TWO’S COMPLEMENT Two’s complement representation for binary is, of course, similar

to 10’s complement representation for decimal. In binary form, the modulus consists of a base

2 “1” followed by the specified number of 0s. For 16 bits, for example, the modulus is

10000000000000000

As was true for the 10’s complement, the 2’s complement of a number can be found in one

of two ways: either subtract the value from themodulus or find the 1’s complement by inverting

every 1 and 0 and adding 1 to the result.

The second method is particularly well suited to implementation in the computer, but you

can use whichever method you find more convenient.

Figure 5.13 shows an 8-bit scale for 2’s complement representation.

Two’s complement addition, like 10’s complement addition in decimal, consists of adding

the two numbers mod <the modulus>. This is particularly simple for the computer, since it

simply means eliminating any 1s that don’t fit into the number of bits in the word. Subtraction

and overflow are handled as we have already discussed.

As in 10’s complement, the range is unevenly divided between positive and negative. The

range for 16 bits, for example, is −32768 ≤ value ≤ 32767.

There are many 2’s complement problems at the end of the chapter for you to practice on.

The use of 2’s complement is much more common in computers than is 1’s complement,

but both methods are in use. The trade-off is made by the designers of a particular computer:

1’s complement makes it easier to change the sign of a number, but addition requires an extra

end-around carry step. One’s complement has the additional drawback that the algorithmmust

FIGURE 5.13

Two’s Complement Representation

10000000 11111111 00000000

–12810 –110

01111111

12710010

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 152

152 PART TWO DATA IN THE COMPUTER

test for and convert −0 to 0 at the end of each operation. Two’s complement simplifies the

addition operation at the expense of an additional add operation any time the sign change

operation is required.

As a final note, before we conclude our discussion of binary complements, it is useful to

be able to predict approximate sizes of integers that are represented in complementary form

without going through the conversion. A few hints will help:

1. Positive numbers are always represented by themselves. Since they always start with 0,

they are easily identified.

2. Small negative numbers, that is, negative numbers close to 0, have representations

that start with large numbers of 1s. The number −2 in 8-bit 2’s complement, for

example, is represented by

11111110

whereas −128, the largest negative 2’s complement number, is represented by

10000000

This is evident from the scale in Figure 5.13.

3. Since there is only a difference in value of 1 between 1’s and 2’s complement

representations of negative numbers (positive numbers are, of course, identical in

both representations), you can get a quick idea of the value in either representation

simply by inverting all the 1s and 0s and approximating the value from the result.

Overflow and Carry Conditions

We noted earlier in this discussion that overflows occur when the result of a calculation does

not fit into the fixed number of bits available for the result. In 2’s complement, an addition or

subtraction overflow occurs when the result overflows into the sign bit. Thus, overflows can

occur only when both operands have the same sign and can be detected by the fact that the sign

of the result is opposite to that of the operands.

Computers provide a flag that allows a programmer to test for an overflow condition. The

overflow flag is set or reset each time a calculation is performed by the computer. In addition,

the computer provides a carry flag that is used to correct for carries and borrows that occur

when large numbers must be separated into parts to perform additions and subtractions. For

example, if the computer has instructions that are capable of adding two 32-bit numbers, it

would be necessary to separate a 64-bit number into two parts, add the least significant part

of each, then add the most significant parts, together with any carry that was generated by the

previous addition. For normal, single-precision 2’s complement addition and subtraction the

carry bit is ignored.

Although overflow and carry procedures operate similarly, they are not quite the same,

and can occur independently of each other. The carry flag is set when the result of an addition

or subtraction exceeds the fixed number of bits allocated, without regard to sign. It is perhaps

easiest to see the difference between overflow and carry conditions with an example. This

example shows each of the four possible outcomes that can result from the addition of two 4-bit

2’s complement numbers.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 153

CHAPTER 5 REPRESENTING NUMERICAL DATA 153

EXAMPLE

(+4) + (+2) (+4) + (+6)
0100 no overflow, 0100 overflow,
0010 no carry 0110 nocarry
0110 = (+6) the result is correct 1010 = (−6) the result is incorrect

(−4) + (−2) (−4) + (−6)
1100 no overflow, 1100 overflow,
1110 carry 1010 carry
11010 = (−6) ignoring carry, 10110 = (+6) ignoring the carry,

the result is correct the result is incorrect

If an overflow occurs on any but the most significant part of a multiple part addition, it is ignored
(see Exercise 5.13).

Other Bases

Any even-numbered base can be split the same way to represent signed integers in that base.
Either the modulus or the largest-digit value can be used as a mirror for the complementary
representation. Odd bases are more difficult: either the range must be split unevenly to use
the leftmost digit as an indicator, or the second left digit must be used together with the first
to indicate whether the represented number is positive or negative. We will not consider odd
bases any further.

Of particular interest are the corresponding 7’s and 8’s complements in octal and 15’s
and 16’s complements in hexadecimal. These correspond exactly to 1’s and 2’s complement in
binary, so you can use calculation in octal or hexadecimal as a shorthand for binary.

As an example, consider four-digit hexadecimal as a substitute for 16-bit binary. The
range will be split down the middle, so that numbers starting with 0–716 are positive and those
starting with 8–F are negative. But note that hex numbers starting with 8–F all have a binary
equivalent with 1 in the leftmost place, whereas 0–7 all start with 0. Therefore, they conform
exactly to the split in 16-bit binary.

You can carry the rest of the discussion by yourself, determining how to take the
complement, and how to add, from the foregoing discussions. There are practice examples at
the end of the chapter.

Finally, note that since binary-coded decimal is essentially a base 10 form, the use of
complementary representation for BCD would require algorithms that analyze the first digit to
determine the sign and then perform 9’s or 10’s complement procedures. Since the purpose of
BCD representation is usually to simplify the conversion process, it is generally not practical to
use complementary representation for signed integers in BCD.

Summary of Rules for Complementary Numbers

The following points summarize the rules for the representation and manipulation of com-
plementary numbers, both radix and diminished radix, in any even number base. For most
purposes, you will be interested only in 2’s complement and 16’s complement:

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 154

154 PART TWO DATA IN THE COMPUTER

1. Remember that the word “complement” is used in two different ways. To
complement a number, or take the complement of a number, means to change its
sign. To find the complementary representation of a number means to translate or
identify the representation of the number just as it is given.

2. Positive numbers are represented the same in complementary form as they would be
in sign-and-magnitude form. These numbers will start with 0, 1, . . . N/2–1. For
binary numbers, positive numbers start with 0, negative with 1.

3. To go from negative sign-and-magnitude to complementary form, or to change the
sign of a number, simply subtract each number from the largest number in the base
(diminished radix) or from the value 100. . . , where each zero corresponds to a
number position (radix). Remember that implied zeros must be included in the
procedure. Alternatively, the radix form may be calculated by adding 1 to the
diminished radix form. For 2’s complement, it is usually easiest to invert every digit
and add 1 to the result.

4. To get the sign-and-magnitude representation for negative numbers, use the
procedure in (2) to get the magnitude. The sign will, of course, be negative.
Remember that the word size is fixed; there may be one or more implied 0s at the
beginning of a number that mean the number is really positive.

5. To add two numbers, regardless of sign, simply add in the usual way. Carries beyond
the leftmost digit are ignored in radix form, added to the result in diminished radix
form. To subtract, take the complement of the subtrahend and add.

6. If we add two complementary numbers of the same sign and the result is of opposite
sign, the result is incorrect. Overflow has occurred.

5.3 REAL NUMBERS

A Review of Exponential Notation

Real numbers add an additional layer of complexity. Because the number contains a radix
point (decimal in base 10, binary in base 2), the use of complementary arithmetic must be
modified to account for the fractional part of the number. The representation of real numbers
in exponential notation simplifies the problem by separating the number into an integer, with
a separate exponent that places the radix point correctly. As before, we first present the
techniques in base 10, since working with decimal numbers is more familiar to you. Once you
have seen the methods used for the storage and manipulation of floating point numbers, we
will then extend our discussion to the binary number system. This discussion will include the
conversion of floating point numbers between the decimal and binary bases (which requires
some care) and the consideration of floating point formats used in actual computer systems.

Consider the whole number
12345

If we allow the use of exponents, there are many different ways in which we can represent
this number. Without changing anything, this number can be represented as

12345 × 100

If we introduce decimals, we can easily create other possible representations. Each of these
alternative representations is created by shifting the decimal point from its original location.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 155

CHAPTER 5 REPRESENTING NUMERICAL DATA 155

Since each single-place shift represents a multiplication or division of the value by the base, we
can decrease or increase the exponent to compensate for the shift. For example, let us write the
number as a decimal fraction with the decimal point at the beginning:

0.12345 × 105

or, as another alternative,
123450000 × 10−4

or even,

0.0012345 × 107

Of course, this last representation will be a poor choice if we are limited to five digits of
magnitude,

0.00123 × 107

since we will have sacrificed two digits of precision in exchange for the two zeros at the
beginning of the number which do not contribute anything to the precision of the number.
(You may recall from previous math courses that they are known as insignificant digits.) The
other representations do retain full precision, and any one of these representations would be
theoretically as good as any other. Thus, our choice of representation is somewhat arbitrary
and will be based on more practical considerations.

The way of representing numbers described here is known as exponential notation or,
alternatively, as scientific notation. Using the exponential notation for numbers requires the
specification of four separate components to define the number. These are:

1. The sign of the number (“+”, for our original example)

2. The magnitude of the number, known as themantissa (12345)

3. The sign of the exponent (“+”)
4. The magnitude of the exponent (3, see below).

Two additional pieces of information are required to complete the picture:

5. The base of the exponent (in this case, 10)

6. The location of the decimal (or other base) radix point.

Both these latter factors are frequently unstated, yet extremely important. In the computer,
for example, the base of the exponent is usually, but not always, specified to be 2. In some
computers, 16 or 10 may be used instead, and it is obviously important to know which is being
used if you ever have to read the numbers in their binary form. The location of the decimal
point (or binary point, if we’re working in base 2) is also an essential piece of information. In
the computer, the binary point is set at a particular location in the number, most commonly
the beginning or the end of the number. Since its location never changes, it is not necessary to
actually store the point. Instead, the location of the binary point is implied.

Knowing the location of the point is, of course, essential. In the example that accompanies
the rules just given, the location of the decimal point was not specified. Reading the data
suggests that the number might be

+12345 × 10+3

which, of course, is not correct if we’re still using the number from our original example. The
actual placement of the decimal point should be

12.345 × 103

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 156

156 PART TWO DATA IN THE COMPUTER

Let us summarize these rules by showing another example,with each component specifically
marked. Assume that the number to be represented is

−0.0000003579

One possible representation of this number is

Sign of mantissa

Location of
decimal point

Mantissa Base Exponent

Sign of exponent

—0.35790 × 10—6

Floating Point Format

As was the case with integers, floating point numbers will be stored and manipulated in the
computer using a “standard”, predefined format. For practical reasons, a multiple of 8 bits is
usually selected as the word size. This will simplify the manipulation and arithmetic that is
performed with these numbers.

In the case of integers, the entire word is allocated to the magnitude of the integer and its
sign. For floating point numbers, the word must be divided: part of the space is reserved for the
exponent and its sign; the remainder is allocated to the mantissa and its sign. The base of the
exponent and the implied location of the binary point are standardized as part of the format
and, therefore, do not have to be stored at all.

You can understand that the format chosen is somewhat arbitrary, since you have already
seen that there are many different ways to represent a floating point number. Among the
decisions made by the designer of the format are the number of digits to use, the implied
location of the binary or decimal point, the base of the exponent, and the method of handling
the signs for the mantissa and the exponent.

For example, suppose that the standard word consists of space for seven decimal digits and
a sign:

S M M M M M M M

This format would allow the storage of any integer in the range

−9,999,999 < I < +9,999,999

with full, seven-digit precision. Numbers of magnitude larger than 9,999,999 result in overflow.
Numbers of magnitude less than 1 cannot be represented at all, except as 0.

For floating point numbers, we might assign the digits as follows:

Sign of
mantissa

Two digits
for the

exponent

The remaining
five digits for
the mantissa

SEEMMMMM

In addition we have to specify the implied location for the decimal point.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 157

CHAPTER 5 REPRESENTING NUMERICAL DATA 157

In this example we have “traded” two digits of exponent in exchange for the loss of two

digits of precision. We emphasize that we have not increased the number of values that can be

represented by seven digits. Seven digits can represent exactly 10,000,000 different values, no

matter how they are used. We have simply chosen to use those digits differently—to increase

the expressible range of values by giving up precision throughout the range. If we wish to

increase the precision, one option is to increase the number of digits.

There are other possible trades. We could, for example, increase the precision by another

digit by limiting the exponent to a single digit. This might not be as limiting as it first appears.

Since each increment or decrement of the exponent changes the number by a factor equivalent

to the base (in this case, 10), a fairly substantial range of numbers can be accommodated with

even a single digit, in this case 109 to 100, or 1 billion to 1.

The signdigitwill be used to store the sign of themantissa.Anyof themethods shown earlier

in this chapter for storing the sign and magnitude of integers could be used for the mantissa.

Most commonly, the mantissa is stored using sign–magnitude format. A few computers use

complementary notation.

Notice that we have made no specific provision for the sign of the exponent within the

proposed format. We must therefore use some method that includes the sign of the exponent

within the digits of the exponent itself. One method that you have already seen for doing this

is the complementary representation. (Since the exponent and mantissa are independent of

each other, and are used differently in calculations, there is no reason to assume that the same

representation would be used for both.)

The manipulations used in performing exponential arithmetic allow us to use a simple

method for solving this problem. If we pick a value somewhere in the middle of the possible

values for the exponent, for example, 50 when the exponent can take on values 0–99, and

declare that value to correspond to the exponent 0, then every value lower than that will be

negative and those above will be positive. Figure 5.14 shows the scale for this offset technique.

What we have done is offset, or bias, the value of the exponent by our chosen amount.

Thus, to convert from exponential form to the format used in our example, we add the offset to

the exponent, and store it in that form. Similarly, the stored form can be returned to our usual

exponential notation by subtracting the offset.

This method of storing the exponent is known as excess-N notation, whereN is the chosen

midvalue. It is simpler to use for exponents than the complementary form, and appropriate

to the calculations required on exponents. In our example we have used excess-50 notation.

This allows us to store an exponential range of −50 to +49, corresponding to the stored values

00–99. We could, if we wished, pick a different offset value, which would expand our ability to

handle larger numbers at the expense of smaller numbers, or vice versa.

If we assume that the implied decimal point is located at the beginning of the five-digit

mantissa, excess-50 notation allows us a magnitude range of

0.00001 × 10−50 < number < 0.99999 × 10+49
FIGURE 5.14

Excess-50 Representation

Representation 0 49 50

-50 -1

99

490Exponent being
represented – +Increasing value

This is an obviously much larger range than that

possible using integers, and at the same time gives us

the ability to express decimal fractions. In practice, the

range may be slightly more restricted, since many format

designs require that the most significant digit not be 0,

even for very small numbers. In this case, the smallest

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 158

158 PART TWO DATA IN THE COMPUTER

FIGURE 5.15

Regions of Overflow and Underflow

0
–0.99999 × 1049

Overflow
region

Underflow
region

Overflow
region

0.99999 × 1049
–10–55 10–55

expressible number becomes 0.10000 × 10−50, not
a great limitation. The word consisting of all 0s is

frequently reserved to represent the special value 0.0.

If we were to pick a larger (or smaller) value for

the offset, we could skew the range to store smaller

(or larger) numbers. Generally, values somewhere

in the midrange seem to satisfy the majority of

users, and there seems little reason to choose any

other offset value.

Notice that, like the integer, it is still possible, although very difficult, to create an overflow

by using a number of magnitude too large to be stored. With floating point numbers, it is also

possible to have underflow, where the number is a decimal fraction of magnitude too small

to be stored. The diagram in Figure 5.15 shows the regions of underflow and overflow for our

example. Note that in the diagram, 0.00001 × 10−50 is expressed equivalently as 10−55.
There is onemore consideration. As you are already aware, the computer is actually capable

of storing only numbers, no signs or decimal points. We have already handled the decimal

point by establishing a fixed, implied point. We must also represent the sign of the number in a

way that takes this limitation into account.

Here are some examples of floating point decimal representations. The format used is that

shown on page 157: a sign, two digits of exponent stored excess-50, and five digits of mantissa.

The value 0 is used to represent a “+” sign; 5 has been arbitrarily chosen to represent a “–” sign,

just as 1 is usually chosen within the computer for the same purpose. The base is, of course, 10;

the implied decimal point is at the beginning of themantissa. You should look at these examples

carefully to make sure that you understand all the details of the floating point format.

EXAMPLES
05324657 = 0.24657 × 103 = 246.57

54810000 = −0.10000 × 10−2 = −0.0010000

(Note that five significant digits are maintained.)

55555555 = −0.55555 × 105 = −55555

04925000 = 0.25000 × 10−1 = 0.025000

Normalization and Formatting of Floating Point Numbers

The number of digits used will be determined by the desired precision of the numbers. To

maximize the precision for a given number of digits, numbers will be stored whenever possible

with no leading zeros. This means that, when necessary, numbers are shifted left by increasing

the exponent until leading zeros are eliminated. This process is called normalization.
Our standard format, then, will consist of a mantissa of fixed, predetermined size with a

decimal point placed at a fixed, predetermined location. The exponent will be adjusted so that

numbers will be stored in this format with no leading zeros.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 159

CHAPTER 5 REPRESENTING NUMERICAL DATA 159

As an example, let us set up a standard format that reflects the storage capabilities suggested
in the previous section. Our format will consist of a sign and five digits, with the decimal point
located at the beginning of the number:

.M M M M M × 10EE

There are four steps required to convert any decimal number into this standard format:

1. Provide an exponent of 0 for the number, if an exponent was not already specified as
part of the number.

2. Shift the decimal point left or right by increasing or decreasing the exponent,
respectively, until the decimal point is in the proper position.

3. Shift the decimal point right, if necessary, by decreasing the exponent, until there are
no leading zeros in the mantissa.

4. Correct the precision by adding or discarding digits as necessary to meet the
specification. We discard or round any digits in excess of the specified precision by
eliminating the least significant digits. If the number has fewer than the specified
number of digits, we supply zeros at the end.

Once we have normalized the number and put it into a standard exponential form, we can
perform a fifth step to convert the result into the desired word format. To do this, we change
the exponent into excess-50 notation and place the digits into their correct locations in the
word.

Conversions between integer and floating point format are similar. The integer is treated as
a number with an implied radix point at the end of the number. In the computer, an additional
step may be required to convert the integer between complementary and sign–magnitude
format to make it compatible with floating point format.

Here are some examples of a decimal to floating point format conversion:

EXAMPLES
Convert the number

246.8035

into our standard format.

1. Adding an exponent makes the number

246.8035 × 100

2. We shift the decimal to the left three places, thereby increasing the exponent by 3:

0.2468035 × 103

3. Since the number is already normalized (no leading zeros), there is no adjustment
required.

4. There are seven digits, so we drop the two least significant digits, and the final
exponential representation is

0.24680 × 103

5. The exponent is 3, which in excess-50 notation is represented as 53. If we represent a
“+” sign with the digit 0, and a “–” sign with the digit 5 (this choice is totally arbitrary,
but we needed to select some digits since the sign itself cannot be stored), the final
stored result becomes

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 160

160 PART TWO DATA IN THE COMPUTER

The sign

05324680

The mantissa

Excess-50 exponent

Assume that the number to be converted is

1255 × 10−3

1. The number is already in exponential form.

2. We must shift the decimal to the left four places, so the number becomes

0.1255 × 10+1

The positive exponent results from adding 4 to the original −3 exponent.

3. The number is normalized, so no additional adjustment is required.

4. A zero is added to provide five digits of precision. The final result in exponential form is

0.12550 × 101

5. The exponent in excess-50 notation becomes 51, and the result in word format is

05112550

Assume that the number to be converted is

−0.00000075

1. Converting to exponential notation, we have

−0.00000075 × 100

2. The decimal point is already in its correct position, so no modification is necessary.

3. Normalizing, the number becomes

−0.75 × 10−6

4. And the final exponential result,

−0.75000 × 10−6

5. In our word format, this becomes
54475000

Although the technique is simple and straightforward, it will still require some practice for
you to feel comfortable with it. We suggest that you practice with a friend, inventing numbers
for each other to put into a standard format.

Some students have a bit of difficulty remembering whether to increase or decrease the
exponent when shifting the number left or right. There is a simple method that may help you

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 161

CHAPTER 5 REPRESENTING NUMERICAL DATA 161

to remember which way to go: when you shift the decimal to the right, it makes the resulting
number larger. (For example, 1.5 becomes 15.) Thus, the exponent must become smaller to
keep the number the same as it was originally.

A Programming Example

Perhaps representing the steps as a pseudocode procedure will clarify these concepts even
further. The procedure in Figure 5.16 converts numbers in normal decimal format to the
floating point format

SEEM M M M M

The implied decimal point is at the beginning of the mantissa, and the sign is stored as 0
for positive, 5 for negative. The mantissa is stored in sign–magnitude format. The exponent is
stored in excess-50 format. The number 0.0 is treated as a special case, with an all-zero format.

We suggest that you trace through the procedure carefully, until you understand each step.

FIGURE 5.16

A Procedure to Convert Decimal Numbers to Floating Point Format

function ConvertToFloat();
//variables used:
real decimalin; //decimal number to be converted
//components of the output
integer sign, exponent, integermantissa;
float mantissa; //used for normalization
integer floatout; //final form of output
{

if (decimalin == 0.0) floatout = 0;
else {

if (decimalin > 0.0) sign = 0;
else sign = 50000000;
exponent = 50;
StandardizeNumber;
floatout = sign + exponent * 100000 + integermantissa;
} //end else

function StandardizeNumber(); {
mantissa = abs (mantissa);
//adjust the decimal to fall between 0.1 and 1.0.

while (mantissa >= 1.00) {
mantissa = mantissa / 10.0;
exponent = exponent + 1;

} //end while
while (mantissa < 0.1) {

mantissa = mantissa * 10.0;
exponent = exponent – 1;

} //end while
integermantissa = round (10000.0 * mantissa)

} //end function StandardizeNumber
} //end ConvertToFloat

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 162

162 PART TWO DATA IN THE COMPUTER

Floating Point Calculations

Floating point arithmetic is obviouslymore complex than integer arithmetic. First, the exponent

and the mantissa have to be treated separately. Therefore, each has to be extracted from each

number being manipulated.

ADDITION AND SUBTRACTION You recall that in order to add or subtract numbers

that contain decimal fractions, it is necessary that the decimal points line up. When using

exponential notation, it is thus a requirement that the implied decimal point in both numbers

be in the same position; the exponents of both numbers must agree.

The easiest way to align the two numbers is to shift the number with the smaller exponent

to the right a sufficient number of spaces to increase the exponent to match the larger exponent.

This process inserts insignificant zeros at the beginning of the number. Note that this process

protects the precision of the result by maintaining all the digits of the larger number. It is the

least significant digits of the smaller number that will disappear.

Once alignment is complete, addition or subtraction of the mantissas can take place. It is

possible that the addition or subtraction may result in an overflow of the most significant digit.

In this case, the number must be shifted right and the exponent incremented to accommodate

the overflow. Otherwise, the exponent remains unchanged.

It is useful to notice that the exponent can be manipulated directly in its excess form, since

it is the difference in the two exponents that is of interest rather than the value of the exponent

itself. It is thus not necessary to change the exponents to their actual values in order to perform

addition or subtraction.

EXAMPLE
Add the two floating point numbers

05199520

04967850

Assume that these numbers are formatted using sign-and-magnitude notation for the man-
tissa and excess-50 notation for the exponent. The implied decimal point is at the beginning of
the mantissa, and base 10 is used for the exponent.

Shifting the lower mantissa right two places to align the exponent, the two numbers become

05199520

0510067850

Adding the mantissas, the new mantissa becomes

(1)0019850

We have put the 1 in parentheses to emphasize the fact that it is a carry beyond the original
left position of the mantissa. Therefore, we must again shift the mantissa right one place and
increment the exponent to accommodate this digit:

05210019(850)

Rounding the result to five places of precision, we finally get

05210020

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 163

CHAPTER 5 REPRESENTING NUMERICAL DATA 163

Checking the result,

05199520 = 0.99520 × 101 = 9.9520

04967850 = 0.67850 × 10−1 = 0.06785

10.01985 = 0.1001985 × 102

which converts to the result that we previously obtained.

MULTIPLICATION AND DIVISION Alignment is not necessary in order to perform
multiplication or division. Exponential numbers are multiplied (or divided) by multiplying
(dividing) the two mantissas and adding (subtracting) the two exponents. The sign is dealt with
separately in the usual way. This procedure is relatively straightforward. There are two special
considerations that must be handled, however:

1. Multiplication or division frequently results in a shifting of the decimal point (e.g.,
0.2 × 0.2 = 0.04) and normalization must be performed to restore the location of the
decimal point and to maintain the precision of the result.

2. Wemust adjust the excess value of the resulting exponent. Adding two exponents,
each of which contains an excess value, results in adding the excess value to itself, so
the final exponent must be adjusted by subtracting the excess value from the result.
Similarly, when we subtract the exponents, we subtract the excess value from itself,
and we must restore the excess value by adding it to the result.

EXAMPLE
This is seen easily with an example. Assume that we have two numbers with exponent 3. Each is
represented in excess-50 notation as 53. Adding the two exponents,

53
53

106

We have added the value 50 twice, and so we must subtract it out to get the correct
excess-50 result:

106
−50
56

3. The multiplication of two five-digit normalized mantissas yields a ten-digit result. Only
five digits of this result are significant, however. To maintain full, five-digit precision,
we must first normalize and then round the normalized result back to five digits.

EXAMPLE
Multiply the two numbers

05220000

×04712500

Adding the exponents and subtracting the offset results in a new, excess-50 exponent of

52 + 47 − 50 = 49

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 164

164 PART TWO DATA IN THE COMPUTER

Multiplying the two mantissas,

0.20000 × 0.12500 = 0.025000000

Normalizing the result by shifting the point one space to the right decreases the exponent by
one, giving a final result

04825000

Checking our work,

05220000 is equivalent to 0.20000 × 102,

04712500 is equivalent to 0.12500 × 10−3

which multiplies out to
0.0250000000 × 10−1

Normalizing and rounding,

0.0250000000 × 10−1 = 0.25000 × 10−2

which corresponds to our previous result.

Floating Point in the Computer

The techniques discussed in the previous section can be applied directly to the storage of
floating point numbers in the computer simply by replacing the digits with bits. Typically, 4, 8,
or 16 bytes are used to represent a floating point number. In fact, the few differences that do
exist result from “tricks” that can be played when “0” and “1” are the only options.

A typical floating point format might look like the diagram in Figure 5.17. In this example,
32 bits (4 bytes) are used to provide a range of approximately 10−38 to 10+38. With 8 bits, we can
provide 256 levels of exponent, so it makes sense to store the exponent in excess-128 notation.

EXAMPLES
Here are some examples of binary floating point format using this notation. Again we have
assumed that the binary point is at the start of the mantissa. The base of the exponent is 2.

0 10000001 11001100000000000000000 =
+11001100000000000000000

1 10000100 10000111100000000000000 =
−10000111100000000000000

1 01111110 10101010101010101010101 =
−0.0010101010101010101010101

Thanks to the nature of the binary system, the 23 bits of mantissa can be stretched to
provide 24 bits of precision, which corresponds to approximately seven decimal digits of
precision. Since the leading bit of the mantissa must be “1” if the number is normalized, there
is no need to store the most significant bit explicitly. Instead, the leading bit can be treated
implicitly, similar to the binary point.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 165

CHAPTER 5 REPRESENTING NUMERICAL DATA 165

FIGURE 5.17

Typical Floating Point Format

S E E

bit 0 1 8 9 31

MM

Sign of
mantissa

Mantissa
msb Isb

Excess-128
exponent

There are three potential disadvantages to using this

trick. First, the assumption that the leading bit is always

a “1” means that we cannot store numbers too small to

be normalized, which slightly limits the small end of the

range. Second, any format that may require a “0” in the

most significant bit for any reason cannot use this method.

Finally, this method requires that we provide a separate

way to store the number 0.0, since the requirement that the

leading bit be a “1”makes amantissa of 0.0 an impossibility!

Since the additional bit doubles the available precision

of the mantissa in all numbers, the slightly narrowed range

is usually considered an acceptable trade-off. The number

0.0 is handled by selecting a particular 32-bit word and

assigning it the value 0.0. Twenty-four bits of mantissa corresponds to approximately seven

decimal digits of precision.

Don’t forget that the base and implied binary point must also be specified.

There are many variations, providing different degrees of precision and exponential range,

but the basic techniques for handling floating point numbers in the computer are identical to

those that we have already discussed in the previous sections of this chapter.

IEEE 754 STANDARD Most current computers conform to IEEE 754 standard formats.

The IEEE Computer Society is a society of computer professionals. Among its tasks, the

IEEE Computer Society develops technical standards for use by the industry. The IEEE 754

standard defines formats for 16-, 32-, 64-, and 128-bit floating point arithmetic with a binary

exponent, as well as 64- and 128-bit formats using a decimal exponent. Instructions built into

modern computers utilize the standard to perform floating point arithmetic, normalization,

and conversion between integer and floating point representations internally under program

command. The standard also facilitates the portability of programs between different computers

that support the standard.

FIGURE 5.18

IEEE Standard 32-bit Floating Point Value
Definition

0
0
1–254
255
255

± 0
not 0
any
± 0
not 0

Exponent Mantissa Value

0
± 2–126 × 0.M
± 2E–127 × 1.M
± ∞

NaN (Not a Number)

Typical of the standard is the 32-bit binary format shown

in Figure 5.18. The standard defines a format consisting of

32 bits, divided into a sign, 8 bits of exponent, and 23 bits of

mantissa. Since normalized numbers must always start with a

1, the leading bit is not stored, but is instead implied; this bit is

located to the left of the implied binary point. Thus, numbers

are normalized to the form

1.M M M M M M M…

The exponent is formatted using excess-127 notation,

with an implied base of 2. This would theoretically allow

an exponent range of 2−127 to 2128. In actuality, the stored

exponent values 0 and 255 are used to indicate special values,

and the exponential range of this format is thus restricted to

2−126 to 2127

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 166

166 PART TWO DATA IN THE COMPUTER

The number 0.0 is defined by a mantissa of 0 together with the special exponential value 0.

The IEEE standard also allows the values ±∞, very small denormalized numbers, and various

other special conditions. Overall, the standard allows approximately seven significant decimal

digits and an approximate value range of 10−45 to 1038.
The 64-bit standard supports approximately sixteen significant decimal digits and a range

of more than 10−300 to 10300. The 128-bit standard supports thirty-four decimal digits and a

range of more than 10−4900 to 104900! The 16-bit format is extremely limited in both range and

precision, but is useful for simple graphics applications.

Conversion between Base 10 and Base 2

On occasion, you may find it useful to be able to convert real numbers between decimal

and binary representation. This task must be done carefully. There are two major areas that

sometimes cause students (and others!) difficulty:

1. The whole and fractional parts of numbers with an embedded decimal or binary point

must be converted separately.

2. Numbers in exponential form must be reduced to a pure decimal or binary mixed

number or fraction before the conversion can be performed.

We dealt with the first issue in Section 3.8. Recall, from that section, that when converting

from one base to another, one must deal with the different multipliers associated with each

successive digit. To the left of the radix point, the multipliers are integer, and there is a direct

relationship between the different bases. To the right of the point, the multipliers are fractional,

and there may or may not be a rational relationship between the multipliers in the different

bases.

The solution is to convert each side of the radix point separately using the techniques

discussed in Chapter 3. As an alternative, you can multiply the entire number in one base

by whatever number is required to make the entire number an integer, and then convert

the number in integer form. When this is complete, however, you must divide the converted

result by that same multiplier in the new base. It is not correct to simply shift the radix point

back, since each shift has a different value in the new base! Thus, if you shift a binary point

right by seven places, you have effectively multiplied the number by 128, and you must divide

the converted number by 128 in the new base. This latter method is best illustrated with an

example.

EXAMPLE
Convert the decimal number 253.75 to binary floating point form.

Begin by multiplying the number by 100 to form the integer value 25375. This is converted
to its binary equivalent 110001100011111, or 1.10001100011111 × 214. The IEEE 754
floating point equivalent representation for this integer would be

0
Sign

Excess-127
Exponent = 127 + 14

Mantissa (initial 1 is dropped)

10001101 10001100011111

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 167

CHAPTER 5 REPRESENTING NUMERICAL DATA 167

One more step is required to complete the conversion. The result must be divided by the
binary floating point equivalent of 10010 to restore the original decimal value. 10010 converts
to binary 11001002, or 010000101100100 in IEEE 754 form. The last step is to divide
the original result by this value, using floating point division. We will omit this step, as it is
both difficult and irrelevant to this discussion. Although this method looks more difficult than
converting the number directly as a mixed fraction, it is sometimes easier to implement within
the computer.

The problem with converting floating point numbers expressed in exponential notation is

essentially the same problem; however, the difficulty ismore serious because it looks as though it

should bepossible to convert a number, keeping the same exponent, and this is of course not true.

If you always remember that the exponent actually represents a multiplier of value Be,

where B is the base and e is the actual exponent, then you will be less tempted to make this

mistake. Obviously it is incorrect to assume that this multiplier would have the same value for

a different B.

Instead, it is necessary to follow one of the two solutions just outlined: either reduce the

exponential notation to a standard mixed fraction and convert each side separately, or use the

value Be as a multiplier to be divided in the new base at the end of the conversion.

5.4 PROGRAMMING CONSIDERATIONS
In this chapter, you have been exposed to a number of differentways of storing andmanipulating

numeric values. It should be of interest to you to consider how a programmer might make an

intelligent choice between the many different options available.

The trade-offs between integer and floating point are clear. Integer calculations are easier

for the computer to perform, have the potential to provide higher precision, and are obviously

much faster to execute. Integer values usually take up fewer storage locations. As you will see

later, it takes a certain amount of time to access each storage location; thus, the use of fewer

storage locations saves time, as well as space.

Clearly, the use of integer arithmetic is preferred whenever possible. Most modern high-

level languages provide two ormore different integer word sizes, usually at least a “short” integer

of 16 bits and a “long” integer of 64 bits. Now that you understand the range limitations of

integer arithmetic, you are in a position to determine whether a particular variable or constant

can use the integer format, andwhether special error checkingmay be required in your program.

The longer integer formats may require multiple-word calculation algorithms, and as such

are slower to execute than short formats. The short format is preferable when it is sufficient for

the values that you expect. It may also be necessary to consider the limitations of other systems

that the same program may have to operate on.

The use of real numbers is indicated whenever the variable or constant has a fractional

part, whenever the number can take on very large or very small values that are outside of integer

range, or whenever the required precision exceeds the number of different values that are

possible in the longest integer format available to you. (As you’ve seen, most systems provide a

floating point format of very high precision.) Of course, it is sometimes possible to multiply a

mixed number by some multiplier to make it integer, perform the calculations in integer form,

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 168

168 PART TWO DATA IN THE COMPUTER

and then divide back. If the number of calculations is large, and the numbers can be adjusted

to operate as integers, this can be a worthwhile option to consider, especially for the gain in

execution speed.

As with integers, it is desirable to use the real number with the least precision that is

sufficient for the task. Higher precision formats require more storage and usually must use

multiple-word floating point or packed decimal (BCD) calculation algorithms that are much

slower than the lower precision formats.

Recall that decimal fractions may convert into irrational binary fractions. For those

languages that provide the capability, the use of packed decimals represents an attractive

alternative to floating point for those business applications where exact calculations involving

mixed decimal numbers are required.

SUMMARY AND REVIEW
Computers store all data as binary numbers. There are a number of different ways to format

these binary numbers to represent the various types of numbers required for computer

processing. Conceptually, the simplest formats are sign-and-magnitude and binary-coded

decimal. Although BCD is sometimes used for business programming, both of these formatting

methods have shortcomings in terms of number manipulation and calculation.

Unsigned integers can of course be directly represented by their binary equivalents.

Complementary arithmetic is usually the method of choice for signed integers. Nine’s decimal

complement, and its binary equivalent 1’s complement, split the number range in two, using the

upper half of the range to represent negative numbers. Positive numbers represent themselves.

These representations are convenient and especially simple to use, since the complement is

foundby subtracting the number froma rowof the largest digits in the base. Binary complements

may be found by simply inverting the 0s and 1s in the number. Calculations are a bit more

difficult due to the existence of both positive and negative values for zero, but end-around carry

addition may be used for this purpose.

Ten’s complement and 2’s complement split the range similarly, but use a single value 0

for zero. This requires the use of a complement based on a value one larger than the largest

number in the base for the given number of digits. This “base value” will always consist of

a 1 followed by N zeros, where N is the number of digits being used. Complementation may

be taken by inverting the number as before, and adding 1 to the result, or by subtracting the

number from the base value. Calculation is straightforward, using modulo arithmetic. Most

computer arithmetic instructions are based on 2’s complement arithmetic.

Both 1’s and 2’s complement representations have the additional convenience that the sign

of a number may be readily identified, since a negative number always begins with a “1”. Small

negative numbers have large values, and vice versa. Complementary representations for other

even-numbered bases can be built similarly.

Numbers with a fractional part and numbers that are too large to fit within the constraints

of the integer data capacity are stored andmanipulated in the computer as real, or floating point,

numbers. In effect, there is a trade-off between accuracy and range of acceptable numbers.

The usual floating point number format consists of a sign bit, an exponent, and a mantissa.

The sign and value of the exponent are usually represented in an excess-N format. The base of

the exponent is 2 for most systems, but some systems use a different base for the exponent. The

radix point is implied. When possible, the mantissa is normalized.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 169

CHAPTER 5 REPRESENTING NUMERICAL DATA 169

In some systems, the leading bit is also implied, since normalization requires that the

leading bit of the mantissa be a 1.

Floating point numbers are subject to overflow or underflow, where the exponent of the

number is too large or too small to represent, respectively. Zero is treated as a special case.

Sometimes there is also a special representation for∞.

Addition and subtraction require that the exponents in each number be equal. This is

equivalent to lining up the decimal point in conventional decimal arithmetic. In multiplication

and division, the exponents are added or subtracted, respectively. Special care must be taken

with exponents that are expressed in excess-N notation.

Most computers conform to the format defined in IEEE Standard 754. Other formats in

use include extra-precision formats and legacy formats.

FOR FURTHER READING

The representation and manipulation of integers and real numbers within the computer are

discussed in most computer architecture texts. A particularly effective discussion is found in

Stallings [STAL09]. This discussion presents detailed algorithms and hardware implementa-

tions for the various integer operations. A simpler discussion, with many examples, is found in

Lipschutz [LIPS82]. More comprehensive treatments of computer arithmetic can be found in

the two-volume collection of papers edited by Swartzlander [SWAR90] and in various textbooks

on the subject, including those by Kulisch and Maranker [KUL81] and Spaniol [SPAN81].

A classical reference on computer algorithms, which includes a substantial discussion on

computer arithmetic, is the book by Knuth [KNUT97]. One additional article of interest is the

article titled “What Every Computer Scientist Should Know About Floating-Point Arithmetic”

[GOLD91].

KEY CONCEPTS AND TERMS
binary-coded decimal (BCD)

carry flag

complement

end-around carry

excess-N notation

exponent

exponential notation

floating point format

floating point numbers

integer numbers

integer representation

inversion

mantissa

normalization

1’s complement

representation

overflow

radix point

real numbers

sign-and-magnitude

representation

signed integers

2’s complement

representation

underflow

unsigned integer

wraparound

READING REVIEW QUESTIONS

5.1 What is the largest unsigned integer that can be stored as a 16-bit number?

5.2 What does BCD stand for? Explain at least two important disadvantages of storing

numbers in BCD format. Offer one advantage for using a BCD format for storing

numbers.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 170

170 PART TWO DATA IN THE COMPUTER

5.3 Give an example that shows the disadvantage of using a sign-and-magnitude format

for manipulating signed integers.

5.4 What is a quick way to identify negative numbers when using 1’s complement

arithmetic?

5.5 How do you change the sign of an integer stored in 1’s complement form? As an

example, the 8-bit representation for the value 19 is 000100112. What is the 1’s

complement representation for −19?
5.6 How do you identify an overflow condition when you add two numbers in 1’s

complement form?

5.7 Explain the procedure for adding twonumbers in 1’s complement form.As an example,

convert+38 and−24 to 8-bit 1’s complement form and add them. Convert your result

back to decimal and confirm that your answer is correct.

5.8 If you see a 2’s complement number whose value is 111111102, what rough estimate

can you make about the number?

5.9 How do you change the sign of an integer stored in 2’s complement form? As an

example, the 8-bit representation for the value 19 is 000100112. What is the 2’s

complement representation for −19?
5.10 How do you detect overflow when adding two numbers in 2’s complement form?

5.11 Explain the procedure for adding twonumbers in 2’s complement form.As an example,

convert+38 and−24 to 8-bit 2’s complement form and add them. Convert your result

back to decimal and confirm that your answer is correct.

5.12 What is the relationship between complementary representation and sign-and-

magnitude representation for positive numbers?

5.13 Real numbers in a computer (or float, if you prefer), are most often represented in

exponential notation. Four separate components are needed to represent numbers in

this form. Identify each component in the number 1.2345× 10−5.What is the advantage

of this type of representation, rather than storing the number as 0.000012345?

5.14 To represent a number in exponential form in the computer, two additional assump-

tions must be made about the number. What are those assumptions?

5.15 Exponents are normally stored in excess-N notation. Explain excess-N notation. If a

number is stored in excess-31 notation and the actual exponent is 2+12, what value is
stored in the computer for the exponent?

5.16 When adding two floating point numbers, what must be true for the exponents of the

two numbers?

5.17 The IEEE provides a standard 32-bit format for floating point numbers. The format

for a number is specified as ±1.M × 2E − 127. Explain each part of this format.

EXERCISES

5.1 Data was stored in the Digital PDP-9 computer using six-digit octal notation. Negative

numbers were stored in 8’s complement form.

a. How many bits does six-digit octal represent? Show that 8’s complement octal

and 2’s complement binary are exactly equivalent.

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 171

CHAPTER 5 REPRESENTING NUMERICAL DATA 171

b. What is the largest positive octal number that can be stored in this machine?

c. What does the number in (b) correspond to in decimal?

d. What is the largest possible negative number? Give your answer in both octal and

decimal forms.

5.2 a. Find the 16-bit 2’s complementary binary representation for the decimal number

1987.

b. Find the 16-bit 2’s complementary binary representation for the decimal number

−1987.
c. From your answer in (b), find the six-digit 16’s complement hexadecimal

representation for the decimal number −1987.
5.3 Data is stored in the R4–D4 computer using eight-digit base 4 notation. Negative

numbers are stored using 4’s complement.

a. What is the sign-and-magnitude value of the following 4’s complement number?

333332104

Leave your answer in base 4.

b. Add the following eight-digit 4’s complement numbers. Then, show the sign-

and-magnitude values (in base 4) for each of the input numbers and for your

result.

13220231
120000

5.4 Convert the decimal number−19575 to a 15-bit 2’s complement binary number.What

happens when you perform this conversion? After the conversion is complete, what

values (base 2 and base 10) does the computer think it has?

5.5 What are the 16-bit 1’s and 2’s complements of the following binary numbers?

a. 10000

b. 100111100001001

c. 0100111000100100

5.6 Add the following decimal numbers by converting each to five-digit 10’s complemen-

tary form, adding, and converting back to sign and magnitude.

a.

24379
5098

b.

24379
−5098

c.

−24379
5098

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 172

172 PART TWO DATA IN THE COMPUTER

5.7 Subtract the second number from the first by taking the six-digit 10’s complement
of the second number and adding. Convert the result back to sign and magnitude if
necessary.
a.

37968
(−) 24109

b.

37968
(−) − 70925

c.

− 10255
(−) − 7586

5.8 The following decimal numbers are already in six-digit 10’s complementary form.
Add the numbers. Convert each number and your result to sign and magnitude, and
confirm your results.
a.

1250
772950

b.

899211
999998

c.

970000
30000

5.9 Add the following two 12-bit binary 2’s complement numbers. Then, convert each
number to decimal and check the results.
a.

11001101101
111010111011

b.

101011001100
111111111100

5.10 Given the positive number 2468, what is the largest positive digit that you can add that
will not cause overflow in a four-digit decimal, 10’s complement number system?

5.11 In 12’s complement base 12, how would you know if a number is positive or negative?

5.12 Most computers provide separate instructions for performing unsigned additions and
complementary additions. Show that for unsigned additions, carry and overflow are
the same. (Hint: Consider the definition of overflow.)

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 173

CHAPTER 5 REPRESENTING NUMERICAL DATA 173

5.13 Consider amachine that performs calculations 4bits at a time.Eight-bit 2’s complement
numbers can be added by adding the four least significant bits, followed by the four
most significant bits. The leftmost bit is used for the sign, as usual. With 8 bits for each
number, add −4 and −6, using 4-bit binary 2’s complement arithmetic. Did overflow
occur? Did carry occur? Verify your numerical result.

5.14 Add the following 16’s complement hexadecimal numbers

4F09
D3A5

Is your result positive or negative? How do you know? Convert each number to binary
and add the binary numbers. Convert the result back to hexadecimal. Is the result the
same?

5.15 In the Pink-Lemon-8 computer, real numbers are stored in the format

SEEM M M M8
where all the digits, including the exponent, are in octal. The exponent is stored
excess-408. The mantissa is stored as sign and magnitude, where the sign is 0 for a
positive number and 4 for a negative number. The implied octal point is at the end of
the mantissa: M MMM.
Consider the real number stored in this format as

4366621

a. What real number is being represented? Leave your answer in octal.

b. Convert your answer in part (a) to decimal. You may leave your answer in
fractional form if you wish.

c. What does changing the original exponent from 36 to 37 do to the magnitude of
the number? (Stating that it moves the octal point one place to the right or left is
not a sufficient answer.) What would be the new magnitude in decimal?

5.16 a. Convert the decimal number 19557 to floating point. Use the format
SEEMMMM. All digits are decimal. The exponent is stored excess-40 (not
excess-50). The implied decimal point is at the beginning of the mantissa. The
sign is 1 for a positive number, 7 for a negative number. Hint: Note carefully the
number of digits in the mantissa!

b. What is the range of numbers that can be stored in this format?

c. What is the floating point representation for −19557?
d. What is the six-digit 10’s complement representation for −19557?
e. What is the floating point representation for 0.0000019557?

5.17 a. Convert the number 123.57× 1015 to the format SEEMMMM,with the exponent
stored excess-49. The implied decimal point is to the right of the first mantissa
digit.

b. What is the smallest number you can use with this format before underflow
occurs?

5.18 Real numbers in the R4–D4 computer are stored in the format

SEEM M M M M4

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 174

174 PART TWO DATA IN THE COMPUTER

where all the digits, including the exponent, are in base 4. The mantissa is stored as

sign and magnitude, where the sign is 0 for a positive number and 3 for a negative

number. The implied quadrinary (base 4!) point is at the beginning of the mantissa:

.M M M M M

a. If you know that the exponent is stored in an excess-something format, what

would be a good choice of value for “something”?

b. Convert the real, decimal number 16.5 to base 4, and show its representation in

the format of the R4–D4 computer. Use the excess value that you determined in

part (a).

5.19 Convert the following binary and hexadecimal numbers to floating point format.

Assume a binary format consisting of a sign bit (negative = 1), a base 2, 8-bit, excess-

128 exponent, and 23 bits of mantissa, with the implied binary point to the right of the

first bit of the mantissa.

a. 110110.0110112
b. −1.11110012
c. −4F7F16
d. 0.000000001111112
e. 0.1100 × 236

f. 0.1100 × 2−36

5.20 For the format used in Exercise 5.19, what decimal number is represented by each of

the following numbers in floating point format?

a. C2F0000016
b. 3C54000016

5.21 Represent the decimal number 171.625 in 32-bit IEEE 754 format.

5.22 Show the packed decimal format for the decimal number −129975.
5.23 The following decimal numbers are stored in excess-50 floating point format, with the

decimal point to the left of the first mantissa digit. Add them. A 9 is used as a negative

sign. Present your result in standard decimal sign-and-magnitude notation.

a.

05225731
04833300

b.

05012500
95325750

5.24 Using the same notation as in Exercise 5.23, multiply the following numbers. Present

your answer in standard decimal notation.

a.

05452500
04822200

Englander c05.tex V2 - November 28, 2013 9:44 P.M. Page 175

CHAPTER 5 REPRESENTING NUMERICAL DATA 175

b.

94650000
94450000

5.25 Using the same format found in Exercise 5.19, add and multiply the following floating

point numbers. Present your answers in both floating point and sign-and-magnitude

formats.

3DEC000016
C24C000016

5.26 Write a program in your favorite language that converts numbers represented in the

decimal floating point format

SEEM M M M M

into 10’s complementary integer form. Round any fractional decimal value.

5.27 What base is the student in the chapter cartoon using to perform his addition?

Englander p03.tex V2 - November 30, 2013 9:07 A.M. Page 176

PART THREE

T
he basic operation of a computer, regardless of size or type, is defined by its hardware

architecture. The hardware architecture establishes the CPU instruction set and the type

of operations that are permitted. It defines the passage of data from one part of the

computer to another. It establishes the ground rules for input and output operations.

The next six chapters introduce the fundamental architectural concepts that define

computer operations and hardware organization.Wewill attempt to convey the basic simplicity

and elegance of computer instruction sets. We will expose the inner workings of computer

peripherals and show how the various pieces fit together to create a system.

For the past sixty plus years, and for the foreseeable future, basic computer architecture

conforms to the general principles established by von Neumann that were introduced in

Chapter 1. Chapter 6 introduces the principles of von Neumann architecture using a classic

model of the computer called the LittleManComputer as an example. The LittleManComputer

introduces the stored programconcept, demonstrates the role ofmemory, describes the essential

instructions that make up a computer instruction set, and explains the simple set of operations

that implement an instruction set. We also show how the basic instructions of a computer work

together to make up a program.

In Chapter 7 we extend the ideas introduced in Chapter 6 to the operation of a real

computer. We consider the basic components of a CPU, explain the concept of a bus, discuss

the operation of memory, and show how each of these architectural elements fit together to

create a computer system. We also show the individual operations that make up the execution

of instructions, the so-called fetch–execute cycle. We also discuss the formats for instruction

words and present a general classification of the instruction set.

In Chapter 8 we consider the variations that distinguish one CPU architecture from

another. The major topics in Chapter 8 deal with CPU design and organization. We present

different CPU models, and compare them. We investigate variations on the traditional CPU

organization and explain the benefits to be gained. We look at improvements to memory and,

especially, the use of cache memory.

Englander p03.tex V2 - November 30, 2013 9:07 A.M. Page 177

COMPUTER ARCHITECTURE

ANDHARDWARE OPERATION

In Chapter 9 we shift our focus to I/O. Chapter 9 introduces the various methods that are

used to move data between computer peripherals and memory, including the use of interrupts

and direct access paths between peripherals and memory as efficient ways to perform I/O with

minimal impact on the processing unit. We also introduce the concept of I/O modules as an

interface between the various I/O devices and the CPU and memory components.

Chapter 10 provides explanations of the requirements and operation of various I/O

peripheral components, including flash memory, disks, displays, tapes, printers, and other

components. This chapter also presents a hierarchical model of storage.

Chapter 11 integrates the major ideas of the previous five chapters and then explores

additional features and innovative techniques at the system level that have expanded the

performance and capability of computers. While these techniques are substantial extensions to

the basic design, they do not change the fundamental concepts and operating methods that are

discussed in the earlier chapters. Beyond the discussion of basic computer system hardware

architecture, the most important topics in this chapter are the modern buses and I/O channels

that are used to expand I/O capability, and the interconnection of computer systems into

clusters to increase computing power and improve reliability.

There are four additional supplementary chapters on the Web at www.wiley.com

/college/Englander. Three of these provide additional insight into material presented in Part 3.

Supplementary Chapter 1 offers an overview of Boolean algebra and the digital logic circuits

that are used to implement CPUhardware circuits. Supplementary Chapter 2 illustratesmany of

the previous concepts with case studies of three important current systems, representing three

different approaches to computer design. Supplementary Chapter 3 expands on the discussion

of CPU-addressing techniques that is touched only briefly in Chapter 8.

177

http://www.wiley.com/college/Englander

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 178

CHAPTER 6

THE LITTLE MAN COMPUTER

Used by permission of The Times Colonist, Victoria, B.C., Canada

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 179

6.0 INTRODUCTION
The power of a computer does not arise from complexity. Instead, the computer has the
ability to perform simple operations at an extremely high rate of speed. These operations
can be combined to provide the computer capabilities that you are familiar with.

Consistentwith this idea, the actual designof the computer is also simple, as youwill see.
(The beauty of the design is that these simple operations can be used to solve extremely

complex problems. The programmer’s challenge, of course, is to produce the exact sequence
of operations to perform a particular task correctly under all possible circumstances, since
any error in selection or sequence of operations will result in a “buggy” program. With the
large number of instructions required by modern programs, it is not surprising that few of
today’s programs are truly bug-free.)

In this chapter, we will begin to explore the operations that the computer is capable
of performing and look at how those operations work together to provide the computer
with its power. To simplify our exploration, we will begin by introducing a model of the
computer; a model that operates in a very similar way to the real computer but that is easier
to understand instinctively. (Although the real computer uses binary numbers, the model
uses decimal numbers for ease of understanding.)

The model that we will use is called the Little Man Computer (LMC). The original
LMC was created by Dr. Stuart Madnick at MIT in 1965. In 1979, Dr. Madnick produced a
new version of the LMC, with a slightly modified instruction set; the later version is used
in this book. It is a strength of the original model that it operates so similarly to a real
computer that it is still an accurate representation of the way that computers work more
than forty-five years after its introduction.

Using this model we will introduce a simplified, but typical, set of instructions that a
computer can perform. We will show you exactly how these instructions are executed in
the Little Man Computer. Then we will demonstrate how these instructions are combined
to form programs.

6.1 LAYOUT OF THE LITTLE MAN COMPUTER
We begin by describing the physical layout of the Little Man Computer. A diagram for the
Little Man Computer appears in Figure 6.1.

The LMC consists of a walled mailroom, represented by the dark line surrounding the
model in the diagram. Inside the mailroom are several objects:

First, there is a series of one hundred mailboxes, each numbered with an address
ranging from 00 to 99. This numbering system is chosen because each mailbox address can
be represented by two digits, and this is the maximum number of mailboxes that can be
represented by two decimal digits.

Each mailbox is designed to hold a single slip of paper, upon which is written a
three-digit decimal number. Note carefully that the contents of a mailbox are not the same
as the address of a mailbox. This idea is consistent with what you already know about your
post office box: your post office box number identifies where you go to pick up your mail,
but this has no relationship to the actual contents of the letters that you find in thatmailbox.

179

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 180

180 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.1

The Little Man Computer

500

00 500

01 199

02 500

03 399

95

96

97

98

99 123

05

123

In
Basket

Out
Basket

Reset button Instruction
location counter

Little man

Calculator

Mailboxes

Next, there is a calculator. . . basically a simple pocket calculator. The calculator can be
used to enter and temporarily hold numbers, and also to add and subtract. The display on the
calculator is three digits wide. At least for the purposes of this discussion, there is no provision
made for negative numbers, or for numbers larger than three digits. As you are already aware,
10’s complement arithmetic could be used for this purpose, but that is not of interest here.

Third, there is a two-digit hand counter, the type that you click to increment the count.
The reset button for the hand counter is located outside the mailroom. (There is also a set of
thumbwheels that the Little Man will be able to use to modify the value in the counter directly.
These will be used for the extended instructions described in Section 6.4.) We will call the hand
counter an instruction location counter.

Finally, there is the LittleMan. It will be his role to perform certain tasks that will be defined
shortly.

Other than the reset button on the hand counter, the only interactions between the Little
Man Computer and the outside environment are through an in basket and an out basket.

A user outside of the mailroom can communicate with the Little Man in the mailroom by
putting a slip of paper with a three-digit number on it into the in basket, to be read by the Little
Man at the appropriate time. Similarly, the Little Man can write a three-digit number on a slip
of paper and leave it in the out basket, where it can be retrieved by the user.

Note that all communication between the Little Man Computer and the outside world
takes place using three-digit numbers. Except for the reset button on the instruction location

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 181

CHAPTER 6 THE LITTLE MAN COMPUTER 181

counter, no other form of communication is possible. The same is true within the mailroom: all
instructions to the Little Man must be conveyed as three-digit numbers.

6.2 OPERATION OF THE LMC
Wewould like the LittleMan to do some useful work. For this purpose, we have invented a small
group of instructions that he can perform. Each instruction will consist of a single digit. We
will use the first digit of a three-digit number to tell the Little Man which operation to perform.

In some cases, the operationwill require the LittleMan touse a particularmailbox to store or
retrieve data (in the form of three-digit numbers, of course!). Since the instruction only requires
one digit, we can use the other two digits in a three-digit number to indicate the appropriate
mailbox address to be used as a part of the instruction. Thus, using the three digits on a slip of
paper, we can describe an instruction to the Little Man according to the following diagram:

3 | 25

instruction | mailbox address

The instruction part of the three-digit code is also known as an “operation code”, or op
code for short. The op code number assigned to a particular instruction is arbitrary, selected
by the computer designer based on various architectural and implementation factors. The op
codes used by the author conform to the 1979 version of the Little Man Computer model.

Now let’s define some instructions for the Little Man to perform:

LOAD instruction—op code 5
The Little Man walks over to the mailbox address specified in the instruction. He
reads the three-digit number located in that mailbox, and then walks over to the
calculator and punches that number into the calculator. The three-digit number in
the mailbox is left unchanged, but of course the original number in the calculator is
replaced by the new number.

STORE instruction—op code 3
This instruction is the reverse of the LOAD instruction. The Little Man walks over to
the calculator and reads the number there. He writes that number on a slip of paper
and puts it in the mailbox whose address was specified as the address part of the
instruction. The number in the calculator is unchanged; the original number in the
mailbox is replaced with the new value.

ADD instruction—op code 1
This instruction is very similar to the LOAD instruction. The Little Man walks over to
the mailbox address specified in the instruction. He reads the three-digit number
located in the mailbox and then walks over to the calculator and adds it to the number
already in the calculator. The number in the mailbox is unchanged.

SUBTRACT instruction—op code 2
This instruction is the same as the ADD instruction, except that the Little Man subtracts
the mailbox value from the value in the calculator. The result of a subtraction can
leave a negative value in the calculator. Chapter 5 discussed the use of complements to

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 182

182 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

implement negative values, but for simplicity, the LMC model ignores this solution.
For the purposes of our LMC model, we will simply assume that the calculator holds
and handles negative values correctly, and provides a minus sign as a flag to indicate
that the value is negative. The Little Man cannot handle negative numbers outside of
the calculator, however, because there is no provision in the model for storing the
negative sign within the constraint of the three-digit number system used.

INPUT instruction (or read, if you prefer)—op code 9, “address” 01
The Little Man walks over to the in basket and picks up the slip of paper in the basket.
He then walks over to the calculator and punches it into the calculator. The number is
no longer in the in basket, and the original calculator value has been replaced by the
new number. If there are multiple slips of paper in the basket, the Little Man picks
them up in the order in which they were submitted, but each INPUT instruction
handles only a single slip of paper; other input values must await the execution of
subsequent INPUT instructions. Some authors use the concept of a conveyor belt in
place of the in basket, to emphasize this point.

OUTPUT instruction (or print)—op code 9, “address” 02
The Little Man walks over to the calculator and writes down the number that he sees
there on a slip of paper. He then walks over to the out basket and places the slip of
paper there for the user outside the mailroom to retrieve. The original number in the
calculator is unchanged. Each OUTPUT instruction places a single slip of paper in the
out basket. Multiple outputs will require the use of multiple OUTPUT instructions.

Note that the INPUT and OUTPUT instructions do not use any mailboxes during execution,
since the procedure for each only involves the transfer of data between an in or out basket
and the calculator. Because this is true, the address part of the instruction can be used to
extend the capability of the instruction set, by using the same op code with different “address”
values to create a number of different instructions. In the LMC, 901 is the code for an INPUT

instruction, while 902 is used for an OUTPUT instruction. In a real computer, for example, the
instruction address might be used to specify the particular I/O device to be used for input or
output.

COFFEE BREAK (or HALT) instruction—op code 0
The Little Man takes a rest. The Little Man will ignore the address portion of the
instruction.

The instructions that we have defined so far fall into four categories:

n instructions that move data from one part of the LMC to another (LOAD, STORE)

n instructions that perform simple arithmetic (ADD, SUBTRACT)

n instructions that perform input and output (INPUT, OUTPUT)

n instructions that control the machine (COFFEE BREAK).

This is enough for now. We will discuss instructions 6, 7, and 8 later in this chapter.

6.3 A SIMPLE PROGRAM
Now let’s see how we can combine these instructions into a program to have the Little Man do
some useful work.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 183

CHAPTER 6 THE LITTLE MAN COMPUTER 183

Before we do this, we need to store the instructions somewhere, and we need a method to
tell the Little Man where to find the particular instruction that he is supposed to perform at a
given time.

Without discussing how they got there, for now we will assume that the instructions are
stored in themailboxes, starting atmailbox number 00. The LittleManwill perform instructions
by looking at the value in the instruction location counter and executing the instruction found
in the mailbox whose address has that value. Each time the Little Man completes an instruction,
he will walk over to the instruction location counter and increment it. Again he will perform
the instruction specified by the counter. Thus, the Little Man will execute the instructions in the
mailboxes sequentially, starting frommailbox 00. Since the instruction location counter is reset
fromoutside themailroom, theuser can restart theprogramsimplyby resetting the counter to00.

Now that we have a method for guiding the Little Man through a program of instruction
steps, let’s consider a simple program that will allow the user outside the mailroom to use the
Little Man Computer to add two numbers together. The user will place two numbers in the
in basket. The sum of the two will appear as a result in the out basket. The question is what
instructions we will need to provide to have the Little Man perform this operation.

INPUT 901
Since the Little Man must have access to the data, the first step, clearly, is to have the
Little Man read the first number from the in basket to the calculator. This instruction
leaves the first number to be added in the calculator.

STORE 99 399
Note that it is not possible for the Little Man to simply read another number into the
calculator. To do so would destroy the first number. Instead, we must first save the
first number somewhere.

Mailbox 99 was chosen simply because it is clearly out of the way of the program. Any
other location that is beyond the end of the program is equally acceptable.

Storing the number at a location that is within the program would destroy the
instruction at that location. This would mean that when the Little Man went to
perform that instruction, it wouldn’t be there.

More importantly, there is no way for the Little Man to distinguish between an
instruction and a piece of data—both are made up of three-digit numbers. Thus, if we
were to store data in a location that the Little Man is going to use as an instruction,
the Little Man would simply attempt to perform the data as though it were an
instruction. Since there is no way to predict what the data might contain, there is no
way to predict what the program might do.

The concept that there is no way to distinguish between instructions and data except
in the context of their use is a very important one in computing. For example, it
allows a programmer to treat an instruction as data, to modify it, and then to execute
the modified instruction.

INPUT 901
With the first number stored away, we are ready to have the Little Man read the
second number into the calculator.

ADD 99 199
This instruction adds the number that was stored previously in mailbox 99 to the
number that was inputted to the calculator.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 184

184 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.2

Program to Add Two Numbers

00
01
02
03
04
05
99

901
399
901
199
902
000

INPUT
STORE DATA
INPUT 2ND #
ADD 1ST # TO IT
OUTPUT RESULT
STOP
DATA

Mailbox code Instruction description

Note that there is no specific reason to save the second
number. If we were going to perform some operation that
required the reuse of the second number, it could be stored
somewhere.

In this program, however, we have both numbers in place
to perform the addition. The result is, of course, left in
the calculator.

OUTPUT 902
All that remains is for us to have the Little Man output
the result to the out basket.

COFFEE BREAK 000
The program is complete, so we allow the Little Man
to take a rest.

These instructions are stored sequentially starting from mailbox 00, where the
Little Man will retrieve and execute them one at a time, in order. The program
is reshown in Figure 6.2.

Since we were careful to locate the data outside the program, this program can be rerun
simply by telling the Little Man to begin again.

6.4 AN EXTENDED INSTRUCTION SET
The instructions that we have defined must always be executed in the exact sequence specified.
Although this is sufficient for simple program segments that perform a sequence of operations,
it does not provide anymeans for branching or looping, both constructs that are very important
in programming. Let us extend the instruction set by adding three more instructions for this
purpose:

BRANCHUNCONDITIONALLY instruction (sometimes known as JUMP)—op
code 6

This instruction tells the Little Man to walk over to the instruction location counter
and actually change the counter to the location shown in the two address digits of the
instruction. The hand counter thumbwheels are used for this purpose. This means that
the next instruction that the Little Man will execute is located at that mailbox address.
This instruction is very similar, conceptually, to the GOTO instruction in BASIC. Its
execution will always result in a break in the sequence to another part of the program.
Note that this instruction also uses the address digits in an unusual way, since the
Little Man does not use the data at the address specified. Indeed, the Little Man
expects to find an instruction at that address, the next to be performed.

BRANCHON ZERO instruction—op code 7
The Little Man will walk over to the calculator and will observe the number stored
there. If its current value is zero, he will walk over to the instruction location counter
and modify its value to correspond to the address specified within the instruction.
The next instruction executed by the Little Man will be located at that address.

If the value in the calculator is not zero, he will simply proceed to the next
instruction in the current sequence.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 185

CHAPTER 6 THE LITTLE MAN COMPUTER 185

BRANCHON POSITIVE instruction—op code 8
The Little Man will walk over to the calculator and will observe the number stored
there. If its current value is positive, hewill walk over to the instruction location counter
and modify its value, to correspond to the address specified within the instruction.
The next instruction executed by the Little Man will be located at that address.

If the value in the calculator is negative, he will simply proceed to the next instruction
in sequence. Zero is considered to be a positive value.

Note that is it not necessary to provide BRANCH ON NEGATIVE or BRANCH ON NONZERO

instructions. The instructions supplied can be used together to achieve equivalent
results.

These three instructionsmake it possible to break from the normal sequential processing of
instructions. Instructions of this type are used to perform branches and loops. As an example,
consider the following WHILE-DO loop, common to many programming languages:

WHILE Value = 0 DO
Task;

NextStatement

This loop could be implemented using the LittleMan BRANCH instruction as follows. Assume
that these instructions are located starting at mailbox number 45 (comments are provided to
the right of each line):

45 LDA 90 590 90 is assumed to contain value

46 BRZ 48 748 Branch if the value is zero

47 BR 60 660 Exit loop; Jump to NextStatement

48 ⋮ This is where the task is located

59 BR 45 645 End to Task; loop to test again

60 Next statement

For convenience, we have introduced a set of abbreviations for each instruction in the
above example. These abbreviations are known asmnemonics (the first “m” is silent). Once you
learn to read these mnemonics, you’ll find that programs written with mnemonics are generally
easy to read. It is more common to write programs this way. For a while, we will continue to
print both the mnemonic and the numeric code, but eventually, we will stop printing the code.
Most programs are also written with comments, which help to clarify the code. The mnemonic
instructions that we will use are shown in Figure 6.3.

The DAT abbreviation shown in Figure 6.3 is a fake code, sometimes known as apseudocode,
used to indicate that a particular mailbox will be used to store data. You will recall that the Little
Man does not distinguish between instructions and data in the mailboxes; both are treated
equally as three-digit numbers. To place a constant in a mailbox when we write a program we
can simply place the number in a mailbox. The DAT pseudocode may be included to make the
program easier to read.

EXAMPLE
Here is an example of a Little Man program that uses the BRANCH instructions to alter the flow of
the program. This program finds the positive difference between two numbers (sometimes known
as the absolute magnitude of the difference).

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 186

186 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.3

Little Man Mnemonic Instruction Codes with Their
Corresponding OP Codes

LDA
STO
ADD
SUB
IN
OUT
COB or HLT
BRZ
BRP
BR
DAT

5xx
3xx
1xx
2xx
901
902
000
7xx
8xx
6xx

Load
Store
Add
Subtract
Input
Output
Coffee break (or Halt)
Branch if zero
Branch if positive or zero
Branch unconditional
Data storage location

FIGURE 6.4

LMC Program to Find Positive Difference of Two
Numbers

00
01
02
03
04
05
06
07
08
09
10
11

IN
STO
IN
STO
SUB
BRP
LDA
SUB
OUT
COB
DAT
DAT

901
310
901
311
210
808
510
211
902
000
000
000

test
negative; reverse order

print result and
 stop.
used for data
 “

10

11
10
08
10
11

00
00

The program, shown in Figure 6.4, works as follows: the first four instructions simply input
and store the two numbers. The fifth instruction, in mailbox 04, subtracts the first number from
the second. Instruction 05 tests the result. If the result is positive, all that’s left to do is print out
the answer. So, the instruction can be used to branch to the printout instruction. If the answer
is negative, the subtraction is performed in the other order. Then, the result is output, and the
Little Man takes his break. Note that if the COB instruction is omitted (as in forgotten—this is a
very common error!), the Little Man will attempt to execute the data stored in locations 10 and
11. The main part of this program is the Little Man equivalent of an IF-THEN-ELSE statement
that you would find in most high-level programming languages. Please study the example until
you understand how it works in every detail.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 187

CHAPTER 6 THE LITTLE MAN COMPUTER 187

The nine instructions that make up the instruction set that we have presented are sufficient

to perform the steps of any computer program, although not necessarily in the most efficient

way. It is important for you to realize that, although simplified, the Little Man instruction set

is very similar to the instruction sets that appear in most real computers. In real computers, as

in the Little Man Computer, most instruction steps are involved with the movement of data

between the equivalent of mailbox locations and calculators, with very simple calculations, and

with program branching.

The real computer differs mostly in the variations to these instructions that are provided,

and with the addition of a few instructions that provide programming convenience, particularly

multiplication and division instructions, and also instructions that shift the data in a word left

or right. (Note that the traditional method of performing multiplication can be done in the

computer using SHIFT and ADD instructions.)

We will discuss many of these variations when we look at the instruction sets in some real

computers, in Chapters 7, 9, 11, and Supplementary Chapters 2 and 3.

6.5 THE INSTRUCTION CYCLE
We will refer to the steps that the Little Man takes to perform an instruction as the instruction
cycle. This cycle, which is similar for all the instructions, can be broken into two parts:

1. The fetch portion of the cycle, in which the Little Man finds out what instruction he is

to execute, and

2. The execute portion of the cycle, in which he actually performs the work specified in

the instruction.

The fetch portion of the cycle is identical for every instruction. The Little Man walks

to the location counter and reads its value. He then goes to the mailbox with the address

that corresponds to that value and reads the three-digit number stored there. That three-digit

number is the instruction to be performed. This is depicted in the drawings of Figure 6.5.

The fetch portion of the cycle has to occur first: until the Little Man has performed the

fetch operation, he does not even know what instruction he will be executing!

The execute portion of each instruction is, of course, different for each instruction. But

even here, there are many similarities. The first six instructions in Figure 6.3 all require the

Little Man to move data from one place in the mailroom to another. The first four instructions

all involve the use of a second mailbox location for the data.

The LOAD instruction is typical. First, the Little Man fetches the instruction. To perform the

execute phase of the LOAD instruction, the Little Man first looks at the mailbox with the address

that is contained in the instruction. He reads the three-digit number on the slip of paper in

that mailbox and returns the slip of paper to its place. Then, he walks over to the calculator

and punches the number into the calculator. Finally, he walks over to the instruction location

counter and increments it. He has completed one instruction cycle and is ready to begin the

next. These steps are shown in Figure 6.6.

With the exception of the step in which the Little Man increments the location counter,

the steps must be performed in the exact sequence shown. (The location counter can be

incremented anytime after the fetch has occurred.) The fetch steps must occur before the

execution steps; within the fetch, the Little Man must look at the location counter before he can

pull the instruction from its mailbox.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 188

188 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.5

The Fetch Portion of the Instruction Cycle

25 589

89 222

25

25

5 89

333

25 589

89 222

25

333

25 589

89 222

25

333

(1) The Little Man reads the address
 from the location counter

(2) . . . walks over to the mailbox that
 corresponds to the location counter

(3) . . . and reads the number on the
 slip of paper. (He then puts the
 slip of paper back, in case he
 should need to read it again later.)

Just as the sequence of instructions in a program is important—and you know that this is

true for any language, Java, C, Fortran, Little Man, or any other—so it is also true that the steps

within each instruction must be performed in a particular order.

Notice that the ADD and SUBTRACT instructions are almost identical to the LOAD instruction.

The only difference occurs during the execute step, when the Little Man enters the number into

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 189

CHAPTER 6 THE LITTLE MAN COMPUTER 189

FIGURE 6.6

The Execute Portion of the Instruction Cycle (LOAD Instruction)

25 589

89 222

222

333

25 589

89 222

25

222

25 589

89 222

25

333

25 589

89 222

222

25

25
26

5 89 (1) The Little Man goes to the mailbox
 address specified in the instruction he
 previously fetched

(3) . . . he walks over to the calculator and
 punches the number in

(2) . . . he reads the number in that mailbox
 (he remembers to replace it in the case it's
 needed again)

(4) . . . finally, he walks over to the location
 counter and clicks it, which gets him
 ready to fetch the next instruction

222

the calculator. In the case of the arithmetic instructions, the Little Man adds or subtracts the

number that he is carrying into the calculator, rather than simply entering it.

The other instructions are slightly different, although not any more difficult to trace

through and understand. To improve your understanding, you should trace the steps of the

Little Man through the remaining six instructions.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 190

190 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.6 A NOTE REGARDING COMPUTER
ARCHITECTURES

As we noted in Chapter 1, John von Neumann is usually considered to be the developer of the
computer as we know it today. Between 1945 and 1951, von Neumann set down a series of
guidelines that came to be known as the von Neumann architecture for computers. Although
other experimental computer architectures have been developed and built, the von Neumann
architecture continues to be the standard architecture for all computers and computer-based
devices; no other architecture has had any commercial success to date. It is significant that, in
a field where technological change occurs almost overnight, the architecture of computers is
virtually unchanged since 1951.

The major guidelines that define a von Neumann architecture include the following:

n Memory holds both programs and data; this is known as the stored program
concept. The stored program concept allows programs to be changed easily.

n Memory is addressed linearly; that is, there is a single sequential numeric address for
each and every memory location.

n Memory is addressed by the location number without regard to the data contained
within.

Instructions are executed sequentially unless an instruction or an outside event (such as the
user resetting the instruction location counter) causes a branch to occur.

In addition, von Neumann defined the functional organization of the computer to be made
up of a control unit that executes instructions, an arithmetic/logic unit that performs arithmetic
and logical calculations, andmemory. The control unit and arithmetic/logic unit together make
up the CPU, or central processing unit.

If you check over the guidelines just given, you will observe that the Little Man Computer
is an example of a von Neumann architecture. In fact, we took care to point out features of the
von Neumann architecture during our discussion of the Little Man Computer.

SUMMARY AND REVIEW
The workings of the computer can be simulated by a simple model. The Little Man Computer
model consists of a Little Man in a mailroom with mailboxes, a calculator, and a counter. Input
and output baskets provide communication to the outside world. The Little Man Computer
meets all the qualifications of a von Neumann computer architecture.

The Little Man performs work by following simple instructions, which are described by
three-digit numbers. The first digit specifies an operation. The last two digits are used for various
purposes, but most commonly to point to an address. The instructions provide operations that
can move data between the mail slots and the calculator, move data between the calculator and
the input and output baskets, perform addition and subtraction, and allow the Little Man to
stop working. There are also instructions that cause the Little Man to change the order in which
instructions are executed, either unconditionally or based on the value in the calculator.

Both data and instructions are stored in individual mail slots. There is no differentiation
between the two except in the context of the particular operation taking place. The Little Man
normally executes instructions sequentially from the mail slots except when he encounters a
branching instruction. In that case, he notes the value in the calculator, if required, and resumes
executing instructions from the appropriate location.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 191

CHAPTER 6 THE LITTLE MAN COMPUTER 191

The exact steps performed by the Little Man are important because they reflect closely the
steps performed in a real CPU in executing an instruction.

KEY CONCEPTS AND TERMS
instruction cycle
linear memory addressing
Little Man Computer (LMC)

mnemonics
op code
pseudocode

stored program concept

von Neumann architecture

READING REVIEW QUESTIONS

6.1 Without looking at the book, draw a Little Man Computer. Label each of the
components in your drawing.

6.2 Instructions in the Little Man Computer are three digits, divided into two parts. Show
the format of an LMC instruction.

6.3 Describe, step by step, what the Little Man does to execute a STORE instruction.

6.4 Describe, step by step, what the Little Man does to execute an INPUT instruction.

6.5 Extend the simple program shown in Section 6.3 to accept three inputs from a user,
add them, and output the result.

6.6 If a user wants to enter two numbers, what must the Little Man program do before she
enters the second number? Why?

6.7 Write a Little Man program that accepts two numbers as input and outputs the
numbers in reverse order.

6.8 Write a Little Man program that accepts two numbers as input, subtracts the first from
the second and outputs the result.

6.9 Explain carefully what the Little Man will do when he executes a JUMP instruction.

6.10 Explain carefully, step by step, what the Little Man will do when he executes a BRANCH

ON ZERO instruction.

6.11 Why is the instruction cycle called a cycle?

6.12 Even if he runs out of instructions to execute, the Little Man only stops trying to
execute instructions under one condition. What is that condition? What happens if
the Little Man runs out of instructions and that condition is not met?

6.13 The instruction cycle is divided into two phases. Name each phase. The first phase is
the same for every instruction. What is the purpose of the first phase that makes this
true? Explain what the Little Man does during the first phase.

6.14 What does the Little Man do during the second phase of a COFFEE BREAK or HALT

instruction?

EXERCISES

6.1 The steps that the Little Man performs are closely related to the way in which the CPU
actually executes instructions. Draw a flow chart that carefully describes the steps that
the Little Man follows to execute a branch instruction.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 192

192 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.2 Repeat Exercise 6.1 for a subtract instruction.

6.3 Repeat Exercise 6.1 for a branch on positive instruction.

6.4 What are the criteria that define a von Neumann architecture? How does the example
in this chapter in which we enter and add two numbers illustrate each of the criteria?

6.5 Consider the example in this chapter in which we enter and add two numbers. Suppose
we had stored the first input entry in mailbox location 00. Would the program have
produced the same result? What would have happened if the program were executed
a second time? What characteristic of the computer makes this true?

6.6 Write a Little Man program that accepts three values as input and produces the largest
of the three as output.

6.7 Write a LittleMan program to accept an indefinite number of input values. The output
value will be the largest of the input values. You should use the value 0 as a flag to
indicate the end of input.

6.8 Write a Little Man program that accepts three values as input and outputs them in
order of size, largest to smallest. (This is a more challenging variation on Exercise 6.6.)

6.9 Write a Little Man program that adds a column of input values and produces the sum
as output. The first input value will contain the number of values that follow as input
to be added.

6.10 Write a Little Man program that prints out the odd numbers from 1 to 99. No input is
required.

6.11 Write a Little Man program that prints out the sums of the odd values from 1 to 39.
The output will consist of 1, 1+ 3, 1+ 3+ 5, 1+ 3+ 5+ 7 No input is required.
As an aside, do you notice anything interesting about the output results that are
produced by this series? (Hint: This series is sometimes used as part of an algorithm
for finding square roots of numbers.)

6.12 The following Little Man program is supposed to add two input numbers, subtract a
third input number from the sum, and output the result, i.e.,

OUT = IN1 + IN2 − IN3
mailbox mnemonic code numeric code

00 IN 901
01 STO 99 399
02 IN 901
03 ADD 99 199
04 STO 99 399
05 IN 901
06 SUB 99 299
07 OUT 902
08 COB 000

What is wrong with this program? Modify the program so that it produces the correct
result.

6.13 Supposewehave aneed tohandle bothnegative andpositive data beyond the simple test
in the various conditional branch instructions. One way to do this would be to replace
the subtract instruction with a 10’s complement instruction. The COMP instruction
complements the value in the calculator and leaves the value in the calculator.

Englander c06.tex V2 - November 28, 2013 9:45 P.M. Page 193

CHAPTER 6 THE LITTLE MAN COMPUTER 193

a. How would subtraction be performed in this case?

b. Carefully trace the steps that the Little Man would perform to execute the new

COMP instruction.

c. What is the new range of values possible with this modification, and how are

these values represented in the Little Man Computer?

d. What would the Little Man do to execute a BRANCH ON POSITIVE instruction?

6.14 The programs that we have discussed in this chapter seem to have appeared in the

mailboxes by magic. Consider a more realistic alternative:

Suppose a small program is permanently stored in the last few mailbox locations.

A BRANCH instruction at location 00, also permanent, will start this program. This

program will accept input values and will store them at consecutive mailbox locations,

starting with mailbox 01. You may assume that these values represent the instructions

and data of a user’s program to be executed. When a 999 is received as input data, the

program jumps to location 01 where it will proceed to execute the values just entered.

The small program described here is known as a program loader, or, under certain

circumstances as a bootstrap. Write a Little Man program loader. (Hint: It may be

useful to remember that instructions and data are indistinguishable. Thus, instructions

could be treated as if they were data, if necessary.)

6.15 Show carefully how you would implement an IF-ELSE statement using Little Man

instructions.

6.16 Show how you would implement a DO-WHILE statement using Little Man instructions.

6.17 The input data values in our problems have always been entered in the order that they

were to be used. This is not always possible or convenient. Can you think of a simple

way to accept input data in the wrong order and still use it correctly?

6.18 Suppose the Little Man Computer had been implemented as a 16-bit binary machine.

Assume that the binary LMC provides the same instruction set, with the same op codes

(in binary, of course), and the same instruction format (op code followed by address).

How many bits would be required for the op code portion of the instruction? How

many mailboxes could the binary machine accommodate? What is the range of 2’s

complement data that this machine could handle?

6.19 The original version of the Little Man Computer used op code 7 (i.e., instruction

700) for a COFFEE BREAK instruction instead of op code 0. What is the advantage of

using 000 for the COB instruction instead of 700? (Hint: Consider what happens if the

programmer forgets to put a COB instruction at the end of a program.)

6.20 When we discussed conditional branching we claimed that a BRANCH NEGATIVE instruc-

tion is not necessary. Show a sequence of BRANCH instructions that will cause a program

to branch to location 50 if the value in the calculator is negative.

6.21 Show a sequence of instructions that will cause a program to branch to location 75 if

the value in the calculator is greater than zero.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 194

CHAPTER 7

THE CPU AND MEMORY

SHOE - NEW BUSINESSC (1993) MACNELLY. DISTRIBUTED BY KING FEATURES SYNDICATE

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 195

7.0 INTRODUCTION
The previous chapter provided a detailed introduction to the Little Man model of a
computer. In that chapter, we introduced a format, using a three-digit number divided
into op code and address fields, for the instructions that a computer can perform. We
introduced an instruction set that we indicated was representative of those found in a real
computer. We also showed the steps that are performed by the Little Man in order to
execute one of these instructions.

In this chapter and the next, we will extend these concepts to the real computer.
Our primary emphasis in this chapter is on the central processing unit (CPU), together
with memory. In the real computer, memory is actually separated both physically and
functionally from the CPU. Memory and the CPU are intimately related in the operation
of the computer, however, and so we will treat memory together with the CPU for the
convenience of our discussion. Since every instruction requires memory access,1 it makes
sense to discuss the two together.

We will use the Little Man model and its instruction set as a guideline for our
discussion. The Little Man instruction set is fundamentally similar to the instruction sets of
many different computers. Of course, the Little Man instruction set is based on a decimal
number system, and the real CPU is binary, but this is a detail that won’t concern us for
most of this discussion. The CPU architectural model that we shall discuss is not based
on a particular make and model, but is typical of most computers. Chapter 8 will discuss
the implementation of this model in modern technology. In Supplementary Chapter 2, we
shall look specifically at several popular computer models.

In this chapter, you will see that the execution of instructions in the CPU together with
memory is nearly identical functionally to the Little Man Computer. There is a one-to-one
relationship between the various contents of the mailroom and the functional components
of the CPU plus memory. The major differences occur in the facts that the CPU instruction
set is created using binary numbers rather than decimal and that the instructions are
performed in a simple electronic way using logic based upon Boolean algebra instead of
having a Little Man running around a mailroom.

Sections 7.1 through 7.3 present a systematic introduction to the components of the
CPU and memory, offering a direct comparison with the components of the Little Man
Computer, and focusing on the concept of the register as a fundamental element of CPU
operation. In Section 7.4, we show how simple CPU and memory register operations serve
as the basic mechanism to implement the real computer’s instruction set.

In Section 7.5, we turn our attention to the third major computer system component,
the bus component. Buses provide the interconnection between various internal parts of
the CPU, and between the CPU and memory, as well as providing connections between
input and output devices, the CPU, and memory. There are many different types of buses
in a computer system, each optimized for a different type of task. Buses can connect two
components in a point-to-point configuration or may interconnect several modules in a

1Recall that in the LMC every instruction must be fetched from a mailbox to be executed. The same is true

in the real computer.
195

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 196

196 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

multipoint configuration. In general, the lines on buses carry signals that represent data,
addresses, and control functions. We consider the general requirements for a bus, the features,
advantages, and disadvantages of different types of buses. In Chapter 11, we will focus on the
specific buses that interconnect the various components of a computer system, and show you
the ways in which the buses connect different parts of an entire computer system together.

In Sections 7.6, 7.7, and 7.8, we return our attention to theCPU to discuss the characteristics
and features of the instruction sets provided in real computers: the different types of instructions,
the formats of instruction words, and the general requirements and restraints that are required
for instruction words.

You already understand from Chapter 6 how simple instructions can be combined to
form the programs that you write. When you complete this chapter, you will have a good
understanding of how those instructions are executed in a computer.

Before we begin, it is important that you understand the difference between primary
memory and secondary storage. Primary memory holds program instructions and data and
interacts directly with the CPU during program execution. It is equivalent to the mailboxes in
the Little Man Computer. Secondary storage is used for longer term storage and is managed
as I/O. The CPU does not have direct access to the locations in secondary storage and cannot
execute instructions from them. Program code and data in secondary storage must be moved to
primary memory for CPU execution. Secondary storage is much slower than primary memory,
uses different technology, and is usually accessed in blocks, rather than by individual locations.

The potential confusion between primary memory and secondary storage arises primarily
because of inadequate specifications by some manufacturers, particularly in the area of
smartphones and tablets. The “16 GB of memory” in a tablet, for example, is secondary storage,
not primarymemory. In fact, a typical tablet has between 256MB and 2GB of primarymemory,
which may or may not show up in the specifications seen by a user.

In this chapter,we are concernedonlywith primarymemory. Secondary storage is discussed
in depth in Chapters 9 and 10.

7.1 THE COMPONENTS OF THE CPU
FIGURE 7.1

System Block Diagram

Control unit

Program counter

Memory

CPU

ALU
I/O

interface

A simplified conceptual block diagram of a CPU with memory
is shown in Figure 7.1.2 For comparison purposes, the block
diagram for the Little Man Computer is repeated in Figure 7.2,
with labels corresponding to the components in Figure 7.1.

Note the similarities between the two figures. As noted
in Chapter 1, the computer unit is made up conceptually of
three major components, the arithmetic/logic unit (ALU), the
control unit (CU), andmemory. The ALU and CU together are
known as the central processing unit (CPU). An input/output
(I/O) interface is also included in the diagram. The I/O interface
corresponds in function roughly to the input and output baskets,
although its implementation and operation differ from that of
the Little Man Computer in many respects.

2This diagram is first attributed to John von Neumann in 1945. As discussed in Chapter 8, current technology

results in a different internal organization for the components in the model; nevertheless, the basic execution of

instructions is still consistent with the original model.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 197

CHAPTER 7 THE CPU AND MEMORY 197

FIGURE 7.2

The Little Man Computer

500

00 500

01 199

02 500

03 399

95

96

97

98

99 123

05

123
ALU

Memory

I/O
interface Control

unit

Program
counter

The arithmetic/logic unit is the component of the CPU where data is held temporarily
and where calculations take place. It corresponds directly to the calculator in the Little Man
Computer.

The control unit controls and interprets the execution of instructions. It does so by
following a sequence of actions that correspond to the fetch–execute instruction cycle that
was described in the previous chapter. Most of these actions are retrievals of instructions from
memory followed by movements of data or addresses from one part of the CPU to another.

The control unit determines the particular instruction to be executed by reading the
contents of a program counter (PC), sometimes called an instruction pointer (IP), which is a
part of the control unit. Like the LittleMan’s location counter, the program counter contains the
address of the current instruction or the next instruction to be executed. Normally, instructions
are executed sequentially. The sequence of instructions is modified by executing instructions
that change the contents of the program counter. The Little Man branch instructions are
examples of such instructions. Amemorymanagement unitwithin the control unit supervises
the fetching of instructions and data from memory. The I/O interface is also part of the control
unit. In some CPUs, these two functions are combined into a single bus interface unit. The
program counter in the CPU obviously corresponds to the location counter in the Little Man
Computer, and the control unit itself corresponds to the Little Man.

Memory, of course, corresponds directly to the mailboxes in the LMC.

7.2 THE CONCEPT OF REGISTERS
Before we discuss the way in which the CPU executes instructions, it is necessary to understand
the concept of a register. A register is a single, permanent storage location within the CPU
used for a particular, defined purpose. A register is used to hold a binary value temporarily

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 198

198 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

for storage, for manipulation, and/or for simple calculations. Note that each register is wired

within the CPU to perform its specific role. That is, unlike memory, where every address is just

like every other address, each register serves a particular purpose. The register’s size, the way it

is wired, and even the operations that take place in the register reflect the specific function that

the register performs in the computer.

Registers also differ from memory in that they are not addressed as a memory location

would be, but instead are manipulated directly by the control unit during the execution of

instructions. Registers may be as small as a single bit or as wide as several bytes, ranging usually

from 1 to 128 bits.

Registers are used in many different ways in a computer. Depending on the particular use

of a register, a register may hold data being processed, an instruction being executed, a memory

or I/O address to be accessed, or even special binary codes used for some other purpose, such as

codes that keep track of the status of the computer or the conditions of calculations that may be

used for conditional branch instructions. Some registers serve many different purposes, while

others are designed to perform a single, specialized task. There are even registers specifically

designed to hold a number in floating point format, or a set of related values representing a list

or vector, such as multiple pixels in an image.

Registers are basic working components of the CPU. You have already seen, in Chapter 6,

that the computer is unable to distinguish between a value that is used as a number in a program

and a value that is actually an instruction or address, except in the context of current use. When

we refer to the “data” in a register, we might be talking about any of these possibilities.

You have already become acquainted with two “registers” in the Little Man Computer,

namely, the calculator and the location counter.

In the CPU, the equivalent to the calculator is known as an accumulator. Even the short

example to add two numbers in Chapter 6 showed that it is often necessary to move data to and

from the accumulator to make room for other data. As a result, modern CPUs provide several

accumulators; these are often known as general-purpose registers. Some vendors also refer to

general-purpose registers as user-visible or program-visible registers to indicate that they may

be accessed by the instructions in user programs. Groups of similar registers are also sometimes

referred to collectively as a register file. General-purpose registers or accumulators are usually

considered to be a part of the arithmetic/logic unit, although some computer manufacturers

prefer to consider them as a separate register unit. As in the Little Man Computer, accumulator

or general-purpose registers hold the data that are used for arithmetic operations as well as

the results. In most computers, these registers are also used to transfer data between different

memory locations, and between I/O and memory, again similar to the LMC. As you will see in

Chapter 8, they can also be used for some other similar purposes.

The control unit contains several important registers.

n As already noted, the program counter register (PC or IP) holds the address of the

current instruction being executed.

n The instruction register (IR) holds the actual instruction being executed currently

by the computer. In the Little Man Computer, this register was not used; the Little

Man himself remembered the instruction he was executing. In a sense, his brain

served the function of the instruction register.

n Thememory address register (MAR) holds the address of a memory location.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 199

CHAPTER 7 THE CPU AND MEMORY 199

n Thememory data register (MDR), sometimes known as thememory buffer register,

will hold a data value that is being stored to or retrieved from the memory location

currently addressed by the memory address register.

The last two registers will be discussed in more detail in the next section, when we explain

the workings of memory. Although the memory address register and memory data register are

part of theCPU, operationally these two registers aremore closely associatedwithmemory itself.

The control unit will also contain several 1-bit registers, sometimes known as flags, that
are used to allow the computer to keep track of special conditions such as arithmetic carry and

overflow, power failure, and internal computer error. Usually, several flags are grouped into

one or more status registers.
In addition, our typical CPUwill contain an I/O interface that will handle input and output

data as it passes between the CPU and various input and output devices, much like the LMC in

and out baskets. For simplification, we will view the I/O interface as a pair of I/O registers, one

to hold an I/O address that addresses a particular I/O device, the other to hold the I/O data.

These registers operate similarly to the memory address and data registers. Later, in Chapter 9,
we will discuss a more common way of handling I/O that uses memory as an intermediate

storage location for I/O data.

Most instructions are executed by the sequenced movement of data between the different

registers in the ALU and the CU. Each instruction has its own sequence.
Most registers support four primary types of operations:

1. Registers can be loaded with values from other locations, in particular from other

registers or from memory locations. This operation destroys the previous value stored
in the destination register, but the source register or memory location remains

unchanged.

2. Data from another location can be added to or subtracted from the value previously

stored in a register, leaving the sum or difference in the register.

3. Data in a register can be shifted or rotated right or left by one or more bits. This

operation is important in the implementation of multiplication and division. The

details of the shift operation are discussed in Section 7.6.

4. The value of data in a register can be tested for certain conditions, such as zero,

positive, negative, or too large to fit in the register.

In addition, special provision is frequentlymade to load the value zero into a register, which

is known as clearing a register, and also to invert the 0s and 1s (i.e., take the 1’s complement

of the value) in a register, an operation that is important when working with complementary
arithmetic. It is also common to provide for the addition of the value 1 to the value in a register.

This capability, which is known as incrementing the register, has many benefits, including

the ability to step the program counter, to count in for loops, and to index through arrays in

programs. Sometimes decrementing, or subtraction of 1, is also provided. The bit inversion and
incrementing operations are combined to form the 2’s complement of the value in a register.

Most computers provide a specific instruction for this purpose, and also provide instructions

for clearing, inverting, incrementing, and decrementing the general-purpose registers.

The control unit sets (“1”) or resets (“0”) status flags as a result of conditions that arise
during the execution of instructions.

As anexample, Figure7.3 identifies theprogrammer-accessible registers in the IBMSystemz

computers, which includes a variety of IBM mainframe models. Internal registers, such as the

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 200

200 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.3

Programmer-Accessible Registers in IBM zSeries Computers

Register type

For arithmetic, logical, and addressing operations;
adjoining registers may be joined to form up to eight
128-bit registers
Floating point arithmetic; registers may be joined to
form 128-bit registers
Combination program counter and status-flag register,
called the Program Status Word (PSW)
Various internal functions and parameters connected
with the operating system; accessible only to systems
programmers
Status, flags, etc. for floating point

Used for access to different address regions for virtual
storage

NotesSize of each in bits

16

16

1

16

1

16

64

64

128

64

32

32

Number

General

Floating point

PSW

Control

Floating point
control

Access

instruction, memory address, and memory buffer registers are not specifically identified in the
table, since they are dependent on the implementation of the particular model in the series.

7.3 THE MEMORY UNIT

The Operation of Memory

To understand the details of instruction execution for the real CPU, you need first to see how
instructions and data can be retrieved from memory. Real memory, like the mailboxes in the
Little Man Computer, consists of cells, each of which can hold a single value, and each of which
has a single address.

Two registers, thememory address register and thememory data register, act as an interface
between the CPU and memory. The memory data register is called the memory buffer register
by some computer manufacturers.

Figure 7.4 is a simplified representation of the relationship between the MAR, the MDR,
and memory. Each cell in the memory unit holds 1 bit of data. The cells in Figure 7.4 are
organized in rows. Each row consists of a group of one or more bytes. Each row represents the
data cells for one or more consecutive memory addresses, shown in the figure as addresses 000,
001, . . . , 2n − 1.

The memory address register holds the address in the memory that is to be “opened” for
data. The MAR is connected to a decoder that interprets the address and activates a single
address line into the memory. There is a separate address line for each row of cells in the
memory; thus, if there are n bits of addressing, there will be 2n address lines. These are the
horizontal lines in the figure. (In actuality, the decoding process is somewhat more complex,
involving several levels of address decoding, since there may be several millions or billions of
addresses involved, but the concept described here is correct.)

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 201

CHAPTER 7 THE CPU AND MEMORY 201

FIGURE 7.4

The Relationship Between the MDR, the MAR, and Memory

bit 0

bit n –1 2n–1

000

001

One or more bytes

.

.

.

.

.....

.....

.....

.....

.....

.....

.....

.....

Memory data register

Individual
memory

cellsAddress
line

M
em

or
y

ad
dr

es
s

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

The memory data register is designed such that it is effectively connected to every cell in
the memory unit. Each bit of the MDR is connected in a column to the corresponding bit of
every location in memory (the vertical lines). However, the addressing method assures that
only a single row of cells is activated at any given time. Thus, the MDR only has access to the
values in that single row. A specific example of this is shown in Figure 7.5. (Note that in the
drawingmsb stands for most significant bit and lsb for least significant bit.)

FIGURE 7.5

MAR–MDR Example

1

0

0

0

1

1 63

1
0

49

.....

.....

.....

.....

.....

.....

.....

.....

M
em

or
y

ad
dr

es
s

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

lsb

msb

1100012 = 4910

Memory data register

Active
line

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 202

202 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.6

A Visual Analogy for Memory

63

msb

lsb

49

1

1

0
1

1
0

0

0

10101101

M
em

or
y

ad
dr

es
s

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

1100012 = 4910

Memory data register

All cells
dark

0001 1 1 1 1

As a simple analogy to the operation we’ve just described, consider the memory as being
stored in a glass box, as shown in Figure 7.6. The memory data register has a window into
the box. The viewer, who represents each cell in the memory data register, can see the cells
in corresponding bit position for every location in memory through the window. The cells
themselves are light bulbs that can be turned on (1) or off (0). The output from the memory
address register is passed to an address decoder. The output from the address decoder in our
analogy consists of a series of lines, each of which can light up the bulbs in a single row of cells.
Only one line at a time can be activated—specifically, the one corresponding to the decoded
address. The active line will light the bulbs that correspond to “1s”, leaving the “0s” dark. The
viewer therefore will see only the single group of cells that is currently addressed by thememory
address register. We can extend the analogy to include a “master switch” that controls all the
lights, so that the data can be read only at the appropriate instant.

A more detailed picture of an individual memory cell is shown in Figure 7.7. Although this
diagram is a bit complicated, it may help to clarify how data is transferred between the MDR
and memory. There are three lines that control the memory cell: an address line, a read/write
line, and an activation line. The address line to a particular cell is turned on only if the computer
is addressing the data within that cell. The address lines can fluctuate temporarily when the
address is changed, so the activation line is turned on only after the address lines are stable. The
cell itself is active only for the brief instant that its address line and the activation line are both
turned on (on is usually represented by 1, off by 0). The read/write line determines whether the
data will be transferred from the cell to the MDR (read) or from the MDR to the cell (write).

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 203

CHAPTER 7 THE CPU AND MEMORY 203

FIGURE 7.7

An Individual Memory Cell

MDR line

READ
SWITCH, R

WRITE
SWITCH, W

ONE
MEMORY

CELL

address line = “1”
activate line = “1”
R/W line = “1” (read)

address line = “1”
activate line = “1”
R/W line = “0” (write)

AND

Data read
when READ

SWITCH is ON

Data written
when WRITE

SWITCH is ON

AND

This line works by setting a read/write switch into one of two positions. In the read position,

the switch connects the output of the cell to the MDR line. In the write position, the switch

connects the MDR line to the input of the cell, which transfers the data bit on the MDR line to

the cell for storage. (We’ve drawn the switch as a familiar light switch to make the figure clear,

but the actual switch is, of course, electronic.)

The interaction between the CPU and the memory registers takes place as follows: to

retrieve or store data at a particular memory location, the CPU copies an address from some

register in the CPU to the memory address register.Note that addresses are always moved to the

MAR; there would never be a reason for an address transfer from the MAR to another register

within the CPU, since the CPU controlsmemory transfers and is obviously aware of thememory

address being used. At the same time that the MAR is loaded, the CPU sends a message to the

memory unit indicating whether the memory transfer is a retrieval from memory or a store to

memory. This message is sent by setting the read/write line appropriately.

At the appropriate instant, the CPU momentarily turns on the switch that connects the

MDRwith the register by using the activation line, and the transfer takes place betweenmemory

and the MDR. The MDR is a two-way register. When the instruction being executed is to store

data, the data will be transferred from another register in the CPU to the MDR, and from there

it will be transferred into memory. The original data at that location will be destroyed, replaced

by the new data from the MDR. Conversely, when the instruction is to load data frommemory,

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 204

204 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

the data is transferred from memory to the MDR, and it will subsequently be transferred to the

appropriate register in the CPU. In this case, the memory data are left intact, but the previous

data value in the MDR is replaced by the new data from memory.

Memory Capacity and Addressing Limitations

The number of possible memory locations in the Little Man Computer, one hundred locations,

was established by the two-digit address space in each instruction. The location counter also

addresses one hundred locations. There is nomemory address register per se, but the LittleMan

is certainly aware that each memory location requires two digits. In theory, a larger location

counter, say, three digits, would allow the Little Man to fetch more instructions, but notice that

his data fetches and stores are still limited to the one hundred locations that the two digits of

the address field in the instruction word can address.

Similarly, there are two factors that determine the capacity of memory in a real computer.

The number of bits in the memory address register determines how many different address

locations can be decoded, just as the two-digit addresses in the Little Man Computer resulted

in a maximum of one hundred mailboxes. For a memory address register of width k bits, the

number of possible memory addresses is

M = 2k

The other factor in establishing memory capacity is of course the number of bits in the

address field of the instruction set, which establishes how many memory locations can be

directly addressed from the instruction.

In the Little Man Computer, we have assumed that these two size factors are the same, but

in a real computer, that is not necessarily the case. Even if the size of the instruction address field

is sufficient to support a larger amount of memory, the number of physical memory locations

is, in fact, determined by the size of the memory address register. In the real computer, there are

alternative ways of extending the addresses specified within instructions so that we can reach

more addresses than the size of the instruction address field would, by itself, allow. The different

ways of establishingmemory addresseswithin an instruction are called addressingmodes. As an
example of one common method, consider a computer that can use one of the general-purpose

registers to hold an address. To find a memory location, the computer would use the value in

that register as a pointer to the address. Instead of an address field, the instruction needs only

to indicate which register contains the address. Using this technique, the addressing capability

of the computer is determined by the size of the register. For example, a computer with 64-bit

registers could address 264 addresses if the MAR were wide enough (and if that much physical

memory could be installed!) Such an extension would suggest that theMAR, and thus the actual

memory capacity, is normally at least as large as the instruction address field, but it may be

much larger. There is an additional brief discussion of simple addressingmethods in Section 7.8.

Other, more sophisticated addressing methods are presented in Supplementary Chapter 3.

Ultimately, the width of the MAR determines the maximum amount of addressable

memory in the computer. Today, a typical memory address register will be at least 32 bits wide,

and probably much wider. Many modern CPUs support 64-bit memory addresses. A 32-bit

memory address allows a memory capacity of 4 gigabytes (GB) (4 × 109 byte-size spaces),

whereas 64 bits allows amemory capacity of 16× 1018 bytes (16 exabytes or 16 billion gigabytes).

In modern computers, the ultimate size of memory is more likely limited by physical space for

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 205

CHAPTER 7 THE CPU AND MEMORY 205

the memory chips or by the time required to decode and access addresses in a large memory,

rather than by the capability of the CPU to address such a large memory.

Of course the size of memory also affects the speed of access. The time needed for the

address decoder to identify a single line out of four billion is necessarily larger than that required

for a memory that is much smaller.

As an aside, it is worth noting that early models of IBM’s largest mainframe computer

systems had a total memory capacity of only 512KB (1/8000th the memory of a typical modern

PC with 4GB of memory!) and that the original IBM PC came supplied with 64KB of memory,

with a maximum capacity of 640KB. In fact, Bill Gates, of Microsoft fame, was quoted at the

time as saying that he could see no need for more than 640KB of memory, ever! Today, even a

cellphone or tablet typically provides 256MB of operational memory or more.

The size of the data word to be retrieved or stored in a single operation is determined by

the size of the memory data register and by the width of the connection between memory and

the CPU. In most modern computers, data and instructions found in memory are addressed

in multiples of 8-bit bytes. This establishes the minimum instruction size as 8 bits. Most

instructions cannot fit practically into 8 bits. If one were to allow 3 bits for the op code (eight

instruction types), only 5 bits remain for addressing. Five bits allow 25 = 32 different addresses,

which is clearly insufficient address space. As a result, longer instructions of 16, 24, 32, or even

more bits will be stored in successive memory locations. In the interest of speed, it is generally

desirable to retrieve an entire instruction with a single fetch, if possible. Additionally, data to

be used in arithmetic calculations frequently requires the precision of several bytes. Therefore,

most modern computer memories are designed to allow the retrieval or storage of at least 4

and, more commonly, 8 or even 16, successive bytes in a single operation. Thus, the memory

data register is usually designed to retrieve the data or instruction(s) from a sequence of several

successive addresses all at once, and the MDR will be several bytes wide. The CPU can still

isolate individual bytes from the group for its use when necessary, however.

Primary Memory Characteristics and Implementation

Through the history of computing there have been several different types of primary memory

used, reflecting the technology and the system requirements and capabilities of the times. In

the 1960s and 1970s, the dominant technology was magnetic core memory, which used a tiny

core of magnetic material to hold a bit of data, and the largest machines might have had 512KB

of memory. Today, the primary memory in most computer systems is dynamic RAM; the

amount of RAM in computer systems varies widely, from 256MB to 2 GB in smartphones and

tablets, to 4–8 GB in typical modern personal computers to as much as 1 TB, or even more,

in large mainframe computers. RAM is an acronym that stands for random access memory,

which is a slight misnomer, since other types of semiconductor memory can also be accessed

randomly (i.e., their addresses can be accessed in any order). A more appropriate name would

be read–write memory.

Memory today is characterized by two predominant operational factors and by a number of

technical considerations. Operationally, the most important memory characteristic is whether

the memory is read–write capable or read-only. Almost as important is whether the memory is

volatile or nonvolatile. Nonvolatile memory retains its values when power is removed. Volatile

memory loses its contents when power is removed. Magnetic core memory was nonvolatile.

The RAM used for regular memory is volatile.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 206

206 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Important technical considerations include the speed of memory access, the total amount

of memory that can be addressed, the data width, the power consumption and heat generation,

and the bit density (specified as the number of bits per square centimeter). Cost is an additional

factor.

Most current computers use a mix of static and dynamic RAM for memory. The difference

between static and dynamic RAM is in the technical design and is not of importance here.

However, dynamic RAM is less expensive, requires less electrical power, generates less heat,

and can be made smaller, with more bits of storage in a single integrated circuit. Dynamic RAM

also requires extra electronic circuitry that “refreshes” memory periodically; otherwise the data

fades away after a while and is lost. Static RAM does not require refreshing. Static RAM is

also faster to access than dynamic RAM and is therefore useful in very-high-speed computers

and for small amounts of high-speed memory, but static RAM is lower in bit density and more

expensive. Both dynamic and static RAMs are volatile: their contents are lost when power is

turned off.

At the time of this writing, dynamic RAM is standard for most applications. The amount

of data that can be stored in a single dynamic RAM chip has increased rapidly in the past few

years, going from 64 kilobits (kb) to 4 gigabits (GB) in fewer than twenty years. Four 2 GB

chips can implement 1 GB of dynamic memory. Most modern systems also provide a small

amount of static RAM memory that is used for high-speed access. This memory is known as

cache memory. The use of cache memory is discussed in Chapter 8.

Although current RAM technology is fast, inexpensive, and efficient, its volatility makes

some applications difficult or impossible. For example, nonvolatile RAM would make it

possible to shut off a computer without losing the programs and data in memory. This would

make it possible to restart the computer into its previous statewithout rebooting,wouldeliminate

the undesirable effects of power failures and laptop battery discharge, and would simplify

the use of computers in situations where power conservation is critical, such as in long-distance

space missions. The desire for nonvolatile RAM has led to considerable research on alternative

technologies for creating and producing nonvolatile RAM.

There are a small number of memory technologies in current use that are capable of

nonvolatile random access, but none in current large-scale production is capable of replacing

standard SRAM and DRAM for use as primary memory.

At least some of the program code used to start a computer must be present in a nonvolatile

segment of primarymemory. (Otherwise therewouldbenoprogram inmemory to executewhen

the computer is powered up!) This code is known asfirmware. This programarea in a PCmay be

familiar to you as the BIOS, or Basic Input Output System, although a newer version, called EFI

or SEFI, for [Secure] Extensible Firmware Interface, is replacing the BIOS in newer machines.

ROM, or read-only memory, is used for situations such as this, where the software is built

semipermanently into the computer, is required as part of the computer’s software, and is not

expected to change over the life of the computer, except perhaps very infrequently. Early ROM

was made up of integrated circuits with fuses in them that could be blown. These fuses were

similar to, but much smaller than, the fuses that you might have in your home. A blown fuse

might represent a “0”, an intact fuse a “1”. Once blown, these devices could not be modified.

Foremost among current nonvolatilememory technologies isflashmemory. Flashmemory

serves as an inexpensive form of nonvolatile secondary storage for portable computer storage,

digital cameras, tablets, smartphones, and other electronic devices; however, with the exception

of the memory used at system startup (see below), it is generally considered unsuitable for

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 207

CHAPTER 7 THE CPU AND MEMORY 207

primary memory because it is not possible to write to a single memory location. Instead it is

necessary to erase and rewrite a large block of memory to make any changes in flash memory.

The rewrite time is extremely slow compared to standard RAM and the number of rewrites

over the lifetime of flash memory is somewhat limited. This limitation is less of a concern for

secondary storage.

Most flash memory is read in blocks; however, one type of flash memory can be read byte

by byte. Since firmware is rarely changed, this type of flash memory is suitable for use in the

case of startup, with the advantage that changes can be made when necessary.

7.4 THE FETCH–EXECUTE INSTRUCTION CYCLE
The fetch–execution instruction cycle is the basis for every capability of the computer. This

seems like a strong statement, but think about it: the purpose of the computer is to execute

instructions similar to those that we have already introduced. And, as you’ve already seen from

the Little Man Computer, the operation of every instruction is defined by its fetch–execute

instruction cycle. Ultimately, the operation of a computer as a whole is defined by the primary

operations that can be performed with registers, as explained in Section 7.2: to move data

between registers, to add or subtract data to a register, to shift data within a register, and to test

the value in a register for certain conditions, such as negative, positive, or zero.

With the importance of the instruction cycle in mind, we can consider how these few

operations can be combined to implement each of the instructions in a computer. The registers

that will be of the most importance to us for this discussion will be the general-purpose registers

or accumulators used to hold data values between instructions (A or GR), the program counter

(PC), which holds the address of the current instruction, the instruction register (IR), which

will hold the current instruction while it is being executed, and the memory address and data

registers (MAR and MDR), used for accessing memory.

To begin, review carefully the steps that the Little Man took to execute an instruction.

(You may want to read Section 6.6 again to refresh your memory.) You will recall that there

were two phases in the process. First, the Little Man fetched the instruction from memory and

read it. This phase was identical for every instruction. Then, he interpreted the instruction and

performed the actions required for that particular instruction.

He repeated this cycle endlessly, until he was given the instruction to stop.

The fetch–execute instruction cycle in a CPU works similarly. As noted, much of the

procedure consists of copying data from one register to another. You should always be aware

that data copying does not affect the “from” register, but it obviously replaces the previous data

in the “to” register with the new data being copied.

Remember that every instruction must be fetched from memory before it can be executed.

Therefore, the first step in the instruction cycle always requires that the instruction must

be fetched from memory. (Otherwise, how would the computer know what instruction to

perform?) Since the address of the current instruction to be executed is identified by the value

in the program counter register, the first step will be to transfer that value into the memory

address register, so that the computer can retrieve the instruction located at that address.

We will use the following notation to indicate the transfer of a data value from one register

to another:

REGa → REGb

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 208

208 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Then, in this notation, the first step in the execution of every instruction will be

(step 1) PC → MAR

As explained in the description of memory, this will result in the instruction being

transferred from the specified memory location to the memory data register. The next step is to

transfer that instruction to the instruction register:

(step 2) MDR → IR

The instruction register will hold the instruction through the rest of the instruction cycle.

It is the particular instruction in the IR that will control the particular steps that make up the

remainder of the cycle. These two steps comprise the fetch phase of the instruction cycle.

The remaining steps are, of course, instruction dependent. Let us consider the steps

required to complete a LOAD instruction.

The next thing that the Little Man did was to read the address part of the LOAD instruction.

He then walked over to the mailbox specified by that address, read the data, and copied it into

the calculator. The real CPU will operate similarly, substituting register transfers for the Little

Man, of course. Thus,

(step 3) IR[address] → MAR

The notation IR [address] is used to indicate that only the address part of the contents of

the instruction register is to be transferred. This step prepares the memory module to read the

actual data that will be copied into the “calculator”, which in this case will be the accumulator:

(step 4) MDR → A

(In modern computers with multiple general-purpose registers, the destination, A, will be

replaced with the appropriate register, but the concept remains the same.)

The CPU increments the program counter, and the cycle is complete and ready to begin

the next instruction (actually this step can be performed any time after the previous instruction

is retrieved, and is usually performed early in the cycle in parallel with other steps).

(step 5) PC + 1 → PC

Notice the elegant simplicity of this process! The LOAD instruction requires only five steps.

Four of the steps simply involve the movement of data from one register to another. The fifth

step is nearly as simple. It requires the addition of the value 1 to the contents of a register, and

the new value is returned to the same register. This type of addition is common in computers.

In most cases, the result of an addition or subtraction is returned to one of the original registers.

The remaining instructions operate similarly. Compare, for example, the steps required to

perform the STORE and the ADD instructions with those of the LOAD instruction, discussed earlier.

The STORE instruction

PC → MAR
MDR → IR
IR[address] → MAR
A → MDR
PC + 1 → PC

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 209

CHAPTER 7 THE CPU AND MEMORY 209

The ADD instruction

PC → MAR
MDR → IR
IR[address] → MAR

A + MDR → A
PC + 1 → PC

Study these examples carefully. For practice, relate them to the steps the LittleManperforms

to execute the corresponding instruction. Notice that the only step that changes in these three

instructions is the fourth step.

The fetch–execute cycles for the remaining instructions are left as an exercise (see

Exercise 7.5 at the end of this chapter).

The following example, with comments, recaps the above discussion in the context of a

three-instruction program segment that loads a number from memory, adds a second number

to it, and stores the result back to the first memory location. Note that each instruction is made

up of its corresponding fetch–execute cycle. The program segment is executed by processing

each step of each fetch–execute cycle in sequence.

Assume that the following values are present just prior to execution of this segment:

Program Counter ∶ 65
Value in Mem Location 65 ∶ 590 (LOAD 90)
Value in Mem Location 66 ∶ 192 (ADD 92)
Value in Mem Location 67 ∶ 390 (STORE 90)
Value in Mem Location 90 ∶ 111
Value in Mem Location 92 ∶ 222

EXAMPLE

1st instruction LOAD 90: PC → MAR MAR now has 65
MDR → IR IR contains the instruction: 590

- - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now has 90, the location of the

data
MDR → A Move 111 from MDR to A
PC + 1 → PC PC now points to 66.

- end of execution, end of first instruction

2nd instruction ADD 92: PC → MAR MAR now contains 66
MDR → IR IR contains the instructions: 192

- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now has 92
A + MDR → A 111+222=333 in A
PC + 1 → PC PC now points to 67

- end of execution, end of second instruction

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 210

210 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

3rd instruction STORE 90: PC → MAR MAR now contains 67
MDR → IR IR contains 390

- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now holds 90
A → MDR The value in A, 333, moves to mem

location 90
PC + 1 → PC PC now points to 68

- end of execution, end of third instruction

← ready for next instruction

7.5 BUSES

Bus Characteristics

You have already seen that instructions are executed within the CPU bymoving “data” in many
different forms from register to register and between registers andmemory. The different forms
that the “data” can take include instructions and addresses, in addition to actual numerical data.
“Data” moves between the various I/O modules, memory, and the CPU in similar fashion. The
physical connection that makes it possible to transfer data from one location in the computer
system to another is called a bus. From our previous discussion of the way that the CPU and
memory work together, it is probably already obvious to you that there must be a bus of some
kind linking the CPU and memory; similarly, buses internal to the CPU can be used with
electronic switches to link registers together at the proper times to implement the fetch–execute
cycles introduced in Section 7.4.

Specifically, a bus may be defined as a group of electrical, or, less commonly, optical,
conductors suitable for carrying computer signals from one location to another. The electrical
conductorsmay be wires, or theymay be conductors within an integrated circuit or on a printed
circuit. Optical conductors work similarly, using light that is directed from point to point in
special thin clear glass fibers. Optical conductors can carry data much faster than electrical
conductors, but their cost is high, which has limited their use to date. Nonetheless, there is
considerable laboratory research into ways to integrate more optical circuits into computers.

Buses are usedmost commonly for transferring data between computer peripherals and the
CPU, for transferring data between the CPU and memory, and for transferring data between
different pointswithin theCPU.Abusmight be a tiny fraction of amillimeter long, carrying data
between various parts of the CPUwithin an integrated circuit chip; it might be a fewmillimeters
long, carrying data between the CPU chip and memory; it might even be several feet long,
carrying data between a computer and a printer or monitor or between different computers.
(Think data transfers between your cell phone and your laptop computer as an example.)

The characteristics of buses are dependent on their particular use within the computer
environment. A bus can be characterized by the number of separate wires or optical conductors
in the bus; by its throughput, that is, the data transfer rate measured in bits per second; by the
data width (in bits) of the data being carried; by the number and type of attachments that the
bus can support; by the distance between the two end points; by the type of control required;
by the defined purpose of the bus; by the addressing capacity; by whether the lines on the
bus are uniquely defined for a single type of signal or shared; and by the various features and

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 211

CHAPTER 7 THE CPU AND MEMORY 211

capabilities that the bus provides. The bus must also be specified electrically and mechanically:

by the voltages used; by the timing and control signals that the bus provides and requires; by

the protocol used to operate and control the bus; by the number of pins on the connectors, if

any; even by the size of the cards that plug into the connector. A bus would not be very useful

if the cards that it was to interconnect did not fit into the space allotted! Unfortunately for the

concept of standardization, there are dozens of different buses in use, although a few are far

more common than others.

The need to characterize buses comes from the necessity of interfacing the bus to other

components that are part of the computer system. Buses that are internal to the CPU are

usually not characterized formally at all, since they serve special purposes and do not interface

to the outside world. Buses that are used in this way are sometimes known as dedicated buses.

Buses that are intended for more general use must have a well-defined standard; standard buses

generally have a name. PCI Express, Universal Serial Bus (USB), Integrated Drive Electronics

(IDE), and Serial Advanced Technology Attachment (SATA) are all examples of named buses.

Each conductor in the bus is commonly known as a line. Lines on a bus are often assigned

names, to make individual lines easier to identify. In the simplest case, each line carries a single

electrical signal. The signal might represent one bit of a memory address, or a sequence of

data bits, or a timing control that turns a device on and off at the proper time. Sometimes, a

conductor in a bus might also be used to carry power to a module. In other cases, a single line

might represent some combination of functions.

The lines on a bus can be grouped into as many as four general categories: data, addressing,

control, and power. Data lines carry the “data” that is beingmoved fromone location to another.

Address lines specify the recipient of data on the bus. Control lines provide control and timing

signals for the proper synchronization and operation of the bus and of the modules and other

components that are connected to the bus. A bus connecting only two specific 32-bit registers

within a CPU, for example, may require just thirty-two data lines plus one control line to turn

the bus on at the correct time. A backplane that interconnects a 64-bit data width CPU, a large

memory, and many different types of peripherals might require many more than a hundred

lines to perform its function.

The bus that connects the CPU and memory, for example, needs address lines to pass the

address stored in the MAR to the address decoder in memory and data lines to transfer data

between the CPU and the memory MDR. The control lines provide timing signals for the data

transfer, define the transfer as a read or write, specify the number of bytes to transfer, and

perform many other functions.

In reality, all of the lines except for the power lines in a bus can be used in different

ways. Each line in a bus may serve a single, dedicated purpose, such as a bus line that carries

the twelfth bit of an address, for example. Alternatively, a line may be configured to serve

different purposes at different times. A single line might be used to carry each of the bits of an

address in sequence, followed by the bits of data, for example. At their two extremes, buses are

characterized as parallel or serial. By definition, a parallel bus is simply a bus in which there

is an individual line for each bit of data, address, and control being used. This means that all

the bits being transferred on the bus can be transferred simultaneously. A serial bus is a bus in

which data is transferred sequentially, one bit at a time, using a single data line pair. (A data

return line is required to complete the circuit, just as there are two wires in a standard 110-volt

power circuit. Multiple data lines can share the same data return line, commonly known as

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 212

212 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

a ground line, but in some cases it is possible to reduce noise and other interference using a
separate return line for each data line.)

Abus linemaypass data in onedirection only, ormaybeused to pass data in bothdirections.
A unidirectional line is called a simplex line. A bidirectional linemay carry data one direction at
a time, in which case it is called a half-duplex line, or in both directions simultaneously, known
as a full-duplex line. The same nomenclature is also used to describe data communication
channels, because, ultimately, the basic concepts of bus lines and communication channels are
essentially similar.

Buses are also characterized by the way that they interconnect the various components
to which they are attached. A bus that carries signals from a single specific source to a single
specific destination is identified as a point-to-point bus. Point-to-point buses that connect
an external device to a connector are often referred to as cables, as in a printer cable or a
network cable. Thus, the cable that connects the USB port in a personal computer from the
computer to a printer is an example of a point-to-point bus. The internal connectors into which
external cables can be plugged are often called ports. Typical ports on a personal computer
might include USB ports, network ports, and DisplayPort or HDMI ports. All of these ports are
digital. A VGA port might also be included for connection to older analog monitors.

Alternatively, a bus may be used to connect several points together. Such a bus is known
as a multipoint bus, or sometimes as a multidrop bus. It is also referred to as a broadcast
bus, because the signals produced by a source on the bus are “broadcast” to every other point
on the bus in the same way as a radio station broadcasts to anyone who tunes in. The bus
in a traditional Ethernet network is an example of a broadcast bus: the signal being sent by
a particular computer on the network is received by every other computer connected to the
network. (The operation of Ethernet is discussed in Chapter 12.) In most cases, a multipoint
bus requires addressing signals on the bus to identify the desired destination that is being
addressed by the source at a particular time. Addressing is not required with a point-to-point
bus, since the destination is already known, but an address may be required if the message is
being passed through the destination point to another location. Addressing is also not required
for a multipoint bus where the signal is actually intended to reach all the other locations at once;
this is sometimes the case for buses that are internal to the CPU. Addressing may be integral to
the lines of the bus itself, or may be part of the protocol that defines the meaning of the data
signals being transported by the bus.

Typical point-to-point and multipoint bus configurations are illustrated in Figure 7.8.
A parallel bus that carries, say, 64 bits of data and 32 bits of address on separate data and

address lines would require a bus width of 96 lines, even before control lines are considered.
The parallel bus is characterized by high-throughput capability because all the bits of a data
word are transferred at once. Virtually every bus internal to the CPU is a parallel bus, since
the high speed is essential to CPU operation. Also, most internal operations and registers are
inherently parallel, and the use of serial buses would require additional circuitry to convert the
parallel data to serial and back again. Until recently, the buses that connected the CPU with
memory and various high-speed I/O modules such as disk and display controllers were also
parallel, for similar reasons.

The parallel bus does have a number of disadvantages, though. Parallel buses are expensive
and consume a considerable amount of space. Connectors used with parallel buses are also
expensive because of the large number of pins involved.More seriously, parallel buses are subject
to radio-generated electrical interference between the different lines at high data transfer rates.
The higher the data rate, the worse the interference, which ultimately limits the speed at which

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 213

CHAPTER 7 THE CPU AND MEMORY 213

FIGURE 7.8

Point-to-Point and Multipoint Buses

Computer

CPU Memory

Computer

Computer
Network-
attached
storage

USB
port Printer

ALU
Control

unit

Examples of
point-to-point buses

Examples of
multipoint buses

Disk
controller Video

controller

the parallel bus can operate. Additionally, there is a slight difference in time delay on different
lines, known as skew, as signals traverse the bus. The transfer rate, and thus the clock speed
of the bus, is also limited by the requirement that the data must not change faster than the
maximum skew time. Both of these problems can cause data corruption. Finally, the cost of
fiber optic technology makes a parallel optical cable impractical.

Data on a serial bus is transferred sequentially, one bit at a time. Although you might think
that the throughput of a serial bus would be lower than that of a parallel bus theoretically capable
of the same per line transfer rate, the limitations noted above make serial bus transmission
attractive in most circumstances. Indeed, with advances in serial bus technology, serial buses
are now preferred for most applications, even for those requiring high data transfer rates.

Generally, a serial bus has a single data line pair and perhaps a few control lines. (For
simultaneous two-way communication, a second data line pair can be added.) There are no
separate address lines in a serial bus. Serial buses are often set up for point-to-point connection;
no addressing is required in this case. If addressing is required in a serial bus application, the
address may bemultiplexedwith the data.What this means is that the same line is used for both
address and data at different times; if an address is required, for example, the address might be
sent first, one bit at a time, followed by the data. At its simplest, the serial bus can be reduced
to a single data line pair, used for data, control, and addressing. Using modern materials such
as fiber optics, very high transfer rates may be achieved. In general, control is handled using a
bus protocol that establishes agreement as to the meaning and timing of each signal on the line
among the components connected to the line.

To use a bus, the circuits that are connected to the bus must agree on a bus protocol. Recall
from Chapter 1 that a protocol is an agreement between two or more entities that establishes
a clear, common path of communication and understanding between them. A bus protocol is
simply a specification that spells out the meaning of each line and each signal on each line for
this purpose. Thus, a particular control line on a bus might be defined as a line that determines

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 214

214 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.9

Alternative Bus Notations

16 16

if the bus is to be used for memory read or memory write. Both
the CPU and memory would have to agree, for example, that a
“0” on that particular line means “memory read” and a “1” on
the line means “memory write”. The line might have a name like

MREAD/MWRITE, where the bar over MWRITE means that a “0”
is the active state. The bar itself stands for “NOT”.3

In some modern serial buses, the protocol defines the meaning
of a sequence of signals that are treated as a group, or packet. For
example, a packet might contain the identification of a pixel on a

display followedby its three color values. PCIExpress is an example of a “packetized” bus. PCIEx-
press is discussed inChapter 11.More generally, the concept of a packet used in a serial bus is very
similar to that used in networking. We will discuss packets in much more detail in Chapter 12.

Buses are frequently notated on diagrams using widened lines to indicate buses. Sometimes
a number is also present on the diagram. The number indicates the number of separate lines in
the bus. Two alternative ways of notating buses in diagrams are shown in Figure 7.9.

7.6 CLASSIFICATION OF INSTRUCTIONS
Most of the instructions in a computer perform some sort of operation on one or more source
data values, which results in one or more destination data values. The operation may be a move
or load, it may be an addition or subtraction, it may be an input or output, or it may be one of
many other operations that we have already discussed.

Actually, if you think about the classes of instructions that we have discussed, you will
realize that there are only a few instructions that do not operate on data. Some of these are
concerned with the flow of the program itself, such as unconditional JUMP instructions. There
are also instructions that control the administration of the computer itself; the only example in
the Little Man Computer instruction set is the COFFEE BREAK or HALT that causes the computer
to cease executing instructions. Another example on some computers is the NO OPERATION

instruction that does nothing but waste time (which can be useful when a programmer wants
to create a time delay for some reason).

Modern computers also provide instructions that aid the operating system software in
its work, by providing security, controlling memory access, and performing other functions.
Because the operating system will frequently be controlling many tasks and users, these
instructionsmust not be available to the users’ application programs. Only the operating system
can execute these instructions. These instructions are known as privileged instructions. The
HALT instruction is usually a privileged instruction, because you would not want an individual
user to stop the computer while other users are still in the middle of their tasks. I/O instructions
would also fall into this category. Other privileged instructions include memory management
instructions, encryption and decryption instructions, and system administration instructions.
Some computers provide multiple levels of protection. The instructions available to users
are sometimes known as application-level instructions, or less commonly, user-accessible
instructions. Programs that execute without privileges are said to execute in user space.

3A pound sign (#) following the name is sometimes used to stand for “NOT” instead.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 215

CHAPTER 7 THE CPU AND MEMORY 215

Computer manufacturers usually group the instruction set into various categories of

instructions, such as data movement instructions, integer arithmetic instructions, floating

point arithmetic instructions, shift and rotate instructions, input/output instructions, branch

instructions, SIMD (Single Instruction that operates onMultipleData) instructions, and special-

purpose instructions.

Within each category, the instructions usually have a similar instruction word format,

support similar addressing modes, and execute in a similar way. Figure 7.10 shows instructions

representative of a typical instruction set. This figure includes a majority of the user-accessible

instructions in the ARM instruction set, which represents microprocessors used inmost mobile

computer-based devices, including tablets, smartphones, and GPS systems, as well as many

other computer-embedded devices.We have included the SIMDand floating point instructions,

which are extensions to the basic instruction set. However, the privileged instructions are not

listed in the diagram, nor are exception-handling instructions that are used primarily by system

programmers. We have also not attempted to list all of the variations of particular instructions,

such as those with different data word sizes or different addressing modes. Instead, we have

appended those instructions with “xx” or “[xx]” to indicate that there are related instructions

with similar mnemonics. Notice particularly that the categories conform fairly well to the Little

Man Computer instruction set. We have grouped the instructions somewhat differently from

the official ARM specification to emphasize the similarity of the ARM instruction set to that of

the Little Man Computer.

Data Movement Instructions (LOAD, STORE, and Other Moves)

Because the move instructions are the most frequently used, and therefore the most basic to

the computer, computer designers try to provide a lot of flexibility in these instructions. The

MOVE category commonly includes instructions to move data frommemory to general registers,

from general registers to memory, between different general registers, and, in some computers,

directly between different memory locations without affecting any general register. There may

be many different addressing modes available within a single computer.

Additionally, variations on these instructions are frequently used to handle different data

sizes. Thus, there may be a LOAD BYTE instruction, a LOAD HALF-WORD (2 bytes), a LOAD WORD

(4 bytes), and a LOAD DOUBLE WORD (8 bytes) within the same instruction set. (Incidentally, the

concept of a “word” is not consistent between manufacturers. To some manufacturers the size

of a word is 16 bits; to others, it is 32 or even 64 bits).

The Little Man LOAD and STORE instructions are simple, though adequate, examples of MOVE

instructions. Other than expanding the addressing mode capabilities and adding multiple word

size capabilities, which we have already discussed, the major limitation of the Little Man LOAD

and STORE instructions is the fact that they are designed to operate with a single accumulator.

When we expand the number of accumulators or general-purpose registers, we must

expand the instruction to determine which register we wish to use. Thus, the instruction must

provide a field for the particular register. Fortunately, it takes very few bits to describe a register.

Even sixteen registers require only 4 bits. On the other hand, if the computer uses the registers

to hold pointers to the actual memory addresses as its standard addressing mode, the required

instruction size may actually decrease, since fewer bits are required for the address field in this

case. Instruction set formats are discussed in Section 7.8.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 216

216 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.10

ARM Application-Level Instruction Set

Mnemonic Operation Mnemonic Operation

Data Movement Instructions

Bit Manipulation Instructions

Floating Point Instructions

Shift and Rotate and Register Manipulation Instructions

Program Flow Instructions

Integer Arithmetic Instructions

Boolean Instructions

Copy operand to destination
Move Status Register to Register
Move Register to Status Register
Load
Store
Load Multiple, Increment
Load Multiple Decrement
Store Multiple Increment
Store Multiple Decrement
Push Multiple Registers to Stack
Pop Multiple Registers
Pack Halfwords
Signed Extend (e.g. byte to word)
Unsigned Extend

MOV
MSR
MRS
LDR[xx]
STR[xx]
LDM[xx]
LDMD[xx]
STM[xx]
STMD[xx]
PUSH
POP
PKH
SXTx
UXTx

ADD
ADC
SXTAx
UXTAx
QADD
QDADD
CMN

CMP

SUB
SBC
QSUB
QDSUB
RSB
RSC
MUL
MLA
MLS
SMUxxx
SLMxxx
SMLSLD
SMLAD
SMUAD
SMUSD
UMxxx
SDIV, UDIV

Add
Add with Carry
Signed Extend and Add
Unsigned Extend and Add
Saturating ADD
Saturating Double and ADD
Compare Negative (subtracts but
saves only flags)
Compare Positive (adds but
saves only flags)
Subtract
Subtract with Carry
Saturating Subtract
Saturating Double and Subtract
Reverse Subtract
Reverse Subtract with Carry
Multiply
Multiply and Accumulate
Multiply and Subtract
Signed Multiply
Signed Multiply Accumulate
Signed Multiply and Subtract
Signed Multiply Dual Accumulate
Signed Dual Multiply and Add
Signed Dual Multiply and Subtract
Unsigned Multiply
Signed Divide, Unsigned Divide

[optional instructions, implementation dependent]
USAD8
USADA8

SSAT
USAT

Unsigned Sum of Absolute Differences
Unsigned Sum of Absolute Diff and
Accumulate
Saturate
Unsigned Saturate

AND
ORR
MVN
EOR
TST
TEQ

Bitwise AND
Bitwise OR
Bitwise NOT
Bitwise Exclusive Or
Test (AND but only sets flags)
Test Equivalent (EOR but only sets flags)

BIC
BFC
BFI
CLZ
MOVT
RBIT
REVxx
SBFX
UBFX

Bitwise Bit Clear
Bit Field Clear
Bit Field Insert
Count Leading Zeros
Move Top
Reverse Bits
Reverse Bytes
Signed Bit Field Extend
Unsigned Bit Field Extend

LSL
LSR
ASR
ROR
RRX
ROL

Logical Shift Left
Logical Shift Right
Arithmetic Shift Right
Rotate Right
Rotate Right with Extend
Rotate Left

VABS
VADD
VCVT[R]
VSUB
VMUL
VDIV
V[F][N]Mxx
VMOVx
VSQRT

Absolute value
Add
Convert between Int and Float
Subtract
Multiply
Divide
various Multiplies with Adds & Negates
Copy to target; also used with SIMD
Square Root

ADR
B
BL, BLX
IT

Form PC-Relative Address
Branch to target address
Call Subprogram
If-Then

makes following 1-4 instructions conditional
used mostly for conditional branching

SVC Supervisor Call

SIMD and Vector Instructions

VLDR
VLDM
VSTR
VSTM
VLDn

VSTn
VMOV, VMSR

VADD[xx]
VPADD[xx]
VQADD
VHADD
VRADD
VSUB[xx]
VQSUB
VHSUB
VRSUB

Vector Load Register
Vector Load Multiple
Vector Store Register
Vector Store Multiple
Vector Load Structure, Multiple
Element, n = 1, 2, 3, or 4
Vector Store Structure
various MOVEs between core and
SIMD registers
Vector Add, Integer or Floating
Vector Pairwise Add
Vector Saturating Add
Vector Halving Add
Vector Rounding Add
Vector Subtract, Integer or Floating
Vector Saturating Subtract
Vector Halving Subtract
Vector Rounding Subtract

There are also 36 various combinations of parallel addition
and subtraction instructions
VAND, VEOR, VORR, VMVN, VORN Vector Bitwise Booleans
VMxx
VQDMxxx
VACyy
VCxx
VSxx
VRSxx
VQSxx, VQRSxx

Vector Multiply
Vector Saturating Double Multiply
Vector Absolute Compare (yy=GE, GT, LE, LT)
Vector Compare (yy=GE, GT, LE, LT, EQ)
Vector Shift
Vector Rounding Shift
Vector Saturating Shift, Saturating Round Shift

This is just a sampling of the vector instructions.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 217

CHAPTER 7 THE CPU AND MEMORY 217

Additionally, it is desirable to have the capability to move data directly between registers,

since suchmoves do not requirememory access and are therefore faster to execute. In fact, some

modern CPUs, including the Oracle SPARC and ARM architectures, provide only a minimal

set of LOAD/STORE or MOVE instructions for moving data between the CPU andmemory. All other

instructions in these CPUs move and manipulate data only between registers. This allows the

instruction set to be executed much more rapidly. There is a detailed examination of the ARM

architecture and its variants in Supplementary Chapter 2.

Arithmetic Instructions

Every CPU instruction set includes integer addition and subtraction. Except for a few special-

purpose CPUs, every CPU today also provides instructions for integer multiplication and

division. Many instruction sets provide integer arithmetic for several different word sizes. As

with the MOVE instructions, there may be several different integer arithmetic instruction formats

providing various combinations of register and memory access in different addressing modes.

In addition,most current CPUs also provide floating point arithmetic capabilities, although

some CPUs offer floating point arithmetic as an extension to the basic architecture. Floating

point instructions usually operate on a separate set of floating point data registers with 32-, 64-,

or 128-bit word sizes and formats conforming to IEEE Standard 754, as described in Chapter 5.

The instruction set generally provides standard arithmetic operations and instructions that

convert data between various integer and floating point formats. Some architectures also offer

instructions for other, more specialized operations, such as square root, log, and trigonometry

functions. Extensivefloatingpoint calculations are required formanygraphics applications, such

as CAD/CAM programs, animation, and computer games; the same is true for solving sophis-

ticated mathematical problems in science, economics, and business analytics. The presence of

floating point instructions reduces the processing time for such calculations significantly.

As noted in Chapter 5, most modern CPUs also provide at least a minimal set of arithmetic

instructions for BCD or packed decimal format, which simplifies the programming of business

data processing applications.

Of course, it is not absolutely necessary to provide all these different instruction options.

Multiplication and division can be performed with repeated addition and subtraction, respec-

tively. In computers there is an even easier technique. In elementary school you probably learned

the “long” multiplication and division methods that multiply or divide numbers one digit at

a time and shift the results until the entire operation is complete. Because of the simplicity

of binary multiplication (1 × 1 = 1, all other results are 0), the computer can implement

the same method using only adds or subtracts together with shift instructions. Internally, the

multiplication and division instructions simply implement in hardware a variation on this

same method. Since this process theoretically requires a single-bit shift and registers add step

for each bit in the multiplier, multiply and divide instructions execute somewhat more slowly

compared to other instructions, although modern computers provide parallelization shortcuts

that eliminate most of the difference.

Even the subtract instruction is theoretically not necessary, since we showed in Chapter 5

that integer subtraction is performed internally by the process of complementing and adding.

As we already noted, the same is true of BCD and floating point instructions. On the now

rare computers that do not provide floating point instructions, there is usually a library of

software procedures that are used to simulate floating point instructions.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 218

218 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Boolean Logic Instructions

Most modern instruction sets provide instructions for performing Boolean algebra. Commonly

included are a NOT instruction, which inverts the bits on a single operand, as well as AND, (inclu-

sive) OR, and EXCLUSIVE-OR instructions, which require two source arguments and a destination.

Single Operand Manipulation Instructions

In addition to the NOT instruction described in the previous paragraph, most computers

provide other convenient single operand instructions. Most of these instructions operate on

the value in a register, but some instruction sets provide similar operations on memory values

as well. Most commonly, the instruction set will contain instructions for NEGATing a value, for

INCREMENTing a value, for DECREMENTing a value, and for setting a register to zero. There are

sometimes others. On some computers, the increment or decrement instruction causes a branch

to occur automatically when zero is reached; this simplifies the design of loops by allowing the

programmer to combine the test and branch into a single instruction.

Bit Manipulation Instructions

Most instruction sets provide instructions for setting and resetting individual bits in a data

word. Some instruction sets also provide instructions for operating onmultiple bits at once. Bits

can also be tested, and used to control program flow. These instructions allow programmers

to design their own “flags” in addition to commonly provided negative/positive, zero/nonzero,

carry/borrow, and overflow arithmetic flags.

Shift and Rotate Instructions

Shift and rotate operations have been mentioned previously as a means to implement

multiplication and division. Shifts and rotate operations have other programming applications,

and CPU instruction sets commonly provide a variety of different shift and rotate instructions

for the programmer to use. As shown in Figure 7.11, shift instructions move the data bits left

or right one or more bits. Rotate instructions also shift the data bits left or right, but the bit that

is shifted out of the end is placed into the vacated space at the other end. Depending on the

design of the particular instruction set, bits shifted out the end of the word may be shifted into

a different register or into the carry or overflow flag bit, or they may simply “fall off the end”

and be lost. Rotate instructions can be used to process data one bit at a time and are also used

in many encryption algorithms.

Two different kinds of shifts are usually provided. The data word being shifted might be

logical or it might be numeric. Logical shift instructions simply shift the data as you would

expect, and zeros are shifted in to replace the bit spaces that have been vacated. Arithmetic
shift instructions are commonly used to multiply or divide the original value by a power of 2.

Therefore, the instruction does not shift the leftmost bit, since that bit usually represents the

algebraic sign of the numeric value—obviously the sign of a number must be maintained. Left

arithmetic shifts do not shift the left bit, but zeros replace the bits from the right as bits are

moved to the left. This will effectively double the numeric value for each shift of one bit. On

the other hand, right arithmetic shifts fill the space of moved bits with the sign bit rather than

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 219

CHAPTER 7 THE CPU AND MEMORY 219

FIGURE 7.11

Typical Register Shifts and Rotates

0

Before shift

After shift

Sign bit

(a) Left logical shift register 1 bit (b) Rotate right 1 bit

(c) Right arithmetic shift 2 bits

After shift

Before shift

0

0 1

0 1 0 1 1 0 1

0

0 0 1 0 1 1 0 1

0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0

1 0 0 1 1 0 0 1

1 1 1 0 0 1 1 0

with zero. This has the effect of halving the value for each bit shifted, while maintaining the
sign of the value. It may not seem obvious to you that this works correctly, but it becomes more
apparent if you recall that negative numbers in complementary arithmetic count backward
starting from the value −1, which is represented in 2’s complement by all ones.

Rotate instructions take the bits as they exit and rotate them back into the other end of the
register. Some instructions sets include the carry or overflow bit as part of the rotation. Some
CPUs also allow the rotation to take place between two registers. Rotate instructions can be
used to exchange the 2 bytes of data in a 16-bit word, for example, by rotating the word by 8 bits.

Program Control Instructions

Program control instructions control the flow of a program. Program control instructions
include jumps and branches, both unconditional and conditional, and also CALL and RETURN

instructions. Various conditional tests are provided for branching, including those with which
you are already familiar: branch on zero, branch on nonzero, branch on positive, branch on
negative, branch on carry, and so on.

CALL instructions, sometimes known as JUMP SUBROUTINE instructions, are used to implement
function, subroutine, procedure and method calls. Thus, CALL instructions are important as a
means to enable program modularization.

From your programming experience, recall what happens when your program calls
a function, subroutine, or procedure. The program jumps to the starting location of the

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 220

220 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.12

Operation of CALL and RETURN Instructions

Calling program

Subroutine
308

...

...

...

305 instruction
306 instruction before call
307 CALL 425
308 instruction after call

425 first instruction
426 instruction

435 return

Saves program
counter somewhere

Reloads program counter
with original value (308)

Causing return to instruction
after call

Jumps to 425

Returns to
308

subprogram and executes the code there.

When the subprogram is completed, program

execution returns to the calling program and

continues with the instruction following the

call. The machine language CALL instruction

works the same way. A jump to the starting

location of the subprogram occurs, and exe-

cution continues from that point. The only

difference between a CALL instruction and a

normal BRANCH instruction is that the CALL

instructionmust also save somewhere the pro-

gram counter address from which the jump

occurred, so that the program may return to

the instruction in the calling program follow-

ing the call after the subprogram is completed.

The RETURN instruction restores the original

value to the program counter, and the calling

program proceeds fromwhere it left off. Oper-

ation of the CALL and RETURN instructions are

illustrated in Figure 7.12.

Different computers use different meth-

ods to save the return address. One common

method is to store the return address on a memory stack; the RETURN instruction operates by

removing the address from the stack and moving it to the program counter. The use of stacks

is discussed briefly in the next section. As an alternative, some computers provide a special

LINK register to hold the return address. Another method for performing CALLs and RETURNs is

explored in Exercise S3.14.

Stack Instructions

One of the most important data storage structures in programming is the stack. A stack is

used to store data when the most recently used data will also be the first needed. For that

reason, stacks are also known as LIFO, for last-in, first-out, structures. As an analogy, stacks are

frequently described by the way plates are stored and used in a cafeteria. New plates are added

to the top of the stack, or pushed, and plates already on the stack move down to make room

for them. Plates are removed from the top of the stack, or popped, so that the last plates placed

on the stack are the first removed. Similarly, the last number entered onto a computer memory

stack will be the first number available when the stack is next accessed. Any data that must

be retrieved in reverse order from the way it was entered is a candidate for the use of stacks.

Figure 7.13 shows the process of adding to and removing numbers from the stack.

Stacks are an efficient way of storing intermediate data values during complex calculations.

In fact, storage in Hewlett-Packard calculators is organized around a stack of memory. As

we already noted, stacks are also an excellent method for storing the return addresses and

arguments from subroutine calls. Program routines that are recursive must “call themselves”.

Suppose the return address were stored in a fixed location, as shown in Figure 7.14a. If the

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 221

CHAPTER 7 THE CPU AND MEMORY 221

FIGURE 7.13

Using a Stack

153

299

701

428

017

153

299

701

428

505

017

153

299

701

428

017

153

299

701

428

153

299

701

428

017 505 505 017

(a) Adding to the stack (b) Removing from the stack

routine is called a second time, from within itself, Figure 7.14b, the original returning address

(56) is lost and replaced by the new return address (76). The program is stuck in an infinite loop

between 76 and 85. In Figure 7.15, the return address is stored on a stack. This time when the

routine is again called, the original address is simply pushed down the stack, below the most

recent address. Notice that the program “winds its way back out” in the reverse order from

which the routines were entered. This is exactly what we want: we always return from the last

called subroutine to the one just previous. J. Linderman of Bentley University notes that the

same technique would be used to back out of a maze for which the explorer has written down

each turn that she made after entering.

FIGURE 7.14

Fixed Location Subroutine Return Address Storage

70

69 56

...
70

69 76

...

55 CALL 70
56 next instruction
 after subroutine

55 CALL 70
56 next instruction
 after subroutine

Most recent
return address

Most recent
return address

Jump to location
indicated by 69

Jump to location
indicated by 69

Subroutine Subroutine

85 RETURN

75 CALL 70
76
85 RETURN

(a) Subroutine called from loc.55 (b) Subroutine re-called from 75,
within the subroutine

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 222

222 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.15

Stack Subroutine Return Address Storage

56

1 2

55 CALL 70
56 next instruction
 after subroutine
 completes

55 CALL 70
56 next instruction
 after subroutine
 completes

55 CALL 70
56 next instruction
 after subroutine
 completes

70 beginning
 of subroutine . . .
75 CALL 70

76

85 RETURN

STACK

Return to 76
(top of stack)
and pop stack

Subroutine call from LOC 55 2nd subroutine call from LOC
75 (within the subroutine)

Return address

...

76
STACK

Return address

...

56
70 beginning
 of subroutine . . .
75 CALL 70

76

85 RETURN

3 Return from
inner call

70 beginning
 of subroutine . . .
75 CALL 70

76

85 RETURN

56
STACK

...

55 CALL 70
56 next instruction
 after subroutine
 completes

Return to 56
(top of stack)
and pop stack

4 Return from
original call

70 beginning
 of subroutine . . .
75 CALL 70

76

85 RETURN

(em
pty)

STACK

There aremanyother interestingapplications for stacks in computers, but furtherdiscussion

is beyond the scope of this book. The curious reader is referred to For Further Reading for

references.

Computers donot generally provide specialmemory for stack use, althoughmanymachines

provide special STACK instructions to simplify the bookkeeping task. Instead, the programmer

sets aside one or more blocks of regular memory for this purpose. The “bottom” of the stack

is a fixed memory location, and a stack pointer points to the “top” of the stack, that is,

the most recent entry. This is shown in Figure 7.16. A new entry is added to the stack, or

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 223

CHAPTER 7 THE CPU AND MEMORY 223

FIGURE 7.16

Using a Block of Memory as a Stack

54
54

53 53
52
51
50

323

323

555
108
919
277

54
53
52
51
50

323
555
108
919
277

54

53

323

PUSH increments
pointer, then
STORES data

POP loads data, then
decrements pointer

Stack
pointer

Bottom of
stack

Stack
pointer

Bottom of
stack

pushed, by incrementing the stack pointer, and
then storing the data at that location. An entry is
removed from the stack, or popped, by copying
the value pointed to and then decrementing the
stack pointer. If a register is provided for the
stack pointer, register-deferred addressing can
be used for this purpose. (You should note that
memory is drawn upside-down in Figure 7.16
so that incrementing the stack pointer moves it
upward.)

Many instruction sets provide PUSH and POP

instructions as direct support for stacks, but
stacks can be implemented easily without spe-
cial instructions. (Exercise S3.15 illustrates one

solution.) Some computers also specify the use of a particular general-purpose register as a
stack pointer register.

Multiple Data Instructions

Multimedia applications rank high in computational demands on the CPU in modern PCs and
workstations. In response to the demand, CPU designers have created specialized instructions
that speed up and simplify multimedia processing operations.

Multimedia operations are commonly characterized by a number of simple operations
applied identically to every piece of data in the set. As a simple example, the brightness of an
image might be modified by multiplying the value of every pixel in the image by a common
scale factor. Or, a measure of similarity between two images could be established by subtracting
all the pixel values in one image from the corresponding pixel values in a second image and
averaging the results.

Multiple data instructions perform a single operation on multiple pieces of data simulta-
neously. For this reason they are also commonly known as SIMD instructions. As we noted
earlier, SIMD stands for Single Instruction, Multiple Data. The SIMD instructions provided
on current Intel processors are typical. The newest processors provide sixteen 256-bit registers

FIGURE 7.17

Operation of a 4-Wide SIMD ADD Instruction

+ + + +

Register
1

Register
2

Register
2

A1 B1 C1 D1

A2

A1 + A2 B1 + B2 C1 + C2 D1 + D2

B2 C2 D2

specifically for SIMD instruction use and also allow
the use of previous generation 128-bit registers and the
standard 64-bit floating point registers for this purpose.
The SIMD instructions can process groups of 8-, 16-, 32-,
64-, or 128-bit integers or up to four 64-bit floating point
number operations simultaneously in parallel as well as
providing instructions for packing and unpacking the
values and moving them between registers and memory,
and a variety of other related instructions.Other vendors,
including AMD, IBM, Oracle, and ARM provide similar
capabilities. The IBM Cell processor, which serves as the
CPU in the Sony Playstation 3, provides a particularly
powerful SIMD capability that accounts for much of the
Playstation’s graphics strength. Figure 7.17 shows the
operation of an SIMD ADD instruction.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 224

224 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

One interesting characteristic of some multimedia arithmetic operations is that when the
result of a calculation meets or exceeds a certain maximum value, the result is simply set to the
maximum value, instead of overflowing. This characteristic is known as saturation. In most
computers, SIMD instructions offer integer arithmetic operations that provide saturation as an
alternative to overflow for this purpose.

Although multimedia operations are a primary application for SIMD instructions, these
instructions can be applied to any vector or array processing application, and are useful for a
number of purposes in addition to multimedia processing, including voice-to-text processing,
the solutions to large-scale economics problems, weather prediction, and data encryption and
decryption.

Other Instructions

The remainder of the instructions includes input/output instructions and machine control
instructions. Inmost systems both groups are privileged instructions. Input/output instructions
are generally privileged instructions because we do not want input and output requests from
different users and programs interfering with each other. Consider, for example, two users
requesting printer output on a shared printer at the same time, so that each page of output is
divided back and forth between the two users. Obviously, such output would not be acceptable.
Instead, these requests would be made to the operating system that controls the printer, which
would set priorities, maintain queues, and service the requests.

We note in passing that some computers do not provide I/O instructions. Instead, memory
addresses outside the range of normal memory are used to identify the various device I/O
addresses. Then, LOADand STORE instructions are automatically redirected to the appropriate
devices for input and output, respectively. This type of I/O is calledmemory-mapped I/O.

We will deal with the subject of input/output in Chapters 9 and 10, and with operating
systems in Chapters 15 through 18.

7.7 INSTRUCTION WORD FORMATS
Instructions in the Little Man Computer were made up entirely of three-digit decimal numbers,
with a single-digit op code, and a two-digit address field. The address field was used in various
ways: for most instructions, the address field contained the two-digit address where data for
the instruction could be found (e.g., LOAD) or was to be placed (STORE). In a few instructions, the
address field was unused (e.g., HALT). For the branch instructions, the address field space was
used instead to hold the address of the next instruction to be executed. For the I/O instructions,
the address field became a sort of extension of the op code. In reality, the I/O address field
contained the “address” of an I/Odevice, in our case 01 for the in basket and 02 for the out basket.

FIGURE 7.18

A Simple 32-bit Instruction Format

op code Address field

10101010 101010101010101010101010

bit 0 7 8 31

The instruction set in a typical real CPU is similar.
Again, the instruction word can be divided into an op
code and zero or more address fields. A simple 32-bit
instruction format with one address field might look like
that shown in Figure 7.18. In this example, the 32 bits are
divided into an 8-bit op code and 24 bits of address field.

In the Little Man Computer, reference to an address
specifically referred to a memory address. However, we

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 225

CHAPTER 7 THE CPU AND MEMORY 225

have already noted that the computer might have several general-purpose registers and that it

wouldbenecessary for theprogrammer to select aparticular register touse as apart of the instruc-

tion. To be more general, we will use the word “address” to refer to any data location, whether

it is a user-accessible register or a memory location. We will use the more specific expression

memory address when we want to specify that the address is actually a memory location.

In general, computer instructions that manipulate data require the specification of at least

two locations for the data: one or more source locations and one destination location. These

locations may be expressed explicitly, as address fields in the instruction word, or implicitly,

as part of the definition of the instruction itself. The instruction format of the Little Man

LOAD instruction, for example, takes the data from the single address field as the explicit
source address. Explicit addresses in the Little Man Computer are always memory addresses.

The destination address in this case is implicit: this instruction always uses the accumulator

register as a destination. The LittleMan ADD and SUBTRACT instructions require two sources and a

destination. Source data addressed by the instruction’s single explicit address field is added to the

value in the implicitly stated accumulator, with the result placed implicitly in the accumulator.

For a particular instruction, the source(s) and destination may be the same or may be

different. For example, an instruction that complements a value to change its sign would usually

be done “in place”; that is, the source and destination register or memory location is usually

the same. The Little Man ADD instruction uses the accumulator register both as a source for

one of the numbers to be added and as the destination for the result. On the other hand, when

we move data, using a LOAD or STORE or some other type of MOVE operation, two operands are

required. The source and destination are obviously different, or the move would not be useful!

A register-to-register MOVE, for example, might use an instruction format such as that shown in

Figure 7.19. In the figure, the instruction word consists of an opcode and two fields that point to

registers. As shown, this instruction would move data from register 5 to register 10. Unless the

operation is done in place, the sources are normally left unchanged by the instruction, whereas

the destination is almost always changed.

The source and destination addresses may be registers or memory locations. Since most

modern computers havemultiple registers available to the user, it is usually necessary to provide

at least two explicit address fields, even for an address-register move, since the number of the

particular register must be specified in the instruction.

The sources and destinations of data for an instruction, whether implicit or explicit, are

also known as operands. Thus, instructions that move data from one place to another have two

operands: one source operand and one destination operand. Arithmetic operations such as ADD

and SUBTRACT require three operands. Explicit address fields are also known as operand fields.

Most commonly, instructions thatmanipulate datawill haveone address field for operations

that happen in place, and two or three address fields for move and arithmetic operations. On

FIGURE 7.19

Typical Two Operation Register Move Format

op code
source
register

destination
register

MOVE 5 10

some computers, one ormore of the addressesmay be implicit,

and no address field is required for the implicit address.

However, in modern computers most address references are

explicit, even for register addresses, because this increases

the generality and flexibility of the instruction. Thus, most

computer instructions will consist of an op code and one,

two, or three explicit address fields. Some textbooks refer to

instructions with one, two, or three explicit address fields as

unary, binary, or ternary instructions, respectively.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 226

226 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

7.8 INSTRUCTION WORD REQUIREMENTS
AND CONSTRAINTS

The size of the instruction word, in bits, is dependent on the particular CPU architecture,

particularly by the design of its instruction set. The size of the instruction word may be fixed

at, say, 32 bits, or it may vary depending on the usage of the address fields. The Oracle Sparc

CPU, for example, takes the former approach: every instruction word is exactly 32 bits wide.

Conversely, some of the basic instruction words for the x86 CPU used in the common PC,

for example, are as small as 1 or 2 bytes long, but there are some instructions in the x86 CPU

that are as many as 15 bytes long. The IBM Series z architecture is an evolutionary extension

of upward compatible CPU architectures dating back to the 1960s. The legacy instructions in

the IBM Series z CPU are mostly 4 bytes, or 32 bits long, with a few 2-byte or 6-byte long

instructions. To expand the architecture to 64-bit addressing and data, IBM added a number of

new instructions. These are all 6 bytes in length.

The challenge in establishing an instruction word size is the need to provide both enough

op code bits to support a reasonable set of different instructions as well as enough address field

bits tomeet the ever-growing demand for increasing amounts of addressablememory. Consider

again, for example, the extremely straightforward instruction format shown in Figure 7.18. This

format assumes a single address field with a 32-bit fixed length instruction. With the division

shown, we have access to 28 = 256 different instructions and 224 = approximately 16 million

memory addresses.

Even if the designer creates a smaller instruction set, with fewer op codes, the amount

of memory that may be specified in a 32-bit instruction word is severely limited by modern

standards. Most of today’s computers support an address size of at least 32 bits. Many newer

machines support 64-bit addresses.

Further, with additional registers, the simple instruction format shown in Figure 7.18

must be expanded to handle explicit addressing of multiple registers, including moves between

registers, as well as identifying the proper register in operations between registers and memory.

In short, the simple instruction format used in the Little Man Computer is inadequate for the

instruction sets in modern computers.

The use of instructions of different lengths is one of several techniques developed by

instruction set designers to allow more flexibility in the design of the instruction set. Simple

instructions can be expressed in a small word, perhaps even a single byte, whereas more

complicated instructions will require instruction words many bytes long. Longer instructions

are stored in successive bytes of memory. Thus, a Little Man HALT, IN, or OUT instruction would

be stored in a single location. A LOAD might require two successive locations to store memory

addresses of five digits or three locations for an eight-digit address. The use of variable length

instructions is efficient in memory usage, since each instruction is only as long as it needs to be.

There are a number of important disadvantages to variable length instructions, however.

Most modern computers increase CPU processing speed by “pipelining” instructions, that is,

by fetching a new instruction while the previous one is still completing execution, similar to the

processing on an automobile assembly line. Variable length instructions complicate pipelining,

because the starting point of the new instruction is not known until the length of the previous

instruction has been determined. If you extend this idea to multiple instructions, you can see

the difficulty of maintaining a smooth assembly line. This issue is discussed in more detail

in Chapter 8. Because pipelining has become so important to processing speed in modern

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 227

CHAPTER 7 THE CPU AND MEMORY 227

computers, the use of variable length instructions has fallen out of favor for new CPU designs.
Nearly all new CPU designs use fixed length instructions exclusively.

As we mentioned previously in our discussion of memory size, an effective alternative to
large instructions or variable instruction words is to store the address that would otherwise
be located in an instruction word address field at some special location that can hold a large
address, such as a general-purpose register, and use a small address field within the instruction
to point to the register location. There are a number of variations on this theme. This technique
is used even on systems that provide variable length instructions. A single CPU might provide
a number of different variations to increase the flexibility of the instruction set. This flexibility
also includes the ability to code programs that process lists of data more efficiently. The
various ways of addressing registers and memory are known as addressing modes. The Little
Man Computer provides only a single mode, known as direct addressing. The alternative just
described is called register-deferred addressing. An example of a deferred LOAD instruction is
shown in Figure 7.20. This instruction would load the data value stored at memory address
3BD421 into general-purpose register 7. There are a number of addressing modes discussed in
detail in Supplementary Chapter 3. The use of different addressingmodes is themost important
method for minimizing the size of instruction words and for writing efficient programs.

Examples of instruction formats from two different CPUs are shown in Figure 7.21. There
may be several different formats within a single CPU. We have shown only a partial set for
each machine, although the SPARC set is complete except for small variations. (There are
thirty-three different IBM formats in all.) It is not necessary that you understand every detail in
Figure 7.21, but it is useful to note the basic similarities between the instruction set formats in
different computers.

FIGURE 7.20

Deferred Register Addressing

address data

LOAD

op code source
register

destination
register

registers

4BAA30E

4BAA30E

memory

3BD421

3BD421

...

...

...

3 7

7

3

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 228

228 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.21

Examples of Instruction Formats

op code Register to registerRsrc Rdst

op code Rsrc Xdst Bdst Ddst
Register to
indexed storage

op code Register to storageRsrc Rdst Bdst Ddst

op code Bdst Ddst Single operand

op code L Bsrc Dsrc Bdst Ddst Storage to storage

op code CALL instruction

31 29 0

Relative displacement

op code op code LOAD high 22 bits immediate

31 29 25 22 0

Rdst Immediate data

op code Test
cond op code

31 29 28 25 22 0

a Relative displacement BRANCH

INTEGER instructions
(also, with 1 in bit 14, and
bits 0–13 immediate address)

FLOATING POINT instructions

op code op code

31 14192529 13 4 0

Rdst Rsrc1 Rsrc20 Alt space

IBM mainframe formats

op code op code

31 14192529 4 0

Rdst Rsrc1 Rsrc2op code (FP)

0 8 12 15

0 8 12 16 20 31

0 8 12 16 20 31

0 8 16 20 32 36 47

0 16 20 31

Code:
R = Data register
B = Base register
X = Index register
D = Relative displacement
L = Length

SPARC formats

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 229

CHAPTER 7 THE CPU AND MEMORY 229

SUMMARY AND REVIEW
Functionally, the operation of the CPU, together with memory, is essentially identical to that
of the Little Man Computer. For each component of the Little Man Computer, there is a
corresponding component in the computer unit.

Within the CPU, the most important components are registers. Data may be moved
between registers, may be added or subtracted from the current contents of a register, and can
be shifted or rotatedwithin a register or between registers. Each instruction in the instruction set
is executed by performing these simple operations, using the appropriate choice of registers and
operations in the correct sequence for the particular instruction. The sequence of operations
for a particular instruction is known as its fetch–execute cycle. A fetch–execute cycle exists for
every instruction in the instruction set. Fetch–execute instruction cycles constitute the basis for

all program execution in the computer. The sequence for each instruction corresponds closely
to the actions taken by the Little Man in performing a similar instruction.

The operation of memory is intimately related to two registers in particular, the memory
address register and the memory data register. Addresses placed into the MAR are decoded
in memory, resulting in the activation of a single-memory address line. At the proper instant,
data can then be transferred in either direction between that memory location and the MDR.
The direction is specified by a read/write control line. The number of available memory
locations is established by the size of the MAR; the data word size is established by the size of
the MDR.

Interconnections between various parts of a computer are provided by buses. There are
many different types of buses. Buses connect different modules within the CPU. They also
connect the CPU tomemory and to the I/O peripherals. Buses can connect two components in a
point-to-point configurationormay interconnect severalmodules in amultipoint configuration.
Buses may be parallel or serial. In general, the lines on buses carry signals that represent data,

address, and control functions.
Instructions fall naturally into a small number of categories: moves, integer arithmetic,

floating point arithmetic, data flow control, and so forth. There are also privileged instructions,
which control functions internal to the CPU and are accessible only to the operating system.

Instructions in a real CPU are made up of an op code and up to three address field
operands. The size of the instruction word is CPU dependent. Some computers use variable
length instruction words. Other computers use a fixed length instruction, most commonly,
32 bits in length.

FOR FURTHER READING
There are many excellent textbooks that describe the implementation and operation of the
components of the computer system. A brief, but very clear, explanation of the fetch–execute
cycle can be found in Davis and Rajkumar [DAV02]. Three classic engineering textbooks that
discuss the topics of this chapter in great detail are those authored by Stallings [STAL09],

Patterson and Hennessy [PATT11], and Tanenbaum [TAN05]. Wikipedia offers a brief,
but clear, introduction to the principal concepts of von Neumann architecture. There are
many books and papers describing various components and techniques associated with the
implementation and operation of the CPU and memory. Also see the For Further Reading
section in Chapter 8 for more suggestions.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 230

230 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

KEY CONCEPTS AND TERMS
accumulator
address field
addressing modes
application-level instructions
arithmetic shift
arithmetic/logic unit (ALU)
broadcast bus
bus
bus interface unit
bus protocol
cable
CALL and RETURN

instructions
central processing unit

(CPU)
control unit (CU)
dynamic RAM
explicit source address
fetch–execute instruction

cycle
firmware
flag
flash memory

full-duplex line
general-purpose register
half-duplex line
implicit (source address)
instruction pointer
instruction register (IR)
line (bus)
logical shift
memory
memory address register

(MAR)
memory data register (MDR)
memory management unit
memory-mapped I/O
multiplex
multipoint bus
nonvolatile memory
operands
parallel bus
point-to-point bus
port
privileged instruction
program counter (PC)

program counter register

program-visible register

RAM

register

register file

ROM

rotate operation

saturation

serial bus

shift operation

SIMD

simplex line

skew

stack

stack pointer

static RAM

status register

user-accessible instructions

user space

user-visible register

volatile memory

READING REVIEW QUESTIONS

7.1 What does ALU stand for? What is its corresponding component in the Little Man
Computer? What does CU stand for? What is its corresponding LMC component?

7.2 What is a register? Be precise. Name at least two components in the LMC that meet
the qualifications for a register. Name several different kinds of values that a register
might hold.

7.3 What is the purpose of the instruction register? What takes the place of the instruction
register in the LMC?

7.4 When a value is copied from one register to another, what happens to the value in the
source register? What happens to the value in the destination register?

7.5 There are four primary operations that are normally performed on a register. Describe
each operation.

7.6 Explain the relationship between the memory address register, the memory data
register, and memory itself.

7.7 If the memory register for a particular computer is 32 bits wide, how much memory
can this computer support?

7.8 What is the difference between volatile and nonvolatile memory? Is RAM volatile or
nonvolatile? Is ROM volatile or nonvolatile?

7.9 Registers perform a very important role in the fetch–execute cycle.What is the function
of registers in the fetch–execute instruction cycle?

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 231

CHAPTER 7 THE CPU AND MEMORY 231

7.10 Explain each step of the fetch part of the fetch–execute cycle. At the end of the
fetch operation, what is the status of the instruction? Specifically, what has the fetch
operation achieved that prepares the instruction for execution? Explain the similarity
between this operation and the corresponding operation-performed steps performed
by the Little Man.

7.11 Once the fetch operation is complete, what is the first step of the execution phase for
any instruction that accesses a memory address for data (e.g., LOAD, STORE)?

7.12 Using the ADD instruction as a model, show the fetch–execute cycle for a SUBTRACT

instruction.

7.13 Assume the following values in various registers andmemory locations at a given point
in time:
PC: 20 A: 150 Memory location 20: 160 [ADD 60] Memory location 60: 30.
Show the values that are stored in each of the following registers at the completion of
the instruction: PC, MAR, MDR, IR, and A.

7.14 Define a bus. What are buses used for?

7.15 What three types of “data” might a bus carry?

7.16 Explain how data travels on a bus when the bus is
Simplex
Half-duplex
Full-duplex.

7.17 What is the difference between a multipoint bus and a point-to-point bus? Draw
diagrams that illustrate the difference.

7.18 Briefly describe each of the major disadvantages of parallel buses.

7.19 Which Little Man Computer instructions would be classified as data movement
instructions?

7.20 What operations would you expect the arithmetic class of instructions to perform?

7.21 Explain the difference between SHIFT and ROTATE instructions.

7.22 What do program control instructions do?Which LMC instructions would be classified
as program control instructions?

7.23 What is a stack? Explain how a stack works. Create a diagram that shows how PUSH

and POP instructions are used to implement a stack.

7.24 What is a privileged instruction? Which LMC instructions would normally be privi-
leged?

7.25 Show a 32-bit instruction format that allows 32 different op codes. How many bits are
available for addressing in your format?

7.26 Show an instruction format that could be used to move data or perform arithmetic
between two registers. Assume that the instruction is 32 bitswide and that the computer
has sixteen general-purpose data registers. If the op code uses 8 bits, how many bits
are spares, available for other purposes, such as special addressing techniques?

EXERCISES
7.1 Draw side-by-side flow diagrams that show how the Little Man executes a store

instruction and the corresponding CPU fetch–execute cycle.

7.2 Suppose that the following instructions are found at the given locations in
memory:

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 232

232 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

a. Show the contents of the IR, the PC, the MAR, the MDR, and A at the conclusion
of instruction 20.

b. Show the contents of each register as each step of the fetch–execute cycle is
performed for instruction 21.

7.3 One largemodern computer has a 48-bitmemory address register. Howmuchmemory
can this computer address?

7.4 Why are there two different registers (MAR andMDR) associated withmemory?What
are the equivalents in the Little Man Computer?

7.5 Show the steps of the CPU fetch–execute cycle for the remaining instructions in the
Little Man instruction set.

7.6 Most of the registers in the machine have two-way copy capability; that is, you can
copy to them from another register, and you can copy from them to another register.
The MAR, on the other hand, is always used as a destination register; you only copy to
the MAR. Explain clearly why this is so.

7.7 a. What is the effect of shifting an unsigned number in a register 2 bits to the left? 1
bit to the right? Assume that 0s are inserted to replace bit locations at the end of
the register that have become empty due to the shift.

b. Suppose the number is signed, that is, stored using 2’s complement. Now what is
the effect of shifting the number?

c. Suppose that the shift excludes the sign bit, so that the sign bit always remains the
same. Furthermore, suppose that during a right shift, the sign bit is always used
as the insertion bit at the left end of the number (instead of 0). Now what is the
effect of these shifts?

7.8 If you were building a computer to be used in outer space, would you be likely to use
some form of flash memory or RAM as main memory? Why?

7.9 Using the register operations indicated in this chapter, show the fetch–execute cycle
for an instruction that produces the 2’s complement of the number in A. Show the
fetch–execute cycle for an instruction that clears A (i.e., sets A to 0).

7.10 Manyolder computers used an alternative to the BRANCHONCONDITION instruction called
SKIP ON CONDITION that worked as follows: if the condition were true, the computer
would skip the following instruction and go on to the one after; otherwise, the next
instruction in line would be executed. Programmers usually place a jump instruction
in the “in-between” location to branch on a FALSE condition. Normally, the skip
instruction was designed to skip one memory location. If the instruction set uses
variable length instructions, however, the task is more difficult, since the skip must still
skip around the entire instruction. Assume a Little Man mutant that uses a variable
length instruction. The op code is in the first word, and there may be as many as three
words following. To make life easy, assume that the third digit of the op code word is
a number from 1 to 4, representing the number of words in the instruction. Create a
fetch–execute cycle for this machine.

7.11 Suppose that the instruction format for a modified Little Man Computer requires two
consecutive locations for each instruction. The high-order digits of the instruction are
located in the first mail slot, followed by the low-order digits. The IR is large enough
to hold the entire instruction and can be addressed as IR [high] and IR [low] to load
it. You may assume that the op code part of the instruction uses IR [high] and that the
address is found in IR [low]. Write the fetch–execute cycle for an ADD instruction on
this machine.

Englander c07.tex V2 - November 29, 2013 9:14 A.M. Page 233

CHAPTER 7 THE CPU AND MEMORY 233

7.12 The Little Prince Computer (LPC) is a mutant variation on the LMC. (The LPC
is so named because the differences are a royal pain.) The LPC has one additional
instruction. The extra instruction requires two consecutive words:

0XX
0YY

This instruction, known as move, moves data directly from location XX to location
YY without affecting the value in the accumulator. To execute this instruction, the
Little Prince would need to store the XX data temporarily. He can do this by writing
the value on a piece of paper and holding it until he retrieves the second address. The
equivalent in a real CPU might be called the intermediate address register, or IAR.
Write the fetch–execute cycle for the LPC MOVE instruction.

7.13 Generally, the distance that a programmer wants to move from the current instruction
location on a BRANCH ON CONDITION is fairly small. This suggests that it might be
appropriate to design the BRANCH instruction in such a way that the new location is
calculated relative to the current instruction location. For example, we could design
a different LMC instruction 8CX. The C digit would specify the condition on which
to branch, and X would be a single-digit relative address. Using 10’s complement,
this would allow a branch of −5 to +4 locations from the current address. If we
were currently executing this instruction at location 24, 803 would cause a branch
on negative to location 27. Write a fetch–execute cycle for this BRANCH ON NEGATIVE

RELATIVE instruction. Youmay ignore the condition code for this exercise, and youmay
also assume that the complementary addition is handled correctly. The single-digit
address, X, is still found in IR [address].

7.14 As computer words get larger and larger, there is a law of diminishing returns: the
speed of execution of real application programs does not increase and may, in fact,
decrease. Why do you suppose that this is so?

7.15 Most modern computers provide a large number of general-purpose registers and very
few memory access instructions. Most instructions use these registers to hold data
instead of memory. What are the advantages to such an architecture?

7.16 Create the fetch–execute cycle for an instruction that moves a value from general-
purpose register-1 to general-purpose register-2. Compare this cycle to the cycle for a
LOAD instruction. What is the major advantage of the MOVE over the LOAD?

7.17 What are the trade-offs in using a serial bus versus a parallel bus to move data from
one place to another?

7.18 Until recently, most personal computers used a parallel PCI bus as a backplane to
interconnect the various components within the computer, but the PCI bus was rarely,
if ever, used to connect external devices to the computer. Modern computers often
use a serial adaptation of the PCI bus called PCI Express, which is sometimes made
available as a port to connect external devices. Identify at least three shortcomings of
the original PCI bus that made external use of the bus impractical. Explain how the
PCI Express bus overcomes each of these limitations.

7.19 Explain why skew is not a factor in a serial bus.

7.20 Point-to-point buses generally omit lines for addressing.Why is this possible? Suppose
a point-to-point bus is used to connect two components together where one of the
components actually represents multiple addresses. How could a bus with no address
lines be used to satisfy the requirement for different addresses in this case?

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 234

CHAPTER 8

CPU AND MEMORY:
DESIGN, ENHANCEMENT,
AND IMPLEMENTATION

Thomas Sperling, adapted by Benjamin Reece

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 235

8.0 INTRODUCTION
The Little Man Computer design, implemented in binary form, may be sufficient to

implement any program, but it is not necessarily a convenient way to do so. It is like

traveling overseas by freight steamer instead of by fast plane: it might be fun, but it sure

ain’t the easiest way to get the job done! Computers today are much more sophisticated

and flexible, providing a greater variety of instructions, improved methods of addressing

memory and manipulating data, and implementation techniques that allow instructions to

be executed quickly and efficiently.

In Chapter 7, we discussed the principal features of a CPU: the basic architecture of the

CPU, register concept, instruction set, instruction formats, means of addressing memory,

and the fetch–execute cycle. In this chapter wewill investigate some of the additional design

features and implementation techniques that help to give the modern CPU its power.

It probably won’t surprise you to know that there are a large number of different

ways of performing these tasks. At the same time, it is important to recognize, right from

the outset, that additional features and a particular choice of organization do not change

the fundamental operation of the computer as we have already described it. Rather, they

represent variations on the ideas and techniques that we have already described. These

variations can simplify the programmer’s task and possibly speed up program execution by

creating shortcuts for common operations. However, nothing introduced in this chapter

changes the most important idea: that the computer is nothing more than a machine

capable of performing simple operations at very high speeds.

The first section investigates different CPU architectures, with particular focus on the

modern manifestation and organization of traditional architectures.

In the second section we consider various CPU features and enhancements, with

an emphasis on alternatives to the traditional control unit/arithmetic logic unit CPU

organization. We explain how these alternative organizations address major bottlenecks

that limit CPU execution speed, with a number of innovative techniques for improving

CPU performance.

Section 8.3 looks at memory enhancements. The most significant improvement in

memory access speed is cache memory. Cache memory is discussed in considerable depth.

In Section 8.4, we present a general model that includes the features, enhancements,

and techniques described in Section 8.2. This model represents the organization of most

current CPUs.

Section 8.5 considers the concept ofmultiprocessing: a computer organization consist-

ing of multiple CPUs directly connected together, sharing memory, major buses, and I/O.

This organization adds both performance enhancement and additional design challenges.

We also briefly introduce a complementary feature, simultaneous thread multiprocessing

(STM). Two types of multiprocessors are presented: the symmetrical multiprocessor is

more common. Inmodern systems,multiprocessing is actually built into a single integrated

circuit; each CPU is called a core; the entire package is called a multicore processor. It is

well suited for general-purpose computing.

235

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 236

236 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

An alternative, the master–slave multiprocessor is useful for computer applications
characterized by computationally intense, repetitive operations, such as graphics processing.

Finally, in Section 8.6, we present a brief commentary on the implementation of the CPU
organization that we have discussed in previous sections.

It is not our intention to overwhelm you in this chapter with myriad details to memorize,
nor to help you create a new career as an assembly language programmer or computer hardware
engineer, but this chapter will at least introduce you to the major concepts, methods, and
terminology used in modern computers. When reading this chapter, remember to keep your
focus on the larger picture: the details are just variations on a theme.

8.1 CPU ARCHITECTURES

Overview

A CPU architecture is defined by the basic characteristics and major features of the CPU. (CPU
architecture is sometimes called instruction set architecture (ISA).) These characteristics
include such things as the number and types of registers, methods of addressing memory,
and basic design and layout of the instruction set. It does not include consideration of the
implementation, instruction execution speed, details of the interface between the CPU and
associated computer circuitry, and various optional features. These details are usually referred
to as the computer’s organization. The architecture may or may not include the absence or
presence of particular instructions, the amount of addressable memory, or the data widths that
are routinely processed by the CPU. Some architectures are more tightly defined than others.

These ideas about computer architecture should not surprise you. Consider house archi-
tecture. A split-level ranch house, for example, is easily recognized by its general characteristics,
even though there may be wide differences in features, internal organization, and design
from one split-level ranch to the next. Conversely, an A-frame house or a Georgian house is
recognized by specific, well-defined features that must be present in the design to be recognized
as A-frame or Georgian.

There have been many CPU architectures over the years, but only a few with longevity.
In most cases, that longevity has resulted from evolution and expansion of the architecture to
include new features, always with protection of the integrity of the original architecture, as well
as with improved design, technology, and implementation of the architecture.

At present, important CPU architectural families include the IBM mainframe series, the
Intel x86 family, the IBMPOWER/PowerPC architecture, the ARMarchitecture, and theOracle
SPARC family. Each of these is characterized by a lifetime exceeding twenty years. The original
IBM mainframe architecture is more than forty-five years old. Architectural longevity protects
the investment of users by allowing continued use of program applications through system
upgrades and replacements.

CPU architectures in the marketplace today are variations on the traditional design
described in Chapter 7. These are loosely categorized into one of two types, CISC (complex
instruction set computers) or RISC (reduced instruction set computers). In modern times,
the dividing line between CISC and RISC architectures has become increasingly blurred as
many of the features of each have migrated across the dividing line. In the list above, the IBM
mainframe and x86 CPUs are considered to be CISCs. The others are considered to be RISCs.

There have been a few interesting attempts to create other types, including a stack-based
CPU with no general-purpose registers, an architecture with very long instruction words, and

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 237

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 237

an architecture with explicit parallel instructions None of these have achieved success for

general computing use to date.

It should benoted that each of these architectures is consistentwith the broad characteristics

that define a von Neumann computer.

Traditional Modern Architectures

Early CPU architectures were characterized by comparatively few general-purpose registers, a

wide variety of memory-addressing techniques, a large number of specialized instructions, and

instruction words of varying sizes. Researchers in the late 1970s and early 1980s concluded that

these characteristics inhibited the efficient organization of the CPU. In particular, their studies

revealed that

n Specialized instructions were used rarely, but added hardware complexity to the

instruction decoder that slowed down execution of the other instructions that are

used frequently.

n The number of data memory accesses and total MOVE instructions could be reduced

by increasing the number of general-purpose registers and using those registers to

manipulate data and perform calculations. The time to locate and access data in

memory is much longer than that required to process data in a register and requires

more steps in the fetch–execute cycle of instructions that access memory than those

that don’t.

n Permitting the use of general-purpose registers to hold memory addresses, also,

would allow the addressing of large amounts of memory while reducing instruction

word size, addressing complexity, and instruction execution time, as well as

simplifying the design of programs that require indexing. Reducing the number of

available addressing methods simplifies CPU design significantly.

n The use of fixed-length, fixed-format instruction words with the op code and address

fields in the same position for every instruction would allow instructions to be fetched

and decoded independently and in parallel. With variable-length instructions, it is

necessary to wait until the previous instruction is decoded in order to establish its

length and instruction format.

The Intel x86 is characteristic of older CISC architectures; it has comparatively few

general-purpose registers, numerous addressing methods, dozens of specialized instructions,

and instructionword formats that vary from1 to 15 bytes in length. In contrast, every instruction

in the newer SPARC RISC architecture is the same 32-bit length; there are only five primary

instruction word formats, shown earlier in Figure 7.21; and only a single, register-based,

LOAD/STORE memory-addressing mode.

As we noted earlier, the dividing line between RISC and CISC architectures is blurred. As

hardware technology has improved, RISC instruction sets have gradually increased in size and

complexity to match the capabilities of their CISC counterparts in most areas. Conversely, the

registers in CISC designs have increased in number and flexibility. Furthermore, a technique

called code morphing can be used to translate complex variable-width instruction words to

simpler fixed-width internal equivalents for faster execution. This technique allows the retention

of legacy architectures while permitting the use of modern processing methods. Modern x86

implementations use this approach.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 238

238 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

8.2 CPU FEATURES AND ENHANCEMENTS

Introduction

We have already introduced you to the fundamental model of a traditional CPU, represented
by an instruction set, registers, and a fetch–execute instruction cycle. Additionally, we have
presented some of the bells and whistles that have enhanced CPU capability and performance.
Some of the enhancements that were introduced in Chapter 7 include direct support for floating
point arithmetic, BCD arithmetic, and multimedia or vector processing, as well as the inclusion
of additional addressing modes, which simplify data access, increase potential memory size
capability while maintaining reasonable instruction word sizes, and improve list and array
processing. In this chapter, we have already presented a number of architectural enhancements
that can improve performance including register-oriented instructions, the use of fixed-width
instructions, and built-in integral code morphing for older CISC architectures.

Since the purpose of a computer is to execute programs, the ability of the CPU to execute
instructions quickly is an important contributor to performance. Once a particular architecture
is established, there remain a number of different ways to increase the instruction execution
performance of a computer. One method is to provide a number of CPUs in the computer
rather than just one. Since a single CPU can process only one instruction at a time, each
additional CPU would, in theory, multiply the performance of the computer by the number of
CPUs included. We will return to a discussion of this technique later, in Section 8.5.

Ofmore interest at themoment are approaches that canbeused to improve the performance
of an individual CPU. In our introduction to CPU architectures, we suggested a number of
possibilities. Some of these require new design, such as the large number of registers and
register-to-register instructions that are characteristic of newer architectures. As we already
noted, even with older instruction sets, it is often possible to use code morphing to create an
intermediate instruction set that is used within the CPU as a substitute for the more complex,
original instruction set.

Another difficulty to be overcome when attempting system optimization is that some
computer instructions inherently require a large number of fetch–execute steps. Integer division
and floating point arithmetic instructions are in this category. Obviously, CPU architects cannot
create modern instruction sets that omit these instructions.

In this section, we consider a number of different, but interrelated, approaches to CPU
optimization that are applicable to nearly any CPU design. Interestingly enough, you will see
that similar approaches can be found in such diverse operations as automobile assembly plants
and restaurants.

In Chapter 7, you learned that the fetch–execute cycle is the basic operation by which
instructions get executed. You also observed that the steps in a fetch–execute cycle generally
must be performed in a particular sequence: an instruction must be fetched and identified
before it can be executed, for example. Otherwise the machine would have no way of knowing
what to execute. And so on, step by step, through the entire instruction cycle. (The first step in
cooking spaghetti is to add water to the pot.) CPU performance can be improved by any method
that can perform the fetch–execute cycle steps more quickly or more efficiently.

Then, a program is executed by performing the fetch–execute cycle in a specified sequence,
where the sequence is sometimes determined by the program itself during execution. To
be provably correct during program execution, the sequence must be maintained and data
dependencies resolved in proper order. (The “cook spaghetti”, “drain spaghetti”, and “prepare
sauce” instructions must be completed before the sauce is mixed into the spaghetti.)

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 239

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 239

Observe that the limitation to performance results from the serial nature of CPU
processing: each instruction requires a sequence of fetch–execute cycle steps, and the program
requires the execution of a sequence of these instructions. Thus, the keys to increased
performance must rely on methods that either reduce the number of steps in the fetch–execute
cycle or reduce the time required for each step in the cycle and, ultimately, reduce the time for
each instruction in the program.

Fetch–Execute Cycle Timing Issues

As a first step, consider the problem of controlling the timing of each step in the fetch–execute
cycle to guarantee perfect CPU operation, to assure that each step follows the previous step,
in perfect order, as quickly as possible. There must be enough time between steps to assure
that each operation is complete and that data is where it is supposed to be before the next step
takes place. As you saw in Chapter 7, most steps in the fetch–execute cycle work by copying,
combining, ormoving data between various registers.When data is copied, combined, ormoved
between registers, it takes a short, but finite, amount of time for the data to “settle down” in the
new register, that is, for the results of the operation to be correct. This situation is similar to the
issue of parallel bus skew that we discussed in Chapter 7. In this case, it occurs in part because
the electronic switches that connect the registers operate at slightly different speeds. (We’re
actually talking billionths of a second here!) Also, design allowances must be made for the fact
that some operations take longer than others; for example, addition takes more time than a
simple data movement. Even more significant is the amount of time that it takes for the address
stored in theMAR to activate the correct address in memory. The latter time factor is due to the
complex electronic circuitry that is required to identify one group ofmemory cells out of several
million or billion possibilities. This means that reducing the number of memory access steps
by using registers for most data operations will inherently improve performance. (We discuss
methods to reduce the memory access time, itself, in Section 8.3.) To assure adequate time for
each step, the times at which different events take place are synchronized to the pulses of an
electronic clock. The clock provides a master control as to when each step in the instruction
cycle takes place. The pulses of the clock are separated sufficiently to assure that each step has
time to complete, with the data settled down, before the results of that step are required by the
next step. Thus, use of a faster clock alone does not work if the circuitry cannot keep up.

A timing cycle for a Little Man ADD instruction is shown in Figure 8.1. Each block in the
diagram represents one step of the fetch–execute cycle. Certain steps that do not have to access

FIGURE 8.1

Fetch–Execute Timing Diagram

PC
MAR

MDR
IR

IR[add]
MAR

MDR + A
A

PC + 1
PC

Next
instruction

Time

1 3 4 52

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 240

240 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

memory and which are not dependent on previous steps can actually be performed at the same
time. This can reduce the overall number of cycles required for the instruction, which speeds
up the computer. In this diagram, the data from the program counter has been copied into
the memory address register in the first step and is no longer needed. Therefore, the program
counter can be incremented at any time after the first step. In Figure 8.1 the PC is incremented
in parallel with the MDR → IR step. As shown in the figure, the ADD instruction is completed
in four clock cycles.

Figure 8.2 shows the improvement possible by using multiple data registers to implement
an ADD instruction. Since the register-to-register add can be done directly, the number of steps
in the cycle is reduced from four to three, with only a single execute step, and the extra time
required for the memory access is eliminated.

The built-in clock runs continuously whenever the power to the computer is on. The
frequency of its pulses is controlled by a quartz crystal, similar to that which might control your
wristwatch. The frequency of the clock and the number of steps required by each instruction
determine the speed with which the computer performs useful work.

The pulses of the clock are combined with the data in the instruction register to control
electronic switches that open and close in the right sequence to move data from register to
register in accordance with the instruction cycle for the particular instruction. The memory
activation line described in Section 7.3 is an example of a timing line. The activation line is set
up so that it will not turn on until the correct address decode line in the MAR has had time to
settle down. If this were not the case, several address lines might be partially turned on, and the
data transferred between the memory and MDR might be incorrect. Such errors can obviously
not be tolerated, so it is important to control timing accurately.

Conceptually, each pulse of the clock is used to control one step in the sequence, although
it is sometimes possible to perform multiple operations within a single step. The clock in the
original IBM PC, for example, ran at 4.77MHz (MHz is pronounced megahertz), which meant
that the machine could perform 4.77 million steps every second. If a typical instruction in the
IBM PC requires about ten steps, then the original IBM PC could execute about (4.77/10) or
about 0.5 million PC instructions per second. A PC running at 8MHz, with everything else
equal, would perform approximately twice as fast.

There are several factors that determine the number of instructions that a computer can
perform in a second. Obviously the clock speed is one major factor. It’s fun to compare current

FIGURE 8.2

Fetch–Execute Cycle for Register-to-Register ADD Instruction

PC
MAR

MDR
IR

C[Rsrc] +C[Rdst]
Rdst

PC + 1
PC

Next
instruction

Time

1 3 42

Note: C[Rdst] = contents of
destination register

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 241

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 241

clock speeds to those of years past. Today’s smartphones and tablets run their clocks at speeds

between 800MHz and 1.5GHz (pronounced gigahertz). Larger computers, including laptops,

run their clocks at speeds between 1.5 and 3.5GHz or even more to achieve higher instruction

cycle rates.

A Model for Improved CPU Performance

The current organizational model of a CPU uses three primary, interrelated techniques to

address the limitations of the conventional CU/ALU model and to improve performance.

n Implementation of the fetch–execute cycle is divided into two separate units: a fetch

unit to retrieve and decode instructions and an execution unit to perform the actual

instruction operation. This simple reorganization of the CU and ALU components

allows independent, concurrent operation of the two parts of the fetch–execute cycle.

n The model uses an assembly line technique called pipelining to allow overlapping

between the fetch–execute cycles of sequences of instructions. This reduces the

average time needed to complete an instruction.

n The model provides separate execution units for different types of instructions. This

makes it possible to separate instructions with different numbers of execution steps

for more efficient processing. It also allows the parallel execution of unrelated

instructions by directing each instruction to its own execution unit. In some CPUs,

there will even be multiple execution units of each kind. For example, Figure 8.3 lists

the twelve execution units present in the IBM POWER7 CPU.

We next consider each of these techniques in turn.

SEPARATE FETCH UNIT/EXECUTE UNIT Picture a modified Little Man Computer in

which the Little Man has been given an assistant. The assistant will fetch and decode the

instructions from the mailboxes at a pace that allows the Little Man to spend his time executing

instructions, one after another. Note that a similar division of labor is used in a restaurant:

waiters and waitresses gather the food orders from the customers and pass them to the cooks

for processing.

The current preferred CPU implementation model divides the CPU similarly into two

units, which correspond roughly to the fetch and execute parts of the instruction cycle. To

achieve maximum performance, these two parts operate as independently from each other as

possible, recognizing, of course, that an instruction must be fetched before it can be decoded

and executed. Figure 8.4 illustrates this alternative CPU organization.

FIGURE 8.3

POWER7 CPU Execution Units
• Integer units (2)
• Load/Store units (2)
• Double-Precision Floating-Point units (4)
• Decimal Floating-Point unit
• Branch unit
• Condition Register unit
• Vector unit supporting Vector-Scalar [Advanced SIMD] extensions

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 242

242 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.4

Alternative CPU Organization

Registers

Execution unit

Arithmetic
logic unit

Execution
control unit

Instruction
fetch unit

Instruction
decode unit

Bus
interface

unit

Bus to
memory

Addressing
unit

Fetch unit

The fetch unit portion of the CPU consists of an instruction fetch unit and an instruction
decode unit. Instructions are fetched from memory by the fetch unit, based on the current
address stored in an instruction pointer (IP) register. The fetch unit is designed to fetch several
instructions at a time in parallel. The IP register effectively acts as a program counter, but is
given a different name to emphasize that there are a number of instructions in the pipeline
simultaneously. There is a bus interface unit that provides the logic and memory registers
necessary to address memory over the bus. Once an instruction is fetched, it is held in a buffer
until it can be decoded and executed. The number of instructions held will depend upon the size
of each instruction, the width of the memory bus and memory data register,1 and the size of the
buffer. As instructions are executed, the fetch unit takes advantage of time when the bus is not

1Recall that in Chapter 7, we noted that it is common modern practice to retrieve several bytes from memory

with each memory access.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 243

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 243

otherwise being used and attempts to keep the buffer filled with instructions. In general, modern
memory buses are wide enough and fast enough that they do not limit instruction retrieval.

Recall that in Figure 8.2 we showed that register-to-register operations could be imple-
mented with only a single memory access, in the fetch portion of the fetch–execute cycle.
Fetching the instructions in advance allows the execution of these instructions to take place
quickly, without the delay required to access memory.

Instructions in the fetch unit buffer are sent to the instruction decoder unit. The decoder
unit identifies the op code. From the op code, it determines the type of the instruction. If the
instruction set is made up of variable-length instructions, it also determines the length of the
particular instruction. The decoder then assembles the complete instruction with its operands,
ready for execution.

The executionunit contains the arithmetic/logicunit and theportionof the control unit that
identifies and controls the steps that comprise the execution part for each different instruction.
The remainder of what we previously called the control unit is distributed throughout the
model, controlling the fetching and decoding of instructions at the correct times, and in the
correct order, address generation for instructions and operands, and so forth. TheALUprovides
the usual computational abilities for the general registers and condition flags.

When the execution unit is ready for an instruction, the instruction decoder unit passes
the next instruction to the control unit for execution. Instruction operands requiring memory
references are sent to the addressing unit. The addressing unit determines the memory
address required, and the appropriate data read or write request is then processed by the bus
interface unit.

The bus interface and addressing units operate independently of the instruction pipeline
and provide services to the fetch, decode, and execution units as requested by each unit.

PIPELINING Look at Figure 8.1 again. In the figure, there are two stages to the execution
phase of the instruction cycle. If each stage is implemented separately, so that the instruction
simply passes from one stage to the next as it is executed, only one stage is in use at any given
time. If there are more steps in the cycle, the same is still true. Thus, to speed up processing
even more, modern computers overlap instructions, so that more than one instruction is being
worked on at a time. This method is known as pipelining. The pipelining concept is one of
the major advances in modern computing design. It has been responsible for large increases in
program execution speed.

In its simplest form, the idea of pipelining is that as each instruction completes a step,
the following instruction moves into the stage just vacated. Thus, when the first instruction is
completed, the next one is already one stage short of completion. If there are many steps in
the fetch–execute cycle, we can have several instructions at various points in the cycle. The
method is similar to an automobile assembly line, where several cars are in different degrees of
production at the same time. It still takes the same amount of time to complete one instruction
cycle (or one car), but the pipelining technique results in a large overall increase in the average
number of instructions performed in a given time.

Of course, a branch instruction may invalidate all the instructions in the pipeline at that
instant if the branch is taken, and the computer still must have the data from the previous
instruction if the next instruction requires it in order to proceed. Modern computers use a
variety of techniques to compensate for the branching problem. One common approach is to
maintain two or more separate pipelines so that instructions from both possible outcomes can
be processed until the direction of the branch is clear. Another approach attempts to predict the

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 244

244 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

probable branch path based on the history of previous execution of the same instruction. The
problem of waiting for data results from previous instructions can be alleviated by separating
the instructions so that they are not executed one right after the other. Many modern computer
designs contain logic that can reorder instructions as they are executed to keep the pipelines
full and to minimize situations where a delay is necessary. Instruction reordering also makes
it possible to provide parallel pipelines, with duplicate CPU logic, so that multiple instructions
can actually be executed simultaneously. This technique is equivalent to providing multiple car
assembly lines. It is known as superscalar processing. We will look at superscalar processing
again in the next section.

Pipelining and instruction reordering complicate the electronic circuitry required for the
computer and also require careful design to eliminate the possibility of errors occurring under
unusual sequences of instructions. (Remember that the programmer must always be able to
assume that instructions are executed in the specifiedorder.)Despite the added complexity, these
methods are nowgenerally accepted as ameans formeeting thedemand formore andmore com-
puter power. The additional task of analyzing,managing, and steering instructions to the proper
execution unit at the proper time is usually combined with instruction fetching and decoding
to form a single instruction unit that handles all preparation of instructions for execution.

A diagram illustrating pipelining is shown in Figure 8.5. For simplicity, instruction
reordering has not been included. The figure shows three instructions, one for each row in
the diagram. The “steps” in the diagram represent the sequence of steps in the fetch–execute
cycle for each instruction. Timing marks are indicated along the horizontal axis. The F–E cycle
for instruction 3 shows a delay between step 1 and step 2; such a delay might result because
the second step of the instruction needs a result from step 3 of the previous instruction, for
example, the data in a particular register.

MULTIPLE, PARALLEL EXECUTION UNITS It is not useful to pipe different types of
instructions through a single pipeline. Different instructions have different numbers of steps
in their cycles and, also, there are differences in each step. Instead, the instruction decode
unit steers instructions into specific execution units. Each execution unit provides a pipeline
that is optimized for one general type of instruction. Typically, a modern CPU will have a
LOAD/STORE unit, an integer arithmetic unit, a floating point arithmetic unit, and a branch

FIGURE 8.5

Pipelining

step
1Instruction 3

Instruction 2

Instruction 1

step
2

step
3

step
1

step
2

step
3

step
4

step
1

step
2

step
3

step
4

Time

5 64321

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 245

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 245

unit. More powerful CPUs may have multiple execution units for the more commonly used

instruction types and, perhaps, may provide other types of execution units as well. Again, an

analogy may aid in understanding the concept of multiple, parallel execution units. A simple

automobile plant analogy would note that most automobile plants have separate assembly

lines for different car models. The most popular models might have multiple assembly lines

operating in parallel.

The use of multiple execution units operating in parallel makes it possible to perform the

actual execution of several instructions simultaneously.

Scalar and Superscalar Processor Organization

The previous discussion has shown you that modern CPUs achieve high performance by

separating the two major phases of the fetch–execute cycle into separate components, then

further separating the execution phase into a number of independent execution units, each with

pipeline capability. Once a pipeline is filled, an execution unit can complete an instruction with

each clock tick. With a single execution unit pipeline, ignoring holes in the pipeline resulting

from different instruction types and branch conditions, the CPU can average instruction

execution approximately equal to the clock speed of the machine. A processor fulfilling this

condition is called a scalar processor. With multiple execution units it is possible to process

instructions in parallel, with an average rate of more than one instruction per clock cycle. The

ability to process more than one instruction per clock cycle is known as superscalar processing.
Superscalar processing is a standard feature in modern CPUs. Superscalar processing can

increase the throughput by double or more. Commonly, current CPU designs produce speed

increases of between two and five times.

It is important to remember that pipelining and superscalar processing techniques do

not affect the cycle time of any individual instruction. An instruction fetch–execute cycle that

requires six clock cycles from start to finish will require six clock cycles whether instructions

are performed one at a time or pipelined in parallel with a dozen other instructions. It is the

average instruction cycle time that is improved by performing some form of parallel execution.

If an individual instruction must be completed for any reason before another can be executed,

the CPU must stall for the full cycle time of the first instruction.

Figure 8.6 illustrates the difference between scalar and superscalar processing with pipelin-

ing in the execution unit. In the illustration the execution phase of the fetch–execute cycle is

divided into three parts that can be executed separately. Thus, the diagram is divided into steps

that fetch, decode, execute, andwrite back the results of the execute operation. Presumably, each

step is carriedout by a separate componentwithin the executionunit. To simplify the illustration,

we have also assumed that in each case the pipeline is full. Generally, a single fetch unit pipeline

is sufficient to fetch multiple instructions, even when multiple execution units are present.

In the scalar processor, Figure 8.6a, each step is assumed to take one clock cycle. If the

instructions are all of the same length, they will finish consecutively, as shown in the diagram.

More complexity in the instruction set will create bubbles in the pipeline, but does not alter the

basic idea that we are illustrating. Panel b of the figure assumes the presence of two execution

units. It also assumes that the instructions executing in parallel are independent of each other;

that is, the execution of one does not depend upon results from the other. Therefore, two

instructions can be executed at a time in parallel, resulting in a substantial improvement in

overall instruction completion performance.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 246

246 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.6

Scalar versus Superscalar Processing

fetch

fetch

fetch

fetch

fetch

fetch

fetch

fetch

decode

decode

decode

decode

decode

decode

execute

decode

decode

execute

execute

execute

(a) Scalar

write-
back

execute

write-
back

execute

write-
back

execute

write-
back

write-
back
write-
back

execute

write-
back

write-
back

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 1

Instruction 2

Instruction 3

Instruction 4

(b) Superscalar

Clock pulses

Superscalar processing complicates the design of a CPU considerably. There are a number
of difficult technical issues that must be resolved to make it possible to execute multiple
instructions simultaneously. The most important of these are:

n Problems that arise from instructions completing in the wrong order

n Changes in program flow due to branch instructions

n Conflicts for internal CPU resources, particularly general-purpose registers.

OUT-OF-ORDER PROCESSING Out-of-order instruction execution can cause problems
because a later instruction may depend on the results from an earlier instruction. This situation
is known as a hazard or a dependency. If the later instruction completes ahead of the earlier
one, the effect of the earlier instruction upon the later cannot be satisfied. The most common
type of a dependency is a data dependency. This is a situation in which the later instruction is
supposed to use the results from the earlier instruction in its calculation. There are other types
of dependencies also.

With multiple execution units, it is possible for instructions to complete in the wrong
order. There are a number of ways in which this can occur. In the simplest case, an instruction
with many steps in its cycle may finish after an instruction with just a few steps, even if it started
earlier. As a simple example, a MULTIPLY instruction takes longer to execute than a MOVE or ADD

instruction. If a MULTIPLY instruction is followed in the program by an ADD instruction that adds
a constant to the results of the multiplication, the result will be incorrect if the ADD instruction is
allowed to complete ahead of the MULTIPLY instruction. This is an example of data dependency.
Data dependency can take several different forms.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 247

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 247

Many data dependencies are sufficiently obvious that they can be detected by the CPU. In
this case, execution of the dependent instruction is suspended until the results of the earlier
instruction are available. This suspension may, itself, cause out-of-order execution, since it
may allow another, still later, instruction to complete ahead of the suspended instruction.
Some CPUs provide reservation stations within each execution unit or a general instruction
pool to hold suspended instructions so that the execution unit may continue processing other
instructions.

Finally, some systems intentionally allow out-of-order instruction execution. These CPUs
can actually search ahead for instructions without apparent dependencies, to keep the execution
units busy. Current Intel x86 CPUs, for example, can search twenty to thirty instructions ahead,
if necessary, to find instructions available for execution.

BRANCH INSTRUCTION PROCESSING Branch instructions must always be processed
ahead of subsequent instructions, since the addresses of the proper subsequent instructions to
fetch are determined from the branch instruction. For unconditional branch instructions, this
is simple. Branch instructions are identified immediately as they enter the instruction fetch
pipeline. The address in the instruction is decoded and used to fill the instruction fetch pipeline
with instructions from the new location. Normally, no delay is incurred.

Unfortunately, conditional branch instructions are more difficult, because the condition
decision may depend on the results from instructions that have not yet been executed. These
situations are known as control dependencies, or sometimes as flow or branch dependencies.
If the wrong branch is in the pipeline, the pipeline must be flushed and refilled, wasting time.
Worse yet, an instruction from the wrong branch, that is, one that should not have been
executed, can alter a previous result that is still needed.

The solution to the conditional branching problemmay be broken into two parts: methods
to optimize correct branch selection and methods to prevent errors as a result of conditional
branch instructions. Selection of the wrong branch is time wasting, but not fatal. By contrast,
incorrect resultsmust be prevented.

Errors are prevented by setting the following guideline: although instructions may be
executed out of order, they must be completed in the correct order. Since branches and subtle
data dependencies can occur, the execution of an instruction out of order may or may not be
valid, so the instruction is executed speculatively, that is, on the assumption that its execution
will be useful. For this purpose, a separate bank of registers is used to hold results from these
instructions until previous instructions are complete. The results are then transferred to their
actual register and memory locations, in correct program instruction order. This technique of
processing is known as speculative execution. On occasion, the results from some speculatively
executed instructions must be thrown away, but on the whole, speculative execution results in
a performance boost sufficient to justify the extra complexity required.

A few systems place the burden for error prevention on the assembly language programmer
or program language compiler by requiring that a certain number of instructions following a
conditional branch instruction be independent of the branch. In these systems, one or more
instructions sequentially following the branch are always executed, regardless of the outcome
of the branch.

There are various creative methods that are used in CPUs to optimize conditional branch
processing. One possible solution to this problem is to maintain two separate instruction fetch
pipelines, one for each possible branch outcome. Instructions may be executed speculatively
from both branches until the correct pipeline is known. Another solution is to have the CPU

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 248

248 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

attempt to predict the correct path based on program usage or past performance. A loop, for

example, may be expected to execute many times before exiting. Therefore, the CPU might

assume that a branch to a previous point in the program is usually taken. Some systems provide

a branch history table, a small amount of dedicated memory built into the CPU that maintains

a record of previous choices for each of several branch instructions that have been used in the

program being executed to aid in prediction. A few systems even include a “hint” bit in the

branch instruction word that can be set by the programmer to tell the CPU the more probable

outcome of the branch. Of course, when a branch prediction is incorrect, there is a time delay to

purge and refill the fetch pipeline and speculative instructions, but, overall, branch prediction

is effective.

CONFLICTOF RESOURCES Conflicts between instructions that use the same registers can

be prevented by using the same bank of registers that is used to hold the results of speculative

instructions until instruction completion. This register bank is givendifferent names by different

vendors. They are called variously rename registers or logical registers or register alias tables.
The registers in the bank can be renamed to correspond logically to any physical register and

assigned to any execution unit. This would allow two instructions using the “same” register to

execute simultaneously without holding up each other’s work. At completion of an instruction,

the CPU then selects the corresponding physical register and copies the result into it. This must

occur in the specified program instruction order.

8.3 MEMORY ENHANCEMENTS
Within the instruction fetch–execute cycle, the slowest steps are those that require memory

access. Therefore, any improvement in memory access can have a major impact on program

processing speed.

The memory in modern computers is usually made up of dynamic random access memory

(DRAM) circuit chips. DRAM is inexpensive. Each DRAM chip is capable of storing millions

of bits of data. Dynamic RAM has one major drawback, however. With today’s fast CPUs, the

access time of DRAM, known as memory latency, is too slow to keep up with the CPU, and

delays must be inserted into the LOAD/STORE execution pipeline to allow memory to keep

up. Thus, the use of DRAM is a potential bottleneck in processing. Instructions must be fetched

from memory and data must be moved from memory into registers for processing.

The fetch–execute CPU implementation introduced in Section 8.2 reduces instruction

fetch delays to a minimum with modern instruction prefetch and branch control technologies,

and the increased adoption of register-to-register instructions also reduces delays. Nonetheless,

memory accesses are always required ultimately to move the data from memory to register and

back, and improvements in memory access still have an impact on processing speed.

As mentioned in Chapter 7, static RAM, or SRAM, is an alternative type of random access

memory that is two to three times as fast as DRAM. The inherent memory capacity of SRAM is

severely limited, however. SRAM design requires a lot of chip real estate compared to DRAM,

due to the fact that SRAM circuitry is more complex and generates a lot of heat that must be

dissipated. One or two MB of SRAM requires more space than 64MB of DRAM, and will cost

considerably more.

With today’s memory requirements, SRAM is not a practical solution for large amounts

of memory except in very expensive computers; therefore, designers have created alternative

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 249

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 249

approaches to fulfill the need for faster memory access. Three different approaches are

commonly used to enhance the performance of memory:

n Wide path memory access

n Memory interleaving

n Cache memory.

These three methods are complementary. Each has slightly different applicability, and they may

be used together in any combination to achieve a particular goal. Of these techniques, the use

of cache memory has the most profound effect on system performance.

Wide Path Memory Access

As mentioned in Chapter 7, Section 7.3, the simplest means to increase memory access is to

widen the data path so as to read or write several bytes or words between the CPU and memory

with each access; this technique is known as wide path memory access. Instead of reading

1 byte at a time, for example, the system can retrieve 2, 4, 8, or even 16 bytes, simultaneously.

Most instructions are several bytes long, in any case, and most data is at least 2 bytes, and

frequently more. This solution can be implemented easily by widening the bus data path and

using a larger memory data register. The system bus on most modern CPUs, for example, has

a 64-bit data path and is commonly used to read or write 8 bytes of data with a single memory

access.

Within the CPU, these bytes can be separated as required and processed in the usual way.

Withmodern CPU implementation, instruction groups can be passed directly to the instruction

unit for parallel execution. As the number of bytes simultaneously accessed is increased, there is

a diminishing rate of return, since the circuitry required to separate and direct the bytes to their

correct locations increases in complexity, fast memory access becomes more difficult, and yet it

becomes less likely that the extra bytes will actually be used. Even a 64-bit data path is adequate

to assure that a pipeline will remain filled and bursts of consecutive 64-bit reads or writes can

handle situations that require high-speed access to large blocks of data. Very few systems read

and write more than 8 bytes at a time. Most systems read and write a fixed number of bytes at a

time, but there are a few systems that can actually read and write a variable number of bytes.

Modern computers are commonly built with standard, off-the-shelf memory circuits and

chips that include wide path memory access as a standard feature.

Memory Interleaving

Another method for increasing the effective rate of memory access is to divide memory into

parts, called memory interleaving, so that it is possible to access more than one location at

a time. Then, each part would have its own address register and data register, and each part

is independently accessible. Memory can then accept one read/write request from each part

simultaneously. Although it might seem to you that the obvious way to divide up memory

would be in blocks, for example, by separating the high addresses into one block and the low

addresses into the other, it turns out that as a practical matter it is usually more useful to

divide the memory so that successive access points, say, groups of 8 bytes (see above), are in

different blocks. Breaking memory up this way is known as n-way interleaving, where a value
of 2 or 4 or some other value is substituted for n, depending on the number of separate blocks.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 250

250 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.7

Four-Way Memory Interleaving

MDR

0
4
8
…

M
A

R

MDR

Address
bus

Data bus

1
5
9
…

MDR

2
6

10
…

MDR

3
7
11
…

M
A

R

M
A

R

M
A

R

For example, two-way interleaving would be designed so that it would be possible to access
an odd memory address and an even memory address concurrently. If 8-byte wide access is
provided, this would allow the concurrent access to 16 successive bytes at a time. A memory
with eight-way interleaving would allow access to eight different locations simultaneously, but
the system could not access locations 0, 8, 16, or 24 at the same time, for instance, nor 1, 9, 17,
or 25. It could access locations 16 and 25 or 30 and 31 concurrently, however. Since memory
accesses tend to be successive, memory interleaving can be effective. A diagram of four-way
interleaving is shown in Figure 8.7.

This method is particularly applicable when multiple devices require access to the same
memory. The IBM mainframe architecture, for example, is designed to allow multiple CPUs
to access a common memory area; the I/O channel subsystem also has access to the storage
area. Thus, several different components may make memory requests at the same time. The
IBM S/3033 computer, for example, partitioned memory into eight logical storage elements.
Each element can independently accept a memory request. Thus, eight memory requests can
be processed concurrently.

The personal computermemory that holds images while they are being displayed, known as
video RAM, is another example. Changes to part of the video RAMcan bemade at the same time
that another part of the video RAM is being used to produce the actual display on the monitor.

Cache Memory

A different strategy is to position a small amount of high-speed memory, for example, SRAM,
between the CPU and main storage. This high-speed memory is invisible to the programmer
and cannot be directly addressed in the usual way by the CPU. Because it represents a “secret”
storage area, it is called cache memory. This concept is illustrated in Figure 8.8.

Since the amount of cache memory is small compared to main storage, cache memory also
has a speed advantage beyond the use of faster memory technology: just as it’s faster and easier
to find a particular address in a small town with a single main street, so it is faster and easier to
locate an address in cache memory.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 251

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 251

FIGURE 8.8

Cache Memory

CPU
Bus

MemoryCache
memory

M
em

or
y

m
an

ag
em

en
t

un
it

Cachememory is organized differently than regular mem-
ory. Cache memory is organized into blocks. Each block
provides a small amount of storage, perhaps between 8 and
64 bytes, also known as a cache line. The block will be used
to hold an exact reproduction of a corresponding amount of
storage from somewhere in main memory. Each block also
holds a tag. The tag identifies the location in main memory
that corresponds to the data being held in that block. In other
words, taken together, the tags act as a directory that can be
used to determine exactly which storage locations from main

memory are also available in the cache memory. A typical 64KB cache memory might consist
of 8000 (actually 8192) 8-byte blocks, each with tag.

A simplified, step-by-step illustration of the use of cache memory is shown in Figure 8.9.
Every CPU request tomainmemory, whether data or instruction, is seen first by cachememory.
A hardware cache controller checks the tags to determine if the memory location of the request
is presently stored within the cache. If it is, the cache memory is used as if it were mainmemory.
If the request is a read, the corresponding word from cache memory is simply passed to the
CPU. Similarly, if the request is a write, the data from the CPU is stored in the appropriate
cache memory location. Satisfying a request in this way is known as a hit.

If the required memory data is not already present in cache memory, an extra step is
required. In this case, a cache line that includes the required location is copied from memory
to the cache. Once this is done, the transfer is made to or from cache memory, as before. The
situation in which the request is not already present in cache memory is known as amiss. The
ratio of hits to the total number of requests is known as the hit ratio.

When cachememory is full, some block in cachememorymust be selected for replacement.
Various algorithms have been implemented by different computer designers to make this
selection, but most commonly, some variation on a least recently used, or LRU, algorithm is
used. An LRU algorithm, as the name implies, keeps track of the usage of each block and
replaces the block that was last used the longest time ago.

Cache blocks that have been read, but not altered, can simply be read over during
replacement.Memorywrite requests impose an additional burden on cachememory operations,
since written data must also be written to the main memory to protect the integrity of the
program and its data. Two different methods of handling the process of returning changed
data from cache to main storage are in common use. The first method, write-through, writes
data back to the main memory immediately upon change in the cache. This method has
the advantage that the two copies, cache and main memory, are always kept identical. Some
designers use an alternative technique known variously as store in, write-back, or copy back.
With this technique, the changed data is simply held in cache until the cache line is to be
replaced. The write-backmethod is faster, since writes to memory are made only when a cache
line is actually replaced, but more care is required in the design to ensure that there are no
circumstances under which data loss could occur. If two different programs were using the
same data in separate cache blocks, for example, and one program changed the data, the design
must assure that the other program has access to the updated data.

The entire cache operation is managed by the cache controller. This includes tag searching
and matching, write-through or write-back, and implementation of the algorithm that is used
for cache block replacement. The CPU and software are unaware of the presence of cache
memory and the activities of the cache controller. We note in passing that to be effective,

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 252

252 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.9

Step-by-Step Use of Cache

CPU

3. If there is a hit, the cache location is
used instead of memory.

4. In this case, a miss requires
the cache controller to
select a line for replacement
from memory.

5. After which, the new line in
cache is as treated before.

2. Which checks the
request against each
tag. (In this illustration,
each line contains 4
bytes starting with the
tag address.)

1. Every memory request goes
to the cache controller,

Cache
controller

1032

2334

0040

Tags Data

2332

CPU

Cache
controller

Memory

1032

3701

3700
0040

Tags Data

2332

these operations must be controlled completely by hardware. It is possible to envision using

a program to implement the cache block replacement algorithm, for example, but this is not

feasible. Sincememory accesses would be required to execute the program, this would defeat the

entire purpose of cachememory, which is to provide access quickly to a singlememory location.

Cache memory works due to a principle known as locality of reference. The locality of

reference principle states that at any given time, most memory references will be confined

to one or a few small regions of memory. If you consider the way that you were taught to

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 253

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 253

write programs, this principle makes sense. Instructions are normally executed sequentially;
therefore, adjoining words are likely to be accessed. In a well-written program, most of the
instructions being executed at a particular time are part of a small loop or a small procedure
or function. Likewise, the data for the program is likely taken from an array. Variables for the
program are all stored together. Studies have verified the validity of the locality principle. Cache
memory hit ratios of 90 percent and above are commonwith just a small amount of cache. Since
requests that can be fulfilled by the cache memory are fulfilled much faster, the cache memory
technique can have a significant impact on the overall performance of the system. Program
execution speed improvements of 50 percent and more are common.

The hit ratio is an importantmeasure of systemperformance. Cache hits can accessmemory
data at or near the speed that instructions are executed, even with sophisticated instruction
steering and multiple execution units. When a miss occurs, however, there is a time delay while
new data is moved to the cache. The time to move data to the cache is called stall time. The stall
time is typically long compared to instruction execution time. This can result in a condition in
which there are no instructions available to feed to the execution units; the pipelines empty and
instruction execution is stalled until the needed cache line is available, reducing performance.

Somemodern architectures even provide program instructions to request cache preloading
for data or instructions that will be needed soon. This improves execution speed even more.
Also, some system designers interleave the cache or implement separate caches for instructions
and data. This allows even more rapid access, since the instruction and its operands can be
accessed simultaneously much of the time. Furthermore, design of a separate instruction cache
can be simplified, since there is no need to write the instruction cache back to main memory if
the architecture imposes a pure coding requirement on the programmer. The trade-off is that
accommodating separate instruction and data caches requires additional circuit complexity,
and many system designers opt instead for a combined, or unified, cache that holds both data
and instructions.

It is also possible to provide more than one level of cache memory. Consider the two-level
cache memory shown in Figure 8.10. This memory will work as follows. The operation begins
when the CPU requests an instruction (or piece of data) be read (or written) from memory.
If the cache controller for the level closest to the CPU, which we’ll call level 1 (normally
abbreviated as L1), determines that the requested memory location is presently in the level 1
cache, the instruction is immediately read into the CPU.

Suppose, however, that the instruction is not presently in level 1 cache. In this case, the
request is passed on to the controller for level 2 cache. Level 2 cache works in exactly the same
way as level 1 cache. If the instruction is presently in the level 2 cache, a cache line containing

FIGURE 8.10

Two-Level Cache

CPU Memory

Level
1

cache
(L1)

Level
2

cache
(L2)

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 254

254 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

the instruction is moved to the level 1 cache and then to the CPU. If not, then the level 2 cache
controller requests a level 2 cache line frommemory, the level 1 cache receives a cache line from
the level 2 cache, and the instruction is transferred to the CPU. This technique can be extended
to more levels, but there is usually little advantage in expanding beyond level 3.

What does the second level buy us? Most system designers believe that more cache would
improve performance enough to be worthwhile. In this case, the system designers provide a
second level of cache, external to the chip. A personal computer secondary cache commonly
provides an additional 512KB–2MB of cache. As an example, a typical Intel Atom processor
provides 24KB of L1 data cache, 32KB of L1 instruction cache, and 512KB or 1MB of level
2 cache within the same chip as the CPU. A higher power Intel i7 has 2MB of L2 and an
additional 6–8MB of L3 cache. Each core has its own L1 cache (see Section 8.5). The use of
a dedicated on-chip bus between level 1 cache and level 2 cache provides faster response than
connecting the level 1 cache to memory or to a level 2 cache on the regular memory bus.

To be useful, the second level of cache must have significantly more memory than the first
level; otherwise, the two cache levels would contain the same data, and the secondary cache
would serve no purpose. It is also normal to provide a larger cache line in the secondary cache.
This increases the likelihood that requests to the secondary cache can be met without going out
to main memory every time.

Before leaving the subject of memory caching, a side note: the concept of caching also
shows up in other, unrelated but useful, areas of computer system design. For example, caching
is used to reduce the time necessary to access data from a disk. In this case, part of mainmemory
can be allocated for use as a disk cache. When a disk read or write request is made, the system
checks the disk cache first. If the required data is present, no disk access is necessary; otherwise,
a disk cache line made up of several adjoining disk blocks is moved from the disk into the
disk cache area of memory. Most disk manufacturers now provide separate buffer memory for
this purpose. This feature is implemented within the hardware of a disk controller. Another
example is the cache of previous Web pages provided by Web browser application software.

All of these examples of caching share the common attribute that they increase performance
by providing faster access to data, anticipating its potential need in advance, then storing that
data temporarily where it is rapidly available.

8.4 THE COMPLEAT MODERN SUPERSCALAR CPU
Figure 8.11 is a model of a CPU block diagram that includes all the ideas just discussed. The
design shown in this diagram is very similar to the one used in Oracle SPARC and IBMPOWER
and PowerPC processors and, with minor variations, to that used in various generations of the
Intel Pentium and Itanium families, as well as various IBMmainframe processors. As youwould
expect, the CPU is organized into modules that reflect the superscalar, pipelined nature of the
architecture. Although it is difficult to identify the familiar components that we introduced
in Chapter 7, the control unit, arithmetic/logic unit, program counter, and the like, they are
indeed embedded into the design, as you saw in Figure 8.4. The control unit operation is
distributed throughmuch of the diagram, controlling each step of the usual fetch–execute cycle
as instructions flow through different blocks in the CPU. The functions of the arithmetic/logic
unit are found within the integer unit. The program counter is part of the instruction unit.

In operation, instructions are fetched from memory by the memory management unit
as they are needed for execution, and placed into a pipeline within the instruction unit. The
instructions are also partially decoded within the instruction unit, to determine the type of

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 255

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 255

FIGURE 8.11

Modern CPU Block Diagram

Bus interface unit

Completion
or retire

unit

Floating
point

registers

General-
purpose
registers

Branch
processing

unit

Cache memory and
memory management unit

Instruction
unit

Load/
store
unit

Floating
point

processing
unit(s)

Integer
processing

unit(s)

instruction that is being executed. This allows branch instructions to be passed quickly to the
branch processing unit for analysis of future instruction flow.

Instructions are actually executed in one of several types of execution units. Each execution
unit has a pipeline designed to optimize the steps of the execute cycle for a particular type of
instruction.

As you can see from the block diagram, there are separate execution units for branch
instructions, for integer instructions, for floating point instructions, and for load and store
instructions. Someprocessorsprovidemultiple integer executionunits to increase theprocessing
capacity of the CPU still further. Some models also have a separate system register unit for
executing system-level instructions. Some CPUs combine the load/store instructions into the
integer unit. The POWER CPU provides reservation stations in each execution unit. The Intel
Pentium x86 processors provide a general instruction pool where decoded instructions from
the instruction unit are held as they await operand data from memory and from unresolved
data dependencies. The x86 instruction pool also holds completed instructions after execution
until they can be retired in order. The x86 also separates the LOAD and STORE execution units.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 256

256 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

The instruction unit is responsible for maintaining the fetch pipeline and for dispatching
instructions. Because branch instructions affect the addresses of the following instructions in
the pipeline, they are processed immediately. Other instructions are processed as space becomes
available in the appropriate execution unit(s). Branch prediction is usually built into the branch
unit. When conditional branches occur, execution of instructions continues speculatively along
the predicted branch until the condition is resolved. Also, the use of multiple execution units
makes it possible that instructions will execute in the wrong order, since some instructions
may have to wait for operands resulting from other instructions and since the pipelines in each
execution unit are of different lengths. As we noted earlier, some current superscalar processors
can look ahead several instructions to find instructions that can be processed independently
of the program order to prevent delays or errors arising from data dependency. The ability to
process instructions out of order is an important factor in the effectiveness of these processors.
The completion or “retire” unit accepts or rejects speculative instructions, stores results in
the appropriate physical registers and cache memory locations, and retires instructions in the
correct program order, assuring correct program flow.

From this discussion, you can see that the modern CPU includes many sophisticated
features designed to streamline the basically simple fetch–execute cycle for high-performance
processing. Themodern CPU features different types of execution units, tailored to the needs of
different types of instructions, and a complex steering system that can steer instructions through
the instruction unit to available execution units, manage operands, and retire instructions in
correct program order. The goal of each of these techniques is to increase the parallelism of
instruction execution, while maintaining the basic sequential characteristic of a von Neumann
computer architecture.

As a brief diversion, consider the similarities between the operation of the modern CPU
and the operation of a moderately large restaurant. Each of the waiters and waitresses taking
orders represent the fetch unit fetching instructions. Customers’ orders are fed to the kitchen,
where they are sorted into categories: soup orders to the soup chef, salads to the salad chef,
entrées to the entrée chef, and so on. Typically, the entrée chef will have the most complex
orders to fill, equivalent to the longest pipeline in the CPU. If the kitchen is large, the entrée
area will be further subdivided into multiple execution areas: frying, baking, and so on, and
there may be multiple cooks working in the busiest areas. As with the programs being executed
in a computer, there are dependencies between the various cooks. For example, green beans
must be blanched before they may be placed in the salad. Finally, we observe that, like computer
program instructions, the restaurant must provide food from the kitchen to the customers in
the proper sequence, and with appropriate timing, to satisfy the customers’ requirements.

In this section, we have introduced the basic ideas of superscalar processing, briefly
indicated the difficulties, and explained the reasoning for its use. There are many excellent
references listed in the For Further Reading if you are interested in more of the details of
superscalar processing and modern CPU design.

8.5 MULTIPROCESSING
One obvious way to increase performance in a computer system is to increase the number
of CPUs. Computers that have multiple CPUs within a single computer, sharing some or all
of the system’s memory and I/O facilities, are called multiprocessor systems, or sometimes
tightly coupled systems.Whenmultiple CPU processors are supplied within a single integrated
circuit, they are more commonly called multicore processors. Each CPU in the processor is

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 257

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 257

FIGURE 8.12

Typical Multiprocessing System Configuration

Memory

System bus

PCI bus

Other I/O
controllers

I/O
controller

Disks

CPU
1

CPU
2

CPU
3

Host/PCI
bridge

called a core. Figure 8.12 shows a typical multiproces-
sor configuration. All the processors in a multiproces-
sor configuration have access to the same programs
and data in shared memory and to the same I/O
devices, so it is possible to divide program execu-
tion between different CPUs. Furthermore, programs
or pieces of programs may be run in any CPU that is
available, so that each additional processor extends the
power available for multitasking in a multiprocessing
system, at least within the capability of the shared
components, the memory, buses, and I/O controllers.

Under ideal conditions, each CPU processes its
own assigned sequence of program instructions inde-
pendently. Thus, a dual-core processor effectively
doubles the number of instructions executed in a
given time, a quad-core processor would quadruple
the rate, and so forth. Of course this assumes that there
aremultiple independent tasks available to be executed
simultaneously. Since modern computer systems are
normally executing many programs and segments of
programs concurrently, this is nearly always the case.

In practice, increasing the number of CPUs is, in fact, usually effective, although, as the
number of CPUs increases, the value of the additional CPUs diminishes because of the overhead
required to distribute the instructions in a useful way among the different CPUs and the conflicts
among the CPUs for shared resources, such as memory, I/O, and access to the shared buses.
With the exception of certain, specialized systems, there are rarely more than sixteen CPUs
sharing the workload in a multiprocessing computer; more commonly today, a multiprocessor
might consist of two, four, or eight core CPUs within a single chip. Still, each core in the chip is
a full-blown superscalar CPU, of the type discussed in the previous sections of this chapter.

Although increased computing power is a significant motivation for multiprocessing, there
are other considerations that make multiprocessing attractive:

n Since the execution speed of a CPU is directly related to the clock speed of the CPU,
equivalent processing power can be achieved at much lower clock speeds, reducing
power consumption, heat, and stress within the various computer components.

n Programs can be divided into independent pieces, and the different parts executed
simultaneously on multiple CPUs.

n With multiprocessing, increasing computational power may be achieved by adding
more CPUs, which is relatively inexpensive.

n Data dependencies and cache memory misses can stall the pipelines in a single CPU.
Multiprocessing allows the computer to continue instruction execution in the other
CPUs, increasing the overall throughput. Multicore processors generally provide a
separate L1 memory cache for each core in addition to an L2 cache that is shared by
all the cores. This makes it possible to move memory data efficiently between cores
when necessary.

Assignment of work to the various processors is the responsibility of the operating system.
Work is assigned from among the programs available to be executed, or, more commonly, from

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 258

258 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

independent segments of those programs called threads. Since each of the CPUs has access to
the same memory and I/O, any CPU can theoretically execute any thread or program currently
in memory, including the operating system. This raises the question of control of the system.
There are two basic ways of configuring a multiprocessing system:

n Symmetrical multiprocessing (SMP), in which each CPU has identical access to the
operating system, and to all system resources, including memory. Each CPU
schedules its own work, within parameters, constraints, and priorities set by the
operating system. In a normal SMP configuration, each of the CPUs is identical.

n Master–slave multiprocessing, in which one CPU, themaster, manages the system,
and controls all resources and scheduling. Only the master may execute the operating
system. Other CPUs are slaves, performing work assigned to them by the master.

A number of CPUs also implement a simplified, limited form of multiprocessing using
parallel execution units within a single CPU to process two or more threads simultaneously.
This technique is called simultaneous thread multiprocessing (STM). STM is also known as
hyperthreading. STM is particularly useful in dealing with cache stalls, because the CPU can be
kept busy working on the alternative thread or threads. The operating system manages STM in
a manner similar to SMP. Since STM operates within a single CPU and SMP operates between
CPUs, STM and SMP can be used together.

For general-purpose computing, the symmetrical configuration has many advantages.
Because every CPU is equal, every CPU has equal access to the operating system. Any CPU can
execute any task and can process any interrupt.2 Processors are all kept equally busy, since each
processor can dispatch its own work as it needs it. Thus, the workload is well balanced. It is easy
to implement fault-tolerant computing with a symmetrical configuration—critical operations
are simply dispatched to all CPUs simultaneously. Furthermore, a failure in a single CPU may
reduce overall system performance, but it will not cause system failure. As an interesting aside,
note that a program may execute on a different CPU each time it is dispatched, although
most SMP systems provide a means to lock a program onto a particular CPU, if desired. Thus,
the symmetrical configuration offers important capabilities for multiprocessing: maximum
utilization of each CPU, flexibility, high reliability, and optional support for fault-tolerant
computing. Most modern general-purpose multiprocessing systems are SMP systems.

Because of the somewhat limited flexibility in distributing the workload, the master–slave
configuration is usually considered less suitable for general-purpose computing. In a
master–slave configuration the master is likely to be the busiest CPU in the system. If a slave
requires a work assignment while the master is busy, the slave will have to wait until the master
is free. Furthermore, since the master handles all I/O requests and interrupts, a heavily loaded
system will cause a backload in the master. If slaves are dependent on the results of these
requests, the system is effectively stalled.

Conversely, there are a number of specialized computing applications for which the
master–slave configuration is particularly well suited. These applications are characterized by
a need for a master control program, supported by repetitive or continuous, computation- and
data-intensive, time-critical tasks. For example, the processor in a game controller must execute
the code that plays the game. At the same time, it requires support that can rapidly calculate

2Interrupts are a special feature of the CPU in which outside events such as mouse movements and power

interruptions can affect the sequence of instructions processed by the CPU. Interrupts are discussed in detail in

Chapter 9.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 259

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 259

and display new images based on movements of the objects in the image, compute shadings
and light reflections resulting from the movements; often, the processor must create new pixel
values for every pixel in the image. It must also be able to create the appropriate reactions and
display in response to events that occur, such as explosions or fires or objects bouncing off a
wall, and more.

Many important applications in economics, biology, physics, and finance, particularly
those based on simulation and modeling, have similar requirements.

EXAMPLE
The Cell Broadband Engine processor is organized in a master–slave configuration. It was
developed jointly by IBM, Sony, and Toshiba as the first of a new generation of processors
intended for use in high-performance intensive computing applications. It was the main processor
used in the Sony PlayStation.3

A block diagram of the Cell processor is shown in Figure 8.13. The master processor is
similar to a 64-bit PowerPC CPU. There are eight slave processors. A high-speed bus interconnects
the master processor and each of the slave processors. For those interested, a more detailed
description of the PowerPC Cell processor can be found in Gschwind et al. [GSCH06].

FIGURE 8.13

Cell Processor Block Diagram

SXU1

Cache
memory

SPE (slave)

Power processor
element
(master)

Memory
interface

Element interconnect bus

Notes:
SXU = Synergistic execution unit
SPE = Synergistic process element

I/O
interface

Cache
memory

Power
core

SXU2

Cache
memory

SPE (slave)

SXU3

Cache
memory

SPE (slave)

SXU8

Cache
memory

SPE (slave)

...

3The Playstation 4 uses a more conventional 8-core x86 SMP configuration, with built-in integrated graphics

processing.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 260

260 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

8.6 A FEW COMMENTS ON IMPLEMENTATION
It is not the intention of this book to discuss the electronic implementation of the computer
in any detail. A brief introduction is provided in Supplementary Chapter 1, but the details of
such a discussion are better left to an engineering textbook. There are several good computer
engineering textbooks listed in the For Further Reading for the supplementary chapter if you
are interested in learning more about how the computer works.

Although the increased capacity of current integrated circuit technology has allowed
computer designers the option of creating very complex circuits, with billions of transistors,
much of that capacity is currently used to provide increased capability in the form of multiple
execution units, increased amounts of cache memory, and multicore processing; the basic
design and implementation of a processor is simpler than you might imagine.

If you look again at the instruction classes that constitute the operations of a CPU together
with the fetch–execute cycles that make up each of the instructions, you can see that the great
majority of operations within the CPU consist of moving data from one register to another.
The steps

PC → MAR and
MDR → IR

are examples of this type of operation.
In addition, we must include the capability to add data to a register with data from another

register or from a constant (usually the constant 1 or −1), the capability to perform simple
Boolean functions (AND, OR, NOT) on data in registers, and the capability to shift the data in
a register to the left or right. Finally, the CPU must include the capability to make simple
decisions based on the values stored in flags and registers (conditional branches). All of these
operations are under the timed control of a clock. Control unit logic opens and closes switches
at the right times to control the individual operations and the movement of data from one
component within the CPU to another.

And for all practical purposes, that’s about it. The small number of different operations
used in a CPU suggests that the CPU can be directly implemented in electronic hardware, and
indeed that is the case. In Supplementary Chapter 1, we demonstrate for the curious reader, in
somewhat simplified fashion, that all of the preceding functions can be implemented using logic
gates that perform Boolean algebra. The registers, flags, and counters that control timing are
made up of electronic devices called flip-flops, which are, themselves, made up of logic gates.

So, as you can see, the basic hardware implementation of the CPU is relatively straight-
forward and simple. Although the addition of pipelining, superscaling, and other features
complicates the design, it is possible, with careful design, to implement and produce an
extremely fast and efficient CPU at low cost and in large quantities.

SUMMARY AND REVIEW
In this chapter, we presented a number of different techniques that are used to enhance the
power and flexibility of a CPU. We began with a discussion of three different approaches to
CPU architecture, with particular emphasis on traditional computer architecture.We presented
the advantages, disadvantages, and trade-offs for each architecture.

Next, we looked at the various aspects of instruction execution in a CPU, with the purpose
of improving performance. This discussion culminated in the presentation of a model for

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 261

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 261

an alternative organization that preserves the basic rules of execution, but allows much faster
instruction execution. The important features of thismodel include separating the fetch–execute
cycle into two separate fetch and execute units that can operate in parallel, pipelining to allow
instructions to execute in an assembly line, and multiple execution units to allow parallel
execution of unrelated instructions. A variety of innovative techniques, including rename
registers, speculative execution, out-of-order execution, and branch prediction help to reduce
bottlenecks and contribute to the performance. We noted that the resulting model is capable of
superscalar processing, with instructions processed at average rates far exceeding the cycle rate
of the clock.

We then turned our attention to memory enhancements, particularly the techniques and
benefits of cachememory, a fast, intermediatememory between then CPU and regularmemory.
Following this, we put together a model of the compleat susperscalar CPU that contained all of
the features that we had presented up to this point.

To increase performance even further, it is possible to combine CPUs into multiple units
that share memory, buses, I/O, and other resources, a concept called multiprocessing. We
presented two different configurations of multiprocessors.

We concluded the chapter with a brief introduction to the technology used to implement
the modern processor.

With all of the advances and variations in technology, architecture, and organization
that we have introduced in this chapter, and despite all of the different types of computers,
applications, and uses for computers that are available today, it is important to remember that,
regardless of the specifics, every current CPU conforms to the basic model created by Von
Neumann more than a half century ago. There is little evidence that the basic concepts that
govern CPU operation are likely to change in the near future.

FOR FURTHER READING
The many references used to write this chapter are all listed in the bibliography section at
the end of this book. The following books and articles are particularly useful for their clear
descriptions and explanations of these topics. Stallings [STAL09] and Tanenbaum [TANE05]
describe the different types of architectures, focusing on the differences between CISC and
RISC architectures in great depth. The IBM website contains a wealth of information about
zSeries, POWER, and Cell architectures, including the Redbooks, which are free, downloadable,
book-length explanations of various computer topics. These range in difficulty from beginner
to highly technical. Intel.com (for the x86 series) and oracle.com (for the SPARC architecture)
are other useful brand-specific websites.

Instruction sets, instruction formats, and addressing are discussed at length in every
computer architecture textbook. The book by Patterson and Hennessy [PATT12] covers the
topics of Chapters 7 and 8 thoroughly, and has the additional benefit of being highly readable.
A more advanced treatment, by the same authors, is found in [HENN12]. Good discussions of
multiprocessing are also found in Patterson and Hennessy and in Tanenbaum. Two readable
websites introducing the Cell processor are Gschwind et al. [GSCH06] andMoore [MOOR06].

A different approach to this material is to compare the architectures of various machines.
The book by Tabak [TABA95] looks at several different CPUs in detail. Most of these CPUs
are obsolete, but the comparison between different architectures is useful. There are textbooks
and trade books devoted to the architecture of every major CPU. Themost thorough discussion
of the x86 architecture is found in Mueller [MUEL08]. I also recommend Brey [BREY08],

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 262

262 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Messmer [MESS01], and Sargent and Shoemaker [SARG95] for the Intel x86 series. The

PC System Architecture series is a collection of short books describing the architectures of

various parts of computers. Volume 5 [SHAN04] describes the evolution and architecture of

the Pentium 4. The case studies provided in Supplementary Chapter 2 are additional informa-

tion resources.

Stallings also includes an entire chapter on superscalar processors. Clear, detailed discus-

sions of all aspects of CPU and memory design can be found in the two books by Patterson and

Hennessy [PATT12, HENN12]. There are many additional references in each of these books.

Specific discussions of the superscalar processing techniques for particular CPUs can be found

in Liptay [LIPT92] for the IBM ES/9000 mainframe, in Becker and colleagues [BECK93],

Thompson and Ryan [THOM94], Burgess and colleagues [BURG94], and Ryan [RYAN93]

for the PowerPC, and “Tour of the P6” [THOR95] for the P6.

An alternative approach to the topics in this chapter can be found in any assembly language

textbook. There are many good books on these topics, with new ones appearing every day. A

website such as Amazon is a good resource for identifying the best currently available.

KEY CONCEPTS AND TERMS

branch history table
cache controller
cache line
cache memory
CISC (complex instruction

set computer)
clock
code morphing
control dependency
core
data dependency
disk cache
execution unit
fetch unit
hazard
hit
hit ratio
instruction reordering

instruction set architecture
(ISA)

instruction unit
locality of reference
logical register
logical storage elements
master–slave

multiprocessing
memory interleaving
memory latency
miss
multicore processor
multiprocessor systems
n-way interleaving
organization
pipelining
register alias table
rename register

RISC (reduced instruction

set computer)

scalar processor

simultaneous thread

multiprocessing (STM)

speculative execution

stall time

superscalar processing

symmetrical multiprocessing

(SMP)

tag

threads

tightly coupled system

wide path memory access

write-back

write-through

READING REVIEW QUESTIONS

8.1 The x86 series is an example of a CPU architecture. As you are probably aware, there

are a number of different chips, including some from different manufacturers even,

that qualify as x86 CPUs. What, exactly, defines the x86 architecture? What word

defines the difference between the various CPUs that share the same architecture?

Name at least one different CPU architecture.

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 263

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 263

8.2 What is the major performance advantage that results from the use of multiple

general-purpose data registers?

8.3 Explain the advantage in implementing separate fetch and execute units in a CPU.

What additional task is implemented in the fetch unit as a performance enhancement

measure?

8.4 Explain how pipelining serves to reduce the average number of steps in the execution

part of the fetch–execute cycle.

8.5 Which class of instructions can reduce performance by potentially invalidating the

instructions in a pipeline? Identify twomethods that can be used to partially overcome

this problem.

8.6 Most CPUs today are superscalar. What does that mean?

8.7 The use of multiple execution units can improve performance but also cause problems

called hazards or dependencies. Explain how a hazard can occur. How can hazards be

managed?

8.8 What is a rename register? What is it used for?

8.9 What performance improvement is offered bymemory interleaving?

8.10 What specific performance improvement is offered by the use of cache memory?

8.11 Describe how cache memory is organized. What is a cache line? How is it used?

8.12 Explain the hit ratio in cache memory.

8.13 Explain the difference between cache write-through and cache write-back. Which

method is safer? Which method is faster?

8.14 Explain what takes place when cache memory is full.

8.15 Explain the locality of reference principle and its relationship to cache memory

performance and the hit ratio.

8.16 When a system has multiple levels of cachememory, L2 always has morememory than

L1. Why is this necessary?

8.17 Modern computers are usually described as multicore. What does this mean? Under

ideal conditions, what performance gainwould be achieved using a four-core processor

over a single-core processor?

8.18 Identify and briefly explain two different ways of configuring a multiprocessing

system.Which configuration is more effective for general-purpose computing?Which

configuration is more effective for handling specialized processing tasks, such as those

used in game applications?

EXERCISES

8.1 Find a good reference that describes the x86 chip. Discuss the features of the

architecture that make superscalar processing possible in this chip. What limitations

does the Pentium architecture impose on its superscalar processing?

8.2 Consider a CPU that implements a single instruction fetch–decode–execute–write-

back pipeline for scalar processing. The execution unit of this pipeline assumes that the

execution stage requires one step. Describe, and show in diagram form, what happens

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 264

264 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

when an instruction that requires one execution step follows one that requires four

execution steps.

8.3 a. Consider a CPUwith two parallel integer execution units. An addition instruction

requires 2 clock pulses to complete execution, and a multiplication requires 15

clock pulses. Now assume the following situation: the program is to multiply two

numbers, located in registers R2 and R4, and store the results in R5. The following

instruction adds the number in R5 to the number in R2 and stores the result in

R5. The CPU does not stall for data dependencies, and both instructions have

access to an execution unit simultaneously. The initial values of R2, R4, and R5

are 3, 8, and 0, respectively. What is the result? Now assume that the CPU does

handle data dependencies correctly. What is the result? If we define wasted time

as time in which an execution unit is not busy, how much time is wasted in this

example?

b. Nowassume that a later instruction in the fetch pipeline has no data dependencies.

It adds the value in R1, initially 4, to the value in R4 and stores the result in R5.

Data dependencies are handled correctly. There are no rename registers, and the

CPU retires instructions in order. What happens? If the CPU provides rename

registers, what happens? What effect does out-of-order execution have upon the

time required to execute this program?

8.4 Suppose that aCPUalways executes the two instructions followingabranch instruction,

regardless of whether the branch is taken or not. Explain how this can eliminate most

of the delay resulting from branch dependency in a pipelined CPU. What penalties or

restrictions does this impose on the programs that are executed on this machine?

8.5 Some systems use a branch prediction method known as static branch prediction, so

called because the prediction is made on the basis of the instruction, without regard

to history. One possible scenario would have the system predict that all conditional

backward branches are taken and all forward conditional branches are not taken. Recall

your experience with programming in the Little Man Computer language. Would this

algorithm be effective? Why or why not? What aspects of normal programming, in

any programming language, support your conclusion?

8.6 How would you modify the Little Man Computer to implement the pipelined

instruction fetch–execution unit model that was described in this chapter? What

would it take to supply multiple execution units? Describe your modified LMC in

detail and show how an instruction flows through it.

8.7 a. Suppose we are trying to determine the speed of a computer that executes the

Little Man instruction set. The LOAD and STORE instructions each make up about

25% of the instructions in a typical program; ADD, SUBTRACT, IN, and OUT take 10%

each. The various branches each take about 5%. The HALT instruction is almost

never used (amaximumof once each program, of course!). Determine the average

number of instructions executed each second if the clock ticks at 100MHz.

b. Now suppose that the CPU is pipelined, so that each instruction is fetched while

another instruction is executing. (You may also neglect the time required to refill

the pipeline during branches and at the start of program execution.) What is the

average number of instructions that can be executed each second with the same

clock in this case?

Englander c08.tex V2 - November 28, 2013 9:47 P.M. Page 265

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 265

8.8 The goal of scalar processing is to produce, on average, the execution of one instruction

per clock tick. If the clock ticks at a rate of 2GHz, howmany instructions per second can

this computer execute? How many instructions would a 2GHz superscalar processor

that processes three instructions per clock cycle execute?

8.9 Consider a cache memory that provides three hundred 16-byte blocks. Now consider

that you are processing all the data in a two-dimensional array of, say, four hundred

rows by four hundred columns, using a pair of nested loops. Assume that the program

stores the array column by column. You can write your program to nest the loops

in either direction, that is, process row by row or column by column. Explain which

way you would choose to process the data. What is the advantage? Conversely, what is

the disadvantage of processing the data the other way? What effect does choosing the

incorrect way have on system performance?

8.10 Carefully discuss what happens when a cache miss occurs. Does this result in a major

slowdown in execution of the instruction? If so, why?

8.11 What is the purpose of the tag in a cache memory system?

8.12 Describe the trade-offs between the memory cache write-through and write-back

techniques.

8.13 Carefully describe the advantages and disadvantages of master–slave multiprocess-

ing and symmetrical multiprocessing. Which would you select for fault-tolerant

computing? Why?

8.14 Locate information about the Cell Processor. Describe the tasks performed by the

various slave processors. What is the primary role of the master processor? Explain

the advantages of master–slave multiprocessing over other forms of processing for

this application. Can you think of some other types of computer problems that would

benefit from this approach?

8.15 As you know, a single CPU processes one instruction at a time. Adding a second CPU

(or core, in current terminology) allows the system to process two instructions at a

time, simultaneously, effectively doubling the processing power of the system. A third

core will offer triple the processing power of a single CPU, and so on. However, studies

have shown that, in general, the expected increase in computing power starts to decline

when the number of cores grows large, beyond eight or so. Why would you expect this

to be the case? For what types of computing problems might this not be true?

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 266

CHAPTER 9

INPUT/OUTPUT

Courtesy of Rand Levinger

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 267

9.0 INTRODUCTION
Of course you’re aware that no matter how powerful the CPU is, a computer system’s
usefulness ultimately depends on its input and output facilities. Without I/O there is no
possibility of keyboard input, of screen output, of printout, or even of disk storage and
retrieval. Although youmight be inclined to think of I/O in terms of user input and output,
therewouldbeno computer networkor Internet access either. To theCPUand its programs,
all these devices require specialized input and output processing facilities and routines.

In fact, for most business programs and for nearly every multimedia application, I/O
is the predominant factor. E-business applications offer an even bigger challenge: Web
services generally requiremassive amounts of fast I/O to handle and process I/O requests as
they occur. The speed at which most of these programs operate is determined by the ability
of their I/O operations to stay ahead of their processing. With personal computers rapidly
increasing in CPU-processing capability, but still somewhat limited in I/O processing,
it has been greater I/O capability that has maintained, until recently, the advantage of
mainframe computers over PCs for business transaction processing.

We handled input and output in the Little Man Computer by providing input
and output baskets for that purpose. Each input instruction transferred one three-digit
data number from the input basket to the calculator; similarly, each output instruction
transferred one data number from the calculator to the output basket. If we wanted to input
three numbers, for example, an input instruction had to be executed three times. This could
be done with three separate input instructions or in a loop, but either way, each individual
piece of data required the execution of a separate input instruction. If the input was a large
file of data, it would take a massive number of input instructions to process the data.

It is possible, though possibly not always practical, to transfer data between input and
output devices and the CPU of a real computer in a similar manner. In the real computer,
the in basket and out basket are commonly replaced by a bus interface that allows a direct
transfer between a register within the CPU and a register within an I/O controller that
controls the particular device. Both input and output are handled similarly. The technique
is known as programmed I/O.

There are a number of complicating factors in handling input/output processes (which
we will normally simply call I/O) in a real computer. Although the method of transferring
dataonewordat a timedoes really exist, andmaybeadequate andappropriate for someslow-
operating I/Odevices, the volumeof data commonly transferred in I/Odevices, such as disks
and tapes,makes thismethod too slowand cumbersome to be practical as the only I/O trans-
fer method in a modern high-speed machine. We need to consider some method of trans-
ferring data in blocks rather than executing an instruction for each individual piece of data.

The problem is further complicated by the fact that in a real computer, there may be
many input and output devices all trying to do I/O, sometimes at the same time. There
needs to be a way of distinguishing and separating the I/O from these different devices.
Additionally, devices operate at different speeds from each other and from the CPU. An
inkjet printermay output characters at a rate of 150 per second, whereas a diskmay transfer
data at a rate of tens or hundreds of thousands, or even millions, of bytes per second.
Synchronization of these different operations must be achieved to prevent data loss.

267

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 268

268 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Finally, it should be noted that I/O operations take up a lot of computer time. Even if a
block of data can be transferred between the CPU and a disk with a single instruction, much
time is potentially wasted waiting for the completion of the task. A CPU could execute millions
of instructions in the time it takes a printer to print a single character. In a large modern
computer, the number of I/O operations may be very large. It would be convenient and useful
to be able to use the CPU for other tasks while these I/O transfers are taking place.

In the computer, several different techniques are combined to resolve the problem of
synchronizing and handling I/O between a variety of different I/O devices operating with
different quantities of data at different speeds. In this chapter, we first consider the I/O
requirements of some commonly used devices. This discussion, which appears in Section 9.1,
leads to a set of requirements that the I/O–CPU interface should meet to optimize system
performance. Next, in Section 9.2 we briefly review programmed I/O, the method used in the
Little Man Computer, and consider its limitations. Section 9.3 addresses the important issue
of interrupts, the method used to communicate events that need special attention to the CPU.
Interrupts are the primarymeans for the user to interact with the computer, as well as themeans
used for communication between the CPU and the various I/O devices connected to the system.
In Section 9.4 we look at direct memory access, orDMA, a more efficient alternative technique
used to perform I/O in the computer. DMA provides the ability to utilize the CPU more
fully while I/O operations are taking place. Finally, Section 9.5 considers the I/O controllers
that provide the capability both to control the I/O devices and to interact with the CPU
and memory.

9.1 CHARACTERISTICS OF TYPICAL I/O DEVICES
Before discussing the techniques that are used in the real computer for performing I/O, it will
help to consider some characteristics of a few of the devices that will typically be connected to
the computer. In this chapter we are not interested in the inner workings of these devices nor
with the interconnection of the various computer components and I/O devices that make up
the whole computer system—we’ll save these discussions for Chapters 10 and 11, respectively.
For now, we are only interested in those characteristics of these devices that will affect the I/O
capabilities of the computer, in particular, the speed and quantity of data transfer required to
use the computer efficiently and fully. This survey is intended to be intuitive: what must be
true about the I/O, based on what you already know about the particular devices from your
own practical experience. Although this discussion may seem like a digression, it is intended to
establish a set of basic principles and requirements that will help you to better understand the
reasons behind the methods that are used to perform I/O in computers.

Consider, for example, the keyboard as an input device. The keyboard is basically a
character-based device. From Chapter 4 you should be aware that typing on the keyboard of
your PC results in Unicode or ASCII input to the computer, one character at a time. (The same
is true if you type on the virtual keyboard provided on a tablet or smartphone touchscreen.)
Even mainframe terminals, many of which can send text to the computer a page at a time, only
transmit a page occasionally, so the data rate for keyboards is obviously very slow compared to
the speed at which the CPU processes the data.

Input from the keyboard is very slow because it is dependent on the speed of typing, as well
as on the thought process of the user. There are usually long thinking pauses between bursts
of input, but even during those bursts, the actual input requirements to the computer are very
slow compared to the capability of the computer to execute input instructions. Thus, we must

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 269

CHAPTER 9 INPUT/OUTPUT 269

assume that if the computer is simply performing a single task that depends on user input, it
will spend most of its time waiting for input from the keyboard.

It is also useful to note that there are two different types of keyboard input. There is input
that is expected by the application program in response to an “input” statement of some kind
requesting input data for the program. Then, there are other times when the user wishes to
interrupt what the computer is doing. On many computers, a character such as Control-“C” or
Control-“D” or Control-“Q” can be typed to stop the program that is running. On tablets and
smartphones, hitting the “home” key has the same effect.Many programs use the F1 key to bring
up a help screen. Typing Control-Alt-Delete on a PC will stop normal processing and open an
administrative window that can be used to kill a program or shut down the computer. These are
examples of unpredicted input, since the executing program is not necessarily awaiting specific
input at those times. Using the input method that we already described would not work: the
unexpected input would not be noticed, possibly for a long time until the next input instruction
was executed for some later expected input.

Finally, on a multiuser system, there may be many keyboards connected to a single
computer. The computer must be able to distinguish between them, must not lose input data
even if several keyboards send a character simultaneously, and must be able to respond quickly
to each keyboard. The physical distances from the computer to these keyboards may be long.

Another input device that will generate unexpected input is themouse.When youmove the
mouse, you expect the cursor to move on the screen. Clicking on a mouse button may serve as
expected input to a program, or it may be unexpected and change the way in which the program
is executing. In fact, unexpected input is fundamental to programs written in modern event-
driven languages such as Visual Basic and Java. When the user selects an item on a drop-down
menu or clicks on a toolbar icon, she expects a timely response. Again, data rates are slow.

Printers and display screens must operate over a wide range of data rates. Although most
monitors and printers are capable of handling pure ASCII or Unicode text, mostmodern output
is produced graphically or as a mixture of font descriptors, text, bitmap graphics, and object
graphics, a page or a screen at a time, using a page description language. The choice of page
description language and mixture of elements is determined by the capabilities of the printer or
graphics card. Clearly, output to a printer consisting of only an occasional page or two of text
will certainly not require a high data rate regardless of the output method used.

The output of high-resolution bitmap graphics and video images to a monitor is quite a
different situation. If the graphics must be sent to the graphics card as bitmap images, even in
compressed form, with data for each pixel to be produced, it may take a huge amount of data to
produce a single picture, and high-speed data transfer will be essential. A single, color image on
a high-resolution screen may require several megabytes of data, and it is desirable to produce
the image on the screen as fast as possible. If the image represents video, extremely high data
transfer rates are required. This suggests that screen image updatesmay require bursts of several
megabytes per second, even when data compression methods are used to reduce the transfer
rate. It may also suggest to you why it is nearly impossible to transmit high-quality images
quickly over low-bandwidth networks or voice-grade phone lines with modems.

Contrast the I/O requirements of keyboards, screens, and printers with those of disks and
DVDs. Since the disk is used to store programs and data, it would be very rare that a program
would require a single word of data or program from the disk. Disks are used to load entire
programs or store files of data. Thus, disk data is always transferred in blocks, never as individual
bytes or words. Disks may operate at transfer rates of tens or, even, hundreds of megabytes
per second. As storage devices, disks must be capable of both input and output, although not
simultaneously. On a large system, there may be several disks attempting to transfer blocks

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 270

270 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

of data to or from the CPU simultaneously. A DVD attempting to present a full screen video

at movie rates without dropouts must provide data steadily at input rates approaching 10MB

per second, with some transient rates and high-definition video rates even higher. In addition,

video and audio devices require a steady stream of data over long periods of time. Contrast this

requirement with the occasional bursts of data that are characteristic of most I/O devices.

For both disk and image I/O, therefore, the computer must be capable of transferring

massive amounts of data very quickly between theCPUand the disk(s) or image devices. Clearly,

executing a single instruction for each byte of data is unacceptable for disk and image I/O, and a

different approachmustbeused.Furthermore, youcansee the importanceofprovidingamethod

to allow utilization of the CPU for other tasks while these large I/O operations are taking place.

With the rapid proliferation of networks in recent years, network interfaces have also

become an important source of I/O. From the perspective of a computer, the network is just

another I/O device. In many cases, the network is used as a substitute for a disk, with the

data and programs stored at a remote computer or “cloud” and served to the local station.

For the computer that is acting as a server, there may be a massive demand for I/O services.

User interfaces such as X Windows, which allow the transfer of graphical information from a

computer to a display screen located elsewhere on the network, place heavy demands on I/O

capability. With simple object graphics, or locally stored bitmap images, and with a minimal

requirement for large file transfers, a small computer with a modemmay operate sufficiently at

I/O transfer rates of 3,000 bytes per second, but computers with more intensive requirements

may require I/O transfer rates of 50MB per second, or more.

It should be pointed out that disks, printers, screens, and most other I/O devices operate

almost completely under CPU program control. Printers and screens, of course, are strictly

output devices, and the output produced can be determined only by the program being

executed. Although disks act as both input and output devices, the situation is similar. It is

the executing program that must always determine what file is to be read on input or where

to store output. Therefore, it is always a program executing in the CPU that initiates I/O data

transfer, even if the CPU is allowed to perform other tasks while waiting for the particular I/O

operation to be completed.

Some input devices must be capable of generating input to the CPU independent of

program control. The keyboard and mouse were mentioned earlier in this context, and voice

input would also fall into this category. Some devices, such as CD-ROMs and USB devices,

can self-initiate by signaling their presence to a program within the operating system software.

Local area networks can also generate this kind of input, since a program on a different CPU

might request, for example, a file stored on your disk. In a slightly different category, but with

similar requirements, are input devices for which input is under program control, but for which

the time delay until arrival of the data is unpredictable, and possibly long. (You might consider

regular keyboard input in this category, especially when writing a paper using your word

processor.) This would be true if the data is being telemetered from some sort of measurement

device. For example, the computer might be used to monitor the water level at a reservoir,

and the input is water-level data that is telemetered by a measurement device once per hour.

Provision must be made to accept unpredictable input and process it in some reasonable way,

preferably without tying up the CPU excessively.

Additionally, there will be situations where an I/O device being addressed is busy or not

ready. The most obvious examples are a printer that is out of paper or a DVD drive with no

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 271

CHAPTER 9 INPUT/OUTPUT 271

FIGURE 9.1

Synopsis of Characteristics of Typical I/O Devices

Device Input/Output Data Rate*
Keyboard Input Very low

Mouse

Touchpad

Touch screen

Input Low

Scanner Input Medium

Voice Input Low to medium

Sound Input/Output Medium

USB Input/Output Low to very high

Network Input/Output High to very high

Printer Output Low to medium

Graphics display Output High

Flash drive Storage Medium

Magnetic Disk Storage Medium

Solid State Drive Storage Medium to High

Optical Drive Storage Medium to High

Magnetic tape Storage Low to medium

Control
External & Program

External

External & Program**

External & Program

Program

External & Program**

External & Program**

Program

Program

External & Program**

Program

Program

External & Program**

External & Program**

Type
Character

Character

Block burst

Block burst

Block burst or steady

Block burst

Block burst

Block Burst

Steady

Block burst

Block burst

Block burst

Block burst or steady

Block burst or steady

* Very low <500 bps; low <5 kbps; medium <10 Mbps; high 10–100 Mbps; very high 100–5000 Mbps
**External initiation features, mostly program control

disk in it or a hard disk that is processing another request. It would be desirable for the device

to be able to provide status information to the CPU, so that appropriate action can be taken.

Figure 9.1 shows a brief synopsis of the characteristics of various I/O devices that we’ve

discussed, categorized by type of device: input devices, devices that generate output, standard

storage devices, and a long-term, removable storage device used primarily for backup.

The discussion in this section establishes several requirements that will have to be met for

a computer system to handle I/O in a sufficient and effective manner:

1. There must be a means for individually addressing different peripheral devices.

2. There must be a way in which peripheral devices can initiate communication with the

CPU. This facility will be required to allow the CPU to respond to unexpected inputs

from peripherals such as keyboards, mice, and networks, and so that peripherals such

as printers and floppy disk drives can convey emergency status information to the

executing program.

3. Programmed I/O is suitable only for slow devices and individual word transfers. For

faster devices with block transfers, there must be a more efficient means of

transferring the data between I/O and memory. Memory is a suitable medium for

direct block transfers, since the data has to be in memory for a program to access it.

Preferably this could be done without involving the CPU, since this would free the

CPU to work on other tasks.

4. The buses that interconnect high-speed I/O devices with the computer must be

capable of the high data transfer rates characteristic of modern systems. We will

return to this issue in Chapter 11.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 272

272 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

5. The I/O system must be capable of handling devices that operate at a wide range of
speeds and with varying amounts of delay. This includes a suitable method for
synchronizing the I/O with the programs that are using the data with minimum
impact on the overall performance of the system.

6. Finally, there must be a means for handling devices with extremely different control
requirements. It would be desirable if I/O for each of these devices could be handled
in a simple and similar way by programs in the CPU.

These requirements suggest that it is not practical to connect the I/O devices directly to the
CPU without some sort of interface module unique to each device. To clarify this requirement,
note the following conditions established from the previous discussion:

1. The formats required by different devices will be different. Some devices require a
single piece of data, and then must wait before another piece of data can be accepted.
Others expect a block of data. Some devices expect 8 bits of data at a time; others
require 16, 32, or 64. Some devices expect the data to be provided sequentially, on a
single data line. Other devices expect a parallel interface. These inconsistencies mean
that the system would require substantially different interface hardware and software
for each device.

2. The incompatibilities in speed between the various devices and the CPU will make
synchronization difficult, especially if there are multiple devices attempting to do I/O
at the same time. It may be necessary to buffer the data (i.e., hold it and release part of it
at particular times) to use it. A bufferworks something like a water reservoir or tower.
Water enters the reservoir or tower as it becomes available. It is stored and released as
it can be used. A computer buffer uses registers or memory in the same way.

3. Although the I/O requirements for most devices occur in bursts, some multimedia,
video and audio in particular, provide a steady stream of data that must be transferred
on a regular basis to prevent dropouts that can upset a user. I/O devices and the
interconnections that support multimedia services must be capable of guaranteeing
steady performance. This often includes network interfaces and high-speed
communication devices as well as devices such as video cameras, since networks are
frequently used to supply audio and video. (Think of downloading streaming video
from the Web.)

4. Devices such as disk drives have electromechanical control requirements that must be
met, and it would tie up too much time to use the CPU to provide that control. For
example, the head motors in a disk drive have to be moved to the correct disk track to
retrieve data and something must continually maintain the current head position on
the track once the track is reached. There must be a motor controller to move the
print heads in an inkjet printer across the paper to the correct position to print a
character. And so on. Of course, the requirements for each device are different.

The different requirements for each I/O device plus the necessity for providing devices
with addressing, synchronization, status, and external control capabilities suggest that it is
necessary to provide each device with its own special interface. Thus, in general, I/O devices
will be connected to the CPU through an I/O controller of some sort. The I/O controller will
contain the specialized hardware circuits necessary to meet all the I/O requirements that we
established, including block transfer capability with appropriate buffering and a standardized,
simple interface to the CPU. At the other interface, the I/O controller will have the capability
to control the specific device or devices for which it is designed.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 273

CHAPTER 9 INPUT/OUTPUT 273

FIGURE 9.2

Simple I/O Configuration

CPU
I/O

controller
I/O

device

The simplest arrangement is shown in Figure 9.2. I/O controllers may

be very simple and control a single device, or they may be complex, with

substantial built-in intelligence, and may control many devices. A slightly

more complex arrangement is shown in Figure 9.3. The additional I/O

controllers require addressing to distinguish them from each other. The

lower module will actually recognize addresses for either of the I/O devices

connected to it. I/O controllers that control a single type of device are often

called device controllers. For example, an I/O controller that controls disks would be a disk

controller. We look at the I/O controllers more carefully in Section 9.5.

9.2 PROGRAMMED I/O
In the simplest method for performing I/O, an I/O controller is connected to a pair of I/O

registers in the CPU via a bus. The I/O data register serves the same role in the real CPU as

the input and output baskets served in the Little Man Computer. Alternatively, one might view

the I/O baskets as buffers, holding multiple inputs or outputs, with the I/O data register as the

interface between the CPU and the buffer. The I/O operation is similar to that of the Little Man

Computer. Input from the peripheral device is transferred from the I/O controller or buffer

for that peripheral device one word at a time to the I/O data register and from there to an

accumulator or general-purpose register under program control, just as occurred in the Little

Man Computer. Similarly, individual words of output data pass from a register to the I/O data

register where they can be read by the appropriate I/O controller, again under program control.

Each instruction produces a single input or output. This method is known as programmed I/O.

In practice, it is most likely that there will be multiple devices connected to the CPU.

Since each device must be recognized individually, address information must be sent with the

I/O instruction. The address field of the I/O instruction can be used for this purpose. An I/O

address register in the CPU holds the address for transfer to the bus. Each I/O controller will

FIGURE 9.3

A Slightly More Complex I/O Controller Arrangement

Data

Data

Data

I/O
data
rgstr

I/O
address
rgstr

Data
I/O

controller
I/O

device

I/O
device

I/O
device

I/O
controller

Address

Data

Address

CPU

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 274

274 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

have an identification address that will allow it to identify I/O instructions addressed to it and

to ignore other I/O not intended for it.

As has been noted, it is common for an I/O controller to have several addresses, each of

which represents a different control command or status request, or which addresses a different

device when a particular module supports multiple devices. For example, the address field in

the Little Man input and output instructions could be used to address up to a combination of

one hundred devices, status requests, or control commands. Figure 9.4 illustrates the concept

of programmed I/O. Indeed, the LMC uses the address field to select the I-basket (901) or

O-basket (902) as the I/O device within the 900 instruction.

FIGURE 9.4

Programmed I/O

24

68

Bus

Keyboard
I/O controller

24

I/O address register

R/W

Instruction register

I/O data register Buffer

24

Accumulator

CPU

“D”

“D”

“D”

1. CPU executes INPUT 24
 instruction. Address 24 is
 copied to the I/O address register.

2. Address 24 is recognized by the
 keyboard I/O controller. A read/write
 control line indicates that the
 instruction is an INPUT.

3. A buffer in the I/O controller holds a
 keystroke, in this case ASCII 68,
 the letter “D”. The data is transferred
 to the I/O data register.

4. From there it is copied to
 the appropriate accumulator
 or general-purpose register,
 completing the operation.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 275

CHAPTER 9 INPUT/OUTPUT 275

The I/O data and address registers work similarly to the memory address register (MAR)

and memory data register (MDR). In fact, in some systems, they may even be connected to the

same bus. The CPU places a control signal on the bus to indicate whether the transfer is I/O or

memory.

Programmed I/O is obviously slow, since a full instruction fetch–execute cycle must be

performed for each and every I/O data word to be transferred. Programmed I/O is used today

primarily to read data from keyboards and similar devices, with occasional application to other

simple character-based data transfers, such as the transmission of commands through a network

controller. These operations are slow compared with the computer, with small quantities of

data that can be handled one character at a time. One limitation, which we shall address later

in the chapter, is that with programmed I/O, input from the keyboard is accepted only under

program control. An alternative means must be found to accept unexpected input from the

keyboard.

There is one important application for programmed I/O: alternative methods of I/O use

the I/O controller to control certain types of I/O operations independently from the CPU, using

memory as the intermediate site for the data transfer. Programmed I/O is used by programs in

the CPU to send the necessary commands to the I/O controllers to set up parameters for the

transfer and to initiate I/O operations. We shall return to this topic in Section 9.4.

9.3 INTERRUPTS
As you know from our previous discussion, there are many circumstances under which it is

important to interrupt the normal flow of a program in the computer to react to special events.

Indeed, it would be unusual for a modern program to execute without some sort of interaction

with the outside world. An unexpected user command from the keyboard, a click of a mouse

or touch of a finger on a screen, external input from a device requiring attention, an abnormal

situation, such as a power failure, that requires immediate attention from the computer, an

attempt to execute an illegal instruction, a request for service from a network controller, or

the completion of an I/O task initiated by the program: all of these suggest that it is necessary

to include some means to allow the computer to take special actions when required. As you

will see shortly, interrupt capabilities are also used to make it possible to time-share the CPU

between several different programs or program segments at once.

Computers provide interrupt capability by providing one or more special control lines to

the central processor known as interrupt lines. For example, the standard I/O for a modern

PC may contain as many as thirty-two interrupt lines, labeled IRQ0 through IRQ31. (IRQ

stands for Interrupt ReQuest.) The messages sent to the computer on these lines are known as

interrupts. The presence of a message on an interrupt line will cause the computer to suspend

the program being executed and jump to a special interrupt processing program. Interrupt

messages are triggered primarily by the various I/O controllers in the system.

Servicing Interrupts

Since the computer is capable only of executing programs, interrupt actions take the form of

special programs, executed whenever triggered by an interrupt signal. Interrupt procedures

follow the form shown in Figure 9.5.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 276

276 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 9.5

Servicing an Interrupt

A

B

Memory

Stack
area

Stack
area

Stack
area

Registers

PC

A

PC

A

Memory Registers
A

PC

A

Memory Registers
A

PC

1. Before interrupt arrives, program A
 is executing. The program counter
 points to the current instruction.

2. When the interrupt is received by
 the CPU, the current instruction is
 completed, all the registers are
 saved in the stack area (or in a
 special area known as a process
 control block). The PC is loaded
 with the starting location of program
 B, the interrupt handler program.
 This causes a jump to program B,
 which becomes the executing program.

3. When the interrupt routine is complete,
 the registers are restored, including the
 program counter, and the original
 program resumes exactly where it left off.

Specifically, the interrupt causes the temporary suspension of the program in progress. All

the pertinent information about the program being suspended, including the location of the

last instruction executed, and the values of data in various registers, is saved in a known part

of memory, either in a special area associated with the program, known as the process control
block (PCB), or in a part of memory known as the stack area. This information is known as

the program’s context, and will make it possible to restart the program exactly where it left

off, without loss of any data or program state. Many computers have a single instruction that

saves all the critical information at once. The memory belonging to the original program is

kept intact. The computer then branches to a special interrupt handler program elsewhere in

memory; the interrupt handler program is also known as an interrupt routine or an interrupt
service routine. The interrupt handler program determines the appropriate course of action.

This process is known as servicing the interrupt. Since many interrupts exist to support I/O

devices, most of the interrupt-handling programs are also known as device drivers.
When the interrupt routine completes its task, it normally would return control to the

interrupted program, much like any subprogram. In this case, the original register values would

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 277

CHAPTER 9 INPUT/OUTPUT 277

be restored, and the original program would resume execution exactly where it left off, and in

its identical state, since all the registers were restored to their original values. There are some

circumstances when this is not the case, however, since actions taken by the interrupt routine

may make a difference in what the original program is supposed to do. For example, a printer

interrupt indicating that the printer is out of paper would require a different action by the

original program (perhaps a message to the screen telling the user to load more paper); it would

not be useful for the program to send more characters!

Intuitively, the servicing of interrupts works just the way that you would expect. Suppose

that you were giving a speech in one of your classes and someone in the class interrupts you

with a question. What do you do? Normally, you would hold your current thought and answer

the question.When you finish answering the question, you return to your speech just where you

left off, pick up the thought, and continue as though no interrupt had occurred. This would be

your normal interrupt-servicing routine. Suppose, however, that the interrupt is the bell ending

class or the instructor telling you that you have run out of time. In this case, your response is

different. You would not return to your speech. Instead, youmight do a quick wrap-up followed

by an exit.

In other words, you would react in a way quite similar to the way in which the interrupt-

servicing routines work.

The Uses of Interrupts

The way in which an interrupt is used depends on the nature of the device. You’ve already

seen that externally controlled inputs, such as a mouse click, are best handled by generating

interrupts whenever action is required. In other cases, interrupts occur when some action is

completed. This section introduces several different ways in which interrupts are used.

THE INTERRUPT AS AN EXTERNAL EVENT NOTIFIER As previously discussed,

interrupts are useful as notifiers to the CPU of external events that require action. This frees
the CPU from the necessity of continuously checking the various input devices, a method called

polling, to determine that input data is waiting.

EXAMPLE
Keyboard input can be processed using a combination of programmed I/O and interrupts.
Suppose a key is struck on the keyboard. This causes an interrupt to occur. The current program
is suspended, and control is transferred to the keyboard interrupt handler program. The keyboard
interrupt handler first inputs the character, using programmed I/O, and determines what character
has been received. It would next determine if the input is one that requires special action. If
so, it would perform the required action, for example, closing the program or freezing the data
on the screen. Otherwise, it would pass the input data to the program expecting input from that
keyboard. Normally, the input character would be stored in a known register or memory location,
ready for the program to use when it is reactivated.

When the action is complete, that is, when the interrupt has been serviced, the computer
normally restores the register values and returns control to the suspended program, unless the
interrupt request specifies a different course of action. This would be the case, for example, if
the user typed a command to suspend the program being run.

Figure 9.6 shows the steps in processing a keyboard input interrupt.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 278

278 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 9.6

Using a Keyboard Handler Interrupt

Y

N

Interrupt handler

Input character

Take required
action

Special
character?

Interrupt
occurs Suspended

Resume
execution

Original program
executing

EXAMPLE
A real-time system is a computer system used primarily to measure external events that happen
in “real time”; that is, the event, when it occurs, requires processing quickly because the data is
of critical time-sensitive value.

As an example, consider a computer system that monitors the coolant temperature from
the core of a power plant nuclear reactor. The temperature is transmitted once a minute by a
temperature measurement transducer to the computer.

In this particular case, the transducer input is expected, and, when it occurs, requires
immediate evaluation. It is reasonable to assume, however, that the computer system is to be
used for other purposes; while theoretically it would be possible to read the transducer over and
over until data arrives, (another example illustrating the inefficiency of polling), practically this
makes little sense: it is obviously not desirable to tie up the CPU in an input loop waiting for the
transducer data to arrive.

This is a perfect application for interrupts. The transducer input is assigned to an interrupt.
The interrupt service routine in this case is used to process the transducer input data. When the
interrupt occurs, the interrupt routine evaluates the input. If everything is normal, the routine
returns control to whatever the computer was doing. In an emergency, the interrupt routine would
transfer control instead to the program that handles emergency situations.

THE INTERRUPT AS A COMPLETION SIGNAL The keyboard and transducer examples

demonstrate the usefulness of the interrupt as a means for the user to control the computer

from an input device, in this case the keyboard or transducer. Let us next consider the interrupt

technique as a means of controlling the flow of data to an output device. Here, the interrupt

serves to notify the computer of the completion of a particular course of action.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 279

CHAPTER 9 INPUT/OUTPUT 279

EXAMPLE
As noted previously, the printer is a slow output device. The computer is capable of outputting
data to the printer much faster than the printer can handle it. The interrupt can be used to
control the flow of data to the printer in an efficient way.

The computer sends one block of data at a time to the printer. The size of the block depends
on the type of printer and the amount of memory installed in the printer. When the printer is
ready to accept more data, it sends an interrupt to the computer. This interrupt indicates that
the printer has completed printing the material previously received and is ready for more.

In this case, the interrupt capability prevents the loss of output, since it allows the printer to
control the flow of data to a rate that the printer can accept. Without the interrupt capability, it
would again be necessary either to use polling or to output data at a very slow rate to assure that
the computer did not exceed the ability of the printer to accept output. The use of an interrupt is
far more efficient. It also allows the CPU to perform other tasks while it waits for the printer to
complete its printing.

By the way, you might notice that the printer could use a second, different interrupt as a
way of telling the computer to stop sending data temporarily when the printer’s buffer fills up.

This application is diagrammed in Figure 9.7. Another application of the interrupt as a
completion signal is discussed in Section 9.4, as an integral part of the direct memory access
technique.

THE INTERRUPTASAMEANSOFALLOCATINGCPUTIME A thirdmajor application
for interrupts is to use the interrupt as amethod of allocating CPU time to different programs or
threads that are sharing the CPU. (Threads are small pieces of a program that can be executed
independently, such as the spell checker in a word-processing program.)

FIGURE 9.7

Using a Print Handler Interrupt

N

Y

Software interrupt
to print handler

Printer ready
interrupt

Suspended

Original program
executing Print

interrupt handler

Fill printer buffer

Resume
other work

More
to print?

Continue

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 280

280 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Since the CPU can only execute one sequence of instructions at a time, the ability to time-

share multiple programs or threads implies that the computer system must share the CPU by

allocating small segments of time to each programor thread, in rapid rotation among them. Each

program sequence is allowed to execute some instructions. After a certain period of time, that

sequence is interrupted and relinquishes control to a dispatcher program within the operating

system that allocates the next block of time to another sequence. This is illustrated in Figure 9.8.

The system cannot count on an instruction sequence relinquishing control voluntarily,

since a program caught in an infinite loop would not be able to do so. Instead, the computer

system provides an internal clock that sends an interrupt periodically to the CPU. The time

between interrupt pulses is known as a quantum, and represents the time that each program

or thread will have allotted to it. When the clock interrupt occurs, the interrupt routine returns

control to the operating system, which then determines which program or thread will receive

CPU time next. The interrupt is a simple but effective method for allowing the operating system

to share CPU resources among several programs at once.

Time-sharing is discussed in more depth in Chapters 15 and 18.

THE INTERRUPT AS AN ABNORMAL EVENT INDICATOR The fourth major use for

interrupts is to handle abnormal events that affect operation of the computer system itself.

Under certain conditions, wewould like the computer to respondwith a specific course of action

quickly and effectively. This usage is similar to that of other external input events, but in this

case, the events are directed at problems or special conditions within the computer system itself.

One obvious example of an external event requiring special computer action is power

failure. Most computers provide enough internal power storage to save the work that is being

FIGURE 9.8

Using an Interrupt for Time-Sharing

One
quantum

SuspendedClock
interrupt

Clock
interrupt

Program 1 Program 2 Operating system
dispatcher program

Select
next program

Select
next program

Resume
executing
program 2

Suspended

Executing

. . .

Time

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 281

CHAPTER 9 INPUT/OUTPUT 281

performed and to shut down gracefully, provided that the computer has quick notification of

the power failure. A power line monitor that connects to the interrupt facility provides this

capability. The interrupt routine will save the status of programs that are in memory, close

open files, and perform other housekeeping operations that will allow the computer to restart

without any loss of data. It will then halt the computer.

Another important application of the abnormal event interrupt is when a program

attempts to execute an illegal instruction such as a divide by 0 or a nonexistent op code, or

when a hardware error is detected, such as a memory parity error. When the error occurs, it

is not possible to complete the executing program. Yet it is important that the system attempt

to recover from the error and that the appropriate personnel be notified. It is not acceptable

simply to halt the computer. Particularly in modern multitasking computer systems this would

be undesirable since it would also stop other executing programs that might not be affected by

the error and would affect other users if the system is a multiuser system. Instead, an interrupt

routine can notify the user of the error and return control of the CPU to the operating system

program. You should notice that these interrupts are actually generated from inside the CPU,

whereas the other interrupts that we have discussed so far are generated externally. Internal

interrupts are sometimes called traps or exceptions.

EXAMPLE
As we noted in Chapter 6, modern computers have a set of instructions known as privileged
instructions. These instructions are intended for use by an operating system program, but not by
an application program. The HALT instruction is an obvious example. Privileged instructions are
designed to provide system security by preventing application programs from altering memory
outside their own region, from stopping the computer, or from directly addressing an I/O device
that is shared by multiple programs or users. (Suppose, for example, that two programs sharing
the computer each sent text out to a printer. The resulting printout would be garbage, a mixture
of the outputs from each program.) An attempt by a user’s program to execute a privileged
instruction would result in an illegal instruction interrupt.

You might assume from the examples above that abnormal event interrupts always result

from critical errors or catastrophic failures within the computer system, but this not necessarily

the case. Virtual storage is a memory management technology that makes it appear that a

computer system has more memory than is physically installed in the computer. (There is a

detailed discussion of virtual storage in Chapter 18.) One particularly important interrupt event

that does not represent an error or catastrophic failure occurs as an integral part of the design

and normal operation of virtual storage. Other internal and external events also make use of

the interrupt facility. The table in Figure 9.9 shows a list of the built-in interrupts for the IBM

System z family of computers.

SOFTWARE INTERRUPTS In addition to the actual hardware interrupts already discussed,

modern CPU instruction sets include an instruction that simulates an interrupt. In the Intel

x86 architecture, for example, this instruction has the mnemonic INT, for INTerrupt. The IBM

System z uses the mnemonic SVC for SUPERVISOR CALL. The interrupt instruction works in the

same way as a hardware interrupt, saving appropriate registers and transferring control to an

interrupt handling procedure. The address space of the INT instruction can be used to provide

a parameter that specifies which interrupt is to be executed. The software interrupt is very
similar to a subroutine jump to a known, fixed location.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 282

282 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 9.9

Table of Interrupts for zSeries Family

Highest

Lowest

Priority

Machine check
Supervisor call
Program check

Machine check
External

I/O
Restart

Interrupt class

Nonrecoverable hardware errors
Software interrupt request by program
Hardware-detectable software errors: illegal
instruction, protected instruction, divide by 0,
overflow, underflow, address translation error
Recoverable hardware errors
Operator intervention, interval timer expiration,
set timer expiration
I/O completion signal or other I/O-related event
Restart key, or restart signal from another CPU
when multiple CPUs are used

Type of interrupts

Software interrupts make the interrupt routines available for use by other programs.
Programs can access these routines simply by executing the INT instruction with the appropriate
parameter.

An important application for software interrupts is to centralize I/O operations. One
way to assure that multiple programs do not unintentionally alter another program’s files or
intermingle printer output is to provide a single path for I/O to each device. Generally, the I/O
paths are interrupt routines that are a part of the operating system software. Software interrupts
are used by each program to request I/O from the operating system software. As an example, a
software interrupt was used in Figure 9.7 to initiate printing.

Multiple Interrupts and Prioritization

As you have now seen, there may be many different input and output devices and event
indicators connected to interrupt lines. This means that there may be many different events
vying for attention. Inevitably, multiple interrupts will occur from time to time.

There are two questions that must be answered when an interrupt occurs. First, are there
other interrupts already awaiting service, and, if so, how does the computer determine the
order in which the interrupts get serviced? And, second, how does the computer identify the
interrupting device?

Two different processing methods are commonly used for determining which device
initiated the interrupt. Some computers use a method known as vectored interrupt, in which
the address of the interrupting device is included as part of the interrupt. Another method
provides a general interrupt that is sharedby all devices. The computer identifies the interrupting
device by polling each device when the interrupt occurs. These two methods are illustrated
in Figures 9.10 and 9.11, respectively. The vectored interrupt method is obviously faster, but
requires additional hardware to implement. Some systems use different interrupt lines for each
interrupt; others use a method called “daisy chaining”, which places the interrupts onto a single
interrupt line to the CPU in such a way that highest priorities are recognized first.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 283

CHAPTER 9 INPUT/OUTPUT 283

FIGURE 9.10

Vectored Interrupt Processing

. . .

. . .

. . .

Interrupt K
occurs

Jump to K
service routine

Memory

Address of interrupt A
Address of interrupt B

Address of interrupt K

Interrupt A
service routine

Interrupt K
service routine

Multiple interrupts canbehandledby assign-

ing priorities to each interrupt. In general,

multiple interrupts will be handled top priority
first. A higher priority interrupt will be allowed

to interrupt an interrupt of lower priority, but a

lower priority interrupt will have to wait until a

higher priority interrupt is completed.

This leads to a hierarchy of interrupts, in

which higher priority interrupts can interrupt

other interrupts of lower priority, back and forth,

eventually returning control to the original pro-

gram that was running. Although this sounds

complicated, this situation is actually quite com-

mon, and is fairly easy to implement. Figure 9.12

shows a simple example of this situation. In this

figure, interrupt routine C is the highest priority,

followed by B and A.

Most computer systems allow the system

manager to establish priorities for the various

interrupts. Priorities are established in a logical way. The highest priorities are reserved for

time-sensitive situations, such as power failure or external events that are being time measured.

Keyboard events are also usually considered high-priority events, since data loss can occur if

the keyboard input is not read quickly. Task completion interrupts usually take lower priorities,

since the delay will not affect the integrity of the data under normal conditions.

Depending on the system, priorities may be established with software or with hardware. In

some systems, the priority of I/O device interrupts is established by the way their I/O controller

cards are physically placed on the backplane of the computer. The daisy chain interrupt

FIGURE 9.11

Polled Interrupt Processing

. . .

. . .

Interrupt K
occurs

Memory

Polls devices to determine
which device, then

Jump to K
service routine

General interrupt
polling routine

Interrupt A
service routine

Interrupt K
service routine

line can be used for this purpose: the

highest priority devices are placed closest

to the CPU and block the signals of lower

priority devices that are farther down the

line. In other systems, priorities are estab-

lished by assigning a priority number to

each interrupt.

Most interrupts can be temporarily

disabled by program instructions when

a program is performing a critical task

that would be negatively affected if an

interrupt were to occur. This is particu-

larly true of time-sensitive tasks. In many

systems, interrupts aremaskable; that is,
they can be selectively disabled. Certain

interrupts, such as power failure, that

are never disabled are sometimes referred

to as nonmaskable interrupts. Most mod-

ern computer systems save interrupts that

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 284

284 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 9.12

Multiple Interrupts

Time

Original
program

Interrupt
A occurs

Interrupt
B occurs

Interrupt
C occurs

Executing

Executing

Suspended

Interrupt
service A

Executing

Executing Completed

Executing Completed

Completed

Suspended Executing

Suspended Executing

Interrupt
service B

Interrupt
service C

occur when interrupts are disabled, so that when the interrupts are reenabled, the pending

interrupts will be processed.

EXAMPLE
In the IBM System z architecture, interrupts are divided into six classes, with the priorities shown
in Figure 9.9. All the different interrupts within each class are handled by the interrupt service
routine for that class. Each interrupt class has two vectored addresses permanently associated
with it. The first of these is a space reserved for the Program Status Word of the current program,
known in IBM jargon as the OLD PSW. The Program Status Word is a 64-bit word that includes the
program counter and other significant information about the program. The second vectored address
contains a pointer to the interrupt routine. This address is known as the NEW PSW. The method
used to switch from the original program to a service routine and back is illustrated in Figure 9.13.

When an interrupt occurs, the PSW for the current program is stored automatically in the
OLD PSW space, and the NEW PSW is loaded. The effect is a jump to the location in memory
pointed to by the NEW PSW, which is the location of the interrupt service routine for that class
of interrupts. Incidentally, note that this procedure does not save other registers. Each interrupt
service routine saves and restores the registers that it uses.

The z-architecture CPU has an instruction LOAD OLD PSW. When the interrupt service routine
is completed, it simply uses this instruction to return to the original program. Interrupts of lower
priority are masked, but higher priority interrupts are allowed to interrupt the lower priority service
routine while it is executing. Most important, interrupts belonging to the same class must be
masked. Since there is only a single address space available for storing the OLD PSW for each
class, a second interrupt of the same class would destroy the return address to the original
program. Worse yet, the second interrupt would store the current address being executed in the
OLD PSW space. Since that address is itself within the service routine, this would result in an
infinite loop. To see this, look again at Figure 9.13. Pick a location inside the service routine,

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 285

CHAPTER 9 INPUT/OUTPUT 285

FIGURE 9.13

Processing an Interrupt in the IBM zSeries

634
PSW

Interrupt occurs here634

OLD PSW
space

NEW PSW
space 200

200

634

Service
routine

Current
program

Service
routine

Current
program

200

634
PSW

Program resumes here634

OLD PSW
space

NEW PSW
space 200

634

Service
routine

Load old PSW

Current
program

200
PSW

OLD PSW
space

NEW PSW
space

200

1. Before the interrupt occurs, the current program
 is executing normally. The OLD PSW space is empty,
 the NEW PSW space contains the starting address of
 the service routine. In this example, the service routine
 starts at location 200.

2. The interrupt occurs while current program is
 executing the instruction at location 633.

3. As a result, the current PSW value, 634, is
 stored in the OLD PSW space...

4. and the NEW PSW value, 200, is placed in
 the PSW. This will cause the service routine
 to execute.

5. When the service routine is complete, it
 executes a LOAD OLD PSW instruction.
 This causes the value 634 to be loaded into the
 PSW. Thus, the current program resumes where
 it left off.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 286

286 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

say, 205, and cause an interrupt to occur at that point. Now, follow through the diagram and
notice the results.

The preceding example demonstrates one way of providing return access from interrupts.
An alternative method is used in x86 series computers. The x86 interrupt structure is also
vectored, but the context is stored on an interrupt stack. Using a stack in this way is essentially
analogous to the way in which subprogram jumps and returns work. These were discussed in
detail in Chapter 7. Stack storage for interrupts makes interrupts reentrant, although such a
condition would seem to be extremely rare.

Interrupts are normally checked at the completion of each instruction. That is, interrupts
are normally checked after one instruction is finished and before another begins. This assures
that conditions won’t change in the middle of an instruction that would affect the instruction’s
execution. Certain long System z and x86 instructions can be interrupted in the middle of their
fetch-execution cycle, however. Some of these instructions use general-purpose registers for
their intermediate values, so it is important that the general-purpose registers be stored during
an interrupt for later retrieval; otherwise, some instructions could not be restarted properly.
The System z computer does not automatically store registers when an interrupt occurs. It is
therefore important that the interrupt programs be written carefully so that the interrupted
instruction doesn’t crash when the routine is restarted. In the x86 computer, the registers are
also generally stored on a stack, whichmakes retrieval simple even if the interrupt routine itself is
interrupted. Virtual storage also requires the ability to interrupt in the middle of an instruction.

9.4 DIRECT MEMORY ACCESS
Formost applications, it is impractical to transfer data to theCPU froma peripheral device using
programmed I/O, even with interrupts. Indeed, the data from disks, tapes, and flash memory
are transferred only in blocks, and it does not make sense to execute a separate instruction for
each piece of data in the block. It is also more reasonable to transfer blocks of data directly
between a device’s I/O controller and memory, since most processing will also take place in
blocks. This suggests bypassing the CPU registers, if possible, and then processing the block of
data as a group, from memory.

As a simple example, consider a program that sorts a block of numbers. To operate
efficiently, the entire block of numbers must be stored in memory for the sort operation to take
place, since instructions in the CPU can operate only on data in memory. Thus, it makes sense
to move the entire block from disk to memory at once.

For this purpose, computer systems provide a more efficient form of I/O that transfers
block data directly between the I/O controller and computer memory, under control of the I/O
controller. The transfer is initiated by a program in the CPU, using programmed I/O, but the
CPU can then be bypassed for the remainder of the transfer. The I/O controller will notify the
CPU with an interrupt when the transfer is complete. Once this has occurred, the data is in
memory, ready for the program to use. This technique of I/O–memory data transfer is known
as direct memory access, or more commonly, simply asDMA.

In Little Man terms, direct memory access could be viewed as providing data for the Little
Man by loading data directly into the mailboxes through a rear door, bypassing the Little Man
I/O instruction procedures. To reemphasize the fact that this operation only takes place under
program control, we would have to provide a means for the Little Man to initiate such a transfer
and a means to notify the Little Man when the data transfer is complete.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 287

CHAPTER 9 INPUT/OUTPUT 287

For direct memory access to take place, three primary conditions must be met:

1. There must be a method to connect together the I/O interface and memory. In some

systems, both are already connected to the same bus, so this requirement is easily met.

In other cases, the design must contain provisions for interconnecting the two. The

issue of system configuration is discussed in Chapter 11.

2. The I/O controller associated with the particular device must be capable of reading

and writing to memory. It does so by simulating the CPU’s interface with memory.

Specifically, the I/O controller must be able to load a memory address register and to

read and write to a memory data register, whether its own or one outside the I/O

controller.

3. There must be a means to avoid conflict between the CPU and the I/O controller. It is

not possible for the CPU and a module that is controlling disk I/O to load different

addresses into the MAR at the same instant, for example, nor is it possible for two

different I/O controllers to transfer data between I/O and memory on the same bus at

the same instant. This requirement simply means that memory can only be used by

one device at a time, although, as we mentioned in Chapter 8, Section 8.3, some

systems interleave memory in such a way that the CPU and I/O controllers can access

different parts of memory simultaneously. Special control circuits must be included to

indicate which part of the system, CPU or particular I/O controller, is in control of the

memory and bus at any given instant.

DMA is particularly well suited for high-speed disk transfers, but there are several other

advantages as well. Since the CPU is not actively involved during the transfer, the CPU can

be used to perform other tasks during the time when I/O transfers are taking place. This is

particularly useful for large systems such as Web servers. Of course, DMA is not limited to just

disk-to-memory transfers. It can be used with other high-speed devices. And the transfers may

be made in either direction. DMA is an effective means to transfer video data from memory to

the video I/O system for rapid display, for example.

The procedure used by the CPU to initiate a DMA transfer is straightforward. Four pieces

of data must be provided to the I/O controller for the particular I/O device to initiate the

transfer. The four pieces of data that the I/O controller must have to control a DMA transfer

are as follows:

1. The location of the data on the I/O device (for example, the location of the block on

the disk).

2. The starting location of the block of data in memory.

3. The size of the block to be transferred.

4. The direction of transfer, read (I/O→memory) or write (memory→ I/O).

Normally, the I/O controller would have four different registers, each with its own I/O

address available for this purpose. In most modern systems, normal programmed I/O output

instructions are used to initiate a DMA transfer. On some systems, a fifth programmed I/O

instruction actually initiates the transfer, whereas other systems start the DMA transfer when

the fourth piece of data arrives at the I/O controller.

IBM mainframes work a bit differently, although the principle is the same. A single

programmed I/O START CHANNEL instruction initiates the process. A separate channel program is

stored in memory. The I/O controller uses this channel program to perform its DMA control.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 288

288 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

The four pieces of data are a part of the channel program and are used by the I/O controller to

initiate theDMAtransfer.Theconceptof I/Ochannels is considered inmoredetail inChapter 11.

Once the DMA transfer has been initiated, the CPU is free to perform other processing.

Note, however, that the data being transferred should not be modified during this period, since

doing so can result in transfer errors, as well as processing errors.

If, for example, a program should alter the number in a memory location being transferred

to disk, the number transferred is ambiguous, dependent on whether the alteration occurred

before or after the transfer of that particular location. Similarly, the use of a number being

transferred into memory depends on whether the transfer for that particular location has

already occurred.

This would be equivalent to having the Little Man read a piece of data from the area of

memory being loaded from the rear of the mailboxes. The number on that piece of data would

depend on whether a new value loaded in from the rear came before or after the Little Man’s

attempt to read it. Clearly, this is not an acceptable situation.

It is thus important that the CPU knows when the transfer is complete, assuring that the

data inmemory is stable. The interrupt technique is used for this purpose. The programwaiting

for the data transfer is suspended or performs other, unrelated processing during the time of

transfer. The controller sends a completion signal interrupt to the CPU when the transfer is

complete. The interrupt service routine notifies the program that it may continue with the

processing of the affected data.

Finally, note that it takes several programmed output instructions to initiate a DMA

transfer. This suggests, correctly, that it is not useful to perform a DMA transfer for very small

amounts of data. For small transfers, it is obviously more efficient to use programmed I/O. It is

also worth pointing out that if a computer is capable only of performing a single task, then the

time freed up by DMA cannot be used productively, and there is little advantage in using DMA.

It is worth interrupting the discussion at this point (yes, the pun was intentional) to remind

you that in reality an application program would not be performing I/O directly, since doing so

might conflict with other programs that are also performing I/O at the same time. Instead, the

application program would request I/O services from the operating system software by calling

a procedure within the operating system that performs the I/O operations described here. The

I/O instructions and interrupt procedures are, of course, privileged: only the operating system

software is allowed access to these instructions and procedures.

EXAMPLE
Consider the steps required to write a block of data to a disk from memory. The executing program
has already created the block of data somewhere in memory.

First, the I/O service program uses programmed I/O to send four pieces of data to the disk
controller: the location of the block in memory; the location where the data is to be stored on
disk; the size of the block (this step might be unnecessary if a fixed disk size is always used on
the particular system); and the direction of transfer, in this case a write to disk.

Next, the service program sends a “ready” message to the disk controller, again using
programmed I/O. At this point, the DMA transfer process takes place, outside the control of the
CPU, the I/O service, or the program that requested I/O service. Depending on the design of
the operating system programs, the current application program may resume execution of other
tasks, or it may be suspended until the DMA transfer is complete.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 289

CHAPTER 9 INPUT/OUTPUT 289

When the transfer is complete, the disk controller sends an interrupt to the CPU. The
interrupt handler either returns control to the program that initiated the request or notifies the
operating system that the program can be resumed, depending on the design of the system.

This example shows how the programmed I/O, DMA, and interrupt methodologies work
together in the most important and common way of doing I/O. The technique is diagrammed
in Figure 9.14.

9.5 I/O CONTROLLERS
In the example shown in Figure 9.14, a major role is played by the disk controller. The disk
controller is, of course, an example of an I/O controller. The I/O controller serves as an interface
between the CPU and the specific device, in this case a disk drive, accepting commands from
the CPU on one side and controlling the device on the other. In this example, the disk controller
provides the following functions:

n The disk controller recognizes messages addressed to it and accepts commands from
the CPU, establishing what the disk drive is to do. In this case, the disk controller
recognizes that a block of data is to be written from memory to disk using DMA.

n The disk controller provides a buffer where the data from memory can be held until it
can be transferred to the disk.

n The disk controller provides the necessary registers and controls to perform a direct
memory transfer. This requires that the disk controller have access to a memory
address register and a memory data register separate from those of the CPU, either
within the disk controller or as a separate DMA controller.

n The disk controller controls the disk drive, moving the head to the physical location
on the disk where data is to be written.

n The disk controller copies data from its buffer to the disk.

FIGURE 9.14

DMA Initiation and Control

Memory Data

Interrupt

CPU

CPU

Disk
controller

Disk
controller

Disk
controller

I/O instructions
Memory address

Disk address
Size of block
Read or write

Initiate transfer

1. Programmed I/O used to
 prepare disk controller for
 transfer by providing required
 information and initiating
 transfer.

2. DMA transfer. In this case
 data is transferred from disk
 to memory.

3. Upon completion, disk
 controller sends completion
 interrupt to CPU.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 290

290 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

n The disk controller has interrupt capability, which it uses to notify the CPU when the
transfer is complete. It can also interrupt the CPU to notify it of errors or problems
that arise during the transfer.

It is desirable to offload tasks specific to I/O operations from theCPU to separate controllers
that are designed specifically for I/O data transfer and device control. In some cases, the I/O
controller even provides a processor of its own to offload I/O-related processing from the
system CPU.

The use of separate I/O controllers offers several benefits:

n The controller can be designed to provide the specialized control required by a
particular device.

n The controller frees the CPU to perform other tasks while the much slower I/O
operations are taking place.

n The presence of I/O controllers allows control of several different I/O devices to
occur simultaneously.

n A processor-based controller can provide specialized services that would otherwise
overload the system CPU with time-consuming CPU-intensive work. For example, a
high-end graphics display controller can decode compressed and encrypted MPEG
video or adjust images for lighting and shading effects.

As seen in Figure 9.15, I/O controllers perform two different functions. At the CPU
interface, the controller performs CPU-interfacing tasks: accepting I/O commands from the
CPU, transferring data between the controller and the CPU or memory, and sending interrupts
and status information to the CPU. At the device interface, the controller supplies control
of the device—moving the head to the correct track in a disk drive and rewinding tape, for
example. Most I/O controllers provide buffering of the data to synchronize the different speeds
of the CPU and the various I/O devices. Some controllers must also have the capability of
receiving requests from a device independently from the computer, andmust be able to pass the
request in the form of an interrupt to the computer. This is true for any device that can cause
an unexpected interrupt, including devices that can be installed or removed during computer
operation (sometimes known as hot-swappable or plug-and-play), devices with removable
media, and network controllers.

As we noted earlier, device controllers are provided for most I/O devices in a system.
The previous example illustrates the features of a disk controller. Similarly, nearly all modern
systems provide a network controller, sometimes called a network interface controller or network
interface card, or even, NIC. And, of course, you’re probably already familiar with graphics cards.
A device controller accepts I/O requests and interacts directly with the device to satisfy those
requests. The device controllers are individually designed to provide the specialized built-in
circuitry necessary for control of a particular type of device. This ability is important, because

FIGURE 9.15

I/O Controller Interfaces

CPU
CPU

interface
Device
interface

I/O
controller(s)

I/O
device

there is such a variety of requirements for different periph-
eral devices. A tape drive must be turned on and off and
switched between fast forward, play, and rewind. A disk
head must be moved to the correct track. A display
screen requires a steady transfer of data representing each
point on the screen and special circuitry to maintain the
correct position on the screen for the display of each
point. (Operation of a display controller is discussed in
Chapter 10.)

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 291

CHAPTER 9 INPUT/OUTPUT 291

It would be difficult to program the CPU to provide the correct types of signals to operate
these and other types of I/O devices, and the CPU time required to control these devices would
significantly reduce the usefulness of the system. With a device controller, simple CPU I/O
instructions can be used to control quite complex operations. Multiple devices of the same kind
can often be controlled with a single controller.

In a small system, most of the I/O controllers are device controllers that serve as direct
interfaces between a general system bus and each of the system’s peripheral devices. There may
also be I/O controllers that act as an additional interface between the system bus and other
modules that then connect to the device. In a typical PC, for example, the disk controller is
normally mounted inside the PC case and connects directly to a system bus. The printer, on
the other hand, is controlled indirectly. One I/O controller connects to the system bus and
terminates, for example, in a USB port; the actual print controller is inside the printer, at the
other end of the bus.

In general, I/O controllers simplify the task of interfacing peripheral devices to a CPU.
I/O controllers offload a considerable amount of work from the CPU. They make it possible
to control I/O to a peripheral with a few simple I/O commands from the CPU. They support
DMA, so that the CPU may be free to perform other tasks. And, as we have already noted,
device controllers provide the specialized circuitry required to interface different types of
peripherals to the computer.

Much of the power inmodern computers comes from the ability to separate out CPU oper-
ations from other, more individualistic, I/O peripheral functions, and allowing the processing
of each to progress in parallel. In fact, the more powerful the computer, the more essential is
the separation of I/O to the satisfactory operation of the system as a whole.

SUMMARY AND REVIEW
This chapter describes the two methods used for I/O, programmed I/O and DMA, and
introduces the various components and configurations that make both methods possible.
After a brief description of the I/O requirements of the most common peripherals, the text
describes the process of programmed I/O, and describes the advantages and disadvantages
of this technique. In general, the use of programmed I/O is limited to slow devices such as
keyboards and mouses that are not block oriented.

Next, we introduced the concept of an interrupt, a means of causing the CPU to take
special action. We described various ways in which an interrupt could be used, including as
notification of an external event that requires attention, as a completion signal for I/O, as a
means of allocating CPU time, as an abnormal event indicator, and as a way for software to
cause the CPU to take special action. We explained the method used by the interrupt to attract
the CPU’s attention and the ways in which the interrupt is serviced by the CPU.We considered
the situation in which multiple interrupts occur and discussed the prioritization of interrupts.

As an alternative to programmed I/O, direct memory access allows the transfer of blocks
of data directly between an I/O device and memory. We discussed the hardware requirements
that make DMA possible and showed how DMA is used. We explained how DMA works in
conjunction with interrupts.

We concluded with a discussion of the I/O controllers that serve to control the I/O devices
andact as an interfacebetween theperipheral devices, theCPU, andmemory.The I/Ocontrollers
receive messages from the CPU, control the device, initiate and control DMA when required,
and produce interrupts. The I/O controllers in a channel architecture also serve to direct I/O
requests to the proper channel and provide independent, intelligent control of the I/Ooperation.

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 292

292 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FOR FURTHER READING

Detailed discussions of I/O concepts and techniques, including the concepts of interrupts and

DMA, can be found in the engineering textbooks previously mentioned, particularly those

by Stallings [STAL09] and Tanenbaum [TAN05]. An outstanding treatment of I/O in the

IBM mainframe architecture can be found in Prasad [PRAS94] and in Cormier and others

[CORM83]. PC I/O is discussed in a number of excellent books, among them Messmer

[MESS01] and Sargent and Shoemaker [SARG95]. Somewhat less organized, but still valuable,

is the treatment found in Henle [HENL92].

KEY CONCEPTS AND TERMS

abnormal event

buffer

channel program

context

device controller

device driver

direct memory access (DMA)

exception

external event

interrupt

interrupt handler

interrupt lines

interrupt routine

interrupt service routine

maskable

polling

priority

privileged instruction

process control block (PCB)

programmed I/O

quantum

software interrupt

trap

vectored interrupt

READING REVIEW QUESTIONS

9.1 In terms of the nature of the data, how does a keyboard differ from a hard disk as an

input device?

9.2 Name at least two devices that can generate unexpected input.

9.3 Explain the purpose of a buffer.

9.4 Explain the reasons why programmed I/O does not work very well when the I/O device

is a hard disk or a graphics display.

9.5 When an interrupt occurs, what happens to the program that is currently executing at

the time?

9.6 What is a context? What does it contain? What is it used for?

9.7 The book lists four primary uses for interrupts. State and explain at least three

of them.

9.8 What kind of interrupt occurs when a user’s program tries to execute a privileged

instruction?

9.9 What does DMA stand for? What capability does DMA add to a computer?

9.10 What are the three primary conditions that are required for DMA to take place?

9.11 What data must an I/O controller have before a DMA transfer takes place? How is this

data sent to the controller?

9.12 What is the purpose of a completion interrupt at the conclusion of a DMA transfer?

Englander c09.tex V2 - November 28, 2013 9:48 P.M. Page 293

CHAPTER 9 INPUT/OUTPUT 293

9.13 A graphics card is an example of an I/O controller. I/O controllers have (at least) two
interfaces. What are the two interfaces of a graphics card connected to?

9.14 Name at least three benefits that are provided by I/O controllers.

EXERCISES

9.1 Why would DMA be useless if the computer did not have interrupt capability?

9.2 What is the advantage of using a disk controller to control the hard disk? How else
could you do the job that the disk controller does?

9.3 DMA is rarely used with dumb computer terminals. Why?

9.4 Consider the interrupt that occurs at the completion of a disk transfer.
a. “Who” is interrupting “whom”?

b. Why is the interrupt used in this case? What would be necessary if there were no
interrupt capability on this computer?

c. Describe the steps that take place after the interrupt occurs.

9.5 Suppose you wish to send a block of data to a tape drive for storage using DMA.What
information must be sent to the tape controller before the DMA transfer can take
place?

9.6 What is an interrupt vector?

9.7 What is polling used for? What are the disadvantages of polling? What is a better way
to perform the same job?

9.8 To use a computer for multimedia (moving video and sound), it is important to
maximize the efficiency of the I/O. Assume that the blocks of a movie are stored
consecutively on a CD-ROM. Describe the steps used to retrieve the blocks for use by
themovie display software. Discuss ways in which you could optimize the performance
of the I/O transfer.

9.9 Consider the interface between a computer and a printer. For a typical printout, it is
clearly impractical to send output data to the printer one byte or one word at a time
(especially over a network!). Instead data to be printed is stored in a buffer at a known
location in memory and transferred in blocks to memory in the printer. A controller
in the printer then handles the actual printing from the printer’s memory.

The printer’s memory is not always sufficient to hold the entire printout data at
one time. Printer problems, such as an “out of paper” condition, can also cause delays.
Devise and describe, in as much detail as you can, an interrupt/DMA scheme that will
assure that all documents will be successfully printed.

9.10 The UNIX operating system differentiates between block-oriented and character-
oriented devices. Give an example of each, explain the differences between them, and
explain how the I/O process differs for each.

9.11 Describe a circumstance where an interrupt occurs at the beginning of an event.
Describe a circumstance where an interrupt occurs at the completion of an event.
What is the difference between the types of events?

9.12 In general, what purpose does an interrupt serve? Stated another way, suppose there
were no interrupts provided in a computer. What capabilities would be lost?

9.13 What is the difference between polling and polled interrupt processing?

9.14 Describe the steps that occur when a system receives multiple interrupts.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 294

CHAPTER 10

COMPUTER PERIPHERALS

David H. Ahl, Creative Computing, Morristown, NJ

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 295

10.0 INTRODUCTION
A typical laptop or desktop computer system consists of a CPU; memory; a hard disk
and/or solid-state drive (SSD); a keyboard; a mouse or touchpad or touch screen; wireless
and wired network interfaces, perhaps with included Bluetooth capability; both input and
output sound and video system components; sometimes a DVD read–write drive; and,
probably, a display screen; plus some combination of USB, DisplayPort, HDMI, and,
perhaps, SD card, ports for connections to an external monitor and other additional I/O
components. Additional available components include scanners of various types, printers,
TV tuners, and external disk drives.

Tablets and smartphones add various gadgets for mobile use: accelerometers, gyro-
scopes, global positioning system (GPS) components, light sensors, compasses, as well as
cellular technology and, perhaps, near-field communication technology to themix. Internal
to every computer or computer-based device there is also a source of power—a battery or a
power supply that converts wall plug power into voltages suitable for powering a computer.

All the items mentioned, except for the CPU, memory, and power source, are
considered peripheral (that is, external) to the main processing function of the computer
itself and are known, therefore, as peripherals. Some of the peripherals use networking
or one of the ports as their interconnection point to the computer. Others have their own
interfaces to internal system buses that interconnect various parts of the computer.

The peripherals in a large server or mainframe computer are similar, except, perhaps,
more powerful, faster, and with more capacity. Large numbers of hard disk drives or SSDs
may be grouped into arrays to provide capacities of tens or hundreds of terabytes (TB).
One or more high-speed network interfaces will be a major component. The capability for
handling large amounts of I/O will likely be a requirement. Means of implementing large-
scale, reliable backup will be necessary. Conversely, large high definition displays, high-end
graphics and audio cards, and other multimedia facilities may be totally unneeded.

Despite different packaging and differences in details, the basic operations of these
devices are similar, regardless of the type of computer. In previous chapters we have
already looked at the I/O operations that control devices that are external to the CPU.
Now we direct our attention to the operation of the devices themselves. In this chapter we
study the most important computer peripheral devices. We look at the usage, important
characteristics, basic physical layouts, and internal operations of each device. We will also
briefly consider the interface characteristics for these devices. There is only a minimal
introduction to networking; because of its importance, we devote all of Chapters 12, 13,
and 14 to the topic.

Peripheral devices are classified as input devices, output devices, or storage devices. As
you would expect, input data is data from the outside world into the CPU, and output data
is data moving from the CPU out to the outside world. Networks and storage devices are, of
course, both input and output devices, though not necessarily at the same time. If you recall
the concept of input-process-output from Chapter 1, programs require input, process it,
and thenproduce output.Using anetwork or storage device, data output is stored, to be used
as input at a future time. In a transaction processing system, for example, the database files

295

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 296

296 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

are stored on line. When a transaction occurs, the transaction processing program will use
input from the new transaction together with data from the database to update the appropriate
database records as output. The updated database remains in storage for the next transaction.

We will begin with a general discussion of storage devices in Section 10.1. Following
that, we present specific storage devices: solid-state storage, magnetic disks, optical disks, and
magnetic tape, in Sections 10.2, 10.3, 10.4, and 10.5, respectively. Section 10.6 provides a
detailed introduction to the computer display subsystem, including the principles of the display
interface, the requirements and various implementations of graphics processing. and the
technology of the displays themselves. This section also offers a brief look at the architecture of
a typical GPU, or Graphics Processing Unit, a many-cored multiprocessor specifically designed
for the massive parallel operations required for modern graphics. Section 10.7 introduces laser
and inkjet printer technologies. Section 10.8 provides an overview of a number of different
user input devices. Finally, Section 10.9 offers a brief introduction to the network interface,
preparatory to the material in the later network chapters.

It should be noted that the technologies used for many peripheral components are very
sophisticated; some would even say that these devices operate by magic! You may agree when
you see the descriptions of some components. (Can an inkjet printer really produce a perfect
photograph by spitting out millions of microscopic ink drops to a sheet of paper, each at the
exact right place at the right time?) It is not uncommon to have more sophisticated control and
technology in a peripheral component than in the computer itself. Perhaps you have wondered
how these devices work. Here’s your opportunity to find out.

We have not attempted to provide a detailed explanation of every possible peripheral
device in a computer system. Instead, we have selected several interesting devices that are
representative of a number of technologies.

At the completion of this chapter, you will have been exposed to every important hardware
component of the computer system, with the exception of the pieces that tie the components of
the computer systems together, and furthermore extend the systems themselves together into
networks. You will have seen the role and the inner workings of each component that we have
discussed, and you will have seen how the different components fit together to form a complete
computer system.Youwill have a better understandingof how to select particular components to
satisfy specific system requirements and of how to determine device capacities and capabilities.

10.1 THE HIERARCHY OF STORAGE
Computer storage is often conceptualized hierarchically, based upon the speed with which data
can be accessed. The table in Figure 10.1 shows this hierarchy, together with some typical access
times and typical data throughput.

At the top of the hierarchy are the CPU registers used to hold data for the short term while
processing is taking place. Access to registers is essentially instantaneous, since the registers are
actually a part of theCPU.Cachememory, if present, is the fastestmemory outside theCPU.You
recall fromChapter 8 that cachememory is a small fast memory that is used to hold current data
and instructions. The CPU will always attempt to access current instructions and data in cache
memorybefore it looks at conventionalmemory.Theremaybeasmanyas threedifferent levels of
cache. The CPU accesses the data or instruction in conventionalmemory if cachememory is not
present. Next in the hierarchy is conventional memory. Both conventional and cache memory
are referred to as primary memory. Both provide immediate access to program instructions
and data by the CPU and can be used for the execution of programs. The data throughput

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 297

CHAPTER 10 COMPUTER PERIPHERALS 297

FIGURE 10.1

The Storage Hierarchy

CPU registers

Cache memory (SRAM)

Conventional memory
(DRAM)

Flash memory/solid
state drive

Hard disk drive

Optical disk drive

Magnetic tape cartridge

Typical Access
Times

0.25 nsec

1–10 nsec

10–20 nsec

25–100 sec
read/250 sec write

3–15 msec

100–500 msec

0.5 sec and up

Typical Data
Throughput

NA
Increasing

access time

and

generally
increasing

storage
amount/
unit cost

(see text)

(see text)

200 MB–5 GB/sec

100 MB–1 GB/sec

500 KB–4.5 MB/sec

160 MB/sec

rate of memory is determined primarily by the capability of the bus and interfaces that connect
memory to the CPU. Rates well in excess of 1 GB/sec are common in modern computers.

Below the level of conventional memory, storage in the hierarchy is not immediately
available to the CPU, is referred to as secondary storage, and is treated as I/O. Data and
programs in secondary storage must be copied to primary memory for CPU access.1 Except for
flash memory, access to secondary storage is significantly slower than primary storage. Disks
and other secondary storage devices are mechanical in nature, and mechanical devices are of
necessity slower than devices that are purely electronic. The location that holds the desired data
is usually not immediately accessible, and the medium must be physically moved to provide
access to the correct location. This requires a seek time, the time needed to find the desired
location. Once the correct data is located, it must be moved into primary memory for use. The
throughput rate in Figure 10.1 indicates the speed with which the transfer of data between
memory and the I/O device can take place. Most of the access time specified for secondary
storage devices consists of seek time. As a result of this access time, even the fastest disks
are a million times slower than the slowest memory. It should be apparent that a lot of CPU
instructions can be performed while waiting for a disk transfer to take place.

One important advantage of secondary storage, of course, is its permanence, or nonvolatil-
ity. As noted in Chapter 7, RAM data is lost when the power is shut off. Flash memory uses a
special type of transistor that can hold data indefinitely without power. The magnetic media
used for disk and tape and the optical media used for DVD and CD also retain data indefinitely.
Secondary storage has the additional advantage that it may be used to store massive amounts
of data. Even though RAM is relatively inexpensive, disk and tape storage is much cheaper yet.
Large amounts of online secondary storage may be provided at low cost. Current hard disks
store data at a density of more than 100 Gbits per square centimeter!

1In the earliest days of computing, secondary storage devices, particularly rotating drums (forerunner of the

disk), were actually used as memory with direct access to the CPU. To run efficiently, programs had to be designed

to minimize the number of rotations of the drum, which meant that the programmer would always attempt to have

the next required location be just ahead of where the drum head was at that instant. Those were interesting days for

programmers!

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 298

298 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Tape, most flash memory devices, optical disks, and many magnetic disks are designed

for easy removal from the computer system, which makes them well suited for backup and

for off-line storage of data that can be loaded when the data is needed. This provides the

additional advantage that secondary storage may be used for off-line archiving, for moving data

easily from machine to machine, and for off-line backup storage. For example, a flash memory

card may be used to store digital camera photographs until they are moved to a computer for

long-term storage; similarly, a removable hard disk can be used to move large amounts of data

between computers.

As an increasingly common alternative, data and programs may be stored on a secondary

storage device connected to a different computer and accessed through a network connection

between the computers. In this context, the computer with secondary storage is sometimes

known as a server or a file server. In fact, the primary purpose of the server may be to act as a

storage provider for all the computers on the network. Commercial cloud services are an impor-

tant example of this idea.Companies that provideWeb services are another commonapplication

of this type of service. Large-scale storage services are frequently organized and implemented

as storage area networks (SANs). We return to this topic in Section 17.8 of Chapter 17.

Of the various secondary storage components, flash memory and disk devices are the

fastest, since data can be accessed randomly. In fact, IBM refers to disks as direct access storage
devices (DASDs). With tape, it may be necessary to search sequentially through a portion of

the tape to find the desired data. Also, the disk rotates continuously, while the tape will have

to start and stop, and possibly even reverse direction and rewind to find the desired data.

These factors mean that tape is inherently slower unless the data is to be read sequentially. This

makes tape suitable only for large-scale off-site backup storage where the entire contents of a

disk are transferred to tape to protect the data from a potential catastrophe or to meet legal

long-term data retention requirements. Althoughmagnetic tape storage had large inherent cost

and storage capacity advantages in the past, that is no longer the case, and the use of tape

is decreasing as businesses avail themselves of cloud storage services and also replace their

equipment with newer technology.

10.2 SOLID-STATE MEMORY
We briefly introduced flash memory in Section 7.3. Flash memory is nonvolatile electronic

integrated circuit memory. As we noted in that section, Flash RAM is based on a different

technology than standard RAM and, as we indicated, is unsuited for use as standard memory in

most applications, due to its writing requirements (see below). However, flash memory is well

suited for secondary storage in many cases. Flash memory is used both for long-term system

storage and for portable storage.

Because of its small size, low power consumption, and light weight, flash memory is

frequently the secondary storage of choice for tablets, smartphones, and other mobile devices,

as well as for the memory cards that plug into portable and mobile devices such as portable

music players, and digital cameras. It is also well suited for small, portable “thumb drives”

that plug directly into a USB port. These drives are useful for moving files and data from

one machine to another and also serve as an inexpensive and convenient backup medium.

For mobile and portable use, flash memory has the additional advantages of being relatively

immune to failure due to physical shock and vibration (since it has no moving parts), and

generates little heat and no noise.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 299

CHAPTER 10 COMPUTER PERIPHERALS 299

In larger systems, flash memory is the principal alternative to magnetic disk storage.
Although flash memory is more expensive than disk storage at this writing, flash memory has
a number of significant advantages. Most important, data on a flash RAM can be accessed
about 100 times as fast as data on a magnetic disk drive, while the read/write speed of both
devices is roughly comparable. The ability to access stored data quickly is a limiting factor
in the execution speed of many important computer applications. As a result, large-capacity
flash memory units called solid-state drives (SSDs) are making inroads in the marketplace
and are starting to supplant magnetic disk drives as the long-term storage device of choice
in computers, particularly in systems requiring moderate storage capacity, As this is written,
most SSDs provide 60–512 GB of storage. However, large solid-state drives, with capacities in
the 10 TB range, have begun to enter the market. Although magnetic disk storage offers huge
storage capacity at extremely low cost, the capacity of SSDs is continually expanding, and the
cost falling, suggesting that SSDs may replace magnetic disk storage for many, if not most,
applications within the next few years.

Like RAM, the flash storage units that we use are made up of individual chips, sometimes
called dies in the literature. At this writing, typical chips ranged from 8 GB to 64 GB, with a few
128GBchips becoming available. Thus an 8GBSDcardor thumbdrivemight contain 1–8 chips.

The type of flashmemory used for flash storage is read in blocks. As we noted in Section 7.3,
it must also be written in blocks. These requirements are consistent with secondary storage
in general, which is normally read and written in blocks, regardless of the device. The typical
block size for a flash memory read or write operation is 512, 2048, or 4096 bytes, which
corresponds to the block sizes for optical and magnetic disks. In the specifications for flash
memory, the read/write block is called a page. Writes must be performed on a clean space. If
necessary, erasure of previous data must take place before the write can occur. Erasure blocks
are much larger, typically 16KB, 128KB, 256KB, or 512KB. Furthermore, erasure times are
long compared to read and write times, roughly 2–5ms versus 20–100 μs or so. This suggests
that flash memory needs to be organized carefully to minimize the need for erasures.

A second factor is that most failures in flash memory result from erase operations. Most
flash memory systems provide two levels of control. Control logic within each flash memory
chip manages the memory space within that chip, including built-in error correction, as well as
memory allocation that attempts to distribute the write operations evenly over the entire space
to minimize the number of erasures required. Distributing the erasures in this way is designed
to extend the life of the memory, a process called wear-leveling. In addition, the system-level
flash controller organizes the overall system to provide fast reads and writes and to minimize
erasures that would increase access times.

Despite itsminor shortcomings, flashmemory is likely to be thedominant on-site secondary
storage medium for the foreseeable future.

10.3 MAGNETIC DISKS
A magnetic disk consists of one or more flat, circular platters made of glass, metal, or plastic,
and coated with a magnetic substance. Particles within a small area of the magnetic substance
can be polarized magnetically in one of two directions with an electromagnet; an electromagnet
can also detect the direction of polarization previously recorded. Thus, magnetic polarization
can be used to distinguish 1s and 0s. Electromagnetic read/write heads are used for this purpose.

A drive motor rotates the disk platter(s) about its central axis. On most drives, the motor
rotates the disk at a fixed speed. An arm has the read/write head mounted at the end. The arm

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 300

300 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 10.2

The Traditional View of a Hard Disk Layout

Platter
Track

BlockSector

Head motor

Head, on
moving arm

Track

Cylinder

Drive
motor

makes it possible for the head to move radially in and out across the surface of the disk. A head
motor controls precisely the position of the arm on the disk.

Most hard disk drive containmultiple platters, all mounted on the same axis, with heads on
both surfaces of each platter. The heads move in tandem, so they are positioned over the same
point on each surface. Except for the top and bottom, which require separate arms and heads,
each arm contains two read/write heads, which service the surfaces of two adjoining platters.

With the head in a particular position, it traces out a circle on the disk surface as the disk
rotates; this circle is known as a track. Since the heads on each surface all line up, the set of
tracks for all the surfaces form a cylinder. Each track contains one or more blocks of data.
Traditionally, we view the surface of the disk platter as divided into equally sized pie shape
segments, known as sectors, although current disks divide up the track somewhat differently.
Each sector on a single track contains one block of data, typically 512 or 4,096 bytes, which
represents the smallest unit that can be independently read or written. Figure 10.2 shows the
traditional layout view of a hard disk.

If you assume that the number of bytes in a sector is the same anywhere on the disk, then
you can see from the layout that the bits on the disk are more closely packed on the inner tracks
than they are on the outer tracks. Regardless of the track, the same angle is swept out when
a sector is accessed; thus, the transfer time is kept constant with the motor rotating at a fixed
speed. This technique is called CAV, for constant angular velocity. CAV has the advantage of
simplicity and fast access.

It is possible to increase the capacity of the disk by utilizing the space at the outer tracks to
pack more bits onto the disk. But this would result in a different number of bytes per sector or
a different number of sectors per track depending on which track is being accessed. This would
make it more difficult to locate the required sector. Notice, too, that with a constant speed
motor, the time to move the head over a pie-shaped sector at the edge is the same as that near
the center. If there were more bits packed into the outer tracks, the data would be transferred
faster at the edge than at the center. Since the disk controller is designed to expect data at a
constant speed, it would seem to be necessary to design the motor so that it would slow down
when the head was accessing the outer tracks to keep the data transfer speed constant. In this
case, the motor speed would be adjusted such that the speed along the track would be constant
regardless of the position of the head. This approach is calledCLV, for constant linear velocity.
The capacity of a CLV disk with the same diameter and bit density would be approximately
double that of an equivalent CAV disk. CLV technology is commonly used with CDs and
DVDs, but the design makes it more difficult to access individual blocks of data rapidly, so it is
rarely used for hard disks.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 301

CHAPTER 10 COMPUTER PERIPHERALS 301

FIGURE 10.3

Multiple Zone Disk Configuration

Zone 1

Zone 2

Zone 3

Zone 4

Sectors

As a compromise, modern disk drives divide the disk into a number of zones, typically
sixteen. This approach is shown in Figure 10.3. The cylinders in different zones have a different
number of sectors but the number of sectors within a particular zone is constant. Obviously,
the largest number of sectors will be in the zone containing the outermost cylinders, Instead
of adjusting the motor speed, the disk controller buffers the data rate so that the data rate to
the I/O interface is constant, despite the variable data rate between the controller and the disk.
Different vendors call this technique multiple zone recording, zone bit recording (ZBR), or
zone-CAV recording (Z-CAV). Multiple zone recording represents an effective compromise
between simplicity and disk capacity. Nearly every modern hard disk is configured this way.

A few vendors describe the details of their zone layouts in their specifications. For example,
Hitachi provides a zone table for their type 5K500B 250GB disk drive that shows a disk
configuration consisting of 172,675 cylinders divided into 24 zones with the number of sectors
per track in a zone ranging from 912 (innermost) to 1920 (outermost). As an alternative to
the actual physical layout, most vendors provide a logical surfaces/cylinders/sectors view of the
drive that conforms to the traditional layout.

The platter on a hard disk drive is made of a rigid material and is precisely mounted. The
heads on a hard disk do not touch the surface; rather, they ride on a bed of air a fewmillionths of
an inch above the surface. The location of the heads radially is tightly controlled. This precision
allows the disk to rotate at high speed and also allows the designers to locate the tracks very
close together. The result is a disk that can store large amounts of data and that retrieves data

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 302

302 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 10.4

A Hard Disk Mechanism

©
 d

o
no

ne
g

/i
St

o
ck

p
ho

to

quickly. A typical hard disk rotates at 5400 revolutions per minute (rpm) or 7200 rpm; a small
number of hard drives on the market rotate at 12,000 rpm or even as fast as 15,000 rpm.

A photograph of a hard disk assembly showing a disk platter, arm, and read/write head
is shown in Figure 10.4. This particular hard disk drive contains three platters and six heads.
Only the topmost platter and head are fully visible. The entire assembly is sealed to prevent dirt
particles from wedging between the heads and the disk platter, since this situation could easily
destroy the drive. Even a particle of cigarette smoke is much larger than the space between the
head and the disk. When the disk is stationary, the head rests in a parked position on the edge
of the drive. The head has an aerodynamic design, which causes it to rise on a cushion of air
when the disk platter spins.

Figure 10.5 shows the operation required to locate an individual block of data. First, the
arm moves the head from its present track until it is over the desired track. The time that is
required to move from one track to another is known as the seek time. Since the distance
between the two tracks is obviously a factor, the average seek time is used as a specification for
the disk. Once the head is located over the desired track, the read/write operation must wait for
the disk to rotate to the beginning of the correct sector. The time for this to occur is known
as the rotational latency time, or sometimes as rotational delay or simply latency time. The
latency time is obviously variable, depending on the position of the disk. As a best case, the
head is just about to enter the sector, and the rotational latency time is 0.

At the opposite extreme, the head has just passed the beginning of the sector, and a full
rotation is required to reach the beginning of the sector. This time can be calculated from the
rotational speed of the disk. Both situations are equally probable. On average, the disk will have
to rotate half way to reach the desired block. Thus, the average latency time can be calculated
from the rotational speed of the disk as

average latency = 1
2
× 1
rotational speed

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 303

CHAPTER 10 COMPUTER PERIPHERALS 303

FIGURE 10.5

Locating a Block of Data: (a) Seek Time, (b) Latency Time, and (c) Transfer Time

Head

Seek

a. Seek time
Desired track

Latency

b. Latency time

Desired block

Transfer

c. Transfer time

For a typical hard disk rotating at 3600 revolutions per minute, or 60 revolutions per second,
the average latency is

average latency = 1
2
× 1
60

= 8.33 milliseconds

Once the sector is reached, the transfer of data can begin. Since the disk is rotating at a
fixed speed, the time required to transfer the block, known as transfer time, is defined by the
number of sectors on a track, since this establishes the percentage of the track that is used by a
single data block. The transfer time is defined by

transfer time = 1
number of sectors × rotational speed

If the hard drive in the example contains 30 sectors per track, the transfer time for a single block
would be

transfer time = 1
30 × 60

= 0.55 milliseconds

Figure 10.6 shows a table of typical disks of different types, comparingvarious characteristics
of the disks.

Since the total time required to access a disk block is approximately the sum of these
three numbers, a typical disk access might require 10–15 milliseconds. To put these speeds in
perspective, consider that the typical modern computer can execute an instruction in less than

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 304

304

FIGURE 10.6

Characteristics of Typical Disks

Disk type
Platters/
heads Cylinders

Sectors
per track

Block
size

Professional
SCSI

15,000 RPM4/8 74,340 Avg. 985 4 Kbytes 3.5–4 msec 2 msec Variable 120−200
MB/sec

300 GB

Desktop
SATA

7200 RPM3/6 Est. 102,500 Variable 4 Kbytes 8–9 msec 4.2 msec 115 MB/sec1 TB

DVD-ROM Variable,
570–1600
RPM (1×)

1/1 Spiral Variable 2352 bytes 100–600 ms Variable 2.5 MB/sec
(1×)

4.7–9.4 GB

Blu-ray
DVD

1/1 Spiral Variable 2352 bytes Variable,
820–2300
RPM (1×)

Variable Variable 4.5 MB/sec
(1×)

24–47 GB

Notes: (1) Hard disk data courtesy of Seagate Technology
(2) (1×) Represents that Standard DVD Speed, Higher Speeds, and Data Rates are Possible

Capacity
Rotational

speed Latency

Avg. seek
time

read/write

Sustained
transfer

rate

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 305

CHAPTER 10 COMPUTER PERIPHERALS 305

FIGURE 10.7

A Single Data Block

Gap GapByte Byte

Header
 Data . . . 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 0 . . .

1 nanosecond. Thus, the CPU is capable of executingmillions of instructions in the time required
for a single disk access. This should make it very clear to you that disk I/O is a major bottleneck
in processing and also that it is desirable to find other work that the CPU can be doing while a
program is waiting for disk I/O to take place.

An expansion of part of a track to show a single data block is shown in Figure 10.7.
The block consists of a header, data—commonly 512 bytes or 4 kilobytes, and a trailer. An
interblock gap separates the block from neighboring blocks. Figure 10.8 shows the layout of the
header for a Windows-based disk. The track positions, blocks, and headers must be established
before the disk can be used. The process to do this is known as formatting the disk. Since the
header identifier must be a unique pattern of 1s and 0s, the data being stored must be checked
by the disk controller to assure that the data pattern does not accidentally match the header
identifier. If it does, the pattern stored on the disk is modified in a known way.

The entire track is laid down as a serial stream of bits. During write operations, the bytes
must be deconstructed into bits, then reconstructed during reads.

Because the transfer speed of the disk is not the same as that required to transfer the block
to memory, buffering is provided in the disk controller. The buffer is a first-in, first-out buffer,
which receives data at one speed and releases it as required at the other speed. Buffer memory
also makes it possible to read a group of blocks in advance so that requests for subsequent
blocks can be transferred immediately, without waiting for the disk. Most modern disks provide
substantial buffers for this purpose.

It is important to realize that the layout of the disk as discussed here does not take into
account the structure of the files stored there, nor does it naturally provide a filing system.
There is no direct relationship between the physical size of the block and the logical size of the
data block or file that it contains, other than that the data must fit into the physical block or
provisions made to extend the data to another block. It is also possible to store multiple logical
blocks in a single physical block, if they fit.

FIGURE 10.8

Header for Windows Disk

Header

Sy
nc

Mark

ID
 d
ata

Er
ror

 d
ete

cti
on Gap

Sy
nc

Mark

Data

File organization issues and the allocation of phys-
ical blocks for storage are within the domain of the
operating system software, not the disk controller. File
storage and allocation issues are discussed extensively
in Chapter 17.

Before leaving the subject of disks, it will be useful
to review briefly some of thematerial fromChapter 9 to
give you an overview of the typical disk I/O operation.
You will recall that the CPU initiates a request to the
disk controller and that the disk controller does most
of the work from that point on. As you now know from
this chapter, the disk controller identifies the disk block

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 306

306 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

to be located, moves the head to the correct track, then reads the track data until it encounters
the header for the correct block. Assuming that it is performing a read, it then transfers the
data from the disk to a buffer. From the buffer, the data is transferred to conventional memory
using DMA. Once the DMA transfer is complete, the disk controller notifies the CPU with a
completion interrupt.

Disk Arrays

In larger computer environments,withmainframe computers or largePCs that provide program
and data storage facilities for a network, it is common to group multiple disks together. Such a
grouping of two or more disk drives is called a disk array or a drive array. A disk array can be
used to reduce overall data access time by sharing the data among multiple disks and also to
increase system reliability by providing storage redundancy. The assumption made is that the
number of blocks to be manipulated at a given time is large enough and important enough to
justify the additional effort and additional space requirements. One useful type of disk array is
known as RAID, which stands for Redundant Array of Inexpensive Disks. (Some people say
“Redundant Array of Independent Disks”).

There are two standardmethods of implementing a disk array. One is known as amirrored
array, and the other as a striped array.

A mirrored array consists of two or more disk drives. In a mirrored array, each disk stores
exactly the same data. During reads, alternate blocks of the data are read from different drives,
then combined to reassemble the original data. Thus, the access time for a multiblock read is
reduced approximately by a factor equal to the number of disk drives in the array. If a read
failure occurs in one of the drives, the data can be read from another drive and the bad block
marked to prevent future use of that block, increasing system reliability. In critical applications,
the data can be read from two, or even three, drives and compared to increase reliability still
further. When three drives are used, errors that are not detected by normal read failures can
be found using a method known as majority logic. This technique is particularly suitable for
highly reliable computer systems known as fault-tolerant computers. If the data from all three
disks is identical, then it is safe to assume that the integrity of the data is acceptable. If the data
from one disk differs from the other two, then the majority data is used, and the third disk is
flagged as an error.

The striped array uses a slightly different approach. In a striped array, a file segment to
be stored is divided into blocks. Different blocks are then written simultaneously to different
disks. This effectively multiplies the throughput rate by the number of data disks in the array. A
striped array requires a minimum of three disk drives; in the simplest configuration, one disk
drive is reserved for error checking. As the write operation is taking place, the system creates
a block of parity words from each group of data blocks and stores that on the reserved disk.
During read operations, the parity data is used to check the original data.

There are fivewell-definedRAID standards, labeled RAID 1 throughRAID 5, and a number
of additional proprietary and nonstandard varieties, including one labeled RAID 0. The most
common of these are RAID 0, RAID 1, and RAID 5.

RAID 1 is a mirrored array as described above. RAID 1 provides protection by storing
everything at least twice, but offers a substantial performance gain, particularly under heavy
data read usage. RAIDs 2, 3, and 4 are arrays that are striped in different ways. Each uses a
separate disk for error checking. Since data on every disk must be checked, this can create a
roadblock on the single disk that is used for error checking. RAID 5 eases the roadblock by
spreading the error-checking blocks over all of the disks.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 307

CHAPTER 10 COMPUTER PERIPHERALS 307

RAID 0 is not a true RAID, because it provides no redundancy and no inherent error
checking. Data is striped across all of the disks, primarily for fast access. However, the lack
of redundancy means that a failure of any single disk block in the array corrupts all of the
data in the system. This shortcoming can be overcome with proper backup and with certain
types of journaling file systems, which we will discuss in Chapter 17. It is also possible to
“nest” RAIDs. For example, we can use a pair of RAID 0 groups inside RAID 1 to achieve
mirrored redundancy. The combination is known as RAID 0+1.With or without the additional
protection, RAID 0 is sometimes attractive as a low-cost method of achieving high data transfer
rates when they are required.

A number of vendors provide RAID controller hardware, particularly for large RAID
5 systems. With RAID controller hardware, RAID processing takes place within the array
controller. The array appears as a single large disk drive to the computer. It is also possible to
create a RAID using conventional, off-the-shelf disk controllers and operating system software.
Although this uses CPU processing time, modern computers have enough spare power to make
this a practical solution in many instances. It also reduces the possibility that a single RAID
controller can cause the entire array to fail.

10.4 OPTICAL DISK STORAGE
An alternative to magnetic disk storage is optical storage. Optical storage technologies include
various types of CDs and DVDs, in read-only, write-once, and read/write forms. Optical
disks are portable and are capable of packing a program or a medium amount of data into a
convenient package. For example, an inexpensive CD-ROM, 12 centimeters in diameter, stores
approximately 650MB, while a Blu-ray DVD of the same physical size can hold more than

FIGURE 10.9

Layout of a CD-ROM versus a
Standard Disk

Block

Block

Block

Min 58
sec 20

sector 09 block

Min 02
sec 38

sector 66 block

Sector

Standard
disk

Track

50GBof data.Optical storage serves a different purpose frommagnetic disk
storage. While magnetic disk storage serves primarily to store, read, and
write data for current use, optical storage is intendedmore for archiving and
backup, as well as for program and file distribution, although the former
use has declined due to the low cost and convenience of plug-in USB flash
drives and Web-based cloud storage and the latter use has declined due to
the convenience and rapid accessibility of the World Wide Web.

CDs and DVDs used for data storage use the same basic disk format as
their audio and video equivalents. Within certain file structure limitations,
personal computer CD andDVDdrives can read andwrite audio and video
CDs and DVDs that will play on home media equipment and vice versa.

Conceptually, optical data storage is similar to magnetic disk: data is
stored in blocks on the disk. The blocks can be arranged in files, with a
directory structure similar to that of magnetic disks. The technical details
are very different, however. Figure 10.9 compares the layout of a CD-ROM
to that of a sectored magnetic disk. Rather than concentric tracks, data
on an optical disk is stored on a single track, approximately three miles
long for a CD, and ten miles for a blu-ray DVD, which spirals from the
inside of the disk to the outside. Instead of sectors, the data is stored in
linear blocks along the track. It should be remembered that the CD design
was originally intended primarily for audio applications, where most data
access is sequential, from the start of a musical selection to its finish; thus,
a single spiral track was a reasonable decision.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 308

308 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Since the CD/DVD format was designed for maximum capacity, the decision was made to
pack the bits on the disk as tightly as possible by making each block the same length along the
spiral track, regardless of location on the disk. Thus, the disk is read at a constant linear velocity
(i.e., CLV), using a variable speed motor to keep the transfer rate constant. Since the angle of a
block is smaller on the outer tracks, the disk moves more slowly when outside tracks are being
read. This is easily observable if you have access to a portable CD or DVD player that allows
you to observe the disk as it rotates.

As an example of an optical disk format, a CD-ROM typically stores 270,000 blocks of
data. Each block is 2352 bytes long and holds 2048 bytes of data. In addition, there is a 16-byte
header, which provides 12 bytes to locate the start of a block and 4 bytes for block identification.
Due to the difficulty of the manufacturing process, errors can occur, so the CD-ROM provides
extensive means for correcting the errors. Therefore, each block also provides 288 bytes of
an advanced form of parity known as cross-interleaved Reed–Solomon error correcting code.
This code repairs not only isolated errors but also groups of errors that might result from a
scratch or imperfection on the disk. The resulting total data capacity of a single CD-ROM
is approximately 550MB. The error correction is occasionally omitted for applications where
errors can be tolerated, such as audio, which increases the capacity of a CD-ROM to about
630MB.

Blocks on a CD-ROM are identified by a 4-byte identification code that was inherited
from the audio origins of the medium. Three bytes, stored in binary-coded decimal (BCD)
format, identify the block by minute, second, and sector. There are 75 sectors per second and
60 seconds per minute. Normally, there are 60 minutes, although this number can be increased
to 70 minutes if necessary. This increases the disk capacity to about 315,000 blocks. The fourth
byte identifies a mode of operation. Mode 1, the normal data mode, provides the data as
we’ve described, with error correction. Mode 2 increases the capacity by eliminating the error
correction. Other modes are provided for special audio and video features. It is possible to
mix data, audio, and video on the same disk. Data blocks on CD-ROMs are sometimes called
large frames.

On the disk itself, each 2352-byte data block, or large frame, is broken up into 98 24-byte
small frames. Bytes are stored using a special 17-bit code for each byte, and each small frame
also provides additional error correcting facilities. Translation of the small frames into more
recognizable data blocks is performed within the CD-ROM hardware and is invisible to the
computer system. The bit-encoding method and additional error correction built into the small
frames increases the reliability of the disk still further.

Data is stored on the disk in the form of pits and lands. On commercially produced disks,
these are burned into the surface of the master disk with a high-powered laser. The disk is
reproduced mechanically, using a stamping process that is less expensive than the bit-by-bit
transfer process required of magnetic media. The disk is protected with a clear coating. Disks
produced in the field are created somewhat differently. The major difference is that the disk
is made of a material that can be blistered by a medium-power laser. Initially, the entire disk
is smooth. When data is to be written, the medium-power laser creates tiny blisters in the
appropriate locations. These correspond to the pits in a normal CD-ROM. The disk is read with
a separate low-power laser in the same way as a CD-ROM.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 309

CHAPTER 10 COMPUTER PERIPHERALS 309

FIGURE 10.10

CD-ROM Read Process

Light detector
Laser

Prism

Transparent protective layer

Land Pit

Note: When laser strikes a land, the light is
reflected into the detector; when the light
strikes a pit, it is scattered.

CD-ROM

This blister technology is used in various CD and DVD formats, called CD-R, DVD-R, and
DVD+R. Additionally, there are rewritable versions of this technology. These are known as CD-
RW, DVD-RW, DVD+RW, DVD-RAM, and DVD+RAMBD-RE. There are file compatibility
issues between the different formats. Some drives will read every format; others will only read
some of the formats.

Figure 10.10 shows a basic diagram of the read process. A laser beam is reflected off the
pitted surface of the disk as a motor rotates the disk. The reflection is used to distinguish
between the pits and lands, and these are translated into bits.

DVD technology is essentially similar to CD-ROM technology. The disk is the same size,
and is formatted similarly. However, the use of a laser with a shorter light wavelength (visible
red or blue-violet, instead of infrared) allows tighter packing of the disk. In addition, the laser
can be focused in such a way that two or more layers of data can be placed on the same side of
the disk, one underneath the other. Finally, a different manufacturing technique allows the use
of both sides of a DVD. Each layer on a DVD can hold approximately 4.7 GB. If both layers on
both sides are used, the DVD capacity is approximately 17 GB. The use of a blue laser extends
this capability even further, to approximately 50 GB.

10.5 MAGNETIC TAPE
Although cloud storage is replacing tape in some instances, many enterprises are unwilling to
entrust their critical data to outside vendors, citing security and loss of data as unacceptable risks.
A survey by eweek.com concluded that in May, 2012, over 80% of businesses continued to use
magnetic tape storage for backups and long-term archiving. While this survey probably did not
includemost small businesses, it nonetheless indicates that tape storage is still alive and kicking.

Like other magnetic media, tape is nonvolatile, and, under proper storage conditions,
the data can be stored indefinitely. Note that tape is a sequential medium, which makes it
impractical for random access tasks. Generally, full system backups aremade to tape andmoved
to off-site locations for long-term storage.

Tape is stored in a cartridge, using a standard format called LTO (linear tape open). The
tape cartridge is removable from the tape drive for off-line storage. When the tape is in the tape

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 310

310 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 10.11

A Tape Drive and Cartridge

C
o

ur
te

sy
 o

f
D

el
l I

nc
.

©
 S

ti
g

g
y

P
ho

to
/S

hu
tt

er
st

o
ck

FIGURE 10.12

Linear Tape Cartridge Format

drive, ready for operation, it is said to be mounted. Tape cartridges have the major advantage

of convenience. They are easy to mount and dismount, and small and easy to store. Current

tape cartridges can store as much as 3 TB of compressed data or 1.5 TB of uncompressed data.

Cartridges with uncompressed capacities as large as 12 TB are currently in development.

An LTO format tape drive (left) and data cartridge (right) are shown in Figure 10.11. The

cartridge typically holds up to 846 meters of one-half inch wide tape in a 102mm × 105mm ×
21.5mm cartridge. The technique used for storage and retrieval is called data streaming. The
cartridge tape is divided longitudinally into many tracks, currently as many as 1280. The tape

mechanism writes and reads the bits longitudinally, along the length of one group of tracks at a

rate of 140MB per second, uncompressed. At each end, the tape reverses, and the next group

of tracks are written or read. Data is usually stored on the tape starting with the centermost

track and moving outward toward the edge of the tape. Error correction, encryption, and

write-once-only archiving protection are built into the system. Figure 10.12 shows the track

layout for an LTO cartridge.

10.6 DISPLAYS

Basic Display Design

Recall from Chapter 4 that a display is an image made up of thousands or millions of individual

pixels, or picture elements, arranged to make up a large rectangular screen. Each pixel is a tiny

square on the display.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 311

CHAPTER 10 COMPUTER PERIPHERALS 311

FIGURE 10.13

Display Screen Ratios

~18.4 9

5 3

4

High definition

Standard

16

Older display screens and most tablets and smartphones have a
horizontal to vertical aspect ratio of 4:3. More recent personal computer
displays and monitors are typically 16:9, described as “wide screen”. A
typical 4:3 screen is made up of 768 rows of 1024 pixels each, known
as a 1024 × 768 pixel screen. Screens with resolutions of 1280 × 1024
pixels, (5:4 aspect ratio), or higher are common, especially on physically
larger screens. Typical 16:9 screens are 1280 × 720 or 1920 × 1080. A
high-definition 27-inch monitor produced by Apple has a resolution of
2560 × 1440.

Displays are specified by their screen sizes measured diagonally
and by their resolution. Figure 10.13 shows the relationship between
the horizontal, vertical, and diagonal dimensions. In common usage the
resolution of the screen is specified as the number of pixels in a horizontal
row × the number of pixels in a vertical column. In terms of the ability
to see detail in a display, a more interesting, and accurate, measure of
resolution is the pixel density, measured either as the size of an individual
pixel or as the number of pixels per inch. The pixel size for a typical
15.4-inch wide laptop screen with 1280× 720 resolution is approximately
0.01 inch square, or about 100 pixels per inch. By comparison, the
pixel density for the “new” Apple iPad screen introduced in 2013 is 264
pixels per inch. Since the pixel density essentially specifies the minimum
identifiable object size capability of the monitor, the larger the number
of pixels per inch, the clearer the display, regardless of display size.

Aswenoted inChapter 4, each individual pixel represents a shadeof gray (onamonochrome
screen) or a color. The relationship between a typical image and its pixel representation is
shown in Figure 10.14. A color pixel is actually made up of a mixture of different intensities of
red, green, and blue (RGB). We could represent a black-and-white image with 1 bit per pixel
(for example, on for white, off for black), but, more typically, a color display would have to
present at least 256 colors, and normally many more. It takes 2 bytes per pixel to represent a
65,536-color image, considered the minimum acceptable for most Web use. More commonly,
a system would use 8 bits per color, or 24 bits in all. Such a system can present 256 × 256 ×
256, or more than 16 million, different colors on the screen and is sometimes described as a

FIGURE 10.14

Pixel Representation of an Image

2

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 312

312 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

true color system. There are even a few 30-bit and 36-bit systems. The number of bits used to
represent colors in an image is known as its color depth.

Even 16 bits per pixel requires a substantial amount of display memory. To store a single
1024-pixel by 768-pixel graphic image requires 1.55MB of memory. A 24-bit-per-pixel image
of the high-definition Apple monitor mentioned earlier would require approximately 11MB.

With 8 bits, there is no way to divide the bits to represent reds, blues, and greens equally.
Instead, 256 arbitrary combinations of red, blue, and green are chosen from a larger palette of
colors. The 256 colors might be chosen by the artist who created the image. More commonly, a
default color scheme is used. Originally designed by Netscape for its Web browser, the default
color scheme presents a reasonably uniform selection of colors ranging from black to white.
Each selected color is represented by a red value, a green value, and a blue value that together
will present the selected color on the screen. Most commonly, the systemwill use 1 byte for each
color, providing an overall palette of sixteenmillion colors fromwhich to choose 256 for display.

Each pixel value is represented by a value between 0 and 255, representing the color for
that pixel. A color transformation table, also known as a palette table, holds the RGB values
for each of the 256 possible colors. A few rows of a color transformation table are shown in
Figure 10.15. To display a pixel on the screen, the system transforms the pixel color to a screen
color by reading the RGB values that correspond to the particular pixel value from the table.
The RGB colors are then sent to the screen for display. Although this transformation requires
an extra step, the task is performed in the display controller and is not difficult to implement.

FIGURE 10.15

Use of a Color Transformation Table

R G B

123123 17765 0
Value of
pixel to

be displayed

124 0

65 to
red

display

0 to
green

display

177 to
blue

display

255 0

122 16532 34

Pixel
value

Blue-violet
displayed

Transformation is also required for a display of sixty-
four thousand colors, which uses 16 bits per pixel, however,
a 24-bit color can be divided equally into three bytes, one for
each color, so no transformation table is required.

The values for each pixel are stored as bitmaps in a special
display memory or in a reserved area of computer memory,
and repeatedly transferred to the display in raster scan order,
from top left, row by row, pixel by pixel, to bottom right. Each
value to be displayed is read from the appropriate location in
video memory in synchronization with its appearance on the
screen. A scan generator controls both the memory scanner
and the video scanner that locates the pixel on the display
screen. The values are stored consecutively, row by row, so
that each traverse through memory corresponds to a single
complete scan of the image. Video memory is designed so
that changes in the image can be made concurrently by the
CPU or graphics processor while the display process is taking
place. Figure 10.16 illustrates the operation.

Graphical Processing Units (GPUs)

Early computing was primarily text based, with presentation on a display in a single simple
predefined, fixed, evenly-spaced font.2 Typical display resolution was relatively low and the

2Even today, you can see evidence of this on PCs more than a few years old. Menus and messages that appear

during the boot process when Windows starts up appear on a text-based display, using a standard font stored in the

BIOS.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 313

CHAPTER 10 COMPUTER PERIPHERALS 313

FIGURE 10.16

Diagram of Raster Screen Generation Process

Memory
scanner

Scan
generator

Video
memory

pixel (0,0)
pixel (0,1)

pixel (0, N-1)
pixel (1, 0)

pixel (M-1,0)

pixel (M-1, N-1)

Video
display

R
G
B

Consecutive
addresses are

produced
repetitively

Time

GPU loads
memory with image to

be displayed

number of colors limited. Early video games and other “graphics” were created from blocks

that were included in the text set. Figure 10.17 shows a display screen for Pong, one of the

first popular computer and video games. Notice that the paddles, ball, and net are made up of

blocks. Even the score numerals are made up of blocks. Processing was reasonably easy for the

CPU to handle in conjunction with a simple display controller.

The rapid evolution in processing power, increased display resolution, and better color

capability has gradually shifted much of the focus of computer use from text to graphics,

photography, and video. Graphical user interfaces have replaced text-based command lines. The

professional community—artists, architects, game designers, animators, scientists, engineers,

and photographers—has routine and inexpensive access to powerful workstations and PCs,

with sophisticated software tools and high-resolution displays to work with.

Computing today makes extensive use of sophisticated graphics processing. Even text is

processed graphically. Consider some of the graphics operations that you take for granted and

use every day. You rotate your smartphone ninety degrees and expect your display to adjust

accordingly. You squeeze your fingers together on the touch screen and expect the image

to shrink, nearly instantly. Behind the scenes, the value of every pixel in the image must be

recalculated and moved to its new location.

Recall from Chapter 4 that object images must be transformed to bitmaps for display.

In addition to bitmap transformations, modern graphics requirements include the ability to

process complex object images for display and to encode and decode video data between

standard video and MPEG and other formats.

The amount of processing required by modern graphics strongly mandates the use of a

coprocessordedicated toprocessing the graphics, independent of theCPU.GraphicsProcessing
Units (GPUs) are now included in most computer systems and devices.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 314

314 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 10.17

Pong

©
 n

jn
ig

ht
sk

y/
ag

e
fo

to
st

o
ck

The GPU provides an application programming interface that supplies many of the

operations common to graphics processing. Simple output requests from the CPU off-load

the major graphics operations to the GPU for processing. Two sets of standards, OpenGL
and DirectX, define many of the operations offered by the GPU. OpenGL is an International

standard maintained by a nonprofit consortium. DirectX is a proprietary standard, developed

byMicrosoft, that has become a standard through general use. Both standards define basic two-

and three-dimensional objects, such as lines, curves, and polygons, and specify operations on

such features as color and shading, textures, lighting, removal of hidden areas, and placement

and movement in 2-D and 3-D space. Both provide capability to transform the object, pixel by

pixel, to the space of the display screen.

There are a number of different GPU architectures and implementations. Some GPUs

are stand-alone plug-in units or separate chips, physically separate from the main processor

chip; others are tightly integrated into the same chip. The GPU in most smartphones, for

example, is integrated into the main processor chip; the processor chips in both the Apple

iPhone 5 and the Samsung S4 consist of an ARM CPU with an integrated PowerVR GPU

from Imagination Technology. The slaves in the master–slave multiprocessing Cell Engine,

an alternative approach described in Chapter 8, were originally designed to serve as graphics

processor units in the Sony Playstation 3; each slave was programmed tomeet a particular set of

graphics processing objectives in parallel, under the control of the master processor, to render

an image.

With the exception of the Cell Engine, current GPUs are generally based on maximizing

the number of operations that can take place at the same time, or parallelization. Since most

graphics operations require similar, but somewhat independent, operations on a large number

of pixels, this is a reasonable approach. Thus, a typical GPU will consist of integrated multiple

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 315

CHAPTER 10 COMPUTER PERIPHERALS 315

multicore processors, each with a large number of simple cores, multiple execution units with

multiple pipelines in each core, and, even possibly, the additional ability to split each pipeline

into multiple threads of processing. A key to the efficient operation of a GPU is the ability

to dispatch instructions to the CPU cores in rapid succession, a process commonly called

streaming.

EXAMPLE
Figure 10.18 is a simplified illustration of the architecture of a typical Nvidia Kepler architecture
GPU, in this case, the model GTX 680. Nvidia calls the primary unit of computation a Graphics
Processing Cluster (GPC). The GPC contains a raster generator to manage the display, plus eight
streaming multiprocessor units. Within each multiprocessor unit, there are six identical arrays
of CPU cores. Each array provides 32 core processors, plus additional specialized units for
load/store, instruction dispatch, and other specialized functions. The array also contains a 64K
general-purpose register file. In simple terms, the array offers just about every possible feature to
speed up processing that we discussed in Chapter 8, plus a few that we didn’t! (You might wish
to take another look at Figure 8.11 for comparison.)

FIGURE 10.18

A Typical GPU Block Diagram

Arrays

• • •

LI Cache

64K Register
File

Dispatch
Unit

Load
Store
Units

Special
Function

Units

L2 Cache
Memory

2 or 4 GB
Main Memory

Host
Interface

Streaming
Multiprocessor

1

Streaming
Multiprocessor

8

Video Display

Graphics Processor Cluster

Raster
Display

Generator

Cores
(32)

FP
Unit

INT
Unit

Result
Queue

Dispatch Port

CoreArray

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 316

316 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Overall, the GPU structure contains a total of 32 cores × 6 arrays × 8 units = 1536 cores.
In addition, the GPU provides L1 and L2 cache memory and 2 or 4 GB of built-in memory.
Each core processor supports a pipelined instruction set that includes integer and floating-point
operations, as well as specialized graphics-related operations—simple trigonometry operations
and the like. Finally, the GPU contains built-in program code to implement the OpenGL and
DirectX standard interfaces, as well as hardware-based support for video encoding and decoding,
raster generation, multiple displays, and other features.

Wewould be remiss if we did not mention that a GPU can also be used to solve other types

of problems that allow a great deal of parallelization. In addition to the specialized graphics

program interface, GPUs generally offer an interface that can be programmed directly, in

languages developed for this purpose, as well as in extensions to standard languages such as C.

OpenCL is a standard GPU programming interface for general-purpose parallel programming

that is implemented on a number of GPUs from different vendors.

Liquid Crystal Display Technology

Liquid crystal display technology is the prevalent means of displaying images. A diagram of a

liquid crystal display (LCD) is shown in Figure 10.19. A fluorescent light or LED panel, located

behind the display, produces white light. A polarizing filter in front of the light panel polarizes

the light so that most of it is polarized in one direction. The polarized light then passes through

a matrix of liquid crystal cells. In a color display, there are three cells positioned properly for

each pixel. When an electrical current is applied to one of these cells, the molecules in the

cell spiral. The strongest charge will cause the molecules to spiral 90 degrees. Since the light is

passed through the crystal, its polarization will change, the amount depending on the strength

of the electrical current applied.

FIGURE 10.19

Liquid Crystal Display

Fluorescent
light or LED

panel

Polarizing
filter

Liquid
crystal
cells

Color
filters

Polarizing
filter Glass

plate

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 317

CHAPTER 10 COMPUTER PERIPHERALS 317

Therefore, the light coming out of the crystal is now polarized in different directions,

depending on the strength of the current that was applied to the crystal. The light is now

passed through a red, blue, or green color filter and through a second polarizing filter. Because

a polarizing filter blocks all light that is polarized perpendicular to its preferred direction, the

second filter will only pass through the light that is polarized in the correct direction. Therefore,

the brightness of the light is proportional to the amount of polarization twist that was applied

by the liquid crystal’s spiral.

There are several different ways of applying the electric current to the crystal. In an active
matrix display, the display panel contains one transistor for each cell in the matrix. This

guarantees that each cell will receive a strong charge, but is also expensive and difficult to

manufacture. (Remember that even one imperfect cell will be apparent to the viewer!) A less

expensive way provides a single transistor for each row and column of the matrix and activates

each cell, one at a time, repetitively, using a scan pattern. This type of panel is known as a

passive matrix display. The charge is applied for less time and is therefore lower. The result is

a dimmer picture. Most modern LCD displays use the active matrix approach.

LCD panels have the advantage of bright images, no flicker, low power consumption, and

thinness, so they are ideal for laptop computers. They are also used in most desktop displays.

Because they are essentially flat, they can be placed anywhere. The same technology is also used

for large-screen computer projectors.

OLED Display Technology

OLED (Organic Light-EmittingDiode) technology is a new screen technology that is poised to

supplement or replace LCD technology in display monitors. OLED technology offers an image

that is brighter, with colors that are more vivid and with vastly improved contrast. Despite the

improved image, the OLED panel consumes less power, with a package that is even thinner

than current flat screen monitors. LCD technology is passive in the sense that light is generated

by a backlight; the light is selectively blocked by the LCD cells in the panel. Leakage in the cells

limits the level of darkness that can be achieved and the maximum brightness is limited by the

brightness of the backlight.

In contrast, OLED technology is active. OLED technology consists of a thin display

panel that contains red, green, and blue LEDs for each pixel with transistors for each LED

that generate electrical current to light the LED. The light output is produced directly by

these LEDs. The brightness of a pixel is determined by the amount of current supplied by

the transistor, which in turn is determined by an input signal indicating the desired level of

brightness. OLED panels can be made very thin because of the simplicity of the design and

the fact that no backlight is needed. OLED technology is currently used in mobile phones and

tablets; OLED monitors and television products have also been announced, but are not yet

commonly available at the time of this writing.

10.7 PRINTERS
Earlier printers were derived from typewriters. They used formed characters that weremounted

at the ends of arms, on wheels shaped like a daisy, on chains, or on spheres. Printing resulted

from the hammer-like physical impact of the character through an inked ribbon onto paper.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 318

318 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

These printers were difficult to maintain and were incapable of generating any character or
graphical image that was not provided in the set of formed characters. Later impact printers
used pins that were selectively employed to generate dotmatrix representations of the characters
on the page. These printers were known as dot matrix printers; in addition to the standard
characters, they were also capable of printing simple geometric shapes. Impact printers have
mostly disappeared from use.

Except for some commercial printing of items such as books, magazines, and newspapers,
nearly all modern printing is done using nonimpact technologies. This is true regardless of
the size of the system, the quantity of printing, or the capacity of the printer.3 Single-color
(usually black and white) printers normally use laser, or inkjet printing technology. Low-cost
color printing also uses inkjet technology. More expensive color printing uses inkjet or laser
technology.

The impression on the paper is sprayed at the paper or laid down on the paper. Printer
output can be character based or graphics based. Most printers have built-in character printing
capability and can also download fonts. Nonetheless, much of the output from modern
computers is graphics based, even when text is being printed, since graphics output offers more
flexibility. The data sent to most printers takes the form of graphical bitmaps that represent the
required pixels directly. Some printers have built-in computing capability and can accept data in
the form of a page description language, predominantly Adobe PostScript or PCL, an industry
standard print command language originally developed by HP. The controller in the printer
can then convert from the page description language to the bitmap within the printer itself.
Memory is provided within the printer to hold the bitmapped image while it is being printed.

Nearly all modern computer printers produce their output as a combination of dots, similar
in style to the pixels used in displays. There are two major differences between the dots used in
printers and the pixels used in displays. First, the number of dots per inch printed is generally
much higher than the number of pixels per inch displayed. The number of pixels displayed

FIGURE 10.20

Creating a Gray Scale

Black Dark gray Light gray

White

usually ranges between about 100 and 250 per
inch. Typical printers specify 600, 1200, or even
2400 dots per inch.

This difference in resolution is partially
compensated for by the secondmajor difference:
the dots produced by most printers are either
off or on. A few printers can vary the size of the
dots somewhat, but, in general, the intensity,
or brightness, of the dots is fixed, unlike the
pixels in a display, which can take on an infinite
range of brightness. Thus, to create a gray scale
or color scale, it is necessary to congregate
groups of dots into a single equivalent point and
print different numbers of them to approximate
different color intensities. An example of this is
shown in Figure 10.20.

3Evenmostmodern commercial printing uses a nonimpact technique called offset printing that is based on contact

between a rubber mat containing a print image and the paper, a method similar in many respects to laser printing. The

impact printing press technology that you see in old movies is called letterpress printing.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 319

CHAPTER 10 COMPUTER PERIPHERALS 319

Laser Printers

Today, the prevalent form of printing for most applications is laser printing. Laser printing

is derived from xerography. The major difference is that the image is produced electronically

from the computer using a laser or light-emitting diodes, rather than scanning a real image

with a bright light, as in a copy machine. A description of the steps in the operation of a laser

printer is shown in Figure 10.21. Color images are produced by printing the sheet four times

with different colored toners.

FIGURE 10.21

Operation of a Laser Printer

Photosensitive
drum

Spinning
mirror

1. A laser is fired in correspondence to
 the dots that are to be printed. A
 spinning mirror causes the dots to be
 fanned out across the drum. The drum
 rotates to create the next line, usually
 1/300th or 1/600th of an inch.

 The drum is photosensitive. As a
 result of the laser light, the drum will
 become electrically charged wherever
 a dot is to be printed.

2. As the drum continues to rotate, the
 charged part of the drum passes
 through a tank of black powder
 called toner. Toner sticks to the drum
 wherever the charge is present.
 Thus, it looks like the image.

3. A sheet of paper is fed toward the
 drum. A charge wire coats the paper
 with electrical charges. When it
 contacts the drum, it picks up the
 toner from the drum.

4. As the paper rolls from the drum, it
 passes over a heat and pressure
 area known as the fusing system.
 The fusing system melts the toner to
 the paper. The printed page then
 exits the printer.

 At the same time, the surface of the
 drum passes over another wire,
 called a corona wire. This wire
 resets the charge on the drum, to
 ready it for the next page.

Laser

Charge wire

Paper

Fusing system
Corona wire

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 320

320 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Inkjet Printers

Inkjet printers operate on a simple mechanism that also has the advantages of small size
and economy. Despite their simplicity, inkjet printers with high-quality inks are capable of
photographic quality color output. Mechanically, the inkjet printer consists of a print cartridge
that moves across the page to print a number of rows of dots, and mechanical rollers that move
the page downward to print successive rows.

The inkjet print cartridge contains a reservoir of ink and a column of tiny nozzles, so that
several rows can be printed at once. Each nozzle is smaller than the width of a human hair.
A dot is produced by heating the ink behind a nozzle. When the ink is boiled it sprays a tiny
droplet of ink toward the paper. The volume of each droplet is about one-millionth the volume
of the drop from an eyedropper of water! Some printers use a vibrating piezo-crystal instead of
heat to produce the ink droplets. Multiple reservoirs of ink make it possible to print multiple
colors. (And in response to the question raised in Section 10.0, yes, apparently it is possible to
produce high-quality photographs this way!)

10.8 USER INPUT DEVICES
Until recently, most user input came from a keyboard and most user output appeared on
displays, with hard copy sent to printers. Even today, enterprise data is predominantly textual.
Nonetheless, the everyday availability of powerful computers and mobile devices, all connected
to high-speed networks, permits the widespread use of audio, photographic images, and video
as communication tools, both to businesses and to individual users. The World Wide Web has
served as an inviting medium to promote the use of these tools. Nearly every smartphone and
tablet includes a microphone for audio input and an image sensor for photographic images and
video input, as well as speakers and headphone jacks for audio output. Most modern personal
computers, and many workstation computers do so, as well. USB ports provide additional
capability for computer-compatible video cameras, TV tuners, microphones and other audio
input devices.

Keyboards

Users use a variety of devices to interact with the computer, but most commonly, the modern
computer user interface is based upon a keyboard and a pointing device, such as a mouse,
touchpad, or touch screen. On mobile devices, a touch screen offers similar facilities, usually in
the form of a virtual keyboard produced on the display; a finger or pointing tool on the touch
screen serves as the pointing device in this case.

Physical keyboards consist of a number of switches and a keyboard controller. The keyboard
controller is built into the keyboard itself. There are several different types of switches in use,
including capacitive, magnetic, and mechanical. In most environments, the type of switch used
is not important. Different types of switches feel differently when used. Some switches are more
suitable than others for environments where dust or electrical sparks or the need for ultrahigh
reliability are a problem.

When a key is pressed on the keyboard, a binary code called a scan code is sent to the
controller. A different scan code is sent when the key is released. There are two different scan
codes for every key on the keyboard, including special keys such as Control, Alt, and Shift keys.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 321

CHAPTER 10 COMPUTER PERIPHERALS 321

The use of two scan codes allows keys to be used in combination, since the controller is able
to tell whether a key is being held down while another key is struck. The controller can also
determine when a key is being held to cause a special or repeated action. For example, holding
the shift key for a long time on some tablets serves as a caps lock.

The keyboard controller sends an interrupt to the CPU to indicate keyboard activity. The
scan codes are then converted to ASCII, Unicode, or EBCDIC (see Chapter 4 if you need a
reminder) by driver software in the computer. The advantage of software conversion is that the
use of the keyboard can be easily changed to correspond to different languages or keyboard
layouts. Nonprinting characters, such as control characters, are treated identically to printing
characters. To the computer, keyboard input is treated simply as a stream of text and other
characters, one character after another, in the sequence typed. Note that the Enter key is also
treated like any other.

The software driver in most computer systems echoes printable keyboard input characters
directly back to the display screen, to allow the user to verify that the input has been typed
correctly. Since the display circuitry and software recognizes the same character code set as
the input, the characters are correctly echoed on the screen. In theory, a system could accept
Unicode input from a keyboard and produce EBCDIC output to a display screen, using software
to convert from one code set to the other. In practice, this is almost never done.

Operation of the virtual keyboard on a mobile device is essentially the same, except that
the entire process is performed by a software driver related to the touch screen.

Pointing Devices

Modern graphical user interfaces also require the use of a pointer device as input to locate and
move a cursor on the display screen. The best known pointer device for a desk computer is a
mouse, with a touchpad as an alternative for a laptop, but there are other pointer devices in
use, including graphics tablets and touch screens, as well as the special pointer devices used
for interfacing with computer games. The touch screen on a smartphone or tablet serves as the
pointer device.

A MOUSE IN THE HOUSE The simplest device is the mechanical mouse. As the mouse is
moved across a surface, the roller ball protruding from bottom of the mouse also moves. Two
wheels, mounted at a 90-degree angle from each other, touch the roller ball, and move with it.
These wheels are called encoders. As the encoders move, they generate a series of pulses. The
number of pulses corresponds to the distance that the mouse was moved. One encoder records
movement forward and backward; the other records sideway motion. The pulses are sent to a
program in the computer to interpret the current location of a cursor. Some encoders use a tiny
light and sensor to create the pulses, others use a tiny mechanical switch, but the method used
is not important. Desktop game pointing devices and trackballs work similarly.

TOUCH SCREENS Touch screens consist of a sensing mechanism attached directly to, or
integrated within, the display screen, allowing the user to point directly to an object on the
screen. Touch screens are, of course, the standard user interface on most mobile devices such
as tablets, cell phones, portable game consoles, and portable music and video players. They are
also available on many commercial devices that require user interaction with the public, such
as store self-checkout machines and information kiosks, as well as some personal computers
and, now, even some automobile dashboard panels. A number of different technologies can be

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 322

322 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

used to detect the point of touch. These technologies differ in cost, accuracy, and durability.

Common technologies include resistive, capacitive, and surface acoustic wave. Most modern

touch screens are capable of detecting multiple touch points simultaneously.

We should mention one significant difference between the pointing operation on touch

screens versus the mouse or touchpad found on personal computers. Pointing on a touch

screen normally identifies a specific absolute position on the screen; mice and touchpads are

generally designed to move the cursor relative to a current position.

GRAPHICS TABLETS Graphics tablets use a variety of technologies, including pressure-

sensitive sensors, optical sensors, electromagnetic induction sensors, and capacitive sensors to

determine the location of a pen on the pad. Some techniques require the use of a special pen,

which is attached to the tablet, while others allow the use of any pointed object, such as a wooden

pencil, with or without lead, or even a finger. The resolution and accuracy of graphics tablets

depends on the technique employed. Graphics tablets can be used as mouse replacements, but

are particularly suited for drawing. A similar mechanism is used for the touchpads commonly

found on laptop computers. Computer-sensitive whiteboards also operate similarly. Graphics

tablets can be configured to specify an absolute position, similar to a touch screen, or to move

the cursor relative to a current position, like a mouse or touchpad.

GAME CONTROLLERS Space-based game controllers, such as the Nintendo Wii remote,

use accelerometers to detect movement in all three dimensions; software in the game console

then uses that information to perform the appropriate action upon the object of interest. With

the appropriate app, mobile phones can also be used for this purpose.

The Microsoft Kinect controller uses a combination of video camera and infrared laser

depth sensor together with sophisticated software tomeasure location andmovement of objects,

including gesture movements, in three-dimensional space.

Alternative Sources of Alphanumeric Input

Keyboards (and virtual keyboards) are not the only source of alphanumeric input. Alternative

technologies are preferred under some circumstances, for convenience, for safety, or for

simplicity. (A driver typing on a keyboard, real or virtual, in a moving car is always a bad idea,

for example.) Here are a few of the most common alternatives.

BAR CODE AND QR CODE READERS One alternative form of data input is the bar code
reader. Bar code input is practical and efficient for many business applications that require

fast, accurate, and repetitive input with minimum employee training. You are probably most

familiar with its use at grocery checkout counters, but many organizations use bar codes,

particularly for inventory control and order filling.

Bar codes represent alphanumeric data. The UPC bar code in Figure 4.8 translates to the

alphanumeric value 780471 108801 90000. Bar codes are read optically using a device called

a wand that converts a visual scan of the code into electrical binary signals that a bar code

translation module can read. The module translates the binary input into a sequence of number

codes, one code per digit, that can then be input into the computer. The process is essentially

similar to those already discussed. The code is usually then translated to Unicode or ASCII.

QR (Quick Response) codes are two-dimensional codes, similar to bar codes, but with

larger data capacity. QR codes are read with a camera. They have achieved widespread use

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 323

CHAPTER 10 COMPUTER PERIPHERALS 323

FIGURE 10.22

UPC and QR Bar Codes

Bar code QR code

because they are readily captured with mobile
devices. The QR software positions and sizes
the image with the aid of large squares in three
corners and a smaller square set in from the
fourth corner. There are a number of different
standard formats, with different levels of detail
and different capacities, ranging from about
25 to more than 4000 alphanumeric charac-
ters. The QR code can also be used to hold
numbers, binary data, and Kanji ideographs
(Figure 10.22).

MAGNETIC STRIPEREADERS Magnetic stripe readers are used to read alphanumeric data
from credit cards and other similar devices. The technology used is very similar to that used for
magnetic tape.

RFID INPUTAND SMARTCARDS RFID (Radio Frequency IDentification) is an inexpen-
sive technology that can be used to store and transmit data to computers. RFID technology
can be embedded in RFID tags or “smart cards” or even implanted in humans or animals.
One familiar type of RFID tag is shown in Figure 10.23. An RFID tag can store anywhere from
a few kilobytes to many megabytes of data. Using radio waves, RFID tags can communicate
with a nearby transmitter/receiver that captures and passes the data as input to a computer
for processing. Most RFID data is alphanumeric, although it is also possible with some RFID
systems to provide graphical images, photographs, and even video. RFID technology is used
for a wide variety of applications, including store inventory, theft prevention, library book and
grocery checkout, car key verification, passport identification, cargo tracking, automobile toll
and public transportation fare collection, golf ball tracking (!), animal identification, implanted
human medical record storage, and much more. Some RFID tags are intended primarily as
read-only devices that respond to an active reader with information. Automobile toll systems
usually fall into this category. Conversely, smart credit cards are typical of read-write RFID
devices that can be altered as needed. For example, one can add value to a transportation card
as needed when traveling (Figure 10.23).

VOICE INPUT It is currently possible and practical to digitize audio for use as input data.
Although most digitized audio data is simply stored for later output or is processed in ways
that modify the sound of the data, the technology necessary to interpret audio data as voice
input and to translate the data into alphanumeric form has improved in recent years and is

FIGURE 10.23

An RFID Tag used at WalMart

Chip

Antenna

now popular for use in mobile devices for texting and other uses,
as typified by “Siri”, the Apple iPhone application. The translation
process requires the conversion of voice data into sound patterns
known as phonemes. Each phoneme in a particular language repre-
sents one ormore possible groupings of letters in that language. The
groupings must then be matched and manipulated and combined
to form words and sentences. Pronunciation rules, grammar rules,
and a dictionary aid in the process. The understanding of sentence
context is also necessary to correctly identify words such as to, too,
or two. As you can see, the task is a daunting one! Progress has
being made, however, and it is expected that voice input will be a
major source of alphanumeric input in the foreseeable future.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 324

324 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

OPTICAL CHARACTER RECOGNITION Image scanners, which are discussed separately
in the next section, are used to scan printed pages, or in some instances printed photographs.
The scanner output can be used to scan images, but can also be used with optical character
recognition (OCR) software to convert the image into alphanumeric data form. Early OCR
software required the use of special typefaces for the scanned image and produced a lot of
errors. The amount of proofreading required often nullified any advantage to using the scanner.
As OCR software continues to improve, the use of scanners to read typed text directly from the
page has increased and will undoubtedly be a growing source of alphanumeric data input. OCR
is also sometimes used with digital camera input.

A variation on OCR is also used to read specially encoded characters, such as those
printed magnetically on checks. Another variation, handwriting recognition, is used to identify
characters entered as input to a graphics tablet pad or the touch screen of a tablet computer,
personal digital assistant, or cell phone. This technology continues to improve, but is still
limited to small quantities of data, carefully printed. Attempts to extend character recognition
to scanned documents and to characters written in cursory script are still marginal in
performance, although are being used in carefully controlled situations, such as reading the
amount on a bank check being deposited at an ATMmachine.

Scanners

As noted above, scanners are the primary means used to input paper images. Although video
frame grabbers and cameras can also be used for this purpose, scanners are generally less
expensive and more convenient. Some scanners are built into printers.

There are three primary types of scanners, flatbed scanners, sheet-fed scanners, and
handheld scanners, but all three work similarly and differ only in the way the scan element is
moved with respect to the paper. In a flatbed scanner, the paper is placed on a glass window,
while the scan element moves down the page, much like a copymachine. In a sheet-fed scanner,
a single page of paper is propelled through the mechanism with rollers; the scan element is
stationary. Handheld scanners are propelled by the user over the page.

Regardless ofwhichmeans is used, the basic operation is the same.The scanningmechanism
consists of a light source and a row of light sensors. As the light is reflected from individual
points on the page, it is received by the light sensors and translated to digital signals that
correspond to the brightness of each point, one pixel at a time, row by row, into a stream
of binary numbers. Software in the computer converts the raw data into a standard bitmap
image which can be processed or stored in the usual ways. Color filters can be used to produce
color images, either by providing multiple sensors or by scanning the image three times with
a separate color filter for each pass. The resolution of scanners is similar to that of printers,
approximately 600–2400 points per inch.

Multimedia Input

DIGITAL CAMERAS AND VIDEO CAPTURE DEVICES Nearly every mobile device and
most personal computers include one or more image sensors that can be used to acquire images
and video. Self-contained digital cameras and video cameras can also be used; photographs and
video from these devices can also be transferred to a computer for storage and processing.

All of these devices work similarly. The light from a lens is focused on an image sensor.
The image sensor is an integrated circuit that consists of a matrix of light-sensitive receptors,

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 325

CHAPTER 10 COMPUTER PERIPHERALS 325

laid out in the same way as a bitmap. Color filters separate the light to generate three separate
values for each pixel. An electronic raster scan mechanism is used to collect and digitize the
data from the sensor to form a bitmap image. For video, the process is repeated frame by frame
until stopped.

Because the amount of data generated for a single image is large (a common value is 8.1
megapixels × 3 or more bytes per pixel for example), mobile devices and most other cameras
compress and convert still images to jpeg format and video to one of the video formats discussed
in chapter 4, although some self-contained cameras allow the direct transfer of raw still images
to a computer for more precise processing control.

AUDIO INPUT Every mobile device has a microphone, as do most personal computers.
Other audio input devices can be connected through the USB ports. Audio is converted to
binary form and an appropriate format using the techniques and formats discussed inChapter 4.

Mobile Devices

The development of versatile mobile computer technology, combined with the wide-spread
availability of broadband connectivity, has led to the rapid acquisition of smartphones and
tablets. As a result, sysytem designers have gained the ability to create applications that
take advantage of the mobile environment and, in the process, have produced a disruptive
technology that has revolutionized the acceptance and use of computer technology by the
general public.

In addition to conventional computer-like applications—e-mail, calendar, phone, texting,
and instant messaging, Web surfing, and the like—computer-based mobile devices have
become location devices, cameras, video phones, navigators, exercise tools, alarm clocks, memo
recorders, flashlights, smart credit cards, miniature radios and TVs, and who knows what else?
Businesses create applications that use mobile computing for targeted marketing, sales, and
services that move well beyond previous computer usage.

Additional input sensors that identify and measure parameters in the local environment of
the device provide the data needed for this new class of applications. The additional input param-
eters can be used alone or combined with other, more conventional features, databases, Web
data, etc. to create new, powerful, essential applications that move the mobile phone or tablet
from the “computer” or “phone” category into that of an essential personal and business tool.

We list and briefly describe a few of themost useful input sensors that are commonly found
on mobile devices:

n A GPS radio receiver provides input from navigation satellites, allowing the device to
identify the user’s current location. Combined with data from the Web the device can
display a map of the local area, for example, or discover a highly rated nearby
restaurant or interesting shop. It can provide a virtual view of the neighborhood, or
store and retrieve the location of your car in a parking lot. Businesses can use
localized data to make special offers to users in the area. And that’s just the beginning
of the possibilities. (We note in passing, that, even with the GPS deactivated, cell
tower and local WiFi site mappings can be used to produce similar location data,
although with reduced accuracy.)

n Linear accelerometers measure changes in velocity, or acceleration, along an axis.
Three orthogonal accelerometers measure acceleration along x and y, lateral and
longitudinal respectively, on the face of the device, plus z, perpendicular to the device.

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 326

326 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Accelerometers are sensitive to the pull of gravity; at rest, an accelerometer

measurement reads approximately 9.8 meters/second2 toward the center of the Earth.

Therefore, applications must compensate for this value by knowing the orientation of

the device when performing calculations. Magnetometer and gyroscope sensors can

be used for this purpose.

n Gyroscope sensors measure rate of angular rotation. Three orthogonal gyroscope

sensors can be used to determine the roll, pitch, and yaw of a mobile device.

n Magnetic field sensors measure the strength of a magnetic field. Three orthogonal

sensors can determine the orientation of a device relative to the Earth’s magnetic

field, but are also sensitive to magnets and metals that can distort the field. Popular

applications include compasses and metal detection applications.

n Near-field communication (NFC) technology is an extension of RFID technology,

discussed earlier. The typical range for NFC technology is only about four

centimeters. NFC components are either active or passive. Smartphones have active

sensors, which create a standardized low-power radio frequency magnetic field that

can interact with other nearby NFC components. An active NFC sensor can read data

from a passive NFC tag or can exchange data with another active sensor. The NFC

sensor in a smartphone or tablet can be used for data exchange with another device

simply by placing the two devices in close proximity; for example, it can be used for

contactless payment systems, although security of such interactions is an ongoing

issue.

Other sensors sometimes seen include ambient light sensors, pressure sensors, barometer

sensors, temperature sensors, and proximity detectors.

10.9 NETWORK COMMUNICATION DEVICES
It is impossible to overemphasize the fact that, from the perspective of a computer, a network

is simply another I/O device, a device that, like a disk, offers input to applications on the

computer and receives output from applications on the computer. Like other I/O devices, there

is a controller, in this case a network interface unit (NIU) controller or network interface
card (NIC) that handles the physical characteristics of the connection and one or more I/O

drivers that manage and steer input data, output data, and interrupts.

Nearly every current computer system is supplied with one or more Ethernet network

interface cards as a basic part of the system. Wireless Ethernet (Wi-Fi), and Bluetooth network

interface cards are also commonplace. Mobile devices usually provide cell technology, Wi-Fi,

and Bluetooth.
The interface between a computer and a network is more complicated than that for most

other I/O peripherals. Data must be formatted in specific ways to communicate successfully

with a wide range of application and system software located on other computers. The computer

also must be able to address a large number of devices individually, specifically, every other

computer connected to the network, whether connected directly to the local network, or

indirectly connected through the Internet. Unlike many device controllers, NICs must be

capable of accepting requests and data from the network, independent of the computer, and

must be able to provide interrupt notification to the computer. Security of communication is

an important concern, whereas locally attached devices normally require only minimal security

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 327

CHAPTER 10 COMPUTER PERIPHERALS 327

considerations. Many of these concerns are handled with protocol software in the operating

system. The NIC is responsible only for the electrical signals that connect the computer to

the network, either directly or through a communication channel, and for the protocols,

implemented in hardware, that define the specific rules of communication for the network.

These protocols are called medium access control protocols, or MACs. We note in passing

that every NIC and network device throughout the world has a unique address called a MAC

address that can be used to identify the specific device and its characteristics.

The hardware aspects of the network interface are considered more fully in Chapter 14. A

deeper look at the fundamentals of networking infrastructure, including types of networks, the

nature of communication channels, media, the movement of data across a network, protocols,

and the operation of the Internet, is described in Chapters 12 and 13.

SUMMARY AND REVIEW
This chapter provides an overview of the workings of the most common computer peripheral

devices. Peripheral devices are classified as input devices, output devices, and storage devices.

We began by demonstrating that storage can be thought of hierarchically, with registers themost

immediately available form of storage, followed by memory, and then the various peripheral

devices. We discussed the trade-offs that make each form desirable for some purposes.

Following this general introduction, we introduced flash memory, and discussed its

applications, strengths, and weaknesses.

Next, we showed the layout and explained the operation of various forms of disk, including

hardmagnetic and optical.We showedhow the performance factors, capacity, and various speed

measures are obtained. For each device we showed how a block is identified and located. We

noted the difference between the concentric tracks used on magnetic disks and the spiral tracks

used on many optical disks. We explained the difference between CAV and CLV operation.

The discussion of disks is followed by a similar discussion for magnetic tape.

The display is the most important output device. We explained the process used to

produce a display, from the bytes in memory that represent individual pixels to the actual

output on a screen. We showed how colors are determined for the display. We introduced

the graphical processing unit, a coprocessor designed to off-load from the CPU the extreme

processing requirements needed to produce high-quality display images. We also showed the

basic technology for the liquid crystal display.

There are a number of different technologies used in printers. We described laser printers

and inkjet printers, the most important current technologies.

The chapter continues with a brief discussion of keyboards, various pointer devices,

scanners, multimedia devices used generally for input, plus some of the sensors that are used

specifically for input on mobile devices. We conclude with a brief consideration of the network

as an input/output device, a discussion to be expanded greatly in later chapters.

FOR FURTHER READING
Much of the discussion in this chapter reviews material that you have seen before, probably

in an introduction to computers course. Any good introductory textbook will also serve as

a further reference for this chapter. In addition, there are several good books that describe

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 328

328 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

I/O devices. White [WHIT07] provides straightforward explanations of many I/O devices.

Mueller [MUEL08] contains comprehensive treatments of memory, disk storage, optical disks,

video hardware, and more. The Web provides detailed treatments of most of the topics in this

chapter.

KEY CONCEPTS AND TERMS

active matrix (LCD)

aspect ratio

average seek time

bar code

block (of data)

CD-ROM

color depth

constant angular velocity

(CAV)

constant linear velocity

(CLV)

cylinder

data streaming

direct access storage devices

(DASDs)

DirectX

disk array

disruptive technology

drive array

DVD

encoders

fault-tolerant computers

file server

flash memory

formatting

graphical processing unit

(GPU)

graphics tablet

hard disk drive

impact printer

inkjet printer

interblock gap

laser printer

latency time

liquid crystal display (LCD)

majority logic

medium access control

(MAC)

mirrored array

mounted

multiple zone recording

near-field communication

(NFC)

network interface card (NIC)

network interface unit (NIU)

controller

off-line storage

OLED (organic

light-emitting diode)

display

online secondary storage

OpenCL

OpenGL

parallelization

parked (position)

passive matrix (LCD)

peripherals

phonemes

pixel

pixel density

PostScript

primary memory

QR code

raster scan

redundant array of

inexpensive disks (RAID)

resolution

RFID

rotational delay

rotational latency time

scan code

secondary storage

sectors

seek time

server

smart card

solid-state drive (SSD)

storage area network (SAN)

streaming

striped array

touch screen

track

transfer time

true color

zone bit recording (ZBR)

zone-CAV recording

(Z-CAV)

READING REVIEW QUESTIONS

10.1 Peripheral devices can be categorized into three classes. What are the three classes?

Give an example of each.

10.2 State at least three reasons why storage in a computer is organized hierarchically.

10.3 What is the advantage of flash memory over RAM? What is the advantage of RAM

over flash memory?What is the advantage of flash memory over magnetic hard disk?

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 329

CHAPTER 10 COMPUTER PERIPHERALS 329

10.4 Draw a circle representing one platter surface of a hard disk. On your drawing show

an example of a track, of a sector, and of a block.

10.5 Draw a sector representing one platter surface of a hard disk with sixteen sectors. On

your drawing show a track, the sectors, and a single block. Place a magnetic head

somewhere on your drawing. Show on your drawing the seek time, latency time, and

read time for the block that you drew on the disk.

10.6 Suppose a disk is rotating at 7200 rpm. What is the minimum latency time for this

disk? What is the maximum latency time for this disk?

10.7 What is a disk array? What advantages does a disk array offer over those of a single

disk?

10.8 How does the layout of a typical optical disk differ from that of a magnetic disk? How

many tracks does a standard single-layer CD-ROM contain?

10.9 What are the advantages and disadvantages of magnetic tape as compared to other

peripheral storage devices?

10.10 What do the numbers 1920 × 1080 represent when describing a display?

10.11 How many pixels are there in a 1024 × 768 display? What is the picture ratio of this

display?

10.12 A recent Apple iPad has a resolution of 2048 × 1536 and a diagonal scan size of

9.7 inches. What is the picture ratio of this display? What is the pixel density?

10.13 What is true of the red, blue, and green pixel values if the color of the pixel is white?

What if it’s black?

10.14 Explain the purpose of a GPU. What is the relationship between the CPU and a GPU

and the display?

10.15 Explain how a raster scan works.

10.16 WhatdoesOLEDstand for?HowdoesOLEDtechnologydiffer fromLCDtechnology?

10.17 What are the two types of printers in primary use today?

10.18 What is the measure used to indicate the resolution of a printer?

10.19 Name at least three user input devices other than touch screens that are commonly

found in smartphones and other mobile devices.

10.20 What does NIC stand for?

EXERCISES

10.1 Explain why it is easy to perform read and write in place on a disk but not on a tape.

10.2 What are the advantages of flash memory over hard disk storage? What are the

advantages of hard disk over flash memory storage? What are the advantages of both

hard disk and flashmemory storage over RAM?What is themajor advantage of RAM

over other types of storage?

10.3 A multiplattered hard disk is divided into 1100 sectors and 40,000 cylinders. There

are six platter surfaces. Each block holds 512 bytes.

The disk is rotating at a rate of 4800 rpm. The disk has an average seek time of

12msec.

a. What is the total capacity of this disk?

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 330

330 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

b. What is the disk transfer rate in bytes per second?

c. What are the minimum and maximum latency times for this disk? What is the

average latency time for this disk?

10.4 The average latency on a disk with 2200 sectors is found experimentally to be

110msec.

a. What is the rotating speed of the disk?

b. What is the transfer time for one sector?

10.5 Old-fashioned twelve-inch laser video disks were produced in two different formats,

known as CAV and CLV. The playing time of a CLV disk is approximately twice that

of a CAV disk, although the number of tracks, track width of the tracks on the disk,

and amount of data per video frame is the same. Explain why this is so.

10.6 A disk consists of two thousand concentric tracks. The disk is 5.2 inches in diameter.

The innermost track is located at a radius of 1/2 inch from the center. The outermost

track is located 2 1/2 inches from the center. The density of the disk is specified as

1630 bytes per inch along the track. The transfer rate is specified as 256,000 bytes per

second. The disk is CLV. All blocks are of equal size.

a. The innermost track consists of ten blocks. How many bytes are contained in a

block?

b. How many blocks would the outermost track contain?

c. The capacity of the disk is approximately equal to the capacity in bytes of the

middle track times the number of tracks. What is the approximate capacity of

the disk?

d. What is the motor rotation speed when reading the innermost track? The

outermost track?

10.7 Why is the average seek time for a hard disk much shorter than for a CD-ROM or

DVD-ROM?

10.8 There is a current proposal to cut the size of an individual bit in a DVD-ROM in half

so as to increase the capacity of the disk. This would cut both the width of the track

and the track length required per bit in half. If the current capacity of a DVD-ROM

is approximately 4.7 GB, what would be the capacity of the new “high-density”

DVD-ROM?

10.9 Atypicalpublishedpageconsistsof approximately forty lines at seventy-fivecharacters

per line. How many published pages of 16-bit Unicode text would fit on a typical

600MB CD-ROM? How many published pages of text would fit on a netbook

computer with an 80 GB flash memory?

10.10 A high-quality photographic image requires 3 bytes per pixel to produce sixteen

million shades of color.

a. How large a videomemory is required to store a 640× 480 image during display?

A 1600 × 900 image? A 1440 × 1080 image? A 2560 × 1440 image?

b. How many 1920 × 1080 non-compressed color images will fit on 4.7 GB

DVD-ROM?

10.11 A 1024 × 768 image is displayed, noninterlaced, at a rate of thirty frames per second.

a. If the image is stored with 64K-color resolution, which uses 2 bytes per pixel,

how much memory is required to store the picture?

Englander c10.tex V2 - November 28, 2013 9:49 P.M. Page 331

CHAPTER 10 COMPUTER PERIPHERALS 331

b. Howmuch videomemory is required to store the picture as a “true color” image,

at 3 bytes per pixel?

c. What is the transfer rate, in bytes per second, required to move the pixels from

video memory to the screen for the “true color” image?

10.12 For a motion picture image it may be necessary to change every pixel in the image as

many as thirty times per second, although usually the amount of change is somewhat

smaller. Thismeans that without data compression or other tricks that a large number

of pixel values must be moved from main memory to video memory each second to

produce moving video images. Assume a video image on the screen of 1 1/2′′ × 2′′,
with a pixel resolution of one hundred forty dots per inch and a frame rate of thirty

per second. Calculate the required data transfer rate necessary to produce the movie

on the screen. Do the same for an image of 3′′ × 4′′.

10.13 The cost of a monitor increases rapidly with increasing bandwidth. The bandwidth

of a monitor is measured roughly as the number of pixels displayed on the screen per

second. Calculate the bandwidth for a 1920-pixel by 1080-pixel display that generates

an image every 1/60th of a second.

10.14 A 1600-pixel by 900-pixel display is generated on a 14-inch (diagonal) monitor.

a. How many dots per inch are displayed on this monitor?

b. What is the size of an individual pixel? Would a 0.26mm pixel resolution

monitor be sufficient for this display?

c. Repeat (a) and (b) for a 1280 × 720 display.

10.15 What is the actual resolution of a gray scale picture printed on a 600-dot-per-inch

laser printer if the gray scale is created with a 3 × 3 matrix?

10.16 In printer jargon, “replaceables” are the items that are used up as part of the printing

process. What are the replaceables in a laser printer? In an inkjet printer?

10.17 Explain the difference in the method used to generate characters between graphics

mode and character mode display.

10.18 Explain the difference between pixel graphics and object graphics, and discuss the

advantages and disadvantages of each when being displayed.

10.19 What are the limitations of typewriter-type (formed character) printers that caused

them to fade from popularity?

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 332

CHAPTER 11

MODERN COMPUTER SYSTEMS

Copyright 1994 by Patrick Hardin/www.CartoonStock.com

http://www.CartoonStock.com

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 333

11.0 INTRODUCTION
It’s time to put all the pieces together!

In the last five chapters, we carefully explored various fundamental hardware compo-
nents of computer systems. We explained in detail the operation of the computer CPU
and introduced some of the many variations on the basic CPU design found in different
systems. You learned that there is a fundamental set of instructions that make up the
repertoire of a computer and that each instruction is performed in a series of simple steps
known as a fetch–execute cycle. You have seen examples of the differences in instruction
sets and memory addressing techniques that distinguish computers from one another and
extend the flexibility of the basic architecture. We explored various CPU architectures,
memory enhancements, and CPU organizations that expand the processing power of the
CPU.We also considered various techniques used to perform I/O operations. We explored
the advantages of adding additional CPUs in the form ofmultiprocessing and of off-loading
operations into additional processors such as GPUs built into I/O modules. In addition,
we presented the workings of various peripheral devices. You have also seen some of the
interactions between the different components in the computer system. You’ve learned
that various buses tie everything together.

The primary goal of this chapter is to complete our discussion of computer system
hardware by showing you how all these pieces fit together in realmodern computer systems.
Considering the system as a whole will also give us the opportunity to study some of the
ways in which computer designers are meeting the demand for more computing power.

Today’s software places tremendous demands on all components of a computer
system. Forty-five years ago, an IBM mainframe computer was supplied with a maximum
of 512KB of primary memory. The performance of this machine was measured at
0.2 millions of instructions per second (MIPS). Today, a personal computer or tablet
with that level of performance would be considered unusable for most applications. It
wouldn’t even be adequate for a cell phone! Graphics and multimedia applications, in
particular, require performance far in excess of previously acceptable levels. Most modern
computers perform at levels measured in billions of instructions per second or more.
Supercomputers can perform trillions of instructions per second! There is a continuing
demand for higher and higher levels of performance, driven by the desire to solve complex
problems that requiremore computer power, aswell as bymarket needs andby competition.
As you’ll see, we’ve even learned to tie computers together into massive networks and
clusters and grids to accumulate even more computer power for the massive problems
that require ever-increasing computer capability, creating distributed systems that divvy
up the processing required to solve sophisticated problems in physics, weather analysis,
searches for medical cures, complex financial, economic, and business analyses, even the
search for extraterrestrial intelligence.

Obviously, individual components—CPU,memory, I/Omodules, and the connections
between them—have been optimized to maximize computer system performance. Con-
sidering the system as a whole allows further advances in performance, which result from
system integration. Individual components are designed to work together in such a way

333

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 334

334 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

that overall performance is enhanced beyond the performance of each component. This concept
is known as synergy.

Much of the discussion in this chapter is devoted to innovations in computer system design
resulting from a synergistic approach to system integration. An important consideration in
this discussion is the means used to interconnect the various components to achieve effective
integration. This chapter introduces bus and channel computer system architectures that
attempt to optimize interconnectivity goals, as well as maximize I/O throughput and fast
storage capability.

Some of the new techniques in computers are improvements in technology, design, and
implementation: improved materials, manufacturing techniques, and circuit components and
better ways of performing the same task that enhance the operation of a particular system
component. Others are architectural changes: new features and implementation methods
that change in a fundamental way the design of the system.1 Many of the innovations
and enhancements that are used to achieve high performance are a fundamental part of
modern systems. The terminology that names and describes these techniques is a basic part
of the vocabulary of computing. To analyze, purchase, and manage modern business systems
intelligently, it is important to understand these techniques.

In Chapters 7–10, we provided the conceptual framework for a computer system, and
analyzed the operations and methods used by the individual components. In this chapter,
we focus on the modern computer system as a whole. Section 11.1 puts together everything
that we’ve discussed up to this point and shows you the organization of complete, modern,
high-performance computer systems. Perhaps surprisingly, the model presented is relatively
independent of system size or CPU type; it applies across the board, from the embedded system
found in a car, to the cell phone or game controller or PC laptop, to the mainframe system used
in the largest businesses.

Although computer power has increased tremendously, one continuing challenge is the
ability to support the massive amounts of input/output, including networking, as well as
storage requirements that accompanymodern computer usage. There are a number of different
approaches in use. Enhanced traditional bus approaches are suitable for smaller systems,
particularly with specialized high-speed buses, such as PCI-Express, USB, SATA, and Intel
Thunderbolt, designed for this purpose. Larger systems, particularly mainframe computer
systems, supplement their I/O capability with specialized I/O processors that off-load much of
the I/O processing to separate I/O equipment to achieve extremely high I/O data transfer rates.
The best known of these is IBM’s channel architecture, a technology that has been continually
updated to achieve the ever-increasing I/O capability. In Section 11.2, we present discussions
of the various means used to support current I/O and storage requirements.

Many modern computer systems satisfy the demand for computing power by integrating
multiple processors. In Chapter 8, Section 8.5, we introduced multiprocessing, or multicore, as
one possible solution. Modern processor chips routinely provide multiple CPU cores for this
purpose. In Section 11.3, we briefly present an overview to coupling entire computer systems
together as an alternative approach. Section 11.4 introduces clustering as one means to couple
individual computer systems together to provide more power. Multiprocessing and clustering

1It is useful to note that computer science establishes the ultimate theoretical capability of a computer to solve a

particular problem. None of the developments in computer architecture have changed the fundamental capability of

the computer in this regard.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 335

CHAPTER 11 MODERN COMPUTER SYSTEMS 335

are often used together to provide the tremendous computing power offered inmany large-scale

modern systems, including supercomputer systems. In fact, modern large-scale computers are

predominantly designed as carefully integrated combinations of multiprocessing and clustering

technology.

In Section 11.5, we consider briefly special purpose methods used to achieve even more

computing power. One important method is to purchase or lease computing power from a

cloud service. Cloud computing is an important resource for this purpose, particularly when

it is necessary to expand capability on extremely short notice. An alternative method used to

achieve large amounts of computing power for specialized projects utilizes spare CPU capability

available when individual computers on a large network facility, such as the Internet, are

working at less than full capacity. This technique is known as grid computing.

Interestingly, despite the previous discussion, it is sometimes not practical to utilize the

available CPU capability of a system effectively. A programmer may wish to test a program,

for example, that presents a security or failure risk to the production work of the system. Or

there may be a need for systems to support a number of tasks in a facility, where it may be

more cost effective to provide and support a single large system rather than a number of smaller

systems. One important solution to situations such as these is a technique called virtualization,
in which an individual computer system is used to simulate multiple computers, all sharing

the same CPU and I/O facilities. The simulated machines are known as virtual computers
or virtual machines. Each virtual computer runs its own operating system and programs.

Special hardware and software are designed to assure isolation between the various virtual

computers, to prevent unwanted interactions, such as security breaches. Many organizations

consider virtualization an important tool in building large, cost effective, system solutions.

Many of the cloud services described in Chapter 2 are implemented as virtual computers.

Indeed, Infrastructure as a Service (IaaS) extends the virtual computer directly to the client

customer. We mention virtualization here because, in a sense, it is the opposite side of the

coin—now that all this computing power is available, how do we put it to use? More discussion

of virtualization is presented in Chapter 18.

Of course, there are other parts of the system we have yet to consider, in particular, the

operating system software and the interconnection of individual computing systems into larger

systems using network technology. But, hey, it’s not possible to discuss everything all at once!

Those discussions take place in later chapters.

11.1 PUTTING ALL THE PIECES TOGETHER
At this point we have explored the major components that make up a computer system: one

or more CPUs, primary storage, I/O modules, various I/O devices, and the buses that connect

everything together. You have seen how the CPU processes instructions, and the kinds of

instructions that are executed. You have seen the different methods that are used to transfer

data between an I/O device and memory for use by the CPU. You’ve seen that the use of

DMA and a completion interrupt is an effective and efficient way to move large blocks of data

quickly. You’ve also seen that programmed I/O is more effective for small amounts of data,

particularly when speeds are extremely slow. You’ve seen how interrupts can be used together

with programmed I/O to keep a pipeline of slow, character-based I/O datamoving, for example,

from a program to a modem.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 336

336 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 11.1

A Basic Personal Computer System

Clock

SSD

SATA
port

Memory USB
interface NIC

USB
port

Ethernet
port

Wi-Fi

CPU(s)
and cache
memory

Graphics
and Video
controller

Audio
controller

Hard
disk

Disk
controller

Bluetooth
controller

Bluetooth

Monitor

Video
camera

Keyboard
controller

Bus

In OutVGA HDMI

In this section, we are concerned about the blocks and interconnections that make up the
organization of a computer system. There are various ways to interconnect the CPU, memory,
and I/O peripherals, each with their own advantages and disadvantages.

The blocks that make up the essential components of a personal computer or workstation
are shown as a simplified diagram in Figure 11.1. The major components in this model are one
or more CPUs, memory, one or more hard disks or solid-state disks, the keyboard and pointing
device, and built-in graphics, video, and audio capability.

Theunit typically alsoprovidesUSB,HDMI,VGA,Ethernet, andWi-Fi interface controllers
and ports (perhaps, also, Bluetooth, SATA, and/or Thunderbolt). These ports can be used for
network connections, printers, mice, external drives, SD cards, and other devices. The package
also includes plug-in connectors for additional option boards that will interface to the master
bus. For comparison, Figure 11.2 is an equivalent system diagram for a typical smartphone.
Although the I/O devices are somewhat different, the similarities between the two diagrams is
obvious.

Figure 11.3 shows the block diagram of a central processor for a large mainframe computer
system. Again, the main components in this system are multiple-core CPU chips with cache
memory, regular memory, and a variety of disks and other I/O devices. Instead of a bus, I/O
devices are connected to the processor with an I/O channel system. In this diagram, the central
processor includes the CPUs, memory, and I/O interface components. Specialized internal
buses interconnect the various parts of the central processor. The keyboard and video display
connected to the central processor are used only for control of the system. Other terminals
and workstations are connected to the processor indirectly, through the I/O system or by
network. In addition, multiple central processors are typically coupled together as a cluster (see
Section 11.4) to form a large, integrated computer facility that can share programs and data.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 337

CHAPTER 11 MODERN COMPUTER SYSTEMS 337

FIGURE 11.2

A Typical Smartphone System

SD
memory

SIM
card

Internal
memory

Clock Memory
controller

USB
interface NIC

Micro
USB port

Wi-Fi

. . .

Various
other

I/O devices,
gyroscopes,

accelerometers,
etc.

CPU(s)
and cache
memory

Graphics
and Video
controller

Audio
controller

Cellular
modem

Bluetooth
controller

Screen

Camera

Touch screen

In Out GPS
Micro
HDMI

Back screen
LEDs

Of course, the system diagrams of Figures 11.1–11.3 are simplified to give you the big
picture. Just to remind you of some of the important concepts familiar to you from previous
chapters, Figure 11.4 expands the CPU block of these figures to show more detail.

A clock controls the operation of the CPUs. Interrupt and direct memory access (DMA)
capabilities are provided to enable rapid and efficient I/O processing. L1 and, possibly, an L2

cache memory for each core is included, along with a shared L2 or L3 cache, all connected
together with some type of internal bus structure.

Traditionally, the system configurationwas implemented with a CPU chip and one ormore
support chips. with separate integrated circuits for each of the various functions. Gradually,

manufacturers have moved more components into the CPU chip module itself to increase
performance, leaving less work for the support chips to do. Today most of the functions shown

in the diagram are combined into just a few very-large-scale integrated circuits (VLSIs)
(usually just called chips or support chips). For example, the CPU modules in recent Apple

iPhones, iPads, and iPods include multiple CPU cores, memory, and even a multiple-core
graphics processing unit, all within the module. The same is true for the chips used in personal

computers, game controllers, workstations, and other larger computers. The literature refers to
these all-inclusive modules as systems-on-a-chip, abbreviated SoC.

In most computer systems, the CPU, memory, and other major components are mounted
to wiring on a printed circuit board known as a motherboard. Figure 11.5 is a photograph of

a recent personal computer motherboard. The wiring on the motherboard interconnects all of
the peripheral cards that are plugged in to connectors, together with circuitry that steers I/O to
the CPU and memory. In general, this arrangement is known as a backplane. A predominant

example of a backplane bus is the PCI-Express bus, used to plug-in various peripherals in
a personal computer. Each peripheral has its own address. The wiring in this configuration

carries data, addresses, control signals, and power for the peripheral cards. The motherboard

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 338

338 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 11.3

A Mainframe Computer System

Cache
CPU

Central
Processor

Processor storage

Cache memory

I/O channel system
assist processor

Control
unit

I/O
device

I/O
device

I/O
device

I/O
device

Control
unit NIU

Network(s)

Channel

Terminals

Workstation
controller

Coupling
facility

To other
processing

units

System keyboard
and monitor

Processor
controller

Cache
CPU

FIGURE 11.4

Major CPU System Components

Memory

GPU

Bus slots and
onboard peripheral

controllers

PCI-Express
bus

interface

ISA
bus

interface

Bus
slots

Clock

ROM-BIOS

CPU

Keyboard
controller Memory

cache
controller

Cache
memory

DMA
controller

Interrupt
controller

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 339

CHAPTER 11 MODERN COMPUTER SYSTEMS 339

FIGURE 11.5

A Personal Computer Motherboard

SATA disk connectors
Southbridge controller

Memory

PCI bus slot

PCI-Express slots

CPU with heat
sink and fan

Power supply
connectors

Back connectors,
VGA, DVI, USB,
Ethernet, Audio

P
ho

to
 b

y
au

th
o

r
in this figure supports up to 32 GB of memory, has built-in graphics processing with HDMI

video output, provides connections for multiple PCI-Express plug-ins, and offers multiple USB,
Thunderbolt, SATA storage, and Gigabit local area network I/O interfaces.

Figure 11.6 shows the layout of a typical desktop PC, including the motherboard, case,

and other components. The wiring for the primary buses that interconnect the CPU and
its peripheral components is printed on the motherboard. Connectors on the motherboard

combine with the frame of the case to hold the motherboard and plug-in peripheral cards in

place, and, of course, the connectors on the motherboard provide the electrical connections
between the peripherals and the buses. The motherboard on laptops and on mobile devices

is much smaller, obviously, but the concept is similar. The mainframe computer is packaged

differently, since the mainframe computer is much larger physically, as well as operationally.
Still, the essential components and operations are similar to those of the personal computer.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 340

340 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 11.6

The Components in a Typical Desktop PC

Power
supply

5.25"
and
3.5"
drive
bays

Processor,
heatsink,
and fan

ATX
motherboard

USB,
VGA, HDMI,

mouse,
keyboard,
network,

audio, etc.
ports

11.2 SYSTEM ARCHITECTURE
Modern computer systems are highly dependent on fast, reliable I/O. Even small systems must

be capable ofmanaging the large amounts of I/O data that are required for storing and retrieving

large files on disk, communicating with a high-speed network, and managing a high-resolution

display. In business use, a system must manage large databases, satisfy client requests for Web

services, manage customer accounts, and print large numbers of invoices, to name just a few of

the many I/O intensive tasks.

There are two basic I/O system architectures in common use: bus architecture and channel

architecture. The bus architecture is used in almost all embedded and mobile devices, personal

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 341

CHAPTER 11 MODERN COMPUTER SYSTEMS 341

computers, workstations, and in some mainframe computers. The channel architecture is
found primarily in IBMmainframe computers. The newest IBMmainframes use a combination
of both.

Basic System Interconnection Requirements

Figure 11.7 illustrates the basic pathways required in a CPU-memory-I/O system. There are
five basic components involved in the interfaces between the CPU, memory, and the I/O
peripherals:

1. The CPU or CPUs.

2. The I/O peripheral devices.

3. Memory. Except for single pieces of input or output that can be transferred directly
from a register, data from input or intended for output is normally stored at least
temporarily in memory, where it can be accessed by the appropriate program, even
for situations preferring programmed I/O.

4. I/O modules, controllers, or I/O channel subsystem units. The I/O modules act as
interfaces between the CPU and memory and one or more I/O devices. As you recall
from Chapter 9, an I/O module receives commands from the CPU and provides the
control of the I/O device or devices so as to execute those commands. It also responds
to requests from devices and provides interrupt service to the CPU to process those
requests. The I/O subsystem provides similar services for mainframe channel
architectures.

5. The buses connecting the various components together. The buses may be an integral
part of the architecture of the system or may simply be a point-to-point connection
between other components, depending on the architectural design.

The pathways include a required connection between the CPU and the I/O module or
channel subsystem to enable the CPU to issue programmed I/O commands to the I/O module
and also for the I/O module to provide service request, special condition, and completion
interrupt signals to the CPU. The connection from the I/O module to the device or devices is
required both for I/O module control of the devices and as a passageway for the data. There
must be a connection between the I/O module and memory for DMA to take place.

FIGURE 11.7

Basic CPU-Memory-I/O Pathway

Memory

CPU I/O
module

I/O
device

Source: From PCI Local Bus Specification Production Version 2, c PIC-SIG.
Reprinted with permission.

Although the illustration implies that these
pathways represent actual direct connections
between the various component blocks, this
is not actually true. The connections could
be direct or they could be electronic switches
that provide the connections at the time they
are required. For example, memory and the
I/O modules could each be attached to dif-
ferent buses that are connected together when
DMA takes place, or the I/O module could
be attached by separate connections both to
memory and to the CPU. These differences
constitute different computer system architec-
tures, representing different vendors, different
goals, and different design philosophies.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 342

342 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 11.8

A Generalized Bus Interface Configuration

External CPU bus

External
bus unit

Cache
memory

Memory bridge
(Northbridge)

Main
memory

USB
port

controller

Disk
controller

Cache
memory

C
ac

he
bu

sCPU
core

External
bus unit

C
ac

he
bu

sCPU
core

I/O bridge
(Southbridge)

Network
interface

Ethernet

Wi-Fi

Graphics
processing

unit
Display

DVD

Hard
disk

SATA buses

PCI bus

PCI-Express

PCI-Express

USB
ports

In nearly every system, one or more buses form the backbone for connection of the various
components, memory and I/O, to the CPU. In simplest form, a single system bus could connect
the CPU to memory and to all the various modules that control I/O devices. Of course this
approach would subject the overall performance of the system to the limited bandwidth of a
single bus. More commonly, the system bus in a bus architecture connects through one or more
bus interface circuits to a number of different interconnected buses.

A simple generalized bus interface configuration might appear as shown in Figure 11.8.
In this commonly found configuration, two so-called bridges divide the workload. Speed-
critical components, in particular, the CPU andmemory, are interconnected through amemory
bridge, sometimes called the northbridge in computer literature.More traditional I/O is typically
connected using various standard buses, such as SATA, Thunderbolt, and USB, through I/O
controllers and PCI-Express buses to an I/O bridge, sometimes called the southbridge. A high-
speed bus interconnects the two bridges. (You can see by looking ahead to Figure 11.13 that
a similar configuration would apply to the channel architecture, with the southbridge module
and its I/O bus branches replaced by the channel system.)

EXAMPLE
As a specific example of a modern, performance-oriented system implementation, Figure 11.9
shows the system architecture for Intel’s “Haswell” series of CPU chips. A Haswell chip contains
two or more CPU cores, each with its own local cache memory, shared cache memory, one or
more graphics processing units, and a system agent. The system agent is the equivalent of the

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 343

CHAPTER 11 MODERN COMPUTER SYSTEMS 343

memory bridge and part of the I/O bridge. It provides a connection to memory, as well as a
bridge to a number of PCI-Express buses. Other I/O bridge functions are provided by the direct
media interface. The various CPU chip components are interconnected with an internal bus that
is implemented as a ring for faster bus access and transport. Each core has two connections to
the bus ring, which Intel calls stops (as in “bus stops”). There are additional stops at the system
agent and at the GPU.

FIGURE 11.9

Intel “Haswell” System Architecture

Cache
memory

CPU
core

GPU(s)

Cache
memory

Ring bus

Last level cache memory (L2 or L3)

CPU
core

Cache
memory

CPU
core

Display

System
agent

Integrated
memory

controller
Memory

Direct
media

interface
PCI-

Express

 • • •

Bus I/O

As previously noted, nearly all modern computing systems, including workstations, personal
computers, mobile devices, and embedded systems, are based on I/O bus architecture. The use
of standard peripheral buses generally simplifies the purchase, setup, and proper operation of
peripherals from multiple vendors by allowing the connection of I/O devices that have been
standardized across a wide range of equipment types and manufacturers.

For example, numerous manufacturers produce various I/O modules mounted on printed
circuit cards that plug into the PCI-Express bus that is provided on the backplane of nearly every
current “PC-compatible” model. (Older legacy PCI bus interface capability is also available
on most midsize and mainframe computers, including recent IBM mainframes.) On many
systems, PCI-Express bus interconnections provide interfaces to disk controllers and network
controllers, as well as to controllers for other I/O buses and ports, such as USB and Thunderbolt.
The I/O bridge circuitry that we previously discussed connects memory and the appropriate
controller together during DMA transfers, which provides the required CPU-memory-I/O
link. PCI-Express controller cards provide graphic display support, audio capability, modem
connections, Ethernet interfaces, and many other functions, demonstrating the advantages of
standardization. Although Intel originally designed the PCI backplane, it and its PCI-Express
successor have become standards through common use and agreement.

For most current personal computer motherboard designs, the PCI-Express bus has
assumed predominance as the primary gateway bus of choice from the CPU chip or I/O bridge
to the various peripheral controllers. PCI-Express has essentially replaced an older bus, called
simply PCI. PCI-Express is a serial I/O bus that was designed to replace the parallel PCI bus that

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 344

344 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

long dominated backplane design. PCI-Express is designed to be data and signal compatible
with components designed for the PCI bus. The original PCI bus was a “32- or 64-bit” (meaning
32 or 64 bits of data at a time) backplane bus that provided plug-in capability for various I/O
modules that control external serial and parallel ports, sound cards, network cards, and the like.
The PCI bus provided 32 or, optionally, 64 lines that were used for both addresses and data,
labeled AD00 through AD31 or AD63, plus various control and power lines. The power lines
provided required power for the plug-in peripheral interface cards. The control lines controlled
timing, handled interrupts, arbitrated between different devices seeking to use the bus, and
performed other similar functions. All lines, other than the power lines, carried digital signals. A
connection diagram of the PCI bus, which is still provided as a legacy I/O interface in most PCs
and many other computers, is shown in Figure 11.10. We have included this figure because it
illustrates clearly themany different types of functions thatmust be provided for in any interface.

Unlike the parallel PCI bus, however, the PCI-Express is made up of a bundle of thirty-two
serial, bidirectional point-to-point buses. Each bus consists of two simplex line pairs that carry
data, addresses, and control signals simultaneously in both directions at a current maximum
rate of approximately 2 GB per second in each direction. Each two-way bus is called a lane. The
pin connections for PCI-Express can be found at wikipedia.org/wiki/PCI_Express and various
other Web sites.

One end of each lane is connected to an I/O device controller, or perhaps to a controller
for another bus. The other end of each lane is connected to a shared switch that is capable of
connecting any two pairs of lanes together. The controller also provides connections between

FIGURE 11.10

PCI Bus Connections

AD31-00

PAR

AD63-32
PAR64

FRAME

Address
 and data

PCI command

Interface
control

Error
reporting

Bus
arbitration

REQ64
ACK64
C BE7-4

LOCK

INTA

INTC
INTD

TRST

INTB

TRDY
IRDY
STOP

DEVSEL
IDSEL

PERR
SERR

REQ
GNT

CLK
RST

TDI
TDO
TCK
TMS

C BE3-0

Required pins Optional pins

JTAG
test
support

Interrupts

Interface
control

64-bit data
and address
extension

Source: From PCI Pin List, c PIC-SIG. Reprinted with permission.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 345

CHAPTER 11 MODERN COMPUTER SYSTEMS 345

the serial lanes, the system bus, and the memory bus, converting the format as necessary
between serial and parallel. The controller can use multiple lanes to achieve higher data rates
where necessary. The switch is similar to those used in networking. Most modern computer
systems have adopted lane-based technology to achieve the high throughput being demanded
by today’s customers, particularly in the area of video display.

With the exception of graphic displays and Ethernet devices, most current I/O devices:
keyboards, mice, printers, andmany other devices are designed to operate from a standard port.
(A reminder from Chapter 7: a port is simply a connector at the end of a bus into which a device
can be plugged.) General control for the port is provided by a port controller. Internally, the
port controller connects to a standard bus, typically PCI-Express. Specific device control is built
into a controller within some devices and into the computer software programs that control I/O
from these devices. These programs are called device drivers. Device drivers are either built into
the computer’s operating system, or they are installed into the operating system as supplements
to the system. Other devices are controlled by controllers and device drivers associated with
the particular bus port. In the past, most printers, modems, and mice were connected to
computer systems through general I/O bus ports called parallel and serial ports. Today, these
devices, plus disk drives, DVD-ROMs, graphics scanners, video cameras, and other devices
are more commonly connected to the computer system through one of several high-speed
general interface bus ports or through a network connection. Interface buses in common use
for this purpose include USB, SCSI, SATA, Thunderbolt, and IEEE 1394 buses. USB stands
for Universal Serial Bus; SCSI stands for Small Computer System Interface. SATA stands for
Serial Advanced Technology Attachment; it replaces an older standard, IDE (Integrated Drive
Electronics), and is used primarily as an interface for magnetic and optical disk storage devices.
A variation, eSATA, extends the SATA bus to support external storage drives. Thunderbolt is a
recent general purpose high-speed port technology developed jointly between Intel and Apple
that combines and extends the technologies of PCI-Express and DisplayPort; DisplayPort was
originally designed for high-resolution video displays. The IEEE 1394 bus is officially named
after the specification that describes it, but is more often called FireWire or, less commonly,
ilink. FireWire is nearly obsolete.

The Universal Serial Bus was created to offer a simple, effective way to plug external devices
into a computer as they are required. USB-3 is capable of a full duplex data transfer rate up
to 10 GB per second, which makes it suitable for use with a wide range of devices. Globally,
USB can be viewed as a multipoint bus. Multiple devices can be connected to USB. USB uses a
hierarchical connection system, in which hubs are used to provide multiple connection points
for I/O devices. Although the host controller is aware of the location of each of the hubs, the
hubs simply pass data through, so that it appears that each I/O device is directly connected
to the bus at the host controller. The USB topology is illustrated in Figure 11.11. Devices are
hot-pluggable. This means that they can be added and removed at any time without powering
down the system. Removal of a hub removes all of the devices attached to the hub. Data is
transferred over the USB in packets. Each packet contains a device identifier and a small set of
data, representing all or a portion of the data to be transferred by that device. Thus, a single
device cannot tie up the system. The USB protocol allows packets to be scheduled for delivery at
regular time intervals. This technique is known as isochronous data transfer. This assures that
a device transmitting data such as audio or video at a regular rate will receive sufficient bus time
to prevent data dropouts, as long as the aggregate requirement of all the devices connected does
not exceed the maximum data transfer rate of the bus. The USB supports up to 127 devices. A
system can support multiple USB host controllers to increase this number even further.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 346

346 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 11.11

USB Topology Example

Host
controller

Root
hub

Hub Hub

Hub

Device

Device

Device Device Device Device

USB cables

Earlier versions of the USB cable hold four wires. Two lines make up a single data pair
to carry the data, as well as address and control information. The other two lines can be used
to provide power to devices connected to the bus. New versions of the USB cable have five or
seven additional pins for additional full duplex data capability. USB connectors at each end of
a cable are polarized to force a hierarchical structure emanating from the host controller.

Like USB, Thunderbolt is a serial, multipoint bus specification. Thunderbolt is designed
for extremely fast data transfer. Thunderbolt is designed to support a data transfer rate of
up to 10 GB per second in each direction through each of two channels, which is suitable
for the transfer of high-definition video with sound, while simultaneously supporting other
applications with high-speed data transfer requirements. Up to six devices can be daisy-chained
or connected together with hubs. With daisy-chaining, each device is plugged into the previous
device, as shown in Figure 11.12. Thunderbird connections can be made using either copper
or fiber optic cable. The copper cable also supplies DC power, which is not available with the
optic cable; however, the optic cable will work over distances of up to 50 meters. Like USB, I/O
devices may be connected or removed during operation, and, like USB, a packet protocol that
can guarantee performance for isochronous data transfer is used for data transfer and control.

The SCSI bus is an older parallel bus designed for “universal” I/O interfacing. It is rarely
found on current personal computer systems, but is still in use on larger systems. SCSI
devices include disk drives, optical drives, tape drives, scanners, and other I/O devices. Like
Thunderbolt, the SCSI bus is designed to be “daisy-chained”. SCSI I/O devices each contain
their own specific built-in device controller. A serial version of SCSI, called iSCSI or SCSI
over IP, allows devices to be connected over networks, including the Internet. There is a brief
description of iSCSI in Chapter 13.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 347

CHAPTER 11 MODERN COMPUTER SYSTEMS 347

FIGURE 11.12

Daisy-Chaining a Thunderbolt Bus

System
bus

Thunderbolt port

Thunderbolt
bus

controller

I/O
device

I/O
device

I/O
device

Terminator

A large number of modern I/O devices, particularly network-attached hard disks and
printers, are designed to connect to a network, rather than to ports on an individual computer.
This allows users to share use of the device among multiple computers. It also allows the use
of wireless devices, using Wi-Fi or Bluetooth as the connecting medium. Network-attached,
large-capacity storage devices serve to store large files, such as video downloads, and to provide
system backup.

Channel Architecture

An alternative I/O architecture is used by IBM in all their mainframe computers since the late
1970s. The channel architecture in the zEnterprise EC12, IBM’s most recent mainframe system
as of this writing, can handle I/O data at rates of hundreds of gigabytes per second. The basic
architecture, known as channel architecture, is shown in Figure 11.13. The channel architecture
is based on separate I/O processors known as a channel subsystem. The I/O processor acts as
a separate computer just for I/O operations, thus freeing the computer CPU for other tasks.
The channel subsystem executes its own set of instructions, known as channel control words,
independent of the CPU. Channel control words are stored as “programs” in memory, just like
other computer instructions.

FIGURE 11.13

I/O Channel Architecture

Channel paths Channel path

Devices Device Device

CPU

Channel
subsystem

Control
unit

Control
unit

Control
unit

Memory

The channel subsystem is made up of
subchannels, each of which is connected through a
control unitmodule to an individual device by one
or more channel paths. The control unit module
serves the same role as a device controller. The
design allows multiple channel paths between the
channel subsystem and a control unit, so that if
one is busy another can be selected. Up to eight
different channel paths can exist for a particular
I/O device. Channel paths can also be used to
interconnect computers into a cluster. Information
about the characteristics of each subchannel and its
corresponding device are stored in memory. Each
subchannel is operated by executing a channel
program, also stored in memory, made up of
channel command words. The primary purpose of
channel programs is to transfer data using DMA
between an I/O device and memory.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 348

348 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Several different channel programs are available to perform different I/O functions, such
as read a block, write a block, and so on, for each type of device on the system. The channel
subsystemmanages all I/O, independent of theCPU, and also supplies the appropriate interrupts
and status information to the CPU upon completion of an I/O operation or if a problem occurs.
The channel subsystem can perform several I/O functions simultaneously.

A CPU program initiates an I/O operation by issuing a START SUBCHANNEL command to the
channel subsystem. The START SUBCHANNEL command specifies the subchannel number, which
identifies the device, and the particular channel program to be executed. The channel subsystem
attempts to identify an available channel path and initiates data transfer. If there is no available
channel path, the channel subsystem simply holds the request until a path becomes available.
In this way, the channel subsystem frees the CPU from having to keep track of the status of
the I/O operation. The IBM architecture also provides I/O instructions to halt and resume the
subchannel operations, to test, and to configure the subchannels. There are six different types
of channel control word instructions:

n Read

n Write

n Read backward (used for tape)

n Control (used for controlling a device, such as rewinding a tape or positioning a disk
head)

n Sense (used to determine the status of a device)

n Transfer in channel (equivalent to a JUMP instruction)

Although these instructions are used specifically for I/O, in other respects they are similar
to other computer instructions. Each instruction has its own op code and address field. Each
instruction results in the execution of a fetch–execute cycle by the channel subsystem. A simple
channel program appears in Figure 11.14. This program performs a disk read operation. The
channel control word instructions are designed in such a way that a single I/O operation can
transfer a number of blocks. The blocks do not have to be contiguous on the disk or tape, nor
do they have to be contiguous in memory. This feature provides a lot of flexibility.

Physically, the channel subsystem is connected to the CPU by a bus, and the various control
units and I/O devices are also connected by buses. Conceptually, the channel architecture is
very different, however, and the buses connecting the various parts of the I/O system are not
identified as such.

FIGURE 11.14

Simple Channel Program

CONTROL
SEARCH ID
TRANSFER IN
 CHANNEL
READ

Instruction

SEEK operation, to place head over correct track
Read ID of record on track and compare with specified ID
Branch if unequal, back to previous instruction
 to look at next record
Read the record, DMA into memory

Comment

Source: From IBM Mainframes, 2nd Ed., N. Prasad and J. Savit, Copyright c 1994, by McGraw-Hill
Companies. Reprinted by permission.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 349

CHAPTER 11 MODERN COMPUTER SYSTEMS 349

Blurring the Line

It is worth observing that there has been a recent significant blurring of the line that distinguishes
between I/O buses, I/O channels, and networks. PCI-Express, USB, Thunderbolt, and FireWire
are all examples of recent I/O buses that have many of the characteristics of networks. PCI-
Express uses a switch similar to that found in Ethernet networks to connect lanes together.
PCI-Express, USB, Thunderbolt, and FireWire all break messages into packets for transmission
across the bus, and protocols that provide the capability to access the bus, to identify and
reconstruct messages, and prevent conflict. Although USB is built on a hierarchical, hub-based
structure that clearly identifies a single host, FireWire devices share the bus, in a manner
similar to a network. There may be multiple hosts. The FireWire protocol establishes means
for multiple hosts to access the bus without conflict. The FireWire protocol standard defines
physical, data link, and transaction layers, as well as a bus configuration manager that bears
resemblance to a shared session layer. These are network features that will be presented in
the next chapter. FireWire also supports network-type components, such as hubs, repeaters,
and bridges. This blurring reflects an important tendency to adapt and combine the use of
various architectural features and components in computer system and data communication
technology in an ongoing effort to provide ever more system power and capability.

An interesting example of convergence between I/O and networking is a protocol, Ficon
over IP, that enables IBMmainframe computers to extend access to I/O devices over a network.
Ficon is an IBM fiber optic high-speed channel component used to connect IBM peripheral
devices to an I/O channel processor. The protocol allows a user to connect a Ficon-based I/O
device anywhere there is a network connection and control it from an IBM mainframe I/O
processor at the user’s location.

11.3 COMPUTER INTERCONNECTION:
A BRIEF OVERVIEW

In Chapter 8, we first introduced the concept of multiprocessing. Multiprocessing systems are
also known as tightly coupled systems. In multiprocessing we increase processing speed by
introducing multiple CPUs, or cores, to share the processing load. Each core shares access to
memory and to I/O resources.

As an alternative approach, it is possible to build systems in which the computers are tied
together loosely. By this we mean that each computer is complete in itself, each with its own
CPU, memory, and I/O facilities. Data communications provide the link between the different
computers. Such systems of computers are called loosely coupled systems. Some authors refer
to these systems asmulticomputer systems. Loosely coupled systems enable program and data
sharing and exchange between complete computers.

Some loosely coupled systems share a disk resource or a small amount of memory that
can be used to communicate between the different computers. The determining factor that
distinguishes a loosely coupled system is the autonomy of each computer within the system
complex or network.

There are twobasicmethodsof connecting loosely coupled computers.Clustered computers
are connected directly together with a dedicated communication channel or link that passes
messages between machines. The key to the cluster concept is that the cluster is designed to
operate as a single autonomous system sharing a workload. Conversely, networked computers
operate more independently. The data communication channel between machines is used to

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 350

350 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

exchange and share data and external resources, rather than to share the actual processing. Our
focus in this chapter is on clusters. Networks are discussed in the next part of this book.

11.4 CLUSTERS
Overview

A cluster is a group of loosely coupled computers configured to work together as a unit. Unlike
the tightly coupled multiprocessing system, each computer in a cluster is a complete unit, with
its own CPU, memory, and I/O facility. In fact, the individual computers in a cluster may,
themselves, be multiprocessing systems. Each computer in the cluster is called a node. Unlike a
network, the computers in a cluster are intended to appear to users as though they are a single
machine. The clustering is transparent to the users.

IT experts identify four primary, interrelated reasons for creating clusters of computers:

1. Clustering is used to increase the available computing power by combining the power
of the individual systems. Since each computer can process data independently, the
increase is approximately proportional to the number of nodes in the cluster. Brewer
[BREW97] and others have noted that clusters are inherently scalable, both
incrementally and absolutely. An installation can add nodes incrementally as
additional computing power is needed. Furthermore, it is possible to create a cluster
with a large number of nodes. Such a cluster will have more computing power, at
lower cost, than would be possible using even the largest single machine. Clustering is
a fundamental technology in the design of high-performance computing systems. The
processing of problems that are amenable to parallel processing can be broken into
subtasks and distributed among different nodes and solved in parallel.

2. Clustering is used to create fault-tolerant systems. Since each computer in the cluster
is capable of stand-alone operation, a failure in one node will not bring down the
entire system. Instead, the software controlling the cluster can simply switch
processing to other nodes in the cluster, an operation called failover. A single point of
failure is defined as a single component in a system that, upon failure, prevents
further operation of the system. It is possible to design a cluster in which there is no
single point of failure. This can be an extremely important advantage in systems that
perform critical applications.

3. Clustering is used to create high-availability systems. The computers in a cluster can
be geographically disbursed over a wide area. A user would normally access the
closest computer system in the cluster, creating a natural balancing of loads between
the different nodes in the cluster. Software can attempt to balance the processing
workload evenly between different nodes even further. The failure of a system in one
area, due to an area power failure, perhaps, simply shifts the load to other computers
in the cluster. Backup is also simplified.

4. Clustering is used for load-balancing systems with large workloads. For example, the
email accounts for a large organization can be divided up alphabetically and assigned
to different machines for storage and processing.

Classification and Configuration

There are two primary models used for clustering, the shared-nothingmodel, and the shared-
disk model. Both models are shown in Figure 11.15. The computers in a cluster are connected

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 351

CHAPTER 11 MODERN COMPUTER SYSTEMS 351

together with a high-speed messaging or communication link between the nodes, plus software
that controls the behavior of each node and the interaction between nodes. At least one of the
nodes will provide access to the outside world and manage the cluster. On both models, the
link is used to pass messages and data between nodes.

Different nodes of a cluster may be located in the same physical cabinet or may be located
miles apart, provided there is a way to interconnect the high-speed messaging link, and, if
applicable, the shared-disk links. Since it is possible to use network connections for the links,
there is no inherent limitation in the distances between nodes in a cluster; however, high
security is a requirement if the links pass over a public network, such as the Internet. In fact,
creating a cluster with widely separated nodes can also serve to protect the overall system and
its data from catastrophe at a single location, particularly if the shared disks are also available
at both locations.

Each computer in the shared-nothing model has its own disks or solid-state drives as a
data source. In the shared-disk model, individual computers may or may not have their own
local disk storage, depending on the application and the desired configuration. The link can be
used to move data between the disks as conditions change. For example, the workload can be
divided by partitioning the data between the nodes so that work requests made of each node will

FIGURE 11.15

Cluster Models

CPU(s) Memory

I/O director

High-speed
messaging link

(a) Shared-nothing model

Local
disk(s)

CPU(s) Memory

Local
disk(s)

CPU(s) Memory

High-speed
messaging link

(b) Shared-disk model

Local
disk(s)

Shared disk or SSD storage,
network attached storage,
or storage area network

CPU(s) Memory

Local
disk(s)

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 352

352 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

be relatively independent and approximately equal. This method has the advantage that little
communication is required between nodes because each node is essentially independent. The
primary difficulty with this configuration is that it is not always possible to plan for and predict
accurately the partitioning. As a result, individual nodes may be over-utilized or under-utilized,
and the efficiency of the cluster as a whole suffers.

In the shared-diskmodel, datamay be shared between cluster nodes because of the presence
of common data storage that is accessible to every node. This model offers the advantage of easy
dynamic workload balancing and, with careful design, high availability, and fault tolerance.
Availability is enhanced on many systems by the use of RAID technology for the shared disks.
(See Chapter 10 if you need a reminder.) Although these benefits make shared-disk clusters
attractive, there is a cost in software complexity. The software that controls the cluster must be
capable of maintaining coordination and synchronization of the data that is being processed by
different nodes, to prevent corruption of the shared data and to assure accurate retrieval.

For example, suppose that one node attempts to retrieve data that has been modified in
memory, but not yet stored on the shared disk, by another node. This type of activity must be
controlled. (If this doesn’t seem too problematic to you, consider the following example: you
make two ATM transactions in quick succession and they are processed on different nodes of a
cluster. Without synchronization, your deposit could be wiped off the record!)

Despite the additional complexity and planning effort, clustering has grown in importance
in the last few years, because it provides a scalable and reliable way to attain large amounts
of computer power at relatively low cost. Nearly all supercomputing capability is based on
clustering technology.

Beowulf Clusters

Beowulf clusters are simple, highly configurable clusters designed to provide high performance
at low cost. Beowulf clusters consist of multiple computers connected together by a dedicated,
private Ethernet, which serves as the link between the computers in the cluster. The cluster can
be configured either as a shared-nothing or shared-disk model. Each node contains a CPU,
memory, an Ethernet connection, and, sometimes, hard disks, and other peripherals. Beowulf
clusters are generally configured with one of two types of computer components.

n COTS, or commodity-off-the-shelf components are simply inexpensive computers
connected together to form a Beowulf cluster. In many cases the COTS components
are older PCs scavenged from the scrap pile, and connected together to do some
useful work.2

n Blade components, often called blade servers, are computers mounted on a board
similar to a motherboard that can be plugged into connectors on a rack. Figure 11.16
shows a typical blade together with a blade enclosure that holds blades. A typical
blade has one or more multiple-core CPUs, memory, I/O options, including Ethernet
capability, and, often, one or two dedicated hard drives for local access on the blade.
The backplane of the rack provides power and the local area network connection that
interconnects the blades. Some enclosures also support separate high-speed links for
shared storage. The blades themselves are built from standard off-the-shelf parts.

2Some recent publications claim that COTS stands for commercial-off-the-shelf components; however, that

definition is more restrictive than the original designers of the concept intended.

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 353

CHAPTER 11 MODERN COMPUTER SYSTEMS 353

FIGURE 11.16

Blade and Rack of Beowulf Cluster

C
o

ur
te

sy
 o

f
D

el
l I

nc
.

C
o

ur
te

sy
 o

f
D

el
l I

nc
.

The network connection between the nodes is not accessible from outside the cluster,
which eliminates security concerns other than the authentication required to maintain cluster
integrity. Instead, a Beowulf cluster generally has a single front-end gateway server thatmanages
the nodes in the cluster andprovides connectivity to the outsideworld. It also provides amonitor
and keyboard to be shared among all of the nodes in the cluster. Each node is configured
with its own hardware, its own operating system, and its own Beowulf clustering software. In
a COTS system, it is common to see a variety of hardware from different vendors in use at
different nodes, but blade systems tend to be more uniform. Linux is generally the operating
system of choice because of its flexibility. In addition to its own configurability, Linux provides
the tools needed to configure the cluster to include all the features of a powerful distributed
system. Beowulf clusters are ideal for use as Web servers because blades can be added or
removed as required to maintain performance levels under varying loads. Most systems allow
this operation to take place without powering down or rebooting the cluster. With their
distributed processing capability, Beowulf clusters can also be used effectively for shared or
parallel processing, where a single large task is divided into subtasks that can be processed
simultaneously by different computers within the cluster. The size of a Beowulf blade cluster
depends on the blade manufacturer and on the application. A small cluster may only contain
a few nodes. Conversely, some blade clusters used for high-performance computing contain
hundreds of individual nodes. As an example, a system that is used for research at the United
States National Institute of Health called Biowulf contains more than four thousand nodes.

11.5 HIGH-PERFORMANCE COMPUTING
Many interesting and important problems are not amenable to normal computer solution,
either because the problem is so complex computationally or because the volume of data to
be processed is prohibitively large. Example problems include the analysis of weather patterns,
the behavior of physics particles, models of the effects of various factors on global warming,
and prediction of the economic and social effects of a particular political policy. An important

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 354

354 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

characteristic of these problems is that the problem can be broken into pieces that can be
processed in parallel by separate, independent processors.

The field of high-performance computing, sometimes called supercomputing, arose in an
attempt tomeet the challenge of solving difficult problems that requiremassive amounts of com-
puting power. There have been a number of different approaches to high-performance comput-
ing, but recently developed systems tend to fall loosely into one of three architectural categories:

n Systems that are built from clusters of powerful machines or larger Beowulf blade
clusters. These were discussed in the previous section.

n Cloud systems. A problem can be spread across a number of virtual computers
supplied from a cloud.

n Systems that use the spare processing capacity of computers connected to a network.
Each computer is given a small portion of the task to process in its spare time. This
technique is called grid computing.

Grid Computing

Research byDavidGelernter [MAR92] and others demonstrated that it was possible to produce
supercomputer performance for processing large problems by distributing the problem and
using the spare processing time of personal workstations connected to a network. Much
additional research on grid computing has been done since then. Issues include effective
division of the workload, scheduling work, preventing interference with local processing,
effective use of the results, and security and privacy for the client machines. There have been a
number of projects that are attempting to solve large-scale problems using grid computing. One
interesting project is the SETI@home project, which is a systematic search for extraterrestrial
intelligence organized by the Space Science Laboratory of the University of California at
Berkeley [KORP00]. A radio telescope at Arecibo, Puerto Rico scans the sky for signals. An
entire sky survey returns about 39 TB of data for processing.

The processing algorithms allow the data to be broken into tiny chunks for analysis. More
than half a million active volunteers from all over the world receive chunks of data over the
Internet. Application software built into a screen saver analyzes the data when the client’s
system is idle and returns the results to the collection system at Berkeley, where the results are
stored in a giant database for analysis.

On a smaller scale, grid computing is moving into a number of large financial enterprises
to provide more processing capability for their employees by harnessing the combined unused
processing power of their servers and their end-user workplace computers to augment their
own machines for the fast solutions of large financial applications (Schmerken [SCHM03]).

SUMMARY AND REVIEW
We started by showing how the components of a computer are interconnected to form a
complete computer system.

Two different methods are commonly employed as architectures to connect the CPU,
memory, and I/O. The I/O channel method is used by IBM on its mainframe computers. The
bus method is used on most computers smaller than a mainframe. In the text we explain both
methods. We expand on the discussion of buses in Chapter 7 to include buses used for I/O,
including PCI-Express, USB, Thunderbolt, and SCSI. We show the layout for an I/O channel

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 355

CHAPTER 11 MODERN COMPUTER SYSTEMS 355

and discuss how it is used in practice. We noted the growing convergence between I/O bus

technology and network technology.

The emphasis in modern computers is on increasing amounts of power and capability. To

that end, computer designers have resorted to a variety of techniques to increase the amount

of capability in a computer system. In addition to increasing the raw power of individual

components, current technology relies on the high-speed interconnection of computers to

achieve the capabilities required of modern systems.

A number of autonomous computer systems, each with its own memory and I/O, can be

loosely coupled into a cluster or a network. Clusters represent a form of loosely coupled system

in which computers are interconnected with high-speed messaging links. A cluster consists

of multiple computers acting as one. Shared-nothing clusters utilize separate disks and data

partitioned and distributed among the systems in the cluster. Shared-disk systems provide

multiple system access to one or more shared disks that hold the data to be processed by all.

High-performance computing utilizes large numbers of interconnectedCPUsor computers

to provide large amounts of computing power. The three primary technologies are clustering,

cloud services, and grid computing.

FOR FURTHER READING
Mueller [MUEL13] has long provided an “indispensable” and thorough discussion of PC

hardware, with all its bells and whistles. Mueller publishes a new edition every year. The

best discussion of IBM mainframe architecture appears in Prasad [PRAS94]. This discussion

includes a detailed explanation of I/O channels. The cases in Supplementary Chapter 2 present

the features of the x86, POWER, and IBM zSeries system architectures. Although dated, the

basics of IBM systems have changed only in small, evolutionary ways. More recent accounts are

available in the Rebooks area of the IBM website.

There are a number of different buses, both internal and external, used to connect com-

ponents together. Discussions of the USB can be found in McDowell and Sager [McD99] and

Anderson [AND01]. FireWire is presented in Anderson [AND98]. PCI-Express is discussed in

Anderson [AND03]. Much additional information may be found on the Web. Simple expla-

nations of FireWire can be found at www.skipstone.com/compcon.html or at www.1394ta.org.

The USB specification is available at www.usb.org. PCI-Express bus developments are pre-

sented at www.pcisig.com. www.apple.com and www.intel.com both provide starting points for

discussions of Thunderbolt.

Good discussions of clustering can be found in Pfister [PFIS98], Brewer [BREW97], and

Nick et al. [NICK97]. The “Green Destiny” Beowulf cluster is described in [FENG02]. The

SETI@Home project is the best known example of grid computing. This project is discussed

in Korpela [KORP01]. Three readable introductions to grid computing are IBM Redbooks by

Jacobs et al. [JAC05], Joseph [JOS04] and Berstis [BERS02].

KEY CONCEPTS AND TERMS
backplane
Beowulf clusters
blade

channel control word
channel subsystem
cluster

commodity-off-the-shelf
(COTS)

device driver

http://www.skipstone.com/compcon.html
http://www.1394ta.org
http://www.usb.org
http://www.pcisig.com
http://www.apple.com
http://www.intel.com

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 356

356 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

distributed system

failover

FireWire

grid computing

hub

IEEE 1394 bus

isochronous data transfer

loosely coupled system

motherboard

multicomputer system

node

Serial Advanced Technology

Attachment (SATA)

shared-disk

shared-nothing

Small Computer System

Interface (SCSI)

subchannel

supercomputing

synergy

system bus

system-on-a-chip (SoC)

Universal Serial Bus (USB)

very-large-scale integrated

circuit (VLSI)

virtual computer

virtualization

READING REVIEW QUESTIONS

11.1 Explain what is meant by synergy.

11.2 What are the five basic hardware components that make up a computer?

11.3 What is the purpose of a bus interface or bus bridge?

11.4 Explain what you expect to find on a motherboard.

11.5 What is the predominant master bus found on modern personal computers? What
advantages does this bus offer over other buses?

11.6 What are major similarities and differences between the PCI-Express bus and the
PCI bus?

11.7 What are the advantages of USB as a means to connect peripheral devices to the
computer?

11.8 What is a topology? Describe the basic USB topology.

11.9 What are the advantages offered by I/O channel architecture, such as that used on
mainframe computer systems, over bus architecture?

11.10 What is a “loosely coupled” computer system? How does it differ from a “tightly
coupled” system?

11.11 Define cluster.

11.12 Briefly explain each of the four reasons for creating a cluster. Give an example of each
reason if you can.

11.13 What is a shared-nothing cluster?

11.14 Explain grid computing.

EXERCISES

11.1 Find a current computer ad in a magazine or newspaper or online. Identify each of
the featured items in the ad, show its position in the system block diagram of Figure
11.1, explain how it operates, and define its purpose in the system.

11.2 Figure 11.8 shows that a typical computer system is interconnected with a number
of different buses, both internal and external. The diagram includes multiple cache
buses, an external CPU bus, PCI-Express buses, a parallel PCI bus, SATA buses, USB
ports, and more. What are the advantages of providing multiple buses rather than
connecting everything together with a single bus?

Englander c11.tex V2 - November 28, 2013 9:52 P.M. Page 357

CHAPTER 11 MODERN COMPUTER SYSTEMS 357

11.3 Carefully explain the purpose of a bus interface.

11.4 What are the trade-offs in using a serial bus versus a parallel bus to move data from
one place to another?

11.5 As described in the text, the PCI-Express bus consists of thirty-two “lanes”. As of
January, 2009, each lane is capable of a maximum data rate of 500MB per second.
Lanes are allocated to a device 1, 2, 4, 8, 16, or 32 lanes at a time.

Assume that a PCI-Express bus is to be connected to a high-definition video
card that is supporting a 1920× 1080 true-color (3 bytes per pixel) progressive scan
monitor with a refresh rate of 60 frames per second. How many lanes will this video
card require to support the monitor at full capability?

11.6 Why is a multilane PCI-Express bus not subject to the same problem of skew as an
equivalent parallel bus? (See Chapter 7 if you need to review the concept of bus skew.)

11.7 How many PCI-Express lanes are required to support a 10 GB per second Ethernet
card?

11.8 PCI-Express, SATA, USB, FireWire, and Serial Attached SCSI (SAS) are all serial
buses used to connect external devices to a computer system. Locate the specifications
or descriptions of each type. Compare the features of each type. Compare the speeds
of each type.

11.9 Discuss the major differences, advantages, and disadvantages between bus I/O and
channel I/O.

11.10 Explain how the three primary conditions required for DMA described in Chapter 9
of the text are met by the I/O channel architecture.

11.11 Describe how you might use a cluster to provide fault-tolerant computing. Describe
the trade-offs between your solution and a single multiprocessor-based computer
system solution.

11.12 Describe how you might use a cluster architecture to provide rapid scalability for a
Web-based company experiencing rapid growth.

11.13 Obtain information and compare the features, capabilities, performance, and oper-
ational methods between Windows Server, Linux, and IBM zSeries clustering
techniques.

11.14 Clearly and carefully discuss each of the advantages of clustering.

11.15 How does a Beowulf cluster differ from other types of clusters?

11.16 Clusters and networks are both categorized as loosely coupled systems, but they serve
different purposes. Explain the differences in purpose between clusters and networks.

11.17 Find a current example of a large-scale grid computing project and describe it in as
much detail as you can.What is the purpose of the project?What is the problem being
addressed?How is grid computing beingused to implement a solution to the problem?

11.18 Cloud computing is a recent technology being marketed and used as a means to
provide off-site computing power to an organization. Locate information about
cloud computing and compare cloud computing with grid computing. In what ways
are they similar? How do they differ?

Englander p04.tex V2 - November 30, 2013 9:08 A.M. Page 358

PART FOUR

I
t is almost impossible to find a piece of computer-based equipment operating by itself,

without connection to other computers. This is true of laptop and desktop computers,

tablets, cell phones, automobile computers, even satellite TV receivers, and other computer-

embedded devices. Computer networks are an essential part of the infrastructure of modern

systems. Indeed, it would be fair to say that the Internet is an essential part of modern society

as a whole. The three chapters that make up Part 4 of this textbook consider different aspects of

the technology of data communication and networking.

Chapter 12 presents a careful, detailed overview of the essential features of networking. We

consider the basic requirements for communicating data through a network. The primary theme

is the basic concepts, nature, characteristics, and configurations of communication channels

and networks. Topics include various models for communication channels and networks; the

concepts of messages and packets; network topology; the classification of different types of

networks, ranging from local area networks to the Internet; and description of themajor devices

and media used to connect networks together.

Chapter 13 focuses predominantly on TCP/IP and Ethernet, the two related protocol suites

that, working together, are the basis for nearly all networking. First, a brief introduction to the

concept of a protocol communication suite and explanation of how a protocol stack works.

We then identify a few of the major networking applications that interact with the network,

The chapter then presents a careful, layer-by-layer, discussion of the role of each layer in the

transmission of a message through a network, starting from the physical layer, at the bottom,

and working upwards through the data link layer, the network layer, and the transport layer,

back to the application layer.We also include discussions of the various types of addresses—port

numbers, domain names, IP addresses, and MAC addresses—that are used, and of the domain

name system that ties the Internet together in a user-friendly form. We conclude Chapter 13

with very brief looks at three special topics: quality of service, security, and some alternatives to

TCP/IP and Ethernet that are in use.

Englander p04.tex V2 - November 30, 2013 9:08 A.M. Page 359

NETWORKS ANDDATA

COMMUNICATIONS

Chapter 14 introduces the basic technology that is used for data communication: analog

and digital signaling techniques, the methods used for sharing networks; and the characteristics

and use of different media; wire, fiber optic cable, and radio. This chapter concludes with a

brief introduction to three alternative radio-based technologies that are in common use, Wi-Fi,

cellular, and Bluetooth.

Thematerial in these three chapters could fill a book. In fact, it does evenmore than that—it

fillsmany books! It’s impossible to tell you everything you should know about networks, but at

least we’ve tried to give you a good head start!

359

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 360

CHAPTER 12

NETWORKS AND DATA
COMMUNICATIONS—AN
OVERVIEW

STONE SOUPC 2000 Jan Eliot. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 361

12.0 INTRODUCTION
In Chapter 10, we observed that a network connected to a computer could be viewed from

the perspective of the computer simply as another I/O device. Indeed, for many purposes,

this is an attractive and appropriate choice. As users, we don’t really care if a file that we are

using is stored on a local disk drive or on a cloud server located halfway ’round the world,

provided the file is readily accessible. As long as we can retrieve our printouts conveniently,

it is not important to us that our printer is actually an office printer being shared by others.

In Chapter 2, Figure 2.6, shown again in Figure 12.1, we viewed the network as a cloud. To

each computer in the figure, the cloud is simply another source of I/O. (Notice, by the way,

how this leads naturally to the concept of cloud computing.)

As an alternative point of view, the network represents an essential component

of modern technology infrastructure, providing the ability to interconnect computers,

storage devices, computer peripherals, mobile devices, video and audio devices, and, most

importantly, other networks. This makes it possible to share resources and services, to

share and exchange data and knowledge, and even to communicate and socialize. From this

perspective, a computer is simply another device connected to the network. In this view,

for example, a computer connected to a network might be masquerading as a telephone or

a display device for videos or a source of music or an automobile navigation system, using

the network as the medium of communication.

Both views are important and useful at different times. Often, viewing a network

connection as an I/O device is a very useful approach to system design and problem

solving, particularly if your goal as a user is simply to obtain data from a database stored on

a server somewhere on a particular network. On the other hand, if your job is to design and

implement, or maintain and administer a network, you must thoroughly understand the

design issues from the perspective of the technology and infrastructure of the network itself.

In this chapter,we are interested in the latter view.Wewill “open the cloud”, so to speak,

and study the basic concepts and infrastructure of network technology. As has been the case

throughout this text, our primary focus in this chapter is on broad fundamental concepts,

FIGURE 12.1

Basic Client–Server Architecture

client
server

Request Request

Service
response

Service
responsecommunication

channel

361

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 362

362 PART FOUR NETWORKS AND DATA COMMUNICATIONS

rather than the specifications and details of a particular type of network or methodology. In a

field as fast-changing as network technology, specifications can and will change. Basic concepts

are more stable and evolutionary. Even so, most of our specific examples in this chapter and the

next are based on TCP/IP and Ethernet, the prevalent implementations of network technology

at present and for the foreseeable future.

The primary thrust of Chapter 12 is to introduce the concept of a data communication

channel, and to explore its characteristics and configurations. Chapter 13 completes the process

by explaining in detail, step by step, the protocols and procedures for moving application data

through that channel, from a node entering one side of the imaginary cloud, through the cloud,

to a node on the other side, where the data will be retrieved by a matching application.

Section 12.1 discusses the importance of networking as amajor impact onmodern business

processes and user access to knowledge. Networking makes collaboration and cooperation

between organizations possible and practical. It facilitates direct interorganizational business

transactions. Through the Web, it provides new marketing, research, and sales channels. There

are many who would argue that the Internet is the most important social and business tool

ever created. As such, networking is an essential element in the study of computer system

infrastructure.

Section 12.2 introduces three simple examples of network models, offering a first look at

some of the criteria and requirements that form the basis for networking.

Section 12.3 serves as an overview to the fundamental concepts of data communication

and networking. It introduces the general requirements and considerations that a networkmust

meet to be effective and useful, as well as common components and common terminology that

are basic to network technology.

Section 12.4 expands the discussions of Sections 12.2 and 12.3 to explore communica-

tion models with the capability to manage multiple nodes, support, and provide transparent

conversion for a variety of channel technologies, share channel resources, and provide global

network addressing capability. This section provides an overview of different types of networks,

including local area networks (LANs), metropolitan area networks (MANs), wide area net-

works (WANs), and backbone networks. It also introduces the tools, types of configurations,

devices, and methods used to interconnect various types of networks, ultimately leading to an

introduction of the technology of the Internet.

Last, but not least, Section 12.5 provides a brief introduction to the standards organizations,

and to the specific protocols and other standards that serve as the basis for modern global

interconnectivity and pervasive computing.

12.1 THE IMPACT OF NETWORKING ON BUSINESS
PROCESSES AND USER ACCESS TO
KNOWLEDGE AND SERVICES

Although it is easy to think of a specific need for a communication between your system and

some particular source of data, the concept of networking is much bigger than that. Even

if we wanted to, it would be impractical to store all the information that we use daily on a

single machine. There is simply too much information “out there”, and our requirements and

needs for information change on a minute-to-minute basis. We would not have the expertise

to understand and store all of it knowledgeably, accurately, and intelligently. Instead, data

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 363

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 363

is stored and supplied on a distributed basis. Networks provide access to this data wherever
and whenever it is needed. Note that we use the word “data” in the broadest possible sense
of the word, to include programs, as well as traditional data, e-mail, music, streaming video,
instant messages (IM), cell phone texts, network-based telephony—indeed, anything that can
be communicated with bits and bytes.

This capability to store and access data across a vast network facility has revolutionized our
access to knowledge and has hadmajor impact both on individual quality of life and on business
processes and capabilities. At the personal level, we check our bank accounts and pay our bills
online.We check restaurant reviews on our smartphones when we go out to eat.We socialize on
facebook.com, express our thoughts on twitter.com, and network our careers at linkedIn.com.

At the organizational level, we access files, databases, and Web services to accomplish our
daily work. We use cloud services to back up our work and to run applications. More generally,
we rely on organizations that use a mix of traditional business practices and network access
to create products and services that were difficult to locate and obtain just a few years ago.
Companies such as Amazon and eBay have built their business models around the ability of
users to access a vast array of goods on their online stores through general network capability.
Companies such as Ford and Toyota use networking to communicate and collaborate (or
synchronize their business processes) with their suppliers, dealers, and customers, and use
the results to improve their production and their products. Music and video are downloaded
from media services, and stored and played on miniature portable devices that can be carried
anywhere. Goods that were available only in limited areas are now readily available everywhere
internationally. Marketing and advertising can be localized to meet an individual’s needs and
location. Information is located and obtained from information resources such as Wikipedia
and Google.

The same is true of interpersonal communication: texting, e-mail, instant messaging,
social networking, voice-over-IP Internet telephony, Internet multiplayer games, collaborative
work tools, real-time video conferencing, and more, convert the computer from a high-power
calculator to a ubiquitous communication device with access nearly everywhere; all of these
capabilities are dependent on computing devices with ready access to networking.

Thus, we can’t consider modern information system infrastructure without including data
communication technology as a fundamental component of the equation.

Despite the complex interactions implied by modern computing, most of the complexity
results from the large number of simple messages that are sent between the various computers
involved in the operations, rather than any inherent complexity in the basic process of
communication itself. Indeed, it is possible to reduce the basic ideas of networking to a few
simple basic ideas. (In a sense, the issue is analogous to the way in which complex programs are
constructed out of the simple instructions that make up basic computer program operations.)

No matter how complex the overall communication, the communication ultimately
reduces to a series of individual “messages”, each of which is a communication between a source
computing device and one or more receiving computing devices.

12.2 A SIMPLE VIEW OF DATA COMMUNICATIONS
Consider the similarity of data communication to the I/O methods that we have already
presented. In each case, a computer application program sends data to or receives data in
the form of “messages” from another device. For example, the “messages” in the Little Man

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 364

364 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Computer were three-digit numbers that were “communicated” with the user using the input

and output baskets as a communication channel. The communication in this case consisted

of two factors: the messages (the three-digit numbers) that were sent to or received from the

application program that was being executed and the medium of exchange (the I/O baskets.)

One important assumption that we made is that both the user and the program understood the

“protocol”, specifically themeanings of the three-digit numbers that represented the “messages”.

Another hint at the origins of data communication can be deduced from POTS, the

acronym for Plain Old Telephone Service. Again, the goal is communication of “messages”

between two end users. The messages in this case are conversations between the users. Of

course, the medium carrying the messages in this case is more complex. Assuming that you

have “land-line” service, copper wires (or, perhaps, fiber-optic cables) connect your phone to

a central office. Switching mechanisms at the central office connect your wire to the wire of

the party with whom you plan to communicate. Although there is additional complexity in the

communication channel due to the switching required to serve the large number of potential

users that may wish to communicate at a given time, the principal conceptual components are

the same: messages to be shared by users and a channel to transport the messages between

users. There is an implied “protocol” in this case also; namely, the assumption that both users

share a common language which they both can speak. (Gregory McDonald, in his novel, Flynn,

describes telephone protocol as follows: “Stick one end against the ear, bring the other end

close to the mouth, and make anticipatory noise, politely, if possible.”) For the telephone

system, there are also more subtle protocols that determine how the connection is made and

standards that establish the identities of the users in the form of “addresses” on the telephone

network—or to be more specific, telephone numbers. Figure 12.2 illustrates the layout for a

simple local-exchange telephone system. Of course we’ve pictured an old-fashionedmechanical

switching system; these days, it’s more likely to be electronic and digital, but you get the idea.

Although these two examples seem superficial and simplistic, they do establish three

essential ingredients for data communication: first, the data being passed between sender and

receiver represents messages that are to be shared among the parties to the communications,

second, there must be a communication channel that can capably and reliably transport the

FIGURE 12.2

A Simple Telephone System

Central switching
office

messages, and third, there must exist protocols that

establish accurate and appropriate meaning to the

messages that are understood by both senders and

receivers. The second example also raises the issues

of connectivity methods and addressing.

As a more realistic example of real-world

data communication, consider the communication

between a Web browser and a Web server. In this

case, themessage sent by the browser is a request for

a Web page to be sent by the server. Assuming that

everything works correctly, the response message

by the server is a Web page to be displayed on the

browser. The standard protocol used for this com-

munication is HTTP, hypertext transfer protocol.

Figure12.3 shows the formatof this communication.

Note that HTTP messages are plain text.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 365

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 365

FIGURE 12.3

An HTTP Request and Response

GET /webapps/login/ HTTP/1.1
Host: blackboard.bentley.edu
Date: Wed, 23 Jul 2008 22:01:44 GMT
User–Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;
 en–US; rv:1.8.1.16) Gecko/20080702 Firefox/2.0.0.16
Connection: close

HTTP/1.1.200.OK(CR)(LF)
Date:.Wed,.23.Jul.2008.22:01:46.GMT(CR)(LF)
Server:.Apache/1.3.37.(Unix).mod_ssl/2.8.28
 OpenSSL/0.9.8d.mod_jk/1.2.21(CR)(LF)
X–Blackboard–product:.Blackboard.Academic.Suite™
 7.2.383.23(CR)(LF)
Pragma:.no–cache(CR)(LF)
Cache–Control:.no–cache(CR)(LF)
Set–Cookie:.session_id=@@C296D067A2A703542F0C959C25\
 314FFE(CR)(LF)
Set–Cookie:.JSESSIONID=0115BEF92808AF234DD8843E\
 509AD2BD.root;.Path=/webapps/login(CR)(LF)
Connection:.close(CR)(LF)
Transfer–Encoding:.chunked(CR)(LF)
Content–Type:.text/html;charset=UTF–8(CR)(LF)
(CR)(LF)
<HTML content>

HTTP message sent:

HTTP response received:

The request from the Web browser consists of the keyword GET (in ASCII or Unicode,

of course) followed by the location of the web server on the host computer, as derived

from the Universal Resource Locator (URL), in this case /webapps/Login/. The request also

contains the version of HTTP used by the browser HTTP/1.1, and the URL of the host,

blackboard.bentley.edu, where the server resides. The HTTP request also provides the date and

time of the request, the name of the browser, and, if the request comes from a link, the name of

the referring URL that provided the link. (The referrer field in this case is omitted because the

user typed the URL directly into the browser URL field.) An optional section to the request can

also offer additional information, such as responses to questions on a Web form, for example.

These are usually the data that appear on the URL request line following a question mark. The

last line of the request closes the communication.

In its response message, the Web server identifies the version of HTTP that it is using and

a status code. The status code is accompanied by a brief explanation of the code, in this case,

“OK”. The server message also includes a date and time, the name and version of the server,

and information about the content. (Note, for example, that this website sets a cookie.) Under

normal conditions, this header data is followed by actual Web page content, most commonly

specified in HTML, a standard markup language.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 366

366 PART FOUR NETWORKS AND DATA COMMUNICATIONS

There are a number of useful observations to be made about this example, which is far
more representative of a real data communications situation than the previous examples.

n This example clearly represents a client–server model, as we defined it in Chapter 2.
The Web browser client requests services from the Web server in the form of Web
pages. In fact, most data communications are client–server based.

n The Web browser request requires an addressing method for the identification and
location of the Web server, since the request specifies the Web server only by its URL.

n Similar to the data formats discussed in Chapter 4, the protocol contains a mix of data
and metadata. There is information about the message, in addition to the message
itself.

n The nature of the communication channel connecting the sender and receiver nodes
is unspecified for this example, but possibly far more complex than those of the
previous examples. Although details of the channel must be resolved for the
communication to take place, you can see that the physical connection is independent
of the messaging. This suggests that a networking model must support at least two
independent means of communication: a message-sharing “connection” between
corresponding applications at the sender and receiver computers, and also a physical
connection with signaling that represents the messages being transported. In reality,
addressing individual nodes out of the many that are typically available in a large
multinetworked system, communication line sharing, and other issues require a
number of additional layers of communication management that will be presented in
Chapter 13.

As we just indicated, these examples do not attempt to present a full picture of the require-
ments for effective data communication. We chose to omit many important factors in order to
clarify the basic communication process. Some of the factors that we must consider include the
characteristics of the communication channels; the nature and formats of the interfaces with the
sender and receiver end points, usually referred to as hosts or end nodes; the nature and con-
tents of the messages; the means of transporting messages, where the distances between sender
and receiver are large and the routes complex; the association of network addresses with their
physical location; the means of sharing channel resources efficiently; methods for dealing with
heavy network traffic and congestion; providing network security when required; maximizing
network reliability and minimizing errors; providing timely network response; and more.

12.3 BASIC DATA COMMUNICATION CONCEPTS
Figure 12.4 shows a model that constitutes the essential elements of data communication. Two
end nodes, or hosts, are connected by a communication channel. An interface connects each
node with the channel. The channel carries signals that represent messages between the nodes.
Protocols define the ground rules for the channel signals and for the messages.

To get a better understanding of this model, let us consider each of the elements in turn.

Messages

The message is the primary purpose of the communication. It can take many forms. It may
be data in the traditional sense of the word. It may also be a program or a file or a snippet of
personal conversation or a request or status information or a stream of audio or video or some

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 367

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 367

FIGURE 12.4

Model of a Communication Channel

Host
or

node

Network
interface

Host
or

node

Protocols

Messages

Channel

Network
interface

Rule

Rule

Rule

other agreed-upon content. For the moment, we won’t be concerned with how it was created.
For this discussion, we will just assume that it is something that can be represented digitally, as a
series of bits, in the sense of the data formats presented in Chapter 4. Since data communication
is predominantly serial, we usually describe the data as a byte stream. Regardless of form
or content, the message is a communication between cooperating applications at each node.
The meaning of the message is established by the protocols recognized by the cooperating
applications. Thus, the HTTP keyword “GET” used by the web browser in the third example in
Section 12.2, above, is recognized by the cooperating Web server application as a request for a
Web page as the appropriate response.1 The use of standard protocols by the application is not
required as long as the cooperating applications agree on the meaning of the messages (some
applications choose to use their own, nonstandard protocols for various reasons). However,
the use of standard protocols such as HTTP makes the operation and administration of large
networks much easier. There are definitions for a large number of standard applications, with
standard protocols, designed for many of the most common communication tasks.

As you may have noticed, one of the major limitations of the use of messages as a
communication tool is that themessage lengthmay vary widely from application to application.
Without some form of control, a streaming video download, for example, could tie up a
communication channel indefinitely. This situation is obviously intolerable if there are other
messages that need to share use of the channel. (Note the similarity between this situation and
that of traditional telephone switching, by theway. Any time there is a pause in the conversation,
the capability of the communication lines used for the call is wasted.) The demand for channel
capacity is large; therefore, full utilization of the channel is a desirable and reasonable goal.

Packets

To solve the related problems of channel availability and maximum utilization, there must be
a way to break long messages into smaller units. These units are called packets. Packets can
take turns using the channel, allowing sharing of the channel for different messages. Packets

1Technically, the Web browser and Web server communicate using cooperating HTTP applications. More about

this detail is discussed later, in Chapter 13.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 368

368 PART FOUR NETWORKS AND DATA COMMUNICATIONS

are used for most data communications. A packet consists of data of some kind encapsulated
by information about the packet.

A packet is equivalent to an envelope containing pages of data. Like envelopes, packets
come in different shapes and sizes. There are standards for a number of different types of
packets, defined for different purposes. Some types of packets go by specific names, such as
frame or datagram, which identify their purpose.

A description of the packet, the designated receiver and source addresses, and information
about the data enclosed is provided in a preamble or header, followed by the data. The amount
of data depends on the type and length of the messages, the design of the packet, and the
requirements of the channel. Some packet types require a fixed amount of data, most allow a
variable amount within some maximum limit. Some packet designs also include a trailer or
footer at the end of the packet, often used for error-checking. The packet designs used for a
communication installation reflect the protocols that are in use and are generally standardized,
so that they may be understood by every component of the network through which they flow.

A long message may consist of many packets. With multiple links, individual packets may
travel different paths and arrive in an order different from the order in which they were sent.
To recover the message, it is sometimes necessary to number the packets, so that they may be
reassembled in their original order at the receiving node.

As an example of message and packet flow, consider the typical situation in Figure 12.5.
Two users with cell phones send messages to the local cell tower for forwarding to their
destination. The messages are broken into packets at the source. At the cell tower, the two
messages are multiplexed and relayed to the next node for further processing.

As you can see, packets offer a number of important advantages in data communication:

n The use of packets simplifies operations and increases communication efficiency. It
reduces communication overhead by making it possible to transmit a large block of
data while requiring only a single block of overhead information to identify the
destination and meaning of the enclosed data. It also presents an opportunity to
check and fix errors in individual packets as the message is being sent, rather than
having to resend the entire message. A packet represents a reasonable unit for the
routing of data. This factor is particularly important in wide area networks, where a
packet of data may be passed through many different networks and communication
channels before it reaches its destination. (We introduce the concepts of routing of
packets and wide area networking in Section 12.4.)

FIGURE 12.5

Message-to-Packet Conversion

Multiplexer

Wired
Cellular
Network

1A 1C2A1B

2A
2B

2C

1A 1B 1C

2B

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 369

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 369

n Packets offer an alternative to dedicating a channel for the entire length of a message.

This increases utilization and availability of a channel by allowing packets from

several sources to access and share a single channel.

n The use of packets presents a productive way to use a communication channel. A

channel can be switched to route data packets to different destinations in such a way

that each sender–receiver pair appears to have a channel to itself.

n The receiving computer is able to process a block of data all at once, instead of a

character or a byte at a time. Furthermore, it is usually easier to organize the data,

since there are fewer individual blocks of data to deal with.

n It simplifies synchronization of the sending and receiving systems. Packets provide a

clearly delineated burst of data, with an identifiable start and stop point.

In addition to data transmission, packets can also be used for control of the network itself.

To do so, the data is replaced by control messages that specify the action to be taken. Packets

are a fundamental unit of communication. We will look at several specific packet formats in

Chapter 13.

General Channel Characteristics

The communicationchannelprovides thepath for themessagebetween the twocommunicating

end nodes in the model. Although the model in Figure 12.4 represents the channel as a direct

point-to-point connection between the nodes, this is not generally the case. In reality, the

channel can take many different forms. In the simplest case, it might be a direct connection

betweennodes, such as a directUSBconnectionbetween a smartphone and apersonal computer.

More typically, the communication channel is actually divided into segments, called links, with
intermediate nodes between the links that forward packets from one link to the next. Data

originates at one end point and passes through each link to reach the destination end point. As

an example, consider Figure 12.6. In this example, data (perhaps a Web request) originating

from a tablet or home computer connects wirelessly through a Wi-Fi access point to a DSL

FIGURE 12.6

A Multilink Channel

DSL
modem

DSL
access

computer

Ethernet
packets

Wi-Fi
Router

Links

Links

Various
converters

Web server

Ethernet
packets

Converter

Analog
signal

Digital Ethernet,
MPLS, SONET,...

Internet

Phone

line

Converter

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 370

370 PART FOUR NETWORKS AND DATA COMMUNICATIONS

modem. From there, the data passes through the DSL link to an Internet Service Provider, then
through many additional connections to a computer somewhere on the Internet.

In otherwords, the communication channel between yourWebbrowser and theWeb server
on the Internet may be divided into many links, each with its own characteristics. This is true
in general of most communication channel connections. Conversely, there may be many nodes
sharing the use of a single channel or a link. Thus, a channel or a link may be required to carry
severalmessages fromdifferent sources that are bound for different destinations simultaneously.
(An example of this was shown in Figure 12.5.) The requirements for data communication
must include the ability to share the channel elements among many different sender–receiver
pairs and to direct messages to their correct nodes, wherever those nodes might be located.

One way to view the channel is to consider the connection between the end point sender–
receiver pair as the communication channel for that pair. If our prime objective is to consider
the overall characteristics of the channel as a conduit for messages being sent between that pair,
this view may be useful and sufficient. We noted in the previous paragraph, however, that the
channel between two end points may actually consist of a number of links, with intermediate
nodes connecting the links. Each link has its own characteristics of interest. In a more limited
sense, each link can also be described as a communication channel.

Since the channel may be made up of multiple links, the interfaces at each end of the
connection may differ from each other and the characteristics of the end-to-end channel
may differ from, and depend upon, those of the individual links. For example, the computer
initiating amessagemight be connected to a network using a telephonemodem,which transmits
messages one byte at a time using audio tones as a signaling method. The receiving computer
might be connected to the network using Ethernet, which expects messages formatted as digital
packets consisting of many bytes of data, together with additional bytes that define the specific
characteristics of the particular packet. Again, there are protocols and standards that define
the makeup of the packets. The network must be capable of converting the message from one
format to another at the intermediate nodes when required. The points where conversion is
required for the previous example are noted in Figure 12.6.

Not only do the characteristics of each link obviously impact the overall capability of
the end-to-end connection, they also affect the technical and business decisions that must be
made when the channel and its affiliated networks are designed, implemented, modified, and
upgraded. Consider, for example, the effect on the users of an organizational network that is
connected to its external resources with a link of severely limited capacity.

Thus, we must accept some ambiguity in the way we define a particular communication
channel, depending on the purpose that we have in mind. As we study data communications
we will be concerned with the characteristics of different types of channels, as well as the nature
of the interconnections between them. In this text, we shall be careful to indicate what kind of
channel we are discussing at a particular time, end-to-end, or link.

As shown in Figure 12.4, each end node has an interface to the end-to-end communication
channel. Our primary concerns for an end-to-end connection are the interface characteristics
of the end points and the rate of speed with which data can be moved successfully through the
channel, usually measured in bits per second and known as the bit rate or bandwidth2 of the
overall channel. “Successfully” in this case means that any noise or errors incurred during the
passage through the channel can be removed and that the message can be accurately recovered

2Bit rate and bandwidth are actually somewhat different, but are directly related as measures of channel

capacity.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 371

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 371

at the receiving end. For example, if the channel connects a Web browser with a Web server,

we are most interested in how quickly and accurately we can download theWeb pages and data

of interest. The same definition of bit rate or bandwidth also applies to individual links.

Note, however, that the overall characteristics of the end-to-end communication channel

are determined by the characteristics of individual links. Specifically, each of the characteristics

of the end-to-end channel is determined by the corresponding characteristic of themost limiting

link. For example, the modem in the first link of the channel described above limits the overall

speed of the channel, regardless of the speed in the remaining links.

Each individual link channel is characterized by a number of different properties:

n by the type of medium it uses, and by the electrical or optical properties of the

medium,

n by the signaling method and data formats used to carry its messages,

n by the directionality of signals supported by the channel,

n by the nature of its interfaces with the end nodes and with other links,

n by its bandwidth,

n by restrictions on the length of the channel,

n by the time delay between the time the channel receives data from its incoming node

and the time it releases the data to its outgoing node,

n by the number of connections sharing the channel,

n by the noise characteristics of the channel,

n by the way in which packets are steered through the channel from link to link (see the

next part of this section), and

n by the electrical or optical properties of the channel.

Note that there are numerous similarities between communication channels and buses.

The following is a brief description of some of the more important characteristics that apply to

link channels:

MEDIUM A communication channel medium can be either guided or unguided. Radio
waves transmitted from an antenna are unguided. They may be received by any radio

receiver tuned to the corresponding radio frequency within the range and directionality of the

transmitting antenna. Unguided media include cellular phone, broadcast radio, microwave,

wireless networking, infrared light, and satellite technologies. Laser signals that are not confined

to an optical cable are also generally considered unguided, although the field of view is

extremely narrow. Note, in particular, that unguided communication channels are inherently

insecure, since they can be intercepted easily by anyone within the field of view of the channel.

Wireless networking is particularly vulnerable to interception because the transmitting antenna

is generally omnidirectional.

Guided media limit communications to a specific path constrained to a cable of some sort.

Guided media can be either electrical or optical and can include various forms of wire and

fiber-optic cables.

Some channel characteristics are determined innately by the medium. For example,

unguidedmessagingmust be carried by an analog signal: radio transmission is based intrinsically

on sine waves, which are by necessity analog. The sine wave carrying the data is called a carrier.
Signaling is achieved by varying certain properties of the radio wave at the transmitter and

detecting the variations at the receiver. This process is called modulation and demodulation.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 372

372 PART FOUR NETWORKS AND DATA COMMUNICATIONS

(A modem works on the same principle.)3 The signals in guided media may be viewed as either
analog or digital, although digital is almost always preferred because of its better immunity to
noise and the ease with which the medium can be shared by multiple messages. We will expand
on these ideas in Chapter 14. Recall from Chapter 4 that the conversion of data between analog
and digital is often required because of the nature of the data that we are processing. Audio and
video are analog in nature, but are converted to digital and processed digitally in the computer.

DATA TRANSMISSION DIRECTIONALITY Like the buses discussed earlier in Section
7.5 of Chapter 7, channels can also be characterized by the direction in which the messages can
flow. A channel that carries messages in only one direction is known as a simplex channel.
Television broadcasting stations use a simplex channel. Programs are sent from a transmitting
antenna to television receivers, but the receivers do not respond with messages or data back
to the broadcasting station. A channel may carry messages in both directions, but only one
direction at a time. This channel is known as a half-duplex channel. If the computer at point B
wants to send a message to point A, it must wait until point A has stopped transmitting to do
so. Most walkie-talkies are half-duplex communication devices. Channels which carry signals
simultaneously in both directions are called full-duplex channels. Traditional telephone lines
are full-duplex channels. Both parties can speak simultaneously, and each can hear the other.
Some channels are made up of separate lines for each direction. Some practitioners characterize
these as full duplex; others refer to these as dual-simplex channels. The PCI-Express bus
specification calls them lanes, a term that is likely to catch on within the network community.

NUMBEROFCONNECTIONS Like buses, a communication channel can be point-to-point
ormultipoint, although the choice is often predetermined by the nature of themedium.Wireless
networking, for example, is, of necessity, multipoint, because there is no realistic technological
way to limit the number of radio signals in a given space and a limited frequency bandwidth.
Conversely, fiber optics are usually point-to-point because of the difficulty of tapping into a
fiber-optic cable. Note that even a point-to-point channel can be shared by packets arriving at
its input node from different sources.

Today, themost commonend-node interface to a channel is a local areanetworkconnection,
usually either wired or wireless Ethernet. Nonetheless, there are other possible interfaces to
consider: Bluetooth, WiMax, DSL, cable, satellite link, various forms of cell phone technology,
older types of network connections, and, to a more limited extent, telephone modem. Each
technology has its own requirements. We will consider a few of these in Chapters 13 and 14.
Regardless of the characteristics of the end-to-end communication channel and of its links, we
must reemphasize the fact that the message must ultimately arrive at its destination node in a
form expected and recognized by the application receiving it.

PROTOCOLS From the previous discussion you can readily see that themodel in Figure 12.4
is indeed simplistic. A message passes between a sending node and a receiving node with
potentially different characteristics through a channel which may, itself, consist of many links,
each with its own requirements, capabilities, and characteristics. The sending node must be
able to direct the message reliably to a particular node through a massively large network of
potential intermediate nodes, which could possibly be widely scattered. Thus, there is a need for

3Technically, this is true even for the laser signal, with light as the carrier. Practically, we usually think of the laser

signal as digital—a light being turned on and off.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 373

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 373

a universal set of communication protocols that can handle a wide range of different situations.
Amazingly, a relatively small number of standard protocols, consisting primarily of the TCP/IP
and Ethernet protocol suites, satisfy nearly all of the requirements. These standard protocols
are designed to interconnect with other, more specialized protocols when necessary, to meet
the remaining requirements of a globally interconnected data communications capability.
Chapter 13 is devoted to a detailed discussion of TCP/IP and Ethernet.

12.4 NETWORKS
As we noted earlier, in the simplest case, a direct point-to-point link provides the connectivity
between two nodes. As an example, we mentioned that a smartphone and a personal computer
may be directly linked usingUSB ports on each device. Another example would be the Bluetooth
link between your smartphone and a Bluetooth-enabled headset. It is also sometimes useful to
interpret a link as a direct link when the receiving node is an intermediate node used to collect
and consolidate packets from several different sources; this would be the case, for example,
when you send a message from your cell phone to a cell tower using cellular technology.

More commonly, nodes are connected together using network technology.Anetwork offers
more flexibility, since it is usually necessary or desirable to be able to select a receiving node from
a number of possibilities. By connecting individual networks together, it then becomes possible
to build multilink channels that can address and link billions of different nodes together. Before
we consider the methods used to build such huge networks of networks, however, let us focus
on the important characteristics and properties of various types of networks in use.

Network Topology

To begin our discussion of different types of networks, we offer a brief introduction to the
concept of network topology. Network topology describes the fundamental configuration, or
layout, of a network. Topology is an important characteristic of all networks, large and small. It
defines the path, or paths, between any two points in the network, which, in turn, defines the
links between nodes that we have previously discussed. The topology of a network affects the
performance of the network, particularly in terms of availability, speed, and traffic congestion.
Network topologies can provide a useful template when designing a network or when analyzing
a network’s behavior. If you picture the packets in a network as tiny automobiles (actually, this
is often a useful way to think about networks), there is an obvious similarity to automobile
traffic. Figure 12.7 illustrates a few of the potential issues.

Figure 12.7(a) shows one common approach to road traffic design. A single main road runs
through a small city, with side roads intersecting the main road at regular intervals. There is
only a single road from one end of the city to the other. Traffic lights control the flow of traffic
along the main road, but of course, they must allow the lines of traffic on the side streets to
enter the main road from time to time. If traffic is sufficiently light (think 4 a.m.), this layout
works adequately; at rush hour, it’s a nightmare!

Figure 12.7(b) shows an alternative approach. In this case, there are a number of main
streets running from one end of town to the other, with cross streets that allow traffic to move
fromonemain street to another. Trafficwill distribute itself along different routes, depending on
each driver’s preferences and destination. Traffic in general will probably flow more smoothly,
although there could be congestion at certain intersections.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 374

374 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.7

Traffic Scenarios

(a) (b) (c)

Figure 12.7(c) shows a third approach. In this case a superhighway runs alongside the city,
with ramps at strategic locations that connect into the main streets. For short distances, the
average driver will use the city streets because it is easier: the distances are shorter and the
overall travel time is normally less. For longer distances, the superhighway is the way to go.

Figure 12.8 shows the four basic topologies used for networks. Each topology has its trade-
offs, advantages, and disadvantages. In given circumstances, a particular topology is often more
natural or appropriate for the application. The art of network design is about selecting the right
combination to attain the mixture of features, performance, network availability, maintenance,
cost, and convenience to meet a given set of requirements or needs. Not surprisingly, there
are also variations on these basic structures, which we will discuss at the appropriate times, as
they arise.

Figure 12.8(a) shows amesh network. Mesh networks provide multiple paths between end
nodes. The failure of an individual intermediate node will slow, but not stop network traffic
as long as an alternative path is available. As you will see shortly, large networks are usually
made up of a mixture of local area networks, links, and connecting nodes, with switches and
routers connecting the different networks and links together. By default, the result is usually a
mesh network. It is also possible to create a mesh network intentionally by design to meet the
physical constraints of a particular organization.

The “best” configuration for connecting a number of end nodes would be to provide a
direct point-to-point channel connecting each pair of nodes. This scheme, known as a full
mesh network, is not practical for most installations, however, because the number of lines
required increases too rapidly as the number of nodes increases. Furthermore, each node
requires an interface for each connecting line. Figure 12.9 shows a mesh network with five
nodes. Even this simple case requires ten connections to provide full connectivity. Since each
node is connected to four others, the network also requires four interfaces for each node, for
a total of twenty interfaces. Simply increasing the number of nodes to twenty increases the
number of connections to 190 and requires 380 interfaces. For 500 computer nodes, we would
require nearly 125,000 interconnecting cables! In general, the number of connections for a
fully connected mesh network with N nodes is the sum of all integer values from 1 to N−1.
Fortunately, this reduces to a simple formula:

number of connections = (nodes) × (nodes − 1)∕2.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 375

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 375

FIGURE 12.8

Four Network Topologies

(a) Mesh network

(d) Ring topology

Point-to-point
link

Active network
interface unit

(c) Star topology

Central
node

(b) Bus topology

Network interface
unit

Terminator

FIGURE 12.9

A Five-Node Full Mesh Network

Node Node

Node

Node

Node

More realistically, most mesh networks are
partial-mesh networks. One rare exception is the
use of full mesh networks to connect a small
number ofmajor corporate centers for a large orga-
nization in a metropolitan or wide area network,
particularly when the network traffic between cen-
ters is heavy and relatively evenly distributed.

Figure 12.8(b) shows a bus topology. Note
the obvious similarity to the multipoint buses
described in Chapter 7. With a bus topology,
each node is tapped into the bus along the bus.
To communicate, a sending node “broadcasts” a
message which travels along the bus. Every other
node receives the message. Each node compares
its address to that of the message; therefore the
message is ignored by every node except that of the

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 376

376 PART FOUR NETWORKS AND DATA COMMUNICATIONS

desired recipient. Each end of the bus is equipped with a terminator to prevent signals from

echoing. Branches can be added to a bus, expanding it into a tree. Messages are still broadcast

through the tree. Terminators are placed at the ends of each branch in the tree.

Bus topology is the easiest to wire. It is only necessary to run a single pair of wires from

one end of the network space to the other. Bus topology also has the advantage of low cost,

however, traffic congestion is a major issue with bus topology. Compare this figure with that

of Figure 12.6(a) and the reason becomes clear. Bus topology is still in use for legacy local area

networks and some backbone networks, but is now rarely used for new designs. Because of

the unguided nature of radio waves, some form of bus topology is a requirement for wireless

networking.

Figure 12.8(c) shows a star topology. This topology is used primarily for local area

networks, although it is sometimes used in metropolitan and wide area networks to connect

individual centers of activity to a central office. In this configuration, all nodes are connected

point-to-point to a central device. Nodes communicate through the central device. Switching

in the central device connects pairs of nodes together to allow them to communicate directly

and steers data from one node to another as required. Most modern switches allow multiple

pairs of nodes to communicate simultaneously. The switch itself is usually not considered to

be a node; once set, it is transparent to the data flowing through it. (Note the similarity to the

simple telephone system shown in Figure 12.2.)

Figure 12.8(d) shows a ring topology. A ring topology consists of a point-to-point

connection from each node on the network to the next. The last node on the network is

connected back to the first to form a closed ring. Each node retransmits the signal that it receives

from the previous node to the next node in the ring. Packets are placed on the loop at a node,

and travel from node to node until the desired node is reached. Although the ring is inherently

unidirectional (data passes through it in one direction), it is possible to build a bidirectional

ring network.

Ring networks were popular in the past because they provided a controlled way in which

to guarantee network performance. This was an important issue when increased network

capacity incurred a large incremental cost. Today, that is no longer the case. It is often cheaper

and easier to increase capacity than it is to try to wring the last bit of performance out of a

network. Nonetheless, there are legacy token-ring local area networks and Fiber Distributed

Data Interface (FDDI) fiber-optic backbone and metropolitan area networks still in service,

although ring networks are essentially obsolete for new network designs.

When we consider topology—any topology—it is important to understand that there is

a difference between physical topology and logical topology. Physical topology describes the

actual layout of thewiring for the network.Logical topology defines the operational relationship
between the various network components. The physical topology is unimportant when trying to

understand how a network works, but very important to a network designer trying to figure out

where to place thewires in a room.However, our focus in this text is on the logical topology only.

Types of Networks

With an understanding of network topology in hand, we are now ready to consider the design

of different types of networks. There are numerous ways to categorize networks: by medium

(coaxial cable, wireless, fiber, for example), by protocol group and/or type of network (TCP/IP,

Frame Relay, Ethernet, USB), by standard specification number (802.3, 802.11, X.25), by usage

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 377

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 377

(Web server, database server, peer-to-peer, storage area network), or by range of service
(Bluetooth, LAN, MAN, WAN) to name a few.

The most familiar, and often most practical and useful, way to categorize networks is by
their geographical range of service. A common approach is to categorize them hierarchically.
From the smallest range to the largest, the major categories are local area networks, backbone
networks, metropolitan area networks, and wide area networks. We will also include Internet
backbones and the Internet. These designations are somewhat arbitrary, and more a matter of
style and architecture than of rigid rule, but they are helpful as a starting point for visualizing
and designing networks. We will also mention briefly some special cases: intranets, extranets,
and personal area networks (also known as piconets), that do not fit neatly into the standard
categories.

Recall that the path between end nodes in a large network usually consists of multiple links;
each link connects a pair of nodes together. As we observed in the previous section, some of the
links may be direct connections. In general, though, nearly all of the links will connect nodes
within a network, most commonly, a local area network. Most of the nodes will actually be used
to interconnect networks.

This is illustrated in Figure 12.10. In this figure, the makeup of the undefined cloud from
Figure 12.1 is viewed as a large network of networks. For simplicity, each star-configured
network in this figure consists of a number of branches attached to a central switch, labeled S.
The switch can connect any pair of branches together to create a path between the pair. (This
configuration might resemble that of the old-fashioned telephone system previously shown in
Figure 12.2, when extended to multiple exchanges and long distance calling.)

FIGURE 12.10

Connecting End Points Through Links and Networks

E

E

E E
E

E

S

S

S

S

S

S
S

E

N

S = Switched Network
N = Network (Ring)
E = Endpoint

= Intermediate Node

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 378

378 PART FOUR NETWORKS AND DATA COMMUNICATIONS

The components used to provide inter-network connections at nodes are gateways and
routers, which wewill describe at the end of this section, following the discussion of the different
types of networks. For now, we shall just assume that each inter-network node provides ameans
for forwarding its data to the corresponding link in the next network in the chain.

LOCAL AREA NETWORKS A local area network (LAN) is a network that connects
computers and other supporting devices over a relatively small localized area, typically a room,
the floor of a building, a building, ormultiple buildingswithin close range of each other. Usually,
most of the computers in a LAN are personal computers or workstations, although there may
be larger server computers present, and, sometimes, mobile devices as well. It may be wired or
wireless. Most commonly, a LAN will conform to a star or bus topology. Supporting devices
might include printers, external storage devices, and routers. Routers, and perhaps gateways,
will be used to connect the LAN to other networks.

Some LANs are further limited in geographical scope by the particular medium in use.
Wireless Ethernet, commonly identified by its trade name, Wi-Fi, for example, is limited to a
maximum range of a few hundred feet under ideal conditions by the usable strength of the
radio signal that is used to carry the data. Walls and other obstructions will limit the range of
the signal even more.

Since all communication channels are limited in the amount of data that they can carry,
it is sometimes useful to design a LAN to minimize extraneous traffic on the network where
possible. One common way to do this in business is to create separate LANs for different
business functions or departments. Traffic between the different LANs is enabled by connecting
the LANs together with a backbone network, as described later in this section. For example,
there would be a LAN for the accounting department, a LAN for themarketing department, and
so on. The interconnection between networks allows the different departments to communicate
with each other, as well as to access data stored on central company servers. This was the
approach shown in Figure 1.4 of Chapter 1.

There are different kinds of LANs, each defined by its network protocols, maximum bit
rate, connecting media, topology (the physical and logical layout), and various features. Most
modern LANs are based on a set of standards and associated protocols called Ethernet, which
are defined and identified by their IEEE standards (see Section 12.5). Although Ethernet comes
in a number of “flavors”, three are prevalent: switched Ethernet (IEEE 802.3), Wi-Fi (IEEE
802.11), and hub-based Ethernet (also IEEE 802.3). The Ethernet protocols are designed to
make it possible to mix different flavors in a single network. There are a number of variations
on each flavor, based on type of medium, bandwidth, and maximum distance between end
points. Figure 12.11 describes the features of some of the prevalent Ethernet standards.

As an example of how Ethernet units operate together, consider a home network with
a router that also provides a wireless access point and an Ethernet switch. The router uses
Ethernet to connect to a DSL or cable modem for Internet access, an Ethernet cable connects
a printer directly to the switch, and one or more computers use wireless Ethernet to connect
wirelessly. See Figure 12.12.

As shown in Figure 12.13, a hub-based Ethernet is based on the bus topology shown in
Figure 12.8(b). Although it looks physically like a star topology, a hub is a central connection
device used to simplify wiring and maintenance. The simplest form of hub is passive. All of
the connections at the hub are simply tied together inside the hub. The word “passive” means
that the hub performs no operation or modification of the signals as they arrive at the hub. In
contrast, an active hub recreates the arriving signals. In either case, signals arriving at the hub are

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 379

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 379

FIGURE 12.11

Some Common “Wired” Ethernet Standards

100 BASE-TX
“Fast Ethernet”

100 BASE-FX

1000 BASE-T
“Gigabit Ethernet”

1000 BASE-SX, LX

10G BASE-X
“10-Gigabit Ethernet”

Standard

2-UTP or STP
or CAT-5

2-Fiber optics

CAT-5 UTP

2-Fiber optics

2-Fiber optics

100 Mbps

100 Mbps

1 Gbps

1 Gbps

10 Gbps

100 m

400 m, 2 km

100 m

550 m, 2–10 km

300 m, 10 km,
40 km

hub or switch

-

switch

40G BASE-SR4, LR4

100G BASE-SR10, ER4

2-Fiber optics

2-Fiber optics

40 Gbps

100 Gbps

100 m, 10 km

100 m, 10 km,
40 km

1T BASE ? 1 Tbps ?

Medium Speed

Under development

Max span Topology

Key : UTP unshielded twisted pair
 STP shielded twisted pair
 CAT-5 four UTP in a cable

FIGURE 12.12

A Typical Home Network

DSL
modem
or Cable
modem

Switch/
Router

Wired
Ethernet

Wireless
Ethernet

Wired
Ethernet

Phone
line

or
Cable

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 380

380 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.13

Hub-Based Ethernet

Hub

simply broadcast in their original form to every

other device connected to the hub. In other words,

logically the hub is basically a “squeezed-down” ver-

sionof amultipoint bus topology.Network interface

units from various computers, computer peripher-

als, and other network support devices such as

routers are connected to thehuband share the “bus”.

Hubs have been used primarily in local area

networks, but are also sometimes seen in older

backbone networks. However, the use of hubs is

essentially outmoded, because better performance

can be obtained from other devices that can isolate

and operate on individual nodes, particularly

switches, discussed next.

Figure 12.14 shows an alternative topology

called switched Ethernet. Switched Ethernet is

based logically on a star topology. Each node of

the network is connected to a central switch that

is capable of connecting any two nodes together.

When a node on the network wishes to communi-

cate with another node, the switch sets up a direct

connection between the two. Standard Ethernet

cables contain at least two pairs of wires, which are

FIGURE 12.14

Switch-Based Ethernet

Switch

used to make the connections full duplex. Multiple

pairs of nodes can communicate at full bandwidth

through the switch simultaneously. For wired local

area networks, switched Ethernet is the prevalent

method in use today.

Wireless Ethernet, or “Wi-Fi” is a radio-

based, compatible extension to the Ethernet

standard. The basic configuration of a Wi-Fi

local area network is shown in Figure 12.15. Each

wireless unit is connected by radio to a base station

central access point that is somewhat equivalent to

a hub. However, the access point is an active node,

since it must transmit and receive radio waves to

communicate with the nodes.

All nodes communicate with the access point.

The access point forwards the packet to the des-

tination station. Packet forwarding is a necessity

because there is no guarantee that nodes can “hear”

each other. As Figure 12.16 shows, it is possible for

stations tobeoutof rangeorblockedbybuildingsor

other obstacles from each other. This is sometimes

referred to as a hidden node condition. However, all

stations that can communicatewith the access point

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 381

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 381

FIGURE 12.15

A Basic Wi-Fi Local Area Network

Base
station
access
point

To wired
node

can communicate through the access point with each

other.

There are a number of different versions of the

Wi-Fi standard, operating at different radio frequencies

and with different bit rates. Only those operating at the

same radio frequency are compatible with each other,

however, Wi-Fi components that operate at higher bit

rates can lower their data rate for compatibility with

slower speed units. Some access points and NICs sup-

port multiple radio frequencies. Figure 12.17 compares

the features of the current Wi-Fi standards.

The Wi-Fi standard also includes an ad hoc mode

where wireless units can communicate with each other

without the use of a base station. This mode is rarely

used. We won’t discuss it further.

The Wi-Fi standard divides the total bandwidth

into overlapping channels; the number of channels

depends on the type of wireless and the bandwidth

permitted within a particular country. For example, in the United States, the 2.4GHz band is

divided into eleven channels. However, interference between channels requires that channels

being used simultaneously must be separated by at least four channels to communicate

successfully. This means that there is only a single group of three channels that can be used

simultaneously, channels 1, 6, and 11. (A nearby access point that is nearly out of range might

be configured to use channels 3 and 8 though.)

More information about Ethernet local area networks, both wired and wireless, will

be found in Chapter 13. The technological aspects of wireless networks are discussed in

Chapter 14.

FIGURE 12.16

Examples of a Hidden Node Condition and Out-of-Range Conditions

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 382

382 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.17

Wireless Ethernet Characteristics

802.11a

802.11b

802.11g

802.11n

802.11ac*

Standard

Under development

* Draft standard
** Per stream. Multiple streams extend the data rate. 802.11n
 can support up to 4 streams, with a data rate of 600 Mbps;
 802.11ac is expected to support up to 8 streams. Plus additional
 bandwidth, with a possible data rate approaching 7 Gbps.

5 GHz

2.4 GHz

2.4 GHz

5, 2.4 GHz

5 GHz

54 Mbps

11 Mbps

54 Mbps

150 Mbps**

450 Mbps**

60 feet

300 feet

300 feet

600 feet

 –

Carrier
band

60 GHz 7 Gbps –

Max.
data rate

Claimed typical
max. range

802.11ad

BACKBONENETWORKS Backbonenetworks are used to interconnect local area networks.
A backbone can tie several local area networks together to provide for the passage of data
between the individual networks and from the networks to the Internet or other external
network resources. A primary motivation for a backbone network is to improve overall
performance of a larger network by creating separate local area networks for groups of users
who communicate primarily with each other. Network traffic can be isolated into small areas
of usage, replacing one large heavily used local area network with a number of smaller, isolated
LANs. The backbone enables communication between the individual LANs when it is required.
For example, a college campus might have multiple LANs built around dormitory areas, plus
wireless access points in classrooms, study areas, libraries, dining halls, and various other
points around the campus where people congregate. A backbone network would provide the
interconnections between all of these LANs. The backbone network also makes it possible to
extend the overall range of the combined networks well beyond that of a single LAN. In this
case, fiber-optic cables in the backbone combined with the use of switches makes coverage of a
large geographical area, such as a large college campus, feasible.

One simple way to view a backbone network is to picture it as a large local area network
where each node is, itself, a local area network. Figure 12.18 shows an example of such an
Ethernet-based backbone network implementation. Since the backbone network shown in the
figure is obviously hierarchical, the concept can be extended to another hierarchical level, if
desired. Some network designers actually call this backbone network layout hierarchical LAN.

There are two additional features to observe in the backbonenetwork shown inFigure 12.18.
First, is the presence of a server. Since this server is located directly on an arm of the backbone
it is readily available from every LAN. The other feature is a router or gateway that will connect
the backbone to other networks through a common carrier. The router or gateway provides
access to the Internet, and also enables the capabilities of metropolitan and wide area networks,
which are discussed on the next page.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 383

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 383

FIGURE 12.18

A Backbone Network

Switch

Server

Switch

Switch

Local Area Network

Local Area Network

Local Area
Network

Router
or

gateway

To other networks

Switch

One important use for backbone networks is to extend the availability of wireless Ethernet
access beyond the limited range of an individual access point. Instead, multiple access points
are distributed over a large area to provide a wider range of coverage. A backbone network

provides the interconnection between the access points. This method also improves the speed
for individual users, since fewer users are sharing any single access point. This is a particularly
common application of backbone network technology on college campuses. Figure 12.19 shows
the configuration of a backboned Wi-Fi network.

Traditionally, multiple access points have been linked by wire. A new standard introduces
the concept of mesh points, which extends the range of a wireless network by creating a wireless
mesh network of access points.Mesh points operate at themedium-access control layer (layer 2)
and are essentially invisible to the upper layers of the network. This new standard effectively
adds backbone capability to wireless networking. Figure 12.20 shows a simple wireless mesh

network.
Backbone networks are well suited for small intranets. An intranet is an organizational

network, where the user interfaces and applications are based primarily on Web services.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 384

384 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.19

Configuration of a Wi-Fi Network

Base
station
access
point

Base
station
access
point

Backbone/wired network

Its use is restricted to authorized users within the organization. Some network practitioners

refer to it as a “private Internet”. Intranets for larger organizations require the connectivity of

metropolitan area networks or wide area networks. As we discuss next, the primary limiting

factor in larger networks is the ability to connect separate locations over intervening public and

private property.

METROPOLITAN AREA NETWORKS A metropolitan area network (MAN) is usually
defined as a network larger in geographical scope than a local area network, but generally

within a range of less than 30 miles or 50 kilometers. A MAN would be used to connect several

buildings in an area together or, perhaps, connect a company’s buildings in a city or region

together. Some communities have built or plan to build MANs, both for their own use, and as

a service utility for their residents and businesses.

When the area is relatively small, it may be possible to implement a MAN almost entirely

with a combination of LANs and one or more backbone networks, plus some easy-to-manage

form of Internet access. More commonly, there is a desire to create network links to connect

properties over areas that would require right-of-way access, that is, permission to run wires

through somebody else’s property. To obtain right-of-way access, a company generally requires

services from a service provider (SP) or other public carrier, and the infrastructure of theMAN

begins to resemble that of a wide area network. A service provider is a company that provides

the equivalent of a link or links between nodes that are not directly accessible to simple forms of

connection, like wire or fiber-optic cable. A connection to a provider occurs at an access point

on the customer’s premises. The access point is usually connected to the company networks

with a switch, a router, or a gateway, depending on the type of connection. The connection is

often referred to as an edge connection, because it sits at the “edge” of the local network. Thus,
a router at the access point would be called an edge router.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 385

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 385

FIGURE 12.20

Wireless Mesh Network

Mesh
point

Mesh
access
point

Mesh
access
point

Mesh
access
point

W
ir

ed
 li

nk
 t

o
ba

ck
bo

ne

Mesh
access
point

Figure 12.21 illustrates the features of a medium-sized MAN. This business operates a
small chain of stores, together with a related, company-operated website. Most of the business
and IT operations in this company take place at the company headquarters; those needs are
satisfied by an intranet consisting of local area networks connected with an on-site backbone.
On the outskirts of the city, however, are three additional offices with links that connect to the
backbone system at the company headquarters.

The office that hosts the Web service is connected to the Internet with a high-speed optical
fiber link to an Internet Service Provider (ISP). (All connections to the Internet are made
through an ISP—more about that are discussed later.) The Web server is located here because
the ISP has a point of presence in the immediate vicinity that provides the required connection.
The office is connected to the company headquarters with a point-to-point Metro Ethernet
link; Metro Ethernet is a relatively new approach, in which a service provider provides Ethernet
access to each site, creating a logical connection between the two sites. The literature refers
to this link as an Ethernet Virtual Connection. Standard Ethernet switches at the access points
connect the company’s backbone network to the service at the headquarters and to a local area
network at the satellite office.

Theother twooffices communicatewith eachother andwith theheadquarters using avirtual
networkcreatedbyacarrierusingT1 lines andaFrameRelay suppliedby the telephonecompany.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 386

386 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.21

A Metropolitan Area Network

The
company

HQ
Headquarters

To backboneGateway

TI

Frame relay
virtual circuits

Gateway
Office

Office

Gateway

TI
TI

Web server
office

Switch

SwitchMetro
Ethernet

High speed
optical link

Internet

T1 and Frame Relay are older approaches to carrier connectivity. Gateways are required to

convert between the various office networks in this case.
This figure illustrates a number of fundamental features of metropolitan area networking.

Most important, notice that the carrier-provided service links and the links in the outlying

offices form an integral part of the overall company network, just as though they were all located
on the same premises with the main backbone network. With this understanding, you can see

that the design is based on traffic requirements between the different offices and between each
office and headquarters, just as the backbone network was designed to optimize traffic with

each LAN and between the various LANs.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 387

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 387

The role of the service provider is to supply network links that are transparent to the
network. There are a number of different options available.We will expand on the various types
of service connections in the discussion of wide area networking.

Some network specialists also define an additional network type that is larger than a LAN
but smaller than aMAN, which they call a campus area network (CAN). A campus area network
consists of a number of interconnected local area networks operating over a limited geographic
region consisting of several buildings clustered together, such as would be found on a college
campus, military base, ormultibuilding company setting. Campus area networks are commonly
implemented as backbone-based networks with high-speed optical fiber interconnections that
are topologically similar to MANs, but without the requirements of a service provider. One or
more edge gateways or routers connect the campus area network to the Internet and perhaps
to other facilities, as well. Connections to other facilities would, of course, create a more MAN-
or LAN-like configuration.

WIDEAREANETWORKS (WANs) Wide area networks are networks designed to facilitate
communications between users and applications over large distances—between the various
corporate offices of an international organization that are located in cities all over the world,
for example.

There are two primary compelling reasons for designing and building wide area network
capabilities:

n An organization requires data communication links between widely spread facilities
and between an organization and its business partners, customers, and suppliers.

n An organization requires fast access to the Internet, either as a consumer or as a
provider of Internet services, or both.

These two requirements, may, of course, overlap substantially. For example, an extranet is
a connection between a business and its business partners, used for the exchange of information
and services, and for collaboration, coordination, and planning. The Internet is generally
preferred as the medium for extranet activities.

The main distinguishing feature that characterizes the wide area network concept is the
extensive reliance on service providers to supply the required connectivity between the various
locations of the network nodes. The distances are too large to connect directly with a network
owner’s own resources and it is impractical to obtain rights of access to all of the intervening
property, public or private. Plus, it just isn’t practical for a company to lay its own cable across
the Pacific Ocean! Wide area networks require the use of resources that are within the sphere
of public switched telephone networks (PSTNs), large cable companies, and other common
carrier service providers. A company builds its network at each location out to an edge access
point, usually a gateway or router, at which point it is connected to the carrier’s facilities with a
leased line to the carrier’s nearest point of presence.

Despite the distances between nodes, it is still possible to view the networks as a whole
in the same way as we have viewed other, much smaller networks. Local area networks and
backbone networks, and, perhaps even metropolitan area networks, are linked to form a large
wide area network. However, it is common to represent the services provided by the carrier as
a “black box”. (Actually, they are usually represented as a cloud!) Our interest in the details of
the carrier network are generally limited to the edge connections and to the performance of the
network as a whole. For clarity, the carrier network is sometimes represented as a collection of
private virtual circuits within the cloud, which reflect the logical connections of the wide area
network as a whole.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 388

388 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Most wide area networks are classified topologically as partial-mesh networks, but occa-
sionally you may see examples of full mesh topology and star topology at the visible and
logically connected top level of a wide area network. Figure 12.22 shows two examples of
wide area network configurations. Figure 12.22(a) shows an example of a star-configured
wide area network. In this example, all of the logical connections within the carrier network
connect between individual regional research and educational centers and the main center in
Amsterdam. There are no direct connections between the branches. Figure 12.22(b) shows a
more typical partial-mesh configuration.

INTERNET BACKBONES AND THE INTERNET In theory, it should be possible to link
any two computers or computer-based devices in the world using nothing but the routing
capabilities of interconnected networks, TCP/IP, routers and gateways, plus appropriate
software and physical connections. And indeed, the Internet is just a gigantic network of
interconnected networks, connecting a high percentage of all the computers in the world. In
practice, though, the number of intermediate nodes, measured as hops between nodes, would
make this scheme impractical. The connectionswould be too slow, the order of arrival of packets
too erratic, and the traffic too heavy, to sustain the effort for long. Although the Internet concept
postulates that such connections can occur, it is more practical to provide fast connections
between distant points to reduce the time it takes to traverse long distances, to reduce the
number of hops to just a few, and to reduce the traffic on the local connections. The Internet
can be compared to a structure of roads and highways. We travel on long distance, high-speed,
limited access superhighways for the longest legs of a journey and use the local roads for initial
access to the highways and for the final access to our destination. There might even be a middle
tier of medium-speed highways that provide a means to get from the nearest superhighway exit
to the network of local roads. In the United States, for example, Interstate highways provide
the long legs of the journey, through national and state highways, the connections to the local
roads of cities and towns, and the local roads to start and finish our journeys.

Although there is no official central backbone for the Internet and no official guidance for its
development, the Internet has developed similarly. All access to the Internet is provided by ISPs.
The arrangement is approximately hierarchical. A small number of large ISPs, known as national
or international service providers, have built high-speed fiber-optic Internet backbones that
carry traffic between large cities throughout the world. The speeds of these backbones generally
range from 45 to 625 GBps, with faster backbones on the way. Interchanges between these
backbones occur at network access points (NAPs). Smaller ISPs, known as regional ISPs,
receive their Internet access from one or more national service providers. In addition to their
interconnectionwith the national service providers,most regional ISPs also interconnect among
themselves. Local ISPs receive their service from the regional ISPs. Most of us are customers
of local ISPs, although large businesses and others with stringent requirements may connect
directly to the regional or, even, national service providers. We connect to the Internet at one
or more service provider’s points of presence. Figure 12.23 shows a comparison between the
road system and the Internet.

PICONETS Piconets, or personal area networks (PANs) are a different category than the
other networks previously discussed. These are networks created for the personal use of an
individual. They generally have ranges of thirty feet or less, sufficient for an individual to
interconnect his personal computing devices. Connections between different cooperating users
are possible, but rare. Bluetooth is the primarymedium for personal area networks. Bluetooth is

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 389

389

FIGURE 12.22

Two Real-World Wide Area Networks

Source: From Business Data Communications and Networking, 9th ed., J. Fitzgerald and A. Dennis, Copyright © 2007,
by John Wiley & Sons, Reprinted with permission.

Data Center Local Content Manager

Planned Local Content Manager

Digital Island Direct Leased Line

Planned Digital Island Direct Leased Line

SOUTH
KOREA

CANADA

FRANCE

SOUTH
AFRICA

ISRAEL

NETHERLANDS

SWEDEN

RUSSIA
GERMANY

SWITZERLAND

SPAINMEXICO

BRAZIL

JAPAN

Honolulu

ATM
BACKBONE

Silicon Valley New York

London

UK

SINGAPORE

CHINA

AUSTRALIA

TAIWAN
HONG KONG

(b)(a) The SURFnet gigabit Ethernet WAN (Netherlands)

Amsterdam

Leiden

Den Haag

Delft
Rotterdam

Tilburg
Eindhaven

Maastricht

WageningenUtrecht

Enschede

Zwolf

Groningen

Hilversun

Source: From Business Data Communications and Networking,
9th ed., J. Fitzgerald and A. Dennis, Copyright © 2006, by
John Wiley & Sons, p. 331. Reprinted with permission.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 390

390 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.23

A Comparison of Internet and Highway Architecture

National
or international

ISP

National
or international

ISP

Regional
ISP

NAP

Regional
ISP

Regional
ISP

Regional
ISP

Regional
ISP

Regional
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

National
or international

ISP

National
or international

ISP

NAP

Key: NAP = Network access point

Internet Architecture

Key: XCH = Highway interchange

Highway Architecture

XCH

XCH

Interstate
10

Interstate
20

Interstate
210

Interstate
15

Rte
15

Main
st.

Cross
rd.

ELM
st.

King
st.

Maple
st.

Rte
122 Rte

71

Spring
st.

Oak
st.

Abbey
ave.

Rte
19

Rte
229

used for such purposes as the interconnection between a cell phone or GPS and a car radio
or hands-free speaker/microphone device, or for transferring and synchronizing pictures and
other data between a tablet or cell phone and a computer.

Network Interconnection

PACKET ROUTING In the previous section, you saw that the typical communication
channel is made up of a series of intermediate nodes, connected together by links. Packets are

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 391

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 391

FIGURE 12.24

An End-to-End Channel with Many Possible
Paths Through Intermediate Nodes

Path 1
Path 2

A B

passed along the links from node to node. This section

presents a general overview of how the packet moves from

link to link and how the path is selected.

Figure 12.24 illustrates a simplified version of an end-

to-end channel with some of its intermediate nodes. In some

cases, the movement of data from node to node is obvious:

there is only a single path. In many cases, however, there may

be several choices. Figure 12.24 shows two possible channel

paths out of many between end nodes A and B. Overall, in a

large interconnection of networks, a so-called internet (with a

small i), there may be thousands of possible paths connecting

end nodes A and B.

There are two basic techniques for selecting the path through a channel: circuit switching

and packet switching. A third technique, virtual circuit switching, is an alternative to ordinary

packet switching that also operates on packets.

Traditional telephony uses circuit switching. Circuit switching dedicates a path for the

exclusive use of the sender–receiver pair for the entire length of time of the connection. The

previous discussion of POTS in Section 12.2 was an example of circuit switching. The telephone

circuits are dedicated to the individual lines for the length of the phone call. Circuit switching

is inefficient and is rarely used today, even for telephony.

A virtual circuit is a multilink channel path that is established for communication between

two end nodes. There are two types of virtual circuits: a permanent virtual circuit (PVC)
is a virtual circuit that is created when a network is built; a switched virtual circuit (SVC)
is set up temporarily when a connection is established and maintained until the connection is

closed. For either type, data is sent through the channel in packets; each packet follows the same

channel links. However, the links and intermediate nodes are shared with other connections,

making the use of the channel more effective. Figure 12.25 shows the use of two virtual circuits,

one connecting end nodes A and B, another connecting end nodes C and D. These two circuits

share intermediate nodes k, n, and p, as well as the path between n and p. The use of virtual

circuits simplifies the routing of packets and also assures that packets will arrive in the correct

order, since all packets follow the same path. However, congestion at an intermediate node or

through an intermediate channel segment that is used by several different virtual circuits can

affect the overall performance of the network.

FIGURE 12.25

Virtual Circuits in a Network

A-B Path
C-D Path

(AekmnpqB)
(CjkhinpD)

A

C
D

B

e

f g

h i

j
k

l

m

n p

q

ATM (asynchronous transfer mode, not the bank

machine!) was a network protocol that used virtual cir-

cuit technology as the basis for packet flow. Although

ATM is rarely used today, virtual circuits are occasion-

ally used for network channel links that are provided

by outside vendors to connect different sites for an

organization.

Ordinary packet switching, usually called data-
gram switching, assumes that each packet is routed

from node to node independently, based on such crite-

ria as the shortest path to the packet’s destination and

traffic conditions. At each intermediate node, the next

link is determined by the node’s switch or router at the

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 392

392 PART FOUR NETWORKS AND DATA COMMUNICATIONS

time the packet arrives. TCP/IP uses datagram switching exclusively for all of its routing

decisions.

ROUTERS AND GATEWAYS A key element in the routing of packets is the presence of

intermediate link that connect nodes belonging to various networks together. Except for the

simplest case, where the interconnection can be made by direct link, a component at each

intermediate node routes the packet to the next appropriate node of a different network. It also

converts the data format of the packet to the format required for the next link, if necessary. The

component may be a computer programmed to do routing, but it’s more likely to be a router or

a gateway. Routers and gateways are specialized devices used to interconnect networks and pass

packets from one network to another. Technically, the difference between routers and gateways

is that routers connect similar networks together; gateways perform the additional format

conversion that is necessary to interconnect dissimilar networks. However, many network

designers don’t bother to distinguish between routers and gateways and simply use the term

“router” in both cases.

With only rare exception, packet switching algorithms will be used to guide the decisions

made at each router or gateway as the packet is forwarded from node to node through the

system. This same explanation also describes the functioning of the Internet (with a capital I).

A simplified diagram of a router is shown in Figure 12.26. The router consists of one

or more input ports, one or more output ports, a switch mechanism, and a processor with

memory. The input ports and output ports are connected to links. Routing protocols are sent

to the router processor and stored, using packets with control information. The basic operation

of a router is simple. When a packet arrives at an input port, the processor makes a decision

on where the packet is to be directed and sets the switch to direct the packet to the correct

output port. Routers are used wherever the incoming networks and outgoing networks operate

on the same set of network protocols, although the physical characteristics of the links might

be different. For example, a router can be used to switch packets between wireless and wired

Ethernet networks.

FIGURE 12.26

Block Diagram of a Router

Input
ports

NIC NIC

NIC NIC

NIC NIC

Output
ports

Memory

Processor

Switch

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 393

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 393

Gateways operate similarly, but are intended for use when two dissimilar networks are

connected together. The router operation is the same; the major difference is that the gateway

is able to convert the packet headers that arrive at the input ports to meet the requirements of

the different types of networks at the output ports. Traditionally, gateways have been thought

of as complex routing devices that converted (in both directions) between TCP/IP networks

and the older network protocols that were common on large mainframe systems. Since most

modern mainframes also operate predominantly using the TCP/IP protocols, the use of this

type of gateway is now relatively rare. Gateways are sometimes used to interconnect TCP/IP

networks with Frame Relay network links that are supplied by some vendors for connection

to computers beyond the local area. Similarly, although we don’t usually think about DSL and

cable modems specifically in terms of routing equipment, it is worth noting that they do fit the

technical definition of a gateway.

EXAMPLE
The technique of routing can perhaps be clarified with a simple example. The delivery of packets
through a system of networks can be compared to a delivery system that delivers packages by
train. See Figure 12.27. Suppose you live in Freetown and wish to send a birthday present to
your Aunt Margaret DuMont in Sylvantown. You hand the present to the agent at the Freetown
railroad station (the initial link from you to the network), who places it on the train headed toward
Sylvania.

The train passes through a number of stations on the way to Sylvania. At each station, there
are switches on the railroad tracks that direct the train toward Sylvania. Obviously the switches
will be set differently for trains headed for other destinations. (Note, by the way, that the tracks
are shared.) The track switches are equivalent to the routers in the packet switching model.

When the train reaches the border town of Freevania, the package must be passed to a
different train, because the gauge of the railroad tracks from Freevania to Sylvantown is narrower,
so the Freedonia train can’t use them. Instead, the agent at Freevania removes the package from
the Freedonia train and places it on another train to Sylvantown. The package has just passed
through a gateway. The package is removed from the train at Sylvantown and delivered by van
(the link to the end node) to your Aunt Margaret’s house.

12.5 STANDARDS
The need for data communication standards is evident throughout this chapter. Amusingly,

there is no single standard or standards organization for creating standards. Instead, there are

a number of different government agencies, technical groups, trade groups, and industry orga-

nizations, each of whom are responsible for particular areas of standardization. Occasionally,

this has resulted in competitions and conflicts, but for the most part this technique has worked

pretty well.

The major organizations that participate in the creation of standards for data commu-

nications, networks, and internetworks include the International Organization for Standard-

ization (ISO), an agency made up of standards-setting organizations from many countries

(www.iso.org); the International Telecommunications Union Telecommunications Group

(ITU-T), a UN agency made up of various major players from other standards organizations,

http://www.iso.org
http://www.iso.org

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 394

394

FIGURE 12.27

Delivery of a Package to Aunt Margaret’s House

Freetown

Sylvantown

FREEDONIA SYLVANIA

Aunt
Margaret’s
House

FREEVANIA

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 395

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 395

government agencies, and industry representatives; the Institute for Electrical and Electronics

Engineers (IEEE), a technical organization that oversees most local area networking stan-

dards (www.standards.ieee.org); and the Internet Engineering Task Force (IETF), a large

volunteer group of network designers, network operators, industry representatives, and

researchers, operated under the auspices of the Internet Society, a nonprofit corporation

(www.ietf.org).

ISO is probably best known to network engineers for its development of the Open

System Interconnection (OSI) Reference Model, but it has also published more than 17,000

international standards on a wide variety of topics, ranging from steel to sewing machines to

telecommunications.

Among other technical standards, IEEE is responsible for the standards that define most

local area and metropolitan area networking, including Ethernet (802.3), Wi-Fi (802.11),

Bluetooth (802.15), and WiMax (802.16).

IETF is concerned with the evolution of the Internet architecture and the smooth operation

of the Internet. IETF standards are based on a large published list of requests for comments
(RFCs), that define every aspect of TCP/IP and the Internet. There are more than 5000 RFCs,

representing information, proposed standards, and accepted standards.

There are various other groups who monitor very specific areas. Of particular interest

to us are Internet Corporation for Assigned Names and Numbers (ICANN) and Internet

Assigned Numbers Authority (IANA). ICANN is a private, nonprofit corporation responsible

for IP address allocation, domain name registration, and protocol parameter assignment, as

well as management of domain name and root server systems (www.icann.org). ICANN also

maintains a list of registrars accredited to assign domain names to individuals, groups, and

corporations. ICANN also operates IANA, which is responsible for registering application layer

port numbers, as well as the specific parameter values used in the headers of various Internet

protocols and other similar tasks (www.iana.org).

SUMMARY AND REVIEW

Chapter 12 introduced many different aspects of networking. Networking is ubiquitous—it is

hard to find a computer of any kind that is totally unconnected from a network. Organizations

rely on networks for their daily work and to interact with customers, collaborators, and

suppliers. Individuals use networks to locate information,make purchases, and for interpersonal

communications: e-mail, instant messaging, social networking, and more.

Networks work by passing messages over a channel between end nodes. The channel may

be divided into links, made up of local area networks and point-to-point connecting links

between intermediate nodes. Individual links may differ in data format and medium.

The basic unit of data communication is the packet. Messages are broken into packets

for transmission through the network. The prevalent transmission media are fiber-optic cable,

copper wire, and radio.

Topology describes the physical and logical layout of a network. The common topologies

include bus, start, mesh, and ring.

Networks are loosely categorized by range as local area networks, backbone networks,

metropolitan area networks, and wide area networks. The Internet is a large wide area network.

There are also personal area networks, of which Bluetooth is the best-known example.

http://www.standards.ieee.org
http://www.ietf.org
http://www.icann.org
http://www.iana.org
http://www.standards.ieee.org
http://www.ietf.org
http://www.icann.org
http://www.iana.org

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 396

396 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Packets are routed using either packet switching or virtual circuit switching. With packet

switching, each packet is routed individually. With virtual circuit switching, all packets in a

message follow the same path through the network. Packet switching is much more common.

Switches, routers, and gateways steer messages from one node to another, converting the data

format as necessary at each node.

FOR FURTHER READING
Chapter 12 presents a general overview of networking. There are many excellent network/data

communications textbooks that can support and expand your understanding of networks. The

ones listed here are just a sampling that reflect my personal preferences at the time of this

writing. New data communications textbooks appear frequently; the recommendations and

personal reviews at amazon.com may be helpful in sorting through the many possibilities.

My current basic preferences, based primarily on the appropriateness of level of difficulty,

readability, breadth, and accuracy, are Stallings [STAL12], Kurose [KUR12], Dumas and

Schwartz [DUM09], and Panko [PANK12]. At a more advanced level, Forouzan [FOR12]

and Peterson [PET12] are also excellent.

KEY CONCEPTS AND TERMS
access point

backbone networks

bandwidth

bit rate

broadcast

bus topology

byte stream

carrier

circuit switching

communication channel

datagram switching

demodulation

edge

edge router

Ethernet

extranet

full-duplex channel

gateway

guided medium

half-duplex channel

hierarchical LAN

hop

hosts

hub

hub-based Ethernet

Internet backbone

Internet Service Provider

(ISP)

intranet

links

local area network (LAN)

logical topology

mesh network

mesh point

message

metropolitan area network

(MAN)

modulation

network access point (NAP)

network topology

nodes

packet

packet switching

permanent virtual circuit

(PVC)

personal area network (PAN)

physical topology

piconet

point of presence

private virtual circuits

public switched telephone

network (PSTN)

requests for comments

(RFCs)

right-of-way access

ring topology

router

service provider (SP)

simplex channel

star topology

switched Ethernet

switched virtual circuit

(SVC)

TCP/IP

unguided medium

virtual circuit

Wi-Fi

wide area network (WAN)

wireless Ethernet

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 397

CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS—AN OVERVIEW 397

READING REVIEW QUESTIONS

12.1 Offer at least three examples that show the importance of data communications in
your daily life.

12.2 The book states that there are two different ways of viewing the connection between
a computer and a network. Explain.

12.3 Describe at least three ways in which networking is important to modern organiza-
tions.

12.4 What is amessage in the context of data communications?

12.5 Explain briefly the communications between a Web browser and a Web server in
fulfilling a Web page request.

12.6 State at least three reasons why messages are broken into packets for transmission
through a network.

12.7 What is the physical or logical connection between a sender and a receiver called?
This connection is usually broken into several parts. What are those parts called?
What are the connection points between parts called?

12.8 What are the major differences between guided and unguided media?

12.9 State three major general characteristics that define a channel.

12.10 Explain why full mesh topology is rarely used.

12.11 Draw a bus topology. Draw a star topology.

12.12 What is the difference between physical topology and logical topology? Which one
is more important when locating the wires for construction of a network? Which is
more important in describing the operation of a network?

12.13 It is common to characterize networks by their range or area of coverage. What are
the major categories of networks based on this criterion?

12.14 What is the purpose of a backbone network?

12.15 Explain intranet.

12.16 What is the major difference in implementation between a LAN and a MAN or
WAN?

12.17 What is an edge connection in a MAN or WAN?

12.18 What is a point of presence?

12.19 Who owns Internet backbones? Why are Internet backbones important in modern
Internet use?

12.20 What is routing? Explain the difference between circuit switching and virtual circuit
switching. What is a third, more common, alternative? How does it differ from the
other two?

EXERCISES

12.1 Discuss the trade-offs between circuit switching, packet switching, and virtual circuit
switching.

12.2 Explain the differences between circuit switching and virtual circuit switching. What
are the advantages of one over the other?

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 398

398 PART FOUR NETWORKS AND DATA COMMUNICATIONS

12.3 Explain the differences between virtual circuits and packet switching.

12.4 Consider the e-business system of a large automobile manufacturer such as Ford. List

at least a dozen mission-critical ways that this system would be used to communicate

between its various locations, between itself and its suppliers, and between itself

and its dealers. For each item, indicate the benefit that results from the networking

capability of such a system.

12.5 A short-circuit failure is a failure in which the connection point signal line is

electrically shorted to ground. AlthoughNIC short-circuit failures are extremely rare,

they do occur occasionally.What is the effect on a bus-based network if a short-circuit

failure occurs? How would a repair person locate the source of the problem? What is

the effect of an open-circuit failure?

12.6 Suppose that you are trying to design a network that would be suitable for a company

that is located in several buildings scattered around a town. No building is more

than a 1/4 mile from another building, but direct wire connections between all

buildings are not possible due to roads, houses, and other obstacles. Propose a

network configuration for this company, and justify your proposal.

12.7 a. Suppose you own a widespread chain of turkey tartare and sushi fast-food joints.

Your stores are scattered all over the mainland United States and Canada. There

are also a few stores in Western Europe. The computers in each store must

communicate with the central operation in Texas on a regular basis, but not

with each other. Design a network that would meet the requirements of your

company.

b. For each of the links in this network, describe a technology (medium and

signaling method) that would be suited to this application.

12.8 Your cousin has asked you to help her to design a small home network for her own

use.

a. What are the important questions that you will need to ask as you start to

consider your design?

b. What are the critical components that you will need to specify in your design?

12.9 Draw a six-node full mesh network. How many connections did your drawing

require? Does this agree with the formula in the text? (If not, fix your drawing!) How

many connections would a fifty-node full mesh network require?

12.10 A few years ago there was a major conflict between Comcast and Level 3, two major

Internet backbone vendors. A Google search of the Web (try “internet backbone

dispute”) will bring up the story. What were the effects of this conflict on the users of

the Internet? What caused these effects? Be as specific as you can.

12.11 Consider the business shown in Figure 2.5. Assume that the building is located in a

single building. Show a block diagram for a backbone-based network configuration

that will allow efficient use of network resources.

Englander c12.tex V2 - November 28, 2013 9:54 P.M. Page 399

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 400

CHAPTER 13

ETHERNET AND TCP/IP
NETWORKING

Illustration by Jeff Moores

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 401

13.0 INTRODUCTION
Although there are other types of networks and network protocol suites for specialized

purposes, the combination of TCP/IP and Ethernet represents the vast majority of network

connectivity in use today. Chapter 12 presented a careful, but general, introduction to the

basic concepts of networking; the goalwas tounderstand the components and tounderstand

how the components work and fit together to form complex data communication systems.

In this chapter, we expand the discussion to give you a clear understanding of the role of

TCP/IP and Ethernet in the operation of networks, from the moment a message is created

at a sending node to the time it is processed at the receiving node. At the end of the chapter,

we also introduce alternative protocols and packet-moving methods that are used in some

circumstances. This chapter will add richness and color to the overall picture of how your

e-mail and Web surfing and instant messaging (IM) retrieves your Web pages successfully

most of the time and gets your messages to the right place.

Along the way, we will consider some of the more interesting (and important) details:

how IP addresses are created and assigned and how an application called Domain Name

System (DNS) translates the familiar URLs and e-mail addresses to a universal set of

addresses that sends your messages to the correct location; and how the protocols route

your messages through various nodes, links, and networks to get there. Which, if you think

about it, is pretty amazing, given the billions of possible addresses that you might want to

send messages to!

Section 13.1 introduces the concept of a communication protocol suite. An initial

overview of TCP/IP is then presented to lay the groundwork for the remainder of the

chapter.

Sections 13.2 through 13.5 then offer a detailed description of how a protocol stack

works, usingEthernet andTCP/IP, theprevalent implementation, as themodel. Section13.2

explains the difference between program applications and network applications to clarify

the nature of the endpoint channel nodes. The remainder of the discussion focuses on each

layer of the protocol suite, starting from the lowest layers, the physical and data link layers,

in Section 13.3, and working upward, one layer at a time, through the network layer in

Section 13.4, and the transport layer in Section 13.5.

Section 13.6 explains IP addressing, including a discussion of the Dynamic Host

Configuration Protocol (DHCP) protocol that is used for dynamic IP address assignment.

Section 13.7 then explains the process of translation from host names, such as Web URLs,

to IP addresses. Since DNS is a network application, the process also serves as a review

example for the entire TCP/IP operation. The final sections of the chapter, Sections 13.8

and 13.9 briefly address two additional issues: quality of service (QoS) and network security;

Section 13.10 provides brief overviews of other important technologies that are alternatives

to TCP/IP and Ethernet.

401

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 402

402 PART FOUR NETWORKS AND DATA COMMUNICATIONS

13.1 TCP/IP, OSI, AND OTHER COMMUNICATION
PROTOCOL MODELS

Before we dive into the details of TCP/IP and Ethernet, let us remind you of the basic ideas

that were presented in Chapter 12: in simplest and most general terms, the goal of data

communication is to provide ameans of reliable and efficient data communication between two

end nodes or hosts. The communication takes the form of a message or a group of messages

between an application or service at one end node and a corresponding application or service

at a second end node. The message can be a file being transferred between computers, a voice

conversation from a cell phone to a friend 1500 miles (or, if you prefer, 2400 kilometers) away,

a Web request, streaming video from YouTube to your tablet—in fact, anything that can be

communicated in digital form. The message will be broken into packets, transmitted through

the network, and restored at the receiving node into the original message. The message may be

discrete or a continuous stream of data. If any of this synopsis is unclear, you may want to go

back and review Chapter 12 again.

Figure 13.1 illustrates the entire process again, as yet another variation on Figures 12.1,

12.4, and 12.6. It is also suggested that you look at the earlier figures again for comparison.

FIGURE 13.1

Another View of a Communication Channel
Host

Computer

Messages

Application
Software

Network
Software

Network
Interface
Controller

Packets

Host
Computer

Messages

Application
Software

Network
Software

Network
Interface
Controller

Individual
Links

End-to-End
Channel

Connection

Packets

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 403

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 403

This figure illustrates a number of additional features. For one thing, we have specifically

indicated the presence of the network interface controller, or more commonly, NIC, from

Chapter 10 that serves as the hardware interface between a computer and the network. This

also serves to remind you that communicating with the network is still a form of I/O. We have

also clearly marked some individual node-to-node links, as well as the multilinked end-to-end

connection. These additions will help with the upcoming discussion.

It is possible to implement the simplest forms of data communication with nothing

more complicated than a message format that both ends agree on and a means to access the

channel. Realistically, this simple approach is inadequate in most real-world situations. First

and foremost, it is rare that there is a direct, single link, unshared channel between the hosts.

Suppose that two or more computers are to communicate via a communication channel.

What are the requirements for them to communicate successfully? As we already noted, they

must agree on the signaling methods and the means used to access the connecting channel, but

in addition there is much more. Even the format of the message is more complicated than it

first appears. How long is the message? Which part of the message is actual data and which

part is overhead information such as the address of the sender and the address of the recipient?

How should the message be divided into packets for transmission through the network?

Each end of the communication must recognize all of the commands and requests of

the other and be able to respond in a reasonable way. For example, if one computer speaks

ASCII and the other speaks Unicode or some other code, successful communication will not

occur unless they are aware of the difference and are prepared to perform the translations

back and forth. E-mail messages will become garbled or not reach their destination if there

isn’t agreement on the meaning of the name and address on the “envelope”. What if there is

no obvious communication path between the sender and the receiver or one link of the path

is missing? How do the packets that contain the message get relayed appropriately through

intermediate nodes toward the receiving node?

How are errors to be detected by the receiver, and what will be done about them? How

does the receiver know that it has received a complete message, and how does it reassemble a

message from its packets, with the possibility that the packets may arrive in the wrong order?

There are many more such issues, and it’s easy to see that communication is not trivial.

Indeed, a substantial number of ground rules are required to satisfy all the conditions necessary

to communicate successfully.

Recall that in Chapter 1 we defined a protocol as an agreed upon set of ground rules

that make communication possible. The key to successful communication is a set of protocol

standards that establish hardware and software rules that will allow computers to establish and

maintain useful communication at various levels, from the rules that govern messages to the

hardware protocols that define the physical nature of the channels themselves. International

protocol standards exist for communication by various media, for different host devices, for

local area networks, for connection between local area and wide area networks, for Internet and

other wide area network communications, and for many other purposes.

The ability to communicate between dissimilar computing and channel resources, the

efficient use of channel resources, the ability to identify, associate, and locate specific addresses

to which the messages are to be sent, and the ability to deliver messages through a complex

system of channels are essential requirements for a successful message delivery system. Perhaps,

most amazingly, it all works!

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 404

404 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Two slightly different, but overlapping, standard models address these goals and concerns.

TheOpen Systems Interconnection Reference Model (OSI) is a theoretical model, developed

over many years as a standard by the International Standards Organization (ISO). It is used

primarily for research. TCP/IP is an older and more practical model, independently developed

to meet the needs of the original Internet design, and regularly modified and updated to meet

current needs. Our focus is almost entirely on TCP/IP, but a comparison of OSI and TCP/IP

appears in Section 13.10.

Each model is conceived and implemented as a hierarchical protocol stack, in which

each layer of the stack at the sending node contributes information that will be used by the

corresponding peer layer at the receiving node. (You can see the similarity between the behavior

of a protocol stack and the last-in, first-out nature of other types of computer stacks that we

have already discussed and that you’ve also seen in programming courses.) As you will see,

there are many similarities between the OSI and TCP/IP models, despite the fact that they were

developed independently.

A simplified view of the layered communication process is shown in Figure 13.2 In each

model, there is a suite of different protocols that are designed to work together and to guide

all aspects of network communication. Each protocol layer is responsible for a particular set of

FIGURE 13.2

A Simplified Model of a Layered
Communication

Messages

Network
Application

Management

End-to-End
Connection

Management

Node-to-Node
Connection

Management

Physical
Connection

Management

Hardware

Signalling
in bits

Packets

tasks. As long as the interfaces between layers are well defined, it is

possible to separate the tasks. An individual layer needs to be concerned

only with the interfaces of the layers immediately above it and below

it. Ideally, the operation of a particular layer is transparent to other

layers and could be modified or replaced without affecting other layers,

provided that the layer continues to provide its required services to

the communication process and that there is agreement between the

equivalent, or peer, layers at the sending and receiving end nodes.

Separating the tasks involved in communication adds flexibility,

simplifies design of the protocols, makes it possible to modify protocols

or substitute alternative protocols without affecting unrelated tasks, and

allows a system to select only the protocols that it needs for a particular

application.

TCP/IP is, by far, the prevalent protocol suite. Although the

name suggests two protocols, TCP/IP is actually a name encompassing

an integrated suite consisting of numerous protocols that control

various aspects of data communication, including end-to-end message

handling, link management, routing and link-to-link communication,

error reporting, global address resolution, and many other functions.

The suite also includes a number of perhaps familiar application

protocols, including HTTP, SSH, FTP, SMTP, POP3, and many more.

Unofficially, the TCP/IP model consists of five layers. (Although

layers 1 and 2 are not officially part of the TCP/IP suite, they are

nearly always treated as though they were, since they always interact

directly with the remaining TCP/IP layers. The issue is that there are

a number of different network options for layers 1 and 2.) Figure 13.3

identifies the five layers in the model, along with some of the major

protocols found at each layer. In addition to the layer names, each

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 405

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 405

FIGURE 13.3

The Layers of the TCP/IP Network Model

TCP UDP SCTP

IP ICMP
DHCP

Depends on underlying
network

ARP

HTTP
SMTP

Application
layer

FTP
SSH

DNS
POP3

...

Depends on underlying
network

Transport
layer

Network
layer

Data link
layer

Physical
layer

layer is also identified by a layer number, starting from 1 at the

lowest layer. Note the obvious similarity between Figure 13.3 and

Figure 13.2.

Figure 13.4 offers a more detailed diagram of the TCP/IP

protocol stack, showing the basic operation of the model. As you

can see from the figure, operation of the model is hierarchical.

Each layer of the model is implemented to fulfill a specific function

in the communication process. Each layer at the sending node

performs its services, and adds additional metadata to themessage,

usually in the form of a header that encapsulates the data from

above. (A few protocols also require a trailer.) The result is then

passed to the next lower layer. This is also shown in the diagram.

Each layer relies on the layers below it to provide all the additional

functionality necessary to fulfill the communication function. At

the receiving node, the peer layer interprets and removes the

information provided for it by the sender, then passes the remainder upwards, layer-by-layer,

until the original, reassembled message finally reaches the application layer.

FIGURE 13.4

Operation of the TCP/IP Model

etc.

Peers

Peers

Response

Request

5

Layer #

1

2

3

4

msg

msg msg

msgTCP

TCP TCP

msgTCPIP IP

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

IP
header

msg
Transport
header

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 406

406 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Not surprisingly, the message to be sent through the communication channel gets larger
and larger as it passes down the chain, since each layer in the sender must add its own
component to the message from the previous layer.

In an earlier, 2001 edition of his book, Fitzgerald [FITZ12] likened the layered model to
a pair of office buildings, where the people on each floor are responsible for a specific set of
business tasks. The TCP/IP buildings are each five stories tall. The people on the fifth floor of
one building put a message for the other building into an envelope, seal the envelope, and send
it down to the fourth floor. Each floor adds its own message and puts the previous envelope
plus the new message into another, somewhat larger, envelope.

When the package reaches the first floor, a messenger person (this is the physical layer)
carries the package across the street to the other building, where the people on each floor
retrieve their messages and pass the remaining envelopes back up the hierarchy, until the final
message, actually the original, reaches the fifth floor.

After a brief explanation of the difference between program applications and network
applications, we will begin at the bare-bones network hardware and work up through the layers,
one step at a time, until you have a full picture of the communication process. We remind you
at the outset that a typical communication requires lots of little operations. At the same time,
trying to view the whole picture at once can be somewhat intimidating. As you read through the
description that runs through this chapter, be sure that you always keep the simplicity in mind!

13.2 PROGRAM APPLICATIONS VERSUS
NETWORK APPLICATIONS

Before we begin a detailed discussion of TCP/IP, we need to differentiate between program
applications and network applications. There is an intentional emphasis in Figure 13.1 on the
network applications that actually present the message to the channel and remove it at the
other end. These are not the regular program applications that you are familiar with: Safari
or Outlook or Skype or . . . Instead, these are networking applications based on protocols,
specifically designed to present the message to the network in a format that can be understood
by each of the hardware and software components of the channel. The network applications
represent standard protocols that are part of the TCP/IP protocol suite; they interface directly
with other protocols that will break themessage into packets and transport themessage through
the channel for retrieval by a corresponding network application at the receiving end.

The TCP/IP protocol suite offers a large number of applications for use on a network. These
include familiar ones such as HTTP, FTP, SSH, and MP4, but there are also applications for
voice over IP telephony, video conferencing, IM, RSS news feeds, remote program execution,
and much more. (Surprisingly, SMS, the mobile texting protocol standard, is not part of the
TCP/IP protocol suite, but is maintained by a separate mobile phone standards organization.)
Of all the TCP/IP applications, three applications: Web services, e-mail, and music and video
sharing account for the vast majority of the traffic on the Internet. IP-based telephony is also
increasingly important.

As you will see later, it is also possible to add proprietary or nonstandard network
applications for use, provided that they are designed to interface properly to the remainder of
the protocol stack and provided that there is peer agreement between the end nodes as to the
meanings of themessages. In Section 13.10, we show SCSI over IP as an example of a proprietary
network application in common use.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 407

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 407

The network applications that we just discussed are members of the application layer,
which is the top level of the suite, sometimes referred to as layer 5. Amessage froman application
program, such as the Firefox web browser is passed to the appropriate network application,
in this case HTTP, to start the communication process. This was shown as an example in
Chapter 12, Section 12.2.

13.3 THE PHYSICAL AND DATA LINK LAYERS
The great majority of communication links are based on Ethernet; most of those links are
also ultimately tied in to local area networks. There is no compelling technical relationship
between Ethernet and the concept of local area networks, although they do work well together.
Rather, they are closely related by the coincidence of history. It is not difficult to envision other
protocols that could be implemented successfully in a local area network, nor is it difficult to
illustrate uses for Ethernet outside the local area network environment.

Accident or not, most individual communication links ultimately connect into local area
networks and Ethernet is the standard set of protocols of choice for these connections. Ethernet
comprises layers 1 and 2 of the TCP/IP protocol suite, the physical layer and data link layer,
respectively. Because the data link layer directly controls the physical layer, we will consider
them together.

Other protocols can and do occur at the physical and data link layers, and coexist and
interface with TCP/IP at the upper layers. As an important example, cellular technology is often
used as the initial link between an end user and the network-at-large. Some public wide area
network suppliers also provide links that are based on alternatives to Ethernet.1 We discuss
some of these alternatives in Section 13.10. For now, though, we limit the discussion to Ethernet.

Let’s begin with a simple scenario: we’ll consider what is required to move the bits of an
Ethernet packet, called a frame, through a single link from one node to another in a basic
local area network. (Non-Ethernet packets are also called frames at the data link layer.) As you
will see, the expansion of this discussion to encompass networks in general will be relatively
straight-forward. For now, we are not concerned about messages, nor about routing; only about
what it takes to move the frame from one node in the network to another. Even for this simple
scenario, there are a number of factors to consider:

n We need to know the characteristics of the link, of the nodes, and of the network
itself. This includes, among other things, the choice of medium and its properties, the
method of transmission, and the protocols in use. For example, the link might be a
wired link, an optical link, or a Wi-Fi link. Even with Ethernet as a common
denominator, each of these has its own set of characteristics and requirements.

n The logical topology of the local area network, usually star or hub, is an important
consideration. However, we remind you that the hub, switch, or Wi-Fi access point is
not considered a node, since it is ultimately transparent to the data being moved
through the network.

n The local area network may contain several nodes, so there must be an addressing
system that identifies the destination, to indicate which node will receive the frame.

1The author’s favorite is a proposed standard for “IP over Avian carrier”, specifically, for carrier pigeons. The

standard proposes that IP datagrams be written out on small sheets of paper and attached to the legs of carrier pigeons.

The concept was implemented and successfully tested in Norway using the ping application. See the references in For

Further Reading at the end of the chapter.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 408

408 PART FOUR NETWORKS AND DATA COMMUNICATIONS

The destination node will also need to know where the packet came from—its source

address.

n The properties of the frame are important because the nature of the frame can set

limits on the design of the network itself. For example, under certain circumstances,

the size of the frame, measured in bits, can determine the maximum distance between

the nodes.

The Physical Layer

Regardless of protocol suite or communication configuration, level 1 is defined as the physical
layer. The physical layer is the layer at which the communication actually takes place.

Communication at the physical layer consists of a bare stream of bits moving through a

medium from one node to another. The physical access protocol includes definition of the

medium, the signaling method and specific signal parameters, voltages, carrier frequencies,

lengths of pulses, and the like; synchronization and timing issues; and the method used to

physically connect the computer to the medium. An example of a physical access protocol is the

specificationdescribing the specifics of the communicationbetweenan802.11nwireless network

card and a corresponding access point. The physical layer protocol defines the frequency of

the carrier signal, data modulation and demodulation technique, bandwidth, strength of the

transmitted signal under different conditions, and more. Physical communication between

computers, routers, and other devices takes place only at the physical layer. The physical layer

is implemented primarily in hardware by a network interface controller, which generates the

particular voltages, light pulses, radio waves, clock and synchronizing signals, and the like

appropriate to a particular specification. Of course, there are a number of different technologies

within the Ethernet “umbrella”, including “twisted pair” wire, cable service, Wi-Fi, and fiber

optic, each with its own physical layer requirements. The various options are defined by

International standards, primarily IEEE 802.3 for wired Ethernet and 802.11 for Wi-Fi. The

technical details of the various options is a major topic in itself. We defer the technical details

to Chapter 14.

The Data Link Layer

The primary definition for Ethernet resides in layer 2, the data link layer. The data link layer is
responsible for the reliable transmission and delivery of packets across the communication link

between two adjacent nodes. Because the data link layer must be specific to the characteristics

of the network or link and medium to which the node is attached, there are many different

standards in use.

Most data communication practitioners divide the data link layer into two separate

sublayers: the hardwaremedium-access control (MAC) sublayer, which defines procedures for
accessing the channel and detecting errors, and a software logical link control (LLC) sublayer,
which offers traffic flow control, error correction, and the management of IP packet/frame

conversions, retransmission, and packet reconstruction, when necessary.

Among the services offered by the logical link control sublayer is a service that provides

appropriate error detection for each frame.Most data link protocols offer ameans for requesting

and retransmitting a frame that has not been received successfully. Since some communication

conditions make it possible that frames will be received in the wrong order, the data link

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 409

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 409

layer also numbers the frames and reorders the received frames if necessary to recreate the

original message. Frames may be received in the wrong order if they are separately routed over

communication paths of significantly different path lengths (it takes longer to get a message

from Los Angeles to San Diego if it is routed via Alaska and Hawaii, for example) or if a frame

has to be resent due to an error. Of course this does not apply to a local area network, but

Ethernet can operate at long ranges under certain conditions, so the protocol must contain

contingency procedures for such situations.

As Figure 13.4 showed, packets at the data link layer arrive from the network layer,

layer 3. If necessary, these packets from the network layer are resized for compatibility with the

medium-access control protocol used by the particular network or link, and numbered for later

reconstruction. In most cases, this is unnecessary; the data link layer simply encapsulates the

incoming packet without change, and adds a data link layer header, and in some cases, a trailer,

to create a frame. As you will see later, the transport layer also provides most of the services that

would be performed by the logical link control sublayer, including error checking and sizing of

packets to conform to Ethernet requirements; therefore the services of the logical link control

layer are usually bypassed.

The medium-access control (MAC) sublayer is responsible for providing orderly access to

the physical medium. Because there are a variety of media and signaling techniques in use, the

standards define a number of different protocols and frame headers, each corresponding to a

particular physical medium and signaling method.

The specific purposes of the medium-access protocol are to encode data in the proper

format for the physical layer, to steer data to its destination, to detect errors, and to prevent

multiple nodes from accessing the network simultaneously in such a way that their messages

become mixed together and garbled. Such an event is called a collision. As you already know,

the predominant medium-access protocol for local area networks is Ethernet. MAC protocols

are implemented primarily in firmware or hardware in the device’s network interface controller.

Local area networks are defined generally in the IEEE Standard 802 suite.Wired Ethernet is

defined in Standard 802.3. In Chapter 12, we introduced two different forms of wired Ethernet,

based on hubs and switches. Technically, Ethernet is called the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) protocol. Ethernet was originally a trade name for this

protocol. Ethernet was originally based on bus topology. The name CSMA/CD reflects that fact.

Switched Ethernet, which is defined in the same specification, does not actually implement the

CSMA/CD protocol, because connections are point-to-point and collisions are not possible.

The 802.3 specifies many variations, which differ in the type of wiring or fiber optic cable used,

in the method used to connect to the physical medium, in the signaling method used, and in

the speed of operation.

The address for each node on an Ethernet network is called a MAC address. It is also set

in the device’s firmware or hardware. MAC addresses are permanently assigned globally by

the IEEE organization to the manufacturers of Ethernet-attached equipment. Every individual

NIC-based device has a unique six-byte address, that, in theory, never changes. A laptop

computer with three different network ports will have three different NICs and three different

MAC addresses, for example. Note the words “in theory”, by the way. In practice, some systems

provide means to modify a NIC’s MAC address.

The format of a wired Ethernet frame is shown in Figure 13.5. The frame consists of a

preamble, used for timing synchronization between the sender and the receiver, a start frame

delimiter to indicate the beginning of the frame contents, the destination and source addresses,

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 410

410 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.5

Standard Ethernet Frame

Preamble and
start frame
delimiter

Synchronization
8 bytes

6 bytes
each

Number of
bytes of data

2 bytes

Cyclic
redundancy
check (Error
checking)
4 bytes

46 bytes min.
1500 bytes max.

(Data padded to 46
bytes if necessary)

Destination
address

Source
address

Data
length

Data CRC

specified as MAC addresses, a data length field to indicate the amount of data in the frame,

the data field itself, and a field that is used to confirm the integrity of the frame. The data field
requires a minimum of 46 bytes, with padding if necessary; this value was originally selected to
guarantee that collisions on the original Ethernet bus could be detected before the frame was
accepted by the receiver. The maximum data field is 1500 bytes. Although the destination field
is specified as a MAC address, there are special addresses that allow a frame to be delivered to a
group of receivers simultaneously. The ability to broadcast a frame to every receiver is required
as part of a network level protocol called ARP, or address resolution protocol, that is used to

discover the relation between an IP address and a corresponding MAC address. A destination
address consisting of all 1s is used for this purpose. More about ARP in Section 13.4.

Hub-Based Ethernet

Ethernet was originally based on a bus topology. Hub-based Ethernet provides a simple means
of wiring a bussed Ethernet together, but the hub does not affect the operation logically. Any
node may use the bus to send a message to another node any time the bus is not in use; there is

no specific timing control on the bus. When a node has a message to send, it listens to see if the
bus is in use. If not, it begins to send its packet. If the bus is already in use, the node waits until
the bus is available. This is the “CSMA” part of CSMA/CD.

CSMA/CD does not try to prevent the occurrence of collisions. As the node sends its frame,
it continues to listen to the bus. If network traffic is light, the node will usually complete sending
the frame and will then return to listening mode. Occasionally, two (or more) nodes may sense
that the bus is free and initiate transmission simultaneously. A collision occurs, and the data on

the bus becomes scrambled, due to the interference between the two signals. Since each node
continues to listen as it transmits, it can recognize that the data is scrambled—the signal on the
bus is not the same as the data it is transmitting.When a node detects a collision, it immediately
stops transmitting, waits for a short time, then returns to listening mode, and tries again when
the bus is free. The amount of time each node waits after a collision is random for each node. If
both nodes waited the same length of time, collisions would continue to recur indefinitely.

It might seem to you that collisions would occur very rarely, especially on a network with

sparse traffic. There is an additional factor to consider, however. Signals on the bus require a
small but finite (and, as it turns out, sometimes significant) amount of time to travel down the
bus. Signals on a bus travel at approximately three-fourths the speed of light, or roughly 9 inches

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 411

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 411

or 23 centimeters per nanosecond. This may seem like a very small number, but if two nodes
on the bus are 500 feet apart, it will create a window of about 5/8 microseconds after one node
begins transmitting before the second node is aware that the bus is in use. The amount of time
that it takes for a packet to get from one end of the network to the other is called the network
propagation delay. In other words, the probability of collisions is higher than one would first
assume. Particularly if bus traffic is heavy, a node may have to try several times before it sends
a packet successfully.

Hub-based Ethernet is adequate for networks with light traffic, because of its simplicity.
Every node is independent. Nodes may be added simply by plugging them into the hub. No
central network control is required. However, hub-based Ethernet is unsuitable for networks
with widely separated nodes, due to the increase in the probability of collisions. Similarly, as
traffic increases, the number of collisions and retransmissions also increases and performance
deteriorates, making hub-based Ethernet less suitable also for networks that frequently carry
heavy traffic.

Switched Ethernet

The desire to operate local area networks at higher speed and with longer ranges also makes
hub-based Ethernet unusable in many circumstances. Instead, switched Ethernet permits the
point-to-point connection of any pair of nodes.Multiple pairs can be connected simultaneously.
Modern switches even provide a buffer to hold frames destined for a receiver already in use.
Switching thus prevents collisions, and there is no need to implement CSMA/CD in switched
Ethernet systems. Switched Ethernet has two additional advantages: (1) it is possible to connect
nodes together in full-duplex mode, which is not possible with a single bus connection, and
(2) each pair of connections can operate at the maximum bit rate of the network, since the
media are unshared. For many years, hub-based Ethernet was preferred because of the cost of
switches. This is no longer the case; at this point in time, switches are inexpensive. Hub-based
networks are rarely considered for new designs.

Wireless Ethernet (Wi-Fi)

As wementioned in Chapter 12, there are two types ofWi-Fi in use, designated as ad hocmode
and infrastructure mode. Ad hoc Wi-Fi assumes direct connections between Wi-Fi nodes,
and is based on a partial mesh network topology. Because ad hoc mode Wi-Fi depends on a
network of available cooperative stations, it is rarely used. The more common, infrastructure
mode Wi-Fi, is based on a shared access point, and is of more interest to us here.

Wireless Ethernet is similar to hub-based Ethernet in many respects because of the nature
of the medium. A variation on CSMA/CD is used for infrastructure Wi-Fi. Since the medium
effectively has the characteristics of a hub, collision handling is required. The standard specifies
two techniques, one mandatory, the other elective. Collisions in a wireless network are harder
to detect than in a wired network and the consequences are greater. The hidden node and
out-of-range conditions (recall Figure 12.16) mean that it is possible that some stations can
never detect collisions from each other. Each wireless station is dependent on the access point.
Furthermore, once a sender begins to transmit a frame, it will be transmitted to its conclusion,
even if a collision has occurred, because the power of the transmitted signal overwhelms the
receiver, so that continuous listening is not possible. This means that delays due to collisions
are much longer than those on a wired hub.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 412

412 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Instead, the 802.11 standard specifies the use of a collision avoidance MAC protocol,
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). As with CSMA/CD,
a station is always listening when it is not transmitting. When a station wishes to transmit a
packet it waits until the channel is clear, plus an additional short random amount of time. It then
transmits its frame to the access point, which retransmits the frame to the destination node.
Retransmission by the access point is required, to handle the hidden node and out-of-range
problems. Thewireless Ethernet frame contains a field that states the time duration of the packet,
which assists other stations in knowing how long the transmission will take. When the frame
reaches its destination, the receiver checks for errors, then sends a short acknowledgment packet
to indicate satisfactory receipt of the frame. The requirement for receivers to acknowledge the
receipt of frames is the reason for the extra delay in starting transmission. The acknowledgment
is the only sure way to know that a collision has not occurred.

Anoptional enhancement uses a reservation system to improve collision avoidance between
hidden nodes. Instead of transmitting a frame, a sender will send a short “request to send”
(RTS) packet to the access point, including the time duration that it needs to send a frame. If
the channel is clear, the access point will return a “clear to send” (CTS) packet, at which time
the sender begins transmission of its frame. Even if a hidden node cannot receive the original
RTS packet, it will be able to receive the CTS packet that was sent from the access point, and
thus know that it must wait before starting its own transmission.

The details of the wireless Ethernet MAC sublayer are necessarily more complicated than
those of wired Ethernet. For example, the wireless Ethernet frame used for infrastructure-based
Wi-Fi must keep track of MAC addresses for the access point, in addition to those of the source
and the destination nodes, resulting in a different frame format from that of Figure 13.5. Further
discussion of these details is beyond the scope of this textbook.

Figure 13.6 illustrates the generalized operation of the data link and physical network
layers. While the previous description in this section applied specifically to the various forms of

FIGURE 13.6

Generalized Operation of the Data Link and Physical Layers between Nodes in a Network

Packet
Received From
Network Layer

LOGICAL
LINK

CONTROL

MEDIA
ACCESS

CONTROL

DATA
LINK

LAYER

Resize frame if
necessary. [optional:
add error checking,
frame numbering]

Error check,
reorder and recombine
frames, if necessary.

Decode bit stream
to bytes of frame.
Remove frame header.

Receive stream of
bits from medium.

Receiving
Node

Packet Sent
to Network Layer

Add frame header. Encode
bytes of frame to bits in
format and signal type
appropriate for medium
and signal method of
physical layer.

Transmit stream of
bits into medium
(cable, radio, etc.).

PHYSICAL
LAYER

Sending
Node

LOGICAL
LINK

CONTROL

MEDIA
ACCESS

CONTROL

PHYSICAL
LAYER

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 413

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 413

Ethernet, Figure 13.6 applies more generally to any network that interfaces to the network layer

of the TCP/IP model.

13.4 THE NETWORK LAYER
Hopefully, you now understand how the data link layer and physical layer move an Ethernet

frame of data from one specific node to the next. Other data link protocols and physical

connections work similarly. The remaining layers of the stack are official TCP/IP protocols.

They are implemented as software programs within the computer’s operating system, the

network equivalent of I/O drivers discussed previously in Chapters 9 and 10.

Continuing up the protocol stack to the next layer, the network layer, layer 3, is responsible
for the addressing and routing of packets from the source end node through intermediate

nodes, step-by-step, to their proper final destination. The TCP/IP network layer is also called

the internetworking layer or IP layer. IP is the single standard protocol for this layer, although

there are two versions of IP, IPv4 and IPv6, in current use. There are also several additional

support protocols for matching IP addresses to the physical addresses that are used by the data

link layer, for error reporting, for making information requests, and other auxiliary tasks.

For communications confined to a local area network, the task is usually simple. IP builds

an Ethernet frame by copying the IP packet (at the IP level, packets are known as IP datagrams)
and appending a header to the frame with a node-specific physical MAC address to each packet,

and passes the frames on to the data link layer. There is no routing to do, since all the nodes on

a local area network are connected together and directly addressable. If the datagram address

is in the form of an IP address, as one would normally expect, the software looks up the

corresponding physical address in a table.

When the message is being sent to a node outside a local network, for example, to the

Internet, the network layer is responsible for moving the message from sender to receiver,

packet by packet, from one intermediate node to another through router packet switches. At

each intermediate node, the network layer removes the current node’s physical address and

establishes an address for the next node, using various tables and algorithms. The new physical

address is added to the packet and the packet is passed to the data link layer, which handles the

actual connection between nodes.

It is not possible to store the address of every location at each node. Instead, the network

layer has access to tables at various sites that assist in routing the message. Because routing

takes place at the network layer, routers and gateways are sometimes called layer 3 switches to
indicate the layer at which routing takes place. The topic of datagram routing is dependent on

a number of different mathematical algorithms and sophisticated statistical techniques that are

outside the scope of this text. We will not consider this topic further.

Remember that the IP datagrammay pass through different types of links. For certain types

of physical layer connections, it is necessary to further divide the IP datagrams into smaller

packets before they are delivered as frames to the data link layer. IPv4 has this capability,

although it is rarely needed in modern systems, where the vast majority of linkages are based

on Ethernet, and the packets were designed to fit Ethernet frames when they were originally

created. These smaller packets are called fragments. IP datagram fragments are reassembled

by IP when the final destination is reached, using header information that is stored with each

fragment. IPv6 eliminated this capability as too complicated and time-consuming; instead, IPv6

simply rejects the packet, with an error message back to the sending node.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 414

414 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Although IP attempts to route every datagram to its final destination, it is a connectionless,
packet switching service. Connectionless means that every IP datagram is treated as an
independent entity. Packet switching means that every datagram is routed independently. IP
is an unreliable, best-effort delivery service: it does not guarantee delivery nor check for
errors. Those tasks are the responsibility of the layer above, the transport layer, which takes
responsibility for transmission of the entire message.

The intention of the original TCP/IP designers was to provide universal connectivity, with
connection-independent protocols at the network layer. Thus, the TCP/IP standard does not
“officially” address the data link and physical layers at all, although it recognizes the existence
of these two layers as a necessity. As we noted earlier, these layers are generally addressed by
a mixture of hardware and software that is directly tied to the needs of each particular type
of communication channel. Nonetheless, there are clear relationships between the IP network
layer and the data link layers, as described below.

The format for an IPv4 IP datagram is shown in Figure 13.7. The total size of an IP
datagram can range from 20 to 65,536 bytes, although the total size is usually determined by the
capability of the data link that will be carrying the data. For Ethernet, the maximum frame size
is 1500 bytes, so most IP datagrams will be less than that. This avoids the need for datagram
fragmentation. The header size is between 20 and 60 bytes; the rest is available for data from the
transport layer, the layer above. The header identifies the source and destination IP addresses,
as well as the transport protocol and the version of IP in use. It also provides the total length of
the datagram and an error checking field. There are several additional fields and options.

FIGURE 13.7

IPv4 IP Datagram Format

H
eader

IP
version
(4 bits)

Header
length
(4 bits)

Identifier 3
flags

Fragmentation
offset (13 bits)

Header error check
(16 bits)

Source IP address (32 bits)

Time-to-live
(8 bits)

Upper-layer
protocol (8 bits)

Destination IP address (32 bits)

Type of service
or QoS
(8 bits)

Datagram length (16 bits)

Options

Data

(up to 65,535 bytes with header)

(up to 10 additional
32-bit words)

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 415

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 415

You are undoubtedly aware that the Internet relies on IP addresses for locating network

services. Therefore, the network layer bases its routing on IP addresses. The data link layer and

physical layers, however, are based on physical addresses. Before IP sends a datagram from the

source to the data link layer, it must identify the physical address of the destination node on the

network it is attached to. IP address-to-physical address translation is performed in conjunction

with a support protocol, Address Resolution Protocol (ARP). ARP is implemented at the

network layer.

Once IP has determined the IP address of the node where the datagram is to be sent, it uses

ARP to determine the corresponding physical address. The destination node may be a router

on an intermediate node or it may be the node of the final destination for the datagram. When

ARP sees an IP address that it doesn’t recognize, it sends a broadcast packet with the IP address

to every node on the local network. The matching node responds with its physical address;

in the case of Ethernet, the physical address is the MAC address of the destination node. The

physical address is then sent in a frame to the data link layer. At each intermediate node, this

process is repeated until the final destination is reached; the current destinationMAC address is

stripped from the frame and replaced with the new address. At the final destination, the packet

is passed up to the transport layer for deployment to the application layer. ARP maintains a

cache of recently used IP address-physical address pairs to simplify the process. Only the first

packet in a set of packets headed for the same destination requires use of the broadcast process.

You might ask why the network protocols use two different sets of addresses to move data

from node to node. The problem stems from the fact that the IP addressing system works on

the basis that it knows the actual network location of every IP address in use. Since physical

addresses belong permanently to devices that can be moved from one location to another, and

therefore, one node to another, it is necessary to associate an IP address to a physical address at

the time of communication to send data to a particular device.

For example, you might connect your tablet to one network at work or school, to another

network at the coffehouse where you have lunch, and to yet another network at home. Although

you have moved your physical address from network to network, the Internet will always be

able to assign a current IP address for the node where your device can be located as you work.

Best of all, the address resolution protocol handles the details for you automatically. Figure 13.8

illustrates this concept.

One additional network layer support protocol may be of interest to you. The question that

it answers is “what happens if something goes wrong?” As an example, a Web service might be

misconfigured or a file missing. Remember also that IP is an “unreliable, best-effort” protocol.

An IP datagram might be defective or be misrouted. The Internet Control Message Protocol
(ICMP) is an auxiliary protocol that creates error messages that occur when there is a failure in

the procedures. ICMP encapsulates an error code in a new IP datagram that is then returned to

the source IP address. Typical error messages include “Destination Host Unknown” and “[IP

Datagram] Time to live exceeded”. It is also used to make inquiries. Such network tools as ping

and traceroute use the query services of ICMP to provide the information that they report.

Figure 13.9 shows the ongoing interactions between the network layer and the data link

layer in a simple end-to-end communication with an intermediate node that is used for routing.

For each link, the network, data link, and physical layers are established according to the rules

for the immediate communication. At the intermediate node, the lower three layers are stripped

from themessage-at-large and recreated according to the rules for the next link. For the first link

in this figure, the network layer delivers the packets to the address of the router for forwarding;

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 416

416 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.8

The Address Resolution Protocol at Work
IP ADDRESS
TO LOOKUP

REQUEST
LOOKUP FROM

ARP TABLE

172.20.12.181

172.20.13.6

172.20.12.185

172.20.13.64

00:23:6B:7A:EE:52

00:24:4C:3F:C2:16

2E:56:88:2D:1A:CE

8C:62:A5:E1:3F:DD

REPLY
RECEIVED

MAC
ADDRESS
FOUND IN

TABLE

MAC
ADDRESS

TO
FRAME

MAC
ADDRESS

TO
FRAME

NOT IN
TABLE

BROADCAST
IP ADDRESS
MESSAGE TO

NETWORK

ADD
IP-MAC ADDRESS
PAIR TO TABLE

IP ADDRESS MAC ADDRESS
ARP TABLE

the network layer at the second link recognizes that the IP destination address of the packet
matches that of the current node and delivers the packets instead to the transport level above
for final destination processing.

13.5 THE TRANSPORT LAYER
At this point, you know that the layers that we have discussed can take a series of packets and
move them, node by node, through a group of interconnected networks, from a source node
to a destination node, using an IP address to locate the destination, the network layer to route
the packets, the data link to provide the proper connection, and the physical layer to move the
actual bits from one node to the next. Moving up a layer, the purpose of the transport layer is to
take messages from network applications and provide services that support reliable end-to-end
communications.

The transport layer is ultimately responsible for receiving a message from an application
at the source node and delivering it to a corresponding application at the destination node.
The transport layer is responsible for generating the final address of the destination and for all

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 417

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 417

FIGURE 13.9

Passing a Message through an Intermediate Node

Source
node

10101011 10101011

IPInt

Data link
A

Data link
A

Data link
B

Data link
B

Physical
A

Physical
B

Physical
A

Physical
B

Intermediate
node

Strip and
rebuild

Destination
node

APP and
TCP layers

APP and
TCP

layers

IPDstIPDstIPInt

APP and
TCP

layers

end-to-end communication facilities. Other services offered at the transport layer include the

capability to establish a connectionwith the destination, flow control, data assurance, reordering

ofpackets if necessary, error recovery, and terminationof the connection, if appropriate, between

end nodes. In most cases, the transport layer is also the layer responsible for packetization of

the message, that is, the breaking up of the message into packets of reasonable size. As you

already know, the three lower layers provide the communication services that handle the details

and do the actual work of moving packets of bits through the network.

Notice that the ultimate destination address is established at the transport layer, although

the network layer is the layer responsible for the routing of packets through the intermediate

nodes to the destination. The message headers and control messages of the application and

transport layers make it possible for end nodes to communicate fully without regard or concern

for the nature of any intermediate nodes, and conversely, the end-to-end communication is

essentially transparent to the intermediate nodes.

To identify the network application requesting service, the transport protocol identifies the

application that created the message and the application that is to receive the message with port
addresses, or more commonly, port numbers.2 Port numbers are sixteen bits in length. The

first 1024 numbers are calledwell-knownports. These are standard addresses specified formost

common applications. You are probably familiar with port number 80, which is commonly used

for Web services. Figure 13.10 shows the port numbers for some of the familiar applications.

2Network port numbers are different than I/O ports. They are created and used in protocol software, as opposed

to I/O ports, which are hardware based.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 418

418 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.10

Some Well-Known Port Numbers

ftp
ssh
smtp
nicname
http
kerberos
pop3
sqlserv

20
22
25
43
80
88

110
118

file transfer
secure login
simple mail transfer
“who is” request
Web
encryption
post office protocol
SQL services

Port numbers can be modified by an application. A large

number of user-defined port numbers are available for this

purpose. To accommodate this option, the application of the

sender can specify the port number of the application to which

the message is being sent. For example, if a user knows that

the Web server being addressed is on port 8080, instead of

port 80 (a common trick used to hide a Web server from

users who do not have access privileges), she can specify the

port number by appending it to the URL with a colon thus:

www.somewhere.org/:8080/hiddenServer. User-defined port

numbers can also be used to identify proprietary network

applications.

The application sends its message to the transport layer,

together with sender and receiver port numbers plus sending

and receiving IP addresses. The port addresses will not be looked at again until the message

reaches the transport layer at the receiver.

For communication between an application and the transport layer, operating systems

provide an interface called a socket, which makes it easy to add a request to the communication

services provided by the TCP/IP suite. The concept of sockets originated with BSD UNIX.

Sockets provide the interface between the application layer and the transport layer. Sockets are

used by applications to initiate connections and to send messages through the network. At the

destination node, a similar socket provides the means for the transport layer to communicate

with the peer application.

Each new request creates a new socket at the transport layer. A socket is defined by four

pieces of information: the source port number and IP address and the destination port number

and IP address. The use of socketsmakes it possible to createmultiple open connections through

which data can flow simultaneously without losing track of which is which. For example, this

allows a Web server to handle many requests simultaneously. You can picture a socket as a

sort of software doorway through which bytes can flow. The socket technology allows new

applications simply to “plug in” software that adds to the communication services available

from the system. Sockets also provide a means for adding new protocols and keeping the

network facilities current in their offerings.

The transport layer is implemented with three different standard protocols: TCP, User

Datagram Protocol (UDP), and Stream Control Transmission Protocol (SCTP). When a

message reaches the transport layer from an application, one of these three is selected, based

on the characteristics and service requirements of the particular type of message. Each of the

transport layer protocols works slightly differently.

Transmission Control Protocol (TCP) is known as a connection-oriented service. Before
any data packets are sent to the receiving node, TCP at the sending node establishes a connection

with TCP at the receiving node by exchanging special control packets for this purpose.

Once the connection is made, TCP divides the message into packets, adds a header to each

packet, numbers them, and sends them to the network layer for transmission. TCP requires

that an acknowledgment message be sent from the receiving node back to the sender to verify

the receipt and acceptability of each packet in the message. If a packet is not acknowledged,

TCP resends it. This capability is enhanced by the full-duplex connection that TCP establishes:

data packets and acknowledgment packets can flow through the channel simultaneously.

http://www.somewhere.org/:8080/hiddenServer

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 419

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 419

FIGURE 13.11

A “Logical Connection” View of TCP

Source
application

TCP
socket

Destination
application

Logical connection

Underlying “machinery”,
IP, data link, physical

TCP
socket

Thus, TCP offers a reliable delivery service. When the communication is complete, TCP closes

the connection. In a way, TCP is like a pipe that opens to pass data in the form of a byte stream

from an application at the sending node to the corresponding application at the receiving

node, without regard for the details of the underlying mechanism (i.e., the lower layers). The

pipe is called a logical connection because it operates independently of the actual physical

characteristics of the network. Figure 13.11 illustrates this idea.

Note that the path that the packets take is not established by TCP; routing is the

responsibility of the network layer. The network layer uses datagram switching, therefore the

packets may each be routed differently. This creates the possibility that packets may arrive at

the receiving node out of order. Numbering the packets allows the receiving node transport

layer to reorder the packets, if necessary, to recreate the original message. TCP packets are

called segments by some network practitioners, because their data content is part of an ordered

sequence of bytes that is maintained across an entire packetized message.

TCP establishes a connection at the request of a network application. To initiate a

connection, TCP sends a control packet (through the usual network layers) to TCP at the

Web site, requesting a connection; this results in a brief back-and-forth series of requests and

acknowledgments known as handshaking. This packet also contains a random 32-bit number

that will serve as an initial sequence number to be used to number the packets. Since TCP

was designed to support multiple concurrent communications, a random number is used to

differentiate between packets belonging to different messages, in case multiple messages from

the same application are being transmitted concurrently. See Figure 13.12. If the negotiation

is successful, a connection is opened. As we previously noted, this connection is logically

a full-duplex connection, both because many applications send data in both directions, (for

example, Web page requests from the browser application at one end node will result in file

transfers from the Web server at the other), and because TCP requires an acknowledgment

packet be sent in return for every packet received.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 420

420 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.12

Three-Way TCP Connection Handshake

TCP
CLIENT
(initiates

connection)
TCP

SERVER
KNOCK, KNOCK. PLEASE OPEN A DOOR [SOCKET]
FOR ME, HERE’S A NUMBER TO USE INITIALLY.

(special SYN sequence [packet] with SYN=1 and initial sequence # included.)

(special SYNACK sequence with SYN=1, ACK=1 and

server’s initial sequence #. Client’s # moved to

acknowledgment # and 1 added to it.)

(SYN=0, ACK=1. Server’s # moved to
acknowledgment and 1 added to it.)

OK, I AGREE. I’M SENDING YOU A NUMBER TOO.

THANKS, GOT YOUR NUMBER TOO. HERE’S SOME DATA

DATA AND ACKNOWLEDGMENTS EXCHANGED

1

3

2

Figure 13.13 shows the format of a TCP packet. The same format is used at both ends of
the connection. Notice that the packet format cleverly facilitates two-way communication by

allowing the inclusion of a data packet together with an acknowledgment for a packet received.
The packet specifies both the source and destination port numbers, but does not require IP
addresses because the connection is already established, and thus is known. The sequence
number and acknowledgment number are cleverly designed both to number the packets in

order and to indicate the amount of data present in the data field of the packet. Since the packet
format provides a field for options, the packet must also contain a header size field. The header
is 20 bytes long if there are no options.

An alternative protocol, UDP, for User Datagram Protocol, is used for some applications

instead of TCP. UDP is a connectionless service. Unlike TCP, there is no communication
between the sender and receiver nodes to set up a connection in advance. UDP packets are
known as user datagrams. A UDP packet contains the message exactly as delivered from the
application, thus it is the responsibility of the application to divide the message into smaller

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 421

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 421

FIGURE 13.13

TCP Segment Format

H
eader

Source port # (16 bits)

Sequence # (32 bits)

Acknowledgment # (32 bits)

Header
lgth

4 bits

6 flag bits
incl. SYN, ACK,...

Window size
(16 bits)

Error check (16 bits) Urgent ptr. (16 bits)

Options

Data

Size usually set to conform to lower layers.

(up to 10 additional
32-bit words)

6
 bits

resvd

Destination port # (16 bits)

pieces, if necessary. Every UDP datagram is sent independently. UDP is faster and simpler,
but does not guarantee delivery. There is no acknowledgment of receipt by the receiving node.
UDP is useful for communications in which the retransmission of a lost, out of order, or error-
containing packet is not practical or in which the loss of a packet is relatively inconsequential.
Streaming video is an example of this situation. It is also sometimes used for very shortmessages.

The newest alternative, SCTP, for Stream Control Transmission Protocol, offers features
similar to TCP, with additional features that improve fault tolerance and enable multiple
messages (in the form of byte streams—hence the name) to be transported simultaneously
through the same connection. SCTP also allows a message to be divided among multiple IP
addresses; SCTPwill allow amessage to be redirected to a different IP address if there is a failure
at the first address, thereby reducing data delivery failures. Although SCTP could theoretically
replace TCP some day, its current use is limited primarily to new applications, primarily those
used with IP telephony and multimedia applications.

13.6 IP ADDRESSES

IPv4 and DHCP

You undoubtedly know that IP addresses are the standard for locating resources on the Internet.
You are also aware that DNS translates user-friendly domain names into IP addresses. You
also know that IP addresses and domain names are registered and allocated by ICANN.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 422

422 PART FOUR NETWORKS AND DATA COMMUNICATIONS

The IP address system that is familiar to you is likely IPv4, however IPv4 has, for practical

purposes, run out of addresses. This section provides more information about the IP addressing

system used with IPv4, and additionally introduces IPv6, which is gradually being phased in to

replace IPv4. Later, we will also show you how DNS translates the user-friendly addresses into

IP addresses that TCP/IP uses for routing and communication.

An IPv4 address is 32 bits long. As you are probably aware, the 32 bits are divided into four

octets (or four bytes, if you prefer, but for some reason, network engineers call them octets.)

The octets are separated by dots for easier reading. Each octet is a number in the range 0–255,

of course. Thirty-two bits accommodates about four billion different addresses. In the earlier

days of the Internet, the four octets also identified the assignee to some extent, however, that is

less true today. Nonetheless, IP addresses are still assigned in blocks.

Blocks of various sizes are assigned to individual business organizations and also to Internet

Service Providers (ISPs). ISPs make it possible for individuals and small groups to obtain IP

addresses so that they may access the Internet. The addresses in a block are contiguous, and

the number of addresses in a block must be a power of two. A block is assigned by specifying a

given number of bits, from left to right; the remaining bits represent addresses in the block.

Look at Figure 13.14. For example, if your organization is issued a block starting with the

28 bits to the left of the dividing line in the figure, the four remaining bits would provide a

block of sixteen addresses for computers within your organization. Three of these addresses are

reserved for special purposes. The first address in the block is defined as the network address for

your organization; it is used for routing. Two additional blocks are used for special messages.

This leaves thirteen addresses that the organization can allocate in any way it wishes.

Traditionally, most blocks are larger than sixteen addresses, and IPv4 addresses are

usually divided into three levels, and in some cases four or more. Figure 13.15 shows an

IPv4 address divided into three levels; the top level is, of course, the network address. The

remaining bits are divided into subnetworks, or subnets. Each subnet has a number of hosts

(or nodes). Masks are used to separate the different parts of the address. A mask consists of a

number of 1s followed by 0s. When the mask is suitably combined with the IP address using

Boolean algebra, individual components of the address can be identified. A mask is specified

by placing a slash mark with the number of 1s following the IP address. Alternatively, it can be

specified in dotted decimal notation. Both notations are shown in the figure.

FIGURE 13.14

IP Block Addresses

Network address Host address

28 bits

202.66.31.138

4 bits

< Organization address 202.66.31.128 >

11001010 01000010 00011111 1000 1010

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 423

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 423

FIGURE 13.15

IP Hierarchy and Subnet Mask

Network address HostsSubnet

or

10101011

11111111

00100001

11111111

0100 0001

1111 0000

171.33.65.157

171.33.65.157/20

1001 1110

0000

(Mask to identify subnet + host)

0000

Note that every node that faces the Internet

must have a unique IP address. For some time,

people have been aware that the total number of

possible IPv4 addresses available is inadequate

to meet the needs in the near future. Although

IPv6 offers a massive address space and has

the potential to solve this problem in the long

term, its adoption to date has been limited. The

potential shortage of IP addresses is further exac-

erbated by the block numbering design of the

IPv4 addressing system, in which organizations

are often assigned more IP addresses than they

need. Since the number of available IP addresses

is limited, theremust be away to ration addresses

so that everyone who needs access can obtain it.

There are two alternativemethods that are presently used to distribute IPv4 addresses more

efficiently:

1. Small organizations with limited Internet gateway access can place their networks

behind a router that keeps the network addresses private and use the private IP

addresses that are designed for this purpose. Private IP addresses cannot be used on

the Internet, but they are suitable for networks which are not directly exposed to the

Internet, with the additional benefits of hiding individual machines from the Internet

and also reducing the number of IP addresses that an organization might otherwise

require.

Computers isolated on a local network access the Internet using a technique called

network address translation (NAT). A NAT-enabled router passes messages from

the isolated network to the Internet, replacing the private address with the router’s IP

address. (Or addresses, since there might be multiple addresses available for this

purpose.) Traffic passing through the NAT-enabled router to the outside, for

example, Web requests, must be carefully tracked by the router, so that responses

from the outside are routed to the correct private address on the inside. There are two

difficulties with this approach:

n For a small network, NAT is relatively manageable. The task becomes far more

challenging when the number of privately addressed computers is large and traffic

through the interface is substantial.

n An organization with multiple local area networks connected with a backbone

network must configure the private networks in such a way that traffic between the

various private local area networks can be managed successfully. One possible

solution is to use a single private IP addressing scheme for all networks attached

within the backbone, with translation at the edge router. Again, the problem of

translation becomes large and difficult to manage.

Even with the challenges of managing a private network, NAT is often implemented

as a security measure; since the NAT-enabled router is the only computer visible to

the Internet, computers on the private network are not addressable from outside the

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 424

424 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.16

Reserved Private and Broadcast IP Addresses

10.0.0.0–10.255.255.255
172.16.0.0–172.31.255.255
192.168.0.0–192.168.255.255

Broadcast address255.255.255.255

Address range Total number of addresses
Binary Decimal

224

220

216

16 million
1 million
64,000

~~
~~
~~

Private
addresses

local network, and are essentially invisible to the public networks, providing extra

protection to an organization’s internal network. Indeed, most home networks are

implemented with private IP addresses controlled by the router. The standard list of

private IPv4 addresses is shown in Figure 13.16. IPv4 also provides a universal

broadcast address consisting of all 1s that addresses all nodes on a subnet.

2. The second alternative is to maintain a bank of available IP addresses, and assign them

dynamically to computers for use during the time that the computers are connected

to the network. This is the approach generally taken by large organizations and by

DSL and cable service providers. IP addresses that are more-or-less permanently

assigned to a device are called static addresses. Addresses that are assigned on an

as-needed basis are called dynamic addresses. DHCP is used for this purpose.

Dynamic Host Configuration Protocol (DHCP) is an application layer protocol used to

assign and reclaim IP addresses from a pool of addresses when a computer is connected to or

removed from a network. The DHCP client resides on the computer or other device that is

being connected. The client communicates with a DHCP server. The IP addresses are a block

of addresses reserved for this purpose.

When a computer is connected to a network, the DHCP client broadcasts a query to every

computer on the network, in order to locate the DHCP server. The DHCP server responds

with a lease, which includes an IP address, and other configuration parameters, including the

domain name of the network, the IP address of a local DNS server, a subnet mask to identify

other nodes on the local area network, and the default IP address of the Internet gateway. Some

DHCP servers also include the addresses of other useful services, such as a time server. The

lease is issued for a fixed period of time. Most systems allow the DHCP client to renew the lease

before it expires. This allows the client computer to maintain the same IP address while it is

actively connected to the network.

Because the IP address is allocated at the time of connection, most computers connected

usingDHCP are not used to provide services to other computers on the network because there is

no consistent domain name-IP address link for the computer. A companion protocol, Dynamic

Domain Name Service, DDNS, can provide this link by updating the local DNS server. DDNS

is a documented part of the DNS protocol and is used in network administration to automate

updates to the domain name servers. However, DDNS is rarely made available as a service to

home computing environments.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 425

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 425

IPv6

Internet experts have known for several years that available IP addresses were running out, even
with the stopgap measures discussed above. IPv6 was created to solve the problem. The IPv6
standard also addresses a number of other current issues related to operation of the network
layer. As a side note, it is useful to see how IPv6 validates the concept of independent layers that
makes it possible to solve problems that arise as conditions develop and change.

IPv6 addresses are 128 bits long, permitting 2128, or approximately 256× 1036, or, if you
prefer, 256 trillion trillion trillion different IP addresses. This provides roughly 32 billion trillion
addresses per square inch of the Earth’s total surface area, including both land and water, which
should be a sufficient number of addresses for a while. It would seem that the designers of IPv6
were determined not to run out of addresses again!

IPv6 addresses are usually specified as a sequence of eight four-digit hexadecimal numbers
separated by colons. This representation is commonly called colon-hexadecimal notation. For
example, an IPv6 address might be notated like this:

2FC3 ∶ 5AB2 ∶ 4470;0001 ∶ FFDC ∶ BB54 ∶ C126 ∶ 7001.
Even this representation is difficult to read. Fortunately, many of the digits in a typical IPv6

address are zeros, so the creators came up with an abbreviated notation, in which leading zeros
in a colon group can be left out; also, one single subsequence of colon groups that are all zeros
can be represented with a pair of colons. For example, the address

2CAA ∶ 0030 ∶ 0000 ∶ 0000 ∶ 0000 ∶ 0370 ∶ 0000 ∶ 12AB
can be represented as

2CAA ∶ 30 ∶∶ 370 ∶ 0 ∶ 12AB.
which is slightly easier to read. Note that we can’t double colon the group of zeros in the seventh
position, because we wouldn’t be able to tell how many groups of zeros were located between
each of the double colons. (Try it; you’ll see the problem.)

Like, IPv4, addresses are divided into blocks, but the blocks aremuchmore broadly defined.
For example, all standard addresses begin with 0012, or, in a masked notation somewhat similar
to thatwhichyou’ve seen for IPv4, 2000::/3. (“2000” represents0010 followedby twelve zeros.The
pair of colons that follow indicate that the remaining digits are all zero. “/3” represents themask.)
Only about 15% of the possible addresses are currently assigned to blocks and available for use.

Although the primary benefit of IPv6 is the increased address space, the designers of IPv6
also used the opportunity to rethink aspects of TCP/IP that could result in faster processing,
support desirable new features, or that didn’t work well in amodern environment. For example,
provisions were made to support priority processing for streams such as multimedia, the IP
datagram was simplified to increase processing speed, packet fragmentation was eliminated as
being too awkward, and ICMPwas rewritten.Moreon IPv6 canbe found inKurose [KUR12] and
Forouzan [FOR13], as well as in the various RFC standards that describe IPv6 and its features.

13.7 DOMAIN NAMES AND DNS SERVICES
At this point, you hopefully have a reasonably clear picture of the complete process for creating
a data message at a host computer and sending it, link by link, through a network to another
host. An application on the sending host creates the message and passes it through a socket to
the transport layer of the TCP/IP stack. From there, the packetized message is passed to the

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 426

426 PART FOUR NETWORKS AND DATA COMMUNICATIONS

network layer, where it is routed as necessary from node to node, using the hardware-assisted
data link and physical layers to move the actual bits of the message to the receiving node. At the
receiving node, the process is reversed. The packets are recreated as a message and delivered to
the matching application at the receiving host.

To complete this discussion, however, there is one remaining task to consider. As a user you
know that domain names serve as user address identifiers formost of your network transactions.
Domain names are used throughout the Internet, as well as on local area networks, intranets,
and extranets. However, network navigation within the network itself relies on numeric IP
addresses and physical addresses. The inventors of the Internet understood that the average
user would have difficulty remembering the number groupings that are used as IP addresses,
and created a hierarchical system of domain names as an alternative. The decision to offer
translation from domain names to IP addresses as a basic Internet service is one of the cleverest
and most successful aspects in the original development of the TCP/IP protocol suite.

When an application requests services from TCP, UDP, or SCTP at the transport layer, it
must supply a numerical IP address. TCP/IP provides a support application that fulfills the role
of the Domain Name System (DNS) protocol, to translate domain names into IP addresses.
The DNS application uses a massive distributed database organized as a directory system of
servers to obtain the required information. Each entry in the database consists of a domain
name and an associated IP address (plus some other information about the entry that is not of
concern to us here.)

The directory system that is used to translate domain names into IP addresses is organized
as a tree structure, very similar to the directory structure of a computer operating system, except
that there is a separate server at each node on the tree. Figure 13.17 shows the structure of

FIGURE 13.17

Domain Name System Server Hierarchy

Subdomains
and hosts

DNS ROOT
SERVER

Generic
domain name servers

Country-code
domain name servers

Top-level
domains

.COM .ORG .EDU

Local
domains

GOOGLE IBM

.DE .CN .UK .AU

AMAZON

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 427

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 427

FIGURE 13.18

Top Domain Name Registrations

GENERIC*

TLD

.com .de (Germany)

.tk (Tokelau)***

.uk (Britain)

.nl (Netherlands)

.cn (China)

106.8 15.2

10.8

10.2

5.0

4.1

15.1

10.0

3.9

2.3

.net

.org

.info

.biz

TLDNO.IN MILLIONS NO. IN MILLIONS

COUNTRY CODE**

*Source: centr.org/DomainWire Stat Report 2012.2.
**Source: www.icann.org/en/resources/registries/reports.
***Tokelau is a territory of New Zealand that offers special domain name services.

the tree. Each directory node on the tree provides name-to-IP address services corresponding

to its position on the tree. There are three primary levels of interest. Below that, individual

domain name owners can extend the number of levels down as far as they wish for convenience

of organization and clarity.

At the top of the tree is the root directory, called the DNS root server. Actually, there
are thirteen of these servers, named a.root-servers.net through m.root-servers.net, each with

its own IPv4 and IPv6 addresses, scattered all over the world, and each of them is actually a

cluster consisting of many computers, also dispersed widely. As you will see shortly, the DNS

root servers must handle a large number of queries, more than 50 billion a day as of June

2008. Distributing the root servers geographically reduces the amount of long distance traffic by

providing nearby access for as many queries as possible. The DNS root servers have entries for

all of the so-called top-level domains. There are country-code top-level domain name servers
(ccTLDs) for every identifiable country in the world plus a number of authorized commercial

and noncommercial generic top-level domain name servers (gTLDs). The generic domains

include .com, .edu, .org, .net, and many more. In mid-2008, a decision was made to allow the

creation of additional top-level domains. Figure 13.18 shows a table of some of the leading

top-level domains in current use. As of August, 2012, there were more than 240 million domain

name registrations, according to the Domain Name Industry Brief [Domain 2012].

Domain names below the top-level domains are registered for a small fee by users with one

of a number of registrars. ICANN (see Chapter 12, Section 12.5) assumes overall responsibility

for the millions of registered names on the Internet. Domain names below the top-level are

called second-level or, in some cases, third-level domains. The name must, of course, be

unique; there can be no duplicates anywhere in the world. Once the domain name is registered,

it can be used to assign names of individual nodes or hosts within that domain, and matched

to one or more assigned IP addresses. Domain names are read left to right, from the lowest

subdomain to the top-level domain. See Figure 13.19 for an example.

Each individual domain must register the IP address of a domain name service of its own

to identify its hosts and subdomains, if any. This server is called an authoritative domain
name server. In the simplest case there are no subdomains. Rather than complicate matters,

simple domains usually rely on the authoritative domain name service of the Internet Service

http://www.icann.org/en/resources/registries/reports

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 428

428 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.19

The Elements of a Domain Name

www.alumni.myschool.edu/2006

Host in
alumni

Subdomain of
myschool

Domain
myschool

Top-level
domain

Directory in
www host

Provider to fulfill this requirement. Larger domains provide their own authoritative DNS

servers. The authoritative domain name servers are the third tier in Figure 13.17.

Each top-level domain maintains multiple servers with tables containing entries for all of

the registered names; each name entry contains the IP address of its authoritative domain name

server. As you can imagine, the tables for .com are huge! These tables are updated continually.

Multiple servers are required to handle the volume, for redundancy, and to protect the integrity

of the Internet domain name system against attacks. These servers are also widely disbursed

geographically. Each table is updated and synchronized periodically, using a process called

replication.
Now, consider a slightly simplified step-by-step description of the translation process that

takes place when a user types a URL into her Web browser application. The translation process

is known as domain name resolution. The steps are diagrammed in Figures 13.20 and 13.21.

Figure 13.20 is a simple pointer diagram showing each of the steps. Figure 13.21 is a traditional

flow diagram showing the same information in a different way. Both are included to make it

easier for you to follow the steps.

FIGURE 13.20

Resolving a Domain Name to its IP Address

HTTP
client
app

DNS
client
app

Local
DNS
server

Local
DNS
table

Authoritative
server

IP address of
authoritative

server

or

Requested IP
address

IP ad
dres

s o
f T

LS

Root
server

Top
level
server

1 1

3
3

2

2
2

5 5

4

4

5

5

http://www.alumni.myschool.edu/2006

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 429

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 429

FIGURE 13.21

Resolving a Domain Name—Flow
Diagram

HTTP client

DNS client

YES

Local
DN server

Local
DN server

Authoritative
DNS server

Query to
authoritative
DNS server

Requested
IP address to
local DN server

Return IP
address to
DNS client

Return IP
address to

HTTP client

END

DNS
client

Local
DN

server

TLD
server

Local
DN server

Root
server

NO

Query to
DNS client

Query to local
domain name

server

IP address
in local

DNS table?

Query to
root server

for TLD address

Root returns
TLD

address

Query to
TLD server for
authoritative
DNS server

TLD server returns
authoritative

server address

START

1

3

2

4

5

1. The HTTP application extracts the domain name from the

URL and requests resolution of the name from the DNS

support application. The DNS support application is a

client program residing on the same host as the HTTP appli-

cation, so this is a simple program call. The DNS client

issues a query packet with the name to a local DNS server

for resolution.

The local DNS server is not part of the domain name server

hierarchy. It could be on the host machine requesting

service, or elsewhere. More commonly it is located

elsewhere, on the same LAN as the host or at an ISP’s site.

Regardless of where it is located, its IP address is already

known by the DNS client application. Its task is simply

to respond to requests from the DNS application with the

IP address requested. Note that the DNS client request

must follow the usual path through the layers of the network

model. Since DNS request packets are simple and small,

UDP datagrams are used for packet transport.

2. The local DNS server table contains the addresses for

various root servers. It also stores in a cache, on a short-

term basis, the names and IP addresses resulting from

other recently issued requests. This has the benefit of

simplifying the search for commonly used domain names,

such as www.google.com and www.facebook.com. In certain

cases, it also stores its own subdomains. If the information

is in the local DNS table, the information is returned

to the DNS client by the local DNS server as a response

to the query (again through all five layers, using UDP as the

transport mechanism.) The DNS client passes the IP address

to the HTTP application. The DNS application’s job is done.

3. If the local DNS server does not have the information in

its own table, the process continues. Unless the local server

already has an IP address for the appropriate top-level

DNS server, it must query one of the DNS root servers

seeking that address. In that case, the root server responds

with the IP address of a nearby top-level server.

4. Next, the local DNS server issues a query to the DNS

top-level server, requesting the IP address of the

authoritative DNS server associated with the requested

domain name.

5. Finally, the authoritative DNS server responds with the

requested IP address. The local DNS server returns

the address to the DNS client on the host machine

making the original request. The IP address is delivered

to the HTTP application. We’re done!

http://www.google.com
http://www.facebook.com

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 430

430 PART FOUR NETWORKS AND DATA COMMUNICATIONS

DNS offers useful services beyond the basic one-to-one name-to-IP address translation
service described above. Two of these are mentioned here:

n The domain name system permits the use of alias names that share the same IP
address. This is particularly useful when the actual host is deep within a subdomain
and is hard to remember. Its name can be aliased with a simpler name. DNS can
determine the actual name and IP address from the simpler name. This aliasing
capability even extends to the use of the same alias for both Web and mail
applications.

n DNS can also perform load balancing for organizations that require multiple
replicated servers to handle large request loads. An obvious example of such an
organization is google.com, whose websites receive billions of communications every
year. Recall that we mentioned in Chapter 2 that google.com has a large number of
Web server sites all over the world for handling search queries. Each site is connected
to a different part of the Internet and each site has its own IP address. However, one
domain name, google.com is associated with all of these sites. DNS includes all of the
IP addresses associated with that name in its database. DNS will return the entire list
of potential IP addresses in response to a query; however, it modifies the order of the
listing each time a query is made. DNS clients normally select the first IP address on
the list, therefore the requests are distributed approximately evenly among the
different sites. This has the additional advantage of equalizing the traffic load over
different parts of the Internet.

13.8 QUALITY OF SERVICE
Certain types of data are dependent on reliable end-to-end transport where packets arrive at
the receiving host in order, with sufficient throughput, with minimum, or at least, consistent,
delay, at precise, even time intervals, and with a low probability of errors and missing packet
failures. These necessary qualities are particularly important for streaming audio and video
applications, such as IPTV and VoIP, and for online gaming and virtual reality applications.
In contrast, IP offers unreliable, best-effort service that provides limited support for any of
these qualities. Similarly, the basic Ethernet specifications do not indicate any level of quality
support, although a number of alternative data link layer protocols do include such methods
and measures in their specifications. These include Frame Relay, ATM, and MLSP, among
others, as well as certain variants on Ethernet.

There is no simple, effective measure of the quality of packet switched delivery. Instead,
Quality of Service (QoS) focuses on two parameters: (1) methods to reserve and prioritize
channel capacity to favor packets that require special treatment, and (2) service guarantees
from contracted carrier services that specify particular levels of throughput, delay, and jitter.
Throughput is important to assure that the network can deliver the entire stream at the required
data rate. (Picture a favorite song that gets slower and slower as you listen to it—not entirely
accurate, but you get the idea.) Jitter is defined as the variation in delay from packet to packet.
It is a particularly important parameter in the transmission of video and audio because jitter
causes large fluctuations in the image and sound. Note that a large amount of jitter can actually
cause the packets to arrive at the receiver in the wrong order. Delay is somewhat less important,
but only provided that the delay itself is constant. Generally, if there is substantial delay, it is
due to network congestion, and the throughput and jitter will also suffer.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 431

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 431

With the growing prominence of multimedia on the Internet the need for effective QoS
has taken on increased importance. Various partial solutions have emerged. IP provides a 6-bit
field in its header which has been adapted for this purpose. This field is called the differentiated
service (DS) field, usually abbreviated to DiffServ. (DS is actually an 8-bit field, but the other
2 bits do not concern us here.) The DS field serves as an index into a table that defines various
classes of service. For a particular set of packets, the DS field is set by the application at the
sender or by the first node. Modern routers, sometimes called DiffServ capable nodes, can then
prioritize and route packets based on the packet class. Interestingly, there are no ground rules
on the basis for setting the DS field, nor for the way the routers make decisions based on the
class of service, but it is generally agreed that routers prioritize streaming multimedia if they
can do so without creating major congestion at the router’s node and beyond.

Currently, the DiffServ approach appears to be the most successful in practice. However,
its success is contingent on a number of factors; the major factor is sufficient network capacity
to minimize congestion at router nodes.

QoS is a complex topic with many nuances and implications for the design and use of
networks. There are references to QoS in a number of networking specifications, and many
books and articles written about various facets of QoS. A few of these are indicated in the
For Further Reading section at the end of this chapter.

13.9 NETWORK SECURITY
The words “network security” are an oxymoron. Networks are inherently insecure. Therefore,
strong securitymeasuresmust be taken independently of the network to protect the components
of the network aswell as the data flowing through the network. Securitymeasures are an essential
part of any system, large or small. The issue of computer system and network security is a broad
and extensive topic; it is often taught as a separate course. We shall only touch the surface in
this discussion. Our focus is upon issues related specifically to network security measures that
are an essential part of the design of any network infrastructure.

Network-related security issues are often placed into one or more of five categories, with
specific types of measures required for each category:

n Intrusion—Keeping network and system resources intact and free from the results of
intrusion. Intrusion includes the ability of an intruder to modify the system for future
access, destroying system data and program files, injecting viruses, and more. The
primary measures required are physical and circuit protection of the network to the
extent possible; firewalls on individual components, including routers, where
appropriate; and protection of passwords that traverse the network with encryption.

n Confidentiality—Keeping the content of data traversing the network and information
about the communication taking place private. Encryption measures are required for
this purpose.

n Authentication3—Verifying the identity of a source of data being received. This is
similar to the concept of electronic signatures. Special encryption features are used
for this purpose.

3As an alternative to considering authentication as a separate category of security requirement, some authors and

researchers regard authentication instead as a tool to support the other requirements, in particular, data integrity and

nonrepudiation.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 432

432 PART FOUR NETWORKS AND DATA COMMUNICATIONS

n Data integrity and nonrepudiation—Protecting the content of data communication

against changes and verifying the source of a message. Special encryption features are

also used for this purpose.

n Assuring network availability and access control—Restricting access to network

resources to those permitted to use them and keeping network resources operational

and available.

Although there is obvious overlap among these requirements, the measures to be taken fall

into three primary categories: physical and logical access to systems, firewalls (which are a type

of logical access restriction), and encryption technology.

Physical and Logical Access Restriction

There are numerous ways to intrude into a networked system. The tools for packet sniffing
are free and readily available to anyone. Packet sniffing is defined as the reading of the data in

a packet as it passes through a network. With wired networks, packet sniffing can be achieved

by physically tapping into the network itself or by reading packets as they pass through a node.

Hub-based networks are particularly vulnerable because anyone connected to the “bus” at any

point can read every packet that uses the bus. Wireless networks are even worse. Anyone within

range of a radio signal can receive the signal.

In general, it is safest to assume that it is possible to intercept and read any packet passing

through a network. This makes passwords that travel through a network unencrypted useless

at protecting a network and its computers from intrusion.

The Internet provides an additional means of intrusion access. Any system on any network

that is publicly accessible from the Internet is susceptible to probing attacks that seek IP

address/port numbers combinations that will accept data packets. Specially constructed packets

can then be used to access and modify software running on the host machine.

A number of measures are used to protect systems and networks from intrusion. Physical

eavesdropping on local area networks is minimized by limiting access to network wiring and

network equipment to personnel who are responsible for the equipment. Logical access is

limited with intelligent firewall design that blocks public access where it is not required and

robust network applications that drop or repel packets thatmight be invasive. Intelligent firewall

design includes making port numbers that are not in active use unavailable, evaluating every

packet according to a set of acceptability criteria, blocking or hiding local IP addresses and

computers from the Internet, and more.

Logical access is also limited with the use of private networks. These make it difficult for

intruders to identify individual machines behind the firewall/router that protects the network.

Public MAN and WAN carrier networks are secured by using protocols that hide and

separate a user’s packets from other users. Stringent password policies are enforced and

passwords are never transmitted over unencrypted networks.

Encryption

Encryption provides security beyond that of other measures, provided that the security is

strong and effectively applied. Encryption in various forms is used to prevent intrusion,

to protect privacy, for authentication, and to assure data integrity and nonrepudiation.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 433

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 433

There are a number of different algorithms for encryption, but they generally fall into one or

both of two categories. Symmetric key cryptography requires that the same key be used for

both encryption and decryption. This means that both users must have access to the same key,

which is often difficult to achieve securely. The second category is called public key–private
key cryptography, in which two different keys, one publicly available, the other private, are

used together in various ways to achieve the different goals mentioned above.

The reader is referred to a number of excellent books dealing with the details of this topic.

13.10 ALTERNATIVE PROTOCOLS
Although this chapter is focused primarily on TCP/IP and Ethernet, there are a number of

important alternative technologies in use, particularly by carriers providing wide area network

services, andalso for specialty purposes, such as Internet backbones and storage areanetworking.

New developments in this area occur frequently and rapidly. At this writing, common

alternatives include Multi-Protocol Label Switching (MPLS), Sonet/SDH, and Frame Relay.

Each of the protocolsmentioned above has special features thatmake it useful for particular

purposes. Each serves as a replacement for one or more layers of the TCP/IP-Ethernet model,

and each can serve as a carrier mechanism for IP datagrams and Ethernet frames. In typical

use, wide area network service providers connect a TCP/IP or Ethernet gateway to their service

at the customer’s edge point. The alternate technology carries the packets to another edge point

where they are converted back to their original form.

What follows is a brief description of a number of interesting variations on the TCP/IP

model studied through most of this chapter. More information on these and other protocols

can be found in various network text books and on the Web.

A Comparison of TCP/IP and OSI

The Open Systems Interconnection Reference Model or, more familiarly, the OSI model,

represents an important theoretical attempt to present a complete protocol standard. The

OSI model identifies all the factors that must be standardized in order for two computers to

FIGURE 13.22

A Comparison of OSI and TCP/IP

Application

Presentation

Session

Transport

Network

Data link

Physical

OSI

TCP UDP

DNS

etc.

IP

Underlying
network

TCP/IP

FT
P

S
M

TP
S

S
H

H
TT

P

communicate completely and successfully at every

possible level. The OSI standard was created by the

International Standards Organization (ISO) after many

years of study. Originally, the intention was to create

a single protocol standard that would be used interna-

tionally for all computers. Although the OSI protocol

suite itself has not been widely accepted and used for

actual communication, the model is considered con-

ceptually important as ameans of identifying the factors

involved for different types of communications and for

comparing the performance and capabilities of different

protocols. It is generallynot viewedas an implementable

alternative to the TCP/IP model. Figure 13.22 is a dia-

gram comparing some of themore important protocols

in the TCP/IP suite to the OSI reference layer model.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 434

434 PART FOUR NETWORKS AND DATA COMMUNICATIONS

SESSION LAYER The upper three layers of the OSI model assume that a successful end-to-

end connection is established andmaintained at the transport layer. These layers are concerned

with the flow of data and control between applications on the communicating nodes.

AnOSI session is defined as the dialogue between two cooperating applications or processes
at the ends of the communication link. The session layer is responsible for establishing the

session between the applications, controlling the dialogue, and terminating the session. Remote

login and network printing (“spooling”) operations would use the services of the session layer

to assure successful login and to control the flow of data to the remote printer, for example.

PRESENTATION LAYER The presentation layer provides common data conversions and

transformations that allow systems with different standards to communicate. The presentation

layer includes services such as data compression and restoration, encryption and decryption,

ASCII-Unicode conversion, data reformatting, and the like. The fundamental purpose of the

presentation layer is to present data at the destination with the same meaning and appearance

as it would have at the source.

Other Protocol Suites and Components

There are a number of different, relatively obsolete, protocol suites that operate similarly to

the OSI reference model, or implement parts of it. These include the IBM Systems Network

Architecture (SNA), Novell IPX/SPX, and Appletalk, among others. At the data link layer,

PPP, Point-to-Point Protocol, may be familiar to you as a substitute for Ethernet for dial-up

modem, DSL, cellular, and cable access to the Internet. In the past few years, the TCP/IP

protocol suite, together with Ethernet, has become the network connectivity protocol suite of

choice for a huge number of installations. TCP/IP has been closely associated with connection

to local area networks and to the Internet in people’s minds. While the association is accurate,

TCP/IP is also popular for general communication at all levels of network connectivity, from the

smallest local area networks to the largest wide area networks, even for modem connections to

networks through the telephone system. TCP/IP is included for nearly every modern operating

system. TCP/IP is reliable and mature.

SCSI Over IP

“SCSI over IP” is an example of the use of a proprietary application to offer a computer system

feature that would otherwise be difficult to implement. SCSI is a hardware I/O bus protocol

used for connecting hard disks and other devices to a computer. By using a computer interface

with an application layer program that converts the SCSI bus protocol to a message that can

be transmitted over a TCP/IP network it is possible to locate and operate a hard disk drive

or other SCSI device anywhere on any network that is reachable from the original site. The

SCSI device itself has a similar interface that translates the message back to its SCSI form. This

type of application is usually named “XYZ over IP”, where XYZ is the name of the original

protocol. In this case, the application is called iSCSI or SCSI over IP. IBM, in particular, has been

particularly prominent in providing this capability for many I/O devices connected to their

mainframe computer systems. Note that this example provides an excellent demonstration of

the flexibility of TCP/IP. It also serves to illustrate the duality of I/O and networking yet again.

See Figure 13.23.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 435

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 435

FIGURE 13.23

SCSI Over IP

SCSI
converter

SCSI
data

(parallel)

SCSI
converter

Hard disk
on network

SCSI
serial data
packets

Network

TCP/IP
connection

Cellular Technology

Nearly all modern smartphones, some automobile dashboard systems, and some tablet com-
puters provide data communication services, using cellular technology as the first link in a
connection to the Internet. These devices may even serve asWi-Fi access points to enableWi-Fi
connectivity to the Internet for other computing devices. Again, the operating systems built into
these devices supply the standard TCP/IP protocol services at the application, transport, and
network layers. However, the data link and physical layers are special to the cellular network.
There are a number of different standards in use as of this writing, including CDMA, HSPA+,
GSM, and others. (The actual names are unimportant to us here.) However, it appears thatmany
of these systems are converging to a global mobile communication standard called Long Term
Evolution (LTE), sometimes known as 4G LTE. Interestingly, LTE includes the conversion of
voice, as well as data, into IP data packets for transmission, as part of the specification.

Because of the number of simultaneous users and the movement of the users from cell
to cell, called handoff , cell technology is quite complex. (Handoff can be a factor in certain
portable Wi-Fi situations, as well.) The low-level protocols require radio bandwidth sharing
by multiple users, handoff control, user authentication, data compression, and encryption, in
addition to the actual transmission of data between the mobile device and the tower. As a result,
the protocol stack includes additional protocols between the data link and network layers to
handle the various requirements. A technology called frequency selective scheduling is used to
prevent collisions and allow orderly access to the fixed cell station by multiple users. At the cell
station, data is combined and transferred into a wired network. A detailed discussion of LTE
cellular technology is beyond our consideration here. The specific radio technology, a technique
called quadrature amplitude modulation, is discussed briefly in Chapter 14.

MPLS

The goal of MPLS (Multi-Protocol Label Switching) is to improve the forwarding speed of IP
datagrams by creating virtual circuit capability over traditional packet switched networks, such
as Ethernet. MPLS operates at the data link layer. MPLS is a relatively recent, but fast growing,
technology. MPLS inserts a small, 32-bit fixed-length header between the layer 2 and layer 3

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 436

436 PART FOUR NETWORKS AND DATA COMMUNICATIONS

headers in a packet. In the case of a TCP/IP-Ethernet frame, the header would be situated
between the Ethernet header and the embedded IP header. The MPLS header contains a label
that identifies a virtual circuit path. The label is added initially by a label edge router when it
enters the network and removed by a corresponding edge label router at the exit point.

MPLS requires routers that are capable of reading and acting on the MPLS header. Such
a router is called a label-switched router. The label-switched router can route IP datagrams
through the virtual circuit without the overhead of returning to the network layer, thereby
simplifying routing speed. MPLS is sometimes called a layer 2.5 protocol because it works with
existing networks between the two layers.

SONET/SDH

SONET (Synchronous Optical Network) and SDH (Synchronous Digital Hierarchy) are
related protocols and architectures that are designed to take advantage of fiber optic technology.
The intention of both standards was to create wide area networks capable of extremely high bit
rates over long distances. The differences between the two standards are minor. We shall refer
to both as SONET for the remainder of this discussion. SONET is based on networks that are
synchronized globally to a single clock. Electrical signals from different sources are converted
to light, then synchronously multiplexed and added and removed from nodes by add/drop
multiplexers as required to optimize the speed of each packet. To extend the distance, regener-
ators are built into the network. These recreate the signal as it is attenuated within the fiber, to
extend its range. SONET networks are constructed as meshes, or rings, or point-to-point links.

SONET is frequently employed as a physical layer carrier, supporting other higher level
protocols. The technology, frame formats, and details of operation of SONET are complex.
Further information is beyond the scope of this text.

Frame Relay

Frame Relay is a relatively slow, wide area network standard. It is included because it is still
in common use as an inexpensive on-ramp to wide area networks and to the Internet through
service providers, especially large telephone companies. Like the other protocols discussed here,
Frame Relay relies on edge connections to convert data between other protocols and Frame
Relay frames for transmission over the network.

Frame Relay operates at the data link and physical layers, using its own switch design
to forward frames through virtual circuits. Frame Relay allows the use of permanent virtual
circuits. These are circuits that route all packets between a source and destination by the same
route, which is advantageous for some private wide area network links. At the physical layer,
Frame Relay operates over a variety of networks.

SUMMARY AND REVIEW
In this chapter, we described each of the TCP/IP and Ethernet layers in detail. After providing a
general overview of the operation of the TCP/IP protocol suite, we introduced the program and
network applications that are used to send and receive messages at the end nodes. Following
that, there were detailed discussions of each of the Ethernet and TCP/IP layers, starting at the
physical layer, and working up through the data link layer, the network layer, and the transport
layer, ultimately returning to the application layer.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 437

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 437

This was followed by descriptions of IPv4, IPv6, DHCP, and DNS. DHCP is a protocol

that allows the dynamic assignment of IP addresses on a short-term lease basis. DNS translates,

or resolves, user-friendly names into their corresponding IP addresses. The domain name

addressing system is hierarchical, with a root, generic and country-code top-level domains,

local domains, and, sometimes, subdomains.

The interface between the TCP/IP network layer and Ethernet data link layer requires

translation between IP addresses and physical addresses. This task is performed by the Address

Resolution Protocol.

Local area Ethernet networks are either switched or hub-based. CSMA/CD manages

collisions in a hub-based network.

Two issues of interest when discussingmodern networks are quality of service and network

security. Quality of service attempts to measure and provide packet routing with speeds and

reliability sufficient for tasks such as multimedia. Network security identifies the problems that

must be overcome to provide adequate protection, and the tools that are used for this purpose.

Examples of alternative protocols and techniques include SCSI over IP, cellular technology,

MPLS, SONET, and Frame Relay.

FOR FURTHER READING
For the most part, the suggestions made in Chapter 12 apply to this chapter, as well. There are a

number of books devoted specifically to TCP/IP. One appropriate choice is Comer [COM13].

Parker [PARK02], though old, is another. Parker presents TCP/IP in a very straight forward,

self-teaching way. There are also a number of special topics in this chapter that deserve extra

attention. Although the QoS concept is vague, reasonable discussions of quality of service

can be found in the white paper by Hartmann [HART04] and in the QoS chapter of Cisco’s

Internetworking Technology Handbook [INT09]. Two well-regarded books are by Armitage

[ARM00] and Ferguson and Huston [HUST98]. Stallings [STAL12], Kurose [KUR12], and

Forouzan [FOR13] all provide substantial coverage of network security. Forouzan is the most

technical, offering detailed explanations of almost every topic in this chapter, including a

clear explanation of encryption techniques. There are numerous books devoted exclusively to

network security. One of many readable choices is Cheswick [CHES03]. The IP Datagrams on

Avian Carriers RFCmentioned in the text can be found at www.ietf.org/rfc/rfc1149.txt; the test,

with pictures and comments, is located at www.blug.linux.no/rfc1149.

KEY CONCEPTS AND TERMS
ad hoc mode

Address Resolution Protocol

(ARP)

application layer

authoritative domain name

server

best-effort delivery service

Carrier Sense Multiple

Access with Collision

Avoidance (CSMA/CA)

protocol

Carrier Sense Multiple

Access with Collision

Detection (CSMA/CD)

protocol

collision

colon-hexadecimal notation

connection-oriented service

country-code top-level

domain name servers

(ccTLD)

data link layer

differentiated service (DS)

field

DNS root server

Domain Name System

(DNS)

dynamic address

http://www.ietf.org/rfc/rfc1149.txt
http://www.blug.linux.no/rfc1149

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 438

438 PART FOUR NETWORKS AND DATA COMMUNICATIONS

Dynamic Host Configuration
Protocol (DHCP)

electronic signature
fragment
frame [Ethernet packet]
Frame Relay
generic top-level domain

name server (gTLD)
handoff
handshaking
infrastructure mode
Internet Control Message

Protocol (ICMP)
internetworking layer
IP datagram
IP layer
IPv4
IPv6
jitter
layer 3 switch
local DNS server
logical connection
Logical Link Control (LLC)
Long Term Evolution (LTE)
MAC address

mask [subnet]
Medium-Access Control

(MAC)
MPLS (Multi-Protocol Label

Switching)
network address translation

(NAT)
network layer
network propagation delay
Open Systems Interconnect

Reference Model (OSI)
packet sniffing
packetization
peer (layer)
physical layer
port address
port number
presentation layer (in OSI)
protocol stack
public key–private key

cryptography
Quality of Service (QoS)
reliable delivery
replication
resolution (of domain name)

SDH (Synchronous Digital

Hierarchy)

second-level (or third-level)

domain

segment [TCP packet]

session layer (in OSI)

socket

SONET (Synchronous

Optical Network)

static address

Stream Control

Transmission Protocol

(SCTP)

subnet

Symmetric key cryptography

TCP/IP

top-level domain

Transmission Control

Protocol (TCP)

transport layer

user datagram

User Datagram Protocol

(UDP)

well-known port

READING REVIEW QUESTIONS

13.1 Name each of the layers in the TCP/IP-Ethernet set of protocols. Name at least one

important protocol in each of the three top layers. What is the major advantage of

layering in the network model?

13.2 What specific task is performed by the physical layer?

13.3 What is the relationship between neighboring layers in the TCP/IP model? What is

the relationship between corresponding layers at the sender and receiver nodes?

13.4 Describe briefly each of the tasks that are performed by the two sublayers of the data

link layer.

13.5 What is a MAC address?

13.6 Briefly explain what makes it possible for collisions to occur in a bus- or hub-based

Ethernet. Then explain how CSMA/CD solves the problem. What performance

advantages are offered by using a switch-based Ethernet configuration instead?

13.7 What two major tasks are performed by IP?

13.8 What does ARP stand for? What task does an ARP perform?

13.9 Explain the major differences between TCP and UDP.

13.10 What is a socket?

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 439

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 439

13.11 What function is performed by a local domain name server? What is the purpose of
the cache in a local domain name server table?

13.12 What does TLD stand for? What is a ccTLD? What other kinds of TLDs are there?
What is the function of a TLD?

13.13 What task is performed by a DNS root server?

13.14 What is a domain name? How is it used on the Internet?

13.15 What does the expression Quality of Servicemean?

13.16 What is meant by data nonrepudiation?

13.17 What types of security problems does a firewall try to prevent?

EXERCISES

13.1 Name at least four different application layer protocols other than HTTP. For each,
describe the purpose of the protocol, and give a brief overview of the methodology of
its operation.

13.2 The DNS database is described as “a directory system of servers”. Based upon your
understanding of DNS from the text, explain the meaning of this description.

13.3 Explain the purpose of an authoritative domain name server. How does its purpose
differ from that of a local DNS server.

13.4 What service is provided by a DNS root server? To whom is this service provided?

13.5 How does someone obtain a URL?

13.6 Explain the technique that is used by DNS to distribute the load of large websites.

13.7 Explain carefully the purpose and use of the sequence number and acknowledgment
number in connection-oriented communications. Create a multipacket example that
illustrates exactly how these packets are used by TCP.

13.8 Why does the IP datagram require separate fields for the header length and the total
datagram length, instead of combining both into a single value?

13.9 What is the purpose of an IP address mask? Suppose an IP address is identified as
222.44.66.88/24. What is the network address in this case? What is the host address?
How many hosts can this network address support? Repeat this exercise for the IP
address 200.40.60.80/26.

13.10 Explain the concept of a DHCP lease. How is it obtained? How is it used? What does
it provide?

13.11 Explain the operation of the Address Resolution Protocol.

13.12 The chapter notes that the physical layer is only concerned with the transmission of
a sequence of bits from one point to another. Suppose that the sequence 110010011
is used as a synchronization sequence preamble to a data packet. Propose a method
that can be used to allow the channel to distinguish the synchronization sequence
from an identical data sequence within the packet. In what layer of the TCP/IP model
would you implement your solution? Why?

13.13 Prior to the invention of Ethernet, researchers at the University of Hawaii proposed
a broadcast radio network called ALOHANet as a means to provide wireless links
between the Hawaiian islands. Each node had a radio transmitter which could be

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 440

440 PART FOUR NETWORKS AND DATA COMMUNICATIONS

used to send data packets. When two stations attempted to transmit simultaneously,

a collision occurred, and like Ethernet, each station would wait for a random period

of time, then try again.

Compare ALOHANet with Ethernet. What are the similarities? What are the

differences? What are the major factors contributing to the differences? What effects

do the differences have upon performance? Under what conditions would you expect

ALOHANet to perform satisfactorily? Less satisfactorily?

13.14 Discuss the trade-offs between bus-based and switched Ethernet. State the various

conditions under which one or the other would be preferred and explain why.

13.15 Find and read a good article that describes ATM. Compare ATM methodology with

the other networking topologies that we have discussed. Why do you think ATM lost

its attractiveness?

13.16 Before effective Ethernet switching existed, some network designers used an alter-

native bus collision avoidance protocol known as the token bus protocol. With the

token bus protocol, a “token” made up of a short, standard string of 1s and 0s was

circulated constantly in a round robin fashion among the NIUs attached to the bus.

NIUs did not hold the token; they simply passed it without delay to the next NIU in

the chain. An NIU was only allowed to place a message on the bus when it possessed

the token. After the message was delivered, the token was again put into circulation.

No NIU was allowed to use the token again until the token had circulated to every

other NIU at least once.

Under what conditions would this protocol perform more satisfactorily than

CSMA/CD? Explain. Under what conditions is CSMA/CD preferable? Explain.

13.17 The governments of Freedonia and Sylvania need to set up data communications to

prevent the possibility of war. Discuss the security implications of fiber optic versus

coaxial wire versus satellite as a means of communication.

13.18 Explain the differences between TCP and UDP in the context of ordering a number

of items from an online seller such as amazon.com.

13.19 What are the specific so-called “qualities” that quality of service attempts to measure

and achieve? Describe the two methods that are normally used as an attempt to

achieve this quality.

13.20 Explain the purpose of nonrepudiation. How does nonrepudiation differ from

authentication? Create a business scenario that illustrates the importance of each.

13.21 In the text, we identify four different “addresses” that are normally used during

the passage of a message from source to destination using TCP/IP and Ethernet.

These include a “user-friendly” address, a port number, an IP address, and a physical

address. For each “address”, state which layer or pair of layers uses that address and

explain carefully how the address is used.

13.22 Packages and high-priority mail are handled by The Typical Large Corporation

(TyplCorp) in a way that is typical of large corporations. Each company building has

a centralized mailroom where packages are received from personnel from various

departments. Packages destined for other offices in the same building are delivered

directly by the mailroom to those offices. Other packages are picked up by a van

driver for OPS (Other Parcel Service) for handling and delivery by OPS.

Englander c13.tex V2 - November 28, 2013 9:56 P.M. Page 441

CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 441

The OPS driver delivers the packages to a local district OPS office where packages

are sorted for shipment to different areas. Packages with addresses within the district

are delivered directly by the local OPS drivers. Other packages are trucked to the

nearest OPS central air shipping facility. At OPS air shipping facilities, packages are

normally each shipped to a facility near their destination, trucked to a district office,

and delivered. However, during peak seasons or bad flying weather, some packages

may be shipped more indirectly, by truck or air, through multiple central facilities

and district offices, before they reach their final destination.

Network professionals would argue that the OPS model is nearly identical to the

TCP/IP model conceptually. Carefully describe the similarities between these two

models.

13.23 Describe clearly, step-by-step, and layer-by-layer, the operation that takes place when

passing a datagram through an intermediate node in a switching network.

13.24 Is it possible to build a network that can simultaneously recognize more than one

protocol suite? If so, explain how this could be done.

13.25 The TCP/IP protocol suite appears to have no equivalents to the OSI session and

presentation layers. How are the services provided by those layers handled in TCP/IP?

Be as specific as you can when you refer to the particular services provided by those

layers.

13.26 Each of the input and output ports on a router has a separate physical address. Why

is this an important requirement for the operation of a router in a network?

13.27 Explain the relationship between corresponding layers at the source and destination

nodes of a TCP/IP communication connection.

13.28 Locate and read the proposed standard and test report for the “IP over Avian Carrier”

proposed standard. Explain how this proposed standard fulfills the requirements of

the TCP/IP model.

13.29 Locate protocol information for the IBMSystemNetworkArchitecture (SNA)model.

Compare the operation of SNA with that of TCP/IP.

13.30 If it’s not already on your computer, locate, download, and install a copy of traceroute

or tracert software. Use the software to ping an IP address at least 2000 miles from

your location. Do this several times and record the paths that your packets take.

Assuming that you’re not unlucky enough to have all your packets use the same route,

draw a diagram of the portion of the mesh network revealed by your results.

13.31 Locate, download, and install a packet-sniffing software package, such as WireShark.

Experiment with this software until you understand how it works and the range of its

capabilities. Write a brief paper describing several of its most important capabilities

and the potential security dangers that those capabilities create.

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 442

CHAPTER 14

COMMUNICATION CHANNEL
TECHNOLOGY

SHOE - NEW BUSINESSC (1993) MACNELLY. DISTRIBUTED BY KING FEATURES SYNDICATE

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 443

14.0 INTRODUCTION
In Chapter 12, we introduced the concept of a communication channel. We noted that

communication channels are fundamental to modern technology, whether we are

discussing wired networks, wireless networks, a backbone of the Internet, cell phones,

satellite television, or even your TV remote control. The discussion of channels in

Chapter 12 presents features of the channel, introduces channel media and shows how

communication channels and channel segments—or links—are interconnected to build

networks. Chapter 14 extends the discussion by introducing the fundamental technology

of communication channels.

First, in Section 14.1, we review some of the characteristics and features of the channel

that are governed most directly by the technology. We have carefully differentiated

between end-to-end channels and channels that are links. Since the technology can differ

from link to link, we note that the emphasis in this chapter is almost entirely on channels

that are individual links. The major topics of interest include the signaling methods used

to represent data, the relationships between the signaling methods and the choice of

media, and the characteristics of channels.

Fundamental signaling techniques and the general characteristics of channels are

covered in Section 14.2. As you hopefully recall fromChapter 4, data comes inmany forms,

both analog anddigital. Similarly, there are both analog anddigital signalingmethods inuse.

Section 14.2 introduces the fundamental characteristics of both analog and digital signals

and shows how the channel manages different kinds of data with both kinds of signaling.

It also considers the trade-offs between different combinations of data and signaling.

In Section 14.3, we look more closely at the nature of transmission media, identify

specific media that are commonly used, and discuss the relationship between the selection

of a communication channel medium and a signaling method.

Modern communications are highly dependent on wireless technology. Therefore,

many of the most important technological concepts described in this chapter use radio as

a medium for the transmission of digital data. Chapter 12, Section 12.4 discussed this issue

for wireless Ethernet. Various combinations of the techniques introduced in Section 14.2

are used to wring the last bit of performance out of wireless technology. In Section 14.4 we

offer a brief look at some of the technology of the signaling methods used for radio-based

data communication, including 4G Long TermEvolution (LTE) cellular technology,Wi-Fi,

WiMax, and Bluetooth. These technologies are necessarily complex in their details; we

have limited our presentations to simple, though accurate, overviews.

A note: Overall, our focus is specific to networks and network interconnectivity.

There are other types of communication channels, those used in traditional telephony, for

example, which are basically similar to those used in networks, but differ in the details.

While these are occasionally mentioned to clarify some of the concepts in the chapter, they

are generally outside the scope of discussion in this chapter.

443

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 444

444 PART FOUR NETWORKS AND DATA COMMUNICATIONS

14.1 COMMUNICATION CHANNEL TECHNOLOGY
You will recall that, conceptually, a communication channel consists of a network interface

controller that places a signal from a sending node onto the channel and a second network

interface controller that transfers the signal from the channel to the receiving node, a

transmission signaling method, and a medium to carry the signal. This is, of course, equally

true for any type of channel. To refresh your memory, Figure 14.1 reproduces the conceptual,

end-to-end model of a communication channel shown previously in Figure 12.4.

We remind you that this view of an end-to-end communication channel is purely concep-

tual. In reality, the signal coming from one end node may pass through a number of different

channel links, each with its own medium, signaling method, and channel characteristics, and

connected by intermediate nodes that consist of switches, routers, and other devices, before

reaching the other end node. In order to discuss the technology of a particular medium with a

particular signaling method, we must treat each channel segment as an independent channel.

We use the word “channel” in this chapter to mean the smallest link with a pair of nodes,

whether end or intermediate. Our focus in this chapter is on the physical layer and on the

medium access control sublink of the data link layer of the Ethernet model, although the

techniques are similar, regardless of the model used.

For a particular channel, the transmission signaling method used depends not only on the

channel medium but also on other factors such as the distance between nodes, the application,

and other technical, physical, and economic considerations. The network interface units at each

node connect to a computer or router or some other connecting device andmay also be required

to convert the data into a form suitable for the signaling method used, and for compatibility

with other equipment connected to the channel. The channel may pass data in one direction

only, or it may be used to transmit and receive data in both directions. We have already noted

that a channel may be point-to-point or may be shared and that, with rare exception, a channel

carries data serially. At any given instant, the computers or other devices using the channel may

be sending, receiving, or both. All the transmitters and receivers connected to a channel must

agree on the signaling method to be used on that channel.

As an example, recall the end-to-end channel presented in Chapter 12, Figure 12.6,

reprinted here as Figure 14.2. This example uses various combinations of media and signaling

FIGURE 14.1

Model of a Communication Channel

Host
or

node

Network
interface

Host
or

node

Protocols

Messages

Channel

Network
interface

Rule

Rule

Rule

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 445

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 445

FIGURE 14.2

A Multilink Channel

DSL
modem

DSL
access

computer

Ethernet
packets

Wi-Fi
Router

Links

Links

Various
converters

Web server

Ethernet
packets

Converter

Analog
signal

Digital Ethernet,
MPLS, SONET,...

Internet

Phone

line

Converter

technologies to relay a Web request from a tablet to a Web server somewhere on the Internet.

The data in this example originates in a tablet, is converted to an Ethernet-based Wi-Fi radio

signal by a NIC in the tablet, transmitted to a router, converted back to wired Ethernet and

passed to a DSL modem, converted again, this time to a DSL format then passed through

various routers, backbone networks, and other Internet devices until it is ultimately directed to

a networkwith theWeb server. Someof these linkswill bewires, somefiber-optic cables, perhaps

even a microwave or satellite link along the way. The data signals in this example take the form

of radio waves, electrical pulses, and perhaps, light pulses at various points along its journey.

Although there are a number of data conversions along the way in this example, it is not

untypical of modern communication applications.We selected it to show you a few of the many

different possible forms that the data might take as it passes from one end of the end-to-end

channel to the other. Conceptually, this particular channel is an Ethernet connection carrying

digital signals between two computers. Physically, the data passes through several different

communication channel forms, with signal format converters at each node, but the intermediate

operations are invisible to the nodes located at each end of the conceptual channel.

A communication channel is characterized primarily by the signaling transmissionmethod

used; by its bandwidth or bit rate capacity; by the direction or directions in which signals can

flow; by its noise, attenuation, and distortion characteristics; by the time delay and time jitter

imposed by the channel and node connections; and by the medium used.

There are many different signaling methods in use, but the most important consideration

is whether a signaling method is analog or digital. Analog transmission uses a continuously

varying waveform to carry data. Digital transmission carries data in digital form, using two

different values of electrical voltage or current or an on/off light source.1 The choice of digital or

1To be strictly accurate, technically, switched light is a digital signal superimposed on an analog waveform

of extremely high frequency, using a modulation technique called amplitude shift keying (ASK). We will introduce

modulation and amplitude shift keying later in this section. ASK imposes some technical conditions on the use of light

as a transmission signaling method that are beyond the scope of our discussion. Practically speaking, we can treat light

transmission as if it were digital.

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 446

446 PART FOUR NETWORKS AND DATA COMMUNICATIONS

analog transmission signaling depends upon a number of factors. Some media are only suitable

for one or the other. Where either is suitable, the choice is made on the basis of other factors

such as noise characteristics, the application, the bandwidth requirements, and other uses for

which the channel is to be shared.

Except where analog transmission is required by the medium, there is a strong tendency

towarddigital transmission inmost circumstances.Digital transmissionhas the advantage that it

is less susceptible to noise and interference, and can incorporate error correction directly into the

signal, which means a higher likelihood that the original data can be reproduced exactly, error-

free, at the receiving end of the channel. Digital transmission is also simpler, more efficient and

more economical.When a digital signal is to be transmitted on an analog channel, it is necessary

to convert thedigital signal into a formsuitable for analog transmission.The converse is also true.

There are also instances when the signal is transmitted as a multilevel discrete signal for more

efficiency and use of bandwidth. (See Figure 14.3 for an example of a multilevel discrete signal.)

The methods of conversion, choices, and resulting limitations, are discussed in Section 14.2.

It is also possible to share a channel among multiple sender–receiver pairs, using one

of several multiplexing techniques. Digital channels use time-division multiplexing (TDM).

Analog channels can also use time-division multiplexing, but most use frequency-division

multiplexing (FDM) instead. There are several important variations on these two primary

methods, as well. Again, digital technology has an advantage: digital multiplexing is easier

to implement than analog multiplexing, is less expensive, and requires less maintenance.

Multiplexing techniques are also discussed in Section 14.2.

FIGURE 14.3

Analog and Digital Waveforms

Amplitude

Amplitude

An analog signal Time

A digital signal Time

Amplitude
0(00)

0(01)

2(10)

3(11)

A discrete signal Time

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 447

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 447

14.2 THE FUNDAMENTALS OF SIGNALING
TECHNOLOGY

Signals are the means used to communicate data. A signal is carried on a communication

channel as an electrical voltage, an electromagnetic radio wave, or a switched light. Data is

represented by changes in the signal as a function of time. The signal may take on a continuous

range of values, in which case it is known as an analog signal, or it can take on only discrete

values, in which case it is known as a discrete signal. A binary discrete signal is usually called

a digital signal. A representation of a signal shown as a function of time is called a waveform.

Figure 14.3 shows examples of an analog signal, a four-level discrete signal, and a digital signal.

(These are just examples. They do not represent the same data.) We are primarily interested

here in analog and digital signals, although we note in passing that the “analog” video signals

going to a display from a computer video card takes on only specific values, 16 or 256 or

some different number of values depending on the video adapter used, and are therefore more

accurately considered to be discrete rather than analog or digital. Discrete signals are also

used in certain cases to increase the effective bandwidth of a channel by representing multiple

bits with a particular discrete level. For example, each level of the four-level discrete signal in

Figure 14.3 can represent two bits. In Section 14.4, we show you how discrete signals are used

to increase the bit rate capacity of a cellular signal.

Computer data is fundamentally digital in nature. A digital waveform on a channel might

represent a sequence of bits of data representing a text file, for example. Sound is analog.

The loudness of sound coming from a stereo speaker would be represented by a continuously

changing waveform. It is important to know that the electromagnetic waves used for radio

transmission are also analog.

In Chapter 4, Section 4.4, we showed that it is often necessary or desirable to be able

to transform a digital signal into some analog equivalent representation or vice versa. For

example, analog sound is stored digitally in an MP3 player. To listen to the audio on the player

requires that the bits of data be converted to analog waveforms. Headphones reproduce the

waveforms as sound. Conversely, to transmit computer data on an ordinary voice-grade phone

line requires that the computer data must be represented by an analog signal, since the phone

line is designed to carry sound. A modem is used to perform the conversion. (Actually, to be

more accurate, the phone line carries analog electrical voltage signals that represent the sound

wave, which are converted back to actual sound at the earpiece of the phone receiving the

signal.) As you can see, the ability to convert between analog and digital representations of

data is fundamental in today’s electronic society.

Ideally, the transformation between digital and analog should be reversible. That is to say,

if we transform a digital waveform into an analog representation and then transform it back,

the resulting digital waveform should be identical to the original. For digital waveforms, this is

theoretically achievable. In practice, all systems, both digital and analog, are subject to noise,

attenuation, and distortion, and it is often necessary to provide compensation in the form

of error correction. Nonetheless, under most conditions, it is possible to recover the original

digital data exactly. When analog data is converted into digital form, however, a small amount

of information is lost during the transformation, and it is not possible to recover the original

analog waveform exactly, although the error can be reduced to the point that it doesn’t matter.

The medium itself may require transformation of a signal from analog to digital (A-to-D)

or vice versa if the signal is to be transmitted through a medium that can carry only one or the

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 448

448 PART FOUR NETWORKS AND DATA COMMUNICATIONS

other. Wires can carry either digital or analog signals. For example, wires carry analog audio

from the headphone jack of your cell phone to your earbuds. Radio signals, known as radio

waves, require another type of analog signal, with the digital signal embedded within.

Analog Signaling

Although digital transmission is favored for network wiring, for most computer-based I/O,

and for many other uses these days, analog transmission methods are required for wireless

media, such as radio and sound, for wireless networking, for cellular use, and for other forms of

wireless data communication. Radio transmission methods include satellite, cellular, wireless

networking, and microwave communications. Radio waves can also be converted to equivalent

analog electrical signals and used with wire media and are often preferred when a mixture of

digital and analog data is being transmitted through the cable, such as cable TV with a digital

Internet feed. For historical and cost reasons, most digital cable TV is still distributed using

analog methods, and converted back to digital form at the customer’s site.

The basic unit of analog transmission is a sine wave. A sine wave is shown in Figure 14.4.

A sine wave has a peak amplitude A, or size, and a frequency, measured as the number of

times the sine wave is repeated per second. The instantaneous value of the sine wave varies with

time, ranging from 0 to amplitude A, back to 0, to value −A, and back to 0 again. The value

may measure voltage, or loudness, or the mechanical movement of the metal in a bell, or the

movement of air in an organ pipe, or some other quantity. The period of a sine wave is the

amount of time it takes to trace out one complete cycle of the wave. Thus, the frequency, f, is

defined as the number of periods per second, or mathematically,

f = 1/T or conversely, T = 1/f

where T is the period, measured in seconds.

The amplitude andperiod are shown in thediagram.For this particular sinewave, theperiod

is one-quarter second, and the frequency is four cycles per second, or more commonly, 4Hz.

Hertz, usually abbreviated Hz, is the unit used to measure frequency. One Hertz corresponds

to one cycle per second. Note from the diagram, also, that since the sine wave is symmetric

about the center axis, its amplitude is measured from the center axis to either peak, not from

negative peak to positive peak.

FIGURE 14.4

A Sine Wave

Amplitude

Period
(1 cycle)

1 second

Time

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 449

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 449

Sometimes it is useful to view a sine wave from a slightly different perspective: what is the

physical length of a sine wave that is traveling in space at the speed of light? This parameter is

known as thewavelength of the sinewave. It is usually designated by theGreek letter lambda (𝜆).

It should be apparent to you that at a higher frequency the wavelength of a single sine wave will

be shorter because the waveform will not have time to travel as far before the wave is complete.

In fact, the wavelength of a sine wave signal is inversely related to its frequency as follows:

λ = c/f where c is the speed of light.

For calculation purposes, the speed of light in a vacuum is approximately 300 million

meters per second or slightly under one foot per nanosecond. (This latter figure might surprise

you.) You may be unconsciously aware of one interesting application of this formula: perhaps

you have noticed that when the frequency of a radio wave is higher, the antenna is shorter.

The size of an antenna is based on the wavelength of the signal that one is trying to receive.

(Similarly, the size of an organ pipe is based on the wavelength of the sound being reproduced:

the higher the frequency, the smaller the pipe.)

Why a sine wave? Sine waves occur naturally throughout nature. Sound, radio waves, and

light are all composed of sine waves. Even ripples on a pond are sinusoidal. Although the sine

wave may seem an odd waveform to occur so commonly, the sine wave is related in a simple

way to a circle. Picture a marble rolling around a circle at constant speed. If you view the circle

edgewise, the marble will trace out a sine wave in time. This is illustrated in Figure 14.5. For

this reason, points on the sine wave are often designated in degrees. The sine wave begins at 0◦

and ranges to 360◦ and then repeats from 0◦ again. At any given instant in time, the amplitude

of the wave is given by the position of the marble for the specified angle. Mathematically, that

value is represented by the equation

v[t] = A sin[2𝜋ft + 𝜑]

where A is the maximum amplitude, corresponding to the radius of the circle, and f is the

number of times that the marble rolls around the circle per second. For mathematical reasons

unimportant to us here, the angle is usually given in radians, rather than degrees. When t=T,

the marble has rolled around the circle once, therefore 2𝜋 radians is equal to 360◦. A radian is

therefore approximately 57.3◦.𝜑 (the Greek letter phi), represents the angle of the marble when

we begin our viewing, i.e., when t= 0. For the view shown in the figure, 𝜑= 0.

FIGURE 14.5

Circle and the Sine Wave

2πƒt

t = 0
t

A

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 450

450 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 14.6

Phase-Shifted Sine Waves:
(a) Reference Waveform,
(b) Phase-Shifted 90◦,
(c) Phase-Shifted 180◦

(a)

(b)

(c)

To show you the practical aspect of this illustration, electricity is gener-

ated by the rotor of an electrical generator rotating in a circle at the rate of

sixty revolutions per second. The electrical output (in many countries) is a

standard 117-volt 60-cycle (more accurately Hertz) alternating current sine

wave. The instantaneous output of the sine wave corresponds to the angular

position of the rotor as it rotates. (Incidentally, the actual peak amplitude

of a 117-volt sine wave is approximately 165 volts. The technique used to

measure AC voltage is based on a special kind of averaging, called root mean

square or RMS averaging, of the sine wave voltage over a period of time.)

In addition to the amplitude and frequency, it is possible to measure

the position of a sine wave with respect to a reference sine wave. The

difference, measured in degrees, is known as the phase of the sine wave. This
measurement is shown in Figure 14.6.

An important characteristic of sine waves is that mathematically all

waveforms, regardless of shape, both analog and digital, can be represented

as the sum of sine waves of different frequencies, phases, and amplitudes.

For example, Figure 14.7 shows the construction of a square wave from the

first few of its sine wave constituents. The constituent frequencies that make

up a signal are known as the spectrum of the signal. The bandwidth of a

channel is the range of frequencies that are passed by the channel with only a small amount of

attenuation. (Yes, there is a direct mathematical relationship between the bandwidth defined

here and that defined earlier in terms of bits per second, but it’s a detail that we shall not go into.

Suffice it to say that a wider range of frequencies allows more bits per second to flow through

the channel.) Other frequencies are blocked by the channel. To reproduce a signal faithfully,

the spectrum of the signal must fall within the bandwidth of the channel, and conversely the

bandwidth of the channel must be wide enough to pass all the frequency components of desired

signals. Note that the waveform in Figure 14.7(b) is the way that the square wave would appear if

the frequencies above three times the fundamental sine wave frequency were blocked. In many

cases, it is appropriate to limit the bandwidth intentionally to prevent interference with other

signals. There are electronic means to control the bandwidth of a channel, using a process called

filtering. As we will show later, filtering is also used to separate the bands in frequency-division

multiplexing.

Sound waves audible to humans occupy frequencies between approximately 20Hz and

20,000Hz, although some animals can hear sounds outside this range. A dog whistle produces

a sine wave of approximately 25,000Hz. Most stereo systems have a bandwidth of at least

20–20,000Hz, for the faithful reproduction of sound. Telephones have a bandwidth of only

about 20–4000Hz, which makes them unsuitable to carry high-fidelity sound but adequate for

voice. The ordinary telephone bandwidth limits the speed that data can be transmitted through a

conventional phone line, however, additional bandwidth is actually available for the use of DSL

technology, discussed later in this chapter. Soundwaves are producedbyvibratingmolecules and

require amedium such as air or water. Amicrophone converts sound to an identical analog elec-

trical signal for transmission through the wires of a phone line, or stereo amplifier, or whatever.

Radio waves are electromagnetic in nature. Radio waves can be transmitted at frequencies

as low as 60Hz, although radio waves of frequencies this low are not useful for most purposes.

Currently, radio waves can use frequencies up to about 300GHz or 300 billion Hertz. To give

you some reference points, the standard AM radio band occupies the range between 550KHz

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 451

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 451

FIGURE 14.7

Creating a Square Wave from Sine Waves

sin(2πƒt) + 0.33 sin(3 � 2πƒt)

0.33 sin(3 � 2πƒt)

t

(a) Sum of sine wave and 3rd harmonic

(b) Everything above 3rd harmonic blocked

t

Sum of sine wave and
3rd harmonics 3, 5, 7, and 9

sin(2πƒt)

and 1.6MHz in most countries, the standard FM band from 88MHz to 108MHz (what is the

frequency of your favorite station?), television from 54MHz to about 700MHz, and cellular

telephones, Wi-Fi wireless networks, and other devices occupy several bands between 800MHz

and 5.2GHz. The bandwidth required for different types of signals depends on the application.

AM radio stations, for example, use a bandwidth of about 20KHz, centered about the dial

frequency of the station. Each TV channel provides a 6-MHz bandwidth in a different part of

the frequency spectrum. In North America, for example, channel 2 uses the frequency range

54–60MHz, and channel 3 uses 60–66MHz. By limiting the bandwidth of an FM receiver’s

tuner, for example, we are able to tune in separate stations. (As you will see later, this is also the

principle used by frequency-division multiplexing for sharing channels.) A general map of the

useful frequency spectrum indicating various familiar sound and electromagnetic wave regions

is shown in Figure 14.8.

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 452

452

FIGURE 14.8

Useful Frequency Spectrum

Wavelength
(in meters) 103

1M100K 10M 100M 1G 10G 100G 1T 10T 100T 1015 1016

102 101 1 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 10–9

Size of an
electromagnetic

wavelength

Common
name of wave

longer

Football
field

Earth Building Orange House
fly

Needle
point

Cellular

AM
radioAudio TV/FM radio

Sources

Frequency
(waves per

second)

Bacteria Virus DNA Water
molecule

Hydrogen
atom

shorter

X RAYSULTRA
VIOLET

MICROWAVES

INFRAREDRADIO WAVES

104 10–10

VIS
IB

LE
LIG

H
T

1K100 10K

SatelliteWireless
networking

Paper
thickness

Laser UV rays X-rays

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 453

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 453

Electromagnetic waves use space as a medium, although many materials are nearly

transparent to the wave at some frequencies, so that the wave passes right through the material

with little or no attenuation. Air, for example, is transparent at all frequencies. Most other

materials are more transparent at low frequencies than at high frequencies. AM radio band

waves will pass through reasonable thicknesses of solid stone, for example, whereas FM radio

band waves are attenuated more and, as you are probably aware, cell phone signals still more.

Leaves and thick rain clouds can block a satellite TV signal.

Light is also made up of electromagnetic waves, with frequencies in the region of 100

thousand billion Hz. There are only a few materials that are transparent to light. Materials that

are not transparent can be used to guide or reflect a wave. A satellite dish, for example, works by

reflecting radio waves from the dish to a single point, where they are concentrated and collected

by a sensitive receiver. Similarly, fiber-optic cables maximize the light at the receiving end of

the cable by guiding the light through the cable.

In practice, the sine waves that we have discussed are of limited use by themselves. A

sound made up of a sine wave produces a single, pure tone. A 440-Hz sine wave produces

the tone called “A,” for example. There is not much useful information value (or musical

interest) in a pure sine wave tone. Instead, sine waves are used as carriers for the data that we
wish to transmit. We modulate, or change, one or more of the three characteristics of the sine

wave, amplitude, frequency, or phase, to represent the signal that is to be transmitted. Thus,

an AM, or amplitude-modulated, radio station at 1100KHz would use a sine wave carrier of

1100KHz. The music broadcast on that station would modulate the amplitude of the carrier

to correspond to the sound of the music. The AM station uses only one type of modulation.

You should be able to guess what kind of modulation is used by an FM station! To restore the

original waveform that was used to modulate the carrier, we use a demodulator or detector.
An example of a carrier amplitude modulated by another analog signal is shown in Figure 14.9.

Note that amplitudemodulation is symmetric with respect to the center of the carrier sine wave.

For digital signals, the carrier signal is modulated with only two possible values, the value

representing a “0” and the value representing a “1.” In this case, the modulation technique is

FIGURE 14.9

Amplitude Modulation: (a) Data
Waveform, (b) Carrier, (c) Modulated
Waveform

Data Waveform

Modulated Waveform

Carrier

called amplitude shift keying (ASK), frequency shift keying (FSK),
or phase shift keying (PSK). Examples of each are shown in

Figure 14.10.

The spectrumof frequenciesused for amodulated signaldepends

on the frequency of the carrier used and will include the carrier fre-

quency itself. The bandwidth of themodulated signal depends on the

type ofmodulation. The bandwidth required to represent and recover

an amplitude-modulated wave accurately is approximately double

the highest frequency in the waveform that is being modulated.

In other words, the 20-KHz bandwidth of an AM radio station is

suitable for transmitting audio frequencies only up to about 10KHz;

FM bandwidth requirements are somewhat larger. The 400-KHz

bandwidth of an FM station can carry audio frequencies up to

approximately 45KHz.

When considering the bandwidth required for a single FM

station, think about what would happen if the FM station were

placed instead on the AM radio band. The spectrum of the entire AM

band is only 1050KHz wide (550–1600KHz) so there would only

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 454

454 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 14.10

ASK, FSK, and PSK

Amplitude
shift
keying

Frequency
shift
keying

1 1 00 1 0

Phase
shift
keying

be enough bandwidth for two stations! The point to bemade is that at higher carrier frequencies

more bandwidth is available; at higher frequencies, the bandwidth is a smaller percentage of the

carrier frequency. From Chapter 12, you are aware that fiber-optic cable is a preferred medium

for carrying data. As you can see from the frequency spectrum shown in Figure 14.8, the

frequency of light is extremely high, allowing very wide bandwidths, and hence high bit rates.

Whenwe change the frequency of a sinewave carrier that ismodulated by aparticular signal,

the modulated signal will require the same amount of bandwidth but the spectrum will move to

correspond to the new carrier frequency about which the bandwidth of the signal occurs. This

means that, by modulating different data signals with different carrier frequencies, it is possible

to carry multiple signals on the same channel, if the overall channel bandwidth is wide enough

to include the spectra for each signal. Filtering can separate the different data signals at the

receiving end. This technique is called frequency-divisionmultiplexing (FDM). It can be used

to carry numerous TV channels on a cable system, for example, or to provide multiple channels

for wireless Ethernet (Wi-Fi) and Bluetooth. Ultimately it uses the bandwidth more effectively

to increase the capacity of the channel. An Illustration of FDM is shown in Figure 14.11.

The same technique can be applied to the light transmitted through a fiber-optic cable.

Light of different colors have different frequencies. Viewed from the perspective of ASK analog

signaling, it is possible to increase the bit rate of data transmitted optically by combining

lights of different color, with filters on the receiving end of the cable to separate the different

color signals. This procedure is essentially identical to that of frequency-division multiplexing,

although the implementation is actually somewhat easier. To differentiate optical multiplexing

from lower frequency radio multiplexing, we give the process a different name: wavelength
division multiplexing (WDM). This name reflects the fact that light is usually identified by its

wavelength, rather than by its frequency. As of this writing, there are claims that current optic

technology can support bit rates of 8 Tbps over distances of 2500 km using a dense form of

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 455

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 455

FIGURE 14.11

Frequency-Division Multiplexing

Data
Modulator

Carrier
frequency ƒ1

Carrier
frequency ƒ2

ƒ1

ƒ1
filter

ƒ2
filter

ƒ3
filter

ƒ2 ƒ3 freq

Carrier
frequency ƒ3

Stream 1
Data

Stream 1

Data
Stream 2

Data
Stream 3

Data
Modulator

Spectrum of combined stream

Frequency multiplexed
data stream

Stream 2

Data
Modulator

Stream 3

+

ƒ1

ƒ2

ƒ3

WDM called DWDM. As we noted earlier, most users think of the signals in fiber-optic cables

as digital, even though they are actually modulated electromagnetic signals.

Both wired and wireless analog signals are particularly susceptible to noise and attenuation

and other forms of distortion in a channel because the distortion created cannot be detected

and reversed. There may also be interference from other signals operating nearby in the same

spectrum. Attenuation or signal loss, is the reduction of a signal that occurs in a medium

as a function of the physical length of the channel. Attenuation limits the possible length of

a channel. Signal loss can also occur if there are taps or splitters along the channel. These

are devices that remove some of the energy of the signal for use, for example, to implement

multipoint connectivity or, less appropriately, to do wire-tapping. Amplifiers can be used to

restore the original strength of the signal. All channels generate some noise internally, and as the

signal gets weaker, the noise becomes more predominant with respect to the signal. In this case,

amplification does not help, since the noise is amplified also. Maintaining a high signal-to-noise

ratio is important in maintaining the integrity of an analog signal. Minimizing external noise,

such as electrical noise from other devices and from such natural sources as lightning, is also

important. External noise, of course, can change the basic shape of the signal, and may make it

impossible to recover the original signal. If the noise falls within the same frequency range as

the signal, there is no way to separate the noise from the signal. See Figure 14.12.

In addition, analog signals are susceptible to distortion of the waveform that results from

variations in attenuation and phase shifts that occur across the channel spectrum. Slight

distortion is, unfortunately, common in real-world systems. Consider the situation shown in

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 456

456 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 14.12

The Effects of Noise on a Signal

Signal

Signal + Noise

Signal + Noise
attenuated

Signal + Noise
after

amplification
Noise

Amplifier–10

0

+10

–5
0

+5

FIGURE 14.13

Effects of Attenuation

Frequencyƒ1

ƒ1

ƒ2

ƒ2

Attenuation

After attenuationOriginal

ƒ1

ƒ2

Figure 14.13. If the signal is made up of sine waves of frequencies from different parts of the

spectrum, say, at the points marked f1 and f2, then the composite signal at the output of the

channel is distorted, since the different sine wave components have been attenuated by different

amounts. The channel will also change the phase of some components more than others, which

also contributes to the distortion. To some extent, filtering can compensate for these variations,

but realistically, signal distortion is always present in a channel. The goal, then, when working

with analog signaling, is to design a system in which noise, attenuation, and spectral distortion

do not prevent recovery of the original data to the degree required.

Digital Signaling

Digital data being carried by a digital communication channel is already in correct format,

so theoretically no conversion is necessary. In practice, the situation is somewhat different.

Since there is no carrier present on the channel, there may be no way to detect a string of bits

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 457

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 457

FIGURE 14.14

A Problematic Digital Signal

Time

1

0

at the receiving end of the channel for some signals.

The signal in Figure 14.14, for example, consists of

a string of twelve zeros, but there’s no way to tell.

A “0” is represented by a value of 0 volts, and the

state of the line when no signal is present is also

0 volts. Obviously, there is no way to determine the

presence of this signal.

This example shows one difficulty in coordinat-

ing digital data that is transmitted from one node to

another. One obvious way to indicate the presence of data is to use a different value for the

“0” bit, say, −5 volts. This solution helps somewhat, but we still can’t tell one bit from another

when there are no bit transitions in the data stream.

As another example, consider a relatedproblem, a steady streamof bits across a communica-

tion channel fromone computer to another. Suppose that each group of 8 bits forms a byte. If the

stream is continuous, how does the receiving computer know how to group the bits into bytes?

Some method of synchronizing digital signals between the sending computer and the

receiving computer is always necessary, to be able to identify the position of each bit successfully

at the receiver. The basic problem is that the sending computer may transmit data at any time,

and the receiving computer has noway of knowingwhen data will actually be sent. The difficulty

of synchronization is compounded by likely slight differences in timing in each system, so that

the receiver may sample the data at a slightly different rate. If the sequence of bits is long, the

receiver may ultimately sample the wrong bit, creating an error. Figure 14.15 illustrates this

situation. In this illustration the timing difference is somewhat exaggerated, for clarity.

There are a number of different ways of synchronizing the two systems. For modems,

which transmit data one byte at a time, the solution is to provide clear start and stop signals

for the data and to resynchronize the timing between the transmitter and receiver for each byte

of data, so that the receiver knows exactly when each bit is expected to occur. This approach is

somewhat inefficient, because two extra bits (the start and stop signals) must be sent for each

byte of data. This technique is called asynchronous transmission.

FIGURE 14.15

Reception Errors Resulting from Timing Mismatch Between Sending and Receiving Computers

Transmitted
digital
signal

Signal value
missed by receiver

Signal value
missed by receiver

Sample
time

0 1 0 0 1 0 1 1 0 1 0 1

Result0 1 0 1 0 1 1 1 0

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 458

458 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 14.16

Manchester Encoding

0
+V

*V

0 0 01 1 1 1

0

For longer bit sequences, the solution is to convert the data into a signaling method

that provides clocking as part of the data. Consider a signaling method that say, generates a

0→ 1 transition whenever the bit is a one, and a 1→ 0 transition whenever the bit is a zero.

This technique guarantees at least one transition per bit of data sent through the channel.

The transitions can be used for clock synchronization. Look at the example in Figure 14.16.

The required transitions are shown as heavy arrows within the resulting waveform. Note that

FIGURE 14.17

4B/5B Block Coding

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11110

01001

10100

10101

01011

01010

01110

01111

10010

10011

10110

10111

11011

11010

11100

11101

4-bit
data

sequence
5-bit
code

(a) 4B/5B encoding table

0101

01011 11010

1100

(b) An example of 4B/5B encoding

Input data

Transmitted code

the fourth and fifth bits both require 0→ 1 tran-

sitions. To accomplish this, there must be an

additional downward transition tomake the second

0→ 1 transition possible, however, the extra down-

ward transition occurs between the data points

and is ignored. This particular method is called

Manchester encoding. It is one of several possi-

ble self-synchronization techniques. Manchester

encoding is used in 10Mbps Ethernet transmis-

sions. For practice, you might wish to create the

waveform for the original example shown in Figure

14.14: the case of twelve zeros.

An alternative encoding methodology is called

block coding. Block coding adds additional bits to

small blocks of data; it then converts each block to

a different block of data that supplies the required

self-clocking. At the receiving end, the blocks are

converted back to the original data. Block coding is

often used to compensate for shortcomings of other

methods. A simple example will clarify the idea.

4B/5B is a block coding algorithm that compensates

for a shortcoming of a method called NRZI that

loses synchronization if the data contains a lot of

zeros. 4B/5B converts 4-bit groups into 5 bits for

transmission using the conversion table shown in

Figure 14.17(a). Figure 14.17(b) shows the resulting

encoding. Block encoding has the additional advan-

tage that it can detect certain errors. There are

sixteen unused 5-bit blocks. If any of these blocks

appear at the receiver, the system knows that there

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 459

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 459

is an error. There are a number of different block codes in use. The block coding shown in this

example is used for most 100Mbps Ethernet transmissions.

In addition to self-synchronization, there must be a means to synchronize the data so that

the receiver knows the boundaries of each byte. Ethernet frames use an 8-byte preamble for this

purpose. The pattern 10 is repeated twenty-eight times, followed by a start frame delimiter with

the pattern 10101011.

As you know, digital signals can also be used to represent analog waveforms. We have

already mentioned the iPod as an example. Other examples include the digital signals that

represent video in a direct satellite TV system and the digitization of sound that can be used to

store telephone voice mail in a computer.

One way of converting analog data into digital form is shown in Figure 14.18. This method

is called pulse code modulation (PCM). There are three steps in the process. In step 1, the

FIGURE 14.18

The A-to-D Conversion Process

Amplitude

Value

Lost data
accuracy

256

64

48

32 26

27

16

0

(a)

(b)

(c)

S1

S1 S2 S1

S1 value = 26

S2 value = 51

S3 S4 … Sample times TimeS2

0 00 0 01 1 1

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 460

460 PART FOUR NETWORKS AND DATA COMMUNICATIONS

analog waveform is sampled at a regular time interval, as shown in Figure 14.18(a). In

Figure 14.18(b) the maximum possible amplitude of the waveform is divided into intervals

corresponding to a range of binary numbers. This example uses 256 levels, which will result in

8 bits per sample. This intermediate step is called pulse amplitude modulation (PAM). PAM
can be used directly, to provide a discrete signal, if desired. More commonly, the sampled values

are each converted into their corresponding number value. The result is PCM. Incidentally, the

information lost in converting data from analog to digital can be seen in this step: it consists of

the difference between the actual value of the sample and the value corresponding to the nearest

available number. Finally, in Figure 14.18(c), the number is reduced to its binary equivalent.

The device that performs this conversion is called an A-to-D converter.
Digital signals are susceptible to noise, attenuation, and distortion, just as analog signals

are. However, it is only necessary to distinguish between two levels, so much more distortion

and noise in the channel can be tolerated. It is also possible to recreate the original signal at

intervals along the channel, since the original shape is limited to ones and zeros. Repeaters are
used for this purpose. Repeaters make it possible to transmit digital signals over long distances.

Error correction techniques can also be used to repair data. Error correction can be particularly

effective in the presence of bursts of noise. Figure 14.19 illustrates the operation of a repeater.

Digital signals can also be multiplexed to allow different signals to share a channel. Time-
division multiplexing (TDM) is normally employed for this purpose. Figure 14.20 illustrates

a time-division multiplexer being used to share a communication channel among three digital

signals. We’ve used the idea of a rotary switch to illustrate the operation of the multiplexer,

although the switch is actually electronic. Each signal is sampled in turn, at a rate high enough

to assure that no data is lost. The number of bits in each sample depends on the application.

The data is combined and transmitted over the channel. At the other end of the channel the

process is reversed. Each sample is sent to its respective destination. TDM has one potential

shortcoming. If there is a lot of data in one incoming channel and very little in another, TDM

is inefficient. There will be empty slots from the lightly used channel while data is backlogged

in another. An alternative form of TDM, called statistical TDM, solves this problem by adding

a small header to each slot of data that identifies its channel. In this way, every slot can be filled

when the data load requires it.

The bandwidth of a channel is also important for digital transmission. Remember that even

digital signals can be represented as a sum of sine waves of different frequency. The higher the

FIGURE 14.19

Use of a Repeater

Repeater

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 461

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 461

FIGURE 14.20

Time-Division Multiplexing (TDM)

A

Channel

Multiplexer Demultiplexer

Slot Slot Slot

Frame Frame

Slot Slot Slot

1001 1100 1010 1001 1100 1010

A
100110011001

110011001100

101010101010

100110011001

110011001100

101010101010

t1 t2

B

C C

A

B

B C A B C

data rate, the higher the frequencies of the sine waves that make up the signal. Thus, a channel
of wider bandwidth can carry data at a higher data rate, effectively increasing the data capacity
of the channel.

Modems

Home-to-service-provider network connections commonly rely on telephone or cable service
to provide connectivity. In some areas, service providers offer fiber direct delivery to the home,
supplying telephone service, TV, and Internet connectivity digitally on a single fiber-optic
cable. In older systems, modems (modulator/demodulators) convert Ethernet signals from a
computer or router to analog signals for transmission over the phone line or cable system and
vice versa. Speeds of 10Mbps andmore are possible under some conditions with DSL and cable
services.DSL technologyuses a type of FDMto separate a traditional phone line into a traditional
voice component and two or more data components. The data components use a mixture of
ASK and PSK for the transmission of data between the user and the telephone switching
center. At the switching center, a DSL access multiplexer packetizes the data component for
transmission to the Internet. In modern systems, the voice component is also converted to
digital to increase usage of the lines. See Figure 14.21.

FIGURE 14.21

DSL

up to 4KHz

Ethernet ASK/
PSK

modem

Frequency-
division

multiplexer

Phone line

Voice Upstream Downstream

Switching
center

DSL
access

multiplexer to data network

to phone
network

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 462

462 PART FOUR NETWORKS AND DATA COMMUNICATIONS

14.3 TRANSMISSION MEDIA AND SIGNALING
METHODS

A transmission medium is defined as the means used to carry the signal being transmitted from

one location to another. Datamay be transmitted using electrical signals on wires, with light sig-

nals on fiber-optic cable, or wirelessly, using radio waves or, less commonly, light or sound. (For

example, audio is sometimes used for communication under water.) A transmission medium

is characterized by its physical properties, by the signaling method(s) that it supports, by its

bandwidth,by its attenuationwithdistance, andby its sensitivity tooutside interference, ornoise.
Transmission media that confine the signal physically to a cable of some kind are called

guided media. Media that broadcast the signal openly using radio waves, light, or sound are

called unguided media. Unguided media do not confine the signal to a particular area, but the

signal may be focused in a particular direction.

You have already seen that the bandwidth and noise affect the capability of a channel to

transmit data.Although the effect ismore obviouswith analog signaling, the same is true for both

analog and digital signaling. Communication theory shows that the data capacity of a channel

increases as the bandwidth of the channel increases. Noise in a channel is measured relative to

the size of the signal. Themeasurement is called the signal-to-noise ratio. As you would expect,
a higher signal-to-noise ratio for a given bandwidth increases the data capacity of a channel.

Consider the characteristics and general capabilities of each media type in turn:

n Electrically based media require a complete circuit consisting of two wires, one to
carry the signal, the other as a return. This is perhaps most familiar to you from the

electrical wiring in your house. (Some electrical wiring uses a third wire, which is

connected to the ground to protect you from shocks, but the third wire is not actually

part of the circuit.)

Electrically based media are often referred to as wiredmedia, or just wire or,

sometimes, copper, because most wire is made of copper. Wire carries the signals in

the form of changing electrical voltage or current. Analog or digital signaling

methods may be used. Wired media are the natural choices in many instances

because the signals to be transmitted are already in electrical form and will be used in

electrical form at the receiving end, so no conversions are necessary. Wire is

inexpensive and easy to use. Wire channels are easily interconnected to extend a

channel, to form networks, and to pass signals from one channel to another.

The most common electrical transmission medium is twisted pair. Twisted pair

is used for standard telephone and most local area network wiring. Twisted pair

consists of two wires twisted together. One wire acts as the signal carrier, the other is

the ground return. Twisting the two wires together reduces noise interference

somewhat because the same noise presumably occurs in both wires, which cancels the

noise to some extent. Groups of twisted pairs are frequently bundled together in a

larger cable. There are a number of standardized types of twisted pair wiring. There

are also some wire pairs that are untwisted.
Coaxial cable consists of a wire surrounded by insulation. The second “wire”

consists of a copper shield that surrounds the insulation. The shield acts as a signal

return, but also prevents external noise signals from interfering with the signal

carried by the inner wire.

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 463

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 463

Coaxial cable is capable of high bandwidths. It can be used for high-speed

transmission of digital signals, at rates of up to 100 million bps, or even more. It can

also carry wide-bandwidth analog signals. The cable used to carry cable TV is usually

coaxial cable, although fiber-optic cable (see below) is gradually replacing coaxial

cable. Analog cable TV uses frequency-division multiplexing to carry dozens of

channels of television at 6MHz of bandwidth per channel. Under some conditions,

coaxial cable bandwidths up to 4GHz are possible over short distances. Similarly, the

cable can also be used to carry a large number of data compressed time-division

multiplexed digital TV signals. Coaxial cable is far less susceptible to noise than

twisted pair, and is well suited for relatively long distance connections, however, its

cost is significantly higher than twisted pair, its installation is more difficult, and its

bandwidth is small compared to fiber, so its use is fading.

n Fiber-optic cables carry signals in the form of light. Optical signals are produced by

using the electrical data signal to turn a light on and off very rapidly. A laser or

light-emitting diode is used as the light source. It is not possible to use a conventional

light bulb, because a light bulb cannot be switched on and off rapidly enough. An

optical detector at the other end of the cable converts the light signal back to electrical

form. The cable itself consists of one or more strands of glass fiber specially designed

to carry waves of light. Each strand is thinner than a human hair and may be tens or

hundreds of miles long. The bundle of fibers is surrounded by a plastic sheath, called

cladding, to protect the fibers. Fiber-optic cables are often grouped together in

bundles, which are further protected by an additional tough plastic jacket. Light is

confined to the fibers, and attenuation is very low. Since light is an electromagnetic

wave, turning a light on and off is technically a form of ASK. Most users tend to think

of fiber-optic transmission as a digital signaling method, for practical purposes. Since

light waves are of such high frequency, fiber-optic cable provides an extremely wide

bandwidth. A single fiber can carry information at rates of hundreds of millions of

bits per second. Fiber-optic cable is nearly invulnerable to most forms of noise, since

the signal is optical, not electrical. It is also difficult to tap into a fiber-optic cable,

which offers some measure of security. At the nodes, signals are readily converted

between light and electrical for interconnection with other media types.

Its huge data-carrying capacity makes fiber-optic technology highly desirable in

many situations. Entire communities are being “rewired” with fiber-optic cables to

provide improved communication capability for the future.

n Electromagnetic wave transmissions do not require a specific physical medium, but

simply propagate through space or through any material that is relatively transparent

to the waves. For signaling purposes, the medium is space; radio waves are the

carriers. Electromagnetic waves having frequencies above 1GHz but below the

frequencies of light are generally referred to as microwaves. Microwaves are the most

common form of wave transmission carrier although lower frequency radio waves are

also used. Microwaves are unguided, but they can be tightly focused and used

point-to-point between microwave antennas or between a microwave antenna and a

satellite. Lower frequency radio waves are less directional and harder to focus and

require much larger antennas. (Recall that the size of an antenna is inversely

proportional to its frequency.) They also provide less bandwidth. Conversely, higher

frequency waves are more susceptible to attenuation within the physical medium that

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 464

464 PART FOUR NETWORKS AND DATA COMMUNICATIONS

the wave travels through. A heavy rainstorm can make microwave communication
difficult, whereas low-frequency radio waves are sometimes used as a communication
channel under water.

Microwave communication applications include large-scale Internet backbone
channels, direct satellite-to-home television, cellular telephony, and 802.11 (“Wi-Fi”)
wireless networking.

It is usually necessary to convert between electrical and electromagnetic media formats.
However, this technology is well developed and relatively inexpensive. One difficulty with the
use of radio waves is interference between different communications using the same carrier
frequencies. Although the frequency spectrum seems large, it is heavily used for many different
purposes in most areas of the spectrum where communication is practical. (Consider the
interference between a microwave oven and a cordless phone, for example.) Higher frequencies
are somewhat more available because of the ability to focus the wave in a particular direction.
The highest usable frequencies are, of course, light waves. There are wireless networks and
direct computer-to-computer channels that use infrared light as a medium.

14.4 ALTERNATIVE TECHNOLOGIES
Wireless networking uses radio wave technology as a transmission medium. Previously, in
Chapter 12, we categorized wired networking by range, starting from local area networks and
working our way up to the Internet; we tend to categorize wireless networking similarly. For
typical short-range, local area networking, wireless Ethernet, more commonly called Wi-Fi is
the standard. We introduced Wi-Fi in Chapter 12, Section 12.4, and will discuss the specific
technologies in use later in this section. For longer ranges there are two contenders, WiMAX
and cellular telephone technology, although as of this writing neither technology has achieved
the degree of standardization desired for true global interoperability. At the personal level,
Bluetooth is the generally accepted standard. As we mentioned in Chapter 12, there is also a
recentdevelopmentof technology and standards to interconnectwirelessEthernet into awireless
mesh network using wireless technology that can link many Wi-Fi areas into a larger network.

The brief introductions in this section to the various radio-based technologies in common
use show some of the different and ingenious (and complicated!) ways in which the techniques
introduced earlier in this chapter are combined and manipulated to implement the high-speed
wireless communications that we use every day.

Cellular Technology

Initial cell phone service was totally analog—analog messaging as well as analog carrier, for use
exclusively as a medium for mobile voice telephony. It was quickly realized that, like POTS,
analog telephony was an inefficient use of bandwidth and other resources. Additionally, there
was a perceived (and, as it turns out, correct) need for mobile data communications, as well.
Analog cell technology quickly became obsolete, to be replaced by a number of incompatible
digital cellular systems. Even the radio frequency bands in use differ in different parts of the
world. As a result, people traveling from one part of the world to another, as well as people
switching phone service, have been confronted with the need to purchase different cell phones.
This situation persists to this day, through three nominal generations of cell technology.

However, after much jockeying for position, cell technology appears to be moving toward
a consensus on a fourth generation global standard called Long Term Evolution (LTE) or,

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 465

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 465

more commonly, 4G LTE. The current standard specifies 300Mb/sec peak downlink data

rates and 75Mb/sec peak uplink data rates, with higher rates predicted for the near future.

Packet-switched IP is used at the upper network layers, even for voice.

LTE is based on a radio modulation technique called quadrature amplitude modula-
tion (QAM). In Section 14.2, we introduced the concepts of amplitude modulation, phase

modulation, and frequency modulation. QAM is based on a carefully tailored application of

amplitude modulation and phase modulation. (QAM is also used for digital television, digital

cable, Ethernet over powerlines, and other applications.)

In their simplest forms, ASK and PSK each take on two possible values, so combining

them should theoretically offer the opportunity to transmit multiple bits simultaneously. (See

Figure 14.10 to review ASK and PSK.) Conceptually this is true, however, observe that a zero

ASK amplitude signal makes it impossible to detect its phase. Furthermore, PSK requires a

reference signal to detect its phase.

Instead, QAM replaces ASK with two, four, eight, sixteen, or even more discrete data

levels of amplitude modulation. An example of four-level amplitude modulation is shown in

Figure 14.22(a). Since there are four different signal levels, each signal level can represent

two bits of data in about the same time as a single ASK signal. In this figure, two of the

FIGURE 14.22

Quadrature Amplitude Modulation

(a) Four amplitude modulated signals

(b) Constellation Diagram curves corresponding to (a)

Value
1

Value
2

Value
1

–1 1 2
0º

90º

270º

180º
–2

Value
2

(c) Constellation Diagram for QAM-4 (2 2)

0º

90º

1@0º

1@90º

270º

180º

(–1, –1)

(–1, 1)

(1, –1)

(1, 1)

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 466

466 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 14.23

QAM-16 Constellation Diagram

1001 1000

1011 1010

0000 0001

0010 0011

1111 1110

1101 1100

0110 0111

0100 0101

amplitudes are defined as “positive”, and two are “negative”. Note, however,

that in reality a “negative amplitude” is the same as a 180◦ phase shift. We

can represent these four amplitudes by points on a special kind of diagram,

shown in Figure 14.22(b) which shows amplitude versus phase for each

possible value. This diagram is known as a constellation chart.

QAM adds a second signal, 90◦ out of phase with the first signal. (This

is the “quadrature” inQAM.)As an example, suppose each of the signals can

have one of two values, either “positive” or “negative.” The sumof twowave-

forms at 0◦ and 90◦, each with “positive” or “negative” amplitudes, results

in the equivalent four-phase modulation points shown in Figure 14.22(c).

The number of possible variations in the summed signal is now the product

of the number of possible values in each individual signal. The constel-

lation chart in Figure 14.23 represents the signal points for a similar

four-amplitude QAM-16 configuration. Each point represents four bits.

The typical four-bit code assignments shown on the diagram are known as Gray codes. Gray

codes have the special property that theyminimize noise errors by requiring neighboring points

to differ by only a single bit.

QAM values for 4G LTE commonly range from 4-QAM to 256-QAM. Of course it may

be difficult to separate discrete values when the signal is weak or buried in noise, so the LTE

configuration system is designed to self-optimize, based on signal quality at any given time.

Further details are beyond the scope of this textbook.

Wi-Fi

Wi-Fi is defined by IEEE Standard 802.11. There are several different versions of Wi-Fi. As

of this writing, these are known as 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac. A table

in Figure 12.17 compared the various versions of Wi-Fi. Although there is some degree of

backward compatibility and overlap in design, each version has its own design specifications,

its own radio frequency bands, and its own modulation technique. The most recent versions of

Wi-Fi use a modulation technique called orthogonal frequency-division multiplexing (OFDM)

We introduced frequency-division multiplexing in Section 14.2. OFDM is a variation on

this concept. Normally it is necessary to separate the different frequency bands completely, as

we showed in Figure 14.11. Each band would carry its message on a separate carrier frequency.

However, under certain mathematical conditions, known as orthogonality, (and which are

beyond the scope of our discussion here), it is possible to overlap the frequency bands and still

separate the signals. OFDM uses a number of independent orthogonal subcarrier frequencies

to carry the digital packets. Each packet is divided up among the various subcarriers. Each

subcarrier is modulated using QAM or some form of PSK. The details differ for different

versions of Wi-Fi. OFDM is also used for WiMax and for DSL data transmission service over

standard telephone lines.

If the technical details of this topic interest you, we refer you to Wikipedia or one of the

references in the For Further Reading section for deeper discussion of this topic.

Bluetooth

ABluetooth network consists of onemaster node andup to seven slave nodes.When connecting,

the master node transmits an initial packet (in this case it’s called a frame) that provides time

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 467

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 467

FIGURE 14.24

Bluetooth at Work

7
9

C
ha

nn
el

s

M

S

M

625 μsec
slot

M: Master Frame
S: Slave Frame

3-slot frame

1-slot frame

5-slot frame

M

M

time

• • •

S
S

synchronization for each slave. Bluetooth uses time-division multiplexing to schedule and

control access to the network. Each time slot is 625microseconds long. An individual frame fills

one, or three, or five slots. Starting from the time of connection, the master transmits frames

starting with an even-numbered slot, the slaves respond starting with an odd-numbered slot.

Slaves only transmit in response to a request from a master; in this way, there is no contention

among the slaves for the slots.

Bluetooth divides its frequency band into seventy-nine channels. Each successive frame is

transmitted on a different channel, assigned randomly by the master node, a technique called

frequency-hopping spread spectrum. The purpose of this is to minimize interference from other

devices using the same frequency band. It also provides a measure of security. The frames

are transmitted primarily using FSK, although more recent versions of Bluetooth can also use

certain types of PSK. Figure 14.24 illustrates the Bluetooth concept. There is a good technical

discussion of Bluetooth in Forouzan [FOR13].

SUMMARY AND REVIEW

Communication between loosely coupled computers consists of messages passed over a

communication channel. A communication channel is characterized by the transmission

medium; the signaling transmissionmethod; the channel capacity or bandwidth; the direction(s)

of message flow; and the noise, attenuation, and distortion factors. Realistically, a channel may

be made up of several subchannels, each with its own characteristics. The overall channel is

defined primarily by the characteristics measured and observed at its access points.
The signaling method may be either analog or digital depending on the medium, the

requirements of the sender and receiver stations, and a number of other factors. There are three

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 468

468 PART FOUR NETWORKS AND DATA COMMUNICATIONS

primary types of medium in use: wires, fiber-optics, and electromagnetic radiation. Wires can

pass analog and digital signals. Fiber-optics use light signals. Electromagnetic radiation media

include radio and microwaves and require analog waveforms. Wire and fiber-optics are guided

media; electromagnetic radiation is unguided.

It is possible to transform data between analog and digital signaling methods; however,

there is a small amount of unavoidable data loss in the analog-to-digital transformation process.

Digital signals (and some analog signals) are transformed into electromagnetic waves by the

process of modulation. Modulation works by varying the amplitude, frequency, or phase of the

sine wave that acts as a carrier for the signal carrier.

Signals can be multiplexed using frequency-division multiplexing (FDM) and/or time-

division multiplexing. Real-world systems incorporate various combinations of multiplexing

and modulation to achieve the high signaling rates characteristic of modern data communica-

tions.

FOR FURTHER READING
Any of the books recommended in Chapter 12 are also useful references for the material in

Chapter 14. The most thorough discussion of the topics discussed in Chapter 14 is found in

Forouzan [FOR13].

KEY CONCEPTS AND TERMS
A-to-D converter
access point
amplifier
amplitude
amplitude modulation
amplitude shift keying (ASK)
analog signal
asynchronous transmission
attenuation
bandwidth
block coding
bundled twisted pair
carriers
circuit
coaxial cable
demodulation
detector
digital signal
discrete signal
electromagnetic wave
fiber-optic cable
filtering

frequency

frequency-division

multiplexing (FDM)

frequency shift keying (FSK)

guided media

Hertz (Hz)

Long Term Evolution (LTE)

Manchester encoding

modem

modulation

multiplexing

noise

period

phase

phase shift keying (PSK)

pulse amplitude modulation

(PAM)

pulse code modulation

(PCM)

Quadrature Amplitude

Modulation (QAM)

radian

repeaters

self-synchronization

signal

signal-to-noise ratio

sine wave

spectrum

statistical TDM

time-division multiplexing

(TDM)

twisted pair

unguided media

untwisted pair

waveform

wavelength

wavelength division

multiplexing (WDM)

Wi-Fi

WiMAX

Wireless Ethernet

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 469

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 469

READING REVIEW QUESTIONS

14.1 Which layers of the network model are specifically concerned with communication

channel media and signaling technology?

14.2 List at least four properties that characterize a communication channel.

14.3 What determines the choice of analog or digital signaling?

14.4 What is the purpose of multiplexing? Briefly explain time-division multiplexing.

Briefly explain frequency-division multiplexing.

14.5 Which, analog signals or digital signals, are more susceptible to noise? Justify your

answer.

14.6 What is a waveform?

14.7 What is the basic unit of analog signaling?

14.8 Explain the relationship between frequency, period, and wavelength in a sine wave.

14.9 What is the spectrum of a signal? What is the relationship between the spectrum of a

signal and the bandwidth of a channel?

14.10 What ismodulation? Is the image in Figure 14E.1 an example of AM, FM, or PM?

FIGURE 14E.1

Signal

Carrier

Modulated waveform

t t

t

14.11 When attenuation occurs in an analog signal, what hardware device is used to restore

the original signal?When attenuation occurs in a digital signal, what hardware device

is used to restore the original signal?

14.12 What problem does Manchester encoding address? What alternative to Manchester

encoding is also discussed in this chapter?

14.13 What potential shortcoming of TDM is addressed by statistical TDM?

14.14 Name a guided medium. Name an unguided medium.

14.15 What is the relationship between the data capacity of a channel and its signal-to-noise

ratio?

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 470

470 PART FOUR NETWORKS AND DATA COMMUNICATIONS

14.16 Coaxial cable, twisted pair, and untwisted pair are examples of what type of medium?

14.17 What factors contribute to the high data capacity of fiber-optic cable?

14.18 Explain the relationship between QAM with phase and amplitude modulation.

14.19 Draw a picture illustrating frequency-hopping spread spectrum.

EXERCISES

14.1 Draw a pair of sine waves that are 45◦ out of phase.

14.2 Consider a message that is made up of a sequence of bits as follows:

0111001011010110…

Suppose that we transmit this message using a combination of FSK and ASK. Draw

waveforms that would represent each pair of bits, then use your representations to

draw a complete waveform that represents the entire message.

14.3 On a sheet of graph paper, draw an FSK waveform that represents the following

waveform. The carrier frequency of a 0 is 1000Hz, and that of a 1 is 2000Hz. The

data rate is 500 bps.

14.4 Many phone companies are replacing the wire in their phone systems with fiber-optic

cable. What do they expect to gain from doing so?

14.5 In recent years, much of the storage and communication of data has been in

digital form, even if the source data is actually analog. Even most television is now

transmitted digitally.What benefits and advantages are gained by using digital storage

and signaling?

14.6 Consider a communication system that converts a digital signal to analog form for

transmission, then recovers the digital signal at the receiving end. Another system

startswith ananalog signal,which it then converts todigital form for transmission, and

recovers the analog signal at the receiving end. Both systems require both A-to-D and

D-to-A conversion, yet one system is considered more reliable than the other. Which

one?Why?Compare theA-to-D-to-A communication systemwith one that is entirely

analog. What are the important factors affecting the performance of each system?

14.7 Discuss the trade-offs between coaxial wire and fiber-optics in a network made up of

fifty computer stations all located within 1000 feet of each other.

14.8 What effect does time-division multiplexing have on the bandwidth requirements of

a channel?

14.9 Describe the advantages that repeaters have over amplifiers.

14.10 Discuss the trade-offs between fiber-optic and satellite communication in terms of

costs, signal capacity, signaling method, interference, likelihood of failure and repair

issues, multipoint capability, reconfiguration capability, and noise.

14.11 What effect would you expect a wider bandwidth to have on the noise in a channel?

14.12 Awaveform travels in space at a rate of approximately 300millionmeters per second.

The wavelength of a sine wave is the actual distance in space that is used by one sine

wave as it travels. What is the wavelength of a 100-MHz sine wave?What is the wave-

length of a 500-MHz sine wave? Antennas to send and receive electromagnetic waves

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 471

CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 471

are often sized to be one-half of the wavelength for the particular wave being used.

Compare your previous calculations to the size of VHF and UHF television antennas.

How large would a 1/2 wavelength antenna have to be to transmit a 60-Hz wave?

14.13 What is the carrier frequency of your favorite radio station? Is the station amplitude

modulated or frequency modulated? How do you know? What is the bandwidth of

this station? (Hint: what is the carrier frequency of the next nearest possible station

on the dial?)

14.14 a. The Doppler effect is the varying frequency of the sound made by a train whistle

as the train approaches and then moves away from you. The Doppler effect is

also used to measure the speed of stars in space relative to the earth. Explain this

effect on the basis of what you know about the relationship of wavelength (see

Exercise 14.12), speed of light or sound, and frequency.

b. On a cold day, the speed of sound decreases. What effect would that have on the

sound of the train whistle?

14.15 a. A simple TV cable converter converts the TV signal of a channel on the cable

to channel 3 for reception on the TV set. A clever viewer notices that she can

pick up the adjacent channel that is normally blacked out by tuning her TV set

to channel 4. What does this tell you about the way channels are carried on the

cable?

b. The converter on a direct broadcast satellite also converts TV signals to channel

3 for reception. However, changing the TV set to channel 4 does not result in

reception of the adjacent channel. Why not? How are the different TV signals

carried on the channel?

14.16 As indicated in the chapter text, any wave can be represented as a sum of sine waves

of various frequencies, amplitudes, and phases. This problem explores the effects of

channel bandwidth, shape of the spectrum, and phase distortion on the shape of

a waveform. A square wave is made up of sine waves according to the following

equation:

S = sin(2𝜋ft) + 1∕3 sin(3 × 2𝜋ft) + 1∕5 sin(5 × 2𝜋ft) +…

It is difficult to plot sine waves with any accuracy. Instead, we will use a triangular

waveform shape as an approximation for the sine wave.

a. On a sheet of graph paper, carefully construct a triangular wave that starts at 0,

rises to a maximum value of 15, falls to a minimum value of−15, then returns to
0. Your waveform should extend over 15 units on the time scale. Now construct

a second triangle wave with an amplitude of 5 and a time span of 5. Your second

waveform should start at 0. Add the amplitudes of the new waveform and the

previous one to produce a new waveform which is the sum of the two. What do

you observe?

b. Now create a third waveform of amplitude 3 and time span 3, and add it to

the previous result. What do you observe? If the bandwidth is limited so that

only the first two waves can pass through the channel, what is the effect on the

waveform?

c. Next, start with a fresh sheet of graph paper. Draw the fundamental triangle

wave. Draw the second triangle wave, but this time shift the phase 90◦, so that

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 472

472 PART FOUR NETWORKS AND DATA COMMUNICATIONS

the positive peak of the second wave coincides with the initial zero position of

the fundamental. Add the two waveforms. What effect did the phase shift have

on the summed waveform shape?

d. On another fresh sheet of graph paper, draw the fundamental waveform one

more time. Draw the second waveform, this time with a height of 3 instead of

5. Also draw the third waveform with a height of 4 instead of 3. All waveforms

start at 0, that is, with no phase shift distortion. Add the three waveforms. What

effect did the altered spectrum shape have on the waveform?

e. Based on the original amplitudes of the waves and the modified amplitudes used

in part (d), draw the spectrum of the channel.

14.17 Carefully draw a diagram that represents the binary sequence 00101110100010. Now,

below your original diagram, draw the Manchester encoded representation of the

same sequence.

14.18 Identify the binary sequence that is represented by theManchester encoded sequence

shown in Figure 14E.2.

FIGURE 14E.2

1

0

14.19 What is the 4B/5B encoding for the binary sequence

1101000011001101?

14.20 a. What is the binary sequence represented by the 4B/5B encoded sequence

11110011111101111110?

b. What is the binary sequence represented by the 4B/5B encoded sequence

10101010101010101011?

Englander c14.tex V2 - November 29, 2013 9:17 A.M. Page 473

Englander p05.tex V2 - November 30, 2013 9:09 A.M. Page 474

PART FIVE

R
eturning to the individual computer-based system, we note that the bare bones hardware
described in Chapters 6 through 11 cannot, by itself, meet the needs of today’s users.
Since the job of the hardware is simply to execute the instructions given to it in the form

of programs, the ultimate task is the responsibility of software.
Without software, there is no easy way to load programs into memory, no user interface,

no means for controlling the various peripheral devices connected to the system, no means for
storing, retrieving, or manipulating files, and no way to manage concurrent multiple programs
or multiple users.

Of course, we could insist that each application program provides its own tools and
facilities, but this would be inconvenient and inefficient. It would also severely limit use of the
system. It is obviously useful to provide a set of programs that perform basic functions as an
integral part of the computer system.

These programs control the hardware, load and start application programs, provide file
services, implement communication between systems, and support a user interface to the
computer. This system software provides a complete environment in which the user can
concentrate on the task at hand, rather than deal with the nuances of the computer device
itself. The user interface allows system access to users of different skill levels, and the file and
hardware control modules effectively isolate the user from internal computer operations.

Most of this system software is grouped into a set of programs known as an operating
system. On a personal computer, you are probably most familiar with the operating systems
known as Windows or OS/X; on a tablet or smartphone, it might be Android or iOS, but there
are many other operating systems out there. Linux, z/OS, Solaris, and Blackberry 10 are just a
few that may come to mind.

In the next four chapters, we will devote our attention to a study of system software and
operating systems. We begin in Chapter 15 with an overview of operating systems. In this
chapter, we introduce the various tasks to be performed by the operating system software. We
show the various ways in which the operating system software interacts with the user and with
application programs. We show how the operating system is implemented to allow the sharing
of resources, so that a user may execute more than one program at a time. It also enables
multiple users to share the system. As in the previous chapters, there is little difference between

Englander p05.tex V2 - November 30, 2013 9:09 A.M. Page 475

THE SOFTWARE COMPONENT

the operating system on a smartphone and that of a mainframe computer. The discussion is
generally applicable to all types of computers, large and small.

The remaining chapters in this section offer more detailed discussions of various parts of
the operating system, following the natural hierarchy of the operating system, as described in
Chapter 15. In Chapter 16, we look at the interface between user and computer. We consider
the various types of commands that are required or desired and the different types of interfaces
that are provided on different systems to initiate commands and control the system. We also
discuss the concept of command languages, powerful ways of combining system commands and
utilities that allow the user to perform sophisticated computer tasks with a minimum of effort.

File management is so important that it merits a chapter of its own. Database management
systems are at the core of most largemodern information technology systems. File management
provides the storage facility that makes database management possible. It also provides the
capability that allows you to access files by name on your personal computer.

In Chapter 17, we discuss themethods used to store, retrieve, andmanipulate files.We look
at themethods used for accessing files and consider how the files are stored on various peripheral
devices. We study the methods used to implement file directory systems, and consider why
some file access methods work better than others under different conditions.

Chapter 18 explores some of the most important algorithms and methods used internally
to implement various aspects of the operating system. We begin with a discussion of a simple
system that includes the key components required to implement a multitasking system. The
remainder of the chapter focuses on primary and secondary storage scheduling, and memory
management. The discussion of memory management includes a thorough discussion of
virtual storage. We show how the operating system and computer hardware work together
synergistically to provide powerful primary storage management capability. Other operating
system issues are considered briefly. The chapter concludes with a discussion of virtualization,
a topic of considerable importance in modern computer usage.

At the completion of this section, you can expect to have a good understanding of the
four major components that make up a computer system: the data, the hardware, the software,
and the communication facilities that connect systems together into powerful information and
communication resources at personal, corporate, and international levels.

475

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 476

CHAPTER 15

OPERATING SYSTEMS:
AN OVERVIEW

FOXTROTC 2001 Bill Amend. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 477

15.0 INTRODUCTION
InChapter 2,we introduced themodern computer systemas a synergistic set of components
that work together to make the computer’s capabilities and facilities accessible and
productive to the user. The operating system (OS) software component provides the basic
functionality of the system by offering programs that operate, control, and support the
fundamental resources of the computer. Those resources include both CPU and peripheral
hardware, network services, application programs, short-term program and data storage
for use while a program is executing, time in which to execute programs, and overall access
to the system. The operating system programs make system resources available to the
user(s), the user’s application programs, and to other application programs running on the
computer. The operating system also provides and controls access to other, interconnected
systems through its networking and clustering capabilities. Although the operating system
programs are tailored to the specific hardware provided on a particular system, it is possible
to offer different operating systems on a particular hardware platform and to offer the same
operating system on different hardware platforms.

The hardware and the operating system operate together architecturally to form
a complete working individual computer environment. The operating system has two
fundamental purposes: to control and operate the hardware in an efficient manner and to
allow the “users” powerful access to the facilities of the machine by providing a variety of
facilities and services. (For this discussion, we will define “users” loosely to include server
requests from networked clients on other machines as well as users directly accessing the
machine.) These services are available both directly to the users and to the programs that
the users execute. In addition, the operating system expands the capability of the computer
system to allow for the concurrent processing ofmultiple programs and support formultiple
users, both local and networked, as well as other specialized tasks that would not be possible
otherwise. The operating system also makes possible the synergistic implementation of
specialized hardware that is designed to improve system performance and capability. The
primary example of this, virtual storage, is introduced in Chapter 18.

This chapter provides an overview of the various components, facilities, and services
of the operating system. We explore the services that an operating system can provide
and show how the operating system integrates these services into a unified working
environment. We introduce the tasks that the operating system performs and show how
these tasks are interrelated and work together to make it possible for users to get their work
done more efficiently.

There are many different types of operating systems, reflecting different purposes
and goals, and many different methods of organizing operating systems. These differences
are indicated by the way in which the user interacts with the system—an idea that is
often surprising to the user who has worked with a single system. This chapter discusses
various types of systems and organizations. It notes the different ways in which work is
accomplished on a computer system and the different services that are provided.

Although the focus of this book is on IT systems, we note at the outset of this discussion
that the use of computer-based operating systems is not limited to business systems or other

477

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 478

478 PART FIVE THE SOFTWARE COMPONENT

obvious computer-based devices. Mobile phones and tablets, E-readers, home theater systems,
TV sets and DVD players, automobiles, digital cameras, electronic toys, even many household
appliances, all rely on computers with their associated operating systems to provide their
functionality. The material in this chapter applies, to lesser or greater extent, to all of these.
Interestingly enough, the convergence of these diverse areas has, itself, had a major impact on
the design and use of business systems.

15.1 THE BAREBONES COMPUTER SYSTEM
Consider once again the Little Manmodel that we introduced in Chapter 6. To use this model, a
single program was stored in memory. The Little Man executed the program by executing each
instruction in turn until he encountered a HALT instruction, which stopped the computer. For
simplicity, the LittleMan scenario was designed to ignore several issues that must be considered
in a real computer.

First, we assumed that the program was already loaded into memory, without considering
how it got there. In a real computer, the contents of RAM disappear when power is shut off.
When power is again turned on, the contents of memory are initially unknown. Means must be
provided to load a program when the machine is turned on. Remember that the CPU simply
executes whatever it finds in memory as instructions, so there must be a program in memory
before the computer can even begin to execute instructions. After the computer is on, there
must be a method to load a program into memory any time a new program is to be executed.

Second, there must be a means to tell the computer to start executing the instructions in a
program. The Little Man began executing instructions whenever the location counter was reset
to zero.

Third, the barebones computer has no user interface except for the I/O routines that are
provided with the executing program. This means that common program requirements such
as keyboard and screen I/O, file operations, interrupt capability and other internal facilities,
and printout must be created and supplied as a part of every program written. It would be
dangerous for programs to share disks because there would be no way to establish and protect
ownership of particular space on a disk.

The most important consideration to remember is that once the computer is running, it
will continue to execute instructions until a HALT instruction is encountered or until power is
removed. Halting a program at its conclusion means restarting the computer. This suggests
that it is highly desirable that there be an additional program in memory that is always available
to execute instructions whenever no other program is being run. This would allow programs to
complete execution without halting the machine. Instead, a program would terminate with a
jump instruction to the alternative program. The alternative program could be used to accept
user commands and to provide a memory loader for the execution of other programs.

As a final consideration, notice that the barebones computer is limited to one program at
a time. To run multiple programs concurrently, each program must be in memory and there
must be a method in place for sharing the time to execute instructions in the CPU. Since the
barebones computer offers no provisions for the functions required to handle the memory
management and time scheduling needed, multitasking—the execution of multiple programs
concurrently—is not possible. Sharing of the computer by multiple users is also not possible,
for the same reason. In Chapters 8 and 9 you were made aware of the CPU time wasted during
I/O transfers that could be used by other programs. An even more important waste of time

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 479

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 479

occurs as a program waits for user input. The barebones computer is not capable of using the

CPU productively during these intervals.

Behind these considerations is the realization that ultimately the purpose of the computer

is to help the user to get work done. Obviously, modern computers are not meant to be

operated in a barebones fashion like the Little Man. The user should be able to start and operate

the computer easily, should be able to choose programs to load and execute, should be able

to communicate with others users and other systems, and should be able to perform these

operations in a convenient, flexible, and efficient manner. Larger computer systems should be

able to share the resources among many users. What is required is additional programs that

can provide services to make these expanded capabilities possible.

15.2 THE OPERATING SYSTEMS CONCEPT:
AN INTRODUCTION

The solution to the limitations of a barebones system is to include programs with the computer

system that will accept commands from the user and that will provide desired services to the user

and to the user’s programs. These included programs are known collectively as an operating

system. The operating system acts as a systemmanager, controlling both hardware and software

and acting as an interface between the user and the system. The operating system itself consists

of a collection of programs that work together collectively to accomplish these tasks.

An operating system may be defined as

a collection of computer programs that integrate the hardware resources of the

computer and make those resources available to a user and the user’s programs, in a

way that allows the user access to the computer in a productive, timely, and efficient

manner.

In other words, the operating system acts as an intermediary between the user and the

user’s programs and the hardware of the computer. It makes the resources available to the user

and the user’s programs in a convenient way, on the one hand, and controls and manages the

hardware, on the other.

Intuitivelywe think of a user as a human interactingwith a computer system; however, there

are situations in which the “user” is actually another computer or a mechanical or electronic

device of some sort. A common example of this situation is one inwhich an application program

on one computer requests services from an application program or system service on another

machine, for example, a Web server application requesting data from a back-end database

server. Another example would be a situation in which a user on a client machine requests file

or printer services on a server machine.

In serving as an intermediary between the users of computer services and the computer’s

resources, the operating system provides three basic types of services:

1. It accepts and processes commands and requests from the user and the user’s

programs and presents appropriate output results.

2. It manages, loads, and executes programs.

3. It manages the hardware resources of the computer, including the interfaces to

networks and other external parts of the system.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 480

480 PART FIVE THE SOFTWARE COMPONENT

FIGURE 15.1

The Modern Integrated Computer Environment

User

Operating
system programs

Computer
hardware

Network to other
computer hardware,
servers, and clouds

Application
programs

The relationship between the various

components of a computer system is shown

schematically in Figure 15.1.

In its intermediary role, the operating sys-

temmakes it possible forusers andprograms to

control the computer hardware transparently

without dealing with the details of hardware

operation. Programs can be executed and con-

trolled with mouse or finger clicks, finger

swipes, and keyboard commands and other

types of input. When programs are completed

or interrupted, control returns to the operat-

ing system, enabling the user to continue to

operate without restarting the computer.

Effectively, the operating system provides

a complete working environment, making the

system convenient for the user by providing

the services necessary to get work done.

The easiest way to think of an operating

system is to consider it as a master “program”

that accepts requests from the user, the user’s

programs, or other sources, and then calls

its own programs to perform the required

tasks. At the same time, it also calls programs

to control and allocate the resources of the

machine, including the use of memory, the

use of I/O devices, and the time available

to various programs. Thus, if the user issues

a command to load a program, a program loader is executed, which then loads the desired

program into memory and transfers control to the user’s program to run. That program can

then issue its own requests, for example to produce output to a printer or to send a message

through the Internet to a Web server somewhere.

If you like, you could picture a command-interpreter-and-program-loader program sitting

at the high end of the Little Man Computer memory. When a particular value is received as

input, say, 999, that corresponds to the user’s command to load a program, the loader performs

a loop that inputs the instructions one at a time from the input box into successive locations in

lower memory and then jumps to mailbox 00 to execute the new program (see Exercise 15.14).

In a real computer, the operation is more complex, of course. There are many different

I/O devices to be controlled, for one thing. There will nearly always be more than one program

sharing the hardware resources, for another. To accept a command from a user, the operating

systemmust first service mouse and finger movements and input keystrokes from the keyboard

or touch screen. It must interpret these actions, for example, as a command that requests that

a program be loaded and executed. It must provide a file system that can interpret the name

of the program being requested and determine the location of the file, first by determining the

secondary storage device to be used and then by locating the file on the device. It must read the

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 481

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 481

appropriate blocks from the device into memory. Only then can the operating system transfer

control to the program being executed.

Modern computer systems enable users to work with more than one program at the same

time as a way to improve their efficiency. A user can be listening to music on the Web while

word processing a document (which is what the author is doing at thismoment). A programmer

can be editing one program while compiling another. Nearly every modern system provides

means and support for manipulating multiple programs, even on a system with only a single

CPU core. This technique is known as multitasking or multiprogramming.1 Since a system
may be manipulating many tasks on a computer with one or a few CPUs, the operating system

must support concurrency, which simulates the simultaneous execution of multiple programs

to providemultitasking andmultiuser support. To support concurrency there will be additional

requirements: programs to allocate memory and other computer resources to each program,

programs to allot the CPU time in an equitable way to each program, programs to direct input

andoutput appropriately, andprograms tomaintain the integrityof eachprogram, tonamea few.

Multitasking also enables multiple users to share the computer resources of a single system.

Such a system, known as a multiuser system, would still have to be multitasking, of course,

because each user on the system would be running at least one program, and might even be

running several programs concurrently.

This suggests that most operating systems will include additional services that augment

the basic operating system services to be provided. These additional services include one or

more interfaces that simplify the user’s ability to interact with the system and standardize the

system’s I/O operations. Modern operating systems also provide the necessary tools to facilitate

the sharing of the system services and resources among multiple programs, computers, and

users. Typically, an operating system provides most or all of the following capabilities:

n The operating system provides interfaces for the user and also for the user’s programs.

n It provides file system access and file support services.

n It provides I/O support services that can be used by every program.

n It provides a means for starting the computer. This process is known as

bootstrapping or Initial Program Load (IPL). The word bootstrapping is often

abbreviated simply to boot or booting. (An explanation of bootstrapping is provided

in Chapter 18, Section 18.2.)

n It handles all interrupt processing, including error handling and recovery, as well as

I/O and other routine interrupts.

n It provides services for networking. Most modern systems also provide services to

support symmetric multiprocessing, clustering, and distributed processing. Where

necessary, the operating system may also provide support for special features of the

system. For example, the operating system for a Sony Playstation 3 must support the

asymmetric multiprocessing that is a principal feature of the Cell multiple CPU

processor used within.

n The operating system provides services that allocate resources, including memory,

I/O devices, and CPU time to programs as they need them.

1Note that even thoughoperating systems commonly refer to executing programs as processes,multiprogramming

is not the same as multiprocessing. The latter refers to the presence of multiple CPUs within the system.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 482

482 PART FIVE THE SOFTWARE COMPONENT

n It provides security and protection services: specifically, program and file control
services to protect users’ programs and files from each other and from outsiders, as

well as to make communication between programs possible, when desired.

n It provides information and tools that can be used by the (human) system
administrator to control, tailor, and tune the system for appropriate behavior and

optimum performance.

Figure 15.2 is a simplified diagram showing the relationships between the different
components of an operating system. The diagram focuses on the interactions among the most
user-visible services. Specificmultitasking and bootstrapping components are not shown. These

are part of the core services, which also include process and thread management, resource
allocation, scheduling, memory management, security, and interprocess communication. Also
not shown on the diagram, many operating systems allow programs to call the command
interface directly to execute commands. Thus, a C++ program operating under Linux could

issue a Linux command as part of its processing.
The diagram also shows the command interface as part of the operating system. In some

systems, this is not quite the case. Instead, the command interface is viewed as a shell outside
of the operating system per se. As you will see, this view can result in increased user flexibility

by allowing the user to select different shells for different types of tasks.

FIGURE 15.2

A Simplified Diagram of Operating System Services

User

Command
interface

File
services

Core
services

Network
services

Application
program

I/O
services

Computer
hardware

Operating system

Network
hardware

Since the programs that make up the operating sys-
tem occupy space in memory that might be needed for
application programs, the operating system is commonly

divided into resident and nonresident parts. Some oper-
ating system services are critical to the operation of the
system and must be resident in memory all the time.
Others can be loaded into memory only when they are

needed, and executed just like other programs.
The critical programs are loaded into memory by the

bootstrap loader at start-up time and will remain resident
as long as the computer is running. The bootstrap for

most modern computers is stored in read-only memory;
on some computers, part or all of the resident operating
system will also be contained in rewritable ROM or flash

memory, so that it is “permanently” resident in memory
and always available for use. This is particularly true for
operating systems embedded into electronic devices such
as mobile phones or DVD players.

The memory resident components of an operating
systemarecommonlyknownas thekernelof theoperating
system. For example, the operating system program that
accepts user commands must always be present whenever

the machine is operative, as must the routines that handle
interrupts and manage commonly used resources in a
multitasking system. On the other hand, an operating
system command that formats a new disk is only used

occasionally; it can be loaded and executed only when it
is required.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 483

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 483

Most people assume that the operating system software for a conventional computer system
is stored on a disk that is connected directly to the computer, but this is not necessarily true.
If the computer is attached to a network, it may obtain its programs, including the operating
system, from another computer on the network, perhaps a cloud server. This has led to the
concept of the diskless workstation, a personal computer that, once booted, relies completely
on the network for its data and program storage and access. Diskless workstations are also
known as thin clients.

The size of the kernel and the particular services provided within a kernel vary from
operating system to operating system, depending on the organization and capabilities of the
system, as well as by the type of system. Some operating system vendors define the kernel
more narrowly than others, precluding from memory residency some components that are
deemed less critical to the basic operation of the system. Thus, the kernel in one system may
be small, with only the most critical components included, and another might be large, with a
tremendous range of services.

There are many different types of operating systems, some tailored for very specific
purposes, but general-purpose computing systems can be loosely divided into categories, as
follows:

n Single-user, single-tasking systems (this category is essentially obsolete)

n Single-user, multitasking systems

n Mainframe operating systems

n Operating systems for mobile devices

n Distributed systems

n Network servers: Web servers, database servers, application servers, and the like

n Embedded systems, such as those found in medical instruments, basic cell phones,
automobile control systems, marketplace kiosks, household appliances, DVD players
and TVs, electronic toys, and the like

n Real-time systems, used for instrumentation where system responses are time
sensitive.

Not surprisingly, these categories are somewhat arbitrary and are not mutually exclusive.
Indeed, there is a lot of overlap between the various categories. For example, the embedded
computer system that controls the braking system for an automobile must obviously be capable
of real-time response when the driver of the car slams on the brakes in an emergency. (The
overlap between mobile systems and single-user systems is probably obvious to you.)

Systems can also be categorized by the degree of activity between the user and the system
during program execution. As a student, you are probably most familiar with interactive
systems. When the system is interactive, the user interacts directly with the program to provide
input data and guidance during program execution. Interactive systems are sometimes known
as conversational systems. Most personal computing is done interactively.

Many business tasks are performed more effectively in a batch, where the data input for
the program is collected together into a file on disk or tape. It does not make sense to have a
user enter data one record at a time if an entire set of data is to be processed into monthly credit
card bills, for example. Instead, the user submits the program(s), or job(s), to the computer for
processing. This type of processing is known as batch processing. The user does not interact
with the program during batch processing. Large-scale billing, payroll, and other similarly data
intensive systems are usually processed this way.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 484

484 PART FIVE THE SOFTWARE COMPONENT

We remind you that a CPU can execute only one instruction at a time; therefore, time

used by the operating system on a single CPU system is not available for the execution of user
programs. In general, the time used by the OS program is considered overhead. In reality,

though, the operating system actually saves time for the users in most situations:

n In a single-user system, the operating system program creates minimal overhead.

While the OS program is available to the user at any time, the executing user programs
have priority; the OS program runs only to distribute CPU time among executing

programs, or to handle interrupts, or if the users’ programs request its services.

n The operating system program performs tasks directly for the user that would
otherwise have to be performed, with more difficulty, by the user. This includes the

various commands available to the user and I/O services to the user’s programs. Most
important, this includes the loading and execution of programs.When a user program

is not being executed, the OS is always available to the user for these purposes.

n The OS user interface provides a means for the user to get work done more quickly
and efficiently. This is especially true for the user interface found on modern

operating systems. The best modern operating systems combine graphical simplicity
with sophisticated text command input capability and output display of results to

provide the user with powerful access to the facilities of the computer.

n Under most conditions, the computer system operates well below full capacity. The
CPU sits idle while waiting for I/O transfers to occur. A user sits thinking at the

keyboard. Multiuser and multitasking operating systems make it possible for many

users or tasks to share the computer resource, providing fuller utilization of the
system.

n The operating system extends the capability of the computer to include features that

require special coordinated hardware and software that is invisible to the user. These
features include virtual memory, cache memory, multiprocessing, vector processors,

and networking.

n The operating system provides powerful tools to the user’s programs that improve the
quality of the programs and make the user’s work easier. For example, modern OS

tools allow work to be easily transferred between applications through a clipboard, or
make it possible to embed a spreadsheet into a word processing document. System

services are provided by an API, or Application Programming Interface. The API
provides file and I/O services, tools that create and support the graphical user

interface, even tools to embed a spreadsheet into a word processing document.

We say that the operating system is event driven. This means that the operating system

normally sits idle and executes only if some event occurs that requires operating system
action. Events may result from interrupts or from service requests by a program or a user.

Events include file requests, I/O, keyboard inputs from users, memory requests from programs,

messages sent from one program to another, clock interrupts that allow the operating system
scheduler program to dispatch programs during time-sharing operation, network requests, and

much, much more. In reality, the operating system on a large computer has quite a bit of work
to do. Service requests and interrupts are a fundamental means of communication with the

operating system.
Computer designers attempt to integrate the computer hardware and operating system, so

that each supports the features of the other in such a way as to create a powerful environment for

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 485

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 485

the users and for the users’ programs. Such an environment is called symbiotic. This would seem

to suggest that each type of computer hardware would require its own proprietary operating

system. In fact, this is not necessarily the case. Most modern hardware vendors do not provide

their own brand of operating system at all. Instead, their systems are supplied with a standard

operating system such as Linux or Windows 7 or 8 or Apple IOS or Google Android.

Linux and Windows 8 are both examples of operating systems that operate on multiple

hardware platforms. There is a strong advantage at providing a standard operating system

that works on different hardware. Such a system provides program portability, as well as

file portability, and also allows users to move comfortably from one machine to another by

providing a recognizable interface and command structure.

Portable operating systems are designed in such a way that they may be tailored for

different hardware by changing only the small portion of the operating system program code

that interacts directly with the hardware. Most of the operating system is written in high-level

language, which can be ported easily to a new machine by recompiling the high-level code. The

portion of the operating system that must be built for the individual machine is written in a

mixture of high-level language and assembly language. Languages such as C++ and Java are

ideal system languages, because they provide facilities that make it possible to interact with

the hardware with very little need for assembly language. In fact, the language C was originally

designed specifically for this purpose. The portability of Linux, and other modern operating

systems, stems directly from this capability.

While it is true that a single operating system can be ported to operate with different

hardware, it is also true that a particular hardware platform can support different operating

systems. Thus, the user or system designer can select an operating system that provides the

desired facilities for the particular use of the system. Although x86-based personal computers

have traditionally been provided with some version of Windows, there are other operating

system options available that a user could select. An unsophisticated user on a stand-alone

system might run Windows 7 or 8 for its familiarity and ease of use, but a more sophisticated

user with particular needs might prefer Apple Macintosh OS X for its excellent tools and

applications or Linux for its additional power.

15.3 SERVICES AND FACILITIES
Section 15.2 provided an overview of the various services and components that make up an

operating system. In this section we consider the fundamental building blocks of an operating

system in more detail. There are ten major blocks to be considered, not all of which will

necessarily be found in any particular operating system:

n The command processor, application program interface, and user interface

n The file management system

n The input/output control system

n Process control management and interprocess communication

n Memory management

n Scheduling and dispatching

n Secondary storage management

n Network management, communication support, and communication interfaces

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 486

486 PART FIVE THE SOFTWARE COMPONENT

n System protection management and security

n Support for system administration.

There are other system functions, such as accounting and error handling, that are sometimes
handled as separate blocks but frequently appear within the blocks already listed.

In different types of operating systems, some of these components may be combined, or
even absent. An embedded system may not require a file system or memory manager if all its
programs are permanently resident in ROM, for example, but the listed components represent
a collection of the most general operating system requirements.

Some of these modules, particularly the command interface and file system modules, are
quite visible to the user. The other modules are primarily used for internal control of the
system, controlling and optimizing use of the hardware resources, and maximizing program
throughput and efficiency. Most modules also make their services available to user programs
through the API.

In this section, we present an overview of the services provided by each of these operating
system components. Individual components are discussed in more detail in other chapters, the
capabilities and operation of the user interface and related services in Chapter 16, and the file
management services in Chapter 17. Details of the most important internal components and
operations of the operating system are discussed in Chapter 18.

User Interface and Command Execution Services

To the user, the most important and visible service provided by the operating system is the user
interface and the capability that it provides to execute commands.

Some systems do not consider the user interface and command processor to be a part of
the operating system kernel, even though much of it is likely to be memory resident. Instead,
these systems consider the user interface as a separate shell that is provided with the operating
system and that interacts with the kernel to provide the necessary user command capabilities.
Theoretically, a different shell could be used that provides different command capabilities. In
Linux, for example, three different GUI shells, KDE, Unity, and Gnome, and three different
text-based shells, bash, csh, and zsh are in common use, and many other shells for Linux
are available. Each of these shells provides different features and command structures and
capabilities.

Different types of user interfaces exist. The most common are the graphical user interface
(GUI), and the command line interface (CLI). The graphical user interface accepts commands
primarily in the form of icons, drop-down menus or tabbed ribbons, on-screen buttons, mouse
or finger movements, and mouse or finger clicks. The command line interface relies on typed
commands. Underneath the very different appearances of these interfaces, however, similar
commands are being executed.

Regardless of the user interface provided, the command interface provides direct access
to various other modules within the operating system. The most often used commands access
the file system for file operations and the scheduler for program loading and execution. On
some systems, commands may also provide direct access to the I/O system, protection services,
network services, and process control services. On other systems, these commands may be
processed indirectly, using built-in operating system utilities intended for the purpose.

A few systems even provide commands and built-in utilities for access to memory and to
secondary storage. Generally, use of these commands is restricted to users with special access

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 487

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 487

needs, such as the people who control and maintain the system. UNIX and Linux, for example,

refer to these individuals as “superusers”.

Some commands are built directly into the operating system. They remain in memory for

immediate access. These are known as resident commands. Other commands are loaded only

as they are needed. These are called nonresident commands.
Most modern operating systems provide some capability for combining computer com-

mands into pseudo-programs, commonly called shell scripts. Batch-oriented systems alsomake

it possible to combine individual commands into a sequence of control statements, which will

be interpreted and executed one at a time without user intervention to control the processing

of a multistep “job”. Each step in the job performs an individual task. On large IBM systems,

for example, the set of commands used for this purpose form a language known as Job Control
Language (JCL).

In addition to the standard operating system commands, shell scripting languages typically

provide branch and loop commands and other computer language features. Shell scripts can be

executed as though they were actual programs. Other common features include:

n A means for redirecting I/O data to a device different from that ordinarily used, to a

disk file instead of the screen, for example

n A way to combine commands using a technique called piping, so that the output from

one command is automatically used as the input for another

n A means for providing additional parameters to the script that can be entered by the

user at the time the program is executed.

More sophisticated command languagesprovide larger commandsetswith amore extensive

and powerful set of options and with more extensive control structures that allow the creation

of shell scripts with more flexibility, both in design and in run-time execution. Some command

languages even provide special powerful commands that can eliminate normal programming

effort. UNIX and Linux are particularly notable in this regard, providing commands that can

search, select, edit, sort, enumerate, and process data from files in a way that rivals many

programming languages.

The simplest Windows scripts are based on a command set that evolved from MS-DOS.

These scripts are commonly called .BAT files. Recent versions of Windows also include a

more powerful scripting facility calledWindows PowerShell. PowerShell is based on an object-
oriented language similar to C# and canmanipulate both text and graphical objects. PowerShell

3.0 is integrated into Windows 8.

There are a number of scripting languages that are designed to work independently of

the particular operating system in use. The most popular of these include perl, python, PHP,

Ruby, and JavaScript. Command and scripting languages extend the power and flexibility of the

operating system and simplify use of the system for less sophisticated users.

File Management

The concept of a file is central to the effective use of a computer system. A file is generally loosely

defined as a collection of related information. Defined in this way, a file is a rather abstract

concept; indeed, the contents of the file only have meaning in the context of their particular

internal description and use. Thus, the sequence of bytes in a file might represent a program,

or a graphical image, or maybe the alphanumeric text data for a book, to be used within a word

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 488

488 PART FIVE THE SOFTWARE COMPONENT

processor. A file may be organized internally into records or it may simply be a stream of bytes.

A file constitutes a logical unit of storage, that is, logical to the person or program using the file.

The logical unit may or may not correspond to the physical storage characteristics of the I/O

device where it is stored.

The file management system provides and maintains the mapping between a file’s

logical storage needs and the physical location where it is stored. The file management system

identifies and manipulates files by the names provided by their users. It determines the physical

requirements of the file, allocates space for it, stores it in that space, and maintains the infor-

mation about the file so that it may be retrieved, partially or in full, later. The file management

system keeps track of the available space on each device connected to the system. The user

and the user’s programs need not be aware of the underlying physical storage issues. Users and

programs simply access the files by name, and the file management system handles the details.

The file management system provides a consistent view of files across different I/O devices.

This view even extends to files located elsewhere, on devices accessible from a network. To the

user, file requests operate in the same way independent of the device, even between devices of

different characteristics. Thus, it is not necessary to know the physical differences between, say,

disk and tape, to move a file from one to the other. A program can request file services without

knowing the file structure of the device being addressed, indeed without even knowing what

kind of device the file is stored on.

The file management system provides and maintains:

n Directory structures for each I/O device in the system and tools to access and move

around these structures. The directory structure allows the retrieval and storage of

files by name, keeps track of the mappings, allocates and frees space, allows the

mounting and unmounting of file structures, and provides other functions required

to maintain the structures of the file system. Provisions are made to move easily from

one structure to another.

n Tools that copy and move files from one I/O device to another and from one

directory to another, merge files, create and delete files and directories, and undertake

other basic file manipulations.

n Information about each file in the system and tools to access that information.

Typically, information about a file might include its name, type of file, size, date and

time of creation, date and time of the most recent update, and protection and backup

characteristics.

n Security mechanisms to protect files and control and limit file access to authorized

users. Most modern systems also provide encryption protection and journaling, a

technique which assures the currency and integrity of files when system failures occur

during file changes.

Some filemanagement systems also provide advanced features, including auditing, backup,

emergency retrieval and recovery mechanisms, file compression, and transparent network file

access.

File management systems are particularly important in systems in which secondary storage

devices are shared in common by multiple users, since they provide a directory system that

assures that there is no duplicate use of physical storage. Without this facility, it is likely

that users would unintentionally overwrite each other’s files. And, of course, we already noted

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 489

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 489

that the file management system also provides file access protection between the different users.

The file management system is discussed more fully in Chapter 17.

Input/Output Services

In Chapter 9, we introduced the concept of interrupts and showed the various techniques for

handling I/O. Programs that implement these concepts are known as I/O device drivers. It

would be awkward to require each program to provide its own I/O services. I/O device drivers

are important because they are available to serve every program that will be executed on the

system and provide a standard methodology for the use of each device. Even more important,

the use of standard I/O drivers within the operating system limits access and centralizes control

of the operations for each device.

The operating system includes I/O device driver programs for each device installed on the

system. These drivers provide services to the file management system and are also available,

through the API, to other programs for their use. The I/O device drivers accept I/O requests

and perform the actual data transfers between the hardware and specified areas of memory.

In addition to the I/Odevice drivers provided by the operating system,modern systems pro-

vide certain I/O drivers with minimal functionality in ROM, to assure access to critical devices,

such as the keyboard, display, and boot disk during the system start-up process. TheROM-based

drivers are replaced or integrated with other I/O drivers during normal system operation. On

IBM-type PCs, these drivers are stored in the system BIOS (basic input/output system).
Device drivers for newly installed devices are added and integrated into the operating

system at the time of installation. On some systems, the process is manual. On many systems,

the Apple Macintosh, for example, this process is completely automatic. In Windows, this

capability is known as plug-and-play. Many modern systems even make it possible to add and

modify devices on the fly, without shutting down the system. USB provides this capability.

Every operating system, large or small, provides input/output services for each device in

the system. The use of one set of I/O services for each device assures that multiple programs

will not be competing for the device and assures that the use of each device will be managed

through a single point of control. Multiple access can cause serious conflict in multitasking

systems. For example, a user would not be pleased to discover that parts of the printouts from

two different programs were intermingled on the pages, even more so if the outputs belonged

to two different users! The operating system assigns and schedules I/O devices appropriately to

each process to eliminate this problem.

Process Control Management

Briefly, a process is an executing program. It is considered the standard unit of work within

a computer system. Every executing program is treated as a process. This includes not only

application programs, but the programs within the operating system itself. The process concept

considers the program, together with the resources that are assigned to it, including memory,

I/O devices, time for execution, and the like. When admitted to the system, each program

is assigned memory space and the various resources that it initially requires to complete its

work. As the process executes, it may require additional resources, or it may release resources

that it no longer needs. The operating system performs various functions with processes,

including scheduling and memory management, by providing the various services that we have

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 490

490 PART FIVE THE SOFTWARE COMPONENT

discussed in this chapter. Processes must often be synchronized, so that processes sharing a

common resource do not step on each other’s toes by altering critical data or denying each

other needed resources. Systems also provide communication capability between different

processes. Processes may cooperate with each other by sending messages back and forth using

interprocess messaging services. Other services include functions such as setting process

priorities and calculating billing information.

Process control management keeps track of each process in memory. It determines the

state of each process: whether it is running, ready to run, or waiting for some event, such as I/O

to be completed, in order to proceed. It maintains tables that determine the current program

counter, register values, assigned files and I/O resources, and other parameters for each process

in memory. It coordinates and manages message handling and process synchronization.

Most modern systems further break the process down into smaller units called threads.
A thread is an individually executable part of a process. It shares memory and other resources

with all other threads in the same process, but can be scheduled to run separately from other

threads.

Memory Management

The purpose of the memory management system is to load programs and program data into

memory in such a way as to give each program loaded thememory that it requires for execution.

Each program that is being executedmust reside inmemory. Formultitasking to occur,multiple

programs will occupy memory simultaneously, with each program in its own memory space.

The memory management system has three primary tasks. It attempts to perform these

tasks in a way that is fair and efficient to the programs that must be loaded and executed.

1. It keeps track of memory, maintaining records that identify each program loaded into

memory together with the space being used and also keeps track of available space. It

allocates additional space for running programs as required. It prevents programs

from reading and writing memory outside their allocated space, so that they cannot

accidentally or intentionally damage other programs.

2. If necessary, it maintains one or more queues of programs waiting to be loaded into

memory as space becomes available, based on such program criteria as priority and

memory requirements. When space is available, it allocates memory to the programs

that are next to be loaded. This situation is rare in modern computer systems.

3. It deallocates a program’s memory space when it completes execution. The

deallocated space is made available for other programs.

Older systems used a variety of algorithms to divide up the available memory space.

Except for special-purpose embedded systems, everymodern computer system provides virtual
storage, a method of utilizing memory which includes hardware support for sophisticated

memory management capability. Virtual storage creates the illusion of a memory space that is

potentially much larger than the actual amount of physical storage installed in the computer

system; its development was a major breakthrough in system capability. Where virtual storage

is available, the memory management module of the operating system works directly with

the hardware and provides the software support to create an integrated memory management

environment that takes maximum advantage of the features of virtual storage. Virtual storage

is explained in detail in Chapter 18, Section 18.7.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 491

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 491

Scheduling and Dispatch

The operating system is responsible for the allocation of CPU time in a manner that is fair

to the various programs competing for time, as well as maximizing efficient utilization of the

system overall.

There are two levels of scheduling. One level of scheduling determines which jobs will be

admitted to the system and in what order. Admission to the system means that a job will be

placed into a queue, based on some order of priority, and ultimately assigned memory space

and other resources, which will allow the program to be loaded into memory and executed.

(Some operating systems divide this operation into two separate tasks, one for admittance to

the system, the other to assign memory.) This scheduling function is sometimes known as

high-level scheduling. The other level of scheduling is known as dispatching. Dispatching is
responsible for the actual selection of processes that will be executed at any given instant by

the CPU. The dispatch component of the operating system makes concurrency possible by

allocating CPU time in such a way as to make it appear that several processes are executing

simultaneously. For those systems that allow the division of processes into threads, dispatch is

done at the thread level, instead of at the process level.

In modern systems, with their extensive facilities and capabilities, high-level scheduling

is relatively straightforward. Most of the time, new processes will simply be admitted to the

system and given memory space if it is available, or held until space is available, then admitted.

Selecting the appropriate candidate for CPU time at any given instant is much more

important and difficult, since the capability of the dispatcher directly affects the ability of

the users to get their work done. A single program cannot be allowed to “hog” the machine;

therefore, the dispatcher must interrupt whatever process is running periodically and run itself

to determine the status of the machine’s resources and to reassign CPU resources to assure that

every user and task is receiving what it needs.

Since a single CPU can process only one instruction at a time, the simultaneous execution

of two ormore programs is obviously impossible with a single processor. Instead, the dispatcher

acts as a controller to provide concurrent processing. There are various ways in which

multitasking can be achieved with concurrent processing, but mostly these methods take

advantage of two simple strategies:

1. While one program is waiting for I/O to take place, another can be using the CPU to

execute instructions. This strategy is shown in Figure 15.3. In Chapter 9 we

demonstrated that I/O could be performed efficiently without tying up the instruction

FIGURE 15.3

Sharing the CPU During I/O Breaks

Executing

Executing

Executing I/O

WaitingI/O

Program
1

Program
2

Program
3

ExecutingI/O Waiting

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 492

492 PART FIVE THE SOFTWARE COMPONENT

executing capability of the CPU. We further showed that most of the time, the CPU

was idle, since I/O represents such a large percentage of a typical program’s execution.

This suggests that the idle time can be used to execute other programs, as an effective

way to increase utilization of the CPU.

2. The CPU may be switched rapidly between different programs, executing a few

instructions from each, using a periodic clock-generated interrupt. This method was

discussed in Chapter 9, Section 9.3, and diagrammed in Figure 9.8, redrawn here as

Figure 15.4. This strategy will slow down execution of each program, since each

program must split its time with other programs. There is also some operating system

overhead, as a dispatcher must be invoked at each interrupt to select the next program

to receive CPU time. In most cases the CPU is so powerful compared to the

requirements of the programs that the slowdown is not even noticeable. This

technique is called time-slicing.

The algorithms used by the dispatcher combine these two methodologies, taking into

account such issues as fairness to each program, the priorities of the different programs, quick

response for critical situations, such as displaying a user’s cursor movement or displaying

streaming video, the number of CPUs available for dispatching, and other criteria.

Different processes have different requirements. Some processes require extensive amounts

of CPU time; such processes are considered to beCPUbound. Others aremostly I/O operations,

with very little CPU processing; these are known as I/O bound. Immediate response time is

important under some conditions, for example, when echoing cursor movement to a screen

and unimportant in others, such as producing printed output from a batch job that will not be

picked up by the user until later in the day. It is obviously desirable to dispatch processes in such

a way that the system is used effectively. Various dispatching algorithms are used to meet these

different requirements, and there are various criteria for measuring how well the dispatcher is

doing its job. Generally, interactive processes require faster response than do batch processes.

Processes that must control instrumentation in real time require the fastest response of all.

FIGURE 15.4

Time-Sharing the CPU

Executing ExecutingWaiting

Executing Waiting

WaitingWaiting

1 quantum

1 quantum

Program
1

Select next
program

Clock
interrupt

Clock
interrupt

Program
2

OS dispatcher
program

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 493

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 493

The dispatcher is also responsible for the actual transfer of control to the process that is

being dispatched. This responsibility includes preservation of the previous running program’s

program counter, register values, and other parameters that represent the state of the program

at the time it was stopped, as well as restoration, if necessary, of the exact previous state of the

program being dispatched. This operation is called context switching.
The operation of the dispatcher is dependent on the nature of the system and on the

nature of the programs that the system is running. The dispatcher can be preemptive or

nonpreemptive. The dispatcher for a nonpreemptive system replaces an executing program

only if the program is blocked because of I/O or some other event or if the program voluntarily

gives up the CPU. When necessary, the executing program may be suspended momentarily,

so that the CPU can handle interrupts, but when the interrupting task is complete, control is

returned to the same program. (This exception is necessary for several reasons. Without it,

there would be no way to stop a runaway program, for example, a program with an infinite

loop in it. It is also necessary to prevent losing keystrokes from user keyboards and to echo

keystrokes back to users’ screens.)

Preemptive multitasking uses the clock interrupt, as described earlier, to preempt the

executing program and to make a fresh decision as to which program executes next.

In general, nonpreemptive dispatching algorithms apply mostly to older, batch-oriented

systems. Modern dispatchers are predominately preemptive. However, most provide a mech-

anism to dispatch individual programs nonpreemptively, for programs that must execute

to completion without unnecessary interruptions. Linux uses nonpreemptive dispatching to

protect certain operating system operations from interrupts that could destroy the integrity of

operating system data, for example.

A more detailed explanation of process creation can be found in Chapter 18, Section 18.3.

Scheduling and dispatching are discussed further in Chapter 18, Section 18.5.

Secondary Storage Management

The file management system keeps track of free secondary storage space and maintains the file

system and its directories. The input/output control system provides device drivers that actually

control the transfer of data between memory and the secondary storage devices.

On large multitasking systems there may be many programs requesting I/O services from a

secondary storage device at one time. The order in which these requests are fulfilled affects the

ability of the different programs to get their work completed, since the programs must usually

stop and wait for their I/O requests to be completed before proceeding. Although it would be

simplest to process I/O requests in the order received, it may be more efficient to process the

requests out of order, particularly if the blocks requested are scattered all over the disk. This is

true because the disk seek time (i.e., the time to move from track to track) is long compared to

other times within the system.

The secondary storage management system attempts to optimize the completion of I/O

tasks by using algorithms that reorder the requests for more efficient disk usage. For example,

it might attempt to read all the requested data blocks from the tracks in one area of the disk

before going to read data on tracks at the other end of the disk. In some large modern systems,

optimization is provided by a combination of I/O hardware and operating system software.

Further details of secondary storage management appear in Chapter 18, Section 18.8.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 494

494 PART FIVE THE SOFTWARE COMPONENT

Network and Communications Support Services

With the exception of some specialized embedded systems, nearly all computers today are

interconnected, directly or indirectly, into networks. (There is even a trend toward networking

embedded computers: modern automobile computers routinely report maintenance problems

to the service technician when you bring your car in for service—many cars even report

problems wirelessly from the road to a service representative. And you may have heard of the

refrigerator that calls an order in to an Internet grocery delivery service when food stocks are

low.) The network and communications support facilities within the operating system carry out

the functions required to make the system perform seamlessly in a networked and distributed

environment.

As we noted in Chapter 13, nearly all modern communications services rely on wired

and wireless Ethernet, together with the TCP/IP protocol suite, together with its IP-based

applications. TCP/IP provides the facilities to locate and connect to other computer systems, to

pass application data in packet form from one system to another, to access files, I/O devices, and

programs from remote systems, to provide error checking and correctionwhen appropriate, and

to support the requirements of distributed processing. Network and communication services

within the operating system provide the communication software necessary to implement the

features and facilities of Wi-Fi, wired Ethernet, and TCP/IP. Most systems also implement a

substantial set of TCP/IP applications and extensions, including e-mail, remote login, Web

services, streaming multimedia, voice over IP telephony (VoIP), secure networking across the

Internet (called a virtual private network, or VPN), and more. Most modern systems also

provide Bluetooth capability.

Communications services within the operating system also provide the interface between

the communication software and the OS I/O control system that provides access to the network.

The I/O control system includes the software drivers for modems, network interface cards,

wireless communication cards, and other devices that are used to connect the computer

physically and electrically to the network or networks.

Larger computers used for server applications often require the capability for additional

growth and reliability to serve the needs of their clients. These capabilities are sometimes

referred to as system scalability and fail-safe operation respectively. In addition to networking

support, the operating systems for suchmachines often include clustering software, so that these

computers can be clustered together and viewed transparently by clients and users as a single,

high-powered system. The clustering software provides single-point logins, single-point user

and client requests, request steering, failure detection and cutover, and system load balancing

between the individual nodes within the cluster.

Security and Protection Services

It is certainly no surprise to anyone that modern systems require security and protection

services to protect the operating system from user processes, to protect processes from each

other, and to protect all processes from the outside world. Without protection, a buggy or

malicious program, for example, could unintentionally or intentionally modify or destroy the

program code or data in the memory space belonging to the operating system or to another

process. It is also important to protect the system and user processes from unauthorized entry

to the system, and against unauthorized use of the system, even by authorized users.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 495

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 495

In most modern systems, executing processes are limited to the execution of instructions

and access to data within their ownmemory space, sometimes referred to as a sandbox. All other

services, such as file management and I/O, must be requested by the process from the operating

system, using the service requests provided by the OS for that purpose. This methodology is

fundamental to the security of the system. In this way, the operating system, the file system, and

other processes are protected from unauthorized use or operations, protecting the integrity of

the system as a whole. Interprocess messaging services are usually provided by the operating

system to allow processes to communicate with each other without compromising the system.

Critical parts of the operating system execute in a specially protected mode of operation

provided as part of the CPU design. In protected mode, the operating system can prevent

programs from executing certain instructions and from accessing parts of memory specified by

the operating system, for example, parts being used by other programs.

Each module in the operating system includes provisions that protect its assets. Thus, the

file management system would not allow a process to store data on a part of a disk that is being

used by another file. Nor would process management allow the assignment of an I/O resource

that would prevent another process from completing its task. Since all services are requested

from the operating system, the OS has the capability to determine that requests will not damage

other processes or the system itself.

The operating system also provides login and password services that can help to prevent

entry from unauthorized users and access control facilities that allow users to protect their

individual files at various levels of availability to other users and outsiders. The modern

operating system includes firewall protection, which, artfully administered, can make it more

difficult for outsiders to penetrate the system, but is not foolproof; the need for security must be

carefully balanced with the needs of the users to get their work done. Despite all the protection

offered by amodern system, bugs, viruses, and vulnerabilities within the operating system, poor

configuration of firewalls and other security features, and poor user management policies such

as weak password enforcement can make a system vulnerable to attack by outsiders. The design

and deployment of effective security and prevention services is an important ongoing concern

in operating system design. A number of research projects that show promise are attempting

to design OS security mechanisms that prevent infiltrators from moving beyond the actual

program that they invaded into other areas of the operating system.

System Administration Support

The system administrator, or sysadmin, for short, is the person who is responsible for

maintaining the computer system or systems. In a large organization, the sysadmin may

support hundreds, or even thousands, of computers, including those of the employees. Some of

the important administrative tasks managed by a system administrator include:

n System configuration and setting group configuration policies

n Adding and deleting users

n Controlling and modifying user privileges to meet the changing needs of the users

n Providing and monitoring appropriate security

n Managing, mounting, and unmounting file systems

n Managing, maintaining, and upgrading networks

n Providing secure and reliable backups

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 496

496 PART FIVE THE SOFTWARE COMPONENT

n Providing and controlling software, installing new software, and upgrading software

as required

n Patching and upgrading the operating systems and other system software

n Recovering lost data

n Tuning the system for optimum availability and performance

n Monitoring system performance and recommending system modifications and

upgrades when necessary to meet user requirements.

These and other important tasks must be applied both to central server systems and to

client machines and other desktop computers on a network to coordinate and maintain a

reliable and useful system. Modern operating systems provide software to simplify these tasks.

On small personal computers, the user is often the administrator as well. The major

administrative tasks of the user are to install and upgrade software, to reconfigure the system

and the desktop from time to time, tomaintain network connections as required, and to perform

regular file backup and disk maintenance and defragmentation. For user administration of

this type, simple tools are sufficient. Indeed, the goal of a desktop operating system might be

to hide the more sophisticated tools from the typical user. For example, Windows operating

systems store the system configuration within a registry that is normally hidden from the

user, and provide, instead, a variety of simple tools specifically for tailoring the system to user

preferences and performingmaintenance tasks. TheWindows operating system supplies default

configuration parameters for many tasks that suit the needs of most users, with tools to modify

the parameters to meet specific user requirements. The simplest tools are sufficient for most

users to perform routine system administration. Knowledgeable users can also manipulate the

system registry directly, when necessary. On desktop computers connected to a larger system

within an organization, central administration tools allow the application of group policies and

configuration to individual desktop computers without user involvement.

On larger systems, administration is much more important and much more complex. The

hardware and software to be managed is far more extensive, and there are numerous users

requiring accounts and service. Installation of new equipment on large systems is common, and

in some cases, the systemmust be reconfigured to use the new equipment. IBM calls this process

sysgen, for system generation. It is one of the most important tasks of system administration on

large systems.Modern systems provide software for simplifying common system administration

tasks. Large mainframe operating systems provide tools for performing all the major system

administration requirements. They also provide tools that allow the administrator to tailor the

system to optimize its performance, for example, to optimize throughput or the use of resources.

This is done by modifying system parameters and selecting particular scheduling and memory

management algorithms. Among the parameters that can be adjusted on various systems are the

amount of memory allocated to a program, user disk space allocation, priorities, assignments of

files to different disks, the maximum number of programs to be executed concurrently, and the

scheduling method employed. IBM z/OS even includes a Workload Manager, which attempts

to optimize system resources automatically, without administrator intervention.

The system administrator on a traditional UNIX/Linux system, for example, can log in

to the system as a superuser, with privileges that override all the restrictions and security

built into the system. The superuser can modify any file in the system. (However, the new

security mechanisms mentioned above might make it much more difficult to override the

security, thereby protecting a system from a hacker who manages to infiltrate the kernel.) More

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 497

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 497

important, the UNIX system provides tools that simplify the tasks of system administration.

These tools take the form of commands that can be executed only by the superuser and

text-based configuration files that can be modified with any text editor.

For example, UNIX/Linux systems typically provide a menu-driven or graphical adduser

program for administering user accounts. This program provides a simple procedure for

performing all the tasks required to add a new user to the system, including setting up the

user name and ID number, building entries to the appropriate user and group tables, creating

the user’s home directory, assigning login shells, and establishing user initialization files

(corresponding to the user’s particular terminal hardware, prompt preferences, and the like).

Other typical UNIX/Linux administration commands include a partition tool for parti-

tioning hard disk drives; newfs for building a file system;mount and umount for mounting and

unmounting file systems; fsck for checking and repairing the file system (similar in concept to,

but much more complex and thorough than, CHKDSK on Windows systems); du and df for

measuring disk usage and free space; tar for collecting files into archives; and ufsdump and

ufsrestore for creating backups and recovering damaged files. config is used to build the system.

There are many additional tools available to the UNIX/Linux sysadmin.

Like other large systems, server-based versions of Windows provide a full suite of tools for

measuring system performance and managing the system, including the ability to control and

configure client systems remotely.

Most systems provide a variety of statistical information that indicates the load on the

system and the efficiency of the system. This information is used by the system administrator as

a basis for tuning the system. Part of a typical system status report appears in Figure 15.5. This

particular report comes from a Linux system. The report indicates the load on the system as a

function of time, shows CPU and memory usage, identifies the most CPU-intensive processes,

together with the name of the user and the percent of CPU and memory resources consumed,

shows the efficiency of virtual storage, and provides many other useful system parameters. It

even provides an analysis of the data shown. Although the typical user might not find a report

such as this very useful in terms of what steps to take as a result of the information presented,

a skilled system administrator can make valuable use of the information in determining ways

in which to improve system performance. A consistently heavy load on a particular disk might

suggest splitting the most used files on that disk onto two separate disks, so that they might

be accessed in parallel, for example. Or heavy use of the CPU by a particular user during peak

hours might suggest lowering the priorities for that user at those times.

SYSTEM GENERATION One of the most important system administration tasks to be

performed is the creation of an operating system tailored to the specific needs of a particular

installation. The process of building a system is called a system generation, or more familiarly,

a sysgen. The result of a sysgen matches the operating system to the characteristics and features

of the hardware provided and includes the desired operating system features and performance

choices. Two primary means are used to tailor the system:

n By selecting the operating system program modules to be installed. Typically, an

operating system provides a large number of modules that might be used under

different circumstances. Only those modules that are relevant to the installation are

selected. As an example, a particular installation has an individualized selection of

I/O devices. Only those device drivers that are required for the installed I/O devices

would be included in the tailored system.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 498

498 PART FIVE THE SOFTWARE COMPONENT

FIGURE 15.5

A Typical System Status Report

n By assigning values to parameters of the system. Parameters are used to provide the
details of an installation. On a Windows-based PC system, for example, devices are
assigned to specific, numbered interrupt channels known as IRQs; memory locations
for each device interrupt driver are also specified. Another example of a parameter
would be the number of concurrent users permitted on a multiuser system. On some
systems, a parameter might be used to determine whether a module is memory
resident or is loaded on demand. Most large systems also provide parameters that
tailor the system scheduling mechanism and adjust the behavior of other resource
control modules. These and other parameters must be determined by the system
administrator to meet the needs of the installation.

Some systems provide a lot of flexibility, with many options. Other systems may provide
only a minimal amount of selection, perhaps no more than a selection of I/O device drivers.

The method used to perform a sysgen depends on the operating system. Some systems
provide theoperating systemmodules in source code form.Modules andparameters are selected,

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 499

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 499

and the operating system is assembled or compiled and linked to form the loadable binary
operating system. A barebones operating system with the appropriate compilation tools may
be provided to enable the sysgen procedure to take place on the target system, or the procedure
may be executed on a different machine. Other operating systems use an installation program
to determine which modules should be included in the operating system, and parameters are
selected during the installation procedure. On these systems, the various modules are already
provided in binary form and need only be linked during the sysgen procedure.

On many systems, the sysgen procedure is provided as a series of menu selections and
parameter entry forms that guide the operator through the procedure. On some systems, the
procedure is entered as a script or batch file. Most systems also allow some degree of dynamic
configuration, which makes it possible to build changes into the system without rebuilding the
entire system.We noted earlier that in Linux configuration script files are used for this purpose.

15.4 ORGANIZATION
There is no standard model for the organization of an operating system. Some systems were
developed in a deliberate and carefully planned manner, while others grew topsy-turvy over
a long period of time, adding new functions and services as they were required. Thus, the
programs that make up an operating system may be relatively independent of each other, with
little central organization, or they may form a formal structure.

Overall, the organization of most operating systems can be described generally by one of
three configuration models. These are commonly referred to in the literature as themonolithic
configuration, the layered or hierarchical configuration, and themicrokernel configuration.
Within a configuration, individual programs can be categorized in different ways. As we noted
earlier, operating system programs can be memory resident or nonresident, depending on their
function. Of the resident programs, some will operate in a protected mode, often called kernel
mode, others in a conventional user mode.

As an example of a monolithic configuration, UNIX is commonly described by the model
shown in Figure 15.6. In this model, the various memory resident operating system functions
are represented by a monolithic kernel. There is no specific organization. The operating system
programs simply interact as required to perform their functions. The critical functions within
the kernel operate in protected mode, the remainder, in user mode. The shell is separate from

FIGURE 15.6

A Simplified Representation
of UNIX

Shell

Kernel

Utilities

the kernel and serves as an interface between the users, utilities, and user
programs with the kernel. Thus, the shell can be replaced without affecting
kernel operations. (UNIX organization is considered in more detail as a case
study in Supplementary Chapter 2.)

The major difficulty with a monolithic configuration is the stability and
integrity of the system as a whole. Any defect in a program within the kernel
can crash the entire system, as can unexpected interactions between different
programs in the kernel. Thus, the addition of a new device driver, for example,
could compromise the entire system. Nonetheless, with proper design and
control, it is possible to build a secure and stable system, as evidenced by
Linux.

An alternative operating system organization is built around a hierar-
chical structure. A simple representation of a hierarchical operating system
organization is shown in Figure 15.7. This representation shows the operating

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 500

500 PART FIVE THE SOFTWARE COMPONENT

FIGURE 15.7

A Hierarchical Model of an OS

Network
services

Process
management

Resource
allocation

Virtual memory
manager

Input-output system
device drivers

HardwareNetwork

User

User interface

Commands and utilitiesUser space
Kernel space

File services

system divided into layers. The upper layers are the ones that are visible to the user; the middle

layers comprise the major kernel operations. The lowest layers are the I/O device drivers that

interact with the hardware.

In this model, each layer is relatively independent of the other layers. Thus, the file

management layer determines the location of a file identified by logical name and interprets the

nature of the request, but does not attempt to access the hardware directly. Instead, it makes a

request to the kernel. Local requests are then passed on to the I/O device driver level for access

to the hardware. Network requests are passed on to the I/O device drivers on the machines

providing the services.

The hierarchy is arranged so that access to the various layers of the operating system is

from the top. Each layer calls the next lower layer to request the services that it needs. Most

computer systems today provide appropriate hardware instructions that allow the operating

system design to enforce this procedure. This provides security, as well as a clean interface

between the different functions within the operating system.

Layered operating systems must be designed carefully, because the hierarchy requires that

services be layered in such a way that all requests move downward. A program at a particular

layer must never require services from a higher layer because this could compromise system

integrity. Another disadvantage of the layered approach is the time required to pass the request

through intermediate layers to receive services from the lowest layers. In contrast, a program in

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 501

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 501

FIGURE 15.8

Microkernel Architecture

User mode
Kernel mode

Microkernel

Hardware

Operating system services

API

Messages

Client
application

Process
control
server

File
manager
server

Display
server

Network
server

∙ ∙ ∙

a monolithic operating system could request the service directly from the program that supplies

the service, resulting in much faster operation. The obvious advantage of the layered approach

is the stability and integrity that result from a well-structured modular design.

Still another approach to operating system design is the microkernel. An illustration of

a microkernel configuration is shown in Figure 15.8. The microkernel configuration model

is based on a small protected kernel that provides the minimum essential functionality.

The definition of “minimum essential functionality” differs from system to system. The

Mach operating system kernel includes message passing, interrupt processing, virtual memory

management, scheduling, and a basic set of I/O device drivers. It is possible to build a

microkernel with nothing but message passing, interrupt processing, and minimal memory

management, although the practical advantage of doing so has not been shown.

Themicrokernel configuration constitutes a client–server system, where clients and servers

reside on the same system. Operating system services outside the essential functionality are

performed by programs in user mode. Each program acts as a server that performs specific

operating system tasks upon request of application programs as well as other operating system

programs, the clients in this model. Clients request services by sending messages directly to the

microkernel. The microkernel passes the messages to the appropriate server, which performs

the required function, and replies to the request by sending a message back to the client.

The reply is also passed through the microkernel. System security and integrity is maintained,

because all communication must pass through the microkernel.

One of the advantages of the microkernel configuration is that it is possible to create

different operating system designs simply by changing the service programs that reside outside

the microkernel, while maintaining the security and stability of the microkernel. For example,

Macintosh OS X is one of many operating systems built on the Mach microkernel. The

microkernel approach offers reliability, flexibility, extensibility, and portability. It is particularly

amenable to object-oriented design. New features can be added easily without compromising

the system. The extensive message-passing required in a microkernel configuration can result

in a performance penalty over other types of designs, but practical applications of the model

have shown that, with care, the potential disadvantage of this approach can be minimized.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 502

502 PART FIVE THE SOFTWARE COMPONENT

15.5 TYPES OF COMPUTER SYSTEMS
Modern computer system hardware is essentially similar regardless of the type of system.

Therefore, the differences among computer systems are set primarily by the operating system

software. The operating system software is selected to meet desired requirements and goals.

As we outlined briefly in Section 15.2, there are many different types of operating systems,

each designed to meet a particular set of requirements and needs. Some of the factors that

influence operating system design/architecture are the primary type of user base, whether the

system is intended for direct user access or behind-the-scenes server access, or whether the

system is to be used for a specific purpose, such as embedded electronic control or mobile use.

For example, one computer might be designed for business end users, another for

programmers and engineers, and other high-technology specialists. The Ipad tablet, for

example, is well designed for the inexperienced user (and for other users too, of course!)

Windows is adequate for a user with simple needs; a more sophisticated user might choose a

systemwith Linux instead. A laptop PC is adequate formany single users, but a largemainframe

type system might be more appropriate for use as a large server, or, perhaps, a network- or

cluster-based system is more appropriate for a particular server application. Special-purpose

applications that require specialized designsmight include embedded control applications (such

as automotive and microwave oven applications), CAD/CAM graphics, multimedia (the Pixar

computer is a special system designed specifically for motion picture animation and special

effects), and real-time control applications. An operating system designed for a smartphone

may have to operate with limited resources, particularly in the areas of power consumption,

network connectivity, memory size, and display. Each of these systems has different needs and

requirements that are met by the operating system design.

There are, of course, costs associated with increasing sophistication in operating system

software. As more features are added, more memory is required for the operating system. The

original version of MS-DOS ran successfully in 64KB of memory. The IBM MVS operating

system for the IBM S/370 family in the 1970s required more than 6MB of memory even before

any applications were considered. Some computer experts have recommended a minimum

of 2GB of memory for Windows 7 and its applications. Desktop computers with 16 GB

of memory are not unusual today. The overhead time required for the operating system to

perform its functions becomes a sizable fraction of the overall time. One hopes that the overhead

is worthwhile in terms of increased efficiency and ease of use. For example, graphical user

interfaces and multimedia support consume a high percentage of system resources on personal

computers. On a computer used primarily as a Web server, those resources might be better

utilized in providing faster Web access or supporting more users.

Within the context of the previous discussion,we can loosely categorize computer operating

systems into seven types: single-user systems and workstations; operating systems for mobile

devices; mainframe systems; network server systems; real-time systems; embedded control

systems; and distributed systems. (We noted earlier that systems capable of only a single task at

a time, while historically important, are essentially obsolete.)

n The predominant systems in current use are single-user, multitasking systems. These

are the systems found on laptop and desktop computers and workstations. Common

examples include various versions of Windows, Macintosh OS X, Linux, and Sun

Solaris. A GUI is usually a key feature of these systems since it allows the user easily to

run several processes at the same time, maximizing overall productivity. Windowing

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 503

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 503

interfaces allow output presentations from several tasks to appear on the screen
simultaneously, and provide methods for easy task switching. (Note, however, that a
windows environment is not a requirement for multitasking. Some single-user
systems allow an individual user to multitask from a command line interface. Linux,
Sun Solaris, and other UNIX-based systems, in particular, allow users to specify that
processes are to execute in the “background”. Background processes can present
output to the screen, but only the foreground process can accept input from the
keyboard. The operating system provides commands that allow the user to select
which process is in the foreground at any particular time.) Workstations generally
provide single-user multitasking operating systems, although most workstations have
the capability to be configured for multiuser or server operation.

n Mobile operating systems are operating systems designed for small hand-held
devices, such as smartphones, Examples are IOS and Android, E-readers, and tablets.
These systems provide most of the capabilities and features of traditional single-user
multitasking systems within the constraints of electrical power limitations, limited
memory, lower CPU execution speed, and file storage that is generally limited to
small stationary nonvolatile memory devices, along with some special features that
would not be required in a larger system, such as touch screen capability, virtual
keyboard handling, careful management of battery power consumption, support for
special I/O devices such as global positioning and telephone technology, features for
synchronizing data with other systems, and handwriting and voice recognition. Of
course, the limited screen size on smartphones and tablets make multiple windows
impractical on these devices, but workarounds offer similar capabilities.

n Mainframe operating systems are designed to manage large-scale computing
resources, particularly in major enterprise environments, where large numbers of
transactions requiring extensive I/O capability are the norm. Mainframe systems
were originally created to allow hundreds of users to share the computing power of a
central facility, as well as to support batch data processing operations such as billing
and credit card processing. Today, mainframe operating systems manage typical
mainframe computer hardware made up of clusters of multiprocessor units, all
designed to work together as a single processing unit, with hundreds of gigabytes of
memory, femtobytes of disk storage and I/O, and networking capabilities of hundreds
of gigabytes per second. Mainframe operating systems differ from smaller
multitasking systems in the variety of features that they offer, in the versatility with
which they can be configured, with the level of security that they supply, with the
degree of control that they offer the system administrator(s), and in the overall
amount of power and capability that they offer. Cloud computing, large Web services
and database processing, and supercomputing applications are common applications
for such machines.

n Network server systems are similar to single-user multitasking desktop systems in
many respects. However, the major focus of system use is shifted from meeting the
needs of the direct user to the support of clients connected to the server through a
network. The server may have no direct user facilities of its own, other than those
required for management of the system. Like the mainframe systems, the server is
designed to provide Web services, file services, print services, application services,
and/or database services to the clients, as determined by the particular requirements

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 504

504 PART FIVE THE SOFTWARE COMPONENT

of the system application, but the scale is much smaller. It may also provide some

program execution services for clients, including support for client system start-up,

particularly on networks with thin clients. Network servers often work together in

clusters. For these applications, one would expect the network server OS to provide

improved security and system integrity protection, high reliability file management

and backup with large file capability, strong support for clustering and

multiprocessing, improved mechanisms for failure prevention, automatic cutover to

alternative systems when failures occur, and failure recovery, as well as strong system

administration capability.

n Real-time systems are systems in which one or more processes must be able to access

the CPU immediately when required. Real-time systems are used for applications in

which one or more programs are measuring or controlling I/O devices that must

respond within specific time restraints. A real-time system might be used to control

instrumentation, such as the control rockets on a space flight, or to measure

time-sensitive data, such as the periodic measurements of the temperature in a

nuclear reactor. Although some real-time systems are created exclusively for a

particular application, most are general-purpose multitasking systems that have been

designed so that they can be used for other tasks except when the time-sensitive

application is being executed. A real-time system could be viewed as a multitasking

system in which the interrupts that cause execution of the real-time program or

programs have very high priority, but in many cases, special effort is made to assure

that the real-time program can operate within its required time restraints.

n Embedded control systems are specialized systems designed to control a single piece

of equipment, such as an automobile or microwave oven. The software for embedded

control systems is usually provided in ROM. Nonetheless, many functions of the

operating system may still be found in these systems. The computer that controls an

automobile, for example, requires most of the features of a multitasking system.

There are many measurement sensors representing CPU input on a car and many

different control functions to manage. The service technician must be able to connect

an I/O terminal to the system for car analysis. Effectively, an embedded control

system is a real-time system that is dedicated to the particular application.

n Finally, distributed systems are rapidly growing in prominence and importance. In a

distributed system, processing power is distributed among the computers in a cluster

or network. Even the Internet can be used as a distributed system. Programs, files,

and databases may also be dispersed. Programs may be divided into functional pieces,

with execution distributed throughout the network. Alternatively, program

components may be stored on different systems, and executed in place upon remote

request. .NET and CORBA, discussed briefly in Chapter 16, are two standards

designed to expedite this process. Regardless of which method is used, the operating

system or systems require additional complexity to handle the distribution of tasks or

instructions within a process, the sharing of memory and I/O, and the

intercommunication of data and control that are required of these systems. Many

modern computing systems include additional operating system modules to make

distributed processing feasible and practical.Distributed Computing Environment
(DCE), is an OpenGroup standard that establishes a set of features for a distributed

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 505

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 505

computing operating system. (OpenGroup is an organization that promotes open

computing by setting standards and certifying products in a number of major areas of

computing. UNIX is arguably the best known OpenGroup standard.) The DCE

standard is supported and incorporated into the operating systems of a number of

major vendors, including Microsoft, Oracle, and IBM.

There are, of course, other ways of categorizing computer systems. One way of describing

systems that is sometimes useful is to consider the intent and philosophy of the designers of

the system. This description can sometimes provide a lot of insight into the strengths and

weaknesses of a system. For example, the IBMmainframe operating system, z/OS, is an offshoot

of an operating system that was originally designed primarily for large, batch-oriented business

transaction processing systems. As business users moved their operations online, predecessors

of z/OS were provided with capabilities to handle large numbers of online transactions. This

would suggest that the modern z/OS is well equipped to handle routine Web transactions from

hundreds or thousands of network clients concurrently. At the same time, it might suggest that

z/OS is not particularly user-friendly to individuals doing their own independent work on the

system. Development tools are more difficult to use on z/OS than on many other systems. Most

people would agree that these statements describe z/OS fairly well.

As a different example, the Apple Macintosh system was designed to make tasks as easy as

possible for the average, minimally trained computer end user. As a result, much of the design

effort for the Macintosh system has continually gone into the user interface. The operating

system provides powerful interface and graphical resources to the user and to the user’s

programs. Other operating system facilities, such as time-sharing and memory management,

became secondary to the stated purpose. Indeed, these functions in OS X are implemented with

a kernel built from a UNIX variant called FreeBSD.

Finally, consider an operating system whose primary design goal is to be capable of open

system operation. The primary features that define an open system are as follows:

n The system should be capable of operating on many different hardware platforms.

n Communication between systems should be simple and straightforward. Commands

that access remote systems should perform nearly identically to those performing

local operations and should appear as transparent as possible to the user or the user’s

programs. Thus, a COPY command that copies files between systems should operate

essentially the same as one copying files between different points on a single system.

n Shell programs should behave identically, regardless of platform. Source level

application programs should operate identically, once compiled on the new

platform.

These features dictate an operating system with considerable thought given to networking,

as well as to a system with minimum dependency on the particular hardware being used. This

suggests an operating system with a small kernel, with powerful networking facilities built in,

and with the hardware-specific part of the system concentrated into a single part of the kernel,

isolating all other parts of the system from the platform. FreeBSD is an example of such a

system, which makes it an ideal basis for the MacInosh OS X design, as well as for IOS.

There have been many attempts to build operating systems whose activities are truly

distributed across a network. Some of the best known of these are Mach, Amoeba, Locus, and

Chorus.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 506

506 PART FIVE THE SOFTWARE COMPONENT

SUMMARY AND REVIEW
Chapter 15 presents a comprehensive overview of the operating system. The operating system

software is a collection of programs that extend the power of the computer hardware by

providing a user interface to the computer, plus control and support for the computer’s

resources, plus other facilities that make it easier to manage and control the computer system.

Many operating systems also make possible the sharing of computer resources concurrently

among multiple users and among multiple tasks for each user.

The operating system provides one or more user interfaces, file support, control for I/O

devices, network support, and management of the computer resources, including memory,

the various I/O devices, and the scheduling of time. The operating system is event driven. It

performs these tasks in response to user commands, program service requests, and interrupts.

We noted that although the operating system represents overhead, under most conditions

the overall computer system performance is improved and enhanced by the presence of the

operating system. Some operations, particularly concurrency, would be difficult or impossible

without the operating system.

In our discussion of the various operations performed by an operating system, we identified

ten of the major services and facilities provided within an operating system and described each.

These included the user interface and command execution, the file system, the I/O control

system, process control, memory management, scheduling and dispatch, secondary storage

management, network management, security, and system administration facilities.

The programs that provide these services must be organized in some way. There is a

considerable amount of interaction between the different program modules that make up an

operating system. Many operating systems use a hierarchical model to organize the various

modules. This model has the advantage of a significant amount of protection, since it is easy to

control access and the flow of information between modules using a hierarchy. Other models

in use include the monolithic model and the microkernel model.

The chapter concluded by presenting various types of computer systems in use and

compared the operating system facilities required for each. We noted that these categories are

somewhat arbitrary, with substantial overlap between them.

FOR FURTHER READING
There are a number of excellent textbooks that describe operating systems in detail; rec-

ommended are books by Silberschatz and others [SILB12], Deitel [DEIT03], Tanenbaum

[TANE07], Davis and Rajkumar [DAVI04], McHoes and Flynn [McHO13], and Stallings

[STAL11]. Davis, in particular, presents a very practical, hands-on view of operating systems,

with many examples. McHoes and Flynn is also quite practical and readable. The others tend to

be deeper and more theoretical. For particular topics in operating systems, see the references at

the back of this textbook and references in any of the other books. There are also numerous trade

books that discuss particular topics in operating systems and specific operating systems. Henle

and Kuvshinoff [HENL92] provide a satisfying low-level introduction to desktop computer

operating systems.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 507

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 507

KEY CONCEPTS AND TERMS
application programming

interface (API)
basic input/output system

(BIOS)
.BAT file
batch processing
bootstrapping
command line interface

(CLI)
concurrency
context switching
control statements
conversational systems
CPU bound
diskless workstation
dispatching
Distributed Computing

Environment (DCE)
distributed system
embedded control system
event driven
fail-safe operation
file management system

graphical user interface
(GUI)

hierarchical configuration
high-level scheduling
I/O bound
I/O services
Initial Program Load (IPL)
interactive systems
interprocess message

servicing
job
Job Control Language (JCL)
Journaling
kernel
kernel mode
layered configuration
microkernel configuration
monolithic configuration
multiprogramming
multitasking
multiuser system
nonpreemptive dispatch
nonresident commands

operating system (OS)

plug-and-play

preemptive dispatch

process

real-time system

resident commands

service request

shell

shell scripts

system administrator

(sysadmin)

system generation (sysgen)

system languages

system scalability

thin client

threads

time-slicing

virtual private network

(VPN)

virtual storage

Windows PowerShell

READING REVIEW QUESTIONS

15.1 The definition of an operating system specifies two primary purposes served by the

operating system. What are they?

15.2 Explain the major error in the following sentence: “One of the major tasks performed

by the operating system program is to load and execute programs”.

15.3 Explain concurrent processing. Briefly describe at least two services that an operating

system must provide to support concurrent processing.

15.4 What are the memory resident parts of an operating system called? When are these

parts loaded into memory?

15.5 What is a diskless workstation or thin client?

15.6 What does API stand for? What is the purpose of an API?

15.7 Operating systems are said to be event driven. Explain what this means.

15.8 What is the difference between multiprogramming and multiprocessing?

15.9 Explain dispatching. Describe the two basic methods that are used by operating

systems to implement dispatching.

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 508

508 PART FIVE THE SOFTWARE COMPONENT

15.10 What tasks are performed by device drivers?

15.11 The basic role of a file management system is to provide a mapping service. Between

what and what?

15.12 Briefly describe at least three of the fourmajor services provided by a filemanagement

system.

15.13 Explain the concept of a process. How does a process differ from a program?

15.14 Describe at least two primary tasks performed by the memory management compo-

nent of an operating system.

15.15 Explain what is meant by preemptive and nonpreemptive scheduling.

15.16 Identify at least four different tasks performed by a sysadmin.

15.17 What is true of system administration on small personal computers that is usually

not true of larger systems or of personal computers within an organization?

15.18 What is the purpose of system generation?

15.19 The UNIX kernel is described as a monolithic organization. What does this mean?

What are the major challenges presented by a monolithic organization?

15.20 Describe the organization of a hierarchically structured operating system.

15.21 How do real-time systems differ from other types of operating systems?

EXERCISES

15.1 What are the specific limitations of a computer system that provides no operating

system? What must be done to load and execute programs?

15.2 For each of the most popular commands in Windows (or Linux if you prefer),

identify the type of operating system service that is being provided, and identify the

basic module or modules that are involved. Which commands would you assume are

memory resident and which loaded as required? Explain your assumptions.

15.3 Concurrency, of course, is a requirement for modern operating systems. What are

the major challenges that an OS designer faces in supporting efficient concurrency

that she would not face if the operating system could just run one program at a time?

15.4 What are the limitations of providing a BIOS in ROM?

15.5 You are probably familiar with the standard Windows interface. Suppose you

could replace the Windows shell with a different interface shell. What might be the

advantages and disadvantages of selecting a different command shell as a replacement

for the standard Windows interface?

15.6 Describe the two methods that are used to provide concurrent operation of multiple

processes on a single CPU. What are the advantages of each method? What is the

advantage of providing concurrent operation?

15.7 An operating system is described as an event-driven program. What is meant by

event driven? Explain how the dispatching operation fits this description.

15.8 What is the difference between the logical description of a file and the physical

description?

Englander c15.tex V2 - November 28, 2013 9:59 P.M. Page 509

CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 509

15.9 Nearly every operating system separates the file system from the I/O services. What

is the advantage in doing so?

15.10 Discuss the similarities and differences betweenmemorymanagement fragmentation

and disk fragmentation.

15.11 Early versions ofWindows did not support true preemptivemultitasking. Instead, the

designers of Windows provided something they called “cooperative multitasking” in

which each program was expected to give up control of the CPU at reasonable time

intervals, so that the Windows dispatcher could provide execution time to another

waiting program. Describe the disadvantages of this method.

15.12 If you have access to the system administrator of a large system, find out the steps

that are required to perform a sysgen on the system. Also, determine the options that

are available for that system.

15.13 One approach to operating system design is to provide as small a kernel as possible

and to make all other modules optional. What are the minimum services that must

be provided in such a miniature kernel?

15.14 Write a Little Man bootstrap loader that will reside permanently in high memory

for the Little Man Computer. The reset button will automatically cause the Little

Man to start executing the first instruction of your bootstrap loader. Assume that

the application program to be loaded will be input one instruction at a time through

the input basket and will be loaded into consecutive locations of memory. The last

instruction of the application program will be a 999. When your loader sees this slip

of paper, it will cause the Little Man to start executing the program.

15.15 Windows hides most of its configuration in a binary file called the registry. Special

Windows toolsmust be used to read andmodify the registry.What are the advantages

and disadvantages of this approach versus the use of text-based configuration files?

15.16 Based on the system status report shown in Figure 15.5, describe some of the ways in

which the system could be tailored, and explain how the various items in the report

would influence your tailoring decisions.

15.17 What are the conditions and restrictions that you would want to impose on a

multitasking system that is being used with real-time processes?

15.18 What operating system functions would you expect to find in the computer that is

built in to control your automobile, and which functions would be omitted? Justify

your answer.

15.19 Clearly explain the differences between multiprogramming, multiuser, and multi-

processing.

15.20 a. Of what use is the list of active processes shown in Figure 15.5? What changes

might a systemadministratormake in the systemon thebasis of this information?

b. What does the average number of processes data tell you about the way that this

system is normally used?

c. Compare the three graphs in the figure.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 510

CHAPTER 16

THE USER VIEW OF
OPERATING SYSTEMS

C Roz Chast/The New Yorker Collection/www.cartoonbank.com

http://www.cartoonbank.com

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 511

16.0 INTRODUCTION
In Chapter 15, we introduced you to two different views of the role of the operating system
as part of the overall computer architecture. Specifically, we looked at the operating system
both as a means of delivering services to the user and as a way of controlling and operating
the system facilities. In this chapter, we take a closer look at the operating system from the
perspective of service to the user.

Much of the material in this chapter is at least superficially very familiar to you. You
have worked closely with at least one type of computer system and quite possibly with
more than one. You are familiar with some of the tasks, services, and capabilities that are
provided for you by the system or systems that you have worked with. You are familiar
with the different types of interfaces that you have used to perform those tasks and with
the commands and the command structure that are built into the system for you.

In this chapter, we are interested in two aspects of the operating system as it pertains
to the user. First, we will consider the services that are provided to the user, and second, we
will consider the medium for delivery of those services, namely, the type and appearance
of the user interface that the system provides. You will see the standard tasks that a user
interface is expected to perform, variousways inwhich those tasks can be implemented, and
the advantages and disadvantages of different implementations. You will be able to observe
that the services provided are relatively independent of the means used to access them.

As for the interface, we are more interested in the concepts of a user interface than
in the specific commands, syntax, appearance, and usage of a particular interface. You
will understand that different design approaches to the interface meet different goals
and achieve different ends and are often aimed at different classes of users. You will
see additional features that are frequently built into an operating system. Some of these
represent additional services; many are simply ways to make access to the services more
“user-friendly”, or more powerful, or more efficient. You will see that one interface may
not be powerful enough for some tasks, while another interface requires too much effort to
accomplish the common tasks that are required on a regular basis.

User services are a fundamental purpose for the existence of an operating system, and
the user interface is essential to the access of those services. Nonetheless, some systems
elect to view the user interface, and even many user services, as outside the realm of the
operating system. Instead, these services and the user interface are treated as a shell that
itself interfaces the operating system. There are strong arguments for this point of view. It
makes possible different shells, each with their own services, capabilities, and work styles. If
you don’t like the shell that is provided, you simply exchange it for another. As we noted in
Chapter 15, operating systems based onUNIX and its variants are the strongest proponents
of this view—operating systems such as Linux are routinely supplied with several different
shells offering different capabilities; in many cases, the user can change shells with a single
command. The counterargument to this point of view is that building the user interface
and services into the operating system provides standardization, consistency, and much
improved integration of services. Apple Macintosh systems take this approach. Windows
8 also represents a move in this direction.

511

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 512

512 PART FIVE THE SOFTWARE COMPONENT

There is a third approach to the user interface, namely to hide the system user interface and

to use a Web browser model to serve as the interface for the applications that the user works

with. Limited access to system utilities can also be supported through the Web interface. This

is the philosophy of “thin clients”, as well as that of cloud-based computers such as the Google

Chromebook.

This chapter takes a detailed look at the issues we’ve just raised. It explains and justifies

the different types of user services that are provided with an operating system. It discusses and

illustrates and shows the rationale for the various types of user interfaces, and it considers the

trade-offs between them. It showshowuser services are accomplishedwith each type of interface.

Our primary goal in this chapter is to expand your ability to use your systems effectively and to

understand the alternative methods available to you for using the operating system to achieve

higher productivity.We hope that the chapter will also provide you with a better understanding

of what happens internally within the system when you use your computer.

16.1 PURPOSE OF THE USER INTERFACE
The primary purpose of the user interface is to make the facilities of the computer system

accessible to the user by providing the necessary services and commands andmeans of access to

allow the user to get her work done conveniently and efficiently. We emphasize that it is not the

intention of the user to interact with the operating system per se. Rather, the operating system

exists to help the user to use the computer system productively. In modern operating systems,

a secondary purpose has arisen that is almost as important: the operating system provides

user interface services to application programs that assure that different programs have user

interfaces that operate in the same way. This simplifies use of different applications on the

system and reduces the user’s learning curve for new programs. We identify programs that use

the operating system to provide similar interfaces as having the same (common) look and feel.
Although the operating system can support a common look and feel across the applications

on a particular type of system, there is an important, steady trend toward a user interface

that provides a common look and feel for applications across all types of systems. One such

approach is exemplified by the Windows 8 user interface, which is intended for use on devices

ranging from smartphones to large computer servers.

An alternative is the use of Web browsers as a standard interface. Because the WorldWide

Web is familiar to a large range of users, an organization can simplify the training requirements

and enhance its productivity by using Web-based application interfaces as the predominant

means of communication with its personnel. A Web-based approach is also attractive to the

programmers that create the applications, because Web page creation is well understood and

reasonably well standardized across different computer platforms. The use of internal corporate

Internet-like intranets to provide information resources throughout an organization is an

example of this trend, as is the capability of location-independent Web-based access to e-mail.

In addition to the processing and display of data, documents, images, audio, and video, there is

even a growing use of Web-based productivity tools such as word processors and spread sheet

applications.

We note in passing that the Web interface is particularly effective when the “user” is not a

person, but another machine. The standard languages shared across theWeb, particularly XML

and HTML, make it relatively easy to create Web-based interfaces that can coordinate work

between systems.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 513

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 513

A well-designed interface can enhance the user’s experience of the system and make use of
the computer system a pleasure. This will allow the system to provide maximum benefit to its
users. Conversely, a system with a poor user interface will be used reluctantly, and its potential
value to its users will be diminished. Different classes of users are likely to define the concept of
a good interface differently.

The operating system provides a variety of services to the user and to the user’s programs.
The user interface provides access to these services using three different approaches. These are:

n A command interface of some type that accepts commands in some form directly
from the user interface. Most commonly, the interface is either graphical (GUI) or
command line (CLI).

n A command language that accepts and executes organized groups of commands as a
form of program. Most command languages include capabilities for branching and
looping, prompted user input, and passed arguments. Command languages are also
referred to as scripting languages.

n An interface that accepts and performs requests for operating system services directly
from the user’s programs (the API).

Modern operating systems provide all three of these capabilities. There are even a number
of scripting languages that support portability between different operating systems.

The user services provided by an operating system typically include:

n Loading and execution of program files

n Retrieval, storage, and manipulation of files

n User I/O services, in the form of disk commands, printer spooling, and so on

n Security and data integrity protection

n Interuser communication and shared data and programs, on multiuser and
networked systems

n Information about the status of the system and its files, plus tools for the
administration of the system itself

n I/O and file services plus other specialized services for user programs

n Many systems also provide utilities that can be used in place of programs to
manipulate the data within files and programs. These utilities can be used to sort data
and to retrieve data selectively from within files. Frequently, utilities can be combined
into “programs” using the command programming language to perform powerful
and useful tasks. Linux is particularly strong in this regard. The choice of user services
provided is dependent on the original focus and goals of the operating system
designers.

Finally, modern systems expand on the concept of I/O service to provide libraries of
specialized service routines that can be used by programs to generate graphics, control a mouse
or touch screen, create andmanipulate userwindows, generate and controlmenus, and perform
other sophisticated functions. These make it easy for application programmers to supply a
common-look-and-feel interface to their programs, particularly important and useful in the
development of applications for smartphones and tablets.

The difference in skills and interests among the various users on a system affects the design
of an operating system user interface in two major areas:

n It affects the choice of services to be provided. For example, powerful programming
services may not be needed by the typical user, but may be extremely useful to a

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 514

514 PART FIVE THE SOFTWARE COMPONENT

system programmer. Conversely, tools that allow the end user easier access to the

system may actually hinder the system programmer.

n It affects the design of the actual interface. The sophisticated user may be more

comfortable with a more powerful, but difficult to use, interface. The typical user does

not want to, and should not have to, learn a special and difficult operating system

lingo just to use the computer.

The operating systemmust ultimately serve both groups of users, but a particular operating

system may be tailored toward one or the other. An operating system that was designed with

the goal of supporting engineers may be difficult for a graphic layout artist or secretary or

smartphone user to use. Conversely, an engineer may not be able to work effectively on a system

that the typical end-user finds ideal. An alternative is to provide two (or even more) different

interfaces, intended for different user groups. If the command interface is implemented as a

shell independent of the remainder of the operating system, this is easy to do. The normal user

can work with an interface that provides a menu or windowing interface. The more technically

sophisticated user can use the GUI for typical tasks, but bypass the windowing shell and enter

commands directly to a command interface, when necessary or convenient.

16.2 USER FUNCTIONS AND PROGRAM SERVICES
In Section 16.1 we listed seven major groups of user functions and program services that are

provided by most operating systems. Now we’ll consider these functions more specifically.

Program Execution

Themost obvious user function is the execution of programs (or apps inmobile phone parlance).

Most operating systems also allow the user to specify one or more operands that can be passed

to the program as arguments. The operands might be the name of data files or links to Web

sites, or they might be parameters that modify the behavior of the program.

To the typical end user, the smooth loading and execution of programs are nearly the sole

purpose for the operating system. Many operating systems treat program execution the same

as they treat nonresident operating system commands. The name of the program is treated

as a command; loading and execution begin when the command is typed or, equivalently for

a windowing system, when the mouse double-clicks on the graphical icon or a finger taps a

graphical icon on a touch screen. Alternatively, the user may click on a data file icon. The

program associated with the data file is executed with the data file as an operand.1

Since the operating system treats application and user programs in the same way as it

treats nonresident commands, it is conveniently impossible to tell the difference. Most of the

programs that you have used are not part of the operating system, but since they are initiated

the same way, you cannot tell the difference. This provides a consistency that is convenient

to the user. Microsoft Excel, Quicken, Firefox, and Adobe Acrobat, to name just a few, are all

independent, nonoperating system programs that share this common behavior, look, and feel.

1If you are not used to graphical system terminology, an icon is a small graphical representation of a program or

data file. “Double-clicking” involves clicking a button on the mouse twice in rapid succession.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 515

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 515

Application programs perform their operations on a user-specified data file. Spreadsheet

programs, for example, require a file of spreadsheet data; word processors use a file of formatted

text. The command interface provides a method for specifying the data file to be used when

the program is executed. In a command line system, the data file may be specified as an

operand typed on the same line with the command. In a graphical system, data files may be

associated with a particular application. This application association is set up automatically

by the operating system when the data file is created, or it may be manually established by the

user. Once the association is set up, the application can be initiated automatically by selecting

the data file. On most computers, for example, each data file has an icon associated with it; the

application is launched with the particular data file by double-clicking the mouse on the data

file icon. In Microsoft Windows, the same result can also be achieved by double-clicking the

mouse on the name of the data file within the Windows Explorer.

To expedite the execution of programs, the system also provides a means for moving

around the system between different peripheral devices and between different storage areas on

those devices. Most operating systems embed these operations in a logical device and directory

structure and provide commands for moving around the structure. In a command line system,

commands provide the ability to attach to different devices and to change one’s attachment

from one directory to another with a command such as cd, for change directory. Graphical

interfaces provide file folders as the equivalent to achieve the same purpose.

Although you are probably most familiar with running your programs interactively, most

operating systems also allow a program or sequence of programs to be run noninteractively,

in a batch mode. The operating system allows the user to specify conditions under which the

execution is to take place, for example, the priority of the programs, the preferred time when

they should be executed, the stored location of the programs and the particular data files that

are to be used. For example, the system can be told to perform a partial backup at a given time

every night, with a full backup on Sundays.

File Commands

The second, andmost familiar, category of user services are commands for the storage, retrieval,

organization, and manipulation of files.

From the perspective of the user, the filemanagement system is what “makes it all possible”.

Four factors account for the importance of the file management system to the user:

n The ability to treat data and programs by logical file name, without regard to the

physical characteristics of the file or its physical storage location.

n The ability of the file management system to handle the physical manipulation of the

files and to translate between logical and physical representations.

n The ability to issue commands to the operating system that store, manipulate, and

retrieve files and parts of files.

n The ability to construct an effective file organization utilizing directories or file

folders to organize one’s files in a meaningful way.

The file management system is so important that we have devoted the entirety of

Chapter 17 to it. Of interest to us here, as users, is the fact that most of the user commands

in the operating system are directly used to manipulate files and file data. This is evident if

you consider the commands that you use in your regular work with the computer. The brief

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 516

516 PART FIVE THE SOFTWARE COMPONENT

FIGURE 16.1

Common Windows and UNIX/Linux File Commands

Windows UNIX / Linux

dir
copy
move
del or erase
type
mkdir
rmdir

ls
cp
mv
rm
cat
mkdir
rmdir

List a directory of files or get information about files
Copy a file from one place to another
Move a file from one place to another
Delete (remove) a file
Type a file out to the screen (or redirected to a printer)
Attach a new subdirectory to the tree at this tree junction
Delete a subdirectory

partial list of Windows and UNIX/Linux CLI commands in Figure 16.1 typifies the commands
that you would probably consider to be most important to you. Other operating systems
provide essentially identical commands, although the commands might appear quite different,
depending on the user interface. Graphical user interfaces provide equivalent operations
for each of these commands. On a Macintosh computer, for example, you move a file by
dragging its icon with the mouse from its current location to the desired location. You create
a new directory by moving an empty file folder into the window that represents the desired
attachment point.

Many additional features built into the command structure reflect the importance of a
flexible file structure to the user. These include:

n The ability to change from one device and one directory or subdirectory to another
without otherwise modifying the file.

n The ability to redirect input and output to different devices and files from their usual
locations.

Disk and Other I/O Device Commands

In addition to the file commands, the operating system provides commands for direct operation
on various I/O devices. There are commands for formatting and checking disks, for copying
entire disks, for providing output directly to the screen or to a printer, and for other useful
I/O operations. Some systems also require the mounting and unmounting of devices. This
effectively attaches and detaches the directory structure of a device to the already existent
directory structure as a means of adding devices to the system.

Most operating systems also provide a queuing system for spooling output to a printer.
The printer is generally much slower than other computer facilities. The spooler works by
copying the output text into a buffer in memory and then printing as a separate task. This
allows programs to proceed as though printing had already taken place.

Security and Data Integrity Protection

Every operating system provides security protection for files. Generally, individual provisions
are made to protect files from being read, written to, or executed. Some operating systems

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 517

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 517

also provide protection from deletion. A few operating systems provide additional security,

requiring a correct password to be typed before a disk can be used in the system, or a keyboard

unlocked.

Systems with networkmultiple user access, of course, must provide muchmore protection.

The system as a whole must be protected from unauthorized access. Files must be protected, so

that the owner of the file can control who has access to the file. The owner can also protect the

file from himself or herself by specifying read-only or execute-only access.

Many operating systems also allow controlled access from other users. UNIX provides

three levels of security for each file, consisting of read, write, and execute access privileges for

the owner, for associates of the owner (known as groups), and for anybody with access to the

system. Windows offers share privileges to control file and device access between users on a

network. Many large systems also provide access control lists, or ACLs (pronounced ack-ulls),
that allow the system administrator to control access to program and data files on an individual

user/file pair basis. In addition to file protection, every operating system with multiple user

access provides a login procedure to limit access on the system to authorized users. Commands

exist to allow the user to modify the access rights on a file and to change the user’s password.

Networks also require the use of a login procedure that limits the user to the appropriate

computers and facilities.

Interuser Communication and Data Sharing Operations

Modern systems generally provide means for multiple users to share data files and programs.

Most systems also provide ameans to pass data between programs and to communicate between

users. Application programs like Google Docs, instant messaging, and videoconferencing can

extend this capability of users to work collaboratively in a powerful way to both small and large

networks of computer systems.

The simplest form of program sharing on a single system is to place the shared programs

in a common memory area where all users can reach them. This is done for editors, compilers,

general utilities, and other system software that is not part of the operating system. Many

operating systems even allow several different levels of control over such shared programs.

For example, the Little Man Computer simulator used at Bentley University is accessible to all

computer majors, but other users must have permission to access it.

Data file sharing is an important resourcewhen using databases, because itmakes it possible

for multiple users to access the same data in a way that the integrity of the data is protected.

Needless to say, the system must provide tight security to limit data file access to those who

should have it. An additional use for data file sharing is when two ormore users work as a group

on a document. All these users have access to the document. Some can only read it, while others

can modify it. Some systems provide means for attaching notes to the document for other users

to see. As with program sharing, it is possible to set several levels of data file sharing.

Modern networks routinely provide operating systemmessage passing services in the form

of e-mail and newsgroup support, file transfer (ftp), simple terminal facilities for connecting

to a different system (telnet or ssh), Web support (http), instant messaging, and audio

and videoconferencing. Some systems also provide an internal messaging service for rapid

communication between users logged on to the system, either directly or through a network.

Consider, for example, your ability to communicate with friends directly using the messaging

service from Facebook.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 518

518 PART FIVE THE SOFTWARE COMPONENT

Operating systems also provide internal services that allow programs to communicate with

each other during execution. Modern systems go one step farther and extend this concept to

allow the user to control interprogram communication as a means of extending the capabilities

of individual programs.

The simplest example of this is the PIPE command available in many systems for taking the

output from one program and using it as the input to another. More sophisticated techniques

allow a user to link two programs together so that a spreadsheet, for example, can appear in a

word processing document. Double-clicking the mouse on the spreadsheet actually launches

the spreadsheet program from within the word processor program, so that the spreadsheet

can be modified. The most sophisticated systems actually allow the user to work with different

application programs transparently, that is, without even being aware that an operation has

launched another program. For example, modification of the spreadsheet would take place right

within the word processing document; the user would not even be aware that a spreadsheet

application program was being executed at the time.

This approach relies heavily on the operating system to support communication between

different programs in a fashion invisible to the user. The user is not even aware of which

application is executing at any given instant. This technique views the document as the center

of focus, instead of the applications that are being executed.

System Status Information and User Administration

As previously seen in Chapter 15, most operating systems provide status information that can

be useful to a user who knows how to interpret the data. This data is usually more important

to the administrators who operate and maintain the computer system, but sometimes status

information can be useful to programmers and regular users in optimizing their work.

Commands commonly exist to determine the amount of available disk space, the amount

of available memory, the number of users on the system and who they are, the percentage of

time that the CPU and I/O channels are busy, and many other statistics.

As an example of how this data might be useful, consider an application program that does

the billing for a large electric utility company. Such a program might require many hours of

CPU time to complete a month’s billing. A small change in the program could cut the CPU

time by a significant percentage. The measurement of CPU time used is essential to assess the

improvement. This data might also be important to a user who is being billed for her time.

The names of other users on the systemmight be used to establish a phone-type conference

or to send a quick message to another user.

Many systems provide a logging facility that maintains a file of all keyboard and screen

I/O. With a log file the user can determine at a later time what commands were typed and what

modifications made to programs and data.

The examples given here are only a few of the possible uses for system status and infor-

mation. There are many other possibilities. Status information can be particularly important to

personal computer userswhomustmaintain their own systems. For example, status information

allows the user to ascertain the condition of a disk: to determine the number of bad blocks on

the disk or to analyze and reduce the fragmentation that is present on the disk. For example,

Windows provides the SCANDISK and DEFRAG commands for this purpose.

On a larger scale, operating systems routinely provide tools that allow users and system

administrators to analyze and control the system. Smartphones provide settings and other tools

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 519

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 519

to turn features on and off, set network connections, shut down programs, change ringtones

and other sounds, reset the time and date, rearrange the screen, measure current data usage,
and determine the amount of available storage, for example. On larger systems, the facilities for

measurement and management of the system are more extensive. System logs provide detailed
analyses of system operations. Graphical tools provide real-time graphs showing such dynamic

performance characteristics as CPU usage, I/O levels, and memory usage. Administrators can
add and remove users, change user permissions, adjust program priorities, limit disk usage,

change system parameters to improve performance, and many other options.

Program Services

One of the most important user functions provided by the operating system is actually invisible
to the user. The operating system provides a variety of services directly to the user’s programs.

The most important of these are the I/O and file services. Also important are requests for the
use of system resources that a program needs, such as additional memory or larger blocks of

time and GUI services that support “common look and feel”.
Theuseofoperating systemprogramservicesprovides convenience forprogramdevelopers,

as well as consistency in system operations for users. More important, program services provide
integrity for the system as a whole, assuring that resources such as memory and disk space

assigned to a program do not overlap with similar resources in use by other programs,
To use the program service routines, the user’s program makes requests to the operating

system through the application programming interface (API). In most systems, the API
consists of a library of service functions that may be called by a program.2 The call and required

parameters are passed to the selected service function, using whatever method is implemented
for the given machine. Most commonly, a simple call is used, with a stack used to pass the

parameters. The service function is responsible for communication with appropriate routines
within the operating system that perform the requested operation. A software interrupt or

service request instruction is used for this purpose. The service routine returns required results,
if any, to the calling program. On some systems, the calling program uses a software interrupt

directly to access the API.Windows API, the standard API on everyMicrosoftWindows system,
provides hundreds of service functions to programs.

Section 16.6 provides an expanded discussion of operating system program services.

16.3 TYPES OF USER INTERFACE
There are two types of user interface in common use. One of these is the command line
interface (CLI), which is seen on a wide variety of operating systems, including the command

prompt in Windows. Although this is historically the most common interface, the graphical
user interface (GUI) has supplanted the CLI for most routine day-to-day use.

Although Web browsers are not actually part of the operating system, there are many
computer people who believe that a Web browser (together with its tools) is viable as an

adjunct or alternative to the standard GUI in many circumstances. It is possible to use the Web

2The concept of an API also applies to applications that allow other applications to “piggyback” or “plug in” to

their services. For example, Web browsers provide API services to their plug-ins, as do several Google tools.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 520

520 PART FIVE THE SOFTWARE COMPONENT

browser to perform many common tasks, such as file management. (As an experiment, try

using file:///C:/ as a URL on any Web browser in Windows and notice that you can drag a file

to the desktop, for example. Or double-click on a file icon in the browser to launch it.) There is

even a Linux shell that promotes the use of a customized Web browser for most operations.

As already noted, the type of interface seen by the user depends on the focus of the

operating system. A batch system requires a different interface than a system primarily intended

for interactive use. A system designed primarily for inexperienced end users will differ from

one designed for sophisticated technical users. Today, most users are reasonably comfortable

at a computer screen, the purely batch system is in declining use, and the primary user

interface with a computer is interactive, using a keyboard, mouse or touch screen, and video

display. Furthermore, the graphical user interface and Web browser are rapidly becoming the

predominant user interfaces for most work.

The Command Line Interface

The command line interface is the simplest form of user-interactive interface. The operating

system command shell provides a prompt; in response, the user types textual commands into

the keyboard. The command line is read serially, character by character, into a keyboard buffer,

where it is interpreted by the command interpreter and executed. Commands are entered

and executed one line at a time, although most interpreters provide a means for extending a

command onto multiple lines. The command line interpreters for most operating systems use a

standard format for their commands. The command itself is followed by operands appropriate

to the particular command, as shown:

command operand1 operand2

The operands are used to specify parameters that define the meaning of the command

more precisely: the name of a particular file to be used with the command, a particular format

for listing data, or a detail about how the command is to be performed. Many times, some or

all of the operands are optional; this simply means that a default condition is to be used if the

operand is not specified.

In some circumstances, the command itself may be preceded by a logical path name that

specifies the particular device or file location where the command is to be found. However,

most operating systems maintain an internal list where most commands can be found. This list

is often referred to as path variable.
As an example, the Linux command

ls -lF pathparta∕pathpartb

consists of the command ls and the two operands -lF and pathparta/pathpartb. This command

requests a directory listing from the subdirectory with path name pathparta/pathpartb.Without

the optional operand pathparta/pathpartb, the command lists the current directory (or file

folder, if you prefer), wherever that happens to be. An additional operand might redirect the

output to a file or printer, for example, instead of to the screen. The Linux command to store

the directory list in putfilea (presumably for later printing) would look like this:

ls -lF pathparta∕pathpartb >putfilea

file:///C:

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 521

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 521

The equivalent command at a Windows command prompt would look like this:

DIR PATHPARTA\PATHPARTB>PUTFILEA

In each of these cases, many other optional operands are possible; these operands would be

used to modify the facts listed and the format of the directory listing. The additional operand

-lF in the Linux command tells the system to list the directory in a specific “long” format, one

file to a line (the “l”), with subdirectories indicated (the “F”).

Operands are either keyword or positional. In some systems, the operands may be both.

Positional operands require the operand to be located in a particular position within the line.

For example, in the Windows command

COPY SOURCE-FILE DESTINATION

the first operand, SOURCE-FILE, positionally specifies the path name of the file to be copied.

The second operand, DESTINATION, which is optional, specifies either a new name for the file

or the path name of a directory to which the file is to be copied. If the second operand is absent,

the directory to which the user is currently “attached” is used. The importance of the position

of these positional operands is obvious: some older operating systems specified the destination

operand first; reversing the position could destroy the file to be copied.

Keyword operands are identified by the use of a particular keyword. In many systems,

the keyword is accompanied by a modifier symbol that identifies the operand as a keyword as

opposed to a file name. The keyword identifies the purpose of the operand. Keyword operands

are frequently used as optional operands, sometimes with a particular positional value attached.

In some systems, keyword operands and modifiers can be placed anywhere after the command

without affecting the positions of positional operands. In other systems, the keyword operands,

if present, must be placed in a particular position. The slash mark (/) in Windows and hyphen

(−) in Linux are examples of modifier symbols. Keyword operands are sometimes known as

switches ormodifiers.
The Windows command

MODE COM1 BAUD=2400 PARITY=N DATABITS=8

uses the positional operandCOM1 to identify a particular communications port or other device.

BAUD, PARITY, and DATABITS are all examples of keyword operands. Each has its own

positional operand that selects a particular option, but the order of the keywords is immaterial.

Similarly, the command

DIR ∕P∕A∶DH PATHNAME

uses the /P and /A switches to specify that files are displayed on a screen one page at a time, and

to modify the list of path name directory files that will be displayed. Command line interpreters

also include other provisions designed to increase the flexibility of the command. The most

important provisions include the ability to redirect input and output, the ability to combine

commands using pipes, and the ability to combine commands into shell scripts or, as they are

sometimes incorrectly called, batch programs. (You are already aware of the correct usage of

this term. In this book, we will always differentiate between shell scripts and batch programs.)

Another important capability is the use of the wild card, a character symbol or symbols that can

substitute for one ormore unspecified letters in an operand.Use of awild card in a command can

make possible a search, or can cause a command to be repeatedwith several different arguments.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 522

522 PART FIVE THE SOFTWARE COMPONENT

Although they work somewhat differently, both Linux and Windows use the question

mark symbol (?) to replace a single character and an asterisk (*) to replace a group of 0

or more characters. Linux has additional wild card possibilities, shown in the Linux case in

Supplementary Chapter 2. For example, the Linux command

ls -l boo.∗

would search the current directory for all files that have the name boo. This command might

result in the following output:

-r--r--rwx 1 irv cisdep 221 May 16 7 ∶ 02 boo.dat
---x--xrwx 1 irv cisdep 5556 May 20 13 ∶ 45 boo.exe
-r--rw-rw- 1 irv cisdep 20 Jun 5 2 ∶ 02 boo.hoo

In the Windows command,

COPY ABC∗ B∶

all files whose names begin with ABC are copied to the drive B: master directory. In this case,

the wild card is used to expand the command to repeat the copy process for several different

files.

In addition to wild card provisions, some operating systems allow the user to back up and

repeat a previous command using the cursor keys on the keyboard. Such systems usually allow

the user to edit the command, as well.

Command line interfaces are well suited to experienced users who are comfortable with the

system and who want the power and flexibility that a CLI offers them. Command line interfaces

are generally the hardest to learn. The range of possibilities and options that accompany many

commands oftenmake it difficult to figure out the particular syntax that is required for a desired

operation. Manuals and online help are particularly useful in working with command line

interfaces. Online help is available for all Linux commands using the “man commandname”

command.

Although the GUI is the predominant user interface on most systems, the administrators

of large systems often disable the GUI on the server and rely on the CLI, in order to maximize

the resources available to the client users.

Batch System Commands

Batch systems use an interface that is similar to the command line interpreter in many respects,

but the purpose is different. Commands specify the location of programs to be executed and

data to be used, using a Job Control Language. Job control commands use a format similar to

that of the command line interpreter:

command operand1 operand2…

Batch command operands also are either of keyword or positional type. The most familiar

language of this type is IBM zOS/Job Control Language. Batch jobs consisting of one or more

programs are “submitted” to a system for execution and are generally executed with no human

interaction. Since direct human interaction with the batch system is not possible, all steps must

be carefully planned out, including actions to be taken when errors occur. Batch programs

are well suited for routine transaction processing applications, such as credit card billing and

payroll.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 523

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 523

As we noted above, command line interfaces also provide the ability to “batch” commands

together to formpseudoprograms, knownas shell scripts, or just scripts, thatwill be executedas a
unit. These arenot true batchprograms, as they are still intended for interactive use.Nonetheless,

Windows users sometimes refer to these programs as batch programs or, more commonly,

as bat files. Most command line interfaces provide additional commands that are intended

especially for the creation of powerful scripts. The overall command structure is then referred to

as a command language, or scripting language. The topic of command languages is considered

further in Section 16.5. There is an example of a JCL procedure in Supplementary Chapter 2.

Graphical User Interfaces

The mouse or finger pointer-driven, icon-based graphical user interface, or GUI (pronounced

gooey) has, for all practical purposes, replaced the command line interface as the prevalent

interface between user and computer. TheGUI has been implemented inmany forms. Examples

include the user interfaces present on Apple Mac and Windows personal computers and on

Iphone, Android, and Blackberry smartphones and tablets. Most other computer systems offer

a similar interface. Figure 16.2 is a picture of a typical Windows 7 screen. The screen of a Linux

computer running the KDE shell appears in Figure 16.3. Notice the similarities between the

two. The Windows 8 Modern (that’s its name) interface shown in Figure 16.4 looks somewhat

different, but is operated similarly. The graphical user interface provides the convenience of a

desktop metaphor. The user can arrange the desktop to his or her own preferences, can easily

move around the desktop to perform different tasks, and can see the results in WYSIWYG

(what-you-see-is-what-you-get) form.

FIGURE 16.2

A Typical Windows 7 Screen

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 524

524 PART FIVE THE SOFTWARE COMPONENT

FIGURE 16.3

A Linux Computer Running the KDE Shell

Windowing systems from different vendors and on different types of devices take on

different appearances, but share similar graphic and operational elements. Normally, a graphical

interface consists of one or more screens or desktops. A screen or desktop will hold icons

and widgets, and may also contain one or more windows; tool, notification, status, or menu

bars; or other elements. A window is a screen or portion of the screen that is allocated to the

use of a particular program, document, or process. Icons can represent applications, data files,

or operating system commands. Widgets represent small applications that execute and display

within the widget itself, such as a clock or weather widget.

You are undoubtedly familiar with the GUI and its features on a small display, such as a

smartphone or tablet. Due to the limited display space, only a main screen or a single window

will be on display at a time. (IT people sometimes refer to a small display as having limited real

estate). The system is operated with finger controls. Touching an icon or widget briefly (clicking

or tapping) opens an application. Swiping or flicking your finger down the screen pulls down a

menu or scrolls data. Pinching or spreading two fingers on a screen reduces or expands the size

of data on the screen. Dragging an icon or data moves it. And so forth.

With the larger real estate available on a personal computer display, there is more flexibility

in the design of the user interface. Screen size also drives the types of applications in common

use on the device. The smaller screen on a smartphone is ideal for messaging and personal

communication tasks such as email and calendar management, less so for business programs

such as word processing, spreadsheets, or database analysis that require more complex features

for viewing and use.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 525

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 525

FIGURE 16.4

Windows 8 Screen

As with the smartphone or tablet, a system with a larger display, such as a personal
computer, will typically offer a start screen, from which applications are launched. However,
most of these systems offer the ability to open multiple windows on the screen. Each window
contains gadgets or widgets for resizing the window, formoving the window around the screen,
for scrolling data and images within a window, and for moving windows in front of or behind
otherwindowson the screen.Windowsusually also contain a titlebar that identifies thewindow.

There is also usually at least onemenu bar of some kind on the screen. On some systems, a
single menu bar on the screen is always associated with the active window (discussed shortly).
On other systems, each window has its own menu bar. (In some applications, the menu bar is
implemented with tabs or ribbons, but the result is the same.) Each item on themenu bar can be
used to activate a hierarchical set of pull-down menus or functions, used for selecting options
within the program being executed. Windows 7 and Linux screens also provide a task bar for
rapid program start-up, task switching, and status information. Open windows can be reduced
to an icon or widget on the task bar and reopened with a simple tap or click. This saves space
on the screen for other windows currently in use. The Macintosh OS X dock offers similar
functionality. The Windows 8 Charms Bar serves as both a menu bar for the current task and
as a limited task bar for system operations and settings. (The “Charms” name appears to be the
creation of a Microsoft marketing manager, conjured up while eating his breakfast cereal.)

On many modern systems, windows can be configured to look and act in different ways.
As we already noted, one important option is the Web interface, which provides the look and
feel of a Web browser for all operations within the window.

Many systems allow windows to be tiled, overlapped, or cascaded. Tiled windows are lined
up on the screen in such a way that they do not overlap and use all the available space on the
screen. As seen in Figure 16.4, this is the primary method used to show applications in the
main screen of Windows 8. On other systems, overlapping windows is the normal situation,

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 526

526 PART FIVE THE SOFTWARE COMPONENT

with windows located and sized where placed by the system or by the user. Cascaded windows

are a version of overlapped windows where the windows are overlapped in such a way that

the title bar and one other border of each window can be seen. Some of the newest systems

use transparent windows and miniaturized windows to ease the user’s task of keeping track

of everything on her desktop. A less common, but creative, approach used on certain systems

“rolls up” the windows like a windows shade, showing only the title bar.

On systems that allow multiple screens, a group of windows is attached to a particular

screen. Individual screens, together with their associated windows, can be minimized or can be

moved forward or behind other screens, but are not usually resizable. When multiple screens

are allowed, each screen represents a separate user interface.

To the user, the window is a box that is used for the input of text and commands to a

program and the graphical or text output resulting. Placing multiple windows on the screen

provides a convenient way to implement a multiprogramming interface with separate input

and output for each program. At any given time, one window is active, meaning that it will

respond to the keyboard and mouse. The color or appearance of the title bar is frequently

used to indicate which window on the screen is currently active. On some systems, moving the

mouse cursor into a window activates the window. This method is known as mouse focus. In
other systems, the window must be activated by clicking the mouse while the cursor is inside

the window or by opening the window. This is known as click to focus.
Depending on the GUI design, data and program files can take the form of text or icons.

On most systems, icons can be animated. Icons that are in use change shape or color. Icons can

be dragged around the screen with a pointer.

Many commands are issued to the operating systembymoving themouse andmanipulating

a button on the mouse at the appropriate time. For example, a program is initiated by pointing

the mouse cursor at the icon for the program and clicking the mouse button twice. A copy

command involves holding the mouse button down while the user drags the icon from its

original position to a position on top of the desired destination directory icon or window, then

drops it by releasing the button. A delete command is performed by dragging the icon to an

icon that represents the picture of a trash can. Other commands use the mouse together with

pop-up or pull-down menus. There are similar methods for use with touch screens.

Both program and data files are stored in folders, and folders may be nested. Double-

clicking on a folder opens a window that shows the contents of the folder. In other words,

folders are equivalent to a file directory structure. The active window corresponds to the current

directory attachment point.

Requestor boxes can be used for commands that require textual input, such as a new file

name. Additional gadgets, such as push buttons and sliders, exist for other types of control of

the interface.

When equipped with a keyboard, most window-interfaced operating systems also allow

the use of special keys on the keyboard to duplicate commands that use the mouse-icon-menu

method.

EXAMPLE
The Macintosh OS X interface consists of a single screen known as the desktop. The desktop can
be used to hold various items, such as a trashcan, folders, and data that are being worked on. A
typical Macintosh OS X screen is shown in Figure 16.5. The desktop consists of icons represent-
ing each volume on the system, a menu bar, the dock, and a trash icon. A volume consists of
a disk or partition of a disk.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 527

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 527

FIGURE 16.5

A Typical Macintosh OS X Screen

Controls Title bars Tool bar

Status bar

Volume iconsMenu bar

The dock Finder window

Clicking the mouse on a volume or dock icon opens a window. On the Macintosh, icons can
represent folders, applications, and documents. Clicking on an application will launch (load and
execute) the program. Clicking on a document icon will open the associated application program
and load the indicated data. Some windows may also be opened from the menu bar.

The dock serves as a convenient receptacle for applications, folders, documents, files, and
volumes that are accessed often. It also holds icons for minimized open applications. Mac OS
X does not distinguish between applications which are open and minimized from those that are
permanently placed on the dock for convenience. If you look at the figure carefully, you will see
that the dock is divided by a vertical line into two sections. The left section holds applications.
The right side of the dock holds folders, documents, and the like.

Names for the icons on the dock are hidden; they appear when the mouse pointer is
positioned on the icon. Some dock icons also sprout pop-up menus. Drag-and-drop is used to add

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 528

528 PART FIVE THE SOFTWARE COMPONENT

icons to the dock. Icons are removed by dragging them out of the dock. The dock can be hidden,
shrunk, or rotated into a new position on the desktop.

Two windows are open in the figure. The open windows provide a title bar that contains
the usual gadgets, known on the Macintosh as controls. These are used to close the window, to
expand the window to full screen size, to minimize the window, to resize the window to a desired
size, and to provide scrolling left and right, up and down to expose the underlying parts of the
window. The mouse can also be used to move the window around the desktop. Some windows
also offer a tool bar and a status bar.

The Macintosh desktop uses a single menu bar that is shared by the active window and the
desktop. The mouse can be moved over the menu bar to cause pull-down menus to appear. Many
of the items on pull-down menus are standard no matter what the user is doing. Those that are
inappropriate at a particular time are “grayed out”, that is, represented in a lighter color. These
items do not respond to the mouse. This standardization makes the interface easier to learn and
to use. Some menu bar items change to represent possible actions that are unique to a particular
situation.

Numerous windows can be open at once, each with its own work, and it is possible to cut
or copy and paste data between different windows by marking the desired data using the mouse
and using the cut, copy, and paste menu functions. Only one window is active at a time. The
user selects the active window by clicking the mouse anywhere inside it. Even though windows
can overlap, the active window will always be brought to the front and displayed in full. Once a
window is active, the user can manipulate the window and the data within it. During program
execution, buttons, dialog boxes, and pull-down menus are used to control the program and to
enter data, simplifying interaction between the user and the program.

In the figure, iPhoto is an application. The other open window is a special Finder window.
The Finder window is used to navigate the system. It contains a tool bar that works similarly to a
web browser and panels that represent a hierarchy of folders and their contents. The tool bar can
be modified for a particular user’s preferences. Applications can be launched and documents
opened directly from the Finder.

Besides ease of use, what is important about the Macintosh interface is its consistency.
Throughout the interface, every operation works the same way. This enhances ease of use and
quick learning, as well as user comfort. A powerful library of graphics software routines within
the operating system is used to enforce this consistency.

It should be noted that the graphical interface is totally committed to the user end of the
user interface. Internally, the commands are executed by the operating system in essentially
the same way as that of any other interface. We mention this so that you can see the value
of separating the various layers of the operating system conceptually. Modification or change
of one layer does not have to affect other layers, as long as the interface between layers is
self-consistent.

Touchless Gesture- and Voice-Based Interfaces

The previous discussion assumes the presence of a physical pointing device: amouse, a touchpad
or touch screen, a graphics tablet. A recent and rapidly evolving innovation is the use of voice
commands and gestures with no physical connection to the system: movement of the hands in
space, or eyemovement, to control a system. Examples include theMicrosoft Kinect systemused

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 529

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 529

to identify and track body movements in conjunction with Xbox games, Siri voice commands
on Apple iPhones to search for data, voice control of automobile media and phone systems,
and eye-movement display screen controls on Samsung S4 smartphones.

Early implementation of gesture- and voice-based technology was designed primarily for
computer games, to make the action and interaction with the system more realistic for the
user. More recently, developers have been creating applications for IT and general use. Voice
commands allow hands-free phone operation in a car, for example. As another example, hand
movements can be used to control a visual presentation during a business meeting. Eye tracking
can be used to scroll data on a display screen or freeze a video. With time, we can expect
a significant increase in the use of touchless interaction with the computer as an important
adjunct to the graphical user interface, at home and in business.

Interestingly, the basic technology for performing these operations has been in place for
a considerable length of time; voice recognition is based on phoneme recognition technology,
as described briefly in Chapter 4, combined with advances in language processing. Although
much improved, voice recognition has been used for word processing for a number of years.
Infrared scanning and video camera technology are combined with location analysis and image
processing software to locate, identify, and track objects in three dimensions. Face location and
face recognition software has also been in use for a while. Combining the different elements
into the implementation of touchless interfaces simply awaited more powerful personal
computer hardware and software and the continuing development and improvement of more
sophisticated algorithms.

Trade-offs in the User Interface

It might seem obvious to you that the ease of use of a graphical interface makes this the ideal
interface for most users. For the typical end user, the graphical interface is indeed an attractive
choice. It is easy to learn and easy to use. Little training is required, and the basic operations are
intuitive. It therefore meets the most important criterion of the user interface: it is effective in
allowing the user to get work done. The graphical interface has a second, less obvious, advantage
as well. With a graphical interface, it is easy to implement a multitasking system in which the
user can control every task by placing each executing task in a separate window. Although some
command line systems provide a way to execute programs “in the background”, the method
is much more awkward: switching between tasks is not convenient, displayed output is mixed
together, and it is difficult to separate and interact with both programs.

In addition, theGUI reflects current computer usage.Modern computers are used routinely
to display graphics, photos, and video. The interface is simply more consistent with this type
of usage than the CLI would be. The common use of the Web browser on mobile devices, in
addition to its use as a primary application tool on computers, provides further support for the
GUI as a primary interface for the average user.

The graphical interface is not without disadvantages, however. The graphical interface
is much harder to implement and much more demanding in its hardware and software
requirements. This interface works best with a powerful graphic video capability. It requires
a lot of memory, just to store the pictures as well as to hold the programs. The software is
complex, although visual and object-oriented languages and API services simplify the coding
of such programs.

In contrast, the command line interface is simple and straightforward. It is text oriented,
and input to the command interpreter can be treated as a simple serial character stream. The

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 530

530 PART FIVE THE SOFTWARE COMPONENT

command line interface also has more inherent flexibility and power. Many experienced users
consider the graphical interface to be slow and clumsy. They prefer to type a command to get
their work done. Arguments and operands are easy to use and to specify. It is easier to work
with wild card commands when an operation is to be repeatedmany times or when a specialized
search is to take place. It is more difficult to combine commands or to use piping techniques
using a graphical interface.

Even though the graphical I/O built into user programs is easy to use, the development
of graphical I/O for user programs is more difficult, and the programs are larger and slower,
because of the numerous details that must be handled by service routines. It is obviously easier
to read and write a stream of text than it is to draw windows, handle menus, and identify mouse
movements and actions.

Finally, it is more difficult to combine a series of graphical actions into a working script of
commands, especially when branches and loops are required, although Windows PowerShell
provides this capability to some extent. One of the powers of the command line interface is the
ability to “program” the commands.

Despite these difficulties, the graphical user interface is convenient and useful for most
users in most circumstances. It is the primary interface onmobile devices and onmost personal
computer systems; it is relatively common on mainframe computers as well.

Gradually, too, the disadvantages of this interface are being solved. Most systems now
provide an alternative command line interface, such as the command prompt in Windows, for
example, for use in situations where the graphical interface is inconvenient or weak. Application
programs now exist to help the program developer with the creation of windows and other
tasks required for the program interface. And of course the Web browser offers simple tools to
create application interfaces that are both inherently graphical and easy to develop.

Standards exist that allow different computers and terminals to share the same graphical
interface, even though the individual hardware and software is different. Such capability is
important in networked and distributed computing environments, where display elements
from one system must be displayed faithfully on a different system. As we have already noted,
one obvious choice for this capability is the use of Web technology—Java applets, scripting
languages, HTML, and XML and the like—to create the required display.

An attractive alternative in many instances is XWindow, which allows various computers
that use various forms of UNIX, Linux, and certain other operating systems to work together
graphically.XWindowprovides a language that describes thegraphical interface; each individual
computer implements the language within its own operating system to produce the desired
result. The X Window system was developed at MIT in 1986 and has been accepted by most
manufacturers as a way of furthering the idea of a standard graphical interface regardless of
hardware. X Window is discussed further in Section 16.4. In many instances, Web browsers
can serve in this role, using Java applets, scripting languages, HTML, and XML to create the
required display.

Software Considerations

The programs that control the user interface must perform two primary functions:

n Maintain the appearance of the user interface on the screen.

n Translate user requests into user services and initiate the programs that will provide
those services.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 531

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 531

Of course, if the interface is a command line, maintaining the appearance of the interface
on the screen is trivial, since it is necessary only to print a prompt and wait for a response. CLI
interfaces are text based; therefore, any necessary remote display over a network, for example,
is not a problem.

Similarly, translation of CLI commands into the appropriate services is simple. It is
necessary only to compare the text typed by the user to that of known commands or file names
and execute the command as typed by the user. If the command is internal, it is executed within
the operating system. If it is external, it is loaded and executed. The operands on the line are
passed to the command procedure as arguments.

FIGURE 16.6

Moving an Object on the Screen

Created by Larry Ewing, lewing@isc.tamu.edu

Windowing interfaces are more difficult. The windowing soft-
ware is responsible for drawing and maintaining the appearance
of the screen; for creating pull-down menus and dialog boxes; for
reacting to requests made by the user in the form of mouse or touch
screen clicks; for maintaining the positions of different objects on
the screen; for opening, closing, moving, and resizing windows
when requested; and for accomplishing many other tasks.

Even a task as conceptually simple as moving an object on the
screen, say, the cursor or an icon or a window or a slider control,
requires a considerable effort in terms of programming. (Picture
trying to write the program to do it using the Little Man Computer
machine language!) As the user moves the mouse, the mouse
generates interrupts to the CPU. The mouse interrupt program
determines the direction and distance that the mouse has moved. It
calculates the newX andY coordinates of the object on the screen by
geometrically adding the move to the present position of the object.
Then it redraws the object at the new location, by storing a picture
of the object in display memory. When it does so, it must also store
the shadow of the image stored “behind” the new position of the
object and restore the image of whatever was hidden by the object
in its previous position. This operation is depicted in Figure 16.6.

(We note that in modern desktop computer systems and
workstations, the software required to perform tasks such as the
image shadowing just described is actually built into some graphics
display controllers. The division of labor between the controller and
the operating system is established by the device driver software
used with a particular graphics controller. Either way, the task must
be performed.)

In addition to display maintenance and handling, the interface
program must also interpret the commands and request the appro-
priate services. Double-clicking on a document icon, for example,
requires the software to identify the icon from its location on the dis-
play screen, determine the associated application program, load and
execute the application, and load the document data. The command
interpreter is thus somewhatmore complicated for awindowing sys-
tem.Note that requesting a service will also require use of the display
services, since it will be necessary for the new application to open
one or more windows of its own, set up its own menus, and so on.

mailto:lewing@isc.tamu.edu

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 532

532 PART FIVE THE SOFTWARE COMPONENT

Finally, it is useful to consider the display of objects within a window, such as images in a
photograph processing application, or formatted text in a word processor, or a page in a Web
browser. Responsibility for each of these displays lies within the particular applications. The
output to be displayed in a window will take the form of objects and bitmaps, as described in
Chapter 4. The applications use the API facilities within the operating system to produce the
actual display. In turn, the operating system will then create the overall screen display using a
combination of its own software with that of the graphics display controller.

Overall, you can see that the graphical user interface software is considerablymore complex
than the corresponding CLI or menu interface software.

16.4 X WINDOW AND OTHER GRAPHICS DISPLAY
METHODOLOGIES

Graphical user interfaces are attractive, convenient, and relatively straightforward when the
computer and display are located together, such as in a personal computer orworkstation.When
the display terminal is separated by a distance from the computer the graphical interface is more
difficult to achieve. Such a situation might occur, for example, if a user is trying to operate her
computer across a network, using the local display and mouse facilities on a remote computer.
The difficulty is the large amount of data that must be transmitted from one location to the
other to transmit graphic images. In Chapter 9 we observed that a single bitmapped graphical
image might contain thousands or millions of bytes of information. Clearly, it is not practical
to transmit the screen display as a bitmapped image across the network on a continual basis.

The X Window standard represents one successful attempt to solve this problem. X
Window works by separating the software that actually produces the display image on the
screen from the application program that creates the image and requests the display into a
somewhat unusual client–server arrangement. The program that produces the image on the
screen is known as a display server. We remind you that in data communications terminology
a server is a program that provides services for other programs. In this case, the server provides
display services for one or more client application programs. (We have assumed that the client
application programs are running on computer systems located remotely from the display,
although, as youwill see shortly, this is not a necessary assumption.) The display server is located
at the display terminal, computer, or workstation where the image is to appear. The display
server can draw and control windows. It provides gadgets, dialog boxes, and pull-down and
pop-upmenus. It can create and display various fundamental shapes, such as points, rectangles,
circles, straight and curved lines, icons, a cursor, and text fonts. In conjunction with a mouse
and keyboard located on the same terminal the display server can move, resize, and otherwise
control these windows. The mouse can also move the cursor under display server control, that
is, local to the terminal. It has only to notify the application as to the final position of the cursor.

Thus, much of the work in creating a graphical window interface is performed local to the
display itself and does not have to be transmitted from the computer system that is running the
application program. The application program uses the display services to produce its desired
images by interacting with the display server. Again, in data communication terminology,
the application program acts as a client, requesting display services that it needs from the
display server. The program may request that a pull-down menu be displayed, for example; the
display server draws the menu on the screen at the appropriate location, as determined by its
knowledge of the size and location of the window. If the user at the terminal clicks a mouse

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 533

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 533

FIGURE 16.7

The X Window Client–Server Relationship

1

X client 1

X client 2

The X server accepts
requests from X client 1,
running on remote host "boris".

It also accepts requests
from X client 2, running
locally on "natasha".

The X server program
running on "natasha"
manages its display
hardware and provides
the display resource
that each client needs.

"boris"

X server

2

"natasha"

Source: From the UNIX Operating System, 3rd ed., K. Christian and S. Richter, copyright c 1994 by John Wiley
& Sons. Reprinted with permission.

on a particular menu entry, the server notifies the application that this event has occurred.

Figure 16.7 illustrates the operation of an XWindow application with a display server.

Although it is unavoidable that the application must still transmit actual image data to

the display, the amount of data to be transmitted is considerably reduced. Essentially, the

display server can performmany of the basic display operations with very little communication

required. WYSIWYG text, for example, requires only that the choice of font, the display

location, and the actual text data be transmitted. The font data is stored at the display server.

The server also provides a library of all the basic tools and widgets to draw windows, provide

drop-downmenus, present control buttons, respond tomouse clicks, andmany other functions.

This method requires far less data communication between the program and the display than

if the transmission of actual text images and windows were required.

X Window places no restrictions on the location of the client application; therefore, the

application program could reside on the same computer system as the display server or remotely

on a different system. Furthermore, the display server can process requests from several different

client applications concurrently, each in its ownwindow. Youwould expect this to be true, since

a graphical user interface can have several openwindows at one time. This leads to an interesting

and exciting possibility: that different windows on a single display could be communicating

with application programs on different machines! Indeed, this is the case. The picture in

Figure 16.8 illustrates this situation. The window in the upper-left corner is communicating

with a program located on the same PC with the display. The PC is running an X Window

server under Microsoft Windows. The other windows on the screen are connected to various

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 534

534 PART FIVE THE SOFTWARE COMPONENT

FIGURE 16.8

A Multicomputer X Window Display

Sun
workstation
via modem

VAX VMS
computer

on local area
network

Local
PC

systems located remotely: a (now ancient) VMS system connected to a local area network and a

Sun UNIX workstation connected via telephone and modem. This image was taken many years

ago, but the XWindow technology that created it has changed only in minor details.

As in other windowing systems, the location of the cursor is used to determine the active

window.

Notice that the operating system at the display need not be the same as the operating

systems where the application programs are running, as long as display server software is

available for the particular operating system in use at the display terminal. X Window display

server software is available for most operating systems, including UNIX, Linux, Windows, the

Macintosh OS, and many others. In fact, an X Window server can even be built into a bare

bones display terminal and used with a central processor located elsewhere.

Systems similar to the XWindow system also exist at the application level for services such

as the Web-based services mentioned previously. Although these systems operate somewhat

differently, the concept is quite similar: to produce as much of the display as possible using

software located at the display and to minimize the amount of image data to be transmitted.

These services provide software, display standard formats such as PNG, PDF, and SVG, and

communications protocols, particularly HTML and XML for this purpose, and also store

commonly used images and display features at the display site.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 535

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 535

16.5 COMMAND AND SCRIPTING LANGUAGES
In early batch systems it was necessary to submit all pieces of a program at one time, including

the data and any other programs that were required as part of the operation. Generally, punched

cards were used for this purpose. (See Figure 4E.3 for an illustration of a punched card.)

Suppose you had a COBOL program (it would have been COBOL in those days!) that was

to be compiled and executed. Your submittal to the computer required the cards that made up

the COBOL compiler, the COBOL program itself, perhaps a library of binary math routines

that will be called by the program when it is executed, and finally some data for the program.

Your submittal also contained commands to the computer telling it what to do with all these

cards. (Some of the commands were actually more informational, like “load the following group

of cards, which are data for the program that you are running”.) The entire submission was

known as a job.

Later on, the COBOL compiler and math routines became part of the software that was

permanently stored on disk within the computer system, but the system still needed to be told

what to do, what programs (e.g., the COBOL compiler) to call from the disk, where to find the

data, and where to print the results.

As noted, the commands to the computer took the form of punched cards that contained

the required information. These cards were called job control cards because they told the

computer system how to control the job. The different types of commands made up a sort of

language, called job control language or, more commonly, JCL. In other words, a job consisted

of a series of commands in JCL intermixed with the appropriate programs and data.

The best known of these languages is IBM zOS/JCL, but you should be aware that other

vendors have their own JCL languages. Generally, there is no compatibility between JCL

languages from different vendors, and in fact, there are several different incompatible versions

of “IBM JCL”. (By the way, you might note that the expression “JCL language”, which is in

common use, is redundant.) The use of JCL continues to this day. JCL statements are entered

into the system with a screen editor and are stored in the system as a file of card images, so

called because each statement is still laid out as though it were stored on an 80-column card.

These card images are usually batched together as a file of commands that is executed in the

same way that a program is, except that each line of the “program” is actually a command to

the operating system. Operands in each JCL command specify the appropriate files and other

details that are required. Both positional and keyword operands are used.

The commands that you use on your computer are not very different from the ones that

make up a job control language. After all, a computer is a computer, and the tasks that you

do are not really very different from those that are done as part of a batch job. Although you

commonly perform command operations one at a time, you can probably think of times when

it would have been convenient to combine a group of commands that you could have done all

at once. In fact, you may already be aware that there is a way to do this.

As we previously have noted, operating systems provide a way to group commands into a

single file that can be executed as if it were a program. The filemay itself even contain executable

programs. In addition to the usual commands, the operating system provides additional

commands that are used specifically for this purpose, commands that allow branching and

looping, for example. Figure 16.9 is an example of a Windows command language script that

prepares backup for a text file by copying an old version to a flash drive (E:), creating a new

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 536

536 PART FIVE THE SOFTWARE COMPONENT

FIGURE 16.9

Windows Program DOWP

@echo
if ’%1’ == ’’ go to error
if not exist %1 goto error
if not exist %1.txt goto newtxt
if exist %1.old copy %1.old e:\%.arc
copy %1.txt %1.old
wordproc %1.txt
goto end
:newtxt
echo This is a new file. Opening word processor....
wordproc
goto end
:error
echo proper command format is ’dowp filname’
echo with no extension.
:end

backup on hard disk, and then opening the word processor program. The name of the text file is

given as an operand when the command file is executed. “%1” is a placeholder for the operand.

Most modern operating systems provide command languages. Perhaps the most elegant

implementation of this concept belongs to UNIX. In addition to the usual commands, the

UNIX and Linux shells contain a set of powerful utility commands and other features that

allow the creation of very sophisticated command programs. In UNIX and Linux, shell scripts

are a fundamental way of getting work done. Shell scripts can be executed just as if they were

programs, and in fact, due to the power of the shell script language, it is frequently possible to

avoid writing a normal program by using a shell script instead.

You’ve already seen an example of a Windows command language script that assists the

user in performing a routine computer task. Many Linux operating system operations are, in

fact, shell scripts. Shell scripts often can be used in place of a conventional program, as well. The

example shown in Figure 16.10 is a UNIX Bourne shell program that determines the nearest

major airport to an arbitrary city entered by the user.

Scripting languages are expanded forms of command languages, often encompassing

features well beyond those found in a standard command language. Some scripting languages

even provide portability between different operating systems. Perl, Javascript, PHP, and Python

are examples of portable scripting languages.

The Elements of a Command Language

Like any programming language, there are certain elements in a command language that

affect the usefulness of the language. The choice of commands and utilities is an important

consideration, but it is not the only consideration. There are other features that enhance the

value of a language. These are some of the most important features of a command language:

n The ability to print messages on the screen and to accept input from the user into the

script.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 537

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 537

FIGURE 16.10

The Linux Airport Distance Shell Script

export city state lat long port
grep -i "$1 $2" townfile ¦ read city state lat long port
if [-z "$city"] then
 echo "this city is not in the file"
elif ["$port" = "y"] then
 echo " $city $state has its own airport"
else
 awk '
 BEGIN {close = 10000}
 $5 == "y" {dist = ($3 - '$lat')*($3 - $lat')+($4 - '$long')*($4 - '$long')
 if (dist < close) {
 close = dist
 ccity = $1
 cstate = $2 } }
 END {print ("the nearest airport is in " ccity, cstate)
 print (" approximate distance is " 60* sqrt (close) " miles")
 } ' townfile
fi

A typical line in townfile:

Boston MA 42.3333 71.083 y

n The ability to specify variables and a method to assign and change the value for those
variables.

n The ability to branch and loop. Notice that the ability to change variable values is
important as a means of controlling branches and ending loops.

n The ability to specify arguments with the command that executes the program and to
transfer those arguments into parameters and variables within the program. The
command script in Figure 16.8 uses this technique to allow the user to specify the
name of the file to be backed up.

n The ability to detect an error that results from a command and recover from it in a
graceful way. If the operating system attaches numerical values to its errors, the
command program can make decisions and branch based on the level of error. This
could be used to determine if a particular file or a particular hardware component
exists, for example.

The Command Language Start-up Sequence Files

Amajor use for a command language is the system start-up file.Mostmodern operating systems
allow the execution of specific command files at system start-up and also when a user logs in to
the system. Two types of start-up files exist. One type is used to configure the basic operating
system, as we discussed in Chapter 15. Start-up configuration files are only modified by the
system administrator.

The second type of start-up file is used to tailor the system to the user’s preferences. User
start-up commands can be used to set various parameters, such as the preferred places to look

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 538

538 PART FIVE THE SOFTWARE COMPONENT

for files, the type of terminal that the user is working with, the selection of a command shell,
and the appearance of the command line prompt. On a system shared by many users, the user
start-up command file can be tailored to each individual user. It is executed whenever a user
logs in. Login start-up files for a UNIX system depend on the default shell being used for the
system. The Bourne shell start-up script is called .login; the C-shell script is called .cshrc. Since
these files are text files, they can be easily communicated across a network to provide uniform
capability to all users on the network. This allows a system administrator to change every user’s
profile with the modification of a single file.

16.6 SERVICES TO PROGRAMS
In Section 16.2, we provided a brief discussion of the services provided by the operating system
to programs through an operating system API. Most of the discussion in this chapter has
centered around the user interface and methods of controlling and using the interface, but
we would be remiss if we did not say a few additional words about services provided by the
operating system to application programs that support and affect the user interface. Many of
these services parallel commands available to a user, but the range of API services extend well
beyond user command capability, including services that are less apparent to the user, but
important nonetheless, as well as services that simplify the creation of application programs.

As we noted in Chapter 15, operating systems have long provided services to application
programs in the areas of filemanagement, I/O processing, and system resourcemanagement. As
we noted earlier, requiring the use of the OS API assures the integrity of the system. Assigning
system resources such as memory through the API assures that a program cannot overwrite
memory in use by a different program. Similarly, providing a single gateway through which all
I/O must pass assures the integrity of files and other I/O. It is the role of the system services
to properly queue I/O requests and to perform them in such a way as to protect the data. No
current machine allows a user program to bypass operating system services. If each program
placed its files on the disk independently, there would be no way to assure that the files didn’t
destroy each other. As another example, consider a printer being addressed directly by two
different programs. The output would be a garbled mix of the output to be printed from the
two programs, obviously useless to anyone.

Services provided by the operating system API also reflect the trend to expand the role of
the operating system generally to include services and support to application programs and
users that provide many capabilities that were formerly within the applications themselves.
As we noted earlier, these services enable the system to provide a standard look and feel
for different applications extending, even, to the Web interface. They simplify and extend
the graphic capabilities of application programs, they improve the capability of programs to
communicate with each other and to pass data from one application to another, they provide
the ability to launch an application program fromwithin another, they provide e-mail and other
communication capabilities, and they provide document and graphical storage services at a
more sophisticated level than was found previously in traditional OS file management facilities.

By integrating these capabilities into the operating system, the system can assure that
every application program responds in similar ways to user actions. Integration also provides
smooth and seamless interaction between the different applications. Just as the file manager
assures a consistent representation and interface for file manipulation across different devices,
so these services provide the user with a more powerful and easier to use way to access his

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 539

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 539

program applications. The overall effect is an increased emphasis on the user interface and new

ways of working that are more oriented toward the work to be accomplished and less to the

launching and manipulation of application programs. Although many of these tools are found

in a “shell”, they are more tightly integrated into the operating system than was true of previous

shells.

The addition of new operating system services is intimately tied to improved programming

methods, particularly object-oriented programming. These services commonly take the form

of libraries of objects that application programs request via the usual call mechanisms. Several

standards continue to evolve for these services. Standards are necessary so that applications

may be developed with the assurance that the services required will be available. The most

important of these standards include .NET, and CORBA (Common Object Request Broker
Architecture), two standards that allow programs to locate and share objects, either on a system

or across a network. Remote Procedure Call (RPC) allows a program to call a procedure at a

remote location across a network.

.NET and other equivalent operating system tools also ease a programmer’s task at creating

new programs by providing commonly required program objects and allow computers on

a network to share the processing load. Particularly in modern systems, where elegant user

interfaces and graphics are the norm rather than the exception, the operating system provides a

library of powerful service routines for implementing user interfaces and graphics for individual

programs. Onmost modern computing devices, it is only necessary for a program to call a series

of these routines to maintain control of windows, drop-down menus, dialog boxes, multiple

input devices, voice input, andmore. There are even powerful system calls for drawing complex

graphic shapes on the screen. Picture having to write code for creating a virtual keyboard on a

smartphone and accepting input from it as part of your application!

The dividing line between the operating system and the application programs has become

increasingly unclear, as the operating system moves into a realm that has traditionally been

part of the application programs themselves. The use of the Web browser as a primary user

interface provides a common look and feel that extends all the way from smartphones and

tablets, to local file management, to Web-based business applications, to the services of the

Web. These services could be regarded as a new OS layer, called application program services,

or perhaps future operating systems will be divided differently, into user services and a kernel

that provides just the basic internal services. Some researchers and operating system designers

envision a model consisting of a small operating system extended by objects that support the

user’s applications. This approach suggests the growing operating system emphasis on the user

environment and on application integration.

Overall, the effect on the user’s interaction with the computer has changed dramatically

in the last few years and promises to change even more profoundly in the future. Presently,

the user performs her work by opening applications and working within those applications.

The concepts of suites of applications, at the application program level, and of object linking,

at the system level, extend this capability to allow the applications to communicate, to share

data, and to perform operations within an application by launching another application.

The additional capabilities envisioned for software at the system level, whether considered

part of the operating system or another type of interface shell, will expand this process and

ultimately can be expected to shift the user’s focus almost entirely to the document, data set,

or other work entity, with applications launched invisibly as they are required to accomplish a

particular task.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 540

540 PART FIVE THE SOFTWARE COMPONENT

SUMMARY AND REVIEW
Modern operating systems provide an interface that is used by programs and by the user

to interact with the system. The interface provides a variety of user and program services,

including a user interface with command capability, program execution and control capability,

I/O and file services for programs and for users, command languages for building programs

of commands, system information, security features, and interuser communication and file

sharing capability. An application programming interface (API) provides a standard set of

services that application programs use to access the operating system and to provide a common

look and feel to their user interfaces. In this chapter we consider each of these services.

Most systems are primarily interactive. For this purpose there are currently two primary

types of user interface, the command line interface and the graphical user interface, each with

its own advantages and disadvantages. Similar operations can be performed with each, although

the method employed is different for each. For users with limited needs, a Web-based interface

is often a more suitable and productive means of access to the system.

X Window is an important graphical display methodology, particularly in networked and

distributed environments. X Window is an attempt to provide windowing capability while

partially solving the difficulty of transmitting large quantities of graphical data from one

location to another. X Window is built around a client–server architecture.

Command languages allow a user to build more powerful functions out of the command

set. Most command languages provide looping and selection capability, as well as interactive

input and output. Some command languages are intended for batch processing. IBM’s zOS/JCL

is an important example of a batch language.

FOR FURTHER READING
A general book that discusses the user interface in great detail is Sharp [SHAR11]. Marcus and

colleagues [MARC95] provide an easy-to-read discussion and comparison of graphical user

interfaces. There are several others listed in the references, including Weinschenk [WEIN97],

Tidwell [TIDW11], and Tufte [TUFT90]. There are also numerous books on Web design, a

related topic not included here. The general operating system aspects of the user interface and

program services can be found in any of the operating system texts identified in Chapter 15.

The XWindow system is introduced well in Christian and Richter [CHRI94] and presented in

much more detail in many books, including Mansfield [MANS93] or Jones [JONE00].

KEY CONCEPTS AND TERMS
access control list (ACL)

active window

application association

application program

interface (API)

batch program

card image

click to focus

command language

command line interface

(CLI)

command shell

common look and feel

controls

CORBA (Common Object

Request Broker

Architecture)

desktop

display server

dock

drag-and-drop

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 541

CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 541

Finder
gadget
graphical user interface

(GUI)
icon
intranet
job control language (JCL)
keyword operand
launch
menu bar
modifier

mount a device
mouse focus
.Net
operand
path variable
positional operand
Remote Procedure Call

(RPC)
screen
scripting language
shell

(shell) script

switch

task bar

title bar

unmount a device

volume

widget

wild card

window

XWindow

READING REVIEW QUESTIONS

16.1 What is the primary purpose for a user interface?

16.2 What effect does the quality of a user interface have on the use and productivity of a

computer?

16.3 What is the purpose of a command language or scripting language?

16.4 What is the advantage of offering the same user interface for applications, user

programs, and commands?

16.5 Discuss the major trade-offs between a command line interface and a graphical user

interface.

16.6 Describe the user interface provided by a CLI command shell.

16.7 Describe the format of a CLI command. What is an operand? What is the difference

between a keyword operand and a positional operand?
16.8 Sketch or “print screen” a typical GUI screen. Label each of the major components

on the screen.

16.9 In addition to the commands themselves, command languages provide additional

capabilities that are important when a user is not directly involved in the control and

execution of each command. Name at least three features that are necessary to make

a command language useful.

16.10 Although Web-based user interfaces are somewhat limited when compared to CLIs

and GUIs, their use in organizations has grown and continues to grow. What

advantages do Web interfaces offer over CLIs and GUIs?

16.11 Identify and explain the purpose of several features provided by an operating system

API.

EXERCISES

16.1 List and explain some definite advantages to the use of a command line interface over

other types of interfaces. Do the same for a graphical user interface. Do the same for

a Web-based interface. What is the target audience for each type of interface?

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 542

542 PART FIVE THE SOFTWARE COMPONENT

16.2 Discuss the advantages and disadvantages of providing the user interface as a separate

shell, rather than as an integral part of the operating system.

16.3 If you have access to two or more command line interface shells, such as Windows

and Linux bash or Linux bash and tcsh, compare the major commands that are

available on each. Note the similarities and differences between them, particularly in

their capabilities and in the way the command task is performed.

16.4 Consider the major commands in a command line interface system such as the Linux

bash shell. Explain how each task would be performed on a graphical user interface

system such as Windows or the Macintosh.

16.5 There are some capabilities that are easy to achieve with a GUI, but much more

difficult with a CLI. Describe a few of these capabilities.

16.6 Explain piping. What additional capability does piping add to a command language?

16.7 Explain the concept of redirection. Illustrate your answer with an example of a

situation where redirection would be useful.

16.8 What purpose do arguments serve in a batch file or shell script?

16.9 Identify the name and purpose of each of the components of the GUI that you use.

16.10 Use the batch file or shell script capability of your system to build a menuing interface

that implements the most common commands that you use.

16.11 Describe the difficulties that exist in providing a GUI at a location remote from the

computer that is creating the display. Describe the methods used by X Window to

partially overcome these difficulties. Why is it not possible for X Window to totally

solve these problems?

16.12 Discuss the advantages that result from the client–server architecture of the X

Window system.

16.13 When people describe client–server architecture, they are usually referring to a

system in which a large server is serving a client on a PC.With XWindow, the reverse

is frequently the case. Explain.

16.14 The designers of the UNIX operating system described the ideal shell command

language as one that is made up of a large set of simple commands, each designed

to perform one specialized task well. They also provided various means to combine

these simple commands to form more powerful commands.

a. What tools are provided to combine the commands?

b. What are the advantages of this approach over providing a smaller set of much

more powerful commands? What are the disadvantages?

c. If you know something about the UNIX or Linux command set, discuss the

characteristics of UNIX/Linux commands that make it easier to combine these

commands powerfully.

16.15 If you could design a “wild card” systemwith features beyond those normally provided

in a CLI, what features would you add?

16.16 Suppose that you are designing an app for a mobile device, such as an iPhone or

Android device. Name several services that you would expect to find in the operating

system API to assist you with your program design.

Englander c16.tex V2 - December 10, 2013 12:50 A.M. Page 543

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 544

CHAPTER 17

FILE MANAGEMENT

Thomas W. Sperling

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 545

17.0 INTRODUCTION
Most direct interactions between the user and the computer involve significant use of the

file management system layer of the operating system. From the perspective of the user, the

file management system is one of the most important and visible features of the operating

system. Most user commands, whether typed into a command line interface (CLI) or

activated with a mouse or finger, are operations on files. Although hidden better from the

user, smartphones, tablets, and E-books are file-based as well. Many interactions between

programs and the operating system are file requests. When a user retrieves a document file

using the drop-down file menu in a word processor, the word processor program is using

the services of the operating system file manager to retrieve the document file. Even the

database management application software requires the services of the file management

system to perform its file storage and retrieval operations. It is the file management system

software that allows users and programs to store, retrieve, and manipulate files as logical

entities, rather than as physical blocks of binary data. Because of its importance and

visibility to the user, we have chosen to discuss the file management system separately from

the rest of the operating system.

We begin this chapter by reviewing the differences between the logical, or user, view

of a file and the physical requirements of its storage and retrieval. Next, we show how the

file management system accomplishes its mission of providing a logical file view to the

user and the user’s programs. You will see how logical file system requests are mapped to

physical files. You will see how files are physically stored and retrieved, and how the logical

file commands that you issue to the operating system are implemented. You will see some

of the trade-offs that must be made as a result of specific user and program requirements

and the limitations of different file storage methods. You will understand how a directory

system works and read about some of the different methods that are used by file systems to

keep track of and locate files and directories. You will see how the file manager finds and

allocates space for files, and how it reclaims and keeps track of space vacated when a file is

moved or deleted.

We hope that, as a result of the discussion in this chapter, you will be able to use and

manage computer file systems more effectively.

17.1 THE LOGICAL AND PHYSICAL VIEW OF FILES
Whether on computer or paper, a file is an organized collection of data. The organization

of the file depends on the use of the data and is determined by the program or user who

created the file. Similarly, the meaning of the data in the file is established by the program

or user. A computer file may be as simple as a single data stream that represents an entire

program to be loaded at one time, or a collection of text data read sequentially, or a video;

or as complex as a database made up of individual records, each with many fields and

subfields, to be retrieved one or a few records at a time in some random order.

545

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 546

546 PART FIVE THE SOFTWARE COMPONENT

Nearly all data in the computer is stored and retrieved as files. Thus, files may take many
different forms. Here are a few examples of common forms files might take:

n A program file consisting of binary data; the bytes of data in the file represent the
sequence of instructions that make up a program. The file is stored on a device such
as disk and is loaded sequentially into succeeding locations in memory for execution.

n A data file consisting of alphanumeric Unicode text that represents a program in
source code form and will serve as “data” input to a C++ compiler.

n A data file consisting of a sequence of numbers stored in ASCII format and separated
by delimiters that will be used as input to a program that does data analysis.

n A data file consisting of a mixture of alphanumeric ASCII characters and special
binary codes that represents a text file for a word processor or spreadsheet.

n A data file consisting of alphanumeric Unicode characters representing records made
up of names, addresses, and accounting information applicable to a business database.

n A data file configured in some special way to represent an image, sound, video, or
other object. Several examples of these types of files were illustrated in Chapter 4.

n A directory file consisting of information about other files.

Programs and videos are often stored as streams to be read serially, one byte after another.
A common file representation for other types of data views a file logically as a collection
of records, each made up of a number of fields. A typical record-oriented file is shown in
Figure 17.1. In this illustration, each record is made up of the same fields, and each field is the
same fixed length for all records, but these restrictions are not necessarily valid in all cases.
Some fields may not be required for certain records. The company personnel file shown in
Figure 17.2 does not require the salary field for retired employees. This file also uses a field of
comments. The comments field is a variable-length field, so that more comments can be added
when necessary. This figure also shows that the file may appear differently, without affecting
the record structure underneath. The layout shown in Figure 17.1 is sometimes called a table
image, while the layout in Figure 17.2 is referred to as a form image.

Describing a file by its records and fields represents the file logically; that is, it represents
the file the way the user views it. The logical viewmay ormay not be related to the physical view
of the file, the way in which the data is actually stored. Most commonly, the data is stored in
physical blocks on a disk or SSD. The blocks are of fixed size, say, 512 bytes or 4KB, depending
on the disk. Just as there is no reason to assume that a paper record will fit exactly on a single

FIGURE 17.1

A Typical File

Name field Address field Zip code

S I M P S N H O M E R 7 7 51 E L M S T 0 2 4 86O

C L O W N K R U S T Y 7 0 5 0 I T C H Y S T 0 0 0 01

S M I T H R S RW A Y L O 1 2 3N O L D T I M E R D 0 2 5 07E

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 547

CHAPTER 17 FILE MANAGEMENT 547

FIGURE 17.2

Database File—Form Image

Name
Address
City

Department Maintenance
Employee Level Nuclear Engr.
Salary $275,000

Comments
 is relia
 donuts
 sleep

Homer Simpson Status active
1775 Elm Street
Springfield, US 02468

Name
Address
City

Department Administration
Employee Level Asst. to Pres
Date of Retirement January, 2008

Comments Current position, and volunteer assistant
 bartender and nuclear energy consultant

Waylon Smithers Status retired
123 OldTimer Rd.
Springfield, US 02570

sheet of paper, there is no reason to assume that the size of the logical records within the

computer file corresponds to the physical in any particular way, although on some computer

systems it may. This is an issue to which we shall return shortly.

Consider again, for example, the file shown in Figure 17.1. Another representation of

this file, more akin to the means used physically for its storage, is shown in Figure 17.3. As

another example, the program file mentioned earlier could be interpreted as a single-record,

single-field logical file, with one long variable field in the record. Physically, the file might be

stored as a sequence of physical blocks, accessed one after another to retrieve the program.

Many word processors also treat files this way. Files of these types are frequently loaded entirely

into memory as a single unit.

Different file management systems exhibit a range of capabilities in the ways in which they

represent files logically. Some operating systems recognize and manipulate several different

types of files and record structures, while others simply treat all files as streams of bytes and

leave it to utility and application programs to determine the meaning of the data within the file.

The file managers in Linux and Windows, for example, differentiate only between directories

and byte stream files. On these systems, program and data files are treated identically by the

file manager. You may have seen this as a result of using a command that displays the contents

FIGURE 17.3

Yet Another File Representation

SIMPSON, HOMER~~~1775~ELM~ST~02468<tab>SMITHERS, WAYL

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 548

548 PART FIVE THE SOFTWARE COMPONENT

of a file on the screen, such as cat or TYPE or MORE, with a program file. Since the program file

can contain any combination of bytes, including control characters, the result on the screen is

gibberish. IBM z/OS represents the opposite extreme, providing detailed record management

within its file management system.

There are good arguments for either approach. It would certainly be reasonable to interpret

the program andword processing files mentioned above as a single stream of bytes, for example.

Furthermore, we note that the structure of files can be complex, and everyone is different.

Treating all files in a similar way simplifies the file management programs, while at the same

time adding flexibility to the application programs and utilities, since each application program

can define the contents of its files in any way convenient to meet its own needs. Input and

output redirection is simplified, since all data is treated in the same way, as a stream of bytes.

The same is true for the use of program pipes, as described in Chapter 16.

Conversely, treating all files as a stream of bytes requires significantly more effort on the

design of application and utility programs. Retrieval of data in the “middle of the stream”, for

example, is more difficult when the application program must keep track of its position in the

file. A file management system that imposes well-designed standards on its files can simplify

data storage and retrieval and simplify application program design, without severely limiting

application flexibility.

As a practical matter, much of the data that is useful to a user is logically represented in

record form. Data files whose records are always retrieved in sequence from the beginning of

the file are known as sequential files. Some applications require that records be retrievable

from anywhere in the file in a random sequence. These are known as random access files,
or sometimes as relative access files, since the location is frequently specified relative to the

beginning of the file. (We want the twenty-fifth record, for example.) One commonmethod for

retrieving records randomly from a file uses one field, known as the key field, as an index to

identify the proper record. The key field in Figure 17.2 might be employee’s name, since the file

is alphabetized by name.

There are other methods of retrieving particular records from within a file. Some of these

are discussed in Section 17.3. For now, it is only important that you be aware that, for certain

types of files, it is necessary for either the file management system or the application program

to be able to locate and access individual records from within the file.

In addition to the data within the file, it is convenient to attach attributes to the file that

identify and characterize the file. The most important file attribute, obviously, is its name. The

name itself may be specified in such a way as to allow identification with a particular type of file

(usually known as a file extension); it may also be expanded to identify the file with a particular

group of files or a particular storage device. In Windows, for example, the expanded name

D∶\GROUPA\PROG31.CPP

identifies the file (if the user chose an appropriate name!) as a C++ program named PROG31,

stored together in a group of files known as GROUPA, and located on the DVD-ROM inserted

into disk drive D:. The file extensionmay be important only to the user, or it may be required by

the operating system or by an application program, to activate the correct application programs,

for example. The extension .EXE, for example, notifies Windows that the file is an executable

file. Similarly, the file extension may or may not be relevant to the file management system.

In addition to the name, the file can be characterized in various other useful ways. A filemay

be executable, as a program, or readable, as data. A file may be considered to be either binary or

alphanumeric (although, of course, even alphanumeric characters are actually stored in binary

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 549

CHAPTER 17 FILE MANAGEMENT 549

form). The filemay be characterized by the way data is to be retrieved. A filemight be temporary
or permanent. A file might be writable or write-protected. There are other possibilities.

Files may also have such attributes as the date of origination, the most recent update, and
information about who has the right to access, update, and delete the file. Some systems allow a
data file to specify the program it is to be used with. This property is called an association. In
such a case, calling the data file automatically loads and starts the associated program file. For
example, Windows uses the file extension to create the necessary association. Other operating
systems may store the association as a property of the data file.

The previous discussion has focused on the logical view of a file, themeaning of its contents
and its attributes as viewed by the user, operating system utilities, and application programs.
All the files, plus all the attributes and information describing those files, are stored, controlled,
and manipulated by the file management system.

The physical view of a file is the way in which the file is actually stored within the computer
system. We have already indicated that the physical view of a file may look very different from
the file’s logical view.

Physically, the file on nearly every system is stored and manipulated as a group of blocks.
The blocks on a disk are normally of fixed size, typically between 256 and 4096 bytes. Some
systems refer to a group of one ormore blocks as a cluster.1 The block or cluster will correspond
to one or more sectors on a single track or cylinder. The block or cluster is the smallest unit
that the file management system can store or retrieve in a single read or write operation.

There is, of course, no direct correlation between the logical size of a record and the
physical block or cluster—the logical record size is designed by the programmer or user for the
particular application and may actually be of variable size; the physical block is fixed as a part
of the computer system design.

A file may fit entirely within a single physical block or cluster, or it may require several
blocks or clusters. The file management system may pack the file into physical blocks without
regard to the logical records, as shown in Figure 17.4(a), or it may attempt to maintain some
relationship between the logical records and physical blocks, as shown in Figure 17.4(b). Logical
records may be packed several to a physical record, or may be larger than a physical record and
require several physical records for each logical record.

A minimum of one full block is required for a file, even if the file only contains a single
byte of data. Depending on the file management system design, and perhaps on attributes of
the file, the blocks that hold a particular file may be contiguous, that is, stored together, or may
be scattered all over the disk or tape, noncontiguously.

The physical block or cluster size is a compromise between file access speed and wasted
space. If the blocks are too small, then most files will require several disk reads or writes to
retrieve or store the data, as well as considerable space to keep track of usage of each block.
Conversely, if the block size is too large, there will be a large amount of unused space at the end
of many, perhaps most, blocks.

Note that it is the logical view that gives the data in a file meaning. Physically, the file is
simply a collection of bits stored in blocks. It is the file management system that establishes the
connection between the logical and physical representations of the file. Tape organization is
somewhat different. Most tape systems use a variable size block, so it is possible to store a file
exactly, with no internal fragmentation. Furthermore, some file management systems separate
logical records into different blocks, making it possible to record individual records on tape.

1Note that a disk cluster is not related to a computer system cluster. Same word, totally different meaning.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 550

550 PART FIVE THE SOFTWARE COMPONENT

FIGURE 17.4

The Relationship Between Logical and Physical Records

Logical
record

Logical
record

Logical
record

Logical
record

Logical
record

Physical
block

Physical
block

Logical
record

Logical
record

Logical
record

Logical
record

Physical
block

Physical
block

(a) Logical records and physical blocks unrelated

(b) Logical records stored one to a block

Free
space

Free
space

Free
space

Free
space

etc.

17.2 THE ROLE OF THE FILE MANAGEMENT
SYSTEM

The file management system is commonly called the filemanager. In this text, we will primarily
use the term “file manager”, so please remember we are talking about a software program, not
a person! The file manager acts as a transparent interface between the user’s logical view of the
file system and the computer’s physical reality of disk sectors, tracks, and clusters, tape blocks,
and other I/O vagaries. It provides a consistent set of commands and a consistent view of files
to the user regardless of the file type, file characteristics, choice of physical device, or physical
storage requirements. It translates those commands to a form appropriate for the device and
carries out the required operation. To do so, it maintains directory structures for each device.
These, too, are presented in logical form to the user and to the user’s programs.

User file commands and program file requests are interpreted by the command shell, then
passed in logical form as requests to the file manager. Program requests are made directly to the
file manager. These requests commonly take the form of OPEN, READ, WRITE, MOVE FILE POINTER,
RESET POINTER TO BEGINNING OF FILE, or CLOSE, and other similar procedure or function calls.

The file manager checks the validity of the requests and then translates the requests into
the appropriate physical course of action. The directory system assists in the location and
organization of the file. When required, the file manager makes specific I/O data transfer
requests to the I/O device handler layer for execution of the transfer. Upon completion of the

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 551

CHAPTER 17 FILE MANAGEMENT 551

request, the directory is updated, if necessary, and control is returned to the command shell or
program. A general view of the process is illustrated in Figure 17.5.

As a specific example of this process, consider what occurs within the operating system
when the user of a typical system types the command

COPY D∶ \FILEX TO C∶

(or moves the FILEX icon with amouse to the C: drawer on a systemwith a graphical command
interface—the operation is the same).

The following sequence of steps takes place. (Although this description seems long, the
steps are reasonable and should not be too difficult to follow):

1. The command interface interprets the command and determines that a copy of
FILEX on device D: is to be made and stored on device C:. The command shell passes
the request to the file manager. Typically, the shell will request that the file manager
open FILEX on D: and create FILEX on C:.

2. The file manager looks in the directory for device D: to find a file named FILEX. If it
succeeds, the file manager reserves a block of space in memory, called a memory
buffer, large enough to hold one or more physical blocks of data from the file.

FIGURE 17.5

File Manager Request Handling

Command
shell

Device
directory

Network to
cooperating
file manager

MemoryDevice

File
manager

I/O device
driver

Program
requests

Program
request

response

User requests

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 552

552 PART FIVE THE SOFTWARE COMPONENT

3. Next, the file manager looks in the device C: directory to determine if there is enough
free space to fit the file. If there is, the file manager adds FILEX to the directory and
assigns enough blocks to the file for storage of the file.

4. The shell is informed that these requests succeeded. It now requests that the file
manager read a block from D:FILEX. The file manager requests that the data from the
first block or group of blocks from FILEX be read into the memory buffer. This
request is addressed to the I/O device handler for device D:.

5. The device D: I/O device handler completes the transfer and notifies the file manager
that the requested data is in the memory buffer.

6. The file manager now passes on a request that the data in the memory buffer be
transferred to the first block or group of blocks that it assigned to C:FILEX. This
request is addressed to the I/O device handler for device C:. (If device D: and device C:
are the same type of device, both disks, for example, the same I/O handler may service
both devices.)

7. The last three steps are repeated until the file copy is complete. Some systems allow
the user to specify the size of the memory buffer. Note that the use of a larger memory
buffer can make the copy operation for a large file much faster by limiting the number
of individual I/O transfers.

8. The file manager returns control to the command interface with an internal message
to the command shell to indicate that the copy was successful.

If device D: is actually located somewhere on a network, rather than on the local machine,
a number of additional substeps are required. The OS network services on both machines must
be invoked to request services from the file manager on the machine where the file is located,
the data is retrieved into a buffer on the remote machine using the I/O device driver, and
the network drivers are used to move the data across the network to the buffer on the local
machine; overall, these additional activities do not significantly alter the procedure described
here, however.

The COPY operation is typical of requests made to the file manager. You are probably
familiar with many others. Most user commands to the operating system are actually requests
to the file manager.

Consider the operations on a file that a file management system would perform. These
operations can be divided into three different categories of operations: those that work on the
entire file, those that operate on data within the file, and those that actually manipulate the
directory of the file without actually accessing the file itself.

The following examples of operations that work on the file as a whole are likely to be
familiar to you as a user:

n Copy a file

n Load and execute a (program) file

n Move a file (assuming the move is to a different device)

n List or print a file

n Load a file into memory

n Store a file from memory

n Compile or assemble a file

n Append data from memory to a file.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 553

CHAPTER 17 FILE MANAGEMENT 553

Fundamental to every file manager, both stream- and record-based, is the ability to

manipulate the data within the file itself. The file manager provides a basic set of operations

that are used for this purpose. These operations probably seem less familiar to you as a user.

That is because they are usually requested by a program, rather than directly by the user.

n Open a file for reading or writing. This procedure provides a buffer for holding the

data as it is read or written and also creates a pointer that moves through the data as it

is read or written.

n Read a number of bytes from the file. The number of bytes can be specified as part of

the request, or it may be indicated by a delimiter, such as a carriage return or comma,

depending on the system.

n Write a number of bytes to the file.

n Move the file pointer a distance forward or backward.

n “Rewind” the pointer to the beginning of the file.

n Close the file.

A file management system that provides support for individual record storage and retrieval

includes additional operations. The following are examples of record-based operations. These

operations can be performed either sequentially or randomly, depending on the nature of the

file, the capabilities of the file manager, and the particular application:

n Read (retrieve) a record

n Write (store) a record

n Add a record to a file

n Delete a record from a file

n Change the contents of a record.

These operations manipulate the file directory, rather than the file itself:

n Delete a file

n Rename a file

n Append one file to another (known as concatenation)

n Create a new (empty) file. On some systems this operation will assign a block to the

file even though the file is empty

n Move a file from one directory to another on the same physical device.

It is often convenient to operate on a group of files together, for example, to copy all the

files whose names begin with assign from your hard drive to a floppy disk for backup purposes.

One way to do this is to organize your files in such a way that they are grouped into different

areas of the disk. As we will discuss later, most systems provide a subdirectory structure for

doing this.

An alternative method provided by most systems is the use of wild cards to identify a

group of files. Wild cards are replacements for letters or groups of letters in a file name. When

used with a command, they can identify a group of files whose names qualify when the wild

card is substituted for some of the letters in the name. The most common wild cards in use

are “?” which replaces any single letter in a file name, and “*” which replaces a group of zero

or more letters that can be any letters that are legal in a file name. With one exception, the

examples that follow work the same in UNIX or at a Windows command line prompt.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 554

554 PART FIVE THE SOFTWARE COMPONENT

EXAMPLES
n ASSIGN?.DAT will find files ASSIGN1.DAT and ASSIGNX.DAT, but will ignore

ASSIGN.DAT, ASSIGN1.TXT, and ASSIGN12.DAT.
n ASSIGN*.DAT will find ASSIGN.DAT, ASSIGNXQ.DAT, and ASSIGN12.DAT, but not

ASSIGN2.TXT.
n *DE*.DAT will find HOWDEDOO.DAT, ADAMBEDE.DAT, and DESIREE.DAT.
n *.* will find every Windows file, even if there is no extension. It will find the UNIX file

textfile., but not the file textfile, because the latter has no dot in it.

UNIX provides an additional wild card form, “[choices]”. For example, [aeiou] would look

for a file name with a single letter a, e, i, o, or u in the given position. [a-zA-Z]* would accept

zero or more uppercase or lowercase letters, but no numbers, in the given position.

In addition, many systems provide file utilities within the command structure that call

upon the file management system for support. Sort utilities sort the records within a file by key

field or by some other positional indicator. Some sort utilities load the entire file into memory,

while others retrieve and store records one by one. In both cases, the file management system

is used to perform the actual file and record retrieval and storage. Other examples of utilities

commonly provided include utilities to merge two files record by record and to compare two

files record by record.

The file management system is directly responsible for all aspects of the maintenance of

the file system. This requires the file system to perform five major functions:

n The file management system provides the connection between the logical file system

with its physical implementation, allowing the physical view to remain essentially

invisible. It creates a logical view for the user, masks the physical view, and provides

the mapping between the two views. Stating this more informally, the user requests a

file by name, and the file is retrieved; the user does not know where the file is actually

stored, nor does he or she care.

n The file management system maintains the directory structure for each I/O device in

use. It also maintains a record of available space for each device and assigns and

reclaims physical space as required to meet the needs of file storage.

n The file management system supports manipulation of the data within the file. For

some systems, it can identify, locate, and manipulate individual records or individual

blocks within a file, possibly for several different methods of file access. For others,

the manipulation is limited to reads, writes, and the movement of a pointer.

n The file management system acts as an interface for the transfer of data to and from

the various I/O devices by requesting transfers from the I/O device driver level of the

operating system. It also assigns buffer spaces in memory to hold the data being

transferred. The actual transfer, and the interface between the physical device and the

operating system, is handled by the appropriate I/O device driver.

n The file system manages file security and protection. It attempts to protect the

integrity of files and prevent corruption. It provides a mechanism to control access to

files. Some file systems also provide encryption and/or compression. There are several

different types of access control and integrity protection in use. These are discussed in

Sections 17.9 and 17.10.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 555

CHAPTER 17 FILE MANAGEMENT 555

Summing up the operation, the file manager receives requests from the utility/command
layer of the operating system or from application programs, determines the course of action,
and attempts to fulfill the request. In those cases that require data transfer to or from an I/O
device, the file manager will issue a request to the appropriate I/O device driver in the next
inner layer to perform the actual I/O transfer. The file manager specifies the physical block to
be transferred, the direction of the transfer, and the memory location to be used, but the actual
transfer is performed by the I/O device driver.

There are two powerful advantages in separating the file and I/O functions into different
tasks.

1. When new I/O devices are added, or the device is changed, it is necessary only to
replace the I/O driver for that device. The file system remains unchanged. The idea of
changing an I/O device driver is familiar to you if you have ever installed a new
printer, video card, or disk drive for your PC.

2. A command request to redirect data is easy to implement, since the file manager
controls the file. The file manager simply directs the binary data to a different I/O
driver.

In general, the file manager is responsible for, and assumes the chore of, organizing,
locating, accessing, and manipulating files and file data and managing space for different
devices and file types. The file manager takes requests as its input, selects the device, determines
the appropriate format, and handles the request. It uses the services of the I/O device layer to
perform actual transfers of data between the devices and memory.

17.3 LOGICAL FILE ACCESS METHODS
There are a number of different ways in which to access the data in a file. The method used
reflects both the structure of the file and the way in which the data is to be used. For example,
a program file made up of executable code will be read as a whole into memory. A file made
up of inventory data records will often be accessed one record at a time, in some random
order queried to the system. As we have already seen, some file management systems support a
number of different formats, while others leave the structuring and formatting of data within a
file to the application programs and utilities that use the file.

It is beyond the scope of this textbook to discuss file access methods in any detail. That
material is better left to a file and data structures text. To an extent, however, the access method
used affects the ways in which the file may be stored physically. For example, a file in which
variable-sized records must be accessed in random order is not conveniently stored on tape,
where the system must wind from the beginning of the tape to find the desired record. An
overview of file access methods will serve to pinpoint the requirements of physical file storage.

Sequential File Access

Nearly every file management system supports sequential file access. Files that are accessed
sequentially represent the great majority of all files. Sequential files include programs in both
source and binary form, text files, and many data files. Information in a sequential file is simply
processed in order of storage. If the file is record-oriented, records are processed as they are
stored. A file pointer maintains the current position in the file. For read operations, the data is
read into a buffer, and the pointer is moved forward into position for the next read. For write

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 556

556 PART FIVE THE SOFTWARE COMPONENT

operations, the new data is appended to the end of the file. The pointer always points to the end.
Most systems allow resetting the pointer to the beginning of the file. This operation is often
referred to as rewind, because of its similarity to a tape operation. Some systems also allow the
pointer to be moved a fixed amount. This operation is sometimes called seek. Sequential access
is based on a tape model, since files on tape can only be read sequentially.

A file that is always read in its entirety is clearly accessed sequentially. Sequential access is
fast, since no seek is required to find each succeeding record (assuming that the file is stored
contiguously). Appending new records to the end of the file is also easy. On the other hand, it
is not possible to add a record in the middle of a file accessed sequentially without rewriting at
least all the succeeding records. This is a severe disadvantage in some situations.

Random Access

Random access assumes that a file is made up of fixed length logical records. The file manager
can go directly to any record, in any order, and can read or write records in place without
affecting any other record.

Some systems rely on the application to determine the logical block number where data
is to be accessed. Others provide mechanisms for selecting locations based on a number of
different possible criteria: for example, sequenced alphabetically on a key, sequenced in order of
the time of entry, or calculated mathematically from the data itself. The most common method
used is called hashing. Hashing is based on some simple mathematical algorithm that calculates
a logical record number somewhere within the permissible range of record numbers. The range
is based on the anticipated number of records in the file.

Hashing is very effective when the number of records is relatively small compared to the
overall capacity of the file. However, hashing depends on the idea that the algorithm will result
in a unique record number for each record. As the file fills, this becomes less and less probable.
A collision occurs when two different records calculate to the same logical record number.
Collisions must be detected by the file manager to prevent erroneous results. This is done by
comparing the key used for hashing with that stored in the file. When a collision occurs, the
system stores the additional record in an overflow area that is reserved for this purpose.

Once the logical record number is known, the file manager can locate the corresponding
physical record relative to the start of the file. If there is an integer-to-one relationship between
the logical and physical blocks, this calculation is almost trivial. Even at its most difficult, the
translation requires nothing more than the use of a simple mathematical formula

P = int(L × SL∕SP)
where

P = the relative physical block number

L = the relative logical block number

SL = the size in bytes of a logical block

SP = the size in bytes of a physical block.

Once the relative physical record is known, the actual physical location is located using
information stored with the directory. Because physical records must be accessed a block at a
time, the file manager provides a memory buffer large enough to hold the physical record or
records that contain at least a single logical record. It then extracts the logical record from the
buffer and moves it to the data area for the program requesting access.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 557

CHAPTER 17 FILE MANAGEMENT 557

Random access is also known as relative access, because the record number to be accessed is
expressed relative to the start of the file.Mostmodern filemanagement systems provide away for
an application to access files randomly. It is easy to simulate sequential access in a system that
supports random access. The system simply reads the records in order. The reverse is not true. It
is possible, but difficult, to simulate a random access file using sequential access. Random access
is based on a disk model; the head on a disk can be moved immediately to any desired block.

Indexed Access

Indexes provide an additional means for accessing specific records in a file. A file may have
multiple indexes, each representing a different way of viewing the data. A telephone list could be
indexed by address, by name, and by phone number, for example. The index provides pointers
that can immediately locate a particular logical record. Furthermore, an index is often small
enough that it can be kept in memory for even faster access. Indexes are generally used in com-
binationwith sequential and random accessmethods to providemore powerful accessmethods.

Simple systems normally provide sequential and random access at the file manager level
and rely on application programs to create more complex methods of access. Large systems
provide additional access methods. Themost common of these is the indexed sequential access
method (ISAM). ISAM files are kept sorted in order of a key field. One or more additional
index files are used to determine the block that contains the desired record for random access.

The IBM mainframe operating system z/OS provides six different access methods, and
one of these, VSAM, is further divided into three different submethods. All these additional
methods are built upon either random or sequential access or a mix of the two and use index
files to expand their capability.

17.4 PHYSICAL FILE STORAGE
The file manager allocates storage based on the type of I/O device, the file access method to
be used for the particular file, and the particular design of the file manager. There are three
primary file storage methods used for random access devices, such as disks. For sequential
access devices, particularly tape, the options are somewhat more limited. We shall deal with
each type of device separately.

Consider the disk or solid-state device first. As you are already aware, disk files are stored
in small, fixed-size blocks. This gives disks the important advantage that individual blocks can
be read and written in place, without affecting other parts of the file. Many files require several
blocks of storage. If the file is larger than a block, then the system needs to be concerned
about an efficient storage method that allows for efficient retrieval of the file. If the file is
accessed sequentially, then the file manager must be able to access all of it quickly. If the file is
accessed randomly, the file manager must be able to get to the correct block quickly. As you
will see, the methods that are most convenient for storage are not necessarily consistent with
these requirements. There is no ideal solution to this problem. The physical allocation method
chosen may depend on the way in which the file is to be logically retrieved. In particular, you
will see that there is more flexibility in the physical storage method if the file is to be retrieved
sequentially than if random access capability is required.

Three methods are commonly used to allocate blocks of storage for files. These are
commonly known as contiguous, linked, and indexed storage allocation.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 558

558 PART FIVE THE SOFTWARE COMPONENT

Contiguous Storage Allocation

The simplest method to allocate storage is to assign contiguous blocks sufficient to hold the file.
Figure 17.6 shows a group of files of different sizes assigned using contiguous storage.

On the surface, this seems like the obvious way to allocate storage. Only a single directory
pointer is required to locate the entire file. Since the file is contiguous, file recovery is quite easy.
Retrieval is straightforward: the file manager can simply request a multiblock read and read
the entire file in one pass. Relative file access is also straightforward: the correct block can be
determined easily from the formula shown in Section 17.3 and then added to the pointer value
that locates the beginning of the file.

There are some important difficulties with contiguous storage allocation, however.

n The file system must find a space large enough to hold the file plus its anticipated
growth.

n Unless sufficient space is allocated initially, the file may grow to exceed the capacity of
its storage allocation. In this case, the file may have to be moved to another area, or
other files rearranged to make expanded room for the enlarged file.

n The use of contiguous storage allocation eventually leads to fragmentation of the disk.
As files come and go there will occur small block areas between files, but none large
enough to hold a new file unless the new file is small.

Fragmentation also occurs when a file is deleted or moved. Unless the space can be filled
with a new file of the same size, there will be a space left over. Finding an exact replacement
is unlikely: files are rarely exactly the same size, file space may be limited, a new, smaller file

FIGURE 17.6

Contiguous Storage Allocation

stra
nge.

da
t

te
m

p.
da

t
work.txt

prog1.exe

prog10.exe

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 559

CHAPTER 17 FILE MANAGEMENT 559

needs to be stored, and there is no alternative space available, so the space is used. Although

fragmentation in a solid-state drive is less of a problem, many current SSDs must perform write

operations simultaneously on large multiblock areas, which create a similar situation.

Allocation strategies can be used to try to minimize fragmentation. The first-fit strategy
simplyplaces thefile into thefirst available space that the systemfinds.Thebest-fit strategy looks
for the space that will most closely fit the file, thereby minimizing the external fragmentation.

(At one time there was also a worst-fit strategy, which allocated file space from the largest

available cluster. The idea was to leave as much room for another file as possible, but studies

showed that it didn’t work any better than the others.)

Ultimately, it becomes necessary to reorganize the space periodically to eliminate the

fragments by collecting them together to form one new, usable space. This operation is called

defragmentation, usually shortened to defragging. It is also sometimes called compaction. The

time and effort required to defrag a disk is large, but pays off in faster disk access.

Noncontiguous Storage Allocation

A file system will normally attempt to allocate file storage space contiguously. When this is

not possible, the file must be stored noncontiguously in whatever blocks are available. With

noncontiguous storage, new blocks do not have to be assigned until they are actually needed.

Fragmentation of the storage space cannot occur, although defragmentation may still be used

to reduce the number of file accesses by maximizing the contiguous use of space.

The use of noncontiguous space requires that the file system maintain a detailed, ordered

list of assigned blocks for each file in the system, as well as a list of free blocks available for

assignment. For consistency, the file system will maintain ordered lists for all files, contiguous

and noncontiguous.

There are two basic approaches to maintaining the lists of blocks allocated to each file:

1. The block numbers for a file may be stored as a linked list, using pointers from one

block to the next. This method is known as a linked allocation.

2. The block numbers for each file may be stored in a table. This method is known as

indexed allocation. Commonly, there is a separate table for each file.

LINKED ALLOCATION AND THE FILE ALLOCATION TABLE METHOD At first it

would seem that the system could simply place link pointers to the next block at the end of

every file block. However, placing link pointers within the file blocks themselves is impractical,

because it would be necessary to read each block from the beginning of the file, in sequence, to

obtain the location of its succeeding block. This method would therefore be slow, awkward, and

unsuitable for relative access files, where it is desirable to read or write only blocks containing

relevant data.

A somewhat more practical method is to store the pointers as linked lists within a table.

Windows still makes this available for small disks and solid-state storage devices, such as

low-capacity flash drives. When this method is used, Windows provides a single table on each

disk (or disk partition, since these systems allow a disk to be divided into partitions) on the

system. This table is called a file allocation table or FAT. Each file allocation table holds the

link pointers for every file stored on the particular disk or disk partition. These file allocation

tables are copied to memory at system boot time or, in the case of removable devices, mount

time, and remain in memory as long as the file system is active.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 560

560 PART FIVE THE SOFTWARE COMPONENT

FIGURE 17.7

File Allocation Table

24

~

25

~

59

48

70

5

16

5

1
0

16

24

25

33

42

33
42

48

59

70

(~ denotes end of file)

Block
number

First
blockName of file

WORK.TXT

Directory

STRANGE.DAT

The FATmethod is illustrated in Figure 17.7. It will help to “follow the trail” in the diagram

as you read this description.

The directory for each file contains an entry that points to the first block of the file. Each

entry in the FAT corresponds to a block or cluster on the disk. Each entry contains the link

pointer that points to the next block in the file. A special value is used to indicate the end of

a file. Any 0 entry in the FAT represents a block that is not in use. Therefore, it is easy for

the system to locate free space when it is needed. To locate a particular block in a particular

file, the file manager goes to the directory entry and finds the starting block for the file. It then

follows the links through the FAT until the desired block is reached. Since the FAT is stored in

memory, access to a particular block is fast.

For example, for the file STRANGE.DAT shown in Figure 17.7, the directory entry indicates

that the first block of the file is stored in block number 42. Successive blocks of this file are

stored in blocks 48, 70, and 16. Confirm your understanding of the FAT method by finding the

third block of the file WORK.TXT in the figure.

A disadvantage of the FAT approach is that it becomes unacceptably inefficient for devices

with large amounts of storage because the FAT itself requires a large amount of memory.

Observe that the FAT table requires an entry for every block on the device, even if the block is

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 561

CHAPTER 17 FILE MANAGEMENT 561

unused. If a disk is broken into 216, or 65,536 clusters, with a corresponding 2-byte entry for

each cluster, the FATwill require 128KB of memory. A 1 GB disk would require a cluster size of

16KB. If most of the files on the disk are small, then much of the capacity of the disk is wasted.

A 1KB file stored in a single cluster would waste more than 90 percent of the capacity of the

cluster. Alternatively, the number of blocks in the table can be increased with a corresponding

increase in the memory requirements to hold the table. FAT32 allows as many as 228 or 256

million clusters. Each entry requires 4 bytes of storage. Of course, the actual number of clusters

is set much smaller than that, because the size of such a table would require an outrageous

amount of memory. More typically, using a 32KB cluster size requires 128KB of memory per

gigabyte of storage with FAT32.

Indexed Allocation

Indexed allocation is similar to FAT linked allocation, with one major difference: the link

pointers for a file are all stored together in one block, called an index block. There is a separate
index block for each file. Loading the index block into memory when the file is opened makes

the link pointers available at all times for random access. Assuming the same linkages shown in

Figure 17.7, the index blocks would look like those in Figure 17.8.

Since the only index blocks inmemory are those for open files, indexed allocation represents

a much more efficient use of memory.

One method used by some systems, including recent versions of Windows, to reduce

memory usage even further is to allocate storage in groups of contiguous blocks as much as

possible. Rather than store individual block links, this method allows the system to store a single

link to the starting block of each group, together with a count of the number of blocks in the

group. For files that grow in size gradually this may not be a useful strategy, but even for a file

of known size that is to be stored on a disk that does not have a single contiguous space that is

sufficient for the entire file, it may be possible to store the file in a small number of groups. Some

modern file systems offer excess capacity when the file is created to allow for future growth in

FIGURE 17.8

Index Blocks for Indexed Allocation of Linked
Files Shown in Figure 17.7

STRANGE.DAT

42

48

70

16

end

33

59

5

24

25

end

WORK.TXT

the size of the file. Although this would have been considered

wasteful in earlier days, the large capacity of modern disks

makes this solution feasible and practical today.

There are several possible options as to where the index

block should be placed. As you will see in Section 17.6, the

file management system maintains a directory structure that

identifies and locates each file by name. Directory entries also

store the attributes of the file that we mentioned earlier. Some

systems store a single pointer to the index block in the directory

entry as a way of locating the file. Other systems store link

pointers in the directory entry itself.

The following examples show two of the most common

approaches, the UNIX i-node method and the NTFS method.

UNIX and Linux use an indexed file allocation method, as

shown in Figure 17.9. The directory entries in a UNIX system

each contain just the name of the file plus a single pointer to

an index block called an i-node. The i-node for a file contains
the index pointers, and also the attributes of the file.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 562

562 PART FIVE THE SOFTWARE COMPONENT

FIGURE 17.9

Linux i-node File Storage Allocation

directory single indirect

double indirect

triple indirect

i-node

index blocks

file

file

file

file

file

file

file

file

file

file

direct blocks

file attributes

name ptr

A typical i-node design allocates thirteen index pointers. The first ten pointers are links,

just as we have described. This is adequate for small files. In fact, the needs of most of the files

on the system are met this way. The last three entries in the table serve a special purpose. These

are called the single indirect, double indirect, and triple indirect block pointers. The single
indirect block pointer points to another index block. Additional links are found in that block.

The number of links is determined solely by the size of a standard disk block. The double and

triple indirect blocks are two and three steps removed, respectively. We have shown the single

and double indirect blocks on the diagram. Using 4KB clusters, this scheme is sufficient to

access files in the hundreds of gigabytes. Actually, the limiting factor turns out to be the number

of bits in each pointer.

WINDOWS NTFS FILE SYSTEM The Windows NT File System (NTFS) was originally
created to solve the shortcomings of the FAT file system, specifically to support large files and

large disks, to provide file security, to reduce access times, and to provide recovery capability.

NTFS operates on volumes. InWindows NT volumes were determined solely by the layout

of logical disk partitions. A volume in Windows NT was created by creating a logical disk

partition, using the Windows NT fault-tolerant disk manager. Current versions of Windows

continue to support the Windows NT disk manager for legacy volumes, but new volumes in

Windows are created and managed by a disk manager, that allows the creation of volumes

dynamically. NewerWindows volumes need not correspond to logical disk partitions. Dynamic

volumes can be expanded or contracted to meet changing user needs while the system is online.

Volumes may occupy part of a disk or an entire disk or may span multiple disks.

Like other systems, the NTFS volume allocates space in clusters. Each cluster is made up

of a contiguous group of sectors. The NTFS cluster size is set when the volume is created. The

default cluster size is generally 4KB or less, even for large disks.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 563

CHAPTER 17 FILE MANAGEMENT 563

FIGURE 17.10

NTFS Volume Layout

MFT attributes

Pointer to copy of MFT attributes

Log copy

Volume file

Attribution definition file

Root directory

Bad cluster file Master file
table

NTFS
metadata

file
records
(16 KB)

Volume
User files and

directories

Space for
nonresident
attributes

…
…

Sources: Adapted from D. A. Solomon, Inside Windows NT , 2nd ed. (Redmond, WA:
Microsoft Press, 1998).

Figure 17.10 shows the layout for an NTFS volume. The core of each volume is a single file
called the master file table (MFT). The master table is configured as an array of file records.
Each record is 1KB in size, regardless of the volume cluster size. The number of rows is set at
volume creation time. The array contains one row for each file in the volume. The first sixteen
rows contain metadata files: files that describe the volume. The first record stores attributes of
the MFT itself. The second record points to another location in the middle of the disk that
contains a duplicate of the metadata, for disk recovery.

NTFS file records are made up of attributes. An attribute is a stream of bytes that describes
some aspect of the file. Standard attributes include the file name, its security descriptor, time
stamps, read-only and archive flags, links, and data (i.e., the file’s contents). Directory files have
attributes that index the directory. Each attribute has a name or number plus a byte stream
representing the value of the attribute. The primary data stream is unnamed, but it is possible
to have named data streams in addition. Thus, there may be multiple data streams in a single
file record.

Small files may fit within theMFT record itself. For larger files, theMFT record will contain
pointers to clusters in an area of the disk outside the MFT. Attributes that extend beyond
the MFT are called nonresident attributes (usually the data attribute, obviously). Nonresident
clusters are called runs. If the attribute outgrows its space, the file system continues to allocate
runs as needed.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 564

564 PART FIVE THE SOFTWARE COMPONENT

FIGURE 17.11

Resilient File System Table Structure

Object table

Pointer to
directory

Pointer to system
attribute
(security)

Directory

File
name

Pointer to
file metadata

File metadata File contents
Key Value

Key Value

File
name

Pointer to
file metadata

Pointer to system
attribute

(...)

… … …

… …

Block
#s

Data
pointer

Block
#s

Data
pointer

… …

(...)
Metadata

Security
Metadata

…

Microsoft is gradually introducing a larger, more powerful file system called Resilient File
System (ReFS), that works similarly to NTFS, but is more flexible and scalable. See Figure 17.11.

As described in [Verma2012], the MFT is replaced with a generic object table that contains

directory pointers as well as pointers to other tables that manage various attributes, such

as security, that apply to the file system as a whole. Like NTFS, each directory contains file

metadata; however, in ReFS, themetadata is stored in a separate table. The filemetadata includes

one or more pointers to the file data itself. As of this writing, ReFS is set for introduction only

with Windows Server 2012, but its use is expected to spread to Windows 8 and beyond.

Free Space Management

To allocate new blocks as they are required, the file management system must keep a list of

the free available space on a disk. To create a new file or add blocks to an existing file, the file

manager takes space from the free space list. When a file is deleted, its space is returned to

the free space list. Of course, free space is obvious when the FAT is used. For other allocation

methods, there are two techniques commonly used presently, and a third being introduced

with ReFS.

BITMAP METHOD One method of maintaining a free space list is to provide a table with

one bit for each block on the disk. The bit for a particular block is set to 1 if the block is in use

and to 0 if the block is free. (Many systems also set defective blocks to 1 permanently to prevent

their use.) This table is known as a free space bitmap or, sometimes, as a table of bit vectors.
A Bitmap is illustrated in Figure 17.12. A bitmap is usually kept in memory for fast access.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 565

CHAPTER 17 FILE MANAGEMENT 565

FIGURE 17.12

Free Space Bitmap

Block numbers

1001010110101001

0111101101100000

1110000111011100

0101000111010110

0–15

16–31

32–47

48–63

The bitmapmethod is an economical way of keeping track of

free space, since only one bit is needed for each block on the disk.

It has the further advantage that it is easy for the file manager

to locate contiguous blocks or blocks that are nearby to those

already allocated to a file. This allows the filemanager tomaintain

files in a way that can minimize disk seeks during file access.

Although the bitmap must be stored 8 bits to a byte, CPU

instruction sets provide bit manipulation instructions that allow

efficient use of the bitmap. One disadvantage of the bitmap

method is that there is some processing overhead in returning

space from a large file with many blocks to the free space list.

A second disadvantage is that once space has been returned

to the bitmap, it may be immediately reassigned. There is no

way of determining the order in which the space was returned.

Therefore, the space used by a deleted file may be reused again

immediately, eliminating the chance for file recovery.

LINKED LIST METHOD An alternative method maintains all the free space on the disk in

a linked list. A pointer to the first free block is kept in a special location on disk and also in

memory. Each free block is then linked to the next. The file manager allocates blocks from the

beginning of the list. The blocks from deleted files are added to the end of the list.

This method has considerable overhead in disk seeks if a large number of blocks are to be

allocated, but is simple and efficient for small numbers of blocks. It is not practical with this

method to identify blocks in particular locations for optimizing allocation to an individual file.

One advantage of the linked list method is that file recovery is enhanced. The blocks in a linked

free space list are stored in the order in which files are deleted. Since deleted files are placed at the

end of the list, the data on those blocks will be recoverable until the blocks are needed for reuse.

Note that the data in deleted files is not truly deleted from disk unless special effort is made

to clear or scramble all the bits in the blocks used by the file. This is a potential security risk.

Special software, called shredder software, is available for the purpose of truly deleting files

from disk in a way that they cannot be recovered. New systems are starting to offer this feature

as “secure delete”.

REFS FREE SPACE ALLOCATION REFS stores ranges of free space in three hierarchical

allocator tables, labeled large,medium, and small. Space for files and their corresponding tables

is allocated from the appropriate table.

Tape Allocation

Tape allocation is simpler than disk allocation. The size of a block can be varied to fit the logical

requirements of the file. It is usually not practical to reallocate space in the middle of a tape,

so files that grow must be rewritten. If necessary, the tape can be compacted, but it is usually

easier to do so by copying the tape to a new tape. Tape blocks can be linked, but, in general, files

are stored contiguously whenever possible. Tape is convenient for sequential access, but not

practical for random access. Random access files that are stored on tape are normally moved to

disk as a whole before use.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 566

566 PART FIVE THE SOFTWARE COMPONENT

CD, DVD, and Flash Drive Allocation

The file system used for various optical drives and some flash drives is similar to those found

on hard disks. The standard format is called UDF, for Universal Data Format. It can support

up to 2 TB of data on a disk. The directory format is hierarchical., consistent with other file

directory systems There are also extensions that make it possible to store a mixture of data,

audio, and images on the same disk. The UDF system includes support for bothHighDefinition

and Blu-Ray DVD formats.

17.5 FILE SYSTEMS, VOLUMES, DISKS,
PARTITIONS, AND STORAGE POOLS

Even a medium-sized computer system may store thousands or even millions of files. To locate

and use files effectively there must be some organization that makes sense to the users of the

system, as well as to the people responsible for administering the system. For a desktop system,

the files may all be stored on a single disk drive. On a larger system, files may be stored on

a number of different disks, either locally or on a network. Some disks may be fixed, others

removable. Some may be set up as RAID drives. (Forgot what RAIDs are? Check Chapter 9.)

So how is the operating system to handle all of this effectively? From the perspective of the

user, the goal is simplicity and convenience; for the system, the goal is efficiency. The system

administrator looks for manageability.

Although operating systems manage the massive amounts of data in modern systems

differently, most attempt to provide a structure that can divide the files, both logically and

physically, into reasonable groupings that attempt to meet the goals of the different parties.

Even the definition of a file system is somewhat arbitrary. Think of all the different ways

that you could use to organize and store all of your college research papers in file boxes. Your

main concern would be your ability to locate the files you need with minimum effort. You

might choose to create a single file system with the papers filed alphabetically by title. Or, you

might create a number of file systems, where each file box contains the papers for a particular

course sequence.

The computer file system works similarly. The user might face a single file system that

hides all of the storage details. Alternatively, she may be working on a system where each I/O

device is cataloged individually.

An important (and, it turns out, reasonable) assumption is that it is possible to group

the logical view of the files differently from that of physical storage as a means to achieve

an optimum solution. The file management component of the operating system provides the

connectivity between the two. The primary methods used for grouping files are based on

dividing and organizing file systems into disks, partitions, volumes, storage pools, andmultiple,

separate file systems. Some designers carry the concept of separate file systems even further into

virtual file systems.
As an example, an inexpensive desktop computer might have a single disk and a CD drive

or DVD drive. By default, Windows would treat this simple configuration as two file systems,

one for each disk, probably labeled C: and D:, respectively. In this situation, each disk has a

single file and directory system, logically facing the user, and a single I/O interface facing the

disk controller for each device. This configuration is illustrated in Figure 17.13(a).

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 567

CHAPTER 17 FILE MANAGEMENT 567

FIGURE 17.13

Partitions, File Systems, Volumes, and Pools

(a) Simple file systems

(b) Partitioned disk

(c) File system volumes

(d) Storage pool

Disk

File system C:
Partition

File system D:

Disk Disk

Volume
table of
contents

for B

Volume
table of
contents

for A

File
system

A

File
system

B

File system A & B
are also called

volumes

DVD
drive

Disk

File
systems

Disk RAID Disk Tape

DVD

Storage pool

Many systems also provide a means for dividing physical devices, particularly disks, into

independent sections called partitions. Disks may be divided physically or logically. (Think the

drawers of a file cabinet versus the dividers in a single drawer.) The partitions themselves can

be further divided conceptually into primary and extended partitions. Each partition can have

its own file system and directory structure. Figure 17.13(b) illustrates a disk partitioned into

two separate file systems. Files located on other partitions are often invisible to the file system

on an active partition. Each partition in a Windows system, for example, is assigned a different

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 568

568 PART FIVE THE SOFTWARE COMPONENT

letter and has its own file system. A partition is selected by specifying the letter of the desired file

system, followed by a colon. Of course, all of the file systems are accessible to the file manager,

so that a user can open multiple windows, each representing its own file system, to move data

from one to another, and to perform other operations requiring simultaneous access.

The partition concept includes the option of providing separate operating system facilities

on different partitions, so that each partition may have its own bootstrap loader, operating

system, and file management system. When this is the case, the file systems on different

partitions may be incompatible with each other, so that it is not natively possible for one file

system to read the directory or load the files from a different partition, even on the same

physical disk. In most cases, utilities exist that allow conversions between different file formats.

For example, utilities built into Linux systems can read and write to Windows FAT and NTFS

file systems. Conversely, the freeware ext2fs.sys utility can be installed on Windows systems to

enable Windows to read and write to Linux file systems.

(A brief historical note: disk partitioning was originally created because the file systems in

early personal computers, particularly MS-DOS and early versions of Windows, were barely

adequate to handle numbers large enough to address all of the blocks on the small disks of

the era. As a means of extending the capability of the file system to address all of the blocks

on larger disks, the disks themselves were partitioned. As the addressing capability of the file

systems grew, disk partitioning was retained as a means of creating separate logical spaces

for the user, as well as for making it possible to provide different types of file systems and/or

different operating systems on a single disk.)

Figure 17.13(c) illustrates another possibility. On many systems, different disks or disk

partitions from different disks and other devices can be combined into a single file system.

The file system must maintain a directory structure for each device or partition. In most

cases, the directory for each device is stored on the device itself. Inmany computer systems, each

file system is called a volume. On some of these systems, the directory is called a volume table

of contents. The volumes are indicated for each file system organization shown in Figure 17.13.

In particular, note that the volume concept is relatively independent of the actual physical disk

configuration, but is instead tuned to the needs of the user(s) and the requirements of the

system administrator(s).

On many systems, it is necessary to mount a volume, device, or partition before it can be

used. Mounting a volume means that the directory structure for the volume is merged into

an overall file structure for the system by attaching the directory structure of the volume to

some point in the overall file structure. This point is known as the mount point. In some

systems mounting is automatic. In others, mounting must be performed manually, using a

MOUNT command. Volumes in the Macintosh system, for example, are mounted automatically

if they are present when the system is booted. Flash drives, CDs, and DVDs are also mounted

automatically when they are inserted into the drive. Other devices must be mounted manually.

On older UNIX systems, all directories are mounted manually. Thus, it is necessary for the user

to issue a MOUNT command when a CD is changed on a traditional UNIX workstation. The

mount point also depends on the system. On a Macintosh, all volumes are mounted on the

desktop; on UNIX and Linux systems, a volume can be mounted anywhere on the directory

structure. The Linux file system design allows the mounting of multiple file system types

for transparent access across partitions and, even, across networks. It also offers automatic

mounting similar to that of the Macintosh.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 569

CHAPTER 17 FILE MANAGEMENT 569

An alternative file management model, ZFS, is implemented on the Oracle Solaris 11
operating system. Solaris 11 is a UNIX-based system intended for use in medium to large
computer installations. This model views disk storage as a single storage pool. The storage pool
can be shared by multiple file systems, but allocation of file space is controlled by a single file
manager. Amajor feature of this organization is that disks can be added to the pool dynamically
as additional storage is required without modifying the file structure as viewed by the users.
Because data can easily be stored by the file management system in multiple locations, the
use of RAID drives, data backup, and data integrity measures can be built into the system
as routine operations, handled invisibly by the system. Data and programs will also naturally
spread fairly evenly over all of the available physical devices, resulting in faster average access
times, especially in systems with heavy I/O requirements. Figure 17.13(d) illustrates the storage
pool approach.

Although the storage pool design concept is recent, it was released by Sun (now Oracle) to
the open source community. It has already been adapted for the FreeBSD operating system and
partially adapted for OS X; its use is likely to spread to other operating systems in the future.

17.6 THE DIRECTORY STRUCTURE
The directory system provides a means of organization so that files may be located easily and
efficiently in a file system. The directory structure provides the linkages between logical files
identified by their names and their corresponding physical storage area. Every stored file in a
file system is represented in the directory for that system. The directory system serves as the
basis for all the other file operations that we have already discussed. It also maintains records of
the attributes for each file. Some of the important attributes for a file that are commonly found
in a directory (or in the UNIX-style i-node) are shown in Figure 17.14.

FIGURE 17.14

Typical File Attributes

Name and extension
Type

Size
Maximum allowable size
Location

Protection
Name of owner
Name of group
Date of creation
Date of modification

Date of last use

Name and extension, if any, stored in ASCII or Unicode form
Needed if system supports different file types; also used for special
attributes, such as system, hidden, archive; alphanumeric character or
binary; sequential or random access required; and so on.
Size of file in bytes, words, or blocks
Size file will be allowed to grow to
Pointer to device and to location of starting file block on device, or pointer
to index block, if stored separate from file, or pointer to entry in FAT table
Access control data limiting who has access to file, possibly a password
User ID for owner of file; used for protection
Name of group with privileges, in some protection systems
Time and date when file was created
Time and date of most recent modification to file; sometimes user
identification is also maintained for audit purposes
Time and date of most recent use of file; sometimes user ID

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 570

570 PART FIVE THE SOFTWARE COMPONENT

A file system may support many different devices, including, often, multiple disks, as well

as tapes, CD-ROMs, flash drives and cards, and devices elsewhere on a network. In many

systems, the directory system conceals the physical differences from the user, providing logical

consistency throughout the system. On others, the physical device on which the file resides

may be represented by nothing more than a letter change preceding the file name, F: for the

CD-ROM on aWindows system, perhaps, and M: for the network file server. On a system with

a graphical interface, different devices may simply be represented by different disk or folder

icons.

There are a number of possible ways in which a directory can be organized. The simplest

directory structure is just a list. It is also known as a single-level, or flat, directory. All the

files stored in the system, including system files, application programs, and user files, are listed

together in a single directory. The single-level directory system has some obvious disadvantages:

n There is no way for a user to organize his work into logical categories as all the files

are of equal status in the directory.

n It is possible to destroy a file by mistake if the user isn’t careful when naming files.

This is particularly true because many of the files in the directory, notably the system

and application program files, were not originally created and named by the user.

There is even potential naming conflict between different commercial software

packages. Installation of a software package could cause another package to fail at a

later date, and it would be difficult to track down the problem.

n The single-level directory is unsuitable for a system with multiple users. There would

be no way to differentiate which files belong to which user. Naming of files by the

users would have to be done extremely carefully to prevent destroying another user’s

work. (How often have you named a program assignment “PROG1.JSP” or

“ASSIGN3.C”? How many other students in your class would you guess also did so?)

n Implementation of a single-level directory system is simple. However, as the directory

grows, the list will expand beyond its original space allocation and it will be necessary

for the system to allocate additional space, with pointers to move between the spaces.

Although this is also true of other directory systems, the single-level directory system

does not provide any organization that will make it easier to locate file entries when

the files are to be retrieved, so the search procedure must follow all the pointers until

the file is located. This is somewhat akin to searching an unalphabetized address book

from the beginning to find the name you want. On a large system, with many files, an

undirected search of this kind could take a considerable amount of time.

As a result of these disadvantages, one would not expect to see a single-level directory

system in use today.

Tree-Structured Directories

A tree structure satisfies most file directory requirements and is in common use in modern

computer systems.Thedirectory inMS-DOSandolder versionsofWindows is a tree-structured
directory. A variation on a tree-structured directory, the acyclic-graph directory structure is

even more powerful, but introduces some difficulties in implementation. All recent operating

systems support an acyclic-graph directory structure.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 571

CHAPTER 17 FILE MANAGEMENT 571

FIGURE 17.15

Part of a Tree-Structure Directory

CHAPTER1.DOC

4TH_EDITION

Q. EXE
FINAN.Q

CONFIG.SYS
AUTOEXEC.BAT

BACKUP.Q

BUDGET.FIN
PERSONAL
etc.

etc.

CHAPTER2.DOC
CHAPTER3.DOC
etc.

CHAPTER1.DOC

3RD_EDITIONCS617CS211 QUICKEN

FINANCEBOOKWINDOWS

root\

DOSCLASSES

CHAPTER2.DOC
CHAPTER3.DOC
etc.

chkdsk.exe
format.exe
shell.com
etc.

An example showing part of a tree-structured directory, also known as a hierarchical
directory, is represented in Figure 17.15. The tree structure is characterized by a root directory,

from which all other directories stem. On most systems, the root directory contains few, if any,

files. In this illustration, two files, AUTOEXEC.BAT and CONFIG.SYS, are found in the root

directory. All other entries in the root directory are themselves directories, sometimes called

subdirectories for clarity. The root directory and all its subordinate directories can contain files
or other directories. Additional branches can stem from any directory. The root directory is

stored in a particular location, known to the file system. Other directories are themselves stored

as files, albeit files with a special purpose. This means that directories can be manipulated by

the system like any other file.

The root directory, other directories, and files are all identified by names. Duplicates

within a particular directory are not legal, but use of the same name in different directories is

acceptable. Every file in the system can be uniquely identified by its pathname. The pathname

for a file is the complete list of names along the path starting from the root and ending at the

particular file. A separator symbol separates each name along the path. In many systems, the

separator symbol is the same as the name of the root directory. This is true both for Windows,

with a root named “\”, and for UNIX-based systems, “/”.

Although the visual appearance is considerably different, graphical interface systems

support a similar structure. Folders have a one-to-one correspondence to directories. Starting

from the desktop, you move through the tree structure by opening folders until you reach the

folder containing the desired files.

On single-user systems, the hierarchy is established by the user, usually in response to a

logical arrangement of his or her work. On systems that support multiple users, the main part

of the hierarchy is established by the system administrator, usually in an arrangement that is

consistent with a standard layout for the particular type of system. This makes it easier for users

whomust move betweenmultiple machines. Generally, the system has a particular subdirectory

that serves as the account directory for everyone on the system. Each user is assigned a tree

branch that can be expanded below that subdirectory and a starting point, known as the initial

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 572

572 PART FIVE THE SOFTWARE COMPONENT

working directory. On a single-user system, the initial working directory is established by the

system. In Windows, it is C:\Users\yourusername. In the Macintosh, it is a subdirectory just

below the root called the desktop.

From the current directory, the user can access files anywhere in the system. The file

name or new working directory can be specified relative to the current working directory,

or absolutely, from the root, by using a relative or absolute pathname, respectively. The
difference is easily determined by the system, since absolute pathnames begin with the root

name or symbol and relative pathnames don’t. In Figure 17.15, the file called BACKUP.Q can

be specified absolutely as \FINANCE\QUICKEN\BACKUP.Q. If the current working directory

is FINANCE, then the file can be accessed relatively as QUICKEN\BACKUP.Q. Systems

generally do not directly allow the use of a relative pathname above the current directory.

Instead, these systems provide a special name that can be used for the node at the next level

above the current working directory. In both Windows and Linux, this name is “..” (double

dot). Thus, to open the file CHAPTER1.DOC in the directory 4TH_EDITION from a current

working directory of 3RD_EDITION, you can specify the file with the absolute pathname

\BOOK\4TH_EDITION\CHAPTER1.DOC. The same file can also be accessed relatively as

..\4TH_EDITION\CHAPTER1.DOC.

When a user requests a file from the system, the system looks for the file in the user’s current

working directory, or in the location specified by the pathname. Most systems also provide an

environmental variable called path that allows the user to specify other path locations that are

to be searched for the file if a pathname is not given and if the file is not found in the current

working directory. There is a specified order to the search so that if there is more than one file

that qualifies, only the first file found is accessed.

The user can also change his or her current working directory. The user moves around

the tree using a CHANGE DIRECTORY command. An absolute or relative pathname can be

used. To change the current working directory from directory 3RD_EDITION to directory

4TH_EDITION in the figure, for example, one could issue a CD ..\4TH_EDITION command

or one could use the full pathname, CD \BOOK\4TH_EDITION. On systems that do not allow

relative pathnames above the current directory, the CD .. command provides a convenient way

to move upward to the next-level node. The user can also add and remove branches from the

tree with MAKE DIRECTORY and REMOVE DIRECTORY commands to provide a file organization that

meets the user’s requirements and desires.

In a graphical interface system, the current working directory is the folder that is currently

open. Folders can be created and deleted, which is equivalent to adding and removing branches

to the tree structure. Since there may be many folders open on the screen, it is easy to move

from one current working directory to another on a graphical interface system.

The tree-structured directory system provides solutions to the problems described at the

beginning of this section. The tree structure provides flexibility that allows users to organize files

in whatever way they wish. The tree structure solves the problem of organization for a system

with a large number of files. It also solves the problem of growth, since there is essentially no

limit on the number of directories that the system can support. It also solves the problem of

accessing files in an efficient manner. A directory is located by following the pathname from the

current directory or from the root, one directory file at a time. One negative consequence of this

method is that it may require retrieval of several directory files from different parts of the disk,

with the corresponding disk seek times, but at least the path is known, so extensive searching is

not necessary. Since duplicate names in a tree structure use different paths there is no confusion

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 573

CHAPTER 17 FILE MANAGEMENT 573

between identical file names, because each has a different pathname. For this textbook, for
example, the author has two different sets of files named CHAPTER1.DOC, CHAPTER2.DOC,
and so on. One set is located in a directory with the (relative) pathname BOOK\4TH_EDITION.
The other set is in a directory called BOOK\3RD_EDITION. This provides protection for the
author in case of a disk error. Similarly, each user on a system with multiple users starts from a
different pathname, so the use of similar file names by different users is not a problem.

Acyclic-Graph Directories

The acyclic-graph directory is a generalization of a tree-structure directory, expanded to include
links between separate branch structures on the tree. The links appear in the directory structure
as though they were ordinary file or directory entries. In actuality, they serve as pseudonyms for
the original file name. The link provides an alternative path to a directory or file. An example
is shown in Figure 17.16. In this diagram there are two links, shown in heavy print. There is
a link between the directory CURRENT, belonging to user imwoman, and the directory 2008,
belonging to user theboss. Thismakes all the files in directory 2008 available to imwoman. There
is also a link between directoryMYSTUFF, belonging to user jgoodguy, and the file PROJ1.TXT.
(Apparently, jgoodguy is working only on this one project.) The file PROJ1.TXT can be accessed
by theboss from her current directory by using the pathname PROJECTS/2008/PROJ1.TXT.
jgoodguy can access the same file using pathname MYSTUFF/PROJ1.TXT. imwoman uses

FIGURE 17.16

An Acyclic-Graph Directory

users

theboss imwomanjgoodguy

Link

Link

projectsmystuff current

2007 2008

proj3.txt proj2.txtproj1.txt

bin

/ root

other

Source: Adapted from [CHR94]. Reprinted by permission of John Wiley & Sons, Inc.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 574

574 PART FIVE THE SOFTWARE COMPONENT

pathname CURRENT/2008/PROJ1.TXT to reach the file. Note that it is also possible for

imwoman to change her current directory to 2008 as a result of the link.

The ability to add links between branch structures in a tree makes it possible to create

multiple paths, and pathnames, that lead to a single directory or file. From the perspective

of users on the system, this adds the powerful capability of being able to share files among

users. Each user has his path to the file with its own pathname. For a group collaborating

on a document, for example, a subdirectory could be created with all the pertinent files and

then linked to the working directories of each of the users. An individual user can even create

multiple paths to a file, if so desired. This capability could be useful if the file is associated

with two different directories, and the user would like to place it as an entry in both for more

convenient access.

One difficulty with implementation of an acyclic-graph directory is assuring that the links

do not connect in such a way that it is possible to cycle through a path more than once

when tracing out the path to a file. Consider the situation in Figure 17.17. The links between

current and projects and between projects and imwoman complete a cycle. Thus, the file name

PROJ1.TXT can be reached by an infinite number of paths, including

IMWOMAN∕CURRENT∕PROJECTS∕2008∕PROJ1.TXT
IMWOMAN∕CURRENT∕PROJECTS∕IMWOMAN∕CURRENT∕
PROJECTS∕2008∕PROJ1.TXT

IMWOMAN∕CURRENT∕PROJECTS∕IMWOMAN∕CURRENT∕
PROJECTS∕IMWOMAN∕CURRENT∕PROJECTS∕…

and so on.

This is obviously an unsatisfactory situation. When the file system is searching for files, it

will encounter an infinite number of paths that it believes must be checked. The system must

assure that the addition of a link does not create a cycle.

An additional difficulty is establishing a policy for the deletion of files that have multiple

links. Removing a file without removing the links leaves dangling links, links that point to

nowhere. It is also possible on some systems to remove all links to the file, leaving file space that

can’t be reclaimed by the system.

There is also the necessity for setting rules about the modification of a file that is open by

two different users at the same time. As an example, suppose that users 1 and 2 are both working

on the same file. User 1 makes some modifications and saves the file with his changes. Then,

user 2 makes other modifications and saves the file with her changes. Under certain conditions,

the changes made by user 2 will destroy the changes made by user 1. A system for locking the

file temporarily to prevent this type of error is required. Further discussion of locking is outside

the scope of this textbook.

As you can see, there are difficulties and dangers in providing and using acyclic-graph direc-

tories. Many system designers feel that the advantages outweigh the disadvantages, however.

UNIX systems and the Macintosh both support acyclic-graph directories. Macintosh links

are called aliases. The Macintosh uses a simple implementation. An alias is a hard-coded link

that points to the original file. If the original file is moved or deleted, use of the link will cause

an error. The Macintosh does not check for the presence of cycles; however, the visual nature

of the Macintosh interface makes cycles less likely to occur and less problematic. The search

operations that can cause loops are instead performed visually, and there is no reason for the

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 575

CHAPTER 17 FILE MANAGEMENT 575

FIGURE 17.17

Graph with a Cycle

users

theboss imwomanjgoodguy

Link

projectsmystuff current

Cycle

2007 2008

proj3.txt proj2.txtproj1.txt

bin

/ root

other

Source: Adapted from K. Christian and S. Richter, The Unix Operating System, 3rd ed. New York, John Wiley, 1994

user to continue opening folders beyond a point of usefulness. Windows implements links

similarly with shortcuts.
UNIX systems provide two different kinds of links. The difference between them is shown

in Figure 17.18. A hard link points from a new directory entry to the same i-node as another

directory entry somewhere in the file system. Since both entries point to the same i-node, any

changes made in the file are automatically reflected to both. The i-node has a field that keeps

track of the number of directory entries pointing to it. Any time a link is added, the counter is

increased by one. When a file is “deleted”, the count is reduced by one. The file is not actually

deleted until the count is zero. A major disadvantage of hard links is that some programs, such

as editors, update files by creating a new file, then renaming it with the original name. Since

the file creation results in a new i-node, the links now point to different i-nodes and different

versions of the original file. In other words, the link is broken.

Symbolic links work differently. With a symbolic link, the new directory entry creates a

file that holds a pointer to the original file’s pathname. Then, when accessing the new entry,

the symbolic link uses this file to identify the original pathname. Even if the original file is

physically moved, the link is maintained as long as the original pathname exists. Of course, the

link is broken if the original file is logically moved to a different directory, deleted, or renamed.

In this case, an attempt to reference the file specified by the link will cause an error. UNIX

does not attempt to keep track of symbolic links, as it does with hard links. An additional

minor disadvantage of symbolic links is that the symbolic link also requires the existence of an

additional file to hold the link pointer.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 576

576 PART FIVE THE SOFTWARE COMPONENT

FIGURE 17.18

The Difference Between Hard and Symbolic Links.

chapt8

File

i-node table
(a) Hard link

introcmds

introcmds

File

i-node table
(b) Symbolic link

chapt8

Sources: Adapted from K. Christian and S. Richter, The UNIX Operating System, 3rd ed. New York: John Wiley, 1994.

The UNIX system does not attempt to avoid cycles. Instead, it restricts access to the
linking capability of the system. Normal users may only create hard links to files, but not to
directories. This prevents the normal users from inadvertently creating cycles. Only the system
administrators can create links between directories. It is their responsibility to assure that they
do not create cycles.

17.7 NETWORK FILE ACCESS
One of the primary capabilities provided by networks is the access to files on other systems
connected to the network. Depending on the method used, files may be copied from one system
to another or may be accessed directly on the system holding the file. For the transfer of files
from one system to another, the TCP/IP protocol family includes ftp, a standard file transfer
protocol. ftp is implemented as a series of commands that can be used to move around and
view directories on a remote system and to upload or download a file or group of files residing
on that system. HTTP includes similar capabilities. However, ftp and HTTP do not include a
facility for accessing and using the file remotely. It must be copied to the local system for use.
For more general use, most operating systems provide a facility for using files from their remote
locations, without copying them onto the local system. There are two different approaches.
One technique, used primarily by Microsoft, is to identify with a name a connection point on
each system that allows access, and to alias a local drive letter to that name. Files may then
be manipulated using the drive letter as though the files were stored locally. For example, files
stored in the USER/STUDENT/YOURNAME directory on the Icarus system might be aliased
to drive letter M: on your personal computer. Then, you could perform any file or directory

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 577

CHAPTER 17 FILE MANAGEMENT 577

FIGURE 17.19

Typical NFS Configuration

Local
file

access

NFS
client

Disk
I/O

TCP/IP
suite

User
process

File
manager

NFS
server

Local
file

access

TCP/IP
suite

Local RemoteRPC

Disk
I/O

operation as though the files and directories were stored locally on drive M:. The M: drive icon
would appear in your “My Computer” window if you were usingWindowsNT, XP, or Vista, for
example. Notice that it is not necessary to copy the file to your local system to read or write it,
but that you can do so if you wish, using the usual copy command or by dragging-and-dropping
the file icon with the mouse.

The alternative method is to use the approach originated by Sun with the Network File
System (NFS). With NFS and similar systems, a remote directory is mounted to a mount
point on the local system. Remote files and directories are then used transparently in the same
way as local files. In fact, if the mount procedure was performed by the system as part of the
network connection procedure, the user might not even be aware of which files and directories
are local and which are remote. The NFS client/server manager is built into the operating
system kernel, and operates as an alternative to the local file system manager, using the RPC
(Remote Procedure Call) protocol. A typical NFS connection is shown in Figure 17.19. Linux
and Macintosh OS X work similarly. To add a file system to a local directory tree, the user
simply connects to a server and identifies a local mount point. File systems of different types
are handled automatically by the local system.

More recently, steps have been taken to provide more generalized, distributed network
directory services. These would be used for locating other types of information, in addition
to file services. Such generalized services could identify the configuration of a system or
information about employees in a business, for example. These systems are based on generalized
naming schemes, such as the Internet Domain Name Service, and are designed to locate files
and information uniquely wherever the information is located. A standard protocol, LDAP
(Lightweight Directory Access Protocol), exists for this purpose. An example of a generalized
network directory service is ActiveDirectory, supported by Microsoft.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 578

578 PART FIVE THE SOFTWARE COMPONENT

17.8 STORAGE AREA NETWORKS
Traditional network file access uses a client–server approach. Figure 17.20(a) shows this
approach. To access a file, a user client requests service from a file server. Files are stored on
hard disks and other devices attached to the server computer. In an organization, there may be
many servers, with file storage attached to each.

In large enterprises, this approach is unwieldy. A user has to know on which server a
desired file resides. The number of files in use is large. Synchronization of files that are stored
on multiple servers is difficult and risky. Backup requires additional care and effort. Data
warehousing and data mining applications are difficult because the data may be scattered over
a large number of servers.

An alternative approach that is used by large enterprises is to store data in a storage area
network (SAN). Figure 17.20(b) illustrates the organization of a storage area network. In a
storage area network, storage devices are stored together in a separate network that is accessible
from all servers. A variety of different storage devices, hard disks, RAID, tape, and optical
storage can all be used. Any server can access any storage device, with appropriate permission,
of course. To a server, the network appears as a storage pool, similar to those that we discussed
earlier. The technology of the network itself, as well as access to the network, is hidden within
a cloud. SAN terminology refers to this cloud as the fabric. A storage network can extend
over large distances using wide area network technology, allowing the use of devices at remote
locations for backup.

Clients access files in the usual ways. Servers act as an intermediary, accessing the data
from the SAN in the background, transparent to the client users.

There are standards and protocols in place for SAN technology, allowing products of
different vendors to be mixed and matched. The most common network technology used is
fibre channel.2 However, other technologies, including TCP/IP, ATM, iSCSI, and Ficon can all
interface directly with a fibre channel network.

For a deeper understanding of SAN, the reader is referred to Tate et al. [TATE06].

17.9 FILE PROTECTION
Except in small, single-user systems, the system must provide file protection to limit file access
to those who have authorization to use the file. File protection is provided on an individual
file-by-file basis. There are several different forms that file protection might take. A user might
be allowed to execute a file but not copy it, for example, or may be able to read it but not modify
it. A file might be shared by a group of individuals, and the file protection system should make
it convenient for group members to access the file, while protecting the file from others.

Although some systems provide additional forms of protection,most systems provide three
types of protection on files:

n A file may be read or not be readable (read protection).

n A file may be written to or not accessible for writing (write protection).

n A file may be executed or not be executable (execution protection).

2The British spelling of fibre is intentional. The original network was designed for use with fiber-optics. However,

the standard includes options for the use of copper wire, so the decision was made to name the technology fibre channel

instead.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 579

CHAPTER 17 FILE MANAGEMENT 579

FIGURE 17.20

Alternative Approaches for Data Storage

Network Storage area
network

Clients Servers

Storage

(a) Standard client server configuration

(b) Storage area network configuration

Network

Clients

Servers Dedicated
storage

Although there are other, more specific, possibilities, these restrictions are sufficient for

nearly every purpose and represent a good compromise for implementation purposes. For

example, it might be important that a particular user not be able to delete a file. Write

protection, although more restrictive, prevents deletion. If the user needs to modify such a file,

the user can copy the file, provided he or she has read rights, and modify the copy. The ideal

form of protection on amultiuser or server-based systemwould provide each file with an access
control list (ACL) of users that may access the file for each of the three forms of protection.

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 580

580 PART FIVE THE SOFTWARE COMPONENT

The list for a particular file would be maintained by the owner of the file. The amount of
overhead required to maintain and use ACLs is tremendous. The system must provide utilities
for maintaining the lists, storage space for the lists, and the mechanisms to check the lists
whenever a file is accessed. If the number of users on the system is large, the ACL for each file
might require a large amount of storage space. Since the system administrator is effectively the
owner of all the system files, there is a tremendous responsibility on one person to maintain a
large number of ACLs. Nonetheless, some systems do provide ACL protection.

A simpler, but more practical, protection method divides the user base of the system into
three categories. For each file, the systemdefines anowner, a group associatedwith the file, and a
universe that consists of everyone else. The file systemmaintains lists of groups. Each group has
a name, and a user can be amember ofmore than one group. Generally, groups are administered
by the system administrator, but on some systems, a group can be created by the owner of a file.

Under this protection method, each file provides nine protection flags, specifically, read,
write, and execute permission for each of the three categories’ owner, group, anduniverse.When
a file is created, the system sets a default protection established by the system administrator.
The owner of the file can then determine and set the protection differently, if so desired. In
UNIX-based systems, there is a CHMOD command for this purpose. The nine protection flags
can be stored in a single word within the directory. Figure 17.21 shows a typical UNIX directory
listing. The leftmost flag in the listing simply indicates whether a file is a directory (d), a
symbolic link (l), or an ordinary file (-). The next nine flags represent read, write, and execute
privileges for owners, groups, and universe, respectively. The presence of a hyphen in the listing
indicates that the privilege is turned off. The number of links to the file is next, then the name
of the owner and the name of the group. The remainder of each row gives the name of the file
and various file attributes.

Since directories are, themselves, files, most systems, including UNIX, provide similar
protection for directories. You’ll notice the same protection pattern listings for directories in
Figure 17.21. A read-protected directory, for example, could not be listed by a user with no read
access. It is not possible to save a file or delete a file to a write-protected directory. And a user
without execute permission cannot change his or her current directory to an execute-protected
directory.

A few systems provide an alternative form of file protection by assigning passwords to
every file or to every directory. Thismethod puts a burden on the user to remember the different
passwords attached to each file or each directory.

No matter how file protection is implemented, file protection adds considerable overhead
for the system, but file protection is an essential part of the system. In addition to the file
protection provided by limiting file access to authorized users, most modern systems also
provide file encryption capability, either for individual files and directories or to the file system

FIGURE 17.21

File Directory Showing Protection

$1s -1F
drwx------ 1 iengland csdept 36005 Feb 15 12:02 bookchapters/
-rw-r--r-- 1 iengland csdept 370 Sep 17 1:02 assignment1.txt
--wx--x--- 2 iengland csdept 1104 Mar 5 17:35 littleman*
-rwxrwx--- 1 iengland csdept 2933 May 22 5:15 airport shell*
drwxr--r-- 1 iengland csdept 5343 Dec 3 12:34 class syllabi/

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 581

CHAPTER 17 FILE MANAGEMENT 581

as a whole. This additional layer of protection is particularly useful when the file is exposed to
users (and, potentially, system invaders) on a network.

17.10 JOURNALING FILE SYSTEMS
For many business applications, the integrity of the file system is critical to the health of the
business. Of course, the first line of defense against the file system failure is a well-defined set
of proper system backup and file maintenance procedures. Journaling file systems extend this
protection to include automated file recovery procedures in the event of a disk crash or system
failure during file access operations.

Journaling systems provide a log file that records every system transaction that requires a
write access to the file system. Before a file write operation actually occurs, the logging system
reads the affected file blocks and copies them to the log, which is stored as a separate file.
If a system fault occurs during the write operation, the journaling file system log provides
the information necessary to reconstruct the file. Of course, there is a performance cost for
journaling, due to the extra file block reads and writes that are necessary to support the log file.

Journaling file systems provide two levels of capability. Simple journaling file systems
protect the integrity of the file system structure, but cannot guarantee the integrity of data that
has not yet been written to the disk. The disk is simply restored to its pre-failure configuration.
The Windows NTFS file system is a simple journaling file system. It is able to recover all of the
file system metadata, but does not recover current data that had not yet been saved when the
failure occurred.

A full journaling file system provides the additional ability to recover unsaved data and to
write it to the proper file location, guaranteeing data integrity as well as file system integrity.

Current full journaling file systems include IBM JFS, Silicon Graphics XFS, Oracle ZFS,
Microsoft ReFS, and Linux ext3 and ext4.

SUMMARY AND REVIEW
The file management system makes it possible for the user, and for programs, to operate with
files as logical entities, without concern for the physical details of file storage and handling. The
file system opens and closes files, provides the mechanism for all file transfers, and maintains
the directory system.

File systems vary in complexity and capability from the very simple, where all file data is
treated as a stream and just a few operations are provided, to the very sophisticated, with many
file types and operations. The simpler file systems require more effort within each program but,
in trade, provide additional flexibility.

Files are accessed sequentially, randomly, or some combination of the two. More complex
file accesses generally involve the use of indexes. To some extent, themethod of storage depends
on the required forms of access. Files may be stored contiguously or noncontiguously. Each
has advantages and disadvantages. The pointers to the various blocks that allow noncontiguous
access can be stored as links in the blocks themselves or in an index table provided for that
purpose. Often the index tables are associated with individual files, but some systems store the
indexes for every file in a single table, called a file allocation table. The file system also maintains
a record of available free space, either as a bitmap or in linked form.

The directory structure provides mapping between the logical file name and the physical
storage of the file. It also maintains attributes about the files. Most modern file systems

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 582

582 PART FIVE THE SOFTWARE COMPONENT

provide a hierarchical directory structure, usually as an acyclic graph. The hierarchical file

structure makes it possible for the user to organize files in whatever way seems appropriate.

The acyclic-graph structure adds file-sharing capability, at the expense of more difficult

maintenance of the structure.

Network file access is accomplished using files that are attached to servers or by using a

storage area network. Files that are attached to servers are accessed either by aliasing a name or

by mounting the directories locally. The server acts as an intermediary for files that are stored

on an SAN.

The file system also provides file protection. Some file systems maintain access lists, which

can establish privileges for any user on a file-by-file basis. Most systems provide a simpler form

of security that divides users into three categories and affords protection based on category.

FOR FURTHER READING
General discussions of file management systems will be found in any of the operating systems

texts that we have mentioned in previous chapters. Details about the file systems for particular

operating systems can be found in books that describe the operating system innards for the

particular system. For example, Glass andAbles [GLAS06] andChristian andRichter [CHRI94]

describe the Linux and UNIX file systems. NTFS is described in Russinovich and Solomon

[RUSS09]. There are many good books on file management systems. Among the best are those

of Weiderhold [WEID87], Grosshans [GROS86], and Livadas [LIVA90].

KEY CONCEPTS AND TERMS
absolute pathname

access control list (ACL)

acyclic-graph directory

alias

association

attributes

best-fit strategy

bitmap

bit vectors

block

cluster

collision

contiguous storage allocation

cycle

dangling link

defragmentation

(defragging)

directory

double indirect block

pointers

environmental variable

execution protection

fibre channel

fields

file allocation table (FAT)

file extension

file manager

first-fit strategy

form image

free space bitmap

ftp (file transfer protocol)

group

hard-coded link

hashing

hierarchical directory

i-node

index block

indexed sequential access

method (ISAM)

indexed storage allocation

journaling file system

key field

Lightweight Directory Access

Protocol (LDAP)

linked list

linked storage allocation

locking

logical file

master file table (MFT)

mount

mount point

NFS (Network File System)

noncontiguous storage

allocation

NT File System (NTFS)

overflow

owner

partition

pathname

physical view

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 583

CHAPTER 17 FILE MANAGEMENT 583

random access files
read protection
records
relative access files
relative pathname
Resilient File System (ReFS)
separator symbol
sequential access
sequential files

shortcut
shredder software
single indirect block pointers
storage area network (SAN)
storage pool
subdirectories
table image
tree-structured directory
triple indirect block pointers

universe

volume

volume table of contents

wild cards

working directory

write protection

ZFS

READING REVIEW QUESTIONS

17.1 The file management system provides a connection between a logical view of files
and a physical view of files. What is meant by a “logical view of files”? What is meant
by a “physical view of files”?

17.2 Consider a data file made up of records. Invent a simple file, then draw a table image
and a form image that each represent your file. In each of your drawings, identify a
record and a field. Is your file a logical view or a physical view?

17.3 What is a file attribute? Give two or three examples of a file attribute. Where would
the file attributes of a particular file be found?

17.4 The physical block or cluster size of a device that holds a file is a trade-off between
access speed and wasted space. Explain.

17.5 Give at least three examples of file operations that operate on the file as a whole.

17.6 Give at least three examples of file operations that manipulate the data within the file
itself.

17.7 Give three examples of file operations that operate only on the directories, not on the
files themselves.

17.8 A program file is always read in its entirety. Would this file be accessed sequentially
or randomly or by indexed access? Explain.

17.9 Describe the challenges faced by a file system when attempting to store files contigu-
ously.

17.10 Briefly explain the concept of linked allocation, noncontiguous file storage. For a file
that is stored in blocks 5, 12, 13, 14, 19, 77, and 90, show what a linked allocation
might look like.

17.11 What operation can a user perform to improve the ratio of contiguous to noncon-
tiguous files in a system?

17.12 NTFS file records are made up of components which are also called attributes,
although the word has a different meaning. What is an NTFS attribute? What are the
contents of an NTFS data attribute?

17.13 Describe the contents and format of a free space bitmap.

17.14 What does it mean tomount a volume into a file system?

17.15 What is a pathname?

17.16 What is the difference between a relative pathname and an absolute pathname? How
does the system know which one a user is specifying at a particular time?

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 584

584 PART FIVE THE SOFTWARE COMPONENT

17.17 Windows and Linux use two different methods to identify files on a network. Briefly
describe each method.

17.18 How does a storage area network differ from a client–server approach to storage?

17.19 You are given the directory tree in Figure 17E.1. Assume that you are currently
located at the point indicated with the arrow labeled (A) in the diagram. What is the
relative pathname for the file ourfile.doc? What is the absolute pathname for this file?
Suppose you are user Joan, located at the point indicated by the arrow labeled (B).
What is your relative pathname to the file ourfile.doc?

FIGURE 17E.1

etc home progs

joan sue

school

papers assts

IS224

ourfile.doc

(li
nk
)

home

bill

IS224 IS123

assign1.doc

grades.xls

kine AB

/

EXERCISES

17.1 You have noticed that loading the programs from your hard disk seems to take longer
than it used to. A friend suggests copying the files from your disk, one at a time, to
a different device, and back to your disk. You do so and discover that the programs
load much faster now. What happened? What alternative approach would achieve a
similar result more easily?

17.2 Explain why a MOVE operation from one device to another requires manipulation of
the file itself, whereas a MOVE operation from one place to another on the same device
involves manipulation only of the directory.

17.3 In many systems, the operations that work on a file as a whole are made up by
combining the operations that manipulate the internal file data. Explain how you

Englander c17.tex V2 - November 28, 2013 10:04 P.M. Page 585

CHAPTER 17 FILE MANAGEMENT 585

would copy a file from one location to another using the internal file operations. Does

this method seem consistent with your experience of what happens when you copy a

large file from one disk drive to another on your PC?

17.4 From a Windows command line prompt, do a DIR command. Carefully note how

much space remains on your disk. Now open up NOTEPAD, and create a new file

containing just a periodwith a carriage return. Call this file PROB174.TXT and return

to the prompt. Do a DIR PROB174.TXT command. How much space does your new

file take up? How much space remains on your disk? Explain what happened.

17.5 List a number of types of files that you would expect to be accessed sequentially. Do

the same for files that you would expect would require random access.

17.6 Select a directory and list the files in that directory. For each file, determine how

many blocks would be required if the block size were to be 512 bytes, 1 KB, 4 KB, and

8KB. Calculate the internal fragmentation for each file and for each block size. How

much disk space on your PC is wasted for each block size? Also give the answer as a

percentage of the total block space used for that directory.

17.7 Explain the trade-offs between contiguous, noncontiguous linked, andnoncontiguous

indexed file allocation. In particular, note the effect on sequential and random access

methods.

17.8 Assume a UNIX i-node requires a block of 60 bytes. How many disk blocks can

be accessed using just direct, single, and double indirect indexing, as shown in

Figure 17.9?

17.9 What are the advantages of partitioning a disk, rather than using the entire disk as

one partition?

17.10 What does it mean to mount a disk?

17.11 What role does a path serve?

17.12 Explain the specific file privileges for each file in Figure 17.21. Who is the owner of

these files? What is the name of the group that has access to these files?

17.13 The access control list for a file specifies which users can access that file, and how.

Some researchers have indicated that an attractive alternative would be a user control

list, which would specify which files a user could access, and how. Discuss the

trade-offs of such an approach in terms of space required for the lists, and the steps

required to determine whether a particular file operation is permitted.

17.14 What is the purpose of the open and close operations?

17.15 a. Disk caching is a technique that is used to speed up disk access by holding blocks

of disk in memory. Discuss strategies that could be used to improve system

performance with disk caching.

b. The time of write back for files that have been altered depends on the system.

Some systems write back a file immediately when it has been altered. Others

wait until the file is closed or until the system is not busy or until activity on

the particular file has stopped for a given period of time. Discuss the trade-offs

between these different approaches.

17.16 Consider a file that has just grown beyond its present space on disk. Describe what

steps will be taken next for a contiguous file, for a linked noncontiguous file, and for

an indexed file.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 586

CHAPTER 18

THE INTERNAL OPERATING
SYSTEM

Thomas W. Sperling

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 587

18.0 INTRODUCTION
In Chapter 15 we presented an overview of the role of the operating system as a primary
computer system component and observed that it is possible to represent the architecture
of the operating system as a hierarchy, consisting of several layers of programs that interact
with each other to handle the routine tasks of command processing, file management, I/O,
resource management, communication, and scheduling. We continued the discussion in
Chapter 16 by starting with the most familiar layer, the user interface. Chapter 17 moved
inward to the next layer and presented the features and organization of the filemanagement
system. The filemanager converts the logical representation of files as seen by the user or the
user’s programs to thephysical representation stored andmanipulatedwithin the computer.

Nowwe are ready to examinemajor features of the remaining inner layers. These layers
are designed primarily to manage the hardware and software resources of the computer
and its interactions with other computers. In this chapter, we will look at how these internal
operations are performed; we will consider how the operating system programs manage
processes, memory, I/O, secondary storage, CPU time, and more for the convenience,
security, and efficiency of the users.

We will briefly review the concepts fromChapter 15 first. Then we expand our focus to
look at the various components, features, and techniques that are characteristic of modern
operating systems. We will show you a simple example in which the different pieces have
been put together to form a complete system.

A modern system must have the means to decide which programs are to be admitted
into memory and when, where programs should reside in memory, how CPU time is to be
allocated to the various programs, how to resolve conflicting requirements for I/O services,
and how to share programs and yet maintain security and program and data integrity, plus
resolve many other questions and issues. It is not uncommon for the operating system to
require several hundreds of megabytes of memory just for itself.

In this chapter, we consider the basic operations performed by the operating system.
We introduce individually the various tasks that are to be performed by the operating
system and consider and compare some of the methods and algorithms used to perform
these tasks in an effective manner.We discuss the basic procedure of loading and executing
a program, the boot procedure, the management of processes, memory management,
process scheduling and CPU dispatch, secondary storage management, and more.

As we have mentioned previously, the modern computer includes additional CPU
hardware features that work in coordination with the operating system software to solve
some of the more challenging operating system problems. Virtual storage is arguably the
most important of these advances. Virtual storage is a powerful technique for solvingmany
of the difficulties ofmemorymanagement. Section 18.7 is devoted to a detailed introduction
to virtual storage. It also serves as a clear example of the integration of hardware and
operating system software that is characteristic of modern computer systems.

Other examples include the layering of the instruction set to include certain protected
instructions for use only by the operating system, which we presented in Chapter 7, and
memory limit checking, which the operating system can use to protect programs from
each other.

587

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 588

588 PART FIVE THE SOFTWARE COMPONENT

The subject of operating systems can easily fill a large textbook and an entire course all

by itself. There are many interesting questions and problems related to operating systems and

many different solutions to the problem of creating a useful and efficient operating system.

Obviously, wewon’t be able to cover this subject in a great amount of detail, but at least you’ll get

a feeling for some of themore important and interesting aspects of how operating systems work.

The many tasks that a modern operating system is expected to perform also expand the

overhead required by the operating system, both in terms of memory and in the time required

to perform the different functions. We will also look at some of the measures that are used to

determine the effectiveness of an operating system. Finally, you’ll have a chance to read about a

fewof themore interestingproblems, especially those that canhavea significant effect on theuser.

18.1 FUNDAMENTAL OS REQUIREMENTS
Always keep in mind that the fundamental purpose of any operating system is to load and

execute programs. This is true regardless of the specific goals, design features, and complexity

of the particular operating system that you happen to be looking at.

With this fundamental idea in mind, look again at the various functions that are provided

within the operating system. To assist with this task, the hierarchical model is shown again for

your convenience in Figure 18.1.

FIGURE 18.1

A Hierarchical Model of an OS

User

User interface

Commands & utilitiesUser space

Kernel space

File services

Network
services

Process
management

Resource
allocation

Virtual memory
manager

Input‒Output System
Device Drivers

HardwareNetwork

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 589

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 589

Recall that to load and execute a program, the system must provide a method of getting
the program from its storage location on some I/O device, such as disk, into memory; it must
provide locations in memory for the program and its data; it must provide CPU time for the
program to execute; and it must provide access to the I/O facilities that the program needs
during its execution. Sincemultiple programs are normally sharing the system and its resources,
it must do all this in a way that is fair and meets the sometimes conflicting requirements of the
different programs.

The lower layers of the model provide programs that fulfill these requirements. The file
manager layer translates logical file requests from the command shell or the user’s programs
into specific physical I/O requests that are then performed by the appropriate I/O device
management programs. Resource allocation management is also provided in this layer to
resolve conflicts between different programs that may require I/O services at the same time. The
I/O device management and resource allocation programs are sometimes known collectively as
an I/O control system, or more commonly, IOCS.

The memory management and scheduling operations within the resource allocation
function determine if it is possible to load programs and data into memory, and, if so, where in
memory the program is to be loaded. Once the program is in memory, the scheduler allocates
time for the program to execute. If there are multiple programs in memory, the scheduler
attempts to allocate time for each of them in some fair way.

To increase security, many operating systems construct these programs as a hierarchy in
which each layer of programs in the model requests services from the next innermost layer,
using an established calling procedure. Most modern computers provide special protected
hardware instructions for this purpose. Recall from Chapter 15 that this is not the only possible
architecture for an operating system. At the very least, the critical parts of the operating
system will execute in a protected mode while other programs will execute in user mode.
A well-designed operating system will repel attempts to penetrate the internal layers of the
system by means other than established OS calling procedures. It must isolate and protect each
program, yet allow the programs to share data and to communicate, when required.

There are many different ways of performing each of these functions, each with advantages
and disadvantages. The trade-offs selected reflect the design goals of the particular system. To
give you a simple example, a computer that operates strictly in a batch mode might use a simple
CPU scheduling algorithm that allows each program to run without interruption as long as the
program does not have to stop processing to wait for I/O. This strategy would not be acceptable
on an interactive system that requires fast screen response when a user clicks the mouse or
types something into the keyboard. Or, in the case of a smartphone, when the phone rings! In
the latter cases, a more sophisticated scheduling algorithm is clearly required.

Before we continue with discussions of the individual resource managers, you should be
aware that these managers are not totally independent of each other. For example, if there are
more programs in the memory of an interactive system, the scheduler must give each program
a shorter period of time if satisfactory user response is to be achieved. Similarly, more programs
in memory will increase the workload on a disk manager, making it more likely that there will
be several programs waiting for disk I/O at the same time. A well-designed operating system
will attempt to balance the various requirements to maximize productive use of the system.

Before proceeding to detailed discussions of each of the major modules in a multitasking
operating system, it may provide some insight to introduce you to a simple example of a system,
a sort of “Little Manmultitasking operating system”, if you will. The system discussed here does
not run on the Little Man Computer, however. It was designed for a real, working computer

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 590

590 PART FIVE THE SOFTWARE COMPONENT

system. Despite its age, simplicity, and limited functionality, this example illustrates many of
the important requirements and operations of a multitasking system.

Example: A Simple Multitasking Operating System

The miniature operating system (hereafter referred to as MINOS) is an extremely small and
simple multitasking system with many of the important internal features of larger systems. It
is based on a real operating system that was developed by the author in the 1970s for a very
early and primitive microcomputer that was used primarily to measure data in remote rural
locations. Calculations were performed on the data and the results telecommunicated back to a
larger computer for further processing. The original goals of the design were:

n First and foremost, simplicity. Memory was very expensive in those days, so we didn’t
want to use much for the operating system. There was only 8KB of memory in the
machine.

n Real-time support for one very important program that was run frequently and had
to operate very fast. This was the data measurement program. The system therefore
features a priority scheduling system in choosing which program is to run.

The internal design of MINOS was of more interest and importance to the designers
than the user interface or the file system. There was no disk on this computer, only an audio
cassette tape recorder, modified to hold computer data, so the file system was simple. (Disks
were too expensive, too large, and too fragile for this type of system back then!) There was a
keyboard/printer user interface, but no video display interface. Security was not a concern.

The features of particular interest to us here are the operation of memory management,
process scheduling, and dispatching. Despite their simplicity, the design of these modules is
characteristicof thewaycurrentoperating systemswork.Thesewere the important specifications
for MINOS:

n Keyboard/printer command line user interface. To keep things simple, there were
only a few commands, most of which could be entered by typing a single character.
For example, the letter “l” was used to load a program from tape, the letter “s” to save
a program to tape.

n Memory was divided into six fixed partitions of different sizes. A memory map is
shown in Figure 18.2. One partition was reserved for MINOS, which was entirely
memory resident. Partition P-1 was reserved for high-priority programs, most com-
monly the data retrieval program, since it had to retrieve data in real time. Partitions
P-2, P-3, and P-4 were of different sizes, but all shared equal, middle priority.
Partition P-5 was a low-priority area, which was used for background tasks, mostly
internal system checking, but there was a simple binary editor available that could be
loaded into the low-priority partition for debugging and modifying programs.

n The operating system was divided into three levels: the command interface; the I/O
subsystem; and the kernel, which contained the memory manager, the
communication interface, and the scheduler. The operating system kernel had the
highest priority by default, since it had to respond to user commands and provide
dispatching services. It could interrupt and preempt other programs. However,
routine operations such as program loading were processed at the lowest priority
level. A block diagram of MINOS appears in Figure 18.3.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 591

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 591

FIGURE 18.2

The MINOS Memory Map

8 KB
P-1

P-5

P-4

P-3

P-2

MINOS kernel

7 KB

5.2 KB

4.2 KB

3 KB

1.1 KB

0

Note again that MINOS did not support a file system or most

other user amenities; it was primarily oriented toward program

loading and execution. This limitation does not concern us, since

the primary focus of this discussion is the internal operation of the

system. The two major components of the kernel were the process

scheduler/memory manager and the dispatcher.

MINOS was capable of manipulating up to five user programs at

a time. The process scheduler handled requests for program loading.

The header for a program to be loaded specified a priority level and

a memory size requirement. Programs were loaded into the smallest

available memory space of the correct priority level that would fit the

program. Of course, there was only a single memory area available

for each program of the highest and lowest priorities. If space was

not available, the process scheduler notified the user; it was up to

the user to determine which program, if any, should be unloaded to

make room.

FIGURE 18.3

Block Diagram, MINOS

10-msec
Real-time

clock
Kernel

Command
interface

I/O
subsystem

For each program in memory, there was an entry in

a process control table, shown in Figure 18.4. Recall from

Chapter 15 that at any instant in time, one process per

CPU is running, while the other processes are ready to run

or waiting for an event, such as I/O completion, to occur.

The process control table shows the status of each program

and the program counter location where the program will

restart when it is next run. In MINOS, it also contained

locations for storage and restoration of each of the two

registers that were present in the microcomputer that was

used. There was also one additional register that kept track

of which mid-priority process, partition 2, partition 3, or

partition 4, was run most recently. We called this register the mid-priority process run last, or

MPRL, register. Since there was one entry in the process table for each partition, the priority

value for each program was already known by the operating system.

The most interesting part of MINOS was the program dispatcher. A real-time clock in

the computer interrupted the computer every 1/100th of a second and returned control to

the dispatcher. The dispatcher went through the process control table in order of priority

and checked the status of each active entry. (An inactive entry is one in which there was no

program loaded into the space, or in which the program in the space had completed execution

and was not running.) If the entry was blocked because it was waiting for I/O to be completed,

it was not available to run and was passed by. The highest-priority ready program was selected

and control passed to it. If there were two or three ready programs of the same priority,

they were selected in a round-robin fashion (program 2, program 3, program 4, program 2,

program 3, . . .), so that each got a turn. The MPRL register was used for this

purpose.

The MINOS dispatching algorithm guaranteed that the high-priority real-time program

always got first shot at the CPU and that the maximum delay before it could execute was

1/100th of a second. The ready bit for this program was actually set by a small interrupt routine

controlled by the measuring device. Figure 18.4 illustrates the dispatching process.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 592

592 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.4

MINOS Process Dispatch

Process control table

Priority

Highest

Lowest

Meaning of status:
0 Inactive
1 I/O blocked
2 Ready
3 Running

Current
prog ctr

Partition
#

Partition Status

Process dispatch
operation

This one’s inactive

New
status

A X Status
Register

1
2
3
4
5

7244
1790
3100
4646
6899

220
333

0
2

117

0
12

0
16

0

0
1
2
2
3

OS 0010 51 7

1

2

3

4

5

0

1

2

2

3

0

1

2

3

3 4

2

—

This one’s busy

This one’s ready.
Check MPRL. It ran last.
Skip it and go on

This one’s ready
RUN IT!

Reset this to ready

MPRL
(Mid priority process

run last register)

The background task represented the lowest priority. By default, this partition contained
software routines for testing various aspects of the hardware. Thus, when no other program

was selected, MINOS defaulted to the hardware diagnostic routines.
With MINOS as a background, the next nine sections of Chapter 18 consider various

aspects of a multitasking operating system in more detail. You may also wish to review Section
15.3 of Chapter 15, which introduces the various services and modules present in a modern

multitasking system, before proceeding.

18.2 STARTING THE COMPUTER SYSTEM:
THE BOOTSTRAP

As a first step, we need to consider what is required to get the computer started. You will recall

that when the computer is first turned on, the contents of RAM are unknown. Furthermore,
you know that there must be a program in memory for CPU execution to take place. These two

considerations are contradictory; therefore, special means must be included to get the system
into an operating state.

Initial program loading and start-up is performed by using a bootstrap program that is built
permanently into a read-only part of memory for the computer. This bootstrap program begins

execution as soon as the machine is powered up. The bootstrap program contains a program
loader that automatically loads a selected program from secondary storage into normalmemory

and transfers control to it. The process is known as bootstrapping, or more simply, as booting

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 593

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 593

FIGURE 18.5

Bootstrapping a Computer

RAM

Bootstrap
loader

ROM
1. When computer is started,
 execution begins with bootstrap
 loader, permanently stored in ROM.

2. Bootstrap loader locates
 operating system kernel program,
 usually at a fixed disk location.

4. Transfers control to
 starting location of
 operating system
 program with a JMP
 instruction.

3. Loads it into RAM.

Note: Loader program in OS can
 then be used to load and
 execute user programs.

the computer. IBM calls the process Initial Program Load, or IPL. Figure 18.5 illustrates the
bootstrapping operation.

Since the bootstrap is a read-only program, the program that it loadsmust be predetermined
and must be found in a known secondary storage location. On a personal computer, this will
usually be found at a particular track and sector on a hard disk, although the bootstrap can
be tailored to start the computer from another device, or even from another computer if the
system is connected to a network. On a tablet or smartphone, the program will be found at
a known location of built-in read-only memory. Usually the bootstrap loads a program that
is itself capable of loading programs. (This is the reason that the initial program loader is
called a bootstrap.) Ultimately, the program loaded contains the operating system kernel. In
other words, when the boot procedure is complete, the kernel is loaded, and the computer is
ready for normal operation. The resident operating system services are present and ready to go.
Commands can be accepted, and other programs loaded and executed. The bootstrap operation
is usually performed in two or more stages of loading to increase flexibility in the location of
the kernel and to keep the initial bootstrap program small.

EXAMPLE
The PC serves as an appropriate and familiar example of the bootstrap start-up procedure.
Although the PC uses a multistep start-up procedure, the method is essentially identical to that
we have just described.

The PC bootstrap loader is permanently located in the system BIOS, or more recently, in the
Unified Extensible Firmware Interface. This is read-only memory that is included as part of the
computer, and introduced previously in Chapter 15. When the power switch for the computer
is turned on, or when the reset button is pushed, control is transferred to the first address of

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 594

594 PART FIVE THE SOFTWARE COMPONENT

the bootstrap loader program. The PC bootstrap begins by performing a thorough test of the
components of the computer. The test verifies that various components of the system are active
and working. It checks for the presence of a monitor, of a hard drive if installed, and of a
keyboard. It checks the instructions in ROM for errors by calculating an algebraic function of the
1s and 0s, known as a checksum, and comparing that value with a predetermined correct value.
It checks RAM by loading known data into every location and reading it back. Finally, it initializes
various registers, including the instruction pointer, flags, and various address lines.

At the completion of this test, the bootstrap loader determines the start-up device. This
is a setting stored permanently in a special memory, modifiable by the user at start-up time.
On modern PCs, the system may be booted from a hard disk or SSD, a CD or DVD, or many
USB-pluggable devices. The system disk contains a sector known as a master boot record, and
the boot record is loaded next.

The boot record now takes control. It also contains a loader, with a device driver tailored
to the particular device. Assuming that a version of Windows is to be loaded, the boot record
then loads a sequence of files, including the kernel, the registry; the hardware interface; various
kernel, subsystem, and API libraries; and a number of other components. The items loaded are
based on entries in the registry. The user has little control over this process while it is happening.
Next, a logon program, WINLOGON.EXE is initiated. Assuming that the user is authorized and
that the logon is successful, the kernel sets the user parameters defined in the registry, the
Windows GUI is displayed, and control of the system is turned over to the user.

Different BIOSes vary slightly in their testing procedures, and some allow the user to change

some PC setup settings when testing takes place. The user can also force the bootstrap to occur

one step at a time to remedy serious systemproblems.Other than that, the user or system admin-

istrator controls the PC environment with standard tools provided by the operating system.

As noted, the procedure described here takes place when power is first applied to the

computer. This procedure is also known as a cold boot. The PC also provides an alternate

procedure known as a warm boot, for use when the system must be restarted for some reason.

The warm boot, which is initiated from a selection on the shutdownmenu, causes an interrupt

call that reloads the operating system, but it does not retest the system and it does not reset the

various registers to their initial values.

EXAMPLE
It is important to realize that basic computer procedures are not dependent on the size of the
computer. The boot procedure for a large IBM mainframe computer is quite similar to that of a PC.
IBM mainframe computers are bootstrapped using the Initial Program Load procedure. IPL works
very similarly to the PC bootstrap procedure. Whenever power is applied to an IBM mainframe
computer, the computer is in one of four operating states: operating, stopped, load, and check
stop. The operating and stopped states are already familiar to you. The check stop state is a
special state used for diagnosing hardware errors. The load state is the state corresponding to IPL.

The system operator causes the system to enter load state by setting load-unit-address
controls and activating the load-clear or load-normal key on the operator’s console. The load-unit-
address controls establish a particular channel and I/O device that will be used for the IPL. The
load-normal key performs an initial CPU reset that sets the various registers in the CPU to their
initial values and validates proper operation. The load-clear key does the same, but also performs
a clear reset, which sets the contents of main storage and many registers to zero.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 595

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 595

Following the reset operation, IPL performs the equivalent of a START I/O channel command,
as discussed in Chapter 11. The first channel command word is not read from memory, since
memory may have been reset to zero. Instead, a built-in READ command is used, which reads
the IPL channel program into memory for execution. The IPL channel program then reads in the
appropriate operating system code and transfers control to it.

18.3 PROCESSES AND THREADS
When considering a multitasking system, it is easiest to think of each executing task as a

program. This representation is not inaccurate, but it is not sufficiently inclusive, precise, or

general to explain all the different situations that can occur within a computer system. Instead,

we may define each executing task more usefully as a process. A process is defined to include a

program, together with all the resources that are associated with that program as it is executed.

Those resources may include I/O devices that have been assigned to the particular process,

keyboard input data, files that have been opened, memory that has been assigned as a buffer for

I/O data or as a stack, memory assigned to the program, CPU time, andmany other possibilities.

Another way of viewing a process is to consider it as a program in execution. A program

is viewed passively: it’s a file or a listing, for example. A process is viewed actively: it is being

processed or executed.

In batch systems, a different terminology is sometimes used. A user submits a job to the

system for processing; the job is made up of job steps, each of which represents a single task. It
is not difficult to see the relationship among jobs, tasks, and processes.When the job is admitted

to the system, a process is created for the job. Each of the tasks within the job also represents

processes; specifically, processes that will be created as each step in the job is executed. In this

book we tend to use the words job, task, and process interchangeably.

FIGURE 18.6

Two Processes Sharing a Single Program

Editor
program

Last
instruction
executed

Text
being edited

Last
instruction
executed

Process
1

Process
2

Process
1

data

Process
2

data

Text
being edited

The difference between a program and a process is

not usually important in normal conversation, but from

the perspective of the operating system the difference

may be quite significant and profound. For example, most

modern operating systems have the capability of sharing

a single copy of a program such as an editor among

many processes concurrently. Each process has its own

files and data. This practice can save memory space, since

only a single copy of the program is required, instead of

many; thus, this technique increases system capability.

Crucial to this concept, however, is the understanding

that each process may be operating in a different part of

the program; therefore, each process maintains a different

program counter value during its execution time, as well

as different data. Each process has its own space to store

its register values for context switching. This concept

is illustrated in Figure 18.6. By maintaining a separate

process for each user, the operating system can keep track

of each user’s requirements in a straightforward manner.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 596

596 PART FIVE THE SOFTWARE COMPONENT

Even in a single-user system, multiple processes may share program code. For example,

the program code that produces the Windows interface will be shared by all the processes with

open windows on a screen. Each process will have its own data: the coordinates of the window,

pointers to the menu structure for that window, and so forth.

To theoperating system, thebasic unit ofwork is aprocess.Whenaprocess is admitted to the

system, theoperating system is responsible for every aspect of its operation.Theoperating system

must allocate initial memory for it and must continue to assure that memory is available to the

process as it is needed. It must assign the necessary files and I/O devices and provide stackmem-

oryandbuffers. Itmust scheduleCPUexecution time for theprocess andperformcontext switch-

ing between the various executing processes. The operating system must maintain the integrity

of the process. Finally, when the process is completed, it terminates the process in an orderly

way and restores the system facilities and resources to make them available to other processes.

Processes that do not need to interact with any other processes are known as independent

processes. In modern systems, many processes will work together. They will share information

and files. A large task will often be modularized by splitting it into subtasks, so that each process

will only handle one aspect of the task. Processes that work together are known as cooperating

processes. The operating system provides mechanisms for synchronizing and communicating

between processes that are related in some way. (If one process needs the result from another,

for example, it must know when the result is available so that it can proceed. This is known as

synchronization. Itmust also be able to receive the result from theother process. This is commu-

nication.) The operating system acts as the manager and conduit for these interprocess events.

To keep track of each of the different processes that are executing concurrently in memory,

the operating system creates and maintains a block of data for each process in the system. This

FIGURE 18.7

A Typical Process Control Block

Process ID
Pointer to parent process

Pointer area to child processes
...

Register save area
...

Process state
Program counter

Memory pointers
Priority information

Accounting information

Pointers to shared memory
areas, shared processes and

libraries, files, and
other I/O resources

data block is known as a process control block, frequently abbreviated as

PCB. The process control block contains all relevant information about

the process. It is the central resource used by the various operating system

modules as they perform their process-related functions.

In MINOS, the process control block was simple. It was only

necessary to keep track of the program counter and a pair of register

values so that processes could be suspended and restarted, plus the

status and priority of the program. Since MINOS divided memory into

partitions of fixed size, there was exactly one process and therefore one

PCB per partition, so it was not even necessary for the operating system

to keep track of the memory limits of a process.

In a larger system, process control is considerably more complex.

Theremay bemanymore processes. Contention for the availablememory

and for various I/O resources is more likely. There may be requirements

for communication between different processes. Scheduling and dispatch

are more difficult. The complexity of the system requires the storing of

much additional information about the process, as well as more formal

control of process operations.

The contents of a typical process control block are shown in

Figure 18.7. Different system PCBs present this information in dif-

ferent order and with some differences in the information stored, but

these differences are not important for the purposes of this discussion.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 597

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 597

Each process control block in Figure 18.7 contains a process identification name or number

that uniquely identifies the block. In Linux, for example, the process identification number

is known as a process identifier, or more commonly, a PID. Active processes are readily

observable on the Linux system using the ps command.

Next, the PCB contains pointers to other, related processes. This issue is related to the way

in which new processes are created. It is discussed in the next section. The presence of this area

simplifies communication between related processes. Following the pointer area is an indicator

of the process state. In MINOS, four process states were possible: inactive, ready, blocked, and
running. In larger systems, there are other possible states; processor states are discussed later

in this section. The program counter and register save areas in the process control block are

used to save and restore the exact context of the CPU when the process gives up and regains

the CPU.

Memory limits establish the legal areas of memory that the process may access. The

presence of this data simplifies the task of security for the operating system. Similarly, priority

and accounting information is used by the operating system for scheduling and for billing

purposes.

Finally, the process control block often contains pointers to shared program code and data,

open files, and other resources that the process uses. This simplifies the tasks of the I/O and file

management systems.

Process Creation

A little thought should make it clear to you that a process is created when you issue a command

that requests execution of a program, either by double-clicking on an icon or by typing an

appropriate command. There are alsomanyotherways inwhich a process is created. Particularly

on interactive systems, process creation is one of the fundamental tasks performed by the

operating system. Processes in a computer system are continually being created and destroyed.

Since any executing program is a process, almost any command that you enter into a

multitasking interactive system normally creates a process. Even logging in creates a process,

since logging in requires providing a program that serves as your interface, giving you a prompt

or GUI, monitoring your keystrokes, and responding to your requests. In many systems, this is

known as a user process. In some systems, all processes that are not modules of the operating

system are known as user processes.

It should also be remembered that the operating system itself is made up of program

modules. These modules, too, must share the use of the CPU to perform their duties. Thus, the

active parts of the operating system are, themselves, processes. When a process requests I/O or

operating system services, for example, processes are created for the various operating system

program modules that will service the request, as well as for any additional processes resulting

from the request. These processes are sometimes known as system processes.
In batch systems, jobs are submitted to the system for processing. These jobs are copied,

or spooled, to a disk and placed in a queue to await admission to the system. A long-term

scheduler in the operating system, discussed in Section 18.5, selects jobs as resources become

available and loads them into memory for execution. A process is created when the long-term

scheduler determines that it is able to accept a batch job and admits it to the system.

For convenience, operating systems generally associate processes with the process that

created them. Creating a new process from an older one is commonly called forking or

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 598

598 PART FIVE THE SOFTWARE COMPONENT

spawning. The spawning process is called a parent. The spawned process is known as a child.
Many systems simply assign priorities, resources, and other characteristics to the child process

by cloning the parent process. This means creating a process control block that is a duplicate

of itself. Once the child process begins to execute, it goes by way of its own path. It can request

its own resources and change whatever characteristics it needs to.

As an example of process creation, a C++ program compiler might create child processes

that perform the different stages of compilation, editing, and debugging. Each child process is

created when the specific task is needed and killed when the task is complete. Incidentally, note

the synchronization between processes that is suggested by this example. If the compile process

encounters an error, for example, the parent is notified so that it can activate an editor process.

A successful compile will result in a load process that will load the new program for execution.

And so on.

Removing a parent process usually kills all the child processes associated with it. Since a

child process can itself have children, the actual process structure may be several generations

deep. Pointers are used within the process control block to help keep track of the relationships

between different processes.

When the process is created, the operating system gives it a unique name or identification

number, creates a process control block for it, allocates the memory and other initial resources

that the process needs, and performs other operating system bookkeeping functions. When the

process exits, its resources are returned to the system pool, and its PCB is removed from the

process table.

Process States

Most operating systems define three primary operating states for a process. These are known as

the ready state, the running state, and the blocked state. The relationship between the different
process states is shown in Figure 18.8.

FIGURE 18.8

The Major Process States

New

Ready

Dispatch

Timeout

Wake-up Blocking

Exit

Admission

Blocked

Terminated

Running

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 599

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 599

Once a process has been created and admitted to the system for execution, it is brought
into the ready state, where it must compete with all other processes in the ready state for CPU
execution time. Being in the ready state simply means that a process is capable of execution if
given access to the CPU.

At some point in time, presumably, the process will be given time for execution. The
process is moved from the ready state to the running state. Moving from the ready state to
the running state is called dispatching the process. During the time that the process is in the
running state, the program has control of the CPU and is able to execute instructions. Of course,
only one process can be in the running state at a time for a uniprocessor system. If there are
multiple processors or a cluster under the operating system’s control, the OS is responsible for
dispatching a process to run in each available CPU. In a typical multitasking system, there may
be many processes in blocked or ready states at any given time.

When I/O or other services are required for the continuation of program execution, the
running process can no longer do any further useful work until its requirement is satisfied. Some
operating systems will suspend the program when this occurs; others will allow the program to
remain in the running state, even though the program is unable to proceed. In the latter case,
most well-designed programs will suspend themselves, unless the interruption is expected to be
extremely brief. This state transition is known as blocking, and the process remains in a blocked
state until its I/O requirement is complete. When the I/O operation is complete, the operating
system moves the process from the blocked state back to the ready state. This state transition is
frequently called wake-up. Blocking can also occur when a process is waiting for some event
other than I/O to occur, for example, a completion signal or a data result from another process.

Nonpreemptive systems will allow a running process to continue running until it is
completed or blocked. Preemptive systems will limit the time that the program remains in the
running state to a fixed length of time corresponding to one or more quanta. If the process
remains in the running state when its time limit has occurred, the operating system will return
the process to the ready state to await further time for processing. The transition from the
running state to the ready state is known as time-out.

When the process completes execution, control returns to the operating system, and the
process is destroyed or killed or terminated.

Some operating systems provide one or more additional states, which are used to improve
the efficiency of the computer system. Some processes make heavy demands on particular
resources, say, a disk drive or a printer, or even the CPU, in such a way that other processes
are unable to complete their work in an efficient manner. In this case the operating system may
place a process in a suspended state until the required resources can be made available. When
this occurs, the process is returned to a ready state. The transition from the suspended state to
the ready state is known as resumption. Some operating systems also allow a user to suspend
a process. On UNIX systems, for example, typing Control-z is one way in which to suspend
a process. The process may be resumed by issuing the command fg, together with the process
identification number of the process. Some operating systems will also swap out a suspended
process frommemory to secondary storage when the system becomes overloaded and will swap
it back in when the load is lighter. Particularly in small systems, the use of swap files for this
purpose is common. Even in large computer systems, transaction processing software often
contains interactive processes that are used infrequently. These processes are often swapped
out when they are not being used and returned to memory when they are activated by a user
request. This technique is called roll-out, roll-in. The suspend, resume, and swap states have
been left off the diagram for clarity.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 600

600 PART FIVE THE SOFTWARE COMPONENT

Threads

It is common in modern systems to provide capability for a sort of miniprocess, known as a

thread. A thread represents a piece of a process that can be executed independently of other

parts of the process. (Think of the spell-checker in a word processor that checks words as you

type, for example.) Each thread has its own context, consisting of a program counter value,

register set, and stack space, but shares program code, and data, and other system resources such

as open files with the other member threads in the process. Threads can operate concurrently.

Like processes, threads can be created and destroyed and can be in ready, running, and blocked

states. Context switching among threads is easier for the operating system to manage because

there is no need to manage memory, files, and other resources and no need for synchronization

or communication within the process, since this is handled within the process itself. This

advantage suggests, however, that more care needs to be taken when the program is written, to

assure that threads do not interact with each other in subtle ways that can create conditions

that cause the program to fail. Note that there is no protection among the threads of a process,

since all the threads are using the same program code and data space.

Some systems even provide a mechanism for context switching of threads independent of

the process switching mechanism. This means that in these systems threads can be switched

without the involvement of the operating system kernel. If a process becomes I/O blocked, it

cannot proceed until the block is resolved. On the other hand, if a thread becomes blocked,

other threads in the process may be able to continue execution within the process’s allotted

time, resulting inmore rapid execution. Because the inner layers of the operating system are not

even aware of thread context switching in these systems, thread switching is extremely rapid

and efficient. Threads in these systems are commonly known as user-level threads.
Threads came about as a result of the advent of event-driven programs. In older programs

with traditional text-based displays and keyboard input, there was a single flow of control.

Event-driven programs differ in that the flow of control depends in a much more dramatic way

on user input. With a modern graphical user interface, a user can pull down a menu and select

an action to be performed at almost any time. Selecting an item from a menu or clicking a

mouse in a particular place in a particular way is known as an event. The programmust be able

to respond to a variety of different events, at unknown times, and in unknown order of request.

Most such events are too small to justify creation of a new process. Instead, the action for

each event is treated as a thread. The thread can be executed independently, but without the

overhead of a process. There is no control block, no separate memory, no separate resources.

The primary requirement for a thread is a context storage area to store the program counter and

registers when context switching takes place. A very simple thread control block is adequate for

this purpose. Threads are processed in much the same way as processes.

18.4 BASIC LOADING AND EXECUTION OPERATIONS
Since the CPU’s capability is limited to the execution of instructions, every operation in a

computer system ultimately arises from the fundamental ability to load and execute programs.

Application programs do the users’ work. Operating system programs and utilities manage files,

control I/O operations, process interrupts, provide system security, manage the user interface,

log operations for the system administrator to analyze, and much more. Except for programs

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 601

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 601

that permanently reside in ROM, every one of these programs must be loaded into memory
before it can be executed.

In general-purpose computer systems, the only programs permanently resident in ROM
are usually just the few that are needed to boot the system. All other programs are loaded after
the system is operational. Many of these programs are loaded into memory at start-up time
and remain resident as long as the computer is on; others are loaded as they are requested
or needed, but in either case, the program loading operation is central to system operation.
Observing the steps in the loading process exposes the workings and interactions of many of
the basic operating system components.

Incidentally, the program loader itself is a program that generally must be loaded; as we
already noted in Section 18.2, this initial load occurs during the boot process. After that, the
loader process remains resident in memory, ready for use.

In the previous section, you saw how processes are created from programs administratively
by the process management component of the operating system. You are already aware,
therefore, that requests for program loads are spawned from application or system programs
that are already running. Now we take a brief look at the next step: what happens after the
process is created but before it is loaded into memory and executed. This will prepare you for
more detailed discussions of the memory management and scheduling issues that follow.

Figure 18.9 shows the basic steps required to load the program and ready it for execution.

18.5 CPU SCHEDULING AND DISPATCHING
CPU scheduling provides mechanisms for the acceptance of processes into the system and for
the actual allocation of CPU time to execute those processes. A fundamental objective of mul-
titasking is to optimize use of the computer system resources, both CPU and I/O, by allowing
multiple processes to execute concurrently. CPU scheduling is themeans formeeting this objec-
tive. There are many different algorithms that can be used for CPU scheduling. The selection
of a CPU scheduling algorithm can have a major effect on the performance of the system.

As a way to optimize system performance, the CPU scheduling task is separated into two
different phases. The high-level, or long-term, scheduler is responsible for admitting processes
to the system. The dispatcher provides short-term scheduling, specifically, the instant-by-
instant decision as to which one of the processes that are ready should be given CPU execution
time. The dispatcher also performs context switching. Some systems also include a third,
middle-level scheduler, which monitors system performance. When present, the middle-level
scheduler can suspend, or swap out, a process by removing it from memory temporarily and
replace it with another waiting process. This operation is known as swapping. Swapping is done
to improve overall system performance. It would be used if a particular process were hogging a
resource in such a way as to prevent other processes from executing.

High-Level Scheduler

The high-level scheduler determines which processes are to be admitted to the system. The
role of the high-level scheduler is minimal for processes created in an interactive environment.
Such processes are usually admitted to the system automatically. If a user requests a service
that requires the creation of a new process, the high-level scheduler will attempt to do so unless
the system is seriously overloaded. To refuse the user in the middle of her or his work would

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 602

602 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.9

Loading and Executing a Process

Process
mgmt

File
services

Allocate
space

Request
program

buffer space

Load
program

Retrieve
directory

Retrieve
program

Set
process
status to
“ready”

Process
starts

Read
program

into memory

Read directory
from disk

Memory
mgmt Dispatcher I/O

services

be undesirable. The high-level scheduler will refuse a login process, however, if it appears that

doing so would overload the system. The high-level scheduler will refuse admission to the

system if there is no place to put the program in memory or if other resources are unattainable.

If the request is a user login request, the user will have to wait until later to try again. Otherwise,

requests are usually accepted, even though it may slow down the system. You may have

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 603

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 603

experienced such slowdowns when working with Windows. You may have even gotten an

“out-of-memory” message if you tried to do too many things at once!

For batch processes, the high-level scheduler has a much more important role. Since most

modern systems are predominately interactive, the use of batch processes is generally limited to

processes with demanding resource requirements, for example, a monthly billing program for a

large utility or department store chain, or an economics problemwith huge amounts of data and

complex calculations to be performed on the data. Processes of this type can make it difficult

for regular users to get their work done if the process is executed during a busy time of day.

With batch processes, a delay in processing is usually acceptable to the user; therefore, the

high-level scheduler has more flexibility in deciding when to admit the process to the system.

The high-level scheduler can use its power to balance system resource use as an attempt to

maximize the efficiency of the system and minimize disruption to the regular users.

Dispatching

Conceptually, the dispatching process is simple. Whenever a process or thread gives up the

CPU, the dispatcher selects another candidate that is ready to run, performs a context switch,

and sets the program counter to the program counter value stored in the process control

block or thread control block to start execution. This concept is consistent for single-core or

symmetric multicore processors. In reality, dispatching is much more complex than it first

appears. There are a number of different conditions thatmight cause a process to give up a CPU,

some voluntary and some involuntary, as established by the operating system. Presumably, the

goal of the dispatcher is to select the next candidate in such a way as to optimize system use.

But, in fact, there are a number of different measurement criteria that can be used to define

“optimum” system performance. Frequently, these criteria are in conflict with each other, and

the characteristics of the candidates in contention as well as different conditions within the

system can also affect the selection of a particular candidate for CPU execution at any given time.

Similarly, processes vary in their requirements. Processes can be long or short in their

requirement for CPU execution time, they can require many resources, or just a few, and they

can vary in their ratio of CPU to I/O execution time. Different scheduling algorithms favor

different types of processes or threads and meet different optimization criteria. For example,

an algorithm that maximizes throughput by consistently placing short jobs at the front of the

queue is clearly not fair to a longer job that keeps getting delayed.

Whenmultiple cores are added to themix, themethodsmay be the same, but there are a few

additional considerations. While theoretically a process can run in any core that is available, for

example, some processes possess processor affinity, the preference that all of their processing be
done on the same core throughout execution of the process. This can result, for example, when

a process is particularly dependent on maintaining the cache memory tied to a particular core.

As a result, there are a number of different scheduling algorithms that can be used. The

choice of scheduling algorithm then depends on the optimization objective(s) chosen, along

with the expected mix of process types. Analysis requires consideration of a wide variety of

process mix possibilities and dynamic situations. Some of the objectives considered are shown

in the table in Figure 18.10. Of the various objectives in the table, the prevention of starvation
is particularly noticeable. Some algorithms with otherwise desirable properties have a potential

to cause starvation under certain conditions. It is particularly important that the algorithm

selected not permit starvation to occur.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 604

604 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.10

System Dispatching Objectives

Ensure fairness

Maximize throughout

Minimize turnaround time

Maximize CPU utilization

Maximize resource allocation

Promote graceful degradation

Minimize response time

Provide consistent response time

Prevent starvation

The scheduler should treat every process equally. This means that every
process should get a fair share of the CPU time.
The scheduler should attempt to maximize the number of jobs
completed in any given time period.
The scheduler should minimize the time between submission of a job
and its completion.
The scheduler should attempt to keep the CPU busy as close to 100%
of the time as possible.
The scheduler should attempt to maximize the use of all resources by
balancing processes that require heavy CPU time with those
emphasizing I/O.
This objective states that as the system load becomes heavy, it should
degrade gradually in performance. This objective is based on the
assumption that users expect a heavily loaded system to respond more
slowly, but not radically or suddenly so.
This objective is particularly important in interactive systems. Processes
should complete as quickly as possible.
Users expect long jobs to require more actual time than short jobs. They
also expect a job to take about the same amount of time each time it is
executed. An algorithm that allows a large variation in the response time
may not be considered acceptable to users.
Processes should not be allowed to starve. Starvation is a situation that
occurs when a process is never given the CPU time that it needs to
execute. Starvation is also called indefinite postponement.

With operating systems that support threads, dispatching normally takes place at the thread

level. As an additional criterion, the candidate selection decision can be made at either the

process or thread level. Some systems will select a candidate that meets criteria measured at

the process level. A process is selected, then a thread within that process is dispatched. Other

systems will select a thread for dispatch based on thread performance criteria without regard to

the process to which they belong.

Some systems implement only a single algorithm, selected by the original system designers.

Others provide options that can be selected by the administrator of the particular system

installation. Other than preventing starvation, the most important consideration in selecting a

scheduling algorithm is to determine the conditions under which dispatching is to be performed

preemptively or nonpreemptively.

Early batch systems were predominately nonpreemptive. In a nonpreemptive system, the

process assigned to the CPU by the dispatcher is allowed to run to completion, or until it

voluntarily gives up the CPU. Nonpreemptive dispatching is efficient. The overhead required

for the dispatcher to select a candidate and perform context switching in a preemptive system,

particularly if the quantum time is short, becomes a substantial percentage of the overall CPU

time available.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 605

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 605

Nonpreemptive dispatching does not quite work in modern interactive systems. Some

interrupts, particularly user keystrokes and mouse (or equivalent input) movements, demand

immediate attention. Response time is an important criterion to a user sitting at a terminal

waiting for a result. A long process executing nonpreemptively can cause the system to “hang”

for a while. An additional disadvantage of nonpreemptive processing is that a buggy program

with an infinite loop can hang the system indefinitely. Most nonpreemptive systems actually

have a time-out built in for this purpose. A compromise position uses nonpreemptive processing

for executing processes that do not require immediate responses, but allows critical processes to

interrupt temporarily, always returning control to the nonpreemptive process. Earlier versions

of Windows, through Version 3.1, presented another compromise that was dependent on the

cooperation of the processes themselves. This position assumed that processeswould voluntarily

relinquish control on a regular basis, to allow other processes a chance to execute. To a large

measure, this approach worked, although less well than true preemptive multitasking; however,

it is subject to errors that may occur in individual processes that can prevent the execution of

other processes.

Linux presents another compromise approach: user processes (i.e., regular programs) run

preemptively, but operating system programs run nonpreemptively. An important requirement

to this approach is that operating system processes run quickly and very reliably. The advantage

to this approach is that critical operating system processes can get their work done efficiently

without interruption from user processes.

The next section introduces a few typical examples of dispatching algorithms. There are

many other possibilities, including algorithms that use combinations of these examples.

Nonpreemptive Dispatch Algorithms

FIRST-IN, FIRST-OUT Probably the simplest possible dispatch algorithm, first-in, first-out
(FIFO) simply assumes that processes will be executed as they arrive, in order. Starvation

cannot occur with this method, and the method is certainly fair in a general sense; however, it

fails to meet other objectives. In particular, FIFO penalizes short jobs and I/O-bound jobs, and

often results in underutilized resources. As an illustration of the subtle difficulties presented

when analyzing the behavior of an algorithm, consider what happens when one or more short,

primarily I/O-based jobs are next in line behind a very long CPU-bound job in a FIFO queue.

We assume that the scheduler is nonpreemptive but that it will allow another job to have the

CPU when the executing job blocks for I/O. This assumption is essential to the full utilization

of the CPU.

At the start of our observation, the long job is executing. While this happens, the short

job(s) must sit and wait, unable to do anything. Eventually, the long job requires I/O and blocks.

This finally allows the short jobs access to the CPU. Because they are predominately I/O-based

jobs, they execute quickly and block, waiting to do I/O. Now, the short jobs must wait again,

because the long job is using the I/O resources. Meanwhile, the CPU is idle, because the long

job is doing I/O, and the short jobs are also idle, waiting to do I/O. Thus, FIFO can result in

long waits and poorly balanced use of resources, both CPU and I/O.

SHORTEST JOB FIRST The shortest job first (SJF) method will maximize throughput by

selecting jobs that require only a small amount of CPU time. The dispatcher uses as its basis

time estimates provided with the jobs when they are submitted. To prevent the user from

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 606

606 PART FIVE THE SOFTWARE COMPONENT

lying, systems that use this algorithm generally inflict a severe penalty on jobs that run more
than a small percentage over their estimate. Since short jobs will be pushed ahead of longer
jobs, starvation is possible. When SJF is implemented, it generally includes a dynamic priority
factor that raises the priority of jobs as they wait, until they reach a priority where they will
be processed next regardless of length. Although SJF maximizes throughput, you might note
that its turnaround time is particularly inconsistent, since the time required to complete a job
depends entirely on the mix of the jobs submitted both before it, and possibly after it.

PRIORITYSCHEDULING Priority scheduling assumes that each job has a priority assigned
to it. The dispatcher will assign the CPU to the job with the highest priority. If there are multiple
jobs with the same priority, the dispatcher will select among them on a FIFO basis.

Priorities can be assigned in different ways. On some systems that charge their users for
CPU time, users select the priority. The fee is scaled to the priority, so that higher priorities cost
more. In other systems, the priority is assigned by the system.Many factors can be used to affect
performance, and the prioritiesmay be assigned statically or dynamically. For example, a system
may assign priority on the basis of the resources that the process is requesting. If the system is
presently CPU-bound, it can assign an I/O-bound process a high priority to equalize the system.

Another variation on priority scheduling is basically nonpreemptive, but adds a preemptive
element. As the process executes, it is periodically interrupted by the dispatcher, which reduces
its priority, a little at a time, based on its CPU time used. If its priority falls below that of a
waiting process, it is replaced by the higher-priority process.

Preemptive Dispatch Algorithms

ROUND ROBIN The simplest preemptive algorithm, round robin gives each process a
quantum of CPU time. If the process is not completed within its quantum, it is returned to
the back of the ready queue to await another turn. The round-robin algorithm is simple and
inherently fair. Since shorter jobs get processed quickly, it is reasonably good on maximizing
throughput. Round robin does not attempt to balance the system resources and, in fact, penalizes
processes when they use I/O resources, by forcing them to reenter the ready queue. A variation
on round robin that is used by some UNIX systems calculates a dynamic priority based on the
ratio of CPU time to total time that the process has been in the system. The smallest ratio is
treated as the highest priority and is assigned the CPU next. If no process is using I/O, this
algorithm reduces back to round robin, since the process that had the CPU most recently will
have the lowest priority, and the priority will climb as it waits. The round-robin technique is
illustrated in Figure 18.11.

MULTILEVEL FEEDBACK QUEUES The multilevel feedback queue algorithm attempts
to combine some of the best features of several different algorithms. This algorithm favors short
jobs by providing jobs brief, but almost immediate, access to the system. It favors I/O-bound
jobs, resulting in good resource utilization. It provides high throughput, with reasonably
consistent response time. The technique is shown in Figure 18.12. The dispatcher provides
a number of queues. The illustration shows three. A process initially enters the queue at the
top level. The queue at the top level has top priority, so a new process will quickly receive a
quantum of CPU time. Short processes will complete at this point. Since I/O-bound processes
often require just a short amount of initialization to establish their I/O needs, many I/O-bound
processes will be quickly initialized and sent off for I/O.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 607

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 607

FIGURE 18.11

Round-Robin Scheduling

New
processes P P CPU

P P P

P

FIGURE 18.12

Multilevel Feedback Queue

New
processes

P

Level 1

P CPU

P

Level 2

P

P

P P PP

Level N

CPU

CPU

q = 1

q = 2

q = 2n

Processes that are not completed are sent to a second-level queue. Processes in the

second-level queue receive time only when the first-level queue is empty. Although starvation

is possible, it is unlikely, because new processes pass through the first queue so quickly. When

processes in the second level reach the CPU, they generally receive more time. A rule of thumb

doubles the number of quanta issued at each succeeding level. Thus, CPU-bound processes

eventually receive longer time slots in which to complete execution. This method continues for

as many levels as the system provides.

The final level is a round robin, which will continue to provide time until the process is

complete. Some multilevel feedback queues provide a good behavior upgrade to processes that

meet certain criteria.

DYNAMIC PRIORITY SCHEDULING As noted above, the technique of dynamic priority
recalculation can also be used as a preemptive dispatching technique. Both Windows and

Linux use a dynamic priority algorithm as their primary criterion for dispatch selection. The

algorithms on both systems adjust priority based on their use of resources. Details of the

Windows and Linux dispatch algorithms are presented in Supplemental Chapter 2.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 608

608 PART FIVE THE SOFTWARE COMPONENT

18.6 MEMORY MANAGEMENT
Memory management is the planned organization of programs and data into memory. The

goal of memory management is to make it as simple as possible for programs to find space, so

that they may be loaded and executed, together with the additional space that may be required

for various buffers. A secondary and related goal is to maximize the use of memory, that is, to

waste as little memory as possible.

Today, nearly all memory management is performed using virtual storage, a methodology

that makes it appear that a system has a much larger amount of memory than actually exists

physically. Virtual storage is discussed in Section 18.7.

Until the advent of virtual storage, however, effective memory management was a difficult

problem. There may be more programs to be run than can possibly fit into the given amount of

physical memory space. Even a single program may be too large to fit the amount of memory

provided. Compounding the difficulty, recall that most programs are written to be loaded

contiguously into a single space, so that each of the spaces must be large enough to hold

its respective program. Fitting multiple programs into the available physical memory would

require considerable juggling by the memory management module.

In passing, we point out to you that there is also a potential relationship between scheduling

and memory management. The amount of memory limits the number of processes that can be

scheduled and dispatched. As an extreme example, if the memory is only large enough to hold

a single process, then the dispatch algorithm is reduced to single tasking, simply because there

is no other process available in memory to run. As more programs can be fit into memory, the

system efficiency increases. More processes get executed, concurrently, in the same period of

time, since the time that would be wasted when processes are blocked is now used productively.

As the number of processes increases still further, beyond a certain point the resident time of

each process starts to increase, because the available CPU time is being divided among processes

that can all use it, and new processes are continually being added that demand CPU time.

Nonetheless within reason, it is considered desirable to be able to load new processes as they

occur, particularly in interactive systems. A slight slowdown is usually considered preferable to

a user being told that no resources are available to continue his or her work. As we have hinted a

number of times, virtual storage provides an effective andworthwhile solution to the problem of

memory management, albeit at the cost of additional hardware, program execution speed, disk

usage, and operating system complexity. Before we explain themethod ofmemorymanagement

using virtual storage, however, it is useful to offer a brief introduction to traditional memory

management techniques to set the issues of memory management in perspective.

Memory Partitioning

The simplest form ofmemorymanagement divides thememory space into a number of separate

partitions. This was the method used prior to the introduction of virtual storage. Today, it is

used only in small embedded systems, where the number of programs running at a given time

is small and well controlled. Each partition is used for a separate program.

Two different forms of memory partitioning can be used. Fixed partitioning divides

memory into fixed spaces. The MINOS memory was managed using fixed partitioning.

Variable partitioning loads programs wherever enough memory space is available, using a

best-fit, first-fit, or largest-fit algorithm. The best-fit algorithm uses the smallest space that

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 609

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 609

FIGURE 18.13

Variable Partitioning of Memory at Three Different Times

0

Process 5

Process 4

Top

Process 3

Process 2

Process 1

0

Process 5
Empty

Process 3

Process 8

Process 6

Process 7
0

Process 12

Process 9

Process 13

Process 8

Process 10

Process 11

Empty Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

will fit the program. The first-fit algorithm simply grabs the first space available that fits the
program. The largest-fit algorithm, sometimes called worst-fit, uses the largest space available,
on the theory that this will leave themaximumpossible space for another program. Figure 18.13
shows variable partitioning at work. Note that the starting positions of programs shift as space
becomes available for new programs.

Realistically, partitioning is not suitable for modern computing systems. There are two
reasons for this:

n First, no matter which method is used, memory partitioning results in fragmentation
of memory. This is seen in Figure 18.13. Fragmentation means that memory is being
used in such a way that there are small pieces of memory available that, if pushed
together, would be sufficient to load one or more additional programs. Internal
fragmentationmeans that there is memory that has been assigned to a program that
does not need it, but can’t be used elsewhere. Fixed partitioning results in internal
fragmentation. External fragmentationmeans that there is memory that is not
assigned, but is too small to use. Variable partitioning will, after a while, result in
external fragmentation, since the replacement of one program in an available space
with another will almost always result in a bit of space left over. Eventually, it may be
necessary to have the memory manager move programs around to reclaim the space.
Internal and external fragmentation are shown in Figure 18.14.

Although fragmentation is manageable when the number of programs to be
loaded is small, and the size of each program known in advance, this is not the case
for any general-purpose system.

n Second, the size of most modern programs is sufficiently large that partitioning
memory will make it even more difficult to find memory spaces large enough to
accommodate all of the programs and data that the average user routinely expects to
run concurrently. (You have already seen, in Chapter 17, similar fragmentation and
partitioning problems that occur in the storage of files on disk.)

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 610

610 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.14

Internal and External Fragmentation

Assigned
space

Assigned
space

Used space

Used space

Internal
fragmentation

Fragment

Fragment

External
fragmentation

Fragment

Fragment

Fragment

Assigned
space

Assigned
space

18.7 VIRTUAL STORAGE

Overview

There are threemajorproblems inherent in the traditional (nowoutdated)memorymanagement
schemes described in the previous section:

1. As the system runs, fragmentation makes it harder and harder to find open spaces
large enough to fit new programs as they are introduced into the system.

2. From Chapters 6 and 7, you should recall that Little Man programs, and indeed, all
programs, are coded on the assumption that they will be loaded into memory and
executed starting from memory location 0. The address field in many, but not all,
instructions points to an address where data is found or to the target address of a
branch. Of course in reality, it is only possible to load one program at that location in
memory. All other programs must be loaded into memory starting from some other
address. That means that the operating system’s program loader must carefully adjust
the address field of all affected instructions to compensate for the actual addresses
where the data or the branch target will actually be found.

3. There is often not enough memory to load all of the programs and their resources
that we wish to execute at once.

Virtual storage (or virtual memory—the words are synonymous), is the near-universally
accepted solution to the problems inherent in memory management. Virtual storage uses a
combination of operating system software and special purpose hardware to simulate a memory
that meets the management needs of a modern system. The primary method of implementing
virtual storage is called paging.

Pages and Frames

To begin, assume that memory is divided into blocks. These blocks are called frames. Usually,
all the frames are of equal size, typically 1 KB–4KB. The exception, an alternative method
called segmentation is used more rarely, and will be described later. The size of the blocks

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 611

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 611

is permanently set as a design parameter of the particular hardware architecture, based on a

number of factors. The most important criterion for the block size is that it must correspond

exactly to a particular number of address bits. This guarantees that every address within the

block is expressed by the same number of digits. In the Little Man Computer, for example, a

block size of 10 would be the only reasonable choice, since every address within the block would

be expressed with one digit (0–9). Similarly, in a real, binary-based computer, a 12-bit address

can access an address space of exactly 4 KB.

The number of blocks depends on the amount of memory installed in the machine, but, of

course, can’t exceed the largest memory address possible, as determined by the architecture of

the instruction set. We could install 60 mailboxes in the Little Man Computer, for example; this

would give us six frames within the constraint that the address field of the LMC instructions

limits us to a maximum of 100 mailboxes, or ten frames.

The blocks are numbered, starting from 0. Because the block size was selected to use a

specific, fixed number of bits (or decimal digits for the LittleManComputer), an actual memory

address consists simply of the block number concatenated with the address within the block.

By selecting a frame size that corresponds exactly to a given number of digits, we can simply

concatenate to get the whole address.

EXAMPLE
Suppose that a Little Man memory consisted of 6010 mailboxes, divided into 6 frames. Each
frame is a one-digit block of size 10. The frames would be numbered from 0 through 5, and the
address of a particular location within the frame would be a number from 0 to 9. Then, location
number 6 in frame 3 would correspond to location 36 in memory. Similarly, memory address 49
would be in frame 4; the address would correspond to location 9 in that frame. Figure 18.15(a)
illustrates this example.

EXAMPLE
Now consider a binary computer with 1 GB of memory divided into 4KB frames. There will be
256 K, or approximately a quarter of a million, frames. (We divided 1G by 4 K to get 256 K.)
Another way to look at this is to realize that to address 1 GB of memory requires a 30-bit address.
Frames of size 4KB will require 12 bits for addresses; therefore, the number of frames will
correspond to 18 bits, or 256 K frames.

For convenience, we will illustrate the example in hexadecimal. Remember that each
hexadecimal digit represents 4 bits. Memory location 3A874BD716 would then be located in
the frame block numbered 3A87416, and specifically found at location BD716 of that frame.
Notice that the frame block number requires a maximum of 18 bits and that the location within
the frame uses 12 bits. See Figure 18.15(b) for clarification. Similarly, location number 02016

within frame number 15A316 corresponds to memory location 15A302016.

Effectively, we are dividing each memory address into two parts: a frame number and the

specific address within the particular frame. The address within the frame is called an offset,

because it represents the offset from the beginning of the frame. (It should be clear to you that

the first address in a frame, which is the beginning of the frame, is 0, with the correct number

of digits of course, so address 1 is offset by 1 from the beginning, and so on.)

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 612

612 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.15

Identifying Frames and Offsets

(a) Little man computer frames and offsets

(b) Binary computer frames and offsets

Location 6
in frame 3

(Location 9
in frame 4)

Location
49

Offset 6

Location
36

Frame 0

12130

31

32

33

34

35

36

37

38

39

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 3A874

Location
3A874BD7

3A874000

3A874FFF

Mailboxes
50–59

Mailboxes
0–9

Mailboxes
10–19

Mailboxes
20–29

OFFSET
BD7

601

900

881

227

48

49

…

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 613

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 613

FIGURE 18.16

Frames and Pages

Page 0

Program
pages

Memory
frames

1

2

3

4

5

0

4 KB

8 KB

12 KB

16 KB

20 KB

24 KB

Frame 0

1

2

3

4

5

6

7

0

4 KB

8 KB

12 KB

16 KB

20 KB

24 KB

28 KB

32 KB

It is not immediately obvious why we are dividing memory
into frame blocks, but the reason will become clear shortly. Here’s
a hint: note the similarity between the frame blocks that make up
the memory space and the blocks that make up the space on a hard
disk. Then, recall that we can find data within a file even if we store
the files on a hard disk noncontiguously.

Suppose we also divide a program into blocks, where each
block in the program is the same size as a frame. The blocks in a
program are called pages. See Figure 18.16. The number of pages
in a program obviously depends on the size of the program. We
will refer to the instruction and data memory address references
in a program as logical or virtual memory references, as opposed
to the physical memory references that actually go out to memory
and store and retrieve instructions and data. The words logical and
virtual are used interchangeably. Here’s another way to remember
the lingo:

program code made up of → pages → of logical (or virtual) addresses
program executed in → frames → of physical addresses

Like frames, the number of pages is also constrained by the instruction set architecture,
but, as we will show you later, it is not limited to the size of installed memory. Stated differently,
a program can be larger than the amount of memory installed in a computer, and still execute
successfully, although possibly slowly.

The key to this magical sleight-of-hand is a technique called dynamic address translation
(DAT). Dynamic address translation is built into the CPUhardware of everymodern computer,
large and small. The hardware automatically and invisibly translates every individual address
in a program (the virtual addresses) to a different corresponding physical location (the physical
addresses). This allows the operating system’s program loader to place the pages of a program
into any available frames of physical memory, page by page, noncontiguously, so that it is
not necessary to find a contiguous space large enough to fit the entire program. Any page of
any program can be placed into any available frame of physical memory. Since every frame is
essentially independent, the only fragmentation will be the small amount of space left over at
the end of the last page of each individual program.

For each program, the operating system creates a page table, which keeps track of the
corresponding frame location in physical memory where each page is stored. There is one
entry in the table for each page of the program. The entry contains the page number and its
corresponding frame number.

Since each page fits exactly into a frame, the offset of a particular address from the beginning
of a page is also exactly the same as the offset from the beginning of the frame where the page
is physically loaded. To translate a virtual address to a physical address, the virtual address is
separated into its page number and an offset; a lookup in the program’s page table locates the
entry in the table for the page number, then translates, or maps, the virtual memory reference
into a physical memory location consisting of the corresponding frame number and the same
offset. We remind you again: this operation is implemented in hardware, by the processor’s
memory management unit (MMU). Every memory reference in a fetch-execute cycle goes
through the same translation process. The address that would normally be sent to the memory
address register (MAR) is mapped through the page table and then sent to the MAR. It is also

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 614

614 PART FIVE THE SOFTWARE COMPONENT

important to remember that the translation process is entirely invisible to the program. As far

as the program can tell, every memory reference is exactly where the program says it is.

A simple example illustrates the translation process.

EXAMPLE
Consider a program that fits within one page of virtual memory. Placement of the program is
shown in Figure 18.17(a). The page for the program would be numbered 0, of course. If we
assume a page size of 4KB, then any logical memory location in this program would be between

FIGURE 18.17(a)

A Simple Page Table Translation

O K

OFFF

O000

Logical
program
space Page table

0000

Frame 0

1000

2000

3000

4000

Physical
space

328A

Frame 1

Frame 2

Frame 3

Page frame

0 3

O28APage 0

4 K

FIGURE 18.17(b)

The Page Translation Process

3D

3D

Page no.
Start
here

Page

Logical address:
3D7A1

(page address)

Physical memory address:
2F3577A1

(frame address)

Page table

7A1

Offset

2F357

2F357

Frame no.
Actual address

to fetch

Frame

7A1

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 615

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 615

0000 and 0FFF. Suppose frame 3 is available in which to place this program in physical memory.
Then the physical addresses for this program to execute properly must all be between 3000 and
3FFF. We obtain the correct address in each case by changing the page number (0) to the frame
number (3), keeping the offset the same as it was. A LOAD instruction, LOAD 028A, for example,
would be translated to find its data in physical memory at 328A.

Another example, drawn differently to show the translation process more clearly, is presented
in Figure 18.17(b).

With virtual storage, each process in a multitasking system has its own virtual memory,

and its own page table. Physical memory is shared among the different processes. Since all

the pages are of the same size, any frame may be placed anywhere in memory. The pages

selected do not have to be contiguous. The ability to load any page into any frame solves the

problem of finding enough contiguous memory space in which to load programs of different

sizes.

Figure 18.18 shows a mapping for three programs located in memory. Note that each

program is written as though it will load starting from address 0, eliminating the need for the

loader to adjust a program’s memory addresses depending on where the program is loaded.

Since each program’s page table points to a different area of physical memory, there is no

conflict between different programs that use the same virtual addresses.

To complete this part of the discussion, let us answer two questions that may have occurred

to you:

n Where do the page tables reside and how are they accessed by the hardware for

address translation?

n How are memory frames managed and assigned to pages?

FIGURE 18.18

Mapping for Three Processes

Frame 10

Frame 0

Process 1 – Page 0
Process 3 – Page 3

Process 1
Page Frame

Page Frame

Page Frame

Process 3 – Page 4

Process 3 – Page 0
Process 2 – Page 1

Process 1 – Page 2
Process 3 – Page 2

Process 1 – Page 1
Process 2 – Page 0

Process 3 – Page 1

1

0

1

8

2 3

2

Process 3

1

0

4

3 9

4 10

0

5

Process 2

0 2

1 6

Physical memory

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 616

616 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.19

Inverted Page Table for Process Page Tables Shown in
Figure 18.18

Page

Free page frame

Process #Frame

0

1

2

3

4

5

6

7

3

1

2

1

3

3

2

1

1

0

2

2

0

1

8 1 0

9 3 3

10 3 4

The simple answer to the first question is that page

tables reside in memory, just like any other program

or data. A page table address register in the CPU holds

a pointer to the starting address in memory where the

page table is located. The pointer is stored as part of

the process control block; the address of the page table

for the current process is loaded into the register as

part of the context switching mechanism.

Although this answer is accurate, it is not quite

complete. There are a few bells and whistles that

improve performance, to be discussed later in this

section under the paragraph title Page Table Imple-

mentation.

The answer to the second question is that physical

memory is shared among all of the active processes in

a system. Since each process has its own page table, it

is not practical to identify available memory frames by

accumulating data from all of the tables. Rather, there

must be a single resource that identifies the entire pool

of available memory frames from which the memory

manager may draw, when required. There are two

common approaches in use. One is to provide an

inverted page table, which lists every memory frame

with its associated process and page. This table shows

the actual use of physical memory at every instant. Any frame without an associated page entry

is available for allocation. Figure 18.19 illustrates an inverted page table. We’ll leave it as a

simple exercise for you to identify the available frames.

A second method maintains a list of available frames, usually as a simple linked list. When

a process needs frames, it takes them from the top of the list. When a process exits, its frames

are added to the end of the list. Since frame contiguity is unimportant, this is an effective way

to manage the free frame pool.

The Concept of Virtual Storage

The first two issues of memory management that we raised initially are thus solved. But, as the

TV infomercials say, “Wait—there’s still more!”

As we noted before, the third major challenge for memory management is the limited total

quantity of physical memory available. Even hundreds of megabytes of memory can only hold

a few modern programs. Up to this point, we have assumed that there is a frame available

for every page that needs one. While page-to-frame translation has eliminated the question of

how to fit programs into existing memory space, the next step is more important and useful:

we will show you how the concept of virtual storage allows the system to extend the address

space far beyond the actual physical memory that exists. As you will see, the additional address

space required to store a large number of programs is actually provided in an auxiliary form of

storage, usually disk or SSD, although some systems now make it possible to use flash memory

for this purpose.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 617

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 617

So far we have assumed that all the pages of an executing program are located in frames
somewhere in physical memory. Suppose that this were not the case—that there are not enough
frames available to populate the page table when the program is loaded. Instead, only some pages
of the program are present in physical memory. Page table entries without a corresponding
frame are simply left empty. Can the program execute?

Theanswerdependsonwhichpages are actuallypresent in corresponding framesofphysical
memory. To execute a program instruction or access data, two requirements must be met.

n The instruction or data must be in physical memory.

n The page table for that program must contain an entry that maps the virtual address
being accessed to the physical location containing the instruction or data.

These two requirements are related. The existence of a page listing in the page table implies
that the required value is in memory and vice versa. If these two conditions are met, then the
instruction can execute as usual. This suggests, correctly, that instructions and data that are not
being accessed do not have to be in memory. At any given time in the execution of a program,
there are active pages and inactive pages. Only the active pages require corresponding frames
in the page table and in physical memory. Thus, it is possible to load only a small part of a
program and have it execute.

Page Faults

The real question is what happens when an instruction or data reference is on a page that does
not have a corresponding frame in memory. The memory management software maintains the
page tables for each program. If a page table entry is missing when the memory management
hardware attempts to access it, the fetch-execute cycle will not be able to complete.

In this case, the CPU hardware causes a special type of interrupt called a page fault or a
page fault trap. This situation sounds like an error, but actually it isn’t. The page fault concept
is part of the overall design of virtual storage.

When the program is loaded, an exact, page-by-page image of the program is also stored in
a known auxiliary storage location. The auxiliary storage area is known as a backing store or,
sometimes, as a swap space or a swapfile. As noted earlier, it is usually found on disk or SSD, but
may be on flash memory. Also assume that the page size and the size of the physical blocks on
the auxiliary storage device are integrally related, so that a page within the image can be rapidly
identified, located, and transferred between the auxiliary storage and a frame in memory.

When a page fault interrupt occurs, the operating system memory manager answers the
interrupt. And now the important relationship between the hardware and the operating system
software becomes clearer. In response to the interrupt, the memory management software
selects a memory frame in which to place the required page. It then loads the page from its
program image in the backing store. If every memory frame is already in use, the software must
pick a page in memory to be replaced. If the page being replaced has been altered, it must first
be stored back into its own image, before the new page can be loaded. That way, the backing
store always contains the latest version of the program and data as the program is executed.
This is a requirement, because the page may have to be reloaded again later. Page replacement
algorithms are discussed later in this section. The process of page replacement is also known as
page swapping. The steps involved in handling a page fault are shown in Figure 18.20.

Most systems perform page swapping only when it is required as a result of a page fault.
This procedure is called demand paging. A few systems attempt to anticipate page needs before

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 618

618 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.20

Steps in Handling a Page Fault

Load M

Load M

None

Page
table

Physical
memory

Trap

1. The page table is checked for
 memory reference M. That page is
 presently not in memory, which
 causes a page fault trap.

2. OS memory manager locates desired
 page on auxiliary storage and
 loads it into free memory frame.

3. Resets the page table, and
 restarts the instruction.

Page fault
trapM

kM

k Free frame

OS
memory
manager

they occur, so that a page is swapped in before it is needed. This technique is called prepaging.
To date, prepaging algorithms have not been very successful at predicting accurately the future

page needs of programs.

When the page swap is complete, the process may be started again where it left off. Most
systems return to the beginning of the fetch-execute cycle where the page fault occurred, but a

few systems restart the instruction in the middle of its cycle. Regardless of which way is used,
the required page is now present, and the instruction can be completed. The importance of

page swapping is that it means that a program does not have to be loaded into memory in its

entirety to execute. In fact, the number of pages that must be loaded into memory to execute a
process is quite small. This issue is discussed further in the next section.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 619

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 619

Therefore, virtual storage can be used to store a large number of programs in a small

amount of physical memory and makes it appear that the computer has more memory than

is physically present. Parts of each program are loaded into memory. Page swapping handles

the situations when required pages are not physically present. Furthermore, since the virtual

memory mapping assures that any program page can be loaded anywhere into memory, there

is no need to be concerned about allocating particular locations in memory. Any free frame

will do.

Working Sets and the Concept of Locality

How many pages should be assigned to a new process just entering the system? It would seem

that the more pages that are initially assigned to a process, the less likely it would be that a

FIGURE 18.21

Memory Use with Time, Exhibiting Locality.

34

32

30

28

26

24

22

20

18

Execution time

P
ag

e
nu

m
be

rs

Source: Operating Systems 2/e by Stallings, W. c 1995. Reprinted by permission of
Prentice-Hall, Upper Saddle River, NJ.

page fault would occur during execution

of the process. Conversely, themorepages

assigned to a process, the fewer the num-

ber of processes that will fit into memory.

There is a lower limit on the number of

pages to be assigned, which is determined

by the instruction addressing modes used

by the particular computer. Executing a

single instruction in an indirect address-

ingmachine, for example, requires at least

three pages, the page where the instruc-

tion resides, the page where the indirect

address is stored, and the page where the

data is found. This assumes that each item

is on a different page, but it is necessary to

make the worst-case assumption to pre-

vent instructions from failing in this way.

Other instruction sets can be analyzed

similarly.

More practically, experimentation

performed in the early 1970s showed

that during execution programs exhibit

a tendency to stay within small areas

of memory during any given period

of time. Although the areas themselves

change over time, the property continues

to hold throughout the execution of

the program. This property is called the

concept of locality. An illustration of the

concept at work is shown in Figure 18.21.

The concept of locality makes sense

intuitively. Most well-written programs

are written modularly, in small objects.

During the initial phase of execution of a

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 620

620 PART FIVE THE SOFTWARE COMPONENT

program, a small part of the program initializes variables and generally gets the program going.
During the main body of the program, the likely operations consist of small loops and function
calls. These represent the different area of memory being executed at different times.

An effective compromise would allocate a sufficient number of pages to satisfy the locality
of a particular program. This number of pages would be sufficient to run the program normally.
Page faults would only occur when the local area being used by the programmoves to a different
part of the program. The number of pages that meets the requirement of locality is called a
working set. It differs somewhat from program to program, but it is possible to establish a
reasonable page quantity that meets the needs of most programs without an undue number of
page faults. Some systems go further and monitor the number of page faults that actually occur
for each process. They then dynamically adjust the size of the working set for each process to
try to meet its needs.

Page Sharing

An additional feature of virtual storage is the ability to share pages among different processes
that are executing the same program or the same objects. As long as the code is not modified,
that is, the code is pure, there is no need to have duplicate program code stored in memory.
Instead, each process shares the same program code page frames and provides its own work
space for data. The page tables for each process will simply point to the same physical memory
frames. This simplifies the management of multiple processes executing the same program.

Page Replacement Algorithms

There will be times on a heavily loaded system when every available page in memory is in
use. When a page fault occurs, the memory manager must pick a page to be eliminated from
memory to make room for the new page that is needed. The goal, of course, is to replace a
page that will not be needed in the near future. There are a number of different algorithms that
are used. As usual with operating system algorithms, each has advantages and disadvantages,
so selecting an algorithm is a matter of trade-offs. Some systems select pages to be replaced
from the same process. Others allow replacement from any process in the system. The former
is known as local page replacement; the latter is called global page replacement. Global page
replacement is more flexible, since there are a much larger number of pages to choose from.
However, global page replacement affects the working set size of different processes and must
be managed carefully.

As an additional consideration, some pages must never be removed frommemory because
doing so could eventually make the system inoperable. For example, removing the disk driver
would make it impossible to swap in any new pages, including the disk driver! To prevent this
situation, the frames corresponding to critical pages are locked into memory. These frames are
called locked frames. An additional bit in each row of the page table is set to indicate that a
frame is locked. Locked frames are never eligible for replacement.

OPTIMAL PAGE REPLACEMENT It’s worth mentioning that there is an optimal page
replacement algorithm: replace the page that will not be used for the longest time into the
future. This will minimize the number of page faults that occur. Of course, in reality, this
algorithm can’t be implemented, since it is not possible to predict the future while a program is
executing, but it does provide a theoretical page fault count to compare the quality of realistic
algorithms against.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 621

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 621

FIRST-IN, FIRST-OUT PAGE REPLACEMENT The simplest realistic page replacement

algorithm is a first-in, first-out algorithm. The oldest page remaining in the page table is

selected for replacement. FIFO does not take into account usage of the page. Logically, a page

that has been in memory for a long period of time is probably there because it is heavily used.

The page being removed may be in current use, which would result in a second page fault

and force the system to reload the page almost immediately. FIFO has a second, interesting

deficiency. You would assume that increasing the number of pages available to a process would

reduce the number of page faults for that process. However, it has been shown that under

certain conditions, use of the FIFO page replacement algorithm results in more page faults with

an increased number of pages, instead of fewer. This condition is known as Belady’s anomaly.

If you are interested, examples of Belady’s anomaly can be found in the references by Deitel

[DEIT03] and Silberschatz et al. [SILB12]. For these reasons, FIFO is not considered a good

page replacement algorithm.

LEAST RECENTLY USED PAGE REPLACEMENT The least recently used (LRU) algo-

rithm replaces the page that has not been used for the longest time, on the assumption that

the page probably will not be needed again. This algorithm performs fairly well, but requires

a considerable amount of overhead. To implement the LRU algorithm, the page tables must

record the time every time the page is referenced. Then, when page replacement is required,

every page must be checked to find the page with the oldest recorded time. If the number of

pages is large, this can take a considerable amount of time.

NOTUSED RECENTLY PAGE REPLACEMENT The not used recently (NUR) algorithm

is a simplification of the least recently used algorithm. In this method, the computer system

hardware provides two additional bits for each entry in the page tables. One bit is set whenever

the page is referenced (used). The other bit is set whenever the data on the page is modified,

that is, written to. This second bit is called a dirty bit. Periodically, the system resets all the

reference bits.

The memory manager will attempt to find a page with both bits set to 0. Presumably, this is

a page that has not been used for a while. Furthermore, it is a page that has not been modified,

so it is necessary only to write the new page over it. The page being replaced does not have to

be saved back to the backing store, since it has not been modified. The second choice will be a

page whose dirty bit is set, but whose reference bit is unset.

This situation can occur if the page has not been accessed for a while, but was modified

when it was accessed, prior to the resetting of the reference bits. This page must be written back

to the backing store before a new frame can be read into its spot. Third choice will be a page

that has been referenced, but not modified. And finally, least desirable will be a page that has

been recently referenced and modified. This is a commonly used algorithm.

One difficulty with this algorithm is that gradually all the used bits fill up, making selection

difficult or impossible. There are a number of variations on this algorithm that solve this

problem by selectively resetting used bits at regular intervals or each time a page replacement

occurs. The most common approach pictures the process pages as numerals on a clock. When

a page replacement must be found, the clock hand moves until it finds an unset used bit and

the corresponding page is replaced. Pages with set used bits that the hand passes over are reset.

The hand remains at the found replacement page awaiting the next replacement requirement.

This variation on NUR is called the clock page replacement algorithm.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 622

622 PART FIVE THE SOFTWARE COMPONENT

SECONDCHANCEPAGEREPLACEMENTALGORITHMS One secondchance algorithm
uses an interesting variation on FIFO, using a referenced bit similar to that of NUR. When the
oldest page is selected for replacement, its referenced bit is checked. If the referenced bit is set,
the bit is reset, and the time is upgraded, as though the page had just entered memory. This
gives the page a second pass through the list of pages. If the referenced bit is not set, then the
page is replaced, since it is safe to assume that it has not been referenced in some time.

Another second chance algorithm keeps a small pool of free pages that are not assigned.
When a page is replaced, it is not removed from memory but, instead, is moved into the free
pool. The oldest page in the free pool is removed to make room. If the page is accessed while
in the free pool, it is moved out of the free pool and back into the active pages by replacing
another page.

Both second chance algorithms reduce the number of disk swaps by keeping what would
otherwise be swapped-out pages in memory. However, the first of these algorithms has the
potential of keeping a page beyond its usefulness, and the second decreases the number of
possible pages in memory by using some of those pages for the free pool.

EXAMPLE
Hopefully, a detailed example will help to clarify your understanding of the concepts of virtual
storage. This example is based on a homework assignment given by Dr. Wilson Wong, a colleague
at Bentley University. We’ll make it a decimal computer just so it’s easier to read.

You are going to load and execute a 5622 line program (including data) on a computer with
up to 10,000 locations of physical memory. For this computer, the number of locations on a
page or frame is 100. Thus, the last two digits of any location will be an offset, the same value
concatenated at the end of either a page or frame number. Assume that the working set for our
program will be four frames, numbered 6, 15, 70, and 80.

First, note that we require fifty-seven pages, 0 through 56, to hold the program. Since the
working set is four frames, the page table will have only four pages filled with entries at any given
time. Frame entries for the remainder of the pages will be empty.

Assume that the page table is initially empty. Suppose that the following sequence of logical
memory references occurs.

Start, 0, 951, 952, 68, 4730, 955, 2217, 3663, 2217, 4785, 957, 2401, 959,

2496, 3510, 962, end.

The goal of this exercise is to determine when page faults will occur and to select replacement
pages for each page fault, for each of two page replacement algorithms, FIFO and LRU. For hand
calculation purposes, it is easier to use an inverted page table, since it is smaller, only 4 rows,
instead of 57, and since the frames don’t change.

As long as there is an empty frame, a page fault will simply require a new entry in the table.
Therefore, pages 0, 9, 47, and 22 will be the first pages to fill the table. (Notice, by the way, that
the entry 68 is actually an offset from page 0.) Figure 18.22(a) shows the status of storage at
this point in time. Since all available frames for this program are now filled, page replacements
after this point will depend on the page replacement algorithm in use. For example, the next page
fault will occur at the next reference, 3663. For the FIFO algorithm, page 0 would be replaced
by page 36; LRU would replace page 47 (move backwards to find the least recently used).

You should work through the remainder of the example to confirm that your work agrees with
the inverted page solutions presented in Figure 18.22(b) and (c). Each of the page replacements
is bolded in these figures. The final page tables, with unfilled pages omitted, also appear in
these figures.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 623

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 623

FIGURE 18.22

Solutions to the Page Table Example. (a) Inverted page table when frames are first filled.
(b) Inverted and regular page table for FIFO page replacements. (c) Inverted and regular
page table for LRU page replacements

FramePage

0-8

9

10-23

24

70

15

25-34

35 80

36 6

37-56

Page table at end

Page table at end

PageFrame

15

6

70

80

36

24

9

35

Inverted page table at end

Inverted page table at end

(b) FIFO page replacement

0 951 952 68 4730 955 2217366322174785 957 2401 959 2496 3510 962 END

6 0 0 0 0 0 0 0 36 36 36 36 36 36 36 36 36 36

15 9 9 9 9 9 9 9 9 9 9 24 24 24 24 24 24

70 47 47 47 47 47 47 47 47 9 9 9 9 9

80 22 22 22 22 22 22 22 22 35 35 35

FIFO

Page

(a)

Inverted page table when
frames are first filled

Inverted page table during FIFO page replacement

Inverted page table during LRU page replacement

Frame

6

15

70

80

0

9

47

22

FramePage

0-8

9

10-23

24

15

6

25-34

35 80

36-46

7047

48-56

Page

(c) LRU page replacement

Frame

15

70

80

246

9

47

35

0 951 952 68 4730 955 2217366322174785 957 2401 959 2496 3510 962 END

6 0 0 0 0 0 0 0 36 36 36 36 24 24 24 24 24 24

15 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

70 47 47 47 47 47 47 47 47 47 47 47 47 47

80 22 22 22 22 22 22 22 22 35 35 35

LRU

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 624

624 PART FIVE THE SOFTWARE COMPONENT

Thrashing

A condition that can arise when a system is heavily loaded is called thrashing. Thrashing is
every system administrator’s nightmare. Thrashing occurs when every frame of memory is in
use, and programs are allocated just enough pages to meet their minimum requirement. A page
fault occurs in a program, and the page is replaced by another page that will itself be needed for
replacement almost immediately. Thrashing is most serious when global page replacement is
used. In this case, the stolen page may come from another program.When the second program
tries to execute, it is immediately faced with its own page fault. Unfortunately, the time required
to swap a page from the disk is long compared to CPU execution time, and as the page fault is
passed around from program to program, no program is able to execute, and the system as a
whole slows to a crawl or crashes. The programs simply continue to steal pages from each other.
With local page replacement, the number of thrashing programs is more limited, but thrashing
can still have a serious effect on system performance.

Page Table Implementation

As we mentioned previously, the data in the page table must be stored in memory. You should
realize that data in the page table must be accessed during the fetch-execute cycle, possibly
several times, if the fetch-execute cycle is executing an instruction with a complex addressing
mode. Thus, it is important that the page table be accessed as quickly as possible, since the
use of paging can negatively affect the performance of the system in a major way otherwise.
To improve access, many systems provide a small amount of a special type of memory called
associative memory. Associative memory differs from regular memory in that the addresses
in associative memory are not consecutive. Instead, the addresses in associative memory are
assigned to each location as labels. When associative memory is accessed, every address is
checked at the same time, but only the location whose address label matches the address to be
accessed is activated. Then the data at that location can be read or written. (Cache memory
lines are accessed similarly.)

A mailbox analogy might be useful in helping you to understand associative memory.
Instead of havingmailboxes that are numbered consecutively, picturemailboxes that have those
little brass inserts that you slide a paper label into. On each label is written the address of that
particular box. By looking at all the boxes, you can find the one that contains your mail. For a
human, this technique would be slower than going directly to a mailbox in a known location.
The computer, however, is able to look at every address label simultaneously.

Suppose, then, that the most frequently used pages are stored in this associative memory.
They may be stored in any order, since the address labels of all locations are checked
simultaneously. The page number is used as the address label that is being accessed. Then, the
only frame number that will be read is the one that corresponds to that page. A page table that
is constructed this way is known as a translation lookaside buffer (TLB) table.

The number of locations available in a TLB table is small because associative memory is
expensive. There must be a second, larger, page table that contains all the page entries for the
program. When the desired page is found in the TLB table, known as a hit, the frame can be
used without further delay. When the desired page is not found in the TLB table, called amiss,
the memory management unit defaults to conventional memory, where the larger page table is
stored. Access to the table in memory does, in fact, require an extra memory access, which will
significantly slow down the fetch-execute cycle, but that can’t be helped.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 625

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 625

To locate the correct entry in the larger page table, most computers provide a special

register in the memory management unit that stores the address of the origin of the page table

in memory. Then, the nth page can be located quickly, since its address in memory is the

address of the origin plus the offset. The process of page table lookup is shown in Figure 18.23.

Figure 18.23(a) shows how the page is accessed when the page is found in associative memory;

Figure 18.23(b) shows the procedure when the TLB does not contain the desired page.

Beyond the requirement that the frame or page size conform exactly to a fixed number

of bits, the size of a frame or page is determined by the computer system designer as a

FIGURE 18.23

Frame Lookup Procedures: (a) Page in TLB, (b) Page Not in TLB

+

12

7 15

14 17
5 1

12 4
2 12

Page no.

Page no.
(associative

address) Frame no.

500

500

512Miss
Frame no.

Page table origin register

Page
table

Memory

(a) Page in TLB

(b) Page not in TLB

Hit
frame no.

12

7 15

14 17
5 1

21 11
2 12

Page no.

Page no.
(associative

address) Frame no.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 626

626 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.24

Internal Fragmentation

0

2048

4096

6144

897 bytes
internal

fragmentation2KB
page

4096

8192

2945 bytes
internal

fragmentation

4KB
page

Program size: 5247 bytes

fundamental characteristic of the system. It
is not changeable. There are several trade-
offs in the determination of page size. The
page table for a program must contain an
entry for every page in the program. The
number of pages is inversely proportional
to the page size, so as the page size is
decreased, the number of page table entries
required increases. On the other hand, we
have assumed that the size of the program
corresponds exactly to the amount of mem-
ory occupied by the pages required for the
program.This is not usually true.More com-
monly, the last page is partly empty. The
wasted space is internal fragmentation. An
example is shown in Figure 18.24.

Also, if the pages are small, memory will consist of more pages, which allows more
programs to be resident. Conversely, smaller pages will require more swapping, since each
program will have less code and data available to it at any given time. Experimentally, designers
have determined that 2 KB or 4KB pages seem to optimize overall performance.

Page tables on large machines can, themselves, require considerable memory space. One
solution is to store the page tables in virtual memory. Page tables, or portions of page tables,
in current use will occupy frames, as usual. Other portions or tables will reside only in virtual
memory until needed.

Segmentation

Segmentation is essentially similar to paging conceptually, but differs inmany details. A segment
is usually defined as a logically self-contained part of a program, such as an object, as determined
by a programmer or by a compiler translation program. Thus, in most systems, segments can
be variable in size. (A few systems define segments instead as large pages, of fixed size, but of
1MB, 2MB, or 4MB, or even more. This definition does not interest us here, since the previous
discussion of paging applies in this case. When a fixed size segment is further divided into
pages, the program address is divided into three parts, a segment, a page, and an offset, and
the mapping process takes place in two steps, but the procedure is otherwise identical to our
previous discussion.) Program segments can represent parts of a program such asmain routines
and subroutines or functions, or they can represent program code and data, even separate data
tables. The crucial difference between segments and pages is that due to their variability in size,
the boundaries between segments do not fall on natural borders, as pages do.

Therefore, in the segment table it is necessary to provide the entire physical address for
the start of the segment instead of just a page number. It is also necessary to record the size
or upper limit location of the segment, so that the system can check to make sure that the
requested location does not fall outside the limit of the segment. Otherwise, it would be possible
to read or write data to a location belonging to another segment, which would compromise the
integrity of the system. This is not a problem with paging, since it is impossible for the offset to
exceed the size of a page.

The program segment numbers are stored with each segment and are treated similarly to
page numbers. For each segment number, there is an entry in the segment table containing the

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 627

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 627

starting location of the segment in physical memory plus the limit of the segment. The physical

address is calculated by adding the program segment offset from the start of the segment to the

memory starting location and checking this value against the limit. As with the page table, part

of the segment table can be stored in associative memory for faster access. When segmentation

and paging are both provided, there may be two TLB tables, one for each. When both are

provided, the translation process performs its mapping in two steps. First, the segment table

is used to determine the location of the pages that make up the segment. Then, the page table

locates the desired frame. Since the programmer establishes the segments, segmentation is less

invisible to the programmer than paging, even though during operation it is still invisible.

This provides a few advantages to the programmer, stemming from the fact that each segment

can be treated independently. This means that a particular segment could be shared among

different programs, for example. Nonetheless, segmentation is harder to operate and maintain

than paging and has rapidly fallen out of favor as a virtual storage technique.

Process Separation

The use of virtual storage offers one additional benefit that should bementioned. Under normal

program execution without virtual storage, every memory access has the potential to address a

portion of memory that belongs to a different process. This would violate system security and

data integrity; for example, a program in a partitioned memory could access data belonging to

another process simply by overflowing an array. Prior to virtual storage memory management,

this was a difficult problem. It was necessary to implement memory access limits for each

process in hardware, because there is no way for operating system software to check every

attempted memory access while a program is executing. With virtual storage, every memory

access request points to a logical address, not a physical one. Since the logical address is within

the space of the process itself, the translation process assures that it is not possible to point

to a physical address belonging to another process, unless the page tables have been set up

intentionally to share frames between the processes. Thus, virtual storage provides simple,

effective separation protection between processes.

18.8 SECONDARY STORAGE SCHEDULING
On a busy system, it is common to have a number of disk requests pending at any given time.

The operating system software will attempt to process these requests in a way that enhances

the performance of the system. As you might expect by now, there are several different disk

scheduling algorithms in use.

First-Come, First-Served Scheduling

First-come, first-served (FCFS) scheduling is the simplest algorithm. As requests arrive, they

are placed in a queue and are satisfied in order. Although this may seem like a fair algorithm, its

inefficiency may result in poorer service to every request in the queue. The problem is that seek

time on a disk is long and somewhat proportional to the distance that the head has to move.

With FCFS, one can expect the head to move all over the disk to satisfy requests. It would be

preferable to use an algorithm that minimizes seek distances. This would suggest processing

requests that are on nearby tracks first. The other algorithms in use attempt to do so.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 628

628 PART FIVE THE SOFTWARE COMPONENT

Shortest Distance First Scheduling

The shortest distance first (SDF) scheduling algorithm looks at all the requests in the queue
and processes the one nearest to the current location of the head. This algorithm suffers from
the possibility of indefinite postponement. If the head is near the middle track on the disk, a
request near the edge of the disk may never get serviced if requests continue to join the queue.

Scan Scheduling

The scan scheduling algorithm attempts to satisfy the limitation of SDF scheduling. The head
scans back and forth across the disk surface, processing requests as it goes. Although this
method is fairer than SDF, it suffers from a different limitation, namely, that blocks near the
middle tracks are processed twice as often as blocks near the edge. To see this more clearly,
consider the diagram in Figure 18.25. Consider the headmoving smoothly back and forth across
the disk at a constant speed. The diagram shows the time at which the head crosses various
tracks. Note that the middle track is crossed in both directions, at about equal intervals. Tracks
near either the inside or the outside track, however, are crossed twice in quick succession. Then
there is a long interval in which they are not touched. A track at the very edge, inside or outside,
is touched only once for every two times that a track in the middle is touched.

n -Step c-Scan Scheduling

Two changes improve the n-step c-scan scheduling algorithm. One is to cycle in only one
direction, then return to the other end before accessing blocks again. This assures that each
block is treated equally, even though a bit of time is wasted returning the head to its original
position. The other change is to maintain two separate queues. Once the head has started to
traverse the disk, it will read only blocks that were already waiting when the traverse started.

FIGURE 18.25

Scan Scheduling Algorithm

In

Out

Track 38

(a) Disk layout

(b) Timing chart

Track 20

TimeInOutIn

Track
crossed

3820 38 38 20 0 20 38

Track 0

Source: Courtesy of International Business Machines Corporation, c 1971 International Business Machines Corporation.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 629

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 629

This prevents block requests that are just ahead of the head from jumping into the queue.
Instead, such a block would be placed in the alternate queue to wait for the next pass. This
approach is fairer to requests that have already been waiting. Practically, there is no reason to
move the head beyond the last block sought, and reversal will take place at that time. Some
writers refer to this as c-look scheduling.

Figure 18.26 compares the head movement for different scheduling algorithms. These
drawings, based on an example and drawings by Silberschatz et al. [SILB12], assume a disk
queue containing blocks in tracks 98, 183, 37, 122, 14, 124, 65, and 67. The head starts at track 53.

18.9 NETWORK OPERATING SYSTEM SERVICES
To take advantage of networking, the operating system must include services that support
networking and provide the features offered by networking capability. These services include
implementation of network software protocols, augmentation of the file system to support the
transfer and use of files from other locations, remote login capability, and additional utilities
and tools. Modern operating systems include networking facilities as part of the base system.

OS Protocol Support and Other Services

The operating system implements the protocols that are required for network communication
and provides a variety of additional services to the user and to application programs. Most
operating systems recognize and support a number of different protocols. This contributes to
open system connectivity, since the network can then pass packets with less concern for the
protocols available on the network stations. In addition to standard communication protocol
support, the operating system commonly provides some or all of the following services:

n File services transfer programs and data files from one computer on the network to
another. Network file services require that identification of the network node occur
ahead of the file manager in the operating system hierarchy. This allows file requests
to be directed to the appropriate file manager. Local requests are passed on to the
local file manager; other requests go to the network for service by the file manager on
the machine where the file resides. This concept is shown in Figure 18.27.

n Some file services require a logical name for the machine to be included on network
file requests. For example, Windows assigns pseudodrive letters to file systems
accessible through the network. To the user, a file might reside on drive “M:”.
Although this system is simple, it has one potential shortcoming: different computers
on the network might access the same drive by different letters if care isn’t taken to
prevent this situation. This can make it difficult for users to find their network-based
files when they move between computers. Other systems allow the network
administrator to assign names to each machine. Many Bentley University machines,
for example, are named after Greek gods. To access a file on the “zeus” computer, the
user types “zeus:” ahead of the file path name.

n Some operating systems provide transparent access to files on the network. On these
systems, network files are mounted to the file system in such a way that network files
simply appear in the directory structure like any other file. The operating system uses
whatever method is appropriate, local or network, to access the requested files. The
user need not know the actual location of the file.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 630

630 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.26

Comparison of Different Disk Algorithms

(a) FCFS

(b) SDF

1993714 53 6567 98 1220 124 183

1993714 53 6567 98 1220 124 183

1993714 53 6567 98 1220 124 183

1993714 53 6567 98 1220 124 183

(c) SCAN

(d) N-STEP SCAN

Source: A. Silberschatz, JP. Galvin, G. Gagne Operating Systems Concepts, 5/e. c 1998 by John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 631

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 631

FIGURE 18.27

The Access for a Networked Operating System

Local system

Remote system

File request

Steering

Local
request

Local OS
file manager

Network
manager

Remote OS
file manager

n Print services work similarly to file services. Print
requests are redirected by the operating system
to the network station that manages the requested
printer. This allows users to share expensive
printer resources.

n Other peripherals and facilities can also be
managed as network services. System-intensive
operations, such as database services, can be
processed on large computers with the
capability and then passed over the network to
other computers. This technique places the
processing burden on the system that is most
qualified to handle it and has the additional
benefit of making the data available wherever
it is needed.

n Web services accept requests from the network connections and return answers in
the form of HTML files, image files, and more. Frequently, Web pages require data
processing on the server to prepare dynamically created pages. Operating system
scripts and servers are often used for this purpose. The common gateway interface
(CGI) protocol provides a standard connection between the Web server and scripts
and operating system services.

n Messaging services allow users and application programs to pass messages from one
to another. The most familiar application of messaging services is e-mail and chat
facilities. The network operating system not only passes these messages, it also
formats them for display on different systems.

n Application program interface services allow a program to access network services.
Some network operating systems also provide access to services on remote machines
that might not be available locally. These services are called remote procedure calls
(RPCs). RPCs can be used to implement distributed computing.

n Security and network management services provide security across the network and
allow users to manage and control the network from computers on the network.
These services also include protection against data loss that can occur when multiple
computers access data simultaneously.

n Remote processing services allow a user or application to log in to another system on
the network and use its facilities for processing. Thus, the processing workload can be
distributed among computers on the network, and users have access to remote
computers from their own system. The most familiar services of this type are
probably telnet, and SSH.

When considered together, the network services provided by a powerful network operating
system transform a user’s computer into a distributed system. Tanenbaum [TAN07] defines a
distributed system as follows:

A distributed system is a collection of independent computers that appear to the
users of the system as a single computer.

Network operating systems are characterized by the distribution of control that they
provide. Client–server systems centralize control in the server computer. Client computers

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 632

632 PART FIVE THE SOFTWARE COMPONENT

have their network access limited to services provided by the server(s). Novell NetWare
is an example of a client–server system. The operating system software on the server can
communicate with every computer on the network, but client software communicates only
with the server. In contrast, peer-to-peer network software permits communication between
any two computers on the network, within security constraints, of course.

18.10 OTHER OPERATING SYSTEM ISSUES
There are many challenges in the design of an operating system. In this section we make a few
comments about one of the more interesting operating system issues, deadlock.

Deadlock

It is not unusual for more than one process to need the same computer resource. If the resource
is capable of handling multiple concurrent requests, then there is no problem. However, some
resources can operate with only one process at a time. A printer is one example. If one process
is printing, it is not acceptable to allow other processes access to the printer at that time.

When one process has a resource that another process needs to proceed, and the other
process has a resource that the first process needs, then both are waiting for an event that can
never occur, namely, the release by the other process of the needed resource. This situation can
be extended to any number of processes, arranged in a circle.

This situation is called deadlock, and it is not unfamiliar to you in other forms. The most
familiar example is the automobile gridlock situation depicted in Figure 18.28. Each vehicle is
waiting for the one to its right to move, but of course no one can move.

In a computer system, deadlock is a serious problem. Much theoretical study has been
done on deadlock. This has resulted in three basic ways in which deadlock is managed. These
are deadlock prevention, deadlock avoidance, and deadlock detection and recovery.

Deadlock prevention is the safest method; however, it also has the most severe effect on
system performance. Deadlock prevention works by eliminating in general any condition that
could create a deadlock. It is equivalent to closing one of the streets.

Deadlockavoidanceprovides a somewhatweaker formofprotection. Itworksbycontinually
monitoring the resource requirements, looking for situations in which a deadlock potential
exists and then not allowing that situation to occur. If the fourth car is not allowed into the
street because there are three other cars already in the intersection, that is deadlock avoidance.
In a computer system, the equivalent would be a refusal by the operating system to allocate a
resource because doing so would have a potential to cause deadlock.

Deadlock detection and recovery is the simplest method to implement, but the most costly
when things go wrong. This methodology allows deadlocks to occur. The operating system
monitors the resources. If everything stops, it assumes that a deadlock has occurred. It may
take some time to notice the condition, time that is lost to productive system work. Recovery
techniques include terminating processes and preempting resources. Terminated processes
must be rerun. Much work could be lost and require re-creation. Deadlock recovery is generally
considered the least satisfactory solution. To drivers too!

Other Issues

There are other issues that must be considered in the design of an operating system. Operating
systems require a method for communication between processes. In some systems, interprocess

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 633

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 633

FIGURE 18.28

A Familiar Deadlock Situation

communication may be as simple as sharing variables in a special pool or sending semaphore
messages that indicate completion of a task. In others, there may be a complex message
passing arrangement, with mailboxes set up for each process. Interprocess communication has
increased in importance over the past few years, due to the desire to move data and program
execution more easily from one application to another.

One form of communication that is sometimes very important is the ability to synchronize
processes with each other. Two or more processes may be cooperating on the solution of a
complexproblem, andonemaybedependent on the solutionprovidedby another. Furthermore,
both may be required to access the same data, the order and timing in which access takes place
can be critical, and these conditions can affect the overall results. This requires a solution to the
problem of process synchronization.

As a simple example, consider an address card file shared by you and your roommate or
partner. A friend calls to tell you that she hasmoved and to give you her newphone number. You
place a new cardwith this information in the card file box.Meanwhile, your roommate has taken
the old card from the box andhas used it towrite a letter.He returns to the box, sees the new card,
figures that it must be obsolete, and so throws it away and replaces it with the original. The new
data is now lost. Similar situations can occur with data being shared by more than one process.

As another simple example, consider two processes, with the goal to produce the result c,
where process 1 solves the program statement

a = a + b

with initial values a = 2 and b = 3.
The second process solves the statement

c = a + 5

where the value of a is to be taken from the first process.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 634

634 PART FIVE THE SOFTWARE COMPONENT

Clearly, it is important that the first process complete before the value of a is used by
process 2. If process 2 looks at the value of a too early, the result, c, will be 2 + 5 = 7. The
correct value is 5 + 5 = 10. The solutions to the problems of interprocess communication
and process synchronization are beyond the scope of this textbook. They are both difficult
and interesting. Various books, such as Stallings [STAL11], Silberschatz et al. [SILB12], and
Tanenbaum [TAN07], discuss these issues at length.

18.11 VIRTUAL MACHINES
FromChapter 11, you’re aware that it is possible to combine the processing power of a number of
computers to formacluster that acts as a single,morepowerful computer.The inverse is also true.
It is possible to use a powerful computer to simulate a number of smaller computers. The process
for doing so is called virtualization. The individual simulations that result are called virtual
machines. Each virtualmachinehas its ownaccess to the hardware resources of the hostmachine
and an operating system that operates as a guest of the host machine. On a desktop or laptop
computer, the user interface for each virtualmachine typically appears in a separateGUIwindow
on a display. A user can switch from one to another simply by clicking in a different window.

The use of virtualization has increased rapidly in volume and importance in recent years.
There are a number of factors that account for this:

n Although computer hardware is relatively inexpensive to purchase, the overhead
costs—software, networking, power consumption, space requirements, and support
costs of various kinds—make the overall cost of ownership of each additional
machine a significant burden. Clouds can supply virtual machines easily and quickly
as they are needed, at low cost.

n Modern computers generally have processing capability far in excess of usage or need.

n The development of virtualization technology has reached the state that even small
computers can be virtualized easily, effectively, and securely, with complete isolation
between virtual machines operating on the same host. Recent virtualization software
and hardware also supports a wider range of different operating systems.

The obvious application for virtual machines is the ability to consolidate servers by
operating multiple servers on the same hardware platform, but there are a number of other
useful purposes as well:

n A server can be set up to create a separate virtual machine for each client. This
protects the underlying system and other clients from malware and other
client-generated problems.

n A system analyst can evaluate software on a virtual machine without concern for its
behavior. If the software crashes or damages the operating system, the analyst can
simply kill the virtual machine without damage to the underlying system or any other
virtual machine that is running on the host.

n A software developer or Web developer can test his software on different operating
systems, with different configurations, all running on the same host. For example, a
database specialist can test changes to the database without affecting the production
system and then place them into production easily and efficiently.

n A user can operate in a sandbox. A sandbox is a user environment in which all
activity is confined to the sandbox itself. A virtual machine is a sandbox. For example,
a user can access dangerous resources on the Internet for testing a system against

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 635

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 635

malware safely. Malware loaded into a virtual machine disappears when the virtual
machine is closed. The sandbox is also useful for Web research, where the safety of
the Web sites accessed is not assured.

Virtualization creates an important illusion. The virtualizationmechanismmakes it appear
that each virtual machine has the computer system entirely to itself. It allocates physical
resources on a shared basis, processes on different machines can communicate with each other
using built-in networking protocols, and there is a common set of interrupt routines, controlled
by the virtualization software. In effect, each virtual machine offers an exact duplicate of
the system hardware, providing the appearance of multiple machines, each the equivalent of
a separate, fully configured system. The virtual machines can execute any operating system
software that is compatible with the hardware. Each virtual machine supports its own operating
system, isolated both from the actual hardware and from other virtual machines. The virtual
machine mechanism is invisible to the software executing on a virtual machine.

As anexample, the IBMz/VMoperating systemsimulatesmultiple copiesof all thehardware
resources of the IBMmainframe computer, registers, program counter, interrupts, I/O, and all.
This allows the system to load and run one ormore operating systems on top of z/VM, including,
even, other copies of z/VM. The loaded operating systems each think that they are interacting
with the hardware, but actually they are interacting with z/VM. Using virtualization, an IBM
mainframe can support hundreds or thousands of virtual Linux machines simultaneously.

Figure 18.29 shows the basic design of virtualization.An additional layer called ahypervisor
separates one or more operating systems from the hardware. The hypervisor may consist of
software or a mixture of software and hardware, if the CPU provides hardware virtualization
support. Most recent CPUs do so. There are two basic types of hypervisors.

n A native, or type 1, hypervisor is software that interfaces directly with the computer
hardware. The hypervisor provides required software drivers, manages interrupts,
and directs the results to the correct results of its work to the proper virtual machine.
To the operating system or systems, the hypervisor looks like a hardware interface.
One way to implement a type 1 hypervisor is to use the facilities of a stripped-down
operating system.

n A hosted or type 2 hypervisor is software that runs as a program on a standard
operating system. Some operating systems routinely provide hypervisor software as
part of the standard package. Guest operating systems then run on top of the
hypervisor.

FIGURE 18.29

Virtual Machine Configuration

Guest
OS

Guest
OS

Guest
OS

Hypervisor

Computer hardware

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 636

636 PART FIVE THE SOFTWARE COMPONENT

SUMMARY AND REVIEW
An operating system is quite complex internally. This chapter has considered some of the more
important components of the operating system in somedetail.Webeganby looking at the critical
components of a simplemultitasking system, particularly scheduling andmemorymanagement.

Turning our attention to more general multitasking systems, we discussed the concepts of
processes and threads.We showed youhow the operating systemcreates andmanages processes,
including description of the standard process states. Threads are important in current systems,
and we discussed threads as simplified processes, without the overhead.

Next, we introduced the two, and sometimes three, types of CPU scheduling.We described
the difference between preemptive and nonpreemptive multitasking, described the different
objectives that can be used to measure performance, and introduced several CPU dispatching
algorithms, comparing the way in which these met different objectives.

The focus of memory management is to load programs in such a way as to enhance
system performance.We briefly discussed the shortcomings of partitioningmethods as a way to
introduce virtual storage. The emphasis in this chapter is on the symbiosis between the hardware
and the operating system to provide a memory management technique that addresses many of
the shortcomings of other memory management techniques. The virtual storage methodology
eliminates the requirement that the sum of programs to be loaded as a whole must fit all at once
into available memory; instead, the active parts of each program are sufficient. It allows each
program to exist in the same virtual memory space. It allows programs to be loaded anywhere
in memory, and noncontiguously. And it eliminates the need for relocation procedures.

We explained the page fault procedure and discussed several page replacement algorithms.
We considered the number of pages that are required to execute a program successfully and
efficiently, and we considered the problem of thrashing.

Next, we discussed the algorithms used for secondary storage. Following that, we presented
the operating system components that support networking. We next introduced briefly the
issues of deadlock, process synchronization, and interprocess communication. These issues
are representative of some of the more complex problems that must be faced by operating
system designers and administrators. Finally, we introduced the concept of a virtual machine.
We explained why virtualization is so important, explained how it’s used, and showed how it
works. The VM operating system provides virtual machines that can be treated as independent
machines, each with its own operating system, applications, and users.

FOR FURTHER READING
Any of the references mentioned in the For Further Reading section of Chapter 15 also address
the topics in this chapter. If you have become intrigued by operating systems and would
like to know more, there are a large number of interesting problems and algorithms with
intriguing names like “the dining philosophers problem”. We have only barely touched upon
the surface of operating system design and operation, especially in the areas of deadlock, process
synchronization, and interprocess communication. We highly recommend the textbooks by
Deitel [DEIT03], Tanenbaum [TAN07], Silberschatz et al. [SILB12], and Stallings [STAL11].
for thorough and detailed treatment of these and other topics. Silberschatz et al. also offers a
nice introduction to virtual machines. Information about network and distributed operating
systems can be found in Tanenbaum and Woodhill [TAN/WOOD06], Tanenbaum and Van
Steen [TAN/VANS06], and in most recent operating systems and networking texts. See the For
Further Reading section in Chapter 15 for additional references.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 637

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 637

Virtualization is currently a hot topic.Much information, including readable introductions,

can be found at the vmware.com, and xen.org websites. There are also numerous books and

magazine articles on virtualization. Some of these are listed in the references at the back of this

book.

KEY CONCEPTS AND TERMS
associative memory

backing store

Belady’s anomaly

best-fit algorithm

blocked state

blocking

child process

client–server system

clock page replacement

algorithm

cloning

concept of locality

cooperating processes

deadlock

deadlock avoidance

deadlock detection and

recovery

deadlock prevention

demand paging

dirty bit

dispatcher

dispatching

distributed system

dynamic address translation

(DAT)

dynamic priority scheduling

event

event-driven program

external fragmentation

first-come, first-served

(FCFS) disk scheduling

first-fit algorithm

first-in, first-out (FIFO)

fixed partitioning

forking

fragmentation

frame (memory)

global page replacement

guest

high-level (long-term)

scheduler

hit

hypervisor

indefinite postponement

independent processes

internal fragmentation

interprocess communication

inverted page table

job

job steps

largest-fit algorithm

least recently used (LRU)

page replacement

algorithm

local page replacement

locked frame

logical memory

memory management unit

(MMU)

miss

multilevel feedback queue

algorithm

n-step c-scan scheduling

algorithm

nonpreemptive systems

not used recently (NUR)

page replacement

algorithm

offset

page fault (trap)

page replacement algorithm

page swapping

page table

paging

parent process

peer-to-peer network

software

preemptive systems

prepaging

priority scheduling

process

process control block (PCB)

process identifier (PID)

process state

process synchronization

processor affinity

ready state

remote procedure call (RPC)

response time

resumption

roll-out, roll-in

round robin

running state

sandbox

scan scheduling (disk)

segment table

segmentation

shortest distance first (SDF)

disk scheduling

shortest job first (SJF)

spawning

starvation

suspended state

swap file

swap out

swap space

swapping

system process

task

thrashing

thread

time-out

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 638

638 PART FIVE THE SOFTWARE COMPONENT

translation lookaside buffer
(TLB)

turnaround time
user process
user-level thread

variable partitioning
virtual machine (VM)
virtual memory
virtual storage
virtualization

wake-up

working set

worst-fit algorithm

READING REVIEW QUESTIONS

18.1 What is the fundamental purpose of any operating system?What is the role of the file
manager? What other basic functions must the operating system be able to perform?

18.2 Where is the first stage of a bootstrap loader for a computer stored? What tasks does
it perform?

18.3 What are the major items found in a process control block?

18.4 How does a process differ from a program?

18.5 What are user processes? What are system processes?

18.6 Explain the purpose of a spawning operation. What is the result when the spawning
operation is complete?

18.7 Draw and label the process state diagram used for dispatching work to the CPU.
Explain each state and the role of each connector.

18.8 What features characterize threads? How are threads used?

18.9 What is an event-driven program?

18.10 What are the potential difficulties that can occur when nonpreemptive dispatching is
used in an interactive system?

18.11 Explain the first-in-first-out dispatch algorithm. Discuss the advantages and disad-
vantages of this algorithm. Is this a preemptive or nonpreemptive algorithm?

18.12 Explain how the shortest job first algorithm can result in starvation.

18.13 UNIX systems use a dynamic priority algorithm where the priority is based on the
ratio of CPU time to the total time a process has been in the system. Explain how this
reduces to round robin in the absence of any I/O.

18.14 What is the basic problem that memory management is supposed to solve? What is
the shortcoming of memory partitioning as a solution?

18.15 What is a page in virtual storage? What is the relationship between a program and
pages?

18.16 What is a frame in virtual storage? What is the relationship between a frame and
physical memory?

18.17 What are the contents of a page table? Explain how a page table relates pages and
frames.

18.18 Explain how page translation makes it possible to execute a program that is stored in
memory noncontiguously.

18.19 A program’s page table is shown in Figure 18Q.1. Assume that each page is 4 KB in
size. (4 KB = 12 bits). The instruction currently being executed is to load data from
location 5E2416. Where is the data located in physical memory?

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 639

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 639

FIGURE 18Q.1

Page Frame

0

1

2

3

4

5

6

2A

2B

5

17

18

2E

1F

18.20 Virtual storage makes it possible to execute a program that is larger than the available

amount ofmemory.What obvious characteristic of programcodemakes this possible?

18.21 Describe the process that takes place when a page fault occurs?What happens if there

are no frames available when a page fault occurs?

18.22 Explain the concept of a working set.

18.23 The not used recently page replacement algorithm stores two bits with each page

to determine a page that is suitable for replacement. What does each bit represent?

Which combination of bits makes a page the most desirable for replacement? Justify

your answer. What combination would be second best?

18.24 Explain thrashing.

18.25 Describe at least three network services offered bymost operating systems in addition

to protocol services.

18.26 Explain deadlock. What are the three possible ways that an operating system can

handle the issue of deadlock?

18.27 State at least three advantages that result from the use of virtual machines.

18.28 Describe the tasks that are performed by a hypervisor.

EXERCISES

18.1 Describe, in step-by-step form, the procedure that the operating system would use to

switch from one user to another in a multiuser time sharing system.

18.2 What values would you expect to find in the process state entry in a process control

block? What purpose is served by the program counter and register save areas in a

process control block? (Note that the program counter entry in a PCB is not the same

as the program counter!)

18.3 Discuss the steps that take place when a process is moved (a) from ready state to

running state, (b) from running state to blocked state, (c) from running state to ready

state, and (d) from blocked state to ready state.

18.4 Why is there no path on the process diagram from blocked state to running state?

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 640

640 PART FIVE THE SOFTWARE COMPONENT

18.5 Describe what occurs when a user types a keystroke on a terminal connected to
a multitasking system. Does the system respond differently for a preemptive or
nonpreemptive system? Why or why not? If the response is different, how is it
different?

18.6 The multilevel feedback queue scheduling method looks like FIFO at the upper levels
and like round robin at the lowest level, yet it frequently behaves better than either in
terms of the performance objectives mentioned in the text. Why is this so?

18.7 Discuss the shortest-job-first scheduling method in terms of the various objectives
given in the text.

18.8 What is the risk that can result fromthemixednonpreemptive–preemptive scheduling
system taken by Linux, as discussed in the text?

18.9 A VSOS (very simple operating system) uses a very simple approach to scheduling.
Scheduling is done on a straight round-robin basis, where each job is given a time
quantum sufficient to complete very short jobs. Upon completion by a job, another
job is admitted to the system and immediately given one quantum. Thereafter, it
enters the round-robin queue. Consider the scheduling objectives given in the text.
Discuss the VSOS scheduling approach in terms of these objectives.

18.10 Earlier versions ofWindowsused an essentially nonpreemptive dispatching technique
that Microsoft called “cooperative multitasking”. In cooperative multitasking, each
program was expected to voluntarily give up the CPU periodically to give other
processes a chance to execute. Discuss. What potential difficulties can this method
cause?

18.11 In the memory management schemes used in earlier operating systems, it was
necessary to modify the addresses of most programs when they were loaded into
memory because they were usually not loaded into memory starting at location 0.
The OS program loader was assigned this task, which was called program relocation.
Why is program relocation unnecessary when virtual storage is used for memory
management?

18.12 Discuss the impact of virtual storage on the design of an operating system. Consider
the tasks that must be performed, the various methods of performing those tasks, and
the resulting effect on system performance.

18.13 There are a number of different factors, both hardware and OS software, that affect
the operating speed of a virtual storage system. Explain carefully each of the factors
and its resulting impact on system performance.

18.14 Show in a drawing similar to Figure 18.18 how two different programs with the same
logical address space can be transformed by virtual storage into independent parts of
physical memory.

18.15 Show in a drawing similar to Figure 18.18 how two different programs with the same
logical address space can be transformed by virtual storage partially into the same
part of physical memory and partially into independent parts of physical memory.
Assume that the two programs use the same program code, located from logical
addresses 0 to 100, and that they each have their own data region, located from logical
addresses 101 to 165.

18.16 Create a page table that meets the translation requirements of Figure 18E.1. Assume
a page size of 10.

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 641

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 641

FIGURE 18E.1

0

200

150

100

Logical
memory

Program

Physical
memory

A

A

B

C
B

C

0

500

80

500

130

310

410
450

18.17 Explain why the installation of additional physical memory in a virtual memory
system often results in substantial improvement in overall system performance.

18.18 Develop an example that explains thrashing clearly.

18.19 What kind of fragmentation would you find in virtual storage? Is this a serious
problem? Justify your answer. Discuss the relationship between fragmentation and
page size.

18.20 Explain why page sharing can reduce the number of page faults that occur in a virtual
storage system.

18.21 The manual for an old operating system pointed out that the number of concurrent
users on the system can be increased if the users are sharing programs, such as editors,
mail readers, or compilers. What characteristics of virtual storage make this possible?

18.22 Explain deadlocking.

18.23 The CPU scheduling algorithm (in UNIX) is a simple priority algorithm. The priority
for a process is computed as the ratio of the CPU time actually used by the process to
the real time that has passed. The lower the figure, the higher the priority. Priorities
are recalculated every tenth of a second.
a. What kind of jobs are favored by this type of algorithm?

b. If there is no I/O being performed, this algorithm reduces to a round-robin
algorithm. Explain.

c. Discuss this algorithm in terms of the scheduling objectives given in the text.

18.24 Explain the working set concept. What is the relationship between the working set
concept and the principle of locality?

18.25 Why is the working set conceptmuchmore effective if it is implemented dynamically,
that is, recalculated while a process is executing?

18.26 What are the differences, trade-offs, advantages, and disadvantages between an OS
that implements deadlock prevention versus deadlock avoidance versus deadlock
detection and recovery?

18.27 An operating system designer has proposed using inverted page tables for each
process instead of conventional page tables as the lookup tables for each memory
reference. Since there are always fewer frames than pages in the page table, this would
reduce the amount of memory required for the tables themselves. Is this a good idea?
Why or why not?

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 642

642 PART FIVE THE SOFTWARE COMPONENT

18.28 Figure 18E.2 shows that, for a given process, the page fault rate in a virtual storage
system increases as the page size is increased and then decreases to 0 as the page size
approaches P, the size of the process. Explain the various parts of the curve.

FIGURE 18E.2

P
ag

e
fa

ul
t

ra
te

Page size P

18.29 Assume that you have a program to run on a Little Man-type computer that provides
virtual storage paging. Each page holds ten locations (in other words, one digit). The
system can support up to one hundred pages of memory. As Figure 18E.3 shows,
your program is sixty-five instructions long. The available frames in physical memory
are also shown in the diagram. All blocked-in areas are already occupied by other
programs that are sharing the use of the Little Man.

FIGURE 18E.3

0

20

40

60

0

90
100

230

250

670
680

999

65

a. Create a starting page table for your program. Assume that your program will
start executing at its location 0.

b. Suppose a page fault occurs in your program. The OS has to decide whether
to swap out one of your older pages, or one of somebody else’s pages. Which
strategy is less likely to cause thrashing? Why?

18.30 What is a real-time system? Discuss the impact of a real-time system on the design
of the operating systems, paying particular note to the various components and
algorithms to be used.

18.31 Consider the operation of a jukebox. Each table has a jukebox terminal where
customers can feed coins to play songs (50 cents apiece, three for a dollar). Prior to
the iPod era, the queue to hear your songs in a busy restaurant could be quite long,
sometimes longer than the average dining time, in fact.

Discuss the various disk scheduling algorithms as methods of selecting the order
in which to play the requested songs. Be sure to consider the advantages and

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 643

CHAPTER 18 THE INTERNAL OPERATING SYSTEM 643

disadvantages of each method in terms of fairness, probability that each diner will
get to hear their songs, ease of implementation, and any other important issues that
you feel should be considered. You might note that multiple diners would sometimes
request the same song.

18.32 Tanenbaum notes that the problem of scheduling an elevator in a tall building is
similar to that of scheduling a disk arm. Requests come in continuously, calling the
elevator to floors at random. One difference is that once inside, riders request that
the elevator move to a different floor. Discuss the various disk scheduling algorithms
as options for scheduling the elevator in terms of fairness, service, and ease of
implementation.

18.33 Discuss possible tape scheduling algorithms for a tape controller. Assume that files
are stored contiguously on tape. What effect would noncontiguous, linked files have
on your algorithm?

18.34 You may have noticed a number of similarities between virtual storage paging and
cache memory paging. Onemajor difference, of course, is that main memory is much
faster than disk access.

Consider the applicability and performance of the various paging algorithms in a
memory caching system, and discuss the advantages and disadvantages of each.

18.35 The designer of a new operating system to be used especially for real-time applications
has proposed the use of virtual storage memory management so that the system can
handle programs too large to fit in the limited memory space sometimes provided on
real-time systems. What are the implications of this decision in terms of the way that
virtual storage works?

18.36 Discuss the various trade-offs and decisions involved in task dispatching and the
options and methods used for implementing those trade-offs and decisions.

18.37 A system status report for a virtual storage operating system shows that between
2 p.m. and 4 p.m. CPU usage and I/O usage both climbed steadily. At 4 p.m., the I/O
usage reached 100 percent, but continued to increase. After 4 p.m., the CPU usage,
however, dropped off dramatically. What is the explanation for this behavior?

18.38 Discuss the network features and services provided in an operating system. Which
services are mandatory? Why?

18.39 Explain the bootstrap procedure for a diskless workstation.

18.40 Consider the operation of an OS dispatcher on a computer with multiple cores
operating under symmetric multiprocessing. Assuming that there are more processes
being executed than there are cores, the dispatcher is responsible for maximizing the
work load by keeping every core as busy as possible. In addition to the usual dispatch
criteria and algorithms, there are two options for selecting in which core a process is
to execute. The first option is to allow a process to execute in any core that is available
each time it is selected to run; with this option, a process might execute in several
different cores during its run. The second option is to require that the process run in
the same core each time it is selected.
a. What are the advantages of the first option?

b. What are the advantages of the second option? (Hint: consider the interaction
between a process and the cache memory that is assigned to each core.)

Englander c18.tex V2 - November 28, 2013 10:05 P.M. Page 644

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 645

B I B L I OGR A PH Y

A
Abel, P. IBM PC Assembly Language and Programming, 5th ed. Englewood Cliffs, NJ: Prentice Hall,

2001.

Adobe Systems, Inc., Staff. PDF Reference, 6th ed., Version 7.1. www.adobe.com/devnet/acrobat/pdfs/

pdf_reference_1-7.pdf, 2006.

____. PostScript Language Program Design (“The Green Book”). Reading, MA: Addison-Wesley,

1993.

____. PostScript Language Reference Manual, 3rd ed. (“The Red Book”). Reading, MA:

Addison-Wesley, 1999.

____. PostScript Language Tutorial and Cookbook (“The Blue Book”). Reading, MA: Addison-Wesley,

1985.

Aho, A. V., M. S. Lam, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools, 2nd ed.

Reading, MA: Addison-Wesley, 2006.

Aken, B. R., Jr., “Large Systems and Enterprise System Architecture,” IBM Systems Journal, Vol. 28, no. 1

(1989), pp. 4–13.

Al-Abdullatif, N. “Facebook: Seeking an Understanding into the Platform,” scribd.com/doc/12764176/

facebooks-platform (August 15, 2013).

Alpert, D., and D. Avnon. “Architecture of the PentiumMicroprocessor,” IEEEMicro, Vol. 13, no. 3 (June

1993), pp. 11–21.

Anderson, D. FireWire System Architecture: IEEE 1394, 2nd ed. Richardson, TX: Mindshare, Addison-

Wesley, 1998.

____. Universal System Bus System Architecture, 2nd ed. Richardson, TX: Mindshare, Addison-Wesley,

2001.

____ and T. Shanley. PCI System Architecture, 4th ed. PC Systems Architecture Series. Richardson, TX:

Mindshare, Addison-Wesley, 1999.

____, R. Budruk, and T. Shanley. PCI Express System Architecture, PC Systems Architecture Series.

Richardson, TX: Mindshare, Addison-Wesley, 2003.

____ and T. Shanley. Pentium Processor System Architecture, 2nd ed., PC System Architecture Series,

Volume 5. Richardson, TX: Mindshare, 1995.

Arevolo, A., et al. Programming the Cell Broadband Engine Architecture, Examples and Best Practices:

Part 1: Introduction to the Cell Broadband Engine Architecture, www.redbooks.ibm.com (August 8,

2008).

Armitage, G. Quality of Service in IP Networks. Indianapolis, IN: Sams Publishing, 2000.

Atkinson, T. D., U. O. Gagliardi, G. Raviola, and H. S. Schwenk, Jr., “Modern Central Processor

Architecture,” Proceedings of the IEEE, Vol. 63, no. 6 (June 1975), pp. 863–870.

AT&T Bell Laboratories. Unix System Readings and Applications, Volumes I and II. Englewood Cliffs, NJ:

Prentice Hall, 1987.

645

http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.redbooks.ibm.com

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 646

646 BIBLIOGRAPHY

B
Bach, M. The Design of the Unix Operating System. Englewood Cliffs, NJ: Prentice Hall, 1990.

Bacon, J. Concurrent Systems, Operating Systems, Database and Distributed Systems: An Integrated

Approach, 2nd ed. Reading, MA: Addison-Wesley, 1998.

Bailes, G., and R. Riser. The IBM 370, Computer Organization and Assembly Language. St. Louis: West,

1987.

Bambara, R. J., and H. F. Cervone. MVS and UNIX: A Survival Handbook for Users, Developers, and

Managers. New York: McGraw-Hill, 1998.

Barfield, L. The User Interface, Concepts and Design. Reading, MA: Addison-Wesley, 2004.

Barroso, L. A., J. Dean, and U. Holzle, “Web Search for a Planet: The Google Cluster Architecture,” IEEE

Micro, Vol. 23, Issue 2 (March 2003), pp. 22–28.

Beck, M., H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner. Linux Kernel Programming,

3rd ed. Reading, MA: Addison-Wesley, 2002.

Becker,M. C.,M. S. Allen, C. R.Moore, J. S.Muhich, andD. P. Tuttle. “The PowerPC 601Microprocessor,”

IEEE Micro, Vol. 13, no. 5 (October 1993), pp. 54–67.

____. Beowulf Introduction & Overview. www.Beowulf.org/intro.html.

Berstis, V. Fundamentals of Grid Computing, www.redbooks.ibm.com, 2002.

Bhatt, A. V. “Creating a PCI Express Interconnect,” Intel White Paper, www.pcisig.com/specifications/

pciexpress/resources/PCI_Express_White_Paper.pdf.

Bielski, L. “Got Grid?,” J. of ABA Banking, 94 (December 2002), p. 43.

Biggerstaff, T. J. Systems Software Tools. Englewood Cliffs, NJ: Prentice Hall, 1986.

Boggs, D., et al., “The Microarchitecture of the Intel Pentium 4 Processor on 90 nm Technology,” Intel

Technical J, Vol. 8, no. 1 (2004), pp. 1–17.

Bovet, D., and M. Cosati. Understanding the Linux Kernel, 3rd ed., Sebastopol, CA: O’Reilly & Assoc.,

2006.

Brendel, J. C., H. Sprang, and J. Quade. “Going Virtual, A Practical Look at Virtualization,” Linux Pro, no.

90, (May 2008), pp. 21–25.

Brewer, E. “Clustering: Multiply and Conquer,” Data Communications, Vol. 26, 9 (July 1997), p. 89.

Brey, B. The Intel Microprocessors, 8th ed. Englewood Cliffs, NJ: Pearson Education, 2008.

Brookshear, J. G. Computer Science, An Overview, 11th ed. Menlo Park, CA: Benjamin Cummings, 2011.

Brown, G. D. System 390 JCL, 4th ed. New York: John Wiley & Sons, Inc., 1998.

Brumbaugh, L. J. VSAM, Architecture, Theory, and Applications. New York: McGraw-Hill, 1993.

Burgess, B., N. Ullah, P. Van Overen, and D. Ogden. “The PowerPC 603 Microprocessor,” Comm. of the

ACM, Vol. 37, no. 6 (June 1994), pp. 34–41.

Burke, P. H. “IBM ES/9000 Series: First Looks,”Datapro, Computer System Series: Systems 3937. New

York: McGraw-Hill, May 1993.

Buyya, R. High Performance Cluster Computing: Architecture and Systems, Vol. 1. Upper Saddle River,

NJ: Prentice Hall, 1999.

C
Calta, S. A., J. A. deVeer, E. Loizides, and R. N. Strangwayes. “Enterprise Systems Connection (ESCON)

Architecture—System Overview,” IBM J. of Research and Development, Vol. 36, no. 4 (July 1992),

pp. 535–552.

Card, R., E. Dumas, and F. Mevel. The Linux Kernel Book. New York: John Wiley & Sons, Inc., 1998.

____. Cell Broadband Engine Architecture, version 1.02, www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs, October 2007.

http://www.Beowulf.org/intro.html
http://www.redbooks.ibm.com
http://www.pcisig.com/specifications/pciexpress/resources/PCI_Express_White_Paper.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 647

BIBLIOGRAPHY 647

Chen, T., R. Raghavan, J. Dale, and E. Iwata, “Cell Broadband Engine Architecture and its First

Implementation,” 6th ed. 2013 www-128.ibm.com/developerworks/power/library/pa-cellperf.

Cheswick, W. R., S. M. Bellovin, and A. D. Rubin. Firewalls and Internet Security: Repelling the Wily

Hacker, 2nd ed., Boston, MA: Addison-Wesley, 2003.

Chevance, R. J. Server Architectures:Multiprocessors, Clusters, Parallel Systems,Web Servers, Burlington,

MA: Elsevier Digital Press, 2005.

Christian, K., and S. Richter. The UNIX Operating System, 3rd ed. New York: John Wiley & Sons, Inc.,

1994.

Colwell, R. P., and R. L. Steck. 1995 “A 0.6 μm BiCMOS Processor with Dynamic Execution,” Digest of

Technical Papers, IEEE International Solid State Circuits Conference, Vol 38 (February 1995), San

Francisco, CA.

Comer, D. E. Computer Networks and Internets with Internet Applications, 5th ed., Englewood Cliffs, NJ:

Prentice Hall, 2001.

____. Internetworking with TCP/IP, Volume 1, Principles, Protocols, and Architecture, 6th ed. Englewood

Cliffs, NJ: Prentice Hall, 2013.

____. “Special Issue on ATM Networking,” Comm. of the ACM, Vol. 38, no. 2 (February 1995),

pp. 28–109.

Cormier, R. L., R. J. Dugan, and R. R. Guyette. “System/370 Extended Architecture: The Channel

Subsystem,” IBM J. of Research and Development, Vol. 27, no. 3 (May 1983), pp. 206–217.

Cortada, J. W.Historical Dictionary of Data Processing, Volume 1, Biographies, Volume 2, Organizations,

Volume 3, Technology. Westport, CT: Greenwood Press, 1987.

Cowart, R., and B. Knittel. Using Microsoft Windows Vista, Indianapolis, IN: Que, 2006.

Cox, K., and D. Walker. User Interface Design, 2nd ed. New York: Simon & Schuster, 1993.

Crawford, C. H., D. M. Dias, A. K. Iyenger, M. Novaes, and L. Zhang. 2003 “Commercial Applications of

Grid Computing,” IBM Research Report, RC22702, January 22, 2003.

Cunningham, A. “The PC inside your phone: A guide to the system on a chip,” arstechnica.com

/gadgets/2013/04/the-pc-inside-your-phone-a-guide-to-the-system-on-a-chip/, April 10, 2013.

D
Davidson, J., and R. Vaughn. 1987 “The Effect of Instruction Set Complexity on Program Size and Per-

formance,” Proceedings, Second International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1987, Palo Alto, CA.

Davis, W., and T. M. Rajkumar. Operating Systems, A Systematic View, 6th ed. Redwood City, CA:

Benjamin Cummings, 2004.

Decker, R., and S. Hirshfield. The Analytical Engine, An Introduction to Computer Science Using The

Internet, 2nd ed. Boston, MA: PWS, 2003.

Deitel, H. Operating Systems, 3rd ed. Reading, MA: Addison-Wesley, 2003.

Denning, P. J. “Virtual Memory,” Computer Surveys, Vol. 2 (September 1970), pp. 153–189.

Dershem, H. L., and M. J. Jipping. Programming Languages, Structures and Models. Boston, MA: PWS

Publishing, 1993.

Diefendorff, K. “History of the PowerPC Architecture,” Comm. of the ACM, Vol. 37, no. 6 (June 1994),

pp. 28–33.

____, R. Oehler, and R. Hochsprung. “Evolution of the PowerPC Architecture,” IEEE Micro, Vol. 14,

no. 2 (April 1994), pp. 34–49.

Dijkstra, E. W. “The Structure of the T. H. E. Multiprogramming System,” Comm. of the ACM, Vol. 11,

no. 5 (May 1968), pp. 341–346.

____. Domain Name Industry Brief , Vol. 5, Issue 3, www.verisign.com/static/043939.pdf.

http://www.verisign.com/static/043939.pdf
http://www-128.ibm.com/developerworks/power/library/pa-cellperf

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 648

648 BIBLIOGRAPHY

Donovan, J. J. Systems Programming. New York: McGraw-Hill, 1972.

DuCharme, B. The Operating Systems Handbook, UNIX, Open VMS, OS/400, VM, MVS. New York:

McGraw-Hill, 1994.

Dumas, M. B., and M. Schwartz. Principles of Computer Networks and Communications, Upper Saddle

River, NJ: Pearson Education, 2009.

E
Elliott, J. C., and M. W. Sachs. “The IBM Enterprise Systems Connection (ESCON) Architecture,” IBM J.

of Research and Development, Vol. 36, no. 4 (July 1992), pp. 577–592.

F
Feng, W., M. Warren, and E. Weigle. “The Bladed Beowulf: A Cost-Effective Alternative to Traditional

Beowulfs,”Proceedings of the Int’l Conf. on Parallel Processing, IEEE Press, 2002.

Ferguson, P., and G. Huston. Quality of Service: Delivering QoS on the Internet and in Corporate

Networks. Secaucus, NJ: John Wiley & Sons, Inc., 1998.

Fiedler, D. “The Unix Tutorial, Part 2: Unix as an Application-Programs Base,” Byte, Vol. 8, no. 9

(September 1983), pp. 257–278.

____. “The Unix Tutorial, Part 1: An Introduction to Features and Facilities,” Byte, Vol. 8, no. 8 (August

1983), pp. 188–219.

Finnie, S., and P. Gralla. “Hands On: A Hard Look at Windows Vista,” Computerworld Networking

[online], (November 13, 2006).

Fisher, C. N., and R. J. LeBlanc, Jr., Crafting a Compiler. Redwood City, CA: Benjamin Cummings,

1988.

Fitzgerald, J., and A. Dennis. Business Data Communications and Networking, 11th ed. Secaucus, NJ: John

Wiley & Sons, Inc., 2012.

Flanagan, J. R., T. A. Gregg, and D. F. Casper. “The IBM Enterprise Systems Connection (ESCON)

Channel—A Versatile Building Block,” IBM J. of Research and Development, Vol. 36, no. 4 (July

1992), pp. 617–632.

Flores, I. The Logic of Computer Arithmetic. Englewood Cliffs, NJ: Prentice Hall, 1963.

Folk, M. J., and B. Zoellick. File Structures, 2nd ed. Reading, MA: Addison-Wesley, 1992.

Forouzan, B. A. Data Communications and Networking, 5th ed., New York: McGraw-Hill, 2013.

Fountain, D. “The Pentium: More RISC than CISC,” Byte, Vol. 18, no. 10 (September 1993), p. 195.

Fraser, B. “Understanding Digital RAW Capture,” white paper: www.adobe.com/digitalimag/pdfs/

understanding_digital_rawcapture.pdf, September 4, 2004.

G
Galitz, W. The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and

Techniques, 3rd edn. Secaucus NJ: John Wiley & Sons, Inc., 2007.

Gentzsch, W. “DOT-COMing the Grid: Using Grids for Business,” Sun Microsystems, www.sun.com.

Georgiou, C. J., T. A. Larsen, P. W. Oakhill, and B. Salimi. “The IBM Enterprise Systems Connection

(ESCON) Director: A Dynamic Switch for 200Mb/s Fiber Optic Links,” IBM J. of Research and

Development, Vol. 36, no. 4 (July 1992), pp. 593–616.

Ghemawat, S., H. Gobioff, and S-T. Leung. 2003 “The Google File System,” 19th ACM Symposium on

Operating Systems Principles, Lake George, NY: 2003.

Gibson, D. H., and G. S. Rao. “Design of the IBM System/390 Computer Family for Numerically Intensive

Applications: An Overview for Engineers and Scientists,” IBM J. of Research and Development,

Vol. 36, no. 4 (July 1992), pp. 695–712.

http://www.adobe.com/digitalimag/pdfs/understanding_digital_rawcapture.pdf
http://www.sun.com

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 649

BIBLIOGRAPHY 649

Gifford, D., and A. Spector. “Case Study: IBM’s System/360-370 Architecture,” Comm. of the ACM,

Vol. 30, no. 4 (April 1987), pp. 292–297ff.

Glass, G., and K. Ables. Linux for Programmers and Users, A Complete Guide. Englewood Cliffs, NJ:

Prentice Hall, 2006.

Gochman, S., A. Mendelson, A. Naveh, and E. Rotem. “Introduction to Intel Core Duo Processor

Architecture,” Intel Technical J., Vol 10, no. 2 (May 2006), pp. 89–97.

Goldberg, D. “What Every Computer Scientist Should Know about Floating Point Arithmetic,” ACM

Computing Surveys, Vol. 23, no. 1 (March 1991), pp. 5–48.

Goodman, J., and K. Miller. A Programmer’s View of Computer Architecture, with Assembly Language

Examples from the MIPS RISC Architecture. Philadelphia: W. B. Saunders, 1993.

Grosch, H. R. J. “The Way It Was: 1957, A Vintage Year,” Datamation, 18 (September 1977), pp. 75–78.

Grosshans, D. File Systems: Design and Implementation. Englewood Cliffs, NJ: Prentice Hall, 1986.

Gschwind, M., H. P. Hofstee, B. Flochs, M. Hopkins, Y. Watanabe, and T. Yamazaki. “Synergistic

Processing in Cell’s Multicore Architecture,” IEEE Micro, (March-April 2006), pp. 10–24. (Available

at www.research.ibm.com/people/m/mikes/papers/2006_ieeemicro.pdf.)

Gustavson, D. “Computer Buses—A Tutorial,” IEEE Micro, Vol. 4, no. 4 (August 1984), pp. 7–22.

H
Halfhill, T. R. “Intel’s P6,” Byte, Vol. 20, no. 4 (April 1995), pp. 42–58.

____. “AMD vs. Superman,” Byte, Vol. 19, no. 11 (November 1994), pp. 95–104.

____. “80X86 Wars,” Byte, Vol. 19, no. 6 (June 1994), pp. 74–88.

Halsall, F. Data Communications, Computer Networks, and OSI, 4th ed. Reading, MA: Addison-Wesley,

1996.

Hartmann, D. “Introduction to Quality of Service, White Paper,” globalknowledge.com, at

www.findwhitepapers.com, 2004.

Hatfield, D. J., and J. Gerald. “Program Restructuring for Virtual Memory,” IBM Systems Journal, Vol. 10,

no. 3 (1971), p. 189ff.

Hayes, J. P. Computer Architecture and Organization, 3rd ed., New York: McGraw-Hill, 2002.

Heath, S. PowerPC, A Practical Companion. Oxford: Butterworth Heinemann, 1994.

Henle, R. A., and B. W. Kuvshinoff. Desktop Computers. Oxford: Oxford University Press, 1992.

Hennessy, J. L., and D. A. Patterson. Computer Architecture, A Quantitative Approach, 5th ed. Waltham,

MA: Morgan Kaufmann, 2012.

Hill, M. D. “A Case for Direct-Mapped Caches,” IEEE Computer, Vol. 21, no. 12 (December 1988),

pp. 25–40.

Hofstee, H. P. “Introduction to the Cell Broadband Engine,” www.ibm.com/developerworks/pow/

cell/docs_articles.html, May 2005.

Hopkins, M. E. “A Perspective on the 801/Reduced Instruction Set Computer,” IBM Systems Journal,

Vol. 26, no. 1 (1987), pp. 107–121.

Hoskins, J. IBM System/390, 3rd ed. New York: John Wiley & Sons, Inc., 1994.

____and B. Frank. Exploring Eserver zSeries and S/390 Servers, 7th ed. Gulf Breeze, FL: Maximum

Press, 2001.

I
____. IBM eServer zSeries 900 and z/OS Reference Guide. Armonk, NY: IBM Corp., 2002.

____. IBM System/370 Principles of Operation, 9th ed. Armonk, NY: IBM Corp., 1981.

http://www.research.ibm.com/people/m/mikes/papers/2006_ieeemicro.pdf
http://www.findwhitepapers.com
http://www.ibm.com/developerworks/pow/cell/docs_articles.html

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 650

650 BIBLIOGRAPHY

____. IBM System x and IBMBladeCenter Servers and the IBM Systems Agenda for OnDemand Business,

IBM Systems and Technology Group XSWD1616-USEN-03, (May 2006).

____. IBM System z/10 Enterprise Class Mainframe Server Specification Summary, www-

03.ibm.com/systems/zhardware/z10ec/specification.html, 2008.

____. IBM System z/10 Enterprise Class Reference Guide, www-03.ibm.com/systems/z/hardware/

z10ec/specifications.html, 2008.

____. IBM z/Architecture Principles of Operation, Armonk, NY: IBM Corp., 2001.

IBM Corporation. The PowerPC Architecture, 2nd ed. San Francisco: Morgan Kaufmann, May 1994.

____. “The Informal Report from the RFC 1149 Event,” Bergen Linux Users’ Group,

www.blog.linux.no/rfc1149/writeup.html.

Intel Corporation. IA-64 Architecture Manual, Vols. 1–4, Mt. Prospect, IL: Intel, 2002.

____.Microprocessors, Volume II. Mt. Prospect, IL: Intel, 1991.

____. Internetworking Technology Handbook, www.cisco.com/en/US/docs/internetworking/technology/

handbook/QoS.html, 2009.

Irvine, K. R. Assembly Language for the Intel-Based Computers, 6th ed. Englewood Cliffs, NJ: Prentice

Hall, 2011.

J

Jacobs, B., M. Brown, K. Fukui, and N. Trivedi. Introduction to Grid Computing, www.redbooks.ibm.com,

2005.

Janossy, J. G., and S. Samuels. CICS/ESA Primer. New York: John Wiley & Sons, 1995.

Johnson, R. H.MVS, Concepts and Facilities. New York: Intertext, McGraw-Hill, 1989.

Jones, O. Introduction to the X Window System. Englewood Cliffs, NJ: Prentice Hall, 2000.

Joseph, J., and C. Fellenstein. Grid Computing. Armonk, NY: IBM Press, 2004.

K
Kane, G., and J. Heinrich.MIPS RISC Architecture, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1992.

Kay, D. C., and J. R. Levine. Graphics File Formats, 2nd ed. New York: Windcrest/McGraw-Hill, 1995.

Kendall, G. W. “Inside the PCI Local Bus,” Byte, Vol. 19, no. 2 (February 1994), pp. 177–180.

Kim, B. G., and P. Wang. “ATM Network: Goals and Challenges,” Comm. of the ACM, Vol. 38, no. 2,

February 1995, pp. 39–44.

____. “Examining the Peer-to-Peer Connectivity and Multiple Network Support of Chicago,” Microsoft

Systems Journal, Vol. 9, no. 11 (November 1994), pp. 15–32.

King, G. M., D. M. Dias, and P. S. Yu. “Cluster Architectures and S/390 Parallel Sysplex Scalability,” IBM

System J., Vol. 36, no. 2 (1997), pp. 221–241.

Kirk, D. S. The MVS Primer. Boston, MA: QED, 1992.

Knuth, D. The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 3rd ed. Reading,

MA: Addison-Wesley, 1997.

Korpela, E., D.Werthimer, D. Anderson, J. Cobb., andM. Lebofsky. “SETI@Home: Massively Distributed

Computing for SETI,” Computing in Science and Engineering, Vol. 3, #1 (2001), pp. 78–83.

____. Unicode Explained. Sebastopol, CA: O’Reilly & Assoc., 2006.

Kulisch, U., and W. Maranker. Computer Arithmetic in Theory and Practice. New York: Academic Press,

1981.

Kurose, J. F., and K.W. Ross. Computer Networking: A Top Down Approach, 6th ed., Boston, MA: Pearson

Education, 2012.

http://www.blog.linux.no/rfc1149/writeup.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/QoS.html
http://www.redbooks.ibm.com
http://www-03.ibm.com/systems/zhardware/z10ec/specification.html
http://www-03.ibm.com/systems/z/hardware/z10ec/specifications.html

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 651

BIBLIOGRAPHY 651

L
Lan, R., F. Yang, and S. Zheng. “Financial Service Innovation Based on Grid Computing,” Proc. of the

International Conference on Services Systems and Services Management, Vol. 2, Nos. 13–15 (June

2005), pp. 1081–1084.

Laszlo, E. The SystemsView of theWorld: AHolistic Vision forOur Time, 2nd. ed. Cresskill, NJ: Hampton

Press, 1996.

Lehrer, T. 1965 That Was the Year That Was (recording). Originally released 1965, reissued on CD,

Reprise 6179.

Lewin, M. H. Logic Design and Computer Organization. Reading, MA: Addison-Wesley, 1983.

Liaw, M. “Reading GIF Files,” Dr. Dobb’s Journal, Vol. 20, no. 2 (February 1995), pp. 56–60ff.

Lipschutz, S. Essential Computer Mathematics, Schaum’s Outline Series in Computers. New York:

McGraw-Hill, 1982.

Liptay, J. S. “Design of the IBM Enterprises System/9000 High-End Processor,” IBM J. of Research and

Development, Vol. 36, no. 4 (July 1992), pp. 713–732.

Livadas, P. File Structures: Theory and Practice. Englewood Cliffs, NJ: Prentice Hall, 1990.

M
Mano, M. M., and M. D. Celetti. Digital Design, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2012.

Mansfield, N. The Joy of X: An Overview of the X Window System. Reading, MA: Addison-Wesley, 1993.

Marcus, A., N. Smilonich, and L. Thompson. The Cross-GUI Handbook for Multiplatform User Interface

Design. Reading, MA: Addison-Wesley, 1995.

Markoff, J. “David Gelernter’s Romance with Linda,” The New York Times, Business Section, January 19,

1992, pp. 1ff.

Marsan, C. D. “Grid Vendors Target Corporate Applications,”NetworkWorld, Framingham,MA, January

27, 2003.

McDowell, S., and M. Seger. USB Explained. Englewood Cliffs, NJ: Prentice Hall, 1999.

McHoes, A. M., and I. M. Flynn. Understanding Operating Systems, 6th ed. Florence, KY: Wadsworth

Publishing, 2013.

McIlroy, M. D., E. N. Pinson, and B. A. Tague. “UNIX Time-Sharing System: Foreword,” Bell System

Technical Journal, Vol. 57, no. 6 (July–August 1978), pp. ix–xiv, reprinted in UNIX System: Reading

and Applications, Volume 1. Englewood Cliffs, NJ: Prentice Hall, 1987.

Messmer, H. The Indispensable PC Hardware Book, 4th ed. Reading, MA: Addison-Wesley, 2001.

Methvin, D. “An Architecture Redefined,” PC Tech Journal, Vol. 5, no. 8 (August 1987), pp. 58–70.

Meyer, J., and T. Downing. Java Virtual Machine, Sebastopol, CA: O’Reilly & Assoc., 1997.

Microsoft Corporation.Microsoft Windows 2000 Resource Kit. Redmond, WA: Microsoft Press, 2000.

Miller, M. A. Internetworking: A Guide to Network Communications, LAN to LAN; LAN to WAN, 2nd

ed. New York: M&T Books/MIS Press, 1995.

____. The 68000 Family, Architecture Programming and Applications, 2nd ed. Columbus, OH: Charles

E. Merrill, 1992.

Mollenhoff, C. R. Atanasoff, Forgotten Father of the Computer. Ames: Iowa State University Press, 1988.

Moore, C. R., and R. C. Stanphill. “The PowerPC Alliance,” Comm. of the ACM, Vol. 37, no. 6 (June 1994),

pp. 25–27.

Moore, S. K. “Winner: Multimedia Monster,” www.spectrum.ieee.org/jan06/2609/.

Mueller, S. Upgrading and Repairing PCs, 18th ed., Indianapolis, IN: Que, 2008.

http://www.spectrum.ieee.org/jan06/2609

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 652

652 BIBLIOGRAPHY

Mujitaba, H. “Intel Details Haswell Microarchitecture, New Overclocking Features and 4th Generation

HD Graphics Core,” wccftech.com/idf-2013-intel-details-haswell-microarchitecture-overclocking-

features-4th-generation-hd-graphics-core/, April 2013.

____. “Intel DZ87KLT Motherboard Spotted and Detailed,” wccftech.com/intel-dz87klt-75k-kinsley-

thunderbolt-motherboard-showcased-idf-beijing-specs-unveiled/, April 2013.

Murdocca, M., and V. Heuring. Computer Architecture and Organization, An Integrated Approach.

Secaucus, NJ: John Wiley & Sons, Inc., 2007.

Murray, J. D., and W. van Ryper. Encyclopedia of Graphics File Formats, 2nd ed. Sebastopol, CA: O’Reilly

& Assoc., 1996.

N
Newmarch, J. “Stream Control Transmission Protocol (SCTP) Associations,” Linux Journal, (October

2007), pp. 74–75.

Nich, J., C. Vaill, and H. Zhong. 2001 “Virtual-Time Round-Robins: An O(1) Proportional Share

Scheduler,” Proc. of the 2001 USENIX Annual Tech. Conf. June, 2001.

Nick, J. M., B. B. Moore, J.-Y. Chung, and N. S. Bowen. “S/390 Cluster Technology: Parallel Sysplex,” IBM

System J., Vol. 36, no. 2 (1997), pp. 172–201.

____, J.-Y. Chung, and N. S. Bowen. 1996 “Overview of IBM S/390 Parallel Sysplex—A Commercial

Parallel Processing System,” Proc. of the IEEE International Parallel Processing Symposium, Hawaii,

1996, pp. 488–495.

____. NVidia GeForce 8800 GPU Architecture Overview, NVidia Technical Brief TB-02787-001, v0.9,

(November 2006).

P
Paceley, L. “Intel P6 Technology.” Mt. Prospect, IL: Intel, 1995.

Padega, A. “System/370 Extended Architecture: Design Considerations,” IBM J. of Research and Develop-

ment, Vol. 27, no. 3 (May 1983), pp. 193–202.

Panko, R. Business Data Networks and Telecommunications, 9th ed. Upper Saddle River NJ: Pearson

Education, 2012.

Parker, T., K. Siyan, and K. Siyan. TCP/IP Unleashed, 3rd ed. Indianapolis, IN: Sams, 2002.

Patterson,D. A., and J. L.Hennessy.Computer Organization andDesign, TheHardware/Software Interface,

Revised 4th ed. Waltham, MA: Morgan Kaufmann, 2012.

____ and R. S. Piepho. 1982 “RISC Assessment: A High-Level Language Experiment,” Proc. 9th Annual

Symp. on Comp. Arch, Austin, 1982, pp. 3–8.

____ and C. H. Sequin. 1981 “RISC I: A Reduced Instruction Set VLSI Computer,” Proc. 8th Annual Symp.

on Comp. Arch, Minneapolis, MN, 1981, pp. 443–457.

____. PCI to PCI Bridge Architecture Specification, Revision 1.0, PCI Special Interest Group, April 5, 1994.

____. PCI Local Bus Specification, Production Version, Version 2, PCI Special Interest Group, 1993.

____. PDF Primer White Paper, www.pdf-tools.com/public/downloads/whitepapers/whitepaper-

pdfprimer.pdf, 2005.

Pfister, G. F. In Search of Clusters, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998.

Pietrek, M. “Stepping Up to 32 Bits: Chicago’s Process, Thread, and Memory Management,” Microsoft

Systems Journal, Vol. 9, no. 8 (August 1994), pp. 13–26.

Plambeck, K. E. PowerPC Architecture. Austin, TX: IBM, 1993.

____. PowerPC 601, RISCMicroprocessor User’s Manual, ItemMPC601UM/AD, Revision 1. Phoenix, AZ:

Motorola, 1993.

http://www.pdf-tools.com/public/downloads/whitepapers/whitepaper-pdfprimer.pdf
http://www.pdf-tools.com/public/downloads/whitepapers/whitepaper-pdfprimer.pdf
http://www.pdf-tools.com/public/downloads/whitepapers/whitepaper-pdfprimer.pdf

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 653

BIBLIOGRAPHY 653

____. “Concepts of Enterprise Systems Architecture/370,” IBM Systems Journal, Vol. 28, no. 1 (1989),

pp. 39–57.

Pogue, D.Mac OS X, Leopard The Missing Manual. Sebastopol, CA: O’Reilly & Assoc., 2007.

Prasad, N. S., and J. Savit. IBMMainframes, 2nd ed. New York: McGraw-Hill, 1994.

Q

Quercia, V., and T. O’Reilly. X Windows System User’s Guide, Volume 3. Sebastopol, CA: O’Reilly &

Assoc., 1993.

R
Rao, G. S., T. A. Gregg, C. A. Price, C. L. Rao, and S. J. Repka. “IBM S/390 Parallel Enterprise Servers G3

and G4,” IBM J. of Research and Development, Vol. 41, no. 4 &5 (1997), pp. 397–404.

Reiss, L., and J. Radin. XWindow Inside and Out. New York: Osborne McGraw-Hill, 1992.

____. RFC 1149 [see Waitzman, D.].

Richter, J. Advanced Windows, 3rd ed. Redmond, WA: Microsoft Press, 1997.

Ridge, D., D. Becker, P. Merkey, and T. Sterling, “Beowulf: Harnessing the Power of Parallelism in a Pile

of PCs,” Proc. of IEEE Aerospace Conference, Vol. 2, pp. 79–91, 1997.

Rimmer, S. Bit-Mapped Graphics, 2nd ed. New York: Windcrest/McGraw-Hill, 1993.

Ritchie, D. M. “The Evolution of the UNIX Time-Sharing System,” AT&T Bell System Technical Journal,

Vol. 63, no. 8 (October 1984), pp. 1–17, reprinted inUNIX System: Reading andApplications, Volume

II. Englewood Cliffs, NJ: Prentice Hall, 1987.

Robb, D. “Plugging into Computing Power Grids,” Computerworld, (Apr. 22, 2002), pp. 48–49.

Rochester, J. B., and J. Gantz. The Naked Computer: A Layperson’s Almanac of Computer Lore,Wizardry,

Personalities, Memorabilia, World Records, Mind Blowers, and Tomfoolery. New York: William A.

Morrow, 1983.

Rosch, W. Hardware Bible, 6th ed. Indianapolis, IN: Que, 2003.

Rosen, K. H., R. R. Rosinski, and J. M. Farber. Unix System V Release 4: An Introduction for New and

Experienced Users, 2nd ed. New York: Osborne McGraw-Hill, 1996.

Rosen, S. “Programming Systems and Languages, A Historical Survey,” Proc. of the Spring Joint Computer

Conference, Vol. 24, AFIPS, 1964, pp. 1–14.

Russinovich, M., and D. A. Solomon. Microsoft Windows Internals, 5th ed. Redmond, WA: Microsoft

Press, 2009.

Ryan, B. “Inside the Pentium,” Byte, Vol. 18, no. 6 (May 1993), pp. 102–104.

____. “RISC Drives PowerPC,” Byte, Vol. 18, no. 9 (August 1993), pp. 79–90.

Samson, S. L. MVS Performance Management: OS/390 Edition, SP Version 5. New York: McGraw-Hill,

1997.

Sargent, M., III,, and R. L. Shoemaker. The Personal Computer from the Inside Out, 3rd ed. Reading, MA:

Addison-Wesley, 1995.

S
Scalzi, C. A., A. G. Ganek, and R. J. Schmalz. “Enterprise Systems Architecture/370: An Architecture

for Multiple Virtual Space Access and Authorization,” IBM Systems Journal, Vol. 28, no. 1 (1989),

pp. 15–37.

Schmerken, I. “Girding for Grid,” Wall Street and Technology, New York: March 12, 2003. (At

www.wallstreetandtech.com/story/wst200303031250005.)

http://www.wallstreetandtech.com/story/wst200303031250005

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 654

654 BIBLIOGRAPHY

Schulke, M. H., and L. J. Rose. “IBM ES/9000 Series,”Datapro,Computer System Series: Systems 3938.

New York: McGraw-Hill, January 1993.

Schurmann, T. “Virtues of the Virtual,” Linux Pro, no. 83, (October 2007), pp. 21–25ff.

Senturia, S., and B. Wedlock. Electronic Circuits and Applications. New York: John Wiley & Sons, Inc.,

1975.

Shanley, T. The Unabridged Pentium 4: IA32 Processor Genealogy, PC Systems Architecture Series.

Richardson, TX: Mindshare, Addison-Wesley, 2004.

____. PowerPC System Architecture, PC Systems Architecture Series, Volume 7. Richardson, TX: Mind-

share, 1994.

Sharp, A., Y. Rogers and J. Preece. Interaction Design: Beyond Human Computer Interactions, 3rd ed.,

Secaucus, NJ: John Wiley & Sons, Inc., 2011.

Shimpi, A. L. “Intel’s Sandy Bridge Archutecture Exposed,” anandtech.com/show/3922/intels-sandy-

bridge-architecture-exposed/, published September 14, 2010.

Silberschatz, A., G. Gagne, and P. Galvin. Operating System Concepts, 9th ed. Secaucus, NJ: John Wiley &

Sons, Inc., 2012.

Sinofsky, S. “Building the next generation file system for Windows: ReFS,” blogs. msdn.com/bb8/archive/

2012/01/16/building-the-next-generation-file-system-for-windows-refs.aspx (May 22, 2013).

Smith, A. J. “Cache Memories,” Computing Surveys, Vol. 14, no. 3 (September 1982), pp. 473–530.

Smith, R. Learning Postscript, A Visual Approach. Berkeley, CA: Peachpit Press, 1990.

____. Linux Power Tools, Somerset, NJ: Sybex: Wiley, 2003.

Smith, R. M., and P. Yeh. “Integrated Cryptographic Facility of the Enterprise Systems Architec-

ture/390: Design Considerations,” IBM J. of Research and Development, Vol. 36, no. 4 (July 1992),

pp. 683–694.

Sobell, M. G. A Practical Guide to Linux Commands, Editors, and Shell Programming, 3rd ed., Redwood

City, CA: Benjamin Cummings, 2012.

Solomon, D. A. Inside Windows NT, 2nd ed. Redmond, WA: Microsoft Press, 1998.

Spaniol, O. Computer Arithmetic. New York: John Wiley & Sons, Inc., 1981.

Stallings, W. Computer Organization and Architecture, 8th ed. Indianapolis, IN: Macmillan, 2009.

____. Business Data Communications, 7th ed. Upper Saddle River, NJ: Pearson Education, 2012.

____. Operating Systems, 7th ed. Indianapolis, IN: Macmillan, 2011.

____. Data and Computer Communications, 9th ed. Indianapolis, IN: Macmillan, 2010.

____. Local and Metropolitan Networks, 6th ed. Upper Saddle River, NJ: Prentice Hall, 2000.

Stamper, D. A. Business Data Communications, 6th ed. Redwood City, CA: Benjamin Cummings,

2002.

Stoddard, S. D. Principles ofAssembler Language Programming for the IBM370.NewYork:McGraw-Hill,

1985.

Stumpf, R. V., and L. C. Teague. Object-Oriented Sysems Analysis and Design with UML. Upper Saddle

River, NJ: Prentice Hall, 2005.

Suko, R. W. “MVS, A History of IBM’s Most Powerful and Reliable Operating System,” www.os390-

mvs.freesurf.fr/mvshist.htm, April 26, 1993.

Sullivan, J. W., and S. W. Tyler, eds. Intelligent User Interfaces. New York, NY: ACM Press, 1991.

Swartzlander, E. E., ed. Computer Arithmetic, Volumes I and II. Piscataway, NJ: IEEE Computer Society

Press, 1990.

____, ed. Computer Design Development: Principal Papers. Indianapolis, IN: Hayden, 1976.

http://www.os390-mvs.freesurf.fr/mvshist.htm
http://www.os390-mvs.freesurf.fr/mvshist.htm

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 655

BIBLIOGRAPHY 655

T
Tabak, D. Advanced Microprocessors, 2nd ed. New York: McGraw-Hill, 1995.

Tanenbaum, A. S., and M. Van Steen. Distributed Systems: Principles and Paradigms. Englewood Cliffs,

NJ: Prentice Hall, 2006.

____.Modern Operating Systems, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 2007.

____. Structured Computer Organization, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2005.

____ and A. Woodhull. Operating Systems, Design and Implementation, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 2006.

Tate, J., F. Lucchese, and R. Moore. Introduction to Storage Area Networks, ibm.com/redbooks, 2006.

Taylor, J. DVD Demystified, 2nd ed. New York: McGraw-Hill, 2006.

Teufel, B. Organization of Programming Languages. Wien: Springer-Verlag, 1991.

Thompson, T. “Power PC Performs for Less,” Byte, Vol. 18, no. 9 (August 1993), pp. 56–74.

____ and B. Ryan. “PowerPC 620 Soars,” Byte, Vol. 19, no. 11 (November 1994), pp. 113–120.

Thorne, M. A Tour of the P6 Microarchitecture, February 1995. Mt. Prospect, IL: Intel, 1995.

Tidwell, J. Designing Interfaces: Patterns for Effective InteractionDesign, 2nd ed., Sebastopol, CA:O’Reilly

& Assoc., 2011.

Treu, S. User Interface Design, A Structured Approach. New York: Plenum Press, 1994.

Tufte, F. R. Envisioning Information. Cheshire, CT: Graphics Press, 1990.

Turner,D., “Apple’s iPhone. An Inside Look at a Sensation,”Technology Review, Vol. 110, no. 5 (September

2007), pp. 30–31.

U
Ullman, J. D. Fundamental Concepts of Programming Systems. Reading, MA: Addison-Wesley, 1976.

The Unicode Consortium. The Unicode Standard, Version 5.0. Reading, MA: Addison-Wesley, 2007.

V
Vacca, J. R. “Taking the RISC out of Servers,” Computerworld, Vol. 29, no. 25 (June 19, 1995), p. 99.

Vahalia, U. Unix Internals: The New Frontier. Englewood Cliffs, NJ: Prentice Hall, 1996.

Valacich, J. S., J. F. George, and J. A. Hoffer. Essential of Systems Analysis and Design, 4th ed., Englewood

Cliffs, NJ: Prentice Hall, 2009.

Various authors. XWindow System, set of volumes. Sebastopol, CA: O’Reilly & Assoc.

Verma., S., “Building the next generation file system for Windows: ReFS”, website blogs.msdn.com/

b/b8/archive/2012/01/16/building-the-next-generation-file-system-for-windows-refs.aspx, Posted

16 January 2012; referenced 1 June 2013.

Vetter, R. J. “ATM Concepts, Architectures, and Protocols,” Comm. of the ACM, Vol. 38, no. 2 (February

1995), pp. 30–38.

W
Waitzman, D. “A Standard for the Transmission of IP Datagrams on Avian Carriers,” RFC 1149,

www.ietf.org/rfc/rfc1149.txt, (April 1, 1990).

Wakerly, J. F. Digital Design, Principles and Practices, 4th ed. Englewood Cliffs, NJ: Prentice Hall, 2005.

Waldrop, M. M. “Grid Computing Could Put the Planet’s Information Processing Power on Tap,”

Technology Review, (May 2002), pp. 31–37.

http://www.ietf.org/rfc/rfc1149.txt

Englander b01.tex V2 - November 30, 2013 9:11 A.M. Page 656

656 BIBLIOGRAPHY

Warford, J. S. Computer Systems, 4th ed. Sudbury, MA: Jones & Bartlett, 2009.

Wayner, P. “SPARC Strikes Back,” Byte, Vol. 19, no. 11 (November 1994), pp. 105–112.

Weiderhold, G. File Organization for Data Base Design. New York: McGraw-Hill, 1987.

Weinschenk, S., P. Jamar, and S. C. Yeo. GUI Design Essentials. Secaucus, NJ: John Wiley & Sons, Inc.,

1997.

Weizer, N. “A History of Operating Systems,” Datamation, (January 1961), pp. 118–126.

White, R. How Computers Work, 9th ed. Emeryville, CA: Que, 2007.

Wilkes, M. V. 1951 “The Best Way to Design an Automatic Calculating Machine,” Report of the Manch-

ester University Inaugural Conference. Manchester University Electrical Engineering Department,

pp. 16–18, 1951, reprinted in [SWAR76, pp. 266–270].

Williams, D. E., and J. Garcia. Virtualization with Xen. Burlington, MA: Syngress Publishing, 2007.

____. www.jayeckles.com/research/gridpc.

Y
Yau, S. S. ed. “50 Years of Computing,” Computer, Vol. 29, no. 10 (1996), pp. 24–111.

Young, J. L. The Insider’s Guide to Power PC Computing. Indianapolis, IN: Que, 1994.

http://www.jayeckles.com/research/gridpc

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 657

I N D E X

abacus, 24

abnormal events, 280

indicator, interrupt as, 280

absolute pathname, 572

abstractions, 44

access control lists (ACLs), 517, 579

access point, 380

access restrictions, physical and logical, 432

accumulator, 198

active matrix LCD display, 317

active window, 525–526

acyclic-graph directories, 570, 573–576

aliases, 574

cycle, 574

dangling links, 574

hard-coded link, 574

ad hoc mode, 411

add/drop multiplexers, 436

address field, 224

explicit source address, 225

implicit source address, 225

address resolution protocol (ARP), 410, 415

addressing modes, 204, 227

direct addressing, 227

register-deferred addressing, 227

adduser, 497

Algol, 29

algorithm, 606–607, 620–622

aliases, 574

alphanumeric character data, 104–111

alphanumeric codes, 105

ASCII, 105–106

EBCDIC, 105

Unicode, 105

base planes, 106

collating sequence, 109

control characters, 109

control codes, 109

keyboard input, 269–271

numeric characters, 104

planes, 106

printing characters, 109

supplementary planes, 106

alphanumeric input

alternative sources of, 322–324

bar code, 322

magnetic stripe readers, 323

optical character recognition

(OCR), 324

phonemes, 323

QR codes, 322

Radio Frequency IDentification

(RFID), 323

smart cards, 323

voice input, 323

ALU, See arithmetic/logic unit (ALU)

American National Standards Institute

(ANSI), 105

amplifiers, 455

amplitude, 448

amplitude-modulater (AM), 453

amplitude shift keying (ASK), 453

analytical engine, 24–25

analog data, 102

analog signal, 447, 448–456

Andreessen, Mark, 34

Apple macintosh, 32, 485, 489, 501–505,

525–528, 574

Appletalk, 434

application architecture, 50

application association, 515

application layer of TCP/IP, 407

application-level instructions, 214

application programming interface (API),

17, 484, 519

application software, 16

architecture of system, 44. See also

IT system architectures

business application architecture, 48

Facebook’s application architecture,

64–65

Google, 60–64

role of, 59–60

top-down approach, 48

arithmetic in different number bases, 78–81.

See also under number systems

arithmetic instructions, 217

arithmetic shift, 218

arithmetic/logic unit (ALU), 15, 196

ARPANET, 33–34

ASCII (American Standard Code for

Information Interchange), 105–106

ASK. See amplitude shift keying (ASK)

aspect ratio, 311

associated application, 527

association, 549

associative memory, 624

asynchronous transfer mode (ATM), 391

asynchronous transmission, 457

Atanasoff, John V., 25–26

Atanasoff-Berry Computer (ABC), 25

A-to-D conversion process, 121, 459

attenuation, 455

attributes, 563

nonresident attributes, 563

runs, 563

audio data, 120–124

A-to-D converter, 121

digitizing an audio waveform, 121

MIDI format, 122

.MODformat, 122

MP3, 123

.VOC format, 122

voice over IP (VoIP) tools, 120

.WAV format, 122

audio input, 325

authentication, 431

authoritative domain name server, 427

average seek time, 302

Babbage, Charles, 24

backbone networks, 382–384

gateway, 382

hierarchical LAN, 382

intranet, 383

mesh points, 383

backing store, 617

backplane, 337

bandwidth, 370, 450

bar code, 322

barebones computer system, 478–479

Base 10 and Base 2, conversion between,

166–167

base 10 to another base, 83–84

base of number system, 73

657

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 658

658 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

basic high-level language constructs, 13

basic input output system (BIOS), 206, 489

.BAT files, 487

batch processing, 483

batch programs, 521

batch system commands, 522–523

command language, 523

scripts, 523

shell scripts, 523

Belady’s anomaly, 621

Beowulf clusters, 352–353

Berners-Lee, Tim, 34

Berry, Clifford, 25

best-effort delivery service, 414

best-fit algorithm, 608

best-fit strategy, 559

best-fit, first-fit, 608

binary arithmetic, 73

binary-coded decimal (BCD)

representations, 138–141, 308

binary-decimal conversion, 88

binary-hexadecimal conversion, 87–89

binary or base2 number system, 73.

See also bits

binary point, 89

binary representation, 138–141, 166

binary processing of data, 27

bit, 73

bit manipulation instructions, 218

bitmapped fonts, 116, 318

bit rate, 370

bit vectors, 564

blade, 352

blister technology, 309

block (of data), 550

block (disk), 287–291, 300–308

bitmap images, 111–116

Graphics Interchange Format

(GIF), 114

JPEG format, 116

palette, 113

pixel, 112

Portable Network Graphics

(PNG), 116

raster scan, 113

resolution, 113

bitmap method, 564–565

bit vectors, 564

free space bitmap, 564

linked list method, 565

shredder software, 565

bits, 73

8 bits (byte), 73

16 bits (halfword), 73

32 bits (word), 73

64 bits (doubleword), 73

block, 300

block coding, 458

blocked state, 598

blocking, 599

Boggs, David, 33

blocks, 546

bluetooth, 466–467

Boole, George, 25

Boolean data, 127

Boolean logic instructions, 25, 127, 218

boot record, 594

bootstrapping, 481, 592–595

initial program load (IPL), 593

Bourne shell start-up, 536, 538

branch dependencies, 247

branch history table, 248

branch instruction processing, 247–248

branch history table, 248

conflict of resources, 248

control dependencies, 247

logical registers, 248

register alias tables, 248

rename registers, 248

speculative execution, 247

BRANCH ON POSITIVE instruction—op

code 8, 185

branch on zero instruction—op code

7, 184

branch unconditionally instruction—op

code 6, 184

bridges, 342

broadcast, 380

broadcast bus, 212

buffer, 272

bundled medium, 462

‘burned out’ tube, 27

burst, 369

bus I/O, 343–347

Daisy-chaining a thunderbolt bus,

346–347

device drivers, 345

FireWire, 345

hot-pluggable, 345

hubs, 345

IEEE 1394, 345

isochronous data transfer, 345

PCI-express controller cards, 343

SATA, 345

SCSI, 345

Thunderbolt, 345–346

USB, 345

buses, 15, 196, 210–214

architecture, 340

broadcast bus, 212

bus protocol, 213

characteristics, 210–214

dedicated buses, 211

full-duplex line, 212

ground line, 212

half-duplex line, 212

interface unit, 197

multidrop bus, 212

multipoint bus, 212–213

parallel bus, 211

point-to-point bus, 212–213

serial bus, 211

simplex line, 212

skew, 213

topology, 375

Byron, Augusta Ada, 24

byte stream, 367

bytes, 15

gigabytes (GB), 15

kilobytes (KB), 15

megabytes (MB), 16

terabytes (TB), 18

cable, 212

cache controller, 251

cache line, 251

cache memory, 206, 250–254, 296

cache controller, 251

cache line, 251

disk cache, 254

hit, 251

hit ratio, 251

locality of reference, 252

miss, 251

stall time, 253

step-by-step use of cache, 252

tag, 251

two-level cache, 253

write-back method, 251

write-through method, 251

cameras, digital and video, 111,

324–325

calculator, 180

CALL instructions, 219–220

campus area network (CAN), 387

card images, 535

carrier sense multiple access with collision

avoidance (CSMA/CA), 412

carrier sense multiple access with collision

detection (CSMA/CD) protocol, 409

carrier, 371, 453

carry conditions, 152–153

carry flag, 152

catastrophic failure, 281

CAV. See constant angular velocity

(CAV)

CD-ROM, 307–309

CD storage allocation, 566

Cell Broadband Engine processor, 259

cell processor block diagram, 259

cellular technology, 435, 464–466

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 659

INDEX 659

central processing unit (CPU), 14, 194–233.

See also individual CPU entries;

superscalar CPU

architectures, 236–237

complex instruction set

computers (CISC), 236

computer’s organization, 236

fetch–execute cycle, 238

instruction set architecture

(ISA), 236

reduced instruction set

computers (RISC), 236

traditional modern

architectures, 237

branch instruction processing,

247–248

components of, 196–197

dispatching, 601, 603–605

improved CPU performance model,

241–245

execution unit, 241, 243

fetch unit, 241

fetch unit portion, 242

instruction reordering, 244

instruction unit, 244

multiple, parallel execution

units, 244–245

pipelining technique, 241

pipelining, 243–244

POWER7 CPU execution units,

241

separate fetch unit/execute unit,

241–243

and memory, 194–233. See also under

memory

out-of-order processing, 246–247

primary storage, 15

scheduling, 491, 601–607

subunits, 15

arithmetic/logic unit (ALU), 15

control unit (CU), 15

interface unit, 15

CGI. See common gateway interface (CGI)

channel (I/O), 18

channel architecture, 340, 347–348

channel control words, 347

channel paths, 347

channel program, 287

channel subsystem, 347

channels, 15

char data type, 127

checksum, 594

child, 598

chips, 337

circuit, 462

circuit switching, 391

clear to send (CTS) packet, 412

CLI. See command line interface (CLI)

click to focus, 526

clicking or tapping, 524

client-server architecture, 51, 54–55,

59, 66, 361

client–server model, 51–55

basic architecture, 51

clients and servers on a network, 52

advantages, 53

common gateway interface (CGI), 54

middleware, 55

n-tier architecture, 54

shared server, 52

three-tier architecture, 53–54

two-tier architecture, 53

Web browser–Web server model, 53

client–server systems, 631

clock, 239

clock page replacement algorithm, 621

cloning, 598

cloud computing, 56–59, 335, 361

cloud service levels and computer

system layers, comparison, 57

Platform as a service (PaaS), 57

Software as a service (SaaS), 56

clusters, 350–353, 549

Beowulf clusters, 352–353

classification and configuration,

350–352

shared disk model, 350

shared-nothing model, 350

CLV. See constant linear velocity (CLV)

coaxial cable, 462

COBOL, 29

codec, 120

cold boot, 594

collating sequence, 109

collision, 409, 556

colon-hexadecimal notation, 425

color depth, 312

command and scripting languages, 535–538

command execution services, 486–487

command language, 523

elements of, 536–537

start-up sequence files, 537–538

command line interface (CLI), 486, 513,

519, 545

command shell, 538

commodity-off-the-shelf (COTS), 352

common gateway interface (CGI) protocol,

54, 631

common look and feel, 512

Common Object Request Broker

Architecture (CORBA), 539

communication channel, 18, 369–373, 402,

442–467

channel characteristics, 369–373

data transmission directionality, 372

layered communication, 404

medium, 371

guided, 371

unguided, 371

number of connections, 372

properties, 371

protocols, 372–373

communication channel technology,

442–467

introduction to, 443

routing, 368

signaling technology, 447–461

transmission media and signaling

methods, 462–464

wireless networking, 464

communication component, 13, 18,

33–34, 596

communications support services, 494

compaction, 559

complementary artithmetic, 146–147, 154

complementary representation, 143

completion signal, interrupt as, 278–279

complex instruction set computers

(CISC), 236

computer interconnection, 349–350

clusters, 350–353

loosely coupled systems, 349

multicomputer systems, 349

computer peripherals, 294–331. See also

displays; graphical processing units

(GPUs); optical disk storage; printers

average seek time, 302

cache memory, 296

disk arrays, 306–307

hard disk mechanism, 302

hierarchy of storage, 296–298

latency time, 302

liquid crystal display (LCD)

technology, 316–317

magnetic tape, 309–310

mirrored array, 306

off-line storage, 298

online secondary storage, 297

parked position, 302

primary memory, 296

rotational delay, 302

rotational latency time, 302

secondary storage, 297

seek time, 302

single data block, 305

solid-state drives (SSDs), 299

solid-state memory, 298–299

striped array, 306

transfer time, 303

wear-leveling, 299

computer system, 4–34

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 660

660 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

computer system (continued)

basic high-level language

constructs, 13

basic operations, 13

components of, 11–20

data, 11

hardware, 11, 13–16. See also

Central processing units

(CPUs)

software, 11, 16–18. See also

software component

communication component,

13, 18

distributed computing, 19

old and new, 6

open computing, 19

personal, 14

programmer, 7

systems architect or system analyst, 7

user, 7

computer system architecture

bus architecture, 340–343

channel architecture, 347–348

history of, 23–34

communication, networks, and

the Internet, 23–34

early work, 24–25

hardware, 25–28

operating systems, 28–33

computer systems, types, 502–505

distributed systems, 504

embedded control systems, 504

mainframe operating systems, 503

mobile operating systems, 503

network server systems, 503

real-time systems, 504

computer, architectural history of, 23–24

early work, 24–25

Babbage’s analytical engine,

24–25

computer-aided design/computeraided

manufacturing (CAD/CAM), 111

concurrency, 481

confidentiality, 431

connection-oriented service, 418. See also

Transmission Control Protocol (TCP)

constant angular velocity (CAV), 300

constant linear velocity (CLV), 300

constellation chart, 466

context, 276

context switching, 493

contiguous storage allocation, 557

control characters, 109

control codes, 109

definition, 110

control dependencies, 247

Control Program for Microcomputers

(CP/M), 31

control statements, 487

control unit, 347

control unit (CU), 15, 196

controls, 528

conversational systems, 483

conversion. See numeric conversion

between number bases

cooperating processes, 596

core, 256–257

COTS. See commodity-off-the-shelf (COTS)

counting in different bases, 74–79

country-code top-level domain name

servers (ccTLDs), 427

CPU architectures, 236–237

overview of, 236–237

traditional modern, 236–237

CPU block diagram, 255

CPU bound, 492

CPU bound process, 607

CPU features and enhancements, 238–248

fetch-execute cycle timing issues,

245–248

scalar processor organization,

245–248

superscalar processor organization,

245–248

CPU-memory-I/O architectures, 341

CPU-memory-I/O pathway, 341

CPU scheduling and dispatching, 601–607

high-level scheduler, 601–603

swap out, 601

cross-interleaved Reed-Solomon error

correcting code, 308

CPU time allocation, interrupt as, 279–282

C-shell script, 538

CSMA/CA protocol, 412

cycle, 574

cycle, instruction, 187–189

cylinder, 300

cylinder, disk, 300

daisy chaining, 282

Daisy-chaining a thunderbolt bus, 346–347

dangling links, 574

DASDs. See direct access storage devices

(DASDs)

DAT. See dynamic address translation

(DAT)

data, 11

data communications, 363–366

advantages, 368

basic concepts, 366–373

messages, 366–367

packets, 367–369

HTTP request and response, 365

message-to-packet conversion, 368

data compression, 124–125

lossless, 124

lossy, 124

zip file, 124

data decks, 29

data dependency, 246

data formats, 100–135. See also

alphanumeric character data; visual data

analog data, 102

audio data, 120–124

common data representations, 103

data conversion and representation,

102

general considerations, 101–104

image data, 111–120

internal computer data format,

126–129

metadata, 102

page description languages, 125–126

proprietary formats, 103

data integrity protection, 516–517

data link layer, 408–410

data movement instructions, 215–217

ARM application-level instruction

set, 216

LOADmove, 215–217

STORE move, 215–217

data sharing operations, 517–518

data streaming, 310

data transmission directionality, 372

dual-simplex, 372

full-duplex channels, 372

half-duplex channel, 372

simplex channel, 372

datagram switching, 391

deadlock, 632

avoidance, 632

detection and recovery, 632

prevention, 632

decimal-binary conversion, 90

decimal or base 10, 73

decimal point, 89

deck (program), 29

decomposition, 43

dedicated buses, 211

deferred register addressing, 227

defragging, 559

defragmentation, 559

demand paging, 617

demodulation, 371

demodulator, 453

dependency, 246

desktop PC, components in, 340

desktops, 524

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 661

INDEX 661

detector, 453

device controllers, 273

device drivers, 276, 345

DHCP. See Dynamic Host Configuration

Protocol (DHCP) protocol

dies, 299

differentiated service (DS) field, 431

digital cameras, 324

digital signal, 447

digital signaling, 456–461

asynchronous transmission, 457

A-to-D conversion process, 459

diminished radix, 143

direct access storage devices (DASDs), 298

direct addressing, 227

direct media interface, 343

direct memory access (DMA), 268,

286–289, 337

conditions for, 287

directory, 550

directory structure, 569–576

acyclic-graph directory, 570

environmental variable, 572

file attributes, 548, 569

hierarchical directory, 571

relative or absolute pathname, 572

subdirectories, 571

tree-structured directories, 570–573

working directory, 572

DirectX, 314

dirty bit, 621

discrete signal, 447

disk arrays, 306–307

disk cache, 254

disk commands, 516

disk controller, 273

diskless workstation, 483

disks, 566–569

dispatcher, 601

dispatching, 491–493, 599, 603–605

nonpreemptive, 493

preemptive, 493

processor affinity, 603

starvation, 603

display server, 532

displays, 310–317

aspect ratio, 311

basic display design, 310–312

color depth, 312

palette table, 312

pixel density, 311

raster scan, 312

true color system, 312

disruptive technology, 325

Distributed Computing Environment

(DCE), 504

distributed computing, 19, 530

distributed processing systems, 49–59.

See also cloud computing; web-based

computing

application architecture, 50

client–server model, 51–55. See also

individual entry

distributed system, 333, 504, 631

division, 163–164

DMA. See direct memory access (DMA)

dock, 525

domain name system (DNS) protocol, 61,

401, 425–430

country-code top-level domain name

servers (ccTLDs), 427

DNS root server, 427

generic top-level domain name servers

(gTLDs), 427

hierarchy, 426

local DNS server, 429

second-level, 427

third-level domains, 427

top-level domains, 427

domain names and DNS services, 425–430

dot matrix printers, 318

double indirect block pointers, 562

drag-and-drop, 527

dragging, 524

DRAM (dynamic RAM), 248

DRAM. See dynamic random access

memory (DRAM)

DSL access multiplexer, 461

dual-simplex, 372

DVD storage allocation, 558

dynamic address translation

(DAT), 613

dynamic addresses, 424

Dynabook project, 31

Dynamic Domain Name Service

(DDNS), 424

Dynamic Host Configuration Protocol

(DHCP) protocol, 401, 424

dynamic priority recalculation, 607

dynamic priority scheduling, 607

dynamic RAM, 206

dynamic random access memory

(DRAM), 248

EBCDIC. See Extended Binary Coded

Decimal Interchange Code (EBCDIC)

Eckert, J. Presper, 26

edge router, 384

edge, 384

eight-way interleaving, 250

electrically based media, 462

electromagnetic wave, 453, 463

Electronic Numerical Integrator and

Computer (ENIAC), 26

electronic signatures, 431

e-mail, 31–34

embedded computers, 5–6

embedded control systems, 504

encoders, 321

encryption, 432–433

end-around carry, 146

Englebart, Doug, 31

enumerated data types, 127

environment, 41

interface between the system and, 41

environmental variable, 572

Ethernet, 378, 400–436

hub-based ethernet, 378, 380, 410–411

IEEE standards, 466

switched, 411

tiered, 407

wireless, 411–413

Ethernet network, 212

Ethernet Virtual Connection, 385

event, 600

event driven OS, 484

event-driven programs, 600

exceptions, 281

excess-N notation, 157

execute portion, 187

execution operations, 600–601

execution protection, 578

execution unit, 241, 243

explicit source address, 225

exponent, 154

exponential notation, 154–156

Extended Binary Coded Decimal

Interchange Code (EBCDIC), 105, 107

eXtended Markup Language (XML), 56, 112

external event notifier, interrupt as, 277

external fragmentation, 609

extranet, 387

Facebook’s application architecture, 64–65

iframe tag, 65

failover, 350

fail-safe operation, 494

FAT. See file allocation table (FAT)

fault-tolerant computers, 306

FCFS. See first-come, first-served (FCFS)

scheduling

FDDI. See Fiber Distributed Data Interface

(FDDI)

FDM. See frequency-division multiplexing

(FDM)

fetch–execute cycle, 207–210, 238, 333

ADD instruction, 208–209

fetch unit portion, 242

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 662

662 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

fetch–execute cycle (continued)

fetch–execute cycle timing issues,

239–241

LOAD instruction, 208

separate fetch unit/execute unit,

241–243

STORE instruction, 208

fetch portion, 187–188

fetch unit, 241

Fiber Distributed Data Interface

(FDDI), 376

fiber-optic cables, 463

fibre channel, 578

fields, 546

file access methods, 555–557

indexed, 557

random, 556–557

sequential, 555–556

file allocation table (FAT), 559

file attributes, 562, 569

file commands, 515–516

file extension, 548

file management, 487–489, 544–581

directory structure, 488, 550, 569–576

file access methods, 555–557

file manager request handling, 551

file protection, 578–581

journaling file systems, 581

logical and physical view of files,

545–550

logical file access methods, 555–557

logical files, 545–550

logical unit of storage, 488

network file access, 576–577

operations, 557–558

partitions, 566–569

physical files, 545–550

role of, 550–5551

storage area networks, 578

storage pool, 566–569

volumes, 566–569

file protection, 578–581

execution protection, 578

read protection, 578

write protection, 578

file storage, physical

CD, DVD, and flash drive

allocation, 566

contiguous storage allocation,

558–559

free space management, 564–565

indexed allocation, 561–564

noncontiguous storage allocation,

559–561

tape allocation, 565–566

file server, 298

file systems, 566–569

file transfer protocol (ftp), 576

filtering, 450

Finder window, 528

FireWire protocol, 345, 349

firmware, 206

first-come, first-served (FCFS)

scheduling, 627

first-fit algorithm, 608

first-fit strategy, 559

first-in, first-out (FIFO), 605–606

first-in, first-out page replacement, 621

fixed partitioning, 608

flags, 199

flash drive storage allocation, 566

flash memory, 206, 298

floating point calculations, 162–164

floating point format, 156–158

in the computer, 164–166

excess-N notation, 157

floating point format, 158

formatting of, 158–161

normalization of, 158–161

underflow, 158

floating point numbers, 137

flow dependencies, 247

font, 118

forking, 597

form image, 546

formatting of floating point, 158–161

formatting, 305

FORTRAN, 29

FORTRANMonitor System (FMS), 30

job card deck used to compile and

execute, 29

fractions, 88–93

binary point, 89

decimal point, 89

fractional conversion methods, 90–93

hexadecimal point, 89

radix point, 89

fragmentation, 609

external fragmentation, 609

internal fragmentation, 609

fragments (packet), 413

frame (memory), 611–616

frame (packets at data link layer), 407

frame relay, 436

frames, 407, 610–616

free space bitmap, 564

free space management, 564–565

bitmap method, 564–565

frequency, 448

frequency-division multiplexing (FDM),

446, 454–455

frequency-hopping spread spectrum, 467

frequency selective scheduling, 435

frequency shift keying (FSK), 453

ftp. See file transfer protocol (ftp)

full-duplex channels, 372

full-duplex line, 212

full mesh network, 375

gadgets, 525

game controllers, 322

gateways, 382, 392–393

generalized bus interface configuration, 342

general-purpose registers, 198–199, 204,

207–208, 215, 223, 225, 227

generic top-level domain name servers

(gTLDs), 427

GIF. See Graphics Interchange Format

(GIF)

gigabytes (GB), 15

global page replacement, 620

global positioning system (GPS), 53, 295

glyphs, 119

Google IT system, 60–64

basic requirements, 60–61

data center search application

architecture, 62

shards, 63

simplified google system hardware

architecture, 63

GPS radio receiver, 35

graphical input using pointing

devices, 322

graphical objects, 111

graphical processing units (GPUs), 31,

312–316, 486, 519, 523–528

DirectX, 314

OpenGL, 314

parallelization, 314

streaming, 315

graphical user interface (GUI), 31, 486, 519,

523–532

graphics cards, 269

graphics display methodologies, 532–534

Graphics Interchange Format (GIF),

111, 114

file format layout, 115

screen layout, 115

Graphics Processing Unit (GPU), 296

graphics tablets, 322

grid computing, 335, 354

ground line, 212

group, 580

guest, 634

GUI. See graphical user interface (GUI)

guided media, 462

guided medium, 371

gyroscope sensors, 326

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 663

INDEX 663

H.264, 120

half-duplex channel, 372

half-duplex line, 212

hand counter, 180

handoff, 435

handshaking, 419

hard-coded link, 574

hard disk layout, 300

hard disk mechanism, 302

hardware component, 11, 13–16. See also

Central processing units (CPUs)

early work, 25–28

Atanasoff-Berry Computer

(ABC), 25

binary processing of data, 27

Electronic Numerical Integrator

and Computer (ENIAC), 26

stored program concept, 27

von Neumann architecture, 27

hashing, 556

hazard, 246

hertz, 448

hexadecimal-binary conversion, 87–89

hexadecimal number, 73

hexadecimal numbers and arithmetic,

85–86

hexadecimal point, 89

hidden node condition, 380

hierarchical configuration, 499

hierarchical directory, 571

hierarchical LAN, 382

high-level scheduler, 601–603

high-level scheduling, 491

high-performance computing, 353–354

grid computing, 354

supercomputing, 354

hit, 251, 624

hit ratio, 251

hops, 388

hosts, 366

hot-pluggable bus I/O, 345

hot-swappable device, 290

hub-based ethernet, 380, 410–411

hubs, 345

HyperText Markup Language (HTML),

103, 126

HyperText Transfer Protocol (HTTP), 9

hyperthreading, 258

hypervisor, 635

IANA. See Internet Assigned Numbers

Authority (IANA)

I/O bound, 492

I/O device commands, 516

IBM 701 computer, 30

IBM OS/360, 30, 32

IBM PC, first, 31

IBM personal computer (IBM PC), 31

IBM zOS, 522, 535

IBM zSeries

I/O channel architecture, 347

numbers stored in BCD format, 140

processing an interrupt in, 285

ICANN. See Internet Corporation for

Assigned Names and Numbers (ICANN)

Icon, 514

IEEE 754 STANDARD, 165–166

iframe tag, 65

image data, 111–120. See also displays

bitmap images, 112–116

object images, 116–119

representing characters as images, 119

video images, 120

image scanning, 104, 129

images used within computer, 111. See also

visual data

impact printers, 318

implicit source address, 225

indefinite postponement, 628

independent processes, 596

index block, 561

indexed access, 557

indexed allocation, 561–564

indexed sequential access method

(ISAM), 557

indexed storage allocation, 557

information technology (IT), 7

key elements in, 10

system layout, 12

Infrastructure as a Service (IaaS), 57, 335

infrastructure mode, 411

Initial Program Load (IPL), 17, 481, 593

inkjet printing technology, 318, 320

i-node, 561

input, 13

input/output (I/O) devices, 14, 266–294,

489. See also interrupts

characteristics of, 268–273

common devices, 15

device controllers, 273

I/O controllers, 289–291

benefits, 290

keyboard, 268

network as, 270

programmed I/O, 273–275

requirements, 271

Input-Process-Output (IPO) model, 10

instant messaging (IM), 401

Institute for Electrical and Electronics

Engineers (IEEE), 395

instruction cycle, little man computer,

187–189

instruction location counter, 180

instruction pointer (IP), 197

instruction register (IR), 198

instruction reordering, 244

instruction set architecture

(ISA), 236

instruction unit, 244

instruction word formats, 224–225

address field, 224

instruction word requirements and

constraints, 226–228

operands, 225

destination operand, 225

source operand, 225

instruction word requirements and

constraints, 226–228

addressing modes, 227

direct addressing, 227

register-deferred addressing, 227

instructions, classification of, 214–224.

See also under memory

integer data type, 127

integer numbers, 137

integers, 141–154. See also signed integers

representation

Integrated Drive Electronics (IDE), 211

interactive systems, 483

interblock gap, 305

interface, 196–199, 287, 301, 336,

339–340, 566

interface system, 43–44

interface unit, 15

internal computer data format, 126–129

actual operations, 126

data types, 126

Boolean, 127

char, 127

enumerated data types, 127

integer, 127

real or float, 127

numerical character to integer

conversion, 128–129

pointer variable, 127

internal fragmentation, 609

internal operating system, 586–643

CPU dispatching, 601–607

CPU scheduling, 601–607

fundamental OS requirements,

588–592

issues, other, 632–634

loading and execution operations,

600–601

memory management, 608–610

network operating system services,

629–632

processes and threads, 595–600

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 664

664 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

internal operating system (continued)

secondary storage scheduling,

627–629

simple multitasking operating system,

590–592

start-up using bootstrap, 592–595

threads, 595–600

virtual machines, 634–635

virtual storage, 610–627

International Organization for

Standardization (ISO), 393

International Standards Organization

(ISO), 404

International Telecommunications Union

Telecommunications Group (ITU-T), 393

Internet, 33–34

Internet Assigned Numbers Authority

(IANA), 395

Internet backbones, 388

Internet control message protocol

(ICMP), 415

Internet Corporation for Assigned Names

and Numbers (ICANN), 395

Internet Engineering Task Force (IETF), 395

Internet protocol (IP)

IP addresses, 421–425

IPv4, 422

IPv4 and DHCP, 421–425

IPv6, 422

octets, 422

Internet Service Providers (ISPs), 385, 422

internetworking layer, 413

interprocess messaging services, 490

Interprocess, 596

interrupt handler program, 276

interrupt lines, 275

interrupt routine, 276

interrupt service routine, 276

interrupts, 275–286. See alsomultiple

interrupts

abnormal events, 280

as abnormal event indicator, 280–281

as a completion signal, 278–279

catastrophic failure, 281

exceptions, 281

as an external event notifier, 277

keyboard handler interrupt, 278

as means of allocating CPU time,

279–282

multiple interrupts and prioritization,

282–286

print handler interrupt, 279

privileged instructions, 281

quantum, 280

servicing an interrupt, 276

software interrupts, 281–282

for time-sharing, 280

traps, 281

uses of, 277–282

virtual storage, 281

for zSeries family, 282

Interrupt ReQuest (IRQ), 275, 498

interuser communication, 517–518

intranets, 55, 383, 512

intrusion, 431

inversion, 147

inversion bit in 1’s complement arithmetic,

151

IP address, 401, 428–429

IP datagram, 413

IPL. See Initial Program Load (IPL)

IP operation, 401

IPv6, 425

IRQ. See Interrupt ReQuest (IRQ)

ISA. See instruction set architecture (ISA)

ISAM. See indexed sequential access

method (ISAM)

ISO. See International Organization for

Standardization (ISO)

isochronous data transfer, 345

ISPs. See Internet Service Providers (ISPs)

IT system architectures, 47–65

advantages, 58

disadvantages, 58

peer-to-peer computing, 59

Jacquard, Joseph Marie, 24

Java Virtual Machine (JVM), 20

jitter, 430

Job control card, 535

Job Control Language (JCL), 487, 535

job steps, 595

jobs, 29, 595

Joint Photographic Experts Group (JPEG)

format, 111, 116

journaling, 488

journaling file systems, 581

Kay, Alan, 482–483

Kernel, 17, 500–503

kernel mode, 17, 482, 499

key field, 548

keyboard handler interrupt, 278

keyboard input, 268–269

keyboards, 320–321

keyword operands, 521

kilobytes (KB), 15

label edge router, 436

label-switched router, 436

lambda (𝜆), 449

LANs. See local area networks (LANs)

lane, 344, 372

large frames, 308

largest-fit algorithm, 608

laser printing technology, 318

last-in, first-out (LIFO), 220

latency time, 302

launch, 527

layer 3 switches, 413

LCD. See liquid crystal display (LCD)

technology

least recently used (LRU) algorithm,

251, 621

left shift, 81

Lightweight Directory Access Protocol

(LDAP), 577

limited real estate, 524

line, 211

linear accelerometers, 35–36

linear memory addressing, 190

linear tape cartridge format, 310

linear tape open (LTO), 309

linked list method, 565

linked storage allocation, 557, 559

and file allocation table method, 559

links, 369

Links directory, 63, 353, 482, 485, 493, 576

Linux, 521–522, 536, 605, 607

liquid crystal display (LCD) technology,

316–317

active matrix display, 317

passive matrix, 317

Lisp, 29

little man computer (LMC), 178–193,

197

ADD instruction—op code 1, 181

calculator, 180

COFFEE BREAK (or halt)

instruction—op code 0, 182

computer architectures, 190

linear memory addressing, 190

stored program concept, 190

von Neumann architecture, 190

extended instruction set, 184–187

BRANCH ON POSITIVE

instruction—op code 8, 185

branch on zero instruction—op

code 7, 184

branch unconditionally

instruction—op code 6, 184

hand counter, 180

INPUT instruction (or read, if you

prefer)—op code 9, ‘‘address’’ 01,

182

instruction cycle, 187–189

execute portion, 187

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 665

INDEX 665

fetch portion, 187–188

instruction location counter, 180

instructions to perform, 181

layout of, 179–181

LOAD instruction—op code 5, 181

mailboxes, 179

operation of, 181–182

OUTPUT instruction (or print)—op

code 9, ‘‘address’’ 02, 182

simple program, 182–184

STORE instruction—op code 3, 181

SUBTRACT instruction—op code 2,

181

LOADmove, 215–217

loading and execution operations, 600–601

local area networks (LANs), 378–382

Ethernet, 378

hidden node condition, 380

hidden node condition, 381

hub-based ethernet, 380

out-of-range conditions, 381

router, 378

‘wired’ ethernet standards, 379

local DNS server, 429

local domains, 437

local page replacement, 620

locality, 619–620

of reference, 252

locked frames, 620

locking, 574

logical addresses(TCP/IP), 397

logical addresses(virtual storage), 616–620

logical access restriction, 432

logical connection, 419

logical file access methods, 555–557

indexed access, 557

random access, 556–557

sequential file access, 555–556

logical files, 545–550

logical link control (LLC), 408

logical memory, 20

logical program, 613

logical registers, 248

logical shifts, 218

logical storage elements, 250

logical topology, 376

logical unit of storage, 488

long term evolution (LTE), 435, 464

loosely coupled system, 349

lossless data compression, 124

lossy data compression, 124

MACs. Seemedium access controls (MACs)

MAC address, 327, 409–410

MACintosh OS X, 32, 485, 525

Madvick, Stuart, 179

magnetic disks, 299–307

hard disk layout, 300

magnetic field sensors, 326

magnetic stripe readers, 323

magnetic tape, 309–310

data streaming, 310

linear tape cartridge format, 310

mounted, 310

tape cartridge with top removed, 310

mailboxes, 179

mainframe computer system, 338

mainframe operating systems, 503

majority logic, 306

MAN. Seemetropolitan area network

(MAN)

Manchester Encoding, 458

mantissa, 155

maskable interrupts, 283

masks, 422

Master Control Program (MCP), 30

master file table (MFT), 563

master–slave multiprocessing, 258

Mauchly, John W., 26

medium access controls (MACs), 327,

408–410

medium, communication, 371–372

megabytes (MB), 16

memory, 14, 194–233. See also

fetch–execute cycle

addressing modes, 204

cache, 250–254

capacity, 204–205

factors determining, 204

firmware, 206

flash memory, 206, 298

frame, 610–616

individual memory cell, 203

instructions, classification of, 214–224.

See also arithmetic instructions; data

movement instructions

application-level instructions,

214

bit manipulation instructions,

218

Boolean logic instructions, 218

multiple data instructions,

223–224

privileged instructions, 214

program control instructions,

219–220

rotate instructions, 218–219

shift instructions, 218–219

single operand manipulation

instructions, 218

stack instructions, 220–223

user-accessible instructions, 214

user space, 214

limitations, 204–205

MDR, MAR, and, 201

nonvolatile memory, 205

operation of, 200–204

partitioning, 608–610

primary memory, 196, 205–207.

See also individual entry

secondary memory, 196

solid state, 298–299

visual analogy for, 202

volatile memory, 205

memory address, 225

memory address register (MAR), 198, 275,

613

memory buffer, 552

memory data register (MDR), 199, 275

memory enhancements, 248–254

cache memory, 250–254

dynamic random access memory

(DRAM), 248

eight-way interleaving, 250

logical storage elements, 250

memory interleaving, 249

memory latency, 248

n-way interleaving, 249

two-way interleaving, 250

wide path memory access, 249

memory interleaving, 249

memory latency, 248

memory management, 490, 608

memory management unit (MMU), 197,

200–207, 490, 608–610, 613

best-fit, first-fit, 608

fixed partitioning, 608

largest-fit algorithm, 608

memory partitioning, 608–610

variable partitioning, 608

worst-fit, 609

memory-mapped I/O, 224

menu bar, 525

mesh networks, 374

full mesh networks, 374

mesh points, 383

messages, 366–367

message-to-packet conversion, 368

metadata, 102

metropolitan area network (MAN),

384–386

MFT. Seemaster file table (MFT)

microkernel configuration, 499

microwaves, 463

middleware, 55

MIDI format, 122

mid-priority process run last

(MPRL), 591

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 666

666 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

millions of instructions per second

(MIPS), 333

miniature OS (MINOS), 590

specifications for, 590

minimum essential functionality, 501

mirrored array, 306

miss, 251, 624

mixed number conversions, 93–94

mnemonics, 185

mobile devices, 325–326

GPS radio receiver, 35

gyroscope sensors, 326

linear accelerometers, 35–36

magnetic field sensors, 326

near-field communication (NFC), 326

useful input sensors for, 325

mobile operating systems, 503

model for improved CPU performance,

241–245

execution unit, 240

fetch unit, 241

multiple, parallel execution units,

244–245

pipelining, 243–244

modems, 18, 461

modern computer systems, 332–354

clusters, 350–354

computer interconnection, 349–350.

See also individual entry

high-performance computing,

353–354

I/O system architectures, 340–348

mainframe computer system, 338

major CPU system components, 338

personal computer motherboard, 339

system architecture, 340–349

.MOD format, 122

modifiers, 521

modulater, 453

amplitude-modulater (AM), 453

modulation, 371

modulus, 145

monolithic configuration, 499

motherboard, 337

mount, 568

mount point, 568

mounted tape drive, 310

mounting of devices, 516

mouse, 321

mouse focus, 526

MP3 audio data format, 123–124

MPEG-2, 120

MPEG-4, 120

MPLS. SeeMulti-Protocol Label Switching

(MPLS)

multicore processors, 256

MULTICS. SeeMultiplexed Information

and Computing Service (MULTICS)

multidrop bus, 212

multilevel feedback queues, 606–607

multilink channel, 369

multimedia input, 324–325

audio input, 325

digital cameras, 324

video capture devices, 324

multiple data instructions, 223–224

multiple execution units, 244–245

multiple interrupts, 282–289

channel program, 287

in IBM zSeries, 285

maskable, 283

nonmaskable interrupts, 283

and prioritization, 282–286

vectored interrupt, 282

multiple zone recording, 301

Multiplexed Information and Computing

Service (MULTICS), 30

multiplexing, 446

frequency-division multiplexing

(FDM), 446

time-division multiplexing (TDM),

446

multiplication, 163–164

multipoint bus, 212

multiprocessing, 256–260

configuring, 258

master–slave multiprocessing, 258

multicore processors, 256

multiprocessor systems, 256

simultaneous thread multiprocessing

(STM), 258

symmetrical multiprocessing (SMP),

258

threads, 258

tightly coupled systems, 256

multiprogramming, 481

Multi-Protocol Label Switching (MPLS),

433, 435–436

multitasking, 481

multiuser system, 481

near-field communication (NFC), 326

.NET, 539

network access points (NAPs), 388

network and communications support

services, 494

network applications, 406–440

network as I/O device, 270

network communication devices, 326–327

network file access (NFS), 576–577

networking, wireless, 361–362, 464

network interconnection, 10, 390–393

packet routing, 390–391

network interface card (NIC), 18, 290, 326

network interface controller, 290

network interface unit (NIU) controller, 326

network layer, 413–416

address resolution protocol at

work, 416

internetworking layer, 413

network operating system services, 629–632

client–server systems, 631

common gateway interface (CGI)

protocol, 631

distributed system, 631

peer-to-peer network software, 632

protocol support and other services,

629–632

remote procedure calls (RPCs), 631

network propagation delay, 411

network security, 431–433

assuring network availability and

access control, 432

authentication, 431

confidentiality, 431

data integrity and nonrepudiation, 432

encryption, 432–433

intrusion, 431

logical access restriction, 432

physical access restriction, 432

network server systems, 503

networking professional, 8

networks, 33–34, 373–393. See also

backbone networks

bus topology, 375

categories, 376–377

client–server architecture, 361

connecting end points through links

and networks, 377

five-node full mesh network, 375

full mesh networks, 374

impact on business processes, 362–363

local area networks, 421–423

mesh networks, 374

metropolitan area network

(MAN), 384

partial-mesh networks, 375

piconets, 388–390

ring topology, 376

star topology, 376

topology, 373–376

types, 376–390

user access to knowledge and services,

362–363

wide area networks, 389–390, 435–436

Neumann, John von, 27

NFC. See near-field communication (NFC)

NIC. See network interface card (NIC)

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 667

INDEX 667

nine’s decimal representation, 143–147

end-around carry, 146

inversion, 147

overflow, 146

wraparound representation, 145–146

nodes, 350, 366

noise, 462

noncontiguous storage allocation, 559–561

nonmaskable interrupts, 283

nonpreemptive dispatch algorithms,

605–606

first-in, first-out (FIFO), 605–606

priorityscheduling, 606

shortest job first (SJF), 605–606

nonpreemptive dispatching, 493

nonpreemptive systems, 599

nonresident attributes, 563

nonresident commands, 487

nonvolatile memory, 205

normalization of floating point, 158–161

northbridge, 342

not used recently (NUR) algorithm, 621

Novell IPX/SPX, 434

n-step c-scan scheduling, 628–629

NT File System (NTFS), 562–564

n-tier architecture, 54

number(s)

bases that are related, 87–88

complementary, 153–154

components to define, 155

floating point, 158–161

integer, 137

vs. numeric characters, 104

octal, 73

as physical representation, 74

port, 417

number systems, 72–95. See also fractions;

numeric conversion between number

bases

base of number system, 73

binary or base 2 number system, 73

counting in different bases, 74–79

decimal or base10, 73

hexadecimal numbers and arithmetic,

85–86

number bases that are related, 87–88

numbers as a physical representation,

74

performing arithmetic in different

number bases, 78–81

Base 10 addition table, 78, 80

Base 8 addition table, 79–80

shifting a number, 81

Roman numerals, 74

numbers, 104

numeric characters, 104

numeric conversion between number bases,

82–85

alternative conversion method, 83–85

another number base to base10, 84–85

base 10 to another base, 83–84

fractional conversion methods, 90–93

mixed number conversions, 93–94

numerical character to integer conversion,

128–129

numerical data representation, 136–175. See

also real numbers

binary-coded decimal representations,

138–141

floating point numbers, 137

integer numbers, 137

real numbers, 137

unsigned binary decimal

representations, 138–141

n-way interleaving, 249

object images, 111, 116–119

advantages over bitmap images, 116

elements, 116

glyphs, 119

PostScript page description language,

117–119

rendering engine program, 119

rendering, 119

representing characters as images, 119

octal digit, 87

octets, 422

off-line storage, 298

offset, 611

OLED. See Organic Light-Emitting Diode

(OLED)

one’s binary complementary

representations, 147–149

one’s complement representation, 141

online secondary storage, 297

op code, 181–182

open computing, 19

Open System Interconnection (OSI), 395,

402–406, 433–434

presentation layer, 434

session layer, 434

OpenCL, 316

OpenGL, 314

operand fields, 225

operands, 225, 514

destination operand, 225

fields, 225

keyword, 521

positional, 521

in program execution, 514–515

single operand manipulation

instructions, 218

source operand, 225

operating system (OS), 16, 28–33, 476–505.

See also internal operating system

API, 496, 548

barebones computer system, 478–479

concept of, 479–485

CTSS, 30

event driven OS, 484

file management, 487–489

IBSYS, 30

input/output services, 489

kernel, 17, 499

Linux, 521–522, 536, 605, 607

modern integrated computer

environment, 480

memory management, 490

MULTICS, 30

network and communications support

services, 494

organization, 499–501

process control management, 489–490

program execution, 514–515

program services, 514–519

requirements, fundamental, 488–592

scheduling and dispatch, 491–493

secondary storage management, 493

security and protection services,

494–495

Share Operating System (SOS), 30

system administration support,

495–499

types, 483

UNIX, 30–31

windows, 513

operating system (OS), user view of,

510–539

command and script languages,

535–538

introduction, 515–516

software considerations, 530–532

services to programs, 542–543

user functions and program services,

538–539

user interface, purpose of, 512–514

user interface, types of, 519–532

XWindow and other graphics display

methodologies, 532–534

optical character recognition (OCR), 324

optical disk storage, 307–309

binary-coded decimal (BCD), 308

CD-ROM, 307

DVD technology, 309

USB flash drives, 307

Web-based cloud storage, 307

optimal page replacement, 620

Oracle SPARC computers, 19

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 668

668 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

Organic Light-Emitting Diode (OLED), 317

organization, 499–502

CPU, 236–248

defined, 236

hierarchical configuration, 499

microkernel configuration, 499

monolithic configuration, 499

in operating systems, 499

in superscalar processing, 245–248

orthogonal frequency-division multiplexing

(OFDM), 466

OSI. See Open System Interconnection

(OSI)

OS X, 524–526

out-of-order processing, 246–247

output, 14

overflow, 146

overflow conditions, 152–153

owner, 580

packed decimal format, 139

packet routing, 390–391

circuit switching, 391

permanent virtual circuit (PVC), 391

switched virtual circuit (SVC), 391

virtual circuit, 391

packet sniffing, 432

packet switching, 391

packetization, 417

packets, 367–369

page (virtual storage), 609–616

page description languages, 125–126

HTML (HyperText Markup

Language), 126

page markup languages, 126

PDF (PortableDocument Format), 126

plug-ins, 126

PostScript, 126

typesetting languages, 126

page fault trap, 617

page faults, 617–619

page markup languages, 126

page replacement algorithms, 620–624

first-in, first-out page replacement,

621

optimal page replacement, 620

page sharing, 620

page swapping, 617

page table implementation, 616, 624–626

page table, 613

page translation process, 614

pages, 299

paging, 610–616

palette, 113, 312

PANs. See personal area networks (PANs)

parallel bus, 211

parallel execution units, 244–245

parallelization, 314

parent, 598

parked position, 302

partial-mesh networks, 375

partitions, 566–569

extended partitions, 567

primary partitions, 567

partitioning, memory, 608–610

Pascal, Blaise, 24

passive matrix LCD display, 317

path, 572

path variable, 520

pathname, 571

PCB. See process control block (PCB)

PCI-Express/PCI bus, 341–344

peer, 404

peer layer, 404

peer-to-peer computing, 59

peer-to-peer network software, 632

period, 448

peripherals, 294–331

defined, 295

displays, 310–317

I/O architecture, 354

magnetic disks, 299–307

magnetic tape, 309–310

network communication devices,

326–327

optical disk storage, 307–309

printers, 317–320

solid state memory, 298–299

storage, hierarchy of, 296–298

user input devices, 320–326

permanent virtual circuit (PVC), 391, 436

personal area networks (PANs), 388

personal computer motherboard, 339

personal computer system, 14, 336

phase, 450

phase shift keying (PSK), 453

phonemes, 323

physical access restriction, 432

physical address, 415

physical file storage, 557–566

CD, DVD, and flash drive

allocation, 566

contiguous storage allocation, 557

free space management, 564–565

indexed storage allocation, 557

linked storage allocation, 557, 559–561

tape allocation, 565

physical files, 545–550

physical layer, 408

physical memory, 20

physical representation, numbers as, 74

physical topology, 376

physical view, 545–550

piconets, 388

PID. See process identifier (PID)

pinching or spreading, 524

ping, 415

pipelining technique, 241, 243–244

pixel aspect ratio, 113

pixel data, 112–113

pixel density, 311

pixels, 310

Plain Old Telephone Service (POTS), 364

planes, 106

base planes, 106

supplementary planes, 106

Platform as a service (PaaS), 57

plug-and-play device, 290, 489

plug-ins, 126

point of presence, 385

pointer variable, 127

pointing devices, 321–322

game controllers, 322

graphics tablets, 322

mouse, 321

touch screens, 321

point-to-point bus, 212

Point-to-Point Protocol (PPP), 434

polling, 277

port (from one computer to another), 31

port addresses, 417

port numbers, 417

Portable Document Format (PDF), 126

Portable Network Graphics (PNG), 111, 116

positional operand, 521

PostScript page description language,

117–119, 126, 318

arc function, 118

font, 118

translate function, 118

wedge, 118

POWER7 CPU execution units, 241

preemptive dispatch algorithms, 606–607

dynamic priority scheduling, 607

multilevel feedback queues, 606–607

round robin, 606

preemptive dispatching, 493

preemptive systems, 599

prepaging, 618

presentation layer of OSI network

model, 434

primary memory, 196, 296

characteristics and implementation,

205–207

primary storage, 15

print handler interrupt, 279

printers, 317–320

dot matrix printers, 318

impact printers, 318

inkjet printing technology,

318, 320

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 669

INDEX 669

laser, 318–319

PostScript (PCL), 318

printing characters, 109

priorities, 283

priority scheduling, 606

private virtual circuits, 387

privileged instructions, 214, 281

process, 595–600

process control block (PCB), 276, 596

process control management, 489–490

process creation, 597–598

process identifier (PID), 597

process separation, 627

process states, 597–599

blocked state, 598

ready state, 598

running state, 598

processor affinity, 603

program applications versus network

applications, 406–407

program control instructions, 219–220

CALL instructions, 219–220

RETURN instructions, 219–220

program counter (PC), 197

program counter register (PC or IP), 198

program execution, 514–515

application association, 515

operands, 514

program services, 514–519

application programming interface

(API), 519

data sharing operations, 517–518

disk and I/O device commands, 516

factors accounting for, 515

file commands, 515–516

interuser communication, 517–518

mounting of devices, 516

program execution, 514–515

security and data integrity protection,

516–517

system status information, 518–519

unmounting of devices, 516

user administration, 518–519

Program Status Word (PSW), 200

programmed I/O, 273–275

programmer, 7

programming considerations, 167–168

program-visible registers, 198

proprietary formats, 103

protocol stack, 404

protocols, 10, 20–22, 213, 372–373

bus protocol, 213

RSS, 22

SATA, 22

SIP, 22

suite of, 22

XML, 22

protocols, alternative, 433–436

Frame Relay, 436

MPLS, 435–436

SONET/SDH, 436

protocols and standards, 20–22

protocol suite, 22, 434

pseudocode, 185

PSW. See Program Status Word (PSW)

public key–private key cryptography, 433

public switched telephone networks

(PSTNs), 387

pulse amplitude modulation (PAM), 460

pulse code modulation (PCM), 459

quadrature amplitude modulation

(QAM), 465

quality of service (QoS), 401, 430–431

quantum, 280

quick response (QR) codes, 322

radians, 449

Radio Frequency IDentification (RFID), 323

radio signals/waves, 448

radix point, 89, 154

RAID. See redundant array of inexpensive

disks (RAID)

random access files, 548, 556–557

random access memory (RAM), 15, 205

dynamic RAM, 206

static RAM, 206

raster image, 112–116

raster scan, 113, 312–313

raw format, 119

read-only memory (ROM), 17, 206

read protection, 578

read–write memory, 205

ready state, 598

real numbers, 137, 154–167

Base 10 and Base 2, conversion

between, 166–167

division, 163–164

exponential notation, 154–156

floating point calculations, 162–164

floating point format, 156–158

IEEE 754 STANDARD, 165–166

multiplication, 163–164

programming example, 161

real or float data type, 127

real-time systems, 504

records, 546

reduced instruction set computers

(RISC), 236

redundant array of inexpensive disks

(RAID), 306

regenerators, 436

register alias tables, 248

register-deferred addressing, 227

registers, 197–200

control unit, 198

flags, 199

general-purpose registers, 198

instruction register (IR), 198

memory address register (MAR), 198

memory data register (MDR), 199

program counter register (PC or IP),

198

programmer-accessible registers in

IBM zSeries computers, 200

program-visible registers, 198

status registers, 199

supporting operations by, 199

user-visible registers, 198

relative access files, 548

relative pathname, 572

reliable-delivery service, 419

remote procedure call (RPC), 539, 631

rename registers, 248

rendering engine program, 119

repeaters, 460

replication, 428

request to send (RTS) packet, 412

requests for comments (RFCs), 395

resident commands, 487

Resilient File System (ReFS), 564

resolution (domain name), 428

resolution (image), 113

response time, 605

resumption, 599

RETURN instructions, 219–220

rewind, 553, 556

RFID. See Radio Frequency IDentification

(RFID)

right-of-way access, 384

right shift, 81

ring topology, 376

roll-out, roll-in, 599

Roman numerals, 74

root mean square (RMS) averaging, 450

rotate instructions, 218–219

rotational delay, 302

rotational latency time, 302

round robin, 606

route, 392

routers, 378, 392–393

routing, 368

RPC. See remote procedure call (RPC)

running state, 598

runs, 563

SAN. See storage area networks (SAN)

sandbox, 495

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 670

670 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

saturation, 224

scalable vector graphics (SVG), 112

scalar processor organization, 245–248

scan code, 320

scan scheduling algorithm, 628

scan scheduling, 628

scanners, 324

scheduling, 491–493

high-level scheduling, 491

screens, 524

scripting languages, 513

scripts, 523

SCSI Over IP, 434

SCSI. See Small Computer System Interface

(SCSI)

SDH. See Synchronous Digital Hierarchy

(SDH)

second chance page replacement

algorithms, 622–623

secondary memory, 196

secondary storage scheduling, 627–629

first-come, first-served (FCFS)

scheduling, 627

n-step c-scan scheduling, 628–629

shortest distance first (SDF)

scheduling, 628

secondary storage, 297

management, 493

second-level, 427

sectors, 300

Secure Extensible Firmware Interface

(SEFI), 206

Security and data integrity protection,

516–517

security, 516–517

access restrictions, physical and

logical, 432

categories of, 431–433

data integrity protection and, 516

encryption, 432–433

network, 431–433

operating system, 494–495

and protection services, 494–495

seek time, 302

segmentation, 610, 626–627

segments, 419

separator symbol, 571

sequential file access, 548, 555–557

Serial Advanced Technology Attachment

(SATA), 211

serial bus, 211

server, 298

service provider (SP), 384

service requests, 484

services

command execution, 486–487

communications support, 494

connectionless, 414

connection-oriented, 418

DNS directory services, 577

to programs, 538–539

services and facilities, 485–499

services to programs, 538–539

servicing an interrupt, 276

session layer, 434

shards, 63

Share Operating System (SOS), 30

shared disk model, 350

shared-nothing model, 350

shared server, 52

shell, 482, 511

shell scripts, 487, 523

shift instructions, 218–219

arithmetic shift, 218

logical shifts, 218

shift operation, 199

shortcuts, 575

shortest distance first (SDF) scheduling, 628

shortest job first (SJF), 605–606

shredder software, 565

signaling methods, 462–464

signaling technology, fundamentals of,

447–462

analog signal, 447

discrete signal, 447

digital signaling, 456–461

modems and codecs, 345

transmission media and signaling

methods, 462–464

signal-to-noise ratio, 462

sign-and-magnitude representation, 141

signed integers representation, 141–154

1’s binary complementary

representations, 147–149

carry conditions, 152–153

1’s complement representation, 141

10’s complement representation,

149–151

2’s complement representation, 141

nine’s decimal representation,

143–147

overflow and carry conditions,

152–153

sign-and-magnitude representation,

141

sign-and-magnitude representation,

141–143

SIMD. See Single Instruction, Multiple Data

(SIMD)

simple multitasking operating system,

590–592

simple page table translation, 614

simplex channel, 372

simplex line, 212

simultaneous thread multiprocessing

(STM), 258

sine wave, 448

single data block, 305

single indirect block pointers, 562

Single Instruction, Multiple Data (SIMD),

215, 223

single operand manipulation instructions,

218

single-precision floating point format,

156–158

skew, 213

Small Computer System Interface (SCSI),

434

and IP, 434

smart cards, 323

smartphone system, 337

socket, 418

Software as a service (SaaS), 56

software component, 11, 16–18

application programming interface

(API), 17

application software, 16

system software, 16

software interrupts, 281–282

solid-state drives (SSDs), 295, 299

solid-state memory, 298–299

SONET. See Synchronous Optical Network

(SONET)

southbridge, 342

spawning, 598

spectrum, 450

stack instructions, 220–223

fixed location subroutine return

address storage, 221

last-in, first-out (LIFO), 220

stack pointer, 222

stack subroutine return address

storage, 222

stack, memory, 220

stack, protocol, 404

stall time, 253

standards, 20–22, 393–395

star topology, 376

start frame delimiter, 459

start-up sequence files, 537–538

starvation, 603

static addresses, 424

static RAM, 206

statistical TDM, 460

status registers, 199

STM. See simultaneous thread

multiprocessing (STM)

storage area networks (SAN), 298, 578

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 671

INDEX 671

storage

hierarchy, 296–298

linked storage allocation, 557

logical storage elements, 250

off-line, 298

online, 297

optical disk, 307–309

secondary, management of, 608

storage pools, 566–569

STORE move, 215–217

stored program concept, 16, 27, 190

Stream Control Transmission Protocol

(SCTP), 418, 421

stream, character, 107

streaming video, 120

streaming, 315

striped array, 306

subchannels, 347

subdirectories, 571

submit (a job), 29

subnets, 422

subroutine call and return, 220

subsystems, 43

suite (protocol), 22

supercomputing, 354

superscalar CPU, 254–256

superscalar processing, 244–245

branch instruction processing,

247–248

conflict of resources, 248

organization, 245–248

out-of-order processing, 246–247

vs. scalar processing, 244–245, 256,

261

superscalar processor organization,

245–248

superuser, 496

suspended state, 599

swap files, 599

swapping, 601

swap space, 617

swiping or flicking, 524

switched ethernet, 380, 411

switched virtual circuit (SVC), 391

switches, 521

symbiotic, 485

symmetric key cryptography, 433

symmetrical multiprocessing (SMP), 258

synchronization, 596

Synchronous Digital Hierarchy (SDH), 436

Synchronous Optical Network (SONET),

436

synergy, 334

sysgen, 496–497

system administration support, 495–499

system administrator/manager, 8

system architecture, 340–349

basic system interconnection

requirements, 341

buses, 341

CPU or CPUs, 341

I/O peripheral devices,

341

I/O units, 341

memory, 341

blurring the line, 349

bus architecture, 340

bus I/O, 343–347

channel architecture, 340

channel architecture, 347–348

generalized bus interface

configuration, 342

I/O system architectures, 340

system bus, 342

system generation/sysgen, 497–499

system languages, 485

system-on-a-chip (SoC), 337

system processes, 597

system scalability, 494

system software, 16

system status information, 518–519

systems, 38–65. See also distributed

processing systems

cell phone, 46

concepts and architecture, 38–65. See

also Architecture of system

definition, 40

environment and, 41

interface between the system

and, 41

general concept of systems, 40–47

general representation of, 44

subsystems, 43

systems architect/system analyst, 7

table image, 546

tablet computer, 19

tag, 251

tape allocation, 565

tape cartridge with top removed, 310

task, 595

task bar, 525

TCP/IP. See Transmission Control

Protocol/Internet Protocol (TCP/IP)

TDM. See time division multiplexing

(TDM)

ten’s complement representation,

149–151

terabytes (TB), 18, 295

thin clients, 483

third-level domains, 427

thrashing, 624

threads, 258, 490, 600

three-tier architecture, 53–54

three-tier web-based e-mail

architecture, 56

Thunderbolt, 345–346

tightly coupled systems, 256

time division multiplexing (TDM), 446, 460

statistical TDM, 460

time-out, 599

time-sharing, interrupt for, 280

time-slicing, 492

title bar, 525

TLB. See translation lookaside buffer (TLB)

Tomlinson, Ray, 33

top-down approach, 48

top-level domains, 427

topology, networks, 373–376

touch screens, 321

touchless gesture-based interfaces, 528–529

Traceroute, 415

track, 300

traditional modern CPU architectures, 237

transfer time, 303

translation lookaside buffer (TLB)

table, 624

Transmission Control Protocol/Internet

Protocol (TCP/IP), 22, 400–436

and OSI, 433–434

application layer, 410

data link layer, 408–413

handshaking, 419

logical connection, 419

network layer, 413–416

operation of, 405

physical layer, 408

reliable delivery, 419

segments, 419

transport layer, 416–421

transmission media, 462–464

transport layer, 416–421

packetization, 417

traps, 281

tree-structured directories, 570–573

triple indirect block pointers, 562

true color system, 312

turnaround time, 606

twisted pair, 462

two real-world wide area networks,

389–390

two’s complement representation, 141,

151–152

two-byte unicode assignment table, 108

two-level cache, 253

two-tier architecture, 53

two-way interleaving, 250

typesetting languages, 126

Englander bindex.tex V2 - December 10, 2013 2:39 P.M. Page 672

672 THE ARCHITECTURE OF COMPUTER HARDWARE, SYSTEMS SOFTWARE, & NETWORKING

UDF. See Universal Data Format (UDF)

underflow, 158

unguided media, 462

unguided medium, 371

Unicode, 105

two-byte unicode assignment

table, 108

Universal Data Format (UDF), 566

Universal Resource Locator (URL), 365

Universal Serial Bus (USB), 211

universe, 580

UNIX, 30–31

UNIX/Linux systems

file commands, 515–516

security and data integrity protection,

513, 516–517

shell scripts, 487, 523, 536

start-up sequence files, 537–538

XWindow, 530

unmounting of devices, 516

unsigned binary decimal representations,

138–141

unsigned integers, 141

untwisted pair, 462

user, 7

user-accessible instructions, 214

user administration, 518–519

User Datagram Protocol (UDP), 418, 420

user datagrams, 420

user functions and program services,

514–519

user input devices, 320–326

keyboards, 320–321

pointing devices, 321–322

user interface (UI), 486–487

command execution services, 486–487

command line interface, 486, 519,

520–522, 529–530, 545

graphical user interfaces, 31, 313, 516,

523–526

purpose of, 512–514

trade-offs in, 529–530

types of, 519–532

user-level threads, 600

user process, 597

user space, 214

user-visible registers, 198

variable partitioning, 608

vector images, 111

vectored interrupt processing, 283

very-large-scale integrated circuits (VLSIs),

337

video capture devices, 324

video images, 120

codec, 120

H.264, 120

MPEG-2, 120

MPEG-4, 120

streaming video, 120

virtual circuit, 391

permanent virtual circuit (PVC), 391

switched virtual circuit (SVC), 391

virtual computers, 335

virtual file systems, 566

virtual machine configuration, 635

virtual machines, 335, 634–635

virtual private network (VPN), 494

virtual program, 613

virtual storage, 281, 490, 610–627

frames, 610–616

offset, 611

page faults, 617–619

pages, 610–616

segmentation, 610

virtualization concept, 20, 335

visual data, 111–120

bitmap images, 111–116. See also

individual entry

graphical objects, 111

Graphics Interchange Format (GIF),

111

images used within computer,

categories, 111

Joint Photographic Experts Group

(JPEG), 111

object images, 111

Portable Network Graphics (PNG),

111

vector images, 111

.VOC format, 122

voice-based interfaces, 528–529

voice input, 323

voice over IP (VoIP) tools, 120, 494

volatile memory, 205

volume table of contents, 568

volume, 568

von Neumann architecture, 27, 190

wake-up, 599

WANs. See wide area networks (WANs)

warm boot, 594

.WAV format, 122

waveform, 121–122, 447

wavelength division multiplexing (WDM),

454

wavelength, 449

wear-leveling, 299

Web-based computing, 55–56

eXtended Markup Language (XML),

56

intranet, 55

three-tier web-based e-mail

architecture, 56

user of, 55

Web browser, 6

application use, 10

Web browser–Web server model, 53

Web server, 6

Web services designer, 8

wedge, 118

well-known ports, 417

what-you-see-is-what-you-get

(WYSIWYG), 523

wide area networks (WANs), 387–388

wide path memory access, 249

Wi-Fi, 326, 378, 380–381, 411, 454, 464, 466

widgets, 524

wild card, 522

WiMAX, 464

windows, 513

windows NTFS file system, 562–564

Windows PowerShell, 487

Wireless Ethernet (Wi-Fi), 380, 411–413,

464, 466

ad hoc mode, 411

characteristics, 382

infrastructure mode, 411

wireless mesh network, 385

word, 9

working directory, 572

working sets, 619–620

worst-fit, 609

wraparound representation, 145–146

write-back method, 251

write protection, 578

write-through method, 251

WYSIWYG. See

what-you-see-is-what-you-get

(WYSIWYG)

x86 CPU family of computers, 27

Xerox PARC (Palo Alto Research Center),

31, 33

XWindow, 530, 532–534

eXtended Markup Language

(XML), 56, 112

zip file, 124

zone bit recording (ZBR), 301

zone-CAV recording (Z-CAV), 301

zOS, 522, 535, 540

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Preface��������������
	About the Author�����������������������
	Part One An Overview of Computer Systems���
	Chapter 1 Computers and Systems��������������������������������������
	1.0 Introduction�����������������������
	1.1 The Starting Point�����������������������������
	1.2 Components of the Computer System��
	The Hardware Component�����������������������������
	The Software Component�����������������������������
	The Communication Component����������������������������������
	The Computer System��������������������������

	1.3 The Concept of Virtualization��
	1.4 Protocols and Standards����������������������������������
	1.5 Overview of This Book��������������������������������
	1.6 A Brief Architectural History of the Computer��
	Early Work�����������������
	Computer Hardware������������������������
	Operating Systems������������������������
	Communication, Networks, and the Internet��

	Chapter 2 An Introduction to System Concepts and Systems Architecture��
	2.0 Introduction�����������������������
	2.1 The General Concept of Systems���
	2.2 IT System Architectures����������������������������������
	Distributed Processing Systems�������������������������������������
	The Role of the System Architect���������������������������������������
	Google: A System Architecture Example��
	Another Example: Facebook's Application Architecture���

	Part Two Data in the Computer������������������������������������
	Chapter 3 Number Systems�������������������������������
	3.0 Introduction�����������������������
	3.1 Numbers as a Physical Representation���
	3.2 Counting in Different Bases��������������������������������������
	3.3 Performing Arithmetic in Different Number Bases��
	3.4 Numeric Conversion Between Number Bases��
	An Alternative Conversion Method���������������������������������������

	3.5 Hexadecimal Numbers and Arithmetic���
	3.6 A Special Conversion Case-Number Bases that are Related��
	3.7 Fractions��������������������
	Fractional Conversion Methods������������������������������������

	3.8 Mixed Number Conversions�����������������������������������

	Chapter 4 Data Formats�����������������������������
	4.0 Introduction�����������������������
	4.1 General Considerations���������������������������������
	4.2 Alphanumeric Character Data��������������������������������������
	4.3 Visual Data����������������������
	Bitmap Images��������������������
	Object Images��������������������
	Representing Characters as Images��
	Video Images�������������������

	4.4 Audio Data���������������������
	4.5 Data Compression���������������������������
	4.6 Page Description Languages�������������������������������������
	4.7 Internal Computer Data Format��
	Numerical Character to Integer Conversion��

	Chapter 5 Representing Numerical Data��
	5.0 Introduction�����������������������
	5.1 Unsigned Binary and Binary-Coded Decimal Representations���
	5.2 Representations for Signed Integers��
	Sign-and-Magnitude Representation��
	Nine's Decimal and 1's Binary Complementary Representations��
	Ten's Complement and 2's Complement��
	Overflow and Carry Conditions������������������������������������
	Other Bases������������������
	Summary of Rules for Complementary Numbers���

	5.3 Real Numbers�����������������������
	A Review of Exponential Notation���������������������������������������
	Floating Point Format����������������������������
	Normalization and Formatting of Floating Point Numbers���
	A Programming Example����������������������������
	Floating Point Calculations����������������������������������
	Floating Point in the Computer�������������������������������������
	Conversion between Base 10 and Base 2��

	5.4 Programming Considerations�������������������������������������

	Part Three Computer Architecture and Hardware Operation��
	Chapter 6 The Little Man Computer��
	6.0 Introduction�����������������������
	6.1 Layout of the Little Man Computer��
	6.2 Operation of the LMC�������������������������������
	6.3 A Simple Program���������������������������
	6.4 An Extended Instruction Set��������������������������������������
	6.5 The Instruction Cycle��������������������������������
	6.6 A Note Regarding Computer Architectures��

	Chapter 7 The CPU and Memory�����������������������������������
	7.0 Introduction�����������������������
	7.1 The Components of the CPU������������������������������������
	7.2 The Concept of Registers�����������������������������������
	7.3 The Memory Unit��������������������������
	The Operation of Memory������������������������������
	Memory Capacity and Addressing Limitations���
	Primary Memory Characteristics and Implementation��

	7.4 The Fetch-Execute Instruction Cycle��
	7.5 Buses����������������
	Bus Characteristics��������������������������

	7.6 Classification of Instructions���
	Data Movement Instructions (load, store, and Other Moves)��
	Arithmetic Instructions������������������������������
	Boolean Logic Instructions���������������������������������
	Single Operand Manipulation Instructions���
	Bit Manipulation Instructions������������������������������������
	Shift and Rotate Instructions������������������������������������
	Program Control Instructions�����������������������������������
	Stack Instructions�������������������������
	Multiple Data Instructions���������������������������������
	Other Instructions�������������������������

	7.7 Instruction Word Formats�����������������������������������
	7.8 Instruction Word Requirements and Constraints��

	Chapter 8 CPU and Memory: Design, Enhancement, and Implementation��
	8.0 Introduction�����������������������
	8.1 CPU Architectures����������������������������
	Overview���������������
	Traditional Modern Architectures���������������������������������������

	8.2 CPU Features and Enhancements��
	Introduction�������������������
	Fetch-Execute Cycle Timing Issues��
	A Model for Improved CPU Performance���
	Scalar and Superscalar Processor Organization��

	8.3 Memory Enhancements������������������������������
	Wide Path Memory Access������������������������������
	Memory Interleaving��������������������������
	Cache Memory�������������������

	8.4 The Compleat Modern Superscalar CPU��
	8.5 Multiprocessing��������������������������
	8.6 A Few Comments on Implementation���

	Chapter 9 Input/Output�����������������������������
	9.0 Introduction�����������������������
	9.1 Characteristics of Typical I/O Devices���
	9.2 Programmed I/O�������������������������
	9.3 Interrupts���������������������
	Servicing Interrupts���������������������������
	The Uses of Interrupts�����������������������������
	Multiple Interrupts and Prioritization���

	9.4 Direct Memory Access�������������������������������
	9.5 I/O Controllers��������������������������

	Chapter 10 Computer Peripherals��������������������������������������
	10.0 Introduction������������������������
	10.1 The Hierarchy of Storage������������������������������������
	10.2 Solid-State Memory������������������������������
	10.3 Magnetic Disks��������������������������
	Disk Arrays������������������

	10.4 Optical Disk Storage��������������������������������
	10.5 Magnetic Tape�������������������������
	10.6 Displays��������������������
	Basic Display Design���������������������������
	Graphical Processing Units (GPUs)��
	Liquid Crystal Display Technology��
	OLED Display Technology������������������������������

	10.7 Printers��������������������
	Laser Printers���������������������
	Inkjet Printers����������������������

	10.8 User Input Devices������������������������������
	Keyboards����������������
	Pointing Devices�����������������������
	Alternative Sources of Alphanumeric Input��
	Scanners���������������
	Multimedia Input�����������������������
	Mobile Devices���������������������

	10.9 Network Communication Devices���

	Chapter 11 Modern Computer Systems���
	11.0 Introduction������������������������
	11.1 Putting All the Pieces Together���
	11.2 System Architecture�������������������������������
	Basic System Interconnection Requirements��
	Bus I/O��������������
	Channel Architecture���������������������������
	Blurring the Line������������������������

	11.3 Computer Interconnection: A Brief Overview��
	11.4 Clusters��������������������
	Overview���������������
	Classification and Configuration���������������������������������������
	Beowulf Clusters�����������������������

	11.5 High-Performance Computing��������������������������������������
	Grid Computing���������������������

	Part Four Networks and Data Communications���
	Chapter 12 Networks and Data Communications-An Overview��
	12.0 Introduction������������������������
	12.1 The Impact of Networking on Business Processes and User Access to Knowledge and Services��
	12.2 A Simple View of Data Communications��
	12.3 Basic Data Communication Concepts���
	Messages���������������
	Packets��������������
	General Channel Characteristics��������������������������������������

	12.4 Networks��������������������
	Network Topology�����������������������
	Types of Networks������������������������
	Network Interconnection������������������������������

	12.5 Standards���������������������

	Chapter 13 Ethernet and TCP/IP Networking��
	13.0 Introduction������������������������
	13.1 TCP/IP, OSI, and Other Communication Protocol Models��
	13.2 Program Applications Versus Network Applications��
	13.3 The Physical and Data Link Layers���
	The Physical Layer�������������������������
	The Data Link Layer��������������������������
	Hub-Based Ethernet�������������������������
	Switched Ethernet������������������������
	Wireless Ethernet (Wi-Fi)��������������������������������

	13.4 The Network Layer�����������������������������
	13.5 The Transport Layer�������������������������������
	13.6 IP Addresses������������������������
	IPv4 and DHCP��������������������
	IPv6�����������

	13.7 Domain Names and DNS Services���
	13.8 Quality of Service������������������������������
	13.9 Network Security����������������������������
	Physical and Logical Access Restriction��
	Encryption�����������������

	13.10 Alternative Protocols����������������������������������
	A Comparison of TCP/IP and OSI�������������������������������������
	Other Protocol Suites and Components���
	SCSI Over IP�������������������
	Cellular Technology��������������������������
	MPLS�����������
	SONET/SDH����������������
	Frame Relay������������������

	Chapter 14 Communication Channel Technology��
	14.0 Introduction������������������������
	14.1 Communication Channel Technology��
	14.2 The Fundamentals of Signaling Technology��
	Analog Signaling�����������������������
	Digital Signaling������������������������
	Modems�������������

	14.3 Transmission Media and Signaling Methods��
	14.4 Alternative Technologies������������������������������������
	Cellular Technology��������������������������
	Wi-Fi������������
	Bluetooth����������������

	Part Five The Software Component���������������������������������������
	Chapter 15 Operating Systems: An Overview��
	15.0 Introduction������������������������
	15.1 The Barebones Computer System���
	15.2 The Operating Systems Concept: An Introduction��
	15.3 Services and Facilities�����������������������������������
	User Interface and Command Execution Services��
	File Management����������������������
	Input/Output Services����������������������������
	Process Control Management���������������������������������
	Memory Management������������������������
	Scheduling and Dispatch������������������������������
	Secondary Storage Management�����������������������������������
	Network and Communications Support Services��
	Security and Protection Services���������������������������������������
	System Administration Support������������������������������������

	15.4 Organization������������������������
	15.5 Types of Computer Systems�������������������������������������

	Chapter 16 The User View of Operating Systems��
	16.0 Introduction������������������������
	16.1 Purpose of the User Interface���
	16.2 User Functions and Program Services���
	Program Execution������������������������
	File Commands��������������������
	Disk and Other I/O Device Commands���
	Security and Data Integrity Protection���
	Interuser Communication and Data Sharing Operations��
	System Status Information and User Administration��
	Program Services�����������������������

	16.3 Types of User Interface�����������������������������������
	The Command Line Interface���������������������������������
	Batch System Commands����������������������������
	Graphical User Interfaces��������������������������������
	Touchless Gesture- and Voice-Based Interfaces��
	Trade-offs in the User Interface���������������������������������������
	Software Considerations������������������������������

	16.4 X Window and Other Graphics Display Methodologies���
	16.5 Command and Scripting Languages���
	The Elements of a Command Language���
	The Command Language Start-up Sequence Files���

	16.6 Services to Programs��������������������������������

	Chapter 17 File Management���������������������������������
	17.0 Introduction������������������������
	17.1 The Logical and Physical View of Files��
	17.2 The Role of the File Management System��
	17.3 Logical File Access Methods���������������������������������������
	Sequential File Access�����������������������������
	Random Access��������������������
	Indexed Access���������������������

	17.4 Physical File Storage���������������������������������
	Contiguous Storage Allocation������������������������������������
	Noncontiguous Storage Allocation���������������������������������������
	Indexed Allocation�������������������������
	Free Space Management����������������������������
	Tape Allocation����������������������
	CD, DVD, and Flash Drive Allocation��

	17.5 File Systems, Volumes, Disks, Partitions, and Storage Pools���
	17.6 The Directory Structure�����������������������������������
	Tree-Structured Directories����������������������������������
	Acyclic-Graph Directories��������������������������������

	17.7 Network File Access�������������������������������
	17.8 Storage Area Networks���������������������������������
	17.9 File Protection���������������������������
	17.10 Journaling File Systems������������������������������������

	Chapter 18 The Internal Operating System���
	18.0 Introduction������������������������
	18.1 Fundamental OS Requirements���������������������������������������
	Example: A Simple Multitasking Operating System��

	18.2 Starting the Computer System: The Bootstrap���
	18.3 Processes and Threads���������������������������������
	Process Creation�����������������������
	Process States���������������������
	Threads��������������

	18.4 Basic Loading and Execution Operations��
	18.5 CPU Scheduling and Dispatching��
	High-Level Scheduler���������������������������
	Dispatching������������������
	Nonpreemptive Dispatch Algorithms��
	Preemptive Dispatch Algorithms�������������������������������������

	18.6 Memory Management�����������������������������
	Memory Partitioning��������������������������

	18.7 Virtual Storage���������������������������
	Overview���������������
	Pages and Frames�����������������������
	The Concept of Virtual Storage�������������������������������������
	Page Faults������������������
	Working Sets and the Concept of Locality���
	Page Sharing�������������������
	Page Replacement Algorithms����������������������������������
	Thrashing����������������
	Page Table Implementation��������������������������������
	Segmentation�������������������
	Process Separation�������������������������

	18.8 Secondary Storage Scheduling��
	First-Come, First-Served Scheduling��
	Shortest Distance First Scheduling���
	Scan Scheduling����������������������
	n-Step c-Scan Scheduling�������������������������������

	18.9 Network Operating System Services���
	OS Protocol Support and Other Services���

	18.10 Other Operating System Issues��
	Deadlock���������������
	Other Issues�������������������

	18.11 Virtual Machines�����������������������������

	Bibliography�������������������
	Index������������

