Concepts, Techniques, and Models
of Computer Programming

PETER VAN ROY and SEIF HARIDI

Concepts, Techniques, and Models
of Computer Programming

This page intentionally left blank

Concepts, Techniques, and Models
of Computer Programming

by
Peter Van Roy
Seif Haridi

The MIT Press
Cambridge, Massachusetts
London, England

(©2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in IATEX 2¢ by the authors and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Van Roy, Peter.
Concepts, techniques, and models of computer programming / Peter Van Roy, Seif Haridi
p. cm.
Includes bibliographical references and index.
ISBN 0-262-22069-5
1. Computer programming. I. Haridi, Seif. II. Title.

QAT6.6.V36 2004
005.1—dc22 2003065140

Short Contents

II

10

11

12

111

13

Preface
Running the Example Programs

Introduction to Programming Concepts

GENERAL COMPUTATION MODELS
Declarative Computation Model
Declarative Programming Techniques
Declarative Concurrency
Message-Passing Concurrency
Explicit State
Object-Oriented Programming
Shared-State Concurrency

Relational Programming

SPECIALIZED COMPUTATION MODELS

Graphical User Interface Programming
Distributed Programming

Constraint Programming

SEMANTICS

Language Semantics

xiii

xxix

27

29

111

233

345

405

489

569

621

677

679

707

749

7T

779

vl

Short Contents

IV APPENDIXES
A Mozart System Development Environment
B Basic Data Types
C Language Syntax
D General Computation Model
References

Index

813

815

819

833

843

853

863

Table of Contents

1

2

Preface xiii
Running the Example Programs Xxix
Introduction to Programming Concepts 1
1.1 Acalculator 1
1.2 Variables 2
1.3 Functions. 2
1.4 Lists e e e 4
1.5 Functionsover lists 7
1.6 Correctness e 9
1.7 Complexity 10
1.8 Lazyevaluation oo 11
1.9 Higher-order programming 13
1.10 Concurrency v vi i e e e 14
1.11 Dataflow 15
1.12 Explicit state Lo 16
1.13 Objects o . e 17
1.14 Classes v i e e e 18
1.15 Nondeterminism and time 20
1.16 Atomicity 21
1.17 Where do we go from here? L. 22
1.18 Exercises e e e 23

GENERAL COMPUTATION MODELS 27
Declarative Computation Model 29
2.1 Defining practical programming languages 30
2.2 The single-assignment store L. 42
2.3 Kernel language 49
2.4 Kernel language semantics 56
2.5 Memory management 72
2.6 From kernel language to practical language 79
2.7 Exceptions 90

V1L

Contents

2.8
2.9

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
0.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5

Advanced topics
Exercises

Declarative Programming Techniques

What is declarativeness? oL
Iterative computation
Recursive computation
Programming with recursion oL,
Time and space efficiency
Higher-order programming
Abstract data types
Nondeclarativeneeds
Program design in the small
Exerciseso

Declarative Concurrency

The data-driven concurrent model
Basic thread programming techniques
Streams
Using the declarative concurrent model directly
Lazy execution.o Lo
Soft real-time programming
The Haskell language,
Limitations and extensions of declarative programming
Advanced topics
Historical notes o
Exercises

Message-Passing Concurrency

The message-passing concurrent model
Port objects L
Simple message protocols
Program design for concurrency
Lift control system
Using the message-passing model directly
The Erlang language
Advanced topic
Exercises e

Explicit State

State and system building oo
The declarative model with explicit state
Data abstraction L.
Stateful collections

111
114
118
124
127
166
177
195
210
218
230

233
235
246
256
272
278
304
308
313
326
337
338

345
347
350
353
362
365
377
386
394
399

Contents

6.6
6.7
6.8
6.9
6.10

Reasoning with state oo
Program design in the large
Casestudies L
Advanced topics L.
Exercises L

7 Object-Oriented Programming

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Inheritance
Classes as complete data abstractions
Classes as incremental data abstractions
Programming with inheritanceo
Relation to other computation models
Implementing the object system
The Java language (sequential part)
Active objects
Exercises

8 Shared-State Concurrency

8.1
8.2
8.3
8.4
8.5
8.6
8.7

The shared-state concurrent model
Programming with concurrency
Locks e
Monitors
Transactions
The Java language (concurrent part)
Exercises

9 Relational Programming

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

The relational computation model
Further examples
Relation to logic programming
Natural language parsing
A grammar interpreter
Databases
The Prolog language
Exercises e

II SPECIALIZED COMPUTATION MODELS

10 Graphical User Interface Programming

10.1
10.2
10.3
10.4
10.5

The declarative/procedural approach
Using the declarative/procedural approach
The Prototyper interactive learning tool
Casestudies L
Implementing the GUI tool

i

440
450
463
479
482

489
491
492
502
518
537
545
551
556
567

569
o973
973
582
992
600
615
618

621
623
627
631
641
650
654
660
671

677

Contents

10.6 EXercises e e e e e

11 Distributed Programming
11.1 Taxonomy of distributed systems
11.2 The distribution model oL
11.3 Distribution of declarative data
11.4 Distribution of state. o o
11.5 Network awareness
11.6 Common distributed programming patterns
11.7 Distribution protocols oo
11.8 Partial failure
11.9 Security
11.10 Building applications L oL
11.11 Exercises oo oo o e

12 Constraint Programming
12.1 Propagate-and-search oo,
12.2 Programming techniques oL,
12.3 The constraint-based computation model
12.4 Defining and using computation spaces
12.5 Implementing the relational computation model
126 Exerciseso

IIT SEMANTICS

13 Language Semantics
13.1 The general computation model L.
13.2 Declarative concurrencyo
13.3 Eight computation models
13.4 Semantics of common abstractions.
13.5 Historical notes L o
13.6 Exercises e

IV APPENDIXES

A Mozart System Development Environment
A.1 Interactive interface
A.2 Command line interface

B Basic Data Types
B.1 Numbers (integers, floats, and characters)
B.2 Literals (atoms and names)
B.3 Recordsand tuples L.

707
710
712
714
720
723
724
732
739
743
745
746

749
750
755
758
762
772
e

7T

779
780
804
806
808
808
809

813

815
815
817

Contents

B.4 Chunks (limited records)
B.5 Lists
B.6 Strings
B.7 Virtual strings L

Language Syntax

C.1 Interactive statements,
C.2 Statements and expressions.
C.3 Nonterminals for statements and expressions
C.4 Operators
C.h Keywords e
C.6 Lexical syntax
General Computation Model

D.1 Creative extension principle
D.2 Kernel language oo
D.3 Concepts
D.4 Different forms of stateo
D.5 Other concepts

D.6 Layered language design
References

Index

i

833
834
834
836
836
839
839

843
844
845
846
849
850
850

853

863

This page intentionally left blank

Preface

Six blind sages were shown an elephant and met to discuss their experience. “It’s
wonderful,” said the first, “an elephant is like a rope: slender and flexible.” “No,
no, not at all,” said the second, “an elephant is like a tree: sturdily planted on the
ground.” “Marvelous,” said the third, “an elephant is like a wall.” “Incredible,”
said the fourth, “an elephant is a tube filled with water.” “What a strange
piecemeal beast this is,” said the fifth. “Strange indeed,” said the sixth, “but
there must be some underlying harmony. Let us investigate the matter further.”
— Freely adapted from a traditional Indian fable.

A programming language is like a natural, human language in that it favors
certain metaphors, images, and ways of thinking.
— Mindstorms: Children, Computers, and Powerful Ideas, Seymour Papert (1980)

One approach to the study of computer programming is to study programming
languages. But there are a tremendously large number of languages, so large that
it is impractical to study them all. How can we tackle this immensity? We could
pick a small number of languages that are representative of different programming
paradigms. But this gives little insight into programming as a unified discipline.
This book uses another approach.

We focus on programming concepts and the techniques in using them, not on
programming languages. The concepts are organized in terms of computation mod-
els. A computation model is a formal system that defines how computations are
done. There are many ways to define computation models. Since this book is in-
tended to be practical, it is important that the computation model be directly
useful to the programmer. We therefore define it in terms of concepts that are
important to programmers: data types, operations, and a programming language.
The term computation model makes precise the imprecise notion of “programming
paradigm.” The rest of the book talks about computation models and not program-
ming paradigms. Sometimes we use the phrase “programming model.” This refers
to what the programmer needs: the programming techniques and design principles
made possible by the computation model.

Each computation model has its own set of techniques for programming and
reasoning about programs. The number of different computation models that are
known to be useful is much smaller than the number of programming languages.
This book covers many well-known models as well as some less-known models. The
main criterion for presenting a model is whether it is useful in practice.

T

Preface

Each computation model is based on a simple core language called its kernel lan-
guage. The kernel languages are introduced in a progressive way, by adding concepts
one by one. This lets us show the deep relationships between the different models.
Often, adding just one new concept makes a world of difference in programming. For
example, adding destructive assignment (explicit state) to functional programming
allows us to do object-oriented programming.

When should we add a concept to a model and which concept should we add? We
touch on these questions many times. The main criterion is the creative extension
principle. Roughly, a new concept is added when programs become complicated for
technical reasons unrelated to the problem being solved. Adding a concept to the
kernel language can keep programs simple, if the concept is chosen carefully. This is
explained further in appendix D. This principle underlies the progression of kernel
languages presented in the book.

A nice property of the kernel language approach is that it lets us use different
models together in the same program. This is usually called multiparadigm pro-
gramming. It is quite natural, since it means simply to use the right concepts for
the problem, independent of what computation model they originate from. Mul-
tiparadigm programming is an old idea. For example, the designers of Lisp and
Scheme have long advocated a similar view. However, this book applies it in a
much broader and deeper way than has been previously done.

From the vantage point of computation models, the book also sheds new light on
important problems in informatics. We present three such areas, namely graphical
user interface design, robust distributed programming, and constraint program-
ming. We show how the judicious combined use of several computation models can
help solve some of the problems of these areas.

Languages mentioned

We mention many programming languages in the book and relate them to particular
computation models. For example, Java and Smalltalk are based on an object-
oriented model. Haskell and Standard ML are based on a functional model. Prolog
and Mercury are based on a logic model. Not all interesting languages can be so
classified. We mention some other languages for their own merits. For example, Lisp
and Scheme pioneered many of the concepts presented here. Erlang is functional,
inherently concurrent, and supports fault-tolerant distributed programming.

We single out four languages as representatives of important computation models:
Erlang, Haskell, Java, and Prolog. We identify the computation model of each
language in terms of the book’s uniform framework. For more information about
them we refer readers to other books. Because of space limitations, we are not able
to mention all interesting languages. Omission of a language does not imply any
kind of value judgment.

Preface v

Goals of the book
Teaching programming

The main goal of the book is to teach programming as a unified discipline with a
scientific foundation that is useful to the practicing programmer. Let us look closer
at what this means.

What is programming?

We define programming, as a general human activity, to mean the act of extending
or changing a system’s functionality. Programming is a widespread activity that is
done both by nonspecialists (e.g., consumers who change the settings of their alarm
clock or cellular phone) and specialists (computer programmers, the audience for
this book).

This book focuses on the construction of software systems. In that setting, pro-
gramming is the step between the system’s specification and a running program
that implements it. The step consists in designing the program’s architecture and
abstractions and coding them into a programming language. This is a broad view,
perhaps broader than the usual connotation attached to the word “programming.”
It covers both programming “in the small” and “in the large.” It covers both
(language-independent) architectural issues and (language-dependent) coding is-
sues. It is based more on concepts and their use rather than on any one program-
ming language. We find that this general view is natural for teaching programming.
It is unbiased by limitations of any particular language or design methodology.
When used in a specific situation, the general view is adapted to the tools used,
taking into account their abilities and limitations.

Both science and technology

Programming as defined above has two essential parts: a technology and its scientific
foundation. The technology consists of tools, practical techniques, and standards,
allowing us to do programming. The science consists of a broad and deep theory
with predictive power, allowing us to understand programming. Ideally, the science
should explain the technology in a way that is as direct and useful as possible.

If either part is left out, we are no longer doing programming. Without the
technology, we are doing pure mathematics. Without the science, we are doing a
craft, i.e., we lack deep understanding. Teaching programming correctly therefore
means teaching both the technology (current tools) and the science (fundamental
concepts). Knowing the tools prepares the student for the present. Knowing the
concepts prepares the student for future developments.

Ul

Preface

More than a craft

Despite many efforts to introduce a scientific foundation, programming is almost
always taught as a craft. It is usually taught in the context of one (or a few)
programming language(s) (e.g., Java, complemented with Haskell, Scheme, or Pro-
log). The historical accidents of the particular languages chosen are interwoven to-
gether so closely with the fundamental concepts that the two cannot be separated.
There is a confusion between tools and concepts. What’s more, different schools of
thought have developed, based on different ways of viewing programming, called
“paradigms”: object-oriented, logic, functional, etc. Each school of thought has its
own science. The unity of programming as a single discipline has been lost.

Teaching programming in this fashion is like having separate schools of bridge
building: one school teaches how to build wooden bridges and another school teaches
how to build iron bridges. Graduates of either school would implicitly consider the
restriction to wood or iron as fundamental and would not think of using wood and
iron together.

The result is that programs suffer from poor design. We give an example based
on Java, but the problem exists in all languages to some degree. Concurrency in
Java is complex to use and expensive in computational resources. Because of these
difficulties, Java-taught programmers conclude that concurrency is a fundamentally
complex and expensive concept. Program specifications are designed around the
difficulties, often in a contorted way. But these difficulties are not fundamental
at all. There are forms of concurrency that are quite useful and yet as easy to
program with as sequential programs (e.g., stream programming as exemplified by
Unix pipes). Furthermore, it is possible to implement threads, the basic unit of
concurrency, almost as cheaply as procedure calls. If the programmer were taught
about concurrency in the correct way, then he or she would be able to specify
for and program in systems without concurrency restrictions (including improved
versions of Java).

The kernel language approach

Practical programming languages scale up to programs of millions of lines of code.
They provide a rich set of abstractions and syntax. How can we separate the
languages’ fundamental concepts, which underlie their success, from their historical
accidents? The kernel language approach shows one way. In this approach, a
practical language is translated into a kernel language that consists of a small
number of programmer-significant elements. The rich set of abstractions and syntax
is encoded in the kernel language. This gives both programmer and student a
clear insight into what the language does. The kernel language has a simple
formal semantics that allows reasoning about program correctness and complexity.
This gives a solid foundation to the programmer’s intuition and the programming
techniques built on top of it.

A wide variety of languages and programming paradigms can be modeled by a

Preface

TV

small set of closely related kernel languages. It follows that the kernel language
approach is a truly language-independent way to study programming. Since any
given language translates into a kernel language that is a subset of a larger, more
complete kernel language, the underlying unity of programming is regained.

Reducing a complex phenomenon to its primitive elements is characteristic of the
scientific method. It is a successful approach that is used in all the exact sciences.
It gives a deep understanding that has predictive power. For example, structural
science lets one design all bridges (whether made of wood, iron, both, or anything
else) and predict their behavior in terms of simple concepts such as force, energy,
stress, and strain, and the laws they obey [70].

Comparison with other approaches

Let us compare the kernel language approach with three other ways to give
programming a broad scientific basis:

® A foundational calculus, like the A calculus or 7 calculus, reduces programming to
a minimal number of elements. The elements are chosen to simplify mathematical
analysis, not to aid programmer intuition. This helps theoreticians, but is not
particularly useful to practicing programmers. Foundational calculi are useful for
studying the fundamental properties and limits of programming a computer, not
for writing or reasoning about general applications.

® A virtual machine defines a language in terms of an implementation on an ideal-
ized machine. A virtual machine gives a kind of operational semantics, with concepts
that are close to hardware. This is useful for designing computers, implementing
languages, or doing simulations. It is not useful for reasoning about programs and
their abstractions.

®» A multiparadigm language is a language that encompasses several programming
paradigms. For example, Scheme is both functional and imperative [43], and Leda
has elements that are functional, object-oriented, and logical [31]. The usefulness
of a multiparadigm language depends on how well the different paradigms are
integrated.

The kernel language approach combines features of all these approaches. A well-
designed kernel language covers a wide range of concepts, like a well-designed
multiparadigm language. If the concepts are independent, then the kernel language
can be given a simple formal semantics, like a foundational calculus. Finally, the
formal semantics can be a virtual machine at a high level of abstraction. This makes
it easy for programmers to reason about programs.

Designing abstractions

The second goal of the book is to teach how to design programming abstractions.
The most difficult work of programmers, and also the most rewarding, is not writing

TV

Preface

programs but rather designing abstractions. Programming a computer is primarily
designing and using abstractions to achieve new goals. We define an abstraction
loosely as a tool or device that solves a particular problem. Usually the same
abstraction can be used to solve many different problems. This versatility is one of
the key properties of abstractions.

Abstractions are so deeply part of our daily life that we often forget about
them. Some typical abstractions are books, chairs, screwdrivers, and automobiles.!
Abstractions can be classified into a hierarchy depending on how specialized they
are (e.g., “pencil” is more specialized than “writing instrument,” but both are
abstractions).

Abstractions are particularly numerous inside computer systems. Modern com-
puters are highly complex systems consisting of hardware, operating system, mid-
dleware, and application layers, each of which is based on the work of thousands
of people over several decades. They contain an enormous number of abstractions,
working together in a highly organized manner.

Designing abstractions is not always easy. It can be a long and painful process,
as different approaches are tried, discarded, and improved. But the rewards are
very great. It is not too much of an exaggeration to say that civilization is built on
successful abstractions [153]. New ones are being designed every day. Some ancient
ones, like the wheel and the arch, are still with us. Some modern ones, like the
cellular phone, quickly become part of our daily life.

We use the following approach to achieve the second goal. We start with program-
ming concepts, which are the raw materials for building abstractions. We introduce
most of the relevant concepts known today, in particular lexical scoping, higher-
order programming, compositionality, encapsulation, concurrency, exceptions, lazy
execution, security, explicit state, inheritance, and nondeterministic choice. For each
concept, we give techniques for building abstractions with it. We give many exam-
ples of sequential, concurrent, and distributed abstractions. We give some general
laws for building abstractions. Many of these general laws have counterparts in
other applied sciences, so that books like [63], [70], and [80] can be an inspiration
to programmers.

Main features

Pedagogical approach

There are two complementary approaches to teaching programming as a rigorous
discipline:

®» The computation-based approach presents programming as a way to define

1. Also, pencils, nuts and bolts, wires, transistors, corporations, songs, and differential
equations. They do not have to be material entities!

Preface

T

executions on machines. It grounds the student’s intuition in the real world by
means of actual executions on real systems. This is especially effective with an
interactive system: the student can create program fragments and immediately see
what they do. Reducing the time between thinking “what if” and seeing the result
is an enormous aid to understanding. Precision is not sacrificed, since the formal
semantics of a program can be given in terms of an abstract machine.

® The logic-based approach presents programming as a branch of mathematical
logic. Logic does not speak of execution but of program properties, which is a
higher level of abstraction. Programs are mathematical constructions that obey
logical laws. The formal semantics of a program is given in terms of a mathematical
logic. Reasoning is done with logical assertions. The logic-based approach is harder
for students to grasp yet it is essential for defining precise specifications of what
programs do.

Like Structure and Interpretation of Computer Programs [1, 2], our book mostly
uses the computation-based approach. Concepts are illustrated with program frag-
ments that can be run interactively on an accompanying software package, the
Mozart Programming System [148]. Programs are constructed with a building-block
approach, using lower-level abstractions to build higher-level ones. A small amount
of logical reasoning is introduced in later chapters, e.g., for defining specifications
and for using invariants to reason about programs with state.

Formalism used

This book uses a single formalism for presenting all computation models and
programs, namely the Oz language and its computation model. To be precise, the
computation models of the book are all carefully chosen subsets of Oz. Why did we
choose Oz? The main reason is that it supports the kernel language approach well.
Another reason is the existence of the Mozart Programming System.

Panorama of computation models

This book presents a broad overview of many of the most useful computation
models. The models are designed not just with formal simplicity in mind (although
it is important), but on the basis of how a programmer can express himself or
herself and reason within the model. There are many different practical computation
models, with different levels of expressiveness, different programming techniques,
and different ways of reasoning about them. We find that each model has its domain
of application. This book explains many of these models, how they are related, how
to program in them, and how to combine them to greatest advantage.

I

Preface

More is not better (or worse), just different

All computation models have their place. It is not true that models with more
concepts are better or worse. This is because a new concept is like a two-edged
sword. Adding a concept to a computation model introduces new forms of expres-
sion, making some programs simpler, but it also makes reasoning about programs
harder. For example, by adding explicit state (mutable variables) to a functional
programming model we can express the full range of object-oriented programming
techniques. However, reasoning about object-oriented programs is harder than rea-
soning about functional programs. Functional programming is about calculating
values with mathematical functions. Neither the values nor the functions change
over time. Explicit state is one way to model things that change over time: it pro-
vides a container whose content can be updated. The very power of this concept
makes it harder to reason about.

The importance of using models together

Each computation model was originally designed to be used in isolation. It might
therefore seem like an aberration to use several of them together in the same
program. We find that this is not at all the case. This is because models are not just
monolithic blocks with nothing in common. On the contrary, they have much in
common. For example, the differences between declarative and imperative models
(and between concurrent and sequential models) are very small compared to what
they have in common. Because of this, it is easy to use several models together.

But even though it is technically possible, why would one want to use several
models in the same program? The deep answer to this question is simple: because
one does not program with models, but with programming concepts and ways to
combine them. Depending on which concepts one uses, it is possible to consider
that one is programming in a particular model. The model appears as a kind
of epiphenomenon. Certain things become easy, other things become harder, and
reasoning about the program is done in a particular way. It is quite natural for a
well-written program to use different models. At this early point this answer may
seem cryptic. It will become clear later in the book.

An important principle we will see in the book is that concepts traditionally
associated with one model can be used to great effect in more general models.
For example, the concepts of lexical scoping and higher-order programming, which
are usually associated with functional programming, are useful in all models. This
is well-known in the functional programming community. Functional languages
have long been extended with explicit state (e.g., Scheme [43] and Standard
ML [145, 213]) and more recently with concurrency (e.g., Concurrent ML [176]
and Concurrent Haskell [167, 165]).

Preface)

The limits of single models

We find that a good programming style requires using programming concepts
that are usually associated with different computation models. Languages that
implement just one computation model make this difficult:

® Object-oriented languages encourage the overuse of state and inheritance. Ob-
jects are stateful by default. While this seems simple and intuitive, it actually
complicates programming, e.g., it makes concurrency difficult (see section 8.2).
Design patterns, which define a common terminology for describing good program-
ming techniques, are usually explained in terms of inheritance [66]. In many cases,
simpler higher-order programming techniques would suffice (see section 7.4.7). In
addition, inheritance is often misused. For example, object-oriented graphical user
interfaces often recommend using inheritance to extend generic widget classes with
application-specific functionality (e.g., in the Swing components for Java). This is
counter to separation of concerns.

® Functional languages encourage the overuse of higher-order programming. Typical
examples are monads and currying. Monads are used to encode state by threading it
throughout the program. This makes programs more intricate but does not achieve
the modularity properties of true explicit state (see section 4.8). Currying lets you
apply a function partially by giving only some of its arguments. This returns a new
function that expects the remaining arguments. The function body will not execute
until all arguments are there. The flip side is that it is not clear by inspection
whether a function has all its arguments or is still curried (“waiting” for the rest).

= Logic languages in the Prolog tradition encourage the overuse of Horn clause
syntax and search. These languages define all programs as collections of Horn
clauses, which resemble simple logical axioms in an “if-then” style. Many algorithms
are obfuscated when written in this style. Backtracking-based search must always
be used even though it is almost never needed (see [217]).

These examples are to some extent subjective; it is difficult to be completely
objective regarding good programming style and language expressiveness. Therefore
they should not be read as passing any judgment on these models. Rather, they are
hints that none of these models is a panacea when used alone. Each model is well-
adapted to some problems but less to others. This book tries to present a balanced
approach, sometimes using a single model in isolation but not shying away from
using several models together when it is appropriate.

Teaching from the book

We explain how the book fits in an informatics curriculum and what courses
can be taught with it. By informatics we mean the whole field of information
technology, including computer science, computer engineering, and information

Xl

Preface

systems. Informatics is sometimes called computing.
Role in informatics curriculum

Let us consider the discipline of programming independent of any other domain in
informatics. In our experience, it divides naturally into three core topics:

1. Concepts and techniques
2. Algorithms and data structures

3. Program design and software engineering

The book gives a thorough treatment of topic (1) and an introduction to (2) and
(3). In which order should the topics be given? There is a strong interdependency
between (1) and (3). Experience shows that program design should be taught early
on, so that students avoid bad habits. However, this is only part of the story since
students need to know about concepts to express their designs. Parnas has used an
approach that starts with topic (3) and uses an imperative computation model [161].
Because this book uses many computation models, we recommend using it to teach
(1) and (3) concurrently, introducing new concepts and design principles together.
In the informatics program at the Université catholique de Louvain at Louvain-
la-Neuve, Belgium (UCL), we attribute eight semester-hours to each topic. This
includes lectures and lab sessions. Together the three topics make up one sixth of
the full informatics curriculum for licentiate and engineering degrees.

There is another point we would like to make, which concerns how to teach
concurrent programming. In a traditional informatics curriculum, concurrency is
taught by extending a stateful model, just as chapter 8 extends chapter 6. This
is rightly considered to be complex and difficult to program with. There are
other, simpler forms of concurrent programming. The declarative concurrency of
chapter 4 is much simpler to program with and can often be used in place of stateful
concurrency (see the epigraph that starts chapter 4). Stream concurrency, a simple
form of declarative concurrency, has been taught in first-year courses at MIT and
other institutions. Another simple form of concurrency, message passing between
threads, is explained in chapter 5. We suggest that both declarative concurrency
and message-passing concurrency be part of the standard curriculum and be taught
before stateful concurrency.

Courses

We have used the book as a textbook for several courses ranging from second-
year undergraduate to graduate courses [175, 220, 221]. In its present form, the
book is not intended as a first programming course, but the approach could likely
be adapted for such a course.? Students should have some basic programming

2. We will gladly help anyone willing to tackle this adaptation.

Preface

TXIL

experience (e.g., a practical introduction to programming and knowledge of simple
data structures such as sequences, sets, and stacks) and some basic mathematical
knowledge (e.g., a first course on analysis, discrete mathematics, or algebra). The
book has enough material for at least four semester-hours worth of lectures and as
many lab sessions. Some of the possible courses are:

® An undergraduate course on programming concepts and techniques. Chapter 1
gives a light introduction. The course continues with chapters 2 through 8. Depend-
ing on the desired depth of coverage, more or less emphasis can be put on algorithms
(to teach algorithms along with programming), concurrency (which can be left out
completely, if so desired), or formal semantics (to make intuitions precise).

® An undergraduate course on applied programming models. This includes rela-
tional programming (chapter 9), specific programming languages (especially Erlang,
Haskell, Java, and Prolog), graphical user interface programming (chapter 10), dis-
tributed programming (chapter 11), and constraint programming (chapter 12). This
course is a natural sequel to the previous one.

= An undergraduate course on concurrent and distributed programming (chap-
ters 4, 5, 8, and 11). Students should have some programming experience. The
course can start with small parts of chapters 2, 3, 6, and 7 to introduce declarative
and stateful programming.

m A graduate course on computation models (the whole book, including the seman-
tics in chapter 13). The course can concentrate on the relationships between the
models and on their semantics.

The book’s Web site has more information on courses, including transparencies
and lab assignments for some of them. The Web site has an animated interpreter
that shows how the kernel languages execute according to the abstract machine
semantics. The book can be used as a complement to other courses:

® Part of an undergraduate course on constraint programming (chapters 4, 9,
and 12).

m Part of a graduate course on intelligent collaborative applications (parts of the
whole book, with emphasis on part II). If desired, the book can be complemented
by texts on artificial intelligence (e.g., [179]) or multi-agent systems (e.g., [226]).

= Part of an undergraduate course on semantics. All the models are formally defined
in the chapters that introduce them, and this semantics is sharpened in chapter 13.
This gives a real-sized case study of how to define the semantics of a complete
modern programming language.

The book, while it has a solid theoretical underpinning, is intended to give a
practical education in these subjects. Each chapter has many program fragments, all
of which can be executed on the Mozart system (see below). With these fragments,
course lectures can have live interactive demonstrations of the concepts. We find
that students very much appreciate this style of lecture.

TTIV

Preface

Each chapter ends with a set of exercises that usually involve some programming.
They can be solved on the Mozart system. To best learn the material in the chapter,
we encourage students to do as many exercises as possible. Exercises marked
(advanced exercise) can take from several days up to several weeks. Exercises
marked (research project) are open-ended and can result in significant research
contributions.

Software

A useful feature of the book is that all program fragments can be run on a software
platform, the Mozart Programming System. Mozart is a full-featured production-
quality programming system that comes with an interactive incremental devel-
opment environment and a full set of tools. It compiles to an efficient platform-
independent bytecode that runs on many varieties of Unix and Windows, and on
Mac OS X. Distributed programs can be spread out over all these systems. The
Mozart Web site, http://www.mozart-oz.org, has complete information, includ-
ing downloadable binaries, documentation, scientific publications, source code, and
mailing lists.

The Mozart system implements efficiently all the computation models covered
in the book. This makes it ideal for using models together in the same program
and for comparing models by writing programs to solve a problem in different
models. Because each model is implemented efficiently, whole programs can be
written in just one model. Other models can be brought in later, if needed, in a
pedagogically justified way. For example, programs can be completely written in an
object-oriented style, complemented by small declarative components where they
are most useful.

The Mozart system is the result of a long-term development effort by the
Mozart Consortium, an informal research and development collaboration of three
laboratories. It has been under continuing development since 1991. The system is
released with full source code under an Open Source license agreement. The first
public release was in 1995. The first public release with distribution support was
in 1999. The book is based on an ideal implementation that is close to Mozart
version 1.3.0, released in 2003. The differences between the ideal implementation
and Mozart are listed on the book’s Web site.

History and acknowledgments

The ideas in this book did not come easily. They came after more than a decade
of discussion, programming, evaluation, throwing out the bad, and bringing in
the good and convincing others that it is good. Many people contributed ideas,
implementations, tools, and applications. We are lucky to have had a coherent
vision among our colleagues for such a long period. Thanks to this, we have been
able to make progress.

Preface

Trv

Our main research vehicle and “test bed” of new ideas is the Mozart system, which
implements the Oz language. The system’s main designers and developers are (in
alphabetical order) Per Brand, Thorsten Brunklaus, Denys Duchier, Kevin Glynn,
Donatien Grolaux, Seif Haridi, Dragan Havelka, Martin Henz, Erik Klintskog,
Leif Kornstaedt, Michael Mehl, Martin Miiller, Tobias Miiller, Anna Neiderud,
Konstantin Popov, Ralf Scheidhauer, Christian Schulte, Gert Smolka, Peter Van
Roy, and Jérg Wiirtz. Other important contributors are (in alphabetical order)
Ilies Alouini, Raphaél Collet, Frej Drejhammer, Sameh El-Ansary, Nils Franzén,
Martin Homik, Simon Lindblom, Benjamin Lorenz, Valentin Mesaros, and Andreas
Simon. We thank Konstantin Popov and Kevin Glynn for managing the release of
Mozart version 1.3.0, which is designed to accompany the book.

We would also like to thank the following researchers and indirect contribu-
tors: Hassan Ait-Kaci, Joe Armstrong, Joachim Durchholz, Andreas Franke, Claire
Gardent, Fredrik Holmgren, Sverker Janson, Torbjérn Lager, Elie Milgrom, Jo-
han Montelius, Al-Metwally Mostafa, Joachim Niehren, Luc Onana, Marc-Antoine
Parent, Dave Parnas, Mathias Picker, Andreas Podelski, Christophe Ponsard, Mah-
moud Rafea, Juris Reinfelds, Thomas Sjéland, Fred Spiessens, Joe Turner, and Jean
Vanderdonckt.

We give special thanks to the following people for their help with material
related to the book. Raphaél Collet for co-authoring chapters 12 and 13, for his
work on the practical part of LINF1251, a course taught at UCL, and for his
help with the BTEX2¢ formatting. Donatien Grolaux for three graphical user
interface case studies (used in sections 10.4.2-10.4.4). Kevin Glynn for writing
the Haskell introduction (section 4.7). William Cook for his comments on data
abstraction. Frej Drejhammar, Sameh El-Ansary, and Dragan Havelka for their
help with the practical part of Datalogill, a course taught at KTH (the Royal
Institute of Technology, Stockholm). Christian Schulte for completely rethinking
and redeveloping a subsequent edition of Datalogill and for his comments on a
draft of the book. Ali Ghodsi, Johan Montelius, and the other three assistants
for their help with the practical part of this edition. Luis Quesada and Kevin
Glynn for their work on the practical part of INGI2131, a course taught at UCL.
Bruno Carton, Raphaél Collet, Kevin Glynn, Donatien Grolaux, Stefano Gualandi,
Valentin Mesaros, Al-Metwally Mostafa, Luis Quesada, and Fred Spiessens for their
efforts in proofreading and testing the example programs. We thank other people
too numerous to mention for their comments on the book. Finally, we thank the
members of the Department of Computing Science and Engineering at UCL, SICS
(the Swedish Institute of Computer Science, Stockholm), and the Department of
Microelectronics and Information Technology at KTH. We apologize to anyone we
may have inadvertently omitted.

How did we manage to keep the result so simple with such a large crowd of
developers working together? No miracle, but the consequence of a strong vision and
a carefully crafted design methodology that took more than a decade to create and

XVl

Preface

polish.3 Around 1990, some of us came together with already strong system-building
and theoretical backgrounds. These people initiated the ACCLAIM project, funded
by the European Union (1991-1994). For some reason, this project became a focal
point. Three important milestones among many were the papers by Sverker Janson
and Seif Haridi in 1991 [105] (multiple paradigms in the Andorra Kernel Language
AKL), by Gert Smolka in 1995 [199] (building abstractions in Oz), and by Seif Haridi
et al. in 1998 [83] (dependable open distribution in Oz). The first paper on Oz was
published in 1993 and already had many important ideas [89]. After ACCLAIM,
two laboratories continued working together on the Oz ideas: the Programming
Systems Lab (DFKI, Saarland University, and Collaborative Research Center SFB
378) at Saarbriicken, Germany, and the Intelligent Systems Laboratory at SICS.

The Oz language was originally designed by Gert Smolka and his students in the
Programming Systems Lab [85, 89, 90, 190, 192, 198, 199]. The well-factorized
design of the language and the high quality of its implementation are due in
large part to Smolka’s inspired leadership and his lab’s system-building expertise.
Among the developers, we mention Christian Schulte for his role in coordinating
general development, Denys Duchier for his active support of users, and Per Brand
for his role in coordinating development of the distributed implementation. In
1996, the German and Swedish labs were joined by the Department of Computing
Science and Engineering at UCL when the first author moved there. Together
the three laboratories formed the Mozart Consortium with its neutral Web site
http://www.mozart-oz.org so that the work would not be tied down to a single
institution.

This book was written using IMTEX 2¢, flex, xfig, xv, vi/vim, emacs, and Mozart,
first on a Dell Latitude with Red Hat Linux and KDE, and then on an Apple
Macintosh PowerBook G4 with Mac OS X and X11. The screenshots were taken on
a Sun workstation running Solaris. The first author thanks the Walloon Region of
Belgium for their generous support of the Oz/Mozart work at UCL in the PIRATES
and MILOS projects.

Final comments

We have tried to make this book useful both as a textbook and as a reference. It is
up to you to judge how well it succeeds in this. Because of its size, it is likely that
some errors remain. If you find any, we would appreciate hearing from you. Please
send them and all other constructive comments you may have to the following
address:

3. We can summarize the methodology in two rules (see [217] for more information).
First, a new abstraction must either simplify the system or greatly increase its expressive
power. Second, a new abstraction must have both an efficient implementation and a simple
formalization.

Preface

TV

Concepts, Techniques, and Models of Computer Programming
Department of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

As a final word, we would like to thank our families and friends for their support
and encouragement during the four years it took us to write this book. Seif Haridi
would like to give a special thanks to his parents Ali and Amina and to his family
Eeva, Rebecca, and Alexander. Peter Van Roy would like to give a special thanks
to his parents Frans and Hendrika and to his family Marie-Thérese, Johan, and
Lucile.

Louvain-la-Neuve, Belgium PETER VAN ROY
Kista, Sweden SEIF HARIDI
September 2003

This page intentionally left blank

Running the Example Programs

This book gives many example programs and program fragments, All of these can
be run on the Mozart Programming System. To make this as easy as possible, please
keep the following points in mind:

® The Mozart system can be downloaded without charge from the Mozart Con-
sortium Web site http://www.mozart-oz.org. Releases exist for various flavors of
Windows and Unix and for Mac OS X.

m All examples, except those intended for standalone applications, can be run in
Mozart’s interactive development environment. Appendix A gives an introduction
to this environment.

m New variables in the interactive examples must be declared with the declare
statement. The examples of chapter 1 show how to do this. Forgetting these
declarations can result in strange errors if older versions of the variables exist.
Starting with chapter 2 and for all following chapters, the declare statement is
omitted in the text when it is obvious what the new variables are. It should be
added to run the examples.

® Some chapters use operations that are not part of the standard Mozart release.
The source code for these additional operations (along with much other useful
material) is given on the book’s Web site. We recommend putting these definitions
in your .ozrc file, so they will be loaded automatically when the system starts up.

= The book occasionally gives screenshots and timing measurements of programs.
The screenshots were taken on a Sun workstation running Solaris and the timing
measurements were done on Mozart 1.1.0 under Red Hat Linux release 6.1 on a Dell
Latitude CPx notebook computer with Pentium IIT processor at 500 MHz, unless
otherwise indicated. Screenshot appearance and timing numbers may vary on your
system.

= The book assumes an ideal implementation whose semantics is given in chapter 13
(general computation model) and chapter 12 (computation spaces). There are a
few differences between this ideal implementation and the Mozart system. They
are explained on the book’s Web site.

This page intentionally left blank

1 Introduction to Programming Concepts

There is no royal road to geometry.
— Euclid’s reply to Ptolemy, Euclid (fI. ¢. 300 B.C.)

Just follow the yellow brick road.
— The Wonderful Wizard of Oz, L. Frank Baum (1856-1919)

Programming is telling a computer how it should do its job. This chapter gives a
gentle, hands-on introduction to many of the most important concepts in program-
ming. We assume you have had some previous exposure to computers. We use the
interactive interface of Mozart to introduce programming concepts in a progressive
way. We encourage you to try the examples in this chapter on a running Mozart
system.

This introduction only scratches the surface of the programming concepts we will
see in this book. Later chapters give a deep understanding of these concepts and
add many other concepts and techniques.

1.1 A calculator

Let us start by using the system to do calculations. Start the Mozart system by
typing:
0z

or by double-clicking a Mozart icon. This opens an editor window with two frames.
In the top frame, type the following line:

{Browse 9999*9999}

Use the mouse to select this line. Now go to the 0z menu and select Feed Region.
This feeds the selected text to the system. The system then does the calculation
9999%9999 and displays the result, 99980001, in a special window called the
browser. The curly braces { ... } are used for a procedure or function call. Browse
is a procedure with one argument, which is called as {Browse X}. This opens the
browser window, if it is not already open, and displays X in it.

Introduction to Programming Concepts

1.2 Variables

While working with the calculator, we would like to remember an old result, so that
we can use it later without retyping it. We can do this by declaring a variable:
declare
V=9999*9999

This declares v and binds it to 99980001. We can use this variable later on:
{Browse v*V}

This displays the answer 9996000599960001. Variables are just shortcuts for
values. They cannot be assigned more than once. But you can declare another
variable with the same name as a previous one. The previous variable then becomes
inaccessible. Previous calculations that used it are not changed. This is because
there are two concepts hiding behind the word “variable”:

® The identifier. This is what you type in. Variables start with a capital letter
and can be followed by any number of letters or digits. For example, the character
sequence Varl can be a variable identifier.

® The store variable. This is what the system uses to calculate with. It is part of
the system’s memory, which we call its store.

The declare statement creates a new store variable and makes the variable
identifier refer to it. Previous calculations using the same identifier are not changed
because the identifier refers to another store variable.

1.3 Functions

Let us do a more involved calculation. Assume we want to calculate the factorial
function n!, which is defined as 1 x 2 x -+ x (n — 1) x n. This gives the number of
permutations of n items, i.e., the number of different ways these items can be put
in a row. Factorial of 10 is:

{Browse 1*2*3%4*x5%x6*x7%x8%x9%10}

This displays 3628800. What if we want to calculate the factorial of 1007 We would
like the system to do the tedious work of typing in all the integers from 1 to 100.
We will do more: we will tell the system how to calculate the factorial of any n. We
do this by defining a function:

declare

fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end

The declare statement creates the new variable Fact. The fun statement defines
a function. The variable Fact is bound to the function. The function has one

1.8 Functions

argument N, which is a local variable, i.e., it is known only inside the function
body. Each time we call the function a new local variable is created.

Recursion

The function body is an instruction called an if expression. When the function is
called, then the if expression does the following steps:

® Tt first checks whether N is equal to 0 by doing the test N==0.

® f the test succeeds, then the expression after the then is calculated. This just
returns the number 1. This is because the factorial of 0 is 1.

m [f the test fails, then the expression after the else is calculated. That is, if N is
not 0, then the expression N* {Fact N-1} is calculated. This expression uses Fact,
the very function we are defining! This is called recursion. It is perfectly normal
and no cause for alarm.

Fact uses the following mathematical definition of factorial:
0l=1
nl=nxn-1!if n>0

This definition is recursive because the factorial of N is N times the factorial of N-1.
Let us try out the function Fact:

{Browse {Fact 10}}

This should display 3628800 as before. This gives us confidence that Fact is doing
the right calculation. Let us try a bigger input:

{Browse {Fact 100}}

This will display a huge number (which we show in groups of five digits to improve
readability):

933 26215
44394 41526 81699 23885 62667 00490 71596 82643 81621 46859
29638 95217 59999 32299 15608 94146 39761 56518 28625 36979
20827 22375 82511 85210 91686 40000 00000 00000 00000 00000

This is an example of arbitrary precision arithmetic, sometimes called “infinite
precision,” although it is not infinite. The precision is limited by how much memory
your system has. A typical low-cost personal computer with 256 MB of memory
can handle hundreds of thousands of digits. The skeptical reader will ask: is this
huge number really the factorial of 1007 How can we tell? Doing the calculation by
hand would take a long time and probably be incorrect. We will see later on how
to gain confidence that the system is doing the right thing.

4 Introduction to Programming Concepts

Combinations
Let us write a function to calculate the number of combinations of k items taken
from n. This is equal to the number of subsets of size k that can be made from a set
of size n. This is written (Z) in mathematical notation and pronounced “n choose
k.” It can be defined as follows using the factorial:

k k! (n—k)!
which leads naturally to the following function:

declare

fun {Comb N K}

{Fact N} div ({Fact K}*{Fact N-K})

end
For example, {Comb 10 3} is 120, which is the number of ways that 3 items can be
taken from 10. This is not the most efficient way to write Comb, but it is probably
the simplest.
Functional abstraction
The definition of Comb uses the existing function Fact in its definition. It is always
possible to use existing functions when defining new functions. Using functions
to build abstractions is called functional abstraction. In this way, programs are
like onions, with layers upon layers of functions calling functions. This style of
programming is covered in chapter 3.

1.4 Lists

Now we can calculate functions of integers. But an integer is really not very much
to look at. Say we want to calculate with lots of integers. For example, we would
like to calculate Pascal’s trianglelz

1. Pascal’s triangle is a key concept in combinatorics. The elements of the nth row are

the combinations (Z), where k ranges from 0 to n. This is closely related to the binomial

theorem, which states (z +y)" = 7 _, (7)z"y" " for integer n > 0.

1.4 Lists

L = [5 6 7 8] L.1 =5
L = | L.2 = [6 7 8]
EEN
5 | L.2 = |
6 | 6 |
7 | 7 |
8 nil 8 nil

Figure 1.1: Taking apart the list [5 6 7 8].

This triangle is named after scientist and philosopher Blaise Pascal. It starts with
1 in the first row. Each element is the sum of the two elements just above it to
the left and right. (If there is no element, as on the edges, then zero is taken.) We
would like to define one function that calculates the whole nth row in one swoop.
The nth row has n integers in it. We can do it by using lists of integers.

A list is just a sequence of elements, bracketed at the left and right, like [5 6 7
8]. For historical reasons, the empty list is written nil (and not []). Lists can be
displayed just like numbers:

{Browse [5 6 7 8]}

The notation [5 6 7 8] is a shortcut. A list is actually a chain of links, where each
link contains two things: one list element and a reference to the rest of the chain.
Lists are always created one element at a time, starting with nil and adding links
one by one. A new link is written H|T, where H is the new element and T is the
old part of the chain. Let us build a list. We start with z=nil. We add a first link
Y=7]|2 and then a second link X=6 |Y. Now X references a list with two links, a list
that can also be written as [6 7].

The link H|T is often called a cons, a term that comes from Lisp.2 We also call
it a list pair. Creating a new link is called consing. If T is a list, then consing # and
T together makes a new list H|T:

2. Much list terminology was introduced with the Lisp language in the late 1950s and has
stuck ever since [137]. Our use of the vertical bar comes from Prolog, a logic programming
language that was invented in the early 1970s [45, 201]. Lisp itself writes the cons as (H
. T), which it calls a dotted pair.

Introduction to Programming Concepts

1 First row
1 1 Second row
1 2 1 Third row
0) 1 3 3 1 0) Fourth row
\ N /\ N /\ N /\ N /\ N /
1 4 6 4 1 Fifth row

Figure 1.2: Calculating the fifth row of Pascal’s triangle.

declare

H=5

T=[6 7 8]

{Browse H|T}
The list H| T can be written [5 6 7 8]. It has head 5 and tail [6 7 8]. The cons
H|T can be taken apart, to get back the head and tail:

declare

L=[5 6 7 8]

{Browse L.1}

{Browse L.2}

W

This uses the dot operator “.”, which is used to select the first or second argument
of a list pair. Doing L. 1 gives the head of L, the integer 5. Doing L. 2 gives the tail
of L, the list [6 7 8]. Figure 1.1 gives a picture: L is a chain in which each link
has one list element and nil marks the end. Doing L.1 gets the first element and
doing L.2 gets the rest of the chain.

Pattern matching

A more compact way to take apart a list is by using the case instruction, which
gets both head and tail in one step:

declare

L=[5 6 7 8]

case L of H|T then {Browse H} {Browse T} end
This displays 5 and [6 7 8], just like before. The case instruction declares two
local variables, H and T, and binds them to the head and tail of the list L. We say
the case instruction does pattern matching, because it decomposes L according
to the “pattern” H|T. Local variables declared with a case are just like variables
declared with declare, except that the variable exists only in the body of the case
statement, i.e., between the then and the end.

1.5 Functions over lists

1.5

Functions over lists

Now that we can calculate with lists, let us define a function, {Pascal N}, to
calculate the nth row of Pascal’s triangle. Let us first understand how to do the
calculation by hand. Figure 1.2 shows how to calculate the fifth row from the fourth.
Let us see how this works if each row is a list of integers. To calculate a row, we
start from the previous row. We shift it left by one position and shift it right by one
position. We then add the two shifted rows together. For example, take the fourth
row:

[t 3 3 1]

We shift this row left and right and then add them together element by element:

[1 3 3 1 0]
+ [0 1 3 3 1]
Note that shifting left adds a zero to the right and shifting right adds a zero to the
left. Doing the addition gives

[t 4 6 4 1]

which is the fifth row.
The main function

Now that we understand how to solve the problem, we can write a function to do
the same operations. Here it is:
declare Pascal AddList ShiftLeft ShiftRight
fun {Pascal N}
if N==1 then [1]
else
{addList {ShiftLeft {Pascal N-1}} {ShiftRight {Pascal N-1}}}
end
end
In addition to defining Pascal, we declare the variables for the three auxiliary
functions that remain to be defined.

The auxiliary functions
To solve the problem completely, we still have to define three functions: shiftLeft,

which shifts left by one position, ShiftRight, which shifts right by one position,
and AddList, which adds two lists. Here are shiftLeft and ShiftRight:

Introduction to Programming Concepts

fun {ShiftLeft L}
case L of H|T then
H|{ShiftLeft T}
else [0] end
end

fun {ShiftRight L} 0|L end

ShiftRight just adds a zero to the left. ShiftLeft traverses L one element at a
time and builds the output one element at a time. We have added an else to the
case instruction. This is similar to an else in an if: it is executed if the pattern
of the case does not match. That is, when L is empty, then the output is [0], i.e.,
a list with just zero inside.

Here is AddList:

fun {AddList L1 L2}

case L1 of H1|Tl then
case L2 of H2|T2 then
H1+H2 | {AddList T1 T2}
end
else nil end

end
This is the most complicated function we have seen so far. It uses two case
instructions, one inside another, because we have to take apart two lists, L1 and
L2. Now we have the complete definition of Pascal. We can calculate any row of
Pascal’s triangle. For example, calling {Pascal 20} returns the 20th row:

[1 19 171 969 3876 11628 27132 50388 75582 92378

92378 75582 50388 27132 11628 3876 969 171 19 1]

Is this answer correct? How can we tell? It looks right: it is symmetric (reversing
the list gives the same list) and the first and second arguments are 1 and 19, which
are right. Looking at figure 1.2, it is easy to see that the second element of the
nth row is always n — 1 (it is always one more than the previous row and it starts
out zero for the first row). In the next section, we will see how to reason about
correctness.

Top-down software development

Let us summarize the methodology we used to write Pascal:

® The first step is to understand how to do the calculation by hand.

® The second step is to write a main function to solve the problem, assuming that
some auxiliary functions are known (here, ShiftLeft, ShiftRight, and AddList).

® The third step is to complete the solution by writing the auxiliary functions.
The methodology of first writing the main function and filling in the blanks

afterward is known as top-down software development. It is one of the best known
approaches to program design, but it gives only part of the story as we shall see.

1.6 Correctness

1.6 Correctness

A program is correct if it does what we would like it to do. How can we tell whether
a program is correct? Usually it is impossible to duplicate the program’s calculation
by hand. We need other ways. One simple way, which we used before, is to verify
that the program is correct for outputs that we know. This increases confidence in
the program. But it does not go very far. To prove correctness in general, we have
to reason about the program. This means three things:

® We need a mathematical model of the operations of the programming language,
defining what they should do. This model is called the language’s semantics.

= We need to define what we would like the program to do. Usually, this is a
mathematical definition of the inputs that the program needs and the output that
it calculates. This is called the program’s specification.

= We use mathematical techniques to reason about the program, using the seman-
tics. We would like to demonstrate that the program satisfies the specification.

A program that is proved correct can still give incorrect results, if the system on
which it runs is incorrectly implemented. How can we be confident that the system
satisfies the semantics? Verifying this is a major undertaking: it means verifying
the compiler, the run-time system, the operating system, the hardware, and the
physics upon which the hardware is based! These are all important tasks, but they
are beyond the scope of the book. We place our trust in the Mozart developers,

software companies, hardware manufacturers, and physicists.3

Mathematical induction

One very useful technique is mathematical induction. This proceeds in two steps.
We first show that the program is correct for the simplest case. Then we show that,
if the program is correct for a given case, then it is correct for the next case. If we
can be sure that all cases are eventually covered, then mathematical induction lets
us conclude that the program is always correct. This technique can be applied for
integers and lists:

® For integers, the simplest case is 0 and for a given integer n the next case is n+ 1.

® For lists, the simplest case is nil (the empty list) and for a given list T the next
case is H| T (with no conditions on H).

Let us see how induction works for the factorial function:

® {Fact 0} returns the correct answer, namely 1.

3. Some would say that this is foolish. Paraphrasing Thomas Jefferson, they would say
that the price of correctness is eternal vigilance.

10

Introduction to Programming Concepts

® Assume that {Fact N-1} is correct. Then look at the call {Fact N}. We see that
the if instruction takes the else case (since N is not zero), and calculates N* { Fact
N-1}. By hypothesis, {Fact N-1} returns the right answer. Therefore, assuming
that the multiplication is correct, {Fact N} also returns the right answer.

This reasoning uses the mathematical definition of factorial, namely n! = nx (n—1)!
if n > 0, and 0! = 1. Later in the book we will see more sophisticated reasoning
techniques. But the basic approach is always the same: start with the language
semantics and problem specification, and use mathematical reasoning to show that
the program correctly implements the specification.

1.7 Complexity

The pascal function we defined above gets very slow if we try to calculate higher-
numbered rows. Row 20 takes a second or two. Row 30 takes many minutes.4 If you
try it, wait patiently for the result. How come it takes this much time? Let us look
again at the function Pascal:
fun {Pascal N}
if N==1 then [1]
else
{AddList {ShiftLeft {Pascal N-1}} {ShiftRight {Pascal N-1}}}
end
end
Calling {Pascal N} will call {Pascal N-1} two times. Therefore, calling {Pascal
30} will call {Pascal 29} twice, giving four calls to {Pascal 28}, eight to
{Pascal 27}, and so forth, doubling with each lower row. This gives 2%° calls
to {Pascal 1}, which is about half a billion. No wonder that {Pascal 30} is
slow. Can we speed it up? Yes, there is an easy way: just call {Pascal N-1} once
instead of twice. The second call gives the same result as the first. If we could just
remember it, then one call would be enough. We can remember it by using a local
variable. Here is a new function, FastPascal, that uses a local variable:
fun {FastPascal N}
if N==1 then [1]
else L in
L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}
end
end
We declare the local variable L by adding “L in” to the else part. This is just like
using declare, except that the identifier can only be used between the else and
the end. We bind L to the result of {FastPascal N-1}. Now we can use L wherever
we need it. How fast is FastPascal? Try calculating row 30. This takes minutes

4. These times may vary depending on the speed of your machine.

1.8 Lazy evaluation 11

with Pascal, but is done practically instantaneously with FastPascal. A lesson
we can learn from this example is that using a good algorithm is more important
than having the best possible compiler or fastest machine.

Run-time guarantees of execution time

As this example shows, it is important to know something about a program’s
execution time. Knowing the exact time is less important than knowing that the
time will not blow up with input size. The execution time of a program as a function
of input size, up to a constant factor, is called the program’s time complexity. What
this function is depends on how the input size is measured. We assume that it is
measured in a way that makes sense for how the program is used. For example, we
take the input size of {Pascal N} to be simply the integer N (and not, e.g., the
amount of memory needed to store N).

The time complexity of {Pascal N} is proportional to 2". This is an exponential
function in n, which grows very quickly as n increases. What is the time com-
plexity of {FastPascal N}? There are n recursive calls and each call takes time
proportional to n. The time complexity is therefore proportional to n2. This is a
polynomial function in n, which grows at a much slower rate than an exponential
function. Programs whose time complexity is exponential are impractical except for
very small inputs. Programs whose time complexity is a low-order polynomial are
practical.

1.8 Lazy evaluation

The functions we have written so far will do their calculation as soon as they are
called. This is called eager evaluation. There is another way to evaluate functions
called lazy evaluation.® In lazy evaluation, a calculation is done only when the
result is needed. This is covered in chapter 4 (see section 4.5). Here is a simple lazy
function that calculates a list of integers:

fun lazy {Ints N}

N| {Ints N+1}

end
Calling {Ints 0} calculates the infinite list 0|1]2]3|4|5]. ... This looks like an
infinite loop, but it is not. The 1azy annotation ensures that the function will only
be evaluated when it is needed. This is one of the advantages of lazy evaluation: we
can calculate with potentially infinite data structures without any loop boundary
conditions. For example:

5. Eager and lazy evaluation are sometimes called data-driven and demand-driven evalu-
ation, respectively.

12

Introduction to Programming Concepts

L={Ints 0}
{Browse L}

This displays the following, i.e., nothing at all about the elements of L:
L<Future>

(The browser does not cause lazy functions to be evaluated.) The “<Futures”
annotation means that L has a lazy function attached to it. If some elements of
L are needed, then this function will be called automatically. Here is a calculation
that needs an element of L:

{Browse L.1}

This displays the first element, namely 0. We can calculate with the list as if it were
completely there:

case L of A|B|C|_then {Browse A+B+C} end

This causes the first three elements of L to be calculated, and no more. What does
it display?

Lazy calculation of Pascal’s triangle

Let us do something useful with lazy evaluation. We would like to write a function
that calculates as many rows of Pascal’s triangle as are needed, but we do not know
beforehand how many. That is, we have to look at the rows to decide when there
are enough. Here is a lazy function that generates an infinite list of rows:

fun lazy {PascalList Row}

Row| {Pascallist
{AddList {ShiftLeft Row} {ShiftRight Row}}}

end
Calling this function and browsing it will display nothing:

declare

L={PascalList [1]}

{Browse L}
(The argument [1] is the first row of the triangle.) To display more results, they
have to be needed:

{Browse L.1}

{Browse L.2.1}
This displays the first and second rows.

Instead of writing a lazy function, we could write a function that takes N, the
number of rows we need, and directly calculates those rows starting from an initial
row:

1.9 Higher-order programming 13

fun {PascallList2 N Row}
if N==1 then [Row]
else
Row| {Pascallist2 N-1
{AddList {ShiftLeft Row} {ShiftRight Row}}}
end
end
We can display 10 rows by calling {Browse {PascalList2 10 [1]}}. But what
if later on we decide that we need 11 rows? We would have to call PascalList2
again, with argument 11. This would redo all the work of defining the first 10 rows.
The lazy version avoids redoing all this work. It is always ready to continue where
it left off.

1.9 Higher-order programming

We have written an efficient function, FastPascal, that calculates rows of Pascal’s
triangle. Now we would like to experiment with variations on Pascal’s triangle. For
example, instead of adding numbers to get each row, we would like to subtract
them, exclusive-or them (to calculate just whether they are odd or even), or many
other possibilities. One way to do this is to write a new version of FastPascal for
each variation. But this quickly becomes tiresome. Is it possible to have just a single
version that can be used for all variations? This is indeed possible. Let us call it
GenericPascal. Whenever we call it, we pass it the customizing function (adding,
exclusive-oring, etc.) as an argument. The ability to pass functions as arguments is
known as higher-order programming.

Here is the definition of GenericPascal. It has one extra argument Op to hold
the function that calculates each number:

fun {GenericPascal Op N}
if N==1 then [1]
else L in
L={GenericPascal Op N-1}
{opList Op {ShiftLeft L} {ShiftRight L}}
end
end
AddList is replaced by OpList. The extra argument Op is passed to OpList.
shiftLeft and ShiftRight do not need to know Op, so we can use the old versions.
Here is the definition of OpList:
fun {OpList Op L1 L2}
case L1 of H1|Tl then
case L2 of H2|T2 then
{op H1 H2}|{OpList Op T1 T2}
end
else nil end
end

Instead of doing the addition H1+H2, this version does {Op H1 H2}.

14 Introduction to Programming Concepts

Variations on Pascal’s triangle
Let us define some functions to try out GenericPascal. To get the original Pascal’s
triangle, we can define the addition function:

fun {Add X Y} X+Y end

Now we can run {GenericPascal Add 5}.0 This gives the fifth row exactly as
before. We can define FastPascal using GenericPascal:

fun {FastPascal N} {GenericPascal Add N} end
Let us define another function:
fun {Xor X Y} if X==Y then 0 else 1 end end
This does an exclusive-or operation, which is defined as follows:

{Xor x Y}

—_ = O O X

Y
0
1
0
1

S = = O

Exclusive-or lets us calculate the parity of each number in Pascal’s triangle, i.e.,
whether the number is odd or even. The numbers themselves are not calculated.
Calling {GenericPascal Xor N} gives the result:

Some other functions are given in the exercises.

1.10 Concurrency

We would like our program to have several independent activities, each of which
executes at its own pace. This is called concurrency. There should be no interference

6. We can also call {GenericPascal Number. +~ 5}, since the addition operation

+7 is part of the module Number. But modules are not introduced in this chapter.

1.11 Dataflow

15

/

Figure 1.3: A simple example of dataflow execution.

among the activities, unless the programmer decides that they need to communi-
cate. This is how the real world works outside of the system. We would like to be
able to do this inside the system as well.

We introduce concurrency by creating threads. A thread is simply an executing
program like the functions we saw before. The difference is that a program can have
more than one thread. Threads are created with the thread instruction. Do you
remember how slow the original Pascal function was? We can call Pascal inside
its own thread. This means that it will not keep other calculations from continuing.
They may slow down, if Pascal really has a lot of work to do. This is because the
threads share the same underlying computer. But none of the threads will stop.
Here is an example:

thread P in
p={Pascal 30}
{Browse P}
end

{Browse 99%99}

This creates a new thread. Inside this new thread, we call {Pascal 30} and then
call Browse to display the result. The new thread has a lot of work to do. But this
does not keep the system from displaying 99*99 immediately.

1.11 Dataflow

What happens if an operation tries to use a variable that is not yet bound? From
a purely aesthetic point of view, it would be nice if the operation would simply
wait. Perhaps some other thread will bind the variable, and then the operation can
continue. This civilized behavior is known as dataflow. Figure 1.3 gives a simple
example: the two multiplications wait until their arguments are bound and the
addition waits until the multiplications complete. As we will see later in the book,
there are many good reasons to have dataflow behavior. For now, let us see how
dataflow and concurrency work together. Take, e.g.:

16

Introduction to Programming Concepts

declare X in

thread {Delay 10000} X=99 end

{Browse start} {Browse X*X}
The multiplication x*x waits until X is bound. The first Browse immediately
displays start. The second Browse waits for the multiplication, so it displays
nothing yet. The {Delay 10000} call pauses for 10000 ms (i.e., 10 seconds). X is
bound only after the delay continues. When X is bound, then the multiplication
continues and the second browse displays 9801. The two operations X=99 and X*X
can be done in any order with any kind of delay; dataflow execution will always
give the same result. The only effect a delay can have is to slow things down. For
example:

declare X in

thread {Browse start} {Browse X*X} end

{Delay 10000} X=99
This behaves exactly as before: the browser displays 9801 after 10 seconds. This
illustrates two nice properties of dataflow. First, calculations work correctly in-
dependent of how they are partitioned between threads. Second, calculations are
patient: they do not signal errors, but simply wait.

Adding threads and delays to a program can radically change a program’s ap-
pearance. But as long as the same operations are invoked with the same arguments,
it does not change the program’s results at all. This is the key property of dataflow
concurrency. This is why dataflow concurrency gives most of the advantages of
concurrency without the complexities that are usually associated with it. Dataflow
concurrency is covered in chapter 4.

1.12 Explicit state

How can we let a function learn from its past? That is, we would like the function
to have some kind of internal memory, which helps it do its job. Memory is needed
for functions that can change their behavior and learn from their past. This kind of
memory is called explicit state. Just like for concurrency, explicit state models an
essential aspect of how the real world works. We would like to be able to do this in
the system as well. Later in the book we will see deeper reasons for having explicit
state (see chapter 6). For now, let us just see how it works.

For example, we would like to see how often the FastPascal function is used. Is
there some way FastPascal can remember how many times it was called? We can
do this by adding explicit state.

A memory cell
There are lots of ways to define explicit state. The simplest way is to define a

single memory cell. This is a kind of box in which you can put any content. Many
programming languages call this a “variable.” We call it a “cell” to avoid confusion

1.13 Objects 17

with the variables we used before, which are more like mathematical variables, i.e.,
just shortcuts for values. There are three functions on cells: NewCell creates a new
cell, := (assignment) puts a new value in a cell, and @ (access) gets the current
value stored in the cell. Access and assignment are also called read and write. For
example:

declare

C={NewCell 0}

C:=@C+1

{Browse @C}

This creates a cell ¢ with initial content 0, adds one to the content, and displays it.
Adding memory to FastPascal

With a memory cell, we can let FastPascal count how many times it is called.
First we create a cell outside of FastPascal. Then, inside of FastPascal, we add
1 to the cell’s content. This gives the following:
declare
C={NewCell 0}
fun {FastPascal N}
C:=@C+1
{GenericPascal Add N}
end

(To keep it short, this definition uses GenericPascal.)

1.13 Objects

A function with internal memory is usually called an object. The extended version
of FastPascal we defined in the previous section is an object. It turns out that
objects are very useful beasts. Let us give another example. We will define a counter
object. The counter has a cell that keeps track of the current count. The counter
has two operations, Bump and Read, which we call its interface. Bump adds 1 and
then returns the resulting count. Read just returns the count. Here is the definition:

declare
local C in
C={NewCell 0}
fun {Bump}
C:=@C+1
@C
end
fun {Read}
@C
end
end

The local statement declares a new variable ¢ that is visible only up to the
matching end. There is something special going on here: the cell is referenced

18

Introduction to Programming Concepts

by a local variable, so it is completely invisible from the outside. This is called
encapsulation. Encapsulation implies that users cannot mess with the counter’s
internals. We can guarantee that the counter will always work correctly no matter
how it is used. This was not true for the extended FastPascal because anyone
could look at and modify the cell.

It follows that as long as the interface to the counter object is the same, the user
program does not need to know the implementation. The separation of interface and
implementation is the essence of data abstraction. It can greatly simplify the user
program. A program that uses a counter will work correctly for any implementation
as long as the interface is the same. This property is called polymorphism. Data
abstraction with encapsulation and polymorphism is covered in chapter 6 (see
section 6.4).

We can bump the counter up:

{Browse {Bump}}
{Browse {Bump}}
What does this display? Bump can be used anywhere in a program to count how
many times something happens. For example, FastPascal could use Bump:
declare
fun {FastPascal N}
{Browse {Bump}}

{GenericPascal Add N}
end

1.14 Classes

The last section defined one counter object. What if we need more than one counter?
It would be nice to have a “factory” that can make as many counters as we need.
Such a factory is called a class. Here is one way to define it:

declare
fun {NewCounter}
C Bump Read in
C={NewCell 0}
fun {Bump}
C:=@C+1
@C
end
fun {Read}
@C
end
counter (bump:Bump read:Read)
end

NewCounter is a function that creates a new cell and returns new Bump and Read
functions that use the cell. Returning functions as results of functions is another
form of higher-order programming.

1.14 Classes

19

— time

C={NewCell 0} C:=1 C:=2 First execution:

I I I final content of C is 2

C={NewCell 0} C:=2 C:=1 Second execution:

I I I final content of C is 1

Figure 1.4: All possible executions of the first nondeterministic example.

We group the Bump and Read functions together into a record, which is
a compound data structure that allows easy access to its parts. The record
counter (bump:Bump read:Read) is characterized by its label counter and by
its two fields, called bump and read. Let us create two counters:

declare

Ctrl={NewCounter}

Ctr2={NewCounter}
Each counter has its own internal memory and its own Bump and Read functions.
We can access these functions by using the “.” (dot) operator. Ctrl.bump accesses
the Bump function of the first counter. Let us bump the first counter and display

its result:

{Browse {Ctrl.bump}}
Toward object-oriented programming

We have given an example of a simple class, NewCounter, that defines two opera-
tions, Bump and Read. Operations defined inside classes are usually called methods.
The class can be used to make as many counter objects as we need. All these
objects share the same methods, but each has its own separate internal memory.
Programming with classes and objects is called object-based programming.

Adding one new idea, inheritance, to object-based programming gives object-
oriented programming. Inheritance means that a new class can be defined in terms
of existing classes by specifying just how the new class is different. For example, say
we have a counter class with just a Bump method. We can define a new class that
is the same as the first class except that it adds a Read method. We say the new
class inherits from the first class. Inheritance is a powerful concept for structuring
programs. It lets a class be defined incrementally, in different parts of the program.
Inheritance is quite a tricky concept to use correctly. To make inheritance easy to
use, object-oriented languages add special syntax for it. Chapter 7 covers object-
oriented programming and shows how to program with inheritance.

20

Introduction to Programming Concepts

1.15 Nondeterminism and time

We have seen how to add concurrency and state to a program separately. What
happens when a program has both? It turns out that having both at the same time
is a tricky business, because the same program can give different results from one
execution to the next. This is because the order in which threads access the state can
change from one execution to the next. This variability is called nondeterminism.
Nondeterminism exists because we lack knowledge of the exact time when each
basic operation executes. If we would know the exact time, then there would be
no nondeterminism. But we cannot know this time, simply because threads are
independent. Since they know nothing of each other, they also do not know which
instructions each has executed.

Nondeterminism by itself is not a problem; we already have it with concurrency.
The difficulties occur if the nondeterminism shows up in the program, i.e., if it is
observable. An observable nondeterminism is sometimes called a race condition.
Here is an example:

declare
C={NewCell 0}
thread
C:=1
end
thread
C:=2
end
What is the content of C after this program executes? Figure 1.4 shows the two
possible executions of this program. Depending on which one is done, the final
cell content can be either 1 or 2. The problem is that we cannot say which. This
is a simple case of observable nondeterminism. Things can get much trickier. For
example, let us use a cell to hold a counter that can be incremented by several
threads:

declare

C={NewCell 0}

thread I in
I=@C
C:=I+1

end

thread J in
J=@C
C:=0+1

end

What is the content of C after this program executes? It looks like each thread just
adds 1 to the content, making it 2. But there is a surprise lurking: the final content
can also be 1! How is this possible? Try to figure out why before continuing.

1.16 Atomicity

21

— time

C={NewCell 0} I=eC J=eC C:=J+1 C:=I+1

(C contains 0) (I equals 0) (J equals 0) (C contains 1) (C contains 1)

Figure 1.5: One possible execution of the second nondeterministic example.

Interleaving

The content can be 1 because thread execution is interleaved. That is, threads take
turns each executing a little. We have to assume that any possible interleaving can
occur. For example, consider the execution of figure 1.5. Both I and J are bound
to 0. Then, since I+1 and J+1 are both 1, the cell gets assigned 1 twice. The final
result is that the cell content is 1.

This is a simple example. More complicated programs have many more possible
interleavings. Programming with concurrency and state together is largely a ques-
tion of mastering the interleavings. In the history of computer technology, many
famous and dangerous bugs were due to designers not realizing how difficult this re-
ally is. The Therac-25 radiation therapy machine is an infamous example. Because
of concurrent programming errors, it sometimes gave its patients radiation doses
that were thousands of times greater than normal, resulting in death or serious
injury [128].

This leads us to a first lesson for programming with state and concurrency: if
at all possible, do not use them together! It turns out that we often do not need
both together. When a program does need to have both, it can almost always be
designed so that their interaction is limited to a very small part of the program.

1.16 Atomicity

Let us think some more about how to program with concurrency and state. One
way to make it easier is to use atomic operations. An operation is atomic if no
intermediate states can be observed. It seems to jump directly from the initial state
to the result state. Programming with atomic actions is covered in chapter 8.

With atomic operations we can solve the interleaving problem of the cell counter.
The idea is to make sure that each thread body is atomic. To do this, we need a way
to build atomic operations. We introduce a new language entity, called a lock, for
this. A lock has an inside and an outside. The programmer defines the instructions
that are inside. A lock has the property that only one thread at a time can be
executing inside. If a second thread tries to get in, then it will wait until the first
gets out. Therefore what happens inside the lock is atomic.

22

Introduction to Programming Concepts

We need two operations on locks. First, we create a new lock by calling the
function NewLock. Second, we define the lock’s inside with the instruction lock L
then ... end, where L is a lock. Now we can fix the cell counter:

declare
C={NewCell 0}
L={NewLock}
thread
lock L then I in
I=@C
C:=I+1
end
end
thread
lock L then J in
J=@C
C:=0+1
end
end

In this version, the final result is always 2. Both thread bodies have to be guarded
by the same lock, otherwise the undesirable interleaving can still occur. Do you see
why?

1.17

Where do we go from here?

This chapter has given a quick overview of many of the most important concepts
in programming. The intuitions given here will serve you well in the chapters to
come, when we define in a precise way the concepts and the computation models
they are part of. This chapter has introduced the following computation models:

® Declarative model (chapters 2 and 3). Declarative programs define mathematical
functions. They are the easiest to reason about and to test. The declarative model
is important also because it contains many of the ideas that will be used in later,
more expressive models.

® Concurrent declarative model (chapter 4). Adding dataflow concurrency gives a
model that is still declarative but that allows a more flexible, incremental execution.

m Lazy declarative model (section 4.5). Adding laziness allows calculating with
potentially infinite data structures. This is good for resource management and
program structure.

® Stateful model (chapter 6). Adding explicit state allows writing programs whose
behavior changes over time. This is good for program modularity. If written well,
i.e., using encapsulation and invariants, these programs are almost as easy to reason
about as declarative programs.

= Object-oriented model (chapter 7). Object-oriented programming is a program-
ming style for stateful programming with data abstractions. It makes it easy to use

1.18 FEzercises

23

powerful techniques such as polymorphism and inheritance.

® Shared-state concurrent model (chapter 8). This model adds both concurrency
and explicit state. If programmed carefully, using techniques for mastering inter-
leaving such as monitors and transactions, this gives the advantages of both the
stateful and concurrent models.

In addition to these models, the book covers many other useful models such as the
declarative model with exceptions (section 2.7), the message-passing concurrent
model (chapter 5), the relational model (chapter 9), and the specialized models of
part II.

1.18 Exercises

1. A calculator. Section 1.1 uses the system as a calculator. Let us explore the
possibilities:
(a) Calculate the exact value of 2% without using any new functions. Try
to think of shortcuts to do it without having to type 2*2*2+*...*2 with one
hundred 2s. Hint: use variables to store intermediate results.

(b) Calculate the exact value of 100! without using any new functions. Are
there any possible shortcuts in this case?

2. Calculating combinations. Section 1.3 defines the function Ccomb to calculate
combinations. This function is not very efficient because it might require calculating
very large factorials. The purpose of this exercise is to write a more efficient version
of Comb.

(a) As a first step, use the following alternative definition to write a more
efficient function:

n\ nXx(n—1)x---x(n—k+1)
(k>_ Ex(k—1)x---x1
Calculate the numerator and denominator separately and then divide them.
Make sure that the result is 1 when k£ = 0.

(b) As a second step, use the following identity:

n\ n
(1))
to increase efficiency even more. That is, if k¥ > n/2, then do the calculation
with n — k instead of with k.

3. Program correctness. Section 1.6 explains the basic ideas of program correctness
and applies them to show that the factorial function defined in section 1.3 is correct.
In this exercise, apply the same ideas to the function pascal of section 1.5 to show
that it is correct.

4. Program complexity. What does section 1.7 say about programs whose time
complexity is a high-order polynomial? Are they practical or not? What do you

24

Introduction to Programming Concepts

think?
5. Lazy evaluation. Section 1.8 defines the lazy function Ints that lazily calculates
an infinite list of integers. Let us define a function that calculates the sum of a list
of integers:
fun {SumList L}
case L of X|Ll then X+{SumList L1}

else 0 end
end

What happens if we call {SumList {Ints 0}}7 Is this a good idea?

6. Higher-order programming. Section 1.9 explains how to use higher-order pro-
gramming to calculate variations on Pascal’s triangle. The purpose of this exercise
is to explore these variations.

(a) Calculate individual rows using subtraction, multiplication, and other
operations. Why does using multiplication give a triangle with all zeros? Try
the following kind of multiplication instead:

fun {Mull X Y} (X+1)*(Y+1) end

What does the 10th row look like when calculated with Mul1?

(b) The following loop instruction will calculate and display 10 rows at a time:
for I in 1..10 do {Browse {GenericPascal Op I}} end

Use this loop instruction to make it easier to explore the variations.

7. Ezplicit state. This exercise compares variables and cells. We give two code
fragments. The first uses variables:

local X in
X=23
local X in
X=44
end
{Browse X}
end

The second uses a cell:

local X in
X={NewCell 23}
X:=44
{Browse @Xx}
end
In the first, the identifier X refers to two different variables. In the second, X refers

to a cell. What does Browse display in each fragment? Explain.

8. Ezxplicit state and functions. This exercise investigates how to use cells together

with functions. Let us define a function {Accumulate N} that accumulates all its

inputs, i.e., it adds together all the arguments of all calls. Here is an example:
{Browse {Accumulate 5}}

{Browse {Accumulate 100} }
{Browse {Accumulate 45}}

1.18 FEzercises

25

This should display 5, 105, and 150, assuming that the accumulator contains zero
at the start. Here is a wrong way to write Accumulate:
declare
fun {Accumulate N}
Acc in
Acc={NewCell 0}
Acc:=@Acc+N
@Acc
end

What is wrong with this definition? How would you correct it?

9. Memory store. This exercise investigates another way of introducing state: a
memory store. The memory store can be used to make an improved version of
FastPascal that remembers previously calculated rows.

(a) A memory store is similar to the memory of a computer. It has a series
of memory cells, numbered from 1 up to the maximum used so far. There are
four functions on memory stores: NewStore creates a new store, Put puts a
new value in a memory cell, Get gets the current value stored in a memory

cell, and size gives the highest-numbered cell used so far. For example:
declare
S={NewStore}
{put s 2 [22 33]}
{Browse {Get s 2}}
{Browse {Size S}}
This stores [22 33] in memory cell 2, displays [22 33], and then displays 2.

Load into the Mozart system the memory store as defined in the supplements
file on the book’s Web site. Then use the interactive interface to understand
how the store works.

(b) Now use the memory store to write an improved version of FastPascal,
called FasterPascal, that remembers previously calculated rows. If a call asks
for one of these rows, then the function can return it directly without having
to recalculate it. This technique is sometimes called memoization since the
function makes a “memo” of its previous work. This improves its performance.
Here’s how it works:

® First make a store S available to FasterPascal.

m For the call {FasterPascal N}, let m be the number of rows stored in
S, i.e., rows 1 up to m are in S.

® If n > m, then compute rows m + 1 up to n and store them in S.
= Return the nth row by looking it up in S.

Viewed from the outside, FasterPascal behaves identically to FastPascal
except that it is faster.

(¢) We have given the memory store as a library. It turns out that the memory
store can be defined by using a memory cell. We outline how it can be done
and you can write the definitions. The cell holds the store contents as a list of

26

Introduction to Programming Concepts

the form [N1|X1 ... Nn|Xnl, where the cons Ni |Xi means that cell number
Ni has content xi. This means that memory stores, while they are convenient,
do not introduce any additional expressive power over memory cells.

(d) Section 1.13 defines a counter object. Change your implementation of the
memory store so that it uses this counter to keep track of the store’s size.
10. Ezplicit state and concurrency. Section 1.15 gives an example using a cell to
store a counter that is incremented by two threads.
(a) Try executing this example several times. What results do you get? Do
you ever get the result 17 Why could this be?
(b) Modify the example by adding calls to Delay in each thread. This changes
the thread interleaving without changing what calculations the thread does.
Can you devise a scheme that always results in 17

(c) Section 1.16 gives a version of the counter that never gives the result 1.
What happens if you use the delay technique to try to get a 1 anyway?

I GENERAL COMPUTATION MODELS

This page intentionally left blank

2 Declarative Computation Model

Non sunt multiplicanda entia praeter necessitatem.
Do not multiply entities beyond necessity.
— Ockham’s razor, after William of Ockham (12857-1347/49)

Programming encompasses three things:

® First, a computation model, which is a formal system that defines a language and
how sentences of the language (e.g., expressions and statements) are executed by
an abstract machine. For this book, we are interested in computation models that
are useful and intuitive for programmers. This will become clearer when we define
the first one later in this chapter.

® Second, a set of programming techniques and design principles used to write
programs in the language of the computation model. We will sometimes call this a
programming model. A programming model is always built on top of a computation
model.

» Third, a set of reasoning techniques to let you reason about programs, to increase
confidence that they behave correctly, and to calculate their efficiency.

The above definition of computation model is very general. Not all computation
models defined in this way will be useful for programmers. What is a reasonable
computation model? Intuitively, we will say that a reasonable model is one that can
be used to solve many problems, that has straightforward and practical reasoning
techniques, and that can be implemented efficiently. We will have more to say
about this question later on. The first and simplest computation model we will
study is declarative programming. For now, we define this as evaluating functions
over partial data structures. This is sometimes called stateless programming, as
opposed to stateful programming (also called imperative programming) which is
explained in chapter 6.

The declarative model of this chapter is one of the most fundamental computa-
tion models. It encompasses the core ideas of the two main declarative paradigms,
namely functional and logic programming. It encompasses programming with func-
tions over complete values, as in Scheme and Standard ML. It also encompasses
deterministic logic programming, as in Prolog when search is not used. And finally,
it can be made concurrent without losing its good properties (see chapter 4).

Declarative programming is a rich area—it has most of the ideas of the more

30

Declarative Computation Model

expressive computation models, at least in embryonic form. We therefore present
it in two chapters. This chapter defines the computation model and a practical
language based on it. The next chapter, chapter 3, gives the programming tech-
niques of this language. Later chapters enrich the basic model with many concepts.
Some of the most important are exception handling, concurrency, components (for
programming in the large), capabilities (for encapsulation and security), and state
(leading to objects and classes). In the context of concurrency, we will talk about
dataflow, lazy execution, message passing, active objects, monitors, and transac-
tions. We will also talk about user interface design, distribution (including fault
tolerance), and constraints (including search).

Structure of the chapter

The chapter consists of eight sections:

® Section 2.1 explains how to define the syntax and semantics of practical pro-
gramming languages. Syntax is defined by a context-free grammar extended with
language constraints. Semantics is defined in two steps: by translating a practical
language into a simple kernel language and then giving the semantics of the kernel
language. These techniques will be used throughout the book. This chapter uses
them to define the declarative computation model.

® The next three sections define the syntax and semantics of the declarative model:

s Section 2.2 gives the data structures: the single-assignment store and its
contents, partial values and dataflow variables.

s Section 2.3 defines the kernel language syntax.

s Section 2.4 defines the kernel language semantics in terms of a simple
abstract machine. The semantics is designed to be intuitive and to permit
straightforward reasoning about correctness and complexity.

® Section 2.5 uses the abstract machine to explore the memory behavior of compu-
tations. We look at last call optimization and the concept of memory life cycle.

® Section 2.6 defines a practical programming language on top of the kernel lan-
guage.

® Section 2.7 extends the declarative model with exception handling, which allows
programs to handle unpredictable and exceptional situations.

® Section 2.8 gives a few advanced topics to let interested readers deepen their
understanding of the model.

2.1 Defining practical programming languages

Programming languages are much simpler than natural languages, but they can still
have a surprisingly rich syntax, set of abstractions, and libraries. This is especially

2.1 Defining practical programming languages 31

[fun’{’ 'F’ a ct ' ' 'N’ :}r r\nl [T A
sequence of N '=r '=2 0/ " then’’'1'\n" ' "else
characters PN ik {1 UFf act '’ N ‘- 1} ' ' en

d '\n’ e n d]

Tokenizer
sequenceof [’fun’ /{: 'Fact’ 'N’ /}: rif’ 'N’ '==' '0’ ’'then’
tokens relse’ 'N’ '*! I{I 'Fact’ 'N’ ’'-—' ’'1" :}/ rend’

"end’]

Parser
fun
parse tree Fact N if
representing M\
a statement == 1 *
PN o
N 0 N Fact
N
N 1

Figure 2.1: From characters to statements.

true for languages that are used to solve real-world problems, which we call practical
languages. A practical language is like the toolbox of an experienced mechanic: there
are many different tools for many different purposes and all tools are there for a
reason.

This section sets the stage for the rest of the book by explaining how we will
present the syntax (“grammar”) and semantics (“meaning”) of practical program-
ming languages. With this foundation we will be ready to present the first com-
putation model of the book, namely the declarative computation model. We will
continue to use these techniques throughout the book to define computation models.

2.1.1 Language syntax

The syntax of a language defines what are the legal programs, i.e., programs that
can be successfully executed. At this stage we do not care what the programs are
actually doing. That is semantics and will be handled in section 2.1.2.

Grammars

A grammar is a set of rules that defines how to make ‘sentences’ out of ‘words’.
Grammars can be used for natural languages, like English or Swedish, as well as
for artificial languages, like programming languages. For programming languages,
‘sentences’ are usually called ‘statements’ and ‘words’ are usually called ‘tokens’.
Just as words are made of letters, tokens are made of characters. This gives us two

32

Declarative Computation Model

levels of structure:

statement (‘sentence’) = sequence of tokens (‘words’)

token (‘word’) = sequence of characters (‘letters’)

Grammars are useful both for defining statements and tokens. Figure 2.1 gives an
example to show how character input is transformed into a statement. The example
in the figure is the definition of Fact:
fun {Fact N}
if N==0 then 1
else N*{Fact N-1} end
end

- -

The input is a sequence of characters, where represents the space and “\n~
represents the newline. This is first transformed into a sequence of tokens and
subsequently into a parse tree. The syntax of both sequences in the figure is
compatible with the list syntax we use throughout the book. Whereas the sequences
are “flat,” the parse tree shows the structure of the statement. A program that
accepts a sequence of characters and returns a sequence of tokens is called a
tokenizer or lexical analyzer. A program that accepts a sequence of tokens and

returns a parse tree is called a parser.
Extended Backus-Naur Form

One of the most common notations for defining grammars is called Extended
Backus-Naur Form (EBNF), after its inventors John Backus and Peter Naur.
The EBNF notation distinguishes terminal symbols and nonterminal symbols. A
terminal symbol is simply a token. A nonterminal symbol represents a sequence of
tokens. The nonterminal is defined by means of a grammar rule, which shows how
to expand it into tokens. For example, the following rule defines the nonterminal

(digit):
(digit) == 0]1]2]3]4]5|6]7]8]|9

It says that (digit) represents one of the ten tokens 0, 1, ..., 9. The symbol “|” is
read as “or”; it means to pick one of the alternatives. Grammar rules can themselves
refer to other nonterminals. For example, we can define a nonterminal (int) that
defines how to write positive integers:

(int) == (digit) { (digit) }

This rule says that an integer is a digit followed by any number of digits, including
none. The braces “{ ... }” mean to repeat whatever is inside any number of times,
including none.

2.1 Defining practical programming languages 33

Context-free grammar - Is easy to read and understand
(e.g., with EBNF) - Defines a superset of the language
+

- Expresses restrictions imposed by the language
Set of extra conditions (e.g., variables must be declared before use)

- Makes the grammar context-sensitive

Figure 2.2: The context-free approach to language syntax.

How to read grammars

To read a grammar, start with any nonterminal symbol, say (int). Reading the
corresponding grammar rule from left to right gives a sequence of tokens according
to the following scheme:

m Each terminal symbol encountered is added to the sequence.

® For each nonterminal symbol encountered, read its grammar rule and replace the
nonterminal by the sequence of tokens that it expands into.

» Each time there is a choice (with |), pick any of the alternatives.

The grammar can be used both to verify that a statement is legal and to generate
statements.

Context-free and context-sensitive grammars

Any well-defined set of statements is called a formal language, or language for
short. For example, the set of all possible statements generated by a grammar
and one nonterminal symbol is a language. Techniques to define grammars can
be classified according to how expressive they are, i.e., what kinds of languages
they can generate. For example, the EBNF notation given above defines a class of
grammars called context-free grammars. They are so-called because the expansion
of a nonterminal, e.g., (digit), is always the same no matter where it is used.

For most practical programming languages, there is usually no context-free
grammar that generates all legal programs and no others. For example, in many
languages a variable has to be declared before it is used. This condition cannot be
expressed in a context-free grammar because the nonterminal that uses the variable
must only allow using already-declared variables. This is a context dependency. A
grammar that contains a nonterminal whose use depends on the context where it
is used is called a context-sensitive grammar.

The syntax of most practical programming languages is therefore defined in two
parts (see figure 2.2): as a context-free grammar supplemented with a set of extra

34

Declarative Computation Model

2/\ .k}/-l-\\4
PN RN
3 4 2 3

Figure 2.3: Ambiguity in a context-free grammar.

conditions imposed by the language. The context-free grammar is kept instead of
some more expressive notation because it is easy to read and understand. It has an
important locality property: a nonterminal symbol can be understood by examining
only the rules needed to define it; the (possibly much more numerous) rules that
use it can be ignored. The context-free grammar is corrected by imposing a set of
extra conditions, like the declare-before-use restriction on variables. Taking these
conditions into account gives a context-sensitive grammar.

Ambiguity

Context-free grammars can be ambiguous, i.e., there can be several parse trees that
correspond to a given token sequence. For example, here is a simple grammar for
arithmetic expressions with addition and multiplication:

(exp) = (int) | (exp) (op) (exp)
(op) u= o+

The expression 2*3+4 has two parse trees, depending on how the two occurrences
of (exp) are read. Figure 2.3 shows the two trees. In one tree, the first (exp) is 2
and the second (exp) is 3+4. In the other tree, they are 2*3 and 4, respectively.

Ambiguity is usually an undesirable property of a grammar since it is unclear
exactly what program is being written. In the expression 2*3+4, the two parse
trees give different results when evaluating the expression: one gives 14 (the result
of computing 2*(3+4)) and the other gives 10 (the result of computing (2*3)+4).
Sometimes the grammar rules can be rewritten to remove the ambiguity, but this
can make the rules more complicated. A more convenient approach is to add extra
conditions. These conditions restrict the parser so that only one parse tree is
possible. We say that they disambiguate the grammar.

For expressions with binary operators such as the arithmetic expressions given
above, the usual approach is to add two conditions, precedence and associativity:

® Precedence is a condition on an expression with different operators, like 2x3+4.
Each operator is given a precedence level. Operators with high precedences are put
as deep in the parse tree as possible, i.e., as far away from the root as possible.
If * has higher precedence than +, then the parse tree (2*3)+4 is chosen over the

2.1 Defining practical programming languages 35

alternative 2% (3+4). If * is deeper in the tree than +, then we say that * binds
tighter than +.

® Associativity is a condition on an expression with the same operator, like 2-3-4.
In this case, precedence is not enough to disambiguate because all operators have
the same precedence. We have to choose between the trees (2-3)-4 and 2-(3-4).
Associativity determines whether the leftmost or the rightmost operator binds
tighter. If the associativity of - is left, then the tree (2-3)-4 is chosen. If the
associativity of - is right, then the other tree 2-(3-4) is chosen.

Precedence and associativity are enough to disambiguate all expressions defined
with operators. Appendix C gives the precedence and associativity of all the
operators used in the book.

Syntax notation used in the book

In this chapter and the rest of the book, each new data type and language construct
is introduced together with a small syntax diagram that shows how it fits in the
whole language. The syntax diagram gives grammar rules for a simple context-free
grammar of tokens. The notation is carefully designed to satisfy two basic principles:

® All grammar rules stand on their own. No later information will ever invalidate a
grammar rule. That is, we never give an incorrect grammar rule just to “simplify”
the presentation.

® [t is always clear by inspection when a grammar rule completely defines a
nonterminal symbol or when it gives only a partial definition. A partial definition

« 7

always ends in three dots

All syntax diagrams used in the book are collected in appendix C. This appendix
also gives the lexical syntax of tokens, i.e., the syntax of tokens in terms of
characters. Here is an example of a syntax diagram with two grammar rules that
illustrates our notation:

- -

(statement) = skip | (expression) "=~ (expression) | ...

(expression) = (variable) | (int) | ...

These rules give partial definitions of two nonterminals, (statement) and (expression).
The first rule says that a statement can be the keyword skip, or two expressions
separated by the equals symbol =, or something else. The second rule says that
an expression can be a variable, an integer, or something else. To avoid confusion
with the grammar rule’s own syntax, a symbol that occurs literally in the text is
always quoted with single quotes. For example, the equals symbol is shown as “=~.
Keywords are not quoted, since for them no confusion is possible. A choice between
different possibilities in the grammar rule is given by a vertical bar |.

Here is a second example to give the remaining notation:

36

Declarative Computation Model

(statement) = if (expression) then (statement)
{ elseif (expression) then (statement) }
[else (statement) | end | ...

(expression) = [~ { (expression) }+ 17| ...

(label) = wunit | true | false | (variable) | (atom)

The first rule defines the if statement. There is an optional sequence of elseif
clauses, i.e., there can be any number of occurrences including zero. This is denoted
by the braces { ... }. This is followed by an optional else clause, i.e., it can occur
zero or one times. This is denoted by the brackets [...]. The second rule defines
the syntax of explicit lists. They must have at least one element, e.g., [5 6 7] is
valid but [1 is not (note the space that separates the [and the 1). This is denoted
by { ... }+. The third rule defines the syntax of record labels. The third rule is a
complete definition since there are no three dots “...”. There are five possibilities
and no more will ever be given.

2.1.2 Language semantics

The semantics of a language defines what a program does when it executes. Ideally,
the semantics should be defined in a simple mathematical structure that lets us
reason about the program (including its correctness, execution time, and memory
use) without introducing any irrelevant details. Can we achieve this for a practical
language without making the semantics too complicated? The technique we use,
which we call the kernel language approach, gives an affirmative answer to this
question.

Modern programming languages have evolved through more than five decades of
experience in constructing programmed solutions to complex, real-world problems.1
Modern programs can be quite complex, reaching sizes measured in millions of lines
of code, written by large teams of human programmers over many years. In our
view, languages that scale to this level of complexity are successful in part because
they model some essential aspects of how to construct complex programs. In this
sense, these languages are not just arbitrary constructions of the human mind. We
would therefore like to understand them in a scientific way, i.e., by explaining their
behavior in terms of a simple underlying model. This is the deep motivation behind
the kernel language approach.

1. The figure of five decades is somewhat arbitrary. We measure it from the first working
stored-program computer, the Manchester Mark I. According to lab documents, it ran its
first program on June 21, 1948 [197].

2.1 Defining practical programming languages 37

- Provides useful abstractions
for the programmer

Practical language

 fun {sar x} x*X end | - Can be extended with
) 'B={sqr {sqr a}} ! linguistic abstractions
Translation| ~~~ =~~~ 7° .

- Contains a minimal set of

Kernel language o
g g ntuitive concepts

'proc {Sqr X Y}

- Is easy for the programmer
{r* x x Y}

to understand and reason in

lend |

'local T in 1 - Has a formal semantics (e.g.,
1 {sqr A T} ! an operational, axiomatic, or
| {sqr T B} | denotational semantics)
‘end !

Figure 2.4: The kernel language approach to semantics.

The kernel language approach

This book uses the kernel language approach to define the semantics of program-
ming languages. In this approach, all language constructs are defined in terms of
translations into a core language known as the kernel language. The kernel language
approach consists of two parts (see figure 2.4):

= First, define a very simple language, called the kernel language. This language
should be easy to reason in and be faithful to the space and time efficiency of
the implementation. The kernel language and the data structures it manipulates
together form the kernel computation model.

® Second, define a translation scheme from the full programming language to the
kernel language. Each grammatical construct in the full language is translated into
the kernel language. The translation should be as simple as possible. There are two
kinds of translation, namely linguistic abstraction and syntactic sugar. Both are
explained below.

The kernel language approach is used throughout the book. Each computation
model has its kernel language, which builds on its predecessor by adding one new
concept. The first kernel language, which is presented in this chapter, is called the
declarative kernel language. Many other kernel languages are presented later on in
the book.

38

Declarative Computation Model

Formal semantics

The kernel language approach lets us define the semantics of the kernel language
in any way we want. There are four widely used approaches to language semantics:

® An operational semantics shows how a statement executes in terms of an abstract
machine. This approach always works well, since at the end of the day all languages
execute on a computer.

® An axiomatic semantics defines a statement’s semantics as the relation between
the input state (the situation before executing the statement) and the output state
(the situation after executing the statement). This relation is given as a logical
assertion. This is a good way to reason about statement sequences, since the output
assertion of each statement is the input assertion of the next. It therefore works
well with stateful models, since a state is a sequence of values. Section 6.6 gives an
axiomatic semantics of chapter 6’s stateful model.

® A denotational semantics defines a statement as a function over an abstract do-
main. This works well for declarative models, but can be applied to other models
as well. It gets complicated when applied to concurrent languages. Sections 2.8.1
and 4.9.2 explain functional programming, which is particularly close to denota-
tional semantics.

® A logical semantics defines a statement as a model of a logical theory. This works
well for declarative and relational computation models, but is hard to apply to
other models. Section 9.3 gives a logical semantics of the declarative and relational
computation models.

Much of the theory underlying these different semantics is of interest primarily to
mathematicians, not to programmers. It is outside the scope of the book to give
this theory. The principal formal semantics we give in the book is an operational
semantics. We define it for each computation model. It is detailed enough to be
useful for reasoning about correctness and complexity yet abstract enough to avoid
irrelevant clutter. Chapter 13 collects all these operational semantics into a single
formalism with a compact and readable notation.

Throughout the book, we give an informal semantics for every new language con-
struct and we often reason informally about programs. These informal presentations
are always based on the operational semantics.

Linguistic abstraction

Both programming languages and natural languages can evolve to meet their needs.
When using a programming language, at some point we may feel the need to extend
the language, i.e., to add a new linguistic construct. For example, the declarative
model of this chapter has no looping constructs. Section 3.6.3 defines a for construct
to express certain kinds of loops that are useful for writing declarative programs.
The new construct is both an abstraction and an addition to the language syntax.

2.1 Defining practical programming languages 39

We therefore call it a linguistic abstraction. A practical programming language
contains many linguistic abstractions.

There are two phases to defining a linguistic abstraction. First, define a new
grammatical construct. Second, define its translation into the kernel language.
The kernel language is not changed. This book gives many examples of useful
linguistic abstractions, e.g., functions (fun), loops (for), lazy functions (fun lazy),
classes (class), reentrant locks (lock), and others.2 Some of these are part of the
Mozart system. The others can be added to Mozart with the gump parser-generator
tool [117]. Using this tool is beyond the scope of the book.

Some languages have facilities for programming linguistic abstractions directly
in the language. A simple yet powerful example is the Lisp macro. A Lisp macro
resembles a function that generates Lisp code when executed. Partly because of
Lisp’s simple syntax, macros have been extraordinarily successful in Lisp and its
successors. Lisp has built-in support for macros, such as quote (turning a program
expression into a data structure) and backquote (doing the inverse, inside a quoted
structure). For a detailed discussion of Lisp macros and related ideas we refer the
reader to any good book on Lisp [72, 200].

A simple example of a linguistic abstraction is the function, which uses the
keyword fun. This is explained in section 2.6.2. We have already programmed
with functions in chapter 1. But the kernel language of this chapter only has
procedures. Procedures are used since all arguments are explicit and there can
be multiple outputs. There are other, deeper reasons for choosing procedures which
are explained later in this chapter. Because functions are so useful, though, we add
them as a linguistic abstraction.

We define a syntax for both function definitions and function calls, and a
translation into procedure definitions and procedure calls. The translation lets us
answer all questions about function calls. For example, what does {F1 {F2 X} {F3
v} } mean exactly (nested function calls)? Is the order of these function calls defined?
If so, what is the order? There are many possibilities. Some languages leave the
order of argument evaluation unspecified, but assume that a function’s arguments
are evaluated before the function. Other languages assume that an argument is
evaluated when and if its result is needed, not before. So even as simple a thing as
nested function calls does not necessarily have an obvious semantics. The translation
makes it clear what the semantics is.

Linguistic abstractions are useful for more than just increasing the expressiveness
of a program. They can also improve other properties such as correctness, security,
and efficiency. By hiding the abstraction’s implementation from the programmer,
the linguistic support makes it impossible to use the abstraction in the wrong way.
The compiler can use this information to give more efficient code.

2. Logic gates (gate) for circuit descriptions, mailboxes (receive) for message-passing
concurrency, and currying and list comprehensions as in modern functional languages, cf.
Haskell.

40

Declarative Computation Model

Syntactic sugar

It is often convenient to provide a shortcut notation for frequently occurring idioms.
This notation is part of the language syntax and is defined by grammar rules.
This notation is called syntactic sugar. Syntactic sugar is analogous to linguistic
abstraction in that its meaning is defined precisely by translating it into the full
language. But it should not be confused with linguistic abstraction: it does not
provide a new abstraction, but just reduces program size and improves program
readability.

We give an example of syntactic sugar that is based on the local statement.
Local variables can always be defined by using the statement local X in ...
end. When this statement is used inside another, it is convenient to have syntactic
sugar that lets us leave out the keywords local and end. Instead of

if N==1 then [1]
else
local L in

end
end

we can write

if N==1 then [1]
else L in

end
which is both shorter and more readable than the full notation. Other examples of
syntactic sugar are given in section 2.6.1.

Language design

Linguistic abstractions are a basic tool for language design. They have a natural
place in the life cycle of an abstraction. An abstraction has three phases in its
life cycle. When first we define it, it has no linguistic support, i.e., there is no
syntax in the language designed to make it easy to use. If at some point, we suspect
that it is especially basic and useful, we can decide to give it linguistic support. It
then becomes a linguistic abstraction. This is an exploratory phase, i.e., there is
no commitment that the linguistic abstraction will become part of the language. If
the linguistic abstraction is successful, i.e., it simplifies programs and is useful to
programmers, then it becomes part of the language.

Other translation approaches

The kernel language approach is an example of a translation approach to semantics,
i.e., it is based on a translation from one language to another. Figure 2.5 shows the
three ways that the translation approach has been used for defining programming
languages:

2.1 Defining practical programming languages 41

Programming language

Translations

Kernel language Foundational calculus Abstract machine

Aid the programmer Mathematical study Efficient execution

in reasoning and of programming on a real machine
understanding

Figure 2.5: Translation approaches to language semantics.

® The kernel language approach, used throughout the book, is intended for the
programmer. Its concepts correspond directly to programming concepts.

® The foundational approach is intended for the mathematician. Examples are the
Turing machine, the A calculus (underlying functional programming), first-order
logic (underlying logic programming), and the 7 calculus (to model concurrency).
Because these calculi are intended for formal mathematical study, they have as few
elements as possible.

® The abstract machine approach is intended for the implementor. Programs are
translated into an idealized machine, which is traditionally called an abstract
machine or a virtual machine.3 Tt is relatively easy to translate idealized machine
code into real machine code.

Because we focus on practical programming techniques, the book uses only the
kernel language approach. The other two approaches have the problem that any
realistic program written in them is cluttered with technical details about language
mechanisms. The kernel language approach avoids this clutter by a careful choice
of concepts.

The interpreter approach

An alternative to the translation approach is the interpreter approach. The language
semantics is defined by giving an interpreter for the language. New language features

3. Strictly speaking, a virtual machine is a software emulation of a real machine, running
on the real machine, that is almost as efficient as the real machine. It achieves this
efficiency by executing most virtual instructions directly as real instructions. The concept
was pioneered by IBM in the early 1960s in the VM operating system. Because of the
success of Java, which uses the term “virtual machine,” modern usage also uses the term
virtual machine in the sense of abstract machine.

42 Declarative Computation Model

X unbound

unbound

X unbound

=
()

Figure 2.6: A single-assignment store with three unbound variables.

are defined by extending the interpreter. An interpreter is a program written in
language L; that accepts programs written in another language Lo and executes
them. This approach is used by Abelson, Sussman, and Sussman [2]. In their case,
the interpreter is metacircular, i.e., L1 and Lo are the same language L. Adding new
language features, e.g., for concurrency and lazy evaluation, gives a new language
L’ which is implemented by extending the interpreter for L.

The interpreter approach has the advantage that it shows a self-contained im-
plementation of the linguistic abstractions. We do not use the interpreter approach
in this book because it does not in general preserve the execution-time complexity
of programs (the number of operations needed as a function of input size). A sec-
ond difficulty is that the basic concepts interact with each other in the interpreter,
which makes them harder to understand. The translation approach makes it easier
to keep the concepts separate.

2.2 The single-assignment store

We introduce the declarative model by first explaining its data structures. The
model uses a single-assignment store, which is a set of variables that are initially
unbound and that can be bound to one value. Figure 2.6 shows a store with three
unbound variables 1, 23, and x3. We can write this store as {x1, 22, z3}. For now,
let us assume we can use integers, lists, and records as values. Figure 2.7 shows the
store where z1 is bound to the integer 314 and 2 is bound to the list [1 2 3]. We
write this as {x1 = 314,29 = [1 2 3], z3}.

2.2.1 Declarative variables

Variables in the single-assignment store are called declarative variables. We use this
term whenever there is a possible confusion with other kinds of variables. Later on
in the book, we will also call these variables dataflow variables because of their role
in dataflow execution.

Once bound, a declarative variable stays bound throughout the computation
and is indistinguishable from its value. What this means is that it can be used in

2.2 The single-assignment store 438

X, 314

% 2] {3 /ni
.

e

‘George | [25 |

Figure 2.8: A value store: all variables are bound to values.

calculations as if it were the value. Doing the operation = + y is the same as doing
11 + 22, if the store is {x = 11,y = 22}.

2.2.2 Value store

A store where all variables are bound to values is called a value store. Another way
to say this is that a value store is a persistent mapping from variables to values. A
value is a mathematical constant. For example, the integer 314 is a value. Values
can also be compound entities, i.e., entities that contain one or more other values.
For example, the list [1 2 3] and the record person (name:"George" age:25)
are values. Figure 2.8 shows a value store where x1 is bound to the integer 314, x5 is
bound to the list [1 2 3], and x3 is bound to the record person (name: "George"
age:25). Functional languages such as Standard ML, Haskell, and Scheme get
by with a value store since they compute functions on values. (Object-oriented
languages such as Smalltalk, C++, and Java need a cell store, which consists of
cells whose content can be modified.)

At this point, a reader with some programming experience may wonder why
we are introducing a single-assignment store, when other languages get by with

44

Declarative Computation Model

In statement Inside the store

Figure 2.9: A variable identifier referring to an unbound variable.

a value store or a cell store. There are many reasons. A first reason is that we
want to compute with partial values. For example, a procedure can return an
output by binding an unbound variable argument. A second reason is declarative
concurrency, which is the subject of chapter 4. It is possible because of the single-
assignment store. A third reason is that a single-assignment store is needed for
relational (logic) programming and constraint programming. Other reasons having
to do with efficiency (e.g., tail recursion and difference lists) will become clear in
the next chapter.

2.2.3 Value creation

The basic operation on a store is binding a variable to a newly created value. We
will write this as z;=wvalue. Here x; refers directly to a variable in the store (it is
not the variable’s textual name in a program!) and wvalue refers to a value, e.g.,
314 or [1 2 3]. For example, figure 2.7 shows the store of figure 2.6 after the two
bindings:

= 314
ro = [1 2 3]

The single-assignment operation z;=value constructs value in the store and then
binds the variable x; to this value. If the variable is already bound, the operation
will test whether the two values are compatible. If they are not compatible, an error
is signaled (using the exception-handling mechanism; see section 2.7).

2.2.4 Variable identifiers

So far, we have looked at a store that contains variables and values, i.e., store
entities, with which calculations can be done. It would be nice if we could refer to a
store entity from outside the store. This is the role of variable identifiers. A variable
identifier is a textual name that refers to a store entity from outside the store. The
mapping from variable identifiers to store entities is called an environment.

The variable names in program source code are in fact variable identifiers. For
example, figure 2.9 has an identifier “x” (the capital letter X) that refers to the
store variable x;. This corresponds to the environment {x — z;}. To talk about

2.2 The single-assignment store 45

Inside the store
E Y “
2] 3 i

Figure 2.10: A variable identifier referring to a bound variable.

Inside the store

Figure 2.11: A variable identifier referring to a value.

any identifier, we will use the notation (x). The environment {(x) — x1} is the
same as before, if (x) represents X. As we will see later, variable identifiers and
their corresponding store entities are added to the environment by the local and
declare statements.

2.2.5 Value creation with identifiers

Once bound, a variable is indistinguishable from its value. Figure 2.10 shows what
happens when z; is bound to [1 2 3] in figure 2.9. With the variable identifier x,
we can write the binding as X=[1 2 3]. This is the text a programmer would write
to express the binding. We can also use the notation (x)=[1 2 3] if we want to be
able to talk about any identifier. To make this notation legal in a program, (x) has
to be replaced by an identifier.

The equality sign “=" refers to the bind operation. After the bind completes,
the identifier “X” still refers to x1, which is now bound to [1 2 3]. This is
indistinguishable from figure 2.11, where X refers directly to [1 2 3]. Following
the links of bound variables to get the value is called dereferencing. It is invisible
to the programmer.

46

Declarative Computation Model

Inside the store

E

Figure 2.12: A partial value.

Inside the store

E

Figure 2.13: A partial value with no unbound variables, i.e., a complete value.

2.2.6 Partial values

A partial value is a data structure that may contain unbound variables. Figure 2.12
shows the record person (name: "George" age:xs), referred to by the identifier x.
This is a partial value because it contains the unbound variable x5. The identifier
Y refers to xo. Figure 2.13 shows the situation after xo is bound to 25 (through the
bind operation Y=25). Now x is a partial value with no unbound variables, which we
call a complete value. A declarative variable can be bound to several partial values,
as long as they are compatible with each other. We say a set of partial values is
compatible if the unbound variables in them can be bound in such a way as to make
them all equal. For example, person (age:25) and person (age:x) are compatible
(because = can be bound to 25), but person (age:25) and person (age:26) are
not.

2.2 The single-assignment store 47

Inside the store

E Y
E Y

Figure 2.14: Two variables bound together.

Inside the store

- .
- R

Figure 2.15: The store after binding one of the variables.

2.2.7 Variable-variable binding

Variables can be bound to variables. For example, consider two unbound variables
21 and x5 referred to by the identifiers X and Y. After doing the bind X=Y, we get the
situation in figure 2.14. The two variables 1 and x5 are equal to each other. The
figure shows this by letting each variable refer to the other. We say that {x1, z2}
form an equivalence set.4 We also write this as x1 = xo. Three variables that are
bound together are written as x; = xo = x3 or {z1, Z2, £3}. Drawn in a figure, these
variables would form a circular chain. Whenever one variable in an equivalence set
is bound, then all variables see the binding. Figure 2.15 shows the result of doing
X=[1 2 3].

2.2.8 Dataflow variables

In the declarative model, creating a variable and binding it are done separately.
What happens if we try to use the variable before it is bound? We call this a

4. From a formal viewpoint, the two variables form an equivalence class with respect to
equality.

48

Declarative Computation Model

variable use error. Some languages create and bind variables in one step, so that use
errors cannot occur. This is the case for functional programming languages. Other
languages allow creating and binding to be separate. Then we have the following
possibilities when there is a use error:

1. Execution continues and no error message is given. The variable’s content is
undefined, i.e. it is “garbage”: whatever is found in memory. This is what C++
does.

2. Execution continues and no error message is given. The variable is initialized to
a default value when it is declared, e.g., to O for an integer. This is what Java does
for fields in objects and data structures, such as arrays. The default value depends
on the type.

3. Execution stops with an error message (or an exception is raised). This is what
Prolog does for arithmetic operations.

4. Execution is not possible because the compiler detects that there is an execution
path to the variable’s use that does not initialize it. This is what Java does for local
variables.

5. Execution waits until the variable is bound and then continues. This is what Oz
does, to support dataflow programming.

These cases are listed in increasing order of niceness. The first case is very bad,
since different executions of the same program can give different results. What’s
more, since the existence of the error is not signaled, the programmer is not even
aware when this happens. The second case is somewhat better. If the program has
a use error, then at least it will always give the same result, even if it is a wrong
one. Again the programmer is not made aware of the error’s existence.

The third and fourth cases can be reasonable in certain situations. In both
cases, a program with a use error will signal this fact, either during execution
or at compile time. This is reasonable in a sequential system, since there really is
an error. The third case is unreasonable in a concurrent system, since the result
becomes nondeterministic: depending on the execution timing, sometimes an error
is signaled and sometimes not.

In the fifth case, the program will wait until the variable is bound and then con-
tinue. The computation models of the book use the fifth case. This is unreasonable
in a sequential system, since the program will wait forever. It is reasonable in a con-
current system, where it could be part of normal operation that some other thread
binds the variable. The fifth case introduces a new kind of program error, namely
a suspension that waits forever. For example, if a variable name is misspelled then
it will never be bound. A good debugger should detect when this occurs.

Declarative variables that cause the program to wait until they are bound are
called dataflow variables. The declarative model uses dataflow variables because
they are tremendously useful in concurrent programming, i.e., for programs with
activities that run independently. If we do two concurrent operations, say A=23 and
B=A+1, then with the fifth case this will always run correctly and give the answer

2.8 Kernel language

49

() =

skip Empty statement

case (x) of (pattern) then (s); else (s)2 end Pattern matching

| (s)1 (s)2 Statement sequence

| local (x) in (s) end Variable creation

| () 1=(x)2 Variable-variable binding
| (})=(v) Value creation

| if (X) then (s); else (s)2 end Conditional

|

|

{0 (M1 ... (y)n} Procedure application

Table 2.1: The declarative kernel language.

B=24. It doesn’t matter whether A=23 is run first or whether B=A+1 is run first. With
the other cases, there is no guarantee of this. This property of order-independence
makes possible the declarative concurrency of chapter 4. It is at the heart of why
dataflow variables are a good idea.

2.3 Kernel language

The declarative model defines a simple kernel language. All programs in the model
can be expressed in this language. We first define the kernel language syntax and
semantics. Then we explain how to build a full language on top of the kernel
language.

2.3.1 Syntax

The kernel syntax is given in tables 2.1 and 2.2. It is carefully designed to be a
subset of the full language syntax, i.e., all statements in the kernel language are
valid statements in the full language.

Statement syntax

Table 2.1 defines the syntax of (s), which denotes a statement. There are eight
statements in all, which we will explain later.

Value syntax
Table 2.2 defines the syntax of (v), which denotes a value. There are three kinds

of value expressions, denoting numbers, records, and procedures. For records and
patterns, the arguments (x)1, ..., (x),, must all be distinct identifiers. This ensures

50

Declarative Computation Model

(v) == (number) | (record) | {procedure)
(int) | (float)
(

)
(literal) ((feature)1: (x)1 --- (feature)n: (x)n)
{

(number)

(record), (pattern) literal

(procedure) proc { $ (X)1 -+ (X)n} (s) end
(literal) (atom) | (bool)

(feature) = (atom) | (bool) | (int)

(bool) n= true | false

Table 2.2: Value expressions in the declarative kernel language.

that all variable-variable bindings are written as explicit kernel operations.
Variable identifier syntax

Table 2.1 uses the nonterminals (x) and (y) to denote a variable identifier. We will
also use (z) to denote identifiers. There are two ways to write a variable identifier:

= An uppercase letter followed by zero or more alphanumeric characters (letters or
digits or underscores), e.g., X, X1, or ThisIsALongVariable IsntIt.

= Any sequence of printable characters enclosed within ~ (backquote) characters,
e.g., “this is a 25$\variable!".

A precise definition of identifier syntax is given in appendix C. All newly declared
variables are unbound before any statement is executed. All variable identifiers
must be declared explicitly.

2.3.2 Values and types

A type or data type is a set of values together with a set of operations on those
values. A value is “of a type” if it is in the type’s set. The declarative model is typed
in the sense that it has a well-defined set of types, called basic types. For example,
programs can calculate with integers or with records, which are all of integer type or
record type, respectively. Any attempt to use an operation with values of the wrong
type is detected by the system and will raise an error condition (see section 2.7).
The model imposes no other restrictions on the use of types.

Because all uses of types are checked, it is not possible for a program to behave
outside of the model, e.g., to crash because of undefined operations on its internal
data structures. It is still possible for a program to raise an error condition, e.g., by
dividing by zero. In the declarative model, a program that raises an error condition
will terminate immediately. There is nothing in the model to handle errors. In
section 2.7 we extend the declarative model with a new concept, exceptions, to

2.8 Kernel language

51

Value
Number Record Procedure
Int Float Tuple
Char Literal List
Bool Atom .. String

True False

Figure 2.16: The type hierarchy of the declarative model.

handle errors. In the extended model, type errors can be handled within the model.

In addition to basic types, programs can define their own types. These are called
abstract data types, or ADTs. Chapter 3 and later chapters show how to define
ADTs. There are other kinds of data abstraction in addition to ADTs. Section 6.4
gives an overview of the different possibilities.

Basic types

The basic types of the declarative model are numbers (integers and floats), records
(including atoms, booleans, tuples, lists, and strings), and procedures. Table 2.2
gives their syntax. The nonterminal (v) denotes a partially constructed value.
Later in the book we will see other basic types, including chunks, functors, cells,
dictionaries, arrays, ports, classes, and objects. Some of these are explained in
appendix B.

Dynamic typing

There are two basic approaches to typing, namely dynamic and static typing. In
static typing, all variable types are known at compile time. In dynamic typing, the
variable type is known only when the variable is bound. The declarative model is
dynamically typed. The compiler tries to verify that all operations use values of the
correct type. But because of dynamic typing, some type checks are necessarily left
for run time.

52

Declarative Computation Model

The type hierarchy

The basic types of the declarative model can be classified into a hierarchy. Fig-
ure 2.16 shows this hierarchy, where each node denotes a type. The hierarchy is
ordered by set inclusion, i.e., all values of a node’s type are also values of the par-
ent node’s type. For example, all tuples are records and all lists are tuples. This
implies that all operations of a type are also legal for a subtype, e.g., all list op-
erations work also for strings. Later on in the book we extend this hierarchy. For
example, literals can be either atoms (explained below) or another kind of constant
called names (see section 3.7.5). The parts where the hierarchy is incomplete are

“ 9

given as
2.3.3 Basic types

We give some examples of the basic types and how to write them. See appendix B
for more complete information.

® Numbers. Numbers are either integers or floating point numbers. Examples of
integers are 314, 0, and ~10 (minus 10). Note that the minus sign is written with a
tilde “~”. Examples of floating point numbers are 1.0, 3.4, 2.0e2, and ~2.0E"2.

m Atoms. An atom is a kind of symbolic constant that can be used as a single
element in calculations. There are several different ways to write atoms. An atom
can be written as a sequence of characters starting with a lowercase letter followed
by any number of alphanumeric characters. An atom can also be written as any
sequence of printable characters enclosed in single quotes. Examples of atoms are
a_person, donkeyKong3, and “#### hello #### .

® Booleans. A boolean is either the symbol true or the symbol false.

® Records. A record is a compound data structure. It consists of a label followed by
a set of pairs of features and variable identifiers. Features can be atoms, integers, or
booleans. Examples of records are person (age:X1 name:x2) (with features age
and name), person(1:X1 2:X2), | “(1:H 2:T), "#”(1:H 2:T),nil, and person.
An atom is a record with no features.

® Tuples. A tuple is a record whose features are consecutive integers starting from
1. The features do not have to be written in this case. Examples of tuples are
person(1:X1 2:X2) and person (X1 X2), both of which mean the same.

m Lists. A list is either the atom nil or the tuple “|~ (2 T) (label is vertical bar),
where T is either unbound or bound to a list. This tuple is called a list pair or a
cons. There is syntactic sugar for lists:

s The ~|~ label can be written as an infix operator, so that H|T means the
same as “| " (H T).

= The “| ~ operator associates to the right, so that 1|2|3|nil means the same
as 1] (2] (3]nil)).

2.8 Kernel language

53

s Lists that end in nil can be written with brackets [... 1, so that [1 2 3]
means the same as 1|23 |nil. These lists are called complete lists.

® Strings. A string is a list of character codes. Strings can be written with double
quotes, so that "E=mc”~2" means the same as [69 61 109 99 94 50].

® Procedures. A procedure is a value of the procedure type. The statement

(x) = proc {$ (y)1 -+ (Y)n} (s) end

binds (x) to a new procedure value. That is, it simply declares a new procedure.
The $ indicates that the procedure value is anonymous, i.e., created without being
bound to an identifier. There is a syntactic shortcut that is more familiar:

proc {(x) (¥)1 --- (¥)n} (s) end

The ¢ is replaced by the identifier (x). This creates the procedure value and
immediately tries to bind it to (x). This shortcut is perhaps easier to read, but
it blurs the distinction between creating the value and binding it to an identifier.

2.3.4 Records and procedures

We explain why we chose records and procedures as basic concepts in the kernel
language. This section is intended for readers with some programming experience
who wonder why we designed the kernel language the way we did.

The power of records

Records are the basic way to structure data. They are the building blocks of most
data structures including lists, trees, queues, graphs, etc., as we will see in chapter 3.
Records play this role to some degree in most programming languages. But we
shall see that their power can go much beyond this role. The extra power appears
in greater or lesser degree depending on how well or how poorly the language
supports them. For maximum power, the language should make it easy to create
them, take them apart, and manipulate them. In the declarative model, a record is
created by simply writing it down, with a compact syntax. A record is taken apart
by simply writing down a pattern, also with a compact syntax. Finally, there are
many operations to manipulate records: to add, remove, or select fields; to convert
to a list and back, etc. In general, languages that provide this level of support for
records are called symbolic languages.

When records are strongly supported, they can be used to increase the effec-
tiveness of many other techniques. This book focuses on three in particular: object-
oriented programming, graphical user interface (GUI) design, and component-based
programming. In object-oriented programming, chapter 7 shows how records can
represent messages and method heads, which are what objects use to communicate.
In GUI design, chapter 10 shows how records can represent “widgets,” the basic
building blocks of a user interface. In component-based programming, section 3.9

54

Declarative Computation Model

shows how records can represent first-class modules, which group together related
operations.

Why procedures?

A reader with some programming experience may wonder why our kernel language
has procedures as a basic construct. Fans of object-oriented programming may
wonder why we do not use objects instead. Fans of functional programming may
wonder why we do not use functions. We could have chosen either possibility, but
we did not. The reasons are quite straightforward.

Procedures are more appropriate than objects because they are simpler. Objects
are actually quite complicated, as chapter 7 explains. Procedures are more appro-
priate than functions because they do not necessarily define entities that behave like
mathematical functions.® For example, we define both components and objects as
abstractions based on procedures. In addition, procedures are flexible because they
do not make any assumptions about the number of inputs and outputs. A func-
tion always has exactly one output. A procedure can have any number of inputs
and outputs, including zero. We will see that procedures are extremely powerful
building blocks, when we talk about higher-order programming in section 3.6.

2.3.5 Basic operations

Table 2.3 gives the basic operations that we will use in this chapter and the next.
There is syntactic sugar for many of these operations so that they can be written
concisely as expressions. For example, Xx=A*B is syntactic sugar for {Number. *~
A B X}, where Number. *~ is a procedure associated with the type Number.

All operations can be denoted in some long way, e.g., Value. ==", Value. <",
Int. div~, Float.”/~. The table uses the syntactic sugar when it exists.

6

» Arithmetic. Floating point numbers have the four basic operations, +, -, *, and /,
with the usual meanings. Integers have the basic operations +, -, *, div, and mod,
where div is integer division (truncate the fractional part) and mod is the integer
modulo, i.e., the remainder after a division. For example, 10 mod 3=1.

® Record operations. Three basic operations on records are Arity, Label, and “.”
(dot, which means field selection). For example, given

X=person (name: "George" age:25)

5. From a theoretical point of view, procedures are “processes” as used in concurrent
calculi such as the 7 calculus. The arguments are channels. In this chapter we use processes
that are composed sequentially with single-shot channels. Chapters 4 and 5 show other
types of channels (with sequences of messages) and do concurrent composition of processes.
6. To be precise, Number is a module that groups the operations of the Number type and
Number . “* ~ selects the multiplication operation.

2.8 Kernel language

55

Operation Description Argument type
A==B Equality comparison Value

A\=B Inequality comparison Value
{1sProcedure P} Test if procedure Value

A=<B Less than or equal comparison Number or Atom
A<B Less than comparison Number or Atom
A>=B Greater than or equal comparison Number or Atom
A>B Greater than comparison Number or Atom
A+B Addition Number

A-B Subtraction Number

A*B Multiplication Number

A div B Division Int

A mod B Modulo Int

A/B Division Float

{Arity R} Arity Record

{Label R} Label Record

R.F Field selection Record

Table 2.3: Examples of basic operations.

then {Arity X}=[age namel], {Label X}=person, and X.age=25. The call to
Arity returns a list that contains first the integer features in ascending order and
then the atom features in ascending lexicographic order.

® Comparisons. The boolean comparison functions include == and \=, which can
compare any two values for equality, as well as the numeric comparisons =<, <,
>=, and >, which can compare two integers, two floats, or two atoms. Atoms are
compared according to the lexicographic order of their print representations. In the
following example, z is bound to the maximum of X and Y:

declare X Y Z T in

X=5 Y=10

T= (X>=Y)

if T then Z=X else Z=Y end
There is syntactic sugar so that an if statement accepts an expression as its
condition. The above example can be rewritten as:

declare X Y Z in

X=5 Y=10

if X>=Y then Z=X else Z=Y end
® Procedure operations. There are three basic operations on procedures: defining
them (with the proe statement), calling them (with the curly brace notation), and
testing whether a value is a procedure with the IsProcedure function. The call
{1sProcedure P} returns true if P is a procedure and false otherwise.

56

Declarative Computation Model

Appendix B gives a more complete set of basic operations.

2.4 Kernel language semantics

The kernel language execution consists in evaluating functions over partial values.
To see this, we give the semantics of the kernel language in terms of a simple
operational model. The model is designed to let the programmer reason about both
correctness and complexity in a simple way. It is a kind of abstract machine, but
at a high level of abstraction that leaves out details such as registers and explicit
memory addresses.

2.4.1 Basic concepts

Before giving the formal semantics, let us give some examples to give intuition on
how the kernel language executes. This will motivate the semantics and make it
easier to understand.

A simple execution

During normal execution, statements are executed one by one in textual order. Let
us look at a simple execution:
local A B C D in
A=11
B=2
C=A+B
D=C*C
end
This seems simple enough; it will bind D to 169. Let us see exactly what it does.
The local statement creates four new variables in the store, and makes the four
identifiers A, B, ¢, D refer to them. (For convenience, this extends slightly the
local statement of table 2.1.) This is followed by two bindings, A=11 and B=2.
The addition c=A+B adds the values of A and B and binds C to the result 13. The
multiplication D multiples the value of ¢ by itself and binds D to the result 169.
This is quite simple.

Variable identifiers and static scoping

We saw that the local statement does two things: it creates a new variable and
it sets up an identifier to refer to the variable. The identifier only refers to the
variable inside the local statement, i.e., between the local and the end. The
program region in which an identifier refers to a particular variable is called the
scope of the identifier. Outside of the scope, the identifier does not mean the same
thing. Let us look closer at what this implies. Consider the following fragment:

2.4 Kernel language semantics 57

local X in
X=1
local X in
X=2
{Browse X}
end
{Browse X}
end
What does it display? It displays first 2 and then 1. There is just one identifier, X,
but at different points during the execution, it refers to different variables.

Let us summarize this idea. The meaning of an identifier like X is determined
by the innermost local statement that declares X. The area of the program where
X keeps this meaning is called the scope of X. We can find out the scope of an
identifier by simply inspecting the text of the program; we do not have to do
anything complicated like execute or analyze the program. This scoping rule is
called lexical scoping or static scoping. Later we will see another kind of scoping
rule, dynamic scoping, that is sometimes useful. But lexical scoping is by far the
most important kind of scoping rule. One reason is because it is localized, i.e.,
the meaning of an identifier can be determined by looking at a small part of the
program. We will see another reason shortly.

Procedures

Procedures are one of the most important basic building blocks of any language.
We give a simple example that shows how to define and call a procedure. Here is a
procedure that binds Z to the maximum of X and Y:

proc {Max X Y 22}

if X>=Y then Z=X else Z=Y end

end
To make the definition easier to read, we mark the output argument with a
question mark “?”. This has absolutely no effect on execution; it is just a comment.
Calling {Max 3 5 ¢} binds ¢ to 5. How does the procedure work, exactly? When
Max is called, the identifiers X, Y, and Z are bound to 3, 5, and the unbound
variable referenced by c. When Max binds z, then it binds this variable. Since ¢
also references this variable, this also binds c. This way of passing parameters is
called call by reference. Procedures output results by being passed references to
unbound variables, which are bound inside the procedure. This book mostly uses
call by reference, both for dataflow variables and for mutable variables. Section 6.4.4
explains some other parameter-passing mechanisms.

Procedures with external references

Let us examine the body of Max. It is just an if statement:

if X>=Y then Z=X else Z=Y end

58

Declarative Computation Model

This statement has one particularity, though: it cannot be executed! This is because
it does not define the identifiers X, Y, and 2. These undefined identifiers are called
free identifiers. (Sometimes they are called free variables, although strictly speaking
they are not variables.) When put inside the procedure Max, the statement can be
executed, because all the free identifiers are declared as procedure arguments.
What happens if we define a procedure that only declares some of the free
identifiers as arguments? For example, let’s define the procedure LB with the same
procedure body as Max, but only two arguments:
proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end
end
What does this procedure do when executed? Apparently, it takes any number x
and binds Z to X if X>=Y, but to Y otherwise. That is, Z is always at least Y. What
is the value of Y? It is not one of the procedure arguments. It has to be the value
of Y when the procedure is defined. This is a consequence of static scoping. If Y=9
when the procedure is defined, then calling {LB 3 2z} binds z to 9. Consider the
following program fragment:
local Y LB in
Y=10
proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end
local Y=15 Z in
{B 5 27}
end
end

What does the call {LB 5 2z} bind z to? It will be bound to 10. The binding Y=15
when LB is called is ignored; it is the binding Y=10 at the procedure definition that
is important.

Dynamic scoping versus static scoping

Consider the following simple example:

local P Q in
proc {Q X} {Browse stat(X)} end
proc {P X} {Q X} end
local Q in
proc {Q X} {Browse dyn(X)} end
{P hello}
end
end

What should this display, stat (hello) or dyn(hello)? Static scoping says that
it will display stat (hello). In other words, P uses the version of Q that exists at
P’s definition. But there is another solution: P could use the version of Q that exists
at P’s call. This is called dynamic scoping.

2.4 Kernel language semantics 59

Both static and dynamic scoping have been used as the default in programming
languages. Let us compare the two by first giving their definitions side by side:

® Static scope. The variable corresponding to an identifier occurrence is the one
defined in the textually innermost declaration surrounding the occurrence in the
source program.

® Dynamic scope. The variable corresponding to an identifier occurrence is the one
in the most-recent declaration seen during the execution leading up to the current
statement.

The original Lisp language was dynamically scoped. Common Lisp and Scheme,
which are descended from Lisp, are statically scoped by default. Common Lisp
allows declaring dynamically scoped variables, which it calls special variables [200].
Which default is the right one? The correct default is procedure values with static
scoping. This is because a procedure that works when it is defined will continue
to work, independent of the environment where it is called. This is an important
software engineering property.

Dynamic scoping remains useful in some well-defined areas. For example, consider
the case of a procedure whose code is transferred across a network from one
computer to another. Some of this procedure’s external references, e.g., calls to
common library operations, can use dynamic scoping. This way, the procedure will
use local code for these operations instead of remote code. This is much more
efficient.”

Procedural abstraction

Let us summarize what we learned from Max and LB. Three concepts play an
important role:

1. Procedural abstraction. Any statement can be made into a procedure by putting
it inside a procedure declaration. This is called procedural abstraction. We also say
that the statement is abstracted into a procedure.

2. Free identifiers. A free identifier in a statement is an identifier that is not defined
in that statement. It might be defined in an enclosing statement.

3. Static scoping. A procedure can have external references, which are free identi-
fiers in the procedure body that are not declared as arguments. LB has one external
reference. Max has none. The value of an external reference is its value when the
procedure is defined. This is a consequence of static scoping.

Procedural abstraction and static scoping together form one of the most powerful
tools presented in the book. In the semantics, we will see that they can be

7. However, there is no guarantee that the operation will behave in the same way on the
target machine. So even for distributed programs the default should be static scoping.

60

Declarative Computation Model

implemented in a simple way.
Dataflow behavior

In the single-assignment store, variables can be unbound. On the other hand, some
statements need bound variables, otherwise they cannot execute. For example, what
happens when we execute:
local X Y Z in
X=10
if X>=Y then Z=X else Z=Y end
end
The comparison X>=Y returns true or false, if it can decide which is the case.
If v is unbound, it cannot decide, strictly speaking. What does it do? Continuing
with either true or false would be incorrect. Raising an error would be a drastic
measure, since the program has done nothing wrong (it has done nothing right
either). We decide that the program will simply stop its execution, without signaling
any kind of error. If some other activity (to be determined later) binds v, then the
stopped execution can continue as if nothing had perturbed the normal flow of
execution. This is called dataflow behavior. Dataflow behavior underlies a second
powerful tool presented in the book, namely concurrency. In the semantics, we will
see that dataflow behavior can be implemented in a simple way.

2.4.2 The abstract machine

We define the semantics of the kernel language as an operational semantics, i.e.,
it defines the meaning of the kernel language through its execution on an abstract
machine. We first define the basic concepts of the abstract machine: environments,
semantic statement, statement stack, execution state, and computation. We then
show how to execute a program. Finally, we explain how to calculate with environ-
ments, which is a common semantic operation.

Definitions

A running program is defined in terms of a computation, which is a sequence of
execution states. Let us define exactly what this means. We need the following
concepts:

® A single-assignment store o is a set of store variables. These variables are
partitioned into (1) sets of variables that are equal but unbound and (2) variables
that are bound to a number, record, or procedure. For example, in the store
{z1,29 = 23,74 = a|wxa}, x1 is unbound, z3 and z3 are equal and unbound,
and x4 is bound to the partial value a|zy. A store variable bound to a value is
indistinguishable from that value. This is why a store variable is sometimes called
a store entity.

2.4 Kernel language semantics 61

. Semantic stack
U=Z.age X=U+1 if X<2then ...

(statement in execution)

W=atom

Z=person(age: Y) Single-assignment store

Y=42 U

(value store extended
with dataflow variables)

Figure 2.17: The declarative computation model.

® An environment E is a mapping from variable identifiers to entities in o. This is
explained in section 2.2. We will write E as a set of pairs, e.g., {x — x,Y — y},
where X, Y are identifiers and z, y refer to store entities.

® A semantic statement is a pair ((s), E) where (s) is a statement and F is an
environment. The semantic statement relates a statement to what it references in
the store. The set of possible statements is given in section 2.3.

® An execution state is a pair (ST, o) where ST is a stack of semantic statements
and o is a single-assignment store. Figure 2.17 gives a picture of the execution state.

® A computation is a sequence of execution states starting from an initial state:
(ST(),O'()) — (STl,O'l) — (ST270'2) — e

A single transition in a computation is called a computation step. A computation
step is atomic, i.e., there are no visible intermediate states. It is as if the step
is done “all at once.” In this chapter, all computations are sequential, i.e., the
execution state contains exactly one statement stack, which is transformed by a
linear sequence of computation steps.

Program erecution
Let us execute a program in this semantics. A program is simply a statement (s).
Here is how to execute the program:

® The initial execution state is:

([(s), 2], 9)

That is, the initial store is empty (no variables, empty set ¢) and the initial
execution state has just one semantic statement ((s),) in the stack ST. The
semantic statement contains (s) and an empty environment (¢). We use brackets
[...] to denote the stack.

62

Declarative Computation Model

® At each step, the first element of ST is popped and execution proceeds according
to the form of the element.

= The final execution state (if there is one) is a state in which the semantic stack
is empty.

A semantic stack ST can be in one of three run-time states:

= Runnable: ST can do a computation step.
® Terminated: ST is empty.

® Suspended: ST is not empty, but it cannot do any computation step.
Calculating with environments

A program execution often does calculations with environments. An environment
E is a function that maps variable identifiers (x) to store entities (both unbound
variables and values). The notation F((x)) retrieves the entity associated with
the identifier (x) from the store. To define the semantics of the abstract machine
instructions, we need two common operations on environments, namely adjunction
and restriction.

Adjunction defines a new environment by adding a mapping to an existing one.
The notation

E+{{x) =}

denotes a new environment E’ constructed from E by adding the mapping {(x) —
x}. This mapping overrides any other mapping from the identifier (x). That is,
E'({x}) is equal to z, and E’({y)) is equal to E({y)) for all identifiers (y) different
from (x). When we need to add more than one mapping at once, we write E +

{6 = 21,0, (%), = @}
Restriction defines a new environment whose domain is a subset of an existing
one. The notation

El{ 1ot}
denotes a new environment E’ such that dom(E’) = dom(E) N{(x),...,(x),} and

E'({(x)) = E({x)) for all (x) € dom(E’). That is, the new environment does not
contain any identifiers other than those mentioned in the set.

2.4.3 Nonsuspendable statements

We first give the semantics of the statements that can never suspend.

The skip statement

The semantic statement is:

2.4 Kernel language semantics 63

(skip, F)

Execution is complete after this pair is popped from the semantic stack.
Sequential composition

The semantic statement is:

((s)1 (s)2, E)

Execution consists of the following actions:
® Push ((s)2, E) on the stack.

= Push ((s)1, F) on the stack.

Variable declaration (the local statement)

The semantic statement is:
(local (x) in (s) end, F)
Execution consists of the following actions:

m Create a new variable x in the store.

® Let E' be E+{(x) — x}, i.e., E’ is the same as F except that it adds a mapping
from (x) to z.

= Push ({(s), E’) on the stack.
Variable-variable binding

The semantic statement is:

()1 = (x)2, E)
Execution consists of the following action:

® Bind E((x);) and E({x)2) in the store.
Value creation
The semantic statement is:

where (v) is a partially constructed value that is either a record, number, or
procedure. Execution consists of the following actions:

m Create a new variable x in the store.

® Construct the value represented by (v) in the store and let x refer to it. All

04

Declarative Computation Model

identifiers in (v) are replaced by their store contents as given by E.
= Bind E({(x)) and z in the store.

We have seen how to construct record and number values, but what about procedure
values? In order to explain them, we have first to explain the concept of lexical
scoping.

Free and bound identifier occurrences

A statement (s) can contain many occurrences of variable identifiers. For each
identifier occurrence, we can ask the question: where was this identifier declared?
If the declaration is in some statement (part of (s) or not) that textually surrounds
(i.e., encloses) the occurrence, then we say that the declaration obeys lexical
scoping. Because the scope is determined by the source code text, this is also called
static scoping.

Identifier occurrences in a statement can be bound or free with respect to that
statement. An identifier occurrence X is bound with respect to a statement (s) if it is
declared inside (s), i.e., in a local statement, in the pattern of a case statement,
or as argument of a procedure declaration. An identifier occurrence that is not
bound is free. Free occurrences can only exist in incomplete program fragments,
i.e., statements that cannot run. In a running program, it is always true that every
identifier occurrence is bound.

Bound identifier occurrences and bound variables

Do not confuse a bound identifier occurrence with a bound variable!
A bound identifier occurrence does not exist at run time; it is a
textual variable name that textually occurs inside a construct that
declares it (e.g., a procedure or variable declaration). A bound
variable exists at run time; it is a dataflow variable that is bound
to a partial value.

Here is an example with both free and bound occurrences:
local Argl Arg2 in
Argl=111*111
Arg2=999%999
Res=Argl+Arg2
end
In this statement, all variable identifiers are declared with lexical scoping. All
occurrences of the identifiers Argl and Arg2 are bound and the single occurrence
of Res is free. This statement cannot be run. To make it runnable, it has to be part
of a bigger statement that declares Res. Here is an extension that can run:

2.4 Kernel language semantics 65

local Res in
local Argl Arg2 in
Argl=111+*111
Arg2=999*999
Res=Argl+Arg2
end
{Browse Res}
end

This can run since it has no free identifier occurrences.
Procedure values (closures)

Let us see how to construct a procedure value in the store. It is not as simple as
one might imagine because procedures can have external references. For example:

proc {LowerBound X ?Z}

if X>=Y then Z=X else Z=Y end

end
In this example, the if statement has three free variables, X, v, and z. Two of them,
X and Z, are also formal parameters. The third, v, is not a formal parameter. It has
to be defined by the environment where the procedure is declared. The procedure
value itself must have a mapping from Y to the store. Otherwise, we could not call
the procedure since Y would be a kind of dangling reference.

Let us see what happens in the general case. A procedure expression is written

as:

proc { $ (y)1 -+ (¥)n} (s) end

The statement (s) can have free variable identifiers. Each free identifer is either a
formal parameter or not. The first kind are defined anew each time the procedure
is called. They form a subset of the formal parameters {(y)1, ..., (y)n}. The second
kind are defined once and for all when the procedure is declared. We call them the
external references of the procedure. Let us write them as {(z)1, ..., (z)r}. Then
the procedure value is a pair:

(proc { $ (y)1 -+ (¥)n} (s) end, CE)

Here CE (the contextual environment) is F|((,y | . (z), }, Where E is the environment
when the procedure is declared. This pair is put in the store just like any other value.

Because it contains an environment as well as a procedure definition, a procedure
value is often called a closure or a lexically scoped closure. This is because it “closes”
(i.e., packages up) the environment at procedure definition time. This is also called
environment capture. When the procedure is called, the contextual environment is
used to construct the environment of the executing procedure body.

2.4.4 Suspendable statements

There are three statements remaining in the kernel language:

66

Declarative Computation Model

(s) = ...
| 4if (x) then (s); else (s)3 end
| case (x) of (pattern) then (s); else (S); end

[{00 (W1 - (Y)n)

What should happen with these statements if (x) is unbound? From the discussion
in section 2.2.8, we know what should happen. The statements should simply wait
until (x) is bound. We say that they are suspendable statements. They have an
activation condition, which we define as a condition that must be true for execution
to continue. The condition is that E({x)) must be determined, i.e., bound to a
number, record, or procedure.

In the declarative model of this chapter, once a statement suspends it will never
continue. The program simply stops executing. This is because there is no other
execution that could make the activation condition true. In chapter 4, when we
introduce concurrent programming, we will have executions with more than one
semantic stack. A suspended stack ST can become runnable again if another stack
does an operation that makes ST’s activation condition true. This is the basis of
dataflow execution. For now, let us investigate sequential programming and stick
with just a single semantic stack.

Conditional (the if statement)

The semantic statement is:
(1f (x) then (s); else (s)2 end, F)
Execution consists of the following actions:

m If the activation condition is true (E({x)) is determined), then do the following
actions:

o If E((x)) is not a boolean (true or £alse) then raise an error condition.

o If E((x)) is true, then push ((s);, F) on the stack.

o If E((x)) is false, then push ((s)2, E') on the stack.

m If the activation condition is false, then execution does not continue. The execu-
tion state is kept as is. We say that execution suspends. The stop can be temporary.
If some other activity in the system makes the activation condition true, then exe-
cution can resume.

Procedure application

The semantic statement is:

({() 1 W) E)

Execution consists of the following actions:

2.4 Kernel language semantics 67

m If the activation condition is true (E({x)) is determined), then do the following
actions:

o If E((x)) is not a procedure value or is a procedure with a number of
arguments different from n, then raise an error condition.

o If E({x)) has the form (proc { $ (z)1 - (z)»} (s) end, CE) then push
(), CE + {{2)y = E((y),)s- . (2), — E({y),)}) on the stack.

m If the activation condition is false, then suspend execution.
Pattern matching (the case statement)

The semantic statement is:
(case (x) of (lit)({feat): (x)1 --- (feat),: (X),,) then (s); else (s)3 end, F)

(Here (lit) and (feat) are synonyms for (literal) and (feature).) Execution consists of
the following actions:

m If the activation condition is true (E({x)) is determined), then do the following
actions:

o If the label of E((x)) is (lit) and its arity is [(feat); - - (feat),], then push
({s)1, E + {{(x)1 — E({x)).(feat)1, ..., {(x), — E((x)).(feat), }) on the stack.

@ Otherwise push ((s)2, E') on the stack.

m If the activation condition is false, then suspend execution.
2.4.5 Basic concepts revisited

Now that we have seen the kernel semantics, let us look again at the examples of
section 2.4.1 to see exactly what they are doing. We look at three examples; we
suggest you do the others as exercises.

Variable identifiers and static scoping

We saw before that the following statement (s) displays first 2 and then 1:

local X in
X=1
local X in

X=2

/\
w
b
Il
—~
w0
G

=
Il

{Browse X}
end

(s)y = {Browse X}

68

Declarative Computation Model

The same identifier X first refers to 2 and then refers to 1. We can understand better
what happens by executing (s) in our abstract machine.

1. The initial execution state is:

([(s),d)], &)

Both the environment and the store are empty (E = ¢ and o = ¢).

2. After executing the outermost local statement and the binding x=1, we get:

([({s)y(s)s {x — a})],

{z=1})
The identifier X refers to the store variable z, which is bound to 1. The next
statement to be executed is the sequential composition (s), (s),.

3. After executing the sequential composition, we get:

([(S)y {x = 2}), ({s)g: {x — z})],

{z=1})
Each of the statements (s); and (s)z has its own environment. At this point, the
two environments have identical values.

4. Let us start executing (s);. The first statement in (s); is a local statement.
Executing it gives

([(x=2 {Browse x},{x — 2'}), ({s)y, {x — z})],
{z/;2=1})

This creates the new variable 2’ and calculates the new environment {x — z}+{x —
a'}, which is {x — a’}. The second mapping of X overrides the first.

5. After the binding x=2 we get:

([({Browse x},{x — 2'}), ({Browse x},{x — z})],
{2/ =2,2=1})

(Remember that (s); is a Browse.) Now we see why the two Browse calls display
different values. It is because they have different environments. The inner local
statement is given its own environment, in which X refers to another variable. This
does not affect the outer local statement, which keeps its environment no matter
what happens in any other instruction.

Procedure definition and call

Our next example defines and calls the procedure Max, which calculates the maxi-
mum of two numbers. With the semantics we can see precisely what happens during
the definition and execution of Max. Here is source code for the example, written
with some syntactic shortcuts:

2.4 Kernel language semantics 69

local Max C in
proc {Max X Y 22}
if X>=Y then Z=X else Z=Y end
end
{Max 3 5 C}
end

Translating this into kernel syntax gives

local Max in
local A in
local B in
local C in
Max=proc {$ X Y 7}
local T in
T=(X>=Y)

(s)3 =

(s), = if T then Z=X else Z=Y end

/\
w0
L
If
—~
w0
u
=
If

end

end

end

You can see that the kernel syntax is rather verbose. This is because of the simplicity
of the kernel language. This simplicity is important because it lets us keep the
semantics simple too. The original source code uses the following three syntactic
shortcuts for readability:

® Declaring more than one variable in a local declaration. This is translated into
nested local declarations.

® Using “in-line” values instead of variables, e.g., {P 3} is a shortcut for local X
in X=3 {P X} end.

» Using nested operations, e.g., putting the operation X>=Y in place of the boolean
in the if statement.

We will use these shortcuts in all examples from now on.
Let us now execute statement (s). For clarity, we omit some of the intermediate
steps.

70

Declarative Computation Model

1. The initial execution state is:

([(s);d)], &)

Both the environment and the store are empty (E = ¢ and o = ¢).

2. After executing the four local declarations, we get:

([({s);,{Max — m,A — a,B — b,C — c})],

{m,a,b,c})
The store contains the four variables m, a, b, and c. The environment of (s); has
mappings to these variables.

3. After executing the bindings of Max, A, and B, we get:
([({max A B c},{Max — m,A — a,B — b,C — c})],
{m = (proc {$ X Y 2} (s); end, ¢),a=3,b=>5,c})

The variables m, a, and b are now bound to values. The procedure is ready to be
called. Notice that the contextual environment of Max is empty because it has no
free identifiers.

4. After executing the procedure application, we get:
([(s)3,{x = a,¥ = b,z —c})],
{m = (proc {$ X Y 2} <S>3 end, ¢),a=3,b=5,c})
The environment of (s), now has mappings from the new identifiers x, v, and z.
5. After executing the comparison X>=Y, we get:
([(s)y, {x—a, Y = b,2— ¢, T — t})],
{m = (proc {$ X Y 2} (s); end, ¢),a =3,b=5,c,t = false})
This adds the new identifier T and its variable ¢ bound to false.
6. Execution is complete after statement (s), (the conditional):
([,{m = (proc {$ X Y 2} (s); end, ¢),a =3,b="5,c=5,t = false})

The statement stack is empty and c is bound to 5.
Procedure with external references (part 1)

Our third example defines and calls the procedure LowerBound, which ensures that
a number will never go below a given lower bound. The example is interesting
because LowerBound has an external reference. Let us see how the following code
executes:

2.4 Kernel language semantics 71

local LowerBound Y C in
Y=5
proc {LowerBound X ?Z}
if X>=Y then Z=X else Z=Y end
end
{LowerBound 3 C}
end
This is very close to the Max example. The body of LowerBound is identical to the
body of Max. The only difference is that LowerBound has an external reference. The
procedure value is

(proc {$ X 2z} if X>=Y then Z=X else Z=Y end end, {Y — y})
where the store contains:
y=>5

When the procedure is defined, i.e., when the procedure value is created, the
environment has to contain a mapping of Y. Now let us apply this procedure. We
assume that the procedure is called as {LowerBound A C}, where A is bound to 3.
Before the application we have:

([({LowerBound A c},{Y — ¥y, LowerBound — lb,A — a,C — c})],
{Ib=(proc {$ X 2} if X>=Y then Z=X else Z=Y end end, {Y — y}),
y=>5,a=3,c})

After the application we get:

([(if X>=Y then Z=X else Z=Y end,{Y — y,X — a,Z — c})],
{Ib=(proc {$ X 2} if X>=Y then Z=X else Z=Y end end, {Y — y}),
y=>5,a=3,c})

The new environment is calculated by starting with the contextual environment
({y — y} in the procedure value) and adding mappings from the formal arguments
X and Z to the actual arguments a and c.

Procedure with external references (part 2)

In the above execution, the identifier Y refers to y in both the calling environment
as well as the contextual environment of LowerBound. How would the execution
change if the following statement were executed instead of {LowerBound 3 C}7:
local Y in
Y=10
{LowerBound 3 C}
end
Here Y no longer refers to y in the calling environment. Before looking at the answer,
please put down the book, take a piece of paper, and work it out. Just before the
application we have almost the same situation as before:

72 Declarative Computation Model

([({LowerBound A c},{Y — ', LowerBound — lb,A — a,C — c})],
{lb= (proc {$ X 2} if X>=Y then Z=X else Z=Y end end, {Y — y}),
y' =10,y =5,a=3,c})
The calling environment has changed slightly: Y refers to a new variable 3/, which
is bound to 10. When doing the application, the new environment is calculated
in exactly the same way as before, starting from the contextual environment and
adding the formal arguments. This means that the 3’ is ignored! We get exactly the
same situation as before in the semantic stack:
([(if X>=Y then Z=X else Z=Y end,{Y — y,X — a,Z — c})],
{lb= (proc {$ X 2z} if X>=Y then Z=X else Z=Y end end, {Y — y}),
y =10,y =5,a=3,c})
The store still has the binding ¥’ = 10. But 3’ is not referenced by the semantic
stack, so this binding makes no difference to the execution.

2.5 Memory management

The abstract machine we defined in the previous section is a powerful tool with
which we can investigate properties of computations. As a first exploration, let us
look at memory behavior, i.e., how the sizes of the semantic stack and store evolve
as a computation progresses. We will look at the principle of last call optimization
and explain it by means of the abstract machine. This will lead us to the concepts
of memory life cycle and garbage collection.

2.5.1 Last call optimization

Consider a recursive procedure with just one recursive call which happens to be
the last call in the procedure body. We call such a procedure tail-recursive. We will
show that the abstract machine executes a tail-recursive procedure with a constant
stack size. This property is called last call optimization or tail call optimization.
The term tail recursion optimization is sometimes used, but is less precise since
the optimization works for any last call, not just tail-recursive calls (see Exercises,
section 2.9). Consider the following procedure:
proc {LooplO I}
if I==10 then skip
else
{Browse I}
{Loop10 I+1}
end
end
Calling {Loop10 0} displays successive integers from 0 up to 9. Let us see how this
procedure executes.

2.5 Memory management 73

® The initial execution state is:
([({roop10 0}, Ep)],
o)
where Ej is the environment at the call and o the initial store.
m After executing the if statement, this becomes:
([({Browse 1},{I — ip}) ({Loop1i0 I+1},{I — io})],
{io = 0} Uo)
® After executing the Browse, we get to the first recursive call:
([({roop1o 1+1},{1I —io})],
{io = 0} Uo)
m After executing the if statement in the recursive call, this becomes:
([({Browse 1},{1 —i1}) ({moop10 I+1},{I — i1})],
{io 20,7:1 = I}UO')
® After executing the Browse again, we get to the second recursive call:
([({roop1o 1+1},{1I —i1})],
{io =0,1; =].}UO’)
It is clear that the stack at the kth recursive call is always of the form:

[({Loop10 T+1},{T — ix_1})]

There is just one semantic statement and its environment is of constant size. This
is the last call optimization. This shows that the efficient way to program loops in
the declarative model is to program the loop as a tail-recursive procedure.

We can further see that the sizes of the semantic stack and the store evolve quite
differently. The semantic stack is bounded by a constant size. On the other hand,
the store grows bigger at each call. At the kth recursive call, the store has the form:

{i():oail:17"‘7ik*1:k_1}uo—

The store size is proportional to the number of recursive calls. Let us see why this
growth is not a problem in practice. Look carefully at the semantic stack of the kth
recursive call. It does not need the variables {ig,41,...,ix—2}. The only variable
needed is i;_1. This means that we can remove the not-needed variables from the
store without changing the results of the computation. This gives a smaller store:

{ikflzk—l}UO'

This smaller store is of constant size. If we could somehow ensure that the not-
needed variables are always removed, then the program could execute indefinitely
with a constant memory size.

Declarative Computation Model

Allocate

Deallocate

Become inactive
(program execution)

Reclaim
(either manually or by
garbage collection)

Figure 2.18: Life cycle of a memory block.

For this example we can solve the problem by storing the variables on the stack
instead of in the store. This is possible because the variables are bound to small
integers that fit in a machine word (e.g., 32 bits). So the stack can store the
integers directly instead of storing variable references into the store.® This example
is atypical; almost all realistic programs have large amounts of long-lived or shared
data that cannot easily be stored on the stack. So we still have to solve the general
problem of removing the not-needed variables. In the next sections we will see how
to do this.

2.5.2 Memory life cycle

From the abstract machine semantics it follows that a running program needs only
the information in the semantic stack and in that part of the store reachable from
the semantic stack. A partial value is reachable if it is referenced by a statement
on the semantic stack or by another reachable partial value. The semantic stack
and the reachable part of the store are together called the active memory. All
the memory that is not active can safely be reclaimed, i.e., it can be reused in the
computation. We saw that the active memory size of the Loop10 example is bounded
by a constant, which means that it can loop indefinitely without exhausting system
memory.

Now we can introduce the concept of memory life cycle. Programs execute in main
memory, which consists of a sequence of memory words. At the time of writing,
low-cost personal computers have 32-bit words and high-end computers have 64-bit
or longer words. The sequence of words is divided up into blocks, where a block
consists of a sequence of one or more words used to store part of an execution state.

8. A further optimization that is often done is to store part of the stack in machine
registers. This is important since machine registers are much faster to read and write than
main memory.

2.5 Memory management 75

Blocks are the basic unit of memory allocation. Figure 2.18 shows the life cycle
of a memory block. Each memory block continuously cycles through three states:
active, inactive, and free. Memory management is the task of making sure that
blocks circulate correctly along this cycle. A running program that needs a block
will allocate it from a pool of free memory blocks. The block then becomes active.
During its execution, the running program may no longer need some of its allocated
memory blocks:

m If it can determine this directly, then it deallocates the blocks. This makes them
become free again immediately. This is what happens with the semantic stack in
the Loop10 example.

® [f it cannot determine this directly, then the blocks become inactive. They are no
longer reachable by the running program, but the program does not know this, so
it cannot make the blocks free. This is what happens with the store in the Loop10
example.

Usually, memory blocks used for managing control flow (the semantic stack) can
be deallocated and memory blocks used for data structures (the store) become
inactive.

Inactive memory must eventually be reclaimed, i.e., the system must recognize
that it is inactive and put it back in the pool of free memory. Otherwise, the system
has a memory leak and will soon run out of memory. Reclaiming inactive memory
is the hardest part of memory management, because recognizing that memory is
unreachable is a global condition. It depends on the whole execution state of the
running program. Low-level languages like C or C++ often leave reclaiming to the
programmer, which is a major source of program errors. There are two kinds of
program error that can occur:

® Dangling reference. This happens when a block is reclaimed even though it is
still reachable. The system will eventually reuse this block. This means that data
structures will be corrupted in unpredictable ways, causing the program to crash.
This error is especially pernicious since the effect (the crash) is usually very far away
from the cause (the incorrect reclaiming). This makes dangling references hard to
debug.

» Memory leak. This happens when a block is not reclaimed even though it is
unreachable. The effect is that active memory size keeps growing indefinitely until
eventually the system’s memory resources are exhausted. Memory leaks are less
dangerous than dangling references because programs can continue running for some
time before the error forces them to stop. Long-lived programs, such as operating
systems and servers, must not have any memory leaks.

2.5.3 Garbage collection

Many high-level languages, such as Erlang, Haskell, Java, Lisp, Prolog, Smalltalk,
and so forth, do automatic reclaiming. That is, reclaiming is done by the system

76

Declarative Computation Model

independently of the running program. This completely eliminates dangling ref-
erences and greatly reduces memory leaks. This relieves the programmer of most
of the difficulties of manual memory management. Automatic reclaiming is called
garbage collection. Garbage collection is a well-known technique that has been used
for a long time. It was used in the 1960s for early Lisp systems. Until the 1990s,
mainstream languages did not use it because it was judged (erroneously) as be-
ing too inefficient. It has finally become acceptable in mainstream programming
because of the popularity of the Java language.

A typical garbage collector has two phases. In the first phase, it determines what
the active memory is. It does this by finding all data structures reachable from
an initial set of pointers called the root set. The original meaning of “pointer”
is an address in the address space of a process. In the context of our abstract
machine, a pointer is a variable reference in the store. The root set is the set of
pointers that are always needed by the program. In the abstract machine of the
previous section, the root set is simply the semantic stack. In general, the root set
includes all pointers in ready threads and all pointers in operating system data
structures. We will see this when we extend the abstract machine in later chapters
to implement new concepts. The root set also includes some pointers related to
distributed programming (namely references from remote sites; see chapter 11).

In the second phase, the garbage collector compacts the memory. That is, it
collects all the active memory blocks into one contiguous block (a block without
holes) and the free memory blocks into one contiguous block.

Modern garbage collection algorithms are efficient enough that most applications
can use them with only small memory and time penalties [107]. The most widely
used garbage collectors run in a “batch” mode, i.e., they are dormant most of the
time and run only when the total amount of active and inactive memory reaches a
predefined threshold. While the garbage collector runs, there is a pause in program
execution. Usually the pause is small enough not to be disruptive.

There exist garbage collection algorithms, called real-time garbage collectors,
that can run continuously, interleaved with the program execution. They can be
used in cases, such as hard real-time programming, in which there must not be any
pauses.

2.5.4 Garbage collection is not magic

Having garbage collection lightens the burden of memory management for the
developer, but it does not eliminate it completely. There are two cases that
remain the developer’s responsibility: avoiding memory leaks and managing external
resources.

Awvoiding memory leaks

The programmer still has some responsibility regarding memory leaks. If the
program continues to reference a data structure that it no longer needs, then that

2.5 Memory management 7

data structure’s memory will never be recovered. The program should be careful to
lose all references to data structures no longer needed.

For example, take a recursive function that traverses a list. If the list’s head
is passed to the recursive call, then list memory will not be recovered during the
function’s execution. Here is an example:

L=[1 2 3 ... 1000000]

fun {Sum X L1 L}
case L1 of Y|L2 then {Sum X+Y L2 L}
else X end

end

{Browse {Sum 0 L L}}
Sum sums the elements of a list. But it also keeps a reference to L, the original list,
even though it does not need L. This means L will stay in memory during the whole
execution of sum. A better definition is as follows:

fun {Sum X L1}
case L1 of Y|L2 then {Sum X+Y L2}
else X end

end

{Browse {Sum 0 L}}
Here the reference to L is lost immediately. This example is trivial. But things can
be more subtle. For example, consider an active data structure s that contains a list
of other data structures D1, D2, ..., Dn. If one of these, say Di, is no longer needed
by the program, then it should be removed from the list. Otherwise its memory will
never be recovered.

A well-written program therefore has to do some “cleanup” after itself, making
sure that it no longer references data structures that it no longer needs. The cleanup
can be done in the declarative model, but it is cumbersome.9

Managing external resources

A Mozart program often needs data structures that are external to its operat-
ing system process. We call such a data structure an external resource. External
resources affect memory management in two ways. An internal Mozart data struc-
ture can refer to an external resource, and vice versa. Both possibilities need some
programmer intervention. Let us consider each case separately.

The first case is when a Mozart data structure refers to an external resource.
For example, a record can correspond to a graphic entity in a graphics display or
to an open file in a file system. If the record is no longer needed, then the graphic
entity has to be removed or the file has to be closed. Otherwise, the graphics
display or the file system will have a memory leak. This is done with a technique

9. It is more efficiently done with explicit state (see chapter 6).

78

Declarative Computation Model

called finalization, which defines actions to be taken when data structures become
unreachable. Finalization is explained in section 6.9.2.

The second case is when an external resource needs a Mozart data structure.
This is often straightforward to handle. For example, consider a scenario where the
Mozart program implements a database server that is accessed by external clients.
This scenario has a simple solution: never do automatic reclaiming of the database
storage. Other scenarios may not be so simple. A general solution is to set aside a
part of the Mozart program to represent the external resource. This part should be
active (i.e., have its own thread) so that it is not reclaimed haphazardly. It can be
seen as a “proxy” for the resource. The proxy keeps a reference to the Mozart data
structure as long as the resource needs it. The resource informs the proxy when it
no longer needs the data structure. Section 6.9.2 gives another technique.

2.5.5 The Mozart garbage collector

The Mozart system does automatic memory management. It has both a local
garbage collector and a distributed garbage collector. The latter is used for dis-
tributed programming and is explained in chapter 11. The local garbage collector
uses a copying dual-space algorithm.

The garbage collector divides memory into two spaces, of which each takes up
half of available memory space. At any instant, the running program sits completely
in one half. Garbage collection is done when there is no more free memory in that
half. The garbage collector finds all data structures that are reachable from the
root set and copies them to the other half of memory. Since they are copied to one
contiguous memory block this also does compaction.

The advantage of a copying garbage collector is that its execution time is
proportional to the active memory size, not to the total memory size. Small
programs will garbage-collect quickly, even if they are running in a large memory
space. The two disadvantages of a copying garbage collector are that half the
memory is unusable at any given time and that long-lived data structures (like
system tables) have to be copied at each garbage collection. Let us see how to
remove these two disadvantages. Copying long-lived data can be avoided by using
a modified algorithm called a generational garbage collector. This partitions active
memory into generations. Long-lived data structures are put in older generations,
which are collected less often.

The memory disadvantage is only important if the active memory size approaches
the maximum addressable memory size of the underlying architecture. Mainstream
computer technology is currently in a transition period from 32-bit to 64-bit
addressing. In a computer with 32-bit addresses, the limit is reached when active
memory size is 1000 MB or more. (The limit is usually not 232 bytes, i.e., 4096 MB,
due to limitations in the operating system.) At the time of writing, this limit is
reached by large programs in high-end personal computers. For such programs, we
recommend using a computer with 64-bit addresses, which has no such problem.

2.6 From kernel language to practical language 79

2.6 From kernel language to practical language

The kernel language has all the concepts needed for declarative programming. But
trying to use it for practical declarative programming shows that it is too minimal.
Kernel programs are just too verbose. Most of this verbosity can be eliminated
by judiciously adding syntactic sugar and linguistic abstractions. This section does
just that:

m [t defines a set of syntactic conveniences that give a more concise and readable
full syntax.

® [t defines an important linguistic abstraction, namely functions, that is useful for
concise and readable programming.

® [t explains the interactive interface of the Mozart system and shows how it relates
to the declarative model. This brings in the declare statement, which is a variant
of the local statement designed for interactive use.

The resulting language is used in chapter 3 to explain the programming techniques
of the declarative model.

2.6.1 Syntactic conveniences

The kernel language defines a simple syntax for all its constructs and types. The
full language has the following conveniences to make this syntax more usable:

= Nested partial values can be written in a concise way.

® Variables can be both declared and initialized in one step.

® Expressions can be written in a concise way.

®m The if and case statements can be nested in a concise way.

® The operators andthen and orelse are defined for nested if statements.

® Statements can be converted into expressions by using a nesting marker.

The nonterminal symbols used in the kernel syntax and semantics correspond as
follows to those in the full syntax:

Kernel syntax Full syntax

(x), (y), (@) {variable)
(s) (statement), (stmt)

Nested partial values

In table 2.2, the syntax of records and patterns implies that their arguments are
variables. In practice, many partial values are nested deeper than this. Because
nested values are so often used, we give syntactic sugar for them. For example, we
extend the syntax to let us write person (name: "George" age:25) instead of the

80

Declarative Computation Model

more cumbersome version:
local A B in A="George" B=25 X=person(name:A age:B) end

where X is bound to the nested record.
Implicit variable initialization

To make programs shorter and easier to read, there is syntactic sugar to bind
a variable immediately when it is declared. The idea is to put a bind operation
between local and in. Instead of local X in X=10 {Browse X} end, in which
X is mentioned three times, the shortcut lets one write local X=10 in {Browse
X} end, which mentions X only twice. A simple case is the following:

local X=(expression) in (statement) end
This declares x and binds it to the result of (expression). The general case is:
local (pattern)=(expression) in (statement) end

where (pattern) is any partial value. This first declares all the variables in (pattern)
and then binds (pattern) to the result of (expression). The general rule in both
examples is that variable identifiers occurring on the left-hand side of the equality,
i.e., X or the identifiers in (pattern), are the ones declared. Variable identifiers on
the right-hand side are not declared.

Implicit variable initialization is convenient for building a complex data structure
when we need variable references inside the structure. For example, if T is unbound,
then the following:

local tree(key:A left:B right:C value:D)=T in (statement) end

builds the tree record, binds it to T, and declares A, B, C, and D as referring to
parts of T. This is strictly equivalent to:

local A B C D in

T=tree (key:A left:B right:C value:D) (statement)

end
It is interesting to compare implicit variable initialization with the case statement.
Both use patterns and implicitly declare variables. The first uses them to build data
structures and the second uses them to take data structures apart.lo

10. Implicit variable initialization can also be used to take data structures apart. If T is
already bound to a tree record, then its four fields will be bound to A, B, C, and D. This
works because the binding operation is actually doing unification, which is a symmetric
operation (see section 2.8.2). We do not recommend this use.

2.6 From kernel language to practical language 81

(variable) | (int) | (float)
(unaryOp) (expression)

(expression) ::

(expression) (evalBinOp) (expression)

-

|
|
| (expression) 7) ~
| “{~ (expression) { (expression) } ~}~
(unaryOp) = .
(evalBinOp) == "+~ | °-"| “*~ | 7/~ | div | mod

R i I R ik

- |

Table 2.4: Expressions for calculating with numbers.

(statement) ::= if (expression) then (inStatement)
{ elseif (expression) then (inStatement) }
[else (inStatement) | end

(inStatement) ::= [{ (declarationPart) }+ in | (statement)

Table 2.5: The if statement.

Ezxpressions

An expression is syntactic sugar for a sequence of operations that returns a value.
It is different from a statement, which is also a sequence of operations but does
not return a value. An expression can be used inside a statement whenever a
value is needed. For example, 11*11 is an expression and X=11+*11 is a statement.
Semantically, an expression is defined by a straightforward translation into kernel
syntax. So X=11*11 is translated into {Mul 11 11 X}, where Mul is a three-
argument procedure that does mmltiplication.11

Table 2.4 shows the syntax of expressions that calculate with numbers. Later on
we will see expressions for calculating with other data types. Expressions are built
hierarchically, starting from basic expressions (e.g., variables and numbers) and
combining them together. There are two ways to combine them: using operators
(e.g., the addition 1+2+3+4) or using function calls (e.g., the square root {sSqrt

5.0}).

11. Its real name is Number. “* 7, since it is part of the Number module.

82

Declarative Computation Model

(statement) ::= case (expression)
of (pattern) [andthen (expression) | then (inStatement)
{ “[1~ (pattern) [andthen (expression) | then (inStatement) }
[else (inStatement) | end

vanable) | (atom) | {int) | {float)
string) \ unit | true | false
label) = (= { [(feature) ~:~] (pattern) } [~...] 7))~
attern) (consBinOp) (pattern)
~ { (pattern) }+ ~
,#, |-~

| -
(pattern) =
| (
| (
(p

(consBinOp) ::

Table 2.6: The case statement.

Nested if and case statements

We add syntactic sugar to make it easy to write if and case statements with
multiple alternatives and complicated conditions. Table 2.5 gives the syntax of the
full if statement. Table 2.6 gives the syntax of the full case statement and its
patterns. (Some of the nonterminals in these tables are defined in appendix C.)
These statements are translated into the primitive if and case statements of the
kernel language. Here is an example of a full case statement:

case Xs#Ys

of nil#Ys then (s);

[] Xs#nil then (s):

[1 (X|Xr)#(Y|Yr) andthen X=<Y then (s)3
else (s)s end

It consists of a sequence of alternative cases delimited with the “[]1” symbol. The
alternatives are often called clauses. This statement translates into the following
kernel syntax:

case Xs of nil then (s);
else
case Ys of nil then (s)2
else
case Xs of X|Xr then
case Ys of Y|Yr then
if X=<Y then (s); else (s)s end
else (s)s end
else (s)s end
end
end

The translation illustrates an important property of the full case statement: clauses
are tested sequentially starting with the first clause. Execution continues past a

2.6 From kernel language to practical language 83

clause only if the clause’s pattern is inconsistent with the input argument.

Nested patterns are handled by looking first at the outermost pattern and then
working inward. The nested pattern (X|Xr)# (Y|Yr) has one outer pattern of the
form A#B and two inner patterns of the form A|B. All three patterns are tuples
that are written with infix syntax, using the infix operators “#~ and ~|~. They
could have been written with the usual syntax as “#~(a B) and ~|“ (A B). Each
inner pattern (X|Xr) and (Y|Yr) is put in its own primitive case statement. The
outer pattern using “#~ disappears from the translation because it occurs also in the
case’s input argument. The matching with “#~ can therefore be done at translation
time.

The operators andthen and orelse
The operators andthen and orelse are used in calculations with boolean values.
The expression
(expression); andthen (expression)sa
translates into
if (expression); then (expression); else false end

The advantage of using andthen is that (expression)s is not evaluated if (expression);
is false. There is an analogous operator orelse. The expression

(expression); orelse (expression)s;
translates into
if (expression); then true else (expression); end

That is, (expression)s is not evaluated if (expression); is true.
Nesting markers

The nesting marker “$” turns any statement into an expression. The expression’s
value is what is at the position indicated by the nesting marker. For example, the
statement {P X1 X2 X3} can be written as {P X1 $ x3}, which is an expression
whose value is x2. This makes the source code more concise, since it avoids having
to declare and use the identifier x2. The variable corresponding to x2 is hidden
from the source code.

Nesting markers can make source code more readable to a proficient programmer,
while making it harder for a beginner to see how the code translates to the kernel
language. We use them only when they greatly increase readability. For example,
instead of writing

local X in {Obj get(X)} {Browse X} end

84

Declarative Computation Model

(statement) fun ~{~ (variable) { (pattern) } ~}~ (inExpression) end
fun “{~ “$~ { (pattern) } ~}~ (inExpression) end
proc ~{~ "¢~ { (pattern) } ~}~ (inStatement) end
“{~ (expression) { (expression) } “}~

(expression)

local { (declarationPart) }+ in (expression) end

if (expression) then (inExpression)

{ elseif (expression) then (inExpression) }

[else (inExpression) | end

| case (expression)

of (pattern) [andthen (expression) | then (inExpression)

{ “[1~ (pattern) [andthen (expression) | then (inExpression) }
[else (inExpression) | end

(inStatement) = [{ (declarationPart) }+ in | (statement)
[{

(inExpression) (declarationPart) }+ in] [(statement) | (expression)

Table 2.7: Function syntax.

we will instead write {Browse {Obj get(3)}}. Once you get used to nesting
markers, they are both concise and clear. Note that the syntax of procedure values
as explained in section 2.3.3 is consistent with the nesting marker syntax.

2.6.2 Functions (the fun statement)

The declarative model provides a linguistic abstraction for programming with func-
tions. This is our first example of a linguistic abstraction, as defined in section 2.1.2.
We define the new syntax for function definitions and function calls and show how
they are translated into the kernel language.

Function definitions

A function definition differs from a procedure definition in two ways: it is introduced
with the keyword fun and the body must end with an expression. For example, a
simple definition is:

fun {F X1 ... XN} (statement) (expression) end
This translates to the following procedure definition:

proc {F X1 ... XN ?R} (statement) R=(expression) end

2.6 From kernel language to practical language 85

The extra argument R is bound to the expression in the procedure body. If the
function body is an if statement, then each alternative of the if can end in an
expression:
fun {Max X Y}
if X>=Y then X else Y end
end
This translates to:
proc {Max X Y ?R}
R = if X>=Y then X else Y end
end
We can further translate this by transforming the if from an expression to a
statement. This gives the final result:
proc {Max X Y ?R}
if X>=Y then R=X else R=Y end
end
Similar rules apply for the local and case statements, and for other statements
we will see later. Each statement can be used as an expression. Roughly speaking,
whenever an execution sequence in a procedure ends in a statement, the corre-
sponding sequence in a function ends in an expression. Table 2.7 gives the complete
syntax of expressions after applying this rule. This table takes all the statements
we have seen so far and shows how to use them as expressions. In particular, there
are also function values, which are simply procedure values written in functional
syntax.

Function calls

A function call {F X1 ... XN} translates to the procedure call {F x1 ... XN R},
where R replaces the function call where it is used. For example, the following nested
call of F:

{0 {F x1 ... XN} ...}

is translated to:

local R in
{F x1 ... XN R}

{or ...}
end

In general, nested functions are evaluated before the function in which they are
nested. If there are several, then they are evaluated in the order they appear in the
program.

Function calls in data structures

There is one more rule to remember for function calls. It has to do with a call inside
a data structure (record, tuple, or list). Here is an example:

86

Declarative Computation Model

(interStatement) ::= (statement)
| declare { (declarationPart) }+ [(interStatement) |
| declare { (declarationPart) }+ in (interStatement)

- =

(declarationPart) ::= (variable) | (pattern) “=~ (expression) | (statement)

Table 2.8: Interactive statement syntax.

Ys={F X}|{Map Xr F}

In this case, the translation puts the nested calls after the bind operation:

local Y Yr in
Ys=Y|Yr
{F x v}
{Map Xr F Yr}
end

This ensures that the recursive call is last. Section 2.5.1 explains why this is
important for execution efficiency. The full Map function is defined as follows:
fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then {F X}|{Map Xr F}
end
end
Map applies the function F to all elements of a list and returns the result. Here is
an example call:

{Browse {Map [1 2 3 4] fun {$ X} X*X end}}

This displays [1 4 9 16]. The definition of Map translates as follows to the kernel
language:
proc {Map Xs F ?Ys}
case Xs of nil then Ys=nil
else case Xs of X|Xr then
local Y Yr in
Ys=Y|Yr {F X Y} {Map Xr F Yr}
end
end end
end
The dataflow variable Yr is used as a “placeholder” for the result in the recursive
call {Map Xr F Yr}. This lets the recursive call be the last call. In our model, this
means that the recursion executes with the same space and time efficiency as an
iterative construct like a while loop.

2.6 From kernel language to practical language 87

procedure value

- 7 x, | unbound

- -, x, | unbound
» x, | unbound
» X unbound

Result of first declare X Y Result of second declare X Y

Figure 2.19: Declaring global variables.

2.6.3 Interactive interface (the declare statement)

The Mozart system has an interactive interface that allows introducing program
fragments incrementally and execute them as they are introduced. The fragments
have to respect the syntax of interactive statements, which is given in table 2.8.
An interactive statement is either any legal statement or a new form, the declare
statement. We assume that the user feeds interactive statements to the system one
by one. (In the examples given throughout the book, the declare statement is
often left out. It should be added if the example declares new variables.)

The interactive interface allows much more than just feeding statements. It has
all the functionality needed for software development. Appendix A gives a summary
of some of this functionality. For now, we assume that the user just knows how to
feed statements.

The interactive interface has a single, global environment. The declare state-
ment adds new mappings to this environment. It follows that declare can only be
used interactively, not in standalone programs. Feeding the following declaration:

declare X Y

creates two new variables in the store, x1 and zs. and adds mappings from X and Y
to them. Because the mappings are in the global environment we say that X and v
are global variables or interactive variables. Feeding the same declaration a second
time will cause X and Y to map to two other new variables, 3 and x4. Figure 2.19
shows what happens. The original variables, 1 and zs, are still in the store, but
they are no longer referred to by X and Y. In the figure, Browse maps to a procedure
value that implements the browser. The declare statement adds new variables and
mappings, but leaves existing variables in the store unchanged.

Adding a new mapping to an identifier that already maps to a variable may

88

Declarative Computation Model

e 0z Browser L
Browser Selection Optlions
e A
OO OO OO
|
il
||"“J =

Figure 2.20: The Browser.

cause the variable to become inaccessible if there are no other references to it.
If the variable is part of a calculation, then it is still accessible from within the
calculation. For example:

declare X Y

X=25

declare A

A=person (age:X)

declare X Y
Just after the binding x=25, X maps to 25, but after the second declare X
Y it maps to a new unbound variable. The 25 is still accessible through the
global variable A, which is bound to the record person(age:25). The record
contains 25 because X mapped to 25 when the binding A=person (age:X) was
executed. The second declare X Y changes the mapping of X, but not the record
person (age:25) since the record already exists in the store. This behavior of
declare is designed to support a modular programming style. Executing a program
fragment will not cause the results of any previously executed fragment to change.

There is a second form of declare:

declare X Y in (stmt)

which declares two global variables, as before, and then executes (stmt). The
difference with the first form is that (stmt) declares no global variables (unless
it contains a declare).

The Browser

The interactive interface has a tool, called the Browser, which allows looking into
the store. This tool is available to the programmer as a procedure called Browse.

2.6 From kernel language to practical language 89

The procedure Browse has one argument. It is called as {Browse (expr)}, where
(expr) is any expression. It can display partial values and it will update the display
whenever the partial values are bound more. Feeding the following:

{Browse 1}

displays the integer 1. Feeding:

declare Y in

{Browse Y}
displays just the name of the variable, namely Y. No value is displayed. This means
that v is currently unbound. Figure 2.20 shows the browser window after these
two operations. If Y is bound, e.g., by doing v=2, then the browser will update its
display to show this binding.

Dataflow execution

We saw earlier that declarative variables support dataflow execution, i.e., an
operation waits until all arguments are bound before executing. For sequential
programs this is not very useful, since the program will wait forever. On the other
hand, it is useful for concurrent programs, in which more than one instruction
sequence can be executing at the same time. An independently executing instruction
sequence is called a thread. Programming with more than one thread is called
concurrent programming; it is introduced in chapter 4.

Each program fragment fed into the interactive interface executes in its own
thread. This lets us give simple examples of dataflow execution in this chapter. For
example, feed the following statement:

declare A B C in

C=A+B

{Browse C}
This will display nothing, since the instruction c=a+B blocks (both of its arguments
are unbound). Now, feed the following statement:

A=10

This will bind A, but the instruction c=A+B still blocks since B is still unbound.
Finally, feed the following:

B=200

This displays 210 in the browser. Any operation, not just addition, will block
if it does not get enough input information to calculate its result. For example,
comparisons can block. The equality comparison x==Y will block if it cannot decide
whether or not X is equal to or different from y. This happens, e.g., if one or both
of the variables are unbound.

Programming errors often result in dataflow suspensions. If you feed a statement
that should display a result and nothing is displayed, then the probable cause of

90

Declarative Computation Model

the problem is a blocked operation. Carefully check all operations to make sure
that their arguments are bound. Ideally, the system’s debugger should detect when
a program has blocked operations that cannot continue.

2.7 Exceptions

First let us find the rule, then we will try to explain the exceptions.
— The Name of the Rose, Umberto Eco (1932-)

How do we handle exceptional situations within a program? For example, dividing
by zero, opening a nonexistent file, or selecting a nonexistent field of a record?
These operations do not occur in a correct program, so they should not encumber
normal programming style. On the other hand, they do occur sometimes. It should
be possible for programs to manage them in a simple way. The declarative model
cannot do this without adding cumbersome checks throughout the program. A more
elegant way is to extend the model with an exception-handling mechanism. This
section does exactly that. We give the syntax and semantics of the extended model
and explain what exceptions look like in the full language.

2.7.1 Motivation and basic concepts

In the semantics of section 2.4, we speak of “raising an error” when a statement
cannot continue correctly. For example, a conditional raises an error when its
argument is a non-boolean value. Up to now, we have been deliberately vague
about exactly what happens next. Let us now be more precise. We define an error
as a difference between the actual behavior of a program and its desired behavior.
There are many sources of errors, both internal and external to the program. An
internal error could result from invoking an operation with an argument of illegal
type or illegal value. An external error could result from opening a nonexistent file.

We would like to be able to detect errors and handle them from within a running
program. The program should not stop when they occur. Rather, it should in a
controlled way transfer execution to another part, called the exception handler,
and pass the exception handler a value that describes the error.

What should the exception-handling mechanism look like? We can make two ob-
servations. First, it should be able to confine the error, i.e., quarantine it so that
it does not contaminate the whole program. We call this the error confinement
principle. Assume that the program is made up of interacting “components” orga-
nized in hierarchical fashion. Each component is built of smaller components. We
put “component” in quotes because the language does not need to have a compo-
nent concept. It just needs to be compositional, i.e., programs are built in layered
fashion. Then the error confinement principle states that an error in a component
should be catchable at the component boundary. Outside the component, the error
is either invisible or reported in a nice way.

2.7 FExceptions

91

D = execution context

O _ exception-catching
~ execution context

X = raise exception

Figure 2.21: Exception handling.

Therefore, the mechanism causes a “jump” from inside the component to its
boundary. The second observation is that this jump should be a single operation.
The mechanism should be able, in a single operation, to exit from arbitrarily many
levels of nested context. Figure 2.21 illustrates this. In our semantics, we define a
context as an entry on the semantic stack, i.e., an instruction that has to be executed
later. Nested contexts are created by procedure calls and sequential compositions.

The declarative model cannot jump out in a single operation. The jump has
to be coded explicitly as little hops, one per context, using boolean variables and
conditionals. This makes programs more cumbersome, especially since the extra
coding has to be added everywhere that an error can possibly occur. It can be
shown theoretically that the only way to keep programs simple is to extend the
model [116, 118].

We propose a simple extension to the model that satisfies these conditions. We
add two statements: the try statement and the raise statement. The try state-
ment creates an exception-catching context together with an exception handler. The
raise statement jumps to the boundary of the innermost exception-catching con-
text and invokes the exception handler there. Nested try statements create nested
contexts. Executing try (s) catch (x) then (s); end is equivalent to executing (s),
if (s) does not raise an exception. On the other hand, if (s) raises an exception,
i.e., by executing a raise statement, then the (still ongoing) execution of (s) is
aborted. All information related to (s) is popped from the semantic stack. Control
is transferred to (s)1, passing it a reference to the exception in (x).

Any partial value can be an exception. This means that the exception-handling
mechanism is extensible by the programmer, i.e., new exceptions can be defined as
they are needed by the program. This lets the programmer foresee new exceptional
situations. Because an exception can be an unbound variable, raising an exception
and determining what the exception is can be done concurrently. In other words, an

92

Declarative Computation Model

exception can be raised (and caught) before it is known which exception it is! This
is quite reasonable in a language with dataflow variables: we may at some point
know that there exists a problem but not know yet which problem.

An example

Let us give a simple example of exception handling. Consider the following function,
which evaluates simple arithmetic expressions and returns the result:
fun {Eval E}
if {IsNumber E} then E
else
case E
of plus(X Y) then {Eval X}+{Eval Y}
(] times (X Y) then {Eval X}*{Eval Y}
else raise illFormedExpr (E) end
end
end
end
For this example, we say an expression is ill-formed if it is not recognized by
Eval, i.e., if it contains other values than numbers, plus, and times. Trying to
evaluate an ill-formed expression E will raise an exception. The exception is a tuple,
illFormedExpr (E), that contains the ill-formed expression. Here is an example of
using Eval:
try
{Browse {Eval plus(plus(5 5) 10)}}
{Browse {Eval times(6 11)}}
{Browse {Eval minus(7 10)}}
catch illFormedExpr (E) then
{Browse ~“*** Illegal expression “H#E# **+*~}
end
If any call to Eval raises an exception, then control transfers to the catch clause,
which displays an error message.

2.7.2 The declarative model with exceptions

We extend the declarative computation model with exceptions. Table 2.9 gives the
syntax of the extended kernel language. Programs can use two new statements, try
and raise. In addition, there is a third statement, catch (x) then (s) end, that
is needed internally for the semantics and is not allowed in programs. The catch
statement is a “marker” on the semantic stack that defines the boundary of the
exception-catching context. We now give the semantics of these statements.

The try statement

The semantic statement is:

2.7 FExceptions

93

skip Empty statement

| (s)1 (s)2 Statement sequence

| local (x) in (s) end Variable creation

| (x)1=(x)2 Variable-variable binding
| (x)=(v) Value creation

| if (X) then (s); else (s)2 end Conditional

| case (x) of (pattern) then (s); else (s); end Pattern matching

| {{(x) ()1 -+ (¥)n} Procedure application

| try (s)1 catch (x) then (s)2 end Exception context

| raise (x) end Raise exception

Table 2.9: The declarative kernel language with exceptions.

(try (s)1 catch (x) then (s)2 end, F)
Execution consists of the following actions:

® Push the semantic statement (catch (x) then (s)2 end, F) on the stack.
= Push ((s),, F) on the stack.

The raise statement

The semantic statement is:
(raise (x) end, F)
Execution consists of the following actions:

® Pop elements off the stack looking for a catch statement.
= If a catch statement is found, pop it from the stack.

o If the stack is emptied and no catch is found, then stop execution with the
error message “Uncaught exception”.

® Let (catch (y) then (s) end, E.) be the catch statement that is found.
= Push ((s), E. + {{y) — E({x))}) on the stack.

Let us see how an uncaught exception is handled by the Mozart system. For
interactive execution, an error message is printed in the Oz emulator window. For
standalone applications, the application terminates and an error message is sent
on the standard error output of the process. It is possible to change this behavior
to something else that is more desirable for particular applications, by using the
System module Property.

94

Declarative Computation Model

(statement) u= try (inStatement)
[catch (pattern) then (inStatement)
{ “[1~ (pattern) then (inStatement) } |
[finally (inStatement) | end
raise (inExpression) end
[{ (declarationPart) }+ in | (statement)
{ (declarationPart) }+ in | [(statement) | {expression)

(inStatement)
(inExpression) = |

Table 2.10: Exception syntax.

The catch statement

The semantic statement is:
(catch (x) then (s) end, F)

Execution is complete after this pair is popped from the semantic stack. That is,
the catch statement does nothing, just like skip.

2.7.3 Full syntax

Table 2.10 gives the syntax of the try statement in the full language. It has an
optional finally clause. The catch clause has an optional series of patterns. Let
us see how these extensions are defined.

The finally clause

A try statement can specify a finally clause which is always executed, whether
or not the statement raises an exception. The new syntax

try (s)1 finally (s); end

is translated to the kernel language as:

try (s)1
catch X then
(s)2
raise X end
end
(s)2

(where an identifier X is chosen that is not free in (s)s). It is possible to define a
translation in which (s)2 only occurs once; we leave this to the exercises.

The finally clause is useful when dealing with entities that are external to
the computation model. With finally, we can guarantee that some “cleanup”

2.7 FExceptions

95

action gets performed on the entity, whether or not an exception occurs. A typical
example is reading a file. Assume F is an open file,!2 the procedure ProcessFile
manipulates the file in some way, and the procedure CloseFile closes the file. Then
the following program ensures that F is always closed after ProcessFile completes,
whether or not an exception was raised:
try
{ProcessFile F}
finally {CloseFile F} end
Note that this try statement does not catch the exception; it just executes
CloseFile whenever ProcessFile completes. We can combine both catching the
exception and executing a final statement:
try
{ProcessFile F}
catch X then
{Browse ~“*** Exception “#X#~ when processing file ***~}
finally {CloseFile F} end
This behaves like two nested try statements: the innermost with just a catch
clause and the outermost with just a £inally clause.

Pattern matching

A try statement can use pattern matching to catch only exceptions that match a
given pattern. Other exceptions are passed to the next enclosing try statement.
The new syntax:
try (s)
catch (p): then (s);
[1 (p)2 then (s)2

(1 (p)n then (s)n
end

is translated to the kernel language as:

try (s)

catch X then
case X
of (p)1 then (s);
(1 (p)2 then (s)2

(1 (p)n then (s)n
else raise X end
end

end

If the exception does not match any of the patterns, then it is simply raised again.

12. We will see later how file input/output is handled.

96

Declarative Computation Model

2.7.4 System exceptions

The Mozart system itself raises a few exceptions. They are called system exceptions.
They are all records with one of the three labels failure, error, or system:

® failure: indicates an attempt to perform an inconsistent bind operation (e.g.,
1=2) in the store (see section 2.8.2.1). This is also called a unification failure.

® error: indicates a run-time error inside the program, i.e., a situation that should
not occur during normal operation. These errors are either type or domain errors.
A type error occurs when invoking an operation with an argument of incorrect
type, e.g., applying a nonprocedure to some argument ({foo 1}, where foo is an
atom), or adding an integer to an atom (e.g., X=1+a). A domain error occurs when
invoking an operation with an argument that is outside of its domain (even if it
has the right type), e.g., taking the square root of a negative number, dividing by
zero, or selecting a nonexistent field of a record.

® system: indicates a run-time condition occurring in the environment of the
Mozart operating system process, e.g., an unforeseeable situation like a closed file
or window or a failure to open a connection between two Mozart processes in
distributed programming (see chapter 11).

What is stored inside the exception record depends on the Mozart system version.
Therefore programmers should rely only on the label. For example:
fun {One} 1 end

fun {Two} 2 end
try {One}={Two}

catch
failure(...) then {Browse caughtFailure}
end
The pattern failure(...) catches any record whose label is failure.

2.8 Advanced topics

This section gives additional information for deeper understanding of the declarative
model, its trade-offs, and possible variations.

2.8.1 Functional programming languages

Functional programming consists in defining functions on complete values, where
the functions are true functions in the mathematical sense. A language in which
this is the only possible way to calculate is called a pure functional language. Let
us examine how the declarative model relates to pure functional programming. For
further reading on the history, formal foundations, and motivations for functional
programming, we recommend the survey article by Hudak [96].

2.8 Advanced topics

97

The) calculus

Pure functional languages are based on a formalism called the A calculus. There
are many variants of the A calculus. All of these variants have in common two basic
operations, namely defining and evaluating functions. For example, the function
value fun {$ X} X*X end isidentical to the A expression Ax. xxx. This expression
consists of two parts: the x before the dot, which is the function’s argument, and
the expression x * x, which is the function’s result. The Append function, which
appends two lists together, can be defined as a function value:
Append=fun {$ Xs Ys}

if {IsNil Xs} then Ys

else {Cons {Car Xs} {Append {Cdr Xs} ¥s}}

end

end

This is equivalent to the following A expression:

append = Axs,ys . if isNil(xs) then ys

else cons(car(xs), append(cdr(xs),ys))

This definition of Append uses the following helper functions:

fun {IsNil X} X==nil end

fun {IsCons X} case X of | _ then true else false end end
fun {Car H|T} H end

fun {Cdr H|T} T end

fun {Cons H T} H|T end

Restricting the declarative model

The declarative model is more general than the A\ calculus in two ways. First, it
defines functions on partial values, i.e., with unbound variables. Second, it uses
a procedural syntax. We can define a pure functional language by putting two
syntactic restrictions on the declarative model so that it always calculates functions
on complete values:

® Always bind a variable to a value immediately when it is declared. That is, the
local statement always has one of the following two forms:

local (x)=(v) in (s) end

local (x)={{y) (¥)1 ... (¥)n} in (s) end
® Use only the function syntax, not the procedure syntax. For function calls inside
data structures, do the nested call before creating the data structure (instead of
after, as in section 2.6.2). This avoids putting unbound variables in data structures.

With these restrictions, the model no longer needs unbound variables. The declar-
ative model with these restrictions is called the (strict) functional model. This
model is close to well-known functional programming languages such as Scheme
and Standard ML. The full range of higher-order programming techniques is pos-

98

Declarative Computation Model

sible. Pattern matching is possible using the case statement.
Varieties of functional programming

Let us explore some variations on the theme of functional programming:

® The functional model of this chapter is dynamically typed like Scheme. Many
functional languages are statically typed. Section 2.8.3 explains the differences
between the two approaches. Furthermore, many statically typed languages, e.g.,
Haskell and Standard ML, do type inferencing, which allows the compiler to infer
the types of all functions.

® Thanks to dataflow variables and the single-assignment store, the declarative
model allows programming techniques that are not found in most functional lan-
guages, including Scheme, Standard ML, Haskell, and Erlang. This includes certain
forms of last call optimization and techniques to compute with partial values as
shown in chapter 3.

® The declarative concurrent model of chapter 4 adds concurrency while still
keeping all the good properties of functional programming. This is possible because
of dataflow variables and the single-assignment store.

® In the declarative model, functions are eager by default, i.e., function arguments
are evaluated before the function body is executed. This is also called strict
evaluation. The functional languages Scheme and Standard ML are strict. There
is another useful execution order, lazy evaluation, in which function arguments are
evaluated only if their result is needed. Haskell is a lazy functional language.l?’ Lazy
evaluation is a powerful flow control technique in functional programming [98].
It allows programming with potentially infinite data structures without giving
explicit bounds. Section 4.5 explains this in detail. An eager declarative program
can evaluate functions and then never use them, thus doing superfluous work. A
lazy declarative program, on the other hand, does the absolute minimum amount
of work to get its result.

®» Many functional languages support a higher-order programming technique called
currying, which is explained in section 3.6.6.

2.8.2 Unification and entailment

In section 2.2 we have seen how to bind dataflow variables to partial values and to
each other, using the equality (“=") operation as shown in table 2.11. In section 2.3.5
we have seen how to compare values, using the equality test (“==" and “\=")
operations. So far, we have seen only the simple cases of these operations. Let us

13. To be precise, Haskell is a nonstrict language. This is identical to laziness for most
practical purposes. The difference is explained in section 4.9.2.

2.8 Advanced topics

99

(statement) = (expression) “=" (expression) | ...
(expression) = (expression) “==" (expression)

| (expression) “\=" (expression) | ...
(binaryOp) = "= "=="]"\="]...

Table 2.11: Equality (unification) and equality test (entailment check).

now examine the general cases.

Binding a variable to a value is a special case of an operation called unification.
The unification (Terml)=(Term2) makes the partial values (Terml) and (Term?2)
equal, if possible, by adding zero or more bindings to the store. For example, £ (X
Y)=£(1 2) does two bindings: X=1 and v=2. If the two terms cannot be made
equal, then an exception is raised. Unification exists because of partial values; if
there would be only complete values, then it would have no meaning.

Testing whether a variable is equal to a value is a special case of the entailment
check and disentailment check operations. The entailment check (Term1)==(Term2)
(and its opposite, the disentailment check (Term1)\=(Term2)) is a two-argument
boolean function that blocks until it is known whether (Terml) and (Term2) are
equal or not equal.l4 Entailment and disentailment checks never do any binding.

2.8.2.1 Unification (the = operation)

A good way to conceptualize unification is as an operation that adds information
to the single-assignment store. The store is a set of dataflow variables, where
each variable is either unbound or bound to some other store entity. The store’s
information is just the set of all its bindings. Doing a new binding, e.g., X=Y, will
add the information that x and Y are equal. If X and Y are already bound when
doing x=Y, then some other bindings may be added to the store. For example, if
the store already has X=foo (a) and Y=foo (25), then doing