

Microsoft® Visual C#® 2012
Step by Step

John Sharp

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2012 by CM Group, Ltd.
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6801-0

1 2 3 4 5 6 7 8 9 QG 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Development Editor: Russell Jones

Production Editor: Rachel Steely

Editorial Production: Zyg Group, LLC

Technical Reviewer: John Mueller

Copyeditor: Nicole Flores

Indexer: BIM Indexing Services

Cover Design: Twist Creative

Cover Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

I dedicate this book to Diana, my wife and fellow Warwickshire
supporter, for keeping me sane and giving me the perfect excuse
to spend time watching cricket.

—John Sharp

Contents at a Glance

Introduction xxi

PART I INTRODUCING MICROSOFT VISUAL C# AND MICROSOFT
VISUAL STUDIO 2012

Chapter 1 Welcome to C# 3

Chapter 2 Working with Variables, Operators, and expressions 39

Chapter 3 Writing Methods and applying Scope 67

Chapter 4 Using Decision Statements 95

Chapter 5 Using Compound assignment and Iteration Statements 115

Chapter 6 Managing errors and exceptions 137

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and Managing Classes and Objects 165

Chapter 8 Understanding Values and references 189

Chapter 9 Creating Value types with enumerations and Structures 213

Chapter 10 Using arrays 233

Chapter 11 Understanding parameter arrays 257

Chapter 12 Working with Inheritance 271

Chapter 13 Creating Interfaces and Defining Abstract Classes 295

Chapter 14 Using Garbage Collection and resource Management 325

PART III DEFINING EXTENSIBLE TYPES WITH C#

Chapter 15 Implementing properties to access Fields 349

Chapter 16 Using Indexers 371

Chapter 17 Introducing Generics 389

Chapter 18 Using Collections 419

Chapter 19 enumerating Collections 441

Chapter 20 Decoupling application Logic and handling events 457

Chapter 21 Querying In-Memory Data by Using Query expressions 491

Chapter 22 Operator Overloading 515

vi

PART IV BUILDING PROFESSIONAL WINDOWS 8 APPLICATIONS WITH C#

Chapter 23 Improving throughput by Using tasks 541

Chapter 24 Improving response time by performing
 asynchronous Operations 585

Chapter 25 Implementing the User Interface for a Windows Store app 627

Chapter 26 Displaying and Searching for Data in a Windows Store app 681

Chapter 27 accessing a remote Database in a Windows Store app 733

Index 775

 vii

Contents

Introduction . xxi

PART I INTRODUCING MICROSOFT VISUAL C#
AND MICROSOFT VISUAL STUDIO 2012

Chapter 1 Welcome to C# 3
Beginning Programming with the

Visual Studio 2012 Environment . 3

Writing Your First Program . 8

Using Namespaces .14

Creating a Graphical Application .18

Examining the Windows Store App .30

Examining the WPF Application .33

Adding Code to the Graphical Application .34

Summary. .37

Chapter 1 Quick Reference .38

Chapter 2 Working with Variables, Operators, and Expressions 39
Understanding Statements .39

Using Identifiers .40

Identifying Keywords .40

Using Variables .42

Naming Variables .42

Declaring Variables .42

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Working with Primitive Data Types .43

Unassigned Local Variables .44

Displaying Primitive Data Type Values .44

Using Arithmetic Operators .52

Operators and Types .52

Examining Arithmetic Operators .54

Controlling Precedence .59

Using Associativity to Evaluate Expressions .60

Associativity and the Assignment Operator .60

Incrementing and Decrementing Variables .61

Prefix and Postfix .62

Declaring Implicitly Typed Local Variables .63

Summary. .64

Chapter 2 Quick Reference .65

Chapter 3 Writing Methods and Applying Scope 67
Creating Methods .67

Declaring a Method .68

Returning Data from a Method .69

Calling Methods .71

Applying Scope . 74

Defining Local Scope . 74

Defining Class Scope .75

Overloading Methods . 76

Writing Methods . 76

Using Optional Parameters and Named Arguments85

Defining Optional Parameters .86

Passing Named Arguments .87

Resolving Ambiguities with Optional Parameters
and Named Arguments. .87

 ix

Summary. .92

Chapter 3 Quick Reference .93

Chapter 4 Using Decision Statements 95
Declaring Boolean Variables .95

Using Boolean Operators .96

Understanding Equality and Relational Operators 96

Understanding Conditional Logical Operators97

Short-Circuiting .98

Summarizing Operator Precedence and Associativity 98

Using if Statements to Make Decisions .99

Understanding if Statement Syntax .99

Using Blocks to Group Statements .100

Cascading if Statements .101

Using switch Statements .107

Understanding switch Statement Syntax .108

Following the switch Statement Rules .109

Summary. .113

Chapter 4 Quick Reference .114

Chapter 5 Using Compound Assignment
and Iteration Statements 115

Using Compound Assignment Operators .115

Writing while Statements. .117

Writing for Statements .123

Understanding for Statement Scope .125

Writing do Statements .125

Summary. .134

Chapter 5 Quick Reference .135

x Contents

Chapter 6 Managing Errors and Exceptions 137
Coping with Errors .137

Trying Code and Catching Exceptions. .138

Unhandled Exceptions .139

Using Multiple catch Handlers .140

Catching Multiple Exceptions .141

Propagating Exceptions .147

Using Checked and Unchecked Integer Arithmetic149

Writing Checked Statements .150

Writing Checked Expressions .151

Throwing Exceptions .154

Using a finally Block .159

Summary. .160

Chapter 6 Quick Reference .161

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and Managing Classes and Objects 165
Understanding Classification .165

The Purpose of Encapsulation .166

Defining and Using a Class .166

Controlling Accessibility .168

Working with Constructors .169

Overloading Constructors .170

Understanding static Methods and Data .180

Creating a Shared Field .181

Creating a static Field by Using the const Keyword182

Understanding static Classes .182

Anonymous Classes .185

Summary. .186

Chapter 7 Quick Reference .187

 Contents xi

Chapter 8 Understanding Values and References 189
Copying Value Type Variables and Classes .189

Understanding Null Values and Nullable Types .195

Using Nullable Types .196

Understanding the Properties of Nullable Types197

Using ref and out Parameters .198

Creating ref Parameters .199

Creating out Parameters .200

How Computer Memory Is Organized .202

Using the Stack and the Heap .203

The System.Object Class .204

Boxing .205

Unboxing .206

Casting Data Safely .207

The is Operator .207

The as Operator .208

Summary. .210

Chapter 8 Quick Reference .210

Chapter 9 Creating Value Types with Enumerations
and Structures 213

Working with Enumerations .213

Declaring an Enumeration .214

Using an Enumeration .214

Choosing Enumeration Literal Values .215

Choosing an Enumeration’s Underlying Type216

Working with Structures .218

Declaring a Structure .220

Understanding Structure and Class Differences221

Declaring Structure Variables .222

Understanding Structure Initialization .223

Copying Structure Variables .227

xii Contents

Summary. .231

Chapter 9 Quick Reference .232

Chapter 10 Using Arrays 233
Declaring and Creating an Array .233

Declaring Array Variables .234

Creating an Array Instance .234

Populating and Using an Array .235

Creating an Implicitly Typed Array .236

Accessing an Individual Array Element. .237

Iterating Through an Array .238

Passing Arrays as Parameters and Return Values for a Method . .239

Copying Arrays .241

Using Multidimensional Arrays .242

Creating Jagged Arrays .243

Summary. .254

Chapter 10 Quick Reference .255

Chapter 11 Understanding Parameter Arrays 257
Overloading: A Recap .257

Using Array Arguments .258

Declaring a params Array .260

Using params object[] .262

Using a params Array .263

Comparing Parameter Arrays and Optional Parameters266

Summary. .268

Chapter 11 Quick Reference .269

 Contents xiii

Chapter 12 Working with Inheritance 271
What Is Inheritance? .271

Using Inheritance .272

The System.Object Class Revisited .274

Calling Base Class Constructors .274

Assigning Classes .276

Declaring new Methods .277

Declaring virtual Methods .279

Declaring override Methods .280

Understanding protected Access .282

Understanding Extension Methods .288

Summary. .293

Chapter 12 Quick Reference .293

Chapter 13 Creating Interfaces and Defining Abstract Classes 295
Understanding Interfaces .295

Defining an Interface .296

Implementing an Interface .297

Referencing a Class Through Its Interface .298

Working with Multiple Interfaces .299

Explicitly Implementing an Interface .300

Interface Restrictions .302

Defining and Using Interfaces .302

Abstract Classes .312

Abstract Methods .314

Sealed Classes .314

Sealed Methods .315

Implementing and Using an Abstract Class .315

Summary. .322

Chapter 13 Quick Reference .323

xiv Contents

Chapter 14 Using Garbage Collection
and Resource Management 325

The Life and Times of an Object .325

Writing Destructors .326

Why Use the Garbage Collector? .328

How Does the Garbage Collector Work? .330

Recommendations .330

Resource Management .331

Disposal Methods .331

Exception-Safe Disposal .332

The using Statement and the IDisposable Interface332

Calling the Dispose Method from a Destructor334

Implementing Exception-Safe Disposal .336

Summary. .345

Chapter 14 Quick Reference .345

PART III DEFINING EXTENSIBLE TYPES WITH C#

Chapter 15 Implementing Properties
to Access Fields 349

Implementing Encapsulation by Using Methods .349

What Are Properties? .351

Using Properties .354

Read-Only Properties .354

Write-Only Properties .355

Property Accessibility .355

Understanding the Property Restrictions .356

Declaring Interface Properties .358

Replacing Methods with Properties .359

Generating Automatic Properties .363

Initializing Objects by Using Properties .365

Summary. .369

Chapter 15 Quick Reference .369

 Contents xv

Chapter 16 Using Indexers 371
What Is an Indexer? .371

An Example That Doesn’t Use Indexers .371

The Same Example Using Indexers .373

Understanding Indexer Accessors .376

Comparing Indexers and Arrays .376

Indexers in Interfaces .378

Using Indexers in a Windows Application .379

Summary. .386

Chapter 16 Quick Reference .386

Chapter 17 Introducing Generics 389
The Problem with the object Type .389

The Generics Solution .393

Generics vs. Generalized Classes .395

Generics and Constraints .396

Creating a Generic Class .396

The Theory of Binary Trees .396

Building a Binary Tree Class by Using Generics 399

Creating a Generic Method .409

Defining a Generic Method to Build a Binary Tree 410

Variance and Generic Interfaces .412

Covariant Interfaces .414

Contravariant Interfaces .415

Summary. .417

Chapter 17 Quick Reference .418

Chapter 18 Using Collections 419
What Are Collection Classes? .419

The List<T> Collection Class .421

The LinkedList<T> Collection Class .423

The Queue<T> Collection Class .425

The Stack<T> Collection Class .426

xvi Contents

The Dictionary<TKey, TValue> Collection Class427

The SortedList<TKey, TValue> Collection Class 428

The HashSet<T> Collection Class .429

Using Collection Initializers .431

The Find Methods, Predicates, and Lambda Expressions 431

Comparing Arrays and Collections .433

Using Collection Classes to Play Cards .434

Summary. .438

Chapter 18 Quick Reference .439

Chapter 19 Enumerating Collections 441
Enumerating the Elements in a Collection .441

Manually Implementing an Enumerator .443

Implementing the IEnumerable Interface .447

Implementing an Enumerator by Using an Iterator450

A Simple Iterator .450

Defining an Enumerator for the Tree<TItem> Class
by Using an Iterator .452

Summary. .454

Chapter 19 Quick Reference .455

Chapter 20 Decoupling Application Logic
and Handling Events 457

Understanding Delegates .458

Examples of Delegates in the .NET Framework Class Library459

The Automated Factory Scenario .461

Implementing the Factory Control System
Without Using Delegates .461

Implementing the Factory by Using a Delegate462

Declaring and Using Delegates .465

Lambda Expressions and Delegates .474

Creating a Method Adapter .474

The Forms of Lambda Expressions .475

 Contents xvii

Enabling Notifications with Events .476

Declaring an Event .477

Subscribing to an Event .478

Unsubscribing from an Event .478

Raising an Event .478

Understanding User Interface Events .479

Using Events .480

Summary. .487

Chapter 20 Quick Reference .488

Chapter 21 Querying In-Memory Data by Using Query
Expressions 491

What Is Language-Integrated Query? .491

Using LINQ in a C# Application .492

Selecting Data .494

Filtering Data .497

Ordering, Grouping, and Aggregating Data497

Joining Data .500

Using Query Operators .501

Querying Data in Tree<TItem> Objects .503

LINQ and Deferred Evaluation .509

Summary. .513

Chapter 21 Quick Reference .513

Chapter 22 Operator Overloading 515
Understanding Operators .515

Operator Constraints .516

Overloaded Operators .516

Creating Symmetric Operators .518

Understanding Compound Assignment Evaluation520

Declaring Increment and Decrement Operators .520

Comparing Operators in Structures and Classes .521

Defining Operator Pairs .522

xviii Contents

Implementing Operators .523

Understanding Conversion Operators .530

Providing Built-in Conversions .530

Implementing User-Defined Conversion Operators531

Creating Symmetric Operators, Revisited .532

Writing Conversion Operators .533

Summary. .535

Chapter 22 Quick Reference .536

PART IV BUILDING PROFESSIONAL WINDOWS 8 APPLICATIONS
WITH C#

Chapter 23 Improving Throughput by Using Tasks 541
Why Perform Multitasking by Using Parallel Processing?541

The Rise of the Multicore Processor .542

Implementing Multitasking with the .NET Framework 544

Tasks, Threads, and the ThreadPool . 544

Creating, Running, and Controlling Tasks .545

Using the Task Class to Implement Parallelism548

Abstracting Tasks by Using the Parallel Class559

When Not to Use the Parallel Class .564

Canceling Tasks and Handling Exceptions .566

The Mechanics of Cooperative Cancellation566

Using Continuations with Canceled and Faulted Tasks581

Summary. .582

Chapter 23 Quick Reference .583

Chapter 24 Improving Response Time by Performing
Asynchronous Operations 585

Implementing Asynchronous Methods .586

Defining Asynchronous Methods: The Problem586

Defining Asynchronous Methods: The Solution589

Defining Asynchronous Methods That Return Values595

Asynchronous Methods and the Windows Runtime APIs596

 Contents xix

Using PLINQ to Parallelize Declarative Data Access599

Using PLINQ to Improve Performance
While Iterating Through a Collection .600

Canceling a PLINQ Query .604

Synchronizing Concurrent Access to Data .605

Locking Data .608

Synchronization Primitives for Coordinating Tasks608

Cancelling Synchronization .611

The Concurrent Collection Classes .612

Using a Concurrent Collection and a Lock
to Implement Thread-Safe Data Access .612

Summary. .623

Chapter 24 Quick Reference .624

Chapter 25 Implementing the User Interface for a Windows
Store App 627

What Is a Windows Store App? .628

Using the Blank App Template to Build a Windows Store App 632

Implementing a Scalable User Interface .634

Applying Styles to a User Interface .669

Summary. .679

Chapter 25 Quick Reference .679

Chapter 26 Displaying and Searching for Data in a Windows
Store App 681

Implementing the Model-View-ViewModel Pattern 681

Displaying Data by Using Data Binding .682

Modifying Data by Using Data Binding .689

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xx Contents

Using Data Binding with a ComboBox Control693

Creating a ViewModel .695

Adding Commands to a ViewModel. .699

Windows 8 Contracts .711

Implementing the Search Contract .712

Navigating to a Selected Item .722

Starting an Application from the Search Charm725

Summary. .729

Chapter 26 Quick Reference .732

Chapter 27 Accessing a Remote Database in a Windows
Store App 733

Retrieving Data from a Database .733

Creating an Entity Model .735

Creating and Using a Data Service . 741

Inserting, Updating, and Deleting Data in a Database.754

Performing Insert, Update, and Delete Operations
Through a WCF Data Service .754

Reporting Errors and Updating the User Interface 764

Summary. .772

Chapter 27 Quick Reference .773

Index 775

 xxi

Introduction

Microsoft Visual C# is a powerful but simple language aimed primarily at develop-
ers creating applications by using the Microsoft .NET Framework. It inherits many

of the best features of C++ and Microsoft Visual Basic, but few of the inconsistencies
and anachronisms, resulting in a cleaner and more logical language. C# 1.0 made its
public debut in 2001. The advent of C# 2.0 with Visual Studio 2005 saw several impor-
tant new features added to the language, including generics, iterators, and anony-
mous methods. C# 3.0, which was released with Visual Studio 2008, added extension
methods, lambda expressions, and most famously of all, the Language-Integrated
Query facility, or LINQ. C# 4.0, released in 2010, provided further enhancements that
improved its interoperability with other languages and technologies. These features
included support for named and optional arguments, and the dynamic type, which
indicates that the language runtime should implement late binding for an object. An
important addition in the .NET Framework released concurrently with C# 4.0 was the
classes and types that constitute the Task Parallel Library (TPL). Using the TPL, you can
build highly scalable applications that can take full advantage of multicore processors
quickly and easily. C# 5.0 adds native support for asynchronous task-based processing
through the async method modifier and the await operator.

Another key event for Microsoft has been the launch of Windows 8. This new version
of Windows supports highly interactive applications that can share data and collabo-
rate with each other as well as connect to services running in the cloud. The develop-
ment environment provided by Microsoft Visual Studio 2012 makes all these powerful
features easy to use, and the many new wizards and enhancements included in Visual
Studio 2012 can greatly improve your productivity as a developer. The combination
of Visual Studio 2012, Windows 8, and C# 5.0 provides a comprehensive platform and
toolset for building the next generation of powerful, intuitive, and portable applica-
tions. However, even if you are not using Windows 8, Visual Studio 2012 and C# 5.0
have much to offer, and they form an invaluable partnership for helping you to build
great solutions.

Who Should Read This Book
This book assumes that you are a developer who wants to learn the fundamentals of
programming with C# by using Visual Studio 2012 and the .NET Framework version 4.5.
By the time you complete this book, you will have a thorough understanding of C# and

xxii Introduction

will have used it to build responsive and scalable Windows Presentation Foundation
(WPF) applications that can run on both Windows 7 and Windows 8.

You can build and run C# 5.0 applications on Windows 7 and Windows 8, although
the user interfaces provided by these two operating systems have some significant dif-
ferences. Consequently, Parts I to III of this book provide exercises and worked exam-
ples that will run in both environments. Part IV focuses on the application development
model used by Windows 8, and the material in this section provides an introduction to
building interactive applications for this new platform.

Who Should Not Read This Book
This book is aimed at developers new to C#, and as such, it concentrates primarily on
the C# language. This book is not intended to provide detailed coverage of the multi-
tude of technologies available for building enterprise-level applications for Windows,
such as ADO.NET, ASP.NET, Windows Communication Foundation, or Workflow
Foundation. If you require more information on any of these items, you might consider
reading some of the other titles in the Step by Step for Developers series available from
Microsoft Press, such as Microsoft ASP.NET 4 Step by Step, Microsoft ADO.NET 4 Step by
Step, and Microsoft Windows Communication Foundation 4 Step by Step.

Organization of This Book
This book is divided into four sections:

■■ Part I, "Introducing Microsoft Visual C# and Microsoft Visual Studio 2012,"
provides an introduction to the core syntax of the C# language and the Visual
Studio programming environment.

■■ Part II, "Understanding the C# Object Model," goes into detail on how to create
and manage new types by using C#, and how to manage the resources refer-
enced by these types.

■■ Part III, "Defining Extensible Types with C#," includes extended coverage of the
elements that C# provides for building types that you can reuse across multiple
applications.

■■ Part IV, "Building Professional Window 8 Applications with C#," describes the
Windows 8 programming model, and how you can use C# to build interactive
applications for this new model.

 Introduction xxiii

Note Although Part IV is aimed at Windows 8, many of the concepts de-
scribed in Chapters 23 and 24 are applicable to Windows 7 applications.

Finding Your Best Starting point in this Book
This book is designed to help you build skills in a number of essential areas. You can use
this book if you are new to programming or if you are switching from another pro-
gramming language such as C, C++, Java, or Visual Basic. Use the following table to find
your best starting point.

If you are Follow these steps

New to object-oriented
programming

 1. Install the practice files as described in the upcoming section,
“Code Samples.”

 2. Work through the chapters in Parts I, II, and III sequentially.
 3. Complete Part IV as your level of experience and interest

dictates.

Familiar with procedural pro-
gramming languages such as C
but new to C#

 1. Install the practice files as described in the upcoming section,
“Code Samples.” Skim the first five chapters to get an over-
view of C# and Visual Studio 2012, and then concentrate on
Chapters 6 through 22.

 2. Complete Part IV as your level of experience and interest
dictates.

Migrating from an object-
oriented language such as C++
or Java

 1. Install the practice files as described in the upcoming section,
“Code Samples.”

 2. Skim the first seven chapters to get an overview of C# and
Visual Studio 2012, and then concentrate on Chapters 7
through 22.

 3. For information about building scalable Windows 8 applica-
tions, read Part IV.

Switching from Visual Basic 6
to C#

 1. Install the practice files as described in the upcoming section,
“Code Samples.”

 2. Work through the chapters in Parts I, II, and III sequentially.
 3. For information about building Windows 8 applications, read

Part IV.
 4. Read the Quick Reference sections at the end of the chapters

for information about specific C# and Visual Studio 2012
constructs.

Referencing the book after
working through the exercises

 1. Use the index or the table of contents to find information
about particular subjects.

 2. Read the Quick Reference sections at the end of each chapter
to find a brief review of the syntax and techniques presented
in the chapter.

Most of the book’s chapters include hands-on samples that let you try out the
concepts just learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

xxiv Introduction

Conventions and Features in This Book
This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close)
means that you should select the first menu or menu item, then the next, and
so on.

System Requirements
You will need the following hardware and software to complete the practice exercises in
this book:

■■ Windows 7 (x86 and x64), Windows 8 (x86 and x64), Windows Server 2008 R2
(x64), Windows Server 2012 (x64).

Note Visual Studio 2012 is also available for Windows Vista, Windows
XP, and Windows Server 2003. However, the exercises and code in this
book have not been tested on these platforms.

■■ Visual Studio 2012 (any edition except Visual Studio Express for Windows 8).

Note You can use Visual Studio Express 2012 for Windows Desktop,
but you can only perform the Windows 7 version of the exercises in
this book by using this software. You cannot use this software to per-
form the exercises in Part IV of this book.

 Introduction xxv

■■ Computer that has a 1.6 GHz or faster processor (2 GHz recommended).

■■ 1 GB (32-bit) or 2 GB (64-bit) RAM (add 512 MB if running in a virtual machine).

■■ 10 GB of available hard disk space.

■■ 5400 RPM hard disk drive.

■■ DirectX 9 capable video card running at 1024 × 768 or higher resolution
display; If you are using Windows 8, a resolution of 1366 × 768 or greater is
recommended.

■■ DVD-ROM drive (if installing Visual Studio from a DVD).

■■ Internet connection to download software or chapter examples.

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2012.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
postexercise formats, can be downloaded from the following page:

http://go.microsoft.com/FWLink/?Linkid=273785

Follow the instructions to download the 9780735668010_files.zip file.

Note In addition to the code samples, your system should have Visual Studio
2012 installed. If available, install the latest service packs for Windows and
Visual Studio.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Move to your Documents folder and create a new folder called Microsoft Press.

xxvi Introduction

2. Copy the file that you downloaded from the book's website into the Microsoft
Press folder.

3. Unzip the file and allow it to create the folder Visual CSharp Step By Step.

Note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the <yoursamplefile.zip> file.

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that
chapter. When it’s time to use a code sample, the book will list the instructions for how
to open the files.

For those of you who like to know all the details, here’s a list of the code sample
Visual Studio 2012 projects and solutions, grouped by the folders where you can find
them. In many cases, the exercises provide starter files and completed versions of the
same projects that you can use as a reference. The code samples provide versions
of the code for Window 7 and Windows 8, and the exercise instructions call out any
differences in the tasks that you need to perform or the code that you need to write
for these two operating systems. The completed projects for each chapter are stored in
folders with the suffix "- Complete".

Note If you are using Windows Server 2008 R2, follow the instructions for
Windows 7. If you are using Windows Server 2012, follow the instructions for
Windows 8.

Project Description

Chapter 1

TextHello This project gets you started. It steps through the creation of a simple
program that displays a text-based greeting.

WPFHello This project displays the greeting in a window by using Windows
Presentation Foundation (WPF).

Chapter 2

PrimitiveDataTypes This project demonstrates how to declare variables by using each of
the primitive types, how to assign values to these variables, and how to
display their values in a window.

MathsOperators This program introduces the arithmetic operators (+ – * / %).

 Introduction xxvii

Project Description

Chapter 3

Methods In this project, you’ll reexamine the code in the previous project and
investigate how it uses methods to structure the code.

DailyRate This project walks you through writing your own methods, running the
methods, and stepping through the method calls by using the Visual
Studio 2010 debugger.

DailyRate Using Optional
Parameters

This project shows you how to define a method that takes optional
parameters and call the method by using named arguments.

Chapter 4

Selection This project shows you how to use a cascading if statement to imple-
ment complex logic, such as comparing the equivalence of two dates.

SwitchStatement This simple program uses a switch statement to convert characters into
their XML representations.

Chapter 5

WhileStatement This project demonstrates a while statement that reads the contents of
a source file one line at a time and displays each line in a text box on a
form.

DoStatement This project uses a do statement to convert a decimal number to its
octal representation.

Chapter 6

MathsOperators This project revisits the MathsOperators project from Chapter 2,
“Working with Variables, Operators, and Expressions,” and shows how
various unhandled exceptions can make the program fail. The try and
catch keywords then make the application more robust so that it no
longer fails.

Chapter 7

Classes This project covers the basics of defining your own classes, complete
with public constructors, methods, and private fields. It also shows how
to create class instances by using the new keyword and how to define
static methods and fields.

Chapter 8

Parameters This program investigates the difference between value parameters
and reference parameters. It demonstrates how to use the ref and out
keywords.

Chapter 9

StructsAndEnums This project defines a struct type to represent a calendar date.

Chapter 10

Cards This project shows how to use arrays to model hands of cards in a card
game.

xxviii Introduction

Project Description

Chapter 11

ParamsArrays This project demonstrates how to use the params keyword to create a
single method that can accept any number of int arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle classes by using in-
heritance. It also demonstrates how to define a virtual method.

ExtensionMethod This project shows how to create an extension method for the int type,
providing a method that converts an integer value from base 10 to a
different number base.

Chapter 13

Drawing Using Interfaces This project implements part of a graphical drawing package. The proj-
ect uses interfaces to define the methods that drawing shapes expose
and implement.

Drawing Using Abstract
Classes

This project extends the Drawing Using Interfaces project to factor
common functionality for shape objects into abstract classes.

Chapter 14

GarbageCollectionDemo This project shows how to implement exception-safe disposal of re-
sources by using the Dispose pattern.

Chapter 15

Drawing Using Properties This project extends the application in the Drawing Using Abstract
Classes project developed in Chapter 13 to encapsulate data in a class
by using properties.

AutomaticProperties This project shows how to create automatic properties for a class and
use them to initialize instances of the class.

Chapter 16

Indexers This project uses two indexers: one to look up a person’s phone num-
ber when given a name and the other to look up a person’s name when
given a phone number.

Chapter 17

BinaryTree This solution shows you how to use generics to build a typesafe struc-
ture that can contain elements of any type.

BuildTree This project demonstrates how to use generics to implement a typesafe
method that can take parameters of any type.

Chapter 18

Cards This project updates the code from Chapter 10 to show how to use col-
lections to model hands of cards in a card game.

 Introduction xxix

Project Description

Chapter 19

BinaryTree This project shows you how to implement the generic IEnumerator<T>
interface to create an enumerator for the generic Tree class.

IteratorBinaryTree This solution uses an iterator to generate an enumerator for the generic
Tree class.

Chapter 20

Delegates This project shows how to decouple a method from the application
logic that invokes it by using a delegate.

Delegates With Event This project shows how to use an event to alert an object to a signifi-
cant occurrence, and how to catch an event and perform any process-
ing required.

Chapter 21

QueryBinaryTree This project shows how to use LINQ queries to retrieve data from a
binary tree object.

Chapter 22

ComplexNumbers This project defines a new type that models complex numbers and
implements common operators for this type.

Chapter 23

GraphDemo This project generates and displays a complex graph on a WPF form. It
uses a single thread to perform the calculations.

GraphDemo With Tasks This version of the GraphDemo project creates multiple tasks to per-
form the calculations for the graph in parallel.

Parallel GraphDemo This version of the GraphDemo project uses the Parallel class to ab-
stract out the process of creating and managing tasks.

GraphDemo With
Cancellation

This project shows how to implement cancellation to halt tasks in a
controlled manner before they have completed.

ParallelLoop This application provides an example showing when you should not
use the Parallel class to create and run tasks.

Chapter 24

GraphDemo This is a version of the GraphDemo project from Chapter 23 that uses
the async keyword and the await operator to perform the calculations
that generate the graph data asynchronously.

PLINQ This project shows some examples of using PLINQ to query data by
using parallel tasks.

CalculatePI This project uses a statistical sampling algorithm to calculate an ap-
proximation for pi. It uses parallel tasks.

xxx Introduction

Project Description

Chapter 25

Customers Without
Scalable UI

This project uses the default Grid control to lay out the user interface
for the Adventure Works Customers application. The user interface
uses absolute positioning for the controls and does not scale to differ-
ent screen resolutions and form factors.

Customers With Scalable UI This project uses nested Grid controls with row and column definitions
to enable relative positioning of controls. This version of the user inter-
face scales to different screen resolutions and form factors, but it does
not adapt well to Snapped view.

Customers With Adaptive
UI

This project extends the version with the scalable user interface. It uses
the Visual State Manager to detect whether the application is running
in Snapped view, and it changes the layout of the controls accordingly.

Customers With Styles This version of the Customers project uses XAML styling to change the
font and background image displayed by the application.

Chapter 26

DataBinding This project uses data binding to display customer information re-
trieved from a data source in the user interface. It also shows how to
implement the INotifyPropertyChanged interface to enable the user
interface to update customer information and send these changes back
to the data source.

ViewModel This version of the Customers project separates the user interface from
the logic that accesses the data source by implementing the Model-
View-ViewModel pattern.

Search This project implements the Windows 8 Search contract. A user can
search for customers by first name or last name.

Chapter 27

Data Service This solution includes a web application that provides a WCF Data
Service that the Customers application uses to retrieve customer data
from a SQL Server database. The WCF Data Service uses an entity mod-
el created by using the Entity Framework to access the database.

Updatable ViewModel The Customers project in this solution contains an extended
ViewModel with commands that enable the user interface to insert and
update customer information by using the WCF Data Service.

Acknowledgments
Despite the fact that my name is on the cover, authoring a book such is this as far from
a one-man project. I’d like to thank the following people who have provided unstinting
support and assistance throughout this rather protracted exercise.

First, Russell Jones, with whom I have been communicating for the better part of a
year over what we should include in this edition and how we should structure the book.

 Introduction xxxi

He has been incredibly patient while I pondered how to address the chapters in the
final section of this book.

Next, Mike Sumsion and Paul Barnes, my esteemed colleagues at Content Master,
who performed sterling work reviewing the material for each chapter, testing my code,
and pointing out the numerous mistakes that I had made! I think I have now caught
them all, but of course any errors that remain are entirely my responsibility.

Also, John Mueller, who has done a remarkable job in performing a technical review
of the content. His writing experience and understanding of the technologies covered
herein have been extremely helpful, and this book has been enriched by his efforts.

Of course, like many programmers, I might understand the technology but my prose
is not always as fluent or clear as it could be. I would like to thank Rachel Steely and
Nicole LeClerc for correcting my grammar, fixing my spelling, and generally making my
material much easier to understand.

Finally, I would like to thank my wife Diana, for the copious cups of tea and numer-
ous sandwiches she prepared for me while I had my head down writing. She smoothed
my furrowed brow many times while I was fathoming out how to make the code in the
exercises work.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=273788

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com

xxxii Introduction

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

PART I

Introducing
Microsoft Visual C#
and Microsoft
Visual Studio 2012

Microsoft Visual C# is Microsoft’s powerful component-oriented
language. C# plays an important role in the architecture of the
Microsoft .NET Framework, and some people have compared
it to the role that C played in the development of UNIX. If you
already know a language such as C, C++, or Java, you’ll find the
syntax of C# reassuringly familiar. If you are used to program-
ming in other languages, you should soon be able to pick up
the syntax and feel of C#; you just need to learn to put the
braces and semicolons in the right place.

In Part I, you’ll learn the fundamentals of C#. You’ll discover
how to declare variables and how to use arithmetic operators
such as the plus sign (+) and minus sign (–) to manipulate the
values in variables. You’ll see how to write methods and pass
arguments to methods. You’ll also learn how to use selection
statements such as if and iteration statements such as while.
Finally, you’ll understand how C# uses exceptions to handle
errors in a graceful, easy-to-use manner. These topics form the
core of C#, and from this solid foundation, you’ll progress to
more advanced features in Part II through Part IV.

 3

C H A P T E R 1

Welcome to C#

After completing this chapter, you will be able to

■■ Use the Microsoft Visual Studio 2012 programming environment.

■■ Create a C# console application.

■■ Explain the purpose of namespaces.

■■ Create a simple graphical C# application.

This chapter provides an introduction to Visual Studio 2012, the programming environment and tool-
set designed to help you build applications for Microsoft Windows. Visual Studio 2012 is the ideal tool
for writing C# code, and it provides many features that you will learn about as you progress through
this book. In this chapter, you will use Visual Studio 2012 to build some simple C# applications and
get started on the path to building highly functional solutions for Windows.

Beginning Programming with the
Visual Studio 2012 Environment

Visual Studio 2012 is a tool-rich programming environment containing the functionality that you
need to create large or small C# projects running on Windows 7 and Windows 8. You can even con-
struct projects that seamlessly combine modules written in different programming languages such
as C++, Visual Basic, and F#. In the first exercise, you will open the Visual Studio 2012 programming
environment and learn how to create a console application.

Note A console application is an application that runs in a command prompt window rather
than providing a graphical user interface (GUI).

Create a console application in Visual Studio 2012

■■ If you are using Windows 8, on the Start screen click the Visual Studio 2012 tile.

Visual Studio 2012 starts and displays the Start page, like this (your Start page may be differ-
ent, depending on the edition of Visual Studio 2012 you are using):

4 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Note If this is the first time you have run Visual Studio 2012, you might see a dialog box
prompting you to choose your default development environment settings. Visual Studio
2012 can tailor itself according to your preferred development language. The various dia-
log boxes and tools in the integrated development environment (IDE) will have their de-
fault selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual
Studio 2012 IDE appears.

■■ If you are using Windows 7, perform the following operations to start Visual Studio 2012:

a. On the Microsoft Windows taskbar, click the Start button, point to All Programs, and then
click the Microsoft Visual Studio 2012 program group.

b. In the Microsoft Visual Studio 2012 program group, click Visual Studio 2012.

Visual Studio 2012 starts and displays the Start page.

Note To avoid repetition, throughout this book, I will simply state “Start Visual
Studio” when you need to open Visual Studio 2012, regardless of the operating sys-
tem you are using.

 CHAPTER 1 Welcome to C# 5

■■ Perform the following tasks to create a new console application:

a. On the FILE menu, point to New, and then click Project.

The New Project dialog box opens. This dialog box lists the templates that you
can use as a starting point for building an application. The dialog box categorizes
templates according to the programming language you are using and the type of
application.

b. In the left pane, under Templates, click Visual C#. In the middle pane, verify that the combo
box at the top of the pane displays the text .NET Framework 4.5, and then click the Console
Application icon.

c. In the Location field, type C:\Users\YourName\Documents\Microsoft Press\Visual
CSharp Step By Step\Chapter 1. Replace the text YourName in this path with your
Windows username.

Note To save space throughout the rest of this book, I will simply refer to the path
C:\Users\YourName\Documents as your Documents folder.

6 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip If the folder you specify does not exist, Visual Studio 2012 creates it for you.

d. In the Name field, type TestHello (overtype the existing name, ConsoleApplication1).

e. Ensure that the Create Directory for Solution check box is selected, and then click OK.

Visual Studio creates the project using the Console Application template and displays the starter
code for the project, like this:

The menu bar at the top of the screen provides access to the features you’ll use in the pro-
gramming environment. You can use the keyboard or the mouse to access the menus and
commands exactly as you can in all Windows-based programs. The toolbar is located beneath
the menu bar and provides button shortcuts to run the most frequently used commands.

The Code and Text Editor window occupying the main part of the screen displays the contents
of source files. In a multifile project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file. You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window.

The Solution Explorer pane appears on the right side of the dialog box:

 CHAPTER 1 Welcome to C# 7

Solution Explorer displays the names of the files associated with the project, among other
items. You can also double-click a file name in the Solution Explorer pane to bring that source
file to the foreground in the Code and Text Editor window.

Before writing the code, examine the files listed in Solution Explorer, which Visual Studio 2012
has created as part of your project:

• Solution ‘TestHello’ This is the top-level solution file. Each application contains a single
solution file. A solution can contain one or more projects, and Visual Studio 2012 creates
the solution file to help organize these projects. If you use Windows Explorer to look at
your Documents\Microsoft Press\Visual CSharp Step By Step\Chapter 1\TestHello folder,
you’ll see that the actual name of this file is TestHello.sln.

• TestHello This is the C# project file. Each project file references one or more files con-
taining the source code and other artifacts for the project, such as graphics images. All
the source code in a single project must be written in the same programming language.
In Windows Explorer, this file is actually called TestHello.csproj, and it is stored in the
\Microsoft Press\Visual CSharp Step By Step\Chapter 1\TestHello\TestHello folder under
your Documents folder.

• Properties This is a folder in the TestHello project. If you expand it (click the arrow next to
the text Properties), you will see that it contains a file called AssemblyInfo.cs. AssemblyInfo.
cs is a special file that you can use to add attributes to a program, such as the name of the
author, the date the program was written, and so on. You can specify additional attributes
to modify the way in which the program runs. Explaining how to use these attributes is
beyond the scope of this book.

• References This folder contains references to libraries of compiled code that your ap-
plication can use. When your C# code is compiled, it is converted into a library and given
a unique name. In the .NET Framework, these libraries are called assemblies. Developers use
assemblies to package useful functionality that they have written so they can distribute it

8 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

to other developers who might want to use these features in their own applications. If you
expand the References folder, you can see the default set of references that Visual Studio
2012 adds to your project. These assemblies provide access to many of the commonly used
features of the .NET Framework and are provided by Microsoft with Visual Studio 2012.
You will learn about many of these assemblies as you progress through the exercises in
this book.

• App.config This is the application configuration file. It is optional, and it may not always
be present. You can specify settings that your application can use at runtime to modify its
behavior, such as the version of the .NET Framework to use to run the application. You will
learn more about this file in later chapters of this book.

• Program.cs This is a C# source file, and it is displayed in the Code and Text Editor window
when the project is first created. You will write your code for the console application in this
file. It also contains some code that Visual Studio 2012 provides automatically, which you
will examine shortly.

Writing Your First Program

The Program.cs file defines a class called Program that contains a method called Main. In C#, all
executable code must be defined inside a method, and all methods must belong to a class or a struct.
You will learn more about classes in Chapter 7, “Creating and Managing Classes and Objects,” and you
will learn about structs in Chapter 9, “Creating Value Types with Enumerations and Structures.”

The Main method designates the program’s entry point. This method should be defined in the
manner specified in the Program class, as a static method, otherwise the .NET Framework may not
recognize it as the starting point for your application when you run it. (You will look at methods in
detail in Chapter 3, “Writing Methods and Applying Scope,” and Chapter 7 provides more information
on static methods.)

Important C# is a case-sensitive language. You must spell Main with an uppercase M.

In the following exercises, you write the code to display the message “Hello World!” to the console
window; you build and run your Hello World console application; and you learn how namespaces are
used to partition code elements.

 CHAPTER 1 Welcome to C# 9

Write the code by using Microsoft IntelliSense

1. In the Code and Text Editor window displaying the Program.cs file, place the cursor in the
Main method immediately after the opening brace, {, and then press Enter to create a
new line.

2. On the new line, type the word Console; this is the name of another class provided by the
assemblies referenced by your application. It provides methods for displaying messages in the
console window and reading input from the keyboard.

As you type the letter C at the start of the word Console, an IntelliSense list appears.

This list contains all of the C# keywords and data types that are valid in this context. You can
either continue typing or scroll through the list and double-click the Console item with the
mouse. Alternatively, after you have typed Cons, the IntelliSense list automatically homes in
on the Console item, and you can press the Tab or Enter key to select it.

Main should look like this:

static void Main(string[] args)
{
 Console
}

Note Console is a built-in class.

3. Type a period immediately after Console. Another IntelliSense list appears, displaying the
methods, properties, and fields of the Console class.

4. Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you can con-
tinue typing the characters W, r, i, t, e, L until WriteLine is selected, and then press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source file. Main should
now look like this:

10 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

static void Main(string[] args)
{
 Console.WriteLine
}

5. Type an opening parenthesis, (. Another IntelliSense tip appears.

This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is an
overloaded method, meaning that the Console class contains more than one method named
WriteLine—it actually provides 19 different versions of this method. Each version of the
WriteLine method can be used to output different types of data. (Chapter 3 describes over-
loaded methods in more detail.) Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(
}

tip You can click the up and down arrows in the tip to scroll through the different
overloads of WriteLine.

6. Type a closing parenthesis,), followed by a semicolon, ;.

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine();
}

7. Move the cursor, and type the string “Hello World!”, including the quotation marks, between
the left and right parentheses following the WriteLine method.

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

tip Get into the habit of typing matched character pairs, such as (and) and { and
}, before filling in their contents. It’s easy to forget the closing character if you wait
until after you’ve entered the contents.

 CHAPTER 1 Welcome to C# 11

IntelliSense Icons
When you type a period after the name of a class, IntelliSense displays the name of every member
of that class. To the left of each member name is an icon that depicts the type of member. Common
icons and their types include the following:

Icon Meaning

Method (discussed in Chapter 3)

Property (discussed in Chapter 15)

Class (discussed in Chapter 7)

Struct (discussed in Chapter 9)

Enum (discussed in Chapter 9)

Extension method (discussed in Chapter 12)

Interface (discussed in Chapter 13)

Delegate (discussed in Chapter 17)

Event (discussed in Chapter 17)

Namespace (discussed in the next section of this chapter)

You will also see other IntelliSense icons appear as you type code in different contexts.

You will frequently see lines of code containing two forward slashes, //, followed by ordinary text.
These are comments. They are ignored by the compiler but are very useful for developers because
they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler skips all text from the two slashes to the end of the line. You can also add multiline com-
ments that start with a forward slash followed by an asterisk (/*). The compiler skips everything until it
finds an asterisk followed by a forward slash sequence (*/), which could be many lines lower down. You are
actively encouraged to document your code with as many meaningful comments as necessary.

12 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Build and run the console application

1. On the BUILD menu, click Build Solution.

This action compiles the C# code, resulting in a program that you can run. The Output window
appears below the Code and Text Editor window.

tip If the Output window does not appear, on the VIEW menu, click Output to
display it.

In the Output window, you should see messages similar to the following indicating how the
program is being compiled:

1>------ Build started: Project: TestHello, Configuration: Debug Any CPU ------
1> TestHello -> C:\Users\John\Documents\Microsoft Press\Visual CSharp Step By Step\
Chapter 1\TestHello\TestHello\bin\Debug\TestHello.exe
 ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

If you have made any mistakes, they will be reported in the Error List window. The following
image shows what happens if you forget to type the closing quotation marks after the text
Hello World in the WriteLine statement. Notice that a single mistake can sometimes cause
multiple compiler errors.

 CHAPTER 1 Welcome to C# 13

tip You can double-click an item in the Error List window, and the cursor will be
placed on the line that caused the error. You should also notice that Visual Studio
displays a wavy red line under any lines of code that will not compile when you
enter them.

If you have followed the previous instructions carefully, there should be no errors or warnings,
and the program should build successfully.

tip There is no need to save the file explicitly before building because the Build
Solution command automatically saves the file.

An asterisk after the file name in the tab above the Code and Text Editor window
indicates that the file has been changed since it was last saved.

2. On the DEBUG menu, click Start Without Debugging.

A command window opens, and the program runs. The message “Hello World!” appears, and
then the program waits for you to press any key, as shown in the following graphic:

Note The prompt “Press any key to continue . . .” is generated by Visual Studio;
you did not write any code to do this. If you run the program by using the Start
Debugging command on the DEBUG menu, the application runs, but the command
window closes immediately without waiting for you to press a key.

3. Ensure that the command window displaying the program’s output has the focus, and then
press Enter.

The command window closes, and you return to the Visual Studio 2012 programming
environment.

4. In Solution Explorer, click the TestHello project (not the solution), and then click the Show All Files
toolbar button on the Solution Explorer toolbar. Note that you may need to click the >> button on
the right edge of the Solution Explorer toolbar to make this button appear.

14 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Entries named bin and obj appear above the Program.cs file. These entries correspond directly
to folders named bin and obj in the project folder (Microsoft Press\Visual CSharp Step By
Step\Chapter 1\TestHello\TestHello). Visual Studio creates these folders when you build your
application, and they contain the executable version of the program together with some other
files used to build and debug the application.

5. In Solution Explorer, expand the bin entry.

Another folder named Debug appears.

Note You might also see a folder called Release.

6. In Solution Explorer, expand the Debug folder.

Several more items appear, including a file named TestHello.exe. This is the compiled program,
and it is this file that runs when you click Start Without Debugging on the DEBUG menu. The
other files contain information that is used by Visual Studio 2012 if you run your program in
debug mode (when you click Start Debugging on the DEBUG menu).

Using Namespaces

The example you have seen so far is a very small program. However, small programs can soon grow into
much bigger programs. As a program grows, two issues arise. First, it is harder to understand and maintain
big programs than it is to understand and maintain smaller ones. Second, more code usually means more
classes, with more methods, requiring you to keep track of more names. As the number of names increases,
so does the likelihood of the project build failing because two or more names clash; for example, you might
try and create two classes with the same name. The situation becomes more complicated when a program
references assemblies written by other developers who have also used a variety of names.

In the past, programmers tried to solve the name-clashing problem by prefixing names with some
sort of qualifier (or set of qualifiers). This is not a good solution because it’s not scalable; names be-
come longer, and you spend less time writing software and more time typing (there is a difference),
and reading and rereading incomprehensibly long names.

 CHAPTER 1 Welcome to C# 15

Namespaces help solve this problem by creating a container for items such as classes. Two classes
with the same name will not be confused with each other if they live in different namespaces. You
can create a class named Greeting inside the namespace named TestHello by using the namespace
keyword like this:

namespace TestHello
{
 class Greeting
 {
 ...
 }
}

You can then refer to the Greeting class as TestHello.Greeting in your programs. If another develop-
er also creates a Greeting class in a different namespace, such as NewNamespace, and you install the
assembly that contains this class on your computer, your programs will still work as expected because
they are using the TestHello.Greeting class. If you want to refer to the other developer’s Greeting class,
you must specify it as NewNamespace.Greeting.

It is good practice to define all your classes in namespaces, and the Visual Studio 2012 environ-
ment follows this recommendation by using the name of your project as the top-level namespace.
The .NET Framework class library also adheres to this recommendation; every class in the .NET
Framework lives inside a namespace. For example, the Console class lives inside the System namespace.
This means that its full name is actually System.Console.

Of course, if you had to write the full name of a class every time you used it, the situation would be
no better than prefixing qualifiers or even just naming the class with some globally unique name such
SystemConsole. Fortunately, you can solve this problem with a using directive in your programs. If you
return to the TestHello program in Visual Studio 2012 and look at the file Program.cs in the Code and
Text Editor window, you will notice the following lines at the top of the file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

These lines are using directives. A using directive brings a namespace into scope. In subsequent
code in the same file, you no longer have to explicitly qualify objects with the namespace to which
they belong. The five namespaces shown contain classes that are used so often that Visual Studio
2012 automatically adds these using statements every time you create a new project. You can add
further using directives to the top of a source file if you need to reference other namespaces.

The following exercise demonstrates the concept of namespaces in more depth.

16 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

try longhand names

1. In the Code and Text Editor window displaying the Program.cs file, comment out the first
using directive at the top of the file, like this:

//using System;

2. On the BUILD menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name 'Console' does not exist in the current context.

3. In the Error List window, double-click the error message.

The identifier that caused the error is highlighted in the Program.cs source file.

4. In the Code and Text Editor window, edit the Main method to use the fully qualified name
System.Console.

Main should look like this:

static void Main(string[] args)
{
 System.Console.WriteLine("Hello World!");
}

Note When you type the period after System, the names of all the items in the
System namespace are displayed by IntelliSense.

5. On the BUILD menu, click Build Solution.

The project should build successfully this time. If it doesn’t, make sure that Main is exactly as it
appears in the preceding code, and then try building again.

6. Run the application to make sure it still works by clicking Start Without Debugging on the
DEBUG menu.

7. When the program runs and displays "Hello World!", press Enter in the console window to
return to Visual Studio 2012.

 CHAPTER 1 Welcome to C# 17

Namespaces and assemblies
A using directive simply brings the items in a namespace into scope and frees you from hav-
ing to fully qualify the names of classes in your code. Classes are compiled into assemblies.
An assembly is a file that usually has the .dll file name extension, although strictly speaking,
executable programs with the .exe file name extension are also assemblies.

An assembly can contain many classes. The classes that the .NET Framework class library
comprises, such as System.Console, are provided in assemblies that are installed on your com-
puter together with Visual Studio. You will find that the .NET Framework class library contains
thousands of classes. If they were all held in the same assembly, the assembly would be huge
and difficult to maintain. (If Microsoft updated a single method in a single class, it would have
to distribute the entire class library to all developers!)

For this reason, the .NET Framework class library is split into a number of assemblies, par-
titioned by the functional area to which the classes they contain relate. For example, a “core”
assembly (actually called mscorlib.dll) contains all the common classes, such as System.Console,
and further assemblies contain classes for manipulating databases, accessing web services,
building GUIs, and so on. If you want to make use of a class in an assembly, you must add to
your project a reference to that assembly. You can then add using statements to your code that
bring the items in namespaces in that assembly into scope.

You should note that there is not necessarily a 1:1 equivalence between an assembly and a
namespace. A single assembly can contain classes defined in many namespaces, and a single
namespace can span multiple assemblies. For example, the classes and items in the System
namespace are actually implemented by several assemblies, including mscorlib.dll, System.dll,
and System.Core.dll, among others. This all sounds very confusing at first, but you will soon get
used to it.

When you use Visual Studio to create an application, the template you select automati-
cally includes references to the appropriate assemblies. For example, in Solution Explorer for
the TestHello project, expand the References folder. You will see that a console application
automatically contains references to assemblies called Microsoft.CSharp, System, System.Core,
System.Data, System.Data.DataExtensions, System.Xml, and System.Xml.Linq. You may be
surprised to see that mscorlib.dll is not included in this list; this is because all .NET Framework
applications must use this assembly, as it contains fundamental runtime functionality. The
References folder lists only the optional assemblies; you can add or remove assemblies from
this folder as necessary.

You can add references for additional assemblies to a project by right-clicking the References
folder and clicking Add Reference—you will perform this task in later exercises. You can remove an
assembly by right-clicking the assembly in the References folder and then clicking Remove.

18 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Creating a Graphical Application

So far, you have used Visual Studio 2012 to create and run a basic console application. The Visual
Studio 2012 programming environment also contains everything you need to create graphical ap-
plications for Windows 7 and Windows 8. You can design the user interface of a Windows applica-
tion interactively. Visual Studio 2012 then generates the program statements to implement the user
interface you’ve designed.

Visual Studio 2012 provides you with two views of a graphical application: the design view and the
code view. You use the Code and Text Editor window to modify and maintain the code and program
logic for a graphical application, and you use the Design View window to lay out your user interface.
You can switch between the two views whenever you want.

In the following set of exercises, you’ll learn how to create a graphical application using Visual
Studio 2012. This program will display a simple form containing a text box where you can enter your
name and a button that when clicked displays a personalized greeting.

Important In Windows 7, Visual Studio 2012 provides two templates for building graphical
applications: the Windows Forms Application template and the WPF Application template.
Windows Forms is a technology that first appeared with the .NET Framework version 1.0.
WPF, or Windows Presentation Foundation, is an enhanced technology that first appeared
with the .NET Framework version 3.0. It provides many additional features and capabilities
over Windows Forms, and you should consider using WPF instead of Windows Forms for all
new Windows 7 development.

You can also build Windows Forms and WPF applications in Windows 8. However, Windows 8
provides a new style of user interface, referred to as the Windows Store style, and applications
that use this style of user interface are called Windows Store applications (or apps). Windows 8
has been designed to operate on a variety of hardware, including computers with touch-sensitive
screens and tablet computers or slates. These computers enable users to interact with applications
by using touch-based gestures—for example, users can swipe applications with their fingers to
move them around the screen and rotate them, or “pinch” and “stretch” applications to zoom out
and back in again. Additionally, many slates include sensors that can detect the orientation of the
device, and Windows 8 can pass this information to an application, which can then dynamically
adjust the user interface to match the orientation (it can switch from landscape to portrait mode,
for example). If you have installed Visual Studio 2012 on a Windows 8 computer, you are provided
with an additional set of templates for building Windows Store apps.

To cater to both Windows 7 and Windows 8 developers, I have provided instructions
in many of the exercises for using the WPF templates if you are running Windows 7, or
Windows 8 if you want to use the Windows Store style of user interface. Of course, you can
follow the Windows 7 and WPF instructions on Windows 8 if you prefer.

If you want more information about the specifics of writing Windows 8 applications, the
chapters in Part IV of this book provide more detail and guidance.

 CHAPTER 1 Welcome to C# 19

Create a graphical application in Visual Studio 2012

■■ If you are using Windows 8, perform the following operations to create a new graphical
application:

a. Start Visual Studio 2012 if it is not already running.

b. On the FILE menu, point to New, and then click Project.

The New Project dialog box opens.

c. In the left pane, under Installed Templates, expand the Visual C# folder if it is not already
expanded, and then click the Windows Store folder.

d. In the middle pane, click the Blank App (XAML) icon.

Note XAML stands for Extensible Application Markup Language, the language that
Windows Store apps use to define the layout for the GUI of an application. You will
learn more about XAML as you progress through the exercises in this book.

e. Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 1 folder under your Documents folder.

f. In the Name field, type Hello.

g. In the Solution field, ensure that Create New Solution is selected.

This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TestHello solution, which is not what you want for
this exercise.

h. Click OK.

If this is the first time that you have created a Windows Store app, you will be prompt-
ed to apply for a developer license. You must agree to the terms and conditions
indicated in the dialog box before you can continue to build Windows Store apps.
If you concur with these conditions, click I Agree. You will be prompted to sign into
Windows Live (you can create a new account at this point if necessary), and a devel-
oper license will be created and allocated to you.

20 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

i. After the application has been created, look in the Solution Explorer window.

Don’t be fooled by the name of the application template—although it is called Blank
App, this template actually provides a number of files and contains a significant
amount of code. For example, if you expand the Common folder in Solution Explorer,
you will find a file named StandardStyles.xaml. This file contains XAML code defin-
ing styles that you can use to format and present data for display. Part IV, "Build-
ing Professional Windows 8 Applications with C#," describes the purpose of these
styles in more detail, so don’t worry about them for now. Similarly, if you expand
the MainPage.xaml folder, you will find a C# file named MainPage.xaml.cs. This file is
where you add the code that runs when the user interface defined by the MainPage.
xaml file is displayed.

j. In Solution Explorer, double-click MainPage.xaml.

This file contains the layout of the user interface. The Design View window shows two
representations of this file:

 CHAPTER 1 Welcome to C# 21

At the top is a graphical view depicting the screen of a tablet computer. The lower
pane contains a description of the contents of this screen using XAML. XAML is an
XML-like language used by Windows Store apps and WPF applications to define the
layout of a form and its contents. If you have knowledge of XML, XAML should look
familiar.

In the next exercise, you will use the Design View window to lay out the user interface
for the application, and you will examine the XAML code that this layout generates.

■■ If you are using Windows 7, perform the following tasks:

a. Start Visual Studio 2012 if it is not already running.

b. On the FILE menu, point to New, and then click Project.

The New Project dialog box opens.

c. In the left pane, under Installed Templates, expand the Visual C# folder if it is not already
expanded, and then click the Windows folder.

d. In the middle pane, click the WPF Application icon.

e. Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 1 folder under your Documents folder.

f. In the Name field, type Hello.

g. In the Solution field, ensure that Create New Solution is selected.

h. Click OK.

The WPF Application template generates fewer items than the Windows Store Blank
App template; it contains none of the styles generated by the Blank App template
as the functionality that these styles embody is specific to Windows 8. However, the
WPF Application template does generate a default window for your application. Like a
Windows Store app, this window is defined by using XAML, but in this case it is called
MainWindow.xaml by default.

i. In Solution Explorer, double-click MainWindow.xaml to display the contents of this file in the
Design View window.

22 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip Close the Output and Error List windows to provide more space for displaying
the Design View window.

Note Before going further, it is worth explaining some terminology. In a typical WPF
application, the user interface consists of one or more windows, but in a Windows
Store app the corresponding items are referred to as pages (strictly speaking, a WPF
application can also contain pages, but I don’t want to confuse matters further at
this point). To avoid repeating the rather verbose phrase “WPF window or Windows
Store app page” repeatedly throughout this book, I will simply refer to both items
by using the blanket term form. However, I will continue to use the word window to
refer to items in the Visual Studio 2012 IDE, such as the Design View window.

In the following exercises, you use the Design View window to add three controls to the form dis-
played by your application, and you examine some of the C# code automatically generated by Visual
Studio 2012 to implement these controls.

 CHAPTER 1 Welcome to C# 23

Note The steps in the following exercises are common to Windows 7 and Windows 8,
except where any differences are explicitly called out.

Create the user interface

1. Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displays the various components and
controls that you can place on a form.

2. If you are using Windows 8, expand the Common XAML Controls section.

If you are using Windows 7, expand the Common WPF Controls section.

This section displays a list of controls that are used by most graphical applications.

tip The All XAML Controls section (Windows 8) or All WPF Controls section
(Windows 7) displays a more extensive list of controls.

3. In the Common XAML Controls section or Common WPF Controls section, click TextBlock, and
then drag the TextBlock control onto the form displayed in the Design View window.

tip Make sure you select the TextBlock control and not the TextBox control. If you
accidentally place the wrong control on a form, you can easily remove it by clicking
the item on the form and then pressing Delete.

A TextBlock control is added to the form (you will move it to its correct location in a moment),
and the Toolbox disappears from view.

tip If you want the Toolbox to remain visible but not to hide any part of the form,
click the Auto Hide button to the right in the Toolbox title bar. (It looks like a pin.)
The Toolbox appears permanently on the left side of the Visual Studio 2012 window,
and the Design View window shrinks to accommodate it. (You might lose a lot of
space if you have a low-resolution screen.) Clicking the Auto Hide button once more
causes the Toolbox to disappear again.

24 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

4. The TextBlock control on the form is probably not exactly where you want it. You can click and
drag the controls you have added to a form to reposition them. Using this technique, move
the TextBlock control so that it is positioned toward the upper-left corner of the form. (The
exact placement is not critical for this application.) Notice that you may need to click away
from the control and then click it again before you are able to move it in the Design View
window.

The XAML description of the form in the lower pane now includes the TextBlock control,
together with properties such as its location on the form, governed by the Margin property,
the default text displayed by this control in the Text property, the alignment of text displayed
by this control specified by the HorizontalAlignment and VerticalAlignment properties, and
whether text should wrap if it exceeds the width of the control.

If you are using Windows 8, the XAML code for the TextBlock will look similar to this (your
values for the Margin property may be slightly different, depending on where you have posi-
tioned the TextBlock control on the form):

<TextBlock HorizontalAlignment="Left" Margin="400,200,0,0" TextWrapping="Wrap"
Text="TextBlock" VerticalAlignment="Top"/>

If you are using Windows 7, the XAML code will be much the same, except that the units used
by the Margin property operate on a different scale due to the finer resolution of Windows 8
devices.

The XAML pane and the Design View window have a two-way relationship with each other.
You can edit the values in the XAML pane, and the changes will be reflected in the Design
View window. For example, you can change the location of the TextBlock control by modifying
the values in the Margin property.

5. On the VIEW menu, click Properties Window.

If it was not already displayed, the Properties window appears at the lower-right of the screen,
under Solution Explorer. You can specify the properties of controls by using the XAML pane under
the Design View window, but the Properties window provides a more convenient way for you to
modify the properties for items on a form, as well as other items in a project.

The Properties window is context sensitive in that it displays the properties for the currently
selected item. If you click the form displayed in the Design View window, outside of the
TextBlock control, you can see that the Properties window displays the properties for a Grid
element. If you look at the XAML pane, you should see that the TextBlock control is contained
within a Grid element. All forms contain a Grid element that controls the layout of displayed
items; you can define tabular layouts by adding rows and columns to the Grid, for example.

6. Click the TextBlock control in the Design View window. The Properties window displays the
properties for the TextBlock control again.

 CHAPTER 1 Welcome to C# 25

7. In the Properties window, expand the Text property. Change the FontSize property to 20 px
and then press Enter. This property is located next to the drop-down list box containing the
name of the font, which will be different for Windows 8 (Global User Interface) and Windows 7
(Segoe UI):

Note The suffix px indicates that the font size is measured in pixels.

8. In the XAML pane below the Design View window, examine the text that defines the TextBlock
control. If you scroll to the end of the line, you should see the text FontSize=“20”. Any changes
that you make using the Properties window are automatically reflected in the XAML defini-
tions and vice versa.

Overtype the value of the FontSize property in the XAML pane, and change it to 24. The font
size of the text for the TextBlock control in the Design View window and the Properties win-
dow changes.

9. In the Properties window, examine the other properties of the TextBlock control. Feel free to
experiment by changing them to see their effects.

Notice that as you change the values of properties, these properties are added to the defini-
tion of the TextBlock control in the XAML pane. Each control that you add to a form has a
default set of property values, and these values are not displayed in the XAML pane unless
you change them.

10. Change the value of the Text property of the TextBlock control from TextBlock to Please enter
your name. You can do this either by editing the Text element in the XAML pane or by chang-
ing the value in the Properties window (this property is located in the Common section in the
Properties window).

Notice that the text displayed in the TextBlock control in the Design View window changes.

26 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

11. Click the form in the Design View window, and then display the Toolbox again.

12. In the Toolbox, click and drag the TextBox control onto the form. Move the TextBox control so
that it is directly underneath the TextBlock control.

tip When you drag a control on a form, alignment indicators appear automatically
when the control becomes aligned vertically or horizontally with other controls. This
gives you a quick visual cue for making sure that controls are lined up neatly.

13. In the Design View window, place the mouse over the right edge of the TextBox control. The
mouse pointer should change to a double-headed arrow to indicate that you can resize the
control. Click the mouse and drag the right edge of the TextBox control until it is aligned with
the right edge of the TextBlock control above; a guide should appear when the two edges are
correctly aligned.

14. While the TextBox control is selected, change the value of the Name property displayed at the
top of the Properties window from <No Name> to userName:

Note You will learn more about naming conventions for controls and variables in
Chapter 2, “Working with Variables, Operators, and Expressions.”

15. Display the Toolbox again, and then click and drag a Button control onto the form. Place the
Button control to the right of the TextBox control on the form so that the bottom of the but-
ton is aligned horizontally with the bottom of the text box.

16. Using the Properties window, change the Name property of the Button control to ok and
change the Content property (in the Common section) from Button to OK and press Enter.
Verify that the caption of the Button control on the form changes to display the text OK.

 CHAPTER 1 Welcome to C# 27

17. If you are using Windows 7, click the title bar of the form in the Design View window. In
the Properties window, change the Title property (in the Common section again) from
MainWindow to Hello.

Note Windows Store apps do not have a title bar.

18. If you are using Windows 7, in the Design View window, click the title bar of the Hello form.
Notice that a resize handle (a small square) appears in the lower-right corner of the Hello
form. Move the mouse pointer over the resize handle. When the pointer changes to a
diagonal double-headed arrow, click and drag the pointer to resize the form. Stop dragging
and release the mouse button when the spacing around the controls is roughly equal.

Important Click the title bar of the Hello form and not the outline of the grid inside
the Hello form before resizing it. If you select the grid, you will modify the layout of
the controls on the form but not the size of the form itself.

The Hello form should now look similar to the following figure.

Note Pages in Windows Store apps cannot be resized in the same way as
Windows 7 forms; when they run, they automatically occupy the full screen of the
device. However, they can adapt themselves to different screen resolutions and
device orientation, and present different views when they are “snapped.” You can
easily see what your application looks like on a different device by clicking Device
Window on the DESIGN menu and then selecting from the different screen resolu-
tions available in the Display drop-down list. You can also see how your application
appears in portrait mode or when snapped by selecting the Portrait orientation or
Snapped view from the list of available views.

28 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

19. On the BUILD menu, click Build Solution, and verify that the project builds successfully.

20. On the DEBUG menu, click Start Debugging.

The application should run and display your form. If you are using Windows 8, the form
occupies the entire screen and looks like this:

If you are using Windows 7, the form looks like this:

You can delete the text TextBox, type your name in the text box, and click OK, but nothing
happens yet. You need to add some code to indicate what should happen when the user clicks
the OK button, which is what you will do next.

21. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging. Alternatively, if
you are using Windows 7, click the close button (the X in the upper-right corner of the form)
to close the form and return to Visual Studio.

 CHAPTER 1 Welcome to C# 29

Closing a Windows Store app
If you are using Windows 8 and you clicked Start Without Debugging on the DEBUG menu to run the
application, you will need to forcibly close it. This is because unlike console applications, the lifetime of a
Windows Store app is managed by the operating system rather than the user. Windows 8 suspends an ap-
plication when it is not currently displayed, and it will terminate the application when the operating system
needs to free the resources occupied by the application. The most reliable way to forcibly stop the Hello
application is to click (or place your finger if you have a touch-sensitive screen) at the top of the screen, and
then click and drag (or swipe) the application to the bottom of the screen. This action closes the application
and returns you to the Windows Start screen, where you can switch back to Visual Studio. Alternatively, you
can perform the following tasks:

1. Click, or place your finger, in the top-right corner of the screen and then drag the im-
age of Visual Studio to the middle of the screen (or press the Windows key and the B
key at the same time).

2. Right-click the Windows taskbar at the bottom of the desktop and then click Task Manager.

3. In the Task Manager window, click the Hello application, and then click End Task.

4. Close the Task Manager window.

You have managed to create a graphical application without writing a single line of C# code. It
does not do much yet (you will have to write some code soon), but Visual Studio 2012 actually gener-
ates a lot of code for you that handles routine tasks that all graphical applications must perform, such
as starting up and displaying a window. Before adding your own code to the application, it helps to
have an understanding of what Visual Studio has produced for you. The structure is slightly different

30 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

between a Windows Store app and a Windows 7 WPF application, and the following sections summa-
rize these application styles separately.

examining the Windows Store app
If you are using Windows 8, in Solution Explorer, click the arrow adjacent to the MainPage.xaml file to ex-
pand the node. The file MainPage.xaml.cs appears; double-click this file. The following code for the form is
displayed in the Code and Text Editor window:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=234238

namespace Hello
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

 /// <summary>
 /// Invoked when this page is about to be displayed in a Frame.
 /// </summary>
 /// <param name="e">Event data that describes how this page was reached. The Parameter
 /// property is typically used to configure the page.</param>
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }
 }
}

In addition to a good number of using directives bringing into scope some namespaces that most
Windows Store apps use, the file contains the definition of a class called MainPage but not much else.
There is a little bit of code for the MainPage class known as a constructor that calls a method called
InitializeComponent. A constructor is a special method with the same name as the class. It is executed

 CHAPTER 1 Welcome to C# 31

when an instance of the class is created and can contain code to initialize the instance. You will learn
about constructors in Chapter 7.

The class also contains a method called OnNavigatedTo. This is an example of a method that is in-
voked by an event, and the code in this method runs when the window is displayed. You can add your
own code to this method to configure the display if necessary. You will learn more about events in
Chapter 17, “Introducing Generics,” and Chapter 25, “Implementing the User Interface for a Windows
Store App,” provides more information about the NavigatedTo event.

The class actually contains a lot more code than the few lines shown in the MainPage.xaml.cs file, but
much of it is generated automatically based on the XAML description of the form, and it is hidden from you.
This hidden code performs operations such as creating and displaying the form, and creating and position-
ing the various controls on the form.

tip You can also display the C# code file for a page in a Windows Store app by clicking
Code on the VIEW menu when the Design View window is displayed.

At this point, you might be wondering where the Main method is and how the form gets displayed
when the application runs. Remember that in a console application, Main defines the point at which
the program starts. A graphical application is slightly different.

In Solution Explorer, you should notice another source file called App.xaml. If you expand the node for
this file, you will see another file called App.xaml.cs. In a Windows Store app, the App.xaml file provides the
entry point when the application starts running. If you double-click App.xaml.cs in Solution Explorer, you
should see some code that looks similar to this:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.ApplicationModel;
using Windows.ApplicationModel.Activation;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Application template is documented at http://go.microsoft.com/fwlink/?LinkId=234227

namespace Hello
{
 /// <summary>
 /// Provides application-specific behavior to supplement the default Application class.
 /// </summary>
 sealed partial class App : Application

32 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

 {
 /// <summary>
 /// Initializes the singleton application object. This is the first line of authored
 /// executed, and as such is the logical equivalent of main() or WinMain().
 /// </summary>
 public App()
 {
 this.InitializeComponent();
 this.Suspending += OnSuspending;
 }

 /// <summary>
 /// Invoked when the application is launched normally by the end user. Other entry
 /// will be used when the application is launched to open a specific file, to display
 /// search results, and so forth.
 /// </summary>
 /// <param name="args">Details about the launch request and process.</param>
 protected override void OnLaunched(LaunchActivatedEventArgs args)
 {
 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate to the first
 rootFrame = new Frame();

 if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a navigation
 // parameter
 if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();
 }

 /// <summary>
 /// Invoked when application execution is being suspended. Application state is saved
 /// without knowing whether the application will be terminated or resumed with the
 /// of memory still intact.
 /// </summary>

 CHAPTER 1 Welcome to C# 33

 /// <param name="sender">The source of the suspend request.</param>
 /// <param name="e">Details about the suspend request.</param>
 private void OnSuspending(object sender, SuspendingEventArgs e)
 {
 var deferral = e.SuspendingOperation.GetDeferral();
 //TODO: Save application state and stop any background activity
 deferral.Complete();
 }
 }
}

Much of this code consists of comments (the lines beginning “///”) and other statements that you
don’t need to understand just yet, but the key elements are located in the OnLaunched method,
highlighted in bold. This method runs when the application starts, and the code in this method causes
the application to create a new Frame object, display the MainPage form in this frame, and then
activate it. It is not necessary at this stage to fully comprehend how this code works or the syntax of
any of these statements, but simply appreciate that this is how the application displays the form when
it starts running.

examining the WpF application
If you are using Windows 7, in Solution Explorer, click the arrow adjacent to the MainWindow.xaml file to
expand the node. The file MainWindow.xaml.cs appears; double-click this file. The code for the form is
displayed in the Code and Text Editor window. It looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace Hello
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

34 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

This code looks similar to that for the Windows Store app, but there are some significant differ-
ences. First, there is no OnNavigatedTo method; this is because the way in which a WPF application
moves between forms is different from a Windows Store app. Second, many of the namespaces refer-
enced by the using directives at the top of the file are different. For example, WPF applications make
use of objects defined in namespaces that begin with the prefix System.Windows, whereas Windows
Store apps use objects defined in namespaces that start with Windows.UI. This difference is not just
cosmetic. These namespaces are implemented by different assemblies, and the controls and func-
tionality that these assemblies provide are different between WPF and Windows Store apps, although
they may have similar names. Going back to the earlier exercise, you added TextBlock, TextBox, and
Button controls to the WPF form and the Windows Store app. Although these controls have the same
name in each style of application, they are defined in different assemblies: Windows.UI.Xaml.Controls
for Windows Store apps and System.Windows.Controls for WPF applications. The controls for Windows
Store apps have been specifically designed and optimized for touch interfaces, whereas the WPF con-
trols are intended primarily for use in mouse-driven systems.

As with the code in the Windows Store app, the constructor in the MainWindow class initializes the
WPF form by calling the InitializeComponent method. Again, as before, the code for this method is
hidden from you, and it performs operations such as creating and displaying the form, and creating
and positioning the various controls on the form.

The way in which a WPF application specifies the initial form to be displayed is different from
that of a Windows Store app. Like a Windows Store app, it defines an App object defined in the
App.xaml file to provide the entry point for the application, but the form to display is specified de-
claratively as part of the XAML code rather than programmatically. If you double-click the App.xaml
file in Solution Explorer (not App.xaml.cs), you can examine the XAML description. One property in
the XAML code is called StartupUri, and it refers to the MainWindow.xaml file, as shown in bold in
the following code example:

<Application x:Class="Hello.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com.winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

In a WPF application, the StartupUri property of the App object indicates which form to display.

adding Code to the Graphical application
Now that you know a little bit about the structure of a graphical application, the time has come to
write some code to make your application actually do something.

 CHAPTER 1 Welcome to C# 35

Write the code for the OK button

1. Open the MainPage.xaml file (Windows 8) or MainWindow.xaml file (Windows 7) in the De-
sign View window (double-click MainPage.xaml or MainWindow.xaml in Solution Explorer).

2. In the Design View window, click the OK button on the form to select it.

3. In the Properties window, click the Event Handlers for Selected Element button. This button
displays an icon that looks like a bolt of lightning.

The Properties window displays a list of event names for the Button control. An event indi-
cates a significant action that usually requires a response, and you can write your own code to
perform this response.

4. In the box adjacent to the Click event, type okClick and then press Enter.

The MainPage.xaml.cs file (Windows 8) or MainWindow.xaml.cs file (Windows 7) appears in
the Code and Text Editor window, and a new method called okClick is added to the MainPage
or MainWindow class. The method looks like this:

private void okClick(object sender, RoutedEventArgs e)
{

}

Do not worry too much about the syntax of this code just yet—you will learn all about meth-
ods in Chapter 3.

5. If you are using Windows 8, perform the following tasks:

a. Add the following using directive shown in bold to the list at the top of the file (the ellipsis
character, …, indicates statements that have been omitted for brevity):

36 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

using System;
...
using Windows.UI.Xaml.Navigation;
using Windows.UI.Popups;

b. Add the following code shown in bold to the okClick method:

void okClick(object sender, RoutedEventArgs e)
{
 MessageDialog msg = new MessageDialog("Hello " + userName.Text);
 msg.ShowAsync();
}

This code will run when the user clicks the OK button. Again, do not worry too much about
the syntax, just make sure you copy it exactly as shown; you will find out what these state-
ments mean in the next few chapters. The key things to understand are that the first
statement creates a MessageDialog object with the message “Hello <YourName>”, where
<YourName> is the name that you type into the TextBox on the form. The second statement
displays the MessageDialog, causing it to appear on the screen. The MessageDialog class is
defined in the Windows.UI.Popups namespace, which is why you added it in step a.

6. If you are using Windows 7, just add the single statement shown in bold to the okClick
method:

void okClick(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Hello " + userName.Text);
}

This code performs a similar function to that of the Windows Store app, except that it uses
a different class called MessageBox. This class is defined in the System.Windows namespace,
which is already referenced by the existing using directives at the top of the file, so you don’t
need to add it yourself.

7. Click the MainPage.xaml tab or the MainWindow.xaml tab above the Code and Text Editor window
to display the form in the Design View window again.

8. In the lower pane displaying the XAML description of the form, examine the Button element,
but be careful not to change anything. Notice that it now contains an element called Click that
refers to the okClick method:

<Button x:Name="ok" ... Click="okClick" />

9. On the DEBUG menu, click Start Debugging.

10. When the form appears, in the text box overtype the text TextBox with your name and then
click OK.

 CHAPTER 1 Welcome to C# 37

If you are using Windows 8, a message dialog appears across the middle of the screen, wel-
coming you by name:

If you are using Windows 7, a message box appears displaying the following greeting:

11. Click Close in the message dialog (Windows 8) or OK (Windows 7) in the message box.

12. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging.

Summary

In this chapter, you have seen how to use Visual Studio 2012 to create, build, and run applications.
You have created a console application that displays its output in a console window, and you have
created a WPF application with a simple GUI.

38 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 2.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 1 Quick Reference

To Do this

Create a new console application using
Visual Studio 2012

On the FILE menu, point to New, and then click Project to open the New
Project dialog box. In the left pane, under Installed Templates, click Visual
C#. In the middle pane, click Console Application. Specify a directory for
the project files in the Location box. Type a name for the project. Click
OK.

Create a new Windows Store blank graphi-
cal application for Windows 8 using Visual
Studio 2012

On the FILE menu, point to New, and then click Project to open the New
Project dialog box. In the left pane, under Installed Templates, expand
Visual C# and then click Windows Store. In the middle pane, click Blank
App (XAML). Specify a directory for the project files in the Location box.
Type a name for the project. Click OK.

Create a new WPF graphical application
for Windows 7 using Visual Studio 2012

On the FILE menu, point to New, and then click Project to open the
New Project dialog box. In the left pane, under Installed Templates, ex-
pand Visual C# and then click Windows. In the middle pane, click WPF
Application. Specify a directory for the project files in the Location box.
Type a name for the project. Click OK.

Build the application On the BUILD menu, click Build Solution.

Run the application in debug mode On the DEBUG menu, click Start Debugging.

Run the application without debugging On the DEBUG menu, click Start Without Debugging.

 39

C H A P T E R 2

Working with Variables, Operators,
and expressions

After completing this chapter, you will be able to

■■ Understand statements, identifiers, and keywords.

■■ Use variables to store information.

■■ Work with primitive data types.

■■ Use arithmetic operators such as the plus sign (+) and the minus sign (–).

■■ Increment and decrement variables.

In Chapter 1, “Welcome to C#,” you learned how to use the Microsoft Visual Studio 2012 program-
ming environment to build and run a console program and a graphical application. This chapter
introduces you to the elements of Microsoft Visual C# syntax and semantics, including statements,
keywords, and identifiers. You’ll study the primitive types that are built into the C# language and the
characteristics of the values that each type holds. You’ll also see how to declare and use local vari-
ables (variables that exist only in a method or other small section of code), learn about the arithmetic
operators that C# provides, find out how to use operators to manipulate values, and learn how to
control expressions containing two or more operators.

Understanding Statements

A statement is a command that performs an action, such as calculating a value and storing the result,
or displaying a message to a user. You combine statements to create methods. You’ll learn more
about methods in Chapter 3, “Writing Methods and Applying Scope,” but for now, think of a method
as a named sequence of statements. Main, which was introduced in the previous chapter, is an
example of a method.

Statements in C# follow a well-defined set of rules describing their format and construction. These
rules are collectively known as syntax. (In contrast, the specification of what statements do is collec-
tively known as semantics.) One of the simplest and most important C# syntax rules states that you

40 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

must terminate all statements with a semicolon. For example, you saw in Chapter 1 that without its
terminating semicolon, the following statement won’t compile:

Console.WriteLine("Hello World!");

tip C# is a “free format” language, which means that white space, such as a space charac-
ter or a new line, is not significant except as a separator. In other words, you are free to lay
out your statements in any style you choose. However, you should adopt a simple, consis-
tent layout style to make your programs easier to read and understand.

The trick to programming well in any language is learning the syntax and semantics of the lan-
guage and then using the language in a natural and idiomatic way. This approach makes your pro-
grams more easily maintainable. As you progress through this book, you’ll see examples of the most
important C# statements.

Using Identifiers

Identifiers are the names you use to identify the elements in your programs, such as namespaces,
classes, methods, and variables. (You will learn about variables shortly.) In C#, you must adhere to the
following syntax rules when choosing identifiers:

■■ You can use only letters (uppercase and lowercase), digits, and underscore characters.

■■ An identifier must start with a letter or an underscore.

For example, result, _score, footballTeam, and plan9 are all valid identifiers, whereas result%,
footballTeam$, and 9plan are not.

Important C# is a case-sensitive language: footballTeam and FootballTeam are not the
same identifier.

Identifying Keywords
The C# language reserves 77 identifiers for its own use, and you cannot reuse these identifiers for
your own purposes. These identifiers are called keywords, and each has a particular meaning. Exam-
ples of keywords are class, namespace, and using. You’ll learn the meaning of most of the C# key-
words as you proceed through this book. The following table lists the keywords:

 CHAPTER 2 Working with Variables, Operators, and Expressions 41

abstract do in protected true

as double int public try

base else interface readonly typeof

bool enum internal ref uint

break event is return ulong

byte explicit lock sbyte unchecked

case extern long sealed unsafe

catch false namespace short ushort

char finally new sizeof using

checked fixed null stackalloc virtual

class float object static void

const for operator string volatile

continue foreach out struct while

decimal goto override switch

default if params this

delegate implicit private throw

tip In the Visual Studio 2012 Code and Text Editor window, keywords are colored blue
when you type them.

C# also uses the following identifiers. These identifiers are not reserved by C#, which means that
you can use these names as identifiers for your own methods, variables, and classes, but you should
avoid doing so if at all possible.

add get remove

alias global select

ascending group set

async into value

await join var

descending let where

dynamic orderby yield

from partial

42 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Using Variables

A variable is a storage location that holds a value. You can think of a variable as a box in the
computer’s memory holding temporary information. You must give each variable in a program an
unambiguous name that uniquely identifies it in the context in which it is used. You use a variable’s
name to refer to the value it holds. For example, if you want to store the value of the cost of an item
in a store, you might create a variable simply called cost and store the item’s cost in this variable.
Later on, if you refer to the cost variable, the value retrieved will be the item’s cost that you stored
there earlier.

Naming Variables
You should adopt a naming convention for variables that helps you avoid confusion concerning the vari-
ables you have defined. This is especially important if you are part of a project team with several develop-
ers working on different parts of an application; a consistent naming convention helps to avoid confusion
and can reduce the scope for bugs. The following list contains some general recommendations:

■■ Don’t start an identifier with an underscore. Although this is legal in C#, it can limit the
interoperability of your code with applications built by using other languages, such as
Microsoft Visual Basic.

■■ Don’t create identifiers that differ only by case. For example, do not create one variable
named myVariable and another named MyVariable for use at the same time, because it is
too easy to get them confused. Also, defining identifiers that differ only by case can limit the
ability to reuse classes in applications developed by using other languages that are not case
sensitive, such as Microsoft Visual Basic.

■■ Start the name with a lowercase letter.

■■ In a multiword identifier, start the second and each subsequent word with an uppercase letter.
(This is called camelCase notation.)

■■ Don’t use Hungarian notation. (Microsoft Visual C++ developers reading this book are prob-
ably familiar with Hungarian notation. If you don’t know what Hungarian notation is, don’t
worry about it!)

For example, score, footballTeam, _score, and FootballTeam are all valid variable names, but only
the first two are recommended.

Declaring Variables
Variables hold values. C# has many different types of values that it can store and process—integers,
floating-point numbers, and strings of characters, to name three. When you declare a variable, you must
specify the type of data it will hold.

 CHAPTER 2 Working with Variables, Operators, and Expressions 43

You declare the type and name of a variable in a declaration statement. For example, the following
statement declares that the variable named age holds int (integer) values. As always, the statement
must be terminated with a semicolon.

int age;

The variable type int is the name of one of the primitive C# types, integer, which is a whole number.
(You’ll learn about several primitive data types later in this chapter.)

Note Microsoft Visual Basic programmers should note that C# does not allow implicit vari-
able declarations. You must explicitly declare all variables before you use them.

After you’ve declared your variable, you can assign it a value. The following statement assigns age
the value 42. Again, you’ll see that the semicolon is required.

age = 42;

The equal sign (=) is the assignment operator, which assigns the value on its right to the variable on
its left. After this assignment, you can use the age variable in your code to refer to the value it holds.
The next statement writes the value of the age variable, 42, to the console:

Console.WriteLine(age);

tip If you leave the mouse pointer over a variable in the Visual Studio 2012 Code and Text
Editor window, a ScreenTip appears, telling you the type of the variable.

Working with Primitive Data Types

C# has a number of built-in types called primitive data types. The following table lists the most com-
monly used primitive data types in C# and the range of values that you can store in each.

Data type Description Size (bits) Range Sample usage

int Whole numbers (integers) 32 –231 through 231 – 1
int count;
count = 42;

long Whole numbers (bigger range) 64 –263 through 263 – 1
long wait;
wait = 42L;

float Floating-point numbers 32 ±1.5 x 10-45 through
±3.4 x 1038

float away;
away = 0.42F;

double Double-precision (more accu-
rate) floating-point numbers 64 ±5.0 x 10-324 through

±1.7 x 10308
double trouble;
trouble = 0.42;

44 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Data type Description Size (bits) Range Sample usage

decimal Monetary values 128 28 significant figures
decimal coin;
coin = 0.42M;

string Sequence of characters 16 bits per
character Not applicable

string vest;
vest = "fortytwo";

char Single character 16 0 through 216 – 1
char grill;
grill = 'x';

bool Boolean 8 true or false
bool teeth;
teeth = false;

Unassigned Local Variables
When you declare a variable, it contains a random value until you assign a value to it. This behavior
was a rich source of bugs in C and C++ programs that created a variable and accidentally used it as a
source of information before giving it a value. C# does not allow you to use an unassigned variable.
You must assign a value to a variable before you can use it, otherwise your program will not compile.
This requirement is called the definite assignment rule. For example, the following statements gener-
ate the compile-time error message “Use of unassigned local variable ‘age’” because the Console.
WriteLine statement attempts to display the value of an uninitialized variable:

int age;
Console.WriteLine(age); // compile-time error

Displaying primitive Data type Values
In the following exercise, you use a C# program named PrimitiveDataTypes to demonstrate how sev-
eral primitive data types work.

Display primitive data type values

1. Start Visual Studio 2012 if it is not already running.

2. On the FILE menu, point to Open, and then click Project/Solution.

The Open Project dialog box appears.

3. If you are using Windows 8, move to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 2\Windows 8\PrimitiveDataTypes folder in your Documents folder. If you are using
Windows 7, move to the \Microsoft Press\Visual CSharp Step By Step\Chapter 2\Windows 7\
PrimitiveDataTypes folder in your Documents folder.

 CHAPTER 2 Working with Variables, Operators, and Expressions 45

Note To avoid repetition and to save space, in subsequent exercises I will simply
refer to solution paths by using a phrase of the form \Microsoft Press\Visual CSharp
Step By Step\Chapter 2\Windows X\PrimitiveDataTypes, where X is either 7 or 8,
depending on the operating system you are using.

4. Select the PrimitiveDataTypes solution file, and then click Open.

The solution loads, and Solution Explorer displays the PrimitiveDataTypes project.

Note Solution file names have the .sln suffix, such as PrimitiveDataTypes.sln. A so-
lution can contain one or more projects. Project files have the .csproj suffix. If you
open a project rather than a solution, Visual Studio 2012 automatically creates a new
solution file for it. This situation can be confusing if you are not aware of this feature,
as it can result in you accidentally generating multiple solutions for the same project.

tip Be sure to open the solution file in the correct folder for your operating system.
If you attempt to open a solution for a Windows Store app by using Visual Studio
2012 on Windows 7, the project will fail to load. Solution Explorer will mark the
project as unavailable and display the message “This project requires Windows 8 or
higher to load” if you expand the project node, as shown in the following image:

If this happens, close the solution and open the version in the correct folder.

5. On the DEBUG menu, click Start Debugging.

You might see some warnings in Visual Studio. You can safely ignore them. (You will correct
them in the next exercise.)

If you are using Windows 8, the following page is displayed:

46 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If you are using Windows 7, the following window appears:

6. In the Choose a Data Type list, click the string type.

The value “forty two” appears in the Sample Value box.

7. Click the int type in the list.

The value “to do” appears in the Sample Value box, indicating that the statements to display
an int value still need to be written.

8. Click each data type in the list. Confirm that the code for the double and bool types is not yet
implemented.

9. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging.

 CHAPTER 2 Working with Variables, Operators, and Expressions 47

Note If you are using Windows 7, you can also click Quit to close the window and
stop the program.

Use primitive data types in code

1. In Solution Explorer, expand the PrimitiveDataTypes project (if it is not already expanded) and then
double-click MainWindow.xaml.

Note To keep the exercise instructions simple, the forms in the Windows 8 and
Windows 7 applications have the same names from now on.

The form for the application appears in the Design View window.

tip If your screen is not big enough to display the entire form, you can zoom in and
out in the Design View window by using Ctrl+Alt+= and Ctrl+Alt+- or by selecting
the size from the zoom drop-down list in the bottom-left corner of the Design View
window.

2. In the XAML pane, scroll down to locate the markup for the ListBox control. This control
displays the list of data types in the left part of the form, and it looks like this (some of the
properties have been removed from this text):

<ListBox x:Name="type" ... SelectionChanged="typeSelectionChanged">
 <ListBoxItem>int</ListBoxItem>
 <ListBoxItem>long</ListBoxItem>
 <ListBoxItem>float</ListBoxItem>
 <ListBoxItem>double</ListBoxItem>
 <ListBoxItem>decimal</ListBoxItem>
 <ListBoxItem>string</ListBoxItem>
 <ListBoxItem>char</ListBoxItem>
 <ListBoxItem>bool</ListBoxItem>
</ListBox>

The ListBox control displays each data type as a separate ListBoxItem. When the application
is running, if a user clicks an item in the list, the SelectionChanged event occurs (this is a little
bit like the Clicked event that occurs when the user clicks a button, which you saw in Chapter
1). You can see that in this case, the ListBox invokes the typeSelectionChanged method. This
method is defined in the MainWindow.xaml.cs file.

48 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

3. On the VIEW menu, click Code.

The Code and Text Editor window opens, displaying the MainWindow.xaml.cs file.

Note Remember that you can also use Solution Explorer to access the code. Click
the arrow to the left of the MainWindow.xaml file to expand the node, and then
double-click MainWindow.xaml.cs.

4. In the Code and Text Editor window, find the typeSelectionChanged method.

tip To locate an item in your project, on the EDIT menu, point to Find and Replace,
and then click Quick Find. A menu opens in the top-right corner of the Code and
Text Editor window. In the text box in this menu, type the name of the item you’re
looking for, and then click Find Next (this is the button with the right-arrow symbol
next to the text box):

By default, the search is not case sensitive. If you want to perform a case-sensitive
search, click the down arrow next to the text to search for, click the drop-down ar-
row to the right of the text box in the shortcut menu to display additional options,
and then select the Match Case check box. If you have time, you can experiment
with the other options as well.

You can also press Ctrl+F to display the Quick Find dialog box rather than using the
EDIT menu. Similarly, you can press Ctrl+H to display the Quick Replace dialog box.

 CHAPTER 2 Working with Variables, Operators, and Expressions 49

As an alternative to using the Quick Find functionality, you can also locate the meth-
ods in a class by using the class members drop-down list box above the Code and
Text Editor window, on the right.

The class members drop-down list box displays all the methods in the class, together
with the variables and other items that the class contains. (You will learn more about
these items in later chapters.) In the drop-down list, click the typeSelectionChanged
method, and the cursor will move directly to the typeSelectionChanged method in
the class.

If you have programmed using another language, you can probably guess how the
typeSelectionChanged method works; if not, then Chapter 4, “Using Decision Statements,”
will make this code clear. At present, all you need to understand is that when the user clicks
an item in the ListBox control, the value of the item is passed to this method, which then uses
this value to determine happens next. For example, if the user clicks the float value, then this
method calls another method named showFloatValue.

5. Scroll down through the code and find the showFloatValue method, which looks like this:

private void showFloatValue()
{
 float floatVar;
 floatVar = 0.42F;
 value.Text = floatVar.ToString();
}

The body of this method contains three statements. The first statement declares a variable
named variable of type float.

The second statement assigns variable the value 0.42F. (The F is a type suffix specifying that
0.42 should be treated as a float value. If you forget the F, the value 0.42 is treated as a double

50 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

and your program will not compile, because you cannot assign a value of one type to a vari-
able of a different type without writing additional code—C# is very strict in this respect.)

The third statement displays the value of this variable in the Value text box on the form. This
statement requires your attention. If you remember from Chapter 1, the way in which you dis-
play an item in a text box is to set its Text property (you did this by using XAML in Chapter 1).
You can also perform this task programmatically, which is what is going on here. Notice that
you access the property of an object by using the same dot notation that you saw for running
a method. (Remember Console.WriteLine from Chapter 1?) Also, the data that you put in the
Text property must be a string and not a number. If you try to assign a number to the Text
property, your program will not compile. Fortunately, the .NET Framework provides some help
in the form of the ToString method.

Every data type in the .NET Framework has a ToString method. The purpose of ToString is to
convert an object to its string representation. The showFloatValue method uses the ToString
method of the float variable floatVar object to generate a string version of the value of this
variable. This string can then be safely assigned to the Text property of the Value text box.
When you create your own data types and classes, you can define your own implementa-
tion of the ToString method to specify how your class should be represented as a string. You
learn more about creating your own classes in Chapter 7, “Creating and Managing Classes
and Objects.”

6. In the Code and Text Editor window, locate the showIntValue method:

private void showIntValue()
{
 value.Text = "to do";
}

The showIntValue method is called when you click the int type in the list box.

7. Type the following two statements at the start of the showIntValue method, on a new line
after the opening brace, as shown in bold type in the following code:

private void showIntValue()
{
 int intVar;
 intVar = 42;
 value.Text = "to do";
}

The first statement creates a variable called intVar that can hold an int value. The second
statement assigns the value 42 to this variable.

 CHAPTER 2 Working with Variables, Operators, and Expressions 51

8. In the original statement in this method, change the string “to do” to “42”.

The method should now look exactly like this:

private void showIntValue()
{
 int intVar;
 intVar = 42;
 value.Text = intVar.ToString();
}

9. On the DEBUG menu, click Start Debugging.

The form appears again.

10. Select the int type in the Choose a Data Type list. Confirm that the value 42 is displayed in the
Sample Value text box.

11. Return to Visual Studio, and on the DEBUG menu click Stop Debugging.

12. In the Code and Text Editor window, find the showDoubleValue method.

13. Edit the showDoubleValue method exactly as shown in bold type in the following code:

private void showDoubleValue()
{
 double doubleVar;
 doubleVar = 0.42;
 value.Text = doubeVar.ToString();
}

This code is similar to the showIntValue method, except that it creates a variable called
doubleVar that holds double values, and it is assigned the value 0.42.

14. In the Code and Text Editor window, locate the showBoolValue method.

15. Edit the showBoolValue method exactly as follows:

private void showBoolValue()
{
 bool boolVar;
 boolVar = false;
 value.Text = boolVar.ToString();
}

Again, this code is similar to the previous examples, except that boolVar can only hold a Bool-
ean value, true or false.

16. On the DEBUG menu, click Start Debugging.

52 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

17. In the Choose a Data Type list, select the int, double, and bool types. In each case, verify that
the correct value is displayed in the Sample Value text box.

18. Return to Visual Studio, and on the DEBUG menu click Stop Debugging.

Using Arithmetic Operators

C# supports the regular arithmetic operations you learned in your childhood: the plus sign (+) for
addition, the minus sign (–) for subtraction, the asterisk (*) for multiplication, and the forward slash (/)
for division. The symbols +, –, *, and / are called operators because they “operate” on values to create
new values. In the following example, the variable moneyPaidToConsultant ends up holding the prod-
uct of 750 (the daily rate) and 20 (the number of days the consultant was employed):

long moneyPaidToConsultant;
moneyPaidToConsultant = 750 * 20;

Note The values that an operator operates on are called operands. In the expression 750 *
20, the * is the operator, and 750 and 20 are the operands.

Operators and types
Not all operators are applicable to all data types. The operators that you can use on a value depend
on the value’s type. For example, you can use all the arithmetic operators on values of type char, int,
long, float, double, or decimal. However, with the exception of the plus operator, +, you can’t use the
arithmetic operators on values of type string, and you cannot use any of them with values of type
bool. So the following statement is not allowed, because the string type does not support the minus
operator (subtracting one string from another is meaningless):

// compile-time error
Console.WriteLine("Gillingham" - "Forest Green Rovers");

You can use the + operator to concatenate string values. You need to be careful because this can
have unexpected results. For example, the following statement writes “431” (not “44”) to the console:

Console.WriteLine("43" + "1");

tip The .NET Framework provides a method called Int32.Parse that you can use to convert
a string value to an integer if you need to perform arithmetic computations on values held
as strings.

 CHAPTER 2 Working with Variables, Operators, and Expressions 53

You should also be aware that the type of the result of an arithmetic operation depends on the
type of the operands used. For example, the value of the expression 5.0/2.0 is 2.5; the type of both
operands is double, so the type of the result is also double. (In C#, literal numbers with decimal points
are always double, not float, to maintain as much accuracy as possible.) However, the value of the
expression 5/2 is 2. In this case, the type of both operands is int, so the type of the result is also int.
C# always rounds toward zero in circumstances like this. The situation gets a little more complicated if
you mix the types of the operands. For example, the expression 5/2.0 consists of an int and a double.
The C# compiler detects the mismatch and generates code that converts the int into a double before
performing the operation. The result of the operation is therefore a double (2.5). However, although
this works, it is considered poor practice to mix types in this way.

C# also supports one less-familiar arithmetic operator: the remainder, or modulus, operator, which
is represented by the percent sign (%). The result of x % y is the remainder after dividing the value x
by the value y. So, for example, 9 % 2 is 1 because 9 divided by 2 is 4, remainder 1.

Note If you are familiar with C or C++, you know that you can’t use the remainder operator
on float or double values in these languages. However, C# relaxes this rule. The remainder
operator is valid with all numeric types, and the result is not necessarily an integer. For
example, the result of the expression 7.0 % 2.4 is 2.2.

Numeric types and Infinite Values
There are one or two other features of numbers in C# that you should be aware of. For ex-
ample, the result of dividing any number by zero is infinity, which is outside the range of the
int, long, and decimal types; consequently, evaluating an expression such as 5/0 results in an
error. However, the double and float types actually have a special value that can represent infin-
ity, and the value of the expression 5.0/0.0 is Infinity. The one exception to this rule is the value
of the expression 0.0/0.0. Usually, if you divide zero by anything, the result is zero, but if you
divide anything by zero the result is infinity. The expression 0.0/0.0 results in a paradox—the
value must be zero and infinity at the same time. C# has another special value for this situation
called NaN, which stands for “not a number.” So if you evaluate 0.0/0.0, the result is NaN.

NaN and Infinity propagate through expressions. If you evaluate 10 + NaN, the result is
NaN, and if you evaluate 10 + Infinity, the result is Infinity. The one exception to this rule is the
case when you multiply Infinity by 0. The value of the expression Infinity * 0 is 0, although the
value of NaN * 0 is NaN.

54 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

examining arithmetic Operators
The following exercise demonstrates how to use the arithmetic operators on int values.

run the MathsOperators project

1. Start Visual Studio 2012 if it is not already running.

2. Open the MathsOperators project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 2\Windows X\MathsOperators folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

If you are using Windows 8, the following page appears:

If you are using Windows 7, the following form displays:

 CHAPTER 2 Working with Variables, Operators, and Expressions 55

4. Type 54 in the Left Operand text box.

5. Type 13 in the Right Operand text box.

You can now apply any of the operators to the values in the text boxes.

6. Click the – Subtraction button, and then click Calculate.

The text in the Expression text box changes to 54 – 13, but the value 0 appears in the Result
box; this is clearly wrong.

7. Click the / Division button, and then click Calculate.

The text in the Expression text box changes to 54/13, and again the value 0 appears in the
Result text box.

8. Click the % Remainder button, and then click Calculate.

The text in the Expression text box changes to 54 % 13, but once again the value 0 appears in the
Result text box. Test the other combinations of numbers and operators; you will find that they all
currently yield the value 0.

Note If you type a noninteger value into either of the operand text boxes, the ap-
plication detects an error and displays the message “Input string was not in a correct
format.” You will learn more about how to catch and handle errors and exceptions in
Chapter 6, “Managing Errors and Exceptions.”

9. When you have finished, return to Visual Studio, and on the DEBUG menu click Stop
Debugging (if you are using Windows 7, you can also click Quit on the MathsOperators form).

As you may have guessed, none of the calculations is currently implemented by the
MathsOperators application. In the next exercise, you will correct this.

perform calculations in the MathsOperators application

1. Display the MainWindow.xaml form in the Design View window. (Double-click the file Main-
Window.xaml in the MathsOperators project in Solution Explorer.)

2. On the VIEW menu, point to Other Windows, and then click Document Outline.

The Document Outline window appears, showing the names and types of the controls on the
form. The Document Outline window provides a simple way to locate and select controls on
a complex form. The controls are arranged in a hierarchy, starting with the Page (Windows
8) or Window (Windows 7) that constitutes the form. As mentioned in the previous chapter,
a Windows Store app page or a WPF form contains a Grid control, and the other controls are
placed in this Grid. If you expand the Grid node in the Document Outline window, the other

56 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

controls appear, starting with another Grid (the outer Grid acts as a frame, and the inner Grid
contains the controls that you see on the form). If you expand the inner Grid, you can see each
of the controls on the form.

If you click any of these controls, the corresponding element is highlighted in the Design View
window. Similarly, if you select a control in the Design View window, the corresponding control is
selected in the Document Outline window (pin the Document Outline window in place by deselect-
ing the Auto Hide button in the top-right corner of the Document Outline window to see this in
action.)

3. On the form, click the two TextBox controls in which the user types numbers. In the Document
Outline window, verify that they are named lhsOperand and rhsOperand.

When the form runs, the Text property of each of these controls holds the values that the
user enters.

4. Toward the bottom of the form, verify that the TextBlock control used to display the expres-
sion being evaluated is named expression and that the TextBlock control used to display the
result of the calculation is named result.

5. Close the Document Outline window.

6. On the VIEW menu, click Code to display the code for the MainWindow.xaml.cs file in the
Code and Text Editor window.

7. In the Code and Text Editor window, locate the addValues method. It looks like this:

 CHAPTER 2 Working with Variables, Operators, and Expressions 57

private void addValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 // TODO: Add rhs to lhs and store the result in outcome
 expression.Text = lhsOperand.Text + " + " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

The first statement in this method declares an int variable called lhs and initializes it with the
integer corresponding to the value typed by the user in the lhsOperand text box. Remember
that the Text property of a TextBox control contains a string, but lhs is an int, so you must
convert this string to an integer before you can assign it to lhs. The int data type provides the
int.Parse method, which does precisely this.

The second statement declares an int variable called rhs and initializes it to the value in the
rhsOperand text box after converting it to an int.

The third statement declares an int variable called outcome.

A comment stating that you need to add rhs to lhs and store the result in outcome follows.
This is the missing bit of code that you need to implement, which you will do in the next step.

The fifth statement concatenates three strings indicating the calculation being performed
(using the plus operator, +) and assigns the result to the expression.Text property. This causes
the string to appear in the Expression text box on the form.

The final statement displays the result of the calculation by assigning it to the Text property of
the Result text box. Remember that the Text property is a string, and the result of the calcula-
tion is an int, so you must convert the int to a string before assigning it to the Text property.
Recall that this is what the ToString method of the int type does.

8. Underneath the comment in the middle of the addValues method, add the statement shown
below in bold:

private void addValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 // TODO: Add rhs to lhs and store the result in outcome
 outcome = lhs + rhs;
 expression.Text = lhsOperand.Text + " + " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

This statement evaluates the expression lhs + rhs and stores the result in outcome.

58 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

9. Examine the subtractValues method. You should see that it follows a similar pattern, and you
need to add the statement to calculate the result of subtracting rhs from lhs and storing it in
outcome. Add the statement shown below in bold to this method:

private void subtractValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 // TODO: Subtract rhs from lhs and store the result in outcome
 outcome = lhs - rhs;
 expression.Text = lhsOperand.Text + " - " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

10. Examine the mutiplyValues, divideValues, and remainderValues methods. Again, they all have
the crucial statement that performs the specified calculation missing. Add the appropriate
statements to these methods (shown below in bold).

private void multiplyValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;
 // TODO: Multiply lhs by rhs and store the result in outcome
 outcome = lhs * rhs;
 expression.Text = lhsOperand.Text + " * " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

private void divideValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;
 // TODO: Divide lhs by rhs and store the result in outcome
 outcome = lhs / rhs;
 expression.Text = lhsOperand.Text + " / " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

private void remainderValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;
 // TODO: Work out the remainder after dividing lhs by rhs and store the result
 outcome = lhs % rhs;
 expression.Text = lhsOperand.Text + " % " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

 CHAPTER 2 Working with Variables, Operators, and Expressions 59

test the MathsOperators application

1. On the DEBUG menu, click Start Debugging to build and run the application.

2. Type 54 in the Left Operand text box, type 13 in the Right Operand text box, click the + Addi-
tion button, and then click Calculate.

The value 67 should appear in the Result text box.

3. Click the – Subtraction button and then click Calculate. Verify that the result is now 41.

4. Click the * Multiplication button and then click Calculate. Verify that the result is now 702.

5. Click the / Division button and then click Calculate. Verify that the result is now 4.

In real life, 54/13 is 4.153846 recurring, but this is not real life—this is C# performing integer
division. When you divide one integer by another integer, the answer you get back is an inte-
ger, as explained earlier.

6. Click the % Remainder button and then click Calculate. Verify that the result is now 2.

When dealing with integers, the remainder after dividing 54 by 13 is 2; (54 – ((54/13) * 13)) is
2. This is because the calculation rounds down to an integer at each stage. (My school math-
ematics teacher would be horrified to be told that (54/13) * 13 does not equal 54!)

7. Return to Visual Studio and stop debugging (or click Quit if you are using Windows 7).

Controlling precedence
Precedence governs the order in which an expression’s operators are evaluated. Consider the follow-
ing expression, which uses the + and * operators:

2 + 3 * 4

This expression is potentially ambiguous: do you perform the addition first or the multiplication?
The order of the operations matters because it changes the result:

■■ If you perform the addition first, followed by the multiplication, the result of the addition
(2 + 3) forms the left operand of the * operator, and the result of the whole expression is 5 * 4,
which is 20.

■■ If you perform the multiplication first, followed by the addition, the result of the multiplica-
tion (3 * 4) forms the right operand of the + operator, and the result of the whole expression
is 2 + 12, which is 14.

In C#, the multiplicative operators (*, /, and %) have precedence over the additive operators
(+ and –), so in expressions such as 2 + 3 * 4, the multiplication is performed first, followed by the
addition. The answer to 2 + 3 * 4 is therefore 14.

60 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

You can use parentheses to override precedence and force operands to bind to operators in a dif-
ferent way. For example, in the following expression, the parentheses force the 2 and the 3 to bind to
the + operator (making 5), and the result of this addition forms the left operand of the * operator to
produce the value 20:

(2 + 3) * 4

Note The term parentheses or round brackets refers to (). The term braces or curly brackets
refers to { }. The term square brackets refers to [].

Using associativity to evaluate expressions
Operator precedence is only half the story. What happens when an expression contains different op-
erators that have the same precedence? This is where associativity becomes important. Associativity is
the direction (left or right) in which the operands of an operator are evaluated. Consider the following
expression that uses the / and * operators:

4 / 2 * 6

At first glance, this expression is potentially ambiguous. Do you perform the division first or the
multiplication? The precedence of both operators is the same (they are both multiplicative), but the
order in which the operators in the expression are applied is important because you can get two dif-
ferent results:

■■ If you perform the division first, the result of the division (4/2) forms the left operand of the
* operator, and the result of the whole expression is (4/2) * 6, or 12.

■■ If you perform the multiplication first, the result of the multiplication (2 * 6) forms the right
operand of the / operator, and the result of the whole expression is 4/(2 * 6), or 4/12.

In this case, the associativity of the operators determines how the expression is evaluated. The
* and / operators are both left-associative, which means that the operands are evaluated from left to
right. In this case, 4/2 will be evaluated before multiplying by 6, giving the result 12.

associativity and the assignment Operator
In C#, the equal sign, =, is an operator. All operators return a value based on their operands. The
assignment operator = is no different. It takes two operands: the operand on its right side is evalu-
ated and then stored in the operand on its left side. The value of the assignment operator is the value
that was assigned to the left operand. For example, in the following assignment statement, the value
returned by the assignment operator is 10, which is also the value assigned to the variable myInt:

int myInt;
myInt = 10; // value of assignment expression is 10

 CHAPTER 2 Working with Variables, Operators, and Expressions 61

At this point, you might be thinking that this is all very nice and esoteric, but so what? Well, be-
cause the assignment operator returns a value, you can use this same value with another occurrence
of the assignment statement, like this:

int myInt;
int myInt2;
myInt2 = myInt = 10;

The value assigned to the variable myInt2 is the value that was assigned to myInt. The assignment
statement assigns the same value to both variables. This technique is useful if you want to initialize
several variables to the same value. It makes it very clear to anyone reading your code that all the
variables must have the same value:

myInt5 = myInt4 = myInt3 = myInt2 = myInt = 10;

From this discussion, you can probably deduce that the assignment operator associates from
right to left. The rightmost assignment occurs first, and the value assigned propagates through the
variables from right to left. If any of the variables previously had a value, it is overwritten by the value
being assigned.

You should treat this construct with caution, however. One frequent mistake that new C# program-
mers make is to try to combine this use of the assignment operator with variable declarations. For
example, you might expect the following code to create and initialize three variables with the same
value (10):

int myInt, myInt2, myInt3 = 10;

This is legal C# code (because it compiles). What it does is declare the variables myInt, myInt2, and
myInt3, and initialize myInt3 with the value 10. However, it does not initialize myInt or myInt2. If you
try to use myInt or myInt2 in an expression such as this:

myInt3 = myInt / myInt2;

the compiler generates the following errors:

Use of unassigned local variable 'myInt'
Use of unassigned local variable 'myInt2'

Incrementing and Decrementing Variables

If you want to add 1 to a variable, you can use the + operator:

count = count + 1;

However, adding 1 to a variable is so common that C# provides its own operator just for this pur-
pose: the ++ operator. To increment the variable count by 1, you can write the following statement:

count++;

62 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Similarly, C# provides the –– operator that you can use to subtract 1 from a variable, like this:

count--;

The ++ and –– operators are unary operators, meaning that they take only a single operand. They
share the same precedence and are both left-associative.

Prefix and Postfix
The increment, ++, and decrement, ––, operators are unusual in that you can place them either
before or after the variable. Placing the operator symbol before the variable is called the prefix form
of the operator, and using the operator symbol after the variable is called the postfix form. Here are
examples:

count++; // postfix increment
++count; // prefix increment
count--; // postfix decrement
--count; // prefix decrement

Whether you use the prefix or postfix form of the ++ or –– operator makes no difference to the
variable being incremented or decremented. For example, if you write count++, the value of count
increases by 1, and if you write ++count, the value of count also increases by 1. Knowing this, you’re
probably wondering why there are two ways to write the same thing. To understand the answer, you
must remember that ++ and –– are operators and that all operators are used to evaluate an expres-
sion that has a value. The value returned by count++ is the value of count before the increment takes
place, whereas the value returned by ++count is the value of count after the increment takes place.
Here is an example:

int x;
x = 42;
Console.WriteLine(x++); // x is now 43, 42 written out
x = 42;
Console.WriteLine(++x); // x is now 43, 43 written out

The way to remember which operand does what is to look at the order of the elements (the op-
erand and the operator) in a prefix or postfix expression. In the expression x++, the variable x occurs
first, so its value is used as the value of the expression before x is incremented. In the expression ++x,
the operator occurs first, so its operation is performed before the value of x is evaluated as the result.

These operators are most commonly used in while and do statements, which are presented in
Chapter 5, ”Using Compound Assignment and Iteration Statements.“ If you are using the increment
and decrement operators in isolation, stick to the postfix form and be consistent.

 CHAPTER 2 Working with Variables, Operators, and Expressions 63

Declaring Implicitly Typed Local Variables

Earlier in this chapter, you saw that you declare a variable by specifying a data type and an identifier,
like this:

int myInt;

It was also mentioned that you should assign a value to a variable before you attempt to use it.
You can declare and initialize a variable in the same statement, like this:

int myInt = 99;

Or you can even do it like this, assuming that myOtherInt is an initialized integer variable:

int myInt = myOtherInt * 99;

Now, remember that the value you assign to a variable must be of the same type as the variable.
For example, you can assign an int value only to an int variable. The C# compiler can quickly work out
the type of an expression used to initialize a variable and indicate if it does not match the type of the
variable. You can also ask the C# compiler to infer the type of a variable from an expression and use
this type when declaring the variable by using the var keyword in place of the type, like this:

var myVariable = 99;
var myOtherVariable = "Hello";

The variables myVariable and myOtherVariable are referred to as implicitly typed variables. The
var keyword causes the compiler to deduce the type of the variables from the types of the expres-
sions used to initialize them. In these examples, myVariable is an int, and myOtherVariable is a string.
However, it is important for you to understand that this is a convenience for declaring variables
only, and that after a variable has been declared you can assign only values of the inferred type to
it—you cannot assign float, double, or string values to myVariable at a later point in your program,
for example. You should also understand that you can use the var keyword only when you supply an
expression to initialize a variable. The following declaration is illegal and causes a compilation error:

var yetAnotherVariable; // Error - compiler cannot infer type

Important If you have programmed with Visual Basic in the past, you might be familiar
with the Variant type, which you can use to store any type of value in a variable. I empha-
size here and now that you should forget everything you ever learned when programming
with Visual Basic about Variant variables. Although the keywords look similar, var and
Variant mean totally different things. When you declare a variable in C# using the var key-
word, the type of values that you assign to the variable cannot change from that used to
initialize the variable.

64 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If you are a purist, you are probably gritting your teeth at this point and wondering why on earth
the designers of a neat language such as C# should allow a feature such as var to creep in. After all, it
sounds like an excuse for extreme laziness on the part of programmers and can make it more difficult
to understand what a program is doing or track down bugs (and it can even easily introduce new
bugs into your code). However, trust me that var has a very valid place in C#, as you will see when
you work through many of the following chapters. However, for the time being, we will stick to using
explicitly typed variables except for when implicit typing becomes a necessity.

Summary

In this chapter, you have seen how to create and use variables, and you have learned about some of
the common data types available for variables in C#. You have learned about identifiers. In addition,
you have used a number of operators to build expressions, and you have learned how the precedence
and associativity of operators determine how expressions are evaluated.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 3.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 2 Working with Variables, Operators, and Expressions 65

Chapter 2 Quick Reference

To Do this

Declare a variable Write the name of the data type, followed by the name of the vari-
able, followed by a semicolon. For example:

int outcome;

Declare a variable and give it an initial value Write the name of the data type, followed by the name of the vari-
able, followed by the assignment operator and the initial value. Finish
with a semicolon. For example:

int outcome = 99;

Change the value of a variable Write the name of the variable on the left, followed by the assign-
ment operator, followed by the expression calculating the new value,
followed by a semicolon. For example:

outcome = 42;

Generate a string representation of the value
in a variable

Call the ToString method of the variable. For example:

int intVar = 42;
string stringVar = intVar.ToString();

Convert a string to an int Call the System.Int32.Parse method. For example:

string stringVar = "42";
int intVar = System.Int32.Parse(stringVar);

Override the precedence of an operator Use parentheses in the expression to force the order of evaluation.
For example:

(3 + 4) * 5

Assign the same value to several variables Use an assignment statement that lists all the variables. For example:

myInt4 = myInt3 = myInt2 = myInt = 10;

Increment or decrement a variable Use the ++ or -- operator. For example:

count++;

 67

C H A P T E R 3

Writing Methods and
applying Scope

After completing this chapter, you will be able to

■■ Declare and call methods.

■■ Pass information to a method.

■■ Return information from a method.

■■ Define local and class scope.

■■ Use the integrated debugger to step into and out of methods as they run.

In Chapter 2, “Working with Variables, Operators, and Expressions,” you learned how to declare
variables, how to create expressions using operators, and how precedence and associativity control
the way in which expressions containing multiple operators are evaluated. In this chapter, you’ll learn
about methods. You’ll see how to declare and call methods, and you’ll also learn how to use argu-
ments and parameters to pass information to a method as well as return information from a method
by using a return statement. You’ll see how to step into and out of methods by using the Microsoft
Visual Studio 2012 integrated debugger. This information is useful when you need to trace the execu-
tion of your methods if they do not work quite as you expect. Finally, you’ll also learn how to declare
methods that take optional parameters and how to invoke methods by using named arguments.

Creating Methods

A method is a named sequence of statements. If you have previously programmed using a language
such as C, C++, or Microsoft Visual Basic, you will see that a method is similar to a function or a sub-
routine. A method has a name and a body. The method name should be a meaningful identifier that
indicates the overall purpose of the method (calculateIncomeTax, for example). The method body con-
tains the actual statements to be run when the method is called. Additionally, methods can be given
some data for processing and can return information, which is usually the result of the processing.
Methods are a fundamental and powerful mechanism.

68 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Declaring a Method
The syntax for declaring a C# method is as follows:

returnType methodName (parameterList)
{
 // method body statements go here
}

■■ The returnType is the name of a type and specifies the kind of information the method
returns as a result of its processing. This can be any type, such as int or string. If you’re writ-
ing a method that does not return a value, you must use the keyword void in place of the
return type.

■■ The methodName is the name used to call the method. Method names follow the same
identifier rules as variable names. For example, addValues is a valid method name, whereas
add$Values is not. For now, you should follow the camelCase convention for method names—
for example, displayCustomer.

■■ The parameterList is optional and describes the types and names of the information that you
can pass into the method for it to process. You write the parameters between opening and
closing parentheses, (), as though you’re declaring variables, with the name of the type fol-
lowed by the name of the parameter. If the method you’re writing has two or more param-
eters, you must separate them with commas.

■■ The method body statements are the lines of code that are run when the method is called.
They are enclosed between opening and closing braces, { }.

Important C, C++, and Microsoft Visual Basic programmers should note that C# does not
support global methods. You must write all your methods inside a class; otherwise, your
code will not compile.

Here’s the definition of a method called addValues that returns an int result and has two int param-
eters, leftHandSide and rightHandSide:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 // method body statements go here
 // ...
}

Note You must explicitly specify the types of any parameters and the return type of a
method. You cannot use the var keyword.

 CHAPTER 3 Writing Methods and Applying Scope 69

Here’s the definition of a method called showResult that does not return a value and has a single
int parameter, called answer:

void showResult(int answer)
{
 // ...
}

Notice the use of the keyword void to indicate that the method does not return anything.

Important Visual Basic programmers should notice that C# does not use different key-
words to distinguish between a method that returns a value (a function) and a method that
does not return a value (a procedure or subroutine). You must always specify either a return
type or void.

returning Data from a Method
If you want a method to return information (that is, its return type is not void), you must include a
return statement at the end of the processing in the method body. A return statement consists of the
keyword return followed by an expression that specifies the returned value, and a semicolon. The type
of the expression must be the same as the type specified by the method declaration. For example,
if a method returns an int, the return statement must return an int; otherwise, your program will not
compile. Here is an example of a method with a return statement:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 return leftHandSide + rightHandSide;
}

The return statement is usually positioned at the end of the method because it causes the method
to finish, and control returns to the statement that called the method, as described later in this chap-
ter. Any statements that occur after the return statement are not executed (although the compiler
warns you about this problem if you place statements after the return statement).

If you don’t want your method to return information (that is, its return type is void), you can use a
variation of the return statement to cause an immediate exit from the method. You write the keyword
return immediately followed by a semicolon. For example:

void showResult(int answer)
{
 // display the answer
 ...
 return;
}

70 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If your method does not return anything, you can also omit the return statement because the
method finishes automatically when execution arrives at the closing brace at the end of the method.
Although this practice is common, it is not always considered good style.

In the following exercise, you will examine another version of the MathsOperators project from
Chapter 2. This version has been improved by the careful use of some small methods. Dividing code
in this way helps to make it easier to understand and more maintainable.

Examine method definitions

1. Start Visual Studio 2012 if it is not already running.

2. Open the Methods project in the \Microsoft Press\Visual CSharp Step By Step\Chapter 3\
Windows X\Methods folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

Visual Studio 2012 builds and runs the application. It should look the same as the application
from Chapter 2.

4. Refamiliarize yourself with the application and how it works, and then return to Visual Studio.
On the DEBUG menu, click Stop Debugging (or click Quit in the Methods window if you are
using Windows 7).

5. Display the code for MainWindow.xaml.cs in the Code and Text Editor window (in Solution
Explorer, expand the MainWindow.xaml file and then double-click MainWindow.xaml.cs).

6. In the Code and Text Editor window, locate the addValues method.

The method looks like this:

private int addValues(int leftHandSide, int rightHandSide)
{
 expression.Text = leftHandSide.ToString() + " + " + rightHandSide.ToString();
 return leftHandSide + rightHandSide;
}

Note Don’t worry about the private keyword at the start of the definition of this
method for the moment; you will learn what this keyword means in Chapter 7,
“Creating and Managing Classes and Objects.”

The addValues method contains two statements. The first statement displays the calcula-
tion being performed in the expression text box on the form. The values of the parameters
leftHandSide and rightHandSide are converted to strings (using the ToString method you met
in Chapter 2) and concatenated together using the string version of the plus operator (+).

 CHAPTER 3 Writing Methods and Applying Scope 71

The second statement uses the int version of the + operator to add the values of the
leftHandSide and rightHandSide int variables together, and then returns the result of this
operation. Remember that adding two int values together creates another int value, so the
return type of the addValues method is int.

If you look at the methods subtractValues, multiplyValues, divideValues, and remainderValues,
you will see that they follow a similar pattern.

7. In the Code and Text Editor window, locate the showResult method.

The showResult method looks like this:

private void showResult(int answer)
{
 result.Text = answer.ToString();
}

This method contains one statement that displays a string representation of the answer
parameter in the result text box. It does not return a value, so the type of this method is void.

tip There is no minimum length for a method. If a method helps to avoid repetition
and makes your program easier to understand, the method is useful regardless of
how small it is.

There is also no maximum length for a method, but usually you want to keep your
method code small enough to get the job done. If your method is more than one
screen in length, consider breaking it into smaller methods for readability.

Calling Methods
Methods exist to be called! You call a method by name to ask it to perform its task. If the method
requires information (as specified by its parameters), you must supply the information requested. If
the method returns information (as specified by its return type), you should arrange to capture this
information somehow.

Specifying the Method Call Syntax
The syntax of a C# method call is as follows:

result = methodName (argumentList)

■■ The methodName must exactly match the name of the method you’re calling. Remember, C#
is a case-sensitive language.

■■ The result = clause is optional. If specified, the variable identified by result contains the value
returned by the method. If the method is void (that is, it does not return a value), you must

72 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

omit the result = clause of the statement. If you don’t specify the result = clause and the
method does return a value, the method runs but the return value is discarded.

■■ The argumentList supplies the information that the method accepts. You must supply an argu-
ment for each parameter, and the value of each argument must be compatible with the type
of its corresponding parameter. If the method you’re calling has two or more parameters, you
must separate the arguments with commas.

Important You must include the parentheses in every method call, even when calling a
method that has no arguments.

To clarify these points, take a look at the addValues method again:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
}

The addValues method has two int parameters, so you must call it with two comma-separated int
arguments, such as this:

addValues(39, 3); // okay

You can also replace the literal values 39 and 3 with the names of int variables. The values in those
variables are then passed to the method as its arguments, like this:

int arg1 = 99;
int arg2 = 1;
addValues(arg1, arg2);

If you try to call addValues in some other way, you will probably not succeed for the reasons
described in the following examples:

addValues; // compile-time error, no parentheses
addValues(); // compile-time error, not enough arguments
addValues(39); // compile-time error, not enough arguments
addValues("39", "3"); // compile-time error, wrong types for arguments

The addValues method returns an int value. This int value can be used wherever an int value can be
used. Consider these examples:

int result = addValues(39, 3); // on right-hand side of an assignment
showResult(addValues(39, 3)); // as argument to another method call

The following exercise continues with the Methods application. This time, you will examine some
method calls.

 CHAPTER 3 Writing Methods and Applying Scope 73

examine method calls

1. Return to the Methods project. (This project is already open in Visual Studio 2012 if you’re
continuing from the previous exercise. If you are not, open it from the \Microsoft Press\
Visual CSharp Step By Step\Chapter 3\Windows X\Methods folder in your Documents folder.)

2. Display the code for MainWindow.xaml.cs in the Code and Text Editor window.

3. Locate the calculateClick method, and look at the first two statements of this method after
the try statement and opening brace. (You will learn about try statements in Chapter 6,
“Managing Errors and Exceptions.”)

These statements look like this:

int leftHandSide = System.Int32.Parse(lhsOperand.Text);
int rightHandSide = System.Int32.Parse(rhsOperand.Text);

These two statements declare two int variables, called leftHandSide and rightHandSide.
Notice the way in which the variables are initialized. In both cases, the Parse method of the
System.Int32 class is called. (System is a namespace, and Int32 is the name of the class in
this namespace.) You have seen this method before—it takes a single string parameter and
converts it to an int value. These two lines of code take whatever the user has typed into the
lhsOperand and rhsOperand text box controls on the form and converts them to int values.

4. Look at the fourth statement in the calculateClick method (after the if statement and another
opening brace):

calculatedValue = addValues(leftHandSide, rightHandSide);

This statement calls the addValues method, passing the values of the leftHandSide and right-
HandSide variables as its arguments. The value returned by the addValues method is stored in
the calculatedValue variable.

5. Look at the next statement:

showResult(calculatedValue);

This statement calls the showResult method, passing the value in the calculatedValue variable
as its argument. The showResult method does not return a value.

6. In the Code and Text Editor window, find the showResult method you looked at earlier.

The only statement of this method is this:

result.Text = answer.ToString();

Notice that the ToString method call uses parentheses even though there are no arguments.

74 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip You can call methods belonging to other objects by prefixing the method with
the name of the object. In the preceding example, the expression answer.ToString()
calls the method named ToString belonging to the object called answer.

Applying Scope

You create variables to hold values. You can create variables at various points in your applica-
tions. For example, the calculateClick method in the Methods project creates an int variable called
calculatedValue and assigns it an initial value of zero, like this:

private void calculateClick(object sender, RoutedEventArgs e)
{
 int calculatedValue = 0;
 ...
}

This variable comes into existence at the point where it is defined, and subsequent statements in
the calculateClick method can then use this variable. This is an important point: a variable can be used
only after it has been created. When the method has finished, this variable disappears and cannot be
used elsewhere.

When a variable can be accessed at a particular location in a program, the variable is said to be in
scope at that location. The calculatedValue variable has method scope; it can be accessed throughout
the calculateClick method but not outside of that method. You can also define variables with different
scope; for example, you can define a variable outside of a method but within a class, and this variable
can be accessed by any method within that class. Such a variable is said to have class scope.

To put it another way, the scope of a variable is simply the region of the program in which that
variable is usable. Scope applies to methods as well as variables. The scope of an identifier (of a
variable or method) is linked to the location of the declaration that introduces the identifier in the
program, as you learn next.

Defining Local Scope
The opening and closing braces that form the body of a method define the scope of the method.
Any variables you declare inside the body of a method are scoped to that method; they disappear
when the method ends and can be accessed only by code running in that method. These variables are
called local variables because they are local to the method in which they are declared; they are not in
scope in any other method.

 CHAPTER 3 Writing Methods and Applying Scope 75

The scope of local variables means that you cannot use them to share information between
methods. Consider this example:

class Example
{
 void firstMethod()
 {
 int myVar;
 ...
 }

 void anotherMethod()
 {
 myVar = 42; // error - variable not in scope
 ...
 }
}

This code fails to compile because anotherMethod is trying to use the variable myVar, which is not
in scope. The variable myVar is available only to statements in firstMethod that occur after the line of
code that declares myVar.

Defining Class Scope
The opening and closing braces that form the body of a class define the scope of that class. Any
variables you declare inside the body of a class (but not inside a method) are scoped to that class.
The proper C# term for a variable defined by a class is field. As mentioned earlier, in contrast with
local variables, you can use fields to share information between methods. Here is an example:

class Example
{
 void firstMethod()
 {
 myField = 42; // ok
 ...
 }

 void anotherMethod()
 {
 myField++; // ok
 ...
 }

 int myField = 0;
}

The variable myField is defined in the class but outside the methods firstMethod and another
Method. Therefore, myField has class scope and is available for use by all methods in the class.

There is one other point to notice about this example. In a method, you must declare a variable
before you can use it. Fields are a little different. A method can use a field before the statement that
defines the field—the compiler sorts out the details for you.

76 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Overloading Methods
If two identifiers have the same name and are declared in the same scope, they are said to be
overloaded. Often an overloaded identifier is a bug that gets trapped as a compile-time error. For
example, if you declare two local variables with the same name in the same method, the compiler
reports an error. Similarly, if you declare two fields with the same name in the same class, or two iden-
tical methods in the same class, you also get a compile-time error. This fact might seem hardly worth
mentioning, given that everything so far has turned out to be a compile-time error. However, there is
a way that you can overload an identifier for a method, and that way is both useful and important.

Consider the WriteLine method of the Console class. You have already used this method for writing
a string to the screen. However, when you type WriteLine in the Code and Text Editor window when
writing C# code, notice that Microsoft IntelliSense gives you 19 different options! Each version of the
WriteLine method takes a different set of parameters; one version takes no parameters and simply
outputs a blank line, another version takes a bool parameter and outputs a string representation of
its value (True or False), yet another implementation takes a decimal parameter and outputs it as a
string, and so on. At compile time, the compiler looks at the types of the arguments you are passing
in and then arranges for your application to call the version of the method that has a matching set of
parameters. Here is an example:

static void Main()
{
 Console.WriteLine("The answer is ");
 Console.WriteLine(42);
}

Overloading is primarily useful when you need to perform the same operation on different data types
or varying groups of information. You can overload a method when the different implementations have
different sets of parameters—that is, when they have the same name but a different number of parameters,
or when the types of the parameters differ. When you call a method, you supply a comma-separated list
of arguments, and the number and type of the arguments are used by the compiler to select one of the
overloaded methods. However, note that although you can overload the parameters of a method, you can’t
overload the return type of a method. In other words, you can’t declare two methods with the same name
that differ only in their return type. (The compiler is clever, but not that clever.)

Writing Methods

In the following exercises, you’ll create a method that calculates how much a consultant would charge for a
given number of consultancy days at a fixed daily rate. You will start by developing the logic for the applica-
tion and then use the Generate Method Stub Wizard to help you write the methods that are used by this
logic. Next, you’ll run these methods in a console application to get a feel for the program. Finally, you’ll use
the Visual Studio 2012 debugger to step into and out of the method calls as they run.

 CHAPTER 3 Writing Methods and Applying Scope 77

Develop the logic for the application

1. Using Visual Studio 2012, open the DailyRate project in the \Microsoft Press\Visual CSharp
Step By Step\Chapter 3\Windows X\DailyRate folder in your Documents folder.

2. In Solution Explorer, double-click the file Program.cs in the DailyRate project to display the
code for the program in the Code and Text Editor window.

This program is simply a test harness for you to try out your code. When the application starts
running, it calls the run method. You add the code that you want to try to the run method.
(The way in which the method is called requires an understanding of classes, which you look
at in Chapter 7.)

3. Add the following statements shown in bold to the body of the run method, between the
opening and closing braces:

void run()
{
 double dailyRate = readDouble("Enter your daily rate: ");
 int noOfDays = readInt("Enter the number of days: ");
 writeFee(calculateFee(dailyRate, noOfDays));
}

The block of code you have just added to the run method calls the readDouble method (which
you will write shortly) to ask the user for the daily rate for the consultant. The next statement
calls the readInt method (which you will also write) to obtain the number of days. Finally, the
writeFee method (to be written) is called to display the results on the screen. Notice that the
value passed to writeFee is the value returned by the calculateFee method (the last one you
will need to write), which takes the daily rate and the number of days and calculates the total
fee payable.

Note You have not yet written the readDouble, readInt, writeFee, and calculateFee
methods, so IntelliSense does not display these methods when you type this code.
Do not try to build the application yet—it will fail.

Write the methods using the Generate Method Stub Wizard

1. In the Code and Text Editor window, right-click the readDouble method call in the run method.

A shortcut menu appears that contains useful commands for generating and editing code, as
shown here:

78 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

2. On the shortcut menu, point to Generate, and then click Method Stub.

Visual Studio examines the call to the readDouble method, ascertains the type of its param-
eters and return value, and generates a method with a default implementation, like this:

private double readDouble(string p)
{
 throw new NotImplementedException();
}

The new method is created with the private qualifier, which is described in Chapter 7. The
body of the method currently just throws a NotImplementedException exception. (Exceptions
are described in Chapter 6.) You replace the body with your own code in the next step.

3. Delete the throw new NotImplementedException(); statement from the readDouble method,
and replace it with the following lines of code:

Console.Write(p);
string line = Console.ReadLine();
return double.Parse(line);

This block of code displays the string in variable p to the screen. This variable is the string
parameter passed in when the method is called, and it contains the message prompting the
user to type in the daily rate.

Note The Console.Write method is similar to the Console.WriteLine statement that
you have used in earlier exercises, except that it does not output a newline character
after the message.

The user types a value, which is read into a string using the ReadLine method and converted
to a double using the double.Parse method. The result is passed back as the return value of the
method call.

 CHAPTER 3 Writing Methods and Applying Scope 79

Note The ReadLine method is the companion method to WriteLine; it reads user in-
put from the keyboard, finishing when the user presses the Enter key. The text typed
by the user is passed back as the return value. The text is returned as a string value.

4. In the run method, right-click the call to the readInt method in the run method, point to
Generate, and then click Method Stub to generate the readInt method.

The readInt method is generated, like this:

private int readInt(string p)
{
 throw new NotImplementedException();
}

5. Replace the throw new NotImplementedException(); statement in the body of the readInt
method with the following code:

Console.Write(p);
string line = Console.ReadLine();
return int.Parse(line);

This block of code is similar to the code for the readDouble method. The only difference is
that the method returns an int value, so the string typed by the user is converted to a number
using the int.Parse method.

6. Right-click the call to the calculateFee method in the run method, point to Generate, and then
click Method Stub.

The calculateFee method is generated, like this:

private object calculateFee(double dailyRate, int noOfDays)
{
 throw new NotImplementedException();
}

Notice in this case that Visual Studio uses the names of the arguments passed in to generate
names for the parameters. (You can, of course, change the parameter names if they are not
suitable.) What is more intriguing is the type returned by the method, which is object. Visual
Studio is unable to determine exactly which type of value should be returned by the method
from the context in which it is called. The object type just means a “thing,” and you should
change it to the type you require when you add the code to the method. You will learn more
about the object type in Chapter 7.

7. Change the definition of the calculateFee method so that it returns a double, as shown in bold
type here:

80 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

private double calculateFee(double dailyRate, int noOfDays)
{
 throw new NotImplementedException();
}

8. Replace the body of the calculateFee method with the following statement, which calculates
the fee payable by multiplying the two parameters together and then returns it:

return dailyRate * noOfDays;

9. Right-click the call to the writeFee method in the run method, and then click
Generate Method Stub.

Note that Visual Studio uses the definition of the calculateFee method to work out that its
parameter should be a double. Also, the method call does not use a return value, so the type
of the method is void:

private void writeFee(double p)
{
 ...
}

tip If you feel sufficiently comfortable with the syntax, you can also write methods
by typing them directly into the Code and Text Editor window. You do not always
have to use the Generate menu option.

10. Replace the code in the body of the writeFee method with the following statement, which
calculates the fee and adds a 10% commission:

Console.WriteLine("The consultant's fee is: {0}", p * 1.1);

Note This version of the WriteLine method demonstrates the use of a format string.
The text {0} in the string used as the first argument to the WriteLine method is a
placeholder that is replaced with the value of the expression following the string
(p * 1.1) when it is evaluated at run time. Using this technique is preferable to alter-
natives, such as converting the value of the expression p * 1.1 to a string and using
the + operator to concatenate it to the message.

11. On the BUILD menu, click Build Solution.

 CHAPTER 3 Writing Methods and Applying Scope 81

refactoring Code
A very useful feature of Visual Studio 2012 is the ability to refactor code.

Occasionally, you will find yourself writing the same (or similar) code in more than one
place in an application. When this occurs, highlight and right-click the block of code you have
just typed, and on the Refactor menu, click Extract Method. The Extract Method dialog box
appears, prompting you for the name of a new method to create containing this code. Type a
name and click OK. The new method is created containing your code, and the code you typed
is replaced with a call to this method. Extract Method is also able to determine whether the
method should take any parameters and return a value.

test the program

1. On the DEBUG menu, click Start Without Debugging.

Visual Studio 2012 builds the program and then runs it. A console window appears.

2. At the Enter Your Daily Rate prompt, type 525 and then press Enter.

3. At the Enter the Number of Days prompt, type 17 and then press Enter.

The program writes the following message to the console window:

The consultant's fee is: 9817.5

4. Press the Enter key to close the application and return to Visual Studio 2012.

In the next exercise, you’ll use the Visual Studio 2012 debugger to run your program in slow
motion. You’ll see when each method is called (which is referred to as stepping into the method) and
then see how each return statement transfers control back to the caller (also known as stepping out
of the method). While you are stepping into and out of methods, you can use the tools on the Debug
toolbar. However, the same commands are also available on the DEBUG menu when an application is
running in debug mode.

Step through the methods by using the Visual Studio 2012 debugger

1. In the Code and Text Editor window, find the run method.

2. Move the mouse to the first statement in the run method:

double dailyRate = readDouble("Enter your daily rate: ");

82 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

3. Right-click anywhere on this line, and click Run to Cursor on the shortcut menu.

The program starts and runs until it reaches the first statement in the run method, and then
it pauses. A yellow arrow in the left margin of the Code and Text Editor window indicates the
current statement, which is also highlighted with a yellow background.

4. On the VIEW menu, point to Toolbars, and then make sure that the Debug toolbar is selected.

If it was not already visible, the Debug toolbar opens. It might appear docked with the other tool-
bars. If you cannot see the toolbar, try using the Toolbars command on the VIEW menu to hide it,
and notice which buttons disappear. Then display the toolbar again. The Debug toolbar looks like
this:

5. On the Debug toolbar, click the Step Into button. (This is the sixth button from the left in the Debug
toolbar.)

This action causes the debugger to step into the method being called. The yellow cursor
jumps to the opening brace at the start of the readDouble method.

6. Click Step Into again. The cursor advances to the first statement:

Console.Write(p);

 CHAPTER 3 Writing Methods and Applying Scope 83

tip You can also press F11 rather than repeatedly clicking Step Into on the Debug
toolbar.

7. On the Debug toolbar, click Step Over. (This is the seventh button from the left.)

This action causes the method to execute the next statement without debugging it (stepping
into it). This action is primarily useful if the statement calls a method but you don’t want to
step through every statement in that method. The yellow cursor moves to the second state-
ment of the method, and the program displays the Enter Your Daily Rate prompt in a console
window before returning to Visual Studio 2012. (The console window might be hidden behind
Visual Studio.)

tip You can also press F10 rather than clicking Step Over on the Debug toolbar.

8. On the Debug toolbar, click Step Over again.

This time, the yellow cursor disappears and the console window gets the focus because the
program is executing the Console.ReadLine method and is waiting for you to type something.

9. Type 525 in the console window, and then press Enter.

Control returns to Visual Studio 2012. The yellow cursor appears on the third line of the
method.

10. Hover the mouse over the reference to the line variable on either the second or third line of
the method. (It doesn’t matter which.)

A ScreenTip appears, displaying the current value of the line variable (“525”). You can use this
feature to make sure that a variable has been set to an expected value while stepping through
methods.

11. On the Debug toolbar, click Step Out.

This action causes the current method to continue running uninterrupted to its end. The
readDouble method finishes, and the yellow cursor is placed back at the first statement of the
run method. This statement as now finished running.

84 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip You can also press Shift+F11 rather than clicking Step Out on the Debug toolbar.

12. On the Debug toolbar, click Step Into.

The yellow cursor moves to the second statement in the run method:

int noOfDays = readInt("Enter the number of days: ");

13. On the Debug toolbar, click Step Over.

This time, you have chosen to run the method without stepping through it. The console win-
dow appears again, prompting you for the number of days.

14. In the console window, type 17 and then press Enter.

Control returns to Visual Studio 2012 (you may need to bring Visual Studio to the foreground).
The yellow cursor moves to the third statement of the run method:

writeFee(calculateFee(dailyRate, noOfDays));

15. On the Debug toolbar, click Step Into.

The yellow cursor jumps to the opening brace at the start of the calculateFee method. This
method is called first, before writeFee, because the value returned by this method is used as
the parameter to writeFee.

16. On the Debug toolbar, click Step Out.

The calculateFee method call completes, and the yellow cursor jumps back to the third state-
ment of the run method.

17. On the Debug toolbar, click Step Into.

This time, the yellow cursor jumps to the opening brace at the start of the writeFee method.

18. Place the mouse over the p parameter in the method definition.

The value of p, 8925.0, is displayed in a ScreenTip.

19. On the Debug toolbar, click Step Out.

The message “The consultant’s fee is: 9817.5“ is displayed in the console window. (You might
need to bring the console window to the foreground to display it if it is hidden behind Visual
Studio 2012.) The yellow cursor returns to the third statement in the run method.

20. On the DEBUG menu, click Continue to cause the program to continue running without stop-
ping at each statement.

 CHAPTER 3 Writing Methods and Applying Scope 85

The application completes and finishes running. Notice that the Debug toolbar disappears
when the application finishes—by default, it displays only when you are running an applica-
tion in debug mode.

Using Optional Parameters and Named Arguments

You have seen that by defining overloaded methods, you can implement different versions of a method
that take different parameters. When you build an application that uses overloaded methods, the
compiler determines which specific instances of each method it should use to satisfy each method
call. This is a common feature of many object-oriented languages, not just C#.

However, developers can use other languages and technologies for building Windows applications
and components that do not follow these rules. A key feature of C# and other languages designed
for the .NET Framework is the ability to interoperate with applications and components written by
using other technologies. One of the principal technologies that underpins many Microsoft Windows
applications and services running outside of the .NET Framework is the Component Object Model, or
COM (actually, the common language runtime used by the .NET Framework is also heavily dependent
on COM, as is the Windows Runtime of Windows 8). COM does not support overloaded methods,
but instead it uses methods that can take optional parameters. To make it easier to incorporate COM
libraries and components into a C# solution, C# also supports optional parameters.

Optional parameters are also useful in other situations. They provide a compact and simple solu-
tion when it is not possible to use overloading because the types of the parameters do not vary
sufficiently to enable the compiler to distinguish between implementations. For example, consider the
following method:

public void DoWorkWithData(int intData, float floatData, int moreIntData)
{
 ...
}

The DoWorkWithData method takes three parameters: two ints and a float. Now suppose you
want to provide an implementation of DoWorkWithData that took only two parameters: intData and
floatData. You can overload the method like this:

public void DoWorkWithData(int intData, float floatData)
{
 ...
}

If you write a statement that calls the DoWorkWithData method, you can provide either two or
three parameters of the appropriate types, and the compiler uses the type information to determine
which overload to call:

86 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

int arg1 = 99;
float arg2 = 100.0F;
int arg3 = 101;

DoWorkWithData(arg1, arg2, arg3); // Call overload with three parameters
DoWorkWithData(arg1, arg2); // Call overload with two parameters

However, suppose you want to implement two further versions of DoWorkWithData that take only
the first parameter and the third parameter. You might be tempted to try this:

public void DoWorkWithData(int intData)
{
 ...
}

public void DoWorkWithData(int moreIntData)
{
 ...
}

The issue is that to the compiler, these two overloads appear identical. Your code will fail to
compile and will instead generate the error “Type ‘typename’ already defines a member called
‘DoWorkWithData’ with the same parameter types.” To understand why this is so, if this code was
legal, consider the following statements:

int arg1 = 99;
int arg3 = 101;

DoWorkWithData(arg1);
DoWorkWithData(arg3);

Which overload or overloads would the calls to DoWorkWithData invoke? Using optional param-
eters and named arguments can help to solve this problem.

Defining Optional Parameters
You specify that a parameter is optional when you define a method by providing a default value
for the parameter. You indicate a default value by using the assignment operator. In the optMethod
method shown next, the first parameter is mandatory because it does not specify a default value, but
the second and third parameters are optional:

void optMethod(int first, double second = 0.0, string third = "Hello")
{
 ...
}

You must specify all mandatory parameters before any optional parameters.

You can call a method that takes optional parameters in the same way that you call any other
method: you specify the method name and provide any necessary arguments. The difference with
methods that take optional parameters is that you can omit the corresponding arguments, and the

 CHAPTER 3 Writing Methods and Applying Scope 87

method will use the default value when the method runs. In the following example code, the first
call to the optMethod method provides values for all three parameters. The second call specifies only
two arguments, and these values are applied to the first and second parameters. The third parameter
receives the default value of “Hello” when the method runs.

optMethod(99, 123.45, "World"); // Arguments provided for all three parameters
optMethod(100, 54.321); // Arguments provided for first two parameters only

passing Named arguments
By default, C# uses the position of each argument in a method call to determine which parameters
they apply to. Hence, the second example method shown in the previous section passes the two
arguments to the first and second parameters in the optMethod method, because this is the order in
which they occur in the method declaration. C# also enables you to specify parameters by name, and
this feature lets you pass the arguments in a different sequence. To pass an argument as a named
parameter, you specify the name of the parameter, a colon, and the value to use. The following
examples perform the same function as those shown in the previous section, except that the param-
eters are specified by name:

optMethod(first : 99, second : 123.45, third : "World");
optMethod(first : 100, second : 54.321);

Named arguments give you the ability to pass arguments in any order. You can rewrite the code
that calls the optMethod method like this:

optMethod(third : "World", second : 123.45, first : 99);
optMethod(second : 54.321, first : 100);

This feature also enables you to omit arguments. For example, you can call the optMethod method
and specify values for the first and third parameters only and use the default value for the second
parameter like this:

optMethod(first : 99, third : "World");

Additionally, you can mix positional and named arguments. However, if you use this technique, you
must specify all the positional arguments before the first named argument:

optMethod(99, third : "World"); // First argument is positional

resolving ambiguities with Optional parameters
and Named arguments
Using optional parameters and named arguments can result in some possible ambiguities in your
code. You need to understand how the compiler resolves these ambiguities; otherwise, you might find
your applications behaving in unexpected ways. Suppose that you define the optMethod method as
an overloaded method, as shown in the following example:

88 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

void optMethod(int first, double second = 0.0, string third = "Hello")
{
 ...
}

void optMethod(int first, double second = 1.0, string third = "Goodbye", int fourth = 100)
{
 ...
}

This is perfectly legal C# code that follows the rules for overloaded methods. The compiler can
distinguish between the methods because they have different parameter lists. However, a problem
can arise if you attempt to call the optMethod method and omit some of the arguments correspond-
ing to one or more of the optional parameters:

optMethod(1, 2.5, "World");

Again, this is perfectly legal code, but which version of the optMethod method does it run? The
answer is that it runs the version that most closely matches the method call, so it invokes the method
that takes three parameters and not the version that takes four. That makes good sense, so consider
this one:

optMethod(1, fourth : 101);

In this code, the call to optMethod omits arguments for the second and third parameters, but it
specifies the fourth parameter by name. Only one version of optMethod matches this call, so this is not
a problem. The next one will get you thinking, though!

optMethod(1, 2.5);

This time, neither version of the optMethod method exactly matches the list of arguments pro-
vided. Both versions of the optMethod method have optional parameters for the second, third, and
fourth arguments. So does this statement call the version of optMethod that takes three parameters
and use the default value for the third parameter, or does it call the version of optMethod that takes
four parameters and use the default value for the third and fourth parameters? The answer is that it
does neither. This is an unresolvable ambiguity, and the compiler does not let you compile the appli-
cation. The same situation arises with the same result if you try and call the optMethod method as
shown in any of the following statements:

optMethod(1, third : "World");
optMethod(1);
optMethod(second : 2.5, first : 1);

In the final exercise in this chapter, you will practice implementing methods that take optional
parameters and calling them using named arguments. You will also test common examples of how
the C# compiler resolves method calls that involve optional parameters and named arguments.

 CHAPTER 3 Writing Methods and Applying Scope 89

Define and call a method that takes optional parameters

1. Using Visual Studio 2012, open the DailyRate project in the \Microsoft Press\Visual CSharp
Step By Step\Chapter 3\Windows X\DailyRate Using Optional Parameters folder in your
Documents folder.

2. In Solution Explorer, double-click the file Program.cs in the DailyRate project to display the
code for the program in the Code and Text Editor window.

This version of the application is empty apart from the Main method and the skeleton version
of the run method.

3. In the Program class, add the calculateFee method below the run method. This is the same
version of the method that you implemented in the previous set of exercises, except that it
takes two optional parameters with default values. The method also prints a message indicat-
ing the version of the calculateFee method that was called. (You add overloaded implementa-
tions of this method in the following steps.)

private double calculateFee(double dailyRate = 500.0, int noOfDays = 1)
{
 Console.WriteLine("calculateFee using two optional parameters");
 return dailyRate * noOfDays;
}

4. Add another implementation of the calculateFee method to the Program class as shown next.
This version takes one optional parameter, called dailyRate, of type double. The body of the
method calculates and returns the fee for a single day only.

private double calculateFee(double dailyRate = 500.0)
{
 Console.WriteLine("calculateFee using one optional parameter");
 int defaultNoOfDays = 1;
 return dailyRate * defaultNoOfDays;
}

5. Add a third implementation of the calculateFee method to the Program class. This version
takes no parameters and uses hardcoded values for the daily rate and number of days.

private double calculateFee()
{
 Console.WriteLine("calculateFee using hardcoded values");
 double defaultDailyRate = 400.0;
 int defaultNoOfDays = 1;
 return defaultDailyRate * defaultNoOfDays;
}

6. In the run method, add the following statements that call calculateFee and display the results,
as shown below in bold:

90 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

public void run()
{
 double fee = calculateFee();
 Console.WriteLine("Fee is {0}", fee);
}

7. On the DEBUG menu, click Start Without Debugging to build and run the program. The
program runs in a console window and displays the following messages:

calculateFee using hardcoded values
Fee is 400

The run method called the version of calculateFee that takes no parameters rather than either
of the implementations that take optional parameters because it is the version that most
closely matches the method call.

Press any key to close the console window and return to Visual Studio.

8. In the run method, modify the statement that calls calculateFee as shown in bold type in this
code sample:

public void run()
{
 double fee = calculateFee(650.0);
 Console.WriteLine("Fee is {0}", fee);
}

9. On the DEBUG menu, click Start Without Debugging to build and run the program. The
program displays the following messages:

calculateFee using one optional parameter
Fee is 650

This time, the run method called the version of calculateFee that takes one optional parameter.
As before, this is because this is the version that most closely matches the method call.

Press any key to close the console window and return to Visual Studio.

10. In the run method, modify the statement that calls calculateFee again:

public void run()
{
 double fee = calculateFee(500.0, 3);
 Console.WriteLine("Fee is {0}", fee);
}

11. On the DEBUG menu, click Start Without Debugging to build and run the program. The
program displays the following messages:

calculateFee using two optional parameters
Fee is 1500

 CHAPTER 3 Writing Methods and Applying Scope 91

As you might expect from the previous two cases, the run method called the version of
calculateFee that takes two optional parameters.

Press any key to close the console window and return to Visual Studio.

12. In the run method, modify the statement that calls calculateFee and specify the dailyRate
parameter by name:

public void run()
{
 double fee = calculateFee(dailyRate : 375.0);
 Console.WriteLine("Fee is {0}", fee);
}

13. On the DEBUG menu, click Start Without Debugging to build and run the program. The pro-
gram displays the following messages:

calculateFee using one optional parameter
Fee is 375

As earlier, the run method called the version of calculateFee that takes one optional param-
eter. Changing the code to use a named argument does not change the way in which the
compiler resolves the method call in this example.

Press any key to close the console window and return to Visual Studio.

14. In the run method, modify the statement that calls calculateFee and specify the noOfDays
parameter by name:

public void run()
{
 double fee = calculateFee(noOfDays : 4);
 Console.WriteLine("Fee is {0}", fee);
}

15. On the DEBUG menu, click Start Without Debugging to build and run the program. The
program displays the following messages:

calculateFee using two optional parameters
Fee is 2000

This time, the run method called the version of calculateFee that takes two optional param-
eters. The method call has omitted the first parameter (dailyRate) and specified the second
parameter by name. This is the only version of the calculateFee method that matches the call.

Press any key to close the console window and return to Visual Studio.

16. Modify the implementation of the calculateFee method that takes two optional parameters.
Change the name of the first parameter to theDailyRate and update the return statement, as
shown in bold type in the following code:

92 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

private double calculateFee(double theDailyRate = 500.0, int noOfDays = 1)
{
 Console.WriteLine("calculateFee using two optional parameters");
 return theDailyRate * noOfDays;
}

17. In the run method, modify the statement that calls calculateFee and specify the theDailyRate
parameter by name:

public void run()
{
 double fee = calculateFee(theDailyRate : 375.0);
 Console.WriteLine("Fee is {0}", fee);
}

18. On the DEBUG menu, click Start Without Debugging to build and run the program. The
program displays the following messages:

calculateFee using two optional parameters
Fee is 375

The previous time that you specified the fee but not the daily rate (step 13), the run method
called the version of calculateFee that takes one optional parameter. This time, the run method
called the version of calculateFee that takes two optional parameters. In this case, using a
named argument has changed the way in which the compiler resolves the method call. If you
specify a named argument, the compiler compares the argument name to the names of the
parameters specified in the method declarations and selects the method that has a parameter
with a matching name.

Press any key to close the console window and return to Visual Studio.

Summary

In this chapter, you learned how to define methods to implement a named block of code. You saw
how to pass parameters into methods and how to return data from methods. You also saw how to call
a method, pass arguments, and obtain a return value. You learned how to define overloaded meth-
ods with different parameter lists, and you saw how the scope of a variable determines where it can
be accessed. Then you used the Visual Studio 2012 debugger to step through code as it runs. Finally,
you learned how to write methods that take optional parameters and how to call methods by using
named parameters.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 4.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 3 Writing Methods and Applying Scope 93

Chapter 3 Quick Reference

To Do this

Declare a method Write the method inside a class. Specify the method name,
parameter list, and return type, followed by the body of the
method between braces. For example:

int addValues(int leftHandSide, int rightHandSide)
{
 ...
}

Return a value from inside a method Write a return statement inside the method. For example:
return leftHandSide + rightHandSide;

Return from a method before the end of the
method

Write a return statement inside the method. For example:
return;

Call a method Write the name of the method together with any arguments
between parentheses. For example:
addValues(39, 3);

Use the Generate Method Stub Wizard Right-click a call to the method, and then click Generate
Method Stub on the shortcut menu.

Display the Debug toolbar On the VIEW menu, point to Toolbars, and then click Debug.

Step into a method On the Debug toolbar, click Step Into.
or
On the DEBUG menu, click Step Into.

Step out of a method On the Debug toolbar, click Step Out.
or
On the DEBUG menu, click Step Out.

Specify an optional parameter to a method Provide a default value for the parameter in the method decla-
ration. For example:

void optMethod(int first, double second = 0.0,
 string third = "Hello")
{
 ...
}

Pass a method argument as a named parameter Specify the name of the parameter in the method call. For
example:

optMethod(first : 100, third : "World");

 95

C H A P T E R 4

Using Decision Statements

After completing this chapter, you will be able to

■■ Declare Boolean variables.

■■ Use Boolean operators to create expressions whose outcome is either true or false.

■■ Write if statements to make decisions based on the result of a Boolean expression.

■■ Write switch statements to make more complex decisions.

In Chapter 3, “Writing Methods and Applying Scope,” you learned how to group related statements
into methods. You also learned how to use parameters to pass information to a method and how to
use return statements to pass information out of a method. Dividing a program into a set of discrete
methods, each designed to perform a specific task or calculation, is a necessary design strategy. Many
programs need to solve large and complex problems. Breaking up a program into methods helps you
understand these problems and focus on how to solve them one piece at a time.

The methods that you wrote in Chapter 3 were very straightforward, with each statement execut-
ing sequentially after the previous statement completed. However, to solve many real-world prob-
lems, you also need to be able to write code that selectively performs different actions and that takes
different paths through a method, depending on the circumstances. In this chapter, you’ll learn how
to accomplish this task.

Declaring Boolean Variables

In the world of C# programming (unlike in the real world), everything is black or white, right or
wrong, true or false. For example, if you create an integer variable called x, assign the value 99 to x,
and then ask, “Does x contain the value 99?”, the answer is definitely true. If you ask, “Is x less than
10?”, the answer is definitely false. These are examples of Boolean expressions. A Boolean expression
always evaluates to true or false.

96 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Note The answers to these questions are not necessarily definitive for all other program-
ming languages. An unassigned variable has an undefined value, and you cannot, for
example, say that it is definitely less than 10. Issues such as this one are a common source of
errors in C and C++ programs. The Microsoft Visual C# compiler solves this problem by en-
suring that you always assign a value to a variable before examining it. If you try to examine
the contents of an unassigned variable, your program will not compile.

Microsoft Visual C# provides a data type called bool. A bool variable can hold one of two values:
true or false. For example, the following three statements declare a bool variable called areYouReady,
assign true to that variable, and then write its value to the console:

bool areYouReady;
areYouReady = true;
Console.WriteLine(areYouReady); // writes True to the console

Using Boolean Operators

A Boolean operator is an operator that performs a calculation whose result is either true or false. C#
has several very useful Boolean operators, the simplest of which is the NOT operator, represented by
the exclamation point, !. The ! operator negates a Boolean value, yielding the opposite of that value.
In the preceding example, if the value of the variable areYouReady is true, the value of the expression
!areYouReady is false.

Understanding equality and relational Operators
Two Boolean operators that you will frequently use are equality, ==, and inequality, != . These are
binary operators that enable you to determine whether one value is the same as another value of
the same type, yielding a Boolean result. The following table summarizes how these operators work,
using an int variable called age as an example.

Operator Meaning Example Outcome if age is 42

== Equal to age == 100 false

!= Not equal to age != 0 true

Don’t confuse the equality operator == with the assignment operator =. The expression x==y
compares x with y and has the value true if the values are the same. The expression x=y assigns the
value of y to x and returns the value of y as its result.

Closely related to == and != are the relational operators. You use these operators to find out
whether a value is less than or greater than another value of the same type. The following table shows
how to use these operators.

 CHAPTER 4 Using Decision Statements 97

Operator Meaning Example Outcome if age is 42

< Less than age < 21 false

<= Less than or equal to age <= 18 false

> Greater than age > 16 true

>= Greater than or equal to age >= 30 true

Understanding Conditional Logical Operators
C# also provides two other binary Boolean operators: the logical AND operator, which is represented
by the && symbol, and the logical OR operator, which is represented by the || symbol. Collectively,
these are known as the conditional logical operators. Their purpose is to combine two Boolean
expressions or values into a single Boolean result. These operators are similar to the equality and rela-
tional operators in that the value of the expressions in which they appear is either true or false, but
they differ in that the values on which they operate must be also be either true or false.

The outcome of the && operator is true if and only if both of the Boolean expressions it operates on
are true. For example, the following statement assigns the value true to validPercentage if and only if the
value of percent is greater than or equal to 0 and the value of percent is less than or equal to 100:

bool validPercentage;
validPercentage = (percent >= 0) && (percent <= 100);

tip A common beginner’s error is to try to combine the two tests by naming the percent
variable only once, like this:

percent >= 0 && <= 100 // this statement will not compile

Using parentheses helps avoid this type of mistake and also clarifies the purpose of the
expression. For example, compare these two expressions:

validPercentage = percent >= 0 && percent <= 100

and

validPercentage = (percent >= 0) && (percent <= 100)

Both expressions return the same value because the precedence of the && operator is less
than that of >= and <=. However, the second expression conveys its purpose in a more
readable manner.

The outcome of the || operator is true if either of the Boolean expressions it operates on is true.
You use the || operator to determine whether any one of a combination of Boolean expressions is
true. For example, the following statement assigns the value true to invalidPercentage if the value of
percent is less than 0 or the value of percent is greater than 100:

bool invalidPercentage;
invalidPercentage = (percent < 0) || (percent > 100);

98 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Short-Circuiting
The && and || operators both exhibit a feature called short-circuiting. Sometimes it is not necessary to
evaluate both operands when ascertaining the result of a conditional logical expression. For example,
if the left operand of the && operator evaluates to false, the result of the entire expression must be
false regardless of the value of the right operand. Similarly, if the value of the left operand of the ||
operator evaluates to true, the result of the entire expression must be true, irrespective of the value of
the right operand. In these cases, the && and || operators bypass the evaluation of the right operand.
Here are some examples:

(percent >= 0) && (percent <= 100)

In this expression, if the value of percent is less than 0, the Boolean expression on the left side of
&& evaluates to false. This value means that the result of the entire expression must be false, and the
Boolean expression to the right of the && operator is not evaluated.

(percent < 0) || (percent > 100)

In this expression, if the value of percent is less than 0, the Boolean expression on the left side of
|| evaluates to true. This value means that the result of the entire expression must be true and the
Boolean expression to the right of the || operator is not evaluated.

If you carefully design expressions that use the conditional logical operators, you can boost the
performance of your code by avoiding unnecessary work. Place simple Boolean expressions that can
be evaluated easily on the left side of a conditional logical operator, and put more complex expres-
sions on the right side. In many cases, you will find that the program does not need to evaluate the
more complex expressions.

Summarizing Operator precedence and associativity
The following table summarizes the precedence and associativity of all the operators you have
learned about so far. Operators in the same category have the same precedence. The operators in
categories higher up in the table take precedence over operators in categories lower down.

Category Operators Description Associativity

Primary ()
++
--

Precedence override
Post-increment
Post-decrement

Left

Unary !
+
-
++
--

Logical NOT
Addition
Subtraction
Pre-increment
Pre-decrement

Left

Multiplicative *
/
%

Multiply
Divide
Division remainder (modulus)

Left

 CHAPTER 4 Using Decision Statements 99

Category Operators Description Associativity

Additive +
-

Addition
Subtraction

Left

Relational <
<=
>
>=

Less than
Less than or equal to
Greater than
Greater than or equal to

Left

Equality ==
!=

Equal to
Not equal to

Left

Conditional AND
Conditional OR

&&
||

Conditional AND
Conditional OR

Left
Left

Assignment = Right

Notice that the && operator and the || operator have a different precedence: && is higher than ||.

Using if Statements to Make Decisions

In a method, when you want to choose between executing two different statements depending on
the result of a Boolean expression, you can use an if statement.

Understanding if Statement Syntax
The syntax of an if statement is as follows (if and else are C# keywords):

if (booleanExpression)
 statement-1;
else
 statement-2;

If booleanExpression evaluates to true, statement-1 runs; otherwise, statement-2 runs. The
else keyword and the subsequent statement-2 are optional. If there is no else clause and the
booleanExpression is false, execution continues with whatever code follows the if statement. Also,
notice that the Boolean expression must be enclosed in parentheses; otherwise, the code will not
compile.

For example, here’s an if statement that increments a variable representing the second hand of
a stopwatch. (Minutes are ignored for now.) If the value of the seconds variable is 59, it is reset to 0;
otherwise, it is incremented using the ++ operator:

int seconds;
...
if (seconds == 59)
 seconds = 0;
else
 seconds++;

100 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Boolean expressions Only, please!
The expression in an if statement must be enclosed in parentheses. Additionally, the expression
must be a Boolean expression. In some other languages (notably C and C++), you can write an
integer expression, and the compiler will silently convert the integer value to true (nonzero) or
false (0). C# does not support this behavior, and the compiler reports an error if you write such
an expression.

If you accidentally specify the assignment operator, =, instead of the equality test operator,
==, in an if statement, the C# compiler recognizes your mistake and refuses to compile your
code. For example:

int seconds;
...
if (seconds = 59) // compile-time error
...
if (seconds == 59) // ok

Accidental assignments were another common source of bugs in C and C++ programs,
which would silently convert the value assigned (59) to a Boolean expression (with anything
nonzero considered to be true), with the result that the code following the if statement would
be performed every time.

Incidentally, you can use a Boolean variable as the expression for an if statement, although it
must still be enclosed in parentheses, as shown in this example:

bool inWord;
...
if (inWord == true) // ok, but not commonly used
...
if (inWord) // more common and considered better style

Using Blocks to Group Statements
Notice that the syntax of the if statement shown earlier specifies a single statement after the if
(booleanExpression) and a single statement after the else keyword. Sometimes, you’ll want to perform
more than one statement when a Boolean expression is true. You could group the statements inside
a new method and then call the new method, but a simpler solution is to group the statements inside
a block. A block is simply a sequence of statements grouped between an opening brace and a closing
brace.

In the following example, two statements that reset the seconds variable to 0 and increment the
minutes variable are grouped inside a block, and the whole block executes if the value of seconds is
equal to 59:

 CHAPTER 4 Using Decision Statements 101

int seconds = 0;
int minutes = 0;
...
if (seconds == 59)
{
 seconds = 0;
 minutes++;
}
else
{
 seconds++;
}

Important If you omit the braces, the C# compiler associates only the first statement
(seconds = 0;) with the if statement. The subsequent statement (minutes++;) will not be
recognized by the compiler as part of the if statement when the program is compiled.
Furthermore, when the compiler reaches the else keyword, it will not associate it with the
previous if statement, and it will report a syntax error instead. Therefore, it is good practice
to always define the statements for each branch of an if statement within a block, even if
a block consists of only a single statement. It may save you some grief later if you want to
add additional code.

A block also starts a new scope. You can define variables inside a block, but they will disappear at
the end of the block. The following code fragment illustrates this point:

if (...)
{
 int myVar = 0;
 ... // myVar can be used here
} // myVar disappears here
else
{
 // myVar cannot be used here
 ...
}
// myVar cannot be used here

Cascading if Statements
You can nest if statements inside other if statements. In this way, you can chain together a sequence
of Boolean expressions, which are tested one after the other until one of them evaluates to true. In
the following example, if the value of day is 0, the first test evaluates to true and dayName is assigned
the string “Sunday”. If the value of day is not 0, the first test fails and control passes to the else clause,
which runs the second if statement and compares the value of day with 1. The second if statement
is reached only if the first test is false. Similarly, the third if statement is reached only if the first and
second tests are false.

102 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

if (day == 0)
{
 dayName = "Sunday";
}
else if (day == 1)
{
 dayName = "Monday";
}
else if (day == 2)
{
 dayName = "Tuesday";
}
else if (day == 3)
{
 dayName = "Wednesday";
}
else if (day == 4)
{
 dayName = "Thursday";
}
else if (day == 5)
{
 dayName = "Friday";
}
else if (day == 6)
{
 dayName = "Saturday";
}
else
{
 dayName = "unknown";
}

In the following exercise, you’ll write a method that uses a cascading if statement to compare two
dates.

Write if statements

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Selection project, located in the \Microsoft Press\Visual CSharp Step By Step\Chap-
ter 4\Windows X\Selection folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

Visual Studio 2012 builds and runs the application. The form displays two TextBlock controls,
both containing the current date. These controls are called firstDate and secondDate. You can
adjust these dates by using the slider controls to within + or – 50 days of the current date.

4. Without changing the dates, click Compare.

The following text appears in the text box in the lower half of the window:

 CHAPTER 4 Using Decision Statements 103

firstDate == secondDate : False
firstDate != secondDate : True
firstDate < secondDate : False
firstDate <= secondDate : False
firstDate > secondDate : True
firstDate >= secondDate : True

The Boolean expression firstDate == secondDate should be true because both firstDate and
secondDate are set to the current date. In fact, only the less than operator and the greater
than or equal to operator seem to be working correctly. The following images show the
Windows 8 and Windows 7 versions of the application running.

104 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

5. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging (or simply close
the application if you are using Windows 7).

6. Display the code for the MainWindow.xaml.cs file in the Code and Text Editor window.

7. Locate the compareClick method. It looks like this:

private void compareClick(object sender, RoutedEventArgs e)
{
 int diff = dateCompare(first, second);
 info.Text = "";
 show("firstDate == secondDate", diff == 0);
 show("firstDate != secondDate", diff != 0);
 show("firstDate < secondDate", diff < 0);
 show("firstDate <= secondDate", diff <= 0);
 show("firstDate > secondDate", diff > 0);
 show("firstDate >= secondDate", diff >= 0);
}

This method runs whenever the user clicks the Compare button on the form. The variables first
and second hold DateTime values; they are populated with the dates displayed in the firstDate
and second controls on the form elsewhere in the application. The DateTime data type is just
another data type, like int or float, except that it contains subelements that enable you to
access the individual pieces of a date, such as the year, month, or day.

The compareClick method passes the two DateTime values to the dateCompare method. The
purpose of this method is to compare dates and return the int value 0 if they are the same,
–1 if the first date is less than the second, and +1 if the first date is greater than the second.
A date is considered greater than another date if it comes after it chronologically. You will
examine the dateCompare method in the next step.

The show method displays the results of the comparison in the info text box control in the
lower half of the form.

8. Locate the dateCompare method. It looks like this:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 // TO DO
 return 42;
}

This method currently returns the same value whenever it is called—rather than 0, –1, or +1—
regardless of the values of its parameters. This explains why the application is not working as
expected! You need to implement the logic in this method to compare two dates correctly.

9. Remove the // TO DO comment and the return statement from the dateCompare method.

10. Add the following statements shown in bold type to the body of the dateCompare method:

 CHAPTER 4 Using Decision Statements 105

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 int result;

 if (leftHandSide.Year < rightHandSide.Year)
 {
 result = -1;
 }
 else if (leftHandSide.Year > rightHandSide.Year)
 {
 result = 1;
 }
}

If the expression leftHandSide.Year < rightHandSide.Year is true, the date in leftHandSide must
be earlier than the date in rightHandSide, so the program sets the result variable to –1. Other-
wise, if the expression leftHandSide.Year > rightHandSide.Year is true, the date in leftHandSide
must be later than the date in rightHandSide, and the program sets the result variable to 1.

If the expression leftHandSide.Year < rightHandSide.Year is false, and the expression
leftHandSide.Year > rightHandSide.Year is also false, the Year property of both dates must be
the same, so the program needs to compare the months in each date.

11. Add the following statements shown in bold type to the body of the dateCompare method,
after the code you entered in the preceding step:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 ...
 else if (leftHandSide.Month < rightHandSide.Month)
 {
 result = -1;
 }
 else if (leftHandSide.Month > rightHandSide.Month)
 {
 result = 1;
 }
}

These statements follow a similar logic for comparing months to that used to compare years
in the preceding step.

If the expression leftHandSide.Month < rightHandSide.Month is false, and the expression
leftHandSide.Month > rightHandSide.Month is also false, the Month property of both dates
must be the same, so the program finally needs to compare the days in each date.

12. Add the following statements to the body of the dateCompare method, after the code you
entered in the preceding two steps:

106 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 ...
 else if (leftHandSide.Day < rightHandSide.Day)
 {
 result = -1;
 }
 else if (leftHandSide.Day > rightHandSide.Day)
 {
 result = 1;
 }
 else
 {
 result = 0;
 }

 return result;
}

You should recognize the pattern in this logic by now.

If leftHandSide.Day < rightHandSide.Day and leftHandSide.Day > rightHandSide.Day both
are false, the value in the Day properties in both variables must be the same. The Month
values and the Year values must also be identical, respectively, for the program logic to
have reached this far, so the two dates must be the same, and the program sets the value
of result to 0.

The final statement returns the value stored in the result variable.

13. On the DEBUG menu, click Start Debugging.

The application is rebuilt and restarted. Once again, the two TextBlock controls, firstDate and
secondDate, are set to the current date.

14. Click Compare.

The following text appears in the text box:

firstDate == secondDate : True
firstDate != secondDate : False
firstDate < secondDate: False
firstDate <= secondDate: True
firstDate > secondDate: False
firstDate >= secondDate: True

These are the correct results for identical dates.

15. Click the slider for the secondDate TextBlock control, and advance it forward a few days.

The control should display the new date.

 CHAPTER 4 Using Decision Statements 107

16. Click Compare.

The following text appears in the text box:

firstDate == secondDate: False
firstDate != secondDate: True
firstDate < secondDate: True
firstDate <= secondDate: True
firstDate > secondDate: False
firstDate >= secondDate: False

Again, these are the correct results when the first date is earlier than the second date.

17. Test some other dates, and verify that the results are as you would expect. Return to Visual
Studio 2012 and stop debugging (or close the application if you are using Windows 7) when
you have finished.

Comparing Dates in real-World applications
Now that you have seen how to use a rather long and complicated series of if and else state-
ments, I should mention that this is not the technique you would employ to compare dates in
a real-world application. If you look at the dateCompare method from the preceding exercise,
you will see that the two parameters, leftHandSide and rightHandSide, are DateTime values. The
logic you have written compares only the date part of these parameters, but they also contain
a time element that you have not considered (or displayed). For two DateTime values to be
considered equal, they should have not only the same date but also the same time. Compar-
ing dates and times is such a common operation that the DateTime type actually has a built-in
method called Compare for doing just that. The Compare method takes two DateTime argu-
ments and compares them, returning a value indicating whether the first argument is less than
the second, in which case the result will be negative; whether the first argument is greater than
the second, in which case the result will be positive; or whether both arguments represent the
same date and time, in which case the result will be 0.

Using switch Statements

Sometimes when you write a cascading if statement, all the if statements look similar because they all
evaluate an identical expression. The only difference is that each if compares the result of the expres-
sion with a different value. For example, consider the following block of code that uses an if statement
to examine the value in the day variable and work out which day of the week it is:

108 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

if (day == 0)
{
 dayName = "Sunday";
}
else if (day == 1)
{
 dayName = "Monday";
}
else if (day == 2)
{
 dayName = "Tuesday";
}
else if (day == 3)
{
 ...
}
else
{
 dayName = "Unknown";
}

In these situations, often you can rewrite the cascading if statement as a switch statement to make
your program more efficient and more readable.

Understanding switch Statement Syntax
The syntax of a switch statement is as follows (switch, case, and default are keywords):

switch (controllingExpression)
{
 case constantExpression :
 statements
 break;
 case constantExpression :
 statements
 break;
 ...
 default :
 statements
 break;
}

The controllingExpression (which must be enclosed in parentheses) is evaluated once. Control then
jumps to the block of code identified by the constantExpression, whose value is equal to the result of
the controllingExpression. (The constantExpression identifier is also called a case label.) Execution runs
as far as the break statement, at which point the switch statement finishes and the program continues
at the first statement after the closing brace of the switch statement. If none of the constantExpression
values is equal to the value of the controllingExpression, the statements below the optional default
label run.

 CHAPTER 4 Using Decision Statements 109

Note Each constantExpression value must be unique, so the controllingExpression will
match only one of them. If the value of the controllingExpression does not match any
constantExpression value and there is no default label, program execution continues with
the first statement after the closing brace of the switch statement.

So, you can rewrite the previous cascading if statement as the following switch statement:

switch (day)
{
 case 0 :
 dayName = "Sunday";
 break;
 case 1 :
 dayName = "Monday";
 break;
 case 2 :
 dayName = "Tuesday";
 break;
 ...
 default :
 dayName = "Unknown";
 break;
}

Following the switch Statement rules
The switch statement is very useful, but unfortunately, you can’t always use it when you might like to.
Any switch statement you write must adhere to the following rules:

■■ You can use switch only on certain data types, such as int, char, or string. With any other types
(including float and double), you have to use an if statement.

■■ The case labels must be constant expressions, such as 42 if the switch data type is an int, ‘4’ if
the switch data type is a char, or “42” if the switch data type is a string. If you need to calculate
your case label values at run time, you must use an if statement.

■■ The case labels must be unique expressions. In other words, two case labels cannot have the
same value.

■■ You can specify that you want to run the same statements for more than one value by provid-
ing a list of case labels and no intervening statements, in which case the code for the final
label in the list is executed for all cases in that list. However, if a label has one or more associ-
ated statements, execution cannot fall through to subsequent labels; in this case, the compiler
generates an error. The following code fragment illustrates these points:

110 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

switch (trumps)
{
 case Hearts :
 case Diamonds : // Fall-through allowed - no code between labels
 color = "Red"; // Code executed for Hearts and Diamonds
 break;
 case Clubs :
 color = "Black";
 case Spades : // Error - code between labels
 color = "Black";
 break;
}

Note The break statement is the most common way to stop fall-through, but you can also
use a return statement to exit from the method containing the switch statement, or a throw
statement to generate an exception and abort the switch statement. The throw statement is
described in Chapter 6, “Managing Errors and Exceptions.”

switch Fall-through rules
Because you cannot accidentally fall through from one case label to the next if there is any
intervening code, you can freely rearrange the sections of a switch statement without affecting
its meaning (including the default label, which by convention is usually—but does not have to
be—placed as the last label).

C and C++ programmers should note that the break statement is mandatory for every case
in a switch statement (even the default case). This requirement is a good thing—it is common
in C or C++ programs to forget the break statement, allowing execution to fall through to the
next label and leading to bugs that are difficult to spot.

If you really want to, you can mimic C/C++ fall-through in C# by using a goto statement to
go to the following case or default label. Using goto in general is not recommended, though,
and this book does not show you how to do it.

In the following exercise, you will complete a program that reads the characters of a string and
maps each character to its XML representation. For example, the left angle bracket character, <, has
a special meaning in XML. (It’s used to form elements.) If you have data that contains this character,
it must be translated into the text < so that an XML processor knows that it is data and not part of
an XML instruction. Similar rules apply to the right angle bracket (>), ampersand (&), single quota-
tion mark ('),and double quotation mark (") characters. You will write a switch statement that tests the
value of the character and traps the special XML characters as case labels.

 CHAPTER 4 Using Decision Statements 111

Write switch statements

1. Start Visual Studio 2012 if it is not already running.

2. Open the SwitchStatement project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 4\Windows X\SwitchStatement folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

Visual Studio 2012 builds and runs the application. The application displays a form containing
two text boxes separated by a Copy button.

4. Type the following sample text into the upper text box:

inRange = (lo <= number) && (hi >= number);

5. Click Copy.

The statement is copied verbatim into the lower text box, and no translation of the <, &, or
> characters occurs, as shown in the following image showing the Windows 8 version of the
application.

6. Return to Visual Studio 2012 and stop debugging.

7. Display the code for MainWindow.xaml.cs in the Code and Text Editor window, and locate the
copyOne method.

The copyOne method copies the character specified as its input parameter to the end of the
text displayed in the lower text box. At the moment, copyOne contains a switch statement
with a single default action. In the following few steps, you will modify this switch statement
to convert characters that are significant in XML to their XML mapping. For example, the <
character will be converted to the string <.

112 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

8. Add the following statements shown in bold to the switch statement after the opening brace
for the statement and directly before the default label:

switch (current)
{
 case '<' :
 target.Text += "<";
 break;
 default:
 target.Text += current;
 break;
}

If the current character being copied is a <, this code appends the string “>“ to the text being
output in its place.

9. Add the following statements to the switch statement after the break statement you have just
added and above the default label:

case '>' :
 target.Text += ">";
 break;
case '&' :
 target.Text += "&";
 break;
case '\"' :
 target.Text += """;
 break;
case '\'' :
 target.Text += "'";
 break;

Note The single quotation mark (') and double quotation mark (") have a special
meaning in C# as well as in XML—they are used to delimit character and string
constants. The backslash (\) in the final two case labels is an escape character that
causes the C# compiler to treat these characters as literals rather than as delimiters.

10. On the DEBUG menu, click Start Debugging.

11. Type the following text into the upper text box:

inRange = (lo <= number) && (hi >= number);

12. Click Copy.

The statement is copied into the lower text box. This time, each character undergoes the XML
mapping implemented in the switch statement. The target text box displays the following text:

inRange = (lo <= number) && (hi >= number);

 CHAPTER 4 Using Decision Statements 113

13. Experiment with other strings, and verify that all special characters (<, >, &, " , and ') are
handled correctly.

14. Return to Visual Studio and stop debugging (or simply close the application if you are using
Windows 7).

Summary

In this chapter, you learned about Boolean expressions and variables. You saw how to use Boolean
expressions with the if and switch statements to make decisions in your programs, and you combined
Boolean expressions by using the Boolean operators.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 5.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

114 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Chapter 4 Quick Reference

To Do this Example

Determine whether two values are equiva-
lent

Use the == operator or the !=
operator.

answer == 42

Compare the value of two expressions Use the <, <=, >, or >= operator. age >= 21

Declare a Boolean variable Use the bool keyword as the type
of the variable.

bool inRange;

Create a Boolean expression that is true
only if two conditions are both true

Use the && operator. inRange = (lo <= number)
 && (number <= hi);

Create a Boolean expression that is true if
either of two conditions is true

Use the || operator. outOfRange = (number < lo)
 || (hi < number);

Run a statement if a condition is true Use an if statement. if (inRange)
 process();

Run more than one statement if a condition
is true

Use an if statement and a block. if (seconds == 59)
{
 seconds = 0;
 minutes++;
}

Associate different statements with different
values of a controlling expression

Use a switch statement. switch (current)
{
 case 0:
 ...
 break;

 case 1:
 ...
 break;
 default :
 ...
 break;
}

 115

C H A P T E R 5

Using Compound assignment
and Iteration Statements

After completing this chapter, you will be able to

■■ Update the value of a variable by using compound assignment operators.

■■ Write while, for, and do iteration statements.

■■ Step through a do statement and watch as the values of variables change.

In Chapter 4, “Using Decision Statements,” you learned how to use the if and switch constructs to run
statements selectively. In this chapter, you’ll see how to use a variety of iteration (or looping) state-
ments to run one or more statements repeatedly.

When you write iteration statements, you usually need to control the number of iterations that you
perform. You can achieve this by using a variable, updating its value as each iteration is performed,
and stopping the process when the variable reaches a particular value. To help simplify this process,
you’ll start by learning about the special assignment operators that you should use to update the
value of a variable in these circumstances.

Using Compound Assignment Operators

You’ve already seen how to use arithmetic operators to create new values. For example, the following
statement uses the plus operator (+) to display to the console a value that is 42 greater than the vari-
able answer:

Console.WriteLine(answer + 42);

You’ve also seen how to use assignment statements to change the value of a variable. The follow-
ing statement uses the assignment operator (=) to change the value of answer to 42:

answer = 42;

116 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If you want to add 42 to the value of a variable, you can combine the assignment operator and the
plus operator. For example, the following statement adds 42 to answer. After this statement runs, the
value of answer is 42 more than it was before:

answer = answer + 42;

Although this statement works, you’ll probably never see an experienced programmer write code
like this. Adding a value to a variable is so common that C# lets you perform this task in a shorthand
manner by using the operator +=. To add 42 to answer, you can write the following statement:

answer += 42;

You can use this notation to combine any arithmetic operator with the assignment operator, as the
following table shows. These operators are collectively known as the compound assignment operators.

Don’t write this Write this

variable = variable * number; variable *= number;

variable = variable / number; variable /= number;

variable = variable % number; variable %= number;

variable = variable + number; variable += number;

variable = variable - number; variable -= number;

tip The compound assignment operators share the same precedence and right associativ-
ity as the corresponding simple assignment operators.

The += operator also works on strings; it appends one string to the end of another. For example,
the following code displays “Hello John” on the console:

string name = "John";
string greeting = "Hello ";
greeting += name;
Console.WriteLine(greeting);

You cannot use any of the other compound assignment operators on strings.

tip Use the increment (++) and decrement (--) operators instead of a compound assign-
ment operator when incrementing or decrementing a variable by 1. For example, replace

count += 1;

with

count++;

 CHAPTER 5 Using Compound Assignment and Iteration Statements 117

Writing while Statements

You use a while statement to run a statement repeatedly while some condition is true. The syntax of a
while statement is as follows:

while (booleanExpression)
 statement

The Boolean expression (which must be enclosed in parentheses) is evaluated, and if it is true,
the statement runs and then the Boolean expression is evaluated again. If the expression is still
true, the statement is repeated and then the Boolean expression is evaluated yet again. This process
continues until the Boolean expression evaluates to false, when the while statement exits. Execution
then continues with the first statement after the while statement. A while statement shares many
syntactic similarities with an if statement (in fact, the syntax is identical except for the keyword):

■■ The expression must be a Boolean expression.

■■ The Boolean expression must be written inside parentheses.

■■ If the Boolean expression evaluates to false when first evaluated, the statement does not run.

■■ If you want to perform two or more statements under the control of a while statement, you
must use braces to group those statements in a block.

Here’s a while statement that writes the values 0 through 9 to the console. Note that as soon as the
variable i reaches the value 10, the while statement finishes and the code in the statement block does
not run:

int i = 0;
while (i < 10)
{
 Console.WriteLine(i);
 i++;
}

All while statements should terminate at some point. A common beginner’s mistake is forgetting
to include a statement to cause the Boolean expression eventually to evaluate to false and terminate
the loop, which results in a program that runs forever. In the example, the statement i++; performs
this role.

Note The variable i in the while loop controls the number of iterations that the loop per-
forms. This is a common idiom, and the variable that performs this role is sometimes called
the sentinel variable. You can also create nested loops (one loop inside another), and in
these cases it is common to extend this naming pattern to use the letters j, k, and even l as
the names of the sentinel variables used to control the iterations in these loops.

118 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip As with if statements, it is recommended that you always use a block with a while state-
ment, even if the block contains only a single statement. This is for much the same reason
as the if statement: if you decide to add more statements to the body of the while construct
later, it is clear that you should add them to the block. If you don’t do this, only the first
statement that immediately follows the Boolean expression in the while construct will be
executed as part of the loop, resulting in difficult-to-spot bugs such as this:

int i = 0;
while (i < 10)
 Console.WriteLine(i);
 i++;

This code iterates forever, displaying an infinite number of zeros, because only the Console.
WriteLine statement—and not the i++; statement—is executed as part of the while
construct.

In the following exercise, you will write a while loop to iterate through the contents of a text file
one line at a time and write each line to a text box in a form.

Write a while statement

1. Using Microsoft Visual Studio 2012, open the WhileStatement project, located in the \Micro-
soft Press\Visual CSharp Step By Step\Chapter 5\Windows X\WhileStatement folder in your
Documents folder.

2. On the DEBUG menu, click Start Debugging.

Visual Studio 2012 builds and runs the application. The application is a simple text file viewer
that you can use to select a text file and display its contents.

3. Click Open File.

If you are using Windows 8, the Open file picker appears, as shown in the following image.

 CHAPTER 5 Using Compound Assignment and Iteration Statements 119

If you are using Windows 7, the Open dialog box is displayed like this:

Whichever operating system you are using, you can use this feature to move to a folder and
select a file to display.

4. Move to the \Microsoft Press\Visual CSharp Step By Step\Chapter 5\Windows X\
WhileStatement\WhileStatement folder in your Documents folder.

120 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

5. Select the file MainWindow.xaml.cs, and then click Open.

The name of the file, MainWindow.xaml.cs, appears in the text box at the top of the form,
but the contents of the file MainWindow.xaml.cs do not appear in the large text box. This is
because you have not yet implemented the code that reads the contents of the file and dis-
plays it. You will add this functionality in the following steps.

6. Return to Visual Studio 2012 and stop debugging (or close the application if you are using
Windows 7).

7. Display the code for the file MainWindow.xaml.cs in the Code and Text Editor window, and
locate the openFileClick method.

This method runs when the user clicks the Open button to select a file in the Open dialog
box. The way in which this method is implemented is different between Windows 7 and
Windows 8. It is not necessary for you to understand the exact details of how this method
works at this point—simply accept the fact that this method prompts the user for a file (using
an FileOpenPicker or OpenFileDialog window) and opens the selected file for reading. (In the
Windows 7 version, this method simply displays the OpenFileDialog window, and when the
user selects a file, the openFileDialogFileOk method runs, so it is actually this method that
opens the file for reading.)

The final two statements in the openFileClick method (Windows 8) or openFileDialogFileOk
method (Windows 7) are important, however. In Windows 8, they look like this:

TextReader reader = new StreamReader(inputStream.AsStreamForRead());
displayData(reader);

The first statement declares a TextReader variable called reader. TextReader is a class provided
by the .NET Framework that you can use for reading streams of characters from sources such
as files. It is located in the System.IO namespace. This statement makes the data in the file
specified by the user in the FileOpenPicker available to the TextReader object, which can then
be used to read the data from the file. The final statement calls a method named displayData,
passing reader as a parameter to this method. The displayData method reads the data using
the reader object and displays it to the screen (or it will do so once you have written the code
to accomplish this).

In Windows 7, the corresponding statements look like this:

TextReader reader = src.OpenText();
displayData(reader);

The src variable is a FileInfo object populated with information about the file the user
selected using the OpenFileDialog window. The FileInfo class is another class found in the
.NET Framework, and it provides the OpenText method for opening a file for reading. The
first statement opens the file selected by the user so that the reader variable can retrieve
the contents of this file. As in the Windows 8 version of the code, the second statement
calls the displayData method, passing reader as the parameter.

 CHAPTER 5 Using Compound Assignment and Iteration Statements 121

8. Examine the displayData method. It looks like this in both Windows 7 and Windows 8:

private void displayData(TextReader reader)
{
 // TODO: add while loop here

}

You can see that, other than the comment, this method is currently empty. This is where you
need to add the code to fetch and display the data.

9. Replace the // TODO: add while loop here comment with the following statement:

source.Text = "";

The source variable refers to the large text box on the form. Setting its Text property to the
empty string (““) clears any text that is currently displayed in this text box.

10. Add the following statement after the previous line you added to the displayData method:

string line = reader.ReadLine();

This statement declares a string variable called line and calls the reader.ReadLine method to
read the first line from the file into this variable. This method returns either the next line of
text from the file or a special value called null if there are no more lines to read.

11. Add the following statements to the displayData method, after the code you have just
entered:

while (line != null)
{
 source.Text += line + '\n';
 line = reader.ReadLine();
}

This is a while loop that iterates through the file one line at a time until there are no more lines
available.

The Boolean expression at the start of the while loop examines the value in the line variable.
If it is not null, the body of the loop displays the current line of text by appending it to the
Text property of the source text box, together with a newline character (‘\n’—the ReadLine
method of the TextReader object strips out the newline characters as it reads each line, so the
code needs to add it back in again). The while loop then reads in the next line of text before
performing the next iteration. The while loop finishes when there is no more text in the file
and the ReadLine method returns a null value.

12. If you are using Windows 8, add the following statement after the closing brace at the end of
the while loop:

reader.Dispose();

122 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If you are using Windows 7, add the following statement:

reader.Close();

These statements release the resources associated with the file and close it. This is good prac-
tice, as it enables other applications to use the file and also frees up any memory and other
resources used to access the file.

Note You will learn more about managing resources in Chapter 14, “Using Garbage
Collection and Resource Management.”

13. On the DEBUG menu, click Start Debugging.

14. When the form appears, click Open File.

15. In the Open file picker or Open dialog box, move to the \Microsoft Press\Visual CSharp Step
By Step\Chapter 5\Windows X\WhileStatement\WhileStatement folder in your Documents
folder. Select the file MainWindow.xaml.cs, and then click Open.

Note Don't try and open a file that does not contain text. If you attempt to open
an executable program or a graphics file, for example, the application will simply
display a text representation of the binary information in this file. If the file is large, it
may hang the application, requiring you to forcibly terminate it.

This time, the contents of the selected file appear in the text box—you should recognize the
code that you have been editing. The following image shows the Windows 8 version of the
application running; the Windows 7 application functions in the same manner:

 CHAPTER 5 Using Compound Assignment and Iteration Statements 123

16. Scroll through the text in the text box, and find the displayData method. Verify that this
method contains the code you just added.

17. Return to Visual Studio 2012 and stop debugging (or close the application if you are using
Windows 7).

Writing for Statements

In C#, most while statements have the following general structure:

initialization
while (Boolean expression)
{
 statement
 update control variable
}

The for statement in C# provides a more formal version of this kind of construct by combining the
initialization, Boolean expression, and code that updates the control variable. You’ll find the for state-
ment useful because it is much harder to accidentally leave out the code that initializes or updates
the control variable, so you are less likely to write code that loops forever. Here is the syntax of a for
statement:

for (initialization; Boolean expression; update control variable)
 statement

The statement that forms the body of the for construct can be a single line of code or a code block
enclosed in braces.

You can rephrase the while loop shown earlier that displays the integers from 0 through 9 as the
following for loop:

for (int i = 0; i < 10; i++)
{
 Console.WriteLine(i);
}

The initialization occurs just once, at the very start of the loop. Then, if the Boolean expression
evaluates to true, the statement runs. The control variable update occurs, and then the Boolean
expression is reevaluated. If the condition is still true, the statement is executed again, the control
variable is updated, the Boolean expression is evaluated again, and so on.

Notice that the initialization occurs only once, that the statement in the body of the loop always
executes before the update occurs, and that the update occurs before the Boolean expression
reevaluates.

124 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip As with the while construct, it is considered good practice to always use a code block
even if the body of the for construct comprises just a single statement. If you add additional
statements to the body of the for construct later, this approach will help to ensure that your
code is always executed as part of each iteration.

You can omit any of the three parts of a for statement. If you omit the Boolean expression, it
defaults to true, so the following for statement runs forever:

for (int i = 0; ;i++)
{
 Console.WriteLine("somebody stop me!");
}

If you omit the initialization and update parts, you have a strangely spelled while loop:

int i = 0;
for (; i < 10;)
{
 Console.WriteLine(i);
 i++;
}

Note The initialization, Boolean expression, and update control variable parts of a for
statement must always be separated by semicolons, even when they are omitted.

You can also provide multiple initializations and multiple updates in a for loop. (You can have only
one Boolean expression, though.) To achieve this, separate the various initializations and updates with
commas, as shown in the following example:

for (int i = 0, j = 10; i <= j; i++, j--)
{
 ...
}

As a final example, here is the while loop from the preceding exercise recast as a for loop:

for (string line = reader.ReadLine(); line != null; line = reader.ReadLine())
{
 source.Text += line + '\n';
}

 CHAPTER 5 Using Compound Assignment and Iteration Statements 125

Understanding for Statement Scope
You might have noticed that you can declare a variable in the initialization part of a for statement.
That variable is scoped to the body of the for statement and disappears when the for statement
finishes. This rule has two important consequences. First, you cannot use that variable after the for
statement has ended because it’s no longer in scope. Here’s an example:

for (int i = 0; i < 10; i++)
{
 ...
}
Console.WriteLine(i); // compile-time error

Second, you can write two or more for statements that reuse the same variable name because each
variable is in a different scope, as shown in the following code:

for (int i = 0; i < 10; i++)
{
 ...
}

for (int i = 0; i < 20; i += 2) // okay
{
 ...
}

Writing do Statements

The while and for statements both test their Boolean expression at the start of the loop. This means
that if the expression evaluates to false on the first test, the body of the loop does not run, not even
once. The do statement is different: its Boolean expression is evaluated after each iteration, so the
body always executes at least once.

The syntax of the do statement is as follows (don’t forget the final semicolon):

do
 statement
while (booleanExpression);

You must use a statement block if the body of the loop comprises more than one statement (the
compiler will report a syntax error if you don’t). Here’s a version of the example that writes the values
0 through 9 to the console, this time constructed using a do statement:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
}
while (i < 10);

126 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

the break and continue Statements
In Chapter 4, you saw the break statement being used to jump out of a switch statement. You
can also use a break statement to jump out of the body of an iteration statement. When you
break out of a loop, the loop exits immediately and execution continues at the first statement
after the loop. Neither the update nor the continuation condition of the loop is rerun.

In contrast, the continue statement causes the program to perform the next iteration of the loop
immediately (after reevaluating the Boolean expression). Here’s another version of the example that
writes the values 0 through 9 to the console, this time using break and continue statements:

int i = 0;
while (true)
{
 Console.WriteLine("continue " + i);
 i++;
 if (i < 10)
 continue;
 else
 break;
}

This code is absolutely ghastly. Many programming guidelines recommend using continue
cautiously or not at all because it is often associated with hard-to-understand code. The be-
havior of continue is also quite subtle. For example, if you execute a continue statement from
inside a for statement, the update part runs before performing the next iteration of the loop.

In the following exercise, you will write a do statement to convert a positive decimal whole number
to its string representation in octal notation. The program is based on the following algorithm, based
on a well-known mathematical procedure:

store the decimal number in the variable dec
do the following
 divide dec by 8 and store the remainder
 set dec to the quotient from the previous step
while dec is not equal to zero
combine the values stored for the remainder for each calculation in reverse order

For example, suppose you want to convert the decimal number 999 to octal. You perform the fol-
lowing steps:

1. Divide 999 by 8. The quotient is 124 and the remainder is 7.

2. Divide 124 by 8. The quotient is 15 and the remainder is 4.

3. Divide 15 by 8. The quotient is 1 and the remainder is 7.

4. Divide 1 by 8. The quotient is 0 and the remainder is 1.

5. Combine the values calculated for the remainder at each step in reverse order. The result is
1747. This is the octal representation of the decimal value 999.

 CHAPTER 5 Using Compound Assignment and Iteration Statements 127

Write a do statement

1. Using Visual Studio 2012, open the DoStatement project, located in the \Microsoft Press\
Visual CSharp Step By Step\Chapter 5\Windows X\DoStatement folder in your Documents
folder.

2. Display the MainWindow.xaml form in the Design View window.

The form contains a text box called number that the user can enter a decimal number into.
When the user clicks the Show Steps button, the octal representation of the number entered
is generated. The text box to the right, called steps, shows the results of each stage of the
calculation.

3. Display the code for MainWindow.xaml.cs in the Code and Text Editor window. Locate the
showStepsClick method. This method runs when the user clicks the Show Steps button on the
form. Currently it is empty.

4. Add the following statements shown in bold to the showStepsClick method:

private void showStepsClick(object sender, RoutedEventArgs e)
{
 int amount = int.Parse(number.Text);
 steps.Text = "";
 string current = "";
}

The first statement converts the string value in the Text property of the number text box into
an int by using the Parse method of the int type and stores it in a local variable called amount.

The second statement clears the text displayed in the lower text box by setting its Text prop-
erty to the empty string.

The third statement declares a string variable called current and initializes it to the empty
string. You will use this string to store the digits generated at each iteration of the loop used
to convert the decimal number to its octal representation.

5. Add the following do statement, shown in bold, to the showStepsClick method:

private void showStepsClick(object sender, RoutedEventArgs e)
{
 int amount = int.Parse(number.Text);
 steps.Text = "";
 string current = "";

 do

128 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

 {
 int nextDigit = amount % 8;
 amount /= 8;
 int digitCode = '0' + nextDigit;
 char digit = Convert.ToChar(digitCode);
 current = digit + current;
 steps.Text += current + "\n";
 }
 while (amount != 0);
}

The algorithm used repeatedly performs integer arithmetic to divide the amount variable by
8 and determine the remainder. The remainder after each successive division constitutes the
next digit in the string being built. Eventually, when amount is reduced to 0, the loop finishes.
Notice that the body must run at least once. This behavior is exactly what is required because
even the number 0 has one octal digit.

Look more closely at the code, and you will see that the first statement inside the do loop
is this:

int nextDigit = amount % 8;

This statement declares an int variable called nextDigit and initializes it to the remainder after
dividing the value in amount by 8. This will be a number somewhere between 0 and 7.

The next statement inside the do loop is

amount /= 8;

This is a compound assignment statement and is equivalent to writing amount = amount / 8;.
If the value of amount is 999, the value of amount after this statement runs is 124.

The next statement is this:

int digitCode = '0' + nextDigit;

This statement requires a little explanation. Characters have a unique code according to
the character set used by the operating system. In the character sets frequently used by the
Microsoft Windows operating system, the code for character ‘0’ has integer value 48. The
code for character ‘1’ is 49, the code for character ‘2’ is 50, and so on up to the code for char-
acter ‘9’, which has integer value 57. C# allows you to treat a character as an integer and per-
form arithmetic on it, but when you do so, C# uses the character’s code as the value. So the
expression ‘0’ + nextDigit actually results in a value somewhere between 48 and 55 (remem-
ber that nextDigit will be between 0 and 7), corresponding to the code for the equivalent
octal digit.

The fourth statement inside the do loop is

char digit = Convert.ToChar(digitCode);

 CHAPTER 5 Using Compound Assignment and Iteration Statements 129

This statement declares a char variable called digit and initializes it to the result of the Convert.
ToChar(digitCode) method call. The Convert.ToChar method takes an integer holding a charac-
ter code and returns the corresponding character. So, for example, if digitCode has the value
54, Convert.ToChar(digitCode) returns the character ‘6’.

To summarize, the first four statements in the do loop have determined the character rep-
resenting the least-significant (rightmost) octal digit corresponding to the number the user
typed in. The next task is to prepend this digit to the string being output, like this:

current = digit + current;

The next statement inside the do loop is this:

steps.Text += current + "\n";

This statement adds to the steps text box the string containing the digits produced so far for
the octal representation of the number. It also appends a newline character so that each stage
of the conversion appears on a separate line in the text box.

Finally, the condition in the while clause at the end of the loop is evaluated:

while (amount != 0)

Because the value of amount is not yet 0, the loop performs another iteration.

In the final exercise, you will use the Visual Studio 2012 debugger to step through the previous do
statement to help you understand how it works.

Step through the do statement

1. In the Code and Text Editor window displaying the MainWindow.xaml.cs file, move the cursor
to the first statement of the showStepsClick method:

int amount = int.Parse(number.Text);

2. Right-click anywhere in the first statement, and then click Run to Cursor.

3. When the form appears, type 999 in the number text box on the left, and then click Show
Steps.

The program stops, and you are placed in Visual Studio 2012 debug mode. A yellow arrow in
the left margin of the Code and Text Editor window and yellow highlighting indicates the cur-
rent statement.

4. Display the Debug toolbar if it is not visible. (On the VIEW menu, point to Toolbars, and then
click Debug.)

130 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

5. On the Debug toolbar, click the drop-down arrow, point to Add or Remove Buttons, and then
select Windows, as shown in the following image:

This action adds the Breakpoints Window button to the toolbar.

6. On the Debug toolbar, click the Breakpoints Window button, and then click Locals.

The Locals window appears (if it wasn’t already open). This window displays the name, value,
and type of the local variables in the current method, including the amount local variable.
Notice that the value of amount is currently 0:

 CHAPTER 5 Using Compound Assignment and Iteration Statements 131

7. On the Debug toolbar, click the Step Into button.

The debugger runs the statement

int amount = int.Parse(number.Text);

The value of amount in the Locals window changes to 999, and the yellow arrow moves to the
next statement.

8. Click Step Into again.

The debugger runs the statement

steps.Text = "";

This statement does not affect the Locals window because steps is a control on the form and
not a local variable. The yellow arrow moves to the next statement.

9. Click Step Into.

The debugger runs the statement

string current = "";

The yellow arrow moves to the opening brace at the start of the do loop. The do loop contains
three local variables of its own: nextDigit, digitCode, and digit. Notice that these local variables
appear in the Locals window, and the value of all three variables is initially set to 0.

132 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

10. Click Step Into.

The yellow arrow moves to the first statement inside the do loop.

11. Click Step Into.

The debugger runs the statement

int nextDigit = amount % 8;

The value of nextDigit in the Locals window changes to 7. This is the remainder after dividing
999 by 8.

12. Click Step Into.

The debugger runs the statement

amount /= 8;

The value of amount changes to 124 in the Locals window.

13. Click Step Into.

The debugger runs the statement

int digitCode = '0' + nextDigit;

The value of digitCode in the Locals window changes to 55. This is the character code of the
character ‘7’ (48 + 7).

14. Click Step Into.

The debugger runs the statement

char digit = Convert.ToChar(digitCode);

The value of digit changes to ‘7’ in the Locals window. The Locals window shows char values
using both the underlying numeric value (in this case, 55) and also the character representa-
tion (‘7’).

Note that in the Locals window, the value of the current variable is still ““.

15. Click Step Into.

The debugger runs the statement

current = current + digit;

The value of current changes to “7” in the Locals window.

 CHAPTER 5 Using Compound Assignment and Iteration Statements 133

16. Click Step Into.

The debugger runs the statement

steps.Text += current + "\n";

This statement displays the text “7” in the steps text box, followed by a newline character to
cause subsequent output to be displayed on the next line in the text box. (The form is cur-
rently hidden behind Visual Studio, so you won’t be able to see it.) The cursor moves to the
closing brace at the end of the do loop.

17. Click Step Into.

The yellow arrow moves to the while statement to evaluate whether the do loop has com-
pleted or whether it should continue for another iteration.

18. Click Step Into.

The debugger runs the statement

while (amount != 0);

The value of amount is 124, the expression 124 != 0 evaluates to true, and so the do loop
performs another iteration. The yellow arrow jumps back to the opening brace at the start of
the do loop.

19. Click Step Into.

The yellow arrow moves to the first statement inside the do loop again.

20. Repeatedly click Step Into to step through the next three iterations of the do loop, and watch
how the values of the variables change in the Locals window.

21. At the end of the fourth iteration of the loop, the value of amount is 0 and the value of current
is “1747”. The yellow arrow is on the while condition at the end of the do loop:

while (amount != 0);

As the value of amount is now 0, the expression amount != 0 evaluates to false, and the do
loop should terminate.

22. Click Step Into.

The debugger runs the statement

while (amount != 0);

As predicted, the do loop finishes, and the yellow arrow moves to the closing brace at the end
of the showStepsClick method.

134 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

23. On the DEBUG menu, click Continue.

The form appears, displaying the four steps used to create the octal representation of 999: 7,
47, 747, and 1747.

24. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging (or close the
application if you are using Windows 7).

Summary

In this chapter, you learned how to use the compound assignment operators to update numeric
variables. You saw how to use while, for, and do statements to execute code repeatedly while some
Boolean condition is true.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 6.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 5 Using Compound Assignment and Iteration Statements 135

Chapter 5 Quick Reference

To Do this

Add an amount to a variable Use the compound addition operator. For example:

variable += amount;

Subtract an amount from a variable Use the compound subtraction operator. For example:

variable -= amount;

Run one or more statements zero or more times while a
condition is true

Use a while statement. For example:

int i = 0;
while (i < 10)
{
 Console.WriteLine(i);
 i++;
}

Alternatively, use a for statement. For example:

for (int i = 0; i < 10; i++)
{
 Console.WriteLine(i);
}

Repeatedly execute statements one or more times Use a do statement. For example:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
}
while (i < 10);

 137

C H A P T E R 6

Managing errors and exceptions

After completing this chapter, you will be able to

■■ Handle exceptions by using the try, catch, and finally statements.

■■ Control integer overflow by using the checked and unchecked keywords.

■■ Raise exceptions from your own methods by using the throw keyword.

■■ Ensure that code always runs, even after an exception has occurred, by using a finally block.

You have now seen the core C# statements you need to know to perform common tasks such as writ-
ing methods; declaring variables; using operators to create values; writing if and switch statements to
run code selectively; and writing while, for, and do statements to run code repeatedly. However, the
previous chapters haven’t considered the possibility (or probability) that things can go wrong.

It is very difficult to ensure that a piece of code always works as expected. Failures can occur for a
large number of reasons, many of which are beyond your control as a programmer. Any applications
that you write must be capable of detecting failures and handling them in a graceful manner, either
by taking the appropriate corrective actions or, if this is not possible, by reporting the reasons for the
failure in the clearest possible way to the user. In this final chapter of Part I, you’ll learn how C# uses
exceptions to signal that an error has occurred and how to use the try, catch, and finally statements to
catch and handle the errors that these exceptions represent.

By the end of this chapter, you’ll have a solid foundation in all the fundamental elements of C#, on
which you will build in Part II.

Coping with Errors

It’s a fact of life that bad things sometimes happen. Tires get punctured, batteries run down, screw-
drivers are never where you left them, and users of your applications behave in an unpredictable
manner. In the world of computers, disks become corrupt, other applications running on the same
computer as your program run amok and use up all the available memory, wireless network con-
nections disappear at the most awkward moment, and even natural phenomena such as a nearby
lightning strike may have an impact if it causes a power outage or network failure. Errors can occur at

138 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

almost any stage when a program runs, and many of them may not actually be the fault of your own
application, so how do you detect them and attempt to recover?

Over the years, a number of mechanisms have evolved. A typical approach adopted by older
systems such as UNIX involved arranging for the operating system to set a special global variable
whenever a method failed. Then, after each call to a method, you checked the global variable to see
whether the method succeeded. C# and most other modern object-oriented languages don’t handle
errors in this way. It’s just too painful. They use exceptions instead. If you want to write robust C# pro-
grams, you need to know about exceptions.

Trying Code and Catching Exceptions

Errors can happen at any time, and using traditional techniques to manually add error-detecting
code around every statement is cumbersome, time consuming, and error prone in its own right.
You can also lose sight of the main flow of an application if each statement requires contorted
error-handling logic to manage each possible error that can occur at every stage. Fortunately, C#
makes it easy to separate the error-handling code from the code that implements the primary logic
of a program by using exceptions and exception handlers. To write exception-aware programs, you
need to do two things:

■■ Write your code inside a try block (try is a C# keyword). When the code runs, it attempts to
execute all the statements inside the try block, and if none of the statements generates an
exception, they all run, one after the other, to completion. However, if an error condition
occurs, execution jumps out of the try block and into another piece of code designed to catch
and handle the exception—a catch handler.

■■ Write one or more catch handlers (catch is another C# keyword) immediately after the try
block to handle any possible error conditions. A catch handler is intended to catch and handle
a specific type of exception, and you can have multiple catch handlers after a try block, each
one designed to trap and process a specific exception; you can provide different handlers for
the different errors that could arise in the try block. If any one of the statements inside the try
block causes an error, the runtime throws an exception. The runtime then examines the catch
handlers after the try block and transfers control directly to the first matching handler.

Here’s an example of code in a try block that attempts to convert strings that a user has typed in
some text boxes on a form to integer values, call a method to calculate a value, and write the result to
another text box. Converting a string to an integer requires that the string contain a valid set of digits
and not some arbitrary sequence of characters. If the string contains invalid characters, the int.Parse
method throws a FormatException, and execution transfers to the corresponding catch handler. When
the catch handler finishes, the program continues with the first statement after the handler. Note that
if there is no handler that corresponds to the exception, the exception is said to be unhandled (this
situation will be described shortly).

 CHAPTER 6 Managing Errors and Exceptions 139

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (FormatException fEx)
{
 // Handle the exception
 ...
}

A catch handler employs syntax similar to that used by a method parameter to specify the excep-
tion to be caught. In the preceding example, when a FormatException is thrown, the fEx variable is
populated with an object containing the details of the exception.

The FormatException type has a number of properties that you can examine to determine the
exact cause of the exception. Many of these properties are common to all exceptions. For example,
the Message property contains a text description of the error that caused the exception. You can use
this information when handling the exception, perhaps recording the details to a log file or displaying
a meaningful message to the user and then asking the user to try again.

Unhandled exceptions
What happens if a try block throws an exception and there is no corresponding catch handler? In the
previous example, it is possible that the lhsOperand text box contains the string representation of a
valid integer but the integer it represents is outside the range of valid integers supported by C# (for
example, “2147483648”). In this case, the int.Parse statement throws an OverflowException, which will
not be caught by the FormatException catch handler. If this occurs, if the try block is part of a method,
the method immediately exits and execution returns to the calling method. If the calling method uses
a try block, the runtime attempts to locate a matching catch handler for this try block and execute
it. If the calling method does not use a try block or there is no matching catch handler, the call-
ing method immediately exits and execution returns to its caller, where the process is repeated. If a
matching catch handler is eventually found, the handler runs and execution continues with the first
statement after the catch handler in the catching method.

Important Notice that after catching an exception, execution continues in the method
containing the catch block that caught the exception. If the exception occurred in a method
other than the one containing the catch handler, control does not return to the method
that caused the exception.

If, after cascading back through the list of calling methods, the runtime is unable to find a match-
ing catch handler, the program terminates with an unhandled exception.

140 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

You can easily examine exceptions generated by your application. If you are running the appli-
cation in Microsoft Visual Studio 2012 in debug mode (that is, you selected Start Debugging on
the DEBUG menu to run the application) and an exception occurs, a dialog box similar to the one
shown in the following image appears and the application pauses, helping you to determine the
cause of the exception:

The application stops at the statement that caused the exception and you drop into the debugger.
You can examine the values of variables, you can change the values of variables, and you can step
through your code from the point at which the exception occurred by using the Debug toolbar and
the various debug windows.

Using Multiple catch handlers
The previous discussion highlighted how different errors throw different kinds of exceptions to repre-
sent different kinds of failures. To cope with these situations, you can supply multiple catch handlers,
one after the other, like this:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (FormatException fEx)
{
 // ...
}
catch (OverflowException oEx)
{
 // ...
}

 CHAPTER 6 Managing Errors and Exceptions 141

If the code in the try block throws a FormatException exception, the statements in the catch block
for the FormatException exception run. If the code throws an OverflowException exception, the catch
block for the OverflowException exception runs.

Note If the code in the FormatException catch block generates an OverflowException
exception, it does not cause the adjacent OverflowException catch block to run. Instead,
the exception propagates to the method that invoked this code, as described earlier in
this section.

Catching Multiple exceptions
The exception-catching mechanism provided by C# and the Microsoft .NET Framework is quite com-
prehensive. The .NET Framework defines many types of exceptions, and any programs you write can
throw most of them. It is highly unlikely that you will want to write catch handlers for every possible
exception that your code can throw—remember that your application must be able to handle excep-
tions that you may not have even thought of when you wrote it! So how do you ensure that your
programs catch and handle all possible exceptions?

The answer to this question lies in the way the different exceptions are related to one another.
Exceptions are organized into families called inheritance hierarchies. (You will learn about inheritance
in Chapter 12, “Working with Inheritance.”) FormatException and OverflowException both belong to a
family called SystemException, as do a number of other exceptions. SystemException is itself a member
of a wider family simply called Exception, and this is the great-granddaddy of all exceptions. If you
catch Exception, the handler traps every possible exception that can occur.

Note The Exception family includes a wide variety of exceptions, many of which are
intended for use by various parts of the .NET Framework. Some of these exceptions are
somewhat esoteric, but it is still useful to understand how to catch them.

The next example shows how to catch all possible exceptions:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (Exception ex) // this is a general catch handler
{
 // ...
}

142 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip If you want to catch Exception, you can actually omit its name from the catch handler
because it is the default exception:

catch
{
 // ...
}

However, this is not recommended. The exception object passed in to the catch handler can
contain useful information concerning the exception, which is not easily accessible when
using this version of the catch construct.

There is one final question you should be asking at this point: What happens if the same exception
matches multiple catch handlers at the end of a try block? If you catch FormatException and Exception
in two different handlers, which one will run? (Or will both execute?)

When an exception occurs, the first handler found by the runtime that matches the exception
is used, and the others are ignored. This means that if you place a handler for Exception before a
handler for FormatException, the FormatException handler will never run. Therefore, you should place
more specific catch handlers above a general catch handler after a try block. If none of the specific
catch handlers matches the exception, the general catch handler will.

In the following exercises, you will see what happens when an application throws an unhandled
exception, and then you will write a try block and catch and handle an exception.

Observe how Windows reports unhandled exceptions

1. Start Visual Studio 2012 if it is not already running.

2. Open the MathsOperators solution located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 6\Windows X\MathsOperators folder in your Documents folder.

This is a version of the program that you first saw in Chapter 2, “Working with Variables,
Operators, and Expressions.” It was used to demonstrate the different arithmetic operators.

3. On the DEBUG menu, click Start Without Debugging.

Note For this exercise, please make sure that you actually run the application with-
out debugging, even if you are using Windows 8.

The form appears. You are now going to enter some text in the Left Operand text box that will
cause an exception. This operation will demonstrate the lack of robustness in the current version of
the program.

 CHAPTER 6 Managing Errors and Exceptions 143

4. Type John in the Left Operand text box, type 2 in the Right Operand text box, click the +
Addition button, and then click Calculate.

This input triggers Windows error handling. If you are using Windows 8, the application simply
terminates and you are returned to the Start screen.

If you are using Windows 7, you should see the following message box:

After a short while, this is followed by another dialog box that reports an unhandled
exception:

If you click Debug, you can launch a new instance of Visual Studio over your program in
debug mode, but for the time being, click Close Program.

You might see one of the following versions of this dialog box depending on how you have
configured problem reporting in Control Panel:

144 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If either of these dialog boxes appear, click Close the Program.

Additionally, you might be presented with a dialog box displaying the message “Do you want
to send information about the problem?” Windows can gather information about failing appli-
cations and send this information to Microsoft. If this dialog box appears, click Cancel.

Now that you have seen how Windows traps and reports unhandled exceptions, the next step is
to make the application more robust by handling invalid input and preventing unhandled exceptions
from occurring.

Write a try/catch statement block

1. Return to Visual Studio 2012, and on the DEBUG menu click Start Debugging.

2. When the form appears, type John in the Left Operand text box, type 2 in the Right Operand
text box, click the + Addition button, and then click Calculate.

This input should cause the same exception that occurred in the previous exercise, except that
now you are running using debug mode, so Visual Studio will trap the exception and report it.

Note If a message box appears informing you that break mode failed because the file
App.g.i.cs does not belong to the project being debugged, simply click OK. When the
message box disappears, the exception will be displayed.

3. Visual Studio displays your code and highlights the statement that caused the exception
together with a dialog box that describes the exception. In this case, it is “Input string was not
in a correct format.”

 CHAPTER 6 Managing Errors and Exceptions 145

You can see that the exception was thrown by the call to int.Parse inside the addValues method.
The problem is that this method is unable to parse the text “John” into a valid number.

4. In the exception dialog box, click View Detail.

Another dialog box appears that enables you to view more information about the exception. If
you expand System.FormatException, you can see this information:

146 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip Some exceptions are the result of other exceptions raised earlier. The exception
reported by Visual Studio is just the final exception in this chain, but it is usually the
earlier exceptions that highlight the real cause of the problem. You can drill into
these earlier exceptions by expanding the InnerException property in the View Detail
dialog box. Inner exceptions may have further inner exceptions, and you can keep
digging down until you find an exception with the InnerException property set to
null (as shown in the previous image). At this point, you have reached the initial ex-
ception, and this exception is typically the one that you need to correct.

5. Click OK in the View Detail dialog box, and then in the DEBUG menu in Visual Studio, click
Stop Debugging.

6. Display the code for the file MainWindow.xaml.cs in the Code and Text Editor window, and
locate the addValues method.

7. Add a try block (including braces) around the statements inside this method, together with a
catch handler for the FormatException exception, as shown in bold type here:

try
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;

 outcome = lhs + rhs;
 expression.Text = lhsOperand.Text + “ + “ + rhsOperand.Text
 result.Text = outcome.ToString();
}
catch (FormatException fEx)
{
 result.Text = fEx.Message;
}

If a FormatException exception occurs, the catch handler displays the text held in the excep-
tion’s Message property in the result text box at the bottom of the form.

8. On the DEBUG menu, click Start Debugging.

9. When the form appears, type John in the Left Operand text box, type 2 in the Right Operand
text box, click the + Addition button, and then click Calculate.

The catch handler successfully catches the FormatException, and the message “Input string
was not in a correct format” is written to the Result text box. The application is now a bit
more robust.

 CHAPTER 6 Managing Errors and Exceptions 147

10. Replace John with the number 10, type Sharp in the Right Operand text box, and then click
Calculate.

The try block surrounds the statements that parse both text boxes, so the same exception
handler handles user input errors in both text boxes.

11. Replace Sharp with 20 in the Right Operand text box, click the + Addition button, and then
click Calculate.

The application now works as expected and displays the value 30 in the Result text box.

12. In the Left Operand button, replace 10 with John, and then click the – Subtraction button.

Visual Studio drops into the debugger and reports a FormatException exception again. This
time, the error has occurred in the subtractValues method, which does not include the neces-
sary try/catch processing.

13. On the DEBUG menu, click Stop Debugging.

propagating exceptions
Adding a try/catch block to the addValues method has made that method more robust, but you
need to apply the same exception handling to the other methods: subtractValues, multiplyValues,
divideValues, and remainderValues. The code for each of these exception handlers will likely be
very similar, resulting in you writing the same code in each method. Each of these methods is
called by the calculateClick method when the user clicks the Calculate button. Therefore, to avoid
duplication of the exception handling code, it makes sense to relocate it to the calculateClick
method. If a FormatException occurs in any of the subtractValues, multiplyValues, divideValues, and
remainderValues methods, it will be propagated back to the calculateClick method for handling as
described in the section “Unhandled Exceptions” earlier in this chapter.

148 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

propagate an exception back to the calling method

1. Display the code for the file MainWindow.xaml.cs in the Code and Text Editor window, and
locate the addValues method.

2. Remove the try block and catch handler from the addValues method and return it to its origi-
nal state, as shown in the following code:

private void addValues()
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int outcome = 0;

 outcome = lhs + rhs;
 expression.Text = lhsOperand.Text + " + " + rhsOperand.Text
 result.Text = outcome.ToString();
}

3. Find the calculateClick method. Add the try block and catch handler shown below in bold to
this method:

private void calculateClick(object sender, RoutedEventArgs e)
{
 try
 {
 if ((bool)addition.IsChecked)
 {
 addValues();
 }
 else if ((bool)subtraction.IsChecked)
 {
 subtractValues();
 }
 else if ((bool)multiplication.IsChecked)
 {
 multiplyValues();
 }
 else if ((bool)division.IsChecked)
 {
 divideValues();
 }
 else if ((bool)remainder.IsChecked)
 {
 remainderValues();
 }
 }
 catch (FormatException fEx)
 {
 result.Text = fEx.Message;
 }
}

 CHAPTER 6 Managing Errors and Exceptions 149

4. On the DEBUG menu, click Start Debugging.

5. When the form appears, type John in the Left Operand text box, type 2 in the Right Operand
text box, click the + Addition button, and then click Calculate.

As before, the catch handler successfully catches the FormatException, and the message “Input
string was not in a correct format” is written to the Result text box. However, bear in mind that
the exception was actually thrown in the addValue method, but it was caught by the handler
in the calculateClick method.

6. Click the –Subtraction button, and then click Calculate.

This time, the subtractValues method causes the exception, but it is propagated back to the
calculateClick method and handled in the same manner as before.

7. Test the * Multiplication, / Division, and % Remainder buttons, and verify that the
FormatException exception is caught and handled correctly.

8. Return to Visual Studio and stop debugging.

Note The decision of whether to catch unhandled exceptions explicitly in a method
depends on the nature of the application you are building. In some cases, it makes
sense to catch exceptions as close as possible to the point at which they occur. In
other situations, it is more useful to let an exception propagate back to the method
that invoked the routine that threw the exception and handle the error there.

Using Checked and Unchecked Integer Arithmetic

In Chapter 2, you learned how to use binary arithmetic operators such as + and * on primitive data
types such as int and double. You also saw that the primitive data types have a fixed size. For example,
a C# int is 32 bits. Because int has a fixed size, you know exactly the range of value that it can hold: it
is –2147483648 to 2147483647.

tip If you want to refer to the minimum or maximum value of int in code, you can use the
int.MinValue or int.MaxValue property.

The fixed size of the int type creates a problem. For example, what happens if you add 1 to an
int whose value is currently 2147483647? The answer is that it depends on how the application is
compiled. By default, the C# compiler generates code that allows the calculation to overflow silently
and you get the wrong answer. (In fact, the calculation wraps around to the largest negative integer

150 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

value, and the result generated is –2147483648.) The reason for this behavior is performance: integer
arithmetic is a common operation in almost every program, and adding the overhead of overflow
checking to each integer expression could lead to very poor performance. In many cases, the risk is
acceptable because you know (or hope!) that your int values won’t reach their limits. If you don’t like
this approach, you can turn on overflow checking.

tip You can activate and disable overflow checking in Visual Studio 2012 by setting the
project properties. In Solution Explorer, click YourProject (where YourProject is the name of
your project). On the Project menu, click YourProject Properties. In the project properties
dialog box, click the Build tab. Click the Advanced button in the lower-right corner of the
page. In the Advanced Build Settings dialog box, select or clear the Check for Arithmetic
Overflow/Underflow check box.

Regardless of how you compile an application, you can use the checked and unchecked keywords
to turn on and off integer arithmetic overflow checking selectively in parts of an application that you
think need it. These keywords override the compiler option specified for the project.

Writing Checked Statements
A checked statement is a block preceded by the checked keyword. All integer arithmetic in a checked
statement always throws an OverflowException if an integer calculation in the block overflows, as
shown in this example:

int number = int.MaxValue;
checked
{
 int willThrow = number++;
 Console.WriteLine("this won't be reached");
}

Important Only integer arithmetic directly inside the checked block is subject to overflow
checking. For example, if one of the checked statements is a method call, checking does
not apply to code that runs in the method that is called.

You can also use the unchecked keyword to create an unchecked block statement. All integer arith-
metic in an unchecked block is not checked and never throws an OverflowException. For example:

int number = int.MaxValue;
unchecked
{
 int wontThrow = number++;
 Console.WriteLine("this will be reached");
}

 CHAPTER 6 Managing Errors and Exceptions 151

Writing Checked expressions
You can also use the checked and unchecked keywords to control overflow checking on integer
expressions by preceding just the individual parenthesized expression with the checked or unchecked
keyword, as shown in this example:

int wontThrow = unchecked(int.MaxValue + 1);
int willThrow = checked(int.MaxValue + 1);

The compound operators (such as += and -=) and the increment, ++, and decrement, --, opera-
tors are arithmetic operators and can be controlled by using the checked and unchecked keywords.
Remember, x += y; is the same as x = x + y;.

Important You cannot use the checked and unchecked keywords to control floating-
point (noninteger) arithmetic. The checked and unchecked keywords apply only to integer
arithmetic using data types such as int and long. Floating-point arithmetic never throws
OverflowException—not even when you divide by 0.0. (Remember from Chapter 2 that the
.NET Framework has a special floating-point representation for infinity.)

In the following exercise, you will see how to perform checked arithmetic when using
Visual Studio 2012.

Use checked expressions

1. Return to Visual Studio 2012.

2. On the DEBUG menu, click Start Debugging.

You will now attempt to multiply two large values.

3. Type 9876543 in the Left Operand text box, type 9876543 in the Right Operand text box,
click the * Multiplication button, and then click Calculate.

The value –1195595903 appears in the Result text box on the form. This is a negative value,
which cannot possibly be correct. This value is the result of a multiplication operation that
silently overflowed the 32-bit limit of the int type.

4. Return to Visual Studio and stop debugging.

5. In the Code and Text Editor window displaying MainWindow.xaml.cs, locate the multiplyValues
method. It looks like this:

private void multiplyValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;

152 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

 outcome = lhs * rhs;
 expression.Text = lhsOperand.Text + " * " + rhsOperand.Text;
 result.Text = outcome.ToString();;
}

The statement outcome = lhs * rhs; contains the multiplication operation that is silently
overflowing.

6. Edit this statement so that the calculation value is checked, like this:

outcome = checked(lhs * rhs);

The multiplication is now checked and will throw an OverflowException rather than silently
returning the wrong answer.

7. On the DEBUG menu, click Start Debugging.

You will now attempt to multiply two large values.

8. Type 9876543 in the Left Operand text box, type 9876543 in the Right Operand text box,
click the * Multiplication button, and then click Calculate.

Visual Studio drops into the debugger and reports that the multiplication resulted in an
OverflowException exception. You now need to add a handler to catch this exception and
handle it more gracefully than just failing with an error.

9. On the DEBUG menu, click Stop Debugging.

10. In the Code and Text Editor window displaying the MainWindow.xaml.cs file, locate the
calculateClick method.

11. Add the following catch handler immediately after the existing FormatException catch handler
in this method, as shown below in bold:

private void calculateClick(object sender, RoutedEventArgs e)
{
 try
 {
 ...
 }
 catch (FormatException fEx)
 {
 result.Text = fEx.Message;
 }
 catch (OverflowException oEx)
 {
 result.Text = oEx.Message;
 }
}

The logic of this catch handler is the same as that for the FormatException catch handler.
However, it is still worth keeping these handlers separate rather than simply writing a generic

 CHAPTER 6 Managing Errors and Exceptions 153

Exception catch handler because you might decide to handle these exceptions differently in
the future.

12. On the DEBUG menu, click Start Debugging to build and run the application.

13. Type 9876543 in the Left Operand text box, type 9876543 in the Right Operand text box,
click the * Multiplication button, and then click Calculate.

The second catch handler successfully catches the OverflowException and displays the message
“Arithmetic operation resulted in an overflow” in the Result text box.

14. Return to Visual Studio and stop debugging.

exception handling and the Visual Studio Debugger
By default, the Visual Studio Debugger only stops an application that is being debugged and reports
exceptions that are unhandled. Sometimes it is useful to be able to debug exception handlers them-
selves, and in this case, you need to be able to trace exceptions when they are thrown by the ap-
plication prior to them being caught. You can easily enable this functionality. On the DEBUG menu,
click Exceptions. In the Exceptions dialog box, select the Thrown column for Common Language
Runtime Exceptions and then click OK:

Now when exceptions such OverflowException occur, Visual Studio will drop into the debug-
ger, and you can use the Step Into button on the Debug toolbar to step into the catch handler.
If you don't want to catch all common language runtime exceptions in this way, you can be
more selective. If you expand the Common Language Runtime Exceptions node, you can see
the different categories of exceptions that can occur (they are organized by namespace). If you
expand any namespace, you can see the individual exceptions that are available, and you can
select each of them individually.

154 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Throwing Exceptions

Suppose you are implementing a method called monthName that accepts a single int argument
and returns the name of the corresponding month. For example, monthName(1) returns “January”,
monthName(2) returns “February”, and so on. The question is, What should the method return if the
integer argument is less than 1 or greater than 12? The best answer is that the method shouldn’t
return anything at all—it should throw an exception. The .NET Framework class libraries contain lots
of exception classes specifically designed for situations such as this. Most of the time, you will find
that one of these classes describes your exceptional condition. (If not, you can easily create your own
exception class, but you need to know a bit more about the C# language before you can do that.)
In this case, the existing .NET Framework ArgumentOutOfRangeException class is just right. You can
throw an exception by using the throw statement, as shown in the following example:

public static string monthName(int month)
{
 switch (month)
 {
 case 1 :
 return "January";
 case 2 :
 return "February";
 ...
 case 12 :
 return "December";
 default :
 throw new ArgumentOutOfRangeException("Bad month");
 }
}

The throw statement needs an exception object to throw. This object contains the details of
the exception, including any error messages. This example uses an expression that creates a new
ArgumentOutOfRangeException object. The object is initialized with a string that populates its
Message property by using a constructor. Constructors are covered in detail in Chapter 7, “Creating
and Managing Classes and Objects.”

In the following exercises, you will modify the MathsOperators project to throw an exception if the
user attempts to perform a calculation without specifying an operator.

Note This exercise is a little contrived, as good application design would provide a default
operator, but the application is intended to illustrate this point.

 CHAPTER 6 Managing Errors and Exceptions 155

throw an exception

1. Return to Visual Studio 2012.

2. On the DEBUG menu, click Start Debugging.

3. Type 24 in the Left Operand text box, type 36 in the Right Operand text box, and then click
Calculate.

Nothing appears in the Expression and Result text boxes. The fact that you have not selected
an operator option is not immediately obvious. It would be useful to write a diagnostic mes-
sage in the Result text box.

4. Return to Visual Studio and stop debugging.

5. In the Code and Text Editor window displaying MainWindow.xaml.cs, locate and examine the
calculateClick method. It looks like this:

private int calculateClick(object sender, RoutedEventArgs e)
{
 try
 {
 if ((bool)addition.IsChecked)
 {
 addValues();
 }
 else if ((bool)subtraction.IsChecked)
 {
 subtractValues();
 }
 else if ((bool)multiplication.IsChecked)
 {
 multiplyValues();
 }
 else if ((bool)division.IsChecked)
 {
 divideValues();
 }
 else if ((bool)remainder.IsChecked)
 {
 remainderValues();
 }
 }
 catch (FormatException fEx)
 {
 result.Text = fEx.Message;
 }
 catch (OverflowException oEx)
 {
 result.Text = oEx.Message;
 }
}

156 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

The addition, subtraction, multiplication, division, and remainder fields are the buttons that
appear on the form. Each button has a property called IsChecked that indicates whether the
user has selected it. The IsChecked property is a nullable Boolean that has the value true if
the button is selected or false otherwise (you learn more about nullable values in Chapter 8,
“Understanding Values and References”). The cascading if statement examines each button in
turn to find which one is selected. (The radio buttons are mutually exclusive, so the user can
select only one radio button at most.) If none of the buttons is selected, none of the if state-
ments will be true and none of the calculation methods is called.

You could try to solve the problem by adding one more else statement to the if-else cascade
to write a message to the result text box on the form, but a better solution is to separate the
detection and signaling of an error from the catching and handling of that error.

6. Add another else statement to the end of the list of if-else statements and throw an
InvalidOperationException as follows, in bold:

if ((bool)addition.IsChecked)
{
 addValues();
}
...
else if ((bool)remainder.IsChecked)
{
 remainderValues();
}
else
{
 throw new InvalidOperationException("No operator selected");
}

7. On the DEBUG menu, click Start Debugging to build and run the application.

8. Type 24 in the Left Operand text box, type 36 in the Right Operand text box, and then click
Calculate.

Visual Studio detects that your application has thrown an InvalidOperation exception, and an
exception dialog box appears. Your application has thrown an exception, but the code does
not catch it yet.

9. On the DEBUG menu, click Stop Debugging.

Now that you have written a throw statement and verified that it throws an exception, you will
write a catch handler to handle this exception.

 CHAPTER 6 Managing Errors and Exceptions 157

Catch the exception

1. In the Code and Text Editor window displaying MainWindow.xaml.cs, add the following catch
handler shown in bold immediately below the existing two catch handlers in the calculateClick
method:

...
catch (FormatException fEx)
{
 result.Text = fEx.Message;
}
catch (OverflowException oEx)
{
 result.Text = oEx.Message;
}
catch (InvalidOperationException ioEx)
{
 result.Text = ioEx.Message;
}

This code catches the InvalidOperationException that is thrown when no operator button is
selected.

2. On the DEBUG menu, click Start Debugging.

3. Type 24 in the Left Operand text box, type 36 in the Right Operand text box, and then click
Calculate.

The message “No operator selected” appears in the Result text box.

Note If you drop into the Visual Studio Debugger, you have probably enabled
Visual Studio to catch exceptions as they are thrown, as described earlier. If this hap-
pens, on the DEBUG menu, click Continue. Remember to disable Visual Studio from
catching common language runtime exceptions as they are thrown when you have
finished this exercise!

4. Return to Visual Studio and stop debugging.

The application is now a lot more robust. However, several exceptions could still arise that are
not caught and that will cause the application to fail. For example, if you attempt to divide by 0, an
unhandled DivideByZeroException will be thrown. (Integer division by 0 does throw an exception,
unlike floating-point division by 0.) One way to solve this problem is to write an ever larger number
of catch handlers inside the calculateClick method. Another solution is to add a general catch handler
that catches Exception at the end of the list of catch handlers. This will trap all unexpected exceptions
that you may have forgotten about or that may be caused as a result of truly unusual circumstances.

158 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Note Using a catchall handler to trap the Exception exception is not an excuse to omit
catching specific exceptions. The more definite you can be in your exception handling, the
easier it will be to maintain your code and spot the causes of any underlying or commonly
recurring issues. Only use the Exception exception for cases that are really exceptional.
For the purposes of the following exercise, the "divide by zero" exception falls into this
category. However, having established that this exception is a distinct possibility in a profes-
sional application, good practice would be to add a handler for the DivideByZeroException
exception to the application.

Catch unhandled exceptions

1. In the Code and Text Editor window displaying MainWindow.xaml.cs, add the following catch
handler to the end of the list of existing catch handlers in the calculateClick method:

catch (Exception ex)
{
 result.Text = ex.Message;
}

This catch handler will catch all hitherto unhandled exceptions, whatever their specific type.

2. On the DEBUG menu, click Start Debugging.

You will now attempt to perform some calculations known to cause exceptions and confirm
that they are all handled correctly.

3. Type 24 in the Left Operand text box, type 36 in the Right Operand text box, and then click
Calculate.

Confirm that the diagnostic message “No operator selected” still appears in the Result text
box. This message was generated by the InvalidOperationException handler.

4. Type John in the Left Operand text box, click the + Addition button, and then click Calculate.

Confirm that the diagnostic message “Input string was not in a correct format” appears in the
Result text box. This message was generated by the FormatException handler.

5. Type 24 in the Left Operand text box, type 0 in the Right Operand text box, click the / Division
button, and then click Calculate.

Confirm that the diagnostic message “Attempted to divide by zero” appears in the Result text
box. This message was generated by the general Exception handler.

6. Experiment with other combinations of values, and verify that exception conditions are han-
dled without causing the application to fail. When you have finished, return to Visual Studio
and stop debugging.

 CHAPTER 6 Managing Errors and Exceptions 159

Using a finally Block

It is important to remember that when an exception is thrown, it changes the flow of execution
through the program. This means you can’t guarantee that a statement will always run when the
previous statement finishes because the previous statement might throw an exception. Remember
that in this case, after the catch hander has run, the flow of control resumes at the next statement in
the block holding this handler and not at the statement immediately following the code that raised
the exception.

Look at the following example adapted from the code in Chapter 5, “Using Compound Assignment
and Iteration Statements.” It’s very easy to assume that the call to reader.Dispose will always occur
when the while loop completes (if you are using Windows 7, you can replace reader.Dispose with
reader.Close in this example). After all, it’s right there in the code:

TextReader reader = ...;
...
string line = reader.ReadLine();
while (line != null)
{
 ...
 line = reader.ReadLine();
}
reader.Dispose();

Sometimes it’s not an issue if one particular statement does not run, but on many occasions it can
be a big problem. If the statement releases a resource that was acquired in a previous statement,
failing to execute this statement results in the resource being retained. This example is just such a
case: when you open a file for reading, this operation acquires a resource (a file handle), and you must
ensure that you call reader.Dispose to release the resource (reader.Close actually calls reader.Dispose in
Windows7 to do this). If you don’t, sooner or later you’ll run out of file handles and be unable to open
more files. If you find file handles are too trivial, think of database connections instead.

The way to ensure that a statement is always run, whether or not an exception has been
thrown, is to write that statement inside a finally block. A finally block occurs immediately after
a try block or immediately after the last catch handler after a try block. As long as the program
enters the try block associated with a finally block, the finally block will always be run, even if an
exception occurs. If an exception is thrown and caught locally, the exception handler executes
first, followed by the finally block. If the exception is not caught locally (that is, the runtime has
to search through the list of calling methods to find a handler), the finally block runs first. In any
case, the finally block always executes.

160 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

The solution to the reader.Close problem is as follows:

TextReader reader = null;
try
{
 string line = reader.ReadLine();
 while (line != null)
 {
 ...
 line = reader.ReadLine();
 }
}
finally
{
 if (reader != null)
 {
 reader.Dispose();
 }
}

Even if an exception occurs while reading the file, the finally block ensures that the reader.Dispose
statement always executes. You’ll see another way to handle this situation in Chapter 14, “Using
Garbage Collection and Resource Management.”

Summary

In this chapter, you learned how to catch and handle exceptions by using the try and catch constructs.
You saw how to enable and disable integer overflow checking by using the checked and unchecked
keywords. You learned how to throw an exception if your code detects an exceptional situation, and
you saw how to use a finally block to ensure that critical code always runs, even if an exception occurs.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 7.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 6 Managing Errors and Exceptions 161

Chapter 6 Quick Reference

To Do this

Catch a specific exception Write a catch handler that catches the specific exception class.
For example:

try
{
 ...
}
catch (FormatException fEx)
{
 ...
}

Ensure that integer arithmetic is always checked
for overflow

Use the checked keyword. For example:

int number = Int32.MaxValue;
checked
{
 number++;
}

Throw an exception Use a throw statement. For example:

throw new FormatException(source);

Catch all exceptions in a single catch handler Write a catch handler that catches Exception. For example:

try
{
 ...
}
catch (Exception ex)
{
 ...
}

Ensure that some code will always run, even if an
exception is thrown

Write the code inside a finally block. For example:

try
{
 ...
}
finally
{
 // always run
}

 163

PART I I

Understanding the
C# Object Model

In Part I you learned how to declare variables, use operators to
create values, call methods, and write many of the statements
you need when implementing a method. You now know enough
to progress to the next stage: combining methods and data into
your own functional data structures. The chapters in Part II will
show you how to do this.

In Part II, you’ll learn about classes and structures. These
are the two fundamental types that you can use to model the
entities and other items that constitute a typical C# application.
In particular, you’ll see how C# creates objects and value types
based on the definitions or classes and structures, and how the
common language runtime (CLR) manages the life cycle of these
items. You will find out how to create families of classes by using
inheritance. You will also learn how to aggregate items together
by using arrays.

 165

C H A P T E R 7

Creating and Managing
Classes and Objects

After completing this chapter, you will be able to

■■ Define a class containing a related set of methods and data items.

■■ Control the accessibility of members by using the public and private keywords.

■■ Create objects by using the new keyword to invoke a constructor.

■■ Write and call your own constructors.

■■ Create methods and data that can be shared by all instances of the same class by using the
static keyword.

■■ Explain how to create anonymous classes.

The Microsoft Windows Runtime for Windows 8 together with the Microsoft .NET Framework avail-
able on Windows 7 and Windows 8 contain thousands of classes, and you have used a number of
them already, including Console and Exception. Classes provide a convenient mechanism for modeling
the entities manipulated by applications. An entity can represent a specific item, such as a customer,
or something more abstract, such as a transaction. Part of the design process of any system is con-
cerned with determining the entities that are important to the processes that the system implements,
and then performing an analysis to see what information these entities need to hold and what opera-
tions they should perform. You store the information that a class holds as fields and use methods to
implement the operations that a class can perform.

Understanding Classification

Class is the root word of the term classification. When you design a class, you systematically arrange
information and behavior into a meaningful entity. This arranging is an act of classification and is
something that everyone does—not just programmers. For example, all cars share common behaviors
(they can be steered, stopped, accelerated, and so on) and common attributes (they have a steering
wheel, an engine, and so on). People use the word car to mean an object that shares these common
behaviors and attributes. As long as everyone agrees on what a word means, this system works well

166 part II Understanding the C# Object Model

and you can express complex but precise ideas in a concise form. Without classification, it’s hard to
imagine how people could think or communicate at all.

Given that classification is so deeply ingrained in the way we think and communicate, it makes
sense to try to write programs by classifying the different concepts inherent in a problem and its solu-
tion and then modeling these classes in a programming language. This is exactly what you can do
with modern object-oriented programming languages, such as Microsoft Visual C#.

The Purpose of Encapsulation

Encapsulation is an important principle when defining classes. The idea is that a program that uses a
class should not have to worry how that class actually works internally; the program simply creates
an instance of a class and calls the methods of that class. As long as those methods do what they say
they will do, the program does not care how they are implemented. For example, when you call the
Console.WriteLine method, you don’t want to be bothered with all the intricate details of how the
Console class physically arranges for data to be written to the screen. A class might need to maintain
all sorts of internal state information to perform its various methods. This additional state information
and activity is hidden from the program that is using the class. Therefore, encapsulation is sometimes
referred to as information hiding. Encapsulation actually has two purposes:

■■ To combine methods and data inside a class; in other words, to support classification

■■ To control the accessibility of the methods and data; in other words, to control the use of
the class

Defining and Using a Class

In C#, you use the class keyword to define a new class. The data and methods of the class occur in the
body of the class between a pair of braces. Here is a C# class called Circle that contains one method
(to calculate the circle’s area) and one piece of data (the circle’s radius):

class Circle
{
 int radius;

 double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note The Math class contains methods for performing mathematical calculations
and fields containing mathematical constants. The Math.PI field contains the value
3.14159265358979323846, which is an approximation of the value of Pi.

 CHAPTER 7 Creating and Managing Classes and Objects 167

The body of a class contains ordinary methods (such as Area) and fields (such as radius)—
remember that variables in a class are called fields. You’ve already seen how to declare variables
in Chapter 2, “Working with Variables, Operators, and Expressions,” and how to write methods in
Chapter 3, “Writing Methods and Applying Scope,” so there’s almost no new syntax here.

You can use the Circle class in a similar manner to using the other types that you have already met.
You create a variable specifying Circle as its type, and then you initialize the variable with some valid
data. Here is an example:

Circle c; // Create a Circle variable
c = new Circle(); // Initialize it

A point worth highlighting in this code is the use of the new keyword. Previously, when you initial-
ized a variable such as an int or a float, you simply assigned it a value:

int i;
i = 42;

You cannot do the same with variables of class types. One reason for this is that C# just doesn’t
provide the syntax for assigning literal class values to variables. You cannot write a statement such
as this:

Circle c;
c = 42;

After all, what is the Circle equivalent of 42? Another reason concerns the way in which memory
for variables of class types is allocated and managed by the runtime—this is discussed further in
Chapter 8, “Understanding Values and References.” For now, just accept that the new keyword creates
a new instance of a class, more commonly called an object.

You can, however, directly assign an instance of a class to another variable of the same type, like
this:

Circle c;
c = new Circle();
Circle d;
d = c;

However, this is not as straightforward as it first appears, for reasons that that are described in
Chapter 8.

Important Don’t confuse the terms class and object. A class is the definition of a type. An
object is an instance of that type, created when the program runs. Several objects can be
instances of the same class.

168 part II Understanding the C# Object Model

Controlling Accessibility

Surprisingly, the Circle class is currently of no practical use. By default, when you encapsulate your
methods and data inside a class, the class forms a boundary to the outside world. Fields (such as
radius) and methods (such as Area) defined in the class can be seen by other methods inside the
class but not by the outside world—they are private to the class. So, although you can create a Circle
object in a program, you cannot access its radius field or call its Area method, which is why the class
is not of much use—yet! However, you can modify the definition of a field or method with the public
and private keywords to control whether it is accessible from the outside:

■■ A method or field is private if it is accessible only from the inside of the class. To declare that
a method or field is private, you write the keyword private before its declaration. As intimated
previously, this is actually the default, but it is good practice to state explicitly that fields and
methods are private to avoid any confusion.

■■ A method or field is public if it is accessible from both the inside and outside of the class. To
declare that a method or field is public, you write the keyword public before its declaration.

Here is the Circle class again. This time, Area is declared as a public method and radius is declared
as a private field:

class Circle
{
 private int radius;

 public double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note C++ programmers should note that there is no colon after the public and private key-
words. You must repeat the keyword for every field and method declaration.

Although radius is declared as a private field and is not accessible from outside the class, radius is
accessible from inside the Circle class. The Area method is inside the Circle class, so the body of Area
has access to radius. However, the class is still of limited value because there is no way of initializing
the radius field. To fix this, you can use a constructor.

tip Unlike variables declared in a method that are not initialized by default, the fields in a
class are automatically initialized to 0, false, or null depending on their type. However, it is
still good practice to provide an explicit means of initializing fields.

 CHAPTER 7 Creating and Managing Classes and Objects 169

Naming and accessibility
Many organizations have their own house-style that they ask developers to follow when writing
code. Part of this style typically involves rules for naming identifiers, and the purpose of these
rules is typically to assist in the maintainability of the code. The following recommendations are
reasonably common and relate to the naming conventions for fields and methods based on the
accessibility of class members; however, C# does not enforce these rules:

■■ Identifiers that are public should start with a capital letter. For example, Area starts with
A (not a) because it’s public. This system is known as the PascalCase naming scheme
(because it was first used in the Pascal language).

■■ Identifiers that are not public (which include local variables) should start with a lowercase
letter. For example, radius starts with r (not R) because it’s private. This system is known as
the camelCase naming scheme.

Note Some organizations use camelCase only for methods and adopt the con-
vention that private fields are named starting with an initial underscore char-
acter, such as _radius. However, the examples in this book use camelCase for
private methods and fields.

There’s only one exception to this rule: class names should start with a capital letter, and
constructors must match the name of their class exactly; therefore, a private constructor must
start with a capital letter.

Important Don’t declare two public class members whose names differ only in case. If you
do, developers using other languages that are not case sensitive, such as Microsoft Visual
Basic, may not be able to integrate your class into their solutions.

Working with Constructors
When you use the new keyword to create an object, the runtime has to construct that object by using
the definition of the class. The runtime has to grab a piece of memory from the operating system,
fill it with the fields defined by the class, and then invoke a constructor to perform any initialization
required.

A constructor is a special method that runs automatically when you create an instance of a class.
It has the same name as the class, and it can take parameters, but it cannot return a value (not even
void). Every class must have a constructor. If you don’t write one, the compiler automatically gener-
ates a default constructor for you. (However, the compiler-generated default constructor doesn’t

170 part II Understanding the C# Object Model

actually do anything.) You can write your own default constructor quite easily—just add a public
method that does not return a value and give it the same name as the class. The following example
shows the Circle class with a default constructor that initializes the radius field to 0:

class Circle
{
 private int radius;

 public Circle() // default constructor
 {
 radius = 0;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note In C# parlance, the default constructor is a constructor that does not take any
parameters. It does not matter whether the compiler generates it or you write it, it is still
the default constructor. You can also write nondefault constructors (constructors that do
take parameters), as you will see in the upcoming section titled “Overloading Constructors.”

In this example, the constructor is marked as public. If this keyword is omitted, the constructor will
be private (just like any other methods and fields). If the constructor is private, it cannot be used out-
side the class, which prevents you from being able to create Circle objects from methods that are not
part of the Circle class. You might therefore think that private constructors are not that valuable. They
do have their uses, but they are beyond the scope of the current discussion.

Having added a public constructor, you can now use the Circle class and exercise its Area method.
Notice how you use dot notation to invoke the Area method on a Circle object:

Circle c;
c = new Circle();
double areaOfCircle = c.Area();

Overloading Constructors
You’re almost finished, but not quite. You can now declare a Circle variable, use it to reference a newly
created Circle object, and then call its Area method. However, there is one last problem. The area of
all Circle objects will always be 0 because the default constructor sets the radius to 0 and it stays at 0;
the radius field is private, and there is no easy way of changing its value after it has been initialized. A

 CHAPTER 7 Creating and Managing Classes and Objects 171

constructor is just a special kind of method and it—like all methods—can be overloaded. Just as there
are several versions of the Console.WriteLine method, each of which takes different parameters, so too
can you write different versions of a constructor. So, you can add another constructor to the Circle
class, with a parameter that specifies the radius to use, like this:

class Circle
{
 private int radius;

 public Circle() // default constructor
 {
 radius = 0;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note The order of the constructors in a class is immaterial; you can define constructors in
whatever order you feel most comfortable with.

You can then use this constructor when creating a new Circle object, like this:

Circle c;
c = new Circle(45);

When you build the application, the compiler works out which constructor it should call based on
the parameters that you specify to the new operator. In this example, you passed an int, so the com-
piler generates code that invokes the constructor that takes an int parameter.

You should be aware of an important feature of the C# language: if you write your own construc-
tor for a class, the compiler does not generate a default constructor. Therefore, if you’ve written your
own constructor that accepts one or more parameters and you also want a default constructor, you’ll
have to write the default constructor yourself.

172 part II Understanding the C# Object Model

partial Classes
A class can contain a number of methods, fields, and constructors, as well as other items discussed
in later chapters. A highly functional class can become quite large. With C#, you can split the source
code for a class into separate files so that you can organize the definition of a large class into smaller,
easier to manage pieces. This feature is used by Microsoft Visual Studio 2012 for Windows Presenta-
tion Foundation (WPF) and Windows Store apps, where the source code that the developer can edit
is maintained in a separate file from the code that is generated by Visual Studio whenever the layout
of a form changes.

When you split a class across multiple files, you define the parts of the class by using the
partial keyword in each file. For example, if the Circle class is split between two files called
circ1.cs (containing the constructors) and circ2.cs (containing the methods and fields), the con-
tents of circ1.cs look like this:

partial class Circle
{
 public Circle() // default constructor
 {
 this.radius = 0;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 this.radius = initialRadius;
 }
}

The contents of circ2.cs look like this:

partial class Circle
{
 private int radius;

 public double Area()
 {
 return Math.PI * this.radius * this.radius;
 }
}

When you compile a class that has been split into separate files, you must provide all the
files to the compiler.

 CHAPTER 7 Creating and Managing Classes and Objects 173

In the following exercise, you will declare a class that models a point in two-dimensional space. The
class will contain two private fields for holding the x- and y-coordinates of a point and will provide
constructors for initializing these fields. You will create instances of the class by using the new key-
word and calling the constructors.

Write constructors and create objects

1. Start Visual Studio 2012 if it is not already running.

2. Open the Classes project located in the \Microsoft Press\Visual CSharp Step By Step\Chapter
7\Windows X\Classes folder in your Documents folder.

3. In Solution Explorer, double-click the file Program.cs to display it in the Code and Text Editor
window.

4. Locate the Main method in the Program class.

The Main method calls the doWork method, wrapped in a try block and followed by a catch
handler. With this try/catch block, you can write the code that would typically go inside Main
in the doWork method instead, safe in the knowledge that it will catch and handle any excep-
tions. The doWork method currently contains nothing but a // TODO: comment.

tip TODO comments are frequently used by developers as a reminder that they
have left a piece of code to come back to, and they frequently have a description of
the work to be performed, such as // TODO: Implement the doWork method. Visual
Studio recognizes this form of comment, and you can quickly locate them anywhere
in an application by using the Task List window. To display this window, on the
VIEW menu click Task List. The Task List window appears below the Code and Text
Editor window by default. In the drop-down list box at the top of this window, select
Comments. All of the TODO comments will be listed. You can then double-click any
of these comments and you will be taken directly to the corresponding code, which
will be displayed in the Code and Text Editor window.

174 part II Understanding the C# Object Model

5. Display the file Point.cs in the Code and Text Editor window.

This file defines a class called Point, which you will use to represent the location of a point in
two-dimensional space, defined by a pair of x- and y-coordinates. The Point class is currently
empty apart from another // TODO: comment.

6. Return to the Program.cs file. Edit the body of the doWork method in the Program class, and
replace the // TODO: comment with the following statement:

Point origin = new Point();

This statement creates a new instance of the Point class and invokes its default constructor.

7. On the BUILD menu, click Build Solution.

The code builds without error because the compiler automatically generates the code for a
default constructor for the Point class. However, you cannot see the C# code for this construc-
tor because the compiler does not generate any source language statements.

 CHAPTER 7 Creating and Managing Classes and Objects 175

8. Return to the Point class in the file Point.cs. Replace the // TODO: comment with a public
constructor that accepts two int arguments called x and y and that calls the Console.WriteLine
method to display the values of these arguments to the console, as shown in bold type in the
following code example:

class Point
{
 public Point(int x, int y)
 {
 Console.WriteLine("x:{0}, y:{1}", x, y);
 }
}

Note Remember that the Console.WriteLine method uses {0} and {1} as placeholders.
In the statement shown, {0} will be replaced with the value of x, and {1} will be re-
placed with the value of y when the program runs.

9. On the BUILD menu, click Build Solution.

The compiler now reports an error:

'Classes.Point' does not contain a constructor that takes 0 arguments

The call to the default constructor in the doWork method is now invalid because there is no
longer a default constructor. You have written your own constructor for the Point class, so the
compiler does not generate the default constructor. You will now fix this by writing your own
default constructor.

10. Edit the Point class, and add a public default constructor that calls Console.WriteLine to write
the string “Default constructor called” to the console, as shown in bold type in the following
code example. The Point class should now look like this:

class Point
{
 public Point()
 {
 Console.WriteLine("Default constructor called");
 }

 public Point(int x, int y)
 {
 Console.WriteLine("x:{0}, y:{1}", x, y);
 }
}

11. On the BUILD menu, click Build Solution.

The program should now build successfully.

176 part II Understanding the C# Object Model

12. In the Program.cs file, edit the body of the doWork method. Declare a variable called
bottomRight of type Point, and initialize it to a new Point object by using the constructor with
two arguments, as shown in bold type in the following code. Supply the values 1366 and 768,
representing the coordinates at the lower-right corner of the screen based on the resolution
1366 × 768 (a common resolution for many Windows 8 tablet devices). The doWork method
should now look like this:

static void doWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(1366, 768);
}

13. On the DEBUG menu, click Start Without Debugging.

The program builds and runs, displaying the following messages to the console:

14. Press the Enter key to end the program and return to Visual Studio 2012.

You will now add two int fields to the Point class to represent the x- and y-coordinates of a
point, and you will modify the constructors to initialize these fields.

15. Edit the Point class in the Point.cs file, and add two private fields called x and y of type int, as
shown in bold type in the following code. The Point class should now look like this:

class Point
{
 private int x, y;

 public Point()
 {
 Console.WriteLine("default constructor called");
 }

 public Point(int x, int y)
 {
 Console.WriteLine("x:{0}, y:{1}", x, y);
 }
}

 CHAPTER 7 Creating and Managing Classes and Objects 177

You will edit the second Point constructor to initialize the x and y fields to the values of the x
and y parameters. There is a potential trap when you do this. If you are not careful, the con-
structor will look like this:

public Point(int x, int y) // Don't type this!
{
 x = x;
 y = y;
}

Although this code will compile, these statements appear to be ambiguous. How does the
compiler know in the statement x = x; that the first x is the field and the second x is the
parameter? The answer is that it doesn’t! A method parameter with the same name as a
field hides the field for all statements in the method. All this code actually does is assign the
parameters to themselves; it does not modify the fields at all. This is clearly not what you want.

The solution is to use the this keyword to qualify which variables are parameters and which are
fields. Prefixing a variable with this means “the field in this object.”

16. Modify the Point constructor that takes two parameters, and replace the Console.WriteLine
statement with the following code shown in bold type:

public Point(int x, int y)
{
 this.x = x;
 this.y = y;
}

17. Edit the default Point constructor to initialize the x and y fields to –1, as follows in bold type.
Note that although there are no parameters to cause confusion, it is still good practice to
qualify the field references with this:

public Point()
{
 this.x = -1;
 this.y = -1;
}

18. On the BUILD menu, click Build Solution. Confirm that the code compiles without errors or warn-
ings. (You can run it, but it does not produce any output yet.)

Methods that belong to a class and that operate on the data belonging to a particular instance of
a class are called instance methods. (You will learn about other types of methods later in this chapter.)
In the following exercise, you will write an instance method for the Point class, called DistanceTo, that
calculates the distance between two points.

178 part II Understanding the C# Object Model

Write and call instance methods

1. In the Classes project in Visual Studio 2012, add the following public instance method called
DistanceTo to the Point class after the constructors. The method accepts a single Point argu-
ment called other and returns a double.

The DistanceTo method should look like this:

class Point
{
 ...
 public double DistanceTo(Point other)
 {
 }
}

In the following steps, you will add code to the body of the DistanceTo instance method to
calculate and return the distance between the Point object being used to make the call and
the Point object passed as a parameter. To do this, you must calculate the difference between
the x-coordinates and the y-coordinates.

2. In the DistanceTo method, declare a local int variable called xDiff, and initialize it with the dif-
ference between this.x and other.x, as shown below in bold type:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
}

3. Declare another local int variable called yDiff, and initialize it with the difference between
this.y and other.y, as shown here in bold type:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
}

Note Although the x and y fields are private, they can still be accessed by other
instances of the same class. It is important to understand that the term private oper-
ates at the class level and not at the object level; two objects that are instances of
the same class can access each other's private data, but objects that are instances of
another class cannot.

To calculate the distance, you can use Pythagoras theorem and calculate the square root of
the sum of the square of xDiff and the square of yDiff. The System.Math class provides the Sqrt
method that you can use to calculate square roots.

 CHAPTER 7 Creating and Managing Classes and Objects 179

4. Declare a variable called distance of type double and use it to hold the result of the calculation
just described.

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
 double distance = Math.Sqrt((xDiff * xDiff) + (yDiff * yDiff));
}

5. Add the return statement to the end of the DistanceTo method and return the value in the
distance variable:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
 double distance = Math.Sqrt((xDiff * xDiff) + (yDiff * yDiff));
 return distance;
}

You will now test the DistanceTo method.

6. Return to the doWork method in the Program class. After the statements that declare and
initialize the origin and bottomRight Point variables, declare a variable called distance of type
double. Initialize this double variable with the result obtained when you call the DistanceTo
method on the origin object, passing the bottomRight object to it as an argument.

The doWork method should now look like this:

static void doWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(1366, 768);
 double distance = origin.DistanceTo(bottomRight);
}

Note Microsoft IntelliSense should display the DistanceTo method when you type
the period character after origin.

7. Add to the doWork method another statement that writes the value of the distance variable to
the console by using the Console.WriteLine method.

180 part II Understanding the C# Object Model

The completed doWork method should look like this:

static void doWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(1366, 768);
 double distance = origin.DistanceTo(bottomRight);
 Console.WriteLine("Distance is: {0}", distance);
}

8. On the DEBUG menu, click Start Without Debugging.

9. Confirm that the value 1568.45465347265 is written to the console window, and then press
Enter to close the application and return to Visual Studio 2012.

Understanding static Methods and Data

In the preceding exercise, you used the Sqrt method of the Math class. Similarly, when looking at
the Circle class, you read the PI field of the Math class. If you think about it, the way in which you
called the Sqrt method or read the PI field was slightly odd. You invoked the method or read the
field on the class itself, not on an object of type Math. It is like trying to write Point.DistanceTo
rather than origin.DistanceTo in the code you added in the preceding exercise. So what’s happening,
and how does this work?

You will often find that not all methods naturally belong to an instance of a class; they are utility
methods inasmuch as they provide a useful function that is independent of any specific class instance.
The Sqrt method is just such an example. If Sqrt were an instance method of Math, you’d have to
create a Math object to call Sqrt on:

Math m = new Math();
double d = m.Sqrt(42.24);

This would be cumbersome. The Math object would play no part in the calculation of the square
root. All the input data that Sqrt needs is provided in the parameter list, and the result is passed back
to the caller by using the method’s return value. Objects are not really needed here, so forcing Sqrt
into an instance straitjacket is just not a good idea.

Note As well as containing the Sqrt method and the PI field, the Math class contains many
other mathematical utility methods, such as Sin, Cos, Tan, and Log.

In C#, all methods must be declared inside a class. However, if you declare a method or a field
as static, you can call the method or access the field by using the name of the class. No instance is
required. This is how the Sqrt method of the Math class is declared:

 CHAPTER 7 Creating and Managing Classes and Objects 181

class Math
{
 public static double Sqrt(double d)
 {
 ...
 }
 ...
}

A static method does not depend on an instance of the class, and it cannot access any instance
fields or instance methods defined in the class; it can use only fields and other methods that are
marked as static.

Creating a Shared Field
Defining a field as static enables you to create a single instance of a field that is shared among all
objects created from a single class. (Nonstatic fields are local to each instance of an object.) In the fol-
lowing example, the static field NumCircles in the Circle class is incremented by the Circle constructor
every time a new Circle object is created:

class Circle
{
 private int radius;
 public static int NumCircles = 0;

 public Circle() // default constructor
 {
 radius = 0;
 NumCircles++;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 NumCircles++;
 }
}

All Circle objects share the same instance of the NumCircles field, so the statement NumCircles++;
increments the same data every time a new instance is created. Notice that you cannot prefix
NumCircles with the this keyword, as NumCircles does not belong to a specific object.

You can access the NumCircles field from outside of the class by specifying the Circle class rather
than a Circle object. For example:

Console.WriteLine("Number of Circle objects: {0}", Circle.NumCircles);

Note Keep in mind that static methods are also called class methods. However, static fields
aren’t usually called class fields; they’re just called static fields (or sometimes static variables).

182 part II Understanding the C# Object Model

Creating a static Field by Using the const Keyword
By prefixing the field with the const keyword, you can declare that a field is static but that its value
can never change. The keyword const is short for constant. A const field does not use the static
keyword in its declaration but is nevertheless static. However, for reasons that are beyond the
scope of this book, you can declare a field as const only when the field is a numeric type such as int
or double, a string, or an enumeration (you will learn about enumerations in Chapter 9, “Creating
Value Types with Enumerations and Structures”). For example, here’s how the Math class declares PI
as a const field:

class Math
{
 ...
 public const double PI = 3.14159265358979323846;
}

Understanding static Classes
Another feature of the C# language is the ability to declare a class as static. A static class can con-
tain only static members. (All objects that you create using the class share a single copy of these
members.) The purpose of a static class is purely to act as a holder of utility methods and fields.
A static class cannot contain any instance data or methods, and it does not make sense to try to
create an object from a static class by using the new operator. In fact, you can’t actually create an
instance of an object using a static class by using new even if you want to. (The compiler will report
an error if you try.) If you need to perform any initialization, a static class can have a default con-
structor as long as it is also declared as static. Any other types of constructor are illegal and will be
reported as such by the compiler.

If you were defining your own version of the Math class, one containing only static members, it
could look like this:

public static class Math
{
 public static double Sin(double x) {...}
 public static double Cos(double x) {...}
 public static double Sqrt(double x) {...}
 ...
}

Note The real Math class is not defined this way because it actually does have some
instance methods.

In the final exercise in this chapter, you will add a private static field to the Point class and initialize
the field to 0. You will increment this count in both constructors. Finally, you will write a public static
method to return the value of this private static field. With this field, you can find out how many Point
objects you have created.

 CHAPTER 7 Creating and Managing Classes and Objects 183

Write static members, and call static methods

1. Using Visual Studio 2012, display the Point class in the Code and Text Editor window.

2. Add a private static field called objectCount of type int to the Point class immediately before
the constructors. Initialize it to 0 as you declare it, like this:

class Point
{
 ...
 private static int objectCount = 0;
 ...
}

Note You can write the keywords private and static in any order when you declare a
field such as objectCount. However, the preferred order is private first, static second.

3. Add a statement to both Point constructors to increment the objectCount field, as shown in
bold type in the following code example.

The Point class should now look like this:

class Point
{
 private int x, y;
 private static int objectCount = 0;

 public Point()
 {
 this.x = -1;
 this.y = -1;
 objectCount++;
 }

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 objectCount++;
 }
 public double DistanceTo(Point other)
 {
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
 return Math.Sqrt((xDiff * xDiff) + (yDiff * yDiff));
 }
}

Each time an object is created, its constructor is called. As long as you increment the
objectCount in each constructor (including the default constructor), objectCount will hold the
number of objects created so far. This strategy works only because objectCount is a shared

184 part II Understanding the C# Object Model

static field. If objectCount were an instance field, each object would have its own personal
objectCount field that would be set to 1.

The question now is this: How can users of the Point class find out how many Point objects
have been created? At the moment, the objectCount field is private and not available outside
the class. A poor solution would be to make the objectCount field publicly accessible. This
strategy would break the encapsulation of the class, and you would then have no guarantee
that its value was correct because anyone could change the value in the field. A much better
idea is to provide a public static method that returns the value of the objectCount field. This is
what you will do now.

4. Add a public static method to the Point class called ObjectCount that returns an int but does
not take any parameters. In this method, return the value of the objectCount field, as follows in
bold type:

class Point
{
 ...
 public static int ObjectCount()
 {
 return objectCount;
 }
}

5. Display the Program class in the Code and Text Editor window. Add a statement to the doWork
method to write the value returned from the ObjectCount method of the Point class to the
screen, as shown in bold type in the following code example:

static void doWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(600, 800);
 double distance = origin.distanceTo(bottomRight);
 Console.WriteLine("Distance is: {0}", distance);
 Console.WriteLine("Number of Point objects: {0}", Point.ObjectCount());
}

The ObjectCount method is called by referencing Point, the name of the class, and not the
name of a Point variable (such as origin or bottomRight). Because two Point objects have been
created by the time ObjectCount is called, the method should return the value 2.

6. On the DEBUG menu, click Start Without Debugging.

Confirm that the message “Number of Point objects: 2” is written to the console window (after
the message displaying the value of the distance variable).

7. Press Enter to finish the program and return to Visual Studio 2012.

 CHAPTER 7 Creating and Managing Classes and Objects 185

anonymous Classes
An anonymous class is a class that does not have a name. This sounds rather strange but is actually
quite handy in some situations that you will see later in this book, especially when using query expres-
sions. (You learn about query expressions in Chapter 21, “Querying In-Memory Data by Using Query
Expressions.”) For the time being, just accept the fact that they are useful.

You create an anonymous class simply by using the new keyword and a pair of braces defining the
fields and values that you want the class to contain, like this:

myAnonymousObject = new { Name = "John", Age = 47 };

This class contains two public fields called Name (initialized to the string “John”) and Age (initial-
ized to the integer 47). The compiler infers the types of the fields from the types of the data you
specify to initialize them.

When you define an anonymous class, the compiler generates its own name for the class, but it
won’t tell you what it is. Anonymous classes therefore raise a potentially interesting conundrum: if you
don’t know the name of the class, how can you create an object of the appropriate type and assign
an instance of the class to it? In the code example shown earlier, what should the type of the variable
myAnonymousObject be? The answer is that you don’t know—that is the point of anonymous classes!
However, this is not a problem if you declare myAnonymousObject as an implicitly typed variable by
using the var keyword, like this:

var myAnonymousObject = new { Name = "John", Age = 47 };

Remember that the var keyword causes the compiler to create a variable of the same type as the
expression used to initialize it. In this case, the type of the expression is whatever name the compiler
happens to generate for the anonymous class.

You can access the fields in the object by using the familiar dot notation, like this:

Console.WriteLine("Name: {0} Age: {1}", myAnonymousObject.Name, myAnonymousObject.Age};

You can even create other instances of the same anonymous class but with different values:

var anotherAnonymousObject = new { Name = "Diana", Age = 46 };

The C# compiler uses the names, types, number, and order of the fields to determine whether two
instances of an anonymous class have the same type. In this case, the variables myAnonymousObject
and anotherAnonymousObject have the same number of fields, with the same name and type, in the
same order, so both variables are instances of the same anonymous class. This means that you can
perform assignment statements such as this:

anotherAnonymousObject = myAnonymousObject;

186 part II Understanding the C# Object Model

Note Be warned that this assignment statement might not accomplish what you expect.
You’ll learn more about assigning object variables in Chapter 8.

There are quite a lot of restrictions on the contents of an anonymous class. For example, anony-
mous classes can contain only public fields, the fields must all be initialized, they cannot be static, and
you cannot define any methods for them. You will use anonymous classes periodically throughout this
book and learn more about them as you do so.

Summary

In this chapter, you saw how to define new classes. You learned that by default the fields and methods
of a class are private and inaccessible to code outside of the class, but you can use the public keyword
to expose fields and methods to the outside world. You saw how to use the new keyword to create a
new instance of a class and how to define constructors that can initialize class instances. Finally, you
saw how to implement static fields and methods to provide data and operations that are independent
of any specific instance of a class.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 8.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 7 Creating and Managing Classes and Objects 187

Chapter 7 Quick Reference

To Do this

Declare a class Write the keyword class, followed by the name of the class, followed by an opening and
closing brace. The methods and fields of the class are declared between the opening
and closing braces. For example:

class Point
{
 ...
}

Declare a constructor Write a method whose name is the same as the name of the class and that has no return
type (not even void). For example:

class Point
{
 public Point(int x, int y)
 {
 ...
 }
}

Call a constructor Use the new keyword, and specify the constructor with an appropriate set of param-
eters. For example:

Point origin = new Point(0, 0);

Declare a static method Write the keyword static before the declaration of the method. For example:

class Point
{
 public static int ObjectCount()
 {
 ...
 }
}

Call a static method Write the name of the class, followed by a period, followed by the name of the method.
For example:

int pointsCreatedSoFar = Point.ObjectCount();

Declare a static field Use the keyword static before the type of the field. For example:

class Point
{
 ...
 private static int objectCount;
}

Declare a const field Write the keyword const before the declaration of the field, and omit the static key-
word. For example:

class Math
{
 ...
 public const double PI = ...;
}

Access a static field Write the name of the class, followed by a period, followed by the name of the static
field. For example:

double area = Math.PI * radius * radius;

 189

C H A P T E R 8

Understanding Values and
references

After completing this chapter, you will be able to

■■ Explain the differences between a value type and a reference type.

■■ Modify the way in which arguments are passed as method parameters by using the ref and
out keywords.

■■ Convert a value into a reference by using boxing.

■■ Convert a reference back to a value by using unboxing and casting.

In Chapter 7, “Creating and Managing Classes and Objects,” you learned how to declare your own
classes and how to create objects by using the new keyword. You also saw how to initialize an object
by using a constructor. In this chapter, you will learn about how the characteristics of the primitive
types—such as int, double, and char—differ from the characteristics of class types.

Copying Value Type Variables and Classes

Most of the primitive types built into C#, such as int, float, double, and char (but not string, for reasons
that will be covered shortly) are collectively called value types. These types have a fixed size, and
when you declare a variable as a value type, the compiler generates code that allocates a block of
memory big enough to hold a corresponding value. For example, declaring an int variable causes the
compiler to allocate 4 bytes of memory (32 bits). A statement that assigns a value (such as 42) to the
int causes the value to be copied into this block of memory.

Class types, such as Circle (described in Chapter 7), are handled differently. When you declare a
Circle variable, the compiler does not generate code that allocates a block of memory big enough to
hold a Circle—all it does is allot a small piece of memory that can potentially hold the address of (or
a reference to) another block of memory containing a Circle. (An address specifies the location of an
item in memory.) The memory for the actual Circle object is allocated only when the new keyword
is used to create the object. A class is an example of a reference type. Reference types hold refer-
ences to blocks of memory. To write effective C# programs that make full use of the Microsoft .NET
Framework, you need to understand the difference between value types and reference types.

190 part II Understanding the C# Object Model

Note The string type in C# is actually a class. This is because there is no standard size for
a string (different strings can contain different numbers of characters), and it is far more
efficient to allocate memory for them dynamically when the program runs rather than
statically at compile time. The description of reference types such as classes in this chapter
applies to the string type as well. In fact, the string keyword in C# is just an alias for the
System.String class.

Consider the situation in which you declare a variable named i as an int and assign it the value
42. If you declare another variable called copyi as an int and then assign i to copyi, copyi will hold the
same value as i (42). However, even though copyi and i happen to hold the same value, there are two
blocks of memory containing the value 42: one block for i and the other block for copyi. If you modify
the value of i, the value of copyi does not change. Let’s see this in code:

int i = 42; // declare and initialize i
int copyi = i; /* copyi contains a copy of the data in i:
 i and copyi both contain the value 42 */
i++; /* incrementing i has no effect on copyi;
 i now contains 43, but copyi still contains 42 */

The effect of declaring a variable c as a class type, such as Circle, is very different. When you
declare c as a Circle, c can refer to a Circle object; the actual value held by c is the address of a Circle
object in memory. If you declare an additional variable named refc (also as a Circle) and you assign c
to refc, refc will have a copy of the same address as c; in other words, there is only one Circle object,
and both refc and c now refer to it. Here’s the example in code:

Circle c = new Circle(42);
Circle refc = c;

The following graphic illustrates both examples. The at sign (@) in the Circle objects represents a
reference holding an address in memory:

This difference is very important. In particular, it means that the behavior of method parameters
depends on whether they are value types or reference types. You’ll explore this difference in the
next exercise.

 CHAPTER 8 Understanding Values and References 191

Copying reference types and Data privacy
If you actually want to copy the contents of a Circle object, c, into a different Circle object, refc,
rather than just copying the reference, you must actually make refc refer to a new instance of
the Circle class and then copy the data field by field from c into refc, like this:

Circle refc = new Circle();
refc.radius = c.radius; // Don't try this

However, if any members of the Circle class are private (like the radius field), you will not
be able to copy this data. Instead, you could make the data in the private fields accessible by
exposing them as properties, and then using these properties to read the data from c and copy
it into refc. You will learn how to do this in Chapter 15, “Implementing Properties to Access
Fields.”

Alternatively, a class could provide a Clone method that returns another instance of the
same class, but populated with the same data. The Clone method would have access to the pri-
vate data in an object and could copy this data directly to another instance of the same class.
For example, the Clone method for the Circle class could be defined like this:

class Circle
{
 private int radius;
 // Constructors and other methods omitted
 ...
 public Circle Clone()
 {
 // Create a new Circle object
 Circle clone = new Circle();

 // Copy private data from this to clone
 clone.radius = this.radius;

 // Return the new Circle object containing the copied data
 return clone;
 }
}

This approach is straightforward if all the private data consists of values, but if one or more
fields are themselves reference types (for example, the Circle class might be extended to con-
tain a Point object from the previous chapter, indicating the position of the Circle on a graph),
then these reference types also need to provide a Clone method as well, otherwise the Clone
method of the Circle class will simply copy a reference to these fields. This is a process known
as a deep copy. The alternative approach, where the Clone method simply copies references, is
known as a shallow copy.

The preceding code example also poses an interesting question: how private is private data?
Previously, you saw that the private keyword renders a field or method inaccessible from out-
side of a class. However, this does not mean it can be accessed by only a single object. If you

192 part II Understanding the C# Object Model

create two objects of the same class, they can each access the private data of the other. This
sounds curious, but in fact methods such as Clone depend on this feature. The statement clone.
radius = this.radius; only works because the private radius field in the clone object is accessible
from within the current instance of the Circle class. So, private actually means “private to the
class” rather than “private to an object.” However, don’t confuse private with static. If you sim-
ply declare a field as private, each instance of the class gets its own data. If a field is declared as
static, each instance of the class shares the same data.

Use value parameters and reference parameters

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Parameters project located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 8\Windows X\Parameters folder in your Documents folder.

The project contains three C# code files: Pass.cs, Program.cs, and WrappedInt.cs.

3. Display the Pass.cs file in the Code and Text Editor window. This file defines a class called Pass
that is currently empty apart from a // TODO: comment.

tip Remember that you can use the Task List window to locate all TODO comments
in a solution.

4. Add a public static method called Value to the Pass class, replacing the // TODO: comment.
This method should accept a single int parameter (a value type) called param and have the
return type void. The body of the Value method should simply assign the value 42 to param,
as shown in bold type in the following code example.

namespace Parameters
{
 class Pass
 {
 public static void Value(int param)
 {
 param = 42;
 }
 }
}

 CHAPTER 8 Understanding Values and References 193

Note The reason you are defining this method as static is to keep the exercise
simple. You can call the Value method directly on the Pass class rather than having
to first create a new Pass object. The principles illustrated in this exercise apply in
exactly the same manner to instance methods.

5. Display the Program.cs file in the Code and Text Editor window, and then locate the doWork
method of the Program class.

The doWork method is called by the Main method when the program starts running. As
explained in Chapter 7, the method call is wrapped in a try block and followed by a catch
handler.

6. Add four statements to the doWork method to perform the following tasks:

a. Declare a local int variable called i, and initialize it to 0.

b. Write the value of i to the console by using Console.WriteLine.

c. Call Pass.Value, passing i as an argument.

d. Write the value of i to the console again.

With the calls to Console.WriteLine before and after the call to Pass.Value, you can see whether
the call to Pass.Value actually modifies the value of i. The completed doWork method should
look exactly like this:

static void doWork()
{
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(i);
 Console.WriteLine(i);
}

7. On the DEBUG menu, click Start Without Debugging to build and run the program.

8. Confirm that the value 0 is written to the console window twice.

The assignment statement inside the Pass.Value method that updates the parameter and
sets it to 42 uses a copy of the argument passed in, and the original argument i is completely
unaffected.

9. Press the Enter key to close the application.

You will now see what happens when you pass an int parameter that is wrapped inside a class.

194 part II Understanding the C# Object Model

10. Display the WrappedInt.cs file in the Code and Text Editor window. This file contains the
WrappInt class, which is empty apart from a // TODO: comment.

11. Add a public instance field called Number of type int to the WrappedInt class, as shown in bold
type below:

namespace Parameters
{
 class WrappedInt
 {
 public int Number;
 }
}

12. Display the Pass.cs file in the Code and Text Editor window. Add a public static method called
Reference to the Pass class. This method should accept a single WrappedInt parameter called
param and have the return type void. The body of the Reference method should assign 42 to
param.Number, like this:

public static void Reference(WrappedInt param)
{
 param.Number = 42;
}

13. Display the Program.cs file in the Code and Text Editor window. Comment out the existing
code in the doWork method and add four more statements to perform the following tasks:

a. Declare a local WrappedInt variable called wi, and initialize it to a new WrappedInt object
by calling the default constructor.

b. Write the value of wi.Number to the console.

c. Call the Pass.Reference method, passing wi as an argument.

d. Write the value of wi.Number to the console again.

As before, with the calls to Console.WriteLine, you can see whether the call to Pass.Reference
modifies the value of wi.Number. The DoWork method should now look exactly like this (the
new statements are shown in bold type):

static void doWork()
{
 // int i = 0;
 // Console.WriteLine(i);
 // Pass.Value(i);
 // Console.WriteLine(i);

 WrappedInt wi = new WrappedInt();
 Console.WriteLine(wi.Number);
 Pass.Reference(wi);
 Console.WriteLine(wi.Number);
}

 CHAPTER 8 Understanding Values and References 195

14. On the DEBUG menu, click Start Without Debugging to build and run the application.

This time, the two values displayed in the console window correspond to the value of
wi.Number before and after the call to the Pass.Reference method. You should see that the
values 0 and 42 are displayed.

15. Press the Enter key to close the application and return to Visual Studio 2012.

To explain what the previous exercise shows, the value of wi.Number is initialized to 0 by the
compiler-generated default constructor. The wi variable contains a reference to the newly created
WrappedInt object (which contains an int). The wi variable is then copied as an argument to the Pass.
Reference method. Because WrappedInt is a class (a reference type), wi and param both refer to the
same WrappedInt object. Any changes made to the contents of the object through the param variable
in the Pass.Reference method are visible by using the wi variable when the method completes. The
following diagram illustrates what happens when a WrappedInt object is passed as an argument to
the Pass.Reference method:

Understanding Null Values and Nullable Types

When you declare a variable, it is always a good idea to initialize it. With value types, it is common to
see code such as this:

int i = 0;
double d = 0.0;

Remember that to initialize a reference variable such as a class, you can create a new instance of
the class and assign the reference variable to the new object, like this:

Circle c = new Circle(42);

This is all very well, but what if you don’t actually want to create a new object? Perhaps the pur-
pose of the variable is simply to store a reference to an existing object at some later point in your
program. In the following code example, the Circle variable copy is initialized, but later it is assigned a
reference to another instance of the Circle class:

196 part II Understanding the C# Object Model

Circle c = new Circle(42);
Circle copy = new Circle(99); // Some random value, for initializing copy
...
copy = c; // copy and c refer to the same object

After assigning c to copy, what happens to the original Circle object with a radius of 99 that you
used to initialize copy? Nothing refers to it anymore. In this situation, the runtime can reclaim the
memory by performing an operation known as garbage collection, which you will learn more about
in Chapter 14, “Using Garbage Collection and Resource Management.” The important thing to under-
stand for now is that garbage collection is a potentially time-consuming operation; you should not
create objects that are never used, as doing so is a waste of time and resources.

You could argue that if a variable is going to be assigned a reference to another object at some
point in a program, there is no point initializing it. But this is poor programming practice and can
lead to problems in your code. For example, you will inevitably find yourself in the situation where
you want to refer a variable to an object only if that variable does not already contain a reference, as
shown in the following code example:

Circle c = new Circle(42);
Circle copy; // Uninitialized !!!
...
if (copy == // only assign to copy if it is uninitialized, but what goes here?)
{
 copy = c; // copy and c refer to the same object
 ...
}

The purpose of the if statement is to test the copy variable to see whether it is initialized, but to
which value should you compare this variable? The answer is to use a special value called null.

In C#, you can assign the null value to any reference variable. The null value simply means that the
variable does not refer to an object in memory. You can use it like this:

Circle c = new Circle(42);
Circle copy = null; // Initialized
...
if (copy == null)
{
 copy = c; // copy and c refer to the same object
 ...
}

Using Nullable types
The null value is useful for initializing reference types. Sometimes you need an equivalent value for
value types, but null is itself a reference, and so you cannot assign it to a value type. The following
statement is therefore illegal in C#:

int i = null; // illegal

 CHAPTER 8 Understanding Values and References 197

However, C# defines a modifier that you can use to declare that a variable is a nullable value type.
A nullable value type behaves in a similar manner to the original value type, but you can assign the
null value to it. You use the question mark (?) to indicate that a value type is nullable, like this:

int? i = null; // legal

You can ascertain whether a nullable variable contains null by testing it in the same way as a refer-
ence type:

if (i == null)
 ...

You can assign an expression of the appropriate value type directly to a nullable variable. The
following examples are all legal:

int? i = null;
int j = 99;
i = 100; // Copy a value type constant to a nullable type
i = j; // Copy a value type variable to a nullable type

You should note that the converse is not true. You cannot assign a nullable variable to an ordinary
value type variable. So, given the definitions of variables i and j from the preceding example, the
following statement is not allowed:

j = i; // Illegal

This makes sense if you consider that the variable i might contain null, and j is a value-type that
cannot contain null. This also means that you cannot use a nullable variable as a parameter to a
method that expects an ordinary value type. If you recall, the Pass.Value method from the preceding
exercise expects an ordinary int parameter, so the following method call will not compile:

int? i = 99;
Pass.Value(i); // Compiler error

Understanding the properties of Nullable types
A nullable type exposes a pair of properties that you can use to determine whether the type actually
has a non-null value, and what this value is. The HasValue property indicates whether a nullable type
contains a value or is null, and you can retrieve the value of a non-null nullable type by reading the
Value property, like this:

int? i = null;
...
if (!i.HasValue)
{
 // If i is null, then assign it the value 99
 i = 99;
}
else

198 part II Understanding the C# Object Model

{
 // If i is not null, then display its value
 Console.WriteLine(i.Value);
}

Recall from Chapter 4, “Using Decision Statements,” that the NOT operator (!) negates a Bool-
ean value. This code fragment tests the nullable variable i, and if it does not have a value (it is null),
it assigns it the value 99; otherwise, it displays the value of the variable. In this example, using the
HasValue property does not provide any benefit over testing for a null value directly. Additionally,
reading the Value property is a long-winded way of reading the contents of the variable. However,
these apparent shortcomings are caused by the fact that int? is a very simple nullable type. You can
create more complex value types and use them to declare nullable variables where the advantages
of using the HasValue and Value properties become more apparent. You will see some examples in
Chapter 9, “Creating Value Types with Enumerations and Structures.”

Note The Value property of a nullable type is read-only. You can use this property to read
the value of a variable but not to modify it. To update a nullable variable, use an ordinary
assignment statement.

Using ref and out Parameters

Ordinarily, when you pass an argument to a method, the corresponding parameter is initialized with
a copy of the argument. This is true regardless of whether the parameter is a value type (such as an
int), a nullable type (such as int?), or a reference type (such as a WrappedInt). This arrangement means
it’s impossible for any change to the parameter to affect the value of the argument passed in. For
example, in the following code, the value output to the console is 42 and not 43. The doIncrement
method increments a copy of the argument (arg) and not the original argument:

static void doIncrement(int param)
{
 param++;
}

static void Main()
{
 int arg = 42;
 doIncrement(arg);
 Console.WriteLine(arg); // writes 42, not 43
}

In the preceding exercise, you saw that if the parameter to a method is a reference type, any
changes made by using that parameter change the data referenced by the argument passed in.
The key point is that, although the data that was referenced changed, the argument passed in as
the parameter did not—it still references the same object. In other words, although it is possible to
modify the object that the argument refers to through the parameter, it’s not possible to modify the

 CHAPTER 8 Understanding Values and References 199

argument itself (for example, to set it to refer to a completely different object). Most of the time, this
guarantee is very useful and can help to reduce the number of bugs in a program. Occasionally, how-
ever, you might want to write a method that actually needs to modify an argument. C# provides the
ref and out keywords so that you can do this.

Creating ref parameters
If you prefix a parameter with the ref keyword, the C# compiler generates code that passes a refer-
ence to the actual argument rather than a copy of the argument. When using a ref parameter, any-
thing you do to the parameter you also do to the original argument because the parameter and the
argument both reference the same data. When you pass an argument as a ref parameter, you must
also prefix the argument with the ref keyword. This syntax provides a useful visual cue to the pro-
grammer that the argument might change. Here’s the preceding example again, this time modified to
use the ref keyword:

static void doIncrement(ref int param) // using ref
{
 param++;
}

static void Main()
{
 int arg = 42;
 doIncrement(ref arg); // using ref
 Console.WriteLine(arg); // writes 43
}

This time, the doIncrement method receives a reference to the original argument rather than a
copy, so any changes the method makes by using this reference actually change the original value.
That’s why the value 43 is displayed on the console.

Remember that C# enforces the rule that you must assign a value to a variable before you can read
it. This rule also applies to method arguments; you cannot pass an uninitialized value as an argument
to a method even if an argument is defined as a ref argument. For example, in the following example,
arg is not initialized, so this code will not compile. This failure occurs because the statement param++;
inside the doIncrement method is really an alias for the statement arg++; and this operation is allowed
only if arg has a defined value:

static void doIncrement(ref int param)
{
 param++;
}

static void Main()
{
 int arg; // not initialized
 doIncrement(ref arg);
 Console.WriteLine(arg);
}

200 part II Understanding the C# Object Model

Creating out parameters
The compiler checks whether a ref parameter has been assigned a value before calling the method.
However, there might be times when you want the method itself to initialize the parameter. You can
do this with the out keyword.

The out keyword is syntactically similar to the ref keyword. You can prefix a parameter with the out
keyword so that the parameter becomes an alias for the argument. As when using ref, anything you
do to the parameter, you also do to the original argument. When you pass an argument to an out
parameter, you must also prefix the argument with the out keyword.

The keyword out is short for output. When you pass an out parameter to a method, the method
must assign a value to it before it finishes or returns, as shown in the following example:

static void doInitialize(out int param)
{
 param = 42; // Initialize param before finishing
}

The following example does not compile because doInitialize does not assign a value to param:

static void doInitialize(out int param)
{
 // Do nothing
}

Because an out parameter must be assigned a value by the method, you’re allowed to call the
method without initializing its argument. For example, the following code calls doInitialize to initialize
the variable arg, which is then displayed on the console:

static void doInitialize(out int param)
{
 param = 42;
}

static void Main()
{
 int arg; // not initialized
 doInitialize(out arg); // legal
 Console.WriteLine(arg); // writes 42
}

You will examine ref parameters in the next exercise.

 CHAPTER 8 Understanding Values and References 201

Use ref parameters

1. Return to the Parameters project in Visual Studio 2012.

2. Display the Pass.cs file in the Code and Text Editor window.

3. Edit the Value method to accept its parameter as a ref parameter.

The Value method should look like this:

class Pass
{
 public static void Value(ref int param)
 {
 param = 42;
 }
 ...
}

4. Display the Program.cs file in the Code and Text Editor window.

5. Uncomment the first four statements. Notice that the third statement of the doWork method,
Pass.Value(i); indicates an error. This is because the Value method now expects a ref param-
eter. Edit this statement so that the Pass.Value method call passes its argument as a ref
parameter.

Note Leave the four statements that create and test the WrappedInt object as
they are.

The doWork method should now look like this:

class Program
{
 static void doWork()
 {
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(ref i);
 Console.WriteLine(i);
 ...
 }
}

6. On the DEBUG menu, click Start Without Debugging to build and run the program.

This time, the first two values written to the console window are 0 and 42. This result shows
that the call to the Pass.Value method has successfully modified the argument i.

7. Press the Enter key to close the application and return to Visual Studio 2012.

202 part II Understanding the C# Object Model

Note You can use the ref and out modifiers on reference type parameters as well as
on value type parameters. The effect is exactly the same. The parameter becomes an
alias for the argument.

How Computer Memory Is Organized

Computers use memory to hold programs being executed and the data that these programs use. To
understand the differences between value and reference types, it is helpful to understand how data is
organized in memory.

Operating systems and language runtimes such as that used by C# frequently divide the memory
used for holding data in two separate areas, each of which is managed in a distinct manner. These
two areas of memory are traditionally called the stack and the heap. The stack and the heap serve dif-
ferent purposes:

■■ When you call a method, the memory required for its parameters and its local variables is
always acquired from the stack. When the method finishes (because it either returns or throws
an exception), the memory acquired for the parameters and local variables is automatically
released back to the stack and is available for reuse when another method is called. Method
parameters and local variables on the stack have a well-defined life span. They come into exis-
tence when the method starts, and they disappear as soon as the method completes.

Note Actually, the same life span applies to variables defined in any block of code
enclosed between opening and closing curly braces. In the following code example,
the variable i is created when the body of the while loop starts, but it disappears
when the while loop finishes and execution continues after the closing brace:

while (...)
{
 int i = …; // i is created on the stack here
 ...
}
// i disappears from the stack here

■■ When you create an object (an instance of a class) by using the new keyword, the memory
required to build the object is always acquired from the heap. You have seen that the same
object can be referenced from several places by using reference variables. When the last
reference to an object disappears, the memory used by the object becomes available for
reuse (although it might not be reclaimed immediately). Chapter 14 includes a more detailed

 CHAPTER 8 Understanding Values and References 203

discussion of how heap memory is reclaimed. Objects created on the heap therefore have a
more indeterminate life span; an object is created by using the new keyword but only disap-
pears sometime after the last reference to the object is removed.

Note All value types are created on the stack. All reference types (objects) are cre-
ated on the heap (although the reference itself is on the stack). Nullable types are
actually reference types, and they are created on the heap.

The names stack and heap come from the way in which the runtime manages the memory:

■■ Stack memory is organized like a stack of boxes piled on top of one another. When a method
is called, each parameter is put in a box that is placed on top of the stack. Each local variable is
likewise assigned a box, and these are placed on top of the boxes already on the stack. When
a method finishes, you can think of the boxes being removed from the stack.

■■ Heap memory is like a large pile of boxes strewn around a room rather than stacked neatly on
top of each other. Each box has a label indicating whether it is in use. When a new object is
created, the runtime searches for an empty box and allocates it to the object. The reference to
the object is stored in a local variable on the stack. The runtime keeps track of the number of
references to each box. (Remember that two variables can refer to the same object.) When the
last reference disappears, the runtime marks the box as not in use, and at some point in the
future it will empty the box and make it available for reuse.

Using the Stack and the heap
Now let’s examine what happens when the following method Method is called:

void Method(int param)
{
 Circle c;
 c = new Circle(param);
 ...
}

Suppose the argument passed into param is the value 42. When the method is called, a block
of memory (just enough for an int) is allocated from the stack and initialized with the value 42. As
execution moves inside the method, another block of memory big enough to hold a reference (a
memory address) is also allocated from the stack but left uninitialized. (This is for the Circle vari-
able, c.) Next, another piece of memory big enough for a Circle object is allocated from the heap.
This is what the new keyword does. The Circle constructor runs to convert this raw heap memory
to a Circle object. A reference to this Circle object is stored in the variable c. The following graphic
illustrates the situation:

204 part II Understanding the C# Object Model

At this point, you should note two things:

■■ Although the object is stored on the heap, the reference to the object (the variable c) is stored
on the stack.

■■ Heap memory is not infinite. If heap memory is exhausted, the new operator will throw an
OutOfMemoryException exception and the object will not be created.

Note The Circle constructor could also throw an exception. If it does, the memory allocated
to the Circle object will be reclaimed and the value returned by the constructor will be null.

When the method ends, the parameters and local variables go out of scope. The memory acquired
for c and for param is automatically released back to the stack. The runtime notes that the Circle
object is no longer referenced and at some point in the future will arrange for its memory to be
reclaimed by the heap. (See Chapter 14.)

The System.Object Class

One of the most important reference types in the Microsoft .NET Framework is the Object class in the
System namespace. To fully appreciate the significance of the System.Object class requires that you
understand inheritance, which is described in Chapter 12, “Working with Inheritance.” For the time
being, simply accept that all classes are specialized types of System.Object and that you can use Sys-
tem.Object to create a variable that can refer to any reference type. System.Object is such an impor-
tant class that C# provides the object keyword as an alias for System.Object. In your code, you can use
object or you can write System.Object—they mean exactly the same thing.

tip Use the object keyword in preference to System.Object. It’s more direct, and it’s consis-
tent with other keywords that are synonyms for classes (such as string for System.String and
some others that you’ll discover in Chapter 9).

In the following example, the variables c and o both refer to the same Circle object. The fact that
the type of c is Circle and the type of o is object (the alias for System.Object) in effect provides two dif-
ferent views of the same item in memory:

 CHAPTER 8 Understanding Values and References 205

Circle c;
c = new Circle(42);
object o;
o = c;

The following diagram illustrates how the variables c and o refer to the same item on the heap.

Boxing

As you have just seen, variables of type object can refer to any item of any reference type. However,
variables of type object can also refer to a value type. For example, the following two statements
initialize the variable i (of type int, a value type) to 42 and then initialize the variable o (of type object,
a reference type) to i:

int i = 42;
object o = i;

The second statement requires a little explanation to appreciate what is actually happening.
Remember that i is a value type and that it lives on the stack. If the reference inside o referred directly
to i, the reference would refer to the stack. However, all references must refer to objects on the heap;
creating references to items on the stack could seriously compromise the robustness of the runtime
and create a potential security flaw, so it is not allowed. Therefore, the runtime allocates a piece of
memory from the heap, copies the value of integer i to this piece of memory, and then refers the
object o to this copy. This automatic copying of an item from the stack to the heap is called boxing.
The following graphic shows the result:

Important If you modify the original value of the variable i, the value on the heap refer-
enced through o will not change. Likewise, if you modify the value on the heap, the original
value of the variable will not change.

206 part II Understanding the C# Object Model

Unboxing

Because a variable of type object can refer to a boxed copy of a value, it’s only reasonable to allow
you to get at that boxed value through the variable. You might expect to be able to access the boxed
int value that a variable o refers to by using a simple assignment statement such as this:

int i = o;

However, if you try this syntax, you’ll get a compile-time error. If you think about it, it’s pretty sen-
sible that you can’t use the int i = o; syntax. After all, o could be referencing absolutely anything and
not just an int. Consider what would happen in the following code if this statement were allowed:

Circle c = new Circle();
int i = 42;
object o;

o = c; // o refers to a circle
i = o; // what is stored in i?

To obtain the value of the boxed copy, you must use what is known as a cast. This is an operation
that checks whether it is safe to convert an item of one type to another before it actually makes the
copy. You prefix the object variable with the name of the type in parentheses, as in this example:

int i = 42;
object o = i; // boxes
i = (int)o; // compiles okay

The effect of this cast is subtle. The compiler notices that you’ve specified the type int in the cast.
Next, the compiler generates code to check what o actually refers to at run time. It could be abso-
lutely anything. Just because your cast says o refers to an int, that doesn’t mean it actually does.
If o really does refer to a boxed int and everything matches, the cast succeeds and the compiler-
generated code extracts the value from the boxed int and copies it to i. (In this example, the boxed
value is then stored in i.) This is called unboxing. The following diagram shows what is happening:

On the other hand, if o does not refer to a boxed int, there is a type mismatch, causing the cast
to fail. The compiler-generated code throws an InvalidCastException exception at run time. Here’s an
example of an unboxing cast that fails:

Circle c = new Circle(42);
object o = c; // doesn't box because Circle is a reference variable
int i = (int)o; // compiles okay but throws an exception at run time

 CHAPTER 8 Understanding Values and References 207

The following diagram illustrates this case.

You will use boxing and unboxing in later exercises. Keep in mind that boxing and unboxing are
expensive operations because of the amount of checking required and the need to allocate additional
heap memory. Boxing has its uses, but injudicious use can severely impair the performance of a pro-
gram. You will see an alternative to boxing in Chapter 17, “Introducing Generics.”

Casting Data Safely

By using a cast, you can specify that, in your opinion, the data referenced by an object has a spe-
cific type and that it is safe to reference the object by using that type. The key phrase here is “in
your opinion.” The C# compiler will not check that this is the case, but the runtime will. If the type
of object in memory does not match the cast, the runtime will throw an InvalidCastException, as
described in the preceding section. You should be prepared to catch this exception and handle it
appropriately if it occurs.

However, catching an exception and attempting to recover in the event that the type of an object
is not what you expected it to be is a rather cumbersome approach. C# provides two more very useful
operators that can help you perform casting in a much more elegant manner: the is and as operators.

the is Operator
You can use the is operator to verify that the type of an object is what you expect it to be, like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)
{
 WrappedInt temp = (WrappedInt)o; // This is safe; o is a WrappedInt
 ...
}

The is operator takes two operands: a reference to an object on the left and the name of a type on
the right. If the type of the object referenced on the heap has the specified type, is evaluates to true;
otherwise, is evaluates to false. The preceding code attempts to cast the reference to the object vari-
able o only if it knows that the cast will succeed.

208 part II Understanding the C# Object Model

the as Operator
The as operator fulfills a similar role to is but in a slightly truncated manner. You use the as operator
like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
{
 ... // Cast was successful
}

Like the is operator, the as operator takes an object and a type as its operands. The runtime
attempts to cast the object to the specified type. If the cast is successful, the result is returned and, in
this example, it is assigned to the WrappedInt variable temp. If the cast is unsuccessful, the as operator
evaluates to the null value and assigns that to temp instead.

There is a little more to the is and as operators than described here, and you will meet them again
in Chapter 12.

pointers and Unsafe Code
This section is purely for your information and is aimed at developers who are familiar with C
or C++. If you are new to programming, feel free to skip this section.

If you have already written programs in languages such as C or C++, much of the discussion
in this chapter concerning object references might be familiar. Although neither C nor C++ has
explicit reference types, both languages have a construct that provides similar functionality: a
pointer.

A pointer is a variable that holds the address of, or a reference to, an item in memory (on the
heap or on the stack). A special syntax is used to identify a variable as a pointer. For example,
the following statement declares the variable pi as a pointer to an integer:

int *pi;

Although the variable pi is declared as a pointer, it does not actually point anywhere until
you initialize it. For example, to use pi to point to the integer variable i, you can use the follow-
ing statements and the address-of operator (&), which returns the address of a variable:

int *pi;
int i = 99;
...
pi = &i;

You can access and modify the value held in the variable i through the pointer variable pi
like this:

*pi = 100;

 CHAPTER 8 Understanding Values and References 209

This code updates the value of the variable i to 100 because pi points to the same memory
location as the variable i.

One of the main problems that developers learning C and C++ have is understanding the
syntax used by pointers. The * operator has at least two meanings (in addition to being the arith-
metic multiplication operator), and there is often great confusion about when to use & rather
than *. The other issue with pointers is that it is easy to point somewhere invalid, or to forget to
point somewhere at all, and then try to reference the data pointed to. The result will be either
garbage or a program that fails with an error because the operating system detects an attempt
to access an illegal address in memory. There is also a whole range of security flaws in many ex-
isting systems resulting from the mismanagement of pointers; some environments (not Microsoft
Windows) fail to enforce checks that a pointer does not refer to memory that belongs to another
process, opening up the possibility that confidential data could be compromised.

Reference variables were added to C# to avoid all these problems. If you really want to, you
can continue to use pointers in C#, but you must mark the code as unsafe. The unsafe keyword
can be used to mark a block of code, or an entire method, as shown here:

public static void Main(string [] args)
{
 int x = 99, y = 100;
 unsafe
 {
 swap (&x, &y);
 }
 Console.WriteLine("x is now {0}, y is now {1}", x, y);
}

public static unsafe void swap(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

When you compile programs containing unsafe code, you must specify the Allow Unsafe
Code option when building the project. To do this, right-click the project in Solution Explorer
and then click Properties. In the Properties window, click the Build tab, select Allow Unsafe
Code, and then on the FILE menu, click Save All.

Unsafe code also has a bearing on how memory is managed. Objects created in unsafe code
are said to be unmanaged. Although not common, you might find some situations that require
you to access memory in this way, especially if you are writing code that needs to perform
some low-level Windows operations.

You will learn about the implications of using code that accesses unmanaged memory in
more detail in Chapter 14.

210 part II Understanding the C# Object Model

Summary

In this chapter, you learned about some important differences between value types that hold their
value directly on the stack and reference types that refer indirectly to their objects on the heap.
You also learned how to use the ref and out keywords on method parameters to gain access to the
arguments. You saw how assigning a value (such as the int 42) to a variable of the System.Object class
creates a boxed copy of the value on the heap and then causes the System.Object variable to refer to
this boxed copy. You also saw how assigning a variable of a value type (such as an int) to a variable of
the System.Object class copies (or unboxes) the value in the System.Object class to the memory used
by the int.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 9.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 8 Quick Reference

To Do this

Copy a value type variable Simply make the copy. Because the variable is a value type, you will have
two copies of the same value. For example:

int i = 42;
int copyi = i;

Copy a reference type variable Simply make the copy. Because the variable is a reference type, you will
have two references to the same object. For example:

Circle c = new Circle(42);
Circle refc = c;

Declare a variable that can hold a value
type or the null value

Declare the variable using the ? modifier with the type. For example:

int? i = null;

Pass an argument to a ref parameter Prefix the argument with the ref keyword. This makes the parameter an
alias for the actual argument rather than a copy of the argument. The
method may change the value of the parameter, and this change is made
to the actual argument rather than a local copy. For example:

static void Main()
{
 int arg = 42;
 DoWork(ref arg);
 Console.WriteLine(arg);
}

 CHAPTER 8 Understanding Values and References 211

To Do this

Pass an argument to an out parameter Prefix the argument with the out keyword. This makes the parameter an
alias for the actual argument rather than a copy of the argument. The
method must assign a value to the parameter, and this value is made to
the actual argument. For example:

static void Main()
{
 int arg;
 DoWork(out arg);
 Console.WriteLine(arg);
}

Box a value Initialize or assign a variable of type object to the value. For example:

object o = 42;

Unbox a value Cast the object reference that refers to the boxed value to the type of the
value variable. For example:

int i = (int)o;

Cast an object safely Use the is operator to test whether the cast is valid. For example:

WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)
{
 WrappedInt temp = (WrappedInt)o;
 ...
}

Alternatively, use the as operator to perform the cast, and test whether
the result is null. For example:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
 ...

 213

C H A P T E R 9

Creating Value types with
enumerations and Structures

After completing this chapter, you will be able to

■■ Declare an enumeration type.

■■ Create and use an enumeration type.

■■ Declare a structure type.

■■ Create and use a structure type.

■■ Explain the differences in behavior between a structure and a class.

In Chapter 8, “Understanding Values and References,” you learned about the two fundamental types
that exist in Microsoft Visual C#: value types and reference types. A value type variable holds its value
directly on the stack, whereas a reference type variable holds a reference to an object on the heap. In
Chapter 7, “Creating and Managing Classes and Objects,” you learned how to create your own refer-
ence types by defining classes. In this chapter, you’ll learn how to create your own value types.

C# supports two kinds of value types: enumerations and structures. We’ll look at each of them
in turn.

Working with Enumerations

Suppose you want to represent the seasons of the year in a program. You could use the integers 0, 1,
2, and 3 to represent spring, summer, fall, and winter, respectively. This system would work, but it’s
not very intuitive. If you used the integer value 0 in code, it wouldn’t be obvious that a particular 0
represented spring. It also wouldn’t be a very robust solution. For example, if you declare an int vari-
able named season, there is nothing to stop you from assigning it any legal integer value outside of
the set 0, 1, 2, or 3. C# offers a better solution. You can create an enumeration (sometimes called an
enum type), whose values are limited to a set of symbolic names.

214 part II Understanding the C# Object Model

Declaring an enumeration
You define an enumeration by using the enum keyword, followed by a set of symbols identifying the
legal values that the type can have, enclosed between braces. Here’s how to declare an enumeration
named Season whose literal values are limited to the symbolic names Spring, Summer, Fall, and Winter:

enum Season { Spring, Summer, Fall, Winter }

Using an enumeration
After you have declared an enumeration, you can use it in exactly the same way as any other type.
If the name of your enumeration is Season, you can create variables of type Season, fields of type
Season, and parameters of type Season, as shown in this example:

enum Season { Spring, Summer, Fall, Winter }

class Example
{
 public void Method(Season parameter) // method parameter example
 {
 Season localVariable; // local variable example
 ...
 }

 private Season currentSeason; // field example
}

Before you can read the value of an enumeration variable, it must be assigned a value. You can assign a
value that is defined by the enumeration only to an enumeration variable. For example:

Season colorful = Season.Fall;
Console.WriteLine(colorful); // writes out 'Fall'

Note As you can with all value types, you can create a nullable version of an enumeration
variable by using the ? modifier. You can then assign the null value, as well the values de-
fined by the enumeration, to the variable:

Season? colorful = null;

Notice that you have to write Season.Fall rather than just Fall. All enumeration literal names are
scoped by their enumeration type. This is useful because it allows different enumerations to coinci-
dentally contain literals with the same name.

Also, notice that when you display an enumeration variable by using Console.WriteLine, the
compiler generates code that writes out the name of the literal whose value matches the value
of the variable. If needed, you can explicitly convert an enumeration variable to a string that

 CHAPTER 9 Creating Value Types with Enumerations and Structures 215

represents its current value by using the built-in ToString method that all enumerations automati-
cally contain. For example:

string name = colorful.ToString();
Console.WriteLine(name); // also writes out 'Fall'

Many of the standard operators you can use on integer variables can also be used on enumeration
variables (except the bitwise and shift operators, which are covered in Chapter 16, “Using Indexers”).
For example, you can compare two enumeration variables of the same type for equality by using the
equality operator (==), and you can even perform arithmetic on an enumeration variable (although
the result might not always be meaningful!).

Choosing enumeration Literal Values
Internally, an enumeration type associates an integer value with each element of the enumeration.
By default, the numbering starts at 0 for the first element and goes up in steps of 1. It’s possible to
retrieve the underlying integer value of an enumeration variable. To do this, you must cast it to its
underlying type. Remember from the discussion of unboxing in Chapter 8 that casting a type converts
the data from one type to another as long as the conversion is valid and meaningful. The following
code example writes out the value 2 and not the word Fall (in the Season enumeration Spring is 0,
Summer 1, Fall 2, and Winter 3):

enum Season { Spring, Summer, Fall, Winter }
...
Season colorful = Season.Fall;
Console.WriteLine((int)colorful); // writes out '2'

If you prefer, you can associate a specific integer constant (such as 1) with an enumeration literal
(such as Spring), as in the following example:

enum Season { Spring = 1, Summer, Fall, Winter }

Important The integer value with which you initialize an enumeration literal must be a
compile-time constant value (such as 1).

If you don’t explicitly give an enumeration literal a constant integer value, the compiler gives it
a value that is 1 greater than the value of the previous enumeration literal, except for the very first
enumeration literal, to which the compiler gives the default value 0. In the preceding example, the
underlying values of Spring, Summer, Fall, and Winter are now 1, 2, 3, and 4.

You are allowed to give more than one enumeration literal the same underlying value. For exam-
ple, in the United Kingdom, Fall is referred to as Autumn. You can cater for both cultures as follows:

enum Season { Spring, Summer, Fall, Autumn = Fall, Winter }

216 part II Understanding the C# Object Model

Choosing an enumeration’s Underlying type
When you declare an enumeration, the enumeration literals are given values of type int. You can also
choose to base your enumeration on a different underlying integer type. For example, to declare that
Season’s underlying type is a short rather than an int, you can write this:

enum Season : short { Spring, Summer, Fall, Winter }

The main reason for doing this is to save memory; an int occupies more memory than a short, and
if you do not need the entire range of values available to an int, using a smaller data type can make
sense.

You can base an enumeration on any of the eight integer types: byte, sbyte, short, ushort, int, uint,
long, or ulong. The values of all the enumeration literals must fit inside the range of the chosen base
type. For example, if you base an enumeration on the byte data type, you can have a maximum of 256
literals (starting at 0).

Now that you know how to declare an enumeration, the next step is to use it. In the following
exercise, you will work with a console application to declare and use an enumeration that represents
the months of the year.

Create and use an enumeration

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the StructsAndEnums project, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 9\Windows X\StructsAndEnums folder in your Documents folder.

3. In the Code and Text Editor window, display the Month.cs file.

The source file is empty apart from the declaration of a namespace called StructsAndEnums
and a // TODO: comment.

4. Delete the // TODO: comment and add an enumeration named Month for modeling the
months of the year inside the StructsAndEnums namespace. The 12 enumeration literals for
Month are January through December.

namespace StructsAndEnums
{
 enum Month
 {
 January, February, March, April,
 May, June, July, August,
 September, October, November, December
 }
}

 CHAPTER 9 Creating Value Types with Enumerations and Structures 217

5. Display the Program.cs file in the Code and Text Editor window.

As in the exercises in previous chapters, the Main method calls the doWork method and traps
any exceptions that occur.

6. In the Code and Text Editor window, add a statement to the doWork method to declare a vari-
able named first of type Month and initialize it to Month.January. Add another statement to
write the value of the first variable to the console.

The doWork method should look like this:

static void doWork()
{
 Month first = Month.January;
 Console.WriteLine(first);
}

Note When you type the period following Month, Microsoft IntelliSense will auto-
matically display all the values in the Month enumeration.

7. On the DEBUG menu, click Start Without Debugging.

Visual Studio 2012 builds and runs the program. Confirm that the word January is written to
the console.

8. Press Enter to close the program and return to the Visual Studio 2012 programming
environment.

9. Add two more statements to the doWork method to increment the first variable and display its
new value to the console, as shown in bold here:

static void doWork()
{
 Month first = Month.January;
 Console.WriteLine(first);
 first++;
 Console.WriteLine(first);
}

10. On the DEBUG menu, click Start Without Debugging.

Visual Studio 2012 builds and runs the program. Confirm that the words January and February
are written to the console.

Notice that performing a mathematical operation (such as the increment operation) on an
enumeration variable changes the internal integer value of the variable. When the variable is
written to the console, the corresponding enumeration value is displayed.

218 part II Understanding the C# Object Model

11. Press Enter to close the program and return to the Visual Studio 2012 programming
environment.

12. Modify the first statement in the doWork method to initialize the first variable to Month.
December, as shown in bold here:

static void doWork()
{
 Month first = Month.December;
 Console.WriteLine(first);
 first++;
 Console.WriteLine(first);
}

13. On the DEBUG menu, click Start Without Debugging.

Visual Studio 2012 builds and runs the program. This time, the word December is written to
the console, followed by the number 12.

Although you can perform arithmetic on an enumeration, if the results of the operation are
outside the range of values defined for the enumerator, all the runtime can do is interpret the
value of the variable as the corresponding integer value.

14. Press Enter to close the program and return to the Visual Studio 2012 programming
environment.

Working with Structures

You saw in Chapter 8 that classes define reference types that are always created on the heap. In some
cases, the class can contain so little data that the overhead of managing the heap becomes dispro-
portionate. In these cases, it is better to define the type as a structure. A structure is a value type.
Because structures are stored on the stack, as long as the structure is reasonably small, the memory
management overhead is often reduced.

Like a class, a structure can have its own fields, methods, and (with one important exception dis-
cussed later in this chapter) constructors.

 CHAPTER 9 Creating Value Types with Enumerations and Structures 219

Common Structure types
You might not have realized it, but you have already used structures in previous exercises in
this book. In C#, the primitive numeric types int, long, and float are aliases for the structures
System.Int32, System.Int64, and System.Single, respectively. These structures have fields and
methods, and you can actually call methods on variables and literals of these types. For ex-
ample, all of these structures provide a ToString method that can convert a numeric value to its
string representation. The following statements are all legal in C#:

int i = 99;
Console.WriteLine(i.ToString());
Console.WriteLine(55.ToString());
float f = 98.765F;
Console.WriteLine(f.ToString());
Console.WriteLine(98.765F.ToString());

You don’t see this use of the ToString method often, because the Console.WriteLine method
calls it automatically when it is needed. It is more common to use some of the static methods
exposed by these structures. For example, in earlier chapters you used the static int.Parse
method to convert a string to its corresponding integer value. What you are actually doing is
invoking the Parse method of the Int32 structure:

string s = "42";
int i = int.Parse(s); // exactly the same as Int32.Parse

These structures also include some useful static fields. For example, Int32.MaxValue is the maxi-
mum value that an int can hold, and Int32.MinValue is the smallest value you can store in an int.

The following table shows the primitive types in C# and their equivalent types in the Microsoft .NET
Framework. Notice that the string and object types are classes (reference types) rather than structures.

Keyword Type equivalent Class or structure

bool System.Boolean Structure

byte System.Byte Structure

decimal System.Decimal Structure

double System.Double Structure

float System.Single Structure

int System.Int32 Structure

long System.Int64 Structure

object System.Object Class

sbyte System.SByte Structure

short System.Int16 Structure

string System.String Class

uint System.UInt32 Structure

ulong System.UInt64 Structure

ushort System.UInt16 Structure

220 part II Understanding the C# Object Model

Declaring a Structure
To declare your own structure type, you use the struct keyword followed by the name of the type, fol-
lowed by the body of the structure between opening and closing braces. Syntactically, the process is
similar to declaring a class. For example, here is a structure named Time that contains three public int
fields named hours, minutes, and seconds:

struct Time
{
 public int hours, minutes, seconds;
}

As with classes, making the fields of a structure public is not advisable in most cases; there is no
way to control the values held in public fields. For example, anyone could set the value of minutes or
seconds to a value greater than 60. A better idea is to make the fields private and provide your struc-
ture with constructors and methods to initialize and manipulate these fields, as shown in this example:

struct Time
{
 private int hours, minutes, seconds;
 ...
 public Time(int hh, int mm, int ss)
 {
 this.hours = hh % 24;
 this.minutes = mm % 60;
 this.seconds = ss % 60;
 }

 public int Hours()
 {
 return this.hours;
 }
 }

Note By default, you cannot use many of the common operators on your own structure
types. For example, you cannot use operators such as the equality operator (==) and the in-
equality operator (!=) on your own structure type variables. However, you can use the built-
in Equals() method exposed by all structures to compare them, and you can also explicitly
declare and implement operators for your own structure types. The syntax for doing this is
covered in Chapter 22, “Operator Overloading.”

When you copy a value type variable, you get two copies of the value. In contrast, when you copy a ref-
erence type variable, you get two references to the same object. In summary, use structures for small data
values where it’s just as or nearly as efficient to copy the value as it would be to copy an address. Use classes
for more complex data that is too big to copy efficiently.

 CHAPTER 9 Creating Value Types with Enumerations and Structures 221

tip Use structures to implement simple concepts whose main feature is their value rather
than the functionality that they provide.

Understanding Structure and Class Differences
A structure and a class are syntactically similar, but there are a few important differences. Let’s look at
some of these variances:

■■ You can’t declare a default constructor (a constructor with no parameters) for a structure.
The following example would compile if Time were a class, but because Time is a structure,
it does not:

struct Time
{
 public Time() { ... } // compile-time error
 ...
}

The reason you can’t declare your own default constructor for a structure is that the compiler
always generates one. In a class, the compiler generates the default constructor only if you
don’t write a constructor yourself. The compiler-generated default constructor for a structure
always sets the fields to 0, false, or null—just as for a class. Therefore, you should ensure that
a structure value created by the default constructor behaves logically and makes sense with
these default values. This has some ramifications that you will explore in the next exercise.

You can initialize fields to different values by providing a nondefault constructor. However,
when you do this, your nondefault constructor must explicitly initialize all fields in your struc-
ture; the default initialization no longer occurs. If you fail to do this, you’ll get a compile-time
error. For example, although the following example would compile and silently initialize
seconds to 0 if Time were a class, because Time is a structure, it fails to compile:

struct Time
{
 private int hours, minutes, seconds;
 ...
 public Time(int hh, int mm)
 {
 this.hours = hh;
 this.minutes = mm;
 } // compile-time error: seconds not initialized
}

222 part II Understanding the C# Object Model

■■ In a class, you can initialize instance fields at their point of declaration. In a structure, you can-
not. The following example would compile if Time were a class, but because Time is a struc-
ture, it causes a compile-time error:

struct Time
{
 private int hours = 0; // compile-time error
 private int minutes;
 private int seconds;
 ...
}

The following table summarizes the main differences between a structure and a class.

Question Structure Class

Is this a value type or a reference type? A structure is a value type. A class is a reference type.

Do instances live on the stack or the heap? Structure instances are
called values and live on
the stack.

Class instances are called
objects and live on the
heap.

Can you declare a default constructor? No. Yes.

If you declare your own constructor, will the compiler still
generate the default constructor?

Yes. No.

If you don’t initialize a field in your own constructor, will
the compiler automatically initialize it for you?

No. Yes.

Are you allowed to initialize instance fields at their point
of declaration?

No. Yes.

There are other differences between classes and structures concerning inheritance. These differ-
ences are covered in Chapter 12, “Working with Inheritance.”

Declaring Structure Variables
After you have defined a structure type, you can use it in exactly the same way as any other type. For
example, if you have defined the Time structure, you can create variables, fields, and parameters of
type Time, as shown in this example:

struct Time
{
 private int hours, minutes, seconds;
 ...
}

class Example
{
 private Time currentTime;

 CHAPTER 9 Creating Value Types with Enumerations and Structures 223

 public void Method(Time parameter)
 {
 Time localVariable;
 ...
 }
}

Note As with enumerations, you can create a nullable version of a structure variable by us-
ing the ? modifier. You can then assign the null value to the variable:

Time? currentTime = null;

Understanding Structure Initialization
Earlier in this chapter, you saw how the fields in a structure can be initialized by using a constructor. If
you call a constructor, the various rules described earlier guarantee that all the fields in the structure
will be initialized:

Time now = new Time();

The following graphic depicts the state of the fields in this structure:

However, because structures are value types, you can also create structure variables without calling
a constructor, as shown in the following example:

Time now;

This time, the variable is created but its fields are left in their uninitialized state. The following
graphic depicts the state of the fields in the now variable. Any attempt to access the values in these
fields will result in a compiler error:

Note that in both cases, the Time variable is created on the stack.

224 part II Understanding the C# Object Model

If you’ve written your own structure constructor, you can also use that to initialize a structure vari-
able. As explained earlier in this chapter, a structure constructor must always explicitly initialize all its
fields. For example:

struct Time
{
 private int hours, minutes, seconds;
 ...

 public Time(int hh, int mm)
 {
 hours = hh;
 minutes = mm;
 seconds = 0;
 }
}

The following example initializes now by calling a user-defined constructor:

Time now = new Time(12, 30);

The following graphic shows the effect of this example:

It’s time to put this knowledge into practice. In the following exercise, you will create and use a
structure to represent a date.

Create and use a structure type

1. In the StructsAndEnums project, display the Date.cs file in the Code and Text Editor window.

2. Add a structure named Date inside the StructsAndEnums namespace.

This structure should contain three private fields: one named year of type int, one named
month of type Month (using the enumeration you created in the preceding exercise), and one
named day of type int. The Date structure should look exactly as follows:

struct Date
{
 private int year;
 private Month month;
 private int day;
}

 CHAPTER 9 Creating Value Types with Enumerations and Structures 225

Consider the default constructor that the compiler will generate for Date. This constructor sets
the year to 0, the month to 0 (the value of January), and the day to 0. The year value 0 is not
valid (because there was no year 0), and the day value 0 is also not valid (because each month
starts on day 1). One way to fix this problem is to translate the year and day values by imple-
menting the Date structure so that when the year field holds the value Y, this value represents
the year Y + 1900 (or you can pick a different century if you prefer), and when the day field
holds the value D, this value represents the day D + 1. The default constructor will then set the
three fields to values that represent the date 1 January 1900.

If you could override the default constructor and write your own, this would not be an issue,
as you could then initialize the year and day fields directly to valid values. You cannot do this,
though, and so you have to implement the logic in your structure to translate the compiler-
generated default values into meaningful values for your problem domain.

However, although you cannot override the default constructor, it is still good practice to
define nondefault constructors to allow a user to explicitly initialize the fields in a structure to
meaningful nondefault values.

3. Add a public constructor to the Date structure. This constructor should take three parameters:
an int named ccyy for the year, a Month named mm for the month, and an int named dd for
the day. Use these three parameters to initialize the corresponding fields. A year field with the
value Y represents the year Y + 1900, so you need to initialize the year field to the value ccyy
– 1900. A day field with the value D represents the day D + 1, so you need to initialize the day
field to the value dd – 1.

The Date structure should now look like this (with the constructor shown in bold):

struct Date
{
 private int year;
 private Month month;
 private int day;

 public Date(int ccyy, Month mm, int dd)
 {
 this.year = ccyy - 1900;
 this.month = mm;
 this.day = dd - 1;
 }
}

4. Add a public method named ToString to the Date structure after the constructor. This method
takes no arguments and returns a string representation of the date. Remember, the value of
the year field represents year + 1900, and the value of the day field represents day + 1.

226 part II Understanding the C# Object Model

Note The ToString method is a little different from the methods you have seen so
far. Every type, including structures and classes that you define, automatically has a
ToString method whether or not you want it. Its default behavior is to convert the
data in a variable to a string representation of that data. Sometimes, the default
behavior is meaningful; other times, it is less so. For example, the default behavior
of the ToString method generated for the Date struct simply generates the string
“StructsAndEnums.Date”. To quote Zaphod Beeblebrox in The Restaurant at the End
of the Universe by Douglas Adams (Pan Macmillan, 1980), this is “shrewd, but dull.”
You need to define a new version of this method that overrides the default behavior
by using the override keyword. Overriding methods are discussed in more detail in
Chapter 12.

The ToString method should look like this:

public override string ToString()
{
 string data = String.Format("{0} {1} {2}", this.month, this.day + 1,
 this.year + 1900);
 return data;
}

The Format method of the String class enables you to format data. It operates in a similar
manner to the Console.WriteLine method, except that rather than displaying data to the
console, it returns the formatted result as a string. In this example, the positional parameters
are replaced with the text representations of the values of the month field, the expression
this.day + 1, and the expression this.year + 1900. The ToString method returns the formatted
string as its result.

5. Display the Program.cs file in the Code and Text Editor window.

6. In the doWork method, comment out the existing four statements. Add code to the doWork
method to declare a local variable named defaultDate, and initialize it to a Date value con-
structed by using the default Date constructor. Add another statement to doWork to write the
defaultDate variable to the console by calling Console.WriteLine.

Note The Console.WriteLine method automatically calls the ToString method of its
argument to format the argument as a string.

 CHAPTER 9 Creating Value Types with Enumerations and Structures 227

The doWork method should now look like this:

static void doWork()
{
 ...
 Date defaultDate = new Date();
 Console.WriteLine(defaultDate);
}

Note When you type the new keyword, IntelliSense automatically detects that there
are two constructors available for the Date type.

7. On the DEBUG menu, click Start Without Debugging to build and run the program. Verify that
the date January 1 1900 is written to the console.

8. Press the Enter key to return to the Visual Studio 2012 programming environment.

9. In the Code and Text Editor window, return to the doWork method, and add two more state-
ments. In the first statement, declare a local variable named weddingAnniversary and initialize
it to July 4 2012. (I actually did get married on Independence Day.) In the second statement,
write the value of weddingAnniversary to the console.

The doWork method should now look like this:

static void doWork()
{
 ...
 Date weddingAnniversary = new Date(2012, Month.July, 4);
 Console.WriteLine(weddingAnniversary);
}

10. On the DEBUG menu, click Start Without Debugging. Confirm that the date July 4 2012 is writ-
ten to the console below the previous information.

11. Press Enter to close the program and return to Visual Studio 2012.

Copying Structure Variables
You’re allowed to initialize or assign one structure variable to another structure variable, but only if
the structure variable on the right side is completely initialized (that is, if all its fields are populated
with valid data rather than undefined values). The following example compiles because now is fully
initialized. The graphic shows the results of performing such an assignment (this image was created
on March 19, 2012).

Date now = new Date();
Date copy = now;

228 part II Understanding the C# Object Model

The following example fails to compile because now is not initialized:

Date now;
Date copy = now; // compile-time error: now has not been assigned

When you copy a structure variable, each field on the left side is set directly from the correspond-
ing field on the right side. This copying is done as a fast, single operation that copies the contents of
the entire structure and that never throws an exception. Compare this behavior with the equivalent
action if Time were a class, in which case both variables (now and copy) would end up referencing the
same object on the heap.

Note C++ programmers should note that this copy behavior cannot be customized.

In the final exercise in this chapter, you will contrast the copy behavior of a structure with that of
a class.

Compare the behavior of a structure and a class

1. In the StructsAndEnums project, display the Date.cs file in the Code and Text Editor window.

2. Add the following method to the Date structure. This method advances the date in the struc-
ture by one month. If, after advancing the month, the value of the month field has moved
beyond December, this code resets the month to January and advances the value of the year
field by 1.

public void AdvanceMonth()
{
 this.month++;
 if (this.month == Month.December + 1)
 {
 this.month = Month.January;
 this.year++;
 }
}

 CHAPTER 9 Creating Value Types with Enumerations and Structures 229

3. Display the Program.cs file in the Code and Text Editor window.

4. In the doWork method, comment out the first two statements that create and display the
value of the defaultDate variable.

5. Add the following code shown in bold to the end of the doWork method. This code creates a
copy of the weddingAnniversary variable called weddingAnniversaryCopy and prints out the
value of this new variable.

static void doWork()
{
 ...
 Date weddingAnniversaryCopy = weddingAnniversary;
 Console.WriteLine("Value of copy is {0}", weddingAnniversaryCopy);
}

6. Add the following statements shown in bold to the end of the doWork method. These state-
ments call the AdvanceMonth method of the weddingAnniversary variable and then display
the value of the weddingAnniversary and weddingAnniversaryCopy variables:

static void doWork()
{
 ...
 weddingAnniversary.AdvanceMonth();
 Console.WriteLine("New value of weddingAnniversary is {0}", weddingAnniversary);
 Console.WriteLine("Value of copy is still {0}", weddingAnniversaryCopy);
}

7. On the DEBUG menu, click Start Without Debugging to build and run the application. Verify
that the console window displays the following messages:

July 4 2012
Value of copy is July 4 2012
New value of weddingAnniversary is August 4 2012
Value of copy is still July 4 2012

The first message displays the initial value of the weddingAnniversary variable (July 4 2012).
The second message displays the value of the weddingAnniversaryCopy variable. You can see
that it contains a the same date held in the weddingAnniversary variable (July 4 2012). The
third message displays the value of the weddingAnniversary variable after changing the month
to August (August 4 2012). The final statement displays the value of the weddingAnniversary-
Copy variable. Notice that it has not changed from its original value of July 4 2012. The final
message displays the value of the weddingAnniversaryCopy variable again. You can see that
this has not changed and is still July 4 2012.

If Date was a class, creating a copy would reference the same object in memory as the original
instance. Changing the month in the original instance would therefore also change the date
referenced through the copy. You will verify this assertion in the following steps.

230 part II Understanding the C# Object Model

8. Press Enter and return to Visual Studio 2012.

9. Display the Date.cs file in the Code and Text Editor window.

10. Change the Date structure into a class, as shown in bold in the following code example:

class Date
{
 ...
}

11. On the DEBUG menu, click Start Without Debugging to build and run the application again.
Verify that the console window displays the following messages:

July 4 2012
Value of copy is July 4 2012
New value of weddingAnniversary is August 4 2012
Value of copy is still August 4 2012

The first three messages are the same as before. However, the fourth message shows that the
value of the weddingAnniversaryCopy variable has changed to August 4 2012.

12. Press Enter and return to Visual Studio 2012.

Structs and Compatibility with the Windows runtime on Windows 8
All C# applications execute by using the common language runtime (CLR) of the .NET Frame-
work. The CLR is responsible for providing a safe and secure environment for your application
code in the form of a virtual machine (if you have come from a Java background, this concept
should be familiar to you). When you compile a C# application, the compiler converts your C#
code into a set of instructions using a pseudo-machine code called the Common Intermediate
Language (CIL). These are the instructions that are stored in an assembly. When you run a C#
application, the CLR takes responsibility for converting the CIL instructions into real machine
instructions that the processor on your computer can understand and execute. This whole envi-
ronment is known as the managed execution environment, and C# programs are frequently
referred to as managed code. You can also write managed code in other languages supported
by the .NET Framework, such as Visual Basic and F#.

On Windows 7 and earlier, you can additionally write unmanaged applications, also known
as native code, based on the Win32 APIs, which are the APIs that interface directly with the
Windows operating system (the CLR also converts many of the functions in the .NET Frame-
work into Win32 API calls if you are running a managed application, although this process is
totally transparent to your code). To do this, you can use a language such as C++. The .NET
Framework enables you to integrate managed code into unmanaged applications and vice
versa through a set of interoperability technologies. Detailing how these technologies work
and how you use them is beyond the scope of this book—suffice to say that it was not always
straightforward.

 CHAPTER 9 Creating Value Types with Enumerations and Structures 231

Windows 8 implements an alternative strategy, in the form of the Windows Runtime, or
WinRT. WinRT provides a layer on top of the Win32 API (and other selected native Windows
APIs) that is optimized for touch-based devices and user interfaces, such as those found on
Windows 8 tablets. When you build a native application on Windows 8, you use the APIs ex-
posed by WinRT rather than Win32. Similarly, the CLR on Windows 8 also uses WinRT; all man-
aged code written by using C# or any other managed language is still executed by the CLR, but
at run time the CLR converts your code into WinRT API calls rather than Win32. Between them,
the CLR and WinRT are responsible for managing and running your code safely.

A primary purpose of WinRT is to simplify the interoperability between languages,
enabling you to more easily integrate components developed by using different programming
languages into a single seamless application. However, this simplicity comes at a cost, and you
have to be prepared to make a few compromises based on the different feature sets of the
various languages available. In particular, for historical reasons, although C++ supports struc-
tures, it does not recognize member functions. In C# terms, a member function is an instance
method. So, if you are building C# structs that you want to package up in a library to make
available to developers programming in C++ (or any other unmanaged language), these structs
should not contain any instance methods. The same restriction applies to static methods in
structs. If you want to include instance or static methods, you should convert your struct into a
class. Additionally, structs cannot contain private fields, and all public fields must be C# primi-
tive types, conforming value types, or strings.

WinRT also imposes some other restrictions on C# classes and structs if you want to make
them available to native applications. Chapter 13, “Creating Interfaces and Defining Abstract
Classes” provides more information.

Summary

In this chapter, you saw how to create and use enumerations and structures. You learned some of the
similarities and differences between a structure and a class, and you saw how to define constructors
to initialize the fields in a structure. You also saw how to represent a structure as a string by overriding
the ToString method.

•	 If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 10.

•	 If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

232 part II Understanding the C# Object Model

Chapter 9 Quick Reference

To Do this

Declare an enumeration Write the keyword enum, followed by the name of the type, followed
by a pair of braces containing a comma-separated list of the enumera-
tion literal names. For example:

enum Season { Spring, Summer, Fall, Winter }

Declare an enumeration variable Write the name of the enumeration on the left followed by the name
of the variable, followed by a semicolon. For example:

Season currentSeason;

Assign an enumeration variable to a value Write the name of the enumeration literal in combination with the
name of the enumeration to which it belongs. For example:

currentSeason = Spring; // error
currentSeason = Season.Spring; // correct

Declare a structure type Write the keyword struct, followed by the name of the structure type,
followed by the body of the structure (the constructors, methods, and
fields). For example:

struct Time
{
 public Time(int hh, int mm, int ss)
 { ... }
 ...
 private int hours, minutes, seconds;
}

Declare a structure variable Write the name of the structure type, followed by the name of the
variable, followed by a semicolon. For example:

Time now;

Initialize a structure variable to a value Initialize the variable to a structure value created by calling the struc-
ture constructor. For example:

Time lunch = new Time(12, 30, 0);

 233

C H A P T E R 1 0

Using arrays

After completing this chapter, you will be able to

■■ Declare array variables.

■■ Populate an array with a set of data items.

■■ Access the data items held in an array.

■■ Iterate through the data items in an array.

You have already seen how to create and use variables of many different types. However, all the
examples of variables you have seen so far have one thing in common—they hold information about
a single item (an int, a float, a Circle, a Date, and so on). What happens if you need to manipulate a
set of items? One solution is to create a variable for each item in the set, but this leads to a number
of further questions: How many variables do you need? How should you name them? If you need
to perform the same operation on each item in the set (such as increment each variable in a set of
integers), how would you avoid very repetitive code? This solution assumes that you know, when you
write the program, how many items you will need, but how often is this the case? For example, if you
are writing an application that reads and processes records from a database, how many records are in
the database, and how likely is this number to change?

Arrays provide a mechanism that helps to solve the problems posed by these questions.

Declaring and Creating an Array

An array is an unordered sequence of items. All the items in an array have the same type, unlike the
fields in a structure or class, which can have different types. The items in an array live in a contiguous
block of memory and are accessed by using an index, unlike fields in a structure or class, which are
accessed by name.

234 part II Understanding the C# Object Model

Declaring array Variables
You declare an array variable by specifying the name of the element type, followed by a pair of
square brackets, followed by the variable name. The square brackets signify that the variable is an
array. For example, to declare an array of int variables named pins (for holding a set of personal iden-
tification numbers) you can write

int[] pins; // Personal Identification Numbers

Note Microsoft Visual Basic programmers should observe that square brackets, not paren-
theses, are used in the declaration. C and C++ programmers should note that the size of
the array is not part of the declaration. Java programmers should discern that the square
brackets must be placed before the variable name.

You are not restricted to primitive types as array elements. You can also create arrays of structures,
enumerations, and classes. For example, you can create an array of Date structures like this:

Date[] dates;

tip It is often useful to give array variables plural names, such as places (where each ele-
ment is a Place), people (where each element is a Person), or times (where each element is
a Time).

Creating an array Instance
Arrays are reference types, regardless of the type of their elements. This means that an array variable
refers to a contiguous block of memory holding the array elements on the heap, just as a class vari-
able refers to an object on the heap. (To review values and references and the differences between
the stack and the heap, see Chapter 8, “Understanding Values and References.”) This rule applies
regardless of the type of the data items in the array. Even if the array contains a value type such as int,
the memory will still be allocated on the heap; this is the one case where value types are not allocated
memory on the stack.

Remember that when you declare a class variable, memory is not allocated for the object until you
create the instance by using new. Arrays follow the same pattern: when you declare an array variable,
you do not declare its size and no memory is allocated (other than to hold the reference on the stack).
The array is given memory only when the instance is created, and this is also the point at which you
specify the size of the array.

To create an array instance, you use the new keyword followed by the element type, followed by
the size of the array you’re creating between square brackets. Creating an array also initializes its

 CHAPTER 10 Using Arrays 235

elements by using the now familiar default values (0, null, or false, depending on whether the type is
numeric, a reference, or a Boolean, respectively). For example, to create and initialize a new array of
four integers for the pins variable declared earlier, you write this:

pins = new int[4];

The following graphic illustrates what happens when you declare an array, and later when you cre-
ate an instance of the array:

Because the memory for the array instance is allocated dynamically, the size of the array does not
have to be a constant; it can be calculated at run time, as shown in this example:

int size = int.Parse(Console.ReadLine());
int[] pins = new int[size];

You’re also allowed to create an array whose size is 0. This might sound bizarre, but it’s useful in
situations where the size of the array is determined dynamically and could even be 0. An array of size
0 is not a null array; it is an array containing zero elements.

Populating and Using an Array

When you create an array instance, all the elements of the array are initialized to a default value
depending on their type. For example, all numeric values default to 0, objects are initialized to null,
DateTime values are set to the date and time "01/01/0001 00:00:00", and strings are initialized to null.
You can modify this behavior and initialize the elements of an array to specific values if you prefer.
You achieve this by providing a comma-separated list of values between a pair of braces. For example,
to initialize pins to an array of four int variables whose values are 9, 3, 7, and 2, you write this:

int[] pins = new int[4]{ 9, 3, 7, 2 };

The values between the braces do not have to be constants—they can be values calculated at run
time, as shown in this example, which populates the pins array with four random numbers:

Random r = new Random();
int[] pins = new int[4]{ r.Next() % 10, r.Next() % 10,
 r.Next() % 10, r.Next() % 10 };

236 part II Understanding the C# Object Model

Note The System.Random class is a pseudorandom number generator. The Next method
returns a nonnegative random integer in the range 0 to Int32.MaxValue by default. The
Next method is overloaded, and other versions enable you to specify the minimum value
and maximum value of the range. The default constructor for the Random class seeds the
random number generator with a time-dependent seed value, which reduces the possibility
of the class duplicating a sequence of random numbers. An overloaded version of the con-
structor enables you to provide your own seed value. That way, you can generate a repeat-
able sequence of random numbers for testing purposes.

The number of values between the braces must exactly match the size of the array instance being
created:

int[] pins = new int[3]{ 9, 3, 7, 2 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7, 2 }; // OK

When you’re initializing an array variable in this way, you can actually omit the new expression and
the size of the array. In this case, the compiler calculates the size from the number of initializers and
generates code to create the array. For example:

int[] pins = { 9, 3, 7, 2 };

If you create an array of structures or objects, you can initialize each structure in the array by call-
ing the structure or class constructor, as shown in this example:

Time[] schedule = { new Time(12,30), new Time(5,30) };

Creating an Implicitly typed array
The element type when you declare an array must match the type of elements that you attempt to
store in the array. For example, if you declare pins to be an array of int, as shown in the preceding
examples, you cannot store a double, string, struct, or anything that is not an int in this array. If you
specify a list of initializers when declaring an array, you can let the C# compiler infer the actual type
of the elements in the array for you, like this:

var names = new[]{"John", "Diana", "James", "Francesca"};

In this example, the C# compiler determines that the names variable is an array of strings. It is
worth pointing out a couple of syntactic quirks in this declaration. First, you omit the square brackets
from the type; the names variable in this example is declared simply as var, not var[]. Second, you
must specify the new operator and square brackets before the initializer list.

If you use this syntax, you must ensure that all the initializers have the same type. This next
example causes the compile-time error “No best type found for implicitly typed array”:

var bad = new[]{"John", "Diana", 99, 100};

 CHAPTER 10 Using Arrays 237

However, in some cases, the compiler will convert elements to a different type if doing so makes
sense. In the following code, the numbers array is an array of double because the constants 3.5 and
99.999 are both double, and the C# compiler can convert the integer values 1 and 2 to double values:

var numbers = new[]{1, 2, 3.5, 99.999};

Generally, it is best to avoid mixing types and hoping that the compiler will convert them for you.

Implicitly typed arrays are most useful when you are working with anonymous types, as described
in Chapter 7, “Creating and Managing Classes and Objects.” The following code creates an array of
anonymous objects, each containing two fields specifying the name and age of the members of my
family:

var names = new[] { new { Name = "John", Age = 47 },
 new { Name = "Diana", Age = 46 },
 new { Name = "James", Age = 20 },
 new { Name = "Francesca", Age = 18 } };

The fields in the anonymous types must be the same for each element of the array.

accessing an Individual array element
To access an individual array element, you must provide an index indicating which element you
require. Array indexes are zero-based. The initial element of an array lives at index 0 and not index 1.
An index value of 1 accesses the second element. For example, you can read the contents of element
2 of the pins array into an int variable by using the following code:

int myPin;
myPin = pins[2];

Similarly, you can change the contents of an array by assigning a value to an indexed element:

myPin = 1645;
pins[2] = myPin;

All array element access is bounds-checked. If you specify an index that is less than 0 or greater
than or equal to the length of the array, the compiler throws an IndexOutOfRangeException exception,
as in this example:

try
{
 int[] pins = { 9, 3, 7, 2 };
 Console.WriteLine(pins[4]); // error, the 4th and last element is at index 3
}
catch (IndexOutOfRangeException ex)
{
 ...
}

238 part II Understanding the C# Object Model

Iterating through an array
All arrays are actually instances of the System.Array class in the Microsoft .NET Framework, and this
class defines a number of useful properties and methods. For example, you can query the Length
property to discover how many elements an array contains and iterate through all the elements of an
array by using a for statement. The following sample code writes the array element values of the pins
array to the console:

int[] pins = { 9, 3, 7, 2 };
for (int index = 0; index < pins.Length; index++)
{
 int pin = pins[index];
 Console.WriteLine(pin);
}

Note Length is a property and not a method, which is why you don't use parentheses
when you call it. You will learn about properties in Chapter 15, “Implementing Properties to
Access Fields.”

It is common for new programmers to forget that arrays start at element 0 and that the last ele-
ment is numbered Length – 1. C# provides the foreach statement to enable you to iterate through
the elements of an array without worrying about these issues. For example, here’s the preceding for
statement rewritten as an equivalent foreach statement:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

The foreach statement declares an iteration variable (in this example, int pin) that automatically
acquires the value of each element in the array. The type of this variable must match the type of
the elements in the array. The foreach statement is the preferred way to iterate through an array; it
expresses the intention of the code directly, and all of the for loop scaffolding drops away. However,
in a few cases, you’ll find that you have to revert to a for statement:

■■ A foreach statement always iterates through the whole array. If you want to iterate through
only a known portion of an array (for example, the first half) or bypass certain elements (for
example, every third element), it’s easier to use a for statement.

■■ A foreach statement always iterates from index 0 through index Length – 1. If you want to
iterate backward or in some other sequence, it’s easier to use a for statement.

■■ If the body of the loop needs to know the index of the element rather than just the value of
the element, you’ll have to use a for statement.

■■ If you need to modify the elements of the array, you’ll have to use a for statement. This is because
the iteration variable of the foreach statement is a read-only copy of each element of the array.

 CHAPTER 10 Using Arrays 239

tip It’s perfectly safe to attempt to iterate through a zero-length array by using a foreach
statement.

You can declare the iteration variable as a var and let the C# compiler work out the type of the
variable from the type of the elements in the array. This is especially useful if you don’t actually know
the type of the elements in the array, such as when the array contains anonymous objects. The follow-
ing example demonstrates how you can iterate through the array of family members shown earlier:

var names = new[] { new { Name = "John", Age = 47 },
 new { Name = "Diana", Age = 46 },
 new { Name = "James", Age = 20 },
 new { Name = "Francesca", Age = 18 } };
foreach (var familyMember in names)
{
 Console.WriteLine("Name: {0}, Age: {1}", familyMember.Name, familyMember.Age);
}

passing arrays as parameters and return Values for a Method
You can define methods that take arrays as parameters or pass them back as return values.

The syntax for passing an array as a parameter is much the same as declaring an array. For exam-
ple, the following code sample defines a method called ProcessData that takes an array of integers
as a parameter. The body of the method iterates through the array and performs some unspecified
processing on each element:

public void ProcessData(int[] data)
{
 foreach (int i in data)
 {
 ...
 }
}

It is important to remember that arrays are reference objects, so if you modify the contents of an
array passed as a parameter inside a method such as ProcessData, then the modification is visible
through all references to the array, including the original argument passed as the parameter.

To return an array from a method, you specify the type of the array as the return type. In the
method, you create and populate the array. The following example prompts the user for the size of an
array, followed by the data for each element. The array created by the method is passed back as the
return value:

public int[] ReadData()
{
 Console.WriteLine("How many elements?");
 string reply = Console.ReadLine();
 int numElements = int.Parse(reply);

240 part II Understanding the C# Object Model

 int[] data = new int[numElements];
 for (int i = 0; i < numElements; i++)
 {
 Console.WriteLine("Enter data for element {0}", i);
 reply = Console.ReadLine();
 int elementData = int.Parse(reply);
 data[i] = elementData;
 }
 return data;
}

You can call the ReadData method like this:

int[] data = ReadData();

array parameters and the Main Method
You may have noticed that the Main method for an application takes an array of strings as a
parameter:

static void Main(string[] args)
{
 ...
}

Remember that the Main method is called when your program starts running; it is the entry
point of your application. If you start the application from the command line, you can specify
additional command-line arguments. The Microsoft Windows operating system passes these
arguments to the common language runtime (CLR), which in turn passes them as arguments to
the Main method. This mechanism gives you a simple way to enable a user to provide informa-
tion when an application starts running rather than prompting the user interactively, which is
useful if you want to build utilities that can be run from automated scripts.

The following example is taken from a utility application called MyFileUtil that processes
files. It expects a set of file names on the command line, and it calls the ProcessFile method (not
shown) to handle each file specified:

static void Main(string[] args)
{
 foreach (string filename in args)
 {
 ProcessFile(filename);
 }
}

The user can run the MyFileUtil application from the command line like this:

MyFileUtil C:\Temp\TestData.dat C:\Users\John\Documents\MyDoc.txt

Each command line argument is separated by a space. It is up to the MyFileUtil application
to verify that these arguments are valid.

 CHAPTER 10 Using Arrays 241

Copying Arrays

Arrays are reference types (remember that an array is an instance of the System.Array class). An array
variable contains a reference to an array instance. This means that when you copy an array variable,
you actually end up with two references to the same array instance, for example:

int[] pins = { 9, 3, 7, 2 };
int[] alias = pins; // alias and pins refer to the same array instance

In this example, if you modify the value at pins[1], the change will also be visible by reading alias[1].

If you want to make a copy of the array instance (the data on the heap) that an array variable refers
to, you have to do two things. First, you create a new array instance of the same type and the same
length as the array you are copying. Second, you copy the data element by element from the original
array to the new array, as in this example:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
for (int i = 0; i < pins.Length; i++)
{
 copy[i] = pins[i];
}

Note that this code uses the Length property of the original array to specify the size of the
new array.

Copying an array is actually a common requirement of many applications—so much so that
the System.Array class provides some useful methods that you can employ to copy an array rather
than writing your own code. For example, the CopyTo method copies the contents of one array into
another array given a specified starting index. The following example copies all the elements from the
pins array to the copy array starting at element zero:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
pins.CopyTo(copy, 0);

Another way to copy the values is to use the System.Array static method named Copy. As with
CopyTo, you must initialize the target array before calling Copy:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
Array.Copy(pins, copy, copy.Length);

Note Make sure that you specify a valid value for the length parameter of the
Array.Copy method. If you provide a negative value, the method throws an
ArgumentOutOfRangeException exception. If you specify a value that is greater than
the number of elements in the source array, the method throws an ArgumentException
exception.

242 part II Understanding the C# Object Model

Yet another alternative is to use the System.Array instance method named Clone. You can call this
method to create an entire array and copy it in one action:

int[] pins = { 9, 3, 7, 2 };
int[] copy = (int[])pins.Clone();

Note Clone methods were first described in Chapter 8. The Clone method of the Array
class returns an object rather than Array, which is why you must cast it to an array of the
appropriate type when you use it. Furthermore, the Clone, CopyTo, and Copy methods all
create a shallow copy of an array (shallow and deep copying are described in Chapter 8). If
the elements in the array being copied contain references, the Clone method simply copies
the references rather than the objects being referred to. After copying, both arrays refer to
the same set of objects. If you need to create a deep copy of such an array, you must use
appropriate code in a for loop.

Using Multidimensional Arrays

The arrays shown so far have contained only a single dimension, and you can think of them as simple
lists of values. You can create arrays with more than one dimension. For example, to create a two-
dimensional array, you specify an array that requires two integer indexes. The following code creates
a two-dimensional array of 24 integers called items. If it helps, you can think of the array as a table
with the first dimension specifying a number of rows and the second specifying a number of columns.

int[,] items = new int[4, 6];

To access an element in the array, you provide two index values to specify the “cell” holding the
element. (A cell is the intersection of a row and a column.) The following code shows some examples
using the items array:

items[2, 3] = 99; // set the element at cell(2,3) to 99
items[2, 4] = items [2,3]; // copy the element in cell(2, 3) to cell(2, 4)
items[2, 4]++; // increment the integer value at cell(2, 4)

There is no limit on the number of dimensions that you can specify for an array. The next code
example creates and uses an array called cube that contains three dimensions. Notice that you must
specify three indexes to access each element in the array.

int[, ,] cube = new int[5, 5, 5];
cube[1, 2, 1] = 101;
cube[1, 2, 2] = cube[1, 2, 1] * 3;

 CHAPTER 10 Using Arrays 243

At this point, it is worth giving a word of caution about creating arrays with more than three
dimensions. Specifically, arrays can be very memory hungry. The cube array contains 125 elements
(5 * 5 * 5). A four-dimensional array where each dimension has a size of 5 contains 625 elements. If
you start to create arrays with three or more dimensions, you can soon run out of memory. Therefore,
you should always be prepared to catch and handle OutOfMemoryException exceptions when you use
multidimensional arrays.

Creating Jagged arrays
In C#, ordinary multidimensional arrays are sometimes referred to as rectangular arrays. Each dimen-
sion has a regular shape. For example, in the following tabular two-dimensional items array, every row
has a column containing 40 elements, and there are 160 elements in total:

int[,] items = new int[4, 40];

As mentioned in the previous section, multidimensional arrays can consume a lot of memory.
If the application uses only some of the data in each column, then allocating memory for unused
elements is a waste. In this scenario, you can use a jagged array, where each column has a different
length, like this:

int[][] items = new int[4][];
int[] columnForRow0 = new int[3];
int[] columnForRow1 = new int[10];
int[] columnForRow2 = new int[40];
int[] columnForRow3 = new int[25];
items[0] = columnForRow0;
items[1] = columnForRow1;
items[2] = columnForRow2;
items[3] = columnForRow3;
...

In this example, the application requires only 3 elements in the first column, 10 elements in the
second column, 40 elements in the third column, and 25 elements in the final column. This code
illustrates an array of arrays—rather than items being a two-dimensional array, it has only a single
dimension, but the elements in that dimension are themselves arrays. Furthermore, the total size of
the items array is 78 elements rather than 160; no space is allocated for elements that the application
is not going to use.

It is worth highlighting some of the syntax in this example. The following declaration specifies that
items is an array of arrays of int.

int[][] items;

The following statement initializes items to hold four elements, each of which is an array of inde-
terminate length:

items = new int[4][];

244 part II Understanding the C# Object Model

The arrays columnForRow0 to columnForRow3 are all single-dimensional int arrays, initialized
to hold the required amount of data for each column. Finally, each column array is assigned to the
appropriate elements in the items array, like this:

items[0] = columnForRow0;

Recall that arrays are reference objects, so this statement simply adds a reference to
columnForRow0 to the first element in the items array; it does not actually copy any data. You can
populate data in this column either by assigning a value to an indexed element in columnForRow0 or
by referencing it through the items array. The following statements are equivalent:

columnForRow0[1] = 99;
items[0][1] = 99;

You can extend this idea further if you want to create arrays of arrays of arrays rather than rectangular
three-dimensional arrays, and so on.

Note If you have written code using the Java programming language in the past, you
should be familiar with this concept. Java does not have multidimensional arrays, but in-
stead you can create arrays of arrays exactly as just described.

In the following exercise, you will use arrays to implement an application that deals playing cards
as part of a card game. The application displays a form with four hands of cards dealt at random from
a regular (52-card) pack of playing cards. You will complete the code that deals the cards for each
hand.

Use arrays to implement a card game

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Cards project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 10\Windows X\Cards Using Arrays folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging to build and run the application.

A form appears with the caption Card Game, four text boxes (labeled North, South, East, and
West), and a button with the caption Deal.

If you are using Windows 7, the form looks like this:

 CHAPTER 10 Using Arrays 245

If you are using Windows 8, the Deal button is on the app bar rather than on the main form, and the
application looks like this:

Note This is the preferred mechanism for locating command buttons in Windows
Store apps, and from here on all Windows Store apps presented in this book will fol-
low this style. To display the app bar, right-click the form.

4. Click Deal.

Nothing happens. You have not yet implemented the code that deals the cards; this is what
you will do in this exercise.

5. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging.

246 part II Understanding the C# Object Model

6. In Solution Explorer, locate the Value.cs file. Open this file in the Code and Text Editor window.

This file contains an enumeration called Value, which represents the different values that a
card can have, in ascending order:

enum Value { Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten, Jack, Queen, King,
Ace }

7. Open the Suit.cs file in the Code and Text Editor window.

This file contains an enumeration called Suit, which represents the suits of cards in a regular
pack:

enum Suit { Clubs, Diamonds, Hearts, Spades }

8. Display the PlayingCard.cs file in the Code and Text Editor window.

This file contains the PlayingCard class. This class models a single playing card.

class PlayingCard
{
 private readonly Suit suit;
 private readonly Value value;

 public PlayingCard(Suit s, Value v)
 {
 this.suit = s;
 this.value = v;
 }

 public override string ToString()
 {
 string result = string.Format("{0} of {1}", this.value, this.suit);
 return result;
 }

 public Suit CardSuit()
 {
 return this.suit;
 }

 public Value CardValue()
 {
 return this.value;
 }
}

This class has two readonly fields that represent the value and suit of the card. The constructor
initializes these fields.

 CHAPTER 10 Using Arrays 247

Note A readonly field is useful for modeling data that should not change after it
has been initialized. You can assign a value to a readonly field by using an initializer
when you declare it, or in a constructor, but thereafter you cannot change it.

The class contains a pair of methods called CardValue and CardSuit that return this informa-
tion, and it overrides the ToString method to return a string representation of the card.

Note The CardValue and CardSuit methods are actually better implemented as
properties. You will learn how to do this in Chapter 15.

9. Open the Pack.cs file in the Code and Text Editor window.

This file contains the Pack class, which models a pack of playing cards. At the top of the Pack
class are two public const int fields called NumSuits and CardsPerSuit. These two fields specify
the number of suits in a pack of cards and the number of cards in each suit. The private card-
Pack variable is a two-dimensional array of PlayingCard objects. You will use the first dimen-
sion to specify the suit and the second dimension to specify the value of the card in the suit.
The randomCardSelector variable is a random number generated based on the Random class.
You will use the randomCardSelector variable to help shuffle the cards before they are dealt to
each hand.

class Pack
{
 public const int NumSuits = 4;
 public const int CardsPerSuit = 13;
 private PlayingCard[,] cardPack;
 private Random randomCardSelector = new Random();
 ...
}

10. Locate the default constructor for the Pack class. Currently, this constructor is empty apart
from a // TODO: comment. Delete the comment, and add the statement shown in bold to
instantiate the cardPack array with the appropriate values for each dimension:

public Pack()
{
 this.cardPack = new PlayingCard[NumSuits, CardsPerSuit];
}

248 part II Understanding the C# Object Model

11. Add the following code shown in bold to the Pack constructor. These statements populate the
cardPack array with a full, sorted deck of cards.

public Pack()
{
 this.cardPack = new PlayingCard[NumSuits, CardsPerSuit];
 for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
 {
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 this.cardPack[(int)suit, (int)value] = new PlayingCard(suit, value);
 }
 }
}

The outer for loop iterates through the list of values in the Suit enumeration, and the inner
loop iterates through the values each card can have in each suit. The inner loop creates a new
PlayingCard object of the specified suit and value, and adds it to the appropriate element in
the cardPack array.

Note You must use one of the integer types as indexes into an array. The suit and
value variables are enumeration variables. However, enumerations are based on the
integer types, so it is safe to cast them to int as shown in the code.

12. Find the DealCardFromPack method in the Pack class. The purpose of this method is to pick a
random card from the pack, remove the card from the pack to prevent it from being selected
again, and then pass it back as the return value from the method.

The first task in this method is to pick a suit at random. Delete the comment and the state-
ment that throws the NotImplementedException exception from this method and replace them
with the following statement shown in bold:

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
}

This statement uses the Next method of the randomCardSelector random number genera-
tor object to return a random number corresponding to a suit. The parameter to the Next
method specifies the exclusive upper bound of the range to use; the value selected is between
0 and this value minus 1. Note that the value returned is an int, so it has to be cast before you
can assign it a Suit variable.

There is always the possibility that there are no more cards left of the selected suit. You need
to handle this situation and pick another suit if necessary.

 CHAPTER 10 Using Arrays 249

13. After the code that selects a suit at random, add the following while loop shown in bold. This
loop calls the IsSuitEmpty method to determine whether there are any cards of the speci-
fied suit left in the pack (you will implement the logic for this method shortly). If not, it picks
another suit at random (it might actually pick the same suit again) and checks again. The loop
repeats the process until it finds a suit with at least one card left.

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
 while (this.IsSuitEmpty(suit))
 {
 suit = (Suit)randomCardSelector.Next(NumSuits);
 }
}

14. You have now selected a suit at random with at least one card left. The next task is to pick a
card at random in this suit. You can use the random number generator to select a card value,
but as before, there is no guarantee that the card with the chosen value has not already been
dealt. However, you can use the same idiom as before: call the IsCardAlreadyDealt method
(which you will examine and complete later) to determine whether the card has been dealt
before, and if so, pick another card at random and try again, repeating the process until a card
is found. Add the following statements shown in bold to the DealCardFromPack method, after
the existing code, to do this:

public PlayingCard DealCardFromPack()
{
 ...
 Value value = (Value)randomCardSelector.Next(CardsPerSuit);
 while (this.IsCardAlreadyDealt(suit, value))
 {
 value = (Value)randomCardSelector.Next(CardsPerSuit);
 }
}

15. You have now selected a random playing card that has not been dealt previously. Add the
following code to the end of the DealCardFromPack method to return this card and set the
corresponding element in the cardPack array to null:

public PlayingCard DealCardFromPack()
{
 ...
 PlayingCard card = this.cardPack[(int)suit, (int)value];
 this.cardPack[(int)suit, (int)value] = null;
 return card;
}

16. Locate the IsSuitEmpty method. Remember that the purpose of this method is to take a Suit
parameter and return a Boolean value indicating whether there are any more cards of this suit
left in the pack. Delete the comment and the statement that throws the NotImplemented-
Exception exception from this method, and add the following code shown in bold:

250 part II Understanding the C# Object Model

private bool IsSuitEmpty(Suit suit)
{
 bool result = true;
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 if (!IsCardAlreadyDealt(suit, value))
 {
 result = false;
 break;
 }
 }

 return result;
}

This code iterates through the possible card values and determines whether there is a card
left in the cardPack array that has the specified suit and value by using the IsCardAlreadyDealt
method, which you will complete in the next step. If the loop finds a card, the value in the
result variable is set to false and the break statement causes the loop to terminate. If the loop
completes without finding a card, the result variable remains set to its initial value of true. The
value of the result variable is passed back as the return value of the method.

17. Find the IsCardAlreadyDealt method. The purpose of this method is to determine whether
the card with the specified suit and value has already been dealt and removed from the pack.
You will see later that when the DealFromPack method deals a card, it removes the card from
the cardPack array and sets the corresponding element to null. Replace the comment and the
statement that throws the NotImplementedException exception in this method with the code
shown in bold:

private bool IsCardAlreadyDealt(Suit suit, Value value)
{
 return (this.cardPack[(int)suit, (int)value] == null);
}

This statement returns true if the element in the cardPack array corresponding to the suit and
value is null, and it returns false otherwise.

18. The next step is to add the selected playing card to a hand. Open the Hand.cs file, and display
it in the Code and Text Editor window. This file contains the Hand class, which implements a
hand of cards (that is, all cards dealt to one player).

This file contains a public const int field called HandSize, which is set to the size of a hand of
cards (13). It also contains an array of PlayingCard objects, which is initialized by using the
HandSize constant. The playingCardCount field will be used by your code to keep track of how
many cards the hand currently contains as it is being populated.

 CHAPTER 10 Using Arrays 251

class Hand
{
 public const int HandSize = 13;
 private PlayingCard[] cards = new PlayingCard[HandSize];
 private int playingCardCount = 0;
 ...
}

The ToString method generates a string representation of the cards in the hand. It uses a
foreach loop to iterate through the items in the cards array and calls the ToString method on
each PlayingCard object it finds. These strings are concatenated together with a newline char-
acter in between (the \n character) for formatting purposes.

public override string ToString()
{
 string result = "";
 foreach (PlayingCard card in this.cards)
 {
 result += card.ToString() + "\n";
 }

 return result;
}

19. Locate the AddCardToHand method in the Hand class. The purpose of this method is to add
the playing card specified as the parameter to the hand. Add the statements shown in bold to
this method:

public void AddCardToHand(PlayingCard cardDealt)
{
 if (this.playingCardCount >= HandSize)
 {
 throw new ArgumentException("Too many cards");
 }
 this.cards[this.playingCardCount] = cardDealt;
 this.playingCardCount++;
}

This code first checks to make sure that the hand is not already full and throws an Argument
Exception exception if it is (this should never occur, but it is good practice to be safe). Oth-
erwise, the card is added to the cards array at the index specified by the playingCardCount
variable, and this variable is then incremented.

20. In Solution Explorer, expand the MainWindow.xaml node and then open the MainWindow.
xaml.cs file in the Code and Text Editor window. This is the code for the Card Game window.
Locate the dealClick method. This method runs when the user clicks the Deal button. Cur-
rently, it contains an empty try block and an exception handler that displays a message if an
exception occurs.

252 part II Understanding the C# Object Model

21. Add the following statement shown in bold to the try block:

private void dealClick(object sender, RoutedEventArgs e)
{
 try
 {
 pack = new Pack();
 }
 catch (Exception ex)
 {
 ...
 }
}

This statement simply creates a new pack of cards. You earlier saw that this class contains a
two-dimensional array holding the cards in the pack, and the constructor populates this array
with the details of each card. You now need to create four hands of cards from this pack.

22. Add the following statements shown in bold to the try block:

try
{
 pack = new Pack();

 for (int handNum = 0; handNum < NumHands; handNum++)
 {
 hands[handNum] = new Hand();
 }
}
catch (Exception ex)
{
 ...
}

This for loop creates four hands from the pack of cards and stores them in an array called
hands. Each hand is initially empty, so you need to deal the cards from the pack to each hand.

23. Add the following code shown in bold to the for loop:

try
{
 ...
 for (int handNum = 0; handNum < NumHands; handNum++)
 {
 hands[handNum] = new Hand();
 for (int numCards = 0; numCards < Hand.HandSize; numCards++)

 CHAPTER 10 Using Arrays 253

 {
 PlayingCard cardDealt = pack.DealCardFromPack();
 hands[handNum].AddCardToHand(cardDealt);
 }
 }
}
catch (Exception ex)
{
 ...
}

The inner for loop populates each hand by using the DealCardFromPack method to retrieve a
card at random from the pack and the AddCardToHand method to add this card to a hand.

24. Add the following code shown in bold after the outer for loop:

try
{
 ...
 for (int handNum = 0; handNum < NumHands; handNum++)
 {
 ...
 }

 north.Text = hands[0].ToString();
 south.Text = hands[1].ToString();
 east.Text = hands[2].ToString();
 west.Text = hands[3].ToString();
}
catch (Exception ex)
{
 ...
}

When all the cards have been dealt, this code displays each hand in the text boxes on the
form. These text boxes are called north, south, east, and west. The code uses the ToString
method of each hand to format the output.

If an exception occurs at any point, the catch handler displays a message box with the error
message for the exception.

25. On the DEBUG menu, click Start Debugging. When the Card Game window appears, click
Deal. The cards in the pack should be dealt at random to each hand, and the cards in each
hand should be displayed on the form as shown in the following image:

254 part II Understanding the C# Object Model

26. Click Deal again. Verify that a new set of hands is dealt and the cards in each hand change.

27. Return to Visual Studio and stop debugging.

Summary

In this chapter, you learned how to create and use arrays to manipulate sets of data. You saw how to
declare and initialize arrays, access data held in arrays, pass arrays as parameters to methods, and
return arrays from methods. You also learned how to create multidimensional arrays and how to use
arrays of arrays.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 11.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 10 Using Arrays 255

Chapter 10 Quick Reference

To Do this

Declare an array variable Write the name of the element type, followed by square brackets,
followed by the name of the variable, followed by a semicolon. For
example:

bool[] flags;

Create an instance of an array Write the keyword new, followed by the name of the element type,
followed by the size of the array enclosed in square brackets. For
example:

bool[] flags = new bool[10];

Initialize the elements of an array to specific
values

For an array, write the specific values in a comma-separated list en-
closed in braces. For example:

bool[] flags = { true, false, true, false };

Find the number of elements in an array Use the Length property. For example:

int [] flags = ...;
...
int noOfElements = flags.Length;

Access a single array element Write the name of the array variable, followed by the integer index of
the element enclosed in square brackets. Remember, array indexing
starts at 0, not 1. For example:

bool initialElement = flags[0];

Iterate through the elements of an array Use a for statement or a foreach statement. For example:

bool[] flags = { true, false, true, false };
for (int i = 0; i < flags.Length; i++)
{
 Console.WriteLine(flags[i]);
}

foreach (bool flag in flags)
{
 Console.WriteLine(flag);
}

Declare an multidimensional array variable Write the name of the element type, followed by a set of square
brackets with a comma separator indicating the number of dimen-
sions, followed by the name of the variable, followed by a semicolon.
For example, use the following to create a two-dimensional array
called table:

int[,] table;

 257

C H A P T E R 1 1

Understanding parameter arrays

After completing this chapter, you will be able to

■■ Write a method that can accept any number of arguments by using the params keyword.

■■ Write a method that can accept any number of arguments of any type by using the params
keyword in combination with the object type.

■■ Explain the differences between methods that take parameter arrays and methods that take
optional parameters.

Parameter arrays are useful if you want to write methods that can take any number of arguments,
possibly of different types, as parameters. If you are familiar with object-oriented concepts, you might
be grinding your teeth in frustration at the previous sentence. After all, the object-oriented approach
to solving this problem is to define overloaded methods. However, overloading is not always the most
suitable approach, especially if you need to create a method that can take a truly variable number of
parameters, each of which might vary in type whenever the method is invoked. This chapter describes
how you can use parameter arrays to address situations such as this.

Overloading: A Recap

Overloading is the technical term for declaring two or more methods with the same name in the
same scope. Being able to overload a method is very useful in cases where you want to perform the
same action on arguments of different types. The classic example of overloading in Microsoft Visual
C# is the Console.WriteLine method. This method is overloaded numerous times so that you can pass
any primitive type argument. The following code example illustrates some of the ways in which the
WriteLine method is defined in the Console class:

class Console
{
 public static void WriteLine(Int32 value)
 public static void WriteLine(Double value)
 public static void WriteLine(Decimal value)
 public static void WriteLine(Boolean value)
 public static void WriteLine(String value)
 ...
}

258 part II Understanding the C# Object Model

Note The documentation for the WriteLine method uses the structure types defined in
the System namespace for its parameters rather than the C# aliases for these types. For ex-
ample, the overload that prints out the value for an int actually takes an Int32 as the param-
eter. Refer back to Chapter 9, “Creating Value Types with Enumerations and Structures,” for
a list of the structure types and their mappings to C# aliases for these types.

As useful as overloading is, it doesn’t cover every case. In particular, overloading doesn’t easily
handle a situation in which the type of parameters doesn’t vary but the number of parameters does.
For example, what if you want to write many values to the console? Do you have to provide versions
of Console.WriteLine that can take two parameters of various combinations, other versions that can
take three parameters, and so on? That would quickly get tedious. And wouldn’t the massive dupli-
cation of all these overloaded methods worry you? It should. Fortunately, there is a way to write a
method that takes a variable number of arguments (a variadic method): you can use a parameter array
(a parameter declared with the params keyword).

To understand how params arrays solve this problem, it helps to first understand the uses and
shortcomings of ordinary arrays.

Using Array Arguments

Suppose you want to write a method to determine the minimum value in a set of values passed as
parameters. One way is to use an array. For example, to find the smallest of several int values, you
could write a static method named Min with a single parameter representing an array of int values:

class Util
{
 public static int Min(int[] paramList)
 {
 // Verify that the caller has provided at least one parameter.
 // If not, throw an ArgumentException exception – it is not possible
 // to find the smallest value in an empty list.
 if (paramList == null || paramList.Length == 0)
 {
 throw new ArgumentException("Util.Min: not enough arguments");
 }

 // Set the current minimum value found in the list of parameters to the first item
 int currentMin = paramList[0];

 // Iterate through the list of parameters, searching to see whether any of them
 // are smaller than the value held in currentMin
 foreach (int i in paramList)

 CHAPTER 11 Understanding Parameter Arrays 259

 {
 // If the loop finds an item that is smaller than the value held in
 // currentMin, then set currentMin to this value
 if (i < currentMin)
 {
 currentMin = i;
 }
 }

 // At the end of the loop, currentMin holds the value of the smallest
 // item in the list of parameters, so return this value.
 return currentMin;
 }
}

Note The ArgumentException class is specifically designed to be thrown by a method if the
arguments supplied do not meet the requirements of the method.

To use the Min method to find the minimum of two int variables named first and second, you can
write this:

int[] array = new int[2];
array[0] = first;
array[1] = second;
int min = Util.Min(array);

And to use the Min method to find the minimum of three int variables (named first, second, and
third), you can write this:

int[] array = new int[3];
array[0] = first;
array[1] = second;
array[2] = third;
int min = Util.Min(array);

You can see that this solution avoids the need for a large number of overloads, but it does so at a
price: you have to write additional code to populate the array that you pass in. You can, of course, use
an anonymous array if you prefer, like this:

int min = Util.Min(new int[] {first, second, third});

However, the point is you still need to create and populate an array, and the syntax can get a little
confusing. The solution is to get the compiler to write some of this code for you by using a params
array as the parameter to the Min method.

260 part II Understanding the C# Object Model

Declaring a params array
A params array enables you pass a variable number of arguments to a method. You indicate a
params array by using the params keyword as an array parameter modifier when you define the
method parameters. For example, here’s Min again—this time with its array parameter declared as
a params array:

class Util
{
 public static int Min(params int[] paramList)
 {
 // code exactly as before
 }
}

The effect of the params keyword on the Min method is that it allows you to call it by using any
number of integer arguments without worrying about creating an array. For example, to find the
minimum of two integer values, you can simply write this:

int min = Util.Min(first, second);

The compiler translates this call into code similar to this:

int[] array = new int[2];
array[0] = first;
array[1] = second;
int min = Util.Min(array);

To find the minimum of three integer values, you write the code shown here, which is also con-
verted by the compiler to the corresponding code that uses an array:

int min = Util.Min(first, second, third);

Both calls to Min (one call with two arguments and another with three arguments) resolve to the
same Min method with the params keyword. And as you can probably guess, you can call this Min
method with any number of int arguments. The compiler just counts the number of int arguments,
creates an int array of that size, fills the array with the arguments, and then calls the method by pass-
ing the single array parameter.

Note C and C++ programmers might recognize params as a type-safe equivalent of the
varargs macros from the header file stdarg.h. Java also has a varargs facility that operates in
a similar manner to the params keyword in C#.

 CHAPTER 11 Understanding Parameter Arrays 261

There are several points worth noting about params arrays:

■■ You can’t use the params keyword with multidimensional arrays. The code in the following
example will not compile:

// compile-time error
public static int Min(params int[,] table)
...

■■ You can’t overload a method based solely on the params keyword. The params keyword does
not form part of a method’s signature, as shown in this example:

// compile-time error: duplicate declaration
public static int Min(int[] paramList)
...
public static int Min(params int[] paramList)
...

■■ You’re not allowed to specify the ref or out modifier with params arrays, as shown in this
example:

// compile-time errors
public static int Min(ref params int[] paramList)
...
public static int Min(out params int[] paramList)
...

■■ A params array must be the last parameter. (This means that you can have only one params
array per method.) Consider this example:

// compile-time error
public static int Min(params int[] paramList, int i)
...

■■ A non-params method always takes priority over a params method. This means that if you
want to, you can still create an overloaded version of a method for the common cases. For
example:

public static int Min(int leftHandSide, int rightHandSide)
...
public static int Min(params int[] paramList)
...

The first version of the Min method is used when called using two int arguments. The second
version is used if any other number of int arguments is supplied. This includes the case where the
method is called with no arguments. Adding the non-params array method might be a useful optimi-
zation technique because the compiler won’t have to create and populate so many arrays.

262 part II Understanding the C# Object Model

Using params object[]
A parameter array of type int is very useful because it enables you to pass any number of int argu-
ments in a method call. However, what if not only the number of arguments varies but also the
argument type? C# has a way to solve this problem, too. The technique is based on the facts that
object is the root of all classes and that the compiler can generate code that converts value types
(things that aren’t classes) to objects by using boxing, as described in Chapter 8, “Understanding
Values and References.” You can use a parameters array of type object to declare a method that
accepts any number of object arguments, allowing the arguments passed in to be of any type. Look
at this example:

class Black
{
 public static void Hole(params object [] paramList)
 ...
}

I’ve called this method Black.Hole, because no argument can escape from it:

■■ You can pass the method no arguments at all, in which case the compiler will pass an object
array whose length is 0:

Black.Hole();
// converted to Black.Hole(new object[0]);

■■ You can call the Black.Hole method by passing null as the argument. An array is a reference
type, so you’re allowed to initialize an array with null:

Black.Hole(null);

■■ You can pass the Black.Hole method an actual array. In other words, you can manually create
the array normally generated by the compiler:

object[] array = new object[2];
array[0] = "forty two";
array[1] = 42;
Black.Hole(array);

■■ You can pass the Black.Hole method arguments of different types, and these arguments will
automatically be wrapped inside an object array:

Black.Hole("forty two", 42);
//converted to Black.Hole(new object[]{"forty two", 42});

 CHAPTER 11 Understanding Parameter Arrays 263

the Console.WriteLine Method
The Console class contains many overloads for the WriteLine method. One of these overloads
looks like this:

public static void WriteLine(string format, params Object[] arg);

This overload enables the WriteLine method to support a format string argument that
contains placeholders, each of which can be replaced at run time with a variable of any type.
Here’s an example of a call to this method (the variables fname and lname are strings, mi is a
char, and age is an int):

Console.WriteLine("Forename:{0}, Middle Initial:{1}, Last name:{2}, Age:{3}", fname,
mi, lname, age);

The compiler resolves this call into the following:

Console.WriteLine("Forename:{0}, Middle Initial:{1}, Last name:{2}, Age:{3}", new
object[4]{fname, mi, lname, age});

Using a params array
In the following exercise, you will implement and test a static method named Sum. The purpose of
this method is to calculate the sum of a variable number of int arguments passed to it, returning the
result as an int. You will do this by writing Sum to take a params int[] parameter. You will implement
two checks on the params parameter to ensure that the Sum method is completely robust. You will
then call the Sum method with a variety of different arguments to test it.

Write a params array method

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the ParamsArray project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 11\Windows X\ParamArrays folder in your Documents folder.

The ParamsArray project contains the Program class in the Programs.cs file, including the
doWork method framework that you have seen in previous chapters. You will implement the
Sum method as a static method of another class called Util (short for “utility”), which you will
add to the project.

3. In Solution Explorer, right-click the ParamsArray project in the ParamsArray solution, point to
Add, and then click Class.

264 part II Understanding the C# Object Model

4. In the Add New Item – ParamsArray dialog box, click the Class template in the middle pane,
type Util.cs in the Name text box type, and then click Add.

The Util.cs file is created and added to the project. It contains an empty class named Util in the
ParamsArray namespace.

5. Add a public static method named Sum to the Util class. This method should return an int and
accept a params array of int values. It should look like this:

public static int Sum(params int[] paramList)
{
}

The first step in implementing the Sum method is to check the paramList parameter. Apart
from containing a valid set of integers, it can also be null or it can be an array of zero length.
In both of these cases, it is difficult to calculate the sum, so the best option is to throw an
ArgumentException exception. (You could argue that the sum of the integers in a zero-length
array is 0, but treat this situation as an exception in this example.)

6. Add code shown below in bold to Sum. This code throws an ArgumentException exception if
paramList is null.

The Sum method should now look like this:

public static int Sum(params int[] paramList)
{
 if (paramList == null)
 {
 throw new ArgumentException("Util.Sum: null parameter list");
 }
}

7. Add code to the Sum method that throws an ArgumentException exception if the length of the
parameter list array is 0, as shown in bold here:

public static int Sum(params int[] paramList)
{
 if (paramList == null)
 {
 throw new ArgumentException("Util.Sum: null parameter list");
 }

 if (paramList.Length == 0)
 {
 throw new ArgumentException("Util.Sum: empty parameter list");
 }
}

If the array passes these two tests, the next step is to add all the elements inside the array
together. You can use a foreach statement to add all the elements together. You will need a
local variable to hold the running total.

 CHAPTER 11 Understanding Parameter Arrays 265

8. Declare an integer variable named sumTotal, and initialize it to 0 following the code from the
preceding step.

public static int Sum(params int[] paramList)
{
 ...
 if (paramList.Length == 0)
 {
 throw new ArgumentException("Util.Sum: empty parameter list");
 }

 int sumTotal = 0;
}

9. Add a foreach statement to the Sum method to iterate through the paramList array. The
body of this foreach loop should add each element in the array to sumTotal. At the end of the
method, return the value of sumTotal by using a return statement, as shown in bold here:

public static int Sum(params int[] paramList)
{
 ...
 int sumTotal = 0;
 foreach (int i in paramList)
 {
 sumTotal += i;
 }
 return sumTotal;
}

10. On the BUILD menu, click Build Solution. Confirm that your solution builds without any errors.

test the Util.Sum method

1. Display the Program.cs file in the Code and Text Editor window.

2. In the Code and Text Editor window, delete the // TODO: comment and add the following
statement to the doWork method:

Console.WriteLine(Util.Sum(null));

3. On the DEBUG menu, click Start Without Debugging.

The program builds and runs, writing the following message to the console:

Exception: Util.Sum: null parameter list

This confirms that the first check in the method works.

4. Press the Enter key to close the program and return to Visual Studio 2012.

266 part II Understanding the C# Object Model

5. In the Code and Text Editor window, change the call to Console.WriteLine in doWork as shown
here:

Console.WriteLine(Util.Sum());

This time, the method is called without any arguments. The compiler translates the empty
argument list into an empty array.

6. On the DEBUG menu, click Start Without Debugging.

The program builds and runs, writing the following message to the console:

Exception: Util.Sum: empty parameter list

This confirms that the second check in the method works.

7. Press the Enter key to close the program and return to Visual Studio 2012.

8. Change the call to Console.WriteLine in doWork as follows:

Console.WriteLine(Util.Sum(10, 9, 8, 7, 6, 5, 4, 3, 2, 1));

9. On the DEBUG menu, click Start Without Debugging.

Verify that the program builds, runs, and writes the value 55 to the console.

10. Press Enter to close the application and return to Visual Studio 2012.

Comparing Parameter Arrays and Optional Parameters

In Chapter 3, “Writing Methods and Applying Scope,” you saw how to define methods that take
optional parameters. At first glance, it appears there is a degree of overlap between methods that use
parameter arrays and methods that take optional parameters. However, there are fundamental differ-
ences between them:

■■ A method that takes optional parameters still has a fixed parameter list, and you cannot pass
an arbitrary list of arguments. The compiler generates code that inserts the default values
onto the stack for any missing arguments before the method runs, and the method is not
aware of which of the arguments are caller provided and which are compiler-generated
defaults.

■■ A method that uses a parameter array effectively has a completely arbitrary list of parameters,
and none of them has a default value. Furthermore, the method can determine exactly how
many arguments the caller provided.

Generally, you use parameter arrays for methods that can take any number of parameters (includ-
ing none), whereas you use optional parameters only where it is not convenient to force a caller to
provide an argument for every parameter.

 CHAPTER 11 Understanding Parameter Arrays 267

There is one final question worth pondering. If you define a method that takes a parameter list and
provide an overload that takes optional parameters, it is not always immediately apparent which ver-
sion of the method will be called if the argument list in the calling statement matches both method
signatures. You will investigate this scenario in the final exercise in this chapter.

Compare a params array and optional parameters

1. Return to the ParamsArray solution in Visual Studio 2012, and display the Util.cs file in the
Code and Text Editor window.

2. Add the following Console.WriteLine statement shown in bold to the start of the Sum method
in the Util class:

public static int Sum(params int[] paramList)
{
 Console.WriteLine("Using parameter list");
 ...
}

3. Add another implementation of the Sum method to the Util class. This version should take
four optional int parameters, each with a default value of 0. In the body of the method, output
the message “Using optional parameters” and then calculate and return the sum of the four
parameters. The completed method should look like this:

public static int Sum(int param1 = 0, int param2 = 0, int param3 = 0, int param4 = 0)
{
 Console.WriteLine("Using optional parameters");
 int sumTotal = param1 + param2 + param3 + param4;
 return sumTotal;
}

4. Display the Program.cs file in the Code and Text Editor window.

5. In the doWork method, comment out the existing code and add the following statement:

Console.WriteLine(Util.Sum(2, 4, 6, 8));

This statement calls the Sum method, passing four int parameters. This call matches both
overloads of the Sum method.

6. On the DEBUG menu, click Start Without Debugging to build and run the application.

When the application runs, it displays the following messages:

Using optional parameters
20

In this case, the compiler generated code that called the method that takes four optional
parameters. This is the version of the method that most closely matches the method call.

268 part II Understanding the C# Object Model

7. Press Enter and return to Visual Studio.

8. In the doWork method, change the statement that calls the Sum method and remove the final
argument (8), as shown here:

Console.WriteLine(Util.Sum(2, 4, 6));

9. On the DEBUG menu, click Start Without Debugging to build and run the application.

When the application runs, it displays the following messages:

Using optional parameters
12

The compiler still generated code that called the method that takes optional parameters, even
though the method signature does not exactly match the call. Given a choice between a method
that takes optional parameters and a method that takes a parameter list, the C# compiler will use
the method that takes optional parameters.

10. Press Enter and return to Visual Studio.

11. In the doWork method, change the statement that calls the Sum method again and add two
more arguments:

Console.WriteLine(Util.Sum(2, 4, 6, 8, 10));

12. On the DEBUG menu, click Start Without Debugging to build and run the application.

When the application runs, it displays the following messages:

Using parameter list
30

This time there are more arguments than the method that takes optional parameters specifies,
so the compiler generated code that calls the method that takes a parameter array.

13. Press Enter and return to Visual Studio.

Summary

In this chapter, you learned how to use a params array to define a method that can take any number
of arguments. You also saw how to use a params array of object types to create a method that accepts
any number of arguments of any type. In addition, you saw how the compiler resolves method calls
when it has a choice between calling a method that takes a parameter array and a method that takes
optional parameters.

 CHAPTER 11 Understanding Parameter Arrays 269

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 12.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 11 Quick Reference

To Do this

Write a method that accepts any number of
arguments of a given type

Write a method whose parameter is a params array of the given
type. For example, a method that accepts any number of bool argu-
ments is declared like this:

someType Method(params bool[] flags)
{
 ...
}

Write a method that accepts any number of
arguments of any type

Write a method whose parameter is a params array whose elements
are of type object. For example:

someType Method(params object[] paramList)
{
 ...
}

 271

C H A P T E R 1 2

Working with Inheritance

After completing this chapter, you will be able to

■■ Create a derived class that inherits features from a base class.

■■ Control method hiding and overriding by using the new, virtual, and override keywords.

■■ Limit accessibility within an inheritance hierarchy by using the protected keyword.

■■ Define extension methods as an alternative mechanism to using inheritance.

Inheritance is a key concept in the world of object orientation. You can use inheritance as a tool to
avoid repetition when defining different classes that have a number of features in common and are
quite clearly related to each other. Perhaps they are different classes of the same type, each with its
own distinguishing feature—for example, managers, manual workers, and all employees of a factory.
If you were writing an application to simulate the factory, how would you specify that managers and
manual workers have a number of features that are the same but also have other features that are
different? For example, they all have an employee reference number, but managers have different
responsibilities and perform different tasks than manual workers.

This is where inheritance proves useful.

What Is Inheritance?

If you ask several experienced programmers the meaning of the term inheritance, you will typi-
cally get different and conflicting answers. Part of the confusion stems from the fact that the word
inheritance itself has several subtly different meanings. If someone bequeaths something to you in a
will, you are said to inherit it. Similarly, we say that you inherit half of your genes from your mother
and half of your genes from your father. Both of these uses of the word inheritance have very little to
do with inheritance in programming.

Inheritance in programming is all about classification—it’s a relationship between classes. For
example, when you were at school, you probably learned about mammals, and you learned that
horses and whales are examples of mammals. Each has every attribute that a mammal does (it
breathes air, it suckles its young, it is warm-blooded, and so on), but each also has its own special
features (a horse has hooves, but a whale has flippers and a fluke).

272 part II Understanding the C# Object Model

How can you model a horse and a whale in a program? One way would be to create two distinct
classes named Horse and Whale. Each class can implement the behaviors that are unique to that type
of mammal, such as Trot (for a horse) or Swim (for a whale), in its own way. But how do you handle
behaviors that are common to a horse and a whale, such as Breathe or SuckleYoung? You can add
duplicate methods with these names to both classes, but this situation becomes a maintenance night-
mare, especially if you also decide to start modeling other types of mammals, such as Human and
Aardvark.

In C#, you can use class inheritance to address these issues. A horse, a whale, a human, and an
aardvark are all types of mammals, so you can create a class named Mammal that provides the com-
mon functionality exhibited by these types. You can then declare that the Horse, Whale, Human, and
Aardvark classes all inherit from Mammal. These classes then automatically include the functionality
of the Mammal class (Breathe, SuckleYoung, and so on), but you can also augment each class with the
functionality peculiar to a particular type of mammal to the corresponding class—the Trot method for
the Horse class and the Swim method for the Whale class. If you need to modify the way in which a
common method such as Breathe works, you need to change it in only one place, the Mammal class.

Using Inheritance

You declare that a class inherits from another class by using the following syntax:

class DerivedClass : BaseClass
{
 ...
}

The derived class inherits from the base class, and the methods in the base class become part of
the derived class. In C#, a class is allowed to derive from, at most, one base class; a class is not allowed
to derive from two or more classes. However, unless DerivedClass is declared as sealed, you can create
further derived classes that inherit from DerivedClass using the same syntax. (You will learn about
sealed classes in Chapter 13, “Creating Interfaces and Defining Abstract Classes.”)

class DerivedSubClass : DerivedClass
{
 ...
}

In the example described earlier, you could declare the Mammal class as shown here. The methods
Breathe and SuckleYoung are common to all mammals.

class Mammal
{
 public void Breathe()
 {
 ...
 }

 CHAPTER 12 Working with Inheritance 273

 public void SuckleYoung()
 {
 ...
 }
 ...
}

You could then define classes for each different type of mammal, adding more methods as neces-
sary. For example:

class Horse : Mammal
{
 ...
 public void Trot()
 {
 ...
 }
}

class Whale : Mammal
{
 ...
 public void Swim()
 {
 ...
 }
}

Note C++ programmers should notice that you do not and cannot explicitly specify
whether the inheritance is public, private, or protected. C# inheritance is always implicitly
public. Java programmers should note the use of the colon and that there is no extends
keyword.

If you create a Horse object in your application, you can call the Trot, Breathe, and SuckleYoung
methods:

Horse myHorse = new Horse();
myHorse.Trot();
myHorse.Breathe();
myHorse.SuckleYoung();

Similarly, you can create a Whale object, but this time you can call the Swim, Breathe, and
SuckleYoung methods; Trot is not available as it is only defined in the Horse class.

274 part II Understanding the C# Object Model

Important Inheritance applies only to classes, not structures. You cannot define your own
inheritance hierarchy with structures, and you cannot define a structure that derives from a
class or another structure.

All structures actually inherit from an abstract class called System.ValueType. (You will learn
about abstract classes in Chapter 13.) This is purely an implementation detail of the way in
which the Microsoft .NET Framework defines the common behavior for stack-based value
types; you are unlikely to make direct use of ValueType in your own applications.

the System.Object Class revisited
The System.Object class is the root class of all classes. All classes implicitly derive from System.Object.
Consequently, the C# compiler silently rewrites the Mammal class as the following code (which you
can write explicitly if you really want to):

class Mammal : System.Object
{
 ...
}

Any methods in the System.Object class are automatically passed down the chain of inheritance
to classes that derive from Mammal, such as Horse and Whale. What this means in practical terms is
that all classes that you define automatically inherit all the features of the System.Object class. This
includes methods such as ToString (first discussed in Chapter 2, “Working with Variables, Operators,
and Expressions”), which is used to convert an object to a string, typically for display purposes.

Calling Base Class Constructors
In addition to the methods that it inherits, a derived class automatically contains all the fields from the
base class. These fields usually require initialization when an object is created. You typically perform
this kind of initialization in a constructor. Remember that all classes have at least one constructor. (If
you don’t provide one, the compiler generates a default constructor for you.)

It is good practice for a constructor in a derived class to call the constructor for its base class as
part of the initialization, which enables the base class constructor to perform any additional initial-
ization that it requires. You can specify the base keyword to call a base class constructor when you
define a constructor for an inheriting class, as shown in this example:

 CHAPTER 12 Working with Inheritance 275

class Mammal // base class
{
 public Mammal(string name) // constructor for base class
 {
 ...
 }
 ...
}

class Horse : Mammal // derived class
{
 public Horse(string name)
 : base(name) // calls Mammal(name)
 {
 ...
 }
 ...
}

If you don’t explicitly call a base class constructor in a derived class constructor, the compiler
attempts to silently insert a call to the base class’s default constructor before executing the code in
the derived class constructor. Taking the earlier example, the compiler rewrites this:

class Horse : Mammal
{
 public Horse(string name)
 {
 ...
 }
 ...
}

as this:

class Horse : Mammal
{
 public Horse(string name)
 : base()
 {
 ...
 }
 ...
}

This works if Mammal has a public default constructor. However, not all classes have a public
default constructor (for example, remember that the compiler generates only a default constructor
if you don’t write any nondefault constructors), in which case forgetting to call the correct base class
constructor results in a compile-time error.

276 part II Understanding the C# Object Model

assigning Classes
In previous examples in this book, you have seen how to declare a variable by using a class type, and
then how to use the new keyword to create an object. You have also seen how the type-checking
rules of C# prevent you from assigning an object of one type to a variable declared as a different
type. For example, given the definitions of the Mammal, Horse, and Whale classes shown here, the
code that follows these definitions is illegal:

class Mammal
{
 ...
}

class Horse : Mammal
{
 ...
}

class Whale : Mammal
{
 ...
}
...
Horse myHorse = new Horse(...);
Whale myWhale = myHorse; // error - different types

However, it is possible to refer to an object from a variable of a different type as long as the type
used is a class that is higher up the inheritance hierarchy. So the following statements are legal:

Horse myHorse = new Horse(...);
Mammal myMammal = myHorse; // legal, Mammal is the base class of Horse

If you think about it in logical terms, all Horses are Mammals, so you can safely assign an object
of type Horse to a variable of type Mammal. The inheritance hierarchy means that you can think of a
Horse simply as a special type of Mammal; it has everything that a Mammal has with a few extra bits
defined by any methods and fields you added to the Horse class. You can also make a Mammal vari-
able refer to a Whale object. There is one significant limitation, however—when referring to a Horse
or Whale object by using a Mammal variable, you can access only methods and fields that are defined
by the Mammal class. Any additional methods defined by the Horse or Whale class are not visible
through the Mammal class:

Horse myHorse = new Horse(...);
Mammal myMammal = myHorse;
myMammal.Breathe(); // OK - Breathe is part of the Mammal class
myMammal.Trot(); // error - Trot is not part of the Mammal class

Note The preceding discussion explains why you can assign almost anything to an object
variable. Remember that object is an alias for System.Object, and all classes inherit from
System.Object either directly or indirectly.

 CHAPTER 12 Working with Inheritance 277

Be warned that the converse situation is not true. You cannot unreservedly assign a Mammal
object to a Horse variable:

Mammal myMammal = new Mammal(...);
Horse myHorse = myMammal; // error

This looks like a strange restriction, but remember that not all Mammal objects are Horses—some
might be Whales. You can assign a Mammal object to a Horse variable as long as you check that the
Mammal is really a Horse first, by using the as or is operator, or by using a cast (you learned about
the is and as operators and casts in Chapter 7, “Creating and Managing Classes and Objects”). The
following code example uses the as operator to check that myMammal refers to a Horse, and if it
does, the assignment to myHorseAgain results in myHorseAgain referring to the same Horse object.
If myMammal refers to some other type of Mammal, the as operator returns null instead.

Horse myHorse = new Horse(...);
Mammal myMammal = myHorse; // myMammal refers to a Horse
...
Horse myHorseAgain = myMammal as Horse; // OK - myMammal was a Horse
...
Whale myWhale = new Whale(...);
myMammal = myWhale;
...
myHorseAgain = myMammal as Horse; // returns null - myMammal was a Whale

Declaring new Methods
One of the hardest tasks in the realm of computer programming is thinking up unique and meaning-
ful names for identifiers. If you are defining a method for a class and that class is part of an inheri-
tance hierarchy, sooner or later you are going to try to reuse a name that is already in use by one of
the classes higher up the hierarchy. If a base class and a derived class happen to declare two methods
that have the same signature, you will receive a warning when you compile the application.

Note The method signature refers to the name of the method and the number and
types of its parameters, but not its return type. Two methods that have the same name
and that take the same list of parameters have the same signature, even if they return
different types.

A method in a derived class masks (or hides) a method in a base class that has the same signature.
For example, if you compile the following code, the compiler generates a warning message telling
you that Horse.Talk hides the inherited method Mammal.Talk:

278 part II Understanding the C# Object Model

class Mammal
{
 ...
 public void Talk() // assume that all mammals can talk
 {
 ...
 }
}

class Horse : Mammal
{
 ...
 public void Talk() // horses talk in a different way from other mammals!
 {
 ...
 }
}

Although your code will compile and run, you should take this warning seriously. If another class
derives from Horse and calls the Talk method, it might be expecting the method implemented in the
Mammal class to be called. However, the Talk method in the Horse class hides the Talk method in
the Mammal class, and the Horse.Talk method will be called instead. Most of the time, such a coinci-
dence is at best a source of confusion, and you should consider renaming methods to avoid clashes.
However, if you’re sure that you want the two methods to have the same signature, thus hiding the
Mammal.Talk method, you can silence the warning by using the new keyword as follows:

class Mammal
{
 ...
 public void Talk()
 {
 ...
 }
}

class Horse : Mammal
{
 ...
 new public void Talk()
 {
 ...
 }
}

Using the new keyword like this does not change the fact that the two methods are completely
unrelated and that hiding still occurs. It just turns the warning off. In effect, the new keyword says,
“I know what I’m doing, so stop showing me these warnings.”

 CHAPTER 12 Working with Inheritance 279

Declaring virtual Methods
Sometimes you do want to hide the way in which a method is implemented in a base class. As an
example, consider the ToString method in System.Object. The purpose of ToString is to convert an
object to its string representation. Because this method is very useful, it is a member of the System.
Object class, thereby automatically providing all classes with a ToString method. However, how does
the version of ToString implemented by System.Object know how to convert an instance of a derived
class to a string? A derived class might contain any number of fields with interesting values that
should be part of the string. The answer is that the implementation of ToString in System.Object is
actually a bit simplistic. All it can do is convert an object to a string that contains the name of its type,
such as “Mammal” or “Horse.” This is not very useful after all. So why provide a method that is so use-
less? The answer to this second question requires a bit of detailed thought.

Obviously, ToString is a fine idea in concept, and all classes should provide a method that can be
used to convert objects to strings for display or debugging purposes. It is only the implementation
that requires attention. In fact, you are not expected to call the ToString method defined by System.
Object—it is simply a placeholder. Instead, you may find it more useful to provide your own version
of the ToString method in each class you define, overriding the default implementation in System.
Object. The version in System.Object is there only as a safety net, in case a class does not implement
or require its own specific version of the ToString method.

A method that is intended to be overridden is called a virtual method. You should be clear on the
difference between overriding a method and hiding a method. Overriding a method is a mechanism
for providing different implementations of the same method—the methods are all related because
they are intended to perform the same task, but in a class-specific manner. Hiding a method is a
means of replacing one method with another—the methods are usually unrelated and might perform
totally different tasks. Overriding a method is a useful programming concept; hiding a method is
often an error.

You can mark a method as a virtual method by using the virtual keyword. For example, the
ToString method in the System.Object class is defined like this:

namespace System
{
 class Object
 {
 public virtual string ToString()
 {
 ...
 }
 ...
 }
 ...
}

Note Java developers should note that C# methods are not virtual by default.

280 part II Understanding the C# Object Model

Declaring override Methods
If a base class declares that a method is virtual, a derived class can use the override keyword to
declare another implementation of that method. For example:

class Horse : Mammal
{
 ...
 public override string ToString()
 {
 ...
 }
}

The new implementation of the method in the derived class can call the original implementation
of the method in the base class by using the base keyword, like this:

public override string ToString()
{
 base.ToString();
 ...
}

There are some important rules you must follow when declaring polymorphic methods (as
discussed in the following sidebar, “Virtual Methods and Polymorphism”) by using the virtual and
override keywords:

■■ A virtual method cannot be private; it is intended to be exposed to other classes through
inheritance. Similarly, override methods cannot be private because a class cannot change the
protection level of a method that it inherits. However, override methods can have a special
form of privacy known as protected access, as you will find out in the next section.

■■ The signatures of the virtual and override methods must be identical; they must have the
same name, number, and types of parameters. In addition, both methods must return the
same type.

■■ You can only override a virtual method. If the base class method is not virtual and you try to
override it, you’ll get a compile-time error. This is sensible; it should be up to the designer of
the base class to decide whether its methods can be overridden.

■■ If the derived class does not declare the method by using the override keyword, it does not
override the base class method—it hides the method. In other words, it becomes an imple-
mentation of a completely different method that happens to have the same name. As before,
this will cause a compile-time hiding warning, which you can silence by using the new key-
word as previously described.

■■ An override method is implicitly virtual and can itself be overridden in a further derived class.
However, you are not allowed to explicitly declare that an override method is virtual by using
the virtual keyword.

 CHAPTER 12 Working with Inheritance 281

Virtual Methods and polymorphism
Virtual methods enable you to call different versions of the same method, based on the type
of the object determined dynamically at run time. Consider the following example classes that
define a variation on the Mammal hierarchy described earlier:

class Mammal
{
 ...
 public virtual string GetTypeName()
 {
 return "This is a mammal";
 }
}

class Horse : Mammal
{
 ...
 public override string GetTypeName()
 {
 return "This is a horse";
 }
}

class Whale : Mammal
{
 ...
 public override string GetTypeName ()
 {
 return "This is a whale";
 }
}

class Aardvark : Mammal
{
 ...
}

Notice two things: first, the override keyword used by the GetTypeName method in
the Horse and Whale classes, and second, the fact that the Aardvark class does not have a
GetTypeName method.

Now examine the following block of code:

Mammal myMammal;
Horse myHorse = new Horse(...);
Whale myWhale = new Whale(...);
Aardvark myAardvark = new Aardvark(...);

282 part II Understanding the C# Object Model

myMammal = myHorse;
Console.WriteLine(myMammal.GetTypeName()); // Horse
myMammal = myWhale;
Console.WriteLine(myMammal.GetTypeName()); // Whale
myMammal = myAardvark;
Console.WriteLine(myMammal.GetTypeName()); // Aardvark

What will be output by the three different Console.WriteLine statements? At first glance,
you would expect them all to print “This is a mammal,” because each statement calls the
GetTypeName method on the myMammal variable, which is a Mammal. However, in the first
case, you can see that myMammal is actually a reference to a Horse. (Remember, you are
allowed to assign a Horse to a Mammal variable because the Horse class inherits from the
Mammal class.) Because the GetTypeName method is defined as virtual, the runtime works
out that it should call the Horse.GetTypeName method, so the statement actually prints the
message “This is a horse.” The same logic applies to the second Console.WriteLine statement,
which outputs the message “This is a whale.” The third statement calls Console.WriteLine on an
Aardvark object. However, the Aardvark class does not have a GetTypeName method, so the
default method in the Mammal class is called, returning the string “This is a mammal.”

This phenomenon of the same statement invoking a different method depending on its
context is called polymorphism, which literally means “many forms.”

Understanding protected access
The public and private access keywords create two extremes of accessibility: public fields and methods
of a class are accessible to everyone, whereas private fields and methods of a class are accessible to
only the class itself.

These two extremes are sufficient when considering classes in isolation. However, as all experi-
enced object-oriented programmers know, isolated classes cannot solve complex problems. Inheri-
tance is a powerful way of connecting classes, and there is clearly a special and close relationship
between a derived class and its base class. Frequently, it is useful for a base class to allow derived
classes to access some of its members while hiding these same members from classes that are not
part of the inheritance hierarchy. In this situation, you can mark members with the protected keyword.
It works like this:

■■ If a class A is derived from another class B, it can access the protected class members of class
B. In other words, inside the derived class A, a protected member of class B is effectively
public.

■■ If a class A is not derived from another class B, it cannot access any protected members of
class B. So, within class A, a protected member of class B is effectively private.

C# gives programmers complete freedom to declare methods and fields as protected. How-
ever, most object-oriented programming guidelines recommend keeping your fields strictly private

 CHAPTER 12 Working with Inheritance 283

whenever possible, and only relax these restrictions when absolutely necessary. Public fields violate
encapsulation because all users of the class have direct, unrestricted access to the fields. Protected
fields maintain encapsulation for users of a class, for whom the protected fields are inaccessible.
However, protected fields still allow encapsulation to be violated by other classes that inherit from the
base class.

Note You can access a protected base class member not only in a derived class but also in
classes derived from the derived class. A protected base class member retains its protected
accessibility in a derived class and is accessible to further derived classes.

In the following exercise, you will define a simple class hierarchy for modeling different types of
vehicles. You will define a base class named Vehicle and derived classes named Airplane and Car. You
will define common methods named StartEngine and StopEngine in the Vehicle class, and you will add
some methods to both of the derived classes that are specific to those classes. Finally, you will add
a virtual method named Drive to the Vehicle class and override the default implementation of this
method in both of the derived classes.

Create a hierarchy of classes

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Vehicles project, located in the \Microsoft Press\Visual CSharp Step By Step\Chapter
12\Windows X\Vehicles folder in your Documents folder.

The Vehicles project contains the file Program.cs, which defines the Program class with the
Main and doWork methods that you have seen in previous exercises.

3. In Solution Explorer, right-click the Vehicles project, point to Add, and then click Class.

The Add New Item—Vehicles dialog box appears.

4. In the Add New Item—Vehicles dialog box, verify that the Class template is highlighted in the
middle pane, type Vehicle.cs in the Name text box, and then click Add.

The file Vehicle.cs is created and added to the project and appears in the Code and Text Editor
window. The file contains the definition of an empty class named Vehicle.

5. Add the StartEngine and StopEngine methods to the Vehicle class as shown next in bold:

class Vehicle
{
 public void StartEngine(string noiseToMakeWhenStarting)
 {
 Console.WriteLine("Starting engine: {0}", noiseToMakeWhenStarting);
 }

284 part II Understanding the C# Object Model

 public void StopEngine(string noiseToMakeWhenStopping)
 {
 Console.WriteLine("Stopping engine: {0}", noiseToMakeWhenStopping);
 }
}

All classes that derive from the Vehicle class will inherit these methods. The values for the
noiseToMakeWhenStarting and noiseToMakeWhenStopping parameters will be different for
each different type of vehicle and will help you to identify which vehicle is being started and
stopped later.

6. On the PROJECT menu, click Add Class.

The Add New Item—Vehicles dialog box appears again.

7. Type Airplane.cs in the Name text box, and then click Add.

A new file containing a class named Airplane is added to the project and appears in the Code
and Text Editor window.

8. In the Code and Text Editor window, modify the definition of the Airplane class so that it
inherits from the Vehicle class, as shown in bold here:

class Airplane : Vehicle
{
}

9. Add the TakeOff and Land methods to the Airplane class, as shown in bold here:

class Airplane : Vehicle
{
 public void TakeOff()
 {
 Console.WriteLine("Taking off");
 }

 public void Land()
 {
 Console.WriteLine("Landing");
 }
}

10. On the PROJECT menu, click Add Class.

The Add New Item—Vehicles dialog box appears again.

11. Type Car.cs in the Name text box, and then click Add.

A new file containing a class named Car is added to the project and appears in the Code and
Text Editor window.

 CHAPTER 12 Working with Inheritance 285

12. In the Code and Text Editor window, modify the definition of the Car class so that it derives
from the Vehicle class, as shown here in bold:

class Car : Vehicle
{
}

13. Add the Accelerate and Brake methods to the Car class, as shown in bold here:

class Car : Vehicle
{
 public void Accelerate()
 {
 Console.WriteLine("Accelerating");
 }

 public void Brake()
 {
 Console.WriteLine("Braking");
 }
}

14. Display the Vehicle.cs file in the Code and Text Editor window.

15. Add the virtual Drive method to the Vehicle class, as shown here in bold:

class Vehicle
{
 ...
 public virtual void Drive()
 {
 Console.WriteLine("Default implementation of the Drive method");
 }
}

16. Display the Program.cs file in the Code and Text Editor window.

17. In the doWork method, delete the // TODO: comment and add code to create an instance of
the Airplane class and test its methods by simulating a quick journey by airplane, as follows:

static void doWork()
{
 Console.WriteLine("Journey by airplane:");
 Airplane myPlane = new Airplane();
 myPlane.StartEngine("Contact");
 myPlane.TakeOff();
 myPlane.Drive();
 myPlane.Land();
 myPlane.StopEngine("Whirr");
}

286 part II Understanding the C# Object Model

18. Add the following statements shown in bold to the doWork method after the code you have
just written. These statements create an instance of the Car class and test its methods.

static void doWork()
{
 ...
 Console.WriteLine("\nJourney by car:");
 Car myCar = new Car();
 myCar.StartEngine("Brm brm");
 myCar.Accelerate();
 myCar.Drive();
 myCar.Brake();
 myCar.StopEngine("Phut phut");
}

19. On the DEBUG menu, click Start Without Debugging.

In the console window, verify that the program outputs messages simulating the different
stages of performing a journey by airplane and by car, as shown in the following image:

Notice that both modes of transport invoke the default implementation of the virtual Drive
method because neither class currently overrides this method.

20. Press Enter to close the application and return to Visual Studio 2012.

21. Display the Airplane class in the Code and Text Editor window. Override the Drive method in
the Airplane class, as follows in bold:

class Airplane : Vehicle
{
 ...
 public override void Drive()
 {
 Console.WriteLine("Flying");
 }
}

 CHAPTER 12 Working with Inheritance 287

Note IntelliSense displays a list of available virtual methods. If you select the Drive
method from the IntelliSense list, Visual Studio automatically inserts into your code a
statement that calls the base.Drive method. If this happens, delete the statement, as
this exercise does not require it.

22. Display the Car class in the Code and Text Editor window. Override the Drive method in the
Car class as follows in bold:

class Car : Vehicle
{
 ...
 public override void Drive()
 {
 Console.WriteLine("Motoring");
 }
}

23. On the DEBUG menu, click Start Without Debugging.

In the console window, notice that the Airplane object now displays the message Flying when
the application calls the Drive method, and the Car object displays the message Motoring:

24. Press Enter to close the application and return to Visual Studio 2012.

25. Display the Program.cs file in the Code and Text Editor window.

26. Add the statements shown here in bold to the end of the doWork method:

static void doWork()
{
 ...
 Console.WriteLine("\nTesting polymorphism");
 Vehicle v = myCar;
 v.Drive();
 v = myPlane;
 v.Drive();
}

288 part II Understanding the C# Object Model

This code tests the polymorphism provided by the virtual Drive method. The code creates
a reference to the Car object using a Vehicle variable (which is safe, because all Car objects
are Vehicle objects) and then calls the Drive method using this Vehicle variable. The final two
statements refer the Vehicle variable to the Airplane object and call what seems to be the
same Drive method again.

27. On the DEBUG menu, click Start Without Debugging.

In the console window, verify that the same messages appear as before, followed by this text:

Testing polymorphism
Motoring
Flying

The Drive method is virtual, so the runtime (not the compiler) works out which version of the
Drive method to call when invoking it through a Vehicle variable based on the real type of
the object referenced by this variable. In the first case, the Vehicle object refers to a Car, so
the application calls the Car.Drive method. In the second case, the Vehicle object refers to an
Airplane, so the application calls the Airplane.Drive method.

28. Press Enter to close the application and return to Visual Studio 2012.

Understanding Extension Methods

Inheritance is a powerful feature, enabling you to extend the functionality of a class by creating a new
class that derives from it. However, sometimes using inheritance is not the most appropriate mecha-
nism for adding new behaviors, especially if you need to quickly extend a type without affecting
existing code.

For example, suppose you want to add a new feature to the int type, such as a method named
Negate that returns the negative equivalent value that an integer currently contains. (I know that you
could simply use the unary minus operator [-] to perform the same task, but bear with me.) One way
to achieve this is to define a new type named NegInt32 that inherits from System.Int32 (int is an alias
for System.Int32) and that adds the Negate method:

 CHAPTER 12 Working with Inheritance 289

class NegInt32 : System.Int32 // don't try this!
{
 public int Negate()
 {
 ...
 }
}

The theory is that NegInt32 will inherit all the functionality associated with the System.Int32 type
in addition to the Negate method. There are two reasons why you might not want to follow this
approach:

■■ This method applies only to the NegInt32 type, and if you want to use it with existing int
variables in your code, you have to change the definition of every int variable to the NegInt32
type.

■■ The System.Int32 type is actually a structure, not a class, and you cannot use inheritance with
structures.

This is where extension methods become very useful.

An extension method enables you to extend an existing type (a class or a structure) with additional
static methods. These static methods become immediately available to your code in any statements
that reference data of the type being extended.

You define an extension method in a static class and specify the type that the method applies to as
the first parameter to the method, along with the this keyword. Here’s an example showing how you
can implement the Negate extension method for the int type:

static class Util
{
 public static int Negate(this int i)
 {
 return -i;
 }
}

The syntax looks a little odd, but it is the this keyword prefixing the parameter to Negate that
identifies it as an extension method, and the fact that the parameter that this prefixes is an int means
that you are extending the int type.

To use the extension method, bring the Util class into scope. (If necessary, add a using statement
specifying the namespace to which the Util class belongs.) Then you can simply use dot notation (.) to
reference the method, like this:

int x = 591;
Console.WriteLine("x.Negate {0}", x.Negate());

Notice that you do not need to reference the Util class anywhere in the statement that calls the
Negate method. The C# compiler automatically detects all extension methods for a given type from
all the static classes that are in scope. You can also invoke the Util.Negate method passing an int as

290 part II Understanding the C# Object Model

the parameter, using the regular syntax you have seen before, although this use obviates the purpose
of defining the method as an extension method:

int x = 591;
Console.WriteLine("x.Negate {0}", Util.Negate(x));

In the following exercise, you will add an extension method to the int type. This extension method
enables you to convert the value an int variable contains from base 10 to a representation of that
value in a different number base.

Create an extension method

1. In Visual Studio 2012, open the ExtensionMethod project, located in the \Microsoft Press\
Visual CSharp Step By Step\Chapter 12\Windows X\ExtensionMethod folder in your Docu-
ments folder.

2. Display the Util.cs file in the Code and Text Editor window.

This file contains a static class named Util in a namespace named Extensions. Remember that
you must define extension methods inside a static class. The class is empty apart from the //
TODO: comment.

3. Delete the comment and declare a public static method in the Util class, named ConvertTo-
Base. The method should take two parameters: an int parameter named i, prefixed with the
this keyword to indicate that the method is an extension method for the int type, and another
ordinary int parameter named baseToConvertTo. The method will convert the value in i to the
base indicated by baseToConvertTo. The method should return an int containing the converted
value.

The ConvertToBase method should look like this:

static class Util
{
 public static int ConvertToBase(this int i, int baseToConvertTo)
 {
 }
}

4. Add an if statement to the ConvertToBase method that checks that the value of the baseTo-
ConvertTo parameter is between 2 and 10. The algorithm used by this exercise does not work
reliably outside this range of values. Throw an ArgumentException exception with a suitable
message if the value of baseToConvertTo is outside this range.

 CHAPTER 12 Working with Inheritance 291

The ConvertToBase method should look like this:

public static int ConvertToBase(this int i, int baseToConvertTo)
{
 if (baseToConvertTo < 2 || baseToConvertTo > 10)
 {
 throw new ArgumentException("Value cannot be converted to base " +
baseToConvertTo.ToString());
 }
}

5. Add the following statements shown in bold to the ConvertToBase method, after the state-
ment that throws the ArgumentException exception. This code implements a well-known
algorithm that converts a number from base 10 to a different number base. (You saw a version
of this algorithm for converting a decimal number to octal in Chapter 5, “Using Compound
Assignment and Iteration Statements.”)

public static int ConvertToBase(this int i, int baseToConvertTo)
{
 ...
 int result = 0;
 int iterations = 0;
 do
 {
 int nextDigit = i % baseToConvertTo;
 i /= baseToConvertTo;
 result += nextDigit * (int)Math.Pow(10, iterations);
 iterations++;
 }
 while (i != 0);

 return result;
}

6. Display the Program.cs file in the Code and Text Editor window.

7. Add the following using directive after the using System; directive at the top of the file:

using Extensions;

This statement brings the namespace containing the Util class into scope. The ConvertToBase
extension method will not be visible in the Program.cs file if you do not perform this task.

8. Add the following statements shown in bold to the doWork method of the Program class,
replacing the // TODO: comment:

292 part II Understanding the C# Object Model

static void doWork()
{
 int x = 591;
 for (int i = 2; i <= 10; i++)
 {
 Console.WriteLine("{0} in base {1} is {2}",
 x, i, x.ConvertToBase(i));
 }
}

This code creates an int named x and sets it to the value 591. (You can pick any integer value
you want.) The code then uses a loop to print out the value 591 in all number bases between
2 and 10. Notice that ConvertToBase appears as an extension method in IntelliSense when you
type the period (.) after x in the Console.WriteLine statement.

9. On the DEBUG menu, click Start Without Debugging. Confirm that the program displays mes-
sages showing the value 591 in the different number bases to the console, like this:

10. Press Enter to close the program and return to Visual Studio 2012.

 CHAPTER 12 Working with Inheritance 293

Summary

In this chapter, you learned how to use inheritance to define a hierarchy of classes, and you should
now understand how to override inherited methods and implement virtual methods. You also learned
how to add an extension method to an existing type.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 13.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 12 Quick Reference

To Do this

Create a derived class from a base class Declare the new class name followed by a colon and the name of the
base class. For example:

class Derived : Base
{
 ...
}

Call a base class constructor as part of the
constructor for an inheriting class

Supply a constructor parameter list before the body of the derived
class constructor. For example:

class Derived : Base
{
 ...
 public Derived(int x) : Base(x)
 {
 ...
 }
 ...
}

Declare a virtual method Use the virtual keyword when declaring the method. For example:

class Mammal
{
 public virtual void Breathe()
 {
 ...
 }
 ...
}

294 part II Understanding the C# Object Model

To Do this

Implement a method in a derived class that
overrides an inherited virtual method

Use the override keyword when declaring the method in the derived
class. For example:

class Whale : Mammal
{
 public override void Breathe()
 {
 ...
 }
 ...
}

Define an extension method for a type Add a static public method to a static class. The first parameter must
be of the type being extended, preceded by the this keyword. For
example:

static class Util
{
 public static int Negate(this int i)
 {
 return -i;
 }
}

 295

C H A P T E R 1 3

Creating Interfaces and
Defining Abstract Classes

After completing this chapter, you will be able to

■■ Define an interface specifying the signatures and return types of methods.

■■ Implement an interface in a structure or class.

■■ Reference a class through an interface.

■■ Capture common implementation details in an abstract class.

■■ Implement sealed classes that cannot be used to derive new classes.

Inheriting from a class is a powerful mechanism, but the real power of inheritance comes from inher-
iting from an interface. An interface does not contain any code or data; it just specifies the methods
and properties that a class that inherits from the interface must provide. Using an interface enables
you to completely separate the names and signatures of the methods of a class from the method’s
implementation.

Abstract classes are similar in many ways to interfaces except that they can contain code and data.
However, you can specify that certain methods of an abstract class are virtual, so that a class that
inherits from the abstract class must provide its own implementation of these methods. You fre-
quently use abstract classes with interfaces, and together they provide a key technique for enabling
you to build extensible programming frameworks, as you will discover in this chapter.

Understanding Interfaces

Suppose you want to define a new class that enables you to store collections of objects, a bit like an
array. However, unlike using an array, you want to provide a method named RetrieveInOrder to enable
applications to retrieve objects in a sequence that depends on the type of object the collection con-
tains (an ordinary array simply enables you to iterate through its contents, and by default you retrieve
items according to their index). For example, if the collection holds alphanumeric objects such as
strings, the collection should enable an application to retrieve these strings in sequence according to
the collating sequence of the computer, and if the collection holds numeric objects such as integers,
the collection should enable the application to retrieve objects in numerical order.

296 part II Understanding the C# Object Model

When you define the collection class, you do not want to restrict the types of objects that it can
hold (the objects can even be class or structure types), and consequently you don’t know how to
order these objects. The question is, how do you provide a method in the collection class that sorts
objects whose types you do not know when you actually write the collection class? At first glance, this
problem seems similar to the ToString problem described in Chapter 12, “Working with Inheritance,”
which could be resolved by declaring a virtual method that subclasses of your collection class can
override. However, this is not the case. There is no inheritance relationship between the collection
class and the objects that it holds, so a virtual method would not be of much use. If you think for
a moment, the problem is that the way in which the objects in the collection should be ordered is
dependent on the type of the object in the collection, and not on the collection itself. The solution,
therefore, is to require that all the objects provide a method, such as the CompareTo method shown
here that the RetrieveInOrder method of the collection can call, enabling the collection to compare
these objects with one another:

int CompareTo(object obj)
{
 // return 0 if this instance is equal to obj
 // return < 0 if this instance is less than obj
 // return > 0 if this instance is greater than obj
 ...
}

You can define an interface for collectable objects that includes the CompareTo method and
specify that the collection class can contain only classes that implement this interface. In this way, an
interface is similar to a contract. If a class implements an interface, the interface guarantees that the
class contains all the methods specified in the interface. This mechanism ensures that you will be able
to call the CompareTo method on all objects in the collection and sort them.

Interfaces enable you to truly separate the “what” from the “how.” The interface tells you only the
name, return type, and parameters of the method. Exactly how the method is implemented is not a
concern of the interface. The interface describes the functionality that a class should provide but not
how this functionality is implemented.

Defining an Interface
Defining an interface is syntactically similar to defining a class, except that you use the interface key-
word instead of the class keyword. Inside the interface, you declare methods exactly as in a class or a
structure, except that you never specify an access modifier (public, private, or protected). Additionally,
the methods in an interface have no implementation; they are simply declarations, and all types that
implement the interface must provide their own implementations. Consequently, you replace the
method body with a semicolon. Here is an example:

interface IComparable
{
 int CompareTo(object obj);
}

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 297

tip The Microsoft .NET Framework documentation recommends that you preface
the name of your interfaces with the capital letter I. This convention is the last vestige
of Hungarian notation in C#. Incidentally, the System namespace already defines the
IComparable interface as just shown.

An interface cannot contain any data; you cannot add fields (not even private ones) to an interface.

Implementing an Interface
To implement an interface, you declare a class or structure that inherits from the interface and
that implements all the methods specified by the interface. This is not really inheritance as such,
although the syntax is the same and some of the semantics that you will see later in this chapter
bear many of the hallmarks of inheritance. You should note that unlike class inheritance, a struct
can implement an interface.

For example, suppose you are defining the Mammal hierarchy described in Chapter 12, but you
need to specify that land-bound mammals provide a method named NumberOfLegs that returns as
an int the number of legs that a mammal has. (Sea-bound mammals do not implement this interface.)
You could define the ILandBound interface that contains this method as follows:

interface ILandBound
{
 int NumberOfLegs();
}

You could then implement this interface in the Horse class. You inherit from the interface and pro-
vide an implementation of every method defined by the interface (in this case, there is just the one
method: NumberOfLegs).

class Horse : ILandBound
{
 ...
 public int NumberOfLegs()
 {
 return 4;
 }
}

When you implement an interface, you must ensure that each method matches its corresponding
interface method exactly, according to the following rules:

■■ The method names and return types match exactly.

■■ Any parameters (including ref and out keyword modifiers) match exactly.

■■ All methods implementing an interface must be publicly accessible. However, if you are using
an explicit interface implementation, the method should not have an access qualifier.

298 part II Understanding the C# Object Model

If there is any difference between the interface definition and its declared implementation, the
class will not compile.

tip The Microsoft Visual Studio IDE can help reduce coding errors caused by failing to imple-
ment the methods in an interface. The Implement Interface Wizard can generate stubs for each
item in an interface that a class implements. You then fill in these stubs with the appropriate
code. You will see how to use this wizard in the exercises later in this chapter.

A class can extend another class and implement an interface at the same time. In this case, C# does
not distinguish between the base class and the interface by using specific keywords as, for example,
Java does. Instead, C# uses a positional notation. The base class is always named first, followed by a
comma, followed by the interface. The following example defines Horse as a class that is a Mammal
but that additionally implements the ILandBound interface:

interface ILandBound
{
 ...
}

class Mammal
{
 ...
}

class Horse : Mammal , ILandBound
{
 ...
}

Note An interface InterfaceA can inherit from another interface, InterfaceB. Technically, this
is known as interface extension rather than inheritance. In this case, any class or struct that
implements InterfaceA must provide implementations of all the methods in InterfaceB and
InterfaceA.

referencing a Class through Its Interface
In the same way that you can reference an object by using a variable defined as a class that is higher
up the hierarchy, you can reference an object by using a variable defined as an interface that its class
implements. Taking the preceding example, you can reference a Horse object by using an ILandBound
variable, as follows:

Horse myHorse = new Horse(...);
ILandBound iMyHorse = myHorse; // legal

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 299

This works because all horses are land-bound mammals, although the converse is not true—you
cannot assign an ILandBound object to a Horse variable without casting it first to verify that it does
actually reference a Horse object and not some other class that also happens to implement the
ILandBound interface.

The technique of referencing an object through an interface is useful because it enables you to
define methods that can take different types as parameters, as long as the types implement a speci-
fied interface. For example, the FindLandSpeed method shown here can take any argument that
implements the ILandBound interface:

int FindLandSpeed(ILandBound landBoundMammal)
{
 ...
}

You can verify that an object is an instance of a class that implements a specific interface by using
the is operator, which you first saw in Chapter 8, “Understanding Values and References.” You use the
is operator to determine whether an object has a specified type, and it works with interfaces as well as
classes and structs. For example, the following block of code checks that the variable myHorse actu-
ally implements the ILandBound interface before attempting to assign it to an ILandBound variable:

if (myHorse is ILandBound)
{
 ILandBound iLandBoundAnimal = myHorse;
}

Note that when referencing an object through an interface, you can invoke only methods that are
visible through the interface.

Working with Multiple Interfaces
A class can have at most one base class, but it is allowed to implement an unlimited number of inter-
faces. A class must implement all the methods declared by these interfaces.

If a structure or class implements more than one interface, you specify the interfaces as a comma-
separated list. If a class also has a base class, the interfaces are listed after the base class. For example,
suppose you define another interface named IGrazable that contains the ChewGrass method for all
grazing animals. You can define the Horse class like this:

class Horse : Mammal, ILandBound, IGrazable
{
 ...
}

300 part II Understanding the C# Object Model

explicitly Implementing an Interface
The examples so far have shown classes that implicitly implement an interface. If you revisit the
ILandBound interface and the Horse class (shown next), although the Horse class implements from
the ILandBound interface, there is nothing in the implementation of the NumberOfLegs method
in the Horse class that says it is part of the ILandBound interface:

interface ILandBound
{
 int NumberOfLegs();
}

class Horse : ILandBound
{
 ...
 public int NumberOfLegs()
 {
 return 4;
 }
}

This might not be an issue in a simple situation, but suppose the Horse class implemented multiple
interfaces. There is nothing to prevent multiple interfaces from specifying a method with the same
name, although they might have different semantics. For example, suppose you wanted to implement
a transportation system based on horse-drawn coaches. A lengthy journey might be broken down
into several stages, or “legs.” If you wanted to keep track of how many legs each horse had pulled the
coach for, you might define the following interface:

interface IJourney
{
 int NumberOfLegs();
}

Now if you implement this interface in the Horse class, you have an interesting problem:

class Horse : ILandBound, IJourney
{
 ...
 public int NumberOfLegs()
 {
 return 4;
 }
}

This is legal code, but does the horse have four legs, or has it pulled the coach for four legs of
the journey? The answer as far as C# is concerned is both of these! By default, C# does not distin-
guish which interface the method is implementing, so the same method actually implements both
interfaces.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 301

To solve this problem and disambiguate which method is part of which interface implementation,
you can implement interfaces explicitly. To do this, you specify which interface a method belongs to
when you implement it, like this:

class Horse : ILandBound, IJourney
{
 ...
 int ILandBound.NumberOfLegs()
 {
 return 4;
 }

 int IJourney.NumberOfLegs()
 {
 return 3;
 }
}

Now you can see that the horse has four legs and has pulled the coach for three legs of the
journey.

Apart from prefixing the name of the method with the interface name, there is one other subtle
difference in this syntax: the methods are not marked as public. You cannot specify the protection
for methods that are part of an explicit interface implementation. This leads to another interest-
ing phenomenon. If you create a Horse variable in code, you cannot actually invoke either of the
NumberOfLegs methods because they are not visible. As far as the Horse class is concerned, they are
both private. In fact, this makes sense. If the methods were visible through the Horse class, which
method would the following code actually invoke—the one for the ILandBound interface or the one
for the IJourney interface?

Horse horse = new Horse();
...
int legs = horse.NumberOfLegs();

So, how do you access these methods? The answer is that you reference the Horse object through
the appropriate interface, like this:

Horse horse = new Horse();
...
IJourney journeyHorse = horse;
int legsInJourney = journeyHorse.NumberOfLegs();
ILandBound landBoundHorse = horse;
int legsOnHorse = landBoundHorse.NumberOfLegs();

I recommend explicitly implementing interfaces when possible.

302 part II Understanding the C# Object Model

Interface restrictions
The essential idea to remember is that an interface never contains any implementation. The following
restrictions are natural consequences of this:

■■ You’re not allowed to define any fields in an interface, not even static ones. A field is an imple-
mentation detail of a class or structure.

■■ You’re not allowed to define any constructors in an interface. A constructor is also considered
to be an implementation detail of a class or structure.

■■ You’re not allowed to define a destructor in an interface. A destructor contains the statements
used to destroy an object instance. (Destructors are described in Chapter 14, “Using Garbage
Collection and Resource Management.”)

■■ You cannot specify an access modifier for any method. All methods in an interface are implic-
itly public.

■■ You cannot nest any types (such as enumerations, structures, classes, or interfaces) inside an
interface.

■■ An interface is not allowed to inherit from a structure or a class, although an interface can
inherit from another interface. Structures and classes contain implementation; if an interface
were allowed to inherit from either, it would be inheriting some implementation.

Defining and Using Interfaces
In the following exercises, you will define and implement interfaces that constitute part of a simple
graphical drawing package. You will define two interfaces called IDraw and IColor, and then you will
define classes that implement them. Each class will define a shape that can be drawn on a canvas on a
form. (A canvas is a control that enables you to draw lines, text, and shapes on the screen.)

The IDraw interface defines the following methods:

■■ SetLocation This method enables you to specify the position as x- and y-coordinates of the
shape on the canvas.

■■ Draw This method actually draws the shape on the canvas at the location specified by using
the SetLocation method.

The IColor interface defines the following method:

■■ SetColor This method lets you specify the color of the shape. When the shape is drawn on
the canvas, it will appear in this color.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 303

Define the IDraw and IColor interfaces

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Drawing project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 13\Windows X\Drawing folder in your Documents folder.

The Drawing project is a graphical application. It contains a form called DrawingPad. This form
contains a canvas control called drawingCanvas. You will use this form and canvas to test your
code.

3. In Solution Explorer, click the Drawing project. On the PROJECT menu, click Add New Item.

The Add New Item – Drawing dialog box appears.

4. In the left pane of the Add New Item – Drawing dialog box, click Visual C# and then click
Code. In the middle pane, click the Interface template. In the Name text box, type IDraw.cs,
and then click Add.

Visual Studio creates the IDraw.cs file and adds it to your project. The IDraw.cs file appears in
the Code and Text Editor window. It should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Drawing
{
 interface IDraw
 {
 }
}

5. In the IDraw.cs file, if you are using Window 8, add the following using directive to the list at
the top of the file:

using Windows.UI.Xaml.Controls;

If you are using Windows 7, add this using directive instead:

using System.Windows.Controls;

You will reference the Canvas class in this interface. The Canvas class is located
in the Windows.UI.Xaml.Controls namespace for Windows Store apps and in the
System.Windows.Controls namespace for Windows Presentation Foundation (WPF)
applications.

304 part II Understanding the C# Object Model

6. Add the methods shown here in bold to the IDraw interface:

interface IDraw
{
 void SetLocation(int xCoord, int yCoord);
 void Draw(Canvas canvas);
}

7. On the PROJECT menu, click Add New Item again.

8. In the middle pane of the Add New Item – Drawing dialog box, click the Interface template. In
the Name text box, type IColor.cs, and then click Add.

Visual Studio creates the IColor.cs file and adds it to your project. The IColor.cs file appears in
the Code and Text Editor window.

9. In the IColor.cs file, if you are using Window 8, add the following using directive to the list at
the top of the file:

using Windows.UI;

If you are using Windows 7, add this using directive:

using System.Windows.Media;

You will reference the Color class in this interface, which is located in the Windows.UI
namespace for Windows Store apps and in the System.Windows.Media namespace for WPF
applications.

10. Add the following method shown in bold to the IColor interface definition:

interface IColor
{
 void SetColor(Color color);
}

You have now defined the IDraw and IColor interfaces. The next step is to create some classes that
implement them. In the following exercise, you will create two new shape classes called Square and
Circle. These classes will implement both interfaces.

Create the Square and Circle classes, and implement the interfaces

1. On the PROJECT menu, click Add Class.

2. In the Add New Item – Drawing dialog box, verify that the Class template is selected in the
middle pane, type Square.cs in the Name text box, and then click Add.

Visual Studio creates the Square.cs file and displays it in the Code and Text Editor window.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 305

3. If you are using Windows 8, add the following using directives to the list at the top of the
Square.cs file:

using Windows.UI;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Shapes;
using Windows.UI.Xaml.Controls;

If you are using Windows 7, add these using directives to the top of the Square.cs file:

using System.Windows.Media;
using System.Windows.Shapes;
using System.Windows.Controls;

4. Modify the definition of the Square class so that it implements the IDraw and IColor interfaces,
as shown here in bold:

class Square : IDraw, IColor
{
}

5. Add the following private variables shown in bold to the Square class. These variables will hold
the position and size of the Square object on the canvas. The Rectangle class is located in the
Windows.UI.Xaml.Shapes namespace for Windows Store apps and in the System.Windows.
Shapes namespace for WPF applications. You will use this class to draw the square:

class Square : IDraw, IColor
{
 private int sideLength;
 private int locX = 0, locY = 0;
 private Rectangle rect = null;
}

6. Add the constructor shown in bold to the Square class. This constructor initializes the
sideLength field and specifies the length of each side of the square.

class Square : IDraw, IColor
{
 ...
 public Square(int sideLength)
 {
 this.sideLength = sideLength;
 }
}

7. In the definition of the Square class, right-click the IDraw interface. A shortcut menu appears.
In the shortcut menu, point to Implement Interface, and then click Implement Interface
Explicitly, as shown in the following image:

306 part II Understanding the C# Object Model

This feature causes Visual Studio to generate default implementations of the methods in the
IDraw interface. You can also add the methods to the Square class manually if you prefer. The
following example shows the code generated by Visual Studio:

void IDraw.SetLocation(int xCoord, int yCoord)
{
 throw new NotImplementedException();
}

void IDraw.Draw(Canvas canvas)
{
 throw new NotImplementedException();
}

Each of these methods currently throws a NotImplementedException exception. You are
expected to replace the body of these methods with your own code.

8. In the SetLocation method, replace the existing code with the statements shown in bold. This
code stores the values passed in through the parameters in the locX and locY fields in the
Square object.

void IDraw.SetLocation(int xCoord, int yCoord)
{
 this.locX = xCoord;
 this.locY = yCoord;
}

9. Replace the code in the Draw method with the statements shown here in bold:

void IDraw.Draw(Canvas canvas)
{
 if (this.rect != null)
 {
 canvas.Children.Remove(this.rect);
 }
 else
 {
 this.rect = new Rectangle();
 }

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 307

 this.rect.Height = this.sideLength;
 this.rect.Width = this.sideLength;
 Canvas.SetTop(this.rect, this.locY);
 Canvas.SetLeft(this.rect, this.locX);
 canvas.Children.Add(this.rect);
}

This method renders the Square object by drawing a Rectangle shape on the canvas. (A square
is simply a rectangle where all four sides have the same length.) If the Rectangle has been
drawn previously (possibly at a different location and with a different color), it is removed
from the canvas. The height and width of the Rectangle are set by using the value of the
sideLength field. The position of the Rectangle on the canvas is set by using the static SetTop
and SetLeft methods of the Canvas class, and then the Rectangle is added to the canvas. (This
causes it to appear.)

10. Add the SetColor method from the IColor interface to the Square class, as shown here:

void IColor.SetColor(Color color)
{
 if (this.rect != null)
 {
 SolidColorBrush brush = new SolidColorBrush(color);
 this.rect.Fill = brush;
 }
}

This method checks that the Square object has actually been displayed. (The rect field will be
null if it has not yet been rendered.) The code sets the Fill property of the rect field with the
specified color by using a SolidColorBrush object. (The details of the how the SolidColorBrush
class works are outside the scope of this discussion.)

11. On the PROJECT menu, click Add Class. In the Add New Item – Drawing dialog box, type
Circle.cs in the Name text box, and then click Add.

Visual Studio creates the Circle.cs file and displays it in the Code and Text Editor window.

12. If you are using Windows 8, add the following using directives to the list at the top of the
Circle.cs file:

using Windows.UI;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Shapes;
using Windows.UI.Xaml.Controls;

If you are using Windows 7, add these using directives to the top of the Circle.cs file:

using System.Windows.Media;
using System.Windows.Shapes;
using System.Windows.Controls;

308 part II Understanding the C# Object Model

13. Modify the definition of the Circle class so that it implements the IDraw and IColor interfaces
as shown here in bold:

class Circle : IDraw, IColor
{
}

14. Add the following private variables shown in bold to the Circle class. These variables will hold
the position and size of the Circle object on the canvas. The Ellipse class provides the function-
ality that you will use to draw the circle.

class Circle : IDraw, IColor
{
 private int diameter;

 private int locX = 0, locY = 0;

 private Ellipse circle = null;
}

15. Add the constructor shown in bold to the Circle class. This constructor initializes the diameter
field.

class Circle : IDraw, IColor
{
 ...
 public Circle(int diameter)

 {

 this.diameter = diameter;

 }
}

16. Add the SetLocation method shown below to the Circle class. This method implements part of
the IDraw interface, and the code is exactly the same as that in the Square class.

void IDraw.SetLocation(int xCoord, int yCoord)
{
 this.locX = xCoord;
 this.locY = yCoord;
}

17. Add the Draw method shown below to the Circle class. This method is also part of the IDraw
interface.

void IDraw.Draw(Canvas canvas)
{
 if (this.circle != null)
 {
 canvas.Children.Remove(this.circle);
 }
 else
 {

 this.circle = new Ellipse();
 }

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 309

 this.circle.Height = this.diameter;
 this.circle.Width = this.diameter;
 Canvas.SetTop(this.circle, this.locY);
 Canvas.SetLeft(this.circle, this.locX);
 canvas.Children.Add(this.circle);
}

This method is similar to the Draw method in the Square class, except that it renders the Circle
object by drawing an Ellipse shape on the canvas. (A circle is an ellipse where the width and
height are the same.)

18. Add the SetColor method to the Circle class. This method is part of the IColor interface. As
before, this method is similar to that of the Square class.

void IColor.SetColor(Color color)
{
 if (this.circle != null)
 {
 SolidColorBrush brush = new SolidColorBrush(color);
 this.circle.Fill = brush;
 }
}

You have completed the Square and Circle classes. You can now use the form to test them.

test the Square and Circle classes

1. Display the DrawingPad.xaml file in the Design View window.

2. Click the shaded area in the middle of the form.

The shaded area of the form is the Canvas object, and this action sets the focus to this object.

3. In Properties window, click the Event Handlers button. (This button has an icon that looks like a bolt
of lightning.)

4. If you are using Windows 8, in the list of events, locate the Tapped event and then double-
click it. If you are using Windows 7, locate the MouseLeftButtonDown event and then
double-click it.

Visual Studio creates a method called drawingCanvas_Tapped (Windows Store apps) or
drawingCanvas_MouseLeftButtonDown (WPF) for the DrawingPad class and displays it in the
Code and Text Editor window. This is an event handler that runs when the user taps the canvas
with a finger (Windows Store apps) or clicks the left mouse button over the canvas (WPF). You
will learn more about event handlers in Chapter 18, “Using Collections.”

Note If you are using a mouse with Windows 8, you can also click the left mouse
button, as this raises the same event as the tap gesture.

310 part II Understanding the C# Object Model

5. If you are using Windows 8, add the following using directive to the list at the top of the
DrawingPad.xaml.cs file:

using Windows.UI;

6. Add the code shown below in bold to the drawingCanvas_Tapped or
drawingCanvas_MouseLeftButtonDown method:

private void drawingCanvas_Tapped(object sender, TappedRoutedEventArgs e)
// If you are using WPF, the method is declared as:
// private void drawingCanvas_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 Point mouseLocation = e.GetPosition(this.drawingCanvas);

 Square mySquare = new Square(100);

 if (mySquare is IDraw)
 {

 IDraw drawSquare = mySquare;

 drawSquare.SetLocation((int)mouseLocation.X, (int)mouseLocation.Y);

 drawSquare.Draw(drawingCanvas);

 }
}

The TappedRoutedEventArgs parameter (Windows Store apps) or MouseButtonEventArgs
parameter (WPF) to this method provides useful information about the position of the
mouse. In particular, the GetPosition method returns a Point structure that contains the x- and
y-coordinates of the mouse. The code that you have added creates a new Square object. It
then checks to verify that this object implements the IDraw interface (which is good practice)
and creates a reference to the object by using this interface. Remember that when you explic-
itly implement an interface, the methods defined by the interface are available only by creat-
ing a reference to that interface. (The SetLocation and Draw methods are private to the Square
class and are available only through the IDraw interface.) The code then sets the location of
the Square to the position of the user’s finger or mouse. Note that the x- and y-coordinates in
the Point structure are actually double values, so this code casts them to ints. The code then
calls the Draw method to display the Square object.

7. Add the following code shown in bold to the end of the drawingCanvas_Tapped or
drawingCanvas_MouseLeftButtonDown method:

private void drawingCanvas_Tapped(object sender, TappedRoutedEventArgs e)
// If you are using WPF, the method is declared as:
// private void drawingCanvas_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 ...
 if (mySquare is IColor)
 {

 IColor colorSquare = mySquare;

 colorSquare.SetColor(Colors.BlueViolet);

 }
}

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 311

This code tests the Square class to verify that it implements the IColor interface; if it does, it
creates a reference to the Square class through this interface and calls the SetColor method to
set the color of the Square object to Colors.BlueViolet. (The Colors enumeration is provided as
part of the .NET Framework.)

Important You must call Draw before you call SetColor. This is because the SetColor
method sets the color of the Square only if it has already been rendered. If you in-
voke SetColor before Draw, the color will not be set and the Square object will not
appear.

8. Return to the DrawingPad.xaml file in the Design View window, and click the Canvas object in
the middle of the form.

9. If you are using Windows 8, in the list of events, locate the RightTapped event and then
double-click it. If you are using Windows 7, locate the MouseRightButtonDown event and then
double-click it.

These events occur when the user taps, holds, and then releases on the canvas using their
finger (Windows Store apps) or the user clicks the right mouse button on the canvas (WPF).

Note If you are using Windows 8 with a mouse, you can right-click or tap, hold, and
release—both gestures raise the RightTapped event.

10. Add the code shown below in bold to the drawingCanvas_RightTapped method (Windows
Store apps) or drawingCanvas_MouseRightButtonDown method (WPF). The logic in this code
is similar to the method that handles the left mouse button, except that it displays a Circle
object in HotPink.

private void drawingCanvas_RightTapped(object sender, HoldingRoutedEventArgs e)
// If you are using WPF, the method is declared as:
// private void drawingCanvas_MouseRightButtonDown(object sender, MouseButtonEventArgs e)
{
 Point mouseLocation = e.GetPosition(this.drawingCanvas);
 Circle myCircle = new Circle(100);

 if (myCircle is IDraw)
 {
 IDraw drawCircle = myCircle;
 drawCircle.SetLocation((int)mouseLocation.X, (int)mouseLocation.Y);
 drawCircle.Draw(drawingCanvas);
 }

312 part II Understanding the C# Object Model

 if (myCircle is IColor)
 {
 IColor colorCircle = myCircle;
 colorCircle.SetColor(Colors.HotPink);
 }
}

The logic in this method is very similar to that of the drawingCanvas_Tapped and drawingCan-
vas_MouseRightButtonDown methods, except that they draw and fill a circle on the canvas.

11. On the DEBUG menu, click Start Debugging to build and run the application.

12. When the Drawing Pad window appears, tap or left-click anywhere on the canvas displayed in
the window. A violet square should appear.

13. Tap, hold, and release, or right-click anywhere on the canvas. A pink circle should appear. You
can click the left and right mouse buttons any number of times, and each click will draw a
square or circle at the mouse position, as shown in the following image:

14. Return to Visual Studio and stop debugging.

Abstract Classes

You can implement the ILandBound and IGrazable interfaces discussed before the previous set of
exercises in many different classes, depending on how many different types of mammals you want
to model in your C# application. In situations such as this, it’s quite common for parts of the derived
classes to share common implementations. For example, the duplication in the following two classes
is obvious:

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 313

class Horse : Mammal, ILandBound, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine("Chewing grass");
 // code for chewing grass
 };
}

class Sheep : Mammal, ILandBound, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine("Chewing grass");
 // same code as horse for chewing grass
 };
}

Duplication in code is a warning sign. If possible, you should refactor the code to avoid this dupli-
cation and reduce any associated maintenance costs. One way to achieve this refactoring is to put
the common implementation into a new class created specifically for this purpose. In effect, you can
insert a new class into the class hierarchy, as shown by the following code example:

class GrazingMammal : Mammal, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 // common code for chewing grass
 Console.WriteLine("Chewing grass");
 }
}

class Horse : GrazingMammal, ILandBound
{
 ...
}

class Sheep : GrazingMammal, ILandBound
{
 ...
}

This is a good solution, but there is one thing that is still not quite right: you can actually create
instances of the GrazingMammal class (and the Mammal class, for that matter). This doesn’t really
make sense. The GrazingMammal class exists to provide a common default implementation. Its sole
purpose is to be inherited from. The GrazingMammal class is an abstraction of common functionality
rather than an entity in its own right.

314 part II Understanding the C# Object Model

To declare that creating instances of a class is not allowed, you can declare that the class is abstract
by using the abstract keyword. For example:

abstract class GrazingMammal : Mammal, IGrazable
{
 ...
}

If you now try to instantiate a GrazingMammal object, the code will not compile:

GrazingMammal myGrazingMammal = new GrazingMammal(...); // illegal

abstract Methods
An abstract class can contain abstract methods. An abstract method is similar in principle to a virtual
method (which you met in Chapter 12), except that it does not contain a method body. A derived
class must override this method. The following example defines the DigestGrass method in the
GrazingMammal class as an abstract method; grazing mammals might use the same code for chew-
ing grass, but they must provide their own implementation of the DigestGrass method. An abstract
method is useful if it does not make sense to provide a default implementation in the abstract class
but you want to ensure that an inheriting class provides its own implementation of that method.

abstract class GrazingMammal : Mammal, IGrazable
{
 abstract void DigestGrass();
 ...
}

Sealed Classes

Using inheritance is not always easy and requires forethought. If you create an interface or an abstract
class, you are knowingly writing something that will be inherited from in the future. The trouble is
that predicting the future is a difficult business. With practice and experience, you can develop the
skills to craft a flexible, easy-to-use hierarchy of interfaces, abstract classes, and classes, but it takes
effort and you also need a solid understanding of the problem you are modeling. To put it another
way, unless you consciously design a class with the intention of using it as a base class, it’s extremely
unlikely that it will function well as a base class. C# allows you to use the sealed keyword to prevent a
class from being used as a base class if you decide that it should not be. For example:

sealed class Horse : GrazingMammal, ILandBound
{
 ...
}

If any class attempts to use Horse as a base class, a compile-time error will be generated. Note that
a sealed class cannot declare any virtual methods and that an abstract class cannot be sealed.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 315

Sealed Methods
You can also use the sealed keyword to declare that an individual method in an unsealed class is
sealed. This means that a derived class cannot override this method. You can seal only an override
method, and you declare the method as sealed override. You can think of the interface, virtual, over-
ride, and sealed keywords as follows:

■■ An interface introduces the name of a method.

■■ A virtual method is the first implementation of a method.

■■ An override method is another implementation of a method.

■■ A sealed method is the last implementation of a method.

Implementing and Using an abstract Class
The following exercises use an abstract class to rationalize some of the code that you developed in
the previous exercise. The Square and Circle classes contain a high proportion of duplicate code. It
makes sense to factor this code out into an abstract class called DrawingShape because this will ease
maintenance of the Square and Circle classes in the future.

Create the DrawingShape abstract class

1. Return to the Drawing project in Visual Studio.

Note A finished working copy of the previous exercise is available in the Drawing
project located in the \Microsoft Press\Visual CSharp Step By Step\Chapter 13\
Windows X\Drawing Using Interfaces folder in your Documents folder.

2. In Solution Explorer, click the Drawing project in the Drawing solution. On the PROJECT menu,
click Add Class.

The Add New Item – Drawing dialog box appears.

3. In the Name text box, type DrawingShape.cs, and then click Add.

Visual Studio creates the class and displays it in the Code and Text Editor window.

4. In the DrawingShape.cs file, if you are using Windows 8, add the following using directives to
the list at the top:

using Windows.UI;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Shapes;

using Windows.UI.Xaml.Controls;

316 part II Understanding the C# Object Model

If you are using Windows 7, add these using directives:

using System.Windows.Media;

using System.Windows.Shapes;

using System.Windows.Controls;

The purpose of this class is to contain the code common to the Circle and Square classes. A
program should not be able to instantiate a DrawingShape object directly.

5. Modify the definition of the DrawingShape class, and declare it as abstract, as shown here in
bold:

abstract class DrawingShape
{
}

6. Add the private variables shown in bold to the DrawingShape class:

abstract class DrawingShape
{
 protected int size;

 protected int locX = 0, locY = 0;

 protected Shape shape = null;
}

The Square and Circle classes both use the locX and locY fields to specify the location of the
object on the canvas, so you can move these fields to the abstract class. Similarly, the Square
and Circle classes both use a field to indicate the size of the object when it was rendered;
although it has a different name in each class (sideLength and diameter), semantically the field
performs the same task in both classes. The name size is a good abstraction of the purpose of
this field.

Internally, the Square class uses a Rectangle object to render itself on the canvas, and the
Circle class uses an Ellipse object. Both of these classes are part of a hierarchy based on the
abstract Shape class in the .NET Framework. The DrawingShape class uses a Shape field to
represent both of these types.

7. Add the following constructor to the DrawingShape class:

abstract class DrawingShape
{
 ...
 public DrawingShape(int size)
 {

 this.size = size;

 }
}

This code initializes the size field in the DrawingShape object.

8. Add the SetLocation and SetColor methods to the DrawingShape class, as shown in bold
below. These methods provide implementations that are inherited by all classes that derive

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 317

from the DrawingShape class. Notice that they are not marked as virtual, and a derived class is
not expected to override them. Also, the DrawingShape class is not declared as implementing
the IDraw or IColor interfaces (interface implementation is a feature of the Square and Circle
classes and not this abstract class), so these methods are simply declared as public.

abstract class DrawingShape
{
 ...
 public void SetLocation(int xCoord, int yCoord)

 {

 this.locX = xCoord;

 this.locY = yCoord;

 }

 public void SetColor(Color color)

 {

 if (this.shape != null)

 {

 SolidColorBrush brush = new SolidColorBrush(color);

 this.shape.Fill = brush;

 }

 }
}

9. Add the Draw method to the DrawingShape class. Unlike the previous methods, this method is
declared as virtual, and any derived classes are expected to override it to extend the function-
ality. The code in this method verifies that the shape field is not null and then draws it on the
canvas. The classes that inherit this method must provide their own code to instantiate the
shape object. (Remember that the Square class creates a Rectangle object and the Circle class
creates an Ellipse object.)

abstract class DrawingShape
{
 ...
 public virtual void Draw(Canvas canvas)

 {

 if (this.shape == null)

 {

 throw new InvalidOperationException("Shape is null");

 }

 this.shape.Height = this.size;
 this.shape.Width = this.size;

 Canvas.SetTop(this.shape, this.locY);

 Canvas.SetLeft(this.shape, this.locX);

 canvas.Children.Add(this.shape);

 }
}

You have now completed the DrawingShape abstract class. The next step is to change the Square
and Circle classes so that they inherit from this class, and then remove the duplicated code from the
Square and Circle classes.

318 part II Understanding the C# Object Model

Modify the Square and Circle classes to inherit from the DrawingShape class

1. Display the code for the Square class in the Code and Text Editor window.

2. Modify the definition of the Square class so that it inherits from the DrawingShape class as
well as implementing the IDraw and IColor interfaces.

class Square : DrawingShape, IDraw, IColor
{
 ...
}

Notice that you must specify the class that the Square class inherits from before any interfaces.

3. In the Square class, remove the definitions of the sideLength, rect, locX, and locY fields. These
fields are no longer necessary as they are now provided by the DrawingShape class.

4. Replace the existing constructor with the following code, which calls the constructor in the
base class. Notice that the body of this constructor is empty because the base class construc-
tor performs all the initialization required.

class Square : DrawingShape, IDraw, IColor
{
 public Square(int sideLength) : base(sideLength)

 {

 }
 ...
}

5. Remove the SetLocation and SetColor methods from the Square class. The DrawingShape class
provides the implementation of these methods.

6. Modify the definition of the Draw method. Declare it as public override, and remove the refer-
ence to the IDraw interface. Again, the DrawingShape class already provides the base func-
tionality for this method, but you will extend it with specific code required by the Square class.

public override void Draw(Canvas canvas)
{
 ...
}

7. Replace the body of the Draw method with the code shown in bold. These statements instan-
tiate the shape field inherited from the DrawingShape class as a new instance of the Rectangle
class if it has not already been instantiated, and then they call the Draw method in the Draw-
ingShape class.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 319

public override void Draw(Canvas canvas)
{
 if (this.shape != null)

 {

 canvas.Children.Remove(this.shape);

 }

 else

 {

 this.shape = new Rectangle();

 }

 base.Draw(canvas);
}

8. Repeat steps 2 through 6 for the Circle class, except that the constructor should be called
Circle with a parameter called diameter, and in the Draw method you should instantiate the
shape field as a new Ellipse object. The complete code for the Circle class should look like this:

class Circle : DrawingShape, IDraw, IColor
{
 public Circle(int diameter) : base(diameter)
 {
 }

 public override void Draw(Canvas canvas)
 {
 if (this.shape != null)
 {
 canvas.Children.Remove(this.shape);
 }
 else
 {
 this.shape = new Ellipse();
 }

 base.Draw(canvas);
 }
}

9. On the DEBUG menu, click Start Debugging. When the Drawing Pad window appears, verify
that Square objects appear when you left-click in the window and Circle objects appear when
you right-click in the window. The application should look and feel exactly the same as before.

10. Return to Visual Studio and stop debugging.

320 part II Understanding the C# Object Model

Compatibility with the Windows runtime on Windows 8 revisited
Chapter 9, “Creating Value Types with Enumerations and Structures,” described how Windows 8
implements the Windows Runtime, or WinRT, as a layer on top of the native Windows APIs, providing
a simplified programming interface for developers building unmanaged applications (an unman-
aged application is an application that does not run by using the .NET Framework; you build them
by using a language such as C++ rather than C#). Managed applications use the common language
runtime (CLR) to run .NET Framework applications. The .NET Framework provides an extensive set
of libraries and features. On Windows 7 and earlier, the CLR implements these features by using the
native Windows APIs. If you are building desktop or enterprise applications and services on Windows
8, this same feature set is still available (although the .NET Framework itself has been upgraded to
version 4.5), and any C# applications that work on Windows 7 should run unchanged on Windows 8.

On Windows 8, Windows Store apps always run by using WinRT. This means that if you
are building Windows Store apps by using a managed language such as C#, the CLR actu-
ally invokes WinRT rather than the native Windows APIs. Microsoft has provided a mapping
layer between the CLR and WinRT that can transparently translate requests made to the .NET
Framework to create objects and invoke methods into the equivalent object requests and
method calls in WinRT. For example, when you create a .NET Framework Int32 value (an int in
C#), this code is translated to create a value using the equivalent WinRT data type. However,
although the CLR and WinRT have a large amount of overlapping functionality, not all of the
features of the .NET Framework 4.5 have corresponding features in WinRT. Consequently, Win-
dows Store apps have access to only a reduced subset of the types and methods provided by
the .NET Framework 4.5 (IntelliSense in Visual Studio 2012 automatically shows the restricted
view of available features when you are building Windows Store apps when using C#, omitting
the types and methods not available through WinRT).

On the other hand, WinRT provides a significant set of features and types that have no
direct equivalent in the .NET Framework or that operate in a significantly different way to
the corresponding features in the .NET Framework and so cannot easily be translated. WinRT
makes these features available to the CLR through a mapping layer that makes them look like
.NET Framework types and methods, and you can invoke them directly from managed code.
For Windows Store apps, the primary area that this concerns is the way in which the user
interface is implemented, and this is why some of the exercises in this book ask you to refer-
ence different namespaces for Windows 7 and Windows 8 applications when building graphical
applications—System.Windows and its subnamespaces for Windows 7 versus Windows.UI and
its subnamespaces for Windows 8. These namespaces contain types that are implemented by
different assemblies; the types in the System.Windows namespace reside in the WindowsBase,
PresentationCore, and PresentationFramework assemblies for the .NET Framework 4.5, while the
types in the Windows.UI namespace are located in the Windows assembly for WinRT.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 321

Note Strictly speaking, WinRT does not use assemblies but has its own struc-
ture for holding libraries of executable code. However, WinRT libraries expose
metadata that is held in the same format as .NET Framework assemblies, en-
abling them to be read by the CLR. The CLR can create objects defined in these
libraries and invoke their methods through WinRT to the CLR. WinRT libraries
look and behave like .NET Framework assemblies.

So, integration implemented by the CLR and WinRT enables the CLR to transparently use WinRT
types, but it also supports interoperability in the reverse direction: you can define types by using
managed code and make them available to unmanaged applications as long as these types conform
to the expectations of WinRT. Chapter 9 highlights the requirements of structs in this respect (in-
stance and static methods in structs are not available through WinRT, and private fields are unsup-
ported). If you are building classes that are intended to be consumed by unmanaged applications
through WinRT, your classes must follow these rules:

■■ Any public fields, and the parameters and return values of any public methods must be
WinRT types or .NET Framework types that can be transparently translated by WinRT into
WinRT types. Examples of supported .NET Framework types include conforming value
types (such as structs and enums) and those corresponding to the C# primitives (int, long,
float, double, string, and so on). Private fields are supported in classes, and they can be of
any type available in the .NET Framework; they do not have to conform to WinRT.

■■ Classes cannot override methods of System.Object other than ToString, and they cannot
declare protected constructors.

■■ The namespace in which a class is defined must be the same as the name of the assembly
implementing the class. Additionally, the namespace name (and therefore the assembly
name) must not begin with “Windows”.

■■ You cannot inherit from managed types in unmanaged applications through WinRT.
Therefore, all public classes must be sealed. If you need to implement polymorphism, you
can create a public interface and implement that interface on the classes that must be
polymorphic.

■■ You can throw any exception type that is included in the subset of the .NET Framework
available to Windows Store apps; you cannot create your own custom exception classes. If
your code throws an unhandled exception when called from an unmanaged application,
WinRT raises an equivalent exception in the unmanaged code.

WinRT has other requirements concerning features of C# code covered later in this book.
These requirements will be highlighted as each feature is described.

322 part II Understanding the C# Object Model

Summary

In this chapter, you saw how to define and implement interfaces and abstract classes. The following
table summarizes the various valid (yes), invalid (no), and mandatory (required) keyword combinations
when defining methods for interfaces, classes, and structs.1234

Keyword Interface Abstract class Class Sealed class Structure

abstract No Yes No No No

new Yes1 Yes Yes Yes No2

override No Yes Yes Yes No3

private No Yes Yes Yes Yes

protected No Yes Yes Yes No4

public No Yes Yes Yes Yes

sealed No Yes Yes Required No

virtual No Yes Yes No No

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 14.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

1 An interface can extend another interface and introduce a new method with the same signature.
2 Structures do not support inheritance, so they cannot hide methods.
3 Structures do not support inheritance, so they cannot override methods.
4 Structures do not support inheritance; a structure is implicitly sealed and cannot be derived from.

 CHAPTER 13 Creating Interfaces and Defining Abstract Classes 323

Chapter 13 Quick Reference

To Do this

Declare an interface Use the interface keyword. For example:

interface IDemo
{
 string GetName();
 string GetDescription();
}

Implement an interface Declare a class using the same syntax as class inheritance, and then
implement all the member functions of the interface. For example:

class Test : IDemo
{
 string IDemo.GetName()
 {
 ...
 }

 string IDemo.GetDescription()
 {
 ...
 }
}

Create an abstract class that can be used
only as a base class, containing abstract
methods

Declare the class using the abstract keyword. For each abstract
method, declare the method with the abstract keyword and without a
method body. For example:

abstract class GrazingMammal
{
 abstract void DigestGrass();
 ...
}

Create a sealed class that cannot be used as
a base class

Declare the class using the sealed keyword. For example:

sealed class Horse
{
 ...
}

 325

C H A P T E R 1 4

Using Garbage Collection and
resource Management

After completing this chapter, you will be able to

■■ Manage system resources by using garbage collection.

■■ Write code that runs when an object is finalized by using a destructor.

■■ Release a resource at a known point in time in an exception-safe manner by writing a try/
finally statement.

■■ Release a resource at a known point in time in an exception-safe manner by writing a using
statement.

■■ Implement the IDisposable interface to support exception-safe disposal in a class.

You have seen in earlier chapters how to create variables and objects, and you should understand
how memory is allocated when you create variables and objects. (In case you don’t remember, value
types are created on the stack, and reference types are allocated memory from the heap.) Computers
do not have infinite amounts of memory, so memory must be reclaimed when a variable or an object
no longer needs it. Value types are destroyed and their memory reclaimed when they go out of
scope. That’s the easy bit. How about reference types? You create an object by using the new key-
word, but how and when is an object destroyed? That’s what this chapter is all about.

The Life and Times of an Object

First, let’s recap what happens when you create an object.

You create an object by using the new operator. The following example creates a new instance of
the Square class that you met in Chapter 13, “Creating Interfaces and Defining Abstract Classes”:

Square mySquare = new Square(); // Square is a reference type

From your point of view, the new operation is a single operation, but underneath, object creation
is really a two-phase process:

326 part II Understanding the C# Object Model

1. The new operation allocates a chunk of raw memory from the heap. You have no control over
this phase of an object’s creation.

2. The new operation converts the chunk of raw memory to an object; it has to initialize the
object. You can control this phase by using a constructor.

Note C++ programmers should note that in C#, you cannot overload the new operation to
control allocation.

After you have created an object, you can access its members by using the dot operator (.). For
example, the Square class includes a method named Draw that you can call:

mySquare.Draw();

Note This code is based on the version of the Square class that inherits from the
DrawingShape abstract class and that does not implement the IDraw interface explicitly. For
more information, please refer back to Chapter 13.

When the mySquare variable goes out of scope, the Square object is no longer being actively
referenced, and the object can be destroyed and the memory that it is using can be reclaimed (this
may not happen immediately, though, as you will see later). Like object creation, object destruction is
a two-phase process. The two phases of destruction exactly mirror the two phases of creation:

1. The common language runtime (CLR) has to perform some tidying up. You can control this by
writing a destructor.

2. The CLR has to return the memory previously belonging to the object back to the heap; the
memory that the object lived in has to be deallocated. You have no control over this phase.

The process of destroying an object and returning memory back to the heap is known as garbage
collection.

Note C++ programmers should note that C# does not have a delete operator. The CLR controls
when an object is destroyed.

Writing Destructors
You can use a destructor to perform any tidying up required when an object is garbage collected.
The CLR will automatically clear up any managed resources that an object uses, and in many of
these cases, writing a destructor is unnecessary. However, if a managed resource is large (such as a
multidimensional array), it may make sense to make this resource available for immediate disposal by
setting any references that the object has to this resource to null. Additionally, if an object references
an unmanaged resource, either directly or indirectly, a destructor can prove useful.

 CHAPTER 14 Using Garbage Collection and Resource Management 327

Note Indirect unmanaged resources are reasonably common. Examples include file
streams, network connections, database connections, and other resources managed by the
Microsoft Windows operating system. So, if you open a file in a method, you may want to
add a destructor that closes the file when the object is destroyed. However, there may be
a better and timelier way to close the file depending on the structure of the code in your
class (see the discussion of the using statement later in this chapter).

A destructor is a special method, a little like a constructor, except that the CLR calls it after the
reference to an object has disappeared. The syntax for writing a destructor is a tilde (~) followed by
the name of the class. For example, here’s a simple class that opens a file for reading in its constructor
and closes the file in its destructor (note that this is simply an example, and I do not recommend that
you always follow this pattern for opening and closing files):

class FileProcessor
{
 FileStream file = null;

 public FileProcessor(string fileName)
 {
 this.file = File.OpenRead(fileName); // open file for reading
 }

 ~FileProcessor()
 {
 this.file.Close(); // close file
 }
}

There are some very important restrictions that apply to destructors:

■■ Destructors apply only to reference types. You cannot declare a destructor in a value type,
such as a struct.

struct MyStruct
{
 ~ MyStruct() { ... } // compile-time error
}

■■ You cannot specify an access modifier (such as public) for a destructor. You never call the
destructor in your own code—part of the CLR called the garbage collector does this for you.

public ~ FileProcessor() { ... } // compile-time error

■■ A destructor cannot take any parameters. Again, this is because you never call the destructor
yourself.

~ FileProcessor(int parameter) { ... } // compile-time error

328 part II Understanding the C# Object Model

Internally, the C# compiler automatically translates a destructor into an override of the
Object.Finalize method. The compiler converts the following destructor:

class FileProcessor
{
 ~ FileProcessor() { // your code goes here }
}

into this:

class FileProcessor
{
 protected override void Finalize()
 {
 try { // your code goes here }
 finally { base.Finalize(); }
 }
}

The compiler-generated Finalize method contains the destructor body inside a try block, followed
by a finally block that calls the Finalize method in the base class. (The try and finally keywords are
described in Chapter 6, “Managing Errors and Exceptions.”) This ensures that a destructor always calls
its base class destructor, even if an exception occurs during your destructor code.

It’s important to understand that only the compiler can make this translation. You can’t write your
own method to override Finalize, and you can’t call Finalize yourself.

Why Use the Garbage Collector?
You can never destroy an object yourself by using C# code. There just isn’t any syntax to do it.
Instead, the CLR does it for you at a time of its own choosing. In addition, bear in mind that you can
also make more than one reference variable refer to the same object. In the following code example,
the variables myFp and referenceToMyFp point to the same FileProcessor object:

FileProcessor myFp = new FileProcessor();
FileProcessor referenceToMyFp = myFp;

How many references can you create to an object? As many as you want! This has an impact on the
lifetime of an object. The CLR has to keep track of all these references. If the variable myFp disappears
(by going out of scope), other variables (such as referenceToMyFp) might still exist and the resources
used by the FileProcessor object cannot be reclaimed (the file should not be closed). So, the lifetime
of an object cannot be tied to a particular reference variable. An object can be destroyed and its
memory made available for reuse only when all the references to it have disappeared.

You can see that managing object lifetimes is complex, which is why the designers of C# decided
to prevent your code from taking on this responsibility. If it were your responsibility to destroy
objects, sooner or later one of the following situations would arise:

 CHAPTER 14 Using Garbage Collection and Resource Management 329

■■ You’d forget to destroy the object. This would mean that the object’s destructor (if it had one)
would not be run, tidying up would not occur, and memory would not be deallocated back to
the heap. You could quite easily run out of memory.

■■ You’d try to destroy an active object and risk the possibility of one or more variables holding
a reference to a destroyed object, known as a dangling reference. A dangling reference refers
either to unused memory or possibly to a completely different object that now happens to
occupy the same piece of memory. Either way, the outcome of using a dangling reference
would be undefined at best or a security risk at worst. All bets would be off.

■■ You’d try and destroy the same object more than once. This might or might not be disastrous,
depending on the code in the destructor.

These problems are unacceptable in a language like C#, which places robustness and security high
on its list of design goals. Instead, the garbage collector destroys objects for you. The garbage collec-
tor makes the following guarantees:

■■ Every object will be destroyed, and its destructor will be run. When a program ends, all out-
standing objects will be destroyed.

■■ Every object will be destroyed exactly once.

■■ Every object will be destroyed only when it becomes unreachable—that is, when there are no
references to the object in the process running your application.

These guarantees are tremendously useful and free you, the programmer, from tedious house-
keeping chores that are easy to get wrong. They enable you to concentrate on the logic of the pro-
gram itself and be more productive.

When does garbage collection occur? This might seem like a strange question. After all, surely
garbage collection occurs when an object is no longer needed. Well, it does, but not necessarily
immediately. Garbage collection can be an expensive process, so the CLR collects garbage only when
it needs to (when available memory is starting to run low or the size of the heap has exceeded the
system-defined threshold, for example), and then it collects as much as it can. Performing a few large
sweeps of memory is more efficient than performing lots of little dustings!

Note You can invoke the garbage collector in a program by calling the static method
Collect of the GC class located in the System namespace However, except in a few cases, this
is not recommended. The GC.Collect method starts the garbage collector, but the process
runs asynchronously—the GC.Collect method does not wait for garbage collection to be
complete before it returns, so you still don’t know whether your objects have been de-
stroyed. Let the CLR decide when it is best to collect garbage.

One feature of the garbage collector is that you don’t know, and should not rely upon, the order
in which objects will be destroyed. The final point to understand is arguably the most important:

330 part II Understanding the C# Object Model

destructors do not run until objects are garbage collected. If you write a destructor, you know it will
be executed, but you just don’t know when. Consequently, you should never write code that depends
on destructors running in a particular sequence or at a specific point in your application.

how Does the Garbage Collector Work?
The garbage collector runs in its own thread and can execute only at certain times—typically, when
your application reaches the end of a method. While it runs, other threads running in your application
will temporarily halt. This is because the garbage collector might need to move objects around and
update object references; it cannot do this while objects are in use.

Note A thread is a separate path of execution in an application. Windows uses threads to
enable an application to perform multiple operations concurrently.

The garbage collector is a complex piece of software that is self-tuning and implements a number
of optimizations to try and balance the need to keep memory available against the requirement to
maintain the performance of the application. The details of the internal algorithms and structures
that the garbage collector uses are beyond the scope of this book (and Microsoft continually refines
the way in which the garbage collector performs its work), but at the high level, the steps that the
garbage collector takes are as follows:

1. It builds a map of all reachable objects. It does this by repeatedly following reference fields
inside objects. The garbage collector builds this map very carefully and ensures that circular
references do not cause an infinite recursion. Any object not in this map is deemed to be
unreachable.

2. It checks whether any of the unreachable objects has a destructor that needs to be run (a pro-
cess called finalization). Any unreachable object that requires finalization is placed in a special
queue called the freachable queue (pronounced “F-reachable”).

3. It deallocates the remaining unreachable objects (those that don’t require finalization) by
moving the reachable objects down the heap, thus defragmenting the heap and freeing
memory at the top of the heap. When the garbage collector moves a reachable object, it also
updates any references to the object.

4. At this point, it allows other threads to resume.

5. It finalizes the unreachable objects that require finalization (now in the freachable queue) by
running the Finalize methods on its own thread.

recommendations
Writing classes that contain destructors adds complexity to your code and to the garbage collection
process, and makes your program run more slowly. If your program does not contain any destructors,
the garbage collector does not need to place unreachable objects in the freachable queue and finalize

 CHAPTER 14 Using Garbage Collection and Resource Management 331

them. Clearly, not doing something is faster than doing it. Therefore, try to avoid using destructors
except when you really need them; only use them to reclaim unmanaged resources. For example,
consider a using statement instead, as described later in this chapter.

You need to be very careful when you write a destructor. In particular, be aware that, if your
destructor calls other objects, those other objects might have already had their destructor called
by the garbage collector. Remember that the order of finalization is not guaranteed. Therefore,
ensure that destructors do not depend on one another or overlap with one another—don’t have two
destructors that try to release the same resource, for example.

Resource Management

Sometimes it’s inadvisable to release a resource in a destructor; some resources are just too valuable
to lie around waiting for an arbitrary length of time until the garbage collector actually releases them.
Scarce resources such as memory, database connections, or file handles need to be released, and they
need to be released as soon as possible. In these situations, your only option is to release the resource
yourself. You can achieve this by creating a disposal method. A disposal method is a method that
explicitly disposes of a resource. If a class has a disposal method, you can call it and control when the
resource is released.

Note The term disposal method refers to the purpose of the method rather than its name.
A disposal method can be named using any valid C# identifier.

Disposal Methods
An example of a class that implements a disposal method is the TextReader class from the System.IO
namespace. This class provides a mechanism to read characters from a sequential stream of input. The
TextReader class contains a virtual method named Close, which closes the stream. The StreamReader
class (which reads characters from a stream, such as an open file) and the StringReader class (which
reads characters from a string) both derive from TextReader, and both override the Close method.
Here’s an example that reads lines of text from a file by using the StreamReader class and then dis-
plays them on the screen:

TextReader reader = new StreamReader(filename);
string line;
while ((line = reader.ReadLine()) != null)
{
 Console.WriteLine(line);
}
reader.Close();

The ReadLine method reads the next line of text from the stream into a string. The ReadLine
method returns null if there is nothing left in the stream. It’s important to call Close when you have
finished with reader to release the file handle and associated resources. However, there is a problem

332 part II Understanding the C# Object Model

with this example: it’s not exception-safe. If the call to ReadLine or WriteLine throws an exception, the
call to Close will not happen; it will be bypassed. If this happens often enough, you will run out of file
handles and be unable to open any more files.

exception-Safe Disposal
One way to ensure that a disposal method (such as Close) is always called, regardless of whether there
is an exception, is to call the disposal method inside a finally block. Here’s the preceding example
coded using this technique:

TextReader reader = new StreamReader(filename);
try
{
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
}
finally
{
 reader.Close();
}

Using a finally block like this works, but it has several drawbacks that make it a less than ideal
solution:

■■ It quickly gets unwieldy if you have to dispose of more than one resource. (You end up with
nested try and finally blocks.)

■■ In some cases, you might have to modify the code to make it fit this idiom. (For example, you
might need to reorder the declaration of the resource reference, remember to initialize the
reference to null, and remember to check that the reference isn’t null in the finally block.)

■■ It fails to create an abstraction of the solution. This means that the solution is hard to under-
stand and you must repeat the code everywhere you need this functionality.

■■ The reference to the resource remains in scope after the finally block. This means that you can
accidentally try to use the resource after it has been released.

The using statement is designed to solve all these problems.

the using Statement and the IDisposable Interface
The using statement provides a clean mechanism for controlling the lifetimes of resources. You can
create an object, and this object will be destroyed when the using statement block finishes.

 CHAPTER 14 Using Garbage Collection and Resource Management 333

Important Do not confuse the using statement shown in this section with the using direc-
tive that brings a namespace into scope. It is unfortunate that the same keyword has two
different meanings.

The syntax for a using statement is as follows:

using (type variable = initialization)
{
 StatementBlock
}

Here is the best way to ensure that your code always calls Close on a TextReader:

using (TextReader reader = new StreamReader(filename))
{
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
}

This using statement is equivalent to the following transformation:

{
 TextReader reader = new StreamReader(filename);
 try
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 finally
 {
 if (reader != null)
 {
 ((IDisposable)reader).Dispose();
 }
 }
}

Note The using statement introduces its own block for scoping purposes. This arrangement
means that the variable you declare in a using statement automatically goes out of scope at
the end of the embedded statement and you cannot accidentally attempt to access a dis-
posed resource.

334 part II Understanding the C# Object Model

The variable you declare in a using statement must be of a type that implements the IDisposable
interface. The IDisposable interface lives in the System namespace and contains just one method,
named Dispose:

namespace System
{
 interface IDisposable
 {
 void Dispose();
 }
}

The purpose of the Dispose method is to free any resources used by an object. It just so happens
that the StreamReader class implements the IDisposable interface, and its Dispose method calls Close
to close the stream. You can employ a using statement as a clean, exception-safe, and robust way to
ensure that a resource is always released. This approach solves all of the problems that existed in the
manual try/finally solution. You now have a solution that

■■ Scales well if you need to dispose of multiple resources.

■■ Doesn’t distort the logic of the program code.

■■ Abstracts away the problem and avoids repetition.

■■ Is robust. You can’t accidentally reference the variable declared inside the using statement (in
this case, reader) after the using statement has ended because it’s not in scope anymore—
you’ll get a compile-time error.

Calling the Dispose Method from a Destructor
When writing your own classes, should you write a destructor or implement the IDisposable interface
to enable instances of your class to be managed by a using statement? A call to a destructor will hap-
pen, but you just don’t know when. On the other hand, you know exactly when a call to the Dispose
method happens, but you just can’t be sure that it will actually happen, because it relies on the pro-
grammer using your classes remembering to write a using statement. However, it is possible to ensure
that the Dispose method always runs by calling it from the destructor. This acts as a useful backup.
You might forget to call the Dispose method, but at least you can be sure that it will be called, even if
it’s only when the program shuts down. You will investigate this feature in detail in the exercises at the
end of the chapter, but here’s an example of how you might implement the IDisposable interface:

class Example : IDisposable
{
 private Resource scarce; // scarce resource to manage and dispose
 private bool disposed = false; // flag to indicate whether the resource
 // has already been disposed
 ...
 ~Example()
 {
 this.Dispose(false);
 }

 CHAPTER 14 Using Garbage Collection and Resource Management 335

 public virtual void Dispose()
 {
 this.Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)
 {
 // release large, managed resource here
 ...
 }
 // release unmanaged resources here
 ...
 this.disposed = true;
 }
 }

 public void SomeBehavior() // example method
 {
 checkIfDisposed();
 ...
 }

 ...

 private void checkIfDisposed()
 {
 if (this.disposed)
 {
 throw new ObjectDisposedException("Example: object has been disposed of");
 }
 }
}

Notice the following features of the Example class:

■■ The class implements the IDisposable interface.

■■ The public Dispose method can be called at any time by your application code.

■■ The public Dispose method calls the protected and overloaded version of the Dispose method
that takes a Boolean parameter, passing the value true as the argument. This method actually
performs the resource disposal.

■■ The destructor calls the protected and overloaded version of the Dispose method that takes a
Boolean parameter, passing the value false as the argument. The destructor is called only by
the garbage collector, when your object is being finalized.

■■ The protected Dispose method can safely be called multiple times. The variable disposed indi-
cates whether the method has already been run and is a safety feature to prevent the method
from attempting to dispose the resources multiple times if it is called concurrently. (Your

336 part II Understanding the C# Object Model

application might call Dispose, but before the method completes, your object might be gar-
bage collected and the Dispose method run again by the CLR from destructor.) The resources
are released only the first time the method runs.

■■ The protected Dispose method supports disposal of managed resources (such as a large array)
and unmanaged resources (such as a file handle). If the disposing parameter is true, then this
method must have been called from the public Dispose method. In this case, the managed
resources and unmanaged resources are all released. If the disposing parameter is false, then
this method must have been called from the destructor, and the garbage collector is final-
izing the object. In this case, it is not necessary (or exception-safe) to release the managed
resources, as they will be, or might already have been, handled by the garbage collector, so
only the unmanaged resources are released.

■■ The public Dispose method calls the static GC.SuppressFinalize method. This method stops the
garbage collector from calling the destructor on this object, because the object has already
been finalized.

■■ All the regular methods of the class (such as SomeBehavior) check to see whether the object
has already been disposed of. If it has, they throw an exception.

Implementing Exception-Safe Disposal

In the following set of exercises you will examine how the using statement helps to ensure that
resources used by objects in your applications can be released in a timely manner, even if an excep-
tion occurs in your application code. Initially, you will implement a simple class that implements a
destructor and examine when this destructor is invoked by the garbage collector.

Note The Calculator class created in these exercises is intended to show the essential prin-
ciples of garbage collection for illustrative purposes only. The class does not actually con-
sume any significant managed or unmanaged resources. You would not normally create a
destructor or implement the IDisposable interface for such a simple class as this.

Create a simple class that uses a destructor

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. On the FILE menu, point to New, and then click Project.

3. In the New Project dialog box, in the left pane under Templates, click Visual C#. In the middle
pane, select the Console Application template. In the Name field near the bottom of the

 CHAPTER 14 Using Garbage Collection and Resource Management 337

dialog box, type GarbageCollectionDemo. In the Location field, specify the folder Microsoft
Press\Visual CSharp Step By Step\Chapter 14 under your Documents folder, and then click OK.

tip You can use the Browse button adjacent to the Location field to navigate to the
Microsoft Press\Visual CSharp Step By Step\Chapter 14 folder rather than typing in
the path manually.

Visual Studio creates a new console application and displays the Program.cs file in the Code
and Text Editor window.

4. On the PROJECT menu, click Add Class.

5. In the Add New Item – GarbageCollectionDemo dialog box, ensure that the Class template is
selected, type Calculator.cs in the Name field, and click Add.

The Calculator class is created and displayed in the Code and Text Editor window.

6. Add the public Divide method shown below in bold to the Calculator class:

class Calculator
{
 public int Divide(int first, int second)
 {

 return first / second;

 }

}

This is a very straightforward method that divides the first parameter by the second and
returns the result. It is provided just to add a bit of functionality that can be called by an
application.

7. Add the public constructor shown below in bold to the start of the Calculator class, above the
Divide method. The purpose of this constructor is to enable you to verify that a Calculator
object has been successfully created.

class Calculator
{
 public Calculator()
 {

 Console.WriteLine("Calculator being created");

 }

 ...
}

338 part II Understanding the C# Object Model

8. Add the destructor shown below in bold to the Calculator class.

class Calculator
{
 ...
 ~Calculator()
 {

 Console.WriteLine("Calculator being finalized");

 }

 ...
}

This destructor simply displays a message so you can see when the garbage collector runs and
finalizes instances of this class. When writing classes for real-world applications, you would not
normally output text in a destructor.

9. Display the Program.cs file in the Code and Text Editor window.

10. Add the statements shown below in bold to the Main method in the Program class:

static void Main(string[] args)
{
 Calculator calculator = new Calculator();
 Console.WriteLine("{0} / {1} = {2}", 120, 15, calculator.Divide(120, 15));

 Console.WriteLine("Program finishing");

}

This code creates a Calculator object, calls the Divide method of this object (and displays the
result), and then outputs a message as the program finishes.

11. On the DEBUG menu, click Start Without Debugging. Verify that the program displays the fol-
lowing series of messages:

Calculator being created
120 / 15 = 8
Program finishing
Calculator being finalized

Notice that the finalizer for the Calculator object runs only when the application is about to
finish, after the Main method has completed.

12. In the console window, press the Enter key and return to Visual Studio 2012.

The CLR guarantees that all objects created by your applications will be subject to garbage col-
lection, but you cannot always be sure when this will happen. In the exercise, the program was very
short-lived and the Calculator object was finalized when the CLR tidied up as the program finished.
However, you might also find that this is the case in more substantial applications with classes that
consume scarce resources, and unless you take the necessary steps to provide a means of disposal,
the objects that your applications create might retain their resources until the application finishes. If
the resource is a file, this could prevent other users from being able to access that file; if the resource
is a database connection, your application could prevent other users from being able to connect to

 CHAPTER 14 Using Garbage Collection and Resource Management 339

the same database. Ideally, you want to free resources as soon as you have finished using them rather
than waiting for the application to terminate.

In the next exercise, you will implement the IDisposable interface in the Calculator class and enable
the program to finalize Calculator objects at a time of its choosing.

Implement the IDisposable interface

1. Display the Calculator.cs file in the Code and Text Editor window.

2. Modify the definition of the Calculator class so that it implements the IDisposable interface, as
shown below in bold:

class Calculator : IDisposable
{
 ...
}

3. Add the following method named Dispose to the Calculator class. This is the method required
by the IDisposable interface:

class Calculator : IDisposable
{
 ...
 public void Dispose()
 {

 Console.WriteLine("Calculator being disposed");

 }

}

You would normally add code to the Dispose method that releases the resources held by the
object. There are none in this case, and the purpose of the Console.WriteLine statement in this
method is just to enable you to see when the Dispose method is run. However, you can see
that in a real-world application, there would likely be some duplication of code between the
destructor and the Dispose method. To remove this duplication, you would typically place this
code in one place and call it from the other. Seeing as you cannot explicitly invoke a destruc-
tor from the Dispose method, it makes sense instead to call the Dispose method from the
destructor and place the logic that releases resources in the Dispose method.

4. Modify the destructor so that it calls the Dispose method, as shown in bold below (leave the
statement displaying the message in place in the finalizer so you can see when it is being run
by the garbage collector):

~Calculator()
{
 Console.WriteLine("Calculator being finalized");
 this.Dispose();

}

340 part II Understanding the C# Object Model

When you want to destroy a Calculator object in an application, the Dispose method does not
run automatically; your code must either call it explicitly (with a statement such as calculator.
Dispose()) or create the Calculator object within a using statement. In your program, you will
adopt the latter approach.

5. Display the Program.cs file in the Code and Text Editor window. Modify the statements in the
Main method that create the Calculator object and call the Divide method, as shown below in
bold:

static void Main(string[] args)
{
 using (Calculator calculator = new Calculator())
 {

 Console.WriteLine("{0} / {1} = {2}", 120, 15, calculator.Divide(120, 15));

 }
 Console.WriteLine("Program finishing");
}

6. On the DEBUG menu, click Start Without Debugging. Verify that the program now displays
the following series of messages:

Calculator being created
120 / 15 = 8
Calculator being disposed
Program finishing
Calculator being finalized
Calculator being disposed

The using statement causes the Dispose method to run before the statement that displays
the “Program finishing” message. However, you can see that the destructor for the Calculator
object still runs when the application finishes, and it calls the Dispose method again. This is
clearly a waste of processing.

7. In the console window, press the Enter key and return to Visual Studio 2012.

Disposing of the resources held by an object more than once may or may not be disastrous, but
it is definitely not good practice. The recommended approach to resolving this problem is to add a
private Boolean field to the class to indicate whether the Dispose method has already been invoked,
and then examine this field in the Dispose method.

prevent an object from being disposed of more than once

1. Display the Calculator.cs file in the Code and Text Editor window.

2. Add a private Boolean field called disposed to the Calculator class, and initialize the value of
this field to false as shown below in bold:

 CHAPTER 14 Using Garbage Collection and Resource Management 341

class Calculator : IDisposable
{
 private bool disposed = false;
 ...
}

The purpose of this field is to track the state of this object and indicate whether the Dispose
method has been invoked.

3. Modify the code in the Dispose method to display the message only if the disposed field is
false. After displaying the message, set the disposed field to true, as shown below in bold:

public void Dispose()
{
 if (!disposed)
 {

 Console.WriteLine("Calculator being disposed");

 }

 this.disposed = true;
}

4. On the DEBUG menu, click Start Without Debugging. Notice that the program displays the
following series of messages:

Calculator being created
120 / 15 = 8
Calculator being disposed
Program finishing
Calculator being finalized

The Calculator object is now only being disposed once, but the destructor is still running.
Again, this is a waste; there is little point in running a destructor for an object that has already
released its resources.

5. In the console window, press the Enter key and return to Visual Studio 2012.

6. Add the statement shown below in bold to the end of the Dispose method in the Calculator
class:

public void Dispose()
{
 if (!disposed)
 {
 Console.WriteLine("Calculator being disposed");
 }
 this.disposed = true;
 GC.SuppressFinalize(this);
}

The GC class provides access to the garbage collector, and it implements several static
methods that enable you to control some of the actions it performs. The SuppressFinalize
method enables you to indicate that the garage collector should not perform finalization on
the specified object, and this prevents the destructor from running.

342 part II Understanding the C# Object Model

Important The GC class exposes a number of methods that enable you to configure
the garbage collector. However, it is usually better to let the CLR manage the gar-
bage collector itself, as you can seriously impair the performance of your application
if you call these methods injudiciously. You should treat the SuppressFinalize method
with extreme caution because if you fail to dispose an object, you run the risk of
losing data (if you fail to close a file correctly, for example, any data buffered in
memory but not yet written to disk could be lost). Call this method only in situations
such as that shown in this exercise, when you know that an object has already been
disposed.

7. On the DEBUG menu, click Start Without Debugging. Notice that the program displays the
following series of messages:

Calculator being created
120 / 15 = 8
Calculator being disposed
Program finishing

You can see that the destructor is no longer running as the Calculator object has already been
disposed before the program finishes.

8. In the console window, press the Enter key and return to Visual Studio 2012.

thread Safety and the Dispose Method
The example of using the disposed field to prevent an object from being disposed multiple
times works well in most cases, but bear in mind that you have no control over when the final-
izer runs. In the exercises in this chapter, it has always executed as the program finishes, but this
might not always be the case—it can run any time after the last reference to an object has dis-
appeared. So, it is possible that the finalizer might actually be invoked by the garbage collec-
tor on its own thread while the Dispose method is being run, especially if the Dispose method
has to do a significant amount of work. You could reduce the possibility of resources being
released multiple times by moving the statement that sets the disposed field to true closer to
the start of the Dispose method, but in this case you run the risk of not freeing the resources at
all if an exception occurs after you have set this variable but before you have released them.

To completely eliminate the chances of two concurrent threads disposing of the same re-
sources in the same object simultaneously, you can write your code in a thread-safe manner, by
embedding it in a C# lock statement, like this:

 CHAPTER 14 Using Garbage Collection and Resource Management 343

public void Dispose()
{
 lock(this)
 {
 if (!disposed)
 {
 Console.WriteLine("Calculator being disposed");
 }
 this.disposed = true;
 GC.SuppressFinalize(this);
 }
}

The purpose of the lock statement is to prevent the same block of code from being run at
the same time on different threads. The argument to the lock statement (this in the preceding
example) should be a reference to an object. The code between the curly braces defines the
scope of the lock statement. When execution reaches the lock statement, if the specified object
is currently locked, the thread requesting the lock is blocked and the code is suspended at this
point. When the thread that currently holds the lock reaches the closing curly brace of the lock
statement, the lock is released, enabling the blocked thread to acquire the lock itself and con-
tinue. However, by the time this happens, the disposed field will be have been set to true, so the
second thread will not attempt to perform the code in the if (!disposed) block.

Using locks in this manner is safe but can impair performance. An alternative approach is to
use the strategy described earlier in this chapter, where only the repeated disposal of man-
aged resources is suppressed (it is not exception-safe to dispose managed resources more than
once; you will not compromise the security of your computer, but you may affect the logical
integrity of your application if you attempt to dispose of a managed object that no longer ex-
ists). This strategy implements overloaded versions of the Dispose method; the using statement
calls Dispose(), which in turn runs the statement Dispose(true), while the destructor invokes
Dispose(false). Managed resources are only freed if the parameter to the overloaded version
of the Dispose method is true. For more information, refer back to the example in the section
“Calling the Dispose Method from a Destructor.”

The purpose of the using statement is to ensure that an object is always disposed, even if an excep-
tion occurs while it is being used. In the final exercise in this chapter, you will verify that this is the
case by generating an exception in the middle of a using block.

344 part II Understanding the C# Object Model

Verify that an object is disposed after an exception

1. Display the Program.cs file in the Code and Text Editor window.

2. Modify the statement that calls the Divide method of the Calculator object, as shown below in
bold, to the using block:

static void Main(string[] args)
{
 using (Calculator calculator = new Calculator())
 {
 Console.WriteLine("{0} / {1} = {2}", 120, 0, calculator.Divide(120, 0));
 }
 Console.WriteLine("Program finishing");
}

The amended statement attempts to divide 120 by 0.

3. On the DEBUG menu, click Start Without Debugging.

As you might have anticipated, the application throws an unhandled DivideByZeroException
exception.

4. In the GarbageCollectionDemo message box, click Cancel (you need to be quick, before the
Debug and Close Program buttons appear).

Verify that the message “Calculator being disposed” appears after the unhandled exception in
the console window.

Note If you were too slow and the Debug and Close Program buttons have already
appeared, click Close Program and run the application again without debugging.

5. In the console window, press the Enter key and return to Visual Studio 2012.

 CHAPTER 14 Using Garbage Collection and Resource Management 345

Summary

In this chapter, you saw how the garbage collector works and how the .NET Framework uses it to dis-
pose of objects and reclaim memory. You learned how to write a destructor to clean up the resources
used by an object when memory is recycled by the garbage collector. You also saw how to use the
using statement to implement exception-safe disposal of resources and how to implement the IDis-
posable interface to support this form of object disposal.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 15.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 14 Quick Reference

To Do this

Write a destructor Write a method whose name is the same as the name of the class
and is prefixed with a tilde (~). The method must not have an access
modifier (such as public) and cannot have any parameters or return
a value. For example:

class Example
{
 ~Example()
 {
 ...
 }
}

Call a destructor You can’t call a destructor. Only the garbage collector can call a
destructor.

Force garbage collection (not recommended) Call GC.Collect.

Release a resource at a known point in time
(but at the risk of resource leaks if an exception
interrupts the execution)

Write a disposal method (a method that disposes of a resource) and
call it explicitly from the program. For example:

class TextReader
{
 ...
 public virtual void Close()
 {
 ...
 }
}
class Example
{
 void Use()
 {
 TextReader reader = ...;
 // use reader
 reader.Close();
 }
}

346 part II Understanding the C# Object Model

To Do this

Support exception-safe disposal in a class Implement the IDisposable interface. For example:

class SafeResource : IDisposable
{
 ...
 public void Dispose()
 {
 // Dispose resources here
 }
}

Implement exception-safe disposal for an ob-
ject that implements the IDisposable interface

Create the object in a using statement. For example:

using (SafeResource resource = new SafeResource())
{
 // Use SafeResource here
 ...
}

 347

PART III

Defining Extensible
Types with C#

The first two parts of this book introduced the core syntax of
the C# language and showed you how to use C# to build new
types by using structures, enumerations, and classes. You also
saw how the common language runtime manages the memory
used by variables and objects when a program runs, and you
should now understand the life cycle of C# objects. The chapters
in Part III build on this information, showing you how to use C#
to create extensible components—highly functional data types
that you can reuse in many different applications.

In Part III, you’ll learn about many of the more advanced fea-
tures of C# such as properties, indexers, generics, and collection
classes. You’ll also see how you can build highly responsive sys-
tems by using events, and how you can use delegates to invoke
the application logic of one class from another without closely
coupling them together; this is an extremely powerful technique
that enables you to construct highly extensible systems. You will
also learn about the Language-Integrated Query (LINQ) feature
of C#, which enables you to perform potentially complex que-
ries over collections of objects in a clear and natural manner.

 349

C H A P T E R 1 5

Implementing properties
to access Fields

After completing this chapter, you will be able to

■■ Encapsulate logical fields by using properties.

■■ Control read access to properties by declaring get accessors.

■■ Control write access to properties by declaring set accessors.

■■ Create interfaces that declare properties.

■■ Implement interfaces containing properties by using structures and classes.

■■ Generate properties automatically based on field definitions.

■■ Use properties to initialize objects.

This chapter looks at how to define and use properties to encapsulate fields and data in a class. Previ-
ous chapters have emphasized that you should make the fields in a class private and provide methods
to store values in them and to retrieve their values. This approach ensures safe and controlled access
to fields and enables you to encapsulate additional logic and rules concerning the values that are
permitted. However, the syntax for accessing a field in this way is unnatural. When you want to read
or write a variable, you normally use an assignment statement, so calling a method to achieve the
same effect on a field (which is, after all, just a variable) feels a little clumsy. Properties are designed
to alleviate this awkwardness.

Implementing Encapsulation by Using Methods

First, let’s recap the original motivation for using methods to hide fields.

Consider the following structure that represents a position on a computer screen as a pair of
coordinates, x and y. Assume that the range of valid values for the x-coordinate lies between 0 and
1280, and the range of valid values for the y-coordinate lies between 0 and 1024:

350 part III Defining Extensible Types with C#

struct ScreenPosition
{
 public int X;
 public int Y;

 public ScreenPosition(int x, int y)
 {
 this.X = rangeCheckedX(x);
 this.Y = rangeCheckedY(y);
 }

 private static int rangeCheckedX(int x)
 {
 if (x < 0 || x > 1280)
 {
 throw new ArgumentOutOfRangeException("X");
 }
 return x;
 }

 private static int rangeCheckedY(int y)
 {
 if (y < 0 || y > 1024)
 {
 throw new ArgumentOutOfRangeException("Y");
 }
 return y;
 }
}

One problem with this structure is that it does not follow the golden rule of encapsulation—that
is, it does not keep its data private. Public data is often a bad idea because the class cannot control
the values that an application specifies. For example, the ScreenPosition constructor range checks its
parameters to make sure that they are in a specified range, but no such check can be done on the
“raw” access to the public fields. Sooner or later (probably sooner), an error or misunderstanding on
the part of a developer using this class in an application can cause either X or Y to stray out of this
range:

ScreenPosition origin = new ScreenPosition(0, 0);
...
int xpos = origin.X;
origin.Y = -100; // oops

The common way to solve this problem is to make the fields private and add an accessor method
and a modifier method to respectively read and write the value of each private field. The modifier
methods can then range-check new field values. For example, the following code contains an accessor
(GetX) and a modifier (SetX) for the X field. Notice that SetX checks its parameter value.

 CHAPTER 15 Implementing Properties to Access Fields 351

struct ScreenPosition
{
 ...
 public int GetX()
 {
 return this.x;
 }

 public void SetX(int newX)
 {
 this.x = rangeCheckedX(newX);
 }
 ...
 private static int rangeCheckedX(int x) { ... }
 private static int rangeCheckedY(int y) { ... }
 private int x, y;
}

The code now successfully enforces the range constraints, which is good. However, there is a price
to pay for this valuable guarantee—ScreenPosition no longer has a natural fieldlike syntax; it uses
awkward method-based syntax instead. The following example increases the value of X by 10. To do
so, it has to read the value of X by using the GetX accessor method and then write the value of X by
using the SetX modifier method.

int xpos = origin.GetX();
origin.SetX(xpos + 10);

Compare this with the equivalent code if the X field were public:

origin.X += 10;

There is no doubt that, in this case, using public fields is syntactically cleaner, shorter, and easier.
Unfortunately, using public fields breaks encapsulation. Properties enable you to combine the best of
both worlds (fields and methods) to retain encapsulation while providing a fieldlike syntax.

What Are Properties?

A property is a cross between a field and a method—it looks like a field but acts like a method. You
access a property by using exactly the same syntax that you use to access a field. However, the com-
piler automatically translates this fieldlike syntax into calls to accessor methods (sometimes referred to
as property getters and property setters).

352 part III Defining Extensible Types with C#

The syntax for a property declaration looks like this:

AccessModifier Type PropertyName
{
 get
 {
 // read accessor code
 }

 set
 {
 // write accessor code
 }
}

A property can contain two blocks of code, starting with the get and set keywords. The get block
contains statements that execute when the property is read, and the set block contains statements
that run when the property is written to. The type of the property specifies the type of data read and
written by the get and set accessors.

The next code example shows the ScreenPosition structure rewritten by using properties. When
looking at this code, notice the following:

■■ Lowercase _x and _y are private fields.

■■ Uppercase X and Y are public properties.

■■ All set accessors are passed the data to be written by using a hidden, built-in parameter
named value.

struct ScreenPosition
{
 private int _x, _y;

 public ScreenPosition(int X, int Y)
 {
 this._x = rangeCheckedX(X);
 this._y = rangeCheckedY(Y);
 }

 public int X
 {
 get { return this._x; }
 set { this._x = rangeCheckedX(value); }
 }

 public int Y
 {
 get { return this._y; }
 set { this._y = rangeCheckedY(value); }
 }

 private static int rangeCheckedX(int x) { ... }
 private static int rangeCheckedY(int y) { ... }
}

 CHAPTER 15 Implementing Properties to Access Fields 353

In this example, a private field directly implements each property, but this is only one way to
implement a property. All that is required is that a get accessor returns a value of the specified type.
Such a value can easily be calculated dynamically rather than being simply retrieved from stored data,
in which case there would be no need for a physical field.

Note Although the examples in this chapter show how to define properties for a structure,
they are equally applicable to classes; the syntax is the same.

properties and Field Names: a Warning
The section “Naming Variables” in Chapter 2, “Working with Variables, Operators, and
Expressions,” describes some recommendations for naming variables. In particular, it states
that you should avoid starting an identifier with an underscore. However, you can see that the
ScreenPosition struct does not completely follow this guidance; it contains two fields named
_x and _y. There is a good reason for this anomaly. The sidebar “Naming and Accessibility” in
Chapter 7, “Creating and Managing Classes and Objects,” describes how it is common to use
identifiers that start with an uppercase letter for publicly accessible methods and fields, and to
use identifiers that start with a lowercase letter for private methods and fields. Taken together,
these two practices can cause you to give properties and private fields the same name that dif-
fers only in the case of the initial letter, and many organizations do precisely this.

If your organization follows this approach, you should be aware of one important drawback.
Examine the following code, which implements a class named Employee. The employeeID field
is private, but the EmployeeID property provides public access to this field.

class Employee
{
 private int employeeID;

 public int EmployeeID
 {
 get { return this.EmployeeID; }
 set { this.EmployeeID = value; }
 }
}

This code will compile perfectly well, but it results in a program raising a
StackOverflowException exception whenever the EmployeeID property is accessed. This is
because the get and set accessors reference the property (uppercase E) rather than the private
field (lowercase e), which causes an endless recursive loop that eventually causes the process
to exhaust the available memory. This type of bug is very difficult to spot! For this reason, the
examples in this book name the private fields used to provide the data for properties with a
leading underscore; it makes them much easier to distinguish from the names of properties. All
other private fields will continue to use camelCase identifiers without a leading underscore.

354 part III Defining Extensible Types with C#

Using properties
When you use a property in an expression, you can use it in a read context (when you are retrieving
its value) and in a write context (when you are modifying its value). The following example shows how
to read values from the X and Y properties of the ScreenPosition structure:

ScreenPosition origin = new ScreenPosition(0, 0);
int xpos = origin.X; // calls origin.X.get
int ypos = origin.Y; // calls origin.Y.get

Notice that you access properties and fields by using identical syntax. When you use a property in
a read context, the compiler automatically translates your fieldlike code into a call to the get accessor
of that property. Similarly, if you use a property in a write context, the compiler automatically trans-
lates your fieldlike code into a call to the set accessor of that property:

origin.X = 40; // calls origin.X.set, with value set to 40
origin.Y = 100; // calls origin.Y.Set, with value set to 100

The values being assigned are passed in to the set accessors by using the value variable, as
described in the preceding section. The runtime does this automatically.

It’s also possible to use a property in a read/write context. In this case, both the get accessor and
the set accessor are used. For example, the compiler automatically translates statements such as the
following into calls to the get and set accessors:

origin.X += 10;

tip You can declare static properties in the same way that you can declare static fields and
methods. Static properties are accessed by using the name of the class or structure rather
than an instance of the class or structure.

read-Only properties
You can declare a property that contains only a get accessor. In this case, you can use the property
only in a read context. For example, here’s the X property of the ScreenPosition structure declared as
a read-only property:

struct ScreenPosition
{
 private int _x;
 ...
 public int X
 {
 get { return this._x; }
 }
}

 CHAPTER 15 Implementing Properties to Access Fields 355

The X property does not contain a set accessor; therefore, any attempt to use X in a write context
will fail. For example:

origin.X = 140; // compile-time error

Write-Only properties
Similarly, you can declare a property that contains only a set accessor. In this case, you can use the
property only in a write context. For example, here’s the X property of the ScreenPosition structure
declared as a write-only property:

struct ScreenPosition
{
 private int _x;
 ...
 public int X
 {
 set { this._x = rangeCheckedX(value); }
 }
}

The X property does not contain a get accessor; any attempt to use X in a read context will fail. For
example:

Console.WriteLine(origin.X); // compile-time error
origin.X = 200; // compiles OK
origin.X += 10; // compile-time error

Note Write-only properties are useful for secure data such as passwords. Ideally, an appli-
cation that implements security should allow you to set your password but should never al-
low you to read it back. When a user attempts to log in, the user can provide the password.
The login method can compare this password with the stored password and return only an
indication of whether they match.

property accessibility
You can specify the accessibility of a property (public, private, or protected) when you declare it. However,
it is possible within the property declaration to override the property accessibility for the get and set acces-
sors. For example, the version of the ScreenPosition structure shown here defines the set accessors of the X
and Y properties as private. (The get accessors are public, because the properties are public.)

struct ScreenPosition
{
 private int _x, _y;
 ...
 public int X

356 part III Defining Extensible Types with C#

 {
 get { return this._x; }
 private set { this._x = rangeCheckedX(value); }
 }

 public int Y
 {
 get { return this._y; }
 private set { this._y = rangeCheckedY(value); }
 }
 ...
}

You must observe some rules when defining accessors with different accessibility from one another:

■■ You can change the accessibility of only one of the accessors when you define it. It wouldn’t
make much sense to define a property as public only to change the accessibility of both
accessors to private anyway!

■■ The modifier must not specify an accessibility that is less restrictive than that of the property.
For example, if the property is declared as private, you cannot specify the read accessor as
public. (Instead, you would make the property public and make the write accessor private.)

Understanding the Property Restrictions

Properties look, act, and feel like fields when you read or write data using them. However, they are
not true fields, and certain restrictions apply to them:

■■ You can assign a value through a property of a structure or class only after the structure or
class has been initialized. The following code example is illegal because the location variable
has not been initialized (by using new):

ScreenPosition location;
location.X = 40; // compile-time error, location not assigned

Note This might seem trivial, but if X were a field rather than a property, the code
would be legal. For this reason, you should define structures and classes by using
properties from the start, rather than by using fields that you later migrate to
properties—code that uses your classes and structures might no longer work af-
ter you change fields into properties. You will return to this matter in the section
“Generating Automatic Properties” later in this chapter.

■■ You can’t use a property as a ref or an out argument to a method (although you can use a
writable field as a ref or an out argument). This makes sense because the property doesn’t
really point to a memory location but rather to an accessor method. For example:

MyMethod(ref location.X); // compile-time error

 CHAPTER 15 Implementing Properties to Access Fields 357

■■ A property can contain at most one get accessor and one set accessor. A property cannot
contain other methods, fields, or properties.

■■ The get and set accessors cannot take any parameters. The data being assigned is passed to
the set accessor automatically by using the value variable.

■■ You can’t declare const properties. For example:

const int X { get { ... } set { ... } } // compile-time error

Using properties appropriately
Properties are a powerful feature, and used in the correct manner, they can help to make code
easier to understand and maintain. However, they are no substitute for careful object-oriented
design that focuses on the behavior of objects rather than on the properties of objects.
Accessing private fields through regular methods or through properties does not, by itself,
make your code well-designed. For example, a bank account holds a balance indicating the
funds available in the account. You might therefore be tempted to create a Balance property
on a BankAccount class, like this:

class BankAccount
{

 private decimal _balance;
 ...
 public decimal Balance
 {
 get { return this._balance; }
 set { this._balance = value; }
 }
}

This is a poor design. It fails to represent the functionality required when withdrawing
money from or depositing money into an account. (If you know of a bank that allows you to
change the balance of your account directly without physically putting money into the account,
then please let me know!) When you’re programming, try to express the problem you’re
solving in the solution and don’t get lost in a mass of low-level syntax. For example, provide
Deposit and Withdraw methods for the BankAccount class rather than a property setter:

class BankAccount
{
 private decimal _balance;
 ...
 public decimal Balance { get { return this._balance; } }
 public void Deposit(money amount) { ... }
 public bool Withdraw(money amount) { ... }
}

358 part III Defining Extensible Types with C#

Declaring Interface Properties

You encountered interfaces in Chapter 13, “Creating Interfaces and Defining Abstract Classes.” Inter-
faces can define properties as well as methods. To do this, you specify the get or set keyword, or both,
but replace the body of the get or set accessor with a semicolon. For example:

interface IScreenPosition
{
 int X { get; set; }
 int Y { get; set; }
}

Any class or structure that implements this interface must implement the X and Y properties with
get and set accessor methods. For example:

struct ScreenPosition : IScreenPosition
{
 ...
 public int X
 {
 get { ... }
 set { ... }
 }

 public int Y
 {
 get { ... }
 set { ... }
 }
 ...
}

If you implement the interface properties in a class, you can declare the property implementations
as virtual, which enables derived classes to override the implementations. For example:

class ScreenPosition : IScreenPosition
{
 ...
 public virtual int X
 {
 get { ... }
 set { ... }
 }
 public virtual int Y
 {
 get { ... }
 set { ... }
 }
 ...
}

 CHAPTER 15 Implementing Properties to Access Fields 359

Note This example shows a class. Remember that the virtual keyword is not valid when cre-
ating a struct because structures do not support inheritance.

You can also choose to implement a property by using the explicit interface implementation syn-
tax covered in Chapter 13. An explicit implementation of a property is nonpublic and nonvirtual (and
cannot be overridden). For example:

struct ScreenPosition : IScreenPosition
{
 ...
 int IScreenPosition.X
 {
 get { ... }
 set { ... }
 }

 int IScreenPosition.Y
 {
 get { ... }
 set { ... }
 }
 ...
}

replacing Methods with properties
In Chapter 13 you created a drawing application that enabled the user to place circles and squares on
a canvas in a window. You factored the common functionality for the Circle and Square classes into
an abstract class called DrawingShape. The DrawingShape class provided the SetLocation and Set-
Color methods to enable the application to specify the position and color of a shape on the screen. In
the following exercise, you will modify the DrawingShape class to expose the location and color of a
shape as properties.

Use properties

1. Start Visual Studio 2012 if it is not already running.

2. Open the Drawing project, located in the \Microsoft Press\Visual CSharp Step By Step\Chapter
15\Windows X\Drawing Using Properties folder in your Documents folder.

3. Display the DrawingShape.cs file in the Code and Text Editor window.

This file contains the same DrawingShape class that you created in Chapter 13, except that, fol-
lowing the recommendations described earlier in this chapter, the size field has been renamed
as _size, and the locX and locY fields have been renamed as _x and _y.

360 part III Defining Extensible Types with C#

abstract class DrawingShape
{
 protected int _size;
 protected int _x = 0, _y = 0;
 ...
}

4. Open the IDraw.cs file for the Drawing project in the Code and Text Editor window.

Recall that this interface specifies the SetLocation method, like this:

interface IDraw
{
 SetLocation(int xCoord, in yCoord);
 ...
}

The purpose of this method is to set the _x and _y fields of the DrawingShape object to the
values passed in. This method can be replaced with a pair of properties.

5. Delete this method and replace it with the definition of a pair of properties named X and Y, as
shown below in bold:

interface IDraw
{
 int X { get; set; }
 int Y { get; set; }
 ...
}

6. In the DrawingShape class, delete the SetLocation method and replace it with the following
implementations of the X and Y properties:

public int X
{
 get { return this._x; }
 set { this._x = value; }
}

public int Y
{
 get { return this._y; }
 set { this._y = value; }
}

7. Display the DrawingPad.xaml.cs file in the Code and Text Editor window. If you are using
Windows 8, find the drawingCanvas_Tapped method. If you are using Windows 7, find the
drawingCanvas_MouseLeftButtonDown method.

These methods run when the user taps the screen or clicks the left mouse button, and they
draws a square on the screen at the point where the user tapped or clicked.

 CHAPTER 15 Implementing Properties to Access Fields 361

8. Find the statement that calls the SetLocation method to set the position of the square on the
screen. It is located in the following if statement block:

if (mySquare is IDraw)
{
 IDraw drawSquare = mySquare;
 drawSquare.SetLocation((int)mouseLocation.X, (int)mouseLocation.Y);
 drawSquare.Draw(drawingCanvas);
}

9. Replace this statement with code that sets the X and Y properties of the Square object, as
shown below in bold:

if (mySquare is IDraw)
{
 IDraw drawSquare = mySquare;
 drawSquare.X = (int)mouseLocation.X;
 drawSquare.Y = (int)mouseLocation.Y;
 drawSquare.Draw(drawingCanvas);
}

10. If you are using Windows 8, find the drawingCanvas_RightTapped method. If you are using
Windows 7, find the drawingCanvas_MouseRightButtonDown method.

These methods run when the user taps and holds on the screen or clicks the right mouse
button, and they draw a circle on the screen.

11. In this method, replace the statement that calls the SetLocation method of the Circle object
and set the X and Y properties instead, as shown below in bold:

if (myCircle is IDraw)
{
 IDraw drawCircle = myCircle;
 drawCircle.X = (int)mouseLocation.X;
 drawCircle.Y = (int)mouseLocation.Y;
 drawCircle.Draw(drawingCanvas);
}

12. Open the IColor.cs file for the Drawing project in the Code and Text Editor window. This inter-
face specifies the SetColor method, like this:

interface IColor
{
 SetColor(Color color);
}

13. Delete this method and replace it with the definition of a property named Color, as shown
below in bold:

interface IColor
{
 Color Color { set; }
}

362 part III Defining Extensible Types with C#

This is a write-only property, providing a set accessor but no get accessor. This is because the
color is not actually stored in the DrawingShape class and is only specified as each shape is
drawn; you cannot actually query a shape to find out which color it is.

Note It is common practice for a property to share the same name as a type (Color
in this example).

14. Return to the DrawingShape class in the Code and Text Editor window. Replace the SetColor
method in this class with the Color property shown below:

public Color Color

{

 set

 {

 if (this.shape != null)

 {

 SolidColorBrush brush = new SolidColorBrush(value);

 this.shape.Fill = brush;

 }

 }

}

tip The code for the set accessor is almost the same as the original SetColor method
except that the statement that creates the SolidColorBrush object is passed the value
parameter.

15. Return to the DrawingPad.xaml.cs file in the Code and Text Editor window. In the
drawingCanvas_Tapped method (Windows 8) or drawingCanvas_MouseLeftButtonDown
method (Windows 7), modify the statement the sets the color of the Square object, as shown
below in bold:

if (mySquare is IColor)
{
 IColor colorSquare = mySquare;
 colorSquare.Color = Colors.BlueViolet;
}

16. Similarly, in the drawingCanvas_RightTapped method (Windows 8) or
drawingCanvas_MouseRightButtonDown method (Windows 7), modify the statement the sets
the color of the Circle object:

if (myCircle is IColor)
{
 IColor colorCircle = myCircle;
 colorCircle.Color = Colors.HotPink;
}

 CHAPTER 15 Implementing Properties to Access Fields 363

17. On the DEBUG menu, click Start Debugging to build and run the project.

18. Verify that the application operates in the same manner as before. If you tap the screen or
click the left mouse button on the canvas, the application should draw a square, and if you tap
and hold or click the right mouse button, the application should draw a circle.

19. Return to the Visual Studio 2012 programming environment and stop debugging.

Generating Automatic Properties

As mentioned earlier in this chapter, the principal purpose of properties is to hide the implementa-
tion of fields from the outside world. This is fine if your properties actually perform some useful work,
but if the get and set accessors simply wrap operations that just read or assign a value to a field, you
might be questioning the value of this approach. However, there are at least two good reasons why
you should define properties rather than exposing data as public fields even in these situations:

■■ Compatibility with applications Fields and properties expose themselves by using different
metadata in assemblies. If you develop a class and decide to use public fields, any applications
that use this class will reference these items as fields. Although you use the same C# syntax for
reading and writing a field that you use when reading and writing a property, the compiled
code is actually quite different—the C# compiler just hides the differences from you. If you
later decide that you really do need to change these fields to properties (maybe the business
requirements have changed, and you need to perform additional logic when assigning values),
existing applications will not be able to use the updated version of the class without being
recompiled. This is awkward if you have deployed the application on a large number of users’
desktops throughout an organization. There are ways around this, but it is generally better to
avoid getting into this situation in the first place.

364 part III Defining Extensible Types with C#

■■ Compatibility with interfaces If you are implementing an interface and the interface
defines an item as a property, you must write a property that matches the specification in the
interface, even if the property just reads and writes data in a private field. You cannot imple-
ment a property simply by exposing a public field with the same name.

The designers of the C# language recognized that programmers are busy people who should not
have to waste their time writing more code than they need to. To this end, the C# compiler can gen-
erate the code for properties for you automatically, like this:

class Circle
{
 public int Radius{ get; set; }
 ...
}

In this example, the Circle class contains a property named Radius. Apart from the type of this
property, you have not specified how this property works—the get and set accessors are empty. The
C# compiler converts this definition to a private field and a default implementation that looks similar
to this:

class Circle
{
 private int _radius;
 public int Radius{
 get
 {
 return this._radius;
 }
 set
 {
 this._radius = value;
 }
 }
 ...
}

So for very little effort, you can implement a simple property by using automatically generated
code, and if you need to include additional logic later, you can do so without breaking any existing
applications. You should note, however, that you must specify both a get and a set accessor with an
automatically generated property—an automatic property cannot be read-only or write-only.

Note The syntax for defining an automatic property is almost identical to the syntax for
defining a property in an interface. The exception is that an automatic property can specify
an access modifier, such as private, public, or protected.

Using this approach enables you to emulate read-only and write-only automatic proper-
ties by marking the get or set accessor as private. However, this approach is considered to
be poor programming practice, as it can introduce subtle bugs into your code. Therefore, I
have elected not to show an example!

 CHAPTER 15 Implementing Properties to Access Fields 365

Initializing Objects by Using Properties

In Chapter 7, you learned how to define constructors to initialize an object. An object can have
multiple constructors, and you can define constructors with varying parameters to initialize different
elements in an object. For example, you could define a class that models a triangle like this:

public class Triangle
{
 private int side1Length;
 private int side2Length;
 private int side3Length;

 // default constructor - default values for all sides
 public Triangle()
 {
 this.side1Length = this.side2Length = this.side3Length = 10;
 }

 // specify length for side1Length, default values for the others
 public Triangle(int length1)
 {
 this.side1Length = length1;
 this.side2Length = this.side3Length = 10;
 }

 // specify length for side1Length and side2Length,
 // default value for side3Length
 public Triangle(int length1, int length2)
 {
 this.side1Length = length1;
 this.side2Length = length2;
 this.side3Length = 10;
 }

 // specify length for all sides
 public Triangle(int length1, int length2, int length3)
 {
 this.side1Length = length1;
 this.side2Length = length2;
 this.side3Length = length3;
 }
}

Depending on how many fields a class contains and the various combinations you want to enable
for initializing the fields, you could end up writing a lot of constructors. There are also potential prob-
lems if many of the fields have the same type: you might not be able to write a unique constructor
for all combinations of fields. For example, in the preceding Triangle class, you could not easily add
a constructor that initializes only the side1Length and side3Length fields because it would not have
a unique signature; it would take two int parameters, and the constructor that initializes side1Length
and side2Length already has this signature. One possible solution is to define a constructor that takes
optional parameters and specify values for the parameters as named arguments when you create a

366 part III Defining Extensible Types with C#

Triangle object. However, a better and more transparent solution is to initialize the private fields to a
set of default values and expose them as properties, like this:

public class Triangle
{
 private int side1Length = 10;
 private int side2Length = 10;
 private int side3Length = 10;

 public int Side1Length
 {
 set { this.side1Length = value; }
 }

 public int Side2Length
 {
 set { this.side2Length = value; }
 }

 public int Side3Length
 {
 set { this.side3Length = value; }
 }
}

When you create an instance of a class, you can initialize it by specifying the names and values for
any public properties that have set accessors. For example, you can create Triangle objects and initial-
ize any combination of the three sides, like this:

Triangle tri1 = new Triangle { Side3Length = 15 };
Triangle tri2 = new Triangle { Side1Length = 15, Side3Length = 20 };
Triangle tri3 = new Triangle { Side2Length = 12, Side3Length = 17 };
Triangle tri4 = new Triangle { Side1Length = 9, Side2Length = 12,
 Side3Length = 15 };

This syntax is known as an object initializer. When you invoke an object initializer in this way, the
C# compiler generates code that calls the default constructor and then calls the set accessor of each
named property to initialize it with the value specified. You can specify object initializers in combina-
tion with nondefault constructors as well. For example, if the Triangle class also provided a constructor
that took a single string parameter describing the type of triangle, you could invoke this constructor
and initialize the other properties like this:

Triangle tri5 = new Triangle("Equilateral triangle") { Side1Length = 3,
 Side2Length = 3,
 Side3Length = 3 };

The important point to remember is that the constructor runs first and the properties are set after-
ward. Understanding this sequencing is important if the constructor sets fields in an object to specific
values and the properties that you specify change these values.

 CHAPTER 15 Implementing Properties to Access Fields 367

You can also use object initializers with automatic properties, as you will see in the next exercise. In
this exercise, you will define a class for modeling regular polygons that contains automatic properties
for providing access to information about the number of sides the polygon contains and the length of
these sides.

Define automatic properties and use object initializers

1. In Visual Studio 2012, open the AutomaticProperties project, located in the \Microsoft Press\
Visual CSharp Step By Step\Chapter 15\Windows X\AutomaticProperties folder in your
Documents folder.

The AutomaticProperties project contains the Program.cs file, defining the Program class with
the Main and doWork methods that you saw in previous exercises.

2. In Solution Explorer, right-click the AutomaticProperties project, point to Add, and then click
Class. In the Add New Item—AutomaticProperties dialog box, type Polygon.cs in the Name
text box, and then click Add.

The Polygon.cs file, holding the Polygon class, is created and added to the project and appears
in the Code and Text Editor window.

3. Add the automatic properties NumSides and SideLength, shown here in bold, to the Polygon
class:

class Polygon
{
 public int NumSides { get; set; }

 public double SideLength { get; set; }
}

4. Add the following default constructor shown in bold to the Polygon class. This constructor
initializes the NumSides and SideLength fields with default values:

class Polygon
{
 ...
 public Polygon()
 {

 this.NumSides = 4;

 this.SideLength = 10.0;

 }
}

In this exercise, the default polygon is a square with sides 10 units long.

5. Display the Program.cs file in the Code and Text Editor window.

368 part III Defining Extensible Types with C#

6. Add the statements shown below in bold to the doWork method, replacing the // TODO:
comment:

static void doWork()
{
 Polygon square = new Polygon();
 Polygon triangle = new Polygon { NumSides = 3 };
 Polygon pentagon = new Polygon { SideLength = 15.5, NumSides = 5 };
}

These statements create Polygon objects. The square variable is initialized by using the default
constructor. The triangle and pentagon variables are also initialized by using the default
constructor, and then this code changes the value of the properties exposed by the Polygon
class. In the case of the triangle variable, the NumSides property is set to 3, but the SideLength
property is left at its default value of 10.0. For the pentagon variable, the code changes the
values of the SideLength and NumSides properties.

7. Add the following code shown in bold to the end of the doWork method:

static void doWork()
{
 ...
 Console.WriteLine("Square: number of sides is {0}, length of each side is {1}",
 square.NumSides, square.SideLength);
 Console.WriteLine("Triangle: number of sides is {0}, length of each side is {1}",
 triangle.NumSides, triangle.SideLength);
 Console.WriteLine("Pentagon: number of sides is {0}, length of each side is {1}",
 pentagon.NumSides, pentagon.SideLength);
}

These statements display the values of the NumSides and SideLength properties for each
Polygon object.

8. On the DEBUG menu, click Start Without Debugging.

Verify that the program builds and runs, writing the messages shown here to the console
window:

9. Press the Enter key to close the application and return to Visual Studio 2012.

 CHAPTER 15 Implementing Properties to Access Fields 369

Summary

In this chapter, you saw how to create and use properties to provide controlled access to data in an
object. You also saw how to create automatic properties and how to use properties when initializing
objects.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 16.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 15 Quick Reference

To Do this

Declare a read/write property for a structure
or class

Declare the type of the property, its name, a get accessor, and a set
accessor. For example:

struct ScreenPosition
{
 ...
 public int X
 {
 get { ... }
 set { ... }
 }
 ...
}

Declare a read-only property for a structure
or class

Declare a property with only a get accessor. For example:

struct ScreenPosition
{
 ...
 public int X
 {
 get { ... }
 }
 ...
}

Declare a write-only property for a structure
or class

Declare a property with only a set accessor. For example:

struct ScreenPosition
{
 ...
 public int X
 {
 set { ... }
 }
 ...
}

370 part III Defining Extensible Types with C#

To Do this

Declare a property in an interface Declare a property with just the get or set keyword, or both. For
example:

interface IScreenPosition
{
 int X { get; set; } // no body
 int Y { get; set; } // no body
}

Implement an interface property in a struc-
ture or class

In the class or structure that implements the interface, declare the
property and implement the accessors. For example:

struct ScreenPosition : IScreenPosition
{
 public int X
 {
 get { ... }
 set { ... }
 }

 public int Y
 {
 get { ... }
 set { ... }
 }
}

Create an automatic property In the class or structure that contains the property, define the prop-
erty with empty get and set accessors. For example:

class Polygon
{
 public int NumSides { get; set; }
}

Use properties to initialize an object Specify the properties and their values as a list enclosed in braces
when constructing the object. For example:

Triangle tri3 =
 new Triangle { Side2Length = 12, Side3Length = 17 };

 371

C H A P T E R 1 6

Using Indexers

After completing this chapter, you will be able to

■■ Encapsulate logical arraylike access to an object by using indexers.

■■ Control read access to indexers by declaring get accessors.

■■ Control write access to indexers by declaring set accessors.

■■ Create interfaces that declare indexers.

■■ Implement indexers in structures and classes that inherit from interfaces.

Chapter 15, “Implementing Properties to Access Fields,” described how to implement and use proper-
ties as a means of providing controlled access to the fields in a class. Properties are useful for mirror-
ing fields that contain a single value. However, indexers are invaluable if you want to provide access to
items that contain multiple values by using a natural and familiar syntax.

What Is an Indexer?

You can think of an indexer as a smart array in much the same way that you can think of a property
as a smart field. Where a property encapsulates a single value in a class, an indexer encapsulates a
set of values. The syntax that you use for an indexer is exactly the same as the syntax that you use
for an array.

The best way to understand indexers is to work through an example. First, you’ll consider a prob-
lem and examine a solution that doesn’t use indexers. Then you’ll work through the same problem
and look at a better solution that does use indexers. The problem concerns integers, or more pre-
cisely, the int type.

an example that Doesn’t Use Indexers
You normally use an int to hold an integer value. Internally, an int stores its value as a sequence of 32
bits, where each bit can be either 0 or 1. Most of the time, you don’t care about this internal binary
representation; you just use an int type as a container that holds an integer value. However, some-
times programmers use the int type for other purposes—some programs use an int as a set of binary

372 part III Defining Extensible Types with C#

flags and manipulate the individual bits within an int. If you are an old C hack like I am, what follows
should have a very familiar feel!

Note Some older programs used int types to try to save memory. Such programs typically
date back to when the size of computer memory was measured in kilobytes rather than the
gigabytes available these days and memory was at an absolute premium. A single int holds
32 bits, each of which can be 1 or 0. In some cases, programmers assigned 1 to indicate the
value true and 0 to indicate false, and then employed an int as a set of Boolean values.

C# provides a set of operators that you can use to access and manipulate the individual bits in an
int. These operators are as follows:

■■ The NOT (~) operator This is a unary operator that performs a bitwise complement. For
example, if you take the 8-bit value 11001100 (204 decimal) and apply the ~ operator to it,
you obtain the result 00110011 (51 decimal)—all the 1s in the original value become 0s, and
all the 0s become 1s.

Note The examples shown here are purely illustrative and are accurate only to 8
bits. In C#, the int type is 32 bits, so if you try any these examples in a C# application,
you will get a 32-bit result that may be different from those shown in this list. For
example, in 32 bits, 204 is 00000000000000000000000011001100, so in C#, ~204
is 11111111111111111111111100110011 (which is actually the int representation of
–205 in C#).

■■ The left-shift (<<) operator This is a binary operator that performs a left shift. The expres-
sion 204 << 2 returns the value 48. (In binary, 204 decimal is 11001100, and left-shifting it
by two places yields 00110000, or 48 decimal.) The far-left bits are discarded, and zeros are
introduced from the right. There is a corresponding right-shift operator, >>.

■■ The OR (|) operator This is a binary operator that performs a bitwise OR operation, returning
a value containing a 1 in each position in which either of the operands has a 1. For example,
the expression 204 | 24 has the value 220 (204 is 11001100, 24 is 00011000, and 220 is
11011100).

■■ The AND (&) operator This operator performs a bitwise AND operation. AND is similar to
the bitwise OR operator, except that it returns a value containing a 1 in each position where
both of the operands have a 1. So 204 & 24 is 8 (204 is 11001100, 24 is 00011000, and 8 is
00001000).

■■ The XOR (̂) operator This operator performs a bitwise exclusive OR operation, returning a 1
in each bit where there is a 1 in one operand or the other but not both. (Two 1s yield a 0—this
is the “exclusive” part of the operator.) So 204 ^ 24 is 212 (11001100 ^ 00011000 is 11010100).

 CHAPTER 16 Using Indexers 373

You can use these operators together to determine the values of the individual bits in an int. As an
example, the following expression uses the left-shift (<<) and bitwise AND (&) operators to determine
whether the sixth bit from the right of the byte variable named bits is set to 0 or to 1:

(bits & (1 << 5)) != 0

Note The bitwise operators count the positions of bits from right to left, and the bits are
numbered starting at 0. So bit 0 is the rightmost bit, and the bit at position 5 is the bit six
places from the right.

Suppose the bits variable contains the decimal value 42. In binary, this is 00101010. The deci-
mal value 1 is 00000001 in binary, and the expression 1 << 5 has the value 00100000; the sixth
bit is 1. In binary, the expression bits & (1 << 5) is 00101010 & 00100000, and the value of this
expression is binary 00100000, which is nonzero. If the variable bits contains the value 65, or
01000001 in binary, the value of the expression is 01000001 & 00100000, which yields the binary
result 00000000, or zero.

This is a fairly complicated example, but it’s trivial in comparison to the following expression, which
uses the compound assignment operator &= to set the bit at position 6 to 0:

bits &= ~(1 << 5)

Similarly, if you want to set the bit at position 6 to 1, you can use a bitwise OR (|) operator. The
following complicated expression is based on the compound assignment operator |=:

bits |= (1 << 5)

The trouble with these examples is that although they work, they are fiendishly difficult to under-
stand. They’re complicated, and the solution is a very low-level one: it fails to create an abstraction of
the problem that it solves, and it is consequently very difficult to maintain code that performs these
kinds of operations.

the Same example Using Indexers
Let’s pull back from the preceding low-level solution for a moment for a reminder of what the prob-
lem is. You’d like to use an int not as an int but as an array of bits. Therefore, the best way to solve this
problem is to use an int as if it were an array of bits! In other words, what you’d like to be able to write
to access the bit 6 places from the right in the bits variable is an expression like this (remember that
arrays start with index 0):

bits[5]

And to set the bit 4 places from the right to true, we’d like to be able to write this:

bits[3] = true

374 part III Defining Extensible Types with C#

Note To seasoned C developers, the Boolean value true is synonymous with the binary val-
ue 1, and the Boolean value false is synonymous with the binary value 0. Consequently, the
expression bits[3] = true means “Set the bit 4 places from the right of the bits variable to 1.”

Unfortunately, you can’t use the square bracket notation on an int—it works only on an array or
on a type that behaves like an array. So the solution to the problem is to create a new type that acts
like, feels like, and is used like an array of bool variables but is implemented by using an int. You can
achieve this feat by defining an indexer. Let’s call this new type IntBits. IntBits will contain an int value
(initialized in its constructor), but the idea is that you’ll use IntBits as an array of bool variables.

tip The IntBits type is small and lightweight, so it makes sense to create it as a structure
rather than as a class.

struct IntBits
{
 private int bits;

 public IntBits(int initialBitValue)
 {
 bits = initialBitValue;
 }

 // indexer to be written here
}

To define the indexer, you use a notation that is a cross between a property and an array. You
introduce the indexer with the this keyword, specify the type of the value returned by the indexer,
and also specify the type of the value to use as the index into the indexer between square brackets.
The indexer for the IntBits struct uses an integer as its index type and returns a Boolean value. It looks
like this:

struct IntBits
{
 ...
 public bool this [int index]
 {
 get
 {
 return (bits & (1 << index)) != 0;
 }

 CHAPTER 16 Using Indexers 375

 set
 {
 if (value) // turn the bit on if value is true; otherwise, turn it off
 bits |= (1 << index);
 else
 bits &= ~(1 << index);
 }
 }
}

Notice the following points:

■■ An indexer is not a method—there are no parentheses containing a parameter, but there are
square brackets that specify an index. This index is used to specify which element is being
accessed.

■■ All indexers use the this keyword. A class or structure can define at most one indexer
(although it can be overloaded and have several implementations), and it is always named this.

■■ Indexers contain get and set accessors just like properties. In this example, the get and set
accessors contain the complicated bitwise expressions previously discussed.

■■ The index specified in the indexer declaration is populated with the index value specified
when the indexer is called. The get and set accessor methods can read this argument to deter-
mine which element should be accessed.

Note You should perform a range check on the index value in the indexer to prevent any
unexpected exceptions from occurring in your indexer code.

After you have declared the indexer, you can use a variable of type IntBits instead of an int and
apply the square bracket notation, as shown in the next example:

int adapted = 126; // 126 has the binary representation 01111110
IntBits bits = new IntBits(adapted);
bool peek = bits[6]; // retrieve bool at index 6; should be true (1)
bits[0] = true; // set the bit at index 0 to true (1)
bits[3] = false; // set the bit at index 3 to false (0)
 // the value in bits is now 01110111, or 119 in decimal

This syntax is certainly much easier to understand. It directly and succinctly captures the essence of
the problem.

376 part III Defining Extensible Types with C#

Understanding Indexer accessors
When you read an indexer, the compiler automatically translates your arraylike code into a call to the
get accessor of that indexer. Consider the following example:

bool peek = bits[6];

This statement is converted to a call to the get accessor for bits, and the index argument is set to 6.

Similarly, if you write to an indexer, the compiler automatically translates your arraylike code into a
call to the set accessor of that indexer, setting the index argument to the value enclosed in the square
brackets. For example:

bits[3] = true;

This statement is converted to a call to the set accessor for bits where index is 3. As with ordinary
properties, the data you are writing to the indexer (in this case, true) is made available inside the set
accessor by using the value keyword. The type of value is the same as the type of indexer itself (in this
case, bool).

It’s also possible to use an indexer in a combined read/write context. In this case, the get and set
accessors are both used. Look at the following statement, which uses the XOR operator (̂) to invert
the value of the bit at index 6 in the bits variable:

bits[6] ^= true;

This code is automatically translated into the following:

bits[6] = bits[6] ^ true;

This code works because the indexer declares both a get and a set accessor.

Note You can declare an indexer that contains only a get accessor (a read-only indexer) or
only a set accessor (a write-only accessor).

Comparing Indexers and arrays
When you use an indexer, the syntax is deliberately very arraylike. However, there are some important
differences between indexers and arrays:

■■ Indexers can use non-numeric subscripts, such as a string as shown in the following example.
Arrays can use only integer subscripts:

public int this [string name] { ... } // OK

■■ Indexers can be overloaded (just like methods), whereas arrays cannot:

public Name this [PhoneNumber number] { ... }
public PhoneNumber this [Name name] { ... }

 CHAPTER 16 Using Indexers 377

■■ Indexers cannot be used as ref or out parameters, whereas array elements can:

IntBits bits; // bits contains an indexer
Method(ref bits[1]); // compile-time error

properties, arrays, and Indexers
It is possible for a property to return an array, but remember that arrays are reference types, so
exposing an array as a property makes it possible to accidentally overwrite a lot of data. Look
at the following structure that exposes an array property named Data:

struct Wrapper
{
 private int[] data;
 ...
 public int[] Data
 {
 get { return this.data; }
 set { this.data = value; }
 }
}

Now consider the following code that uses this property:

Wrapper wrap = new Wrapper();
...
int[] myData = wrap.Data;
myData[0]++;
myData[1]++;

This looks pretty innocuous. However, because arrays are reference types, the variable
myData refers to the same object as the private data variable in the Wrapper structure. Any
changes you make to elements in myData are made to the data array; the expression myDa-
ta[0]++ has exactly the same effect as data[0]++. If this is not the intention, you should use the
Clone method in the get and set accessors of the Data property to return a copy of the data
array, or make a copy of the value being set, as shown here. (Chapter 8, “Understanding Values
and References,” introduced the Clone method for copying arrays.) Notice that the Clone
method returns an object, which you must cast to an integer array.

struct Wrapper
{
 private int[] data;
 ...
 public int[] Data
 {
 get { return this.data.Clone() as int[]; }
 set { this.data = value.Clone() as int[]; }
 }
}

378 part III Defining Extensible Types with C#

However, this approach can become very messy and expensive in terms of memory use. In-
dexers provide a natural solution to this problem—don’t expose the entire array as a property,
just make its individual elements available through an indexer:

struct Wrapper
{
 private int[] data;
 ...
 public int this [int i]
 {
 get { return this.data[i]; }
 set { this.data[i] = value; }
 }
}

The following code uses the indexer in a similar manner to the property shown earlier:

Wrapper wrap = new Wrapper();
...
int[] myData = new int[2];
myData[0] = wrap[0];
myData[1] = wrap[1];
myData[0]++;
myData[1]++;

This time, incrementing the values in the MyData array has no effect on the original array
in the Wrapper object. If you really want to modify the data in the Wrapper object, you must
write statements such as this:

wrap[0]++;

This is much clearer and safer!

Indexers in Interfaces

You can declare indexers in an interface. To do this, specify the get keyword, the set keyword, or both,
but replace the body of the get or set accessor with a semicolon. Any class or structure that imple-
ments the interface must implement the indexer accessors declared in the interface. For example:

interface IRawInt
{
 bool this [int index] { get; set; }
}

 CHAPTER 16 Using Indexers 379

struct RawInt : IRawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

If you implement the interface indexer in a class, you can declare the indexer implementations as
virtual. This allows further derived classes to override the get and set accessors. For example:

class RawInt : IRawInt
{
 ...
 public virtual bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

You can also choose to implement an indexer by using the explicit interface implementation syntax
covered in Chapter 12, “Working with Inheritance.” An explicit implementation of an indexer is non-
public and nonvirtual (and so cannot be overridden). For example:

struct RawInt : IRawInt
{
 ...
 bool IRawInt.this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Using Indexers in a Windows Application

In the following exercise, you will examine a simple phone book application and complete its imple-
mentation. You will write two indexers in the PhoneBook class: one that accepts a Name parameter
and returns a PhoneNumber, and another that accepts a PhoneNumber parameter and returns a
Name. (The Name and PhoneNumber structures have already been written.) You will also need to call
these indexers from the correct places in the program.

380 part III Defining Extensible Types with C#

Familiarize yourself with the application

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Indexers project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 16\Windows X\Indexers folder in your Documents folder.

This graphical application enables a user to search for the telephone number for a contact and
also find the name of a contact that matches a given telephone number.

3. On the DEBUG menu, click Start Debugging.

The project builds and runs. A form appears, displaying two empty text boxes labeled Name
and Phone Number. The form also contains three buttons: one to add a name/phone number
pair to a list of names and phone numbers held by the application, one to find a phone num-
ber when given a name, and one to find a name when given a phone number. These buttons
currently do nothing.

If you are using Windows 7, the application looks like this:

If you are using Windows 8, the Add button is located in the app bar rather than on the main form.
Remember that in Windows 8 you can display the app bar by right-clicking in the form displaying
the application.

 CHAPTER 16 Using Indexers 381

Your task is to complete the application so that the buttons work.

4. Return to Visual Studio 2012 and stop debugging.

5. Display the Name.cs file for the Indexers project in the Code and Text Editor window. Examine
the Name structure. Its purpose is to act as a holder for names.

The name is provided as a string to the constructor. The name can be retrieved by using the
read-only string property named Text. (The Equals and GetHashCode methods are used for
comparing Names when searching through an array of Name values—you can ignore them
for now.)

6. Display the PhoneNumber.cs file in the Code and Text Editor window, and examine the
PhoneNumber structure. It is similar to the Name structure.

7. Display the PhoneBook.cs file in the Code and Text Editor window, and examine the
PhoneBook class.

This class contains two private arrays: an array of Name values called names, and an array
of PhoneNumber values called phoneNumbers. The PhoneBook class also contains an Add
method that adds a phone number and name to the phone book. This method is called when
the user clicks the Add button on the form. The enlargeIfFull method is called by Add to check
whether the arrays are full when the user adds another entry. This method creates two new
bigger arrays, copies the contents of the existing arrays to them, and then discards the old
arrays.

The Add method is deliberately kept simple and does not check whether a name or phone
number has already been added to the phone book.

The PhoneBook class does not currently provide any functionality enabling a user to find
a name or telephone number; you will add two indexers to provide this facility in the next
exercise.

382 part III Defining Extensible Types with C#

Write the indexers

1. In the PhoneBook.cs file, delete the comment // TODO: write 1st indexer here and replace
it with a public read-only indexer to the PhoneBook class, as shown in bold in the following
code. The indexer should return a Name and take a PhoneNumber item as its index. Leave the
body of the get accessor blank.

The indexer should look like this:

sealed class PhoneBook
{
 ...
 public Name this[PhoneNumber number]

 {

 get

 {

 }

 }
 ...
}

2. Implement the get accessor as shown in bold in the following code. The purpose of the acces-
sor is to find the name that matches the specified phone number. To do this, you need to call
the static IndexOf method of the Array class. The IndexOf method performs a search through
an array, returning the index of the first item in the array that matches the specified value. The
first argument to IndexOf is the array to search through (phoneNumbers). The second argu-
ment to IndexOf is the item you are searching for. IndexOf returns the integer index of the
element if it finds it; otherwise, IndexOf returns –1. If the indexer finds the phone number, it
should return it; otherwise, it should return an empty Name value. (Note that Name is a struc-
ture, so the default constructor sets its private name field to null.)

sealed class PhoneBook
{
 ...
 public Name this [PhoneNumber number]
 {
 get
 {
 int i = Array.IndexOf(this.phoneNumbers, number);

 if (i != -1)

 {

 return this.names[i];

 }

 else

 {

 return new Name();

 }
 }
 }
 ...
}

 CHAPTER 16 Using Indexers 383

3. Remove the comment // TODO: write 2nd indexer here and replace it with a second public
read-only indexer to the PhoneBook class that returns a PhoneNumber and accepts a single
Name parameter. Implement this indexer in the same way as the first one. (Again note that
PhoneNumber is a structure and therefore always has a default constructor.)

The second indexer should look like this:

sealed class PhoneBook
{
 ...
 public PhoneNumber this [Name name]

 {

 get

 {

 int i = Array.IndexOf(this.names, name);

 if (i != -1)

 {

 return this.phoneNumbers[i];

 }

 else

 {

 return new PhoneNumber();

 }

 }

 }
 ...
}

Notice that these overloaded indexers can coexist because they return different types, which
means that their signatures are different. If the Name and PhoneNumber structures were
replaced by simple strings (which they wrap), the overloads would have the same signature
and the class would not compile.

4. On the BUILD menu, click Build Solution. Correct any syntax errors, and then rebuild if
necessary.

Call the indexers

1. Display the MainWindow.xaml.cs file in the Code and Text Editor window, and then locate the
findByNameClick method.

This method is called when the Find by Name button is clicked. This method is currently
empty. Replace the // TODO: comment with the code shown in bold in the following example.
This code performs these tasks:

a. Read the value of the Text property from the name text box on the form. This is a string
containing the contact name that the user has typed in.

b. If the string is not empty, search for the phone number corresponding to that name in
the PhoneBook by using the indexer. (Notice that the MainWindow class contains a private

384 part III Defining Extensible Types with C#

PhoneBook field named phoneBook.) Construct a Name object from the string, and pass it
as the parameter to the PhoneBook indexer.

c. If the Text property of the PhoneNumber structure returned by the indexer is not null or
empty, write the value of this property to the phoneNumber text box on the form; other-
wise, display the text "Not Found".

The completed findByNameClick method should look like this:

private void findByNameClick(object sender, RoutedEventArgs e)
{
 string text = name.Text;

 if (!String.IsNullOrEmpty(text))

 {

 Name personsName = new Name(text);

 PhoneNumber personsPhoneNumber = this.phoneBook[personsName];

 phoneNumber.Text = String.IsNullOrEmpty(personsPhoneNumber.Text) ?

 "Not Found" : personsPhoneNumber.Text;

 }
}

Other than the statement that accesses the indexer, there are two further points of interest in
this code:

a. The static String method IsNullOrEmpty is used to determine whether a string is empty or
contains a null value. This is the preferred method for testing whether a string contains a
value. It returns true if the string has a non-null value and false otherwise.

b. The ? : operator used by the statement that populates the Text property of the phone-
Number text box on the form acts like an inline if…else statement for an expression. It
is a ternary operator that takes the following three operands: a Boolean expression, an
expression to evaluate and return if the Boolean expression is true, and another expres-
sion to evaluate and return if the Boolean expression is false. In the preceding code, if
the expression String.IsNullOrEmpty(personsPhoneNumber.Text) is true, no matching
entry was found in the phone book and the text “Not Found” is displayed on the form;
otherwise, the value held in the Text property of the personsPhoneNumber variable is
displayed.

The general form of the ? : operator is as follows:

 Result = <Boolean Expression> ? <Evaluate if true> : <Evaluate if false>

2. Locate the findByPhoneNumberClick method in the MainWindow.xaml.cs file. It is below the
findByNameClick method.

The findByPhoneNumberClick method is called when the Find by Phone Number button is
clicked. This method is currently empty apart from a // TODO: comment. You need to imple-
ment it as follows (the completed code is shown in bold in the following example):

 CHAPTER 16 Using Indexers 385

a. Read the value of the Text property from the phoneNumber text box on the form. This is a
string containing the phone number that the user has typed.

b. If the string is not empty, search for the name corresponding to that phone number in
the PhoneBook by using the indexer.

c. Write the Text property of the Name structure returned by the indexer to the name text
box on the form.

The completed method should look like this:

private void findByPhoneNumberClick(object sender, RoutedEventArgs e)
{
 string text = phoneNumber.Text;

 if (!String.IsNullOrEmpty(text))

 {

 PhoneNumber personsPhoneNumber = new PhoneNumber(text);

 Name personsName = this.phoneBook[personsPhoneNumber];

 name.Text = String.IsNullOrEmpty(personsName.Text) ?

 "Not Found" : personsName.Text;

 }
}

3. On the BUILD menu, click Build Solution. Correct any errors that occur.

test the application

1. On the DEBUG menu, click Start Debugging.

2. Type your name and phone number in the text boxes, and then click Add.

When you click the Add button, the Add method stores the information in the phone book
and clears the text boxes so they are ready to perform a search.

3. Repeat step 2 several times with some different names and phone numbers so that the
phone book contains a selection of entries. Note that the application performs no checking
of the names and telephone numbers that you enter, and you can input the same name and
telephone number more than once. To avoid confusion, please make sure that you provide
different names and telephone numbers.

4. Type a name that you used in step 3 into the Name text box, and then click Find by Name.

The phone number you added for this contact in step 3 is retrieved from the phone book and is
displayed in the Phone Number text box.

5. Type a phone number for a different contact in the Phone Number text box, and then click
Find by Phone Number.

The contact name is retrieved from the phone book and is displayed in the Name text box.

386 part III Defining Extensible Types with C#

6. Type a name that you did not enter in the phone book into the Name text box, and then click
Find by Name.

This time, the Phone Number text box displays the message “Not Found”.

7. Close the form, and return to Visual Studio 2012.

Summary

In this chapter, you saw how to use indexers to provide arraylike access to data in a class. You learned
how to create indexers that can take an index and return the corresponding value by using logic
defined by the get accessor, and you saw how to use the set accessor with an index to populate a
value in an indexer.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 17.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 16 Quick Reference

To Do this

Create an indexer for a class or
structure

Declare the type of the indexer, followed by the keyword this and then the index-
er arguments in square brackets. The body of the indexer can contain a get and/
or set accessor. For example:

struct RawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Define an indexer in an interface Define an indexer with the get and/or set keywords. For example:

interface IRawInt
{
 bool this [int index] { get; set; }
}

 CHAPTER 16 Using Indexers 387

To Do this

Implement an interface indexer in
a class or structure

In the class or structure that implements the interface, define the indexer and
implement the accessors. For example:

struct RawInt : IRawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Implement an indexer defined by
an interface by using explicit in-
terface implementation in a class
or structure

In the class or structure that implements the interface, specify the interface, but
do not specify the indexer accessibility. For example:

struct RawInt : IRawInt
{
 ...
 bool IRawInt.this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

 389

C H A P T E R 1 7

Introducing Generics

After completing this chapter, you will be able to

■■ Explain the purpose of generics.

■■ Define a type-safe class by using generics.

■■ Create instances of a generic class based on types specified as type parameters.

■■ Implement a generic interface.

■■ Define a generic method that implements an algorithm independent of the type of data on
which it operates.

In Chapter 8, “Understanding Values and References,” you learned how to use the object type to
refer to an instance of any class. You can use the object type to store a value of any type, and you can
define parameters by using the object type when you need to pass values of any type into a method.
A method can also return values of any type by specifying object as the return type. Although this
practice is very flexible, it puts the onus on the programmer to remember what sort of data is actually
being used and can lead to run-time errors if the programmer makes a mistake. In this chapter, you
will learn about generics, a feature that has been designed to help you prevent this kind of mistake.

The Problem with the object Type

To understand generics, it is worth looking in detail at the problem they are designed to solve.

Suppose that you needed to model a first-in, first-out structure such as a queue. You could create
a class such as the following:

class Queue
{
 private const int DEFAULTQUEUESIZE = 100;
 private int[] data;
 private int head = 0, tail = 0;
 private int numElements = 0;

 public Queue()
 {
 this.data = new int[DEFAULTQUEUESIZE];
 }

390 part III Defining Extensible Types with C#

 public Queue(int size)
 {
 if (size > 0)
 {
 this.data = new int[size];
 }
 else
 {
 throw new ArgumentOutOfRangeException("size", "Must be greater than zero");
 }
 }

 public void Enqueue(int item)
 {
 if (this.numElements == this.data.Length)
 {
 throw new Exception("Queue full");
 }

 this.data[this.head] = item;
 this.head++;
 this.head %= this.data.Length;
 this.numElements++;
 }

 public int Dequeue()
 {
 if (this.numElements == 0)
 {
 throw new Exception("Queue empty");
 }

 int queueItem = this.data[this.tail];
 this.tail++;
 this.tail %= this.data.Length;
 this.numElements--;
 return queueItem;
 }
}

This class uses an array to provide a circular buffer for holding the data. The size of this array is
specified by the constructor. An application uses the Enqueue method to add an item to the queue
and the Dequeue method to pull an item off the queue. The private head and tail fields keep track of
where to insert an item into the array and where retrieve an item from the array. The numElements
field indicates how many items are in the array. The Enqueue and Dequeue methods use these fields
to determine where to store or retrieve an item from and perform some rudimentary error checking.
An application can create a Queue object and call these methods, as shown in the following code
example. Notice that the items are dequeued in the same order that they are enqueued:

Queue queue = new Queue(); // Create a new Queue

queue.Enqueue(100);
queue.Enqueue(-25);
queue.Enqueue(33);

 CHAPTER 17 Introducing Generics 391

Console.WriteLine("{0}", queue.Dequeue()); // Displays 100
Console.WriteLine("{0}", queue.Dequeue()); // Displays -25
Console.WriteLine("{0}", queue.Dequeue()); // Displays 33

Now, the Queue class works well for queues of ints, but what if you want to create queues of
strings, or floats, or even queues of more complex types such as Circle (see Chapter 7, “Creating and
Managing Classes and Objects”), or Horse, or Whale (see Chapter 12, “Working with Inheritance”)?
The problem is that the way in which the Queue class is implemented restricts it to items of type int,
and if you try and enqueue a Horse, you will get a compile-time error:

Queue queue = new Queue();
Horse myHorse = new Horse();
queue.Enqueue(myHorse); // Compile-time error: Cannot convert from Horse to int

One way around this restriction is to specify that the array in the Queue class contains items of
type object, update the constructors, and modify the Enqueue and Dequeue methods to take an
object parameter and return an object, like this:

class Queue
{
 ...
 private object[] data;
 ...
 public Queue()
 {
 this.data = new object[DEFAULTQUEUESIZE];
 }

 public Queue(int size)
 {
 ...
 this.data = new object[size];
 ...
 }
 public void Enqueue(object item)
 {
 ...
 }

 public object Dequeue()
 {
 ...
 object queueItem = this.data[this.tail];
 ...
 return queueItem;
 }
}

Remember that you can use the object type to refer to a value or variable of any type. All refer-
ence types automatically inherit (either directly or indirectly) from the System.Object class in the
Microsoft .NET Framework (in C#, object is an alias for System.Object). Now, because the Enqueue and
Dequeue methods manipulate objects, you can operate on queues of Circles, Horses, Whales, or any
of the other classes you have seen in earlier exercises in this book. However, it is important to notice

392 part III Defining Extensible Types with C#

that you have to cast the value returned by the Dequeue method to the appropriate type because the
compiler will not perform the conversion from the object type automatically:

Queue queue = new Queue();
Horse myHorse = new Horse();
queue.Enqueue(myHorse); // Now legal – Horse is an object
...
Horse dequeuedHorse =(Horse)queue.Dequeue(); // Need to cast object back to a Horse

 If you don’t cast the returned value, you will get the compiler error “Cannot implicitly convert
type ‘object’ to ‘Horse.’” This requirement to perform an explicit cast denigrates much of the flexibility
afforded by the object type. Furthermore, it is very easy to write code such as this:

Queue queue = new Queue();
Horse myHorse = new Horse();
queue.Enqueue(myHorse);
...
Circle myCircle = (Circle)queue.Dequeue(); // run-time error

Although this code will compile, it is not valid and throws a System.InvalidCastException exception
at run time. The error is caused by trying to store a reference to a Horse in a Circle variable when it is
dequeued, and the two types are not compatible. This error is not spotted until run time because the
compiler does not have enough information to perform this check at compile time. The real type of
the object being dequeued becomes apparent only when the code runs.

Another disadvantage of using the object approach to create generalized classes and methods is
that it can consume additional memory and processor time if the runtime needs to convert an object
to a value type and back again. Consider the following piece of code that manipulates a queue of int
values:

Queue queue = new Queue();
int myInt = 99;
queue.Enqueue(myInt); // box the int to an object
...
myInt = (int)queue.Dequeue(); // unbox the object to an int

The Queue data type expects the items it holds to be objects, and object is a reference type.
Enqueueing a value type, such as an int, requires it to be boxed to convert it to a reference type.
Similarly, dequeueing into an int requires the item to be unboxed to convert it back to a value type.
See the sections titled “Boxing” and “Unboxing” in Chapter 8 for more details. Although boxing and
unboxing happen transparently, they add performance overhead because they involve dynamic
memory allocations. This overhead is small for each item, but it adds up when a program creates
queues of large numbers of value types.

 CHAPTER 17 Introducing Generics 393

The Generics Solution

C# provides generics to remove the need for casting, improve type safety, reduce the amount of
boxing required, and make it easier to create generalized classes and methods. Generic classes and
methods accept type parameters, which specify the types of objects that they operate on. In C#, you
indicate that a class is a generic class by providing a type parameter in angle brackets, like this:

class Queue<T>
{
 ...
}

The T in this example acts as a placeholder for a real type at compile time. When you write code
to instantiate a generic Queue, you provide the type that should be substituted for T (Circle, Horse,
int, and so on). When you define the fields and methods in the class, you use this same placeholder
to indicate the type of these items, like this:

class Queue<T>
{
 ...
 private T[] data; // array is of type 'T' where 'T' is the type parameter
 ...
 public Queue()
 {
 this.data = new T[DEFAULTQUEUESIZE]; // use 'T' as the data type
 }

 public Queue(int size)
 {
 ...
 this.data = new T[size];
 ...
 }
 public void Enqueue(T item) // use 'T' as the type of the method parameter
 {
 ...
 }

 public T Dequeue() // use 'T' as the type of the return value
 {
 ...
 T queueItem = this.data[this.tail]; // the data in the array is of type 'T'
 ...
 return queueItem;
 }
}

394 part III Defining Extensible Types with C#

The type parameter, T, can be any legal C# identifier, although the lone character T is commonly
used. It is replaced with the type you specify when you create a Queue object. The following examples
create a Queue of ints, and a Queue of Horses:

Queue<int> intQueue = new Queue<int>();
Queue<Horse> horseQueue = new Queue<Horse>();

Additionally, the compiler now has enough information to perform strict type-checking when you
build the application. You no longer need to cast data when you call the Dequeue method, and the
compiler can trap any type mismatch errors early:

intQueue.Enqueue(99);
int myInt = intQueue.Dequeue(); // no casting necessary
Horse myHorse = intQueue.Dequeue(); // compiler error:
 // cannot implicitly convert type 'int' to 'Horse'

You should be aware that this substitution of T for a specified type is not simply a textual replace-
ment mechanism. Instead, the compiler performs a complete semantic substitution so that you can
specify any valid type for T. Here are more examples:

struct Person
{
 ...
}
...
Queue<int> intQueue = new Queue<int>();
Queue<Person> personQueue = new Queue<Person>();

The first example creates a queue of integers, while the second example creates a queue of Person
values. The compiler also generates the versions of the Enqueue and Dequeue methods for each
queue. For the intQueue queue, these methods look like this:

public void Enqueue(int item);
public int Dequeue();

For the personQueue queue, these methods look like this:

public void Enqueue(Person item);
public Person Dequeue();

Contrast these definitions with those of the object-based version of the Queue class shown in the
preceding section. In the methods derived from the generic class, the item parameter to Enqueue is
passed as a value type that does not require boxing. Similarly, the value returned by Dequeue is also
a value type that does not need to be unboxed. A similar set of methods is generated for the other
two queues.

 CHAPTER 17 Introducing Generics 395

Note The System.Collections.Generics namespace in the .NET Framework class library pro-
vides an implementation to the Queue class that operates in a similar manner to the class
just described. This namespace also includes several other collection classes, and they are
described in more detail in Chapter 18, “Using Collections.”

The type parameter does not have to be a simple class or value type. For example, you can create
a queue of queues of integers (if you should ever find it necessary) like this:

Queue<Queue<int>> queueQueue = new Queue<Queue<int>>();

A generic class can have multiple type parameters. For example, the generic Dictionary class
defined in the System.Collections.Generic namespace in the .NET Framework class library expects two
type parameters: one type for keys and another for the values (this class is described in more detail in
Chapter 18).

Note You can also define generic structures and interfaces by using the same
type-parameter syntax as generic classes.

Generics vs. Generalized Classes
It is important to be aware that a generic class that uses type parameters is different from a
generalized class designed to take parameters that can be cast to different types. For example, the
object-based version of the Queue class shown earlier is a generalized class. There is a single imple-
mentation of this class, and its methods take object parameters and return object types. You can use
this class with ints, strings, and many other types, but in each case, you are using instances of the
same class and you have to cast the data you are using to and from the object type.

Compare this with the Queue<T> class. Each time you use this class with a type parameter (such
as Queue<int> or Queue<Horse>), you cause the compiler to generate an entirely new class that
happens to have functionality defined by the generic class. This means that Queue<int> is a com-
pletely different type from Queue<Horse>, but they both happen to have the same behavior. You can
think of a generic class as one that defines a template that is then used by the compiler to gener-
ate new type-specific classes on demand. The type-specific versions of a generic class (Queue<int>,
Queue<Horse>, and so on) are referred to as constructed types, and you should treat them as dis-
tinctly different types (albeit ones that have a similar set of methods and properties).

396 part III Defining Extensible Types with C#

Generics and Constraints
Occasionally, you will want to ensure that the type parameter used by a generic class identifies a type
that provides certain methods. For example, if you are defining a PrintableCollection class, you might
want to ensure that all objects stored in the class have a Print method. You can specify this condition
by using a constraint.

By using a constraint, you can limit the type parameters of a generic class to those that implement
a particular set of interfaces, and therefore provide the methods defined by those interfaces. For
example, if the IPrintable interface defined the Print method, you could create the PrintableCollection
class like this:

public class PrintableCollection<T> where T : IPrintable

When you build this class with a type parameter, the compiler checks to ensure that the type used
for T actually implements the IPrintable interface, and if not, it stops with a compilation error.

Creating a Generic Class

The System.Collections.Generic namespace in the .NET Framework class library contains a number of
generic classes readily available for you. You can also define your own generic classes, which is what
you will do in this section. Before you do this, let’s cover a bit of background theory.

the theory of Binary trees
In the following exercises, you will define and use a class that represents a binary tree.

A binary tree is a useful data structure used for a variety of operations, including sorting and search-
ing through data very quickly. Volumes have been written on the minutiae of binary trees, but it is not
the purpose of this book to cover this topic in detail. Instead, you’ll look at just the pertinent facts. If you
are interested in learning more, consult a book such as The Art of Computer Programming, Volume 3:
Sorting and Searching, 2nd Edition by Donald E. Knuth (Addison-Wesley Professional, 1998). Despite its
age, this is the recognized, seminal work on sort and search algorithms.

A binary tree is a recursive (self-referencing) data structure that can either be empty or contain
three elements: a datum, which is typically referred to as the node, and two subtrees, which are them-
selves binary trees. The two subtrees are conventionally called the left subtree and the right subtree
because they are typically depicted to the left and right of the node, respectively. Each left subtree or
right subtree is either empty or contains a node and other subtrees. In theory, the whole structure can
continue ad infinitum. The following image shows the structure of a small binary tree.

 CHAPTER 17 Introducing Generics 397

The real power of binary trees becomes evident when you use them for sorting data. If you start
with an unordered sequence of objects of the same type, you can construct an ordered binary tree
and then walk through the tree to visit each node in an ordered sequence. The algorithm for inserting
an item I into an ordered binary tree B is shown here:

If the tree, B, is empty
Then
 Construct a new tree B with the new item I as the node, and empty left and
 right subtrees
Else
 Examine the value of the current node, N, of the tree, B
 If the value of N is greater than that of the new item, I
 Then
 If the left subtree of B is empty
 Then
 Construct a new left subtree of B with the item I as the node, and
 empty left and right subtrees
 Else
 Insert I into the left subtree of B
 End If
 Else
 If the right subtree of B is empty
 Then
 Construct a new right subtree of B with the item I as the node, and
 empty left and right subtrees
 Else
 Insert I into the right subtree of B
 End If
 End If
End If

Notice that this algorithm is recursive, calling itself to insert the item into the left or right subtree
depending on how the value of the item compares with the current node in the tree.

398 part III Defining Extensible Types with C#

Note The definition of the expression greater than depends on the type of data in the item
and node. For numeric data, greater than can be a simple arithmetic comparison, and for
text data, it can be a string comparison; however, other forms of data must be given their
own means of comparing values. You will learn more about this when you implement a bi-
nary tree in the upcoming section titled “Building a Binary Tree Class by Using Generics.”

If you start with an empty binary tree and an unordered sequence of objects, you can iterate
through the unordered sequence, inserting each object into the binary tree by using this algorithm,
resulting in an ordered tree. The next image shows the steps in the process for constructing a tree
from a set of five integers.

After you have built an ordered binary tree, you can display its contents in sequence by visiting
each node in turn and printing the value found. The algorithm for achieving this task is also recursive:

If the left subtree is not empty
Then
 Display the contents of the left subtree
End If
Display the value of the node
If the right subtree is not empty
Then
 Display the contents of the right subtree
End If

 CHAPTER 17 Introducing Generics 399

The following image shows the steps in the process for outputting the tree. Notice that the inte-
gers are now displayed in ascending order.

Building a Binary tree Class by Using Generics
In the following exercise, you will use generics to define a binary tree class capable of holding almost
any type of data. The only restriction is that the data type must provide a means of comparing values
between different instances.

The binary tree class is a class that you might find useful in many different applications. Therefore,
you will implement it as a class library rather than as an application in its own right. You can then
reuse this class elsewhere without having to copy the source code and recompile it. A class library is
a set of compiled classes (and other types such as structures and delegates) stored in an assembly. An
assembly is a file that usually has the .dll suffix. Other projects and applications can make use of the
items in a class library by adding a reference to its assembly and then bringing its namespaces into
scope with using statements. You will do this when you test the binary tree class.

400 part III Defining Extensible Types with C#

the System.IComparable and System.IComparable<t> Interfaces
The algorithm for inserting a node into a binary tree requires you to compare the value of the
node that you are inserting against nodes already in the tree. If you are using a numeric type,
such as int, you can use the <, >, and == operators. However, if you are using some other type,
such as Mammal or Circle described in earlier chapters, how do you compare objects?

If you need to create a class that requires you to be able to compare values according to
some natural (or possibly unnatural) ordering, you should implement the IComparable inter-
face. This interface contains a method called CompareTo, which takes a single parameter speci-
fying the object to be compared with the current instance and returns an integer that indicates
the result of the comparison, as summarized by the following table.

Value Meaning

Less than 0 The current instance is less than the value of the parameter.

0 The current instance is equal to the value of the parameter.

Greater than 0 The current instance is greater than the value of the parameter.

As an example, consider the Circle class that was described in Chapter 7 and is reproduced
here:

class Circle
{
 public Circle(int initialRadius)
 {
 radius = initialRadius;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private double radius;
}

You can make the Circle class “comparable” by implementing the System.IComparable inter-
face and providing the CompareTo method. In this example, the CompareTo method compares
Circle objects based on their areas. A circle with a larger area is considered to be greater than a
circle with a smaller area.

 CHAPTER 17 Introducing Generics 401

class Circle : System.IComparable
{
 ...
 public int CompareTo(object obj)
 {
 Circle circObj = (Circle)obj; // cast the parameter to its real type
 if (this.Area() == circObj.Area())
 return 0;

 if (this.Area() > circObj.Area())
 return 1;

 return -1;
 }
}

If you examine the System.IComparable interface, you will see that its parameter is defined
as an object. However, this approach is not type-safe. To understand why this is so, consider
what happens if you try to pass something that is not a Circle to the CompareTo method. The
System.IComparable interface requires the use of a cast to be able to access the Area method.
If the parameter is not a Circle but some other type of object, this cast will fail. However, the
System namespace also defines the generic IComparable<T> interface, which contains the fol-
lowing method:

int CompareTo(T other);

Notice that this method takes a type parameter (T) rather than an object and, therefore, it
is much safer than the nongeneric version of the interface. The following code shows how you
can implement this interface in the Circle class:

class Circle : System.IComparable<Circle>
{
 ...
 public int CompareTo(Circle other)
 {
 if (this.Area() == other.Area())
 return 0;

 if (this.Area() > other.Area())
 return 1;

 return -1;
 }
}

The parameter for the CompareTo method must match the type specified in the interface,
IComparable<Circle>. In general, it is preferable to implement the System.IComparable<T>
interface rather than the System.IComparable interface. You can also implement both, just as
many of the types in the .NET Framework do.

402 part III Defining Extensible Types with C#

Create the Tree<TItem> class

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. On the FILE menu, point to New, and then click Project.

3. In the New Project dialog box, in the Templates pane on the left, click Visual C#. In the middle
pane, select the Portable Class Library template. In the Name text box, type BinaryTree. In the
Location text box, specify \Microsoft Press\Visual CSharp Step By Step\Chapter 17 under your
Documents folder, and then click OK.

Note The Portable Class Library template enables you to create assemblies that
can be incorporated into managed applications running on any platform that uses
the .NET Framework, including Windows Store apps, Silverlight applications (for the
web), Windows Phone 7 applications, and Xbox 360 applications. An assembly gen-
erated by using the Portable Class Library template is actually binary-portable: you
do not have to recompile it to run on different platforms. As a result, this template
restricts you to types and methods that are available across every target platform.

4. In the Add Portable Class Library dialog box, accept the default target platforms and click OK.

5. In Solution Explorer, right-click Class1.cs, click Rename, and change the name of the file to
Tree.cs. Allow Visual Studio to change the name of the class as well as the name of the file
when prompted.

6. In the Code and Text Editor window, change the definition of the Tree class to Tree<TItem>, as
shown in bold type in the following code:

public class Tree<TItem>
{
}

7. In the Code and Text Editor window, modify the definition of the Tree<TItem> class to
specify that the type parameter TItem must denote a type that implements the generic
IComparable<TItem> interface. The changes are highlighted below in bold.

The modified definition of the Tree<TItem> class should look like this:

public class Tree<TItem> where TItem : IComparable<TItem>
{
}

8. Add three public, automatic properties to the Tree<TItem> class: a TItem property called
NodeData and two Tree<TItem> properties called LeftTree and RightTree, as follows in bold
type:

 CHAPTER 17 Introducing Generics 403

public class Tree<TItem> where TItem : IComparable<TItem>
{
 public TItem NodeData { get; set; }

 public Tree<TItem> LeftTree { get; set; }

 public Tree<TItem> RightTree { get; set; }
}

9. Add a constructor to the Tree<TItem> class that takes a single TItem parameter called
nodeValue. In the constructor, set the NodeData property to nodeValue, and initialize the
LeftTree and RightTree properties to null, as shown in bold type in the following code:

public class Tree<TItem> where TItem : IComparable<TItem>
{
 public Tree(TItem nodeValue)

 {

 this.NodeData = nodeValue;

 this.LeftTree = null;

 this.RightTree = null;

 }
 ...
}

Note Notice that the name of the constructor does not include the type parameter;
it is called Tree, not Tree<TItem>.

10. Add a public method called Insert to the Tree<TItem> class as shown in bold type in the fol-
lowing code. This method will insert a TItem value into the tree.

The method definition should look like this:

public class Tree<TItem> where TItem: IComparable<TItem>
{
 ...
 public void Insert(TItem newItem)

 {

 }
 ...
}

The Insert method implements the recursive algorithm described earlier for creating an
ordered binary tree. The programmer will have used the constructor to create the initial
node of the tree (there is no default constructor), so the Insert method can assume that
the tree is not empty. The part of the algorithm after checking whether the tree is empty
is reproduced here to help you understand the code you will write for the Insert method in
the following steps:

404 part III Defining Extensible Types with C#

...
Examine the value of the node, N, of the tree, B
If the value of N is greater than that of the new item, I
Then
 If the left subtree of B is empty
 Then
 Construct a new left subtree of B with the item I as the node, and empty
 left and right subtrees
 Else
 Insert I into the left subtree of B
End If
...

11. In the Insert method, add a statement that declares a local variable of type TItem, called
currentNodeValue. Initialize this variable to the value of the NodeData property of the tree, as
shown in bold:

public void Insert(TItem newItem)
{
 TItem currentNodeValue = this.NodeData;

}

12. Add the following if-else statement shown in bold type to the Insert method after the defini-
tion of the currentNodeValue variable. This statement uses the CompareTo method of the
IComparable<T> interface to determine whether the value of the current node is greater than
the new item is:

public void Insert(TItem newItem)
{
 TItem currentNodeValue = this.NodeData;
 if (currentNodeValue.CompareTo(newItem) > 0)

 {

 // Insert the new item into the left subtree

 }

 else

 {

 // Insert the new item into the right subtree

 }
}

13. After the // Insert the new item into the left subtree comment, add the following block of code:

if (this.LeftTree == null)

{

 this.LeftTree = new Tree<TItem>(newItem);

}

else

{

 this.LeftTree.Insert(newItem);

}

These statements check whether the left subtree is empty. If so, a new tree is created using the
new item and it is attached as the left subtree of the current node; otherwise, the new item is
inserted into the existing left subtree by calling the Insert method recursively.

 CHAPTER 17 Introducing Generics 405

14. After the // Insert the new item into the right subtree comment, add the equivalent code that
inserts the new node into the right subtree:

if (this.RightTree == null)

{

 this.RightTree = new Tree<TItem>(newItem);

}

else

{

 this.RightTree.Insert(newItem);

}

15. Add another public method called WalkTree to the Tree<TItem> class after the Insert method.
This method walks through the tree, visiting each node in sequence, and generates a string
representation of the data that the tree contains.

The method definition should look like this:

public string WalkTree()

{

}

16. Add the following statements shown in bold to the WalkTree method. These statements
implement the algorithm described earlier for traversing a binary tree. As each node is visited,
the node value is returned by the method to the string:

public string WalkTree()
{
 string result = "";

 if (this.LeftTree != null)

 {

 result = this.LeftTree.WalkTree();

 }

 result += String.Format(" {0} ", this.NodeData.ToString());

 if (this.RightTree != null)

 {

 result += this.RightTree.WalkTree();

 }

 return result;
}

17. On the BUILD menu, click Build Solution. The class should compile cleanly, but correct any
errors that are reported and rebuild the solution if necessary.

In the next exercise, you will test the Tree<TItem> class by creating binary trees of integers and
strings.

406 part III Defining Extensible Types with C#

test the Tree<TItem> class

1. In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click New Project.

Note Make sure you right-click the BinaryTree solution rather than the BinaryTree
project.

2. Add a new project using the Console Application template. Name the project BinaryTreeTest.
Set the Location to \Microsoft Press\Visual CSharp Step By Step\Chapter 17 under your
Documents folder, and then click OK.

Note A Visual Studio 2012 solution can contain more than one project. You are
using this feature to add a second project to the BinaryTree solution for testing the
Tree<TItem> class.

3. Ensure that the BinaryTreeTest project is selected in Solution Explorer. On the PROJECT menu, click
Set as Startup Project.

The BinaryTreeTest project is highlighted in Solution Explorer. When you run the application,
this is the project that will actually execute.

4. Ensure that the BinaryTreeTest project is still selected in Solution Explorer. On the PROJECT menu,
click Add Reference. In the left pane of the Reference Manager - BinaryTreeTest dialog box, click
Solution. In the middle pane, select the BinaryTree project, and then click OK.

The BinaryTree assembly is added to the list of references for the BinaryTreeTest project in
Solution Explorer. If you examine the References folder for the BinaryTreeTest project in
Solution Explorer, you should see the BinaryTree assembly listed at the top. You will now be
able to create Tree<TItem> objects in the BinaryTreeTest project.

 CHAPTER 17 Introducing Generics 407

Note If the class library project is not part of the same solution as the project that
uses it, you must add a reference to the assembly (the .dll file) and not to the class
library project. You can do this by browsing for the assembly in the Reference
Manager dialog box. You will use this technique in the final set of exercises in this
chapter.

5. In the Code and Text Editor window displaying the Program class, add the following using
directive to the list at the top of the class:

using BinaryTree;

6. Add the statements in bold type in the following code to the Main method:

static void Main(string[] args)
{
 Tree<int> tree1 = new Tree<int>(10);
 tree1.Insert(5);
 tree1.Insert(11);
 tree1.Insert(5);
 tree1.Insert(-12);
 tree1.Insert(15);
 tree1.Insert(0);
 tree1.Insert(14);
 tree1.Insert(-8);
 tree1.Insert(10);
 tree1.Insert(8);
 tree1.Insert(8);

 string sortedData = tree1.WalkTree();
 Console.WriteLine("Sorted data is: {0}", sortedData);
}

These statements create a new binary tree for holding ints. The constructor creates an initial
node containing the value 10. The Insert statements add nodes to the tree, and the WalkTree
method generates a string representing the contents of the tree, which should appear sorted
in ascending order when this string is displayed.

Note Remember that the int keyword in C# is just an alias for the System.Int32
type; whenever you declare an int variable, you are actually declaring a struct vari-
able of type System.Int32. The System.Int32 type implements the IComparable and
IComparable<T> interfaces, which is why you can create Tree<int> objects. Similarly,
the string keyword is an alias for System.String, which also implements IComparable
and IComparable<T>.

7. On the BUILD menu, click Build Solution. Verify that the solution compiles, and correct any
errors if necessary.

408 part III Defining Extensible Types with C#

8. On the DEBUG menu, click Start Without Debugging.

Verify that the program runs and displays the values in the following sequence:

–12 –8 0 5 5 8 8 10 10 11 14 15

9. Press the Enter key to return to Visual Studio 2012.

10. Add the following statements shown in bold type to the end of the Main method in the
Program class, after the existing code:

static void Main(string[] args)
{
 ...
 Tree<string> tree2 = new Tree<string>("Hello");
 tree2.Insert("World");
 tree2.Insert("How");
 tree2.Insert("Are");
 tree2.Insert("You");
 tree2.Insert("Today");
 tree2.Insert("I");
 tree2.Insert("Hope");
 tree2.Insert("You");
 tree2.Insert("Are");
 tree2.Insert("Feeling");
 tree2.Insert("Well");
 tree2.Insert("!");

 sortedData = tree2.WalkTree();
 Console.WriteLine("Sorted data is: {0}", sortedData);
}

These statements create another binary tree for holding strings, populate it with some test
data, and then print the tree. This time, the data is sorted alphabetically.

11. On the BUILD menu, click Build Solution. Verify that the solution compiles, and correct any
errors if necessary.

12. On the DEBUG menu, click Start Without Debugging.

Verify that the program runs and displays the integer values as before, followed by the strings
in the following sequence:

! Are Are Feeling Hello Hope How I Today Well World You You

 CHAPTER 17 Introducing Generics 409

13. Press the Enter key to return to Visual Studio 2012.

Creating a Generic Method

As well as defining generic classes, you can create generic methods.

With a generic method, you can specify the types of the parameters and the return type by using
a type parameter in a manner similar to that used when defining a generic class. In this way, you can
define generalized methods that are type-safe and avoid the overhead of casting (and boxing, in
some cases). Generic methods are frequently used in conjunction with generic classes; you need them
for methods that take generic types as parameters or that have a return type that is a generic type.

You define generic methods by using the same type parameter syntax that you use when creat-
ing generic classes. (You can also specify constraints.) For example, the following generic Swap<T>
method swaps the values in its parameters. Because this functionality is useful regardless of the type
of data being swapped, it is helpful to define it as a generic method:

static void Swap<T>(ref T first, ref T second)
{
 T temp = first;
 first = second;
 second = temp;
}

You invoke the method by specifying the appropriate type for its type parameter. The following
examples show how to invoke the Swap<T> method to swap over two ints and two strings:

int a = 1, b = 2;
Swap<int>(ref a, ref b);
...
string s1 = "Hello", s2 = "World";
Swap<string>(ref s1, ref s2);

Note Just as instantiating a generic class with different type parameters causes the com-
piler to generate different types, each distinct use of the Swap<T> method causes the
compiler to generate a different version of the method. Swap<int> is not the same method
as Swap<string>—both methods just happen to have been generated from the same
generic template, so they exhibit the same behavior, albeit over different types.

410 part III Defining Extensible Types with C#

Defining a Generic Method to Build a Binary Tree
In the previous exercise, you created a generic class for implementing a binary tree. The
Tree<TItem> class provides the Insert method for adding data items to the tree. However, if you
want to add a large number of items, repeated calls to the Insert method are not very convenient.
In the following exercise, you will define a generic method called InsertIntoTree that you can use to
insert a list of data items into a tree with a single method call. You will test this method by using it
to insert a list of characters into a tree of characters.

Write the InsertIntoTree method

1. Using Visual Studio 2012, create a new project by using the Console Application template. In
the New Project dialog box, name the project BuildTree. Set the Location to \Microsoft Press\
Visual CSharp Step By Step\Chapter 17 under your Documents folder, select Create New Solu-
tion from the Solution drop-down list, and then click OK.

2. On the PROJECT menu, click Add Reference. In the Reference Manager - BuildTree dialog box,
click the Browse button (not the Browse tab in the left pane).

3. In the Select the Files to Reference dialog box, move to the folder \Microsoft Press\Visual CSharp
Step By Step\Chapter 17\BinaryTree\BinaryTree\bin\Debug under your Documents folder, click
BinaryTree.dll, and then click Add.

4. In the Reference Manager – BuildTree dialog box, verify that the BinaryTree.dll assembly is listed
and then click OK.

The BinaryTree assembly is added to the list of references shown in Solution Explorer.

5. In the Code and Text Editor window displaying the Program.cs file, add the following using
directive to the top of the Program.cs file:

using BinaryTree;

This namespace contains the Tree<TItem> class.

6. Add a method called InsertIntoTree to the Program class after the Main method. This should
be a static void method that takes a Tree<TItem> parameter and a params array of TItem ele-
ments called data. The tree parameter should be passed by reference, for reasons that will be
described in a later step.

The method definition should look like this:

static void InsertIntoTree<TItem>(ref Tree<TItem> tree, params TItem[] data)
{
}

 CHAPTER 17 Introducing Generics 411

tip An alternative way of implementing this method is to create an extension
method of the Tree<TItem> class by prefixing the Tree<TItem> parameter with the
this keyword and defining the InsertIntoTree method in a static class, like this:

public static class TreeMethods
{
 public static void InsertIntoTree<TItem>(this Tree<TItem> tree,
 params TItem[] data)
 {
 ...
 }
 ...
}

The primary advantage of this approach is that you can invoke the InsertIntoTree
method directly on a Tree<TItem> object rather than pass the Tree<TItem> in as a
parameter. However, for this exercise, you will keep things simple.

7. The TItem type used for the elements being inserted into the binary tree must implement the
IComparable<TItem> interface. Modify the definition of the InsertIntoTree method and add
the where clause shown in bold type in the following code:

static void InsertIntoTree<TItem>(ref Tree<TItem> tree,
 params TItem[] data) where TItem : IComparable<TItem>
{
}

8. Add the following statements shown in bold type to the InsertIntoTree method. These
statements iterate through the params list, adding each item to the tree by using the Insert
method. If the value specified by the tree parameter is null initially, a new Tree<TItem> is cre-
ated; this is why the tree parameter is passed by reference.

static void InsertIntoTree<TItem>(ref Tree<TItem> tree,
 params TItem[] data) where TItem : IComparable<TItem>
{
 foreach (TItem datum in data)
 {
 if (tree == null)
 {
 tree = new Tree<TItem>(datum);
 }
 else
 {
 tree.Insert(datum);
 }
 }
}

412 part III Defining Extensible Types with C#

test the InsertIntoTree method

1. In the Main method of the Program class, add the following statements shown in bold type
that create a new Tree for holding character data, populate it with some sample data by using
the InsertIntoTree method, and then display it by using the WalkTree method of Tree:

static void Main(string[] args)
{
 Tree<char> charTree = null;
 InsertIntoTree<char>(ref charTree, 'M', 'X', 'A', 'M', 'Z', 'Z', 'N');
 string sortedData = charTree.WalkTree();
 Console.WriteLine("Sorted data is: {0}", sortedData);
}

2. On the BUILD menu, click Build Solution. Verify that the solution compiles, and correct any
errors if necessary.

3. On the DEBUG menu, click Start Without Debugging.

The program runs and displays the character values in the following order:

A M M N X Z Z

4. Press the Enter key to return to Visual Studio 2012.

Variance and Generic Interfaces

In Chapter 8, you learned that you can use the object type to hold a value or reference of any other
type. For example, the following code is completely legal:

string myString = "Hello";
object myObject = myString;

Remember that in inheritance terms, the String class is derived from the Object class, so all strings
are objects.

Now consider the following generic interface and class:

interface IWrapper<T>
{
 void SetData(T data);
 T GetData();
}
class Wrapper<T> : IWrapper<T>
{
 private T storedData;

 void IWrapper<T>.SetData(T data)
 {
 this.storedData = data;
 }

 CHAPTER 17 Introducing Generics 413

 T IWrapper<T>.GetData()
 {
 return this.storedData;
 }
}

The Wrapper<T> class provides a simple wrapper around a specified type. The IWrapper interface
defines the SetData method that the Wrapper<T> class implements to store the data and the GetData
method that the Wrapper<T> class implements to retrieve the data. You can create an instance of this
class and use it to wrap a string like this:

Wrapper<string> stringWrapper = new Wrapper<string>();
IWrapper<string> storedStringWrapper = stringWrapper;
storedStringWrapper.SetData("Hello");
Console.WriteLine("Stored value is {0}", storedStringWrapper.GetData());

The code creates an instance of the Wrapper<string> type. It references the object through the
IWrapper<string> interface to call the SetData method. (The Wrapper<T> type implements its inter-
faces explicitly, so you must call the methods through an appropriate interface reference.) The code
also calls the GetData method through the IWrapper<string> interface. If you run this code, it outputs
the message “Stored value is Hello”.

Now look at the following line of code:

IWrapper<object> storedObjectWrapper = stringWrapper;

This statement is similar to the one that creates the IWrapper<string> reference in the previous
code example, the difference being that the type parameter is object rather than string. Is this code
legal? Remember that all strings are objects (you can assign a string value to an object reference,
as shown earlier), so in theory this statement looks promising. However, if you try it, the state-
ment will fail to compile with the message “Cannot implicitly convert type ‘Wrapper<string>‘ to
‘IWrapper<object>‘.”

You can try an explicit cast such as this:

IWrapper<object> storedObjectWrapper = (IWrapper<object>)stringWrapper;

This code compiles, but will fail at run time with an InvalidCastException exception. The problem is
that although all strings are objects, the converse is not true. If this statement was allowed, you could
write code like this, which ultimately attempts to store a Circle object in a string field:

IWrapper<object> storedObjectWrapper = (IWrapper<object>)stringWrapper;
Circle myCircle = new Circle();
storedObjectWrapper.SetData(myCircle);

The IWrapper<T> interface is said to be invariant. You cannot assign an IWrapper<A> object to a
reference of type IWrapper, even if type A is derived from type B. By default, C# implements this
restriction to ensure the type safety of your code.

414 part III Defining Extensible Types with C#

Covariant Interfaces
Suppose you defined the IStoreWrapper<T> and IRetrieveWrapper<T> interfaces shown next in place
of IWrapper<T> and implemented these interfaces in the Wrapper<T> class, like this:

interface IStoreWrapper<T>
{
 void SetData(T data);
}

interface IRetrieveWrapper<T>
{
 T GetData();
}

class Wrapper<T> : IStoreWrapper<T>, IRetrieveWrapper<T>
{
 private T storedData;

 void IStoreWrapper<T>.SetData(T data)
 {
 this.storedData = data;
 }

 T IRetrieveWrapper<T>.GetData()
 {
 return this.storedData;
 }
}

Functionally, the Wrapper<T> class is the same as before, except that you access the SetData and
GetData methods through different interfaces:

Wrapper<string> stringWrapper = new Wrapper<string>();
IStoreWrapper<string> storedStringWrapper = stringWrapper;
storedStringWrapper.SetData("Hello");
IRetrieveWrapper<string> retrievedStringWrapper = stringWrapper;
Console.WriteLine("Stored value is {0}", retrievedStringWrapper.GetData());

Now, is the following code legal?

IRetrieveWrapper<object> retrievedObjectWrapper = stringWrapper;

The quick answer is no, and it fails to compile with the same error as before. But if you think about
it, although the C# compiler has deemed that this statement is not type safe, the reasons for assum-
ing this are no longer valid. The IRetrieveWrapper<T> interface only allows you to read the data held
in the IWrapper<T> object by using the GetData method, and it does not provide any way to change
the data. In situations such as this where the type parameter occurs only as the return value of the
methods in a generic interface, you can inform the compiler that some implicit conversions are legal
and that it does not have to enforce strict type-safety. You do this by specifying the out keyword
when you declare the type parameter, like this:

 CHAPTER 17 Introducing Generics 415

interface IRetrieveWrapper<out T>
{
 T GetData();
}

This feature is called covariance. You can assign an IRetrieveWrapper<A> object to an IRetrieve
Wrapper reference as long as there is a valid conversion from type A to type B, or type A
derives from type B. The following code now compiles and runs as expected:

// string derives from object, so this is now legal
IRetrieveWrapper<object> retrievedObjectWrapper = stringWrapper;

You can specify the out qualifier with a type parameter only if the type parameter occurs as the
return type of methods. If you use the type parameter to specify the type of any method parameters,
the out qualifier is illegal and your code will not compile. Also, covariance works only with reference
types. This is because value types cannot form inheritance hierarchies. So, the following code will not
compile because int is a value type:

Wrapper<int> intWrapper = new Wrapper<int>();
IStoreWrapper<int> storedIntWrapper = intWrapper; // this is legal
...
// the following statement is not legal - ints are not objects
IRetrieveWrapper<object> retrievedObjectWrapper = intWrapper;

Several of the interfaces defined by the .NET Framework exhibit covariance, including the
IEnumerable<T> interface, which you will meet in Chapter 19, “Enumerating Collections.”

Note Only interface and delegate types (which you will meet in Chapter 18) can be de-
clared as covariant. You do not specify the out modifier with generic classes.

Contravariant Interfaces
Contravariance follows a similar principle to covariance except that it works in the opposite direction;
it enables you to use a generic interface to reference an object of type B through a reference to type
A as long as type B derives type A. This sounds complicated, so it is worth looking at an example from
the .NET Framework class library.

The System.Collections.Generic namespace in the .NET Framework provides an interface called
IComparer, which looks like this:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

416 part III Defining Extensible Types with C#

A class that implements this interface has to define the Compare method, which is used to com-
pare two objects of the type specified by the T type parameter. The Compare method is expected to
return an integer value: zero if the parameters x and y have the same value, negative if x is less than y,
and positive if x is greater than y. The following code shows an example that sorts objects according
to their hash code. (The GetHashCode method is implemented by the Object class. It simply returns an
integer value that identifies the object. All reference types inherit this method and can override it with
their own implementations.)

class ObjectComparer : IComparer<Object>
{
 int IComparer<Object>.Compare(Object x, Object y)
 {
 int xHash = x.GetHashCode();
 int yHash = y.GetHashCode();

 if (xHash == yHash)
 return 0;

 if (xHash < yHash
 return -1;

 return 1;
 }
}

You can create an ObjectComparer object and call the Compare method through the
IComparer<Object> interface to compare two objects, like this:

Object x = ...;
Object y = ...;
ObjectComparer objectComparer = new ObjectComparer();
IComparer<Object> objectComparator = objectComparer;
int result = objectComparator.Compare(x, y);

That’s the boring bit. What is more interesting is that you can reference this same object through a
version of the IComparer interface that compares strings, like this:

IComparer<String> stringComparator = objectComparer;

At first glance, this statement seems to break every rule of type safety that you can imagine.
However, if you think about what the IComparer<T> interface does, this approach makes sense. The
purpose of the Compare method is to return a value based on a comparison between the parameters
passed in. If you can compare Objects, you certainly should be able to compare Strings, which are just
specialized types of Objects. After all, a String should be able to do anything that an Object can do—
that is the purpose of inheritance.

This still sounds a little presumptive, however. How does the C# compiler know that you are not
going to perform any type-specific operations in the code for the Compare method that might fail if

 CHAPTER 17 Introducing Generics 417

you invoke the method through an interface based on a different type? If you revisit the definition of
the IComparer interface, you can see the in qualifier prior to the type parameter:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

The in keyword tells the C# compiler that either you can pass the type T as the parameter type
to methods or you can pass any type that derives from T. You cannot use T as the return type from
any methods. Essentially, this enables you to reference an object either through a generic inter-
face based on the object type or through a generic interface based on a type that derives from
the object type. Basically, if a type A exposes some operations, properties, or fields, then if type
B derives from type A, it must also expose the same operations (which might behave differently if
they have been overridden), properties, and fields. Consequently, it should be safe to substitute an
object of type B for an object of type A.

Covariance and contravariance might seem like fringe topics in the world of generics, but they are
useful. For example, the List<T> generic collection class (in the System.Collections.Generic namespace)
uses IComparer<T> objects to implement the Sort and BinarySearch methods. A List<Object> object
can contain a collection of objects of any type, so the Sort and BinarySearch methods need to be able
to sort objects of any type. Without using contravariance, the Sort and BinarySearch methods would
need to include logic that determines the real types of the items being sorted or searched and then
implement a type-specific sort or search mechanism. However, unless you are a mathematician, it can
be quite difficult to recall what covariance and contravariance actually do. The way I remember, based
on the examples in this section, is as follows:

■■ Covariance example If the methods in a generic interface can return strings, they can also
return objects. (All strings are objects.)

■■ Contravariance example If the methods in a generic interface can take object parameters,
they can take string parameters. (If you can perform an operation by using an object, you can
perform the same operation by using a string because all strings are objects.)

Note As with covariance, only interface and delegate types can be declared as contravari-
ant. You do not specify the in modifier with generic classes.

Summary

In this chapter, you learned how to use generics to create type-safe classes. You saw how to instanti-
ate a generic type by specifying a type parameter. You also saw how to implement a generic interface
and define a generic method. Finally, you learned how to define covariant and contravariant generic
interfaces that can operate with a hierarchy of types.

418 part III Defining Extensible Types with C#

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 18.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 17 Quick Reference

To Do this

Instantiate an object by using a generic type Specify the appropriate generic type parameter. For example:

Queue<int> myQueue = new Queue<int>();

Create a new generic type Define the class using a type parameter. For example:

public class Tree<TItem>
{
 ...
}

Restrict the type that can be substituted for
the generic type parameter

Specify a constraint by using a where clause when defining the class.
For example:

public class Tree<TItem>
where TItem : IComparable<TItem>
{
 ...
}

Define a generic method Define the method by using type parameters. For example:

static void InsertIntoTree<TItem>
(Tree<TItem> tree, params TItem[] data)
{
 ...
}

Invoke a generic method Provide types for each of the type parameters. For example:

InsertIntoTree<char>(charTree, 'Z', 'X');

Define a covariant interface Specify the out qualifier for covariant type parameters. Reference the
covariant type parameters only as the return types from methods and
not as the types for method parameters:

interface IRetrieveWrapper<out T>
{
 T GetData();
}

Define a contravariant interface Specify the in qualifier for contravariant type parameters. Reference
the contravariant type parameters only as the types of method pa-
rameters and not as return types:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

 419

C H A P T E R 1 8

Using Collections

After completing this chapter, you will be able to

■■ Explain the functionality provided in the different collection classes available with the .NET
Framework.

■■ Create type-safe collections.

■■ Populate a collection with a set of data.

■■ Manipulate and access the data items held in a collection.

■■ Search a list-oriented collection for matching items by using a predicate.

Chapter 10, “Using Arrays,” introduced you to arrays for holding sets of data. Arrays are very useful
in this respect, but they have their limitations. Arrays provide only limited functionality; it is not easy
to increase or reduce the size of an array, and neither is it a simple matter to sort the data held in an
array, for example. Another issue is that arrays only really provide a single means of accessing data,
by using an integer index. If your application needs to store and retrieve data by using some other
mechanism, such as the first-in, first-out queue mechanism described in Chapter 17, “Introducing
Generics,” then arrays may not be the most suitable data structure to use. This is where collections
can prove useful.

What Are Collection Classes?

The Microsoft .NET Framework provides several classes that collect elements together and enable
an application to access them in specialized ways. These are the collection classes mentioned in
Chapter 17, and they live in the System.Collections.Generic namespace.

As the namespace implies, these collections are generic types; they all expect you to provide a
type parameter indicating the kind of data that your application will be storing in them. Each collec-
tion class is optimized for a particular form of data storage and access, and each provides specialized
methods that support this functionality. For example, the Stack<T> class implements a last-in, first-
out model, where you add an item to the top of the stack by using the Push method, and you take
an item from the top of the stack by using the Pop method. The Pop method always retrieves the
most recently pushed item and removes it from the stack. In contrast, the Queue<T> type provides
the Enqueue and Dequeue methods described in Chapter 17. The Enqueue method adds an item to

420 part III Defining Extensible Types with C#

the queue, while the Dequeue method retrieves items in the same order and removes them from the
queue, implementing a first-in, first-out model. A variety of other collection classes are also available,
and the following table provides a summary of the most commonly used ones.

Collection Description

List<T> A list of objects that can be accessed by index, like an array, but with additional
methods to search the list and sort the contents of the list.

Queue<T> A first-in, first-out data structure, with methods to add an item to one end of the
queue, remove an item from the other end, and examine an item without removing it.

Stack<T> A first-in, last-out data structure with methods to push an item onto the top of the
stack, pop an item from the top of the stack, and examine the item at the top of the
stack without removing it.

LinkedList<T> A double-ended ordered list, optimized to support insertion and removal at either
end. This collection can act like a queue or a stack, but it also supports random access
like a list.

HashSet<T> An unordered set of values that is optimized for fast retrieval of data. It provides set-ori-
ented methods for determining whether the items it holds are a subset of those in another
HashSet<T> object, as well as computing the intersection and union of HashSet<T> objects.

Dictionary<TKey, TValue> A collection of values that can be identified and retrieved by using keys rather than
indexes.

SortedList<TKey, TValue> A sorted list of key/value pairs. The keys must implement the IComparable<T>
interface.

The following sections provide a brief overview of these collection classes. Refer to the Microsoft
.NET Framework class library documentation for more details on each class.

Note The .NET Framework class library also provides another set of collection types in the
System.Collections namespace. These are nongeneric collections, and they were designed
before C# supported generic types (generics were added to the version of C# developed
for the .NET Framework version 2.0). With one exception, these types all store object refer-
ences, and you are required to perform the appropriate casts when storing and retrieving
items. These classes are included for backward compatibility with existing applications,
and it is not recommended that you use them when building new solutions. In fact, these
classes are not available if you are building Windows Store apps.

The one exception that does not store object references is the BitArray class. This class
implements a compact array of Boolean values by using an int; each bit indicates true (1)
or false (0). If this sounds familiar, it should, as this is very similar to the IntBits struct that
you saw in the examples in Chapter 16, “Using Indexers.” The BitArray class is available to
Windows Store apps.

The System.Generic.Concurrent namespace defines one other important set of collections.
These are thread-safe collection classes that you can use when building multithreaded
applications. Chapter 24, “Improving Response Time by Performing Asynchronous
Operations,” provides more information on these classes.

 CHAPTER 18 Using Collections 421

the List<t> Collection Class
The generic List<T> class is the simplest of the collection classes. You can use it much like an array—
you can reference an existing element in a List<T> collection by using ordinary array notation, with
square brackets and the index of the element, although you cannot use array notation to add new
elements. However, in general, the List<T> class provides more flexibility than arrays and is designed
to overcome the following restrictions exhibited by arrays:

■■ If you want to resize an array, you have to create a new array, copy the elements (leaving out
some if the new array is smaller), and then update any references to the original array so that
they refer to the new array.

■■ If you want to remove an element from an array, you have to move all the trailing elements
up by one place. Even this doesn’t quite work, because you end up with two copies of the last
element.

■■ If you want to insert an element into an array, you have to move elements down by one place
to make a free slot. However, you lose the last element of the array!

The List<T> collection class provides the following features that remove these limitations:

■■ You don’t need to specify the capacity of a List<T> collection when you create it; it can grow
and shrink as you add elements. There is an overhead associated with this dynamic behav-
ior, and if necessary you can specify an initial size. However, if you exceed this size, then the
List<T> collection will simply grow as necessary.

■■ You can remove a specified element from a List<T> collection by using the Remove method.
The List<T> collection automatically reorders its elements and closes the gap. You can also
remove an item at a specified position in a List<T> collection by using the RemoveAt method.

■■ You can add an element to the end of a List<T> collection by using its Add method. You sup-
ply the element to be added. The List<T> collection resizes itself automatically.

■■ You can insert an element into the middle of a List<T> collection by using the Insert method.
Again, the List<T> collection resizes itself.

■■ You can easily sort the data in a List<T> object by calling the Sort method.

Note As with arrays, if you use foreach to iterate through a List<T> collection, you cannot
use the iteration variable to modify the contents of the collection. Additionally, you cannot
call the Remove, Add, or Insert method in a foreach loop that iterates through a List<T> col-
lection; any attempt to do so results in an InvalidOperationException exception.

422 part III Defining Extensible Types with C#

Here’s an example that shows how you can create, manipulate, and iterate through the contents of
a List<int> collection:

using System;
using System.Collections.Generic;
...
List<int> numbers = new List<int>();

// Fill the List<int> by using the Add method
foreach (int number in new int[12]{10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1})
{
 numbers.Add(number);
}

// Insert an element in the penultimate position in the list, and move the last item up
// The first parameter is the position; the second parameter is the value being inserted
numbers.Insert(numbers.Count-1, 99);

// Remove first element whose value is 7 (the 4th element, index 3)
numbers.Remove(7);
// Remove the element that's now the 7th element, index 6 (10)
numbers.RemoveAt(6);

// Iterate remaining 11 elements using a for statement
Console.WriteLine("Iterating using a for statement:");
for (int i = 0; i < numbers.Count; i++)
{
 int number = numbers[i]; // Note the use of array syntax
 Console.WriteLine(number);
}

// Iterate the same 11 elements using a foreach statement
Console.WriteLine("\nIterating using a foreach statement:");
foreach (int number in numbers)
{
 Console.WriteLine(number);
}

The output of this code is shown here:

Iterating using a for statement:
10
9
8
7
6
5
4
3
2
99
1

 CHAPTER 18 Using Collections 423

Iterating using a foreach statement:
10
9
8
7
6
5
4
3
2
99
1

Note The way you determine the number of elements for a List<T> collection is different
from querying the number of items in an array. When using a List<T> collection, you exam-
ine the Count property, and when using an array, you examine the Length property.

the LinkedList<t> Collection Class
The LinkedList<T> collection class implements a doubly linked list. Each item in the list holds the value
for the item together with a reference to the next item in the list (the Next property) and the previous
item (the Previous property). The item at the start of the list has the Previous property set to null, and
the item at the end of the list has the Next property set to null.

Unlike the List<T> class, LinkedList<T> does not support array notation for inserting or examining
elements. Instead, you can use the AddFirst method to insert an element at the start of the list, mov-
ing the first item up and setting its Previous property to refer to the new item, or the AddLast method
to insert an element at the end of the list, setting the Next property of the previously last item to
refer to the new item. You can also use the AddBefore and AddAfter methods to insert an element
before or after a specified item in the list (you have to retrieve the item first).

You can find the first item in a LinkedList<T> collection by querying the First property, while the
Last property returns a reference to the final item in the list. To iterate through a linked list, you can
start at one end and step through the Next or Previous references until you find an item with a null
value for this property. Alternatively, you can use a foreach statement, which iterates forward through
a LinkedList<T> object and stops automatically at the end.

You delete an item from a LinkedList<T> collection by using the Remove, RemoveFirst, and
RemoveLast methods.

The following example shows a LinkedList<T> collection in action. Notice how the code that iter-
ates through the list by using a for statement steps through the Next (or Previous) references, only
stopping when it reaches a null reference, which is the end of the list:

424 part III Defining Extensible Types with C#

using System;
using System.Collections.Generic;
...
LinkedList<int> numbers = new LinkedList<int>();

// Fill the List<int> by using the AddFirst method
foreach (int number in new int[] { 10, 8, 6, 4, 2 })
{
 numbers.AddFirst(number);
}

// Iterate using a for statement
Console.WriteLine("Iterating using a for statement:");
for (LinkedListNode<int> node = numbers.First; node != null; node = node.Next)
{
 int number = node.Value;
 Console.WriteLine(number);
}

// Iterate using a foreach statement
Console.WriteLine("\nIterating using a foreach statement:");
foreach (int number in numbers)
{
 Console.WriteLine(number);
}

// Iterate backwards
Console.WriteLine("\nIterating list in reverse order:");
for (LinkedListNode<int> node = numbers.Last; node != null; node = node.Previous)
{
 int number = node.Value;
 Console.WriteLine(number);
}

The output generated by this code looks like this:

Iterating using a for statement:
2
4
6
8
10

Iterating using a foreach statement:
2
4
6
8
10

Iterating list in reverse order:
10
8
6
4
2

 CHAPTER 18 Using Collections 425

the Queue<t> Collection Class
The Queue<T> class implements a first-in, first-out mechanism. An element is inserted into the
queue at the back (the Enqueue operation) and is removed from the queue at the front (the Dequeue
operation).

The following code is an example showing a Queue<int> collection and its common operations:

using System;
using System.Collections.Generic;
...
Queue<int> numbers = new Queue<int>();

// fill the queue
Console.WriteLine("Populating the queue:");
foreach (int number in new int[4]{9, 3, 7, 2})
{
 numbers.Enqueue(number);
 Console.WriteLine("{0} has joined the queue", number);
}

// iterate through the queue
Console.WriteLine("\nThe queue contains the following items:");
foreach (int number in numbers)
{
 Console.WriteLine(number);
}

// empty the queue
Console.WriteLine("\nDraining the queue:");
while (numbers.Count > 0)
{
 int number = numbers.Dequeue();
 Console.WriteLine("{0} has left the queue", number);
}

The output from this code is shown here:

Populating the queue:
9 has joined the queue
3 has joined the queue
7 has joined the queue
2 has joined the queue

The queue contains the following items:
9
3
7
2

Draining the queue:
9 has left the queue
3 has left the queue
7 has left the queue
2 has left the queue

426 part III Defining Extensible Types with C#

the Stack<t> Collection Class
The Stack<T> class implements a last-in, first-out mechanism. An element joins the stack at the top
(the push operation) and leaves the stack at the top (the pop operation). To visualize this, think of a
stack of dishes: new dishes are added to the top and dishes are removed from the top, making the
last dish to be placed on the stack the first one to be removed. (The dish at the bottom is rarely used
and will inevitably require washing before you can put any food on it, as it will be covered in grime!)
Here’s an example—notice the order in which the items are listed by the foreach loop:

using System;
using System.Collections.Generic;
...
Stack<int> numbers = new Stack<int>();

// fill the stack
Console.WriteLine("Pushing items onto the stack:");
foreach (int number in new int[4]{9, 3, 7, 2})
{
 numbers.Push(number);
 Console.WriteLine("{0} has been pushed on the stack", number);
}

// iterate through the stack
Console.WriteLine("\nThe stack now contains:");
foreach (int number in numbers)
{
 Console.WriteLine(number);
}

// empty the stack
Console.WriteLine("\nPopping items from the stack:");
while (numbers.Count > 0)
{
 int number = numbers.Pop();
 Console.WriteLine("{0} has been popped off the stack", number);
}

The output from this program is shown here:

Pushing items onto the stack:
9 has been pushed on the stack
3 has been pushed on the stack
7 has been pushed on the stack
2 has been pushed on the stack

The stack now contains:
2
7
3
9

 CHAPTER 18 Using Collections 427

Popping items from the stack:
2 has been popped off the stack
7 has been popped off the stack
3 has been popped off the stack
9 has been popped off the stack

the Dictionary<tKey, tValue> Collection Class
The array and List<T> types provide a way to map an integer index to an element. You specify an inte-
ger index inside square brackets (for example, [4]), and you get back the element at index 4 (which is
actually the fifth element). However, sometimes you might want to implement a mapping where the
type you map from is not an int but rather some other type, such as string, double, or Time. In other
languages, this is often called an associative array. The Dictionary<TKey, TValue> class implements this
functionality by internally maintaining two arrays, one for the keys you’re mapping from and one for
the values you’re mapping to. When you insert a key/value pair into a Dictionary<TKey, TValue> col-
lection, it automatically tracks which key belongs to which value and enables you to retrieve the value
that is associated with a specified key quickly and easily. The design of the Dictionary<TKey, TValue>
class has some important consequences:

■■ A Dictionary<TKey, TValue> collection cannot contain duplicate keys. If you call the Add
method to add a key that is already present in the keys array, you’ll get an exception. You
can, however, use the square brackets notation to add a key/value pair (as shown in the fol-
lowing example), without danger of an exception, even if the key has already been added;
any existing value with the same key will be overwritten by the new value. You can test
whether a Dictionary<TKey, TValue> collection already contains a particular key by using the
ContainsKey method.

■■ Internally, a Dictionary<TKey, TValue> collection is a sparse data structure that operates most
efficiently when it has plenty of memory to work in. The size of a Dictionary<TKey, TValue>
collection in memory can grow quite quickly as you insert more elements.

■■ When you use a foreach statement to iterate through a Dictionary<TKey, TValue> collection,
you get back a KeyValuePair<TKey, TValue> item. This is a structure that contains a copy of
the key and value elements of an item in the Dictionary<TKey, TValue> collection, and you
can access each element through the Key property and the Value properties. These elements
are read-only; you cannot use them to modify the data in the Dictionary<TKey, TValue>
collection.

Here is an example that associates the ages of members of my family with their names and then
prints the information:

using System;
using System.Collections.Generic;
...
Dictionary<string, int> ages = new Dictionary<string, int>();

428 part III Defining Extensible Types with C#

// fill the Dictionary
ages.Add("John", 47); // using the Add method
ages.Add("Diana", 46);
ages["James"] = 20; // using array notation
ages["Francesca"] = 18;

// iterate using a foreach statement
// the iterator generates a KeyValuePair item
Console.WriteLine("The Dictionary contains:");
foreach (KeyValuePair<string, int> element in ages)
{
 string name = element.Key;
 int age = element.Value;
 Console.WriteLine("Name: {0}, Age: {1}", name, age);
}

The output from this program is shown here:

The Dictionary contains:
Name: John, Age: 47
Name: Diana, Age: 46
Name: James, Age: 20
Name: Francesca, Age: 18

Note The System.Collections.Generic namespace also includes the SortedDictionary<TKey,
TValue> collection type. This class maintains the collection in order, sorted by the keys.

the SortedList<tKey, tValue> Collection Class
The SortedList<TKey, TValue> class is very similar to the Dictionary<TKey, TValue> class in that it
enables you to associate keys with values. The main difference is that the keys array is always sorted.
(It is called a SortedList, after all.) It takes longer to insert data into a SortedList<TKey, TValue> object
than a SortedDictionary<TKey, TValue> object in most cases, but data retrieval is often quicker (or at
least as quick), and the SortedList<TKey, TValue> class uses less memory.

When you insert a key/value pair into a SortedList<TKey, TValue> collection, the key is inserted
into the keys array at the correct index to keep the keys array sorted. The value is then inserted into
the values array at the same index. The SortedList<TKey, TValue> class automatically ensures that keys
and values are kept synchronized, even when you add and remove elements. This means that you can
insert key/value pairs into a SortedList<TKey, TValue> in any sequence; they are always sorted based
on the value of the keys.

Like the Dictionary<TKey, TValue> class, a SortedList<TKey, TValue> collection cannot contain
duplicate keys. When you use a foreach statement to iterate through a SortedList<TKey, TValue>, you
get back a KeyValuePair<TKey, TValue> item. However, the KeyValuePair<TKey, TValue> items will be
returned sorted by the Key property.

 CHAPTER 18 Using Collections 429

Here is the same example that associates the ages of members of my family with their names and
then prints the information, but this version has been adjusted to use a SortedList<TKey, TValue>
object rather than a Dictionary<TKey, TValue> collection:

using System;
using System.Collections.Generic;
...
SortedList<string, int> ages = new SortedList<string, int>();

// fill the SortedList
ages.Add("John", 47); // using the Add method
ages.Add("Diana", 46);
ages["James"] = 20; // using array notation
ages["Francesca"] = 18;

// iterate using a foreach statement
// the iterator generates a KeyValuePair item
Console.WriteLine("The SortedList contains:");
foreach (KeyValuePair<string, int> element in ages)
{
 string name = element.Key;
 int age = element.Value;
 Console.WriteLine("Name: {0}, Age: {1}", name, age);
}

The output from this program is sorted alphabetically by the names of my family members:

The SortedList contains:
Name: Diana, Age: 46
Name: Francesca, Age: 18
Name: James, Age: 20
Name: John, Age: 47

Important The SortedList<TKey, TValue> type is not available in Windows Store apps. If you
require this functionality, you should use the SortedDictionary<TKey, TValue> type.

the hashSet<t> Collection Class
The HashSet<T> class is optimized for performing set operations, such as determining set member-
ship and generating the union and intersect of sets.

You insert items into a HashSet<T> collection by using the Add method, and you delete items
by using the Remove method. However, the real power of the HashSet<T> class is provided by the
IntersectWith, UnionWith, and ExceptWith methods. These methods modify a HashSet<T> collection
to generate a new set that either intersects with, has a union with, or does not contain the items in
a specified HashSet<T> collection. These operations are destructive inasmuch as they overwrite the
contents of the original HashSet<T> object with the new set of data. You can also determine whether
the data in one HashSet<T> collection is a superset or subset of another by using the IsSubsetOf,

430 part III Defining Extensible Types with C#

IsSupersetOf, IsProperSubsetOf, and IsProperSupersetOf methods. These methods return a Boolean
value and are nondestructive.

Internally, a HashSet<T> collection is held as a hash table, enabling fast lookup of items. However,
a large HashSet<T> collection can require a significant amount of memory to operate quickly.

The following example shows how to populate a HashSet<T> collection and illustrates the use of
the IntersectWith method to find data that overlaps two sets:

using System;
using System.Collections.Generic;
...
HashSet<string> employees = new HashSet<string>(new string[] {"Fred","Bert","Harry","John"});
HashSet<string> customers = new HashSet<string>(new string[] {"John","Sid","Harry","Diana"});

employees.Add("James");
customers.Add("Francesca");

Console.WriteLine("Employees:");
foreach (string name in employees)
{
 Console.WriteLine(name);
}

Console.WriteLine("\nCustomers:");
foreach (string name in customers)
{
 Console.WriteLine(name);
}

Console.WriteLine("\nCustomers who are also employees:");
customers.IntersectWith(employees);
foreach (string name in customers)
{
 Console.WriteLine(name);
}

This code generates the following output:

Employees:
Fred
Bert
Harry
John
James

Customers:
John
Sid
Harry
Diana
Francesca

 CHAPTER 18 Using Collections 431

Customers who are also employees:
John
Harry

Note The System.Collections.Generic namespace also provides the SortedSet<T> collection
type, which operates in a similar manner to the HashSet<T> class. The primary difference,
as the name implies, is that the data is maintained in a sorted order. The SortedSet<T> and
HashSet<T> classes are interoperable; you can take the union of a SortedSet<T> collection
with a HashSet<T> collection, for example.

Using Collection Initializers

The examples in the preceding subsections have shown you how to add individual elements to a col-
lection by using the method most appropriate to that collection (Add for a List<T> collection, Enqueue
for a Queue<T> collection, Push for a Stack<T> collection, and so on). You can also initialize some col-
lection types when you declare them, using a syntax similar to that supported by arrays. For example,
the following statement creates and initializes the numbers List<int> object shown earlier, demon-
strating an alternate technique to repeatedly calling the Add method:

List<int> numbers = new List<int>(){10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1};

Internally, the C# compiler actually converts this initialization to a series of calls to the Add method.
Consequently, you can use this syntax only for collections that actually support the Add method. (The
Stack<T> and Queue<T> classes do not.)

For more complex collections that take key/value pairs, such as the Dictionary<TKey, TValue> class,
you can specify each key/value pair as an anonymous type in the initializer list, like this:

Dictionary<string, int> ages = new Dictionary<string, int>()
 {{"John", 47}, {"Diana", 48}, {"James", 21}, {"Francesca", 18}};

The first item in each pair is the key, and the second is the value.

The Find Methods, Predicates, and Lambda Expressions

The dictionary-oriented collections (Dictionary<TKey, TValue>, SortedDictionary<TKey, TValue>, and
SortedList<TKey, TValue>) enable you to quickly find a value by specifying the key to search for, and
you can use array notation to access the value, as you have seen in earlier examples. Other collections
that support nonkeyed random access, such as the List<T> and LinkedList<T> classes, do not support
array notation but instead provide the Find method to locate an item. For these classes, the argument
to the Find method is a predicate that specifies the search criteria to use. The form of a predicate is a

432 part III Defining Extensible Types with C#

method that examines each item in the collection and returns a Boolean value indicating whether the
item matches. In the case of the Find method, as soon as the first match is found, the corresponding
item is returned. Note that the List<T> and LinkedList<T> classes also support other methods such as
FindLast, which returns the last matching object, and the List<T> class additionally provides the FindAll
method, which returns a List<T> collection of all matching objects.

The easiest way to specify the predicate is to use a lambda expression. A lambda expression is an
expression that returns a method. This sounds rather odd because most expressions that you have
encountered so far in C# actually return a value. If you are familiar with functional programming lan-
guages such as Haskell, you are probably comfortable with this concept. For the rest of you, fear not:
lambda expressions are not particularly complicated, and after you have gotten used to a new bit of
syntax, you will see that they are very useful.

Note If you are interested in finding out more about functional programming with Haskell,
visit the Haskell programming language website at http://www.haskell.org/haskellwiki/
Haskell.

You saw in Chapter 3, “Writing Methods and Applying Scope,” that a typical method consists of
four elements: a return type, a method name, a list of parameters, and a method body. A lambda
expression contains two of these elements: a list of parameters and a method body. Lambda expres-
sions do not define a method name, and the return type (if any) is inferred from the context in which
the lambda expression is used. In the case of the Find method, the predicate processes each item
in the collection in turn; the body of the predicate must examine the item and return true or false
depending on whether it matches the search criteria. The following example shows the Find method
(highlighted in bold) on a List<Person> collection, where Person is a struct. The Find method returns
the first item in the list that has the ID property set to 3:

struct Person
{
 public int ID { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
}
...
// Create and populate the personnel list
List<Person> personnel = new List<Person>()
{
 new Person() { ID = 1, Name = "John", Age = 47 },
 new Person() { ID = 2, Name = "Sid", Age = 28 },
 new Person() { ID = 3, Name = "Fred", Age = 34 },
 new Person() { ID = 4, Name = "Paul", Age = 22 },
};

// Find the member of the list that has an ID of 3
Person match = personnel.Find((Person p) => { return p.ID == 3; });

Console.WriteLine("ID: {0}\nName: {1}\nAge: {2}", match.ID, match.Name, match.Age);

 CHAPTER 18 Using Collections 433

The output generated by this code looks like this:

ID: 3
Name: Fred
Age: 34

In the call to the Find method, the argument (Person p) => { return p.ID == 3; } is a lambda expres-
sion that actually does the work. It has the following syntactic items:

■■ A list of parameters enclosed in parentheses. As with a regular method, if the method you
are defining (as in the preceding example) takes no parameters, you must still provide the
parentheses. In the case of the Find method, the predicate is provided with each item from
the collection in turn, and this item is passed as the parameter to the lambda expression.

■■ The => operator, which indicates to the C# compiler that this is a lambda expression.

■■ The body of the method. The example shown here is very simple, containing a single state-
ment that returns a Boolean value indicating whether the item specified in the parameter
matches the search criteria. However, a lambda expression can contain multiple statements,
and you can format it in whatever way you feel is most readable. Just remember to add a
semicolon after each statement as you would in an ordinary method.

Strictly speaking, the body of a lambda expression can be a method body containing multiple
statements, or it can actually be a single expression. If the body of a lambda expression contains only
a single expression, you can omit the braces and the semicolon (but you still need a semicolon to
complete the entire statement). Additionally, if the expression takes a single parameter, you can omit
the parentheses that surround the parameter. Finally, in many cases, you can actually omit the type
of the parameters, as the compiler can infer this information from the context from which the lambda
expression is invoked. A simplified form of the Find statement shown previously looks like this (this
statement is much easier to read and understand):

Person match = personnel.Find(p => p.ID == 3);

Lambda expressions are very powerful constructs, and you will learn more about them in Chapter
20, “Decoupling Application Logic and Handling Events.”

Comparing Arrays and Collections

Here’s a summary of the important differences between arrays and collections:

■■ An array instance has a fixed size and cannot grow or shrink. A collection can dynamically
resize itself as required.

■■ An array can have more than one dimension. A collection is linear. However, the items in a
collection can be collections themselves, so you can imitate a multidimensional array as a col-
lection of collections.

434 part III Defining Extensible Types with C#

■■ You store and retrieve an item in an array by using an index. Not all collections support this
notion. For example, to store an item in a List<T> collection, you use the Add or Insert meth-
ods, and to retrieve an item, you use the Find method.

■■ Many of the collection classes provide a ToArray method that creates and populates an array
containing the items in the collection. The items are copied to the array and are not removed
from the collection. Additionally, these collections provide constructors that can populate a
collection directly from an array.

Using Collection Classes to play Cards
In the next exercise, you will convert the card game you developed in Chapter 10 to use collections
rather than arrays.

Use collections to implement a card game

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Cards project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 18\Windows X\Cards folder in your Documents folder.

This project contains an updated version of the project from Chapter 10 that dealt hands of
cards by using arrays. The PlayingCard class has been amended to expose the value and suit
of a card as read-only properties.

3. Display the Pack.cs file in the Code and Text Editor window. Add the following using directive
to the top of the file:

using System.Collections.Generic;

4. In the Pack class, change the definition of the cardPack two-dimensional array to a
Dictionary<Suit, List< PlayingCard>> object, as shown here in bold:

class Pack
{
 ...
 private Dictionary<Suit, List<PlayingCard>> cardPack;

 ...
}

The original application used a two-dimensional array for representing a pack of cards. This
code replaces the array with a Dictionary, where the key specifies the suit and the value is a list
of cards in that suit.

 CHAPTER 18 Using Collections 435

5. Locate the Pack constructor. Modify the first statement in this constructor to instantiate the
cardPack variable as a new Dictionary collection rather than an array, as shown here in bold:

public Pack()
{
 this.cardPack = new Dictionary<Suit, List<PlayingCard>>(NumSuits);

 ...
}

Although a Dictionary collection will resize itself automatically as items are added, if the col-
lection is unlikely to change in size, you can specify an initial size when you instantiate it. This
helps to optimize the memory allocation, although the Dictionary collection can still grow if
this size is exceeded. In this case, the Dictionary collection will contain a collection of four lists
(one list for each suit), so it is allocated space for four items (NumSize is a constant with the
value 4).

6. In the outer for loop, declare a List<PlayingCard> collection object called cardsInSuit that is
big enough to hold the number of cards in each suit (use the CardsPerSuit constant), as fol-
lows in bold:

public Pack()
{
 this.cardPack = new Dictionary<Suit, List<PlayingCard>>(NumSuits);

 for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
 {
 List<PlayingCard> cardsInSuit = new List<PlayingCard>(CardsPerSuit);
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 ...
 }
 }
}

7. Change the code in the inner for loop to add new PlayingCard objects to this collection rather
than the array, as shown in bold below:

for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
{
 List<PlayingCard> cardsInSuit = new List<PlayingCard>(CardsPerSuit);
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 cardsInSuit.Add(new PlayingCard(suit, value));

 }
}

436 part III Defining Extensible Types with C#

8. After the inner for loop, add the List object to the cardPack Dictionary collection, specifying
the value of the suit variable as the key to this item:

for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
{
 List<PlayingCard> cardsInSuit = new List<PlayingCard>(CardsPerSuit);
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 cardsInSuit.Add(new PlayingCard(suit, value));

 }
 this.cardPack.Add(suit, cardsInSuit);
}

9. Find the DealCardFromPack method. Recall that this method picks a card at random from
the pack, removes the card from the pack, and returns this card. The logic for selecting
the card does not require any changes, but the statements at the end of the method that
retrieve the card from the array must be updated to use the Dictionary collection instead.
Additionally, the code that removes the card from the array (it has now been dealt) must
be modified; you need to search for the card in the list and then remove it from the list.
To locate the card, use the Find method and specify a predicate that finds a card with the
matching value. The parameter to the predicate should be a PlayingCard object (the list
contains PlayingCard items).

The updated statements occur after the closing brace of the second while loop, as shown in
bold in the following code:

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
 while (this.IsSuitEmpty(suit))
 {
 suit = (Suit)randomCardSelector.Next(NumSuits);
 }

 Value value = (Value)randomCardSelector.Next(CardsPerSuit);
 while (this.IsCardAlreadyDealt(suit, value))
 {
 value = (Value)randomCardSelector.Next(CardsPerSuit);
 }

 List<PlayingCard> cardsInSuit = this.cardPack[suit];
 PlayingCard card = cardsInSuit.Find(c => c.CardValue == value);
 cardsInSuit.Remove(card);
 return card;
}

10. Locate the IsCardAlreadyDealt method. This method determines whether a card has already
been dealt by checking whether the corresponding element in the array has been set to null.
You need to modify this method to determine whether a card with the specified value is pres-
ent in the list for the suit in the cardPack Dictionary collection.

 CHAPTER 18 Using Collections 437

To determine whether an item exists in a List<T> collection, you use the Exists method.
This method is similar to Find inasmuch as it takes a predicate as its argument. The predi-
cate is passed each item from the collection in turn, and it should return true if the item
matches some specified criteria and false otherwise. In this case, the List<T> collection
holds PlayingCard objects, and the criteria for the Exists predicate should return true if it is
passed a PlayingCard item with a suit and value that matches the parameters passed to the
IsCardAlreadyDealt method.

Update the method as shown in bold:

private bool IsCardAlreadyDealt(Suit suit, Value value)
{
 List<PlayingCard> cardsInSuit = this.cardPack[suit];

 return (!cardsInSuit.Exists(c => c.CardSuit == suit && c.CardValue == value));
}

11. Display the Hand.cs file in the Code and Text Editor window. Add the following using directive
to the list at the top of the file:

using System.Collections.Generic;

12. The Hand class currently uses an array to hold the playing cards for the hand. Modify the defi-
nition of the cards array to use List<PlayingCard> collection, as shown in bold:

class Hand
{
 public const int HandSize = 13;
 private List<PlayingCard> cards = new List<PlayingCard>(HandSize);

 ...
}

13. Find the AddCardToHand method. This method currently checks to see whether the hand
is full, and if not, it adds the card provided as the parameter to the cards array at the index
specified by the playingCardCount variable.

Update this method to use the Add method of the List<PlayingCard> collection instead. This
change also removes the need to explicitly keep track of how many cards the collection holds
because you can use the Count property instead.

Remove the playingCardCount variable from the class and modify the if statement that checks
whether the hand is full to reference the Count property. The completed method should look
like this, with the changes highlighted in bold:

public void AddCardToHand(PlayingCard cardDealt)
{
 if (this.cards.Count >= HandSize)
 {
 throw new ArgumentException("Too many cards");
 }
 this.cards.Add(cardDealt);
}

438 part III Defining Extensible Types with C#

14. On the DEBUG menu, click Start Debugging to build and run the application.

15. When the Card Game form appears, click Deal.

Note Remember that in the Windows Store apps version of this application, the
Deal button is located on the app bar.

Verify that the cards are dealt and that the populated hands appear as before. Click Deal again to
generate another random set of hands.

The following image shows the Windows 8 version of the application:

16. Return to Visual Studio 2012 and stop debugging.

Summary

In this chapter, you learned how to create and use arrays to manipulate sets of data. You also saw how
to use some of the common collection classes to store and access data.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 19.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 18 Using Collections 439

Chapter 18 Quick Reference

To Do this

Create a new collection Use the constructor for the collection class. For example:

List<PlayingCard> cards = new List<PlayingCard>();

Add an item to a collection Use the Add or Insert methods (as appropriate) for lists, hash sets, and dictionary-
oriented collections. Use the Enqueue method for Queue<T> collections. Use the
Push method for Stack<T> collections. For example:

HashSet<string> employees = new HashSet<string>();
employees.Add("John");
...
LinkedList<int> data = new LinkedList<int>();
data.AddFirst(101);
...
Stack<int> numbers = new Stack<int>();
numbers.Push(99);

Remove an item from a col-
lection

Use the Remove method for lists, hash sets, and dictionary-oriented collections. Use
the Dequeue method for Queue<T> collections. Use the Pop method for Stack<T>
collections. For example:

HashSet<string> employees = new HashSet<string>();
employees.Remove("John");
...
LinkedList<int> data = new LinkedList<int>();
data.Remove(101);
...
Stack<int> numbers = new Stack<int>();
int item = numbers.Pop();

Find the number of elements in
a collection

Use the Count property. For example:

List<PlayingCard> cards = new List<PlayingCard>();
...
int noOfCards = cards.Count;

Locate an item in a collection For dictionary-oriented collections, use array notation. For lists, use the Find
methods. For example:

Dictionary<string, int> ages =
 new Dictionary<string, int>();
ages.Add("John", 47);
int johnsAge = ages["John"];
...

List<Person> personnel = new List<Person>();
Person match = personnel.Find(p => p.ID == 3);

Note: The Stack<T>, Queue<T>, and hash set collection classes do not support
searching, although you can test for membership of an item in a hash set by using
the Contains method.

Iterate through the elements of
a collection

Use a for statement or a foreach statement. For example:

LinkedList<int> numbers = new LinkedList<int>();
...
for (LinkedListNode<int> node = numbers.First;
 node != null; node = node.Next)
{
 int number = node.Value;
 Console.WriteLine(number);
}
...
foreach (int number in numbers)
{
 Console.WriteLine(number);
}

 441

C H A P T E R 1 9

enumerating Collections

After completing this chapter, you will be able to

■■ Manually define an enumerator that can be used to iterate over the elements in a collection.

■■ Implement an enumerator automatically by creating an iterator.

■■ Provide additional iterators that can step through the elements of a collection in different
sequences.

In Chapter 10, “Using Arrays,” and Chapter 18, “Using Collections,” you learned about arrays and col-
lection classes for holding sequences or sets of data. Chapter 10 also introduced the foreach state-
ment that you can use for stepping through, or iterating over, the elements in a collection. In these
chapters, you used the foreach statement as a quick and convenient way of accessing the contents
of an array or collection, but now it is time to learn a little more about how this statement actually
works. This topic becomes important when you define your own collection classes, and this chapter
describes how you can make collections enumerable.

Enumerating the Elements in a Collection

In Chapter 10, you saw an example of using the foreach statement to list the items in a simple array.
The code looked like this:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

The foreach construct provides an elegant mechanism that greatly simplifies the code you need
to write, but it can be exercised only under certain circumstances—you can use foreach only to step
through an enumerable collection.

So, what exactly is an enumerable collection? The quick answer is that it is a collection that imple-
ments the System.Collections.IEnumerable interface.

442 part III Defining Extensible Types with C#

Note Remember that all arrays in C# are actually instances of the System.Array class. The
System.Array class is a collection class that implements the IEnumerable interface.

The IEnumerable interface contains a single method called GetEnumerator:

IEnumerator GetEnumerator();

The GetEnumerator method should return an enumerator object that implements the
System.Collections.IEnumerator interface. The enumerator object is used for stepping through
(enumerating) the elements of the collection. The IEnumerator interface specifies the following
property and methods:

object Current { get; }
bool MoveNext();
void Reset();

Think of an enumerator as a pointer pointing to elements in a list. Initially, the pointer points
before the first element. You call the MoveNext method to move the pointer down to the next (first)
item in the list; the MoveNext method should return true if there actually is another item and false
if there isn’t. You use the Current property to access the item currently pointed to, and you use the
Reset method to return the pointer back to before the first item in the list. By creating an enumerator
by using the GetEnumerator method of a collection and repeatedly calling the MoveNext method and
retrieving the value of the Current property by using the enumerator, you can move forward through
the elements of a collection one item at a time. This is exactly what the foreach statement does. So
if you want to create your own enumerable collection class, you must implement the IEnumerable
interface in your collection class and also provide an implementation of the IEnumerator interface to
be returned by the GetEnumerator method of the collection class.

Important At first glance, it is easy to confuse the IEnumerable and IEnumerator interfaces
because of the similarity of their names. Don’t get them mixed up.

If you are observant, you will have noticed that the Current property of the IEnumerator interface
exhibits non-type-safe behavior in that it returns an object rather than a specific type. However, you
should be pleased to know that the Microsoft .NET Framework class library also provides the generic
IEnumerator<T> interface, which has a Current property that returns a T instead. Likewise, there is
also an IEnumerable<T> interface containing a GetEnumerator method that returns an Enumerator<T>
object. Both of these interfaces are defined in the System.Collections.Generic namespace, and if you
are building applications for the .NET Framework version 2.0 or later, you should make use of these
generic interfaces when defining enumerable collections rather than using the nongeneric version.

 CHAPTER 19 Enumerating Collections 443

Note The generic IEnumerator<T> interface has some further differences from the
nongeneric IEnumerator interface: it does not contain a Reset method but extends the
IDisposable interface.

Manually Implementing an enumerator
In the next exercise, you will define a class that implements the generic IEnumerator<T> interface and
create an enumerator for the binary tree class that you built in Chapter 17, “Introducing Generics.”

In Chapter 17, you saw how easy it is to traverse a binary tree and display its contents. You would
therefore be inclined to think that defining an enumerator that retrieves each element in a binary tree
in the same order would be a simple matter. Sadly, you would be mistaken. The main problem is that
when defining an enumerator you need to remember where you are in the structure so that subse-
quent calls to the MoveNext method can update the position appropriately. Recursive algorithms,
such as that used when walking a binary tree, do not lend themselves to maintaining state informa-
tion between method calls in an easily accessible manner. For this reason, you will first preprocess the
data in the binary tree into a more amenable data structure (a queue) and actually enumerate this
data structure instead. Of course, this deviousness is hidden from the user iterating through the ele-
ments of the binary tree!

Create the TreeEnumerator class

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the BinaryTree solution located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 19\Windows X\BinaryTree folder in your Documents folder. This solution contains a
working copy of the BinaryTree project you created in Chapter 17. You will add a new class to
this project, to implement the enumerator for the BinaryTree class.

3. In Solution Explorer, click the BinaryTree project. On the PROJECT menu, click Add Class. In
the middle pane of the Add New Item – BinaryTree dialog box, select the Class template, type
TreeEnumerator.cs in the Name text box, and then click Add.

The TreeEnumerator class will generate an enumerator for a Tree<TItem> object. To
ensure that the class is type safe, you must provide a type parameter and implement
the IEnumerator<T> interface. Also, the type parameter must be a valid type for the
Tree<TItem> object that the class enumerates, so it must be constrained to implement the
IComparable<TItem> interface (the BinaryTree class requires that items in the tree provide a
means to allow them to be compared, for sorting purposes).

444 part III Defining Extensible Types with C#

4. In the Code and Text Editor window displaying the TreeEnumerator.cs file, modify the defini-
tion of the TreeEnumerator class to satisfy these requirements, as shown in bold in the follow-
ing example:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
}

5. Add the following three private variables shown below in bold to the TreeEnumerator<TItem>
class:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
 private Tree<TItem> currentData = null;
 private TItem currentItem = default(TItem);
 private Queue<TItem> enumData = null;
}

The currentData variable will be used to hold a reference to the tree being enumerated,
and the currentItem variable will hold the value returned by the Current property. You will
populate the enumData queue with the values extracted from the nodes in the tree, and
the MoveNext method will return each item from this queue in turn. The default keyword is
explained in the section titled “Initializing a Variable Defined with a Type Parameter” later in
this chapter.

6. Add a TreeEnumerator constructor that takes a single Tree<TItem> parameter called data. In
the body of the constructor, add a statement that initializes the currentData variable to data:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
 public TreeEnumerator(Tree<TItem> data)
 {
 this.currentData = data;
 }
 ...
}

7. Add the following private method, called populate, to the TreeEnumerator<TItem> class imme-
diately after the constructor:

private void populate(Queue<TItem> enumQueue, Tree<TItem> tree)
{
 if (tree.LeftTree != null)
 {
 populate(enumQueue, tree.LeftTree);
 }

 enumQueue.Enqueue(tree.NodeData);

 CHAPTER 19 Enumerating Collections 445

 if (tree.RightTree != null)
 {
 populate(enumQueue, tree.RightTree);
 }
}

This method walks the binary tree, adding the data it contains to the queue. The algorithm
used is similar to that used by the WalkTree method in the Tree<TItem> class, which was
described in Chapter 17. The main difference is that rather than the method appending
NodeData values to a string, it stores these values in the queue.

8. Return to the definition of the TreeEnumerator<TItem> class. Right-click anywhere in the text
IEnumerator<TItem> in the class declaration, point to Implement Interface, and then click
Implement Interface Explicitly.

This action generates stubs for the methods of the IEnumerator<TItem> interface and the
IEnumerator interface, and adds them to the end of the class. It also generates the Dispose
method for the IDisposable interface.

Note The IEnumerator<TItem> interface inherits from the IEnumerator and
IDisposable interfaces, which is why their methods also appear. In fact, the only item
that belongs to the IEnumerator<TItem> interface is the generic Current property.
The MoveNext and Reset methods belong to the nongeneric IEnumerator interface.
Chapter 14, “Using Garbage Collection and Resource Management,” describes the
IDisposable interface.

9. Examine the code that has been generated. The bodies of the properties and methods contain
a default implementation that simply throws a NotImplementedException exception. You will
replace this code with a real implementation in the following steps.

10. Update the body of the MoveNext method with the code shown in bold here:

bool System.Collections.IEnumerator.MoveNext()
{
 if (this.enumData == null)
 {
 this.enumData = new Queue<TItem>();
 populate(this.enumData, this.currentData);
 }
 if (this.enumData.Count > 0)
 {
 this.currentItem = this.enumData.Dequeue();
 return true;
 }
 return false;
}

446 part III Defining Extensible Types with C#

The purpose of the MoveNext method of an enumerator is actually twofold. The first time it
is called, it should initialize the data used by the enumerator and advance to the first piece of
data to be returned. (Prior to MoveNext being called for the first time, the value returned by
the Current property is undefined and should result in an exception.) In this case, the initializa-
tion process consists of instantiating the queue and then calling the populate method to fill
the queue with data extracted from the tree.

Subsequent calls to the MoveNext method should just move through data items until there
are no more left, dequeuing items until the queue is empty, as in this example. It is important
to bear in mind that MoveNext does not actually return data items—that is the purpose of the
Current property. All MoveNext does is update the internal state in the enumerator (that is, the
value of the currentItem variable is set to the data item extracted from the queue) for use by
the Current property, returning true if there is a next value and false otherwise.

11. Modify the definition of the get accessor of the generic Current property as follows in bold:

TItem IEnumerator<TItem>.Current
{
 get
 {
 if (this.enumData == null)
 {
 throw new InvalidOperationException("Use MoveNext before calling Current");
 }

 return this.currentItem;
 }
}

Important Be sure to add the code to the correct implementation of the Current
property. Leave the nongeneric version, System.Collections.IEnumerator.Current, with
its default implementation that throws a NotImplementedException exception.

The Current property examines the enumData variable to ensure that MoveNext has been
called. (This variable will be null prior to the first call to MoveNext.) If this is not the case, the
property throws an InvalidOperationException—this is the conventional mechanism used by
.NET Framework applications to indicate that an operation cannot be performed in the current
state. If MoveNext has been called beforehand, it will have updated the currentItem variable,
so all the Current property needs to do is return the value in this variable.

12. Locate the IDisposable.Dispose method. Comment out the throw new NotImplementedExcep-
tion(); statement as follows in bold. The enumerator does not use any resources that require
explicit disposal, so this method does not need to do anything. It must still be present, how-
ever. For more information about the Dispose method, refer to Chapter 14.

 CHAPTER 19 Enumerating Collections 447

void IDisposable.Dispose()
{
 // throw new NotImplementedException();
}

13. Build the solution, and correct any errors that are reported.

Initializing a Variable Defined with a Type Parameter
You should have noticed that the statement that defines and initializes the currentItem vari-
able uses the default keyword. The currentItem variable is defined by using the type parameter
TItem. When the program is written and compiled, the actual type that will be substituted for
TItem might not be known—this issue is resolved only when the code is executed. This makes
it difficult to specify how the variable should be initialized. The temptation is to set it to null.
However, if the type substituted for TItem is a value type, this is an illegal assignment. (You
cannot set value types to null, only reference types.) Similarly, if you set it to 0 with the expec-
tation that the type will be numeric, this will be illegal if the type used is actually a reference
type. There are other possibilities as well—TItem could be a boolean, for example. The default
keyword solves this problem. The value used to initialize the variable will be determined when
the statement is executed. If TItem is a reference type, default(TItem) returns null; if TItem is
numeric, default(TItem) returns 0; if TItem is a boolean, default(TItem) returns false. If TItem is a
struct, the individual fields in the struct are initialized in the same way. (Reference fields are set
to null, numeric fields are set to 0, and boolean fields are set to false.)

Implementing the Ienumerable Interface
In the following exercise, you will modify the binary tree class to implement the IEnumerable<T>
interface. The GetEnumerator method will return a TreeEnumerator<TItem> object.

Implement the IEnumerable<TItem> interface in the Tree<TItem> class

1. In Solution Explorer, double-click the file Tree.cs to display the Tree<TItem> class in the Code
and Text Editor window.

2. Modify the definition of the Tree<TItem> class so that it implements the IEnumerable<TItem>
interface, as shown in bold in the following code:

public class Tree<TItem> : IEnumerable<TItem> where TItem : IComparable<TItem>

Notice that constraints are always placed at the end of the class definition.

3. Right-click the IEnumerable<TItem> interface in the class definition, point to Implement
Interface, and then click Implement Interface Explicitly.

448 part III Defining Extensible Types with C#

This action generates implementations of the IEnumerable<TItem>.GetEnumerator and
IEnumerable.GetEnumerator methods and adds them to the class. The nongeneric IEnumerable
interface method is implemented because the generic IEnumerable<TItem> interface inherits
from IEnumerable.

4. Locate the generic IEnumerable<TItem>.GetEnumerator method near the end of the class.
Modify the body of the GetEnumerator() method, replacing the existing throw statement as
shown in bold below:

IEnumerator<TItem> IEnumerable<TItem>.GetEnumerator()
{
 return new TreeEnumerator<TItem>(this);
}

The purpose of the GetEnumerator method is to construct an enumerator object for iterating
through the collection. In this case, all you need to do is build a new TreeEnumerator<TItem>
object by using the data in the tree.

5. Build the solution. Correct any errors that are reported, and rebuild the solution if necessary.

You will now test the modified Tree<TItem> class by using a foreach statement to iterate through a
binary tree and display its contents.

test the enumerator

1. In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click New
Project. Add a new project by using the Console Application template. Name the project
EnumeratorTest, set the Location to \Microsoft Press\Visual CSharp Step By Step\Chapter 19
in your Documents folder, and then click OK.

Note Make sure that you select the Console Application template from the list of
Visual C# templates. Sometimes the Add New Project dialog box displays the tem-
plates for Visual Basic or C++ by default.

2. Right-click the EnumeratorTest project in Solution Explorer, and then click Set as StartUp
Project.

3. On the PROJECT menu, click Add Reference. In the Add Reference dialog box, in the left pane
click Solution, in the middle pane select the BinaryTree project, and then click OK.

The BinaryTree assembly appears in the list of references for the EnumeratorTest project in Solution
Explorer.

 CHAPTER 19 Enumerating Collections 449

4. In the Code and Text Editor window displaying the Program class, add the following using
directive to the list at the top of the file:

using BinaryTree;

5. Add the following statements shown in bold to the Main method. These statements create
and populate a binary tree of integers:

static void Main(string[] args)
{
 Tree<int> tree1 = new Tree<int>(10);
 tree1.Insert(5);
 tree1.Insert(11);
 tree1.Insert(5);
 tree1.Insert(-12);
 tree1.Insert(15);
 tree1.Insert(0);
 tree1.Insert(14);
 tree1.Insert(-8);
 tree1.Insert(10);
}

6. Add a foreach statement, as follows in bold, that enumerates the contents of the tree and
displays the results:

static void Main(string[] args)
{
 ...
 foreach (int item in tree1)
 {
 Console.WriteLine(item);
 }
}

7. On the DEBUG menu, click Start Without Debugging.

The program runs and displays the values in the following sequence:

–12, –8, 0, 5, 5, 10, 10, 11, 14, 15

8. Press Enter to return to Visual Studio 2012.

450 part III Defining Extensible Types with C#

Implementing an Enumerator by Using an Iterator

As you can see, the process of making a collection enumerable can become complex and potentially
error-prone. To make life easier, C# provides iterators that can automate much of this process.

An iterator is a block of code that yields an ordered sequence of values. An iterator is not actually
a member of an enumerable class; rather, it specifies the sequence that an enumerator should use
for returning its values. In other words, an iterator is just a description of the enumeration sequence
that the C# compiler can use for creating its own enumerator. This concept requires a little thought to
understand properly, so consider the following simple example.

a Simple Iterator
The following BasicCollection<T> class illustrates the principles of implementing an iterator. The class
uses a List<T> object for holding data and provides the FillList method for populating this list. Notice
also that the BasicCollection<T> class implements the IEnumerable<T> interface. The GetEnumerator
method is implemented by using an iterator:

using System;
using System.Collections.Generic;
using System.Collections;

class BasicCollection<T> : IEnumerable<T>
{
 private List<T> data = new List<T>();

 public void FillList(params T [] items)
 {
 foreach (var datum in items)
 {
 data.Add(datum);
 }
 }

 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 foreach (var datum in data)
 {
 yield return datum;
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 // Not implemented in this example
 throw new NotImplementedException();
 }
}

 CHAPTER 19 Enumerating Collections 451

The GetEnumerator method appears to be straightforward, but it warrants closer examination. The
first thing you should notice is that it doesn’t appear to return an IEnumerator<T> type. Instead, it
loops through the items in the data array, returning each item in turn. The key point is the use of the
yield keyword. The yield keyword indicates the value that should be returned by each iteration. If it
helps, you can think of the yield statement as calling a temporary halt to the method, passing back a
value to the caller. When the caller needs the next value, the GetEnumerator method continues at the
point it left off, looping around and then yielding the next value. Eventually, the data is exhausted,
the loop finishes, and the GetEnumerator method terminates. At this point, the iteration is complete.

Remember that this is not a normal method in the usual sense. The code in the GetEnumerator
method defines an iterator. The compiler uses this code to generate an implementation of the
IEnumerator<T> class containing a Current method and a MoveNext method. This implementation
exactly matches the functionality specified by the GetEnumerator method. You don’t actually get to
see this generated code (unless you decompile the assembly containing the compiled code), but that
is a small price to pay for the convenience and reduction in code that you need to write. You can
invoke the enumerator generated by the iterator in the usual manner, as shown in this block of code,
which sorts the words in the first line of the poem “Jabberwocky” by Lewis Carroll:

BasicCollection<string> bc = new BasicCollection<string>();
bc.FillList("Twas", "brillig", "and", "the", "slithy", "toves");
foreach (string word in bc)
{
 Console.WriteLine(word);
}

This code simply outputs the contents of the bc object in this order:

Twas, brillig, and, the, slithy, toves

If you want to provide alternative iteration mechanisms presenting the data in a different
sequence, you can implement additional properties that implement the IEnumerable interface and
that use an iterator for returning data. For example, the Reverse property of the BasicCollection<T>
class, shown here, emits the data in the list in reverse order:

class BasicCollection<T> : IEnumerable<T>
{
 ...
 public IEnumerable<T> Reverse
 {
 get
 {
 for (int i = data.Count - 1; i >= 0; i--)
 {
 yield return data[i];
 }
 }
 }
}

452 part III Defining Extensible Types with C#

You can invoke this property as follows:

BasicCollection<string> bc = new BasicCollection<string>();
bc.FillList("Twas", "brillig", "and", "the", "slithy", "toves");
foreach (string word in bc.Reverse)
{
 Console.WriteLine(word);
}

This code outputs the contents of the bc object in reverse order:

toves, slithy, the, and, brillig, Twas

Defining an Enumerator for the Tree<TItem> Class
by Using an Iterator
In the next exercise, you will implement the enumerator for the Tree<TItem> class by using an iterator.
Unlike the preceding set of exercises, which required the data in the tree to be preprocessed into a
queue by the MoveNext method, you can define an iterator that traverses the tree by using the more
naturally recursive mechanism, similar to the WalkTree method discussed in Chapter 17.

add an enumerator to the Tree<TItem> class

1. Using Visual Studio 2012, open the BinaryTree solution located in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 19\Windows X\IteratorBinaryTree folder in your Documents
folder. This solution contains another copy of the BinaryTree project you created in Chapter 17.

2. Open the file Tree.cs in the Code and Text Editor window. Modify the definition of the
Tree<TItem> class so that it implements the IEnumerable<TItem> interface, as shown in bold
below:

public class Tree<TItem> : IEnumerable<TItem> where TItem : IComparable<TItem>
{
 ...
}

3. Right-click the IEnumerable<TItem> interface in the class definition, point to Implement Inter-
face, and then click Implement Interface Explicitly.

The IEnumerable<TItem>.GetEnumerator and IEnumerable.GetEnumerator methods are added
to the end of the class.

4. Locate the generic IEnumerable<TItem>.GetEnumerator method. Replace the contents of the
GetEnumerator method as shown in bold in the following code:

 CHAPTER 19 Enumerating Collections 453

IEnumerator<TItem> IEnumerable<TItem>.GetEnumerator()
{
 if (this.LeftTree != null)
 {
 foreach (TItem item in this.LeftTree)
 {
 yield return item;
 }
 }

 yield return this.NodeData;

 if (this.RightTree != null)
 {
 foreach (TItem item in this.RightTree)
 {
 yield return item;
 }
 }
}

It might not be obvious at first glance, but this code follows the same recursive algorithm that
you used in Chapter 17 for listing the contents of a binary tree. If LeftTree is not empty, the
first foreach statement implicitly calls the GetEnumerator method (which you are currently
defining) over it. This process continues until a node is found that has no left subtree. At this
point, the value in the NodeData property is yielded, and the right subtree is examined in the
same way. When the right subtree is exhausted, the process unwinds to the parent node, out-
putting the parent’s NodeData property and examining the right subtree of the parent. This
course of action continues until the entire tree has been enumerated and all the nodes have
been output.

test the new enumerator

1. In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click Existing
Project. In the Add Existing Project dialog box, move to the folder \Microsoft Press\
Visual CSharp Step By Step\Chapter 19\Windows X\BinaryTree\EnumeratorTest, select the
EnumeratorTest project file, and then click Open.

This is the project that you created to test the enumerator you developed manually earlier in
this chapter.

2. Right-click the EnumeratorTest project in Solution Explorer, and then click Set as StartUp Project.

3. In Solution Explorer, expand the References folder for the EnumeratorTest project. Right-click
the BinaryTree reference and then click Remove.

4. On the PROJECT menu, click Add Reference. In the Add Reference dialog box, in the left pane
click Solution, in the middle pane select the BinaryTree project, and then click OK.

454 part III Defining Extensible Types with C#

Note These two steps ensure that the EnumeratorTest project references the correct
version of the BinaryTree assembly. It should use the assembly that implements the
enumerator by using the iterator rather than the version created in the previous set
of exercises in this chapter.

5. Display the Program.cs file for the EnumeratorTest project in the Code and Text Editor window.
Review the Main method in the Program.cs file. Recall from testing the earlier enumerator that
this method instantiates a Tree<int> object, fills it with some data, and then uses a foreach
statement to display its contents.

6. Build the solution, correcting any errors if necessary.

7. On the DEBUG menu, click Start Without Debugging.

The program runs and displays the values in the same sequence as before:

–12, –8, 0, 5, 5, 10, 10, 11, 14, 15

8. Press Enter and return to Visual Studio 2012.

Summary

In this chapter, you saw how to implement the IEnumerable<T> and IEnumerator<T> interfaces with a
collection class to enable applications to iterate through the items in the collection. You also saw how
to implement an enumerator by using an iterator.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 20.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 19 Enumerating Collections 455

Chapter 19 Quick Reference

To Do this

Make a collection class enumerable, allow-
ing it to support the foreach construct

Implement the IEnumerable interface, and provide a GetEnumerator
method that returns an IEnumerator object. For example:

public class Tree<TItem> : IEnumerable<TItem>
{
 ...
 IEnumerator<TItem> GetEnumerator()
 {
 ...
 }
}

Implement an enumerator without using
an iterator

Define an enumerator class that implements the IEnumerator interface
and that provides the Current property and the MoveNext method (and
optionally the Reset method). For example:

public class TreeEnumerator<TItem> : IEnumerator<TItem>
{
 ...
 TItem Current
 {
 get
 {
 ...
 }
 }

 bool MoveNext()
 {
 ...
 }
}

Define an enumerator by using an iterator Implement the enumerator to indicate which items should be returned
(using the yield statement) and in which order. For example:

IEnumerator<TItem> GetEnumerator()
{
 for (...)
 {
 yield return ...
 }
}

 457

C H A P T E R 2 0

Decoupling application Logic
and handling events

After completing this chapter, you will be able to

■■ Declare a delegate type to create an abstraction of a method signature.

■■ Create an instance of a delegate to refer to a specific method.

■■ Call a method through a delegate.

■■ Define a lambda expression to specify the code to be executed by a delegate.

■■ Declare an event field.

■■ Handle an event by using a delegate.

■■ Raise an event.

Many of the examples and exercises in this book have placed great emphasis on the careful definition
of classes and structures to enforce encapsulation. In this way, the implementation of the methods in
these types can change without unduly affecting the applications that use them. However, sometimes
it is not always possible or desirable to encapsulate the entire functionality of a type. For example, the
logic for a method in a class may depend upon which component or application invoked this method;
it may need to perform some application or component-specific processing as part of its operation.
The problem is that when you build such a class and implement its methods, you may not know which
applications and components are going to use it, and you need to avoid introducing dependencies
into your code that might restrict the use of your class. Delegates provide the ideal solution, enabling
you to fully decouple the application logic in your methods from the applications that invoke them.

Events in C# support a related scenario. Much of the code you have written in the various exercises
in this book assumed that statements execute sequentially. Although this is the most common case,
you will find that it is sometimes necessary to interrupt the current flow of execution and perform
another, more important task. When the task has completed, the program can continue where it left
off. The classic examples of this style of program are the Windows forms that you have been using
in the exercises involving graphical applications through this book. (Remember that in this book, the
term form refers to a page in a Window Store app or a Microsoft Windows Presentation Foundation
[WPF] window.) A form displays controls such as buttons and text boxes. When you click a but-
ton or type text in a text box, you expect the form to respond immediately. The application has to

458 part III Defining Extensible Types with C#

temporarily stop what it is doing and handle your input. This style of operation applies not only to
graphical user interfaces (GUIs), but also to any application where an operation must be performed
urgently—shutting down the reactor in a nuclear power plant if it is getting too hot, for example.
To handle this kind of processing, the runtime has to provide two things: a means of indicating that
something urgent has happened and a way of specifying the code that should be run when the
urgent event happens. Events, in conjunction with delegates, provide the infrastructure that enables
you to implement systems that follow this approach.

You’ll start by looking at delegates.

Understanding Delegates

A delegate is a reference to a method. It is a very simple concept with extraordinarily powerful impli-
cations. Let me explain.

Note Delegates are so-named because they "delegate" processing to the referenced
method when they are invoked.

Typically, when you write a statement that invokes a method, you specify the name of the method
(and possibly specify the object or structure to which the method belongs). It is clear from your code
exactly which method you are running and when you are running it. Look at the following simple
example that calls the performCalculation method of a Processor object (what this method does or
how the Processor class is defined is immaterial for this discussion):

Processor p = new Processor();
p.performCalculation();

A delegate is an object refers to a method. You can assign a reference to a method to a delegate
in much the same way that you can assign an int value to an int variable. The next example creates
a delegate named performCalculationDelegate that references the performCalculation method of
the Processor object. I have deliberately omitted some elements of the statement that declares the
delegate, as it is important to understand the concept rather than worry about the syntax (you will
see the full syntax shortly):

Processor p = new Processor();
delegate ... performCalculationDelegate ...;
performCalculationDelegate = p.performCalculation;

It is important to understand that the statement that assigns the method reference to the delegate
does not run the method at this point; there are no parentheses after the method name, and you do
not specify any parameters (if the method takes them). This is just an assignment statement.

 CHAPTER 20 Decoupling Application Logic and Handling Events 459

Having stored a reference to the performCalculation method of the Processor object in the
delegate, the application can subsequently invoke the method through the delegate, like this:

performCalculationDelegate();

This looks like an ordinary method call; if you did not know otherwise, it looks like you might actu-
ally be running a method named performCalculationDelegate. However, the common language run-
time (CLR) knows that this is a delegate, so it retrieves the method that the delegate references and
runs that instead. Later on, you can change the method that a delegate refers to, so a statement that
calls a delegate might actually run a different method each time it executes. Additionally, a delegate
can reference more than one method at a time (think of it as a collection of method references), and
when you invoke a delegate all of the methods that it refers to will run.

Note If you are familiar with C++, a delegate is similar to a function pointer. However, un-
like function pointers, delegates are completely type safe. You can make a delegate refer
to only a method that matches the signature of the delegate, and you cannot invoke a
delegate that does not refer to a valid method.

examples of Delegates in the .Net Framework Class Library
The .NET Framework class library makes extensive use of delegates for many of its types, and you
met two examples in Chapter 18, “Using Collections”: the Find method and the Exists method of the
List<T> class. If you recall, these two methods search through a List<T> collection, either returning
a matching item or testing for the existence of a matching item. The designers of the List<T> class
had absolutely no idea of what should actually constitute a match in your application code when
they were implementing this class, so consequently they let you define it instead by providing your
own code in the form of a predicate. A predicate is really just a delegate that happens to return a
Boolean value.

The following code should help to remind you of how you use the Find method:

struct Person
{
 public int ID { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
}
...
List<Person> personnel = new List<Person>()
{
 new Person() { ID = 1, Name = "John", Age = 47 },
 new Person() { ID = 2, Name = "Sid", Age = 28 },
 new Person() { ID = 3, Name = "Fred", Age = 34 },
 new Person() { ID = 4, Name = "Paul", Age = 22 },
};
...
// Find the member of the list that has an ID of 3
Person match = personnel.Find(p => p.ID == 3);

460 part III Defining Extensible Types with C#

Other examples of methods exposed by the List<T> class that use delegates to perform their
operations include Average, Max, Min, Count, and Sum. These methods take a Func delegate as the
parameter. A Func delegate refers to a method that returns a value (a function). In the following
examples, the Average method is used to calculate the average age of items in the personnel collec-
tion (the Func<T> delegate simply returns the value in the Age field of each item in the collection), the
Max method is used to determine the item with the highest ID, and the Count method calculates how
many items have an Age between 30 and 39 inclusive.

double averageAge = personnel.Average(p => p.Age);
Console.WriteLine("Average age is {0}", averageAge);
...
int id = personnel.Max(p => p.ID);
Console.WriteLine("Person with highest ID is {0}", id);
...
int thirties = personnel.Count(p => p.Age >= 30 && p.Age <= 39);
Console.WriteLine("Number of personnel in their thirties is {0}", thirties);

This code generates the following output:

Average age is 32.75
Person with highest ID is 4
Number of personnel in their thirties is 1

You will meet many examples of these and other delegate types used by the .NET Framework class
library throughout the remainder of this book. You can also define your own delegates. The best way
to fully understand how and when you might want to do this is to see them in action, so next you’ll
work through an example.

the Func<t, …> and action<t, …> Delegate types
The parameter taken by the Average, Max, Count, and other methods of the List<T> class
are actually generic Func<T, TResult> delegates; the type parameters refer to the type of the
parameter passed to the delegate and the type of the return value. For the Average, Max, and
Count methods of the List<Person> class shown in the text, the first type parameter T is the
type of data in the list (the Person struct), while the TResult type parameter is determined by
the context in which the delegate is used. In the following example, the type of TResult is int
because the value returned by the Count method should be an integer:

int thirties = personnel.Count(p => p.Age >= 30 && p.Age <= 39);

So, in this example, the type of the delegate expected by the Count method is
Func<Person, int>.

This point may seem somewhat academic as the compiler automatically generates the
delegate based on the type of the List<T>, but it is worth familiarizing yourself with this idiom
as it occurs time and again throughout the .NET Framework class library. In fact, the System
namespace defines a whole family of Func delegate types, from Func<TResult> for functions

 CHAPTER 20 Decoupling Application Logic and Handling Events 461

that return a result without taking any parameters through to Func<T1, T2, T3, T4, …, T16,
TResult> for functions that take 16 parameters. If you find yourself in a situation where you are
creating your own delegate type that matches this pattern, you should consider using an ap-
propriate Func delegate type instead. You will meet the Func delegate types again in Chapter
21, “Querying In-Memory Data by Using Query Expressions.”

Alongside Func, the System namespace also defines a series of Action delegate types. An
Action delegate is used to reference a method that performs an action rather than return-
ing a value (a void method). Again, a family of Action delegate types is available ranging from
Action<T> (specifying a delegate that takes a single parameter) through to Action<T1, T2, T3,
T4, …, T16>.

the automated Factory Scenario
Suppose you are writing the control systems for an automated factory. The factory contains a large
number of different machines, each performing distinct tasks in the production of the articles
manufactured by the factory—shaping and folding metal sheets, welding sheets together, painting
sheets, and so on. Each machine was built and installed by a specialist vendor. The machines are all
computer-controlled, and each vendor has provided a set of functions that you can use to control
its machine. Your task is to integrate the different systems used by the machines into a single control
program. One aspect on which you have decided to concentrate is to provide a means of shutting
down all the machines—quickly if needed!

Each machine has its own unique computer-controlled process (and functions) for shutting down
safely, as summarized here:

StopFolding(); // Folding and shaping machine
FinishWelding(); // Welding machine
PaintOff(); // Painting machine

Implementing the Factory Control System
Without Using Delegates
A simple approach to implementing the shutdown functionality in the control program is follows:

class Controller
{
 // Fields representing the different machines
 private FoldingMachine folder;
 private WeldingMachine welder;
 private PaintingMachine painter;
 ...

462 part III Defining Extensible Types with C#

 public void ShutDown()
 {
 folder.StopFolding();
 welder.FinishWelding();
 painter.PaintOff();
 }
 ...
}

Although this approach works, it is not very extensible or flexible. If the factory buys a new
machine, you must modify this code; the Controller class and code for managing the machines is
tightly coupled.

Implementing the Factory by Using a Delegate
Although the names of each method are different, they all have the same “shape”: they take no
parameters, and they do not return a value. (You’ll consider what happens if this isn’t the case later,
so bear with me.) The general format of each method, therefore, is this:

void methodName();

This is where a delegate can be useful. A delegate that matches this shape can be used to refer to any of
the machinery shutdown methods. You declare a delegate like this:

delegate void stopMachineryDelegate();

Note the following points:

■■ You use the delegate keyword.

■■ You specify the return type (void in this example), a name for the delegate
(stopMachineryDelegate), and any parameters (there are none in this case).

After you have declared the delegate, you can create an instance and make it refer to a matching
method by using the += compound assignment operator. You can do this in the constructor of the
controller class like this:

class Controller
{
 delegate void stopMachineryDelegate(); // the delegate type
 private stopMachineryDelegate stopMachinery; // an instance of the delegate
 ...
 public Controller()
 {
 this.stopMachinery += folder.StopFolding;
 }
 ...
}

This syntax takes a bit of getting used to. You add the method to the delegate; remember that
you are not actually calling the method at this point. The + operator is overloaded to have this new

 CHAPTER 20 Decoupling Application Logic and Handling Events 463

meaning when used with delegates. (You will learn more about operator overloading in Chapter 22,
“Operator Overloading.”) Notice that you simply specify the method name and do not include any
parentheses or parameters.

It is safe to use the += operator on an uninitialized delegate. It will be initialized automatically.
Alternatively, you can use the new keyword to initialize a delegate explicitly with a single specific
method, like this:

this.stopMachinery = new stopMachineryDelegate(folder.StopFolding);

You can call the method by invoking the delegate, like this:

public void ShutDown()
{
 this.stopMachinery();
 ...
}

You use the same syntax to invoke a delegate as you use to make a method call. If the method
that the delegate refers to takes any parameters, you should specify them at this time, between the
parentheses.

Note If you attempt to invoke a delegate that is uninitialized and does not refer to any
methods, you will get a NullReferenceException exception.

An important advantage of using a delegate is that it can refer to more than one method at the
same time. You simply use the += operator to add methods to the delegate, like this:

public Controller()
{
 this.stopMachinery += folder.StopFolding;
 this.stopMachinery += welder.FinishWelding;
 this.stopMachinery += painter.PaintOff;
}

Invoking this.stopMachinery() in the Shutdown method of the Controller class automatically calls
each of the methods in turn. The Shutdown method does not need to know how many machines
there are or what the method names are.

You can remove a method from a delegate by using the –= compound assignment operator:

this.stopMachinery -= folder.StopFolding;

The current scheme adds the machine methods to the delegate in the Controller construc-
tor. To make the Controller class totally independent of the various machines, you need to make
stopMachineryDelegate type public and supply a means of enabling classes outside Controller to add
methods to the delegate. You have several options:

464 part III Defining Extensible Types with C#

■■ Make the delegate variable, stopMachinery, public:

public stopMachineryDelegate stopMachinery;

■■ Keep the stopMachinery delegate variable private, but provide a read/write property to pro-
vide access to it:

public delegate void stopMachineryDelegate();
...
public stopMachineryDelegate StopMachinery
{
 get
 {
 return this.stopMachinery;
 }

 set
 {
 this.stopMachinery = value;
 }
}

■■ Provide complete encapsulation by implementing separate Add and Remove methods. The
Add method takes a method as a parameter and adds it to the delegate, while the Remove
method removes the specified method from the delegate (notice that you specify a method
as a parameter by using a delegate type):

public void Add(stopMachineryDelegate stopMethod)
{
 this.stopMachinery += stopMethod;
}

public void Remove(stopMachineryDelegate stopMethod)
{
 this.stopMachinery -= stopMethod;
}

An object-oriented purist would probably opt for the Add/Remove approach. However, the other
approaches are viable alternatives that are frequently used, which is why they are shown here.

Whichever technique you choose, you should remove the code that adds the machine methods to
the delegate from the Controller constructor. You can then instantiate a Controller and objects repre-
senting the other machines like this (this example uses the Add/Remove approach):

Controller control = new Controller();
FoldingMachine folder = new FoldingMachine();
WeldingMachine welder = new WeldingMachine();
PaintingMachine painter = new PaintingMachine();
...

 CHAPTER 20 Decoupling Application Logic and Handling Events 465

control.Add(folder.StopFolding);
control.Add(welder.FinishWelding);
control.Add(painter.PaintOff);
...
control.ShutDown();
...

Declaring and Using Delegates
In the following exercises, you will complete an application that forms part of a system for a company
called Wide World Importers. Wide World Importers imports and sells building materials and tools, and the
application that you will be working on enables a customer to browse the items that Wide World Importers
currently has in stock and place orders for these items. The application contains a form that displays the
goods currently available, together with a pane that lists the items that the customer has selected. When
the customer wants to place on order, the customer clicks the Checkout button on the form. The order is
then processed, and the pane is cleared.

When the customer places an order, currently several actions occur:

■■ Payment is requested from the customer.

■■ The items in the order are examined, and if any of them are age restricted (such as the power
tools), then details of the order are audited and tracked.

■■ A dispatch note is generated for shipping purposes. This dispatch note contains a summary of
the order.

The logic for the auditing and shipping processes is independent from checkout logic, although
the order in which these processes occur is immaterial. Furthermore, there is the possibility that either
of these elements might be amended in the future, and additional processing may be required by
the checkout operation as business circumstances or regulatory requirements change in the future.
Therefore, it is desirable to decouple the payment and checkout logic from the auditing and shipping
processes to make maintenance and upgrades easier. You will start by examining the application and
see how it currently fails to fulfill this objective. You will then modify the structure of the application
to remove the dependencies between the checkout logic and the auditing and shipping logic.

examine the Wide World Importers application

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the Delegates project located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 20\Windows X\Delegates folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

The project builds and runs. A form appears displaying the items available, together with
a panel showing the details of the order (it is empty initially). The form has a different

466 part III Defining Extensible Types with C#

appearance depending on whether you are using Windows 8 or Window 7. On Windows 8, it
is a Windows Store app that displays the items in a GridView control that scrolls horizontally
(this is the Windows Store app style of displaying data):

On Windows 7, it is a WPF application that displays the items in a ListView control that scrolls
vertically:

 CHAPTER 20 Decoupling Application Logic and Handling Events 467

Apart from the look and feel of the application, the remainder of the functionality is the same
in both environments.

4. Select one or more items and click Add to add them to the shopping basket. Make sure that
you select at least one age-restricted item.

As you add an item, it appears in the Order Details pane on the right side. Notice that if you add the
same item more than once, the quantity is incremented for each click (this version of the applica-
tion does not implement functionality to remove items from the basket).

5. In the Order Details pane, click Checkout.

A message appears indicating that the order has been placed. The order is given a unique ID,
and this ID is displayed together with the value of the order.

If you are using Windows 8, click Close to dismiss the message. If you are using Windows 7,
click OK.

6. Return to the Visual Studio 2012 environment and stop debugging.

7. Using Windows Explorer, move to your Documents folder. You should see two files named
audit-nnnnnn.xml (where nnnnnn is the ID of the order displayed earlier), and dispatch-
nnnnnn.txt. The first file was generated by the auditing component and the second file is the
dispatch note generated by the shipping component.

Note If there is no audit-nnnnnn.xml file, then you did not select any age-restricted
items when you placed the order. In this case, switch back to the application and
create a new order including one or more of these items.

8. Open the audit-nnnnnn.xml file by using Internet Explorer. This file contains a list of the age-
restricted items in the order together with the order number and date. It should look similar
to this:

Close Internet Explorer when you have finished examining this file.

468 part III Defining Extensible Types with C#

9. Open the dispatch-nnnnnn.txt file by using Notepad. This file contains a summary of the order,
listing the order ID and the value. It should look similar to this:

Close Notepad, return to Visual Studio 2012, and stop debugging.

10. In Visual Studio, notice that the solution consists of the following projects:

• Delegates This project contains the application itself. The MainWindow.xaml
file defines the user interface, and the application logic is contained within the
MainWindow.xaml.cs file.

• AuditService This project contains the component that implements the auditing pro-
cess. It is packaged as a class library and contains a single class called Auditor. This class
exposes a single public method called AuditOrder that examines an order and generates
the audit-nnnnnn.xml file if the order contains any age-restricted items.

• DeliveryService This project contains the component that performs the shipping logic,
packaged as a class library. The shipping functionality is contained in the Shipper class, and
it provides a public method named ShipOrder that handles the shipping process and also
generates the dispatch note.

Note You are welcome to examine the code in the Auditor and Shipper classes,
but it is not necessary to fully understand the inner workings of these compo-
nents in this application.

• DataTypes This project contains the data types used by the other projects. The Product
class defines the details of the products displayed by the application, and the data for the
products is held in the ProductDataSource class. (The application currently uses a small
hard-coded set of products. In a production system, this information would be retrieved
from a database or web service.) The Order and OrderItem classes implement the structure
of an order; each order contains one or more order items.

11. In the Delegates project, display the MainWindow.xaml.cs file in the Code and Text Editor
window and examine the private fields and MainWindow constructor in this file. The important
elements look like this:

 CHAPTER 20 Decoupling Application Logic and Handling Events 469

...
private Auditor auditor = null;
private Shipper shipper = null;

public MainWindow()
{
 ...
 this.auditor = new Auditor();
 this.shipper = new Shipper();
}

The auditor and shipper fields contain references to instances of the Auditor and Shipper
classes, and the constructor instantiates these objects.

12. Locate the CheckoutButtonClicked method. This method runs when the user clicks Checkout to
place an order. The first few lines look like this:

private void CheckoutButtonClicked(object sender, RoutedEventArgs e)
{
 try
 {
 // Perform the checkout processing
 if (this.requestPayment())
 {
 this.auditor.AuditOrder(this.order);
 this.shipper.ShipOrder(this.order);
 }
 ...
 }
 ...
}

This method implements the checkout processing. It requests payment from the customer and
then invokes the AuditOrder method of the auditor object followed by the ShipOrder method
of the shipper object. Any additional business logic required in the future may be added here.
The remainder of the code in this method after the if statement is concerned with managing
the user interface: displaying the message box to the user and clearing out the Order Details
pane on the right side of the form.

Note For simplicity, the requestPayment method in this application currently just
returns true to indicate that payment has been received. In the real world, this
method would perform the complete payment processing.

Although the application operates as advertised, the Auditor and Shipper components are tightly
integrated into the checkout processing. If these components change, then the application will need
to be updated. Similarly, if you need to incorporate additional logic into the checkout process, possi-
bly performed by using further components, then you will need to amend this part of the application.

470 part III Defining Extensible Types with C#

In the next exercise, you will see how you can decouple the business processing for the check-
out operation from the application. The checkout processing will still need to invoke the Auditor
and Shipper components, but it must be extensible enough to allow additional components to be
easily incorporated. You will achieve this by creating a new component called CheckoutController.
The CheckoutController component will implement the business logic for the checkout process and
expose a delegate that enables an application to specify which components and methods should be
included within this process. The CheckoutController component will invoke these methods by using
the delegate.

Create the CheckoutController component

1. In Solution Explorer, right-click the Delegates solution, point to Add, and then click New
Project.

2. In the Add New Project dialog box, if you are using Windows 8, in the left pane, click the
Windows Store node. If you are using Windows 7, in the left pane click the Windows node. In
both cases (Windows 8 and Windows 7), in the middle pane select the Class Library template.
Type CheckoutService in the Name text box, and then click OK.

3. In Solution Explorer, expand the CheckoutService project, right-click the file Class1.cs, and
then click Rename. Change the name of the file to CheckoutController.cs and then press
Enter. Allow Visual Studio to rename all references to Class1 as CheckoutController when
prompted.

4. Right-click the References folder in the CheckoutService project and then click Add Reference.

5. In the Reference Manager – CheckoutService dialog box, in the left pane click Solution. In the
middle pane select the DataTypes project, and then click OK.

The CheckoutController class will use the Order class defined in the DataTypes project.

Note If you are using Windows 8 and you receive an error at this point, you
probably did not create the CheckoutService project by using the Class Library
template for Windows Store apps earlier in this exercise. In this case, right-click
the CheckoutService project in Solution Explorer and then click Remove. Using
Windows Explorer, move to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 20\Windows 8\Delegates folder in your Documents folder and delete the
CheckoutService folder, and then return to step 1 of this exercise.

6. In the Code and Text Editor window displaying the CheckoutController.cs file, add the follow-
ing using directive to the list at the top of the file:

using DataTypes;

 CHAPTER 20 Decoupling Application Logic and Handling Events 471

7. Add a public delegate type called CheckoutDelegate to the CheckoutController class, as shown
below in bold:

public class CheckoutController
{
 public delegate void CheckoutDelegate(Order order);
}

This delegate type can be used to reference methods that take an Order parameter and that
do not return a result. This just happens to match the shape of the AuditOrder and ShipOrder
methods of the Auditor and Shipper classes.

8. Add a public delegate called CheckoutProcessing based on this delegate type, like this:

public class CheckoutController
{
 public delegate void CheckoutDelegate(Order order);
 public CheckoutDelegate CheckoutProcessing = null;
}

9. Display the MainWindow.xaml.cs file for the Delegates project in the Code and Text Edi-
tor window and locate the requestPayment method (it is at the end of the file). Cut this
method from the MainWindow class. Return to the CheckoutController.cs file and paste the
requestPayment method in the CheckoutController class, as shown below in bold:

public class CheckoutController
{
 public delegate void CheckoutDelegate(Order order);
 public CheckoutDelegate CheckoutProcessing = null;

 private bool requestPayment()
 {
 // Payment processing goes here

 // Payment logic is not implemented in this example
 // - simply return true to indicate payment has been received
 return true;
 }
}

10. Add the StartCheckoutProcessing method shown below in bold to the CheckoutController
class.

public class CheckoutController
{
 public delegate void CheckoutDelegate(Order order);
 public CheckoutDelegate CheckoutProcessing = null;

 private bool requestPayment()
 {
 ...
 }

472 part III Defining Extensible Types with C#

 public void StartCheckoutProcessing(Order order)
 {
 // Perform the checkout processing
 if (this.requestPayment())
 {
 if (this.CheckoutProcessing != null)
 {
 this.CheckoutProcessing(order);
 }
 }
 }
}

This method provides the checkout functionality previously implemented by the
CheckoutButtonClicked method of the MainWindow class. It requests payment and then
examines the CheckoutProcessing delegate; if this delegate is not null (it refers to one or
more methods), it invokes the delegate. Any methods referenced by this delegate will run
at this point.

11. In Solution Explorer, in the Delegates project, right-click the References folder and then click
Add Reference. In the Reference Manager – Delegates dialog box, in the left pane click Solu-
tion. In the middle pane select the CheckoutService project, and then click OK.

12. Return to the MainWindow.xaml.cs file for the Delegates project and add the following using
directive to the list at the top of the file:

using CheckoutService;

13. Add private variable named checkoutController of type CheckoutController to the MainWindow
class, as shown below in bold:

public ... class MainWindow : ...
{
 ...
 private Auditor auditor = null;
 private Shipper shipper = null;
 private CheckoutController checkoutController = null;
 ...
}

14. Locate the MainWindow constructor. After the statements that create the Auditor and Shipper
components, instantiate the CheckoutController component, as follows in bold:

public MainWindow()
{
 ...
 this.auditor = new Auditor();
 this.shipper = new Shipper();
 this.checkoutController = new CheckoutController();
}

 CHAPTER 20 Decoupling Application Logic and Handling Events 473

15. Add the following statements shown in bold to the constructor after the statement you just
entered:

public MainWindow()
{
 ...
 this.checkoutController = new CheckoutController();
 this.checkoutController.CheckoutProcessing += this.auditor.AuditOrder;
 this.checkoutController.CheckoutProcessing += this.shipper.ShipOrder;
}

This code adds references to the AuditOrder and ShipOrder methods of the Auditor and
Shipper objects to the CheckoutProcessing delegate of the CheckoutController object.

16. Find the CheckoutButtonClicked method. In the try block, replace the existing code that
performs the checkout processing (the if statement block) with the statement shown below in
bold:

private void CheckoutButtonClicked(object sender, RoutedEventArgs e)
{
 try
 {
 // Perform the checkout processing
 this.checkoutController.StartCheckoutProcessing(this.order);

 // Display a summary of the order
 ...
 }
 ...
}

You have now decoupled the checkout logic from the components that this checkout
processing uses. The business logic in the MainWindow class specifies which components that the
CheckoutController should use.

test the application

1. On the DEBUG menu, click Start Debugging to build and run the application.

2. When the Wide World Importers form appears, select some items (include at least one age-
restricted item), and then click Checkout.

3. When the Order Placed message appears, make a note of the order number and then click Close or
OK.

4. Switch to Windows Explorer and move to your Documents folder. Verify that a new audit-
nnnnnn.xml file and dispatch-nnnnnn.txt file have been created, where nnnnnn is the num-
ber that identifies the new order. Examine these files and verify that they contain the details
of the order.

5. Return to Visual Studio 2012 and stop debugging.

474 part III Defining Extensible Types with C#

Lambda Expressions and Delegates

All the examples of adding a method to a delegate that you have seen so far use the method’s name.
For example, returning to the automated factory scenario described earlier, you add the StopFolding
method of the folder object to the stopMachinery delegate like this:

this.stopMachinery += folder.StopFolding;

This approach is very useful if there is a convenient method that matches the signature of the
delegate, but what if this is not the case? Suppose that the StopFolding method actually had the fol-
lowing signature:

void StopFolding(int shutDownTime); // Shut down in the specified number of seconds

This signature is now different from that of the FinishWelding and PaintOff methods, and therefore
you cannot use the same delegate to handle all three methods. So, what do you do?

Creating a Method adapter
One way around this problem is to create another method that calls StopFolding but that takes no
parameters itself, like this:

void FinishFolding()
{
 folder.StopFolding(0); // Shut down immediately
}

You can then add the FinishFolding method to the stopMachinery delegate in place of the
StopFolding method, using the same syntax as before:

this.stopMachinery += folder.FinishFolding;

When the stopMachinery delegate is invoked, it calls FinishFolding, which in turn calls the
StopFolding method, passing in the parameter of 0.

Note The FinishFolding method is a classic example of an adapter: a method that converts
(or adapts) a method to give it a different signature. This pattern is very common and is
one of the set of patterns documented in the book Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley Professional, 1994).

In many cases, adapter methods such as this are small, and it is easy to lose them in a sea of
methods, especially in a large class. Furthermore, apart from using the adapter method to adapt the
StopFolding method for use by the delegate, it is unlikely to be called elsewhere. C# provides lambda
expressions for situations such as this. You first met lambda expressions in Chapter 18, and you have

 CHAPTER 20 Decoupling Application Logic and Handling Events 475

seen more examples earlier in this chapter. In the factory scenario, you can use the following lambda
expression:

this.stopMachinery += (() => folder.StopFolding(0));

When you invoke the stopMachinery delegate, it will run the code defined by the lambda expres-
sion, which will, in turn, call the StopFolding method with the appropriate parameter.

the Forms of Lambda expressions
Lambda expressions can take a number of subtly different forms. Lambda expressions were originally
part of a mathematical notation called the lambda calculus, which provides a notation for describing
functions. (You can think of a function as a method that returns a value.) Although the C# language
has extended the syntax and semantics of the lambda calculus in its implementation of lambda
expressions, many of the original principles still apply. Here are some examples showing the different
forms of lambda expressions available in C#:

x => x * x // A simple expression that returns the square of its parameter
 // The type of parameter x is inferred from the context.

x => { return x * x ; } // Semantically the same as the preceding
 // expression, but using a C# statement block as
 // a body rather than a simple expression

(int x) => x / 2 // A simple expression that returns the value of the
 // parameter divided by 2
 // The type of parameter x is stated explicitly.

() => folder.StopFolding(0) // Calling a method
 // The expression takes no parameters.
 // The expression might or might not
 // return a value.

(x, y) => { x++; return x / y; } // Multiple parameters; the compiler
 // infers the parameter types.
 // The parameter x is passed by value, so
 // the effect of the ++ operation is
 // local to the expression.

(ref int x, int y) => { x++; return x / y; } // Multiple parameters
 // with explicit types
 // Parameter x is passed by
 // reference, so the effect of
 // the ++ operation is permanent.

To summarize, here are some features of lambda expressions that you should be aware of:

■■ If a lambda expression takes parameters, you specify them in the parentheses to the left of the
=> operator. You can omit the types of parameters, and the C# compiler will infer their types
from the context of the lambda expression. You can pass parameters by reference (by using

476 part III Defining Extensible Types with C#

the ref keyword) if you want the lambda expression to be able to change its values other than
locally, but this is not recommended.

■■ Lambda expressions can return values, but the return type must match that of the delegate
they are being added to.

■■ The body of a lambda expression can be a simple expression or a block of C# code made up
of multiple statements, method calls, variable definitions, and other code items.

■■ Variables defined in a lambda expression method go out of scope when the method finishes.

■■ A lambda expression can access and modify all variables outside the lambda expression that
are in scope when the lambda expression is defined. Be very careful with this feature!

Lambda expressions and anonymous Methods
Lambda expressions were added to the C# language in version 3.0. C# version 2.0 introduced
anonymous methods that can perform a similar task but are not as flexible. Anonymous
methods were added primarily so that you can define delegates without having to create a
named method—you simply provide the definition of the method body in place of the method
name, like this:

this.stopMachinery += delegate { folder.StopFolding(0); };

You can also pass an anonymous method as a parameter in place of a delegate, like this:

control.Add(delegate { folder.StopFolding(0); });

Notice that whenever you introduce an anonymous method, you must prefix it with the
delegate keyword. Also, any parameters needed are specified in parentheses following the
delegate keyword. For example:

control.Add(delegate(int param1, string param2)
 { /* code that uses param1 and param2 */ ... });

Lambda expressions provide a more succinct and natural syntax than anonymous meth-
ods, and they pervade many of the more advanced aspects of C#, as you will see throughout
the subsequent chapters in this book. Generally speaking, you should use lambda expressions
rather than anonymous methods in your code.

Enabling Notifications with Events

You have now seen how to declare a delegate type, call a delegate, and create delegate instances.
However, this is only half of the story. Although by using delegates you can invoke any number of
methods indirectly, you still have to invoke the delegate explicitly. In many cases, it would be use-
ful to have the delegate run automatically when something significant happens. For example, in the

 CHAPTER 20 Decoupling Application Logic and Handling Events 477

automated factory scenario, it could be vital to be able to invoke the stopMachinery delegate and halt
the equipment if the system detects that a machine is overheating.

The .NET Framework provides events, which you can use to define and trap significant actions
and arrange for a delegate to be called to handle the situation. Many classes in the .NET Framework
expose events. Most of the controls that you can place on a form in a Windows Store app or WPF
application, and the Windows class itself, use events so that you can run code when, for example, the
user clicks a button or types something in a field. You can also declare your own events.

Declaring an event
You declare an event in a class intended to act as an event source. An event source is usually a class
that monitors its environment and raises an event when something significant happens. In the auto-
mated factory, an event source could be a class that monitors the temperature of each machine. The
temperature-monitoring class would raise a “machine overheating” event if it detects that a machine
has exceeded its thermal radiation boundary (that is, it has become too hot). An event maintains a list
of methods to call when it is raised. These methods are sometimes referred to as subscribers. These
methods should be prepared to handle the “machine overheating” event and take the necessary cor-
rective action: shut down the machines.

You declare an event similarly to how you declare a field. However, because events are intended to
be used with delegates, the type of an event must be a delegate, and you must prefix the declaration
with the event keyword. Use the following syntax to declare an event:

event delegateTypeName eventName

As an example, here’s the StopMachineryDelegate delegate from the automated factory. It has
been relocated to a new class called TemperatureMonitor, which provides an interface to the various
electronic probes monitoring the temperature of the equipment (this is a more logical place for the
event than the Controller class):

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 ...
}

You can define the MachineOverheating event, which will invoke the stopMachineryDelegate,
like this:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
}

478 part III Defining Extensible Types with C#

The logic (not shown) in the TemperatureMonitor class raises the MachineOverheating event as
necessary. You will see how to raise an event in the upcoming “Raising an Event” section. Also, you
add methods to an event (a process known as subscribing to the event) rather than adding them to
the delegate that the event is based on. You will look at this aspect of events next.

Subscribing to an event
Like delegates, events come ready-made with a += operator. You subscribe to an event by using this
+= operator. In the automated factory, the software controlling each machine can arrange for the
shutdown methods to be called when the MachineOverheating event is raised, like this:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
}
...
TemperatureMonitor tempMonitor = new TemperatureMonitor();
...
tempMonitor.MachineOverheating += (() => { folder.StopFolding(0); });
tempMonitor.MachineOverheating += welder.FinishWelding;
tempMonitor.MachineOverheating += painter.PaintOff;

Notice that the syntax is the same as for adding a method to a delegate. You can even subscribe
by using a lambda expression. When the tempMonitor.MachineOverheating event runs, it will call all
the subscribing methods and shut down the machines.

Unsubscribing from an event
Knowing that you use the += operator to attach a delegate to an event, you can probably guess that
you use the –= operator to detach a delegate from an event. Calling the –= operator removes the
method from the event’s internal delegate collection. This action is often referred to as unsubscribing
from the event.

raising an event
An event can be raised, just like a delegate, by calling it like a method. When you raise an event, all
the attached delegates are called in sequence. For example, here’s the TemperatureMonitor class with
a private Notify method that raises the MachineOverheating event:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...

 CHAPTER 20 Decoupling Application Logic and Handling Events 479

 private void Notify()
 {
 if (this.MachineOverheating != null)
 {
 this.MachineOverheating();
 }
 }
 ...
}

This is a common idiom. The null check is necessary because an event field is implicitly null and
only becomes non-null when a method subscribes to it by using the += operator. If you try to raise a
null event, you will get a NullReferenceException exception. If the delegate defining the event expects
any parameters, the appropriate arguments must be provided when you raise the event. You will see
some examples of this later.

Important Events have a very useful built-in security feature. A public event (such as
MachineOverheating) can be raised only by methods in the class that defines it (the
TemperatureMonitor class). Any attempt to raise the method outside the class results in a
compiler error.

Understanding User Interface Events

As mentioned earlier, the .NET Framework classes and controls used for building GUIs employ events
extensively. For example, the Button class derives from the ButtonBase class, inheriting a public event
called Click of type RoutedEventHandler. The RoutedEventHandler delegate expects two parameters: a
reference to the object that caused the event to be raised and a RoutedEventArgs object that contains
additional information about the event:

public delegate void RoutedEventHandler(Object sender, RoutedEventArgs e);

The Button class looks like this:

public class ButtonBase: ...
{
 public event RoutedEventHandler Click;
 ...
}

public class Button: ButtonBase
{
 ...
}

The Button class automatically raises the Click event when you click the button on-screen. This
arrangement makes it easy to create a delegate for a chosen method and attach that delegate to the

480 part III Defining Extensible Types with C#

required event. The following example shows the code for a WPF form that contains a button called
okay and the code to connect the Click event of the okay button to the okayClick method (forms in
Windows Store apps operate in a similar manner):

public partial class Example : System.Windows.Window, System.Windows.Markup.
IComponentConnector
{
 internal System.Windows.Controls.Button okay;
 ...
 void System.Windows.Markup.IComponentConnector.Connect(...)
 {
 ...
 this.okay.Click += new System.Windows.RoutedEventHandler(this.okayClick);
 ...
 }
 ...
}

This code is usually hidden from you. When you use the Design View window in Visual Studio
2012 and set the Click property of the okay button to okayClick in the Extensible Application Markup
Language (XAML) description of the form, Visual Studio 2012 generates this code for you. All you
have to do is write your application logic in the event handling method, okayClick, in the part of the
code that you do have access to, which is the Example.xaml.cs file in this case:

public partial class Example : System.Windows.Window
{
 ...
 private void okayClick(object sender, RoutedEventArgs args)
 {
 // your code to handle the Click event
 }
}

The events that the various GUI controls generate always follow the same pattern. The events are
of a delegate type whose signature has a void return type and two arguments. The first argument is
always the sender (the source) of the event, and the second argument is always an EventArgs argu-
ment (or a class derived from EventArgs).

With the sender argument, you can reuse a single method for multiple events. The delegated
method can examine the sender argument and respond accordingly. For example, you can use the
same method to subscribe to the Click event for two buttons. (You add the same method to two dif-
ferent events.) When the event is raised, the code in the method can examine the sender argument to
ascertain which button was clicked.

Using events
In the previous exercise, you amended the Wide World Importers application to decouple the audit-
ing and shipping logic from the checkout process. The CheckoutController class that you built invokes
the auditing and shipping components by using a delegate and has no knowledge about these
components or the methods it is running; this is the responsibility of the application that creates the

 CHAPTER 20 Decoupling Application Logic and Handling Events 481

CheckoutController object and adds the appropriate references to the delegate. However, it might
be useful for a component to be able to alert the application when it has completed its processing
and enable the application to perform any necessary tidying up. This might sound a little strange at
first—surely when the application invokes the delegate in the CheckoutController object, the methods
referenced by this delegate run, and the application only continues with the next statement when
these methods have finished? This is not necessarily the case! You will see in Chapter 24, “Improving
Response Time by Performing Asynchronous Operations,” that methods can run asynchronously, and
when you invoke a method, it might not have completed before execution continues with the next
statement. This is especially true in Windows Store apps where long-running operations are per-
formed on background threads to enable the user interface to remain responsive. In the Wide World
Importers application, in the CheckoutButtonClicked method, the code that invokes the delegate is
followed by a statement that displays a dialog box with a message indicating that the order has been
placed. In Windows 8, the code looks like this:

private void CheckoutButtonClicked(object sender, RoutedEventArgs e)
{
 try
 {
 // Perform the checkout processing
 this.checkoutController.StartCheckoutProcessing(this.order);

 // Display a summary of the order
 MessageDialog dlg = new MessageDialog(...);
 dlg.ShowAsync();
 ...
 }
 ...
}

In Windows 7, the code is similar except that WPF uses a different API for displaying messages:

private void CheckoutButtonClicked(object sender, RoutedEventArgs e)
{
 try
 {
 // Perform the checkout processing
 this.checkoutController.StartCheckoutProcessing(this.order);

 // Display a summary of the order
 MessageBox.Show(...);
 ...
 }
 ...
}

In fact, there is no guarantee that the processing performed by the delegated methods has
completed by the time the dialog box appears, so the message could actually be misleading. This is
where an event is invaluable. The Auditor and Shipper components could both publish an event that
the application subscribes to. This event could be raised by the components only when they have
completed their processing. When the application receives this event, it can display the message, safe
in the knowledge that it is now accurate.

482 part III Defining Extensible Types with C#

In the following exercise, you will modify the Auditor and Shipper classes to raise an event that
occurs when they have completed their processing. The application will subscribe to the event for
each component and display an appropriate message when the event occurs.

add an event to the CheckoutController class

1. Return to Visual Studio 2012 and display the Delegates solution.

2. In the AuditService project, open the Auditor.cs file in the Code and Text Editor window.

3. Add a public delegate called AuditingCompleteDelegate to the Auditor class. This delegate
should specify a method that takes a string parameter called message and that returns a void.
The code in bold in the following example shows the definition of this delegate:

class Auditor
{
 public delegate void AuditingCompleteDelegate(string message);
 ...
}

4. Add a public event called AuditProcessingComplete to the Auditor class after
the AuditingCompleteDelegate delegate. This event should be based on the
AuditingCompleteDelegate delegate as shown in bold below:

class Auditor
{
 public delegate void AuditingCompleteDelegate(string message);
 public event AuditingCompleteDelegate AuditProcessingComplete;
 ...
}

5. Locate the AuditOrder method. This is the method that is run by using the delegate in the
CheckoutController object. It invokes another private method called doAuditing to actually
perform the audit operation. The method looks like this:

public void AuditOrder(Order order)
{
 this.doAuditing(order);
}

6. Scroll down to the doAuditing method. The code in this method is enclosed in a try/catch
block; it uses the XML APIs of the .NET Framework class library to generate an XML rep-
resentation of the order being audited and saves it to a file. (The exact details of how this
works are beyond the scope of this chapter, and they vary between the Windows Store
apps implementation for Windows 8 and the more traditional approach implemented by
Windows 7.)

After the catch block, add a finally block that raises the AuditProcessingComplete event, as
shown below in bold:

 CHAPTER 20 Decoupling Application Logic and Handling Events 483

private async void doAuditing(Order order)
{
 List<OrderItem> ageRestrictedItems = findAgeRestrictedItems(order);
 if (ageRestrictedItems.Count > 0)
 {
 try
 {
 ...
 }
 catch (Exception ex)
 {
 ...
 }
 finally
 {
 if (this.AuditProcessingComplete != null)
 {
 this.AuditProcessingComplete(String.Format(
 "Audit record written for Order {0}", order.OrderID));
 }
 }
 }

7. In the DeliveryService project, open the Shipper.cs file in the Code and Text Editor window.

8. Add a public delegate called ShippingCompleteDelegate to the Shipper class. This delegate
should specify a method that takes a string parameter called message and that returns a void.
The code in bold in the following example shows the definition of this delegate:

class Shipper
{
 public delegate void ShippingCompleteDelegate(string message);
 ...
}

9. Add a public event called ShipProcessingComplete to the Shipper class based on the
ShippingCompleteDelegate delegate as shown in bold below:

class Shipper
{
 public delegate void ShippingCompleteDelegate(string message);
 public event ShippingCompleteDelegate ShipProcessingComplete;
 ...
}

10. Find the doShipping method, which is the method that performs the shipping logic. In the
method, after the catch block, add a finally block that raises the ShipProcessingComplete
event, as shown below in bold:

private async void doShipping(Order order)
{
 try
 {
 ...
 }

484 part III Defining Extensible Types with C#

 catch (Exception ex)
 {
 ...
 }
 finally
 {
 if (this.ShipProcessingComplete != null)
 {
 this.ShipProcessingComplete(String.Format(
 "Dispatch note generated for Order {0}", order.OrderID));
 }
 }
}

11. In the Delegates project, display the layout for the MainWindow.xaml file in the Design View
window. In the XAML pane, scroll down to the first set of RowDefinition items. If you are using
Windows 8, the XAML code looks like this:

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">
 <Grid Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="10*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 ...

If you are using Windows 7, the XAML code looks like this:

<Grid Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="18*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 ...

12. If you are using Windows 8, change the Height property of the final RowDefinition item to 2*
as shown in bold below:

<Grid.RowDefinitions>
 ...
 <RowDefinition Height="10*"/>
 <RowDefinition Height="2*"/>
</Grid.RowDefinitions>

If you are using Windows 7, change the Height property of the final RowDefinition item to 3*:

 CHAPTER 20 Decoupling Application Logic and Handling Events 485

<Grid.RowDefinitions>
 ...
 <RowDefinition Height="18*"/>
 <RowDefinition Height="3*"/>
</Grid.RowDefinitions>

This change in the layout makes a bit of space at the bottom of the form. You will use this
space as an area for displaying the messages received from the Auditor and Shipper compo-
nents when they raise their events.

13. Scroll to the bottom of the XAML pane. If you are using Windows 8, add the following
ScrollViewer and TextBlock elements shown in bold before the penultimate </Grid> tag:

 ...
 </Grid>
 <ScrollViewer Grid.Row="4" VerticalScrollBarVisibility="Visible">
 <TextBlock x:Name="messageBar" FontSize="18" />
 </ScrollViewer>
 </Grid>
 </Grid>
</Page>

If you are using Windows 7, add the ScrollViewer and TextBlock elements shown below before
the final </Grid> tag (note the different font size):

 ...
 </Grid>
 <ScrollViewer Grid.Row="4" VerticalScrollBarVisibility="Visible">
 <TextBlock x:Name="messageBar" FontSize="14" />
 </ScrollViewer>
 </Grid>
</Window>

This markup adds a TextBlock control called messageBar to the area at the bottom of the
screen.

14. Display the MainWindow.xaml.cs file in the Code and Text Editor window. Find the
CheckoutButtonClicked method and remove the code that displays the summary of the order.
The method should look like this:

private void CheckoutButtonClicked(object sender, RoutedEventArgs e)
{
 try
 {
 // Perform the checkout processing
 this.checkoutController.StartCheckoutProcessing(this.order);

 // Clear out the order details so the user can start again with a new order
 this.order = new Order { Date = DateTime.Now, Items = new List<OrderItem>(),
 OrderID = Guid.NewGuid(), TotalValue = 0 };

486 part III Defining Extensible Types with C#

 this.orderDetails.DataContext = null;
 this.orderValue.Text = String.Format("{0:C}", order.TotalValue);
 this.listViewHeader.Visibility = Visibility.Collapsed;
 this.checkout.IsEnabled = false;
 }
 catch (Exception ex)
 {
 ...
 }
}

15. Add a private method called displayMessage to the MainWindow class. This method should
take a string parameter called message, and it should return a void. In the body of this
method, add a statement that appends the value in the message parameter to the Text
property of the messageBar TextBlock control, followed by a newline character, as shown
below in bold:

private void displayMessage(string message)
{
 this.messageBar.Text += message + "\n";
}

This code causes the message appear in the message area at the bottom of the form.

16. Find the constructor for the MainWindow class and add the code shown below in bold:

public MainWindow()
{
 ...
 this.auditor = new Auditor();
 this.shipper = new Shipper();
 this.checkoutController = new CheckoutController();
 this.checkoutController.CheckoutProcessing += this.auditor.AuditOrder;
 this.checkoutController.CheckoutProcessing += this.shipper.ShipOrder;

 this.auditor.AuditProcessingComplete += this.displayMessage;
 this.shipper.ShipProcessingComplete += this.displayMessage;
}

These statements subscribe to the events exposed by the Auditor and Shipper objects. When
the events are raised, the displayMessage method runs. Notice that the same method handles
both events.

17. On the DEBUG menu, click Start Debugging to build and run the application.

18. When the Wide World Importers form appears, select some items (include at least one age-
restricted item), and then click Checkout.

 CHAPTER 20 Decoupling Application Logic and Handling Events 487

19. Verify that the “Audit record written” message appears in the TextBlock at the bottom of the
form, followed by the "Dispatch note generated" message:

20. Place further orders and note the new messages that appear each time you click Checkout
(you may need to scroll down to see them when the message area fills up).

21. When you have finished, return to Visual Studio 2012 and stop debugging.

Summary

In this chapter, you learned how to use delegates to reference methods and invoke those methods.
You also saw how to define lambda expressions that can be run by using a delegate. Finally, you
learned how to define and use events to trigger execution of a method.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 21.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

488 part III Defining Extensible Types with C#

Chapter 20 Quick Reference

To Do this

Declare a delegate type Write the keyword delegate, followed by the return type, followed by the name of the
delegate type, followed by any parameter types. For example:

delegate void myDelegate();

Create an instance of a
delegate initialized with a
single specific method

Use the same syntax you use for a class or structure: write the keyword new, followed
by the name of the type (the name of the delegate), followed by the argument between
parentheses. The argument must be a method whose signature exactly matches the
signature of the delegate. For example:

delegate void myDelegate();
private void myMethod() { ... }
...
myDelegate del = new myDelegate(this.myMethod);

Invoke a delegate Use the same syntax as a method call. For example:

myDelegate del;
...
del();

Declare an event Write the keyword event, followed by the name of the type (the type must be a del-
egate type), followed by the name of the event. For example:

delegate void myDelegate();

class MyClass
{
 public event myDelegate MyEvent;
}

Subscribe to an event Create a delegate instance (of the same type as the event), and attach the delegate
instance to the event by using the += operator. For example:

class MyEventHandlingClass
{
 private MyClass myClass = new MyClass();
 ...
 public void Start()
 {
 myClass.MyEvent += new myDelegate
 (this.eventHandlingMethod);
 }

 private void eventHandlingMethod()
 {
 ...
 }
}

You can also get the compiler to generate the new delegate automatically simply by
specifying the subscribing method:

public void Start()
{
 myClass.MyEvent += this.eventHandlingMethod;
}

 CHAPTER 20 Decoupling Application Logic and Handling Events 489

To Do this

Unsubscribe from an event Create a delegate instance (of the same type as the event), and detach the delegate
instance from the event by using the –= operator. For example:

class MyEventHandlingClass
{
 private MyClass myClass = new MyClass();
 ...
 public void Stop()
 {
 myClass.MyEvent -= new myDelegate
 (this.eventHandlingMethod);
 }
 ...
}

Or:

public void Stop()
{
 myClass.MyEvent -= this.eventHandlingMethod;
}

Raise an event Use the same syntax as a method call. You must supply arguments to match the type of
the parameters expected by the delegate referenced by the event. Don’t forget to check
whether the event is null. For example:

class MyClass
{
 public event myDelegate MyEvent;
 ...
 private void RaiseEvent()
 {
 if (this.MyEvent != null)
 {
 this.MyEvent();
 }
 }
 ...
}

 491

C H A P T E R 2 1

Querying In-Memory Data by
Using Query expressions

After completing this chapter, you will be able to

■■ Define Language-Integrated Query (LINQ) queries to examine the contents of enumerable
collections.

■■ Use LINQ extension methods and query operators.

■■ Explain how LINQ defers evaluation of a query and how you can force immediate execution
and cache the results of a LINQ query.

You have now met most of the features of the C# language. However, so far I have glossed over one
important aspect of the language that is likely to be used by many applications: the support that C#
provides for querying data. You have seen that you can define structures and classes for modeling
data and that you can use collections and arrays for temporarily storing data in memory. However,
how do you perform common tasks such as searching for items in a collection that match a spe-
cific set of criteria? For example, if you have a collection of Customer objects, how do you find all
customers that are located in London, or how can you find out which town has the most customers
that have procured your services? You can write your own code to iterate through a collection and
examine the fields in each object, but these types of tasks occur so often that the designers of C#
decided to include features in the language to minimize the amount of code you need to write. In
this chapter, you will learn how to use these advanced C# language features to query and manipu-
late data.

What Is Language-Integrated Query?

All but the most trivial of applications need to process data. Historically, most applications provided their
own logic for performing these operations. However, this strategy can lead to the code in an application
becoming very tightly coupled with the structure of the data that it processes. If the data structures change,
you might need to make a significant number of changes to the code that handles the data. The designers
of the Microsoft .NET Framework thought long and hard about these issues and decided to make the life of
an application developer easier by providing features that abstract the mechanism that an application uses
to query data from application code itself. These features are called Language-Integrated Query, or LINQ.

492 part III Defining Extensible Types with C#

The creators of LINQ took an unabashed look at the way in which relational database manage-
ment systems, such as Microsoft SQL Server, separate the language used to query a database from
the internal format of the data in the database. Developers accessing a SQL Server database issue
Structured Query Language (SQL) statements to the database management system. SQL provides a
high-level description of the data that the developer wants to retrieve but does not indicate exactly
how the database management system should retrieve this data. These details are controlled by the
database management system itself. Consequently, an application that invokes SQL statements does
not care how the database management system physically stores or retrieves data. The format used
by the database management system can change (for example, if a new version is released) without
the application developer needing to modify the SQL statements used by the application.

LINQ provides syntax and semantics very reminiscent of SQL, and with many of the same advan-
tages. You can change the underlying structure of the data being queried without needing to change
the code that actually performs the queries. You should be aware that although LINQ looks similar
to SQL, it is far more flexible and can handle a wider variety of logical data structures. For example,
LINQ can handle data organized hierarchically, such as that found in an XML document. However, this
chapter concentrates on using LINQ in a relational manner.

Using LINQ in a C# Application

Perhaps the easiest way to explain how to use the C# features that support LINQ is to work through
some simple examples based on the following sets of customer and address information:

Customer Information

CustomerID FirstName LastName CompanyName

1 Kim Abercrombie Alpine Ski House

2 Jeff Hay Coho Winery

3 Charlie Herb Alpine Ski House

4 Chris Preston Trey Research

5 Dave Barnett Wingtip Toys

6 Ann Beebe Coho Winery

7 John Kane Wingtip Toys

8 David Simpson Trey Research

9 Greg Chapman Wingtip Toys

10 Tim Litton Wide World Importers

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 493

Address Information

CompanyName City Country

Alpine Ski House Berne Switzerland

Coho Winery San Francisco United States

Trey Research New York United States

Wingtip Toys London United Kingdom

Wide World Importers Tetbury United Kingdom

LINQ requires the data to be stored in a data structure that implements the IEnumerable or
IEnumerable<T> interface, as described in Chapter 19, “Enumerating Collections.” It does not matter
what structure you use (an array, a HashSet<T>, a Queue<T>, or any of the other collection types, or
even one that you define yourself) as long as it is enumerable. However, to keep things straightfor-
ward, the examples in this chapter assume that the customer and address information is held in the
customers and addresses arrays shown in the following code example.

Note In a real-world application, you would populate these arrays by reading the data
from a file or a database.

var customers = new[] {
 new { CustomerID = 1, FirstName = "Kim", LastName = "Abercrombie",
 CompanyName = "Alpine Ski House" },
 new { CustomerID = 2, FirstName = "Jeff", LastName = "Hay",
 CompanyName = "Coho Winery" },
 new { CustomerID = 3, FirstName = "Charlie", LastName = "Herb",
 CompanyName = "Alpine Ski House" },
 new { CustomerID = 4, FirstName = "Chris", LastName = "Preston",
 CompanyName = "Trey Research" },
 new { CustomerID = 5, FirstName = "Dave", LastName = "Barnett",
 CompanyName = "Wingtip Toys" },
 new { CustomerID = 6, FirstName = "Ann", LastName = "Beebe",
 CompanyName = "Coho Winery" },
 new { CustomerID = 7, FirstName = "John", LastName = "Kane",
 CompanyName = "Wingtip Toys" },
 new { CustomerID = 8, FirstName = "David", LastName = "Simpson",
 CompanyName = "Trey Research" },
 new { CustomerID = 9, FirstName = "Greg", LastName = "Chapman",
 CompanyName = "Wingtip Toys" },
 new { CustomerID = 10, FirstName = "Tim", LastName = "Litton",
 CompanyName = "Wide World Importers" }
};

494 part III Defining Extensible Types with C#

var addresses = new[] {
 new { CompanyName = "Alpine Ski House", City = "Berne",
 Country = "Switzerland"},
 new { CompanyName = "Coho Winery", City = "San Francisco",
 Country = "United States"},
 new { CompanyName = "Trey Research", City = "New York",
 Country = "United States"},
 new { CompanyName = "Wingtip Toys", City = "London",
 Country = "United Kingdom"},
 new { CompanyName = "Wide World Importers", City = "Tetbury",
 Country = "United Kingdom"}
};

Note The remaining sections in this chapter show you the basic capabilities and syntax for
querying data by using LINQ methods. The syntax can become a little complex at times,
and you will see when you reach the section “Using Query Operators” that it is not actually
necessary to remember how all the syntax works. However, it is useful for you to at least
take a look at the following sections so that you can fully appreciate how the query opera-
tors provided with C# perform their tasks.

Selecting Data
Suppose you want to display a list consisting of the first name of each customer in the customers
array. You can achieve this task with the following code:

IEnumerable<string> customerFirstNames =
 customers.Select(cust => cust.FirstName);

foreach (string name in customerFirstNames)
{
 Console.WriteLine(name);
}

Although this block of code is quite short, it does a lot, and it requires a degree of explanation,
starting with the use of the Select method of the customers array.

The Select method enables you to retrieve specific data from the array—in this case, just the
value in the FirstName field of each item in the array. How does it work? The parameter to the
Select method is actually another method that takes a row from the customers array and returns the
selected data from that row. You can define your own custom method to perform this task, but the
simplest mechanism is to use a lambda expression to define an anonymous method, as shown in the
preceding example. There are three important things that you need to understand at this point:

■■ The variable cust is the parameter passed in to the method. You can think of cust as an alias
for each row in the customers array. The compiler deduces this from the fact that you are
calling the Select method on the customers array. You can use any legal C# identifier in place
of cust.

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 495

■■ The Select method does not actually retrieve the data at this time; it simply returns an
enumerable object that will fetch the data identified by the Select method when you iter-
ate over it later. We will return to this aspect of LINQ in the section “LINQ and Deferred
Evaluation” later in this chapter.

■■ The Select method is not actually a method of the Array type. It is an extension method of
the Enumerable class. The Enumerable class is located in the System.Linq namespace and
provides a substantial set of static methods for querying objects that implement the generic
IEnumerable<T> interface.

The preceding example uses the Select method of the customers array to generate an
IEnumerable<string> object named customerFirstNames. (It is of type IEnumerable<string> because
the Select method returns an enumerable collection of customer first names, which are strings.) The
foreach statement iterates through this collection of strings, printing out the first name of each cus-
tomer in the following sequence:

Kim
Jeff
Charlie
Chris
Dave
Ann
John
David
Greg
Tim

You can now display the first name of each customer. How do you fetch the first and last name
of each customer? This task is slightly trickier. If you examine the definition of the Enumerable.Select
method in the System.Linq namespace in the documentation supplied with Microsoft Visual Studio
2012, you will see that it looks like this:

public static IEnumerable<TResult> Select<TSource, TResult> (
 this IEnumerable<TSource> source,
 Func<TSource, TResult> selector
)

What this actually says is that Select is a generic method that takes two type parameters named
TSource and TResult, as well as two ordinary parameters named source and selector. TSource is the
type of the collection that you are generating an enumerable set of results for (customer objects in
this example), and TResult is the type of the data in the enumerable set of results (string objects in
this example). Remember that Select is an extension method, so the source parameter is actually a
reference to the type being extended (a generic collection of customer objects that implements the
IEnumerable interface in the example). The selector parameter specifies a generic method that identi-
fies the fields to be retrieved. (Remember that Func is the name of a generic delegate type in the .NET
Framework that you can use for encapsulating a generic method that returns a result.) The method

496 part III Defining Extensible Types with C#

referred to by the selector parameter takes a TSource (in this case, customer) parameter and yields a
TResult (in this case, string) object. The value returned by the Select method is an enumerable collec-
tion of TResult (again string) objects.

Note You can review how extension methods work and the role of the first parameter to
an extension method by revisiting Chapter 12, “Working with Inheritance.”

The important point to understand from the preceding paragraph is that the Select method
returns an enumerable collection based on a single type. If you want the enumerator to return mul-
tiple items of data, such as the first and last name of each customer, you have at least two options:

■■ You can concatenate the first and last names together into a single string in the Select
method, like this:

IEnumerable<string> customerNames =
 customers.Select(cust => String.Format("{0} {1}", cust.FirstName, cust.LastName));

■■ You can define a new type that wraps the first and last names, and use the Select method to
construct instances of this type, like this:

class FullName
{
 public string FirstName{ get; set; }
 public string LastName{ get; set; }
}
...
IEnumerable<FullName> customerNames =
 customers.Select(cust => new FullName
 {
 FirstName = cust.FirstName,
 LastName = cust.LastName
 });

The second option is arguably preferable, but if this is the only use that your application makes of
the Names type, you might prefer to use an anonymous type instead of defining a new type specifi-
cally for a single operation, like this:

var customerNames =
 customers.Select(cust => new { FirstName = cust.FirstName, LastName = cust.LastName });

Notice the use of the var keyword here to define the type of the enumerable collection. The type
of objects in the collection is anonymous, so you do not know the specific type for the objects in the
collection.

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 497

Filtering Data
The Select method enables you to specify, or project, the fields that you want to include in the
enumerable collection. However, you might also want to restrict the rows that the enumerable collec-
tion contains. For example, suppose you want to list the names of all companies in the addresses array
that are located in the United States only. To do this, you can use the Where method, as follows:

IEnumerable<string> usCompanies =
 addresses.Where(addr => String.Equals(addr.Country, "United States"))
 .Select(usComp => usComp.CompanyName);

foreach (string name in usCompanies)
{
 Console.WriteLine(name);
}

Syntactically, the Where method is similar to Select. It expects a parameter that defines a method
that filters the data according to whatever criteria you specify. This example makes use of another
lambda expression. The variable addr is an alias for a row in the addresses array, and the lambda
expression returns all rows where the Country field matches the string “United States”. The Where
method returns an enumerable collection of rows containing every field from the original collec-
tion. The Select method is then applied to these rows to project only the CompanyName field from
this enumerable collection to return another enumerable collection of string objects. (The variable
usComp is an alias for the type of each row in the enumerable collection returned by the Where
method.) The type of the result of this complete expression is therefore IEnumerable<string>. It is
important to understand this sequence of operations—the Where method is applied first to filter the
rows, followed by the Select method to specify the fields. The foreach statement that iterates through
this collection displays the following companies:

Coho Winery
Trey Research

Ordering, Grouping, and aggregating Data
If you are familiar with SQL, you are aware that SQL enables you to perform a wide variety of rela-
tional operations besides simple projection and filtering. For example, you can specify that you want
data to be returned in a specific order, you can group the rows returned according to one or more
key fields, and you can calculate summary values based on the rows in each group. LINQ provides the
same functionality.

To retrieve data in a particular order, you can use the OrderBy method. Like the Select and Where
methods, OrderBy expects a method as its argument. This method identifies the expressions that you
want to use to sort the data. For example, you can display the name of each company in the addresses
array in ascending order, like this:

498 part III Defining Extensible Types with C#

IEnumerable<string> companyNames =
 addresses.OrderBy(addr => addr.CompanyName).Select(comp => comp.CompanyName);

foreach (string name in companyNames)
{
 Console.WriteLine(name);
}

This block of code displays the companies in the addresses table in alphabetical order:

Alpine Ski House
Coho Winery
Trey Research
Wide World Importers
Wingtip Toys

If you want to enumerate the data in descending order, you can use the OrderByDescending
method instead. If you want to order by more than one key value, you can use the ThenBy or
ThenByDescending method after OrderBy or OrderByDescending.

To group data according to common values in one or more fields, you can use the GroupBy
method. The next example shows how to group the companies in the addresses array by country:

var companiesGroupedByCountry =
 addresses.GroupBy(addrs => addrs.Country);

foreach (var companiesPerCountry in companiesGroupedByCountry)
{
 Console.WriteLine("Country: {0}\t{1} companies",
 companiesPerCountry.Key, companiesPerCountry.Count());
 foreach (var companies in companiesPerCountry)
 {
 Console.WriteLine("\t{0}", companies.CompanyName);
 }
}

By now, you should recognize the pattern. The GroupBy method expects a method that specifies
the fields to group the data by. There are some subtle differences between the GroupBy method and
the other methods that you have seen so far, though.

The main point of interest is that you don’t need to use the Select method to project the fields
to the result. The enumerable set returned by GroupBy contains all the fields in the original source
collection, but the rows are ordered into a set of enumerable collections based on the field identi-
fied by the method specified by GroupBy. In other words, the result of the GroupBy method is an
enumerable set of groups, each of which is an enumerable set of rows. In the example just shown,
the enumerable set companiesGroupedByCountry is a set of countries. The items in this set are
themselves enumerable collections containing the companies for each country in turn. The code
that displays the companies in each country uses a foreach loop to iterate through the companies-
GroupedByCountry set to yield and display each country in turn, and then it uses a nested foreach
loop to iterate through the set of companies in each country. Notice in the outer foreach loop that

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 499

you can access the value you are grouping by using the Key field of each item, and you can also cal-
culate summary data for each group by using methods such as Count, Max, Min, and many others.
The output generated by the example code looks like this:

Country: Switzerland 1 companies
 Alpine Ski House
Country: United States 2 companies
 Coho Winery
 Trey Research
Country: United Kingdom 2 companies
 Wingtip Toys
 Wide World Importers

You can use many of the summary methods such as Count, Max, and Min directly over the results
of the Select method. If you want to know how many companies there are in the addresses array, you
can use a block of code such as this:

int numberOfCompanies = addresses.Select(addr => addr.CompanyName).Count();
Console.WriteLine("Number of companies: {0}", numberOfCompanies);

Notice that the result of these methods is a single scalar value rather than an enumerable collec-
tion. The output from the preceding block of code looks like this:

Number of companies: 5

I should utter a word of caution at this point. These summary methods do not distinguish between
rows in the underlying set that contain duplicate values in the fields you are projecting. This means
that, strictly speaking, the preceding example shows you only how many rows in the addresses array
contain a value in the CompanyName field. If you wanted to find out how many different countries
are mentioned in this table, you might be tempted to try this:

int numberOfCountries = addresses.Select(addr => addr.Country).Count();
Console.WriteLine("Number of countries: {0}", numberOfCountries);

The output looks like this:

Number of countries: 5

In fact, there are only three different countries in the addresses array—it just so happens that
United States and United Kingdom both occur twice. You can eliminate duplicates from the calcula-
tion by using the Distinct method, like this:

int numberOfCountries =
 addresses.Select(addr => addr.Country).Distinct().Count();
Console.WriteLine("Number of countries: {0}", numberOfCountries);

The Console.WriteLine statement will now output the expected result:

Number of countries: 3

500 part III Defining Extensible Types with C#

Joining Data
Just like SQL, LINQ enables you to join multiple sets of data together over one or more common key fields.
The following example shows how to display the first and last names of each customer, together with the
name of the country where the customer is located:

var companiesAndCustomers = customers
 .Select(c => new { c.FirstName, c.LastName, c.CompanyName })
 .Join(addresses, custs => custs.CompanyName, addrs => addrs.CompanyName,
 (custs, addrs) => new {custs.FirstName, custs.LastName, addrs.Country });

foreach (var row in companiesAndCustomers)
{
 Console.WriteLine(row);
}

The customers’ first and last names are available in the customers array, but the country for each
company that customers work for is stored in the addresses array. The common key between the
customers array and the addresses array is the company name. The Select method specifies the fields
of interest in the customers array (FirstName and LastName), together with the field containing the
common key (CompanyName). You use the Join method to join the data identified by the Select
method with another enumerable collection. The parameters to the Join method are as follows:

■■ The enumerable collection with which to join

■■ A method that identifies the common key fields from the data identified by the Select method

■■ A method that identifies the common key fields on which to join the selected data

■■ A method that specifies the columns you require in the enumerable result set returned by the
Join method

In this example, the Join method joins the enumerable collection containing the FirstName,
LastName, and CompanyName fields from the customers array with the rows in the addresses array.
The two sets of data are joined where the value in the CompanyName field in the customers array
matches the value in the CompanyName field in the addresses array. The result set comprises rows
containing the FirstName and LastName fields from the customers array with the Country field from
the addresses array. The code that outputs the data from the companiesAndCustomers collection
displays the following information:

{ FirstName = Kim, LastName = Abercrombie, Country = Switzerland }
{ FirstName = Jeff, LastName = Hay, Country = United States }
{ FirstName = Charlie, LastName = Herb, Country = Switzerland }
{ FirstName = Chris, LastName = Preston, Country = United States }
{ FirstName = Dave, LastName = Barnett, Country = United Kingdom }
{ FirstName = Ann, LastName = Beebe, Country = United States }
{ FirstName = John, LastName = Kane, Country = United Kingdom }
{ FirstName = David, LastName = Simpson, Country = United States }
{ FirstName = Greg, LastName = Chapman, Country = United Kingdom }
{ FirstName = Tim, LastName = Litton, Country = United Kingdom }

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 501

Note Remember that collections in memory are not the same as tables in a relational da-
tabase, and the data they contain is not subject to the same data integrity constraints. In
a relational database, it could be acceptable to assume that every customer has a corre-
sponding company and that each company has its own unique address. Collections do not
enforce the same level of data integrity, meaning that you can quite easily have a customer
referencing a company that does not exist in the addresses array, and you might even have
the same company occurring more than once in the addresses array. In these situations, the
results that you obtain might be accurate but unexpected. Join operations work best when
you fully understand the relationships between the data you are joining.

Using Query Operators
The preceding sections have shown you many of the features available for querying in-memory data
by using the extension methods for the Enumerable class defined in the System.Linq namespace. The
syntax makes use of several advanced C# language features, and the resultant code can sometimes
be quite hard to understand and maintain. To relieve you of some of this burden, the designers of
C# added query operators to the language to enable you to employ LINQ features by using a syntax
more akin to SQL.

As you saw in the examples shown earlier in this chapter, you can retrieve the first name for each
customer like this:

IEnumerable<string> customerFirstNames =
 customers.Select(cust => cust.FirstName);

You can rephrase this statement by using the from and select query operators, like this:

var customerFirstNames = from cust in customers
 select cust.FirstName;

At compile time, the C# compiler resolves this expression into the corresponding Select method.
The from operator defines an alias for the source collection, and the select operator specifies the fields
to retrieve by using this alias. The result is an enumerable collection of customer first names. If you
are familiar with SQL, notice that the from operator occurs before the select operator.

Continuing in the same vein, to retrieve the first and last names for each customer, you can use the
following statement. (You might want to refer to the earlier example of the same statement based on
the Select extension method.)

var customerNames = from cust in customers
 select new { cust.FirstName, cust.LastName };

You use the where operator to filter data. The following example shows how to return the names of
the companies based in the United States from the addresses array:

502 part III Defining Extensible Types with C#

var usCompanies = from a in addresses
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

To order data, use the orderby operator, like this:

var companyNames = from a in addresses
 orderby a.CompanyName
 select a.CompanyName;

You can group data by using the group operator:

var companiesGroupedByCountry = from a in addresses
 group a by a.Country;

Notice that, as with the earlier example showing how to group data, you do not provide the
select operator, and you can iterate through the results by using exactly the same code as the earlier
example, like this:

foreach (var companiesPerCountry in companiesGroupedByCountry)
{
 Console.WriteLine("Country: {0}\t{1} companies",
 companiesPerCountry.Key, companiesPerCountry.Count());
 foreach (var companies in companiesPerCountry)
 {
 Console.WriteLine("\t{0}", companies.CompanyName);
 }
}

You can invoke the summary functions, such as Count, over the collection returned by an enumer-
able collection, like this:

int numberOfCompanies = (from a in addresses
 select a.CompanyName).Count();

Notice that you wrap the expression in parentheses. If you want to ignore duplicate values, use the
Distinct method:

int numberOfCountries = (from a in addresses
 select a.Country).Distinct().Count();

tip In many cases, you probably want to count just the number of rows in a collection
rather than the number of values in a field across all the rows in the collection. In this case,
you can invoke the Count method directly over the original collection, like this:

int numberOfCompanies = addresses.Count();

You can use the join operator to combine two collections across a common key. The following
example shows the query returning customers and addresses over the CompanyName column in each

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 503

collection, this time rephrased using the join operator. You use the on clause with the equals operator
to specify how the two collections are related.

Note LINQ currently supports equi-joins (joins based on equality) only. Database develop-
ers who are used to SQL may be familiar with joins based on other operators such as > and
<, but LINQ does not provide these features.

var citiesAndCustomers = from a in addresses
 join c in customers
 on a.CompanyName equals c.CompanyName
 select new { c.FirstName, c.LastName, a.Country };

Note In contrast with SQL, the order of the expressions in the on clause of a LINQ expres-
sion is important. You must place the item you are joining from (referencing the data in the
collection in the from clause) to the left of the equals operator and the item you are joining
with (referencing the data in the collection in the join clause) to the right.

LINQ provides a large number of other methods for summarizing information, joining, grouping,
and searching through data. This section has covered just the most common features. For example,
LINQ provides the Intersect and Union methods, which you can use to perform setwide operations.
It also provides methods such as Any and All that you can use to determine whether at least one
item in a collection or every item in a collection matches a specified predicate. You can partition
the values in an enumerable collection by using the Take and Skip methods. For more information,
see the material in the LINQ section of the documentation provided with Visual Studio 2012.

Querying Data in tree<tItem> Objects
The examples you’ve seen so far in this chapter have shown how to query the data in an array.
You can use exactly the same techniques for any collection class that implements the generic
IEnumerable<T> interface. In the following exercise, you will define a new class for modeling employ-
ees for a company. You will create a BinaryTree object containing a collection of Employee objects,
and then you will use LINQ to query this information. You will initially call the LINQ extension meth-
ods directly, but then you will modify your code to use query operators.

retrieve data from a BinaryTree by using the extension methods

1. Start Visual Studio 2012 if it is not already running.

2. Open the QueryBinaryTree solution, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 21\Windows X\QueryBinaryTree folder in your Documents folder. The project
contains the Program.cs file, which defines the Program class with the Main and doWork
methods that you saw in previous exercises.

504 part III Defining Extensible Types with C#

3. In Solution Explorer, right-click the QueryBinaryTree project, point to Add, and then click Class.
In the Add New Item—Query BinaryTree dialog box, type Employee.cs in the Name text box,
and then click Add.

4. Add the automatic properties shown below in bold to the Employee class:

class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Department { get; set; }
 public int Id { get; set; }
}

5. Add the ToString method shown in bold to the Employee class. Types in the .NET Framework
use this method when converting the object to a string representation, such as when display-
ing it by using the Console.WriteLine statement.

class Employee
{
 ...
 public override string ToString()
 {
 return String.Format("Id: {0}, Name: {1} {2}, Dept: {3}",
 this.Id, this.FirstName, this.LastName,
 this.Department);
 }
}

6. Modify the definition of the Employee class to implement the IComparable<Employee> inter-
face, as shown here:

class Employee : IComparable<Employee>
{
}

This step is necessary because the BinaryTree class specifies that its elements must be
“comparable.”

7. Right-click the IComparable<Employee> interface in the class definition, point to Implement
Interface, and then click Implement Interface Explicitly.

This action generates a default implementation of the CompareTo method. Remember that
the BinaryTree class calls this method when it needs to compare elements when inserting
them into the tree.

8. Replace the body of the CompareTo method with the code shown below in bold. This imple-
mentation of the CompareTo method compares Employee objects based on the value of the
Id field.

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 505

int IComparable<Employee>.CompareTo(Employee other)
{
 if (other == null)
 {
 return 1;
 }

 if (this.Id > other.Id)
 {
 return 1;
 }

 if (this.Id < other.Id)
 {
 return -1;
 }

 return 0;
}

Note For a description of the IComparable<T> interface, refer to Chapter 19.

9. In Solution Explorer, right-click the QueryBinaryTree solution, point to Add, and then click Existing
Project. In the Add Existing Project dialog box, move to the folder Microsoft Press\Visual CSharp
Step By Step\Chapter 21\Windows X\BinaryTree in your Documents folder, click the BinaryTree
project, and then click Open.

The BinaryTree project contains a copy of the enumerable BinaryTree class that you imple-
mented in Chapter 19.

10. In Solution Explorer, right-click the QueryBinaryTree project, and then click Add Reference. In
the Reference Manager - QueryBinaryTree dialog box, in the left pane click Solution, in the
middle pane select the BinaryTree project, and then click OK.

11. Display the Program.cs file for the QueryBinaryTree project in the Code and Text Editor win-
dow, and verify that the list of using directives at the top of the file includes the following line
of code:

using System.Linq;

12. Add the following using directive to the list at the top of the Program.cs file to bring the
BinaryTree namespace into scope:

using BinaryTree;

13. In the doWork method in the Program class, remove the // TODO: comment and add the
following statements shown in bold type to construct and populate an instance of the
BinaryTree class:

506 part III Defining Extensible Types with C#

static void doWork()
{
 Tree<Employee> empTree = new Tree<Employee>(new Employee {
 Id = 1, FirstName = "Kim", LastName = "Abercrombie", Department = "IT"});
 empTree.Insert(new Employee {
 Id = 2, FirstName = "Jeff", LastName = "Hay", Department = "Marketing"});
 empTree.Insert(new Employee {
 Id = 4, FirstName = "Charlie", LastName = "Herb", Department = "IT"});
 empTree.Insert(new Employee {
 Id = 6, FirstName = "Chris", LastName = "Preston", Department = "Sales"});
 empTree.Insert(new Employee {
 Id = 3, FirstName = "Dave", LastName = "Barnett", Department = "Sales"});
 empTree.Insert(new Employee {
 Id = 5, FirstName = "Tim", LastName = "Litton", Department="Marketing"});
}

14. Add the following statements shown in bold to the end of the doWork method. This code
invokes the Select method to list the departments found in the binary tree.

static void doWork()
{
 ...
 Console.WriteLine("List of departments");
 var depts = empTree.Select(d => d.Department);

 foreach (var dept in depts)
 {
 Console.WriteLine("Department: {0}", dept);
 }
}

15. On the DEBUG menu, click Start Without Debugging.

The application should output the following list of departments:

List of departments
Department: IT
Department: Marketing
Department: Sales
Department: IT
Department: Marketing
Department: Sales

Each department occurs twice because there are two employees in each department. The
order of the departments is determined by the CompareTo method of the Employee class,
which uses the Id property of each employee to sort the data. The first department is for the
employee with the Id value 1, the second department is for the employee with the Id value 2,
and so on.

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 507

16. Press Enter to return to Visual Studio 2012.

17. Modify the statement that creates the enumerable collection of departments as shown below
in bold:

var depts = empTree.Select(d => d.Department).Distinct();

The Distinct method removes duplicate rows from the enumerable collection.

18. On the DEBUG menu, click Start Without Debugging.

Verify that the application now displays each department only once, like this:

List of departments
Department: IT
Department: Marketing
Department: Sales

19. Press Enter to return to Visual Studio 2012.

20. Add the following statements shown in bold to the end of the doWork method. This block of
code uses the Where method to filter the employees and return only those in the IT depart-
ment. The Select method returns the entire row rather than projecting specific columns.

static void doWork()
{
 ...
 Console.WriteLine("\nEmployees in the IT department");
 var ITEmployees =
 empTree.Where(e => String.Equals(e.Department, "IT"))
 .Select(emp => emp);

 foreach (var emp in ITEmployees)
 {
 Console.WriteLine(emp);
 }
}

21. Add the code shown below in bold to the end of the doWork method, after the code from
the preceding step. This code uses the GroupBy method to group the employees found in the
binary tree by department. The outer foreach statement iterates through each group, dis-
playing the name of the department. The inner foreach statement displays the names of the
employees in each department.

static void doWork()
{
 ...
 Console.WriteLine("\nAll employees grouped by department");
 var employeesByDept = empTree.GroupBy(e => e.Department);

508 part III Defining Extensible Types with C#

 foreach (var dept in employeesByDept)
 {
 Console.WriteLine("Department: {0}", dept.Key);
 foreach (var emp in dept)
 {
 Console.WriteLine("\t{0} {1}", emp.FirstName, emp.LastName);
 }
 }
}

22. On the DEBUG menu, click Start Without Debugging. Verify that the output of the application
looks like this:

List of departments
Department: IT
Department: Marketing
Department: Sales

Employees in the IT department
Id: 1, Name: Kim Abercrombie, Dept: IT
Id: 4, Name: Charlie Herb, Dept: IT

All employees grouped by department
Department: IT
 Kim Abercrombie
 Charlie Herb
Department: Marketing
 Jeff Hay
 Tim Litton
Department: Sales
 Dave Barnett
 Chris Preston

23. Press Enter to return to Visual Studio 2012.

retrieve data from a BinaryTree by using query operators

1. In the doWork method, comment out the statement that generates the enumerable collection
of departments, and replace it with the equivalent statement shown in bold, using the from
and select query operators:

//var depts = empTree.Select(d => d.Department).Distinct();
var depts = (from d in empTree
 select d.Department).Distinct();

2. Comment out the statement that generates the enumerable collection of employees in the IT
department, and replace it with the following code shown in bold:

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 509

//var ITEmployees =
// empTree.Where(e => String.Equals(e.Department, "IT"))
// .Select(emp => emp);
var ITEmployees = from e in empTree
 where String.Equals(e.Department, "IT")
 select e;

3. Comment out the statement that generates the enumerable collection grouping employees
by department, and replace it with the statement shown here in bold:

//var employeesByDept = empTree.GroupBy(e => e.Department);
var employeesByDept = from e in empTree
 group e by e.Department;

4. On the DEBUG menu, click Start Without Debugging. Verify that the program displays the
same results as before.

List of departments
Department: IT
Department: Marketing
Department: Sales

Employees in the IT department
Id: 1, Name: Kim Abercrombie, Dept: IT
Id: 4, Name: Charlie Herb, Dept: IT

All employees grouped by department
Department: IT
 Kim Abercrombie
 Charlie Herb
Department: Marketing
 Jeff Hay
 Tim Litton
Department: Sales
 Dave Barnett
 Chris Preston

5. Press Enter to return to Visual Studio 2012.

LINQ and Deferred evaluation
When you use LINQ to define an enumerable collection, either by using the LINQ extension methods or by
using query operators, you should remember that the application does not actually build the collection at
the time that the LINQ extension method is executed; the collection is enumerated only when you iter-
ate over the collection. This means that the data in the original collection can change between executing
a LINQ query and retrieving the data that the query identifies; you will always fetch the most up-to-date
data. For example, the following query (which you saw earlier) defines an enumerable collection of U.S.
companies:

510 part III Defining Extensible Types with C#

var usCompanies = from a in addresses
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

The data in the addresses array is not retrieved, and any conditions specified in the Where filter are
not evaluated until you iterate through the usCompanies collection:

foreach (string name in usCompanies)
{
 Console.WriteLine(name);
}

If you modify the data in the addresses array between defining the usCompanies collection and
iterating through the collection (for example, if you add a new company based in the United States),
you will see this new data. This strategy is referred to as deferred evaluation.

You can force evaluation of a LINQ query when it is defined and generate a static, cached col-
lection. This collection is a copy of the original data and will not change if the data in the collection
changes. LINQ provides the ToList method to build a static List object containing a cached copy of the
data. You use it like this:

var usCompanies = from a in addresses.ToList()
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

This time, the list of companies is fixed when you create the query. If you add more U.S. companies
to the addresses array, you will not see them when you iterate through the usCompanies collection.
LINQ also provides the ToArray method that stores the cached collection as an array.

In the final exercise in this chapter, you will compare the effects of using deferred evaluation of a
LINQ query to generating a cached collection.

examine the effects of deferred and cached evaluation of a LINQ query

1. Return to Visual Studio 2012, display the QueryBinaryTree project, and edit the Program.cs file.

2. Comment out the contents of the doWork method apart from the statements that construct
the empTree binary tree, as shown here:

static void doWork()
{
 Tree<Employee> empTree = new Tree<Employee>(new Employee {
 Id = 1, FirstName = "Kim", LastName = "Abercrombie", Department = "IT"});
 empTree.Insert(new Employee {
 Id = 2, FirstName = "Jeff", LastName = "Hay", Department = "Marketing"});
 empTree.Insert(new Employee {
 Id = 4, FirstName = "Charlie", LastName = "Herb", Department = "IT"});
 empTree.Insert(new Employee {
 Id = 6, FirstName = "Chris", LastName = "Preston", Department = "Sales"});

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 511

 empTree.Insert(new Employee {
 Id = 3, FirstName = "Dave", LastName = "Barnett", Department = "Sales"});
 empTree.Insert(new Employee {
 Id = 5, FirstName = "Tim", LastName = "Litton", Department="Marketing"});

 // comment out the rest of the method
 ...
}

tip You can comment out a block of code by selecting the entire block in the Code
and Text Editor window and then clicking the Comment Out the Selected Lines
button on the toolbar or by pressing Ctrl+E and then pressing C.

3. Add the following statements shown in bold to the doWork method, after the code that
creates and populates the empTree binary tree:

static void doWork()
{
 ...
 Console.WriteLine("All employees");
 var allEmployees = from e in empTree
 select e;

 foreach (var emp in allEmployees)
 {
 Console.WriteLine(emp);
 }
}

This code generates an enumerable collection of employees named allEmployees and then
iterates through this collection, displaying the details of each employee.

4. Add the following code immediately after the statements you typed in the preceding step:

static void doWork()
{
 ...
 empTree.Insert(new Employee
 {
 Id = 7,
 FirstName = "David",
 LastName = "Simpson",
 Department = "IT"
 });
 Console.WriteLine("\nEmployee added");

512 part III Defining Extensible Types with C#

 Console.WriteLine("All employees");
 foreach (var emp in allEmployees)
 {
 Console.WriteLine(emp);
 }
}

These statements add a new employee to the empTree tree and then iterate through the
allEmployees collection again.

5. On the DEBUG menu, click Start Without Debugging. Verify that the output of the application
looks like this:

All employees
Id: 1, Name: Kim Abercrombie, Dept: IT
Id: 2, Name: Jeff Hay, Dept: Marketing
Id: 3, Name: Dave Barnett, Dept: Sales
Id: 4, Name: Charlie Herb, Dept: IT
Id: 5, Name: Tim Litton, Dept: Marketing
Id: 6, Name: Chris Preston, Dept: Sales

Employee added
All employees
Id: 1, Name: Kim Abercrombie, Dept: IT
Id: 2, Name: Jeff Hay, Dept: Marketing
Id: 3, Name: Dave Barnett, Dept: Sales
Id: 4, Name: Charlie Herb, Dept: IT
Id: 5, Name: Tim Litton, Dept: Marketing
Id: 6, Name: Chris Preston, Dept: Sales
Id: 7, Name: David Simpson, Dept: IT

Notice that the second time the application iterates through the allEmployees collection, the
list displayed includes David Simpson, even though this employee was added only after the
allEmployees collection was defined.

6. Press Enter to return to Visual Studio 2012.

7. In the doWork method, change the statement that generates the allEmployees collection to
identify and cache the data immediately, as shown here in bold:

var allEmployees = from e in empTree.ToList<Employee>()
 select e;

LINQ provides generic and nongeneric versions of the ToList and ToArray methods. If pos-
sible, it is better to use the generic versions of these methods to ensure the type safety of the
result. The data returned by the select operator is an Employee object, and the code shown
in this step generates allEmployees as a generic List<Employee> collection. If you specify the
nongeneric ToList method, the allEmployees collection will be a List of object types.

8. On the DEBUG menu, click Start Without Debugging. Verify that the output of the application
looks like this:

 CHAPTER 21 Querying In-Memory Data by Using Query Expressions 513

All employees
Id: 1, Name: Kim Abercrombie, Dept: IT
Id: 2, Name: Jeff Hay, Dept: Marketing
Id: 3, Name: Dave Barnett, Dept: Sales
Id: 4, Name: Charlie Herb, Dept: IT
Id: 5, Name: Tim Litton, Dept: Marketing
Id: 6, Name: Chris Preston, Dept: Sales

Employee added
All employees
Id: 1, Name: Kim Abercrombie, Dept: IT
Id: 2, Name: Jeff Hay, Dept: Marketing
Id: 3, Name: Dave Barnett, Dept: Sales
Id: 4, Name: Charlie Herb, Dept: IT
Id: 5, Name: Tim Litton, Dept: Marketing
Id: 6, Name: Chris Preston, Dept: Sales

Notice that the second time the application iterates through the allEmployees collection, the
list displayed does not include David Simpson. This is because the query is evaluated and the
results are cached before David Simpson is added to the empTree binary tree.

9. Press Enter to return to Visual Studio 2012.

Summary

In this chapter, you learned how LINQ uses the IEnumerable<T> interface and extension methods to
provide a mechanism for querying data. You also saw how these features support the query expres-
sion syntax in C#.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 22.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 21 Quick Reference

To Do this

Project specified fields from an
enumerable collection

Use the Select method, and specify a lambda expression that identifies the fields
to project. For example:

var customerFirstNames = customers.Select(cust => cust.FirstName);

Or use the from and select query operators. For example:

var customerFirstNames =
 from cust in customers
 select cust.FirstName;

514 part III Defining Extensible Types with C#

To Do this

Filter rows from an enumerable
collection

Use the Where method, and specify a lambda expression containing the criteria
that rows should match. For example:

var usCompanies =
 addresses.Where(addr =>
 String.Equals(addr.Country, "United States"))
 .Select(usComp => usComp.CompanyName);

Or use the where query operator. For example:

var usCompanies =
 from a in addresses
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

Enumerate data in a specific
order

Use the OrderBy method, and specify a lambda expression identifying the field to
use to order rows. For example:

var companyNames =
 addresses.OrderBy(addr => addr.CompanyName)
 .Select(comp => comp.CompanyName);

Or use the orderby query operator. For example:

var companyNames =
 from a in addresses
 orderby a.CompanyName
 select a.CompanyName;

Group data by the values in a
field

Use the GroupBy method, and specify a lambda expression identifying the field to
use to group rows. For example:

var companiesGroupedByCountry =
 addresses.GroupBy(addrs => addrs.Country);

Or use the group by query operator. For example:

var companiesGroupedByCountry =
 from a in addresses
 group a by a.Country;

Join data held in two different
collections

Use the Join method specifying the collection to join with, the join criteria, and the
fields for the result. For example:

var citiesAndCustomers =
 customers
 .Select(c => new { c.FirstName, c.LastName, c.CompanyName }).
 Join(addresses, custs => custs.CompanyName,
 addrs => addrs.CompanyName,
 (custs, addrs) => new {custs.FirstName,
 custs.LastName, addrs.Country });

Or use the join query operator. For example:

var citiesAndCustomers =
 from a in addresses
 join c in customers
 on a.CompanyName equals c.CompanyName
 select new { c.FirstName, c.LastName, a.Country };

Force immediate generation of
the results for a LINQ query

Use the ToList or ToArray method to generate a list or an array containing the
results. For example:

var allEmployees =
 from e in empTree.ToList<Employee>()
 select e;

 515

C H A P T E R 2 2

Operator Overloading

After completing this chapter, you will be able to

■■ Implement binary operators for your own types.

■■ Implement unary operators for your own types.

■■ Write increment and decrement operators for your own types.

■■ Understand the need to implement some operators as pairs.

■■ Implement implicit conversion operators for your own types.

■■ Implement explicit conversion operators for your own types.

You have made a great deal of use of the standard operator symbols (such as + and –) to perform
standard operations (such as addition and subtraction) on types (such as int and double). Many of the
built-in types come with their own predefined behaviors for each operator. You can also define how
operators should behave for your own structures and classes, which is the subject of this chapter.

Understanding Operators

It is worth recapping some of the fundamental aspects of operators before delving into the details of
how they work and how you can overload them. In summary:

■■ You use operators to combine operands together into expressions. Each operator has its own
semantics, dependent on the type it works with. For example, the + operator means “add”
when used with numeric types or “concatenate” when used with strings.

■■ Each operator has a precedence. For example, the * operator has a higher precedence than the
+ operator. This means that the expression a + b * c is the same as a + (b * c).

■■ Each operator also has an associativity to define whether the operator evaluates from left to
right or from right to left. For example, the = operator is right-associative (it evaluates from
right to left), so a = b = c is the same as a = (b = c).

516 part III Defining Extensible Types with C#

■■ A unary operator is an operator that has just one operand. For example, the increment
operator (++) is a unary operator.

■■ A binary operator is an operator that has two operands. For example, the multiplication
operator (*) is a binary operator.

Operator Constraints
You have seen throughout this book that C# enables you to overload methods when defining your
own types. C# also allows you to overload many of the existing operator symbols for your own types,
although the syntax is slightly different. When you do this, the operators you implement automati-
cally fall into a well-defined framework with the following rules:

■■ You cannot change the precedence and associativity of an operator. The precedence and
associativity are based on the operator symbol (for example, +) and not on the type (for
example, int) on which the operator symbol is being used. Hence, the expression a + b * c is
always the same as a + (b * c), regardless of the types of a, b, and c.

■■ You cannot change the multiplicity (the number of operands) of an operator. For example, *
(the symbol for multiplication) is a binary operator. If you declare a * operator for your own
type, it must be a binary operator.

■■ You cannot invent new operator symbols. For example, you can’t create a new operator sym-
bol, such as ** for raising one number to the power of another number. You’d have to create a
method for that.

■■ You can’t change the meaning of operators when applied to built-in types. For example, the
expression 1 + 2 has a predefined meaning, and you’re not allowed to override this meaning.
If you could do this, things would be too complicated!

■■ There are some operator symbols that you can’t overload. For example, you can’t overload the
dot (.) operator, which indicates access to a class member. Again, if you could do this, it would
lead to unnecessary complexity.

tip You can use indexers to simulate [] as an operator. Similarly, you can use properties to
simulate assignment (=) as an operator, and you can use delegates to mimic a function call
as an operator.

Overloaded Operators
To define your own operator behavior, you must overload a selected operator. You use method-
like syntax with a return type and parameters, but the name of the method is the keyword opera-
tor together with the operator symbol you are declaring. For example, the following code shows a
user-defined structure named Hour that defines a binary + operator to add together two instances
of Hour:

 CHAPTER 22 Operator Overloading 517

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 public static Hour operator +(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }
 ...
 private int value;
}

Notice the following:

■■ The operator is public. All operators must be public.

■■ The operator is static. All operators must be static. Operators are never polymorphic and can-
not use the virtual, abstract, override, or sealed modifiers.

■■ A binary operator (such as the + operator shown earlier) has two explicit arguments, and a
unary operator has one explicit argument. (C++ programmers should note that operators
never have a hidden this parameter.)

tip When declaring highly stylized functionality (such as operators), it is useful to adopt
a naming convention for the parameters. For example, developers often use lhs and rhs
(acronyms for left-hand side and right-hand side, respectively) for binary operators.

When you use the + operator on two expressions of type Hour, the C# compiler automatically con-
verts your code to a call to your operator + method. The C# compiler transforms the following code:

Hour Example(Hour a, Hour b)
{
 return a + b;
}

to this:

Hour Example(Hour a, Hour b)
{
 return Hour.operator +(a,b); // pseudocode
}

Note, however, that this syntax is pseudocode and not valid C#. You can use a binary operator only
in its standard infix notation (with the symbol between the operands).

There is one final rule that you must follow when declaring an operator: at least one of the
parameters must always be of the containing type. In the preceding operator + example for the Hour
class, one of the parameters, a or b, must be an Hour object. In this example, both parameters are
Hour objects. However, there could be times when you want to define additional implementations of

518 part III Defining Extensible Types with C#

operator + that add, for example, an integer (a number of hours) to an Hour object—the first param-
eter could be Hour, and the second parameter could be the integer. This rule makes it easier for the
compiler to know where to look when trying to resolve an operator invocation, and it also ensures
that you can’t change the meaning of the built-in operators.

Creating Symmetric Operators
In the preceding section, you saw how to declare a binary + operator to add together two instances
of type Hour. The Hour structure also has a constructor that creates an Hour from an int. This means
that you can add together an Hour and an int—you just have to first use the Hour constructor to
convert the int to an Hour. For example:

Hour a = ...;
int b = ...;
Hour sum = a + new Hour(b);

This is certainly valid code, but it is not as clear or concise as adding together an Hour and an int
directly, like this:

Hour a = ...;
int b = ...;
Hour sum = a + b;

To make the expression (a + b) valid, you must specify what it means to add together an Hour (a,
on the left) and an int (b, on the right). In other words, you must declare a binary + operator whose
first parameter is an Hour and whose second parameter is an int. The following code shows the rec-
ommended approach:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator +(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }

 public static Hour operator +(Hour lhs, int rhs)
 {
 return lhs + new Hour(rhs);
 }
 ...
 private int value;
}

Notice that all the second version of the operator does is construct an Hour from its int argument
and then call the first version. In this way, the real logic behind the operator is held in a single place.
The point is that the extra operator + simply makes existing functionality easier to use. Also, notice

 CHAPTER 22 Operator Overloading 519

that you should not provide many different versions of this operator, each with a different second
parameter type—instead, cater to the common and meaningful cases only, and let the user of the
class take any additional steps if an unusual case is required.

This operator + declares how to add together an Hour as the left operand and an int as the right
operand. It does not declare how to add together an int as the left operand and an Hour as the right
operand:

int a = ...;
Hour b = ...;
Hour sum = a + b; // compile-time error

This is counterintuitive. If you can write the expression a + b, you expect to also be able to write b
+ a. Therefore, you should provide another overload of operator +:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...

 public static Hour operator +(int lhs, Hour rhs)
 {
 return new Hour(lhs) + rhs;
 }
 ...
 private int value;
}

Note C++ programmers should notice that you must provide the overload yourself. The
compiler won’t write the overload for you or silently swap the sequence of the two oper-
ands to find a matching operator.

Operators and Language Interoperability
Not all languages that execute using the common language runtime (CLR) support or understand operator
overloading. If you are creating classes that you want to be able to use from other languages, if you over-
load an operator, you should provide an alternative mechanism that supports the same functionality. For
example, suppose you implement operator + for the Hour structure:

public static Hour operator +(Hour lhs, int rhs)
{
 ...
}

520 part III Defining Extensible Types with C#

If you need to be able to use your class from a Microsoft Visual Basic application, you should also pro-
vide an Add method that achieves the same thing:

public static Hour Add(Hour lhs, int rhs)
{
 ...
}

Understanding Compound Assignment Evaluation

A compound assignment operator (such as +=) is always evaluated in terms of its associated simple
operator (such as +). In other words, the statement

a += b;

is automatically evaluated like this:

a = a + b;

In general, the expression a @= b (where @ represents any valid operator) is always evaluated as
a = a @ b. If you have overloaded the appropriate simple operator, the overloaded version is auto-
matically called when you use its associated compound assignment operator. For example:

Hour a = ...;
int b = ...;
a += a; // same as a = a + a
a += b; // same as a = a + b

The first compound assignment expression (a += a) is valid because a is of type Hour, and the
Hour type declares a binary operator + whose parameters are both Hour. Similarly, the second com-
pound assignment expression (a += b) is also valid because a is of type Hour and b is of type int.
The Hour type also declares a binary operator + whose first parameter is an Hour and whose second
parameter is an int. Note, however, that you cannot write the expression b += a because that’s the
same as b = b + a. Although the addition is valid, the assignment is not, because there is no way to
assign an Hour to the built-in int type.

Declaring Increment and Decrement Operators

C# allows you to declare your own version of the increment (++) and decrement (––) operators. The
usual rules apply when declaring these operators: they must be public, they must be static, and they
must be unary (they can take only a single parameter). Here is the increment operator for the Hour
structure:

 CHAPTER 22 Operator Overloading 521

struct Hour
{
 ...
 public static Hour operator ++(Hour arg)
 {
 arg.value++;
 return arg;
 }
 ...
 private int value;
}

The increment and decrement operators are unique in that they can be used in prefix and postfix
forms. C# cleverly uses the same single operator for both the prefix and postfix versions. The result of
a postfix expression is the value of the operand before the expression takes place. In other words, the
compiler effectively converts the code

Hour now = new Hour(9);
Hour postfix = now++;

to this:

Hour now = new Hour(9);
Hour postfix = now;
now = Hour.operator ++(now); // pseudocode, not valid C#

The result of a prefix expression is the return value of the operator, so the C# compiler effectively
transforms the code

Hour now = new Hour(9);
Hour prefix = ++now;

to this:

Hour now = new Hour(9);
now = Hour.operator ++(now); // pseudocode, not valid C#
Hour prefix = now;

This equivalence means that the return type of the increment and decrement operators must be
the same as the parameter type.

Comparing Operators in Structures and Classes

Be aware that the implementation of the increment operator in the Hour structure works only
because Hour is a structure. If you change Hour into a class but leave the implementation of its incre-
ment operator unchanged, you will find that the postfix translation won’t give the correct answer. If
you remember that a class is a reference type and if you revisit the compiler translations explained
earlier, you can see why the operators for the Hour class no longer function as expected:

522 part III Defining Extensible Types with C#

Hour now = new Hour(9);
Hour postfix = now;
now = Hour.operator ++(now); // pseudocode, not valid C#

If Hour is a class, the assignment statement postfix = now makes the variable postfix refer to the
same object as now. Updating now automatically updates postfix! If Hour is a structure, the assign-
ment statement makes a copy of now in postfix, and any changes to now leave postfix unchanged,
which is what you want.

The correct implementation of the increment operator when Hour is a class is as follows:

class Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator ++(Hour arg)
 {
 return new Hour(arg.value + 1);
 }
 ...
 private int value;
}

Notice that operator ++ now creates a new object based on the data in the original. The data in
the new object is incremented, but the data in the original is left unchanged. Although this works,
the compiler translation of the increment operator results in a new object being created each time it
is used. This can be expensive in terms of memory use and garbage collection overhead. Therefore,
it is recommended that you limit operator overloads when you define types. This recommendation
applies to all operators, not just to the increment operator.

Defining Operator Pairs

Some operators naturally come in pairs. For example, if you can compare two Hour values by using
the != operator, you would expect to be able to also compare two Hour values by using the ==
operator. The C# compiler enforces this very reasonable expectation by insisting that if you define
either operator == or operator !=, you must define them both. This neither-or-both rule also applies
to the < and > operators and the <= and >= operators. The C# compiler does not write any of these
operator partners for you. You must write them all explicitly yourself, regardless of how obvious they
might seem. Here are the == and != operators for the Hour structure:

 CHAPTER 22 Operator Overloading 523

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static bool operator ==(Hour lhs, Hour rhs)
 {
 return lhs.value == rhs.value;
 }

 public static bool operator !=(Hour lhs, Hour rhs)
 {
 return lhs.value != rhs.value;
 }
 ...
 private int value;
}

The return type from these operators does not actually have to be Boolean. However, you would
need to have a very good reason for using some other type, or these operators could become very
confusing!

Note If you define operator == and operator != in a class, you should also override the
Equals and GetHashCode methods inherited from System.Object (or System.ValueType if
you are creating a structure). The Equals method should exhibit exactly the same behavior
as operator ==. (You should define one in terms of the other.) The GetHashCode method is
used by other classes in the Microsoft .NET Framework. (When you use an object as a key in
a hash table, for example, the GetHashCode method is called on the object to help calculate
a hash value. For more information, see the .NET Framework reference documentation sup-
plied with Visual Studio 2012.) All this method needs to do is return a distinguishing integer
value. (Don’t return the same integer from the GetHashCode method of all your objects,
however, because this will nullify the effectiveness of the hashing algorithms.)

Implementing Operators

In the following exercise, you will develop a class that simulates complex numbers.

A complex number has two elements: a real component and an imaginary component. Typically,
a complex number is represented in the form (x + yi), where x is the real component and yi is the
imaginary component. The values of x and y are regular integers, and i represents the square root of
–1 (hence the reason why yi is imaginary). Despite their rather obscure and theoretical feel, complex

524 part III Defining Extensible Types with C#

numbers have a large number of uses in the fields of electronics, applied mathematics, and physics,
and in many aspects of engineering. If you want more information about how and why complex num-
bers are useful, Wikipedia provides a useful and informative article.

Note The .NET Framework version 4.0 and later includes a type called Complex in the
System.Numerics namespace that implements complex numbers, so there is no real need to
define your own version of this type any more. However, it is still instructive to see how to
implement some of the common operators for this type.

You will implement complex numbers as a pair of integers that represent the coefficients x and y
for the real and imaginary elements. You will also implement the operands necessary for performing
simple arithmetic using complex numbers. The following table summarizes how to perform the four
primary arithmetic operations on a pair of complex numbers, (a + bi) and (c + di).

Operation Calculation

(a + bi) + (c + di) ((a + c) + (b + d)i)

(a + bi) – (c + di) ((a – c) + (b – d)i)

(a + bi) * (c + di) ((a * c – b * d) + (b * c + a * d)i)

(a + bi) / (c + di) (((a * c + b * d) / (c * c + d * d)) + ((b * c - a * d) / (c * c + d * d))i)

Create the Complex class and implement the arithmetic operators

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the ComplexNumbers project, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 22\Windows X\ComplexNumbers folder in your Documents folder. This is a
console application that you will use to build and test your code. The Program.cs file contains
the familiar doWork method.

3. In Solution Explorer, click the ComplexNumbers project. On the PROJECT menu, click Add
Class. In the Add New Item – Complex Numbers dialog box, type Complex.cs in the Name
text box, and then click Add.

Visual Studio creates the Complex class and opens the Complex.cs file in the Code and Text
Editor window.

4. Add the automatic integer properties Real and Imaginary to the Complex class, as shown
below in bold. You will use these two properties to hold the real and imaginary components
of a complex number.

class Complex
{
 public int Real { get; set; }
 public int Imaginary { get; set; }
}

 CHAPTER 22 Operator Overloading 525

5. Add the constructor shown next in bold to the Complex class. This constructor takes two int
parameters and uses them to populate the Real and Imaginary properties.

class Complex
{
 ...
 public Complex (int real, int imaginary)
 {
 this.Real = real;
 this.Imaginary = imaginary;
 }
}

6. Override the ToString method as shown next in bold. This method returns a string represent-
ing the complex number in the form (x + yi).

class Complex
{
 ...
 public override string ToString()
 {
 return String.Format("({0} + {1}i)", this.Real, this.Imaginary);
 }
}

7. Add the overloaded + operator shown below in bold to the Complex class. This is the binary
addition operator. It takes two Complex objects and adds them together by performing the
calculation shown in the table at the start of the exercise. The operator returns a new Complex
object containing the results of this calculation.

class Complex
{
 ...
 public static Complex operator +(Complex lhs, Complex rhs)
 {
 return new Complex(lhs.Real + rhs.Real, lhs.Imaginary + rhs.Imaginary);
 }
}

8. Add the overloaded – operator to the Complex class. This operator follows the same form as
the overloaded + operator.

class Complex
{
 ...
 public static Complex operator -(Complex lhs, Complex rhs)
 {
 return new Complex(lhs.Real - rhs.Real, lhs.Imaginary - rhs.Imaginary);
 }
}

526 part III Defining Extensible Types with C#

9. Implement the * operator and / operator. These two operators follow the same form as the
previous two operators, although the calculations are a little more complicated. (The calcula-
tion for the / operator has been broken down into two steps to avoid lengthy lines of code.)

class Complex
{
 ...
 public static Complex operator *(Complex lhs, Complex rhs)
 {
 return new Complex(lhs.Real * rhs.Real - lhs.Imaginary * rhs.Imaginary,
 lhs.Imaginary * rhs.Real + lhs.Real * rhs.Imaginary);
 }

 public static Complex operator /(Complex lhs, Complex rhs)
 {
 int realElement = (lhs.Real * rhs.Real + lhs.Imaginary * rhs.Imaginary) /
 (rhs.Real * rhs.Real + rhs.Imaginary * rhs.Imaginary);
 int imaginaryElement = (lhs.Imaginary * rhs.Real - lhs.Real * rhs.Imaginary) /
 (rhs.Real * rhs.Real + rhs.Imaginary * rhs.Imaginary);
 return new Complex(realElement, imaginaryElement);
 }
}

10. Display the Program.cs file in the Code and Text Editor window. Add the following statements
shown in bold to the doWork method of the Program class and delete the // TODO: comment:

static void doWork()
{
 Complex first = new Complex(10, 4);
 Complex second = new Complex(5, 2);

 Console.WriteLine("first is {0}", first);
 Console.WriteLine("second is {0}", second);

 Complex temp = first + second;
 Console.WriteLine("Add: result is {0}", temp);

 temp = first - second;
 Console.WriteLine("Subtract: result is {0}", temp);

 temp = first * second;
 Console.WriteLine("Multiply: result is {0}", temp);

 temp = first / second;
 Console.WriteLine("Divide: result is {0}", temp);
}

This code creates two Complex objects that represent the complex values (10 + 4i) and
(5 + 2i). The code displays them and then tests each of the operators you have just defined,
displaying the results in each case.

 CHAPTER 22 Operator Overloading 527

11. On the DEBUG menu, click Start Without Debugging.

Verify that the application displays the results shown in the following image.

12. Close the application, and return to the Visual Studio 2012 programming environment.

You have now created a type that models complex numbers and supports basic arithmetic
operations. In the next exercise, you will extend the Complex class and provide the equality opera-
tors, == and !=.

Implement the equality operators

1. In Visual Studio 2012, display the Complex.cs file in the Code and Text Editor window.

2. Add the == and != operators to the Complex class as shown below in bold. Notice that these
operators both make use of the Equals method. The Equals method compares an instance of a
class against another instance specified as an argument. It returns true if they have equivalent
values and false otherwise.

class Complex
{
 ...
 public static bool operator ==(Complex lhs, Complex rhs)
 {
 return lhs.Equals(rhs);
 }

 public static bool operator !=(Complex lhs, Complex rhs)
 {
 return !(lhs.Equals(rhs));
 }
}

3. On the BUILD menu, click Rebuild Solution.

The Error List window displays the following warning messages:

'ComplexNumbers.Complex' defines operator == or operator != but does not override
Object.Equals(object o)
'ComplexNumbers.Complex' defines operator == or operator != but does not override
Object.GetHashCode()

If you define the != and == operators, you should also override the Equals and GetHashCode
methods inherited from System.Object.

528 part III Defining Extensible Types with C#

Note If the Error List window is not displayed, on the VIEW menu, click Error List.

4. Override the Equals method in the Complex class as shown below in bold:

class Complex
{
 ...
 public override bool Equals(Object obj)
 {
 if (obj is Complex)
 {
 Complex compare = (Complex)obj;
 return (this.Real == compare.Real) &&
 (this.Imaginary == compare.Imaginary);
 }
 else
 {
 return false;
 }
 }
}

The Equals method takes an Object as a parameter. This code verifies that the type of the
parameter is actually a Complex object. If it is, this code compares the values in the Real and
Imaginary properties in the current instance and the parameter passed in. If they are the
same, the method returns true; it returns false otherwise. If the parameter passed in is not a
Complex object, the method returns false.

Important It is tempting to write the Equals method like this:

public override bool Equals(Object obj)
{
 Complex compare = obj as Complex;
 if (compare != null)
 {
 return (this.Real == compare.Real) &&
 (this.Imaginary == compare.Imaginary);
 }
 else
 {
 return false;
 }
}

However, the expression compare != null invokes the != operator of the Complex
class, which calls the Equals method again, resulting in a recursive loop.

 CHAPTER 22 Operator Overloading 529

5. Override the GetHashCode method. This implementation simply calls the method inherited
from the Object class, but you can provide your own mechanism to generate a hash code for
an object if you prefer.

Class Complex
{
 ...
 public override int GetHashCode()
 {
 return base.GetHashCode();
 }
}

6. On the BUILD menu, click Rebuild Solution.

Verify that the solution now builds without reporting any warnings.

7. Display the Program.cs file in the Code and Text Editor window. Add the following code shown
in bold to the end of the doWork method:

static void doWork()
{
 ...
 if (temp == first)
 {
 Console.WriteLine("Comparison: temp == first");
 }
 else
 {
 Console.WriteLine("Comparison: temp != first");
 }

 if (temp == temp)
 {
 Console.WriteLine("Comparison: temp == temp");
 }
 else
 {
 Console.WriteLine("Comparison: temp != temp");
 }
}

Note The expression temp == temp generates a warning message, “Comparison
made to same variable: did you mean to compare to something else?” In this case,
you can ignore the warning because this comparison is intentional; it is to verify that
the == operator is working as expected.

530 part III Defining Extensible Types with C#

8. On the DEBUG menu, click Start Without Debugging. Verify that the final two messages dis-
played are these:

Comparison: temp != first
Comparison: temp == temp

9. Close the application, and return to Visual Studio 2012.

Understanding Conversion Operators

Sometimes you need to convert an expression of one type to another. For example, the following
method is declared with a single double parameter:

class Example
{
 public static void MyDoubleMethod(double parameter)
 {
 ...
 }
}

You might reasonably expect that only values of type double could be used as arguments when
calling MyDoubleMethod, but this is not so. The C# compiler also allows MyDoubleMethod to be
called with an argument of some other type, but only if the value of the argument can be converted
to a double. For example, if you provide an int argument, the compiler generates code that converts
the value of the argument to a double when the method is called.

providing Built-in Conversions
The built-in types have some built-in conversions. For example, as mentioned previously, an int can be
implicitly converted to a double. An implicit conversion requires no special syntax and never throws an
exception:

Example.MyDoubleMethod(42); // implicit int-to-double conversion

An implicit conversion is sometimes called a widening conversion because the result is wider than
the original value—it contains at least as much information as the original value, and nothing is lost.
In the case of int and double, the range of double is greater than that of int, and all int values have an
equivalent double value. However, the converse is not true, and a double value cannot be implicitly
converted to an int:

 CHAPTER 22 Operator Overloading 531

class Example
{
 public static void MyIntMethod(int parameter)
 {
 ...
 }
}
...
Example.MyIntMethod(42.0); // compile-time error

When you convert a double to an int, you run the risk of losing information, so the conversion
will not be performed automatically. (Consider what would happen if the argument to MyIntMethod
were 42.5—how should this be converted?) A double can be converted to an int, but the conversion
requires an explicit notation (a cast):

Example.MyIntMethod((int)42.0);

An explicit conversion is sometimes called a narrowing conversion because the result is narrower
than the original value (that is, it can contain less information) and may throw an OverflowException
exception if the resulting value is out of the range of the target type. C# allows you to create conver-
sion operators for your own user-defined types to control whether it is sensible to convert values to
other types, and you can also specify whether these conversions are implicit or explicit.

Implementing User-Defined Conversion Operators
The syntax for declaring a user-defined conversion operator has some similarities to that for declar-
ing an overloaded operator, but also some important differences. Here’s a conversion operator that
allows an Hour object to be implicitly converted to an int:

struct Hour
{
 ...
 public static implicit operator int (Hour from)
 {
 return from.value;
 }

 private int value;
}

A conversion operator must be public and it must also be static. The type you are converting from
is declared as the parameter (in this case, Hour), and the type you are converting to is declared as the
type name after the keyword operator (in this case, int). There is no return type specified before the
keyword operator.

532 part III Defining Extensible Types with C#

When declaring your own conversion operators, you must specify whether they are implicit
conversion operators or explicit conversion operators. You do this by using the implicit and explicit
keywords. For example, the Hour to int conversion operator mentioned earlier is implicit, meaning
that the C# compiler can use it without requiring a cast:

class Example
{
 public static void MyOtherMethod(int parameter) { ... }
 public static void Main()
 {
 Hour lunch = new Hour(12);
 Example.MyOtherMethod(lunch); // implicit Hour to int conversion
 }
}

If the conversion operator had been declared explicit, the preceding example would not have com-
piled, because an explicit conversion operator requires a cast:

Example.MyOtherMethod((int)lunch); // explicit Hour to int conversion

When should you declare a conversion operator as explicit or implicit? If a conversion is always
safe, does not run the risk of losing information, and cannot throw an exception, it can be defined
as an implicit conversion. Otherwise, it should be declared as an explicit conversion. Converting from
an Hour to an int is always safe—every Hour has a corresponding int value—so it makes sense for it
to be implicit. An operator that converts a string to an Hour should be explicit because not all strings
represent valid Hours. (The string “7” is fine, but how would you convert the string “Hello, World” to
an Hour?)

Creating Symmetric Operators, revisited
Conversion operators provide you with an alternative way to resolve the problem of providing
symmetric operators. For example, instead of providing three versions of operator + (Hour + Hour,
Hour + int, and int + Hour) for the Hour structure, as shown earlier, you can provide a single version
of operator + (that takes two Hour parameters) and an implicit int to Hour conversion, like this:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }

 public static Hour operator +(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }

 CHAPTER 22 Operator Overloading 533

 public static implicit operator Hour (int from)
 {
 return new Hour (from);
 }
 ...
 private int value;
}

If you add an Hour to an int (in either order), the C# compiler automatically converts the int to an
Hour and then calls operator + with two Hour arguments:

void Example(Hour a, int b)
{
 Hour eg1 = a + b; // b converted to an Hour
 Hour eg2 = b + a; // b converted to an Hour
}

Writing Conversion Operators
In the following exercise, you will add further operators to the Complex class. You will start by writing
a pair of conversion operators that convert between the int type and the Complex type. Convert-
ing an int to a Complex object is always a safe process and never loses information (because an int is
really just a Complex number without an imaginary element). So you will implement this as an implicit
conversion operator. However, the converse is not true—to convert a Complex object into an int, you
have to discard the imaginary element. So you will implement this conversion operator as explicit.

Implement the conversion operators

1. Return to Visual Studio 2012 and display the Complex.cs file in the Code and Text Editor win-
dow. Add the constructor shown below in bold to the Complex class. This constructor takes a
single int parameter, which it uses to initialize the Real property. The Imaginary property is set
to 0.

class Complex
{
 ...
 public Complex(int real)
 {
 this.Real = real;
 this.Imaginary = 0;
 }
 ...
}

2. Add the following implicit conversion operator to the Complex class. This operator converts
from an int to a Complex object by returning a new instance of the Complex class built using
the constructor you created in the previous step.

534 part III Defining Extensible Types with C#

class Complex
{
 ...
 public static implicit operator Complex(int from)

 {

 return new Complex(from);

 }
}

3. Add the following explicit conversion operator shown in bold to the Complex class. This opera-
tor takes a Complex object and returns the value of the Real property. This conversion discards
the imaginary element of the complex number.

class Complex
{
 ...
 public static explicit operator int(Complex from)

 {

 return from.Real;

 }
}

4. Display the Program.cs file in the Code and Text Editor window. Add the following code shown
in bold to the end of the doWork method:

static void doWork()
{
 ...
 Console.WriteLine("Current value of temp is {0}", temp);

 if (temp == 2)

 {

 Console.WriteLine("Comparison after conversion: temp == 2");

 }

 else

 {

 Console.WriteLine("Comparison after conversion: temp != 2");

 }

 temp += 2;

 Console.WriteLine("Value after adding 2: temp = {0}", temp);
}

These statements test the implicit operator that converts an int to a Complex object. The if
statement compares a Complex object to an int. The compiler generates code that converts
the int into a Complex object first and then invokes the == operator of the Complex class. The
statement that adds 2 to the temp variable converts the int value 2 into a Complex object and
then uses the + operator of the Complex class.

5. Add the following statements to end of the doWork method:

 CHAPTER 22 Operator Overloading 535

static void doWork()
{
 ...
 int tempInt = temp;

 Console.WriteLine("Int value after conversion: tempInt == {0}", tempInt);
}

The first statement attempts to assign a Complex object to an int variable.

6. On the BUILD menu, click Rebuild Solution.

The solution fails to build, and the compiler reports the following error in the Error List
window:

Cannot implicitly convert type 'ComplexNumbers.Complex' to 'int'. An explicit
conversion exists (are you missing a cast?)

The operator that converts from a Complex object to an int is an explicit conversion operator,
so you must specify a cast.

7. Modify the statement that attempts to store a Complex value in an int variable to use a cast,
like this:

int tempInt = (int)temp;

8. On the DEBUG menu, click Start Without Debugging. Verify that the solution now builds and
that the final four messages displayed look like this:

Current value of temp is (2 + 0i)
Comparison after conversion: temp == 2
Value after adding 2: temp = (4 + 0i)
Int value after conversion: tempInt == 4

9. Close the application, and return to Visual Studio 2012.

Summary

In this chapter, you learned how to overload operators and provide functionality specific to a class or
structure. You implemented a number of common arithmetic operators, and you also created opera-
tors that enable you to compare instances of a class. Finally, you learned how to create implicit and
explicit conversion operators.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 23.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

536 part III Defining Extensible Types with C#

Chapter 22 Quick Reference

To Do this

Implement an operator Write the keywords public and static, followed by the return type, followed by the
operator keyword, followed by the operator symbol being declared, followed by the
appropriate parameters between parentheses. Implement the logic for the operator
in the body of the method. For example:

class Complex
{
 ...
 public static bool operator==(Complex lhs, Complex rhs)
 {
 ... // Implement logic for == operator
 }
 ...
}

Define a conversion operator Write the keywords public and static, followed by the keyword implicit or explicit,
followed by the operator keyword, followed by the type being converted to, followed
by the type being converted from as a single parameter between parentheses. For
example:

class Complex
{
 ...
 public static implicit operator Complex(int from)
 {
 ... // code to convert from an int
 }
 ...
}

 537

PART IV

Building Professional
Windows 8
Applications with C#

The first three parts of this book focused on how to use
C# to build applications and components. You now have a
thorough grounding in the syntax and semantics of the C#
language, so it is time to move on and examine how you
can use this knowledge to take advantage of the features
that Microsoft Windows 8 provides for building professional,
responsive, great-looking applications.

With some minor exceptions, the content presented so far
has been largely independent of the version of Windows you
are using; all the examples and exercises have been tested
and verified against Microsoft Windows 7 and Windows
8. The only requirement is that you have Microsoft Visual
Studio 2012 and the Microsoft .NET Framework version 4.5
installed on your computer. While Windows 7 provides a
powerful platform for running software on a range of hard-
ware, from high-end servers through desktop machines and
laptop computers, Windows 8 has been designed specifi-
cally to take advantage of the next generation of mobile
devices, and many users running Windows 8 software will
likely be doing so on a tablet computer or smartphone.
Consequently, the consumer version of Windows 8 has been
optimized to support the styles of applications that users
are likely to run in this environment. In particular, Windows
8 can receive input from the user through a touch-sensitive

screen, and it is also aware of the location and orientation of
the device on which it is running (if the hardware provides
the appropriate positional sensors and accelerometers). The
networking capabilities of Windows 8 enable you to build
roaming, cloud-connected applications—applications that
are not tied to a specific computer but that can follow users
when they sign in on another device. The new style of user
interface implemented by Windows 8 provides a framework
for constructing compelling, interactive applications that can
incorporate all of these features. Additionally, the Windows 8
graphical interface is built on top of Direct3D hardware, ac-
cessed by using the DirectX APIs, and the operating system
provides libraries, enabling you to build fast and fluid graphi-
cal applications and games. In short, Windows 8 is intended
to provide the platform for highly mobile, highly graphical,
highly connected applications. Developers can make these
applications publicly available by publishing them to the
Windows Store. Therefore, applications that use the new
model defined by Windows 8 are called Windows Store apps.

It would be remiss of a book such as this not to provide
an introduction to building applications that use the specific
features of Windows 8, and that is the purpose of this final
part (the previous edition of this book covered many of the
equivalent topics for Windows 7, concentrating on build-
ing Windows Presentation Foundation applications). While
some of the content in Chapters 23 and 24 is applicable to
Windows 7, the primary focus of this section is on building
Windows 8 applications. In this part, you will be introduced
to the asynchronous model of programming initially de-
veloped as part of the .NET Framework 4.0, now extended
in the .NET Framework 4.5 and integrated into C# through
the async and await keywords. You will also learn a lot more
about the templates provided with Visual Studio 2012 to
help you build Windows 8 applications and how to use these

 539

templates to format and display data in an intuitive manner.
Finally, you will see how to build a Windows 8 application
that uses the new features of the operating system and user
interface to retrieve and present complex information in a
natural and easily navigable style.

 541

C H A P T E R 2 3

Improving throughput
by Using tasks

After completing the chapter, you will be able to

■■ Describe the benefits that implementing parallel operations in an application can bring.

■■ Use the Task class to create and run parallel operations in an application.

■■ Use the Parallel class to parallelize some common programming constructs.

■■ Cancel long-running tasks and handle exceptions raised by parallel operations.

In the bulk of the preceding chapters in this book, you learned how to use C# to write programs that
run in a single-threaded manner. By single-threaded, I mean that at any one point in time, a program
has been executing a single instruction. This might not always be the most efficient approach for
an application to take. Applications that can perform multiple operations at the same time may be
able to make better use of the resources available on a computer. Some processes might run more
quickly if you can divide them into parallel paths of execution that can run concurrently. This chapter
is concerned with improving throughput in your applications by maximizing the use of the available
processing power. Specifically, in this chapter, you will learn how to use the Task objects to apply
effective multitasking to computationally intensive applications.

Why Perform Multitasking by Using Parallel Processing?

There are two primary reasons you might want to perform multitasking in an application:

■■ To improve responsiveness You can give the user of an application the impression that the
program is performing more than one task at a time by dividing the program up into concur-
rent threads of execution and allowing each thread to run in turn for a short period of time.
This is the conventional cooperative model that many experienced Windows developers are
familiar with. However, this is not true multitasking because the processor is shared between
threads, and the cooperative nature of this approach requires that the code executed by each
thread behave in an appropriate manner. If one thread dominates the CPU and resources
available at the expense of other threads, the advantages of this approach are lost. It is
sometimes difficult to write well-behaved applications that follow this model consistently.

542 part IV Building professional Windows 8 applications with C#

However, a major aim of Windows 8 was to provide a platform that addresses these issues,
and the Windows Runtime (WinRT) that implements the execution environment for Windows
8 supplies many APIs that are geared toward this mode of operation. Chapter 24, “Improving
Response Time by Performing Asynchronous Operations,” discusses these features in more
detail.

■■ To improve scalability You can improve scalability by making efficient use of the processing
resources available and using these resources to reduce the time required to execute parts of
an application. A developer can determine which parts of an application can be performed
in parallel and arrange for them to be run concurrently. As more computing resources are
added, more operations can be run in parallel. Until relatively recently, this model was suit-
able only for systems that either had multiple CPUs or were able to spread the processing
across different computers networked together. In both cases, you had to use a model that
arranged for coordination between parallel tasks. Microsoft provides a specialized version of
Windows called High Performance Computing (HPC) Server 2008, which enables an organiza-
tion to build clusters of servers that can distribute and execute tasks in parallel. Developers
can use the Microsoft implementation of the Message Passing Interface (MPI), a well-known
language-independent communications protocol, to build applications based on parallel tasks
that coordinate and cooperate with each other by sending messages. Solutions based on
Windows HPC Server 2008 and MPI are ideal for large-scale, compute-bound engineering and
scientific applications, but they are unsuitable for smaller-scale systems running on desktop or
tablet computers.

From these descriptions, you might be tempted to conclude that the most cost-effective way to
build multitasking solutions for desktop computers and mobile devices is to use the cooperative multi-
threaded approach. However, this mechanism was simply intended to improve responsiveness—to
enable computers with a single processor to ensure that each task got a fair share of that processor. It
is not well-suited for multiprocessor machines because it is not designed to distribute the load across
processors and, consequently, does not scale well. When desktop machines with multiple processors
were expensive (and as a result relatively rare), this was not an issue. However, this situation is chang-
ing, as I will briefly explain.

the rise of the Multicore processor
Just over 10 years ago, the cost of a decent personal computer was in the range of $800 to $1,500.
Today, a decent personal computer still costs about the same, even after 10 years of price infla-
tion. The specification of a typical PC these days is likely to include a processor running at a speed
of between 2 GHz and 3 GHz, 500–1,000 GB of hard disk storage, 4–8 GB of RAM, high-speed and
high-resolution graphics, and a rewritable DVD drive. A decade ago, the processor speed for a typical
machine was between 500 MHz and 1 GHz, 80 GB was a big hard drive, Windows ran quite happily
with 256 MB or less of RAM, and rewritable CD drives cost well over $100. (Rewritable DVD drives
were rare and extremely expensive.) This is the joy of technological progress: ever faster and more
powerful hardware at cheaper and cheaper prices.

 CHAPTER 23 Improving Throughput by Using Tasks 543

This is not a new trend. In 1965, Gordon E. Moore, cofounder of Intel, wrote a paper titled
“Cramming More Components onto Integrated Circuits,” which discussed how the increasing min-
iaturization of components enabled more transistors to be embedded on a silicon chip, and how
the falling costs of production as the technology became more accessible would lead economics
to dictate squeezing as many as 65,000 components onto a single chip by 1975. Moore’s observa-
tions led to the dictum frequently referred to as Moore’s Law, which basically states that the number
of transistors that can be placed inexpensively on an integrated circuit will increase exponentially,
doubling approximately every two years. (Actually, Gordon Moore was more optimistic than this
initially, postulating that the volume of transistors was likely to double every year, but he later modi-
fied his calculations.) The ability to pack transistors together led to the ability to pass data between
them more quickly. This meant we could expect to see chip manufacturers produce faster and more
powerful microprocessors at an almost unrelenting pace, enabling software developers to write ever
more complicated software that would run more quickly.

Moore’s Law concerning the miniaturization of electronic components still holds, even after nearly
50 years. However, physics has started to intervene. There comes a limit when it is not possible to
transmit signals between transistors on a single chip any faster, no matter how small or densely
packed they are. To a software developer, the most noticeable result of this limitation is that proces-
sors have stopped getting faster. Six or seven years ago, a fast processor ran at 3 GHz. Today, a fast
processor still runs at 3 GHz.

The limit to the speed at which processors can transmit data between components has caused
chip companies to look at alternative mechanisms for increasing the amount of work a processor
can do. The result is that most modern processors now have two or more processor cores. Effectively,
chip manufacturers have put multiple processors on the same chip and added the necessary logic to
enable them to communicate and coordinate with each other. Dual-core processors (two cores) and
quad-core processors (four cores) are now common. Chips with 8, 16, 32, and 64 cores are available,
and the price of dual-core and quad-core processors is now sufficiently low that they are an expected
element in laptop and even tablet computers. So, although processors have stopped speeding up,
you can now expect to get more of them on a single chip.

What does this mean to a developer writing C# applications? In the days before multicore proces-
sors, a single-threaded application could be sped up simply by running it on a faster processor. With
multicore processors, this is no longer the case. A single-threaded application will run at the same
speed on a single-core, dual-core, or quad-core processor that all have the same clock frequency. The
difference is that on a dual-core processor, as far as your application is concerned, one of the proces-
sor cores will be sitting around idle, and on a quad-core processor, three of the cores will be simply
ticking over waiting for work. To make the best use of multicore processors, you need to write your
applications to take advantage of multitasking.

544 part IV Building professional Windows 8 applications with C#

Implementing Multitasking with the .NET Framework

Multitasking is the ability to do more than one thing at the same time. It is one of those concepts that
is easy to describe but that, until recently, has been difficult to implement.

In the optimal scenario, an application running on a multicore processor performs as many concur-
rent tasks as there are processor cores available, keeping each of the cores busy. However, there are
many issues you have to consider to implement concurrency, including the following:

■■ How can you divide an application into a set of concurrent operations?

■■ How can you arrange for a set of operations to execute concurrently, on multiple processors?

■■ How can you ensure that you attempt to perform only as many concurrent operations as there
are processors available?

■■ If an operation is blocked (such as while it is waiting for I/O to complete), how can you detect
this and arrange for the processor to run a different operation rather than sit idle?

■■ How can you determine when one or more concurrent operations have completed?

To an application developer, the first question is a matter of application design. The remaining
questions depend on the programmatic infrastructure. Microsoft provides the Task class and a collec-
tion of associated types in the System.Threading.Tasks namespace to help address these issues.

tasks, threads, and the threadpool
The Task class is an abstraction of a concurrent operation. You create a Task object to run a block of
code. You can instantiate multiple Task objects and start them running in parallel if sufficient proces-
sors or processor cores are available.

Note From now on, I will use the term processor to refer to either a single-core processor
or a single processor core on a multicore processor.

Internally, the common language runtime (CLR) implements tasks and schedules them for execu-
tion by using Thread objects and the ThreadPool class. Multithreading and thread pools have been
available with the .NET Framework since version 1.0, and if you are building traditional desktop
applications, you can use the Thread class in the System.Threading namespace directly in your code.
However, the Thread class is not available for Windows Store apps; instead, you use the Task class.

The Task class provides a powerful abstraction for threading that enables you to easily distinguish
between the degree of parallelization in an application (the tasks) and the units of parallelization (the
threads). On a single-processor computer, these items are usually the same. However, on a computer
with multiple processors or with a multicore processor, they are different. If you design a program
based directly on threads, you will find that your application might not scale very well; the program

 CHAPTER 23 Improving Throughput by Using Tasks 545

will use the number of threads you explicitly create, and the operating system will schedule only that
number of threads. This can lead to overloading and poor response time if the number of threads
greatly exceeds the number of available processors, or to inefficiency and poor throughput if the
number of threads is fewer than the number of processors.

The CLR optimizes the number of threads required to implement a set of concurrent tasks and
schedules them efficiently according to the number of available processors. It implements a queuing
mechanism to distribute the workload across a set of threads allocated to a thread pool (implemented
by using a ThreadPool object). When a program creates a Task object, the task is added to a global
queue. When a thread becomes available, the task is removed from the global queue and is executed
by that thread. The ThreadPool class implements a number of optimizations and uses a work-stealing
algorithm to ensure that threads are scheduled efficiently.

Note The ThreadPool class was available in previous editions of the .NET Framework, but it
was enhanced significantly in the .NET Framework 4.0 to support Tasks.

You should note that the number of threads created by the CLR to handle your tasks is not nec-
essarily the same as the number of processors. Depending on the nature of the workload, one or
more processors might be busy performing high-priority work for other applications and services.
Consequently, the optimal number of threads for your application might be less than the number
of processors in the machine. Alternatively, one or more threads in an application might be waiting
for long-running memory access, I/O, or a network operation to complete, leaving the correspond-
ing processors free. In this case, the optimal number of threads might be more than the number
of available processors. The CLR follows an iterative strategy, known as a hill-climbing algorithm, to
dynamically determine the ideal number of threads for the current workload.

The important point is that all you have to do in your code is divide, or partition, your application
into tasks that can be run in parallel. The CLR takes responsibility for creating the appropriate number
of threads based on the processor architecture and workload of your computer, associating your tasks
with these threads and arranging for them to be run efficiently. It does not matter if you partition
your work into too many tasks because the CLR will attempt to run only as many concurrent threads
as is practical; in fact, you are encouraged to overpartition your work because this will help to ensure
that your application scales if you move it onto a computer that has more processors available.

Creating, running, and Controlling tasks
You can create Task objects by using the Task constructor. The Task constructor is overloaded, but
all versions expect you to provide an Action delegate as a parameter. Remember from Chapter 20,
“Decoupling Application Logic and Handling Events,” that an Action delegate references a method
that does not return a value. A Task object invokes this delegate when it is scheduled to run. The fol-
lowing example creates a Task object that uses a delegate to run the method called doWork:

546 part IV Building professional Windows 8 applications with C#

Task task = new Task(doWork);
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}

tip The default Action type references a method that takes no parameters. Other over-
loads of the Task constructor take an Action<object> parameter representing a delegate
that refers to a method that takes a single object parameter. These overloads enable you to
pass data into the method run by the task. The following code shows an example:

Action<object> action;
action = doWorkWithObject;
object parameterData = ...;
Task task = new Task(action, parameterData);
...
private void doWorkWithObject(object o)
{
 ...
}

After you create a Task object, you can set it running by using the Start method, like this:

Task task = new Task(...);
task.Start();

The Start method is also overloaded, and you can optionally specify a TaskScheduler object to
control the degree of concurrency and other scheduling options. You can obtain a reference to
the default TaskScheduler object by using the static Default property of the TaskScheduler class.
The TaskScheduler class also provides the static Current property, which returns a reference to the
TaskScheduler object currently used. (This TaskScheduler object is used if you do not explicitly specify
a scheduler.) A task can provide hints to the default TaskScheduler about how to schedule and run the
task if you specify a value from the TaskCreationOptions enumeration in the Task constructor.

Note For more information about the TaskScheduler class and the TaskCreationOptions
enumeration, consult the documentation describing the .NET Framework class library
provided with Visual Studio.

Creating and running a task is a very common process, and the Task class provides the static Run
method that enables you to combine these operations. The Run method takes an Action delegate
specifying the operation to perform (like the Task constructor), but it starts the task running immedi-
ately. It returns a reference to the Task object. You can use it like this:

Task task = Task.Run(() => doWork());

 CHAPTER 23 Improving Throughput by Using Tasks 547

When the method run by the task completes, the task finishes, and the thread used to run the task
can be recycled to execute another task.

When a task completes, you can arrange for another task to be scheduled immediately by creating
a continuation. To do this, call the ContinueWith method of a Task object. When the action performed
by the Task object completes, the scheduler automatically creates a new Task object to run the action
specified by the ContinueWith method. The method specified by the continuation expects a Task
parameter, and the scheduler passes in a reference to the task that completed to the method. The
value returned by ContinueWith is a reference to the new Task object. The following code example
creates a Task object that runs the doWork method and specifies a continuation that runs the
doMoreWork method in a new task when the first task completes:

Task task = new Task(doWork);
task.Start();
Task newTask = task.ContinueWith(doMoreWork);
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}
...
private void doMoreWork(Task task)
{
 // The continuation runs this code when doWork completes
 ...
}

The ContinueWith method is heavily overloaded, and you can provide a number of parameters
that specify additional items, such as the TaskScheduler to use and a TaskContinuationOptions value.
The TaskContinuationOptions type is an enumeration that contains a superset of the values in the
TaskCreationOptions enumeration. The additional values available include the following:

■■ NotOnCanceled and OnlyOnCanceled The NotOnCanceled option specifies that the
continuation should run only if the previous action completes and is not canceled, and the
OnlyOnCanceled option specifies that the continuation should run only if the previous action
is canceled. The section “Canceling Tasks and Handling Exceptions” later in this chapter
describes how to cancel a task.

■■ NotOnFaulted and OnlyOnFaulted The NotOnFaulted option indicates that the continu-
ation should run only if the previous action completes and does not throw an unhandled
exception. The OnlyOnFaulted option causes the continuation to run only if the previous
action throws an unhandled exception. The section “Canceling Tasks and Handling Exceptions”
provides more information on how to manage exceptions in a task.

■■ NotOnRanToCompletion and OnlyOnRanToCompletion The NotOnRanToCompletion
option specifies that the continuation should run only if the previous action does not com-
plete successfully; it must either be canceled or throw an exception. OnlyOnRanToCompletion
causes the continuation to run only if the previous action completes successfully.

548 part IV Building professional Windows 8 applications with C#

The following code example shows how to add a continuation to a task that runs only if the initial
action does not throw an unhandled exception:

Task task = new Task(doWork);
task.ContinueWith(doMoreWork, TaskContinuationOptions.NotOnFaulted);
task.Start();

A common requirement of applications that invoke operations in parallel is to synchronize tasks.
The Task class provides the Wait method, which implements a simple task coordination mechanism. It
enables you to suspend execution of the current thread until the specified task completes, like this:

task2.Wait(); // Wait at this point until task2 completes

You can wait for a set of tasks by using the static WaitAll and WaitAny methods of the Task class.
Both methods take a params array containing a set of Task objects. The WaitAll method waits until
all specified tasks have completed, and WaitAny stops until at least one of the specified tasks has
finished. You use them like this:

Task.WaitAll(task, task2); // Wait for both task and task2 to complete
Task.WaitAny(task, task2); // Wait for either task or task2 to complete

Using the task Class to Implement parallelism
In the next exercise, you will use the Task class to parallelize processor-intensive code in an applica-
tion, and you will see how this parallelization reduces the time taken for the application to run by
spreading the computations across multiple processor cores.

The application, called GraphDemo, consists of a page that uses an Image control to display a
graph. The application plots the points for the graph by performing a complex calculation.

Note The exercises in this chapter are intended to run on a computer with a multicore
processor. If you have only a single-core CPU, you will not observe the same effects. Also,
you should not start any additional programs or services between exercises because these
might affect the results that you see.

examine and run the GraphDemo single-threaded application

1. Start Microsoft Visual Studio 2012 if it is not already running.

2. Open the GraphDemo solution, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 23\GraphDemo folder in your Documents folder. This is a Windows Store app.

3. In Solution Explorer, in the GraphDemo project, double-click the file GraphWindow.xaml to display
the form in the Design View window.

 CHAPTER 23 Improving Throughput by Using Tasks 549

Apart from the Grid control defining the layout, the form contains the following important
controls:

• An Image control called graphImage. This image control displays the graph rendered by
the application.

• A Button control called plotButton. The user clicks this button to generate the data for the
graph and display it in the graphImage control.

Note This application displays the button on the page, to keep the operation of the
application in this exercise simple. In a production Windows Store app, buttons such
as this should be located on the app toolbar.

• A TextBlock control called duration. The application displays the time taken to generate and
render the data for the graph in this label.

4. In Solution Explorer, expand the GraphWindow.xaml file, and then double-click GraphWindow.
xaml.cs to display the code for the form in the Code and Text Editor window.

The form uses a WriteableBitmap object (defined in the Windows.UI.Xaml.Media.Imaging
namespace) called graphBitmap to render the graph. The variables pixelWidth and pixelHeight
specify the horizontal and vertical resolution, respectively, for the WriteableBitmap object:

public partial class GraphWindow : Window
{
 // Reduce pixelWidth and pixelHeight if there is insufficient space available
 private int pixelWidth = 12000;
 private int pixelHeight = 8000;

 private WriteableBitmap graphBitmap = null;
 ...
}

Note This application has been tested on a tablet computer with 2 GB of memory.
If your computer has less memory than this available, you may need to reduce the
values in the pixelWidth and pixelHeight variables; otherwise, the application might
generate OutOfMemoryException exceptions. Similarly, if you have much more
memory available, you might want to increase the values of these variables to see
the full effects of this exercise.

5. Examine the last three lines of the GraphWindow constructor, which look like this:

550 part IV Building professional Windows 8 applications with C#

public GraphWindow()
{
 ...
 int dataSize = bytesPerPixel * pixelWidth * pixelHeight;
 data = new byte[dataSize];

 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight);
}

The first two lines instantiate a byte array that will hold the data for the graph. The size of this
array depends on the resolution of the WriteableBitmap object, determined by the pixelWidth
and pixelHeight fields. Additionally, this size has to be scaled by the amount of memory
required to render each pixel; the WriteableBitmap class uses 4 bytes for each pixel, to specify
the relative red, green, and blue intensity of each pixel and the alpha blending value of the
pixel (the alpha blending value determines the transparency and brightness of the pixel).

The final statement creates the WriteableBitmap object with the specified resolution.

6. Examine the code for the plotButton_Click method:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 Random rand = new Random();
 redValue = (byte)rand.Next(0xFF);
 greenValue = (byte)rand.Next(0xFF);
 blueValue = (byte)rand.Next(0xFF);

 Stopwatch watch = Stopwatch.StartNew();
 generateGraphData(data);

 duration.Text = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);

 Stream pixelStream = graphBitmap.PixelBuffer.AsStream();
 pixelStream.Seek(0, SeekOrigin.Begin);
 pixelStream.Write(data, 0, data.Length);
 graphBitmap.Invalidate();
 graphImage.Source = graphBitmap;
}

This method runs when the user clicks the plotButton button.

You will click this button several times later in the exercise, so that you can see that a new ver-
sion of the graph has been drawn each time this method generates a random set of values for
the red, green, and blue intensity of the points that are plotted (the graph will be a different
color each time you click this button).

The watch variable is a System.Diagnostics.Stopwatch object. The StopWatch type is useful for
timing operations. The static StartNew method of the StopWatch type creates a new instance
of a StopWatch object and starts it running. You can query the running time of a StopWatch
object by examining the ElapsedMilliseconds property.

The generateGraphData method populates the data array with the data for the graph to be
displayed by the WriteableBitmap object. You will examine this method in the next step.

 CHAPTER 23 Improving Throughput by Using Tasks 551

When the generateGraphMethod method has completed, the elapsed time (in milliseconds) is
displayed in the duration TextBox control.

The final block of code takes the information held in the data array and copies it to the
WriteableBitmap object for rendering. The simplest technique is to create an in-memory
stream that can be used to populate the PixelBuffer property of the WriteableBitmap object.
You can then use the Write method of this stream to copy the contents of the data array into
this buffer. The Invalidate method of the WriteableBitmap class requests that the operating
system redraw the bitmap using the information held in the buffer. The Source property of an
Image control specifies the data that the Image control should display. The final statement sets
the Source property to the WriteableBitmap object.

7. Examine the code for the generateGraphData method:

private void generateGraphData(byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = 0; x < a; x ++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

This method performs a series of calculations to plot the points for a rather complex graph.
(The actual calculation is unimportant—it just generates a graph that looks attractive.) As it
calculates each point, it calls the plotXY method to set the appropriate bytes in the data array
that correspond to these points. The points for the graph are reflected around the x-axis,
so the plotXY method is called twice for each calculation: once for the positive value of the
x-coordinate and once for the negative value.

8. Examine the plotXY method:

private void plotXY(byte[] data, int x, int y)
{
 int pixelIndex = (x + y * pixelWidth) * bytesPerPixel;
 data[pixelIndex] = blueValue;
 data[pixelIndex + 1] = greenValue;
 data[pixelIndex + 2] = redValue;
 data[pixelIndex + 3] = 0xBF;
}

552 part IV Building professional Windows 8 applications with C#

This method sets the appropriate bytes in the data array that corresponds to x- and
y-coordinates passed in as parameters. Each point plotted corresponds to a pixel, and each
pixel consists of 4 bytes as described earlier. Any pixels left unset are displayed as black.
The value 0xBF for the alpha blend byte indicates that the corresponding pixel should be
displayed with a moderate intensity; if you decrease this value, the pixel will become fainter,
while setting the value to 0xFF (the maximum value for a byte) will display the pixel with its
brightest intensity.

9. On the DEBUG menu, click Start Debugging to build and run the application.

10. When the Graph Demo window appears, click Plot Graph, and then wait.

Please be patient. The application takes several seconds to generate and display the graph, and
the application is unresponsive while this occurs (you will see why this is in Chapter 24, and you will
also see how to avoid this behavior). The following image shows the graph. Note the value in the
Duration (ms) label in the following figure. In this case, the application took 4,938 milliseconds (ms)
to plot the graph. Note that this duration does not include the time to actually render the graph,
which may be another few seconds.

Note The application was run on a computer with 4 GB of memory and a quad-core
processor running at 2.40 GHz. Your times might vary if you are using a slower or
faster processor with a different number of cores, or a computer with a greater or
lesser amount of memory.

 CHAPTER 23 Improving Throughput by Using Tasks 553

11. Click Plot Graph again, and take note of the time taken. Repeat this action several times to get
an average value.

Note You might find that occasionally it takes an extended time for the graph to
appear (more than 30 seconds). This tends to occur if you are running close to the
memory capacity of your computer and Windows 8 has to page data between
memory and disk. If you encounter this phenomenon, discard this time and do not
include it when calculating your average.

12. Leave the application running and switch to the desktop. Right-click an empty area of the
taskbar, and then click Task Manager in the pop-up menu.

13. In the Task Manager window, click More details, click the Performance tab, and display the CPU utili-
zation. If the Performance tab is not visible, click More Details, and then it should appear. Right-click
the CPU Utilization graph, point to Change Graph To, and then click Overall Utilization. This action
causes Task Manager to display the utilization of all the processor cores running on your computer
in a single graph. The following image shows the Performance tab of Task Manager configured in
this way:

554 part IV Building professional Windows 8 applications with C#

14. Return to the Graph Demo application, and adjust the display to show the application in the
main part of the screen with the desktop appearing in Snapped view. Make sure that you can
see the Task Manager window displaying the CPU utilization in Snapped view (shown high-
lighted in the following image).

Note To display the desktop in Snapped view, click in the top-left of the screen, and
then drag the image of the desktop that appears down and to the right. If you have
a touch-sensitive screen, you can use your finger instead of the mouse.

By default, you can use the snap feature of Windows 8 only with screens that have
a resolution of 1366 × 768 and above. If you have a screen resolution less than this,
you will need to switch between the GraphDemo application and the desktop to see
Task Manager in the following steps. You can do this by clicking (or tapping, if you
have a touch-sensitive screen) in the top-left of the screen.

15. Wait for the CPU utilization to level off, and then in the Graph Demo window, click Plot Graph.

16. Wait for the CPU utilization to level off again, and then click Plot Graph again.

17. Repeat Step 16 several times, waiting for the CPU utilization to level off between clicks.

18. Switch to the Task Manager window and examine the CPU utilization. Your results will vary, but on
a dual-core processor, the CPU utilization will probably be somewhere around 50–55 percent while
the graph was being generated. On a quad-core machine, the CPU utilization will likely be below 30
percent, as shown in the following image. Note that other factors, such as the type of graphics card
in your computer, may also impact the performance:

 CHAPTER 23 Improving Throughput by Using Tasks 555

19. Return to Visual Studio 2012 and stop debugging.

You now have a baseline for the time the application takes to perform its calculations. However, it is clear
from the CPU usage displayed by Task Manager that the application is not making full use of the processing
resources available. On a dual-core machine, it is using just over half of the CPU power, and on a quad-core
machine, it is employing a little over a quarter of the CPU. This phenomenon occurs because the applica-
tion is single-threaded, and in a Windows application, a single thread can occupy only a single core on a
multicore processor. To spread the load over all the available cores, you need to divide the application into
tasks and arrange for each task to be executed by a separate thread running on a different core. This is what
you will do in the following exercise.

Modify the GraphDemo application to use Task objects

1. Return to Visual Studio 2012, and display the GraphWindow.xaml.cs file in the Code and Text Editor
window if it is not already open.

2. Examine the generateGraphData method.

The purpose of this method is to populate the items in the data array. It iterates through
the array by using the outer for loop based on the x loop control variable, highlighted in
bold here:

556 part IV Building professional Windows 8 applications with C#

private void generateGraphData(byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = 0; x < a; x ++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

The calculation performed by one iteration of this loop is independent of the calculations
performed by the other iterations. Therefore, it makes sense to partition the work performed
by this loop and run different iterations on a separate processor.

3. Modify the definition of the generateGraphData method to take two additional int parameters
called partitionStart and partitionEnd, as shown in bold below:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd)
{
 ...
}

4. In the generateGraphData method, change the outer for loop to iterate between the values of
partitionStart and partitionEnd, as shown in bold below:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd)
{
 ...
 for (int x = partitionStart; x < partitionEnd; x ++)
 {
 ...
 }
}

5. In the Code and Text Editor window, add the following using directive to the list at the top of
the GraphWindow.xaml.cs file:

using System.Threading.Tasks;

 CHAPTER 23 Improving Throughput by Using Tasks 557

6. In the plotButton_Click method, comment out the statement that calls the generateGraphData
method and add the statement shown below in bold that creates a Task object and starts it
running:

...
Stopwatch watch = Stopwatch.StartNew();
// generateGraphData(data);
Task first = Task.Run(() => generateGraphData(data, 0, pixelWidth / 4));
...

The task runs the code specified by the lambda expression. The values for the partitionStart
and partitionEnd parameters indicate that the Task object calculates the data for the first
half of the graph. (The data for the complete graph consists of points plotted for the values
between 0 and pixelWidth / 2.)

7. Add another statement that creates and runs a second Task object on another thread, as
shown in bold below:

...
Task first = Task.Run(() => generateGraphData(data, 0, pixelWidth / 4));
Task second = Task.Run(() => generateGraphData(data, pixelWidth / 4, pixelWidth / 2));

...

This Task object invokes the generateGraph method and calculates the data for the values
between pixelWidth / 4 and pixelWidth / 2.

8. Add the following statement shown in bold that waits for both Task objects to complete their
work before continuing:

Task second = Task.Run(() => generateGraphData(data, pixelWidth / 4, pixelWidth / 2));
Task.WaitAll(first, second);
...

9. On the DEBUG menu, click Start Debugging to build and run the application. Adjust the
display to show the application in the main part of the screen with the desktop appearing in
Snapped view. As before, make sure that you can see the Task Manager window displaying the
CPU utilization in Snapped view.

10. In the Graph Demo window, click Plot Graph. In the Task Manager window, wait for the CPU
utilization to level off.

11. Repeat step 10 several more times, waiting for the CPU utilization to level off between clicks.
Make a note of the duration recorded each time you click the button and calculate the
average.

You should see that the application runs significantly quicker than it did previously. On my
computer, the typical time dropped to 2,951 milliseconds—a reduction in time of about
40 percent.

558 part IV Building professional Windows 8 applications with C#

In most cases, the time required to perform the calculations will have nearly halved, but the
application still has some single-threaded elements, such as the logic that actually displays the
graph after the data has been generated. This is why the overall time is still more than half the
time taken by the previous version of the application.

12. Switch to the Task Manager window.

You should see that the application uses more cores of the CPU. On my quad-core machine,
the CPU usage peaked at approximately 50 percent each time I clicked Plot Graph. This is
because the two tasks were each run on separate cores, but the remaining two cores were left
unoccupied. If you have a dual-core machine, you will likely see processor utilization briefly
reach 100 percent each time the graph is generated.

If you have a quad-core computer, you can increase the CPU utilization and reduce the
time further by adding two more Task objects and dividing the work into four chunks in the
plotButton_Click method, as shown in bold below:

 CHAPTER 23 Improving Throughput by Using Tasks 559

...
Task first = Task.Run(() => generateGraphData(data, 0, pixelWidth / 8));
Task second = Task.Run(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4));
Task third = Task.Run(() => generateGraphData(data, pixelWidth / 4,
pixelWidth * 3 / 8));
Task fourth = Task.Run(() => generateGraphData(data, pixelWidth * 3 / 8,
pixelWidth / 2));
Task.WaitAll(first, second, third, fourth);
...

If you have only a dual-core processor, you can still try this modification, and you should
notice a small beneficial effect on the time. This is primarily because of the way in which the
algorithms used by the CLR optimize the way in which the threads for each task are scheduled.

abstracting tasks by Using the parallel Class
By using the Task class, you have complete control over the number of tasks your application creates.
However, you had to modify the design of the application to accommodate the use of Task objects.
You also had to add code to synchronize operations; the application can render the graph only when
all the tasks have completed. In a complex application, synchronization of tasks can become a non-
trivial process and it is easy to make mistakes.

The Parallel class enables you to parallelize some common programming constructs without
requiring that you redesign an application. Internally, the Parallel class creates its own set of Task
objects, and it synchronizes these tasks automatically when they have completed. The Parallel class is
located in the System.Threading.Tasks namespace and provides a small set of static methods you can
use to indicate that code should be run in parallel if possible. These methods are as follows:

■■ Parallel.For You can use this method in place of a C# for statement. It defines a loop in which
iterations can run in parallel by using tasks. This method is heavily overloaded (there are nine
variations), but the general principle is the same for each: you specify a start value, an end
value, and a reference to a method that takes an integer parameter. The method is executed
for every value between the start value and one below the end value specified, and the
parameter is populated with an integer that specifies the current value. For example, consider
the following simple for loop that performs each iteration in sequence:

for (int x = 0; x < 100; x++)
{
 // Perform loop processing
}

Depending on the processing performed by the body of the loop, you might be able to
replace this loop with a Parallel.For construct that can perform iterations in parallel, like this:

560 part IV Building professional Windows 8 applications with C#

Parallel.For(0, 100, performLoopProcessing);
...
private void performLoopProcessing(int x)
{
 // Perform loop processing
}

The overloads of the Parallel.For method enable you to provide local data that is private to
each thread, specify various options for creating the tasks run by the For method, and create a
ParallelLoopState object that can be used to pass state information to other concurrent itera-
tions of the loop. (Using a ParallelLoopState object is described later in this chapter.)

■■ Parallel.ForEach<T> You can use this method in place of a C# foreach statement. Like the
For method, ForEach defines a loop in which iterations can run in parallel. You specify a collec-
tion that implements the IEnumerable<T> generic interface and a reference to a method that
takes a single parameter of type T. The method is executed for each item in the collection, and
the item is passed as the parameter to the method. Overloads are available that enable you to
provide private local thread data and specify options for creating the tasks run by the ForEach
method.

■■ Parallel.Invoke You can use this method to execute a set of parameterless method calls as
parallel tasks. You specify a list of delegated method calls (or lambda expressions) that take
no parameters and do not return values. Each method call can be run on a separate thread, in
any order. For example, the following code makes a series of method calls:

doWork();
doMoreWork();
doYetMoreWork();

You can replace these statements with the following code, which invokes these methods by
using a series of tasks:

Parallel.Invoke(
 doWork,
 doMoreWork,
 doYetMoreWork
);

You should bear in mind that the Parallel class determines the actual degree of parallelism appro-
priate for the environment and workload of the computer. For example, if you use Parallel.For to
implement a loop that performs 1,000 iterations, the Parallel class does not necessarily create 1,000
concurrent tasks (unless you have an exceptionally powerful processor with 1,000 cores). Instead, the
Parallel class creates what it considers to be the optimal number of tasks that balances the available
resources against the requirement to keep the processors occupied. A single task might perform
multiple iterations, and the tasks coordinate with each other to determine which iterations each task
will perform. An important consequence of this is that you cannot guarantee the order in which the

 CHAPTER 23 Improving Throughput by Using Tasks 561

iterations are executed, so you must ensure there are no dependencies between iterations; otherwise,
you might get unexpected results, as you will see later in this chapter.

In the next exercise, you will return to the original version of the GraphData application and use
the Parallel class to perform operations concurrently.

Use the Parallel class to parallelize operations in the GraphData application

1. Using Visual Studio 2012, open the GraphDemo solution, located in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 23\Parallel GraphDemo folder in your Documents folder.

This is a copy of the original GraphDemo application. It does not use tasks yet.

2. In Solution Explorer, in the GraphDemo project, expand the GraphWindow.xaml node, and then
double-click GraphWindow.xaml.cs to display the code for the form in the Code and Text Editor
window.

3. Add the following using directive to the list at the top of the file:

using System.Threading.Tasks;

4. Locate the generateGraphData method. It looks like this:

private void generateGraphData(byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = 0; x < a; x++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

The outer for loop that iterates through values of the integer variable x is a prime candidate
for parallelization. You might also consider the inner loop based on the variable i, but this loop
takes more effort to parallelize because of the type of i. (The methods in the Parallel class
expect the control variable to be an integer.) Additionally, if you have nested loops such as
occur in this code, it is good practice to parallelize the outer loops first and then test to see

562 part IV Building professional Windows 8 applications with C#

whether the performance of the application is sufficient. If it is not, work your way through
nested loops and parallelize them working from outer to inner loops, testing the performance
after modifying each one. You will find that in many cases, parallelizing outer loops has the
most impact on performance, while the effects of modifying inner loops becomes more
marginal.

5. Cut the code in the body of the for loop, and create a new private void method called
calculateData with this code. The calculateData method should take an int parameter called
x and a byte array called data. Also, move the statements that declare the local variables
a, b, and c from the generateGraphData method to the start of the calculateData method.
The following code shows the generateGraphData method with this code removed and the
calculateData method (do not try and compile this code yet):

private void generateGraphData(byte[] data)
{
 for (int x = 0; x < a; x++)
 {
 }
}

private void calculateData(int x, byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
}

6. In the generateGraphData method, change the for loop to a statement that calls the static
Parallel.For method, as shown in bold below:

private void generateGraphData(byte[] data)
{
 Parallel.For (0, pixelWidth / 2, x => calculateData(x, data));
}

This code is the parallel equivalent of the original for loop. It iterates through the values from
0 to pixelWidth / 2 – 1 inclusive. Each invocation runs by using a task, and each task might run
more than one iteration. The Parallel.For method finishes only when all the tasks it has created

 CHAPTER 23 Improving Throughput by Using Tasks 563

complete their work. Remember that the Parallel.For method expects the final parameter
to be a method that takes a single integer parameter. It calls this method passing the cur-
rent loop index as the parameter. In this example, the calculateData method does not match
the required signature because it takes two parameters: an integer and a byte array. For this
reason, the code uses a lambda expression that acts as an adapter that calls the calculateData
method with the appropriate arguments.

7. On the DEBUG menu, click Start Debugging to build and run the application.

In the Graph Demo window, click Plot Graph. When the graph appears in the Graph Demo
window, record the time taken to generate the graph. Repeat this action several times to get
an average value.

You should notice that the application runs at a comparable speed to the previous version that
used Task objects (and possibly slightly faster, depending on the number of CPUs you have
available). If you examine Task Manager, you should notice that the CPU usage peaks at 100
percent regardless of whether you have a dual-core or quad-core computer.

8. Return to Visual Studio and stop debugging.

564 part IV Building professional Windows 8 applications with C#

When Not to Use the parallel Class
You should be aware that despite appearances and the best efforts of the .NET Framework develop-
ment team at Microsoft, the Parallel class is not magic—you cannot use it without due consideration
and just expect your applications to suddenly run significantly faster and produce the same results.
The purpose of the Parallel class is to parallelize compute-bound, independent areas of your code.

If your code is not compute-bound, parallelizing it might not improve performance. The over-
head of creating a task, running this task on a separate thread, and waiting for the task to complete
is likely to be greater than the cost of running this method directly. The additional overhead might
account for only a few milliseconds each time a method is called, but you should bear in mind the
number of times that a method runs. If the method call is located in a nested loop and is executed
thousands of times, all of these small overhead costs will add up. The general rule is to use Parallel.
Invoke only when it is worthwhile. You should reserve Parallel.Invoke for operations that are compu-
tationally intensive; otherwise, the overhead of creating and managing tasks can actually slow down
an application.

The other key consideration for using the Parallel class is that parallel operations should be inde-
pendent. For example, if you attempt to use Parallel.For to parallelize a loop in which iterations have a
dependency on each other, the results will be unpredictable.

To see what I mean, look at the following program:

using System;
using System.Threading;
using System.Threading.Tasks;

namespace ParallelLoop
{
 class Program
 {
 private static int accumulator = 0;

 static void Main(string[] args)
 {
 for (int i = 0; i < 100; i++)
 {
 AddToAccumulator(i);
 }
 Console.WriteLine("Accumulator is {0}", accumulator);
 }

 CHAPTER 23 Improving Throughput by Using Tasks 565

 private static void AddToAccumulator(int data)
 {
 if ((accumulator % 2) == 0)
 {
 accumulator += data;
 }
 else
 {
 accumulator -= data;
 }
 }
 }
}

This program iterates through the values from 0 to 99 and calls the AddToAccumulator method
with each value in turn. The AddToAccumulator method examines the current value of the
accumulator variable and, if it is even, adds the value of the parameter to the accumulator variable;
otherwise, it subtracts the value of the parameter. At the end of the program, the result is displayed.
You can find this application in the ParallelLoop solution, located in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 23\ParallelLoop folder in your Documents folder. If you run this pro-
gram, the value output should be –100.

To increase the degree of parallelism in this simple application, you might be tempted to replace
the for loop in the Main method with Parallel.For, like this:

static void Main(string[] args)
{
 Parallel.For (0, 100, AddToAccumulator);
 Console.WriteLine("Accumulator is {0}", accumulator);
}

However, there is no guarantee that the tasks created to run the various invocations of the
AddToAccumulator method will execute in any specific sequence. (The code is also not thread-safe
because multiple threads running the tasks might attempt to modify the accumulator variable con-
currently.) The value calculated by the AddToAccumulator method depends on the sequence being
maintained, so the result of this modification is that the application might now generate different
values each time it runs. In this simple case, you might not actually see any difference in the value
calculated because the AddToAccumulator method runs very quickly and the .NET Framework might
elect to run each invocation sequentially by using the same thread. However, if you make the follow-
ing change shown in bold to the AddToAccumulator method, you will get different results:

566 part IV Building professional Windows 8 applications with C#

private static void AddToAccumulator(int data)
{
 if ((accumulator % 2) == 0)
 {
 accumulator += data;
 Thread.Sleep(10); // wait for 10 milliseconds
 }
 else
 {
 accumulator -= data;
 }
}

The Thread.Sleep method simply causes the current thread to wait for the specified period of time. This
modification simulates the thread, performing additional processing, and affects the way in which the
Parallel class schedules the tasks, which now run on different threads resulting in a different sequence.

The general rule is to use Parallel.For and Parallel.ForEach only if you can guarantee that each
iteration of the loop is independent, and test your code thoroughly. A similar consideration applies to
Parallel.Invoke: use this construct to make method calls only if they are independent and the applica-
tion does not depend on them being run in a particular sequence.

Canceling Tasks and Handling Exceptions

A common requirement of applications that perform long-running operations is the ability to stop
those operations if necessary. However, you should not simply abort a task because this could leave the
data in your application in an indeterminate state. Instead, the Task class implements a cooperative can-
cellation strategy. Cooperative cancellation enables a task to select a convenient point at which to stop
processing and also enables it to undo any work it has performed prior to cancellation if necessary.

the Mechanics of Cooperative Cancellation
Cooperative cancellation is based on the notion of a cancellation token. A cancellation token is a
structure that represents a request to cancel one or more tasks. The method that a task runs should
include a System.Threading.CancellationToken parameter. An application that wants to cancel the task
sets the Boolean IsCancellationRequested property of this parameter to true. The method running in
the task can query this property at various points during its processing. If this property is set to true
at any point, it knows that the application has requested that the task be canceled. Also, the method
knows what work it has done so far, so it can undo any changes if necessary and then finish. Alterna-
tively, the method can simply ignore the request and continue running.

tip You should examine the cancellation token in a task frequently, but not so frequently
that you adversely impact the performance of the task. If possible, you should aim to
check for cancellation at least every 10 milliseconds, but no more frequently than every
millisecond.

 CHAPTER 23 Improving Throughput by Using Tasks 567

An application obtains a CancellationToken by creating a System.Threading.CancellationTokenSource
object and querying the Token property of this object. The application can then pass this
CancellationToken object as a parameter to any methods started by tasks that the application
creates and runs. If the application needs to cancel the tasks, it calls the Cancel method of the
CancellationTokenSource object. This method sets the IsCancellationRequested property of the
CancellationToken passed to all the tasks.

The following code example shows how to create a cancellation token and use it to cancel a
task. The initiateTasks method instantiates the cancellationTokenSource variable and obtains a ref-
erence to the CancellationToken object available through this variable. The code then creates and
runs a task that executes the doWork method. Later on, the code calls the Cancel method of the
cancellation token source, which sets the cancellation token. The doWork method queries the
IsCancellationRequested property of the cancellation token. If the property is set, the method termi-
nates; otherwise, it continues running.

public class MyApplication
{
 ...
 // Method that creates and manages a task
 private void initiateTasks()
 {
 // Create the cancellation token source and obtain a cancellation token
 CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();
 CancellationToken cancellationToken = cancellationToken.Token;
 // Create a task and start it running the doWork method
 Task myTask = Task.Run(() => doWork(cancellationToken));
 ...
 if (...)
 {
 // Cancel the task
 cancellationTokenSource.Cancel();
 }
 ...
 }

 // Method run by the task
 private void doWork(CancellationToken token)
 {
 ...
 // If the application has set the cancellation token, finish processing
 if (token.IsCancellationRequested)
 {
 // Tidy up and finish
 ...
 return;
 }
 // If the task has not been canceled, continue running as normal
 ...
 }
}

568 part IV Building professional Windows 8 applications with C#

As well as providing a high degree of control over the cancellation processing, this approach is
scalable across any number of tasks; you can start multiple tasks and pass the same CancellationToken
object to each of them. If you call Cancel on the CancellationTokenSource object, each task will check
that the IsCancellationRequested property has been set and proceed accordingly.

You can also register a callback method (in the form of an Action delegate) with the cancellation
token by using the Register method. When an application invokes the Cancel method of the corre-
sponding CancellationTokenSource object, this callback runs. However, you cannot guarantee when
this method executes—it might be before or after the tasks have performed their own cancellation
processing, or even during that process.

...
cancellationToken.Register(doAdditionalWork);
...
private void doAdditionalWork()
{
 // Perform additional cancellation processing
}

In the next exercise, you will add cancellation functionality to the GraphDemo application.

add cancellation functionality to the GraphDemo application

1. Using Visual Studio 2012, open the GraphDemo solution, located in the \Microsoft Press\
Visual CSharp Step By Step\Chapter 23\GraphDemo With Cancellation folder in your Docu-
ments folder.

This is a completed copy of the GraphDemo application from the earlier exercise that uses
tasks to improve processing throughput. The user interface also includes a button named
cancelButton that the user will be able to use to stop the tasks that calculate the data for the
graph.

2. In Solution Explorer, in the GraphDemo project, double-click GraphWindow.xaml to display
the form in the Design View window. Note the Cancel button that appears in the left pane of
the form.

3. Open the GraphWindow.xaml.cs file in the Code and Text Editor window. Locate the
cancelButton_Click method. This method runs when the user clicks Cancel. This method is
currently empty.

4. Add the following using directive to the list at the top of the file:

using System.Threading;

The types used by cooperative cancellation reside in this namespace.

 CHAPTER 23 Improving Throughput by Using Tasks 569

5. Add a CancellationTokenSource field called tokenSource to the GraphWindow class, and initial-
ize it to null, as shown below in bold:

public class GraphWindow : Page
{
 ...
 private byte redValue, greenValue, blueValue;
 private CancellationTokenSource tokenSource = null;
 ...
}

6. Find the generateGraphData method, and add a CancellationToken parameter called token to
the method definition, as shown below in bold:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd,
CancellationToken token)
{
 ...
}

7. In the generateGraphData method, at the start of the inner for loop, add the code shown
below in bold to check whether cancellation has been requested. If so, return from the
method; otherwise, continue calculating values and plotting the graph.

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd,
CancellationToken token)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = partitionStart; x < partitionEnd; x ++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 if (token.IsCancellationRequested)
 {
 return;
 }
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

8. In the plotButton_Click method, add the following statements shown in bold that instantiate
the tokenSource variable and retrieve the CancellationToken object into a variable called token:

570 part IV Building professional Windows 8 applications with C#

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 Random rand = new Random();
 redValue = (byte)rand.Next(0xFF);
 greenValue = (byte)rand.Next(0xFF);
 blueValue = (byte)rand.Next(0xFF);

 tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;
 ...
}

9. Modify the statements that create and run the two tasks, and pass the token variable as the
final parameter to the generateGraphData method:

...
Task first = Task.Run(() => generateGraphData(data, 0, pixelWidth / 4,
token));
Task second = Task.Run(() => generateGraphData(data, pixelWidth / 4,
pixelWidth / 2, token));
...

10. Edit the definition of the plotButton_Click method and add the async modifier as shown in
bold below:

private async void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
}

11. In the body of the plotButton_Click method, comment out the Task.WaitAll statement that
waits for the tasks to complete, and replace it with the following statements in bold that use
the await operator instead.

...
// Task.WaitAll(first, second);
await first;
await second;

duration.Text = string.Format(...);
...

The changes in these two steps are necessary because of the single-threaded nature of the
Windows user interface. Under normal circumstances, when an event handler for a user inter-
face component such as a button starts running, event handlers for other user interface com-
ponents are blocked until the first event handler completes (even if the event handler is using
tasks). In this example, using the Task.WaitAll method to wait for the tasks to complete would
render the Cancel button useless, as the event handler for the Cancel button will not run until

 CHAPTER 23 Improving Throughput by Using Tasks 571

the handler for the Plot Graph button completes, in which case there is no point in attempting
to cancel the operation. In fact, as mentioned earlier, when you click the Plot Graph button,
the user interface is completely unresponsive until the graph appears and the plotButton_Click
method finishes.

The await operator is designed to handle situations such as this. You can use this operator
only inside a method marked as async. Its purpose is to release the current thread and wait for
a task to complete in the background. When that task finishes, control returns to the method,
which continues with the next statement. In this example, the two await statements simply
allow each of the tasks to complete in the background. After the second task has finished,
the method continues, displaying the time taken for these tasks to complete in the duration
TextBlock. Note that it is not an error to await for a task that has already completed; the await
operator will simply return immediately and pass control to the following statement.

Note You will learn about the async modifier and the await operator in detail in
Chapter 24.

12. Find the cancelButton_Click method. Add the code shown below in bold to this method:

private void cancelButton_Click(object sender, RoutedEventArgs e)
{
 if (tokenSource != null)
 {
 tokenSource.Cancel();
 }
}

This code checks that the tokenSource variable has been instantiated. If it has, the code
invokes the Cancel method on this variable.

13. On the DEBUG menu, click Start Debugging to build and run the application.

14. In the GraphDemo window, click Plot Graph, and verify that the graph appears as it did
before. However, you should notice that it takes slightly longer to generate the graph than
before. This is because of the additional check performed by the generateGraphData method.

15. Click Plot Graph again, and then quickly click Cancel.

If you are quick and click Cancel before the data for the graph is generated, this action causes
the methods being run by the tasks to return. The data is not complete, so the graph appears
with "holes," as shown in the following figure. (The previous graph should still be visible where
these holes occur, and the size of the holes depends on how quickly you clicked Cancel.)

572 part IV Building professional Windows 8 applications with C#

16. Return to Visual Studio and stop debugging.

You can determine whether a task completed or was canceled by examining the Status property of
the Task object. The Status property contains a value from the System.Threading.Tasks.TaskStatus enu-
meration. The following list describes some of the status values that you might commonly encounter
(there are others):

■■ Created This is the initial state of a task. It has been created but has not yet been scheduled
to run.

■■ WaitingToRun The task has been scheduled but has not yet started to run.

■■ Running The task is currently being executed by a thread.

■■ RanToCompletion The task completed successfully without any unhandled exceptions.

■■ Canceled The task was canceled before it could start running, or it acknowledged cancella-
tion and completed without throwing an exception.

■■ Faulted The task terminated because of an exception.

In the next exercise, you will attempt to report the status of each task so that you can see when the
tasks have completed or have been canceled.

 CHAPTER 23 Improving Throughput by Using Tasks 573

Canceling a parallel For or Foreach Loop
The Parallel.For and Parallel.ForEach methods don’t provide you with direct access to the Task
objects that have been created. Indeed, you don’t even know how many tasks are running—
the .NET Framework uses its own heuristics to work out the optimal number to use based on
the resources available and the current workload of the computer.

If you want to stop the Parallel.For or Parallel.ForEach method early, you must use a
ParallelLoopState object. The method you specify as the body of the loop must include an ad-
ditional ParallelLoopState parameter. The Parallel class creates a ParallelLoopState object and
passes it as this parameter into the method. The Parallel class uses this object to hold informa-
tion about each method invocation. The method can call the Stop method of this object to
indicate that the Parallel class should not attempt to perform any iterations beyond those that
have already started and finished. The following example shows the Parallel.For method calling
the doLoopWork method for each iteration. The doLoopWork method examines the iteration
variable, and if it is greater than 600, the method calls the Stop method of the ParallelLoopState
parameter. This causes the Parallel.For method to stop running further iterations of the loop.
(Iterations currently running might continue to completion.)

Note Remember that the iterations in a Parallel.For loop are not run in a spe-
cific sequence. Consequently, canceling the loop when the iteration variable has
the value 600 does not guarantee that the previous 599 iterations have already
run. Equally, some iterations with values greater than 600 might already have
completed.
Parallel.For(0, 1000, doLoopWork);
...
private void doLoopWork(int i, ParallelLoopState p)
{
 ...
 if (i > 600)
 {
 p.Stop();
 }
}

574 part IV Building professional Windows 8 applications with C#

Display the status of each task

1. In Visual Studio, display the GraphWindow.xaml file in the Design View window. In the XAML
pane, add the following markup to the definition of the GraphWindow form before the penul-
timate </Grid> tag, as shown below in bold:

 <Image x:Name="graphImage" Grid.Column="1" Stretch="Fill" />
 </Grid>
 <TextBlock x:Name="messages" Grid.Row="4" FontSize="18"
HorizontalAlignment="Left"/>
 </Grid>
 </Grid>
</Page>

This markup adds a TextBlock control named messages to the bottom of the form.

2. Display the GraphWindow.xaml.cs file in the Code and Text Editor window and find the
plotButton_Click method.

3. Add the following code shown in bold to this method. These statements generate a string that
contains the status of each task after it has finished running, and then they display this string
in the messages TextBlock control at the bottom of the form.

private async void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 await first;
 await second;

 duration.Text = string.Format(...);

 string message = string.Format("Status of tasks is {0}, {1}",
 first.Status, second.Status);
 messages.Text = message;
 ...
}

4. On the DEBUG menu, click Start Debugging.

5. In the GraphDemo window, click Plot Graph but do not click Cancel. Verify that the message
displayed reports that the status of the tasks is RanToCompletion (two times).

6. In the GraphDemo window, click Plot Graph again, and then quickly click Cancel.

Surprisingly, the message that appears still reports the status of each task as RanToCompletion,
even though the graph appears with holes.

 CHAPTER 23 Improving Throughput by Using Tasks 575

This behavior occurs because although you sent a cancellation request to each task by using
the cancellation token, the methods they were running simply returned. The .NET Framework
runtime does not know whether the tasks were actually canceled or whether they were
allowed to run to completion, and it simply ignored the cancellation requests.

7. Return to Visual Studio and stop debugging.

So how do you indicate that a task has been canceled rather than allowed to run to completion?
The answer lies in the CancellationToken object passed as a parameter to the method that the task
is running. The CancellationToken class provides a method called ThrowIfCancellationRequested. This
method tests the IsCancellationRequested property of a cancellation token; if it is true, the method
throws an OperationCanceledException exception and aborts the method that the task is running.

The application that started the thread should be prepared to catch and handle this exception,
but this leads to another question. If a task terminates by throwing an exception, it actually reverts
to the Faulted state. This is true, even if the exception is an OperationCanceledException exception. A
task enters the Canceled state only if it is canceled without throwing an exception. So how does a task
throw an OperationCanceledException without it being treated as an exception?

This time, the answer lies in the task itself. For a task to recognize that an OperationCanceled
Exception exception is the result of canceling the task in a controlled manner and not just an excep-
tion caused by other circumstances, it has to know that the operation has actually been canceled.
It can do this only if it can examine the cancellation token. You passed this token as a parameter to
the method run by the task, but the task does not actually check any of these parameters. Instead,
you specify the cancellation token when you create and run the task. The following code shows an
example based on the GraphDemo application. Notice how the token parameter is passed to the
generateGraphData method (as before), but also as a separate parameter to the Run method:

576 part IV Building professional Windows 8 applications with C#

tokenSource = new CancellationTokenSource();
CancellationToken token = tokenSource.Token;
...
Task first = Task.Run(() => generateGraphData(data, 0, pixelWidth / 8, token),
token);

Now when the method being run by the task throws an OperationCanceledException exception,
the infrastructure behind the task examines the CancellationToken. If it indicates that the task has
been canceled, the infrastructure sets the status of the task to Canceled. If you are using the await
operator to wait for the tasks to complete, you also need to be prepared to catch and handle the
OperationCanceledException exception. This is what you will do in the next exercise.

acknowledge cancellation, and handle the OperationCanceledException exception

1. In Visual Studio, return to the Code and Text Editor window displaying the GraphWindow.
xaml.cs file. In the plotButton_Click method, modify the statements that create and run the
tasks and specify the CancellationToken object as the second parameter to the Run method, as
shown in bold in the following code:

private async void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;

 ...
 Task first = Task.Run(() => generateGraphData(data, 0, pixelWidth / 4,
token), token);
 Task second = Task.Run(() => generateGraphData(data, pixelWidth / 4,
pixelWidth / 2, token), token);
 ...
}

2. Add a try block around the statements that create and run the tasks, wait for them
to complete, and display the elapsed time. Add a catch block that handles the
OperationCanceledException exception. In this exception handler, display the reason for the
exception reported in the Message property of the exception object in the duration TextBlock
control. The code shown below in bold highlights the changes you should make:

private async void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 try
 {
 await first;
 await second;

 duration.Text = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
 }

 CHAPTER 23 Improving Throughput by Using Tasks 577

 catch (OperationCanceledException oce)
 {
 duration.Text = oce.Message;
 }

 string message = string.Format(...);
 ...
}

3. In the generateDataForGraph method, comment out the if statement that examines the
IsCancellationProperty of the CancellationToken object and add a statement that calls the
ThrowIfCancellationRequested method, as shown below in bold:

private void generateDataForGraph(byte[] data, int partitionStart, int partitionEnd,
CancellationToken token)
{
 ...
 for (int x = partitionStart; x < partitionEnd; x++);
 {
 ...
 for (double i = -p; I < p; i += 3)
 {
 //if (token.IsCancellationRequired)
 //{
 // return;
 //}
 token.ThrowIfCancellationRequested();
 ...
 }
 }
 ...
}

4. On the DEBUG menu, click Exceptions. In the Exceptions dialog box, clear the User-unhandled
check box for Common Language Runtime Exceptions, and then click OK.

578 part IV Building professional Windows 8 applications with C#

This configuration is necessary to prevent the Visual Studio debugger from intercepting the
OperationCanceledException exception that you will generate when you run the application in
debug mode.

5. On the DEBUG menu, click Start Debugging.

6. In the Graph Demo window, click Plot Graph, wait for the graph to appear, and verify that the
status of both tasks is reported as RanToCompletion and the graph is generated.

7. Click Plot Graph again, and then quickly click Cancel. If you are quick, the status of one or
both tasks should be reported as Canceled, the duration TextBox control should display the
text “The operation was canceled,” and the graph should be displayed with holes. If you were
not quick enough, repeat this step to try again!

8. Return to Visual Studio and stop debugging.

9. On the DEBUG menu, click Exceptions. In the Exceptions dialog box, select the User-
unhandled check box for Common Language Runtime Exceptions, and then click OK.

 CHAPTER 23 Improving Throughput by Using Tasks 579

handling task exceptions by Using the aggregateexception Class
You have seen throughout this book that exception handling is an important element in any
commercial application. The exception handling constructs you have met so far are straight-
forward to use, and if you use them carefully, it is a simple matter to trap an exception and
determine which piece of code raised it. When you start dividing work into multiple concur-
rent tasks, though, tracking and handling exceptions becomes a more complex problem. The
previous exercise showed how you can catch the OperationCanceledException exception that is
thrown when you cancel a task. However, there are plenty of other exceptions that might also
occur, and different tasks might each generate their own exceptions. Therefore, you need a
way to catch and handle multiple exceptions that might be thrown concurrently.

If you are using one of the Task wait methods to wait for multiple tasks to complete (using
the instance Wait method or the static Task.WaitAll and Task.WaitAny methods), any excep-
tions thrown by the methods that these tasks are running are gathered together into a single
exception referred to as an AggregateException exception. An AggregateException exception
acts as a wrapper for a collection of exceptions. Each of the exceptions in the collection might
be thrown by different tasks. In your application, you can catch the AggregateException excep-
tion and then iterate through this collection and perform any necessary processing. To help
you, the AggregateException class provides the Handle method. The Handle method takes a
Func<Exception, bool> delegate that references a method that takes an Exception object as its
parameter and returns a Boolean value. When you call Handle, the referenced method runs
for each exception in the collection in the AggregateException object. The referenced method
can examine the exception and take the appropriate action. If the referenced method handles
the exception, it should return true. If not, it should return false. When the Handle method
completes, any unhandled exceptions are bundled together into a new AggregateException
exception, and this exception is thrown. A subsequent outer exception handler can then catch
this exception and process it.

The following code fragment shows an example of a method that can be registered with
an AggregateException exception handler. This method simply displays the message "Division
by zero occurred" if it detects a DivideByZeroException exception, or the message "Array index
out of bounds" if an IndexOutOfRangeException exception occurs. Any other exceptions are left
unhandled.

580 part IV Building professional Windows 8 applications with C#

private bool handleException(Exception e)
{
 if (e is DivideByZeroException)
 {
 displayErrorMessage("Division by zero occurred");
 return true;

 if (e is IndexOutOfRangeException)
 {
 displayErrorMessage("Array index out of bounds");
 return true;
 }
 return false;
}

When you use one of the Task wait methods, you can catch the AggregateException excep-
tion and register the handleException method like this:

try
{
 Task first = Task.Run(...);
 Task second = Task.Run(...);
 Task.WaitAll(first, second);
}
catch (AggregateException ae)

{

 ae.Handle(handleException);

}

If any of the tasks generate a DivideByZeroException exception or an IndexOutOfRange-
Exception exception, the handleException method will display an appropriate message and
acknowledge the exception as handled. Any other exceptions are classified as unhandled and
will propagate out from the AggregateException exception handler in the customary manner.

There is one additional complication that you should be aware of. When you cancel a task,
you have seen that the CLR throws an OperationCanceledException exception, and this is the
exception that is reported if you are using the await operator to wait for the task. However, if
you are using one of the Task wait methods, this exception gets transformed into a TaskCan-
celedException exception, and this is the type of exception that you should be prepared to
handle in the AggregateException exception handler.

 CHAPTER 23 Improving Throughput by Using Tasks 581

 if (e is IndexOutOfRangeException)
 {
 displayErrorMessage("Array index out of bounds");
 return true;
 }
 return false;
}

When you use one of the Task wait methods, you can catch the AggregateException excep-
tion and register the handleException method like this:

try
{
 Task first = Task.Run(...);
 Task second = Task.Run(...);
 Task.WaitAll(first, second);
}
catch (AggregateException ae)

{

 ae.Handle(handleException);

}

If any of the tasks generate a DivideByZeroException exception or an IndexOutOfRange
Exception exception, the handleException method will display an appropriate message and ac-
knowledge the exception as handled. Any other exceptions are classified as unhandled and will
propagate out from the AggregateException exception handler in the customary manner.

There is one additional complication that you should be aware of. When you cancel a
task, you have seen that the CLR throws an OperationCanceledException exception, and this is
the exception that is reported if you are using the await operator to wait for the task. How-
ever, if you are using one of the Task wait methods, this exception gets transformed into a
TaskCanceledException exception, and this is the type of exception that you should be prepared
to handle in the AggregateException exception handler.

Using Continuations with Canceled and Faulted tasks
If you need to perform additional work when a task is canceled or raises an unhandled exception,
remember that you can use the ContinueWith method with the appropriate TaskContinuationOptions
value. For example, the following code creates a task that runs the method doWork. If the task is can-
celed, the ContinueWith method specifies that another task should be created and run the method
doCancellationWork. This method can perform some simple logging or tidying up. If the task is not
canceled, the continuation does not run.

582 part IV Building professional Windows 8 applications with C#

Task task = new Task(doWork);
task.ContinueWith(doCancellationWork, TaskContinuationOptions.OnlyOnCanceled);
task.Start();
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}
...
private void doCancellationWork(Task task)
{
 // The task runs this code when doWork completes
 ...
}

Similarly, you can specify the value TaskContinuationOptions.OnlyOnFaulted to specify a continua-
tion that runs if the original method run by the task raises an unhandled exception.

Summary

In this chapter, you learned why it is important to write applications that can scale across multiple
processors and processor cores. You saw how to use the Task class to run operations in parallel, and
how to synchronize concurrent operations and wait for them to complete. You learned how to use
the Parallel class to parallelize some common programming constructs, and you also saw when it is
inappropriate to parallelize code. You used tasks and threads together in a graphical user interface to
improve responsiveness and throughput, and you saw how to cancel tasks in a clean and controlled
manner.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 24.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 23 Improving Throughput by Using Tasks 583

Chapter 23 Quick Reference

To Do this

Create a task and run it Use the static Run method of the Task class to create and run the task in a single
step:

Task task = Task.Run(() => doWork());
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}

Or create a new Task object that references a method to run and call the Start
method:

Task task = new Task(doWork);
task.Start();

Wait for a task to finish Call the Wait method of the Task object:

Task task = ...;
...
task.Wait();

Or use the await operator (only in an async method):

await task;

Wait for several tasks to finish Call the static WaitAll method of the Task class, and specify the tasks to wait for:

Task task1 = ...;
Task task2 = ...;
Task task3 = ...;
Task task4 = ...;
...
Task.WaitAll(task1, task2, task3, task4);

Specify a method to run in a
new task when a task has com-
pleted

Call the ContinueWith method of the task, and specify the method as a continua-
tion:

Task task = new Task(doWork);
task.ContinueWith(doMoreWork,
 TaskContinuationOptions.NotOnFaulted);

Perform loop iterations and
statement sequences by using
parallel tasks

Use the Parallel.For and Parallel.ForEach methods to perform loop iterations by
using tasks:

Parallel.For(0, 100, performLoopProcessing);
...
private void performLoopProcessing(int x)
{
 // Perform loop processing
}

Use the Parallel.Invoke method to perform concurrent method calls by using sepa-
rate tasks:

Parallel.Invoke(
 doWork,
 doMoreWork,
 doYetMoreWork
);

584 part IV Building professional Windows 8 applications with C#

To Do this

Handle exceptions raised by one
or more tasks

Catch the AggregateException exception. Use the Handle method to specify a
method that can handle each exception in the AggregateException object. If the
exception-handling method handles the exception, return true; otherwise, return
false:

try
{
 Task task = Task.Run(...);
 task.Wait();
 ...
}
catch (AggregateException ae)
{
 ae.Handle(handleException);
}
...
private bool handleException(Exception e)
{
 if (e is TaskCanceledException)
 {
 ...
 return true;
 }
 else
 {
 return false;
 }
}

Enable cancellation in a task Implement cooperative cancellation by creating a CancellationTokenSource object
and using a CancellationToken parameter in the method run by the task. In the task
method, call the ThrowIfCancellationRequested method of the CancellationToken
parameter to throw an OperationCanceledException exception and terminate the
task:

private void generateGraphData(..., CancellationToken token)
{
 ...
 token.ThrowIfCancellationRequested();
 ...
}

 585

C H A P T E R 2 4

Improving response time
by performing
asynchronous Operations

After completing this chapter, you will be able to

■■ Define and use asynchronous methods to improve the response time of applications that
perform long-running operations.

■■ Explain how to reduce the time taken to perform complex LINQ queries by using
parallelization.

■■ Use the concurrent collection classes to safely share data between parallel tasks.

In Chapter 23, “Improving Throughput by Using Tasks,” you saw how to use the Task class to per-
form operations in parallel and improve throughput in compute-bound applications. However, while
maximizing the processing power available to an application may make it run more quickly, respon-
siveness is also important. Remember that the Microsoft Windows user interface operates by using
a single thread of execution, but users expect an application to respond when they click a button on
a form, even if the application is currently performing a large and complex calculation. Additionally,
some tasks might take a considerable time to run even if they are not compute-bound (a task waiting
to receive information across the network from a website, for example), and blocking user interaction
while waiting for an event that may take an indeterminate time to happen is clearly not good design
practice. The solution to both of these problems is the same: perform the task asynchronously and
leave the user interface thread-free to handle user interactions. In the past, this approach was tradi-
tionally fraught with complexity, and user interface frameworks such as the Windows Presentation
Foundation (WPF) had to implement some rather messy workarounds to support this mode of
working. Fortunately, Microsoft Windows 8 and the Windows Runtime (WinRT) have been designed
with asynchronicity in mind, and the C# language has been extended to take advantage of the
asynchronous features that Windows 8 now provides, making it much easier to define asynchronous
operations. You will learn about these features and how to use them in conjunction with tasks in the
first part of this chapter.

Issues with response time are not limited to user interfaces. For example, Chapter 21, “Querying In-Mem-
ory Data by Using Query Expressions,” showed how you can access data held in memory in a declarative

586 part IV Building professional Windows 8 applications with C#

manner by using Language-Integrated Query (LINQ). A typical LINQ query generates an enumerable result
set, and you can iterate serially through this set to retrieve the data. If the data source used to generate the
result set is large, running a LINQ query can take a long time. Many database management systems faced
with the issue of optimizing queries address this issue by using algorithms that break down the process of
identifying the data for a query into a series of tasks and then running these tasks in parallel, combining
the results when the tasks have completed to generate the completed result set. The designers of the .NET
Framework decided to provide LINQ with a similar facility, and the result is Parallel LINQ, or PLINQ. You will
study PLINQ in the second part of this chapter.

However, PLINQ is not always the most appropriate technology to use for an application. If you
create your own tasks manually, you need to ensure that these tasks coordinate their activities
correctly. The .NET Framework class library provides methods that enable you to wait for tasks to
complete, and you can use these methods to coordinate tasks at a very coarse level. But consider
what happens if two tasks attempt to access and modify the same data. If both tasks run at the same
time, their overlapping operations might corrupt the data. This situation can lead to bugs that are
difficult to correct, primarily because of their unpredictability. Since version 1.0, the Microsoft .NET
Framework has provided primitives that you can use to lock data and coordinate threads, but to use
them effectively required a good understanding of the way in which threads interact. The most recent
versions of the .NET Framework class library include some variations to these primitives, and they pro-
vide specialized collection classes that can synchronize access to data across tasks. These classes hide
much of the complexity involved in coordinating data access. You will see how to use some of these
new synchronization primitives and collection classes in the third part of this chapter.

Implementing Asynchronous Methods

An asynchronous method is a method that does not block the current thread of execution. When
an application invokes an asynchronous method, there is an implied contract that the method will
return control to the calling environment quite quickly. The definition of quite is not a mathematically
defined quantity, but the expectation is that if an asynchronous method performs an operation that
might cause a noticeable delay to the caller, it should do so by using a background thread and enable
the caller to continue running on the current thread. This process sounds complicated, and indeed in
earlier versions of the .NET Framework it was. However, C# now provides the async method modifier
and the await operator, which delegate much of this complexity to the compiler, meaning that you no
longer have to concern yourself with the intricacies of multithreading.

Defining Asynchronous Methods: The Problem
You have already seen how you can implement concurrent operations by using Task objects. To
quickly recap, when you initiate a task by using the Start or Run method of the Task type, the com-
mon language runtime (CLR) will use its own scheduling algorithm to allocate the task to a thread and
set this thread running at a time convenient to the operating system, when sufficient resources are
available. This level of abstraction frees your code from the requirement to understand and manage

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 587

the workload of your computer. If you need to perform another operation when a specific task com-
pletes, you have a couple of choices:

■■ You can manually wait for the task to finish by using one of the Wait methods exposed by the
Task type. You can then initiate the new operation, possibly by defining another task.

■■ You can define a continuation. A continuation simply specifies an operation to be performed
when a given task completes. The .NET Framework automatically executes the continuation
operation as a task that it schedules when the original task finishes.

However, although the Task type provides a convenient generalization of an operation, it is still
often necessary to write potentially awkward code to solve some of the common problems that
developers frequently encounter when building applications that may need to execute these opera-
tions on a background thread. For example, suppose you define the following method for a Windows
8 application that involves performing a series of long-running operations that must run in a serial
manner and then displays a message in a TextBox control on the screen:

private void slowMethod()
{
 doFirstLongRunningOperation();
 doSecondLongRunningOperation();
 doThirdLongRunningOperation();
 message.Text = "Processing Completed";
}
private void doFirstLongRunningOperation()
{
 ...
}

private void doSecondLongRunningOperation()
{
 ...
}

private void doThirdLongRunningOperation()
{
 ...
}

You can make the slowMethod method more responsive by using a Task object to run the
doFirstLongRunningOperation method, and define continuations for the same Task that run the
doSecondLongRunningOperation and doThirdLongRunningOperation methods in turn, like this:

private void slowMethod()
{
 Task task = new Task(doFirstLongRunningOperation);
 task.ContinueWith(doSecondLongRunningOperation);
 task.ContinueWith(doThirdLongRunningOperation);
 task.Start();
 message.Text = "Processing Completed"; // When does this message appear?
}

588 part IV Building professional Windows 8 applications with C#

private void doFirstLongRunningOperation()
{
 ...
}

private void doSecondLongRunningOperation(Task t)
{
 ...
}

private void doThirdLongRunningOperation(Task t)
{
 ...
}

Although this refactoring seems fairly simple, there are points that you should note. Specifically,
the signatures of the doSecondLongRunningOperation and doThirdLongRunningOperation methods have
had to change to accommodate the requirements of continuations (the Task is passed as a parameter to
a continuation method). More important, you need to ask yourself when the message gets displayed in
the TextBox control. The issue with this second point is that although the Start method initiates a Task, it
does not wait for it to complete, so the message appears while the processing is being performed rather
than when it has finished.

This is a somewhat trivial example, but the general principle is important, and there are at least
two solutions. The first is to wait for the Task to complete before displaying the message, like this:

private void slowMethod()
{
 Task task = new Task(doFirstLongRunningOperation);
 task.ContinueWith(doSecondLongRunningOperation);
 task.ContinueWith(doThirdLongRunningOperation);
 task.Start();
 task.Wait();
 message.Text = "Processing Completed";
}

However, the call to the Wait method now blocks the thread executing the slowMethod method
and obviates the purpose of using a Task in the first place. A better solution is to define a continuation
that displays the message and arrange for it to be run only when the doThirdLongRunningOperation
method finishes, in which case you can remove the call to the Wait method. You may be tempted to
implement this continuation as a delegate as shown below in bold (remember that a continuation is
passed a Task object as an argument; that is the purpose of the t parameter to the delegate):

private void slowMethod()
{
 Task task = new Task(doFirstLongRunningOperation);
 task.ContinueWith(doSecondLongRunningOperation);
 task.ContinueWith(doThirdLongRunningOperation);
 task.ContinueWith((t) => message.Text = "Processing Complete");
 task.Start();
}

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 589

Unfortunately, this approach yields another problem. If you try this code, you will find that the final
continuation generates a System.Exception exception with the rather obscure message "The appli-
cation called an interface that was marshaled for a different thread." The issue is that only the user
interface thread can manipulate user interface controls, and now you are attempting to write to a
TextBox control from a different thread—the thread being used to run the Task. You can resolve this
problem by using the Dispatcher object. The Dispatcher object is a component of the user interface
infrastructure and you can send it requests to perform work on the user interface thread by calling its
Invoke method. The Invoke method takes an Action delegate that specifies the code to run. The details
of the Dispatcher object and the Invoke method are outside the scope of this book, but the follow-
ing code example shows how you might use it to display the message required by the slowMethod
method from a continuation:

private void slowMethod()
{
 Task task = new Task(doFirstLongRunningOperation);
 task.ContinueWith(doSecondLongRunningOperation);
 task.ContinueWith(doThirdLongRunningOperation);
 task.ContinueWith((t) => this.Dispatcher.Invoke(
 CoreDispatcherPriority.Normal,
 (sender, args) => messages.Text = "Processing Complete",
 this, null));
 task.Start();
}

This works, but it is messy and difficult to maintain. You now have a delegate (the continuation)
specifying another delegate (the code to be run by Invoke).

Note You can find more information about the Dispatcher object and the Invoke method
on the Microsoft website at http://msdn.microsoft.com/en-us/library/ms615907.aspx.

Defining Asynchronous Methods: The Solution
As you may have already guessed, the purpose of the async and await keywords in C# is to enable
you to define asynchronous methods without having to concern yourself with defining continuations
or scheduling code to run on Dispatcher objects to ensure that data is manipulated on the correct
thread. Very simply, the async modifier indicates that a method contains functionality that can be
run asynchronously. The await operator specifies the points at which this asynchronous functionality
should be performed. The following code example shows the slowMethod method implemented as an
asynchronous method with the async modifier and await operators:

private async void slowMethod()
{
 await doFirstLongRunningOperation();
 await doSecondLongRunningOperation();
 await doThirdLongRunningOperation();
 messages.Text = "Processing Complete";
}

590 part IV Building professional Windows 8 applications with C#

This method now looks remarkably similar to the original version, and that is the power of async
and await. In fact, this magic is nothing more than an exercise in reworking your code by the C#
compiler. When the C# compiler encounters the await operator in an async method, it effectively
reformats the operand that follows this operator as a task that runs on the same thread as the async
method. The remainder of the code is converted into a continuation that runs when the task com-
pletes, again running on the same thread. Now, because the thread that was running the async
method was the thread running the user interface, it has direct access to the controls in the window,
and so it can update them directly without routing them through the Dispatcher object.

Although this approach looks quite simple at first glance, it is important to bear in mind a few
points and avoid some possible misconceptions:

■■ The async modifier does not signify that a method runs asynchronously on a separate
thread. All it does is specify that the code in the method can be divided into one or more
continuations. When these continuations run, they execute on the same thread as the origi-
nal method call.

■■ The await operator specifies the point at which the C# compiler can split the code into a con-
tinuation. The await operator itself expects its operand to be an awaitable object. An await-
able object is a type that provides the GetAwaiter method, which returns an object that in turn
provides methods for running code and waiting for it to complete. The C# compiler converts
your code into statements that use these methods to create an appropriate continuation.

Important You can use the await operator only in a method marked as async. Outside
of an async method, the await keyword is treated as an ordinary identifier (you can even
create a variable called await, although this is not recommended).

Additionally, you cannot use the await operator in the catch or finally blocks of a try/catch/
finally construct (not even in an async method) or in a query expression in a LINQ query.
However, if you want to perform a LINQ query by using multiple concurrent tasks, you can
use the PLINQ extensions described later in this chapter.

In the current implementation of the await operator, the awaitable object it expects you
to specify as the operand is a Task. This means that you must make some modifications to the
doFirstLongRunningOperation, doSecondLongRunningOperation, and doThirdLongRunningOperation
methods. Specifically, each method must now create and run a Task to perform its work and
return a reference to this Task. The following example shows an amended version of the
doFirstLongRunningOperation method:

private Task doFirstLongRunningOperation()
{
 Task t = Task.Run(() => { /* original code for this method goes here */ });
 return t;
}

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 591

It is also worth considering whether there are opportunities to break the work done by the
doFirstLongRunningOperation method into a series of parallel operations. If so, you can divide the
work into a set of Tasks as described in Chapter 23. However, which of these Task objects should you
return as the result of the method?

private Task doFirstLongRunningOperation()
{
 Task first = Task.Run(() => { /* code for first operation */ });
 Task second = Task.Run(() => { /* code for second operation */ });
 return ...; // Do you return first or second?
}

If the method returns first, then the await operator in slowMethod will only wait for that Task to
complete and not the second. Similar logic applies if the method returns second. The solution is to
define the doFirstLongRunningOperation method as async, and await each of the Tasks:

private async Task doFirstLongRunningOperation()
{
 Task first = Task.Run(() => { /* code for first operation */ });
 Task second = Task.Run(() => { /* code for second operation */ });
 await first;
 await second;
}

Remember that when the compiler encounters the await operator, it generates code that waits for
the item specified by the argument to complete, together with a continuation that runs the state-
ments that follow. You can think of the value returned by the async method as a reference to the Task
that runs this continuation (this description is not completely accurate, but it is a good enough model
for the purposes of this chapter). So, the doFirstLongRunningOperation method creates and starts the
tasks first and second running in parallel, the compiler reformats the await statements into code that
waits for first to complete followed by a continuation that waits for second to finish, and the async
modifier causes the compiler to return a reference to this continuation. Notice that because the com-
piler now determines the return value of the method, you no longer specify a return value yourself (in
fact, if you try and return a value, your code will not compile).

Note If you don't include an await statement in an async method, the method is simply a
reference to a Task that performs the code in the body of the method. As a result, when
you invoke the method, the code that it contains does not actually run asynchronously. In
this case, the compiler will warn you with the message "This async method lacks await op-
erators and will run synchronously."

tip You can use the async modifier to prefix a delegate. This enables you to create del-
egates that incorporate asynchronous processing by using the await operator.

592 part IV Building professional Windows 8 applications with C#

In the following exercise, you will revisit the GraphDemo application from Chapter 23 and modify
it to generate the data for the graph by using an asynchronous method.

Modify the GraphDemo application to use an asynchronous method

1. Using Microsoft Visual Studio 2012, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 24\GraphDemo folder in your Documents folder.

2. In Solution Explorer, expand the GraphDemo.xaml node, and open the GraphDemo.xaml.cs
file in the Code and Text Editor window.

3. In the GraphWindow class, locate the plotButton_Click method. The code in this method looks
like this:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 Random rand = new Random();
 redValue = (byte)rand.Next(0xFF);
 greenValue = (byte)rand.Next(0xFF);
 blueValue = (byte)rand.Next(0xFF);

 tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;

 Stopwatch watch = Stopwatch.StartNew();

 try
 {
 generateGraphData(data, 0, pixelWidth / 2, token);
 duration.Text = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
 }

 catch (OperationCanceledException oce)
 {
 duration.Text = oce.Message;
 }

 Stream pixelStream = graphBitmap.PixelBuffer.AsStream();
 pixelStream.Seek(0, SeekOrigin.Begin);
 pixelStream.Write(data, 0, data.Length);
 graphBitmap.Invalidate();
 graphImage.Source = graphBitmap;
}

This is a simplified version of the application from the previous chapter. It invokes the
generateGraphData method directly from the user interface thread and does not use Task
objects to generate the data for the graph in parallel.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 593

Note If you reduced the size of the pixelWidth and pixelHeight fields in the exercises
in Chapter 23 to save memory, do so again in this application before proceeding
with the next step.

4. On the DEBUG menu, click Start Debugging.

5. In the GraphDemo window, click Plot Graph. While the data is being generated, try to click
Cancel. Notice that the user interface is completely unresponsive while the graph is being
generated and displayed. This is because the plotButton_Click method performs all of its work
synchronously, including the generation of the data for the graph.

6. Return to Visual Studio and stop debugging.

7. In the Code and Text Editor window displaying the GraphWindow class, add a new private
method called generateGraphDataAsync above the generateGraphData method. This method
should take the same list of parameters as the generateGraphData method, but it should
return a Task object rather than a void. The method should also be marked as async, and it
should look like this:

private async Task generateGraphDataAsync(byte[] data,
 int partitionStart, int partitionEnd,
 CancellationToken token)
{
}

Note It is recommended practice to name asynchronous methods with the Async
suffix.

8. In the generateGraphDataAsync method, add the statements shown below in bold.

private async Task generateGraphDataAsync(byte[] data, int partitionStart, int
partitionEnd, CancellationToken token)
{
 Task task = Task.Run(() => generateGraphData(data, partitionStart, partitionEnd,
token));
 await task;
}

This code creates a Task object that runs the generateGraphData method and uses the await
operator to wait for the Task to complete. The task generated by the compiler as a result of
the await operator is the value returned from the method.

9. Return to the plotButton_Click method, and change the definition of this method to include
the async modifier as shown below in bold:

594 part IV Building professional Windows 8 applications with C#

private async void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
}

10. In the try block in the plotButton_Click method, modify the statement that generates the data
for the graph to call the generateGraphDataAsync method asynchronously, as shown below in
bold:

try
{
 await generateGraphDataAsync(data, 0, pixelWidth / 2, token);
 duration.Text = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
}
...

11. On the DEBUG menu, click Exceptions. In the Exceptions dialog box, expand Common
Language Runtime Exceptions, expand System, clear the User-unhandled check box for the
System.OperationCanceledException exception, and then click OK.

This step prevents the debugger from intercepting the System.OperationCanceledException
exception while reporting any other exceptions that may occur.

12. On the DEBUG menu, click Start Debugging.

13. In the GraphDemo window, click Plot Graph and verify that the application generates the
graph correctly.

14. Click Plot Graph and, while the data is being generated, click Cancel. This time, the user
interface should be responsive. Only part of the graph should be generated, and the duration
TextBlock should display the message "The operation was canceled."

15. Return to Visual Studio and stop debugging.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 595

Defining Asynchronous Methods That Return Values
So far, all the examples you have seen use a Task object to perform a piece of work that does not
return a value. However, you also use tasks to run methods that calculate a result. To do this, you
can use the generic Task<TResult> class, where the type parameter, TResult, specifies the type of
the result.

You create and start a Task<TResult> object in a similar way to an ordinary Task. The primary dif-
ference is that the code you execute should return a value. For example, the method calculateValue
shown in the following code example generates an integer result. To invoke this method by using a
task, you create and run a Task<int> object. You obtain the value returned by the method by query-
ing the Result property of the Task<int> object. If the task has not finished running the method and
the result is not yet available, the Result property blocks the caller. This means that you don’t have to
perform any synchronization yourself, and you know that when the Result property returns a value,
the task has completed its work.

Task<int> calculateValueTask = Task.Run(() => calculateValue(...));
...
int calculatedData = calculateValueTask.Result; // Block until calculateValueTask completes
...
private int calculateValue(...)
{
 int someValue;
 // Perform calculation and populate someValue
 ...
 return someValue;
}

The generic Task<TResult> type is also the basis of the mechanism for defining asynchronous
methods that return values. In previous examples, you saw that you implement asynchronous void
methods by returning a Task. If an asynchronous method actually generates a result, it should return
a Task<TResult>, as shown in the following example, which creates an asynchronous version of the
calculateValue method:

private async Task<int> calculateValueAsync(...)
{
 // Invoke calculateValue using a Task
 Task<int> generateResultTask = Task.Run(() => calculateValue(...));
 await generateResultTask;
 return generateResultTask.Result;
}

This method looks slightly confusing, inasmuch as the return type is specified as Task<int>, but
the return statement actually returns an int. Remember that when you define an async method, the
compiler performs some refactoring of your code, and it essentially returns a reference to Task that
runs the continuation for the statement return generateResultTask.Result;. The type of the expression
returned by this continuation is int, so the return type of the method is Task<int>.

596 part IV Building professional Windows 8 applications with C#

To invoke an asynchronous method that returns a value, use the await operator, like this:

int result = await calculateValueAsync(...);

The await operator extracts the value from the Task returned by the calculateValueAsync method
and in this case assigns it to the result variable.

asynchronous Methods and the Windows runtime apIs
The designers of Windows 8 wanted to ensure that applications were as responsive as possible, so
they made the decision when they implemented WinRT that any operation that may take more than
50 milliseconds to perform should be available only through an asynchronous API. You may have
noticed one or two instances of this approach already in this book. For example, to display a message
to a user, you can use a MessageDialog object. However, when you display this message, you must use
the ShowAsync method, like this:

using Windows.UI.Popups;
...
MessageDialog dlg = new MessageDialog("Message to user");
await dlg.ShowAsync();

The MessageDialog object displays the message and waits for the user to click the Close button
that appears as part of this dialog box. Any form of user interaction may take an indeterminate length
of time (the user might have gone for lunch before clicking Close), and it is often important not to
block the application or prevent it from performing other operations (such as responding to events)
while the dialog box is displayed. The MessageDialog class does not provide a synchronous version
of the ShowAsync method, but if you need to display a dialog box synchronously, you can simply call
dlg.ShowAsync() without the await operator.

Another common example of asynchronous processing concerns the FileOpenPicker class, which
you used in Chapter 5, “Using Compound Assignment and Iteration Statements.” The FileOpenPicker
class displays a list of files and enables the user to select from this list. As with the MessageDialog
class, the user may take a considerable time browsing and selecting files, so this operation should not
block the application. The following example shows how to use the FileOpenPicker class to display the
files in the user’s Documents folder and wait while the user selects a single file from this list.

using Windows.Storage;
using Windows.Storage.Pickers;
...
FileOpenPicker fp = new FileOpenPicker();
fp.SuggestedStartLocation = PickerLocationId.DocumentsLibrary;
fp.ViewMode = PickerViewMode.List;
fp.FileTypeFilter.Add("*");
StorageFile file = await fp.PickSingleFileAsync();

The key statement is the line that calls the PickSingleFileAsync method. This is the method that
displays the list of files and allows the user to navigate around the file system and select a file (the

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 597

FileOpenPicker class also provides the PickMultipleFilesAsync method to enable a user to select more
than one file). The value returned by this method is Task<StorageFile>, and the await operator extracts
the StorageFile object from this result. The StorageFile class provides an abstraction of a file held on
disk, and using this class, you can open a file and read from it or write to it.

Note Strictly speaking, the PickSingleFileAsync method returns an IAsyncOperation
<StorageFile> object. WinRT uses its own abstraction of asynchronous operations and
maps .NET Framework Task objects to this abstraction; the Task class implements the
IAsyncOperation interface. If you are programming in C#, your code is not affected by this
transformation, and you can simply use Task objects without concerning yourself how they
get mapped to WinRT asynchronous operations.

File I/O is another source of potentially slow operations, and the StorageFile class implements
a raft of asynchronous methods to enable these operations to be performed without impacting
the responsiveness of an application. For example, in Chapter 5, after the user selects a file using a
FileOpenPicker object, the code then opens this file for reading, asynchronously:

StorageFile file = await fp.PickSingleFileAsync();
...
var fileStream = await file.OpenAsync(FileAccessMode.Read);

One final example that is directly applicable to the exercises you have seen in this and the previ-
ous chapter concerns writing to a stream. You may have noticed that although the time reported to
generate the data for the graph is a few seconds, it can take up to twice that amount of time before
the graph actually appears. This is because of the way the data is written to the bitmap. The bitmap
renders data held in a buffer as part of the WriteableBitmap object, and the AsStream extension
method provides a Stream interface to this buffer. The data is written to the buffer via this stream by
using the Write method, like this:

...
Stream pixelStream = graphBitmap.PixelBuffer.AsStream();
pixelStream.Seek(0, SeekOrigin.Begin);
pixelStream.Write(data, 0, data.Length);
...

Unless you have reduced the value of the pixelWidth and pixelHeight fields to save memory, the
volume of data written to the buffer is 366 MB (12,000 * 8,000 * 4 bytes), so this Write operation may
take a few seconds. To improve response time, you can perform this operation asynchronously by
using the WriteAsync method:

await pixelStream.WriteAsync(data, 0, data.Length);

In general, when you build applications for Windows 8, you should seek to exploit asynchronicity
wherever possible.

598 part IV Building professional Windows 8 applications with C#

the Iasyncresult Design pattern in earlier Versions of the .Net
Framework
Asynchronicity has been long recognized as a key element in building responsive applica-
tions with the .NET Framework, and the concept predates the introduction of the Task class in
the .NET Framework version 4.0. Microsoft introduced the IAsyncResult design pattern based
on the AsyncCallback delegate type to handle these situations. The exact details of how this
pattern works are not relevant in this book, but from a programmer's perspective the imple-
mentation of this pattern meant that many types in the .NET Framework class library exposed
long-running operations in two ways: in a synchronous form consisting of a single method and
in an asynchronous form using a pair of methods named BeginOperationName and EndOp-
erationName, where OperationName specified the operation being performed. For example,
the MemoryStream class in the System.IO namespace provides the Write method to write data
synchronously to a stream in memory, but it also provides the BeginWrite and EndWrite meth-
ods to perform the same operation asynchronously. The BeginWrite method initiates the write
operation that is performed on a new thread. The BeginWrite method expects the programmer
to provide a reference to a callback method that runs when the write operation completes; this
reference is in the form of an AsyncCallback delegate. In this method, the programmer should
implement any appropriate tidying up and call the EndWrite method to signify that the opera-
tion has completed. The following code example shows this pattern in action:

...
Byte[] buffer = ...; // populated with data to write to the MemoryStream
MemoryStream ms = new MemoryStream();
AsyncCallback callback = new AsyncCallback(handleWriteCompleted);
ms.BeginWrite(buffer, 0, buffer.Length, callback, ms);
...

private void handleWriteCompleted(IAsyncResult ar)
{
 MemoryStream ms = ar.AsyncState as MemoryStream;
 ... // Perform any appropriate tidying up
 ms.EndWrite(ar);
}

The parameter to the callback method (handlWriteCompleted) is an IAsyncResult object
that contains information about the status of the asynchronous operation and any other state
information. You can pass user-defined information to the callback in this parameter; the final
argument supplied to the BeginOperationName method is packaged into this parameter. In this
example, the callback is passed a reference to the MemoryStream.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 599

While this sequence works, it is a messy paradigm that obscures the operation you are per-
forming. The code for the operation is split into two methods, and it is easy to lose the mental
connection between these methods if you have to maintain this code. If you are using Task
objects, you can simplify this model by calling the static FromAsync method of the TaskFactory
class. This method takes the BeginOperationName and EndOperationName methods and wraps
them into code that is performed by using a Task. There is no need to create an AsyncCallback
delegate, as this is generated behind the scenes by the FromAsync method. So, you can per-
form the same operation shown in the previous example like this:

...
Byte[] buffer = ...;
MemoryStream s = new MemoryStream();
Task t = Task<int>.Factory.FromAsync(s.Beginwrite, s.EndWrite, buffer, 0,
 buffer.Length, null);
t.Start();
await t;
...

This technique is useful if you need to access asynchronous functionality exposed by types
developed in earlier versions of the .NET Framework.

Using PLINQ to Parallelize Declarative Data Access

Data access is another area where response time is important, especially if you are building applica-
tions that have to search through lengthy data structures. In earlier chapters, you saw how powerful
LINQ is for retrieving data from an enumerable data structure, but the examples shown were inher-
ently single-threaded. LINQ provides a set of extensions called PLINQ (short for Parallel LINQ) that is
based on Tasks and that can help you boost performance and parallelize some query operations.

PLINQ works by dividing a data set into partitions, and then using tasks to retrieve the data that
matches the criteria specified by the query for each partition in parallel. The results retrieved for each
partition are combined into a single enumerable result set when the tasks have completed. PLINQ is
ideal for scenarios that involve data sets with large numbers of elements, or if the criteria specified for
matching data involve complex, computationally expensive operations.

A primary aim of PLINQ is to be as nonintrusive as possible. If you have a lot of existing LINQ
queries, you don’t want to have to modify your code to enable them to run with the latest build of the
.NET Framework. To achieve this, the .NET Framework includes the extension method AsParallel that
you can use with an enumerable object. The AsParallel method returns a ParallelQuery object that
acts in a similar manner to the original enumerable object, except that it provides parallel implemen-
tations of many of the LINQ operators, such as join and where. These implementations of the LINQ
operators are based on tasks and use various algorithms to try and run parts of your LINQ query in
parallel wherever possible.

600 part IV Building professional Windows 8 applications with C#

As ever in the world of parallel computing, the AsParallel method is not magic. You cannot guaran-
tee that your code will speed up; it all depends on the nature of your LINQ queries and whether the
tasks they are performing lend themselves to parallelization. To understand how PLINQ works and
the situations in which it is useful, it helps to see some examples. The exercises in the following sec-
tions demonstrate a pair of simple scenarios.

Using pLINQ to Improve performance
While Iterating through a Collection
The first scenario is simple. Consider a LINQ query that iterates through a collection and retrieves ele-
ments from the collection based on a processor-intensive calculation. This form of query can benefit
from parallel execution as long as the calculations are independent. The elements in the collection
can be divided into a number of partitions; the exact number depends on the current load of the
computer and the number of CPUs available. The elements in each partition can be processed by a
separate thread. When all the partitions have been processed, the results can be merged. Any collec-
tion that supports access to elements through an index, such as an array or a collection that imple-
ments the IList<T> interface, can be managed in this way.

parallelize a LINQ query over a simple collection

1. Using Visual Studio 2012, open the PLINQ solution, located in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 24\PLINQ folder in your Documents folder.

2. In Solution Explorer, double-click Program.cs in the PLINQ project to display the file in the
Code and Text Editor window.

This is a console application. The skeleton structure of the application has already been cre-
ated for you. The Program class contains two methods called Test1 and Test2 that illustrate a
pair of common scenarios. The Main method calls each of these test methods in turn.

Both test methods have the same general structure: they create a LINQ query (you will add
the code to do this later in this set of exercises), run it, and display the time taken. The code
for each of these methods is almost completely separate from the statements that actually
create and run the queries.

3. Examine the Test1 method. This method creates a large array of integers and populates it with
a set of random numbers between 0 and 200. The random number generator is seeded, so
you should get the same results every time you run the application.

4. After the first TO DO comment in this method, add the LINQ query shown below in bold:

// TO DO: Create a LINQ query that retrieves all numbers that are greater than 100
var over100 = from n in numbers
 where TestIfTrue(n > 100)
 select n;

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 601

This LINQ query retrieves all the items in the numbers array that have a value greater than
100. The test n > 100 is not computationally intensive enough by itself to show the benefits
of parallelizing this query, so the code calls a method named TestIfTrue, which slows it down
a little by performing a SpinWait operation. The SpinWait method causes the processor to
continually execute a loop of special “no operation” instructions for a short period of time,
keeping the processor busy but not actually doing any work. (This is known as spinning.) The
TestIfTrue method looks like this:

public static bool TestIfTrue(bool expr)
{
 Thread.SpinWait(1000);
 return expr;
}

5. After the second TO DO comment in the Test1 method, add the following code shown in bold:

// TO DO: Run the LINQ query, and save the results in a List<int> object
List<int> numbersOver100 = new List<int>(over100);

Remember that LINQ queries use deferred execution, so they do not run until you retrieve the
results from them. This statement creates a List<int> object and populates it with the results
of running the over100 query.

6. After the third TO DO comment in the Test1 method, add the following statement shown in
bold:

// TO DO: Display the results
Console.WriteLine("There are {0} numbers over 100.", numbersOver100.Count);

7. On the DEBUG menu, click Start Without Debugging. Note the time taken to run Test 1 and
the number of items in the array that are greater than 100.

8. Run the application several times, and take an average for the time. Verify that the number of
items greater than 100 is the same each time. Return to Visual Studio when you have finished.

9. The logic that selects each item returned by the LINQ query is independent of the selection
logic for all the other items, so this query is an ideal candidate for partitioning. Modify the
statement that defines the LINQ query, and specify the AsParallel extension method to the
numbers array, as shown here in bold:

var over100 = from n in numbers.AsParallel()
 where TestIfTrue(n > 100)
 select n;

Note If the selection logic or calculations require access to shared data, you must
synchronize the tasks that run in parallel, otherwise the results may be unpredict-
able. However, synchronization can impose an overhead and might negate the ben-
efits of parallelizing the query.

602 part IV Building professional Windows 8 applications with C#

10. On the DEBUG menu, click Start Without Debugging. Verify that the number of items reported
by Test1 is the same as before but that the time taken to perform the test has decreased sig-
nificantly. Run the test several times, and take an average of the duration required for the test.
If you are running on a dual-core processor (or a twin-processor computer), you should see
the time reduced by 40 to 45 percent. If you have more processor cores, the decrease should
be even more dramatic.

11. Close the application, and return to Visual Studio.

The preceding exercise shows the performance improvement you can get by making a small
change to a LINQ query. However, bear in mind that you will see results such as this only if the calcu-
lations performed by the query take some time. I cheated a little by spinning the processor. Without
this overhead, the parallel version of the query is actually slower than the serial version. In the next
exercise, you will see a LINQ query that joins two arrays in memory. This time, the exercise uses more
realistic data volumes, so there is no need to slow down the query artificially.

parallelize a LINQ query that joins two collections

1. In Solution Explorer, open the Data.cs file in the Code and Text Editor window and locate the
CustomersInMemory class.

This class contains a public string array called Customers. Each string in the Customers array
holds the data for a single customer, with the fields separated by commas; this format is typi-
cal of data that an application might read in from a text file that uses comma-separated fields.
The first field contains the customer ID, the second field contains the name of the company
that the customer represents, and the remaining fields hold the address, city, country, and
postal code.

2. Find the OrdersInMemory class.

This class is similar to the CustomersInMemory class except that it contains a string array called
Orders. The first field in each string is the order number, the second field is the customer ID,
and the third field is the date that the order was placed.

3. Find the OrderInfo class. This class contains four fields that hold the customer ID, company
name, order ID, and order date for an order. You will use a LINQ query to populate a collec-
tion of OrderInfo objects from the data in the Customers and Orders arrays.

4. Display the Program.cs file in the Code and Text Editor window and locate the Test2 method in
the Program class.

In this method, you will create a LINQ query that joins the Customers and Orders arrays over
the customer ID to return a list of customers and all the orders that each customer has placed.
The query will store each row of the result in an OrderInfo object.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 603

5. In the try block in this method, add the code shown next in bold after the first TO DO
comment:

// TO DO: Create a LINQ query that retrieves customers and orders from arrays
// Store each row returned in an OrderInfo object
var orderInfoQuery = from c in CustomersInMemory.Customers
 join o in OrdersInMemory.Orders
 on c.Split(',')[0] equals o.Split(',')[1]
 select new OrderInfo
 {
 CustomerID = c.Split(',')[0],
 CompanyName = c.Split(',')[1],
 OrderID = Convert.ToInt32(o.Split(',')[0]),
 OrderDate = Convert.ToDateTime(o.Split(',')[2],
 new CultureInfo("en-US"))
 };

This statement defines the LINQ query. Notice that it uses the Split method of the String class
to split each string into an array of strings. The strings are split on the comma character. (The
commas are stripped out.) One complication is that the dates in the array are held in U.S.
English format, so the code that converts them into DateTime objects in the OrderInfo object
specifies the U.S. English formatter. If you use the default formatter for your locale, the dates
might not parse correctly. All in all, this query performs a significant amount of work to gener-
ate the data for each item.

6. In the Test2 method, add the following code shown in bold after the second TO DO
statement:

// TO DO: Run the LINQ query, and save the results in a List<OrderInfo> object
List<OrderInfo> orderInfo = new List<OrderInfo>(orderInfoQuery);

This statement runs the query and populates the orderInfo collection.

7. Add the statement shown here in bold after the third TO DO statement:

// TO DO: Display the results
Console.WriteLine("There are {0} orders", orderInfo.Count);

8. In the Main method, comment out the statement that calls the Test1 method and uncomment
the statement that calls the Test2 method, as shown below in bold:

static void Main(string[] args)
{
 // Test1();
 Test2();
}

9. On the DEBUG menu, click Start Without Debugging.

Verify that Test2 retrieves 830 orders, and note the duration of the test. Run the application
several times to obtain an average duration and then return to Visual Studio.

604 part IV Building professional Windows 8 applications with C#

10. In the Test2 method, modify the LINQ query and add the AsParallel extension method to the
Customers and Orders arrays, as shown here in bold:

var orderInfoQuery = from c in CustomersInMemory.Customers.AsParallel()
 join o in OrdersInMemory.Orders.AsParallel()
 on c.Split(',')[0] equals o.Split(',')[1]
 select new OrderInfo
 {
 CustomerID = c.Split(',')[0],
 CompanyName = c.Split(',')[1],
 OrderID = Convert.ToInt32(o.Split(',')[0]),
 OrderDate = Convert.ToDateTime(o.Split(',')[2],
 New CultureInfo("en-US"))
 };

Warning When you join two data sources in this way, they must both be
IEnumerable objects or ParallelQuery objects. This means that if you specify the
AsParallel method for the first source, you should also specify AsParallel for the
other. If you fail to do this, your code will not run—it will stop with an error.

11. Run the application several times. Notice that the time taken for Test2 should be significantly
less than it was previously. PLINQ can make use of multiple threads to optimize join opera-
tions by fetching the data for each part of the join in parallel.

12. Close the application and return to Visual Studio.

These two simple exercises have shown you the power of the AsParallel extension method and
PLINQ. Note that PLINQ is an evolving technology, and the internal implementation is very likely to
change over time. Additionally, the volumes of data and the amount of processing you perform in
a query also have a bearing on the effectiveness of using PLINQ. Therefore, you should not regard
these exercises as defining fixed rules you should always follow. Rather, they illustrate the point that
you should carefully measure and assess the likely performance or other benefits of using PLINQ with
your own data in your own environment.

Canceling a pLINQ Query
Unlike ordinary LINQ queries, a PLINQ query can be canceled. To do this, you specify a
CancellationToken object from a CancellationTokenSource and use the WithCancellation extension
method of the ParallelQuery.

CancellationToken tok = ...;
...
var orderInfoQuery =
 from c in CustomersInMemory.Customers.AsParallel().WithCancellation(tok)
 join o in OrdersInMemory.Orders.AsParallel()
 on ...

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 605

You specify WithCancellation only once in a query. Cancellation applies to all sources in the query.
If the CancellationTokenSource object used to generate the CancellationToken is canceled, the query
stops with an OperationCanceledException exception.

Synchronizing Concurrent Access to Data

The Task class supplies a powerful framework that enables you to design and build applications that
can take advantage of multiple CPU cores to perform tasks in parallel. However, as I alluded to in the
introduction to this chapter, you need to be careful when building solutions that perform concurrent
operations, especially if those operations share access to the same data.

The issue is that you have little control over how parallel operations are scheduled, or even the
degree of parallelism that the operating system might provide to an application constructed by using
tasks. These decisions are left as run-time considerations and depend on the workload and hard-
ware capabilities of the computer running your application. This level of abstraction was a deliberate
design decision on the part of the Microsoft development team, and it removes the need for you to
understand the low-level threading and scheduling details when you build applications that require
concurrent tasks. But this abstraction comes at a cost. Although it all appears to work magically, you
must make some effort to understand how your code runs; otherwise, you can end up with applica-
tions that exhibit unpredictable (and erroneous) behavior, as shown in the following example:

using System;
using System.Threading;

class Program
{
 private const int NUMELEMENTS = 10;

 static void Main(string[] args)
 {
 SerialTest();
 }

 static void SerialTest()
 {
 int[] data = new int[NUMELEMENTS];
 int j = 0;

 for (int i = 0; i < NUMELEMENTS; i++)
 {
 j = i;
 doAdditionalProcessing();
 data[i] = j;
 doMoreAdditionalProcessing();
 }

606 part IV Building professional Windows 8 applications with C#

 for (int i = 0; i < NUMELEMENTS; i++)
 {
 Console.WriteLine("Element {0} has value {1}", i, data[i]);
 }
 }

 static void doAdditionalProcessing()
 {
 Thread.Sleep(10);
 }

 static void doMoreAdditionalProcessing()
 {
 Thread.Sleep(10);
 }
}

The SerialTest method populates an integer array with a set of values (in a rather long-winded way)
and then iterates through this list, printing the index of each item in the array together with the value
of the corresponding item. The doAdditionalProcessing and doMoreAdditionalProcessing methods
simply simulate performing long-running operations as part of the processing that might cause the
runtime to yield control of the processor. The output of the program method is shown here:

Element 0 has value 0
Element 1 has value 1
Element 2 has value 2
Element 3 has value 3
Element 4 has value 4
Element 5 has value 5
Element 6 has value 6
Element 7 has value 7
Element 8 has value 8
Element 9 has value 9

Now consider the ParallelTest method shown next. This method is the same as the SerialTest
method except that it uses the Parallel.For construct to populate the data array by running concurrent
tasks. The code in the lambda expression run by each task is identical to that in the initial for loop in
the SerialTest method.

using System.Threading.Tasks;
...

static void ParallelTest()
{
 int[] data = new int[NUMELEMENTS];
 int j = 0;

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 607

 Parallel.For (0, NUMELEMENTS, (i) =>
 {
 j = i;
 doAdditionalProcessing();
 data[i] = j;
 doMoreAdditionalProcessing();
 });

 for (int i = 0; i < NUMELEMENTS; i++)
 {
 Console.WriteLine("Element {0} has value {1}", i, data[i]);
 }
}

The intention is for the ParallelTest method to perform the same operation as the SerialTest
method, except that it uses concurrent tasks and (hopefully) runs a little faster as a result. The prob-
lem is that it might not always work as expected. Some sample output generated by the ParallelTest
method is shown here:

Element 0 has value 1
Element 1 has value 1
Element 2 has value 4
Element 3 has value 8
Element 4 has value 4
Element 5 has value 1
Element 6 has value 4
Element 7 has value 8
Element 8 has value 8
Element 9 has value 9

The values assigned to each item in the data array are not always the same as the values generated
by using the SerialTest method. Additionally, further runs of the ParallelTest method can produce dif-
ferent sets of results.

If you examine the logic in the Paralell.For construct, you should see where the problem lies. The
lambda expression contains the following statements:

j = i;
doAdditionalProcessing();
data[i] = j;
doMoreAdditionalProcessing();

The code looks innocuous enough. It copies the current value of the variable i (the index variable
identifying which iteration of the loop is running) into the variable j, and later on it stores the value of
j in the element of the data array indexed by i. If i contains 5, then j is assigned the value 5, and later
on the value of j is stored in data[5]. The problem is that between assigning the value to j and then
reading it back, the code does more work; it calls the doAdditionalProcessing method. If this method
takes a long time to execute, the runtime might suspend the thread and schedule another task. A
concurrent task running another iteration of the Parallel.For construct might run and assign a new

608 part IV Building professional Windows 8 applications with C#

value to j. Consequently, when the original task resumes, the value of j it assigns to data[5] is not the
value it stored, and the result is data corruption. More troublesome is that sometimes this code might
run as expected and produce the correct results, and at other times it may not; it all depends on how
busy the computer is and when the various tasks are scheduled. Consequently, these types of bugs
can lie dormant during testing and then suddenly manifest themselves in a production environment.

The variable j is shared by all the concurrent tasks. If a task stores a value in j and later reads it
back, it has to ensure that no other task has modified j in the meantime. This requires synchronizing
access to the variable across all concurrent tasks that can access it. One way in which you can achieve
synchronized access is to lock data.

Locking Data
The C# language provides locking semantics through the lock keyword, which you can use to guaran-
tee exclusive access to resources. You use the lock keyword like this:

object myLockObject = new object();
...
lock (myLockObject)
{
 // Code that requires exclusive access to a shared resource
 ...
}

The lock statement attempts to obtain a mutual-exclusion lock over the specified object (you can
actually use any reference type, not just object), and it blocks if this same object is currently locked by
another thread. When the thread obtains the lock, the code in the block following the lock statement
runs. At the end of this block, the lock is released. If another thread is blocked waiting for the lock, it
can then grab the lock and continue its processing.

Synchronization primitives for Coordinating tasks
The lock keyword is fine for many simple scenarios, but there are situations in which you might have
more complex requirements. The System.Threading namespace includes a number of additional syn-
chronization primitives you can use to address these situations. These synchronization primitives are
classes designed for use with tasks; they expose locking mechanisms that restrict access to a resource
while a task holds the lock. They support a variety of locking techniques you can use to implement
different styles of concurrent access, ranging from simple exclusive locks (where a single task has sole
access to a resource), to semaphores (where multiple tasks can access a resource simultaneously, but
in a controlled manner), to reader/writer locks that enable different tasks to share read-only access to
a resource while guaranteeing exclusive access to a thread that needs to modify the resource.

The following list summarizes some of these primitives. For more information and examples, con-
sult the documentation provided with Visual Studio 2012.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 609

Note The .NET Framework has included a respectable set of synchronization primitives
since its initial release. The following list describes only the more recent primitives included
in the System.Threading namespace. There is some overlap between the new primitives and
those provided previously. Where overlapping functionality exists, you should use the more
recent alternatives because they have been designed and optimized for computers with
multiple CPUs.

Detailed discussion of the theory of all the possible synchronization mechanisms available
for building multithreaded applications is outside the scope of this book. For more infor-
mation about the general theory of multiple threads and synchronization, see the topic
“Synchronizing Data for Multithreading” on the Microsoft web site at http://msdn.micro-
soft.com/en-us/library/z8chs7ft.aspx.

■■ ManualResetEventSlim The ManualResetEventSlim class provides functionality that enables
one or more tasks to wait for an event.

A ManualResetEventSlim object can be in one of two states: signaled (true) and unsignaled
(false). A task creates a ManualResetEventSlim object and specifies its initial state. Other tasks
can wait for the ManualResetEventSlim object to be signaled by calling the Wait method.
If the ManualResetEventSlim object is in the unsignaled state, the Wait method blocks the
tasks. Another task can change the state of the ManualResetEventSlim object to signaled by
calling the Set method. This action releases all tasks waiting on the ManualResetEventSlim
object, which can then resume running. The Reset method changes the state of a
ManualResetEventSlim object back to unsignaled.

■■ SemaphoreSlim You can use the SemaphoreSlim class to control access to a pool of
resources.

A SemaphoreSlim object has an initial value (a non-negative integer) and an optional maxi-
mum value. Typically, the initial value of a SemaphoreSlim object is the number of resources
in the pool. Tasks accessing the resources in the pool first call the Wait method. This method
attempts to decrement the value of the SemaphoreSlim object, and if the result is non-
zero, the thread is allowed to continue and can take a resource from the pool. When it has
finished, the task should call the Release method on the SemaphoreSlim object. This action
increments the value of the Semaphore.

If a task calls the Wait method and the result of decrementing the value of the SemaphoreSlim
object would result in a negative value, the task waits until another task calls Release.

The SemaphoreSlim class also provides the CurrentCount property, which you can use to
determine whether a Wait operation is likely to succeed immediately or will result in blocking.

■■ CountdownEvent You can think of the CountdownEvent class as a cross between the inverse
of a semaphore and a manual reset event.

http://msdn.microsoft.com/en-us/library/z8chs7ft.aspx
http://msdn.microsoft.com/en-us/library/z8chs7ft.aspx

610 part IV Building professional Windows 8 applications with C#

When a task creates a CountdownEvent object, it specifies an initial value (a non-negative
integer). One or more tasks can call the Wait method of the CountdownEvent object, and
if its value is nonzero, the tasks are blocked. Wait does not decrement the value of the
CountdownEvent object; instead, other tasks can call the Signal method to reduce the value.
When the value of the CountdownEvent object reaches zero, all blocked tasks are signaled and
can resume running.

A task can set the value of a CountdownEvent object back to the value specified in its con-
structor by using the Reset method, and a task can increase this value by calling the AddCount
method. You can determine whether a call to Wait is likely to block by examining the
CurrentCount property.

■■ ReaderWriterLockSlim The ReaderWriterLockSlim class is an advanced synchronization
primitive that supports a single writer and multiple readers. The idea is that modifying (writing
to) a resource requires exclusive access, but reading a resource does not; multiple readers can
access the same resource at the same time, but not at the same time as a writer.

A task that wants to read a resource calls the EnterReadLock method of a ReaderWriterLock
Slim object. This action grabs a read lock on the object. When the task has finished with the
resource, it calls the ExitReadLock method, which releases the read lock. Multiple tasks can
read the same resource at the same time, and each task obtains its own read lock.

When a task modifies the resource, it can call the EnterWriteLock method of the same
ReaderWriterLockSlim object to obtain a write lock. If one or more tasks currently have a read
lock for this object, the EnterWriteLock method blocks until they are all released. Once a task
has a write lock, it can then modify the resource and call the ExitWriteLock method to release
the lock.

A ReaderWriterLockSlim object has only a single write lock. If another task attempts to obtain
the write lock, it is blocked until the first task releases this write lock.

To ensure that writing tasks are not blocked indefinitely, as soon as a task requests the write
lock, all subsequent calls to EnterReadLock made by other tasks are blocked until the write
lock has been obtained and released.

■■ Barrier The Barrier class enables you to temporarily halt the execution of a set of tasks at a
particular point in an application and continue only when all tasks have reached this point. It
is useful for synchronizing tasks that need to perform a series of concurrent operations in step
with each other.

When a task creates a Barrier object, it specifies the number of tasks in the set that will be syn-
chronized. You can think of this value as a task counter maintained internally inside the Barrier
class. This value can be amended later by calling the AddParticipant or RemoveParticipant
method. When a task reaches a synchronization point, it calls the SignalAndWait method of

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 611

the Barrier object, which decrements the thread counter inside the Barrier object. If this coun-
ter is greater than zero, the task is blocked. Only when the counter reaches zero are all the
tasks waiting on the Barrier object released, and only then can they continue running.

The Barrier class provides the ParticipantCount property, which specifies the number of tasks
that it synchronizes, and the ParticipantsRemaining property, which indicates how many
tasks need to call SignalAndWait before the barrier is raised and blocked tasks can continue
running.

You can also specify a delegate in the Barrier constructor. This delegate can refer to a method
that runs when all the tasks have arrived at the barrier. The Barrier object is passed in as a
parameter to this method. The barrier is not raised and the tasks are not released until this
method completes.

Cancelling Synchronization
The ManualResetEventSlim, SemaphoreSlim, CountdownEvent, and Barrier classes all support
cancellation by following the cancellation model described in Chapter 23. The wait operations
for each of these classes can take an optional CancellationToken parameter, retrieved from a
CancellationTokenSource object. If you call the Cancel method of the CancellationTokenSource object,
each wait operation referencing a CancellationToken generated from this source is aborted with
an OperationCanceledException exception (possibly wrapped in an AggregateException exception,
depending on the context of the wait operation).

The following code shows how to invoke the Wait method of a SemaphoreSlim object and
specify a cancellation token. If the wait operation is canceled, the OperationCanceledException
catch handler runs.

CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();
CancellationToken cancellationToken = cancellationTokenSource.Token;
...
// Semaphore that protects a pool of 3 resources
SemaphoreSlim semaphoreSlim = new SemaphoreSlim(3);
...
// Wait on the semaphore, and catch the OperationCanceledException if
// another thread calls Cancel on cancellationTokenSource
try
{
 semaphoreSlim.Wait(cancellationToken);
}
catch (OperationCanceledException e)
{
 ...
}

612 part IV Building professional Windows 8 applications with C#

the Concurrent Collection Classes
A common requirement of many multithreaded applications is to store and retrieve data in a collec-
tion. The standard collection classes provided with the .NET Framework are not thread safe by default,
although you can use the synchronization primitives described in the previous section to wrap code
that adds, queries, and removes elements in a collection. However, this process is potentially error-
prone and not very scalable, so the .NET Framework class library includes a small set of thread-safe
collection classes and interfaces in the System.Collections.Concurrent namespace that are designed
specifically for use with tasks. The following list briefly summarizes the key types in this namespace.

■■ ConcurrentBag<T> This is a general-purpose class for holding an unordered collection of
items. It includes methods to insert (Add), remove (TryTake), and examine (TryPeek) items in
the collection. These methods are thread safe. The collection is also enumerable, so you can
iterate over its contents by using a foreach statement.

■■ ConcurrentDictionary<TKey, TValue> This class implements a thread-safe version of the
generic Dictionary<TKey, TValue> collection class described in Chapter 18, “Using Collections.”
It provides the methods TryAdd, ContainsKey, TryGetValue, TryRemove, and TryUpdate, which
you can use to add, query, remove, and modify items in the dictionary.

■■ ConcurrentQueue<T> This class provides a thread-safe version of the generic Queue<T>
class described in Chapter 18. It includes the methods Enqueue, TryDequeue, and TryPeek,
which you can use to add, remove, and query items in the queue.

■■ ConcurrentStack<T> This is a thread-safe implementation of the generic Stack<T> class, also
described in Chapter 18. It provides methods such as Push, TryPop, and TryPeek, which you
can use to push, pop, and query items on the stack.

Note Adding thread safety to the methods in a collection class imposes additional runtime
overhead, so these classes are not as fast as the regular collection classes. You need to bear
this fact in mind when deciding whether to parallelize a set of operations that require ac-
cess to a shared collection.

Using a Concurrent Collection and a Lock
to Implement thread-Safe Data access
In the following set of exercises, you will implement an application that calculates Pi by using a geometric
approximation. Initially, you will perform the calculation in a single-threaded manner, and then you will
change the code to perform the calculation by using parallel tasks. In the process, you will uncover some
data synchronization issues you need to address and that you will solve by using a concurrent collection
class and a lock to ensure that the tasks coordinate their activities correctly.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 613

The algorithm you will implement calculates Pi based on some simple mathematics and statistical
sampling. If you draw a circle of radius r and draw a square with sides that touch the circle, the sides
of the square are 2 * r in length, as shown in the following image:

You can calculate the area of the square, S, as follows:

S = (2 * r) * (2 * r)

or

S = 4 * r * r

The area of the circle, C, is calculated as follows:

C = Pi * r * r

Rearranging these formulas, you can see that

r * r = C / Pi

and

r * r = S / 4

Therefore,

S / 4 = C / Pi

and rearranging this formula to calculate pi you get this:

Pi = 4 * C / S

614 part IV Building professional Windows 8 applications with C#

The trick is to determine the value of the ratio of the area of the circle, C, with respect to the area
of the square, S. This is where the statistical sampling comes in. You can generate a set of random
points that lie within the square and count how many of these points also fall within the circle. If you
have generated a sufficiently large and random sample, the ratio of points that lie within the circle to
the points that lie within the square (and also in the circle) approximates the ratio of the areas of the
two shapes, C / S. All you have to do is count them.

How do you determine whether a point lies within the circle? To help visualize the solution, draw
the square on a piece of graph paper with the center of the square at the origin, point (0,0). You
can then generate pairs of values, or coordinates, that lie within the range (-r, -r) to (+r, +r). You can
determine whether any set of coordinates (x, y) lie within the circle by applying Pythagoras‘ theorem
to determine the distance d of these coordinates from the origin. You can calculate d as the square
root of ((x * x) + (y * y)). If d is less than or equal to r, the radius of the circle, then the coordinates (x, y)
specify a point within the circle, as shown in the following diagram:

You can simplify matters further by generating only coordinates that lie in the upper-right quad-
rant of the graph so that you only have to generate pairs of random numbers between 0 and r. This is
the approach you will take in the exercises.

Note The exercises in this chapter are intended to run on a computer with a multicore
processor. If you have only a single-core CPU, you will not observe the same effects. Also,
you should not start any additional programs or services between exercises because these
might affect the results you see.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 615

Calculate pi by using a single thread

1. Start Visual Studio 2012 if it is not already running.

2. Open the CalculatePI solution, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 24\CalculatePI folder in your Documents folder.

3. In Solution Explorer, in the CalculatePI project, double-click Program.cs to display the file in
the Code and Text Editor window.

This is a console application. The skeleton structure of the application has already been cre-
ated for you.

4. Scroll to the bottom of the file and examine the Main method. The code in this method looks
like this:

double pi = SerialPI();
Console.WriteLine("Geometric approximation of PI calculated serially: {0}", pi);
Console.WriteLine();
// pi = ParallelPI();
// Console.WriteLine("Geometric approximation of PI calculated in parallel: {0}", pi);

This code calls the SerialPI method, which will calculate pi by using the geometric algorithm
described before this exercise. The value is returned as a double and displayed. The code that
is currently commented out calls the ParallelPI method, which will perform the same calcula-
tion but by using concurrent tasks. The result displayed should be exactly the same as that
returned by the SerialPI method.

5. Examine the SerialPI method.

static double SerialPI()
{
 List<double> pointsList = new List<double>();
 Random random = new Random(SEED);
 int numPointsInCircle = 0;
 Stopwatch timer = new Stopwatch();
 timer.Start();

 try
 {
 // TO DO: Implement the geometric approximation of PI
 return 0;
 }
 finally
 {
 long milliseconds = timer.ElapsedMilliseconds;
 Console.WriteLine("SerialPI complete: Duration: {0} ms", milliseconds);
 Console.WriteLine(
 "Points in pointsList: {0}. Points within circle: {1}",
 pointsList.Count, numPointsInCircle);
 }
}

616 part IV Building professional Windows 8 applications with C#

This method generates a large set of coordinates and calculates the distances of each set of
coordinates from the origin. The size of the set is specified by the constant NUMPOINTS at
the top of the Program class. The bigger this value is, the greater the set of coordinates and
the more accurate the value of pi calculated by this method. If you have sufficient memory,
you can increase the value of NUMPOINTS. Similarly, if you find that the application throws
OutOfMemoryException exceptions when you run it, you can reduce this value.

You store the distance of each point from the origin in the pointsList List<double> collection.
The data for the coordinates is generated by using the random variable. This is a Random
object, seeded with a constant to generate the same set of random numbers each time you
run the program. (This helps you determine that it is running correctly.) You can change the
SEED constant at the top of the Program class if you want to seed the random number gen-
erator with a different value.

You use the numPointsInCircle variable to count the number of points in the pointsList collec-
tion that lie within the bounds of the circle. The radius of the circle is specified by the RADIUS
constant at the top of the Program class.

To help you compare performance between this method and the ParallelPI method, the code
creates a Stopwatch variable called timer and starts it running. The finally block determines
how long the calculation took and displays the result. For reasons that will be described later,
the finally block also displays the number of items in the pointsList collection and the number
of points that it found that lay within the circle.

You will add the code that actually performs the calculation to the try block in the next few steps.

6. In the try block, delete the comment and remove the return statement. (This statement was
provided only to ensure that the code compiles.) Add the for block and statements shown
below in bold to the try block:

try
{
 for (int points = 0; points < NUMPOINTS; points++)
 {
 int xCoord = random.Next(RADIUS);
 int yCoord = random.Next(RADIUS);
 double distanceFromOrigin = Math.Sqrt(xCoord * xCoord + yCoord * yCoord);
 pointsList.Add(distanceFromOrigin);
 doAdditionalProcessing();
 }
}

This block of code generates a pair of coordinate values that lie in the range 0 to RADIUS, and
it stores them in the xCoord and yCoord variables. The code then employs the Pythagorean
theorem to calculate the distance of these coordinates from the origin and adds the result to
the pointsList collection.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 617

Note Although there is a little bit of computational work performed by this block
of code, in a real-world scientific application you are likely to include far more com-
plex calculations that will keep the processor occupied for longer. To simulate this
situation, this block of code calls another method, doAdditionalProcessing. All this
method does is occupy a number of CPU cycles as shown in the following code
sample. I opted to follow this approach to better demonstrate the data synchroniza-
tion requirements of multiple tasks rather than have you write an application that
performs a highly complex calculation such as a fast Fourier transform (FFT) to keep
the CPU busy:

private static void doAdditionalProcessing()
{
 Thread.SpinWait(SPINWAITS);
}

SPINWAITS is another constant defined at the top of the Program class.

7. In the SerialPI method, in the try block, add the foreach statement shown below in bold after
the for block.

try
{
 for (int points = 0; points < NUMPOINTS; points++)
 {
 ...
 }

 foreach (double datum in pointsList)
 {
 if (datum <= RADIUS)
 {
 numPointsInCircle++;
 }
 }
}

This code iterates through the pointsList collection and examines each value in turn. If the
value is less than or equal to the radius of the circle, it increments the numPointsInCircle vari-
able. At the end of this loop, numPointsInCircle should contain the total number of coordi-
nates that were found to lie within the bounds of the circle.

618 part IV Building professional Windows 8 applications with C#

8. Add the following statements shown in bold to the try block, after the foreach statement:

try
{
 for (int points = 0; points < NUMPOINTS; points++)
 {
 ...
 }

 foreach (double datum in pointsList)
 {
 ...
 }

 double pi = 4.0 * numPointsInCircle / NUMPOINTS;
 return pi;
}

The first statement calculates pi based on the ratio of the number of points that lie within the
circle to the total number of points, using the formula described earlier. The value is returned
as the result of the method.

9. On the DEBUG menu, click Start Without Debugging.

The program runs and displays its approximation of pi, as shown in the following image. (It
took just over 46 seconds on my computer, so be prepared to wait for a little while.) The time
taken to calculate the result is also displayed. (You can ignore the results from the ParallelPI
method because you have not written the code for this method yet.)

Note Apart from the timing, your results should be the same unless you have
changed the NUMPOINTS, RADIUS, or SEED constant.

10. Close the console window, and return to Visual Studio.

In the SerialPI method, the code in the for loop that generates the points and calculates their
distance from the origin is an obvious area that can parallelized. This is what you will do in the next
exercise.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 619

Calculate pi by using parallel tasks

1. In Solution Explorer, double-click Program.cs to display the file in the Code and Text Editor window
if it is not already open.

2. Locate the ParallelPI method. It contains exactly the same code as the initial version of the
SerialPI method before you added the code to the try block to calculate pi.

3. In the try block, delete the comment and remove the return statement. Add the Parallel.For
statement shown below in bold to the try block:

try
{
 Parallel.For (0, NUMPOINTS, (x) =>
 {
 int xCoord = random.Next(RADIUS);
 int yCoord = random.Next(RADIUS);
 double distanceFromOrigin = Math.Sqrt(xCoord * xCoord + yCoord * yCoord);
 pointsList.Add(distanceFromOrigin);
 doAdditionalProcessing();
 });
}

This construct is the parallel analog of the code in the for loop in the SerialPI method. The
body of the original for loop is wrapped in a lambda expression. Remember that each itera-
tion of the loop is performed by using a task, and tasks can run in parallel. The degree of
parallelism depends on the number of processor cores and other resources available on your
computer.

4. Add the following code shown in bold to the try block after the Parallel.For statement. This
code is exactly the same as the corresponding statements in the SerialPI method.

try
{
 Parallel.For (...
 {
 ...
 });

 foreach (double datum in pointsList)
 {
 if (datum <= RADIUS)
 {
 numPointsInCircle++;
 }
 }

 double pi = 4.0 * numPointsInCircle / NUMPOINTS;
 return pi;
}

620 part IV Building professional Windows 8 applications with C#

5. In the Main method near the end of the Program.cs file, uncomment the code that calls the
ParallelPI method and the Console.WriteLine statement that displays the results.

6. On the DEBUG menu, click Start Without Debugging.

The program runs. The following image shows the typical output:

The value calculated by the SerialPI method should be exactly the same as before (the timing
may be slightly different). However, although it was calculated somewhat more quickly, the
result of the ParallelPI method looks a little suspect. The random number generator is seeded
with the same value as that used by the SerialPI method, so it should produce the same
sequence of random numbers with the same result and the same number of points within the
circle. Another curious point is that the pointsList collection in the ParallelPI method seems to
contain fewer points than the same collection in the SerialPI method.

Note If the pointsList collection actually contains the expected number of items, run
the application again. You should find that it contains fewer items than expected in
most (but not necessarily all) runs.

7. Close the console window, and return to Visual Studio.

So what went wrong with the parallel calculation? A good place to start is the number of items
in the pointsList collection. This collection is a generic List<double> object. However, this type is not
thread safe. The code in the Parallel.For statement calls the Add method to append a value to the
collection, but remember that this code is being executed by tasks running as concurrent threads.
Consequently, given the number of items being added to the collection, it is highly probable that
some of the calls to Add will interfere with each other and cause some corruption. A solution is to use
one of the collections from the System.Collections.Concurrent namespace because these collections
are thread safe. The generic ConcurrentBag<T> class in this namespace is probably the most suitable
collection to use for this example.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 621

Use a thread-safe collection

1. In Solution Explorer, double-click Program.cs to display the file in the Code and Text Editor window
if it is not already open.

2. Add the following using directive to the list at the top of the file:

using System.Collections.Concurrent;

3. Locate the ParallelPI method. At the start of this method, replace the statement that instanti-
ates the List<double> collection with code that creates a ConcurrentBag<double> collection, as
shown in bold in the following code example:

static double ParallelPI()
{
 ConcurrentBag<double> pointsList = new ConcurrentBag <double>();
 Random random = ...;
 ...
}

Notice that you cannot specify a default capacity for this class, so the constructor does not
take a parameter.

You do not need to change any other code in this method; you add an item to a
ConcurrentBag<T> collection by using the Add method, which is the same mechanism that you
use to add an item to a List<T> collection.

4. On the DEBUG menu, click Start Without Debugging.

The program runs and displays its approximation of pi by using the SerialPI and ParallelPI
methods. The following image shows the typical output.

This time, the pointsList collection in the ParallelPI method contains the correct number of
points, but the number of points within the circle still appears to be very high; it should be the
same as that reported by the SerialPI method.

You should also note that the time taken by the ParallelPI method has increased compared to
the previous exercise. This is because the methods in the ConcurrentBag<T> class have to lock
and unlock data to guarantee thread safety, and this process adds to the overhead of calling
these methods. Bear this in mind when considering whether it is appropriate to parallelize an
operation.

5. Close the console window, and return to Visual Studio.

622 part IV Building professional Windows 8 applications with C#

You now have the correct number of points in the pointsList collection, but the value recorded for
each of these points is now questionable. The code in the Parallel.For construct calls the Next method
of a Random object, but like the methods in the generic List<T> class, this method is not thread safe.
Sadly, there is no concurrent version of the Random class, so you must resort to using an alternative
technique to serialize calls to the Next method. Because each invocation is relatively brief, it makes
sense to use a simple lock to guard calls to this method.

Use a lock to serialize method calls

1. In Solution Explorer, double-click Program.cs to display the file in the Code and Text Editor
window if it is not already open.

2. Locate the ParallelPI method. Modify the code in the lambda expression in the Parallel.For
statement to protect the calls to random.Next by using a lock statement. Specify the pointsList
collection as the subject of the lock, as shown below in bold:

static double ParallelPI()
{
 ...
 Parallel.For(0, NUMPOINTS, (x) =>
 {
 int xCoord;
 int yCoord;

 lock(pointsList)
 {
 xCoord = random.Next(RADIUS);
 yCoord = random.Next(RADIUS);
 }

 double distanceFromOrigin = Math.Sqrt(xCoord * xCoord + yCoord * yCoord);
 pointsList.Add(distanceFromOrigin);
 doAdditionalProcessing();
 });

 ...
}

Notice that the xCoord and yCoord variables are declared outside of the lock statement. This is
because the lock statement defines its own scope, and any variables defined within the block
specifying the scope of the lock statement disappear when the construct exits.

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 623

3. On the DEBUG menu, click Start Without Debugging.

This time, the values of pi calculated by the SerialPI and ParallelPI methods are the same. The
only difference is that the ParallelPI method runs more quickly.

4. Close the console window, and return to Visual Studio.

Summary

In this chapter, you saw how to define asynchronous methods by using the async modifier and the
await operator. Asynchronous methods are based on tasks, and the await operator specifies the
points at which a task can be used perform asynchronous processing.

You also learned a little about PLINQ and how you can use the AsParallel extension method to
parallelize some LINQ queries. However, PLINQ is a big subject in its own right, and this chapter has
only shown you how to get started. For more information, see the topic “Parallel LINQ (PLINQ)” in the
documentation provided with Visual Studio.

This chapter also showed you how to synchronize data access in concurrent tasks by using the
synchronization primitives provided for use with tasks. You saw how to use the concurrent collection
classes to maintain collections of data in a thread-safe manner.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 25.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

624 part IV Building professional Windows 8 applications with C#

Chapter 24 Quick Reference

To Do this

Implement an asynchro-
nous method

Define the method with the async modifier and change the type of the method to return
a Task (or a void). In the body of the method, use the await operator to specify points at
which asynchronous processing can be performed. For example:

private async Task<int> calculateValueAsync(...)
{
 // Invoke calculateValue using a Task
 Task<int> generateResultTask =
 Task.Run(() => calculateValue(...));
 await generateResultTask;
 return generateResultTask.Result;
}

Parallelize a LINQ query Specify the AsParallel extension method with the data source in the query. For example:

var over100 = from n in numbers.AsParallel()
 where ...
 select n;

Enable cancellation in a
PLINQ query

Use the WithCancellation method of the ParallelQuery class in the PLINQ query, and
specify a cancellation token. For example:

CancellationToken tok = ...;
...
var orderInfoQuery = from c in
 CustomersInMemory.Customers.AsParallel().
 WithCancellation(tok)
 join o in OrdersInMemory.Orders.AsParallel()
 on ...

Synchronize one or
more tasks to implement
thread-safe exclusive
access to shared data

Use the lock statement to guarantee exclusive access to the data. For example:

object myLockObject = new object();
...
lock (myLockObject)
{
 // Code that requires exclusive access to a shared resource
 ...
}

Synchronize threads, and
make them wait for an
event

Use a ManualResetEventSlim object to synchronize an indeterminate number of threads.
Use a CountdownEvent object to wait for an event to be signaled a specified number of
times.
Use a Barrier object to coordinate a specified number of threads and synchronize them at
a particular point in an operation.

Synchronize access to a
shared pool of resources

Use a SemaphoreSlim object. Specify the number of items in the pool in the constructor.
Call the Wait method prior to accessing a resource in the shared pool. Call the Release
method when you have finished with the resource. For example:

SemaphoreSlim semaphore = new SemaphoreSlim(3);
...
semaphore.Wait();
// Access a resource from the pool
...
semaphore.Release();

 CHAPTER 24 Improving Response Time by Performing Asynchronous Operations 625

To Do this

Provide exclusive write
access to a resource, but
shared read access

Use a ReaderWriterLockSlim object. Prior to reading the shared resource, call the
EnterReadLock method. Call the ExitReadLock method when you have finished. Before
writing to the shared resource, call the EnterWriteLock method. Call the ExitWriteLock
method when you have completed the write operation. For example:

ReaderWriterLockSlim readerWriterLock = new ReaderWriterLockSlim();

Task readerTask = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterReadLock();
 // Read shared resource
 readerWriterLock.ExitReadLock();
 });

Task writerTask = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterWriteLock();
 // Write to shared resource
 readerWriterLock.ExitWriteLock();
 });

Cancel a blocking wait
operation

Create a cancellation token from a CancellationTokenSource object, and specify this to-
ken as a parameter to the wait operation. To cancel the wait operation, call the Cancel
method of the CancellationTokenSource object. For example:

CancellationTokenSource cancellationTokenSource = new
CancellationTokenSource();
CancellationToken cancellationToken = cancellationTokenSource.Token;
...
// Semaphore that protects a pool of 3 resources
SemaphoreSlim semaphoreSlim = new SemaphoreSlim(3);
...
// Wait on the semaphore, and throw an OperationCanceledException if
// another thread calls Cancel on cancellationTokenSource
semaphore.Wait(cancellationToken);

 627

C H A P T E R 2 5

Implementing the User Interface
for a Windows Store app

After completing the chapter, you will be able to

■■ Describe the features of a typical Windows Store app.

■■ Implement a scalable user interface for a Windows Store app that can adapt to different form
factors and device orientations.

■■ Create and apply styles to a Windows Store app.

Microsoft Windows Store apps are based on a new paradigm for applications that is arguably the
biggest change in Windows client application development since the advent of the Microsoft .NET
Framework just after the turn of the millennium. The continuously connected, touch-driven interface
of Windows 8 together with the use of Windows contracts for interacting with other applications, the
support for embedded sensors, and an updated application security and life-cycle model changes
the way that users and applications work together. Microsoft Visual Studio 2012 enables develop-
ers to easily design and implement applications that can take advantage of the new features of the
Windows 8 platform.

The purpose of this chapter is to provide a brief description of this new paradigm and help you
to get started using Visual Studio 2012 to build applications that operate in this environment. In this
chapter, you will learn about some of the new features and tools included with Visual Studio 2012 for
building Windows Store apps, and you will start to build a Windows Store app that conforms to the
Windows 8 look and feel. You will concentrate on learning how to implement a user interface that
scales and adapts to different device resolutions and form factors, and how to apply styling to give
the application a distinctive look and feel.

Note There is not enough space in a book such as this to provide a comprehensive treatise
on building Windows Store apps. Rather, these final chapters concentrate on the basic prin-
ciples of building an interactive application that uses the Windows 8 user interface. For de-
tailed information on writing Windows Store apps, visit the “Learn to build Windows Store
apps” page on the Microsoft website at http://msdn.microsoft.com/library/windows/apps/
xaml/BR229566.

http://msdn.microsoft.com/library/windows/apps/xaml/BR229566
http://msdn.microsoft.com/library/windows/apps/xaml/BR229566

628 part IV Building professional Windows 8 applications with C#

What Is a Windows Store App?

A Windows Store app is a graphical application that has a distinctive look and feel, based on a few simple
principles that you will learn about in this chapter and in Chapter 26, "Displaying and Searching for Data in
a Windows Store App," and Chapter 27, "Accessing a Remote Database in a Windows Store App." Windows
Store apps are highly interactive, placing the user at the center of their operations. Microsoft has invested a
significant amount of time (and money) in studies that examined how users like to work with applications
and the most effective ways of displaying data and interacting with that data. The designers at Microsoft
have applied this knowledge to develop the model that Windows Store apps should follow.

When a Windows Store app runs, it typically occupies the full screen, although Windows Store
apps can operate in different display modes that you will learn about in this chapter. They are
chromeless, meaning they do not have borders, drop-down menus, pop-up windows, or many of the
other user interface features that can serve as a distraction to users. Instead, you design a Windows
Store app to be clean and focused on helping the user to perform a specific set of tasks. Additionally,
Microsoft has performed investigations into areas such as readability, and the company has docu-
mented guidelines illustrating the standardized use of fonts, weights, spacing, and positioning for
text.

Note You can find lots of information about the design features of Windows Store apps
online on the Microsoft website. Specifically, the webpage "Designing UX for apps" avail-
able at http://msdn.microsoft.com/library/windows/apps/hh779072.aspx provides guidance
on planning the features that a Windows Store app should implement and how to design
the application to provide the optimal user experience.

Many modern handheld and tablet devices enable users to interact with applications by using
touch, and you should design your Windows Store apps based on this style of user experience.
Windows 8 includes an extensive collection of touch-based controls that also work with the mouse
and keyboard if the user does not have a touch-sensitive device. You don't need to separate the touch
and mouse features in your applications; simply design for touch and users can still operate by using
the mouse and keyboard if they prefer or if they are using a device that does not support this style of
interaction.

Subtle, fluid, and discrete animations are also an important aspect of the entire user experience. The way
in which the graphical user interface (GUI) responds to gestures to provide feedback to the user can greatly
enhance the professional feel of your applications. The Windows Store app templates included with Visual
Studio 2012 include an animation library that you can use in your applications to standardize this feedback
and blend in seamlessly with the operating system and software that Microsoft provides.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 629

Note The term gesture refers to the manual touch-oriented operations that a user can per-
form. For example, a user can tap an item with a finger, and this gesture typically responds
in the same way that you would expect a mouse-click to behave. However, gestures can be
far more expressive than the simple operations that can be captured by using a mouse. For
example, the "rotate" gesture involves the user placing two fingers on the screen and de-
scribing the arc of a circle with them; in a typical Windows 8 application, this gesture should
cause the user interface to rotate the selected object in the direction indicated by the
movement of the fingers. Other gestures include "pinch" to zoom in on an item to display
more detail, "press and hold" to reveal more information about an item (similar to perform-
ing a right-mouse click), and "slide" to select and drag an item across the screen.

The Windows 8 user interface employs a number of its own specific gestures for interacting
with the operating system. For example, you can "swipe" the currently running application
to the bottom of the screen to terminate it, or you can swipe from the left or right edge of
the display to view the Windows system icons.

Windows 8 is intended to run on a wide range of devices, from desktop computers and laptops through
to tablet computers and small handheld devices and smartphones. An important reason for building
Windows Store apps is to enable you to construct software that adapts to the environment in which it is
running, scaling automatically to the screen size and orientation of the device. This approach opens up
your software to an increasingly broad market. Additionally, many modern devices can also detect their ori-
entation and the speed at which the user changes this orientation through the use of built-in devices and

630 part IV Building professional Windows 8 applications with C#

accelerometers. Windows Store apps can adapt their layout as the user tilts or rotates a device, enabling the
user to work in a mode that is most comfortable for that individual. You should also understand that mobil-
ity is a key requirement for many modern applications, and Windows Store apps enable users to roam; their
data can migrate through the cloud to whatever device they happen to be running your application on at a
particular moment.

Windows Store apps can also support a number of features that enable interactions with other
applications as well as the Windows 8 operating system. These features are based on a standardized
mechanism known as a contract. A contract defines a Windows 8 interface that enables an applica-
tion to implement or consume an operating system–defined feature, such as the ability to share data
or support search requests. Using contracts, Windows Store apps can communicate with each other
without introducing any application-specific dependencies. You will learn more about Windows 8
contracts in Chapter 26.

The lifetime of Windows Store app is somewhat different from that of a traditional desktop appli-
cation. At any given point in time, Windows 8 just runs the application that occupies the area of focus
on the screen, and if you switch to a different application, that application becomes the focus and
moves to the foreground while the original application is suspended. Windows 8 may actually decide
to close a suspended application if system resources, such as memory, need to be released. When the
application next runs, it should be able to resume from where it left off. This means that you need to
be prepared to manage application state information in your code, save it to disk, and restore it at the
appropriate juncture.

Note You can find more information about how to manage the life cycle of a Windows
Store app on the Microsoft website. Look for the page "How to suspend an app" at http://
msdn.microsoft.com/library/windows/apps/xaml/hh465115.aspx, and the page "How to re-
sume an app" at http://msdn.microsoft.com/library/windows/apps/xaml/hh465110.aspx.

When you build a new Windows Store app, you can package it using the tools provided with
Visual Studio 2012 and upload it to the Windows Store. Other users can then connect to the store,
download your application, and install it. You can charge a fee for your applications, or you can
make them available free of charge. This distribution and deployment mechanism depends on your
applications being trustworthy and conforming to security policies specified by Microsoft. When
you upload an application to the Windows Store, it undergoes a number of checks to verify that it
does not contain malicious code and that it conforms to the security requirements of a Windows
Store app. These security constraints dictate how your application accesses resources on the com-
puter on which it is installed. For example, by default a Windows Store app cannot write directly to
the file system or listen for incoming requests from the network (two behaviors commonly exhib-
ited by viruses and other malware). However, if your application needs to perform operations such
as these, you can specify them as capabilities in the application manifest by using the manifest

 CHAPTER 25 Implementing the User Interface for a Windows Store App 631

editor in Visual Studio 2012. You can double-click the Package.appxmanifest file in Solution
Explorer to open the manifest editor.

Note You can find more information about the capabilities that Windows Store apps sup-
port on the "App capability declarations" page on the Microsoft website at http://msdn.
microsoft.com/library/windows/apps/hh464936.aspx.

This information is recorded in the metadata of your application and enables Microsoft to per-
form additional tests to verify the way in which these features are used in your application. There
are also limitations on how these operations work, to protect the computers on which your applica-
tion is installed. For example, you can indicate that your application requires access to the files in the
Documents folder, but you cannot read or write files located elsewhere on the host computer.

Enough theory—let's get started building a Windows Store app.

632 part IV Building professional Windows 8 applications with C#

Using the Blank App Template to Build a Windows Store App

The simplest way to build a Windows Store app is to use the Windows Store app templates included
with Visual Studio 2012 on Windows 8. Visual Studio 2012 provides three primary templates for this
purpose: Blank App, Grid App, and Split App. Each of these templates enables you to quickly create
applications that conform to Windows 8 user interface guidelines based on the model recommended
by Microsoft. In addition, they generate a considerable amount of code, and it helps to understand
how this code is structured so that you can adapt it to your own applications and data requirements.
The Windows 8 versions of the applications used in earlier chapters made use of the Blank App tem-
plate, and this is a good place to start.

In the following exercises, you will design and implement the user interface for a simple appli-
cation for a fictitious company called Adventure Works. This company manufactures and supplies
bicycles and associated paraphernalia. The application will enable a user to enter and modify the
details of Adventure Works's customers.

Create the adventure Works Customers application

1. Start Visual Studio 2012 if it is not already running.

2. On the FILE menu, point to New, and then click Project.

3. In the left pane of the New Project dialog box, expand Templates, expand Visual C#, and then
click Windows Store.

4. In the middle pane, click the Blank App (XAML) icon.

5. In the Name field, type Customers.

6. In the Location field, type \Microsoft Press\Visual CSharp Step By Step\Chapter 25 under
your Documents folder.

7. Click OK.

The new application is created, and the App.xaml.cs file is displayed in the Code and Text
Editor window. You can ignore this file for the time being.

8. In Solution Explorer, double-click MainPage.xaml.

The Design View window appears and displays a blank page. You can drag controls from the
Toolbox to add the various controls required by the application, as you did back in Chapter 1,
"Welcome to C#." However, for the purposes of this exercise, it is more instructive to concen-
trate on the XAML markup that defines the layout for the form. If you examine this markup, it
should look like this:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 633

<Page
 x:Class="Customers.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Customers"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 </Grid>
</Page>

The form starts with the XAML <Page> tag and finishes with a closing </Page> tag. Every-
thing between these tags defines the content of the page.

The attributes of the <Page> tag contain a number of declarations of the form xmlns:id = "…".
These are XAML namespace declarations, and they operate in a similar manner to C# using
directives inasmuch as they bring items into scope. Many of the controls and other items that
you can add to a page are defined in these XAML namespaces, and you can ignore most of
these declarations. However, there is one rather curious-looking declaration that you should
pay attention to:

xmlns:local="using:Customers"

This declaration brings the items in the C# Customers namespace into scope, enabling you
to reference classes and other types in this namespace in your XAML code by prefixing them
with local (you will see why you might want to do this later in this chapter). The Customers
namespace is the namespace generated for the code in your application.

9. In Solution Explorer, expand MainPage.xaml, and then double-click MainPage.xaml.cs to dis-
play it in the Code and Text Editor window.

10. Remember from the exercises earlier in this book that this C# file contains the application
logic and event handlers for the form. It looks like this (the using directives at the top of the
file have been omitted to save space):

// The Blank Page item template is documented at http://go.microsoft.com/
fwlink/?LinkId=234238

namespace Customers
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

634 part IV Building professional Windows 8 applications with C#

 /// <summary>
 /// Invoked when this page is about to be displayed in a Frame.
 /// </summary>
 /// <param name="e">Event data that describes how this page was reached.
 /// The Parameter
 /// property is typically used to configure the page.</param>
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }
 }
}

This file defines the types in the Customers namespace. The page is implemented by a class
called MainPage, and it inherits from the Page class. The Page class implements the default
functionality of a XAML page for a Windows Store app, so all you have to do is provide your
own code that implements the functionality specific to your application in the MainPage class.

11. Return to the MainPage.xaml file in the Design View window. If you look at the XAML markup
for the page, you should notice that the <Page> tag includes the following attribute:

x:Class="Customers.MainPage"

This attribute connects the XAML markup that defines the layout of the page to the MainPage
class that provides the logic behind the page.

That's the basic plumbing of a simple Windows Store app. Of course, what makes a graphical
application valuable is the way in which it presents information to a user. This is not always as simple
as it sounds. Designing an attractive and easy-to-use graphical interface requires specialist skills that
not all developers have (I know, because I lack them myself). However, many graphic artists who do
have these skills are not programmers, so although they might be able to design a wonderful user
interface, they may not be able to implement the logic required to make it useful. Fortunately, Visual
Studio 2012 enables you to separate the user interface design from the business logic, enabling a
graphic artist and a developer to cooperate to build a really cool-looking application that also works
well. All a developer has to do is concentrate on the basic layout of the application and then let a
graphic artist provide the styling.

Implementing a Scalable User Interface
The key to laying out the user interface for a Windows Store app is understanding how to make it
scale and adapt to the different form factors available for the devices that users may be running the
application on. In the following exercises, you will investigate how to achieve this scaling.

Lay out the page for the Customers application

1. In Visual Studio, review the XAML markup for the MainPage page.

2. The page contains a single Grid control:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 635

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

</Grid>

Note Don't worry about the way in which the Background property is specified for
the Grid control. This is an example of using a style, and you will learn about using
styles later in this chapter.

3. Understanding how the Grid control works is fundamental to being able to build scalable and
flexible user interfaces. The Page element can only contain a single item, and if you want, you
can replace the Grid control with a Button, like this:

Note Don't type the following code. It is shown for illustrative purposes only.

<Page
 ...
 <Button Content="Click Me"/>
</Page>

However, the resulting application is probably not very useful—a form that contains a button
and that displays nothing else is unlikely to win an award for the world's greatest application.
If you attempt to add a second control, such as a TextBox, to the page, your code will not
compile and the errors shown in the following image will occur:

636 part IV Building professional Windows 8 applications with C#

The purpose of the Grid control is to enable you to add multiple items to a page. The Grid
control is an example of a container control; it can contain a number of other controls, and
you can specify the position of these other controls within the grid. Other container controls
are also available. For example, the StackPanel control automatically places the controls it
contains in a vertical arrangement, with each control positioned directly below its immediate
predecessor.

In this application, you will use a Grid to hold the controls necessary to enable a user to enter
and view data for a customer.

4. Add a TextBlock control to the page, either by dragging and dropping it from the Toolbox
or by typing the text <TextBlock /> directly into the XAML pane on the blank line after the
opening <Grid> tag, like this:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock />
</Grid>

tip You can type the code for a control directly into the XAML window for a page.
You do not have to drag and drop controls from the Toolbox.

5. This TextBlock will provide the title for the page. Set the properties of the TextBlock control
using the values in the following table:

Property Value

HorizontalAlignment Left

Margin 400,90,0,0

TextWrapping Wrap

Text Adventure Works Customers

VerticalAlignment Top

FontSize 50

You can set these properties either by using the Properties window or by typing the equiva-
lent XAML markup into the XAML window as shown below in bold:

<TextBlock HorizontalAlignment="Left" Margin="400,90,0,0" TextWrapping="Wrap"
Text="Adventure Works Customers" VerticalAlignment="Top" FontSize="50"/>

The resulting text should appear in the Design View window like this:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 637

Notice that when you drag a control from the Toolbox and drop it on a form, connectors
appear that specify the distance of two of the sides of the control from the edge of the con-
tainer control in which it is placed. In the preceding example, for the TextBlock control these
connectors are labeled with the values 400 (from the left edge of the grid) and 90 (from the
top edge of the grid). At run time, if the Grid control is resized, the TextBlock will move to
retain these distances, and in this case it may cause the distance of the TextBlock from the
right and bottom edges of the Grid to change. You can specify the edge or edges to which
a control is anchored by setting the HorizontalAlignment and VerticalAlignment proper-
ties, and you can set the Margin property to specify the distance from the anchored edges.
Again, in this example, the HorizontalAlignment property of the TextBlock is set to Left and
the VerticalAlignment property is set to Top, which is why the control is anchored to the left
and top edges of the grid. The Margin property contains four values that specify the distance
of the left, top, right, and bottom sides (in that order) of the control from the corresponding
edge of the container. If one side of a control is not anchored to an edge of the container, you
can set the corresponding value in the Margin property to 0.

6. Add four more TextBlock controls to the page. These TextBlock controls are labels that help
the user to identify the data that is displayed on the page. Use the values in the following
table to set the properties of these controls:

638 part IV Building professional Windows 8 applications with C#

Control Property Value

First label HorizontalAlignment Left

Margin 330,190,0,0

TextWrapping Wrap

Text ID

VerticalAlignment Top

FontSize 20

Second label HorizontalAlignment Left

Margin 460,190,0,0

TextWrapping Wrap

Text Title

VerticalAlignment Top

FontSize 20

Third label HorizontalAlignment Left

Margin 620,190,0,0

TextWrapping Wrap

Text First Name

VerticalAlignment Top

FontSize 20

Fourth label HorizontalAlignment Left

Margin 975,190,0,0

TextWrapping Wrap

Text Last Name

VerticalAlignment Top

FontSize 20

As before, you can either drag and drop the controls from the Toolbox and use the Properties
window to set their properties or you can type the following XAML markup into the XAML
pane, after the existing TextBlock control and before the closing </Page> tag:

<TextBlock HorizontalAlignment="Left" Margin="330,190,0,0" TextWrapping="Wrap"
Text="ID" VerticalAlignment="Top" FontSize="20"/>
<TextBlock HorizontalAlignment="Left" Margin="460,190,0,0" TextWrapping="Wrap"
Text="Title" VerticalAlignment="Top" FontSize="20"/>
<TextBlock HorizontalAlignment="Left" Margin="620,190,0,0" TextWrapping="Wrap"
Text="First Name" VerticalAlignment="Top" FontSize="20"/>
<TextBlock HorizontalAlignment="Left" Margin="975,190,0,0" TextWrapping="Wrap"
Text="Last Name" VerticalAlignment="Top" FontSize="20"/>

 CHAPTER 25 Implementing the User Interface for a Windows Store App 639

7. Add three TextBox controls underneath the TextBlock controls that display the text ID, First
Name, and Last Name. Use the following table to set the values of these controls. Notice that
the Text property should be set to the empty string, "". Also notice that the id TextBox control
is marked as read-only. This is because customer IDs will be generated automatically in the
code that you add later:

Control Property Value

First TextBox x:Name id

HorizontalAlignment Left

Margin 300,240,0,0

TextWrapping Wrap

Text Leave empty

VerticalAlignment Top

FontSize 20

IsReadOnly True

Second TextBox x:Name firstName

HorizontalAlignment Left

Margin 550,240,0,0

TextWrapping Wrap

Text Leave empty

VerticalAlignment Top

FontSize 20

Third TextBox x:Name lastName

HorizontalAlignment Left

Margin 875,240,0,0

TextWrapping Wrap

Text Leave empty

VerticalAlignment Top

FontSize 20

The following code shows the equivalent XAML markup for these controls:

<TextBox x:Name="id" HorizontalAlignment="Left" Margin="300,240,0,0" TextWrapping="Wrap"
Text="" VerticalAlignment="Top" FontSize="20" IsReadOnly="True"/>
<TextBox x:Name="firstName" HorizontalAlignment="Left" Margin="550,240,0,0"
TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="300" FontSize="20"/>
<TextBox x:Name="lastName" HorizontalAlignment="Left" Margin="875,240,0,0"
TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="300" FontSize="20"/>

640 part IV Building professional Windows 8 applications with C#

The Name property is not required for a control, but it is useful if you want to refer to the
control in the C# code for the application. Notice that the Name property is prefixed with
x:. This is a reference to the XML namespace http://schemas.microsoft.com/winfx/2006/xaml
specified in the Page attributes at the top of the XAML markup. This namespace defines the
Name property for all controls.

Note It is not necessary to understand why the Name property is defined in this
way, but for more information, you can read the article "x:Name Directive" at
http://msdn.microsoft.com/library/ms752290.aspx.

The Width property specifies the width of the control, and the TextWrapping property indi-
cates what happens if the user attempts to enter more information that exceeds this width
into the control. In this case, all the TextBox controls will wrap the text onto another line of the
same width (the control will expand vertically). The alternative value, NoWrap, causes the text
to scroll horizontally as the user enters it.

8. Add a ComboBox control to the form, and place it below the Title TextBlock control and
between the id and firstName TextBox controls. Set the properties of this control as follows:

Property Value

x:Name title

HorizontalAlignment Left

Margin 420,240,0,0

VerticalAlignment Top

Width 100

FontSize 20

The equivalent XAML markup for this control is as follows:

<ComboBox x:Name="title" HorizontalAlignment="Left" Margin="420,240,0,0"
VerticalAlignment="Top" Width="100" FontSize="20"/>

You use a ComboBox control to display a list of values from which the user can select.

9. Click the title ComboBox in the Design View window, and in the Properties window expand
the Common property category. Then click the ellipsis button that appears alongside the
Items property. The Object Collection Editor appears.

10. In the Object Collection Editor, select ComboBoxItem from the drop-down list, and then click
Add. In the right pane displaying the properties for the item, expand the Common section if it
is not already expanded, and then type Mr in the Content property.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 641

11. Click OK. The Object Collection Editor closes. If you examine the XAML markup for the title
ComboBox, it should now look like this:

<ComboBox x:Name="title" HorizontalAlignment="Left" Margin="420,240,0,0"
VerticalAlignment="Top" Width="100" FontSize="20"/>
 <ComboBoxItem Content="Mr"/>
</ComboBox>

There are two things to notice here. The first is that the ComboBox markup has been split
into an opening <ComboBox> tag and a closing </ComboBox> tag. The second is that,
between these tags, Visual Studio has added a ComboBoxItem element with the Content
property set to Mr. This item will be displayed in a drop-down list when the application runs.

12. Add the values Mrs and Ms to the title ComboBox. You can either use the Object Collection
Editor or type in the XAML markup by hand. The resulting markup should look like this:

<ComboBox x:Name="title" HorizontalAlignment="Left" Margin="450,240,0,0"
VerticalAlignment="Top" Width="75" FontSize="20"/>
 <ComboBoxItem Content="Mr"/>
 <ComboBoxItem Content="Mrs"/>
 <ComboBoxItem Content="Ms"/>
</ComboBox>

642 part IV Building professional Windows 8 applications with C#

Note A ComboBox control can display simple elements such as a set of ComboBox
Item controls that display text, but it can also contain more complex elements such
as buttons, check boxes, and radio buttons. If you are adding simple ComboBoxItem
controls, then it is probably easier to type in the XAML markup by hand, but if you
are adding more complex controls, then the Object Collection Editor can prove very
useful. However, you should avoid trying to be too clever in a combo box—the best
applications are those that provide the most intuitive user interfaces, and embedding
complex controls in a combo box can be confusing to a user.

13. Add two more TextBox controls and two more TextBlock controls to the form. The TextBox
controls will enable the user to enter an email address and telephone number for the cus-
tomer, and the TextBlock controls provide the labels for the text boxes. Use the values in the
following table to set the properties of the controls.

Control Property Value

First TextBlock HorizontalAlignment Left

Margin 300,390,0,0

TextWrapping Wrap

Text Email

VerticalAlignment Top

FontSize 20

First TextBox x:Name email

HorizontalAlignment Left

Margin 450,390,0,0

TextWrapping Wrap

Text Leave empty

VerticalAlignment Top

Width 400

FontSize 20

Second TextBlock HorizontalAlignment Left

Margin 300,540,0,0

TextWrapping Wrap

Text Phone

VerticalAlignment Top

FontSize 20

Second TextBox x:Name phone

HorizontalAlignment Left

 CHAPTER 25 Implementing the User Interface for a Windows Store App 643

Control Property Value

Margin 450,540,0,0

TextWrapping Wrap

Text Leave empty

VerticalAlignment Top

Width 200

FontSize 20

The XAML markup for these controls should look like this:

<TextBlock HorizontalAlignment="Left" Margin="300,390,0,0" TextWrapping="Wrap"
Text="Email" VerticalAlignment="Top" FontSize="20"/>
<TextBox x:Name="email" HorizontalAlignment="Left" Margin="450,390,0,0"
TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="400" FontSize="20"/>
<TextBlock HorizontalAlignment="Left" Margin="300,540,0,0" TextWrapping="Wrap"
Text="Phone" VerticalAlignment="Top" FontSize="20"/>
<TextBox x:Name="phone" HorizontalAlignment="Left" Margin="450,540,0,0"
TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="200" FontSize="20"/>

The completed form in the Design View window should look like this:

14. On the DEBUG menu, click Start Debugging to build and run the application.

The application starts and displays the form. You can enter data into the form and select a title
from the combo box, but you cannot do much else yet.

644 part IV Building professional Windows 8 applications with C#

15. While the application is running, click in the top-left corner of the screen and drag the image
of Visual Studio running on the desktop. The Customers application changes to Filled view
(this view occupies the entire screen apart from the area 320 pixels wide that displays the
desktop icons). Notice how the Last Name field falls off the right edge of the screen:

Important You must be using a display that supports a resolution of at least 1366
× 768 pixels to be able to switch to Filled view. If you are running on a computer
with a lower resolution, you can use the Simulator to simulate a device with a higher
resolution. See the sidebar "Using the Simulator to Test a Windows Store App" after
this exercise.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 645

16. Resize the window displaying the Customers application to show it in Snapped view. This time,
most of the form disappears (it is displayed in an area that is only 320 pixels wide). Some of
the TextBlock content wraps and is displayed vertically, but the form is not usable in this view:

17. Return to Visual Studio, and on the DEBUG menu, click Stop Debugging.

That was a cursory lesson in being careful about how you lay out an application. Although the
application looked fine when it ran full-screen, as soon as you switched to the Filled or Snapped view,
it became less useful (or completely useless in the case of the Snapped view). Additionally, the appli-
cation assumes that the user will be viewing the screen on a device in the landscape orientation. If the
user is running the application on a tablet that supports different orientations, and the user rotates
the device to switch to portrait mode, it will look like this:

646 part IV Building professional Windows 8 applications with C#

The issue is that the layout technique shown so far does not scale and adapt to different form fac-
tors and orientations. Fortunately, you can use the properties of the Grid control and another feature
called the Visual State Manager to solve these problems.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 647

Using the Simulator to test a Windows Store app
Even if you don't have a tablet computer, you can still test your Windows Store apps and see how
they behave on a mobile device by using the Simulator provided with Visual Studio 2012. The Simu-
lator simulates a tablet device, enabling you to emulate user gestures such as pinching and swiping
objects, as well as rotating and changing the resolution of the device.

To run an application in the Simulator, click the Debug Target drop-down list box in the
Visual Studio toolbar, directly below the DEBUG menu. By default, the debug target is set to
Local Machine, which causes the application to run full-screen on your computer, but you can
select Simulator from this list, which starts the Simulator when you debug the application. Note
that you can also set the debug target to a different computer if you need to perform remote
debugging (you will be prompted for the network address of the remote computer when you
select this option). The following image shows the Debug Target drop-down list box:

After you have selected the Simulator, when you run the application from the DEBUG menu
in Visual Studio, the Simulator starts and displays your application. The toolbar down the left
side of the Simulator window contains a selection of tools that enable you to emulate user
gestures by using the mouse. You can even simulate the location of the user if the application
requires information about the geographic position of the device. However, for testing the lay-
out of an application, the most important tools are Rotate Clockwise, Rotate Counterclockwise,
and Change Resolution. The following image shows the Customers application running in the
Simulator. The labels down the right side describe the function of each of the buttons for the
Simulator.

648 part IV Building professional Windows 8 applications with C#

Note The screen shots in this section were taken on a computer with a screen
resolution of 1366 × 768. By default, the Simulator starts running in the same
resolution as your display. If you are using a different display resolution, then
you may need to click the Change Resolution button and switch to 1366 × 768
to get the same results as shown here."

The following image shows the same application after the user has clicked the Rotate
Clockwise button. The application is now running in the portrait orientation:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 649

You can also try seeing how the application behaves if you change the resolution of the
Simulator. The following image shows the Customers application running when the Simulator is
set to a high resolution (2560 × 1440, the typical resolution of a 27-inch monitor). You can see
that the application is squeezed into the top-left corner of the screen:

650 part IV Building professional Windows 8 applications with C#

The Simulator behaves exactly like a Windows 8 computer (it is, in fact, a remote-desktop
connection to your own computer). To stop the Simulator, select the Settings charm on the
Charms bar, click Power, and then click Disconnect.

Note To test Snapped and Filled views, you need to start one or more ad-
ditional applications running in the Simulator (Snapped and Filled views only
work if there are two or more applications running). A useful application for this
purpose is the Weather app, available on the Windows 8 Start screen.

Implementing a tabular Layout with a Grid Control
You can use the Grid control to implement a tabular layout. A Grid contains rows and columns, and
you can specify in which rows and columns other controls should be placed. The beauty of the Grid
control is that you can specify the sizes of the rows and columns that it contains as relative values; as
the grid shrinks or grows to adapt itself to the different form factors and orientations that users may
switch to, the rows and columns can shrink and grow in proportion to the grid. The intersection of a
row and a column in a grid defines a cell, and if you position controls in cells, they will move as the
rows and columns shrink and grow. Therefore, the key to implementing a scalable user interface is to
break it down into a collection of cells and place related elements in the same cell. A cell can contain
another grid, enabling you to fine-tune the exact positioning of each element.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 651

If you consider the Customers application, you can see that the user interface breaks down into
two main areas: a heading containing the title and the body containing the customers' details. Allow-
ing for some spacing between these areas, and a margin at the bottom of the form, you can assign
relative sizes to each of these areas, as shown in the following diagram:

The diagram shows only rough approximations, but the row for the heading is twice as high as the
row for the spacer below it. The row for the body is ten times as high as the spacer, and the bottom
margin is twice the height of the spacer.

To hold the elements in each area, you can define a grid with four rows and place the appropriate
items in each row. However, the body of the form can be described by another, more complex grid, as
shown below:

Again, the heights of each of the rows are specified in relative terms, as are the widths of the col-
umns. Also, you can clearly see that the TextBox elements for the Email and Phone information do not
quite fit into this grid pattern. If you were being pedantic, you might choose to define further grids
inside the body of the form to make these items fit. However, you should keep in mind the purpose
of this grid: it is to enable you to define the relative positioning and spacing of elements, and it is
acceptable for an element to extend beyond the boundaries of a cell in the grid arrangement.

652 part IV Building professional Windows 8 applications with C#

In the next exercise, you will modify the layout of the Customers application to use this grid format
to position the controls.

Modify the layout to scale to different form factors and orientations

1. In the XAML pane for the Customers application, add another Grid inside the existing Grid
element. Give this new Grid a margin of 40 pixels from the left edge of the parent Grid and
54 pixels from the top, as shown in bold below:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid Margin="40,54,0,0">
 </Grid>
 <TextBlock HorizontalAlignment="Left" TextWrapping="Wrap"
Text="Adventure Works Customers" ... />
 ...
</Grid>

You could define the rows and columns as part of the existing Grid, but to maintain a consis-
tent look and feel with other Windows Store apps, you should leave some blank space to the
left and at the top of a page. These margins enable Windows 8 to display its various icons and
toolbars, such as the icons showing the applications that are currently running and the Start
screen, without overwriting data on the screen. The following image shows an example:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 653

2. Add the following <Grid.RowDefinitions> section shown in bold to the new Grid element.

<Grid Margin="40,54,0,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="10*"/>
 <RowDefinition Height="2*"/>
 .</Grid.RowDefinitions>
</Grid>

The <Grid.RowDefinitions> section defines the rows for the grid. In this example, you have
defined four rows. You can specify the size of a row as an absolute value specified in pixels, or
you can use the * operator to indicate that the sizes are relative and that Windows should cal-
culate the row sizes itself when the application runs, depending on the form factor and resolu-
tion of the screen. The values used in this example correspond to the relative row sizes for the
header, body, spacer, and bottom margin of the Customers form shown in the earlier diagram.

3. Move the TextBlock control that defines the page heading into the Grid, after the closing
</Grid.RowDefinitions> tag.

Add a Grid.Row attribute to the TextBlock control and set the value to 0. This indicates that the
TextBlock should be positioned within the first row of the Grid (Grid controls number rows and
columns starting at zero).

Note The Grid.Row attribute is an example of an attached property. An attached
property is a property that a control receives from the container control in which it
is placed. Outside of a grid, a TextBlock does not have a Row property (it would be
meaningless), but when positioned inside a grid, the Row property is attached to the
TextBlock, and the TextBlock control can assign it a value. The Grid control then uses
this value to determine where to display the TextBlock control.

Attached properties are easy to spot because they have the form
ContainerType.PropertyName.

Remove the Margin property, and set the HorizontalAlignment and VerticalAlignment proper-
ties to Center. This will cause the TextBlock to appear centered in the row.

The XAML markup for the Grid and TextBlock controls should look like this (the changes to the
TextBlock are highlighted in bold):

<Grid Margin="40,54,0,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="10*"/>
 <RowDefinition Height="2*"/>

654 part IV Building professional Windows 8 applications with C#

 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0" HorizontalAlignment="Center" TextWrapping="Wrap"
Text="Adventure Works Customers" VerticalAlignment="Center" FontSize="50"/>
 ...
</Grid>

4. After the TextBlock control, add another nested Grid control. This Grid will be used to lay out
the controls in the body of the form and should appear in the third row of the outer Grid (the
row of size 10*), so set the Grid.Row property to 2 as shown in bold in the following code:

<Grid Margin="40,54,0,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="10*"/>
 <RowDefinition Height="2*"/>
 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0" HorizontalAlignment="Center" .../>
 <Grid Grid.Row="2">
 </Grid>
 ...
</Grid>

5. Add the following <Grid.RowDefinition> and <Grid.ColumnDefinition> sections to the new
Grid control:

<Grid Grid.Row="2">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="4*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="20"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="20"/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="20"/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
</Grid>

These row and column definitions specify the height and width of each of the rows and col-
umns shown in the earlier diagram that depicted the structure of the body of the form. There
is a small space of 20 pixels between each of the columns that will hold controls.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 655

6. Move the TextBlock controls that display the ID, Title, Last Name, and First Name labels inside
the nested Grid control, immediately after the closing <Grid.ColumnDefinitions> tag.

7. Set the Grid.Row property for each TextBlock control to 0 (these labels will appear in the first
row of the grid). Set the Grid.Column property for the ID label to 1, the Grid.Column property
for the Title label to 3, the Grid.Column property for the First Name label to 5, and the Grid.
Column property for the Last Name label to 7.

8. Remove the Margin property from each of the TextBlock controls, and set the
HorizontalAlignment and VerticalAlignment properties to Center.

9. The XAML markup for these controls should look like this (the changes are highlighted in
bold):

<Grid Grid.Row="2">
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.Column="1" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>
 <TextBlock Grid.Row="0" Grid.Column="3" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="Title" VerticalAlignment="Center" FontSize="20"/>
 <TextBlock Grid.Row="0" Grid.Column="5" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="First Name" VerticalAlignment="Center" FontSize="20"/>
 <TextBlock Grid.Row="0" Grid.Column="7" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="Last Name" VerticalAlignment="Center" FontSize="20"/>
</Grid>

10. Move the id, firstName, and lastName TextBox controls and the title ComboBox control inside
the nested Grid control, immediately after the Last Name TextBlock control.

Place these controls in row 1 of the Grid control. Put the id control in column 1, the title con-
trol in column 3, the firstName control in column 5, and the lastName control in column 7.

Remove the Margin of each of these controls, and set the VerticalAlignment property to
Center. Remove the Width property, and set the HorizontalAlignment property to Stretch—this
causes the control to occupy the entire cell when it is displayed, and the control shrinks or
grows as the size of the cell changes.

The completed XAML markup for these controls should look like this:

<Grid Grid.Row="2">
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>

656 part IV Building professional Windows 8 applications with C#

 ...
 <TextBlock Grid.Row="0" Grid.Column="7" ... Text="Last Name" .../>
 <TextBox Grid.Row="1" Grid.Column="1" x:Name="id" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="" VerticalAlignment="Center" FontSize="20" IsReadOnly="True"/>
 <TextBox Grid.Row="1" Grid.Column="5" x:Name="firstName"
HorizontalAlignment="Stretch" TextWrapping="Wrap" Text="" VerticalAlignment="Center"
FontSize="20"/>
 <TextBox Grid.Row="1" Grid.Column="7" x:Name="lastName" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="" VerticalAlignment="Center" FontSize="20"/>
 <ComboBox Grid.Row="1" Grid.Column="3" x:Name="title" HorizontalAlignment="Stretch"
VerticalAlignment="Center" FontSize="20">
 <ComboBoxItem Content="Mr"/>
 <ComboBoxItem Content="Mrs"/>
 <ComboBoxItem Content="Ms"/>
 </ComboBox>
</Grid>

11. Move the TextBlock control for the Email label and the email TextBox control to the nested
Grid control, immediately after the title ComboBox control.

Place these controls in row 3 of the Grid control. Put the Email label in column 1 and the
email TextBox control in column 3. Additionally, set the Grid.ColumnSpan property for the
email TextBox control to 3; this enables the column to spread to the value specified by its
Width property across three columns, as shown in the earlier diagram.

Set the HorizontalAlignment property of the Email label control to Center, but leave the
HorizontalAlignment property of the email TextBox set to Left; this control should remain left-
justified against the first column that it spans rather than being centered across them all.

Set the VerticalAlignment property of the Email label and the email TextBox control to Center.

The following XAML markup shows the completed definitions of these controls:

<Grid Grid.Row="2">
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 ...
 <ComboBox Grid.Row="1" Grid.Column="3" x:Name="title" HorizontalAlignment="Stretch"
VerticalAlignment="Center" FontSize="20">
 ...
 </ComboBox>
 <TextBlock Grid.Row="3" Grid.Column="1" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="Email" VerticalAlignment="Center" FontSize="20"/>
 <TextBox Grid.Row="3" Grid.Column="3" Grid.ColumnSpan="3" x:Name="email"
HorizontalAlignment="Left" TextWrapping="Wrap" Text="" VerticalAlignment="Center"
Width="400" FontSize="20"/>
</Grid>

 CHAPTER 25 Implementing the User Interface for a Windows Store App 657

12. Move the TextBlock control for the Phone label and phone TextBox control to the nested Grid
control, immediately after the email TextBox control.

Place these controls in row 5 of the Grid control. Put the Phone label in column 1 and the
phone TextBox control in column 3. Set the Grid.ColumnSpan property for the phone TextBox
control to 3.

Set the HorizontalAlignment property of the Phone label control to Center, and leave the Hori-
zontalAlignment property of the phone TextBox set to Left.

Set the VerticalAlignment property of both controls to Center.

The following XAML markup shows the completed definitions of these controls:

<Grid Grid.Row="2">
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 ...<TextBox ..." x:Name="email" .../>
 <TextBlock Grid.Row="5" Grid.Column="1" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="Phone" VerticalAlignment="Center" FontSize="20"/>
 <TextBox Grid.Row="5" Grid.Column="3" Grid.ColumnSpan="3" x:Name="phone"
HorizontalAlignment="Left" TextWrapping="Wrap" Text="" VerticalAlignment="Center"
Width="200" FontSize="20"/>
</Grid>

13. In the Debug Target drop-down list in the Visual Studio toolbar, select Simulator.

You will run the application in the Simulator so that you can see how the layout adapts in dif-
ferent resolutions and form factors.

14. On the DEBUG menu, click Start Debugging.

The Simulator starts and the Customers application runs. Click Change Resolution and con-
figure the Simulator to display the application using a screen resolution of 1366 × 768. Also,
make sure that the Simulator is displayed in landscape orientation (click Rotate Clockwise if it
is running in portrait orientation). Verify that the controls are evenly spaced in this orientation.

658 part IV Building professional Windows 8 applications with C#

15. Click the Rotate Clockwise button to rotate the Simulator into portrait orientation.

The Customers application should adjust the layout of the user interface, and the controls
should still be evenly spaced and usable:

16. Click Rotate Counterclockwise to put the Simulator back into landscape orientation, and then
click Change Resolution and switch the resolution of the Simulator to 2560 × 1400.

Notice that the controls remain evenly spaced on the form, although the labels might be quite
difficult to read unless you actually have a 27-inch screen.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 659

17. Click Change Resolution again and switch the resolution to 1024 × 768.

Again, notice how the spacing and size of the controls is adjusted to maintain the even bal-
ance of the user interface:

18. Click Change Resolution again and switch the resolution back to 1366 × 768.

19. Resize the window displaying the Customers application to show it in Snapped view.

tip To display an application in Snapped view if no other applications are running,
use the swipe gesture to grab the top of the application window and then drag the
application to the left or right edge of the screen.

660 part IV Building professional Windows 8 applications with C#

All of the controls remain visible, but the text for the labels wraps, making it difficult to read,
and the controls are not particularly easy to use:

20. In the Simulator, display the Charms bar (press Windows+C), click Settings, click Power, and
then click Disconnect.

The Simulator closes and you return to Visual Studio.

21. In the Debug Target drop-down list in the Visual Studio toolbar, select Local Machine.

adapting the Layout by Using the Visual State Manager
The user interface for the Customers application scales for different resolutions and form factors,
but it still does not work well in Snapped view. Additionally, it probably would not look too good
on a smartphone, which has a similar height and width as the Snapped view. If you think about it, in
these cases the problem is not so much a matter of scaling the controls as actually laying them out
in a different way. For example, it would make better sense if the Customers form looked like this in
Snapped view:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 661

You can achieve this effect by using the Visual State Manager. All Windows Store apps implement a
Visual State Manager that tracks the visual state of an application. It can detect when the application
switches between Fullscreen (the default), Filled, and Snapped views. You can catch these visual state
transitions and use them to animate the user interface—to move controls around or to display and hide
controls, for example. This is what you will do in the next exercises. The first step is to define a layout for the
customers’ data that should appear in the Snapped view.

662 part IV Building professional Windows 8 applications with C#

Define a layout for the Snapped view

1. In the XAML pane for the Customers application, add the x:Name and Visibility properties
shown in bold in the following code to the Grid control that defines the tabular layout of the
various controls:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid x:Name="customersTabularView" Margin="40,54,0,0" Visibility="Collapsed">
 ...
 </Grid>
</Grid>

You will reference this Grid control in other XAML markup later in this set of exercises, hence
the requirement to give it a name. The Visibility property specifies whether the control is dis-
played (Visible) or hidden (Collapsed). The default value is Visible, but for the time being you
will hide this Grid while you define another for displaying the data in a columnar format.

2. After the closing </Grid> tag for the customersTabularView Grid control, add another Grid
control. Set the x:Name property to customersColumnarView, set the Margin property to
20,10,20,10, and set the Visibility property to Visible.

tip You can expand and contract elements in the XAML pane of the Design View
window and make the structure easier to read by clicking the + and – signs that ap-
pear down the left edge of the XAML markup.

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid x:Name="customersTabularView" Margin="40,54,0,0" Visibility="Collapsed">
 ...
 </Grid>
 <Grid x:Name="customersColumnarView" Margin="10,20,10,20" Visibility="Visible">
 </Grid>
</Grid>

3. In the customersColumnarView Grid control, add the following row definitions:

<Grid x:Name="customersColumnarView" Margin="10,20,10,20" Visibility="Visible">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="10*"/>
 </Grid.RowDefinitions>
</Grid>

You will use the top row to display the title and the second, much larger row to display the
controls into which the user enters data.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 663

4. After the row definitions, add the following TextBlock control. This control displays a truncated
title, Customers, in the first row of the Grid control. Set the FontSize to 30.

<Grid x:Name="customersColumnarView" Margin="10,20,10,20" Visibility="Visible">
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0" HorizontalAlignment="Center" TextWrapping="Wrap"
Text="Customers" VerticalAlignment="Center" FontSize="30"/>
</Grid>

5. Add another Grid control to row 1 of the customersColumnarView Grid control. This Grid
control will display the labels and data-entry controls in two columns, so add the row and
columns definitions shown in the following code example to this Grid.

<TextBlock Grid.Row="0" ... />
<Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
</Grid>

Notice that if all the rows or columns in a set have the same height or width, you do not need
to specify their size.

6. Copy the XAML markup for the ID, Title, First Name, and Last Name TextBlock controls from
the customersTabularView Grid control to the new Grid control, immediately after the row
definitions that you just added. Put the ID control in row 0, the Title control in row 1, the First
Name control in row 2, and the Last Name control in row 3. Place all controls in column 0.

<Grid.RowDefinitions>
 ...
</Grid.RowDefinitions>
<TextBlock Grid.Row="0" Grid.Column="0" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>
<TextBlock Grid.Row="1" Grid.Column="0" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>
<TextBlock Grid.Row="2" Grid.Column="0" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>
<TextBlock Grid.Row="3" Grid.Column="0" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>

664 part IV Building professional Windows 8 applications with C#

7. Copy the XAML markup for the id, title, firstName, and lastName TextBox and ComboBox
controls from the customersTabularView Grid control to the new Grid control, immediately
after the TextBox controls. Put the id control in row 0, the title control in row 1, the firstName
control in row 2, and the lastName control in row 3. Place all four controls in column 1. Also,
change the names of all the controls by prefixing them with the letter c (for column). This
final change is necessary to avoid clashing with the names of the existing controls in the
customersTabularView Grid control:

<TextBlock Grid.Row="3" Grid.Column="0" HorizontalAlignment="Center"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>
<TextBox Grid.Row="0" Grid.Column="1" x:Name="cId" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="ID" VerticalAlignment="Center" FontSize="20"/>
<TextBox Grid.Row="2" Grid.Column="1" x:Name="cFirstName" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="" VerticalAlignment="Center" FontSize="20"/>
TextBox Grid.Row="3" Grid.Column="1" x:Name="cLastName" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="" VerticalAlignment="Center" FontSize="20"/>
<ComboBox Grid.Row="1" Grid.Column="1" x:Name="cTitle" HorizontalAlignment="Stretch"
VerticalAlignment="Center" FontSize="20">
 <ComboBoxItem Content="Mr"/>
 <ComboBoxItem Content="Mrs"/>
 <ComboBoxItem Content="Ms"/>
</ComboBox>

8. Copy the TextBlock and TextBox controls for the email address and telephone number from
the customersTabularView Grid control to the new Grid control, after the cTitle ComboBox
control. Place the TextBlock controls in column 0 and the TextBox controls in column 1, in rows
4 and 5. Change the name of the email TextBox control to cEmail and the name of the phone
TextBox control to cPhone. Remove the Width properties of the cEmail and cPhone controls,
and set their HorizontalAlignment properties to Stretch:

<ComboBox ...>
 ...
</ComboBox>
<TextBlock Grid.Row="4" Grid.Column="0" HorizontalAlignment="Center" TextWrapping="Wrap"
Text="Email" VerticalAlignment="Center" FontSize="20"/>
<TextBox Grid.Row="4" Grid.Column="1" x:Name="cEmail" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="" VerticalAlignment="Center" FontSize="20"/>
<TextBlock Grid.Row="5" Grid.Column="0" HorizontalAlignment="Center" TextWrapping="Wrap"
Text="Phone" VerticalAlignment="Center" FontSize="20"/>
<TextBox Grid.Row="5" Grid.Column="1" x:Name="cPhone" HorizontalAlignment="Stretch"
TextWrapping="Wrap" Text="" VerticalAlignment="Center" FontSize="20"/>

The Design View window should display the columnar layout like this:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 665

9. Return to the XAML markup for the customersTabularView Grid control and set the Visibility
property to Visible:

<Grid x:Name="customersTabularView" Margin="40,54,0,0" Visibility="Visible">

10. In the XAML markup for the customersColumnarView Grid control, set the Visibility property
to Collapsed:

<Grid x:Name="customersColumnarView" Margin="20,10,20,10" Visibility="Collapsed">

The Design View window should display the original tabular layout of the Customers form.
This is the default view that will be used by the application.

You have now defined the layout that will appear in Snapped view. You might be concerned that in
essence all you have done is duplicated many of the controls and laid them out in a different man-
ner. When you run the form and switch between views, how will data in one view be transferred to
the other? For example, if you enter the details for a customer when the application is running in
Fullscreen view, and then you switch to Snapped view, the newly displayed controls will not contain
the same data that you just entered. Windows Store applications address this problem by using data
binding, a technique that enables you to associate the same piece of data to multiple controls, and as
the data changes, all controls display the updated information. You will see how this works in Chapter
26. For the time being, you need to consider how to use the Visual State Manager to switch between
layouts when the view changes.

Every Windows Store app has a Visual State Manager. Its purpose is to respond to changes in visual
state and update the layout of the user interface. To indicate a change in visual state, you can use
the GoToState method of the VisualStateManager object. You can specify the changes that the Visual

666 part IV Building professional Windows 8 applications with C#

State Manager makes to the layout by implementing a series of visual state transitions in the XAML
markup of your application. This is what you will do in the next exercise.

Use the Visual State Manager to modify the layout

1. In the XAML pane for the Customers application, after the closing </Grid> tag for the
customersColumnarView Grid control, add the following markup:

<Grid x:Name="customersColumnarView" Margin="10,20,10,20" Visibility="Visible">
 ...
</Grid>
<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="FullScreenLandscape"/>
 <VisualState x:Name="FullScreenPortrait"/>
 <VisualState x:Name="Filled"/>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

You define the visual state transitions by implementing one or more visual state groups. Each
visual state group specifies the transitions that should occur when the Visual State Manager
switches to the specified visual state. In this case, the default actions will occur when the Visual
State Manager switches to the Fullscreen view (in landscape and portrait orientations) and the
Filled view. You have already seen these default actions—the controls adjust their widths and
positions relative to each other, according to the definitions of the various rows and columns
in the Grid controls that contain them.

2. Add the following visual state transition shown in bold to the visual state group:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="FullScreenLandscape"/>
 <VisualState x:Name="FullScreenPortrait"/>
 <VisualState x:Name="Filled"/>
 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"customersTabularView" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"customersColumnarView" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

This transition occurs when the application switches to Snapped view. A transition is described
in terms of an animation storyboard. Animation in Windows Store apps is a big subject in its
own right, and there is not enough space to discuss how animations work in this chapter, but

 CHAPTER 25 Implementing the User Interface for a Windows Store App 667

the important point to glean from this code is that this transition contains two animations:
the first changes the Visibility property of the customersTabularView Grid control to Collapsed,
and the second changes the Visibility property of the customersColumnarView Grid control to
Visible.

Note For more information about using animations in Windows Store apps, visit
the “Quickstart: Animating your UI” page on the Microsoft website at http://msdn.
microsoft.com/library/windows/apps/xaml/hh452703.aspx.

3. In Solution Explorer, expand MainPage.xaml, and then double-click MainPage.xaml.cs to dis-
play the code for the MainPage form in the Code and Text Editor window.

4. Add the following method to the MainPage class:

void WindowSizeChanged(object sender, WindowSizeChangedEventArgs e)
{
 ApplicationViewState viewState = ApplicationView.Value;
 VisualStateManager.GoToState(this, viewState.ToString(), false);
}

This is an event handler that will run when the application window changes size (such as when
the user switches from Fullscreen to Filled view and from Filled to Snapped view). The code in
this event handler queries the static Value property of the ApplicationView class to determine
which view the application has switched to (the ApplicationView object is maintained by the
Windows runtime and provides a set of static methods that enable an application to obtain
information about its current visual state). The data returned by the ApplicationView.Value
property is an enumeration, and it can have the values FullScreenLandscape, FullScreenPortrait,
Filled, and Snapped. These values just happen to correspond to the names used by each of
the visual state groups that you added to the XAML markup for the Customers form. The
GoToState method of the VisualStateManager object triggers a view transition on the object
specified by the first argument (in this case, the Customers form), using the visual state group
with the same name as its second argument. You can ignore the Boolean third argument.

5. In the MainPage constructor, add the following statement shown in bold:

public MainPage()
{
 this.InitializeComponent();
 Window.Current.SizeChanged += WindowSizeChanged;
}

This code subscribes to the SizeChanged event for the current window; the
WindowSizeChanged method that you defined in the previous step runs when this event
occurs.

6. On the DEBUG menu, click Start Debugging.

668 part IV Building professional Windows 8 applications with C#

The application starts and displays the Customers form in Fullscreen view. The data is dis-
played using the tabular layout.

Note If you are using a display with a resolution of less than 1366 × 768, start the
application running in the Simulator as described earlier. Configure the Simulator
with a resolution of 1366 × 768.

7. Resize the window displaying the Customers application to show it in Snapped view.

This time, the data is displayed in the columnar layout:

8. Resize the window displaying the Customers application and switch to Filled view.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 669

The Customers form reverts to the tabular layout.

9. Return to Visual Studio and stop debugging.

applying Styles to a User Interface
Now that you have the mechanics of the basic layout of the application resolved, the next step is to apply
some styling to make the user interface look more attractive. The controls in a Windows Store app have
a varied range of properties that you can use to change features such as the font, color, size, and other
attributes of an element. You can set these properties individually for each control, but this approach can
become cumbersome and repetitive if you need to apply the same styling to a number of controls. Also, the
best applications apply consistent styling across the user interface, and it is difficult to maintain this consis-
tency if you have to repeatedly set the same properties and values as you add or change controls. The more
times you have to do the same thing, the greater the chances that you will get it wrong at least once!

Windows Store apps enable you to define reusable styles. You can implement them as applica-
tionwide resources by creating a resource dictionary, and then they are available to all controls in
all pages in an application. You can also define local resources that apply to only a single page in
the XAML markup for that page. In the following exercise, you will define some simple styles for the
Customers application and apply these styles to the controls on the Customers form.

Define styles for the Customers form

1. In Solution Explorer, right-click the Customers project, point to Add, and then click New Item.

2. In the Add New Item – Customers dialog box, click Resource Dictionary. In the Name text box,
type AppStyles.xaml, and then click Add.

The AppStyles.xaml file appears in the Code and Text Editor window. A resource dictionary is a
XAML file that contains resources that can be used by the application. The AppStyles.xaml file
looks like this:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Customers">

</ResourceDictionary>

Styles are one example of a resource, but you can also add other items. In fact, the first
resource that you will add is not actually a style but an ImageBrush that will be used to paint
the background of the outermost Grid control on the Customers form.

3. In Solution Explorer, right-click the Customers project, point to Add, and then click New
Folder. Change the name of the new folder to Images.

670 part IV Building professional Windows 8 applications with C#

4. Right-click the Images folder, point to Add, and then click Existing Item.

5. In the Add Existing Item – Customers dialog box, browse to the \Microsoft Press\Visual CSharp
Step By Step\Chapter 25\Resources folder under your Documents folder, click wood.jpg, and
then click Add.

The wood.jpg file is added to the Images folder in the Customers project. This file contains an
image of a tasteful wooden background that you will add to the Customers form.

6. In the Code and Text Editor window displaying the AppStyles.xaml file, add the following
XAML markup shown in bold:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Customers">

 <ImageBrush x:Key="WoodBrush" ImageSource="Images/wood.jpg"/>
</ResourceDictionary>

This markup creates an ImageBrush resource called WoodBrush that is based on the wood.
jpg file. You can use this image brush to set the background of a control, and it will display the
image in the wood.jpg file.

7. Underneath the ImageBrush resource, add the following style shown in bold to the AppStyles.
xaml file:

<ResourceDictionary
 ...>

 <ImageBrush x:Key="WoodBrush" ImageSource="Images/wood.jpg"/>
 <Style x:Key="GridStyle" TargetType="Grid">
 <Setter Property="Background" Value="{StaticResource WoodBrush}"/>
 </Style>
</ResourceDictionary>

This markup shows how to define a style. A Style element should have a name (so it can be
referenced elsewhere in the application), and it should specify the type of control to which the
style can be applied. You are going to use this style with the Grid control.

The body of a style consists of one or more Setter elements. A Setter element specifies the
property to set and the value to which the property should be set. In this example, the
Background property is set to the WoodBrush ImageBrush resource. The syntax is a little curi-
ous, though. In a value, you can either reference one of the appropriate system-defined values
for the property (such as "Red" if you want to set the background to a solid red color) or
specify a resource that you have defined. To reference a resource, you use the StaticResource
keyword and then place the entire expression in curly braces.

8. Before you can use this style, you must update the global resource dictionary for the applica-
tion and add a reference to the AppStyles.xaml file. In Solution Explorer, double-click App.
xaml to display it in the Code and Text Editor window. The App.xaml file looks like this:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 671

<Application
 x:Class="Customers.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Customers">

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>

 <!--
 Styles that define common aspects of the platform look and feel
 Required by Visual Studio project and item templates
 -->
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>
 </Application.Resources>
</Application>

9. Add the AppStyles.xaml file to the list of resource dictionaries in the ResourceDictionary.
MergedDictionaries element, as shown below in bold:

<ResourceDictionary.MergedDictionaries>
 ...
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 <ResourceDictionary Source="AppStyles.xaml"/>
</ResourceDictionary.MergedDictionaries>

Note You may be curious to see that the application already defines a resource
dictionary called StandardStyles.xaml. This file is in the Common folder in
Solution Explorer, and it contains a collection of prebuilt styles designed
by Microsoft that you can use in your applications. These styles include the
ApplicationPageBackgroundThemeBrush resource currently used to set the back-
ground color of the Grid control on the Customers page, although you will switch
the Grid control to reference the GridStyle style in the next step. You will learn more
about some of the styles in StandardStyles.xaml in Chapter 26.

10. Switch to the MainPage.xaml file displaying the user interface for the Customers form. In the
XAML pane, find the outermost Grid control:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

In the XAML markup for this control, replace the Background property with a Style property
that references the GridStyle style, as shown in bold below:

 <Grid Style="{StaticResource GridStyle}">

672 part IV Building professional Windows 8 applications with C#

The background of the Grid control in the Design View window should switch and display a
wooden panel, like this:

Note Ideally, you should make sure that any background image that you apply to
a page or control maintains its aesthetics as the device form factor and orientation
changes. An image that looks cool on a 30-inch monitor may appear distorted and
squashed on a Microsoft Windows Phone 7 device. It may be necessary to provide
alternative backgrounds for different views and orientations and use the Visual State
Manager to modify the Background property of a control to switch between them as
the visual state changes.

11. Return to AppStyles.xaml in the Code and Text Editor window, and add the FontStyle style
shown below after the GridStyle style:

<Style x:Key="GridStyle" TargetType="Grid">
 ...
</Style>
<Style x:Key="FontStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Buxton Sketch"/>
</Style>

This style applies to TextBlock elements and changes the font to Buxton Sketch. This is a font
that resembles a handwriting style.

At this stage, it would be possible to reference the FontStyle style in every TextBlock con-
trol that required this font, but this approach would not provide any advantage over simply

 CHAPTER 25 Implementing the User Interface for a Windows Store App 673

setting the FontFamily directly in the markup for each control. The real power of styles occurs
when you combine multiple properties together, as you will see in the next few steps.

12. Add the HeaderStyle style shown below to the AppStyles.xaml file:

<Style x:Key="FontStyle" TargetType="TextBlock">
 ...
</Style>
<Style x:Key="HeaderStyle" TargetType="TextBlock" BasedOn="{StaticResource FontStyle}">
 <Setter Property="HorizontalAlignment" Value="Center"/>
 <Setter Property="TextWrapping" Value="Wrap"/>
 <Setter Property="VerticalAlignment" Value="Center"/>
 <Setter Property="Foreground" Value="SteelBlue"/>
</Style>

This is a composite style that sets the HorizontalAlignment, TextWrapping, VerticalAlignment,
and Foreground properties of a TextBlock. Additionally, the HeaderStyle style references the
FontStyle style by using the BasedOn property. The BasedOn property provides a simple form
of inheritance for styles.

You will use this style to format the labels that appear at the top of the customersTabularGrid
and customersColumnarGrid controls. However, these headings have different font sizes (the
heading of the tabular layout is bigger than that of the columnar layout), so you will create
two more styles that extend the HeaderStyle style.

13. Add the following styles to the AppStyles.xaml file:

<Style x:Key="HeaderStyle" TargetType="TextBlock" BasedOn="{StaticResource FontStyle}">
 ...
</Style>
 <Setter Property="FontSize" Value="70"/>
</Style>

 <Setter Property="FontSize" Value="50"/>
</Style>

Note that the font sizes for these styles are slightly bigger than the font sizes currently used
by the headings in the Grid controls. This is because the Buxton Sketch font is smaller than the
default font.

14. Switch back to the MainPage.xaml file and find the XAML markup for the TextBlock control for
the Adventure Works Customers label in the customersTabularView Grid control:

<TextBlock Grid.Row="0" HorizontalAlignment="Center" TextWrapping="Wrap"
Text="Adventure Works Customers" VerticalAlignment="Center" FontSize="50"/>

15. Change the properties of this control to reference the TabularHeaderStyle style, as shown
below in bold:

674 part IV Building professional Windows 8 applications with C#

<TextBlock Grid.Row="0" Style="{StaticResource TabularHeaderStyle}"
Text="Adventure Works Customers"/>

The heading displayed in the Design View window should change color, size, and font, and it
should look like this:

16. Find the XAML markup for the TextBlock control for the Customers label in the
customersColumnarView Grid control:

<TextBlock Grid.Row="0" HorizontalAlignment="Center" TextWrapping="Wrap"
Text="Customers" VerticalAlignment="Center" FontSize="30"/>

Modify the markup of this control to reference the ColumnarHeaderStyle style, as shown
below in bold:

<TextBlock Grid.Row="0" Style="{StaticResource ColumnarHeaderStyle}"
Text="Customers"/>

Note that you won't see this change in the Design View window because the customers
ColumnarView Grid control is collapsed by default. However, you will see the effects of this
change when you run the application later in this exercise.

17. Return to the AppStyles.xaml file in the Code and Text Editor window. Modify the HeaderStyle
style with the additional property Setter elements shown below in bold:

<Style x:Key="HeaderStyle" TargetType="TextBlock" BasedOn="{StaticResource FontStyle}">
 <Setter Property="HorizontalAlignment" Value="Center"/>
 <Setter Property="TextWrapping" Value="Wrap"/>
 <Setter Property="VerticalAlignment" Value="Center"/>
 <Setter Property="Foreground" Value="SteelBlue"/>
 <Setter Property="RenderTransformOrigin" Value="0.5,0.5"/>
 <Setter Property="RenderTransform">
 <Setter.Value>
 <CompositeTransform Rotation="-5"/>
 </Setter.Value>
 </Setter>
</Style>

These elements rotate the text displayed in the header about its midpoint by an angle of 5
degrees by using a transformation.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 675

Note This example shows a simple transformation. The RenderTransform property
enables you to perform a variety of other transformations to an item, and you can
combine multiple transformations together. For example, you can translate (move)
an item on the x- and y-axes, skew the item (make it lean), and scale an element. For
more information, see http://msdn.microsoft.com/library/system.windows.uielement.
rendertransform.aspx.

Also notice that the value of the RenderTransform property is itself another proper-
ty/value pair (the property is Rotation, and the value is –5). In cases such as this, you
specify the value by using the <Setter.Value> tag.

18. Switch to the MainPage.xaml file. In the Design View window, the title should now be dis-
played at a jaunty angle:

19. In the AppStyles.xaml file, add the following style:

<Style x:Key="LabelStyle" TargetType="TextBlock" BasedOn="{StaticResource FontStyle}">
 <Setter Property="FontSize" Value="30"/>
 <Setter Property="HorizontalAlignment" Value="Center"/>
 <Setter Property="TextWrapping" Value="Wrap"/>
 <Setter Property="VerticalAlignment" Value="Center"/>
 <Setter Property="Foreground" Value="AntiqueWhite"/>
</Style>

You will apply this style to the TextBlock elements that provide the labels for the various
TextBox and ComboBox controls that the user uses to enter customer information. The style
references the same font style as the headings but sets the other properties to values more
appropriate for the labels.

20. Go back to the MainPage.xaml file. In the XAML pane, modify the markup for the TextBlock
controls for each of the labels in the customersTabularView and customersColumnarView Grid
controls; remove the HorizontalAlignment,TextWrapping, VerticalAlignment, and FontSize prop-
erties; and reference the LabelStyle style, as shown below in bold:

<Grid x:Name="customersTabularView" Margin="40,54,0,0" Visibility="Visible">
 ...
 <Grid Grid.Row="2">

http://msdn.microsoft.com/library/system.windows.uielement.rendertransform.aspx
http://msdn.microsoft.com/library/system.windows.uielement.rendertransform.aspx

676 part IV Building professional Windows 8 applications with C#

 ...
 <TextBlock Grid.Row="0" Grid.Column="1" Style="{StaticResource LabelStyle}"
Text="ID"/>
 <TextBlock Grid.Row="0" Grid.Column="3" Style="{StaticResource LabelStyle}"
Text="Title"/>
 <TextBlock Grid.Row="0" Grid.Column="5" Style="{StaticResource LabelStyle}"
Text="First Name"/>
 <TextBlock Grid.Row="0" Grid.Column="7" Style="{StaticResource LabelStyle}"
Text="Last Name"/>
 ...
 <TextBlock Grid.Row="3" Grid.Column="1" Style="{StaticResource LabelStyle}"
Text="Email"/>
 ...
 <TextBlock Grid.Row="5" Grid.Column="1" Style="{StaticResource LabelStyle}"
Text="Phone"/>
 ...
 </Grid>
</Grid>
<Grid x:Name="customersColumnarView" Margin="20,10,20,10" Visibility="Collapsed">
 ...
 <Grid Grid.Row="1">
 ...
 <TextBlock Grid.Row="0" Grid.Column="0" Style="{StaticResource LabelStyle}"
Text="ID"/>
 <TextBlock Grid.Row="1" Grid.Column="0" Style="{StaticResource LabelStyle}"
Text="Title"/>
 <TextBlock Grid.Row="2" Grid.Column="0" Style="{StaticResource LabelStyle}"
Text="First Name"/>
 <TextBlock Grid.Row="3" Grid.Column="0" Style="{StaticResource LabelStyle}"
Text="Last Name"/>
 ...
 <TextBlock Grid.Row="4" Grid.Column="0" Style="{StaticResource LabelStyle}"
Text="Email"/>
 ...
 <TextBlock Grid.Row="5" Grid.Column="0" Style="{StaticResource LabelStyle}"
Text="Phone"/>
 ...
 </Grid>
</Grid>

The labels on the form should change to the Buxton Sketch font and be displayed in white, in
a font size of 30 points:

 CHAPTER 25 Implementing the User Interface for a Windows Store App 677

21. On the DEBUG menu, click Start Debugging to build and run the application.

Note Use the Simulator if you are running on a display with a resolution less than
1366 × 768.

22. The Customers form should appear and be styled in the same way that it appears in the
Design View window in Visual Studio. Notice that if you enter any text into the various fields
on the form, they use the default font and styling for the TextBox controls.

Note Although the Buxton Sketch font is good for labels and titles, it is not recom-
mended as a font for data entry fields, as some of the characters can be difficult to
distinguish from each other. For example, the lowercase letter l is very similar to the
digit 1, and the uppercase letter O is almost indistinguishable from the digit 0. For
this reason, it makes sense to stick with the default font for the TextBox controls.

678 part IV Building professional Windows 8 applications with C#

23. Display the application in Snapped view and verify that the styling has been applied to the
controls in the customersColumnarView grid. The form should look like this:

24. Return to Visual Studio and stop debugging.

You can see that styles enable you to easily implement a number of really cool effects. In addition,
careful use of styles makes your code much more maintainable than setting properties on individual
controls. For example, if you want to switch the font used by the labels and headings in the Custom-
ers application, you need to make only a single change to the FontStyle style. In general, you should
use styles wherever possible. Besides assisting maintainability, use of styles helps to keep the XAML
markup for your forms clean and uncluttered, and the XAML for a form only needs to specify the
controls and layout, rather than how the controls should appear on the form.

 CHAPTER 25 Implementing the User Interface for a Windows Store App 679

Note You can also use Microsoft Blend for Visual Studio 2012 to define complex styles that
you can integrate into an application. Professional graphic artists can use Blend to develop
custom styles and provide these styles in the form of XAML markup to developers building
applications. All the developer has to do is add the appropriate Style tags to the user inter-
face elements to reference the appropriate styles.

Summary

In this chapter, you learned how to use the Grid control to implement a user interface that can scale to
different device form factors and orientations. You also learned how to use the Visual State Manager
to adapt the layout of controls when the user switches between the Fullscreen, Filled, and Snapped
views. Finally, you learned how to create custom styles and apply them to the controls on a form. Now
that you have defined the user interface, the next challenge is to add functionality to the application,
enabling the user to display and update data, which is what you will do in the next chapter.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 26.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 25 Quick Reference

To Do this

Create a new Windows Store app Use one of the Windows Store templates in Visual Studio 2012, such as the Blank
App template.

Implement a user interface that
scales to different device form fac-
tors and orientations

Use a Grid control. Divide the Grid control into rows and columns, and place
controls in these rows and columns rather than specifying an absolute location
relative to the edges of the Grid.

Implement a user interface that
can adapt to Fullscreen, Filled, and
Snapped views

Create different layouts for each view that display the controls in an appropriate
manner. Use the Visual State Manager to select the layout to display when the
visual state changes.

Create custom styles Add a resource dictionary to the application. Define styles in this dictionary by
using the <Style> element, and specify the properties that each style changes.
For example:

<Style x:Key="GridStyle" TargetType="Grid">
 <Setter Property="Background" Value="{StaticResource
WoodBrush}"/>
</Style>

Apply a custom style to a control Set the Style property of the control and reference the style by name. For ex-
ample:

<Grid Style="{StaticResource GridStyle}">

 681

C H A P T E R 2 6

Displaying and Searching for Data
in a Windows Store app

After completing the chapter, you will be able to

■■ Explain how to use the Model-View-ViewModel pattern to implement the application logic for
a Windows Store app.

■■ Use data binding to display and modify data in a view.

■■ Create a ViewModel to enable a view to interact with a model.

■■ Implement a Search contract to enable a Windows Store app to integrate with the search
functionality of Windows 8.

In Chapter 25, "Implementing the User Interface for a Windows Store App," you learned how to design
a user interface for a Microsoft Windows Store app that could adapt to the different device form fac-
tors, orientations, and views that a customer or other consumer running your application might use.
The application you used was a simple one for displaying and editing the details of customers.

In this chapter, you will see how to display data in the user interface and the features that
Microsoft Windows 8 provides that enable you to search for data in an application. In performing
these tasks, you will also learn about the way in which you can structure a Windows Store app. This
chapter covers a lot of ground; in particular, you will look at how to use data binding to connect the
user interface to the data that it displays and how to create a ViewModel that enables you to sepa-
rate the user interface logic from the data model and business logic for an application. You will also
see how to use contracts to implement a search feature that integrates into the Windows 8 operating
system. While building this application, you will learn a lot more about the templates that Microsoft
Visual Studio 2012 provides for helping you to build Windows Store apps.

Implementing the Model-View-ViewModel Pattern

A well-structured Windows Store app enables you to separate the design of the user interface from
the data that the application uses and the business logic that comprises the functionality of the
application. This separation helps to remove the dependencies between the various components of
an application, enabling the different elements to be designed and implemented by individuals who

682 part IV Building professional Windows 8 applications with C#

have the appropriate specialist skills. For example, a graphic artist can focus attention on designing
an appealing and intuitive user interface, a database specialist can concentrate on implementing an
optimized set of data structures for storing and accessing the data, and a C# developer can direct his
or her efforts to implementing the business logic for the application. This is a common goal that has
been the aim of many development approaches, not just for Windows Store apps, and over the past
few years many techniques have been devised to help structure an application in this way. Arguably,
the most popular approach is to follow the Model-View-ViewModel (MVVM) design pattern. In this
design pattern, the model provides the data used by the application, the view represents the way in
which the data is displayed in the user interface, and the ViewModel contains the logic that connects
the two, taking the user input and converting it into commands that perform business operations on
the model, and also taking the data from the model and formatting it in the manner expected by the
view. The following diagram shows a simplified relationship between the elements of the MVVM pat-
tern. Note that an application may provide multiple views of the same data. In a Windows Store app,
for example, you might implement Fullscreen, Filled, and Snapped views, which can present informa-
tion by using different screen layouts. One job of the ViewModel is to ensure that the data from the
same model can be displayed and manipulated by many different views. In a Windows Store app,
the view can configure data binding to connect to the data presented by the ViewModel. Addition-
ally, the view can request that the ViewModel update data in the model or perform business tasks by
invoking commands implemented by the ViewModel.

Displaying Data by Using Data Binding
Before you get started implementing a ViewModel for the Customers application, it helps to understand
a little more about data binding and how you can apply this technique to display data in a user interface.
Data binding enables you to link a property of a control to a property of an object; if the value of the speci-
fied property of the object changes, the property in the control that links to the object also changes. In
addition, data binding can be bidirectional: if the value of a property in a control that uses data binding
changes, the modification is propagated to the object to which it is linked. The following exercise provides
a quick introduction to using data binding to display data. It is based on the Customers application that you
started building in Chapter 25.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 683

Use data binding to display Customer information

1. Start Visual Studio 2012 if it is not already running.

2. Open the Customers project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 26\Data Binding folder in your Documents folder. This is a version of the Custom-
ers application that you built in the previous chapter, but the layout of the user interface has
been modified slightly—the controls are displayed on a blue background that enables them to
stand out more easily.

Note The blue background was created by using a Rectangle control that spans the
same rows and columns as the TextBlock and TextBox controls that display the head-
ings and data. The rectangle is filled by using a LinearGradientBrush that gradually
changes the color of the rectangle from a medium blue at the top to a very dark
blue at the bottom. The XAML markup for the Rectangle control displayed in the
Fullscreen and Filled views looks like this (the XAML markup for the Snapped view
includes a similar Rectangle control, spanning the rows and columns used by that
layout):

<Rectangle Grid.Row="0" Grid.RowSpan="6" Grid.Column="1" Grid.ColumnSpan="7" ...>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF0E3895"/>
 <GradientStop Color="#FF141415" Offset="0.929"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

3. In Solution Explorer, right-click the Customers project, select Add, and then click Class.

4. In the Add New Items – Customers dialog box, ensure that the Class template is selected, type
Customer.cs in the Name text box, and then click Add.

You will use this class to implement the Customer data type, and then implement data binding
to display the details of Customer objects in the user interface.

5. In the Code and Text Editor window displaying the Customer.cs file, make the Customer class
public, and add the following private fields and properties shown in bold to the Customer
class:

public class Customer
{
 public int _customerID;
 public int CustomerID
 {
 get { return this._customerID; }
 set { this._customerID = value; }
 }

684 part IV Building professional Windows 8 applications with C#

 public string _title;
 public string Title
 {
 get { return this._title; }
 set { this._title = value; }
 }

 public string _firstName;
 public string FirstName
 {
 get { return this._firstName; }
 set { this._firstName = value; }
 }

 public string _lastName;
 public string LastName
 {
 get { return this._lastName; }
 set { this._lastName = value; }
 }

 public string _emailAddress;
 public string EmailAddress
 {
 get { return this._emailAddress; }
 set { this._emailAddress = value; }
 }

 public string _phone;
 public string Phone
 {
 get { return this._phone; }
 set { this._phone = value; }
 }
}

Note You might be wondering why these properties are not implemented as auto-
matic properties because all they do is get and set the value in a private field. You
will add additional code to these properties in a later exercise.

6. In Solution Explorer, in the Customers project, double-click the MainPage.xaml file to display
the user interface for the application in the Design View window.

7. In the XAML pane, locate the markup for the id TextBox control. Modify the XAML markup
that sets the Text property for this control, as shown below in bold:

<TextBox Grid.Row="1" Grid.Column="1" x:Name="id" ...
Text="{Binding CustomerID}" .../>

The syntax Text="{Binding Path}" specifies that the value of the Text property will be provided
by the value of the Path expression at run time. In this case, Path is set to CustomerID, so the
value held in the CustomerID expression will be displayed by this control. However, you need

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 685

to provide a bit more information to indicate that CustomerID is actually a property of a
Customer object. To do this, you can set the DataContext property of the control, which you
will do shortly.

8. Add the following binding expressions for each of the other text controls on the
form. Apply data binding to the TextBox controls in the customersTabularView and
customersColumnView Grid controls, as shown below in bold (the ComboBox controls require
slightly different handling, which you will address in the section "Using Data Binding with a
ComboBox Control" later in this chapter):

<Grid x:Name="customersTabularView" ...>
 ...
 <TextBox Grid.Row="1" Grid.Column="1" x:Name="id" ...
Text="{Binding CustomerID}" .../>
 ...
 <TextBox Grid.Row="1" Grid.Column="5" x:Name="firstName" ...
Text="{Binding FirstName}" .../>
 <TextBox Grid.Row="1" Grid.Column="7" x:Name="lastName" ...
Text="{Binding LastName}" .../>
 ...
 <TextBox Grid.Row="3" Grid.Column="3" Grid.ColumnSpan="3"
x:Name="email" ... Text="{Binding EmailAddress}" .../>
 ...
 <TextBox Grid.Row="5" Grid.Column="3" Grid.ColumnSpan="3"
x:Name="phone" ... Text="{Binding Phone}" ..."/>
</Grid>
<Grid x:Name="customersColumnarView" Margin="20,10,20,110"
Visibility="Collapsed">
 ...
 <TextBox Grid.Row="0" Grid.Column="1" x:Name="cId" ...
Text="{Binding CustomerID}" .../>
 ...
 <TextBox Grid.Row="2" Grid.Column="1" x:Name="cFirstName" ...
Text="{Binding FirstName}" .../>
 <TextBox Grid.Row="3" Grid.Column="1" x:Name="cLastName" ...
Text="{Binding LastName}" .../>
 ...
 <TextBox Grid.Row="4" Grid.Column="1" x:Name="cEmail" ...
Text="{Binding EmailAddress}" .../>
 ...
 <TextBox Grid.Row="5" Grid.Column="1" x:Name="cPhone" ...
Text="{Binding Phone}" .../>
</Grid>

9. In Solution Explorer, expand the MainPage.xaml file, and then double-click the
MainPage.xaml.cs file to display the code for the MainPage.xaml form in the Code and Text
Editor window. Add the statement shown below in bold to the MainPage constructor.

public MainPage()
{
 this.InitializeComponent();
 Window.Current.SizeChanged += WindowSizeChanged;

686 part IV Building professional Windows 8 applications with C#

 Customer customer = new Customer
 {
 CustomerID = 1,
 Title = "Mr",
 FirstName = "John",
 LastName = "Sharp",
 EmailAddress = "john@contoso.com",
 Phone = "111-1111"
 };
}

This code creates a new instance of the Customer class and populates it with some sample
data.

10. After the code that creates the new Customer object, add the following statement shown in
bold:

Customer customer = new Customer
{
 ...
};
this.DataContext = customer;

This statement specifies the object to which controls on the MainPage form should bind to.
In each of the controls, the XAML markup Text="{Binding Path}" will be resolved against this
object. For example, the id TextBox and cId TextBox controls both specify Text="{Binding Cus-
tomerID}", and so they will display the value found in the CustomerID property of the Cus-
tomer object to which the form is bound.

Note In this example, you have set the DataContext property of the form, so the
same data binding automatically applies to all the controls on the form. You can also
set the DataContext property for individual controls if you need to bind the different
controls to different objects.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 687

11. On the DEBUG menu, click Start Debugging to build and run the application.

Verify that the form displays the details for the customer John Sharp in Fullscreen view, as
shown in the following image:

688 part IV Building professional Windows 8 applications with C#

12. Switch the application to Snapped view and verify that it displays the same data:

The controls displayed in Snapped view are bound to the same data as the controls displayed
in Fullscreen view.

Important You must be using a display that supports a resolution of at least 1366
× 768 pixels to be able to switch to Snapped view. If you are running on a computer
with a lower resolution, you can use the Simulator to simulate a device with a higher
resolution. See the sidebar "Using the Simulator to Test a Windows Store App" in
Chapter 25 for more information. Additionally, you will need to run an additional
application in the Simulator to enable snapping between applications—switch to the
Desktop and start the Weather application, for example.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 689

13. In Snapped view, change the email address to john@treyresearch.com.

14. Put the application back into Fullscreen view. Notice that the email address displayed in this
view has not changed.

15. Return to Visual Studio and stop debugging.

16. In Visual Studio, display the code for the Customer class in the Code and Text Editor window
and set a breakpoint in the set property accessor for the EmailAddress property.

17. On the DEBUG menu, click Start Debugging to build and run the application again.

18. When the debugger reaches the breakpoint for the first time, press F5 to continue running the
application.

19. When the user interface for the Customers application appears, switch to Snapped view and
change the email address to john@treyresearch.com.

20. Put the application back into Fullscreen view. Notice that the debugger does not reach the
breakpoint in the set accessor for the EmailAddress property; the updated value is not written
back to the Customer object when the email TextBox loses the focus.

21. Return to Visual Studio and stop debugging.

22. Remove the breakpoint in the set accessor of the EmailAddress property in the Customer class.

Modifying Data by Using Data Binding
In the previous exercise, you saw how easy it is to display the data in an object by using data binding.
However, by default, data binding is a one-way operation, and any changes you make to the dis-
played data are not copied back to the data source. In the exercise, you saw this when you changed
the email address displayed in Snapped view; when you switched back to Fullscreen view, the data
had not changed. You can implement bidirectional data binding by modifying the Mode parameter
of the Binding specification in the XAML markup for a control. The Mode parameter indicates whether
the data binding is one-way (the default) or two-way. This is what you will do next.

Implement TwoWay data binding to modify Customer information

1. Display the MainPage.xaml file in the Design View window, and modify the XAML markup for
each of the TextBox controls as shown below in bold:

<Grid x:Name="customersTabularView" ...>
 ...
 <TextBox Grid.Row="1" Grid.Column="1" x:Name="id" ...
Text="{Binding CustomerID, Mode=TwoWay}" .../>
 ...

690 part IV Building professional Windows 8 applications with C#

 <TextBox Grid.Row="1" Grid.Column="5" x:Name="firstName" ...
Text="{Binding FirstName, Mode=TwoWay}" .../>
 <TextBox Grid.Row="1" Grid.Column="7" x:Name="lastName" ...
Text="{Binding LastName, Mode=TwoWay}" .../>
 ...
 <TextBox Grid.Row="3" Grid.Column="3" Grid.ColumnSpan="3"
x:Name="email" ... Text="{Binding EmailAddress, Mode=TwoWay}" .../>
 ...
 <TextBox Grid.Row="5" Grid.Column="3" Grid.ColumnSpan="3"
x:Name="phone" ... Text="{Binding Phone, Mode=TwoWay}" ..."/>
</Grid>
<Grid x:Name="customersColumnarView" Margin="20,10,20,110" ...>
 ...
 <TextBox Grid.Row="0" Grid.Column="1" x:Name="cId" ...
Text="{Binding CustomerID, Mode=TwoWay}" .../>
 ...
 <TextBox Grid.Row="2" Grid.Column="1" x:Name="cFirstName" ...
Text="{Binding FirstName, Mode=TwoWay}" .../>
 <TextBox Grid.Row="3" Grid.Column="1" x:Name="cLastName" ...
Text="{Binding LastName, Mode=TwoWay}" .../>
 ...
 <TextBox Grid.Row="4" Grid.Column="1" x:Name="cEmail" ...
Text="{Binding EmailAddress, Mode=TwoWay}" .../>
 ...
 <TextBox Grid.Row="5" Grid.Column="1" x:Name="cPhone" ...
Text="{Binding Phone, Mode=TwoWay}" .../>
</Grid>

The Mode parameter to the Binding specification indicates whether the data binding is one-
way (the default) or two-way. Setting Mode to TwoWay causes any changes made by the user
to be passed back to the object to which a control is bound.

2. On the DEBUG menu, click Start Debugging to build and run the application again.

3. While application is displayed in Fullscreen view, change the email address to
john@treyresearch.com, and then switch to Snapped view.

Notice that, despite changing the data binding to TwoWay mode, the email address displayed
in Snapped view has not been updated—it is still john@contoso.com.

4. Return to Visual Studio and stop debugging.

Clearly, something is not working correctly! The problem now is not that the data has not been
updated, but rather that the view is not displaying the latest version of the data (if you reinstate the
breakpoint in the set accessor for the EmailAddress property of the Customer class again and run the
application in the debugger, you will see the debugger reach the breakpoint whenever you change
the value of the email address and move the focus away from the TextBox control). Despite appear-
ances, the data-binding process is not magic, and a data binding does not know when the data to
which it is bound has been changed; the object needs to inform the data binding of any modifications
by sending a PropertyChanged event to the user interface. This event is part of an interface called
INotifyPropertyChanged, and all objects that support two-way data binding should implement this
interface. You will implement this interface in the next exercise.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 691

Implement the INotifyPropertyChanged interface in the Customer class

1. In Visual Studio, display the Customer.cs file in the Code and Text Editor window.

2. Add the following using directive to the list at the top of the file:

using System.ComponentModel;

The INotifyPropertyChanged interface is defined in this namespace.

3. Modify the definition of the Customer class to specify that it implements the
INotifyPropertyChanged interface, as follows in bold:

class Customer : INotifyPropertyChanged

4. Add the PropertyChanged event shown below in bold to the Customer class, after the Phone
property.

class Customer : INotifyPropertyChanged
{
 ...
 public string _phone;
 public string Phone {
 get { return this._phone; }
 set { this._phone = value; }
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

This is the only item that the INotifyPropertyChanged interface defines. All objects that imple-
ment this interface must provide this event, and they should raise this event whenever they
wish to notify the outside world of a change to a property value.

5. Add the following method to the Customer class, after the PropertyChanged event:

class Customer : INotifyPropertyChanged
{
 ...
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

692 part IV Building professional Windows 8 applications with C#

The OnPropertyChanged method raises the PropertyChanged event. The
PropertyChangedEventArgs parameter to the PropertyChanged event should specify the
name of the property that has changed. This value is passed in as a parameter to the
OnPropertyChanged method.

6. Modify the property set accessors for each of the properties in the Customer class to call the
OnPropertyChanged method whenever the value that they contain is modified, as shown
below in bold:

class Customer : INotifyPropertyChanged
{
 public int _customerID;
 public int CustomerID
 {
 get { return this._customerID; }
 set
 {
 this._customerID = value;
 this.OnPropertyChanged("CustomerID");
 }
 }

 public string _title;
 public string Title
 {
 get { return this._title; }
 set
 {
 this._title = value;
 this.OnPropertyChanged("Title");
 }
 }

 public string _firstName;
 public string FirstName
 {
 get { return this._firstName; }
 set
 {
 this._firstName = value;
 this.OnPropertyChanged("FirstName");
 }
 }

 public string _lastName;
 public string LastName
 {
 get { return this._lastName; }
 set
 {
 this._lastName = value;
 this.OnPropertyChanged("LastName");
 }
 }

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 693

 public string _emailAddress;
 public string EmailAddress
 {
 get { return this._emailAddress; }
 set
 {
 this._emailAddress = value;
 this.OnPropertyChanged("EmailAddress");
 }
 }

 public string _phone;
 public string Phone
 {
 get { return this._phone; }
 set
 {
 this._phone = value;
 this.OnPropertyChanged("Phone");
 }
 }
 ...
}

7. Build and run the application in debug mode.

8. When the Customers form appears in Fullscreen view, change the email address to
john@treyresearch.com, and change the phone number to 222-2222.

9. Display the application in Snapped view and verify that the email address and phone number
have changed.

10. In Snapped view, change the first name to James, switch back to Fullscreen view, and verify
that the first name has changed.

11. Return to Visual Studio and stop debugging.

Using Data Binding with a ComboBox Control
Using data binding with a control such as a TextBox or TextBlock is a relatively straightforward matter.
On the other hand, ComboBox controls require a little more attention. The issue is that a ComboBox
control actually displays two things: a list of values in the drop-down list from which the user can
select an item and the value of the currently selected item. You can implement data binding to dis-
play a list of items in the drop-down list of a ComboBox control, and the value that the user selects
must be a member of this list. In the Customers application, you can configure the data binding for
the selected value in the title ComboBox control by setting the SelectedValue property, like this:

<ComboBox ... x:Name="title" ... SelectedValue="{Binding Title}" ... />

694 part IV Building professional Windows 8 applications with C#

However, remember that the list of values for the drop-down list is hard-coded into the XAML
markup, like this:

<ComboBox ... x:Name="title" ... >
 <ComboBoxItem Content="Mr"/>
 <ComboBoxItem Content="Mrs"/>
 <ComboBoxItem Content="Ms"/>
</ComboBox>

This markup does not get applied until the control has been created, so the value specified by
the data binding is not found in the list because the list does not yet exist when the data binding is
constructed. The result is that the value is not displayed. You can try this if you like—configure the
binding for the SelectedValue property as just shown and run the application. The title ComboBox will
be empty when it is initially displayed, despite the fact that the customer has the title of Mr.

There are several solutions to this problem, but the simplest is to create a data source that contains
the list of valid values, and then specify that the ComboBox control should use this list as its set of val-
ues for the drop-down. You also need to do this before the data binding for the ComboBox is applied.

Implement data binding for the title ComboBox controls

1. In Visual Studio, display the MainPage.xaml.cs file in the Code and Text Editor window.

2. Add the following code shown in bold to the MainPage constructor:

public MainPage()
{
 this.InitializeComponent();
 Window.Current.SizeChanged += WindowSizeChanged;

 List<string> titles = new List<string>

 {

 "Mr", "Mrs", "Ms"

 };

 this.title.ItemsSource = titles;

 this.cTitle.ItemsSource = titles;

 Customer customer = new Customer
 {
 ...
 };

 this.DataContext = customer;
}

This code creates a list of strings containing the valid titles that customers can have. The
code then sets the ItemsSource property of both title ComboBox controls to reference this list
(remember that there is a ComboBox control for each view).

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 695

Note In a commercial application, you would most likely retrieve the list of values
displayed by a ComboBox control from a database or some other data source rather
than using a hard-coded list, as shown in this example.

The placement of this code is important. It must run before the statement that sets the Data-
Context property of the MainPage form because this is when the data binding to the controls
on the form occurs.

3. Display the MainPage.xaml file in the Design View window.

4. Modify the XAML markup for the title and cTitle ComboBox controls as shown below in bold:

<Grid x:Name="customersTabularView" ...>
 ...
 <ComboBox Grid.Row="1" Grid.Column="3" x:Name="title" ...
SelectedValue="{Binding Title, Mode=TwoWay}">
 </ComboBox>
 ...
</Grid>
<Grid x:Name="customersColumnarView" ...>
 ...
 <ComboBox Grid.Row="1" Grid.Column="1" x:Name="cTitle" ...
SelectedValue="{Binding Title, Mode=TwoWay}">
 </ComboBox>
 ...
</Grid>

Notice that the list of ComboBoxItem elements for each control has been removed, and that
the SelectedValue property is configured to use data binding with the Title field in the Cus-
tomer object.

5. On the DEBUG menu, click Start Debugging to build and run the application.

6. In the Fullscreen view, verify that the value of the customer's title is displayed correctly (it
should be Mr). Click the drop-down arrow for the ComboBox control and verify that it contains
the values Mr, Mrs, and Ms.

7. Switch to Snapped view and perform the same checks. Note that you can change the title in
Snapped view, and when you switch back to Fullscreen view, the new title is displayed.

8. Return to Visual Studio and stop debugging.

Creating a ViewModel
You have now seen how to configure data binding to connect a data source to the controls in a user
interface, but the data source that you have been using is very simple, consisting of a single customer.
In the real world, the data source is likely to be much more complex, comprising collections of differ-
ent types of object. Remember that in MVVM terms, the data source is often provided by the model,

696 part IV Building professional Windows 8 applications with C#

and the user interface (the view) only communicates with the model indirectly, through a ViewModel
object. The rationale behind this approach is that the model and the views that display the data
provided by this model should be independent from each other; you should not have to change the
model if the user interface is modified, nor should you be required to adjust the user interface if the
underlying model changes.

The ViewModel provides the connection between the view and the model, and it also imple-
ments the business logic for the application. Again, this business logic should be independent of
the view and the model. The ViewModel exposes the business logic to the view by implementing a
collection of commands. The user interface can trigger these commands based on the way in which
the user navigates through the application. In the following exercise, you will extend the Customers
application. You will implement a model that contains a list of Customer objects, and you will create a
ViewModel that provides commands that enable the view to move between customers.

Create a ViewModel for managing Customer information

1. Open the Customers project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 26\ViewModel folder in your Documents folder. This project contains a completed
version of the Customers application from the previous set of exercises; if you prefer, you can
continue to use your own version of the project.

2. In Solution Explorer, right-click the Customers project, point to Add, and then click Class.

3. In the Add New Items – Customers dialog box, type ViewModel.cs in the Name text box, and
then click Add.

This class will provide a basic ViewModel that contains a collection of Customer objects. The
user interface will bind to the data exposed by this ViewModel.

4. In the Code and Text Editor window displaying the ViewModel.cs file, mark the class as public,
and add the code shown below in bold to the ViewModel class:

public class ViewModel
{
 private List<Customer> customers;

 public ViewModel()
 {
 this.customers = new List<Customer>
 {
 new Customer {
 CustomerID = 1,
 Title = "Mr",
 FirstName="John",
 LastName="Sharp",
 EmailAddress="john@contoso.com",
 Phone="111-1111"},

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 697

 new Customer {
 CustomerID = 2,
 Title = "Mrs",
 FirstName="Diana",
 LastName="Sharp",
 EmailAddress="diana@contoso.com",
 Phone="111-1112"},
 new Customer {
 CustomerID = 3,
 Title = "Ms",
 FirstName="Francesca",
 LastName="Sharp",
 EmailAddress="frankie@contoso.com",
 Phone="111-1113"
 }
 };
 }
}

The ViewModel class uses a List<Customer> object as its model, and the constructor populates
this list with some sample data.

5. Add the private variable currentCustomer shown below in bold to the ViewModel class, and
initialize this variable to zero in the constructor.

class ViewModel
{
 private List<Customer> customers;
 private int currentCustomer;

 public ViewModel()
 {
 this.currentCustomer = 0;
 this.customers = new List<Customer>
 {
 ...
 }
 }
}

The ViewModel class will use this variable to track which Customer object the view is currently
displaying.

6. Add the Current property shown below in bold to the ViewModel class, after the constructor:

class ViewModel
{
 ...

 public ViewModel()
 {
 ...
 }

698 part IV Building professional Windows 8 applications with C#

 public Customer Current
 {
 get { return this.customers[currentCustomer]; }
 }
}

The Current property provides access to the current Customer object in the model.

Note It is good practice to provide controlled access to a data model; only the
ViewModel should be able to modify the model. However, this restriction does not
prevent the view from being able to update the data presented by the ViewModel—
it just cannot change the model and make it refer to a different data source.

7. Open the MainPage.xaml.cs file in the Code and Text Editor window.

8. In the MainPage constructor, remove the code that creates the Customer object and replace
it with a statement that creates an instance of the ViewModel class. Change the statement
that sets the DataContext property of the MainPage object to reference the new ViewModel
object, as shown below in bold:

public MainPage()
{
 ...
 this.cTitle.ItemsSource = titles;

 ViewModel viewModel = new ViewModel();
 this.DataContext = viewModel;
}

9. Open the MainPage.xaml file in the Design View window.

10. In the XAML pane, modify the data bindings for the TextBox and ComboBox controls to refer-
ence properties through the Current object presented by the ViewModel, as shown below in
bold:

<Grid x:Name="customersTabularView" ...>
 ...
 <TextBox Grid.Row="1" Grid.Column="1" x:Name="id" ...
Text="{Binding Current.CustomerID, Mode=TwoWay}" .../>
 <ComboBox Grid.Row="1" Grid.Column="3" x:Name="title" ...
SelectedValue="{Binding Current.Title, Mode=TwoWay}">
 </ComboBox>
 <TextBox Grid.Row="1" Grid.Column="5" x:Name="firstName" ...
Text="{Binding Current.FirstName, Mode=TwoWay }" .../>
 <TextBox Grid.Row="1" Grid.Column="7" x:Name="lastName" ...
Text="{Binding Current.LastName, Mode=TwoWay }" .../>
 ...
 <TextBox Grid.Row="3" Grid.Column="3" ... x:Name="email" ...
Text="{Binding Current.EmailAddress, Mode=TwoWay }" .../>
 ...

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 699

 <TextBox Grid.Row="5" Grid.Column="3" ... x:Name="phone" ...
Text="{Binding Current.Phone, Mode=TwoWay }" ..."/>
</Grid>
<Grid x:Name="customersColumnarView" Margin="20,10,20,110" ...>
 ...
 <TextBox Grid.Row="0" Grid.Column="1" x:Name="cId" ...
Text="{Binding Current.CustomerID, Mode=TwoWay }" .../>
 <ComboBox Grid.Row="1" Grid.Column="1" x:Name="cTitle" ...
SelectedValue="{Binding Current.Title, Mode=TwoWay}">
 </ComboBox>
 <TextBox Grid.Row="2" Grid.Column="1" x:Name="cFirstName" ...
Text="{Binding Current.FirstName, Mode=TwoWay }" .../>
 <TextBox Grid.Row="3" Grid.Column="1" x:Name="cLastName" ...
Text="{Binding Current.LastName, Mode=TwoWay }" .../>
 ...
 <TextBox Grid.Row="4" Grid.Column="1" x:Name="cEmail" ...
Text="{Binding Current.EmailAddress, Mode=TwoWay }" .../>
 ...
 <TextBox Grid.Row="5" Grid.Column="1" x:Name="cPhone" ...
Text="{Binding Current.Phone, Mode=TwoWay }" .../>
</Grid>

11. On the DEBUG menu, click Start Debugging to build and run the application.

12. Verify that the application displays the details of John Sharp (the first customer in the custom-
ers list).

13. Return to Visual Studio and stop debugging.

The ViewModel provides access to customer information through the Current property, but cur-
rently it does not supply any way to navigate between customers. You can implement methods that
increment and decrement the currentCustomer variable so that the Current property retrieves differ-
ent customers, but you should do so in a manner that does not tie the view to the ViewModel. The
most commonly accepted technique is to use the Command pattern. In this pattern, the ViewModel
exposes methods in the form of commands that the view can invoke. The trick is to avoid explic-
itly referencing these methods by name in the code for the view. To do this, XAML enables you to
declaratively bind commands to the actions triggered by controls in the user interface, as you will see
in the exercises in the next section.

adding Commands to a ViewModel
The XAML markup that binds the action of a control to a command requires that commands exposed
by a ViewModel implement the ICommand interface. This interface defines the following items:

■■ CanExecute This method returns a Boolean value indicating whether the command can run.
This method enables a ViewModel to enable or disable a command depending on the con-
text. For example, a command that fetches the next customer from a list should be able to run
only if there is a next customer to fetch; if there are no more customers, the command should
be disabled.

■■ Execute This method runs when the command is invoked.

700 part IV Building professional Windows 8 applications with C#

■■ CanExecuteChanged This event is triggered when the state of the ViewModel changes.
Under these circumstances, commands that could previously run might now be disabled,
and vice versa. For example, if the user interface invokes a command that fetches the next
customer from a list, if this is the last customer, then subsequent calls to CanExecute should
return false. In these circumstances, the CanExecuteChanged event should fire to indicate that
the command has been disabled.

In the next exercise, you will create a generic class that implements the ICommand interface.

Implement the Command class

1. In Visual Studio, right-click the Customers project, point to Add, and then click Class.

2. In the Add New Item – Customers dialog box, select the Class template, enter Command.cs in
the Name text box, and then click Add.

3. In the Code and Text Editor window displaying the Command.cs file, add the following using
directive to the list at the top of the file:

using System.Windows.Input;

The ICommand interface is defined in this namespace.

4. Make the Command class public and specify that it implement the ICommand interface, as
follows in bold:

public class Command : ICommand
{
}

5. Add the following private fields to the Command class:

public class Command : ICommand
{
 private Action methodToExecute = null;

 private Func<bool> methodToDetectCanExecute = null;
}

The Action and Func types were briefly described in Chapter 20, "Decoupling Application
Logic and Handling Events." The Action type is a delegate that you can use to reference a
method that takes no parameters and does not return a value, and the Func<T> type is also
a delegate that can reference a method that takes no parameters but returns a value of the
type specified by the type-parameter T. In this class, you will use the methodToExecute field
to reference the code that the Command object will run when it is invoked by the view. The
methodToDetectCanExecute field will be used to reference the method that detects whether
the command can run.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 701

6. Add a constructor to the Command class. This constructor should take two parameters, an
Action object and a Func<T> object, and assign these parameters to the methodToExecute and
methodToDetectCanExecute fields, as shown below in bold:

public Command : ICommand
{
 ...
 public Command(Action methodToExecute,
 Func<bool> methodToDetectCanExecute)
 {
 this.methodToExecute = methodToExecute;
 this.methodToDetectCanExecute =
 methodToDetectCanExecute;
 }
}

The ViewModel will create an instance of this class for each command. The ViewModel will
supply the method to run the command, and the method to detect whether the command
should be enabled when it calls the constructor.

7. Implement the Execute and CanExecute methods of the Command class by using the methods
referenced by the methodToExecute and methodToDetectCanExecute fields, as follows:

public Command : ICommand
{
 ...
 public Command(Action methodToExecute,
 Func<bool> methodToDetectCanExecute)
 {
 ...
 }

 public void Execute(object parameter)
 {
 this.methodToExecute();
 }

 public bool CanExecute(object parameter)
 {
 if (this.methodToDetectCanExecute == null)
 {
 return true;
 }
 else
 {
 return this.methodToDetectCanExecute();
 }
 }
}

Notice that if the ViewModel provides a null reference for the methodToDetectCanExecute
parameter of the constructor, the default action is to assume that the command can run, and
the CanExecute method returns true.

702 part IV Building professional Windows 8 applications with C#

8. Add the public CanExecuteChanged event to the Command class:

public Command : ICommand
{
 ...
 public bool CanExecute(object parameter)
 {
 ...
 }

 public event EventHandler CanExecuteChanged;
}

When you bind a command to a control, the control automatically subscribes to this event.
This event should be raised by the Command object if the state of the ViewModel is updated
and the value returned by the CanExecute changes. In previous versions of Windows, Windows
Presentation Foundation (WPF) provided the CommandManager object to detect a change in
state and raise the CanExecuteChanged event, but the CommandManager object is not avail-
able to Windows Store apps. Consequently, you must implement this feature manually. The
simplest strategy is to use a timer to periodically raise the CanExecuteChanged event once a
second or so.

9. Add the using directive shown below to the list at the top of the file:

using Windows.UI.Xaml;

10. Add the following field to the Command class, above the constructor:

public class Command : ICommand
{
 ...
 private Func<bool> methodToDetectCanExecute = null;
 private DispatcherTimer canExecuteChangedEventTimer = null;

 public Command(Action methodToExecute,
 Func<bool> methodToDetectCanExecute)
 {
 ...
 }
}

The DispatcherTimer class, defined in the Windows.UI.Xaml namespace, implements a timer
that can raise an event at specified intervals. You will use the canExecuteChangedEventTimer
field to trigger the CanExecuteChanged event at 1-second intervals.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 703

11. Add the canExecuteChangedEventTimer_Click method shown below in bold to the end of the
Command class:

public class Command : ICommand
{
 ...
 public event EventHandler CanExecuteChanged;

 void canExecuteChangedEventTimer_Tick(object sender, object e)
 {
 if (this.CanExecuteChanged != null)
 {
 this.CanExecuteChanged(this, EventArgs.Empty);
 }
 }
}

This method simply raises the CanExecuteChanged event if at least one control is bound
to the command. Strictly speaking, this method should also check whether the state of the
object has changed before raising the event. However, you will set the timer interval to a
lengthy period (in processing terms), so that any inefficiencies in not checking for a change
in state are minimized.

12. In the Command constructor, add the following statements shown in bold.

public class Command : ICommand
{
 ...
 public Command(Action methodToExecute,
 Func<bool> methodToDetectCanExecute)
 {
 this.methodToExecute = methodToExecute;
 this.methodToDetectCanExecute = methodToDetectCanExecute;

 this.canExecuteChangedEventTimer = new DispatcherTimer();
 this.canExecuteChangedEventTimer.Tick +=
 canExecuteChangedEventTimer_Tick;
 this.canExecuteChangedEventTimer.Interval =
 new TimeSpan(0, 0, 1);
 this.canExecuteChangedEventTimer.Start();
 }
 ...
}

This code initiates the DispatcherTimer object and sets the interval for timer events to 1 sec-
ond before starting the timer running.

13. On the BUILD menu, click Build Solution and verify that your application builds without errors.

You can now use the Command class to add commands to the ViewModel class. In the next exer-
cise, you will define commands that enable a view to move between customers.

704 part IV Building professional Windows 8 applications with C#

add NextCustomer and PreviousCustomer commands to the ViewModel class

1. In Visual Studio, display the ViewModel.cs file in the Code and Text Editor window.

2. Add the following using directive to the top of the file, and modify the definition of the
ViewModel class to implement the INotifyPropertyChanged interface.

...
using System.ComponentModel;

namespace Customers
{
 public class ViewModel : INotifyPropertyChanged
 {
 ...
 }
}

3. Add the PropertyChanged event and OnPropertyChanged method to the end of the
ViewModel class. This is the same code that you included in the Customer class.

public class ViewModel : INotifyPropertyChanged
{
 ...
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

Remember that the view references data through the Current property in the data-binding
expressions for the various controls that it contains. When the ViewModel class moves to a
different customer, it must raise the PropertyChanged event to notify the view that the data to
be displayed has changed.

4. Add the following fields and properties to the ViewModel class, after the constructor.

public class ViewModel : INotifyPropertyChanged
{
 ...
 public ViewModel()
 {
 ...
 }

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 705

 private bool _isAtStart;
 public bool IsAtStart
 {
 get { return this._isAtStart; }
 set
 {
 this._isAtStart = value;
 this.OnPropertyChanged("IsAtStart");
 }
 }

 private bool _isAtEnd;
 public bool IsAtEnd
 {
 get { return this._isAtEnd; }
 set
 {
 this._isAtEnd = value;
 this.OnPropertyChanged("IsAtEnd");
 }
 }
}

You will use these two properties to track the state of the ViewModel. The IsAtStart property
will be set to true when the currentCustomer field in the ViewModel is positioned at the start
of the customers collection, and the IsAtEnd property will be set to true when the ViewModel
is positioned at the end of the customers collection.

5. Modify the constructor to set the IsAtStart and IsAtEnd properties, as follows in bold:

public ViewModel()
{
 this.currentCustomer = 0;
 this.IsAtStart = true;
 this.IsAtEnd = false;
 ...
}

6. Add the Next and Previous private methods shown below in bold to the ViewModel class, after
the Current property:

public class ViewModel : INotifyPropertyChanged
{
 ...
 public Customer Current
 {
 get { return this.customers[currentCustomer]; }
 }

706 part IV Building professional Windows 8 applications with C#

 private void Next()
 {
 if (this.customers.Count - 1 > this.currentCustomer)
 {
 this.currentCustomer++;
 this.OnPropertyChanged("Current");
 this.IsAtStart = false;
 this.IsAtEnd =
 (this.customers.Count - 1 == this.currentCustomer);
 }
 }

 private void Previous()
 {
 if (this.currentCustomer > 0)
 {
 this.currentCustomer--;
 this.OnPropertyChanged("Current");
 this.IsAtEnd = false;
 this.IsAtStart = (this.currentCustomer == 0);
 }
 }
 ...
}

Note The Count property returns the number of items in a collection, but remem-
ber that the items in a collection are numbered from 0 to Count – 1.

These methods update the currentCustomer variable to refer to the next (or previous) cus-
tomer in the customers list. Notice that these methods maintain the values for the IsAtStart
and IsAtEnd properties, and indicate that the current customer has changed by raising the
PropertyChanged event for the Current property. These methods are private because they
should not be accessible from outside the ViewModel class. External classes will run these
methods by using commands, which you will add in the following steps.

7. Add the NextCustomer and PreviousCustomer automatic properties shown below to the
ViewModel class.

public class ViewModel : INotifyPropertyChanged
{
 private List<Customer> customers;
 private int currentCustomer;
 public Command NextCustomer { get; private set; }
 public Command PreviousCustomer { get; private set; }
 ...
}

The view will bind to these Command objects to enable the user to navigate between
customers.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 707

8. In the ViewModel constructor, set the NextCustomer and PreviousCustomer properties to refer
to new Command objects, as follows:

public ViewModel()
{
 this.currentCustomer = 0;
 this.IsAtStart = true;
 this.IsAtEnd = false;
 this.NextCustomer = new Command(this.Next, () =>

 { return this.customers.Count > 0 && !this.IsAtEnd; });

 this.PreviousCustomer = new Command(this.Previous, () =>

 { return this.customers.Count > 0 && !this.IsAtStart; });

 ...
}

The NextCustomer Command specifies the Next method as the operation to perform when
the Execute method is invoked. The lambda expression () => { return this.customers.Count
> 0 && !this.IsAtEnd; } is specified as the function to call when the CanExecuteMethod runs.
This expression returns true as long as the customers list contains at least one customer and
the ViewModel is not positioned on the final customer in this list. The PreviousCustomer
Command follows the same pattern: it invokes the Previous method to retrieve the previous
customer from the list, and the CanExecuteMethod references the expression () => { return
this.customers.Count > 0 && !this.IsAtStart; }, which returns true as long as the customers list
contains at least one customer and the ViewModel is not positioned on the first customer in
this list.

9. On the BUILD menu, click Build Solution and verify that your application builds without errors.

Now that you have added the NextCustomer and PreviousCustomer commands to the ViewModel,
you can bind these commands to buttons in the view. When the user clicks a button, the appropriate
command will run.

Microsoft publishes guidelines for adding buttons to views in Windows Store apps, and the general
recommendation is that buttons that invoke commands should be placed in the app bar. Windows
Store apps provide two app bars: one appears at the top of the form and the other appears at the
bottom. Buttons that navigate through an application or data are commonly placed in the top app
bar, and this is the approach that you will adopt in the next exercise.

Note You can find the Microsoft guidelines for implementing app bars online at
http://msdn.microsoft.com/library/windows/apps/hh465302.aspx.

add Next and previous buttons to the Customers form

1. Open the MainPage.xaml file in the Design View window.

2. Scroll to the bottom of the XAML pane and add the following markup shown in bold immedi-
ately above the closing </Page> tag:

http://msdn.microsoft.com/library/windows/apps/hh465302.aspx

708 part IV Building professional Windows 8 applications with C#

 ...
 <Page.TopAppBar >
 <AppBar IsSticky="True">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <Button x:Name="previousCustomer"
Style="{StaticResource PreviousAppBarButtonStyle}"
Command="{Binding Path=PreviousCustomer}"/>
 <Button x:Name="nextCustomer"
Style="{StaticResource NextAppBarButtonStyle}"
Command="{Binding Path=NextCustomer}"/>
 </StackPanel>
 </AppBar>
 </Page.TopAppBar>
</Page>

There are several points to notice in this fragment of XAML markup:

• By default, the app bar pops up when the user right-clicks the form, presses Windows+Z, or
swipes from the top or bottom edge of the form. The app bar remains open until the user
performs another action in the form, when it disappears again. You can prevent an app bar
from disappearing automatically by setting the IsSticky property to true, as shown in this
markup. In this case, the app bar remains open until the user right-clicks the form, presses
Windows+Z, or swipes the app bar off the top edge of the form. This setting enables the
user to quickly move between customers without having to repeat the gesture to display
the app bar each time.

• The AppBar control contains a StackPanel control. Like many controls, an AppBar can
contain only a single piece of content. If you need to display several items in a control, you
must use a container control such as a Grid or a StackPanel. In this case, a StackPanel is the
most convenient, and the items it displays will be laid out horizontally.

• The style of each button is specified by using a static resource. Both styles, PreviousApp
BarButtonStyle and NextAppBarButtonStyle, are defined in the StandardStyles.xaml file
provided in the Common folder. This file is part of the Blank App template, and it con-
tains a range of useful styles that enable you to quickly create applications that maintain a
standard look and feel. However, these button styles are not enabled by default (you will
enable them in the next step), so the XAML editor will highlight this code and complain
that the styles cannot be resolved.

• Each button has a Command property. This is the property that you can bind to an object
that implements the ICommand interface. In this application, you have bound the buttons
to the PreviousCustomer and NextCustomer commands in the ViewModel class. When the
user clicks either of these buttons at run time, the corresponding command will run.

3. In Solution Explorer, in the Customers project expand the Common folder, and then double-
click StandardStyles.xaml to display this file in the Code and Text Editor window.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 709

4. In the StandardStyles.xaml file, search for the markup that defines the NextAppBarButton
Style and PreviousAppBarButtonStyle styles. (In the version of the template that was avail-
able at the time of this writing, these styles started at line 496.). Notice that these styles are
commented out.

5. Uncomment these styles as follows: place an end of comment tag, -->, after the closing
</Style> tag of the style immediately preceding the NextAppBarButtonStyle style, and add a
start of comment tag, <!--, before the opening <Style> tag of the style immediately after the
PreviousAppBarButtonStyle, like this:

...
</Style> -->
<Style x:Key="NextAppBarButtonStyle" TargetType="ButtonBase"
BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
Value="NextAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Next"/>
 <Setter Property="Content" Value=""/>
</Style>
<Style x:Key="PreviousAppBarButtonStyle" TargetType="ButtonBase"
BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
Value="PreviousAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Previous"/>
 <Setter Property="Content" Value=""/>
</Style>
<!--<Style x:Key="FavoriteAppBarButtonStyle" TargetType="ButtonBase"
...

The reason that these styles are commented should be apparent by this point. There are an
awful lot of button styles defined in the StandardStyles.xaml file, and they provide styles for
a large range of buttons. If all the styles were uncommented, you would likely find that your
application took a long time to start up as each style is instantiated. Therefore, you should
only uncomment the styles that you really need.

6. On the DEBUG menu, click Start Without Debugging.

The Customers form should appear and display the details for John Sharp.

7. Right-click anywhere on the background of the form. The app bar should appear at the top of
the form and display the Next and Previous buttons, as shown in the following image.

710 part IV Building professional Windows 8 applications with C#

Notice that the Previous button is disabled. This is because the IsAtStart property of the View-
Model is true, and the CanExecute method of the Command object referenced by the Previous
button indicates that the command cannot run.

8. In the app bar, click Next.

The details for customer 2, Diana Sharp, should appear, and after a short delay of up to 1
second, the Previous button should be enabled. The IsAtStart property is no longer true, so
the CanExecute method of the command returns true. However, the button is not notified of
this change in state until the timer object in the command expires and triggers the CanEx-
ecuteChanged event, which might take up to a second to occur.

Note Remember that the Console.WriteLine method uses {0} and {1} as placehold-
ers. In the statement shown, {0} will be replaced with the value of x, and {1} will be
replaced with the value of y when the program runs. If you require a more instanta-
neous reaction to the change in state of commands, you can arrange for the timer in
the Command class to expire more frequently. However, avoid reducing the time too
much, as raising the CanExecuteChanged event too frequently can impact the per-
formance of the user interface.

9. In the app bar, click Next again.

10. The details for customer 3, Francesca Sharp, should appear, and after a short delay of up to 1
second, the Next button should be enabled. This time, the IsAtEnd property of the ViewModel
is true, so the CanExecute method of the Command object for the Next button returns true
and the command is disabled.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 711

11. Switch to Snapped view and verify that the application continues to function correctly. The
Next and Previous buttons should step forward and backward through the list of customers.

12. Right-click anywhere on the background of the form. The app bar should disappear.

13. Return to Visual Studio and stop debugging.

Windows 8 Contracts

Chapter 25 briefly mentioned that a Windows Store app can implement one or more Windows 8 con-
tracts. A contract defines a Windows 8 interface that enables an application to implement or consume
an operating system–defined feature such as searching for information, sharing data, or acting as a
resource for picking files. A contract provides a standard mechanism that is shared by other Windows
Store apps; users running an application that implements a contract do not have to learn any
application-specific procedures to perform the tasks that the contract provides. In essence, contracts
enable Windows Store apps to work together seamlessly.

The most commonly used contracts are as follows:

■■ Share Target contract This contract enables a Windows Store app to integrate with the
Share charm and act as a destination for shared data.

There are actually two sides to sharing: a Windows Store app can register as a sharing source
to specify which data it wishes to share and in what formats. A target application that can con-
sume shared data must implement the Share Target contract. After a source application has
registered that it can share data, the user can use the Share charm to display a list of applica-
tions that implement the Share Target contract and select an application from this list. The
Share Target contract defines events to which the target application must respond; the target
application uses these events to request and receive the data from the source.

■■ File Open Picker contract This contract enables a Windows Store app to respond to requests
from the Windows 8 file picker. Using this contract, a Windows Store app can provide users
and other applications with access to the data that it manages in a controlled way. This con-
tract effectively enables a Windows Store app to become a peer of local storage. A Windows
Store app that implements the contract is in total control of the data and the views of this
data that it presents to the file picker. Windows 8 also provides the File Save Picker contract
that enables an application to control the way in which data it manages is stored.

■■ Search contract This contract enables users to search for the data exposed by your appli-
cation by using the Windows 8 Search charm—this is a standard mechanism used by other
Windows 8 applications. Implementing the Search contract means that users do not have to
learn any special procedures specific to your application to search for data. Windows 8 pro-
vides the basic plumbing for performing a search, and all you have to do is supply the logic
that takes a search request and finds the appropriate data.

712 part IV Building professional Windows 8 applications with C#

Note For more information on Windows 8 contracts as well as examples of how to imple-
ment them, visit the "App contracts and extensions" page on the Microsoft website at
http://msdn.microsoft.com/library/windows/apps/hh464906.aspx.

Implementing the Search Contract
The Customers application works well if you have a small number of records, and you can use the
Next and Previous buttons to browse for customer information. However, in a business environment,
it is unlikely that you will have such a small number of customers (unless your business is particularly
unsuccessful!). Using Next and Previous functionality to browse through a list of hundreds of records
to find the details of a specific customer is time consuming and inefficient. To make the application
more usable, you should offer a search facility and implement the Search contract.

Visual Studio 2012 includes the Search Contract template. This template generates the code that
integrates with the Search charm. When the user selects this charm, all applications that implement
the Search contract are listed, together with a data entry field that enables the user to specify the
data to search for. If the user chooses to search your application, the search terms or criteria that the
user enters are passed to your application. You use this information to filter the data in your appli-
cation and determine which items match the search terms. Your application can then display a list
of all matching records by using a page provided as part of the Search Contract template. This all
sounds quite complicated, but in truth much of the complexity is implemented by the Search Contract
template. All applications that provide a Search contract should operate in the same way, and so
Microsoft was able to factor out much of the code into the template, as you will see in the following
exercises. In this exercise, you will add a Search contract to the Customers application that enables a
user to search for customers by first name or last name.

Implement the Search contract in the Customers application

1. In Visual Studio, open the Customers project, located in the \Microsoft Press\Visual CSharp
Step By Step\Chapter 26\Search folder in your Documents folder. This version of the
Customers application has the same ViewModel that you created in the previous exercise, but
the data source contains details for many more customers. The customer information is still
held in a List<Customer> object, but this object is now created by the DataSource class in the
DataSource.cs file. The ViewModel class references this list instead of creating the small collec-
tion of three customers used by the previous exercise.

2. In Solution Explorer, right-click the Customers project, point to Add, and then click New Item.

3. In the Add New Item – Customers dialog box, click Windows Store in the left pane, select the
Search Contract template in the middle pane, enter SearchResultsPage.xaml in the Name
text box, and then click Add, as shown in the following image:

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 713

Visual Studio displays a message box with the text "This addition depends on files that are
missing from your project. Without these files you must resolve dependencies on the Com-
mon namespace manually. Add the missing files automatically?"

This message occurs because the Customers application was originally created by using the
Blank App template, and this template does not include all of the code and other elements
required by the Search Contract template. Click Yes to allow the Search Contract template to
add these items.

The Search Contract template generates a new XAML page called SearchResultsPage.xaml,
together with a code file called SearchResultsPage.xaml.cs, which is displayed in the Code
and Text Editor window. A number of new files are added to the Common folder. These files
contain code and data types required by the SearchResultsPage.xaml page.

714 part IV Building professional Windows 8 applications with C#

Note Visual Studio might also report some errors in the SearchResultsPage.xaml file.
These errors occur because the SearchResultsPage.xaml file is created before the re-
quired files are added to the Common folder. They will disappear the next time you
build the application.

4. On the BUILD menu, click Build Solution.

5. In Solution Explorer, double-click the SearchResultsPage.xaml file to display it in the Design
View window. The page should look like this:

If you examine the XAML markup for this page, you will see that it is laid out by using a
Grid control, which contains two further Grid controls: the first is called typicalPanel and
is displayed when the application runs in Fullscreen or Filled view, and the other is called
snappedPanel and is displayed when the application runs in Snapped view.

The typicalPanel Grid control contains the following items:

• An ItemsControl control named filtersItemsControl. At run time, this control will display a list
of filters enabling the user to specify how to apply the search criteria that they entered. In
the Customers application, you will define filters that enable the user to apply the search to
the first name or last name of customers.

• A GridView control named resultsGridView. The customers that match the search criteria
are displayed in this control, and the customers are formatted by using a template called
StandardSmallicon300x70ItemTemplate. You can find this template in the StandardStyles.
xaml file in the Common folder, and you will modify it to display customer data.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 715

The snappedPanel Grid control contains these items:

• A ComboBox control that enables the user to select from a list of filters. This control fulfills
the same role as the ItemsControl in the typicalPanel Grid control, except that it is more
suited to the compressed space available in Snapped view.

• A ListView control named resultsListView. The purpose of this control is similar to the
resultsGridView control in the typicalPanel Grid control: it displays the list of matching
customers but using a list rather than a grid layout. The data itself is formatted by using the
StandardSmallIcon70ItemTemplate style in the StandardStyles.xaml file.

Underneath the snappedPanel Grid control is another Grid control that contains the titles
and buttons that appear at the top of the page, followed by a TextBlock control called
noResultsTextBlock. This TextBlock control is displayed if the search term entered by the user
does not match any customers.

At the end of the SearchResultsPage.xaml file are the visual state groups used by the Visual
State Manager to switch the layout of the controls when the user changes between views.

Note You can modify the styles used by the elements on this page to give them the
same look and feel as the rest of your application, but you should not attempt to
change the layout of the page or add or remove controls. The Search contract de-
pends on the correct definitions of these controls to function properly.

6. In the <Page.Resources> section near the top of the SearchResultsPage.xaml file, change the
value of the AppName string resource to Customers, as shown below in bold:

<Page.Resources>
 ...
 <!-- TODO: Update the following string to be the name of your app -->
 <x:String x:Key="AppName">Customers</x:String>
</Page.Resources>

The title displayed in the Design View window changes to Customers.

7. In Solution Explorer, expand SearchResultsPage.xaml, and then double-click the
SearchResultsPage.xaml.cs file to display it in the Code and Text Editor window.

This file contains the code for the SearchResultsPage class. This class defines the following
methods:

• LoadState This method runs when the user enters a search term into the Search charm
and selects the Customers application. The criteria provided by the user are passed into this
method in the navigationParameter parameter, and the code generated for this method
extracts this information and saves it in a local variable called queryText. The purpose of
this method is to find all items that match the search term and add them as collections

716 part IV Building professional Windows 8 applications with C#

(referred to as filters) to the ViewModel implemented by this page. The code generated by
the template creates a default filter called All, which you can populate with the details of
every customer, although in this application you will remove the All filter and create filters
that contain the details of customers with first names or last names that match the value in
the queryText variable.

Note The SearchResultsPage uses its own ViewModel, which is defined in the
LayoutAwarePage.cs file in the Common folder. You should not confuse this
ViewModel with the one that you created earlier for the Customers application.

• Filter_SelectionChanged This method runs when the user selects a filter on the
SearchResultsPage when it is in Snapped view. The details of the filter are provided in the
SelectionChangedEventArgs parameter, and the code generated for this method retrieves
this value and stores it in the selectedFilter local variable. In this method, you should update
the ViewModel to display the data specified by this filter.

• Filter_Checked This method runs when the user selects a filter and the SearchResultsPage
is in Fullscreen or Filled view. You should not change the code in this method.

This file also contains the definition of the Filter class used by the SearchResultsPage class.
Again, you should not change the code in this class.

8. In Solution Explorer, expand App.xaml, and then double-click App.xaml.cs to display the file in
the Code and Text Editor window.

9. Add the private _mainPageViewModel field and public MainViewModel property to the start
of the App class, as follows in bold:

sealed partial class App : Application
{
 private ViewModel _mainViewModel = null;
 public ViewModel MainViewModel
 {
 get { return this._mainViewModel; }
 set { this._mainViewModel = value; }
 }
 ...
}

You will use the MainViewModel property to enable the SearchResultsPage page to access to
the ViewModel of the MainPage form.

10. In Solution Explorer, expand MainPage.xaml, and then double-click MainPage.xaml.cs to dis-
play the file in the Code and Text Editor window.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 717

11. In the MainPage constructor, add the statement shown below in bold:

public MainPage()
{
 ...
 ViewModel viewModel = new ViewModel();
 (Application.Current as App).MainViewModel = viewModel;
 this.DataContext = viewModel;
}

This statement makes the ViewModel for the MainPage form available through the MainView-
Model property of the App class. Notice that you can access the App object of the currently
running application by using the Application.Current static property and casting the result as
the App type.

12. In Solution Explorer, double-click the ViewModel.cs file to display it in the Code and Text
Editor window.

13. In the ViewModel class, add the AllCustomers public property shown below in bold:

public class ViewModel : INotifyPropertyChanged
{
 private List<Customer> customers;
 public List<Customer> AllCustomers
 {
 get { return this.customers; }
 }
 ...
}

This property makes the customers collection used by the ViewModel class available to other
classes; you will require access to this collection in the SearchResultsPage class.

14. Display the SearchPageResults.xaml.cs file in the Code and Text Editor window. Add the fol-
lowing private field shown in bold to the start of the SearchResultsPage class:

public sealed partial class SearchResultsPage : ...
{
 private Dictionary<string, List<Customer>> searchResults =
 new Dictionary<string, List<Customer>>();
 ...
}

This Dictionary collection will contain the lists of customers that match the search term speci-
fied by the user. There will be two lists in this collection: one for customers with a matching
first name and another for customers with a matching last name.

718 part IV Building professional Windows 8 applications with C#

15. In the LoadState method, add the statement shown below in bold immediately after the
TODO comment:

protected override void LoadState(Object navigationParameter,
Dictionary<String, Object> pageState)
{
 var queryText = navigationParameter as String;

 // TODO: Application-specific searching logic...
 // ...

 List<Customer> allCustomers =
 (Application.Current as App).MainViewModel.AllCustomers;
 ...
}

16. In the LoadState method, comment out the following two lines of code highlighted in bold:

...
var filterList = new List<Filter>();
// filterList.Add(new Filter("All", 0, true));
...

The Search contract implemented by the Customers application will not support the All
option.

17. After this statement, add the following block of code shown in bold:

var filterList = new List<Filter>();
// filterList.Add(new Filter("All", 0, true));

// Find all customers where the first name
// or last name matches the query text
queryText = queryText.ToLower();
List<Customer> matchingFirstNames = new List<Customer>();
List<Customer> matchingLastNames = new List<Customer>();
foreach (Customer customer in allCustomers)
{
 string firstName = customer.FirstName.ToLower();
 string lastName = customer.LastName.ToLower();
 if (firstName.Contains(queryText))
 {
 matchingFirstNames.Add(customer);
 }
 if (lastName.Contains(queryText))
 {
 matchingLastNames.Add(customer);
 }
}

This code is the crux of the Search contract. It iterates through the allCustomers collection
looking for customers that have a value in the FirstName or LastName property that match
the value in the queryText variable. The comparison mechanism eliminates any case-sensitivity

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 719

by converting all data to lowercase. The code adds a reference for each matching customer to
the matchingFirstNames and matchingLastNames collections.

18. Add the following code shown in bold to the LoadState method, after the previous block:

filterList.Add(new Filter(
 "Matching First Names", matchingFirstNames.Count, false));
filterList.Add(new Filter(
 "Matching Last Names", matchingLastNames.Count, false));
searchResults.Add("Matching First Names", matchingFirstNames);
searchResults.Add("Matching Last Names", matchingLastNames);

// Communicate results through the view model
this.DefaultViewModel["QueryText"] = '\u201c' + queryText + '\u201d';

This code adds the details of the matchingFirstNames and matchingLastNames collections to
the list of filters that will be displayed by the search results page. This information consists of a
name, together with a count of the number of matches. The collections themselves are added
to the searchResults collection. The name of each list of customers added to the searchResults
collection must match the name of each filter specified in the filterList collection.

19. In the Filter_SelectionChanged method, add the statement shown below in bold immediately
after the TODO comment:

// TODO: Respond to the change in active filter ...
// ...
this.DefaultViewModel["Results"] =
 this.searchResults[selectedFilter.Name];

This statement causes the list of customers specified by the selected filter to be displayed on
the search results page. The list of customers is retrieved from the searchResults collection
by using the name of the filter (it will either be "Matching First Names" or "Matching Last
Names," as defined when you added the filters to the filterList collection in the previous step).

20. Comment out the following line at the end of the Filter_SelectionChanged method:

// VisualStateManager.GoToState(this, "NoResultsFound", true);

If there are no items matching items in a filter, the default logic of the Filter_SelectionChanged
method is to use the Visual State Manager to put the page in the NoResultsFound state. In this
state, the page displays the text "No Results Found." However, if there are multiple filters, put-
ting the page in this state causes it to stop searching and displaying results as soon as it finds
the first empty filter (subsequent filters might contain data that should be displayed). Com-
menting out this statement enables the page to call the Filter_SelectionChanged method for
all filters, even when it finds an empty one.

21. In Solution Explorer, expand the Common folder, and then double-click StandardStyles.xaml
to display it in the Code and Text Editor window.

720 part IV Building professional Windows 8 applications with C#

22. Find the StandardSmallIcon300x70ItemTemplate DataTemplate near the end of the file. This is
the template that the SearchResultsPage uses to display the details of each matching cus-
tomer. The Image and TextBlock controls in this DataTemplate control use data binding to
display the properties of an object in Fullscreen and Filled views:

<DataTemplate x:Key="StandardSmallIcon300x70ItemTemplate">
 <Grid Width="294" Margin="6">
 ...
 <Border ...>
 <Image Source="{Binding Image}" .../>
 </Border>
 <StackPanel Grid.Column="1" Margin="10,-10,0,0">
 <TextBlock Text="{Binding Title}" .../>
 <TextBlock Text="{Binding Subtitle}" .../>
 <TextBlock Text="{Binding Description}" .../>
 </StackPanel>
 </Grid>
</DataTemplate>

The Customer class has a Title property, but it doesn’t have Image, Subtitle, or Description
properties. Remove the Border control and its associated Image control, and change the
data bindings for the Subtitle and Description TextBlock controls to show the FirstName and
LastName properties instead:

<DataTemplate x:Key="StandardSmallIcon300x70ItemTemplate">
 <Grid Width="294" Margin="6">
 ...
 <StackPanel Grid.Column="1" Margin="10,-10,0,0">
 <TextBlock Text="{Binding Title}" .../>
 <TextBlock Text="{Binding FirstName}" .../>
 <TextBlock Text="{Binding LastName}" .../>
 </StackPanel>
 </Grid>
</DataTemplate>

23. In the StandardSmallIcon70ItemTemplate DataTemplate that immediately follows the
StandardSmallIcon300x70ItemTemplate DataTemplate, make the same changes:

<DataTemplate x:Key="StandardSmallIcon70ItemTemplate">
 <Grid Margin="6">
 ...
 <StackPanel Grid.Column="1" Margin="10,-10,0,0">
 <TextBlock Text="{Binding Title}" .../>
 <TextBlock Text="{Binding FirstName}" .../>
 <TextBlock Text="{Binding LastName}" .../>
 </StackPanel>
 </Grid>
</DataTemplate>

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 721

test the Search contract

1. On the DEBUG menu, click Start Debugging to build and run the application.

2. When the application appears, it should display the details for customer 1, Orlando Gee.

3. Press Windows+C to display the Charms bar, and then click Search.

4. The Search pane should appear, as shown in the following image, displaying the name of the
currently running application, along with a text box into which you can type a search term.
Underneath the text box is a list of all applications that implement the Search contract, and
you can select which application you want to use to search for the data.

722 part IV Building professional Windows 8 applications with C#

5. Enter the value G into the text box, and then click the icon for the Customers application.

6. The search results page should appear, listing all customers whose first or last name contains
the letter G. The data identified by the Matching First Names filter is displayed (this is the first
filter in the filterList collection). Notice that the name that you specified when you added the
filter to the filterList collection is displayed at the top of the page together with the number of
matches.

7. Click Matching Last Names. The list of customers whose last name contains the letter G should
appear.

8. Return to Visual Studio and stop debugging.

Navigating to a Selected Item
Adding basic search functionality is relatively straightforward, but you can add a number of features
to make this functionality more useful. The first is the ability to click a customer name in the search
results page and go directly to that user in the Customers application. This is what you will do next.

Display the selected customer from the search results page

1. In Visual Studio, open the ViewModel.cs file in the Code and Text Editor window, and add the
GoTo method shown below in bold to the ViewModel class between the Current property and
the Next method:

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 723

public Customer Current
{
 ...
}

public void GoTo(Customer customer)
{
 this.currentCustomer = this.customers.IndexOf(customer);
 this.OnPropertyChanged("Current");
}

private void Next()
{
 ...
}

The GoTo method takes a Customer object as a parameter and uses the IndexOf method to
find which customer this is in the customers collection. It then sets this customer to be the
currently displayed customer.

2. Open the SearchResultsPage.xaml file in the Design View window.

3. In the XAML pane, find the markup for the resultsGridView GridView control and add the
ItemClick property between the IsItemClickEnabled and ItemsSource properties, as shown
below in bold:

<GridView
 x:Name="resultsGridView"
 ...
 IsItemClickEnabled="True"
 ItemClick="OnItemClick"
 ItemsSource="{Binding Source={...}}"
 ...
</GridView>

The ItemClick property specifies the name of the event-handling method to run when the user
clicks an item in the GridView control. You will write this method shortly.

4. Find the XAML markup for the resultsListView ListView control, and add the same ItemClick
property:

<ListView
 x:Name="resultsListView"
 ...
 IsItemClickEnabled="True"
 ItemClick="OnItemClick"
 ItemsSource="{Binding Source={...}}"
 ...
</ListView>

5. Open the SearchPageResults.xaml.cs file in the Code and Text Editor window and add the
OnItemClick method shown below to the SearchResultsPage class, after the constructor:

724 part IV Building professional Windows 8 applications with C#

public sealed partial class SearchResultsPage : ...
{
 ...
 public SearchResultsPage()
 {
 this.InitializeComponent();
 }

 private void OnItemClick(object sender, ItemClickEventArgs e)
 {
 this.Frame.Navigate(typeof(MainPage), e.ClickedItem);
 }
 ...
}

The OnItemClick method uses the Frame.Navigate method to display the MainPage form. The
value in e.ClickedItem passed as a parameter to the Navigate method will be a reference to
the customer whose name the user clicked in the search results page. The Navigate method
causes the OnNavigatedTo method in the target page (in this case, the MainPage form) to
run, and the item passed as the parameter to the Navigate method is forwarded on to the
OnNavigatedTo method.

6. Open the MainPage.xaml.cs file in the Code and Text Editor window and find the
OnNavigatedTo method at the end of the MainPage class. This method is currently empty.

7. Add the code shown below in bold to the OnNavigatedTo method:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 Customer selectedCustomer = e.Parameter as Customer;

 // If the Customer passed in as the parameter is not null
 // then go to that customer
 if (selectedCustomer != null)
 {
 ViewModel viewModel =
 (Application.Current as App).MainViewModel;
 this.DataContext = viewModel;
 viewModel.GoTo(selectedCustomer);
 }
 this.WindowSizeChanged(this, null);
}

This code uses the GoTo method of the ViewModel class to navigate to the specified customer,
which will then be displayed on the MainPage form. The OnNavigatedTo method also invokes
the WindowSizeChanged method; if the application is running in Snapped view, this method
call ensures that the Visual State Manager runs and adjusts the layout of the form.

8. On the DEBUG menu, click Start Debugging to build and run the application.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 725

9. When the application appears, press Windows+C to display the Charms bar and then click
Search.

10. Enter the value G into the text box, and then click the icon for the Customers application.

11. On the search results page, click one of the customers, such as Gary Vargas. The MainPage
form should reappear, displaying the details of the customer:

12. Return to Visual Studio and stop debugging.

Starting an application from the Search Charm
The search capability that you have implemented so far depends on the Customers application
already running when the user invokes the Search charm. This might not always be the case. If the
application is not running when the user performs a search, the user will be faced with a blank screen.
So, another useful feature is to enable the application to start up automatically when the user per-
forms a search. This is the purpose of the final exercise in this chapter. Additionally, you will add some
more meaningful icons to the Customers application. These icons will replace the standard gray and
white check box–style icons that appear by default on the Windows Start screen that the user clicks
to launch an application, the splash screen that appears when the application starts running, and the
Search pane when the user invokes the Search charm.

726 part IV Building professional Windows 8 applications with C#

enable the Customers application to start automatically

1. In Visual Studio, open the App.xaml.cs file in the Code and Text Editor window. Scroll to the
bottom of this file and find the OnSearchActivated method. This method was added to the
App class by the Search Contract template, and it runs when the user performs a search using
the application.

This method also acts as an entry point to the application if it was not previously running. If
you look at the end of the method, you will see the following statements:

frame.Navigate(typeof(SearchResultsPage), args.QueryText);
Window.Current.Content = frame;

// Ensure the current window is active
Window.Current.Activate();

This code navigates to the SearchResultsPage form, passing in the search term entered by the
user, and then makes that form the current page. The problem is that if the MainPage form is
not running, then the ViewModel will not have been created, so there is no data available to
search. The simple solution is to instantiate the MainViewModel variable if it is currently null
before moving to the SearchResultsPage form.

2. Add the following code shown in bold to the OnSearchActivated method:

protected async override void OnSearchActivated(...)
{
 ...

 if (this.MainViewModel == null)
 {
 this.MainViewModel = new ViewModel();
 }

 frame.Navigate(typeof(SearchResultsPage), args.QueryText);
 Window.Current.Content = frame;

 // Ensure the current window is active
 Window.Current.Activate();
}

3. In Solution Explorer, expand the Assets folder.

This folder contains several graphics images: the default images displayed by the splash screen
when the application starts running, the icon that appears on the Start screen, and the icon
that appears when the user invokes the Search charm (there is also an image file that you can

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 727

attach to the application when it is uploaded to the Windows Store). Each image has a specific
size: the logo image that appears on the Start screen must be 150 × 150 pixels, the small logo
image that appears with the Search charm must be 30 × 30 pixels, and the logo used by the
splash screen must be 620 × 300 pixels.

4. Right-click the Assets folder, point to Add, and then click Existing Item.

5. In the Add Existing Item – Customers dialog box, move to the \Microsoft Press\Visual CSharp
Step By Step\Chapter 26\Resources folder in your Documents folder, select all three files in this
folder, and then click Add.

These new graphics files contain more colorful images than the stock gray and white ones
provided by the Blank App template.

6. In Solution Explorer, double-click the Package.appxmanifest file.

The Application Manifest Editor window appears. This tool was briefly described in Chapter 25;
you use it to configure the capabilities and metadata of your application. The Application UI
tab enables you to specify the way in which your application presents itself to the user, includ-
ing the logos that are displayed.

7. On the Application UI tab, in the Logo box type Assets\AdventureWorksLogo150x150.
png, in the Small logo box type Assets\AdventureWorksLogo30x30.png, and in the Splash
screen box type Assets\AdventureWorksLogo620x300.png.

tip You can also click the ellipses buttons and browse to the Assets folder to select
each image file if you prefer not to type the names.

8. On the BUILD menu, click Build Solution.

9. After the solution has built successfully, on the BUILD menu, click Deploy Solution.

This action installs the application on your computer. In the past, this happened automatically
whenever you started the application by using the DEBUG menu, but you are going to start
the application from the Search charm instead.

10. Press Windows+C to display the Charms bar, and then click the Search charm.

Notice that the Customers logo has been replaced with an icon that displays the initials "AW"
(for Adventure Works):

728 part IV Building professional Windows 8 applications with C#

11. Enter the value G into the text box, and then click the icon for the Customers application.

The search results page for the Customers application should appear, displaying all matching
customers. Notice that while the application is starting up, the splash screen appears:

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 729

12. Click any customer.

The Customers application should run and display the details of the selected customer.

13. Close the application (use the swipe gesture from the top of the screen)

14. On the Start screen, notice that the icon for the Customers application displays the Adventure
Works logo:

If you click this icon, the same splash screen displayed when the application was started by the
Search charm will appear.

15. Return to Visual Studio.

Summary

In this chapter, you learned how to display data on a form by using data binding. You saw how to set
the data context for a form and how to create a data source that supports data binding by imple-
menting the INotifyPropertyChanged interface. You learned how to use the Model-View-ViewModel
pattern to create a Windows Store app. You saw how to create a ViewModel that enables a view to
interact with a data source by using commands. Finally, you learned how to implement the Search
contract to enable a Windows Store app to integrate search functionality into the features provided
by Windows 8.

Note This chapter and Chapter 25 used the Blank App template as the vehicle for showing
you how to create a Windows Store app. Visual Studio 2012 provides two other templates
that provide a more comprehensive starting point for building Windows Store apps: the
Grid App template and the Split App template.

You can use the Grid App template to display and edit hierarchical data that is organized
into groups. This template generates an application that has three pages: a top-level page
called the Grouped Items page displays a list of groups, a second-level page referred to as
the Group Detail page displays the detailed information for a group, and a third-level page
known as the Item Detail page displays the items in a group.

730 part IV Building professional Windows 8 applications with C#

The template uses GridView and ListView controls to display information by using data
binding, and the pages adapt to different views by using the Visual State Manager. Data is
formatted and styled by using the styles and data templates in the same StandardStyles.
xaml file that you have been examining and editing in this chapter. The template also in-
cludes a sample data source and a simple ViewModel. You can replace the sample data
source with your own business data and amend the ViewModel to handle your own data
structures. The intention is that you use the pages and ViewModel as a starting point for
your own application and augment them with any additional pages and logic that your
application requires. You can employ the same techniques and strategies that you have
learned in this chapter.

The Split App template is similar in concept and structure to the Grid App template, except
that it generates only two pages: a top-level page called the Items page that displays a list
of groups and a second-level page called the Split page that displays a list of items in a
group on the left side and the details of a selected item on the right side.

 CHAPTER 26 Displaying and Searching for Data in a Windows Store App 731

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 27.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

732 part IV Building professional Windows 8 applications with C#

Chapter 26 Quick Reference

To Do this

Bind the property of a control to the prop-
erty of an object

Use a data binding expression in the XAML markup of the control. For
example:

<TextBox ... Text="{Binding FirstName}" .../>

Enable an object to notify a binding of a
change in a data value

Implement the INotifyPropetyChanged interface in the class that defines
the object and raise the PropertyChanged event each time a property
value changes. For example:

class Customer : INotifyPropertyChanged
{
 ...
 public event PropertyChangedEventHandler
 PropertyChanged;

 protected virtual void OnPropertyChanged(
 string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

Enable a control that uses data binding to
update the value of the property to which
it is bound

Configure the data binding as two-way. For example:

<TextBox ... Text="{Binding FirstName, Mode=TwoWay} "
.../>

Separate the business logic that runs when
the user clicks a Button control from the
user interface that contains the Button
control

Use a ViewModel that provides commands implemented by using the
ICommand interface, and bind the Button control to one of these com-
mands. For example:

<Button x:Name="nextCustomer" ...
 Command="{Binding Path=NextCustomer}"/>

Enable an application to support searching
by using the Search charm

Implement the Search contract by using the Search Contract template. In
the LoadState method of the search page, add code to find all data that
matches the search term entered by the user and create search filters
that contain this data. In the Filter_SelectionChanged method, switch to
the search filter specified by the user. Handle the ItemClick event on the
search page to navigate to the item selected by the user on the search
page and display it in your application.

 733

C H A P T E R 2 7

accessing a remote Database in a
Windows Store app

After completing the chapter, you will be able to

■■ Use the Entity Framework to create an entity model that can retrieve and modify information
held in a database.

■■ Create a WCF Data Service that provides remote access to a database through an entity
model.

■■ Fetch data from a remote database by using a data service.

■■ Insert, update, and delete data in a remote database by using a data service.

In Chapter 26, "Displaying and Searching for Data in a Windows Store App," you learned how to
implement the Model-View-ViewModel (MVVM) pattern. You saw how to separate the business logic
of an application from the user interface by using a ViewModel class that provided access to the data
in the model and that implemented commands the user interface could use to invoke the business
logic of the application. You also saw how to use data binding to display the data presented by the
ViewModel in the user interface and enable the user interface to update this data. You now have a
fully functional Windows Store app.

In this chapter, you will turn your attention to the model aspect of the MVVM pattern. In particular,
you will see how to implement a model that a Microsoft Windows Store app can use to retrieve and
update data in a remote database.

Retrieving Data from a Database

So far, the data you have been using has been confined to a simple collection embedded in the
ViewModel of the application. In the real world, the data displayed and maintained by an application
is more likely to be stored in a data source such as a relational database.

Windows Store apps cannot directly access a relational database by using technologies provided
by Microsoft (although some third-party database vendors may implement their own solutions).
This may sound like a severe restriction, but there are sensible reasons for this limitation. Primarily,
it eliminates any dependencies that a Windows Store app might have on external resources, making

734 part IV Building professional Windows 8 applications with C#

it a stand-alone item that can be easily packaged and downloaded from the Windows Store without
requiring users to install and configure a database management system on their computer. However,
many business applications are still going to have a requirement for accessing a database. To address
this scenario, you can use a data service.

A data service is a type of web service that enables an application to connect to a remote data
source to retrieve and update data. This data service can be located almost anywhere, from the same
computer on which the application is running to a web server hosted on a computer on a differ-
ent continent. As long as you can connect to it, you can use a data service to provide access to the
repository for your information. Microsoft Visual Studio provides templates and tools that enable you
to build a data service very quickly and easily. The simplest strategy is to base the data service on an
entity model generated by using the Entity Framework, as shown in the following diagram:

The Entity Framework is a powerful technology that enables you to connect to a relational data-
base. It can reduce the amount of code that most developers need to write to add data access capa-
bilities to an application. This is where you will start, but first you need to set up the AdventureWorks
database; this is the database that contains the details of Adventure Works customers.

Note There is not sufficient space in this book to go into great detail on how to use the
Entity Framework, and the exercises in this section walk you through only the most essential
steps to get started. If you want more information, look at the "Entity Framework" page on
the Microsoft website at http://msdn.microsoft.com/data/aa937723.

Install the adventureWorks database

1. Start Visual Studio 2012 if it is not already running.

2. On the FILE menu, point to Open and then click File.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 735

3. In the Open File dialog box, browse to the folder \Microsoft Press\Visual CSharp Step By Step\
Chapter 27\AdventureWorks under your Documents folder, click AttachDatabase.sql, and then
click Open.

4. In the Transact-SQL Editor window displaying the CREATE DATABASE command, change the
text <YourName> to your username. This text occurs twice: once on the second line of the
command and once on the third.

5. On the SQL menu, point to Transact-SQL Editor, and then click Execute to run the command.

6. In the Connect to Server dialog box, enter (localdb)\v11.0 in the Server Name text box, make
sure that the Authentication combo box is set to Windows Authentication, and then click
Connect. Verify that the command completes without errors.

Note (localdb)\V11.0 is the connection string that identifies the version of SQL Server
that is installed with Visual Studio 2012. Sometimes this instance of SQL Server can
take a few seconds to start up, and you may receive a timeout error after you click
Connect. If this happens, click Execute to run the command again; SQL Server should
now be running and the command should be successful.

7. Close the AttachDatabase.sql window. In the message box that appears asking you whether to
save the changes you made to the script, click No.

Creating an entity Model
Now that you have installed the AdventureWorks database, you can use the Entity Framework to
create an entity model that an application can use to query and update information in this database.
If you have worked with databases in the past, you may be familiar with technologies such as ADO.
NET, which provides a library of classes that enable you to connect to a database and run SQL com-
mands. ADO.NET is useful, but it requires that you have a decent understanding of SQL, and if you
are not careful it can force you into structuring your code around the logic necessary to perform SQL
commands rather than focusing on the business operations of your application. The Entity Framework
provides a level of abstraction that reduces the dependencies that your applications have on SQL.
Essentially, the Entity Framework implements a mapping layer between a relational database and your
application; it generates an entity model that consists of collections of classes that your application
can use just like any other collection. A collection typically corresponds to a table in the database, and
each row in a table corresponds to an item in the collection. You perform queries by iterating through
the items in a collection, typically by using LINQ. Behind the scenes, the entity model converts your
queries into SQL SELECT commands that fetch the data. You can modify the data in the collection,
and then you can arrange for the entity model to generate and perform the appropriate SQL INSERT,
UPDATE, and DELETE commands to perform the equivalent operations in the database. In short, the

736 part IV Building professional Windows 8 applications with C#

Entity Framework is an excellent vehicle for connecting to a database and retrieving and managing
data without requiring that you embed SQL commands in your code.

In the following exercise, you will create a very simple entity model for the Customer table in the
AdventureWorks database. You will follow what is known as the database-first approach to entity
modeling. In this approach, the Entity Framework generates classes based on the definitions of tables
in the database. The Entity Framework also enables you to employ a code-first approach; this strat-
egy can generate a set of tables in a database based on classes that you have implemented in your
application.

Note If you want more information about the code-first approach to creating an entity
model, please consult the “Data Developer Center” page on the Microsoft website at
http://msdn.microsoft.com/en-us/data/jj200620.

Create the adventureWorks entity model

1. In Visual Studio, open the Customers project, located in the \Microsoft Press\Visual CSharp
Step By Step\Chapter 27\Data Service folder in your Documents folder.

This project contains a modified version of the Customers application from the previous set of
exercises. The ViewModel contains additional commands to skip to the first and last custom-
ers in the customers collection, and the app bar contains First and Last buttons that invoke
these commands. The buttons for these commands use the SkipBackAppBarButtonStyle and
SkipAheadAppBarButtonStyle styles defined in the StandardStyles.xaml file in the Common
folder (the styles have been uncommented as described in the exercise in the previous section,
and the text displayed by each button has also been changed to First and Last).

In addition, the app bar adapts itself to different views by handling the SizeChanged event.
The method AppBarSizeChanged in MainPage.xaml.cs (shown below) uses the Visual State
Manager to modify the appearance of the buttons in Snapped view; the captions are removed
and the buttons are moved closer together. This functionality is built into the styles of these
buttons as defined in StandardStyles.xaml. All the code does is call the static GoToState
method of the VisualStateManager class with the name of the state; you wrote similar code in
Chapter 25 to adapt the layout of the form in the WindowSizeChanged method.

private void AppBarSizeChanged(object sender, SizeChangedEventArgs e)
{
 ApplicationViewState viewState = ApplicationView.Value;
 VisualStateManager.GoToState(this.firstCustomer, viewState.ToString(), false);
 VisualStateManager.GoToState(this.previousCustomer, viewState.ToString(), false);
 VisualStateManager.GoToState(this.nextCustomer, viewState.ToString(), false);
 VisualStateManager.GoToState(this.lastCustomer, viewState.ToString(), false);
}

http://msdn.microsoft.com/en-us/data/jj200620

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 737

Finally, this version of the project does not implement the Search contract. The reason behind
this omission is that it enables you to concentrate on the core elements of this exercise with-
out the files and other elements that make up the Search contract getting in the way.

2. In Solution Explorer, right-click the Customers solution (not the Customers project), point to
Add, and then click New Project.

3. In the Add New Project dialog box, click the Web tab in the left pane. Click the ASP.NET Empty
Web Application template in the middle pane, enter AdventureWorksService in the Name
text box, and then click OK.

As mentioned at the start of this section, you cannot access a relational database directly
from a Windows Store app, and this includes using the Entity Framework. Instead, you have
created a web application (this is not a Windows Store app), and you will host the entity model
that you create in this application. In the next exercise, you will add a data service to the web
application. This data service will provide remote access to the entity model for the Customers
Windows Store app.

4. In Solution Explorer, right-click the Customers solution again, and then click Set Startup
Projects.

5. In the Solution 'Customers' Property Pages dialog box, click Multiple Startup Projects. Set the
Action for the AdventureWorksService and Customers projects to Start, and then click OK.

This configuration ensures that the AdventureWorksService web application runs whenever
you start the project from the DEBUG menu.

6. Right-click the AdventureWorksService project, and then click Properties.

7. In the properties page, click the Web tab in the left column.

8. On the Web page, click “Don't open a page. Wait for a request from an external application.”

9. On the FILE menu, click Save All, and then close the properties page.

Normally, when you run a web application from Visual Studio, the web browser (Internet
Explorer) opens and attempts to display the home page for the application. The Adventure
WorksService application does not have a home page; the purpose of this application is to
host the data service to which client applications can connect and retrieve data from the
AdventureWorks database.

10. In Solution Explorer, right-click the AdventureWorksService project, point to Add, and then
click New Item.

11. In the Add New Item – AdventureWorksService dialog box, click the Data tab in the
left column. Click the ADO.NET Entity Data Model template in the middle pane, type
AdventureWorksModel.edmx in the Name text box, and then click Add.

The Entity Data Model Wizard starts running. You can use this wizard to generate an entity
model from an existing database.

738 part IV Building professional Windows 8 applications with C#

12. On the Choose Model Contents page of the Entity Data Model Wizard, select Generate from
Database and the click Next.

13. On the Choose Your Data Connection page, click New Connection.

14. In the Connection Properties dialog box, type (localdb)\v11.0 in the Server Name text box.
Verify that Use Windows Authentication is selected, type AdventureWorks in the Select or
Enter a Database Name box, and then click OK.

This action creates a connection to the AdventureWorks database that you configured in the
previous exercise.

15. On the Choose Your Data Connection page, verify that Save Entity Connection Settings
in Web.Config As is selected, and confirm that the name of the connection string is
AdventureWorksEntities. Click Next.

16. On the Choose Your Database Objects and Settings page, expand Tables, expand SalesLT, and
then select Customer. Verify that the option Pluralize or Singularize Generated Object Names
is selected (the other two options on this page will also be selected by default), observe that
that Entity Framework generates the classes for the entity model in the AdventureWorksModel
namespace, and then click Finish.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 739

The Entity Data Model Wizard generates an entity model for the Customers table and displays
a graphical representation in the Entity Model editor on the screen, like this:

If the following Security Warning message box appears, select Do Not Show This Message
Again and then click OK. This security warning appears because the Entity Framework uses
a technology known as T4 templates to generate the code for your entity model, and it has
downloaded these templates from the web using NuGet. The Entity Framework templates
have been verified by Microsoft and are safe to use.

17. In Solution Explorer, expand AdventureWorksModel.edmx, expand AdventureWorksModel.tt,
and then double-click Customer.cs.

This file contains the class that the Entity Data Model Wizard generated to represent a cus-
tomer. This class contains automatic properties for each of the columns in the Customer table
in the database:

740 part IV Building professional Windows 8 applications with C#

public partial class Customer
{
 public int CustomerID { get; set; }
 public Nullable<bool> NameStyle { get; set; }
 public string Title { get; set; }
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string Suffix { get; set; }
 public string CompanyName { get; set; }
 public string SalesPerson { get; set; }
 public string EmailAddress { get; set; }
 public string Phone { get; set; }
 public string PasswordHash { get; set; }
 public string PasswordSalt { get; set; }
 public System.Guid rowguid { get; set; }
 public Nullable<System.DateTime> ModifiedDate { get; set; }
}

18. In Solution Explorer, under AdventureWorksModel.edmx, expand AdventureWorksModel.
Context.tt, and then double-click AdventureWorksModel.Context.cs.

This file contains the definition of a class called AdventureWorksEntities (it has the same name
that you used when you generated the connection to the database in the Entity Data Model
Wizard):

public partial class AdventureWorksEntities : DbContext
{
 public AdventureWorksEntities()
 : base("name=AdventureWorksEntities")
 {
 }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public DbSet<Customer> Customers { get; set; }
}

The AdventureWorksEntities class is descended from the DbContext class, and this class pro-
vides the functionality that an application uses to connect to the database. The constructor
passes a parameter to the base class constructor that specifies the name of a connection string
to use to connect to the database. If you look in the Web.config file, you will find this string
in the <ConnectionStrings> section. It contains the parameters (among other things) that you
specified when you ran the Entity Data Model Wizard.

You can ignore the OnModelCreating method in the AdventureWorksEntities class,
and the only remaining item is the Customers collection. This collection has the type
DbSet<Customer>. The DbSet generic type provides methods that enable you to add, update,

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 741

delete, and query objects in a database; it works in conjunction with the DbContext class to
generate the appropriate SQL SELECT commands necessary to fetch customer information
from the database and populate the collection, as well as create the SQL INSERT, UPDATE, and
DELETE commands that run if Customer objects are added, modified, or removed from the
collection. A DbSet collection is frequently referred to as an entity set.

19. On the BUILD menu, click Build Solution.

Creating and Using a Data Service
You have created an entity model that provides operations to retrieve and maintain customer infor-
mation, and the next step is to create a data service so that the entity model can be accessed by a
Windows Store app. A data service is, as its name implies, a service that supplies data. An application
can connect to a data service and request the information that the service publishes. Additionally,
most data services enable an application to make modifications to the data and send these changes
back to the data service.

Visual Studio 2012 enables you to create data services based directly on an entity model gener-
ated by using the Entity Framework. The data service uses the entity model to retrieve data from a
database and update the database. You create a data service by using the WCF Data Service template
(WCF is an acronym for Windows Communication Foundation, a set of assemblies and tools that you
can use to build services that provide remote operations and data access). The WCF Data Service
template generates a data service that implements the REST model (REST is another acronym that
stands for Representational State Transfer). The REST model uses a navigational scheme to represent
business objects and services over a network and the HTTP protocol to transmit requests to access
these objects and services. A client application that accesses a resource submits a request in the form
of a URL that the data service parses and processes. For example, Adventure Works might publish
customer information, exposing the details of each customer as a single resource, by using a scheme
similar to this:

http://Adventure-Works.com/DataService/Customers(1)

Accessing this URL causes the data service to retrieve the data for customer 1. This data can be
returned in a number of formats, but for portability the most common formats include XML and
JavaScript Object Notation (JSON). A typical XML response generated by a WCF Data Service to the
previous query looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<entry xml:base="http://localhost:53923/AdventureWorks.svc/"
xmlns="http://www.w3.org/2005/Atom"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
 <id>http://localhost:53923/AdventureWorks.svc/Customers(1)</id>
 <category term="AdventureWorksModel.Customer"

742 part IV Building professional Windows 8 applications with C#

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <link rel="edit" title="Customer" href="Customers(1)" />
 <title />
 <updated>2012-10-10T14:30:29Z</updated>
 <author>
 <name />
 </author>
 <content type="application/xml">
 <m:properties>
 <d:CustomerID m:type="Edm.Int32">1</d:CustomerID>
 <d:NameStyle m:type="Edm.Boolean">false</d:NameStyle>
 <d:Title>Mr</d:Title>
 <d:FirstName>Orlando</d:FirstName>
 <d:MiddleName>N.</d:MiddleName>
 <d:LastName>Gee</d:LastName>
 <d:Suffix m:null="true" />
 <d:CompanyName>A Bike Store</d:CompanyName>
 <d:SalesPerson>adventure-works\pamela0</d:SalesPerson>
 <d:EmailAddress>orlando0@adventure-works.com</d:EmailAddress>
 <d:Phone>245-555-0173</d:Phone>
 <d:PasswordHash>L/Rlwxzp4w7RWmEgXX+/A7cXaePEPcp+KwQhl2fJL7w=</d:PasswordHash>
 <d:PasswordSalt>1KjXYs4=</d:PasswordSalt>
 <d:rowguid m:type="Edm.Guid">3f5ae95e-b87d-4aed-95b4-c3797afcb74f</d:rowguid>
 <d:ModifiedDate m:type="Edm.DateTime">2001-08-01T00:00:00</d:ModifiedDate>
 </m:properties>
 </content>
</entry>

The REST model relies on the application that accesses the data sending the appropriate HTTP
verb as part of the request used to access the data. For example, the simple request shown previ-
ously should send an HTTP GET request to the web service. HTTP supports other verbs as well, such
as POST, PUT, and DELETE, which you can use to create, modify, and remove resources, respectively.
Writing the code to generate the appropriate HTTP requests and parsing the responses returned by
a WCF Data Service all sounds quite complicated. Fortunately, Visual Studio 2012 includes various
wizards that can generate most of this code for you, leaving you free to concentrate on the business
logic of your application.

Note You can find more information about WCF Data Services on the "WCF Data Services"
page on the Microsoft website at http://msdn.microsoft.com/library/cc668792.aspx.

In the following exercise, you will create a simple WCF Data Service for the AdventureWorks entity
model. This data service will enable a client application to query and maintain customer information.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 743

Create the adventureWorks data service

1. In Visual Studio, right-click the AdventureWorksService project, point to Add, and then click
New Item.

2. In the Add New Item – AdventureWorksService dialog box, in the left column click the Web
tab. In the middle pane scroll down and click the WCF Data Service template, in the Name text
box type AdventureWorks.svc, and then click Add.

The data service is added to the project, and the file AdventureWorks.svc.cs is displayed in the
Code and Text Editor window.

The AdventureWorks.svc.cs file contains a class called AdventureWorks that inherits from
the generic DataService class. The DataService class provides all the functionality necessary
for listening for incoming HTTP REST requests over the network, parsing them, and gen-
erating the logic that retrieves, inserts, updates, or deletes information. All you have to do
is indicate which entity model the data service should use, and specify the operations that
client applications can perform (for example, you might want to make some entity sets in
the entity model query-only, while allowing client applications to insert, update, and delete
information in others).

3. In the statement that declares the AdventureWorks class, replace the comment /* TODO: put
your data source class name here */ with AdventureWorksEntities, as shown below in bold:

public class AdventureWorks : DataService<AdventureWorksEntities>
{
 ...
}

Remember that AdventureWorksEntities is the name of the DbContext class that the Entity
Framework generated for your entity model. The data service uses this class to con-
nect to the database and determine which entities are available in the entity model; the
AdventureWorksEntities class contains a single entity set called Customers.

4. In the InitializeService method, remove the comments, and add the statement shown below in
bold:

public static void InitializeService(DataServiceConfiguration config)
{
 config.SetEntitySetAccessRule("Customers", EntitySetRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V3;
}

This statement grants read and write access to the entities in the Customers entity set. These
privileges enable client applications to query the data in this entity set as well as add new
entities, delete entities, and update existing entities in this set.

744 part IV Building professional Windows 8 applications with C#

5. In Solution Explorer, check that you have correctly configured the data service. Right-click the
AdventureWorks.svc file, and then click View in Browser.

Your web browser will start and it should display the following page:

This page shows the entity sets that the data service publishes. In this case, there is only one:
Customers.

6. Close the web browser and return to Visual Studio.

The next phase of this journey is to connect to the data service from the Customers Windows Store
app, and then use the data service to actually fetch some data. Visual Studio provides the Add Service
Reference wizard that can generate the code to connect to a data service, together with a set of
classes that you can use to query and update information in the data service. These classes are similar
in concept to the DbContext and DbSet collection classes in the entity model in that they abstract
much of the detail of connecting to the data source and the intricacies of retrieving data away from
your application code, although the underlying technology is now based on an HTTP connection to
a REST data service rather than a database, so the implementation is actually quite different. Fortu-
nately, this is not really your concern other than to note the convenience of this approach!

Consume the adventureWorks data service

1. In Solution Explorer, right-click the Customers project (not the Customers solution), and then
click Add Service Reference.

2. In the Add Service Reference dialog box, click Discover.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 745

The wizard should automatically track down all data services in your solution and list them in
the Address combo box. In this case, there is only a single data service.

Note The port used by your data service might be different from that shown in this
image (53923).

3. In the Namespace text box type CustomersService, and then click OK.

At this point, you might receive the following error message: "There was an error downloading
metadata from the address. Please verify that you have entered a valid address." If this hap-
pens, click OK. The most common cause of this error (assuming that you have not accidentally
changed the address in the Address combo box) is that the OData Client Tools for Windows
Store Apps have not been installed. The Add Service Reference wizard uses these tools to gen-
erate the code necessary to connect to a data service. Another error message will be displayed
in the dialog box, and you can click the Details link to verify that this is indeed the problem:

746 part IV Building professional Windows 8 applications with C#

Go to the URL specified in the error message (http://go.microsoft.com/fwlink/?LinkId=253653)
and download the OData Client Tools for Windows Store Apps. Visual Studio cannot be run-
ning while you install these tools, so cancel the Add Service Reference wizard, click Save All on
the FILE menu, and then close Visual Studio.

After you have installed the OData Client Tools for Windows Store Apps, restart Visual Studio,
open the Customers project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 27\Data Service folder in your Documents folder, and the repeat this exercise starting
from step 1.

4. In Solution Explorer, make sure that the Show All Files option is selected in the toolbar, and
then in the Customers project expand Service References, expand CustomersService, expand
Reference.datasvcmap, and then double-click Reference.cs.

This file contains the code generated by the Add Service Reference wizard.

You should see that this file contains two classes called AdventureWorksEntities and Customer.
These classes mirror the functionality of the classes with the same names in the entity model,
except that the functionality of the AdventureWorksEntities class is extended to connect to the
data service over the network.

An application uses the AdventureWorksEntities class to perform queries and data updates.
This class contains a property called Customers. This property is similar to the Customers
property in the entity model except that it is a DataServiceQuery<Customer> collection; it is
populated with Customer objects retrieved over the network from the data service when the
client application performs a query.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 747

The Customer class is a more complex version of the Customer class generated by the Entity
Framework for the entity model. It implements the INotifyPropertyChanged interface, and
each of the properties raises the PropertyChanged event when modified, making this class an
ideal source for data binding to a user interface.

5. On the BUILD menu, click Build Solution.

Note The port used by your data service might be different from that shown in
this image (53923). You may get the warning “Resources found for language(s)
'en, zh-hant, zh-hans, ru, ko, ja, it, fr, es, de' but no resources found for default
language(s): 'en-US'.” You can ignore this warning.

The next step in this odyssey through the world of data access is to add code to the Custom-
ers application to actually retrieve and display some data. In theory, this process is quite
simple: use the AdventureWorksEntities class to connect to the data service, define a query
that specifies which customers to retrieve, send this query to the data service and capture the
results, and then display the results. Let's look at each part of this process in more detail:

a. Connect to the data service. The AdventureWorksEntities class provides a constructor
that expects the URL of the data service as its parameter. If the data service is actually
listening at the specified URL, the connection will be established.

b. Define a query that specifies which customers to retrieve. The simplest way to per-
form this task is to use the Customers collection of the AdventureWorksEntities object. You
can use this collection as is to retrieve all customers, or you can use LINQ to refine the
query. For example, the following query retrieves all customers that have a CustomerID
less than 100:

AdventureWorksEntities connection = ...;
var data = from c in connection.Customers
 where c.CustomerID < 100
 select c;

c. Send this query to the data service and capture the results. Recall that the Customers
collection is an instance of the DataServiceQuery generic class. The DataServiceQuery
class encapsulates the functionality necessary to submit a query to a WCF Data Service
and receive the results. If you are not creating a Windows Store app, you can use the
Execute method to send the query to the data service. However, the Execute operation
is synchronous and may take some time to run. Such operations are banned in Windows
Store apps because they can impact the responsiveness of the user interface. Instead, you
must use the asynchronous methods BeginExecute and EndExecute.

The BeginExecute method sends the query to the data service and allows the application
to continue running. The first parameter to BeginExecute is an AsyncCallback object that
contains a reference to a method to run when the results are ready. This method should

748 part IV Building professional Windows 8 applications with C#

call the EndExecute method to actually receive the results and return them as an enu-
merable list. The results themselves are made available to the EndExecute method via a
parameter passed to this method.

Note This processing model is a hangover from the days before the
Task Parallel Library, and if you want to learn more about it, look at the
"Asynchronous Programming Model" page on the Microsoft website at
http://msdn.microsoft.com/library/ms228963.aspx.

The Task Parallel Library contains an adapter method that can take a pair of Begin and
End methods and use them to create a Task object that performs the operation asyn-
chronously. This adapter method is called FromAsync, and you access it through the static
Factory property of the Task class. The FromAsync method is useful because it means
you use the await operator to run the task, and the method that creates the task can be
marked as async. The following code example shows how to use this approach to run a
query that retrieves all customers from the data service:

var queryResults = await Task.Factory.FromAsync(
 connection.Customers.BeginExecute(null, null),
 (result) => connection.Customers.EndExecute(result));

Note If you need to fetch the data defined by a LINQ query as described in
step 2, you must cast the LINQ query as a DataServiceQuery object, as follows:

var queryResults = await Task.Factory.FromAsync(
 (data as DataServiceQuery).BeginExecute(null, null),
 (result) => (data as DataServiceQuery).EndExecute(result));

Notice that you don’t need to provide any parameters to the BeginExecute method if you
use it in this way; the FromAsync method automatically creates the callback (in this case,
it is a lambda expression that calls EndExecute), and the asynchronous result generated by
the BeginExecute method is passed as the parameter to the EndExecute method.

d. Display the results. The EndExecute method returns an enumerable collection that
contains the results of the query. To display the results, you can enumerate this collection,
store the results in a local list, and configure data binding to display each item in the user
interface.

In the next exercise, you will modify the ViewModel class to retrieve data from the AdventureWorks
data service.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 749

Fetch data from the adventureWorks data service

1. In Solution Explorer, right-click the Customer.cs file in the root folder of the Customers project,
and then click Delete. In the message box, click OK to permanently delete this file.

You no longer need the Customer class defined in this file because your application will use
the Customer class implemented by the data service instead.

2. Right-click the DataSource.cs file in the root folder of the Customers project and the click
Delete. In the message box, click OK to permanently delete this file as well.

You will retrieve customer information from the data service, so the DataSource class is now
redundant.

3. Double-click the ViewModel.cs file in the Customers project to display it in the Code and Text
Editor window.

4. Add the following using directives to the list at the top of the file:

using System.Data.Services.Client;
using Customers.CustomersService;

The System.Data.Services.Client namespace contains the types required to use a WCF Data
Service in a Windows Store app. The Customers.CustomersService namespace contains the
AdventureWorksEntities and Customer classes generated by the Add Service Reference wizard.

5. Add the following private fields shown in bold to the ViewModel class:

public class ViewModel : INotifyPropertyChanged
{
 ...
 public Command LastCustomer { get; private set; }
 private AdventureWorksEntities connection = null;
 private string url = "http://localhost:53923/AdventureWorks.svc";
 ...
}

The url field specifies the address of the data service, including the port (53923) that Visual
Studio selected when you created your data service, will likely be different from mine. You
should replace this number with the port for your data service. You can find the URL of your
data service as follows:

a. In Solution Explorer, click the AdventureWorksService project.

b. In the Properties window, look at the value of the URL property.

6. In the ViewModel constructor, delete the following line of code that creates the customers list:

this.customers = DataSource.Customers;

750 part IV Building professional Windows 8 applications with C#

7. Add the public GetData method shown below to the ViewModel class, after the constructor:

public async Task GetData()
{
 try
 {
 this.connection = new AdventureWorksEntities(new Uri(this.url));
 var query = await Task.Factory.FromAsync(
 this.connection.Customers.BeginExecute(null, null),
 (result) => this.connection.Customers.EndExecute(result));

 this.customers = query.ToList();
 this.currentCustomer = 0;
 this.OnPropertyChanged("Current");
 this.IsAtStart = true;
 this.IsAtEnd = (this.customers.Count == 0);
 }
 catch (DataServiceQueryException dsqe)
 {
 // TODO: Handle errors
 }
}

This method is asynchronous; it uses the technique described before the start of this exercise
to connect to the data service and fetch all the customers. Ideally, to preserve resources and
prevent fetching data unnecessarily over the network, you should be selective in the data that
you retrieve by applying a LINQ operators to the query as described earlier. However, in this
application, the AdventureWorks database contains only a few hundred customers, so they are
all retrieved and cached in the customers list.

The exception handler is currently empty. You will see a useful technique for displaying error
messages later in this chapter.

8. Modify the get accessor for the Current property as shown below:

public Customer Current
{
 get
 {
 if (this.customers != null)
 {
 return this.customers[currentCustomer];
 }
 else
 {
 return null;
 }
 }
}

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 751

The GetData method is asynchronous, so there is the possibility that the customers collec-
tion might not be populated when the controls on the MainPage form attempt to bind to a
customer. In this situation, this modification prevents the data bindings from generating a null
reference exception when they access the customers collection.

9. In the ViewModel constructor, update the conditions that enable each of the commands to run
as shown below in bold:

public ViewModel()
{
 ...
 this.NextCustomer = new Command(this.Next, () =>
 { return this.customers != null && this.customers.Count > 0 && !this.IsAtEnd; });
 this.PreviousCustomer = new Command(this.Previous, () =>
 this.FirstCustomer = new Command(this.First, () =>
 this.LastCustomer = new Command(this.Last, () =>
 { return this.customers != null && this.customers.Count > 0 && !this.IsAtEnd; });
}

These changes ensure that the buttons in the app bar are not enabled until there is some data
to display.

10. In Solution Explorer, expand MainPage.xaml and double-click MainPage.xaml.cs to open it in
the Code and Text Editor window.

11. Add the statement shown below in bold to the MainPage constructor:

public MainPage()
{
 ...
 ViewModel viewModel = new ViewModel();
 viewModel.GetData();
 this.DataContext = viewModel;
}

This statement populates the ViewModel.

12. On the DEBUG menu, click Start Debugging to build and run the application.

13. The form will appear empty initially while the GetData method runs, but after a few seconds
the details of the first customer, Orlando Gee, should appear:

752 part IV Building professional Windows 8 applications with C#

14. Right-click the form to display the app bar. Use the navigation buttons to move through the
list of customers to verify that the form works as expected.

15. Return to Visual Studio and stop debugging.

As a final flourish to this section, when the form is initially displayed it would be helpful to let the
user know that although the form appears to be empty, the application is actually in the process of
fetching the data. In a Windows Store app, you can use a ProgressRing control to provide this feed-
back. This control should be displayed when the ViewModel is busy communicating with the data
service, but inactive otherwise.

add a busy indicator to the Customers form

1. Display the VievModel.cs file in the Code and Text Editor window, and add the private _isBusy
field and public IsBusy property to the ViewModel class, after the GetData method:

private bool _isBusy;
public bool IsBusy
{
 get { return this._isBusy; }
 set
 {
 this._isBusy = value;
 this.OnPropertyChanged("IsBusy");
 }
}

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 753

2. In the GetData method, add the statements shown below in bold:

public async Task GetData()
{
 try
 {
 this.IsBusy = true;
 this.connection = new AdventureWorksEntities(...);
 ...
 }
 catch (DataServiceQueryException dsqe)
 {
 // TODO: Handle errors
 }
 finally
 {
 this.IsBusy = false;
 }
}

The GetData method sets the IsBusy property to true prior to running the query to fetch the
customer information. The finally block ensures that the IsBusy property is set back to false,
even if an exception occurs.

3. Open the MainPage.xaml file in the Design View window.

4. In the XAML pane, add the ProgressRing control shown below in bold as the first item in the
top-level Grid control.

<Grid Style="{StaticResource GridStyle}">
<ProgressRing HorizontalAlignment="Center" VerticalAlignment="Center"
Foreground="AntiqueWhite" Height="100" Width="100"
IsActive="{Binding IsBusy}" Canvas.ZIndex="1"/>
 <Grid x:Name="customersTabularView" Margin="40,104,0,0" ...>
 ...

Setting the Canvas.ZIndex property to "1" ensures that the ProgressRing appears in front of
the other controls displayed by the Grid control.

5. On the DEBUG menu, click Start Debugging to build and run the application.

Notice that when the application starts, the progress ring briefly appears before the first cus-
tomer is displayed. If you find that the first customer appears too quickly, you can introduce a
small delay into the GetData method just to satisfy yourself that the progress ring is working.
Add the following statement that pauses the method for 5 seconds:

754 part IV Building professional Windows 8 applications with C#

public async Task GetData()
{
 try
 {
 this.IsBusy = true;
 await Task.Delay(5000);
 this.connection = new AdventureWorksEntities(...);
 ...
 }
 ...
}

Be sure to remove this statement when you have finished testing the progress ring.

6. Return to Visual Studio and stop debugging.

Inserting, Updating, and Deleting Data in a Database

Apart from enabling users to query and display data, many applications will have the requirement to
enable users to insert, update, and delete information. WCF Data Services implements a model that
supports these operations; it can track the state of objects that the user has retrieved and use this
state information to send the appropriate insert, update, or delete requests through the entity model
to the database. The entity model converts these requests into the equivalent SQL INSERT, UPDATE,
and DELETE statements.

performing Insert, Update, and Delete Operations
through a WCF Data Service
Remember that a WCF Data Service maintains a collection for each entity set in the underlying entity
model. You access these collections through the connection class generated by the Add Service
Reference wizard. In the AdventureWorks example, you saw that the connection class is called
AdventureWorksEntities, and it contains a collection named Customers. You can modify the data in a
Customer object retrieved from the Customers collection, but you need to inform WCF Data Services
that the state of this object has changed if you want these modifications to be sent back to the data
service. You achieve this by using the UpdateObject method of the connection class, as shown in the
following code example:

AdventureWorksEntities connection = ...;
var query = await Task.Factory.FromAsync(
 this.connection.Customers.BeginExecute(null, null)
 ...);
Customer cust = query.First();
...
cust.FirstName = "John";
connection.UpdateObject(cust);

This code changes the FirstName property of the first customer returned from the connection.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 755

To add a new customer, you create a new Customer object and populate it with data. You then use
the AddToCustomers method of the connection object to add it to the Customers collection, like this:

AdventureWorksEntities connection = ...;
Customer newCust = new Customer();
newCust.FirstName = "Diana";
newCust.LastName = "Sharp";
...
connection.AddToCustomers(newCust);

The connection class generated by the Add Service Reference wizard contains an AddToXXX
method for each entity set in the underlying entity model, where XXX is the name of the
entity set. Note that you can add a customer object only once. In the previous example, if you
repeat the AddToCustomers method call with the same newCust object, you will receive an
InvalidOperationException exception with the message "The context is already tracking the entity."

To remove a customer, you use the DeleteObject method of the connection class:

AdventureWorksEntities connection = ...;
var query = await Task.Factory.FromAsync(
 this.connection.Customers.BeginExecute(null, null)
 ...);
Customer cust = query.First();
...
connection.DeleteObject(cust);

You can only remove a customer that you had either retrieved from the data service or added by
using the AddToCustomers method; otherwise, your code will throw an InvalidOperationException
exception with the message "The context is not currently tracking the entity."

After you have updated, added, or removed objects from the entity collection, you need to inform
the data service that it should make these changes permanent in the data. To do this, you use the
SaveChanges method of the connection object. As with the Execute method that you call to run a
query and retrieve data, you can only use the asynchronous version of SaveChanges in a Windows
Store app; you must call BeginSaveChanges to initiate the save and EndSaveChanges to capture the
result of the operation. You can use the same idiom employed for querying data and use the static
FromAsync method of the TaskFactory class to invoke these methods, like this:

await Task.Factory.FromAsync(
 connection.BeginSaveChanges(null, null),
 (result) => connection.EndSaveChanges(result));

There is one small but significant complication you should be aware of. The CustomerID col-
umn in the Customer table contains automatically generated values. The user does not provide a
value for this data when creating a customer; rather, the database generates the value itself when
a customer is added to the database. In this way, the database can ensure that each customer has a
unique CustomerID. When you use a WCF Data Service to insert a new customer, it will retrieve the
newly generated CustomerID from the database. The data service will then pass this same value back
as part of the information returned by the EndExecute method, which will attempt to update the

756 part IV Building professional Windows 8 applications with C#

corresponding customer in the Customers collection in your application. This is useful, as it ensures
that all new customers that your application adds can be displayed with their generated IDs. The
problem is that each Customer object resides in the memory of a different thread from that which
is running the EndExecute method, and you will receive a rather obscure COMException exception
as a result, with the message "The application called an interface that was marshaled for a differ-
ent thread." This is very similar to the issue described in Chapter 24, "Improving Response Time
by Performing Asynchronous Operations,” in the section "Defining Asynchronous Methods: The
Problem." The solution is the same as that proposed in Chapter 24: use an async method. (Turn back
to the section "Defining Asynchronous Methods: The Solution" in Chapter 24 if you need reminding
how an async method solves this problem.) In the case of the EndSaveChanges method in the preced-
ing example, all you need to do is specify that the lambda expression that invokes this method is
async, as highlighted below in bold:

await Task.Factory.FromAsync(
 connection.BeginSaveChanges(null, null),
 async (result) => connection.EndSaveChanges(result));

In the next exercise, you will extend the Customers application and add features that enable users
to add new customers and modify the details of existing customers. You will not provide any func-
tionality to delete customers. This ensures that you have a record of all customers that have done
business with the Adventure Works organization, which may be required for auditing purposes. Addi-
tionally, even if a customer has not been active for a long time, there is a chance that the customer
may place an order at some point in the future.

Implement add and edit functionality in the ViewModel class

1. In Visual Studio, open the Customers project, located in the \Microsoft Press\Visual CSharp
Step By Step\Chapter 27\Updatable ViewModel folder in your Documents folder.

The code in the ViewModel.cs file is getting rather lengthy, so it has been reorganized into
regions to make it easier to manage. The ViewModel class has also been extended with the
following Boolean properties that indicate the "mode" in which the ViewModel is operating:
Browsing, Adding, or Editing. These properties are defined in the region named Properties for
managing the edit mode:

• IsBrowsing This property indicates whether the ViewModel is in Browsing mode. When
the ViewModel is in Browsing mode, the FirstCustomer, LastCustomer, PreviousCustomer,
and NextCustomer commands are enabled and a view can invoke these commands to
browse data.

• IsAdding This property indicates whether the ViewModel is in Adding mode. In this
mode, the FirstCustomer, LastCustomer, PreviousCustomer, and NextCustomer commands
are disabled. You will define an AddCustomer command, a SaveChanges command, and a
DiscardChanges command that will be enabled in this mode.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 757

• IsEditing This property indicates whether the ViewModel is in Editing mode. Like Adding
mode, in this mode, the FirstCustomer, LastCustomer, PreviousCustomer, and NextCustomer
commands are disabled. You will define an EditCustomer command that will be enabled
in this mode. The SaveChanges command and DiscardChanges command will also be
enabled, but the AddCustomer command will be disabled. The EditCustomer command will
be disabled in Adding mode.

• IsAddingOrEditing This property indicates whether the ViewModel is in Adding or Editing
mode. You will use this property in the methods that you define in this exercise.

• CanBrowse This property returns true if the ViewModel is in Browsing mode and there
is an open connection to the data service. The code in the constructor that creates the
FirstCustomer, LastCustomer, PreviousCustomer, and NextCustomer commands has been
updated to use this property to determine whether these commands should be enabled
or disabled, as follows:

public ViewModel()
{
 ...
 this.NextCustomer = new Command(this.Next, () =>
 { return this.CanBrowse && this.customers.Count > 0 && !this.IsAtEnd; });
 this.PreviousCustomer = new Command(this.Previous, () =>
 { return this.CanBrowse && this.customers.Count > 0 && !this.IsAtStart; });
 this.FirstCustomer = new Command(this.First, () =>
 { return this.CanBrowse && this.customers.Count > 0 && !this.IsAtStart; });
 this.LastCustomer = new Command(this.Last, () =>
 { return this.CanBrowse && this.customers.Count > 0 && !this.IsAtEnd; });
}

• CanSaveOrDiscardChanges This property returns true if the ViewModel is in Adding or
Editing mode and it has an open connection to the data service.

The Methods for fetching and updating data region contains the following methods:

• GetData This is the same method that you created earlier in this chapter. It connects to
the data service and retrieves the details of every customer.

• ValidateCustomer This method takes a Customer object and examines the FirstName and
LastName properties to ensure that they are not empty. It also inspects the EmailAddress
and Phone properties to verify that they contain information that is in a valid format. The
method returns true if the data is valid and false otherwise. You will use this method when
you create the SaveChanges command later in this exercise.

758 part IV Building professional Windows 8 applications with C#

Note The code that validates the EmailAddress and Phone properties performs
regular expression matching by using the Regex class defined in the System.
Text.RegularExpressions namespace. To use this class, you define a regular ex-
pression in a Regex object that specifies the pattern that the data should match,
and then you invoke the IsMatch method of the Regex object with the data that
you need to validate. For more information about regular expressions and the
Regex class, visit the "Regular Expression Object Model" page on the Microsoft
website at http://msdn.microsoft.com/library/30wbz966.

• CopyCustomer The purpose of this method is to create a shallow copy of a Customer
object. You will use it when you create the EditCustomer command, to make a copy of the
original data of a customer before it is changed. If the user decides to discard the changes,
they can simply be copied back from the copy made by this method.

2. In Solution Explorer, expand the Customers project and double-click the ViewModel.cs file to
open it in the Code and Text Editor window.

3. In the ViewModel.cs file, expand the Methods for fetching and updating data region. In this
region, above the ValidateCustomer method, create the Add method shown below:

// Create a new (empty) customer
// and put the form into Adding mode
private void Add()
{
 Customer newCustomer = new Customer { CustomerID = 0 };
 this.customers.Insert(currentCustomer, newCustomer);
 this.IsAdding = true;
 this.OnPropertyChanged("Current");
}

This method creates a new Customer object. It is empty, apart from the CustomerID property,
which is temporarily set to 0 for display purposes; the real value in this property is generated
when the customer is saved to the database, as described earlier. The customer is added to
the customers list (the view uses data binding to display the data in this list), the ViewModel is
placed in Adding mode, and the PropertyChanged event is raised to indicate that the Current
customer has changed.

4. Add the following Command variable shown in bold to the list at the start of the ViewModel
class:

public class ViewModel : INotifyPropertyChanged
{
 ...
 public Command LastCustomer { get; private set; }
 public Command AddCustomer { get; private set; }
 ...
}

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 759

5. In the ViewModel constructor, instantiate the AddCustomer command as shown below in bold:

public ViewModel()
{
 ...
 this.LastCustomer = new Command(this.Last, ...);
 this.AddCustomer = new Command(this.Add,
 () => { return this.CanBrowse; });
}

This code references the Add method that you just created. The command is enabled if the
ViewModel has a connection to the data service and it is in Browsing mode (the AddCustomer
command will not be enabled if the ViewModel is already in Adding mode).

6. After the Add method in the Methods for fetching and updating data region, create a private
Customer variable called oldCustomer and define another method called Edit:

// Edit the current customer
// - save the existing details of the customer
// and put the form into Editing mode
private Customer oldCustomer;

private void Edit ()
{
 this.oldCustomer = new Customer();
 this.CopyCustomer(this.Current, this.oldCustomer);
 this.IsEditing = true;
}

This method copies the details of the current customer to the oldCustomer variable and puts
the ViewModel into Editing mode. In this mode, the user can change the details of the current
customer. If the user subsequently decides to discard these changes, the original data can be
copied back from the oldCustomer variable.

7. Add the following Command variable shown in bold to the list at the start of the ViewModel
class:

public class ViewModel : INotifyPropertyChanged
{
 ...
 public Command AddCustomer { get; private set; }
 public Command EditCustomer { get; private set; }
 ...
}

8. In the ViewModel constructor, instantiate the EditCustomer command as shown below in bold:

public ViewModel()
{
 ...
 this.AddCustomer = new Command(this.Add, ...);
 this.EditCustomer = new Command(this.Edit,
 () => { return this.CanBrowse; });
}

760 part IV Building professional Windows 8 applications with C#

This code is similar to the statement for the AddCustomer command, except that it references
the Edit method.

9. After the Edit method in the Methods for fetching and updating data region, add the following
method named Discard to the ViewModel class:

// Discard changes made while in Adding or Editing mode
// and return the form to Browsing mode
private void Discard ()
{
 // If the user was adding a new customer, then remove it
 if (this.IsAdding)
 {
 this.customers.Remove(this.Current);
 this.OnPropertyChanged("Current");
 }

 // If the user was editing an existing customer,
 // then restore the saved details
 if (this.IsEditing)
 {
 this.CopyCustomer(this.oldCustomer, this.Current);
 }

 this.IsBrowsing = true;
}

The purpose of this method is to enable the user to discard any changes made when the
ViewModel is in Adding or Editing mode. If the ViewModel is in Adding mode, the current
customer is removed from the list (this is the new customer created by the Add method), and
the PropertyChanged event is raised to indicate that the current customer in the customers list
has changed. If the ViewModel is in Editing mode, the original details in the oldCustomer vari-
able are copied back to the currently displayed customer. Finally, the ViewModel is returned to
Browsing mode.

10. Add the DiscardChanges Command variable to the list at the start of the ViewModel class, and
update the constructor to instantiate this command as shown below in bold:

public class ViewModel : INotifyPropertyChanged
{
 ...
 public Command EditCustomer { get; private set; }
 public Command DiscardChanges { get; private set; }
 ...
 public ViewModel()
 {
 ...
 this.EditCustomer = new Command(this.Edit, ...);
 this.DiscardChanges = new Command(this.Discard,
 () => { return this.CanSaveOrDiscardChanges; });
 }
 ...
}

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 761

Notice that the DiscardChanges command is only enabled if the CanSaveOrDiscardChanges
property is true; the ViewModel has a connection to the data service and the ViewModel is in
Adding or Editing mode.

11. In the Methods for fetching and updating data region, after the Discard method, add one more
method, named Save, as follows. This method should be marked as async.

// Save the new or updated customer back to the WCF Data Service
// and return the form to Browsing mode
private async void Save()
{
 // Validate the details of the Customer
 if (this.ValidateCustomer(this.Current))
 {
 // Only continue if the customer details are valid
 this.IsBusy = true;

 // Set the ModifiedDate for the customer
 // to record the date the changes were made
 this.Current.ModifiedDate = DateTime.Today;

 // Continued in next step
 }
}

This method is not yet complete. The initial code that you have just entered verifies that the
customer details are valid. If they are, the details can be saved, and the IsBusy property of the
ViewModel is set to true to indicate that this may take some time while the information is sent
over the network to the data service (remember that the IsActive property of ProgressRing
control on the Customers form is bound to this property, and the progress ring will be dis-
played while the data is being saved).

The Customer table in the AdventureWorks database has some additional requirements; spe-
cifically, if you are adding or editing a customer, you should set the ModifiedDate property of
the customer to reflect the date on which the change was made.

12. In the Save method, replace the comment // Continued in next step with the following code
shown in bold:

private async void Save()
{
 // Validate the details of the Customer
 if (this.ValidateCustomer(this.Current))
 {
 ...
 // If the user is creating a new customer,
 // add it to the collection for the WCF Data Service
 if (this.IsAdding)
 {
 this.Current.rowguid = Guid.NewGuid();
 this.connection.AddToCustomers(this.Current);
 }

762 part IV Building professional Windows 8 applications with C#

 // If the user is editing the current customer,
 // update it in the collection for the WCF Data Service
 if (this.IsEditing)
 {
 this.connection.UpdateObject(this.Current);
 }

 // Save the changes back to the data source
 }
}

If the ViewModel is in Adding mode, you must populate the rowguid property of the Customer
object with a new GUID before you can save it (this is a mandatory column in the Customer
table; other applications inside the Adventure Works organization use this column to track
information about customers). The customer is then added to the Customers collection of the
data service by using the AddToCustomers method (this method was described earlier in this
section, before the exercise).

Note GUID stands for globally unique identifier. A GUID is a string, generated by
Windows, that is almost guaranteed to be unique (there is a very small possibility
that Windows might generate a nonunique GUID, but the possibility is so infinitesi-
mally small that it can be discounted). GUIDs are frequently used by databases as
key values used to identify individual rows, as in the case of the Customer table in
the AdventureWorks database.

If the ViewModel is in Editing mode, the Customer object in the Customers collection of the
data service is modified by using the UpdateObject method. Again, this method was described
prior to this exercise.

You can now save the changes back to the database by using the data service.

13. After the comment // Save the changes back to the data source, add the following code shown
in bold:

private async void Save()
{
 // Validate the details of the Customer
 if (this.ValidateCustomer(this.Current))
 {

 // Save the changes back to the data source
 try
 {
 await Task.Factory.FromAsync(
 this.connection.BeginSaveChanges(null, null),
 async (result) => this.connection.EndSaveChanges(result));

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 763

 this.IsBrowsing = true;
 this.OnPropertyChanged("Current");
 }
 catch (DataServiceRequestException dsre)
 {
 if (this.IsAdding)
 {
 this.connection.DeleteObject(this.Current);
 }
 }
 finally
 {
 this.IsBusy = false;
 }
 }
}

You should recognize the idiom that this code uses to save the changes: it creates a Task
object that runs the BeginSaveChanges method followed by the EndSaveChanges method
as described earlier. If the data is saved successfully, the ViewModel is placed into Browsing
mode and the PropertyChanged event is raised for the current customer (if the user has added
a new customer, the CustomerID will have been generated by the database and used to
update the Customer object).

If an exception occurs, the ViewModel remains in Adding or Editing mode, as appropriate, and
the user can correct the changes and try to save them again. Additionally, if the ViewModel
is in Adding mode, the new customer is removed from the Customers collection of the data
service. This step is necessary because previously the Save method uses the AddToCustomers
method to add the customer to this collection; if the application tries to add the same
customer again (when the user saves the changes after making any corrections), and this
customer is already in the Customers collection, the AddToCustomers method will throw an
InvalidOperationException exception with the message "The context is already tracking the
entity."

The finally block sets the IsBusy property to false, causing the ProgressRing control on the
form to disappear.

14. Add the SaveChanges Command variable to the list at the start of the ViewModel class, and
update the constructor to instantiate this command:

public class ViewModel : INotifyPropertyChanged
{
 ...
 public Command DiscardChanges { get; private set; }
 public Command SaveChanges { get; private set; }
 ...
 public ViewModel()
 {
 ...

764 part IV Building professional Windows 8 applications with C#

 this.DiscardChanges = new Command(this.Discard, ...);
 this.SaveChanges = new Command(this.Save, () =>
 { return this.CanSaveOrDiscardChanges; });

 }
 ...
}

15. On the BUILD menu, click Build Solution and verify that your application compiles without any
errors.

reporting errors and Updating the User Interface
You have added the commands that enable a user to add, edit, and save customer information.
However, if something goes wrong and an error occurs, the user is not going to know what has
happened. This is because the ViewModel class does not include any error reporting capabilities.
One way to add such a feature is to capture the exception messages that occur and expose them
as a property of the ViewModel class. A view can use data binding to connect to this property and
display the error messages.

add error reporting to the ViewModel class

1. In the ViewModel.cs file, expand the region named Properties for "busy" and error message
handling.

2. After the IsBusy property, add the private _lastError string variable and public LastError string
property shown below:

private string _lastError = null;
public string LastError
{
 get { return this._lastError; }
 private set
 {
 this._lastError = value;
 this.OnPropertyChanged("LastError");
 }
}

3. In the Methods for fetching and updating data region, find the GetData method. This method
contains the following exception handler:

catch (DataServiceQueryException dsqe)
{
 // TODO: Handle errors
}

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 765

4. Replace the // TODO: Handle errors comment with the following code shown in bold:

catch (DataServiceQueryException dsqe)
{
 this.LastError = dsqe.Message;
}

5. At the end of the try block immediately preceding the exception handler, add the following
statement:

try
{
 ...
 this.LastError = String.Empty;
}
catch (DataServiceQueryException dsqe)
{
 ...
}

This statement removes any error messages from the LastError property.

6. Find the ValidateCustomer method, and add the following statement shown in bold immedi-
ately before the return statement:

private bool ValidateCustomer(Customer customer)
{
 ...
 this.LastError = validationErrors;
 return !hasErrors;
}

The ValidateCustomer method populates the validationErrors variable with information about
any properties in the Customer object that contain invalid data. The statement that you have
just added copies this information to the LastError property.

7. Find the Save method, and modify the code that catches the DataServiceRequestException
exception as follows in bold:

private async void Save()
{
 ...
 // Save the changes back to the data source
 try
 {
 ...
 }
 catch (DataServiceRequestException dsre)

766 part IV Building professional Windows 8 applications with C#

 {
 if (this.IsAdding)
 {
 this.connection.DeleteObject(this.Current);
 }
 this.LastError = dsre.Message;
 }
 ...
}

8. At the end of the try block immediately preceding the exception handler, add the following
statement:

try
{
 ...
 this.LastError = String.Empty;
}
catch (DataServiceRequestException ex)
{
 ...
}

9. Find the Discard method, and add the statement shown in bold below to the end of this
method:

private void Discard()
{
 ...
 this.LastError = String.Empty;
}

10. On the BUILD menu, click Build Solution and verify that the application builds without any
errors.

The ViewModel is now complete. The final stage is to incorporate the new commands, state infor-
mation, and error reporting features into the view provided by the Customers form.

Integrate add and edit functionality into the Customers form

1. Open the MainPage.xaml file in the Design View window.

The XAML markup for the MainPage form has already been modified, and the following
TextBlock controls have been added to the Grid controls that appear in Fullscreen, Filled, and
Snapped views:

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 767

<Page
 x:Class="Customers.MainPage"
 ...>

 <Grid Style="{StaticResource GridStyle}">
 ...
 <Grid x:Name="customersTabularView" ...>
 ...
 <Grid Grid.Row="2">
 ...
 <TextBlock Grid.Row="3" Grid.RowSpan="4"
Grid.Column="7" Style="{StaticResource ErrorMessageStyle}"/>
 </Grid>
 </Grid>
 <Grid x:Name="customersColumnarView" Margin="20,10,20,110" ...>
 ...
 <Grid Grid.Row="1">
 ...
 <TextBlock Grid.Row="6" Grid.Column="0"
Grid.ColumnSpan="2" Style="{StaticResource ErrorMessageStyle}"/>
 </Grid>
 </Grid>
 ...
 </Grid>
 ...
</Page>

The ErrorMessageStyle referenced by these TextBlock controls is defined in the AppStyles.xaml
file.

2. Set the Text property of both TextBlock controls to bind to the LastError property of the
ViewModel, as shown below in bold:

...
<TextBlock Grid.Row="3" Grid.RowSpan="4" Grid.Column="7"
Style="{StaticResource ErrorMessageStyle}" Text="{Binding LastError}"/>
...
<TextBlock Grid.Row="6" Grid.Column="0" Grid.ColumnSpan="2"
Style="{StaticResource ErrorMessageStyle}" Text="{Binding LastError}"/>

3. The TextBox and ComboBox controls on the form that display customer data should only allow
the user to modify this data if the ViewModel is in Adding or Editing mode; otherwise, they
should be disabled. Add the IsEnabled property to each of these controls, and bind it to the
IsAddingOrEditing property of the ViewModel as follows:

...
<TextBox Grid.Row="1" Grid.Column="1" x:Name="id"
IsEnabled="{Binding IsAddingOrEditing}" .../>
<ComboBox Grid.Row="1" Grid.Column="3" x:Name="title"
IsEnabled="{Binding IsAddingOrEditing}" ...>
</ComboBox>

768 part IV Building professional Windows 8 applications with C#

<TextBox Grid.Row="1" Grid.Column="5" x:Name="firstName"
IsEnabled="{Binding IsAddingOrEditing}" .../>
<TextBox Grid.Row="1" Grid.Column="7" x:Name="lastName"
IsEnabled="{Binding IsAddingOrEditing}" .../>
...
<TextBox Grid.Row="3" Grid.Column="3" ... x:Name="email"
IsEnabled="{Binding IsAddingOrEditing}" .../>
...
<TextBox Grid.Row="5" Grid.Column="3" ... x:Name="phone"
IsEnabled="{Binding IsAddingOrEditing}" .../>
...
...
<TextBox Grid.Row="0" Grid.Column="1" x:Name="cId" />
IsEnabled="{Binding IsAddingOrEditing}" .../>
<ComboBox Grid.Row="1" Grid.Column="1" x:Name="cTitle"
IsEnabled="{Binding IsAddingOrEditing}" ...>
</ComboBox>
<TextBox Grid.Row="2" Grid.Column="1" x:Name="cFirstName"
IsEnabled="{Binding IsAddingOrEditing}" .../>
<TextBox Grid.Row="3" Grid.Column="1" x:Name="cLastName"
IsEnabled="{Binding IsAddingOrEditing}" .../>
...
<TextBox Grid.Row="4" Grid.Column="1" x:Name="cEmail"
IsEnabled="{Binding IsAddingOrEditing}" .../>
...
<TextBox Grid.Row="5" Grid.Column="1" x:Name="cPhone"
IsEnabled="{Binding IsAddingOrEditing}" .../>

4. Add an app bar to the bottom of the page, immediately after the top app bar, using the
<Page.BottomAppBar> element. This app bar should contain buttons for the AddCustomer,
EditCustomer, SaveChanges, and DiscardChanges commands as follows:

<Page ...>
 ...
 <Page.TopAppBar >
 ...
 </Page.TopAppBar>
 <Page.BottomAppBar>
 <AppBar IsSticky="True" SizeChanged="AppBarSizeChanged">
 <Grid>
 <StackPanel Orientation="Horizontal"
HorizontalAlignment="Right">
 <Button x:Name="addCustomer"
Style="{StaticResource AddAppBarButtonStyle}"
Command="{Binding Path=AddCustomer}"/>
 <Button x:Name="editCustomer"
Style="{StaticResource EditAppBarButtonStyle}"
Command="{Binding Path=EditCustomer}"/>
 <Button x:Name="saveChanges"
Style="{StaticResource SaveAppBarButtonStyle}"
Command="{Binding Path=SaveChanges}"/>
 <Button x:Name="discardChanges"

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 769

Style="{StaticResource DiscardAppBarButtonStyle}"
Command="{Binding Path=DiscardChanges}"/>
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

Note that the convention for commands on the bottom app bar is to group them together,
starting on the right side. Also, notice that when the user switches between views, the
SizeChanged event fires and the AppBarSizeChanged method runs. You will add code to the
handler for this event to change the appearance of the buttons, following the same approach
used by the navigation buttons in the top app bar.

The styles referenced by the buttons are defined in the StandardStyles.xaml file in the Com-
mon folder, but you must enable them before building and running the application.

5. In Solution Explorer, expand the Common folder and then double-click StandardStyles.xaml to
display this file in the Code and Text Editor window.

6. Find the XAML markup for the EditAppBarButtonStyle. This style is currently commented
out. Uncomment this style and the SaveAppBarButtonStyle that immediately follows it. Also
uncomment the DiscardAppBarButtonStyle and AddAppBarButtonStyle that occur a short way
below the SaveAppBarButtonStyle.

tip To uncomment a style, add a close comment tag, -->, to the end of the line im-
mediately above the style, and add open comment tag, <!--, to the start of the line
immediately below the style.

7. In Solution Explorer, expand MainPage.xaml and double-click MainPage.xaml.cs to display the
code for the MainPage form in the Code and Text Editor window.

8. Add the statements shown below in bold to the AppBarSizeChanged method:

private void AppBarSizeChanged(object sender, SizeChangedEventArgs e)
{
 ...
 VisualStateManager.GoToState(this.lastCustomer, viewState.ToString(), false);
 VisualStateManager.GoToState(this.addCustomer, viewState.ToString(), false);
 VisualStateManager.GoToState(this.editCustomer, viewState.ToString(), false);
 VisualStateManager.GoToState(this.saveChanges, viewState.ToString(), false);
 VisualStateManager.GoToState(this.discardChanges, viewState.ToString(), false);
}

This code uses the VisualStateManager to change the appearance of the buttons when the
user changes between Fullscreen and Snapped views.

770 part IV Building professional Windows 8 applications with C#

test the Customers application

1. On the DEBUG menu, click Start Debugging to build and run the application.

When the Customers form appears, notice that the TextBox and ComboBox controls are dis-
abled. This is because the view is in Browsing mode.

2. Right-click the form and verify that the upper and lower app bars both appear. You can use
the First, Next, Previous, and Last buttons in the upper app bar as before (remember that the
First and Previous buttons will not be enabled until you move away from the first customer). In
the lower app bar, the Add and Edit buttons should be enabled, but the Save and Discard but-
tons should be disabled. This is because the AddCustomer and EditCustomer commands are
enabled when the ViewModel is in Browsing mode, and the SaveChanges and DiscardChanges
commands are only enabled when the ViewModel is in Adding or Editing mode.

3. In the bottom app bar, click Edit.

4. The buttons in the top app bar become disabled because the ViewModel is now in Editing
mode. Additionally, the Add and Edit buttons are also disabled, but the Save and Discard
buttons should be enabled. Furthermore, the data entry fields on the form should now be
enabled, and the user can modify the details of the customer.

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 771

5. Modify the details of the customer: blank out the first name, type Test for the email address,
type Test 2 for the phone number, and then click Save.

These changes violate the validation rules implemented by the ValidateCustomer method. The
ValidateCustomer method populates the LastError property of the ViewModel with validation mes-
sages, and they are displayed on the form in the TextBlock that binds to the LastError property:

772 part IV Building professional Windows 8 applications with C#

6. Click Discard, and verify that the original data is reinstated on the form, the validation mes-
sages disappear, and the ViewModel reverts to Browsing mode.

7. Click Add. The fields on the form should be emptied (apart from the ID field, which displays
the value 0). Enter the details for a new customer. Be sure to provide a first name and last
name, a valid email address of the form name@organization.com, and a numeric phone num-
ber (you can also include parentheses, hyphens, and spaces).

8. Click Save. If the data is valid (there are no validation errors), your data should be saved to
the database. You should see the ID generated for the new customer in the ID field, and the
ViewModel should switch back to Browsing mode.

9. Experiment with the application and try adding and editing more customers. Notice that you
can switch to Snapped view and the form should still work.

10. When you have finished, return to Visual Studio and stop debugging.

Summary

In this chapter, you learned how to use the Entity Framework to create an entity model that you can
use to connect to a SQL Server database. You saw how to create a WCF Data Service that a Windows
Store app can use to query and update data in the database through the entity model, and you
learned how to integrate a WCF Data Service into a ViewModel.

You have now completed all the exercises in this book. Hopefully, you are now thoroughly con-
versant with the C# language and understand how to use Visual Studio 2012 to build professional
applications for Windows 7 and for Windows 8. However, this is not the end of the story. You have
jumped the first hurdle, but the best C# programmers learn from continued experience, and you
can gain this experience only by building C# applications. As you do so, you will discover new ways
to use the C# language and the many features available in Visual Studio 2012 that I have not had
space to cover in this book. Also, remember that C# is an evolving language. Back in 2001, when
I wrote the first edition of this book, C# introduced the syntax and semantics necessary to build
applications that made use of the .NET Framework 1.0. Some enhancements were added to Visual
Studio and the .NET Framework 1.1 in 2003, and then in 2005, C# 2.0 emerged with support for
generics and the .NET Framework 2.0. C# 3.0 added numerous features such as anonymous types,
lambda expressions, and, most significantly, LINQ. C# 4.0 extended the language further with sup-
port for named arguments, optional parameters, contra- and covariant interfaces, and integration
with dynamic languages. C# 5.0 has added full support for asynchronous processing through the
async keyword and the await operator.

In parallel with the evolution of the C# programming language, the Windows operating system
has changed considerably since the first edition of this book. Arguably, the changes instigated by
Windows 8 have been the most radical in this period, and developers familiar with earlier editions
of Windows now have exciting new challenges to build applications for the modern, touch-centric,

 CHAPTER 27 Accessing a Remote Database in a Windows Store App 773

mobile platform that Windows 8 provides. Visual Studio 2012 and C# will undoubtedly be instrumen-
tal in assisting you to address these challenges.

What will the next version of C# and Visual Studio bring? Watch this space!

Chapter 27 Quick Reference

To Do this

Create an entity model by
using the Entity Framework

Add a new item to your project by using the ADO.NET Entity Data Model template. Use
the Entity Data Model to connect to the database containing the tables that you want
to model, and select the tables that your require.

Create a data service that
provides remote access to a
database through an entity
model

Use the WCF Data Service template. Specify the name of the data context class for the
entity model as the type parameter of the DataService class. In the InitializeService
method of the DataService class, specify the entity access rules for each entity in the
entity model that you want the data service to expose. For example:

public class AdventureWorks : DataService<AdventureWorksEntities>
{
 public static void InitializeService(DataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("Customers", EntitySetRights.All);
 ...
 }
}

Consume a data service in a
Windows Store app

Use the Add Service Reference wizard to generate the code to connect to the data
service and generate the classes that the application can use to connect to the service
and retrieve and update data.

Open a connection to a data
service in a Windows Store
app

Connect to the data service by creating a new instance of the connection class gener-
ated by the Add Service Reference wizard. Specify the URL of the data service as the
parameter to the constructor. For example:

AdventureWorksEntities connection = null;
string url ="http://localhost:53923/AdventureWorks.svc";
connection = new AdventureWorksEntities(new Uri(url));

Retrieve data from a data
service in a Windows Store
app

Create a DataServiceQuery object that specifies the data to retrieve, and run this
query asynchronously by using the BeginExecute and EndExecute methods of
the DataServiceQuery object. Use the Task.Factory.FromAsync method to run the
BeginExecute and EndExecute methods by creating a Task. For example:

AdventureWorksEntities connection = ...;
var data = from c in connection.Customers
 where c.CustomerID < 100
 select c;
var queryResults = await Task.Factory.FromAsync(
 (data as DataServiceQuery).BeginExecute(null, null),
 (result) =>(data as DataServiceQuery).EndExecute(result));

Insert a new object into the
collection returned by a data
service

Call the AddToXXX method of the connection object, where XXX is the name of the
collection. Pass the new object as the parameter to this method. For example:

AdventureWorksEntities connection = ...;
Customer newCust = new Customer();
newCust.FirstName = "Diana";
newCust.LastName = "Sharp";
connection.AddToCustomers(newCust);

774 part IV Building professional Windows 8 applications with C#

To Do this

Update an existing object in
the collection returned by a
data service

Call the UpdateObject method of the connection object. Pass the object to update as
the parameter to this method. For example:

AdventureWorksEntities connection = ...;
var query = await Task.Factory.FromAsync(
 this.connection.Customers. BeginExecute(null, null)
 ...);
Customer cust = query.First();
cust.FirstName = "John";
connection.UpdateObject(cust);

Remove an object from the
collection returned by a data
service

Call the DeleteObject method of the connection object. Pass the object to remove as
the parameter to this method. For example:

AdventureWorksEntities connection = ...;
var query = await Task.Factory.FromAsync(
 this.connection.Customers.BeginExecute(null, null)
 ...);
Customer cust = query.First();
connection.DeleteObject(cust);

Send the changes made to a
data service collection back
to the data source and make
them permanent

Save the changes asynchronously by using the BeginSaveChanges and
EndSaveChanges method of the connection object that was used to retrieve the data.
For example:

AdventureWorksEntities connection = ...;
...
await Task.Factory.FromAsync(
 this.connection.BeginSaveChanges(null, null),
 (result) => connection.EndSaveChanges(result));

 775

&& operator, 97
+ operator, 52
+= operator, 116, 463
=> operator, 433
|| operator, 97
| (OR) operator, 372
|| (OR) operator, 97, 98, 99, 114
() (parentheses)

if statements and, 100
in Boolean expressions, 97
in methods, 68, 72
use in precedence, 60

% (percent sign), 53
-- (post-decrement) operator, 98
++ (post-increment) operator, 98
() (precedence override) operator, 98
++ (pre-increment) operator, 98
% (remainder) button, 55
; (semicolon), 40
' (single quotation mark), 112
[] (square brackets), 60, 234
- (subtraction) button, 55
- (subtraction) operator, 98
~ (tilde) character, 327
// TO DO comment, 104
_ (underscore) character, 40, 42, 169, 353
^ (XOR) operator, 372, 376

A
abstract classes

creating, 315–318, 323
overview, 312–314

abstracting tasks, using Parallel class, 559–563
abstract keyword, 314, 322
abstract methods, 312–314, 314
Accelerate method, 285

Index

Symbols
+ (addition) operator, 98
& (AND) operator, 372
&& (AND) operator, 97, 98, 99, 114
= (assignment) operator, 96, 99, 100
* (asterisk), 98, 209. See also asterisk (*)
\ (backslash) character, 112
>> button, 13
+= compound assignment operator, 462
{ } (curly braces), 60, 68, 202, 235
-- (decrement) operator, 116, 520–521
– (decrement) operator, 62–63
/ (division) operator, 98
% (division remainder) operator, 98
. (dot operator), 326
" (double quotation mark), 112
... (ellipsis) character, 35
== (equality) operator, 96, 99, 100, 114, 215, 400, 522,

527–529
= (equal) sign, 43, 60
// (forward slashes), 11
> (greater than) operator, 97, 99, 114, 400, 522
>= (greater than or equal to) operator, 97, 99, 114, 522
++ (increment) operator, 61–62, 116, 520–521
!= (inequality) operator, 96, 523
<< (left-shift) operator, 372
< (less than) operator, 97, 99, 114, 400, 522
<= (less than or equal to) operator, 97, 99, 114, 522
? modifier, 214, 223
% (modulus) operator, 53, 98
* (multiplication) button, 59
!= (not equal to) operator, 99, 522, 527–530
! (NOT) operator, 96, 98, 198
~ (NOT) operator, 372
–= operator, 478
? : operator, 384

accessibility

776 Index

accessibility
of methods and fields, 168
of properties, 355–356

accidental assignments, 100
Action delegate, 461, 545, 546
Action<object> parameter, 546
adapter methods, 474–475
AddAfter method, 423
AddAppBarButtonStyle style, 769
AddBefore method, 423
Add button, 380
AddCardToHand method, 251, 437
AddCount method, 610
AddCustomer command, 757, 770
Add Existing Project dialog box, 505
AddFirst method, 423
Adding mode, 756, 762
addition (+) operator, 98
additive operators, 59
AddLast method, 423
Add method, 381, 421, 431, 464, 520
Add or Remove Buttons option, 130
AddParticipant method, 610
Add Portable Class Library dialog box, 402
Add Reference option, 17
addresses array, 497
addr variable, 497
Add Service Reference wizard, 744, 745
AddToAccumulator method, 565
AddToCustomers method, 755, 763
addValues method, 56, 70, 72, 148
Advanced Build Settings dialog box, 150
AdvanceMonth method, 229
Age field, 185, 460
age variable, 263
AggregateException, 611
Airplane class, 283
aligning

buttons, 26
controls, 26
text, 24

AllCustomers property, 717
allEmployees collection, 511
allocation, 326
Allow Unsafe Code option, 209
All WPF Controls section, 23
All XAML Controls section, 23
amount variable, 127
AND (&) operator, 372

AND (&&) operator, 97, 98, 99, 114
anonymous classes, 185–186
anonymous methods, 476
anotherAnonymousObject variable, 185
anotherMethod, 75
Any method, 503
AppBar control, 708
AppBarSizeChanged method, 736, 769
App.config file, 8
App.g.i.cs file, 144
Application.Current property, 717
ApplicationPageBackgroundThemeBrush

resource, 671
applications

Windows Store apps, 18
assemblies used with, 34
closing, 29
command buttons on, locating, 29
design features, 29
developer license, 19
displaying code file for page, 31
displaying data in using data binding, 682–689
distribution and deployment of, 630
general explanation of, 628
graphical application, creating, 30–33
interactions with other apps. See also contracts
interaction with other apps, 630
lifetime of, 630
look and feel of, 628
mobility and, 629
modifying data using data binding, 689–693
potrait mode, viewing in, 27
searching in. See Search charm; Search contract
security constraints on, 630
specifying of initial form to display, 34
testing using Simulator, 647
viewing on various devices, 27
WinRT and, 320

WPF applications
assemblies used with, 34
graphical application, creating for, 33–34
namespaces used with, 34
specifying of initial form to display, 34

App object, 34
AppStyles.xaml file, 669
App.xaml.cs file, 31, 632
App.xaml file, 31, 34
Area method, 168
areYouReady variable, 96
ArgumentException class, 241, 259

 await operator

 Index 777

ArgumentException exception, 264, 290
argumentList, 72
ArgumentOutOfRangeException, 241
ArgumentOutOfRangeException class, 154
arguments, named, 87–88, 93
arg variable, 200
arithmetic operators. See also Boolean operators

associativity of, 60–61
implementing in exercise, 524–527
overview, 52
precedence, controlling, 59, 65
prefix and postfix forms, 62
types and, 52–53
using on int values, 54–55
variables and

implicitly typed local, declaring, 63–64
incrementing and decrementing, 61–62

Array.Copy method, 241
"Array index out of bounds" message, 579
arrays. See also indexers

accessing individual array element, 237, 255
vs. collection classes, 433–434
copying, 241–242
declaring, 234, 255
disadvantages of, 258–259
elements in, finding number of, 255
exposing as properties, 377
implicitly typed, 236–237
vs. indexers, 376–377
index use with, 237
instance of, creating, 234–235, 255
iterating through, 238–239, 255
jagged, 243–244
vs. List<T> collection class, 421
multidimensional, 242–243, 255
naming, 234
parameter arrays

declaring, 260–261
Main method and, 240
of type object, 262
purpose of, 257
Sum method used with, 263–266
vs. optional parameters, 266–268

passing as parameters, 239
populating and using, 235–236
returning from methods, 239–240
size of, 235
using to implement card game, 244–254

array variable, 234

The Art of Computer Programming, Vol. 3
(Knuth), 396

as operator, 208–209
AsParallel method, 599, 604
ASP.NET Empty Web Application template, 737
assemblies

adding references for, 17
defined, 7
extension for, 17
namespaces and, 17
removing, 17
used with WPF vs. Windows Store apps, 34

AssemblyInfo.cs file, 7
assignment (=) operator, 43, 96, 99, 100
assignment operators

associativity and, 60–61
compound, 115–116

assignments, accidental, 100
associative array, 427
associativity of operators, 60–61, 98–99, 516
AsStream method, 597
asterisk (*), 13
AsyncCallback delegate, 599
asynchronous methods. See also multitasking;

parallel processing; tasks
defined, 586
implementing, 624
modifying application to use, 592–594
problem solved by, 586–589
that return values, 595–596
Windows Runtime APIs and, 596–597

async modifier, 589
AttachDatabase.sql window, 735
attached properties, 653
AuditingCompleteDelegate delegate, 482
audit-nnnnnn.xml file, 467
Auditor class, 468, 473, 482
AuditOrder method, 469, 473, 482
AuditProcessingComplete event, 482
Audit record written message, 487
AuditService project, 468
Auto Hide button, 23, 56
automatic properties

defining, 367–368
generating, 363–369

AutomaticProperties dialog box, 367
Average method, 459, 460
await operator, 571, 589

backslash (\) character

778 Index

B
backslash (\) character, 112
Balance property, 357
BankAccount class, 357
Barrier class, 610, 611
base classes

constructors of, 274–275, 293
derived class, creating from, 293
protected access and, 282–283

BasedOn property, 673
base keyword, 274
baseToConvertTo parameter, 290
BasicCollection<T> class, 450–451
BeginExecute method, 747–748
BeginOperationName method, 598, 599
BeginWrite method, 598
bidirectional data binding, 689
binary operators, 516, 517
BinarySearch method, 417
BinaryTree assembly, 406, 448
BinaryTree class

building using generics
creating Tree<TItem> class, 402–405
overview, 399
testing Tree<TItem> class, 406–408

modifying to implement IEnumerable<T>
interface, 447–449

retrieving data from using extension
methods, 503–508

retrieving data from using query operators, 509–
510

BinaryTree.dll assembly, 410
BinaryTree project, 443
binary trees

defining generic methods to build, 410–412
explanation of, 396–399

BinaryTree solution, 406
BinaryTreeTest dialog box, 406
binding. See data binding
bin folder, 14
BitArray class, 420
bitwise operators, 215, 372–373
Black.Hole method, 262
Blank App template, 20, 21

applying styles, 669–678
creating example app, 632–634
implementing scalable user interface

adapting layout using Visual State
Manager, 660–669

laying out page, 634–645
tabular layout using Grid Control, 650–660

overview, 632
Blank App (XAML) icon, 19
blocks

finally, 159–160
grouping statements with, 100–101
try blocks, 138–139

destructors and, 328
exception matching multiple catch handlers at

end of, 142
exception throwing by with no corresponding

catch handler, 139–140
use with do statements, 125
use with for statements, 124
use with while statements, 118

bool data type, 44
Boolean expressions

chaining together, 101–102
overview, 100
while statements and, 117

Boolean operators
associativity of, 98–99
conditional logical, 97
defined, 96
equality/inequality, 96
precedence of, 98–99
relational, 96–97
short-circuiting and, 98

Boolean variables
as expression for if statement, 100
declaring, 95–96, 114

bool keyword, 114, 219
boolVar variable, 51
bottomRight variable, 179
boxing, 205
Brake method, 285
Breakpoints Window button, 130
break statement, 110

jumping out of iteration statements using, 126
jumping out of switch statements using, 110

Breathe method, 272, 273
Browse button, 337, 410
Browsing mode, 756, 760
BUILD menu, 177
Build Solution command, Visual Studio 2012, 12, 13
built-in Equals() method, 220
Button class, 479
Button control, 26

 CIL (Common Intermediate Language)

 Index 779

buttons
aligning, 26
event names for, 35

Buxton Sketch font, 672, 676, 677
byte keyword, 219
byte type, 216

C
C#. See Microsoft Visual C#
Calculate button, 147
calculateClick method, 73, 74, 147
calculateData method, 562, 563
calculatedValue variable, 73, 74
calculateFee method, 77, 79, 89
calculateValueAsync method, 596
calculateValue method, 595
Calculator class, 336
Calculator.cs file, 339, 340
callback methods, 568
camelCase identifiers, 353
camelCase naming scheme, 169
CanBrowse property, 757
Cancel button, 570
cancelButton_Click method, 568, 571
Canceled state, 575
Canceled status, 572
canceling tasks, 566, 581–582. See also cooperative

cancellation
cancellation token, 566
CancellationToken class, 575
CancellationToken object, 567, 568, 569
CancellationToken parameter, 569
CancellationTokenSource object, 567, 568
cancellationTokenSource variable, 567
Cancel method, 567, 611
CanExecuteChanged event, 700, 702, 710
canExecuteChangedEventTimer_Click method, 703
CanExecute method, 699, 701, 710
CanSaveOrDiscardChanges property, 757, 761
Canvas class, 303, 307
Car class, 283
Car.cs file, 284
card game, 244–254
Card Game window, 251
cardPack array, 247
cardPack Dictionary collection, 436
cardPack variable, 435
cardsInSuit object, 435

CardsPerSuit field, 247
Cards project, 244, 434
CardSuit method, 247
CardValue method, 247
cascading if statements, 101–106
case

C# and (in general), 8
of class names, 169
of field names, 648
of identifiers, 42
in Find and Replace, 48
of method names, 68, 648
of public vs. private identifiers, 169

case labels, 108, 109
casting data, 207–208
cast operation, 206
catch handlers, 138

example of use, 157–158
exception thrown by try block with no

corresponding catch handler, 139–140
multiple, 140–141, 142
overview, 138
using to trap Exception exception, 158

catch keyword, 138
C/C++ fall-through, mimicking, 110
ccyy parameter, 225
Change Resolution option, 657
character pairs, matched, 10
characters, data type for sequence of, 44
char data type, 44
char variable, 129
checked expressions, 151–153
checked keyword, 151
Check for Arithmetic Overflow/Underflow check

box, 150
Checkout button, 465
CheckoutButtonClicked method, 469, 473, 481, 485
CheckoutController class, 470, 480
CheckoutController component, 470, 472
CheckoutController.cs file, 470, 471
checkoutController variable, 472
CheckoutDelegate type, 471
Checkout option, 467, 487
CheckoutProcessing delegate, 471
CheckoutService dialog box, 470
CheckoutService project, 470
ChewGrass method, 299
Choose a Data Type list, 46
chromeless, apps as, 628
CIL (Common Intermediate Language), 230

circ1.cs file

780 Index

circ1.cs file, 172
circ2.cs file, 172
Circle class, 166, 168, 304–305, 308, 309–312
Circle.cs file, 307
Circle variable, 392
classes. See also collection classes; inheritance;

namespaces
abstract

creating, 315–318, 323
overview, 312–314

accessibility of methods and fields in, 168
anonymous, 185–186
case of, 169
constructors of

default, 169–170, 171, 175
overloading, 170–171
overview, 169–170
public and private, 170
writing, 173–177

declaring, 187
defining, 166–167
encapsulation and, 166
finding methods in, 49
generic

using constraints with, 396
indicating, 393
vs. generalized, 395

names of, 14–15
.NET Framework class library, 17
vs. objects, 167
operators in, vs. in structures, 521–522
partial, 172
purpose of, 165–166
referencing through interfaces, 298–299
representing binary trees, 396–399
scope of, 75
sealed, 314, 323
splitting across multiple files, 172
static, 182
vs. structures, 221–222, 228–230

class library
defined, 399
template for, 470

class members drop-down list box, 49
Clicked event, 47
Click event, 479
Click property, 480
Clone method, 191, 242, 377
Close method, 331, 332
closing Windows Store apps, 29

CLR (common language runtime), 230, 240, 320, 321,
459, 519, 586
concurrency and, 544
exceptions, 153, 157
garbage collection and, 326, 329

code
commenting out, 511
duplication in, 313
managed, 230
native, 230
refactoring, 81, 313
unsafe, 209

Code and Text Editor window, 6, 80
code file for page in Windows Store app, 31
code view, of graphical application, 18
collectable objects. See interfaces
collection classes. See also concurrent collection

classes
adding items to, 439
card playing example, 434–438
creating, 439
Dictionary<TKey, TValue>, 420, 427–428
enumerating elements in

defining enumerator for Tree<TItem> class using
iterator, 452–454

implementing enumerator manually, 443–446
implementing enumerator using interator,

450–454
overview, 441–442

HashSet<T>, 420, 429–430
iterating through items in, 439
LinkedList<T>

description of, 420, 423–424
Find method, 431–433

List<T>
decription of, 420
description of, 421–422
features of, 421
Find method, 431–433, 459–460
number of elements for, determining, 423

locating items in, 439
nongeneric, 420
number of elements in, finding, 439
overview, 419–420
Queue<T>, 420, 425
removing items from, 439
SortedDictionary<TKey, TValue>, 428
SortedList<TKey, TValue>, 420, 428–429
Stack<T>, 420, 426
vs. arrays, 433–434

 continuations

 Index 781

Collect method, GC class, 329
Color class, 304
Color property, 362
ColumnarHeaderStyle style, 674
columnForRow0 array, 244
columnForRow3 array, 244
ComboBox control, 640, 693–695
ComboBoxItem elements, 695
<ComboBox> tag, 641
COM (Component Object Model), 85
COMException, 756
Command class, 700–703
Command.cs file, 700
commands, adding to ViewModel

ICommand interface
creating class that implements, 700–704
items defined by, 699–700

NextCustomer and PreviousCustomer
commands, 704–711

Command variable, 758
Comment Out the Selected Lines button, 511
comments, 11, 173, 511
Common Language Runtime Exceptions, 577
Common section, 25
Common WPF Controls section, Toolbox, 23
Common XAML Controls section, Toolbox, 23
companiesGroupedByCountry method, 498
CompanyName column, 502
CompanyName field, 497, 500
Compare button, 104
compareClick method, 104
Compare method, 107, 416
CompareTo method, 296, 400, 401, 404, 504, 506
compiled code, folder for, 7
compile-time errors, 76
compilng code, 12
Complex class, 524–527, 533, 533–535
Complex.cs file, 524, 533
complex numbers, 523–529
Complex Numbers dialog box, 524
Complex value, 535
compound assignment operators

evaluating, 520
overview, 115–116

computers, price and capacity of, 542–543
concurrency

challenges of, 544
synchronizing concurrent access to data. See

also concurrent collection classes
cancelling synchronization, 611

locking data, 608
overview, 608–610
synchronization primitives for coordinating

tasks, 608–611
Task class and, 544–545

concurrent collection classes
implementing thread-safe data access using

calculating pi using parallel tasks, 619–620
calculating pi using single thread, 615–618
general discussion, 612–614
using thread-safe connection, 621–622

overview, 612
ConcurrentDictionary<TKey, TValue> class, 612
ConcurrentQueue<T> class, 612
ConcurrentStack<T> class, 612
conditional logical operators, 97
configuration file. See App.config file
<ConnectionStrings> section, 740
Connect to Server dialog box, 735
Console Application icon, 5
console applications

creating using Visual Studio 2012, 3–8. See
also namespaces
building and running application, 12–14
using IntelliSense, 9–11

defined, 3
Console Application template, 6, 336, 410
Console class, 9
Console.WriteLine method, 166, 175, 226, 257, 263,

339, 620, 710
Console.WriteLine statement, 44, 78, 118, 292, 504
Console.Write method, 78
constantExpression identifier, 108
constantExpression value, 109
const keyword, 182, 187
constructors

base class, calling, 274–275
calling, 187
declaring, 187
default, 169–170, 171, 175
defining with varying parameters, 365
interfaces and, 302
overloading, 170–171
overview, 169–170
public and private, 170
specifying object initializers in combination

with, 366
writing, 173–177

Content property, 26
continuations, 581–582

continue statement

782 Index

continue statement, 126
ContinueWith method, 547, 580, 581
contracts

commonly used, 711
overview, 630
Search contract

implementing in example application, 712–720
overview, 712
testing, 721–722

contravariant interfaces, 415–417
Controller class, 462, 463, 477
Controller constructor, 464
controllingExpression, 109
controls

adding forms, 22–28
aligning, 26
dragging, 26
locating and selecting using Document Outline

window, 55
resizing, 26

control variable, 123
conversion operators

built-in conversions, 530–531
overview, 530
user-defined, 531–532
writing, 533–535

ConvertToBase method, 290, 290–291
Convert.ToChar method, 129
cooperative cancellation

acknowledging cancellation, 576–578
adding cancellation functionality to

application, 568–572
displaying status of tasks, 574–576
overview, 566–568
using continuations with canceled/faulted

tasks, 581–582
Copy.As method, System.Array class, 241
CopyCustomer method, 758
copying

arrays, 241–242
reference types, 191, 210
structure variables, 227–228
value types, 210

copyi variable, 190
Copy method, 242
copyOne method, 111
CopyTo method, System.Array class, 241
copy variable, 195
Cos method, 180
cost variable, 42

CountdownEvent class, 609
Count method, 459, 460, 499, 502
Count property, 423, 439
Country field, 497
covariant interfaces, 414–415
“Cramming More Components onto Integrated

Circuits” (Moore), 543
CREATE DATABASE command, 735
Created status, 572
Create New Solution option, 19
.csproj suffix, 45
Ctrl+Alt+- shortcut, 47
Ctrl+Alt+= shortcut, 47
Ctrl+E shortcut, 511
Ctrl+F shortcut, 48
Ctrl+H shortcut, 48
curly braces { }, 60, 68, 202, 235
CurrentCount property, 609
currentCustomer variable, 697, 706
currentData variable, 444
currentItem variable, 444, 446, 447
currentNodeValue variable, 404
Current property, 442, 445, 446, 546, 697–698
Customer class, 683, 689, 720
customerFirstNames object, 495
customers array, 500
customersColumnView control, 685
Customers.CustomersService namespace, 749
CustomersInMemory class, 602
Customers property, 746–747
customersTabularView control, 685
customersTabularView Grid control, 662, 667
c variable, 190, 204

D
dailyRate parameter, 91
DailyRate project, 77
dangling reference, 329
data access

parallelizing. See PLINQ
synchronizing concurrent access to data. See

also concurrent collection classes
cancelling synchronization, 611
locking data, 608
overview, 608–610
synchronization primitives for coordinating

tasks, 608–611

 Design View window

 Index 783

thread-safe
calculaing pi using parallel tasks, 619–620
calculaing pi using single thread, 615–618
general discussion, 612–614
using thread-safe collection, 621–622

databases. See also data services
and entity model, creating, 735–741
installing example database, 734–735

data binding
displaying data using, 682–689
modifying data using, 689–693
two-way, 689–693
using with ComboBox control, 693–695

DataContext property, 685, 686, 698
data parameter, 444
Data property, 377
DataServiceQuery class, 747
DataServiceQuery<Customer> collection, 746
DataServiceRequestException exception, 765
data services. See also databases

consuming, 744–748, 773
creating, 741–744, 773
defined, 734
fetching data from, 749–752, 773
opening connection to, 773
WCF Data Service, 754–764

data types. See also primitive data types; value types
numeric, 53
operators and, 52–53

DataTypes project, 468
dateCompare method, 104
dates, comparing, 107
Date structure, 225
DateTime data type, 104
Date value, 226
DbContext class, 740, 743, 744
DbSet class, 744
DbSet<Customer> type, 740
dd parameter, 225
Deal button, 245, 438
DealCardFromPack method, 248
dealClick method, 251
Debug button, 344
Debug folder, 14
debugging. See also errors; exceptions

debugger, Visual Studio 2012, 81–85
exception handlers, 153

DEBUG menu, 13

Debug Target drop-down list box, 647
Debug toolbar, 81, 93
decimal data type, 44
decimal keyword, 219
declaring

methods, 68–69
variables, 42–43

decrement (--) operator, 62–63, 116, 520–521
default constructors, 170, 171, 175
defaultDate variable, 226
default keyword, 444
deferred evaluation, 509–513
definite assignment rule, 44
defragmenting, 330
delegate keyword, 462, 476
delegates. See also events

in automated factory scenario, 461–465
delegate types, 415
examples of, 459–460
vs. function pointers, 459
lambda expressions and, 474–476
overview, 458–459
in Wide World Importers example, 465–469

CheckoutController component, creating,
470–473

testing application, 473
DELETE command, 741
DeleteObject method, 755
delete operator, 326
DeliveryService project, 468, 483
Deposit method, 357
Dequeue method, 390, 391, 392, 394, 420–419, 439
Dequeue operation, 425
DerivedClass, 272
derived classes

creating, 293
protected access and, 282

Description control, 720
DESIGN menu, 27
design pattern. See MVVM (Model-View-ViewModel)

pattern
design view, of graphical application, 18
Design View window, 20, 21, 480, 632, 636

adding controls to forms, 22–28
shrinking to view Toolbox, 23
space for, 22
XAML pane and, 24
zooming in and out of, 47

784 Index

destroying objects. See garbage collection

destroying objects. See garbage collection
destructors. See also garbage collection

calling Dispose method from, 334–336
creating simple class that uses, 336–339
interfaces and, 302
restrictions for, 327
shouldn't depend on each other/overlap, 331
writing, 326–328, 330–331, 345

developer license, 19
devices, viewing apps on various, 27
Device Window option, DESIGN menu, 27
Dictionary class, 395
Dictionary<Suit, List< PlayingCard>> object, 434
Dictionary<TKey, TValue> collection class, 420,

427–428
DigestGrass method, 314
digitCode variable, 131, 132
digit variable, 128, 129, 132
DiscardAppBarButtonStyle style, 769
DiscardChanges command, 757, 770
Discard method, 766
Dispatcher object, 589
DispatcherTimer object, 703
dispatch- nnnnnn.txt file, 467
dispatch note, 465
Dispatch note generated message, 487
displayData method, 120
Display drop-down list, 27
displaying

code file for page in Windows Store app, 31
data, using data binding

overview, 682–689
two-way, 689–693
with ComboBox control, 693–695

primitive data types, 44–47
displayMessage method, 486
disposal methods

calling inside of finally blocks, 332–336
overview, 331

Dispose method
calling from destructor, 334–336
overview, 339–340
thread safety and, 342

DistanceTo method, 177, 178
distance variable, 179
Distinct method, 506, 507

distribution and deployment of Windows Store
apps, 630

DivideByZeroException, 157, 158, 344, 579, 581
Divide method, 337
divideValues method, 58, 71
division (/) button, 55
division (/) operator, 98
division remainder (%) operator, 98
.dll extension, 17, 399
doAdditionalProcessing method, 606
doAuditing method, 482
Document Outline window, 55–56, 56
doFirstLongRunningOperation method, 587, 590,

591
doIncrement method, 199
doLoopWork method, 573
doMoreAdditionalProcessing method, 606
doMoreWork method, 547
doSecondLongRunningOperation method, 587, 588,

590
doShipping method, 483
do statements

stepping through, 129–134
syntax, 125
writing, 127–129

doThirdLongRunningOperation method, 587, 588,
590

dot operator (.), 326
double data type, 43
double keyword, 219
double.Parse method, 78
double-precision floating-point numbers, 43
double quotation mark ("), 112
double type, 53
doWork method, 173, 193, 267, 368, 508
DoWorkWithData method, 85
dragging

controls, 26
gesture for, 629

drawingCanvas_MouseLeftButtonDown
method, 309, 360, 362

drawingCanvas_MouseRightButtonDown
method, 311, 312, 361, 362

drawingCanvas_RightTapped method, 311, 361, 362
drawingCanvas_Tapped method, 309, 312, 360, 362

 exceptions

 Index 785

DrawingPad class, 309
Drawing Pad window, 319
DrawingPad.xaml.cs file, 310, 360
DrawingPad.xaml file, 311
DrawingShape class, 316, 326, 359

creating, 315–318
exposing location and color of shapes as

properties, 359–363
modifying Square class to inherit from, 318–319

DrawingShape.cs file, 315
Draw method, 302, 308, 310, 311, 317, 326
Drive method, 283, 286
dual-core processors, 543
duplication in code, 313

E
EditAppBarButtonStyle style, 769
EditCustomer command, 757, 770
Editing mode, 757
Edit method, 759
Ellipse class, 308
ellipsis character (...), 35
else clause, 99, 101
else keyword, 101
EmailAddress property, 690
Employee class, 506
EmployeeID property, 353
empTree binary tree, 510
encapsulation, 166, 349–352
EndExecute method, 748
EndOperationName method, 598, 599
EndSaveChanges method, 756, 763
EndWrite method, 598
enlargeIfFull method, 381
Enqueue method, 390, 391, 394, 419, 439
EnterReadLock method, 610
Enter the Number of Days prompt, 81
Enter Your Daily Rate prompt, 81
Entity Data Model template, 737
Entity Data Model Wizard, 737–739
Entity Framework, 734
entity model, creating, 735–741
Entity Model editor, 739
enumData queue, 444
enumData variable, 446

Enumerable class, 495
Enumerable.Select method, 495
enumerations

creating and using, 216–218
declaring, 214, 232
literal values, 215
of elements in collection classes

defining enumerator for Tree<TItem> class using
iterator, 452–454

implementing enumerator manually, 443–446
implementing enumerator using iterator,

450–454
overview, 441–442

underlying type, 216
using, 214–215

enumeration variable, 214
EnumeratorTest project, 448
enum keyword, 214
enum type, 213
equality (==) operator, 96, 99, 100, 114, 215, 400,

522, 523, 527–529
equal (=) sign, 43, 60
Equals method, 381, 523, 527–528, 528
equi-joins, 503
error handling, Windows, 143
Error List window, 12, 13, 16, 22, 528, 535
errors. See also exceptions

compile-time, 76
global variables and, 138
reporting, adding to ViewModel, 764–766
shown in Error List window, 12–13

EventArgs argument, 480
event field, 479
Event Handlers button, 309
Event Handlers for Selected Element button, 35
events

declaring, 477–478, 488
raising, 478–479, 489
subscribing to, 478, 488
unsubscribing from, 478, 489
user interface events, 479–480
using in Wide World Importers app, 480–487

Example class, 335
Example.xaml.cs file, 480
Exception exception, 141, 142, 158
exceptions

catch handlers and, 138, 140–141, 157–158, 161
examining in Visual Studio, 140

786 Index

exceptions, continued

exception-safe disposal
creating simple class that uses destructor,

336–339
IDisposable interface, implementing, 339–340
overview, 332
preventing objects from being disposed of more

than once, 340–342
verifying object is disposed after exception, 344

families of, 141
finally blocks and, 159–160
generated from tasks, 579
multiple, 141–147
propagating, 147–149
resulting from earlier exception, 146
throwing, 154–156, 161
try blocks and, 138–139
unhandled, 139–140, 158
Visual Studio Debugger and, 153

Exceptions dialog box, 153, 577
ExceptWith method, 429
Execute method, 699, 701
Exists method, 437, 459
ExitReadLock method, 610
explicit conversion, 531
Expression text box, 55
expression.Text property, 57
Extensible Application Markup Language

(XAML), 19, 21, 480
ExtensionMethod project, 290
extension methods, 288–292, 294
extensions for assemblies, 17
Extensions namespace, 290
Extract Method dialog box, 81

F
F10 shortcut, 83
fast Fourier transform (FFT), 617
Faulted status, 572
faulted tasks, using continuations with, 581–582
fEx variable, 139
FFT (fast Fourier transform), 617
fields

accessibility of, 168
inheritance and, 274
interfaces and, 302
naming, 169, 353, 648
private, 168, 178, 192, 321, 350–351
public, 168, 350–351, 363

readonly, 247
shared, 181
static, 180–181, 182, 183, 187
vs. properties, 356

FileInfo class, 120
File I/O, 597
FILE menu, 386
FileOpenPicker class, 120, 596
File Open Picker contract, 711
Filled view, 644, 666, 683
Fill property, 307
Filter_Checked method, 716
filterList collection, 722
Filter_SelectionChanged method, 716, 719
filtersItemsControl, 714
Finalize method, 328
finally blocks, 159–160, 332–336
finally keyword, 328
FindAll method, 432
Find by Name button, 383
findByNameClick method, 383
findByPhoneNumberClick method, 384
finding

items in project, 48
methods in class, 49

FindLandSpeed method, 299
Find method, 431–433, 436, 437, 459
Find Next button, 48
FinishFolding method, 474
FinishWelding method, 474
firstDate control, 102
First label control, 638
firstMethod method, 75
FirstName field, 494, 500
FirstName property, 754
First property, 423
First TextBlock control, 642
First TextBox control, 639, 642
float data type, 43, 53
floating-point numbers, 42, 43
float keyword, 219
fname variable, 263
FontSize property, 25, 640
FontStyle style, 672
foreach construct, 441
foreach loop, 421
foreach statement, 238, 264

use with arrays, 238, 255
use with Dictionary<TKey, TValue> collection, 427
use with LinkedList<T> object, 423

 Graph Demo window

 Index 787

FormatException, 138, 139, 141, 142, 146
Format method, String class, 226
forms

adding controls to, 22–28
resizing, 27
use of term, 22

for statements
multiple initializations and updates in loop, 124
omitting parts of, 124
purpose of, 123
scope of, 125
syntax, 123
use with arrays, 238, 255

forward slashes (//), 11
four-dimensional array, 243
Fourth label control, 638
Frame.Navigate metho, 724
Frame object, 33
freachable queue, 330
“free format”, C# as, 40
FromAsync method, 599, 748, 755
F suffix, 49
Fullscreen view, 666, 683
Func delegate, 460, 579
function pointers, 459
Func<T> type, 700

G
garbage collection. See also destructors

defined, 196
exception-safe disposal

creating simple class that uses destructor, 336–
339

IDisposable interface, implementing, 339–340
overview, 332
preventing objects from being disposed of more

than once, 340–342
verifying object is disposed after exception, 344

forcing, 345
process, 330
reasons for using, 328–330
resource management

disposal methods, 331
overview, 331

using statement, 332–334
when it occurs, 329

GarbageCollectionDemo, 337, 344
GC class, 341, 342

GC.Collect method, 329
GC.SuppressFinalize method, 336
generalized classes, 395
generateDataForGraph method, 577
generateGraphDataAsync method, 593, 594
generateGraphData method, 550, 551, 555–557, 562,

569, 569–570, 593
generateGraphMethod method, 551
Generate Method Stub Wizard, 76, 77–80, 93
generics

building binary tree class using
creating Tree<IItem> class, 402–405
overview, 399
testing Tree<TItem> class, 406–408

generic classes
using constraints with, 396
vs. generalized classes, 395

generic interfaces
contravariant, 415–417
covariant, 414–415

generic methods
creating, 409
defining to build binary tree, 410–412

problem solved by, 389–393
purpose of, 393

gestures, touch-based, 18, 629
get accessors

for indexers, 376
in interfaces, 378–379
overriding property accessibility for, 355–356
use in PhoneBook example, 382

GetAwaiter method, 590
GetData method, 412, 413, 750–751, 757, 764
GetEnumerator method, 442, 447, 448, 450, 451,

452, 453
GetHashCode method, 381, 416, 523, 527
get keyword, 352, 378
GetPosition method, 310
GetTypeName method, 281
GetX accessor, 350
globally unique identifier (GUID), 762
global methods, 68
Global User Interface, Windows 8, 25
global variables, 138
GoTo method, 723
goto statement, 110
GoToState method, 667, 736
GraphDemo application, 548, 554, 568
Graph Demo window, 552, 563

graphical applications, creating

788 Index

graphical applications, creating
developer license for, 19
MainPage.xaml.cs file, 20–21
OK button, code for, 35–37
overview, 18
templates for, 18, 21
user interface, creating, 23–28
Windows Store app, code for, 30–33

graphical user interface (GUI). See user interface
graphImage control, 549
GraphWindow class, 569, 592
GraphWindow constructor, 549
GraphWindow form, 574
GraphWindow.xaml.cs file, 555, 556, 561, 574
GraphWindow.xaml file, 548
GraphWindow.xaml node, 561
GrazingMammal class, 313
greater than 0 value, 400
greater than (>) operator, 97, 99, 114, 400, 522
greater than or equal to (>=) operator, 97, 99, 114,

522
Greeting class, 15
<Grid.ColumnDefinition> section, 654
Grid.Column property, 655
Grid.ColumnSpan property, 656
Grid control, 55, 635–636, 650–660
Grid element, 24
Grid.Row attribute, 653
<Grid.RowDefinitions> section, 653
GroupBy method, 498, 507
grouping statements, 100–101
group operator, 502
GUID (globally unique identifier), 762
GUI (graphical user interface), 3, 458. See user

interface

H
Hand class, 250
Hand.cs file, 250, 437
Handle method, 579
handlWriteCompleted method, 598
hands array, 252
HandSize field, 250
hashing algorithms, 523

HashSet<T> class, 420, 429–430
Haskell programming language, 432
HasValue property, 197
HeaderStyle style, 673
heaps

boxing and, 205
overview, 202–204

Height property, 484
Hello application, 29
Hello form title bar, 27
hidden code, 31
hiding virtual methods, 279–280
High Performance Computing (HPC) Server

2008, 542
HorizontalAlignment property, 24, 637, 640, 653,

656
Horse class, 273, 297
Horse.GetTypeName method, 282
Horse.Talk method, 277
Horse variable, 277, 299
Hour argument, 533
Hour class, 517, 522
Hour parameter, 532
HPC (High Performance Computing) Server

2008, 542
HTTP GET request, 742
Hungarian notation, 42, 297

I
IAsyncResult design pattern, 598
IColor.cs file, 304
IColor interface, 302, 318
ICommand interface

creating class that implements, 700–704
items defined by, 699–700

IComparable<Employee> interface, 504
IComparable interface, 297, 400, 401, 407, 411, 443
IComparable<TItem> interface, 402
IComparer interface, 415–417
IComparer<Object> interface, 416
icons, Microsoft IntelliSense, 11
IDE (integrated development environment), 4
identifiers

naming, 169
overloaded, 76
overview, 40–41

 interfaces

 Index 789

IDisposable.Dispose method, 446
IDisposable interface, 334, 334–336, 335, 339–340,

445
IDraw.cs file, 303, 360
IDraw interface, 302, 308, 318
id TextBox control, 684
IEnumerable interface

implementing, 447–449
LINQ and, 493
overview, 442

IEnumerable<string> object, 495
IEnumerable<T> interface, 415, 442, 495, 503
IEnumerable<TItem>.GetEnumerator method, 452
IEnumerator interface, 442, 443–446
IEnumerator<T> interface, 442
if statements. See also switch statements

Boolean variable as expression for, 100
cascading, 101–106
grouping using blocks, 100–101
nesting, 101–106
purpose of, 114
syntax, 99

IGrazable interface, 299
ILandBound interface, 298
ImageBrush resource, 670
Imaginary property, 528
Implement Interface Explicitly option, 452
Implement Interface Wizard, Visual Studio, 298
implicit conversions, 530
implicitly typed local variables, 63–64
implicit variable declarations, 43
increment (++) operator, 61–62, 116, 520–521, 522
indexers

accessors, 376
vs. arrays, 376–377
creating, 386
defined, 371
examples using, 373–375, 379–384

calling indexers, 383–385
testing application, 385–386
writing indexers, 382–383

in interfaces, 378–379, 387
vs. methods, 375
non-numeric subscripts, use of, 376
overloading, 376
used as ref or out parameters, 377

Indexers project, 380
indexes, array, 237
IndexOf method, 382, 723
IndexOutOfRangeException, 579, 581

IndexOutOfRangeException exception, 237
indirect unmanaged resources, 327
inequality (!=) operator, 96, 523
infinite values, 53
inheritance

assigning classes, 276–277
base class constructors, calling, 274–275
declaring, 272–273
declaring new methods, 277–278
declaring override methods, 280
declaring virtual methods, 279
defined, 271
hierarchies

creating, 283–288
exceptions and, 141

interfaces and, 297, 298, 302
not applicable to structures, 274
protected access and, 282–283
and System.Object class, 274

initializations, multiple, 124
InitializeComponent method, 30, 34
InitializeService method, 743
InnerException property, 146
INotifyPropertyChanged interface, 690–691, 704
“Input string was not in a correct format” error

message, 55
INSERT command, 741
InsertIntoTree method, 411, 410–412
Insert method, 403–404, 405, 434
instance methods, 178–180
Int32.Parse method, 52
IntBits type, 374–375
int data type, 43
integer arithmetic, 151–153, 161
integer types, 216
integrated development environment (IDE), 4
IntelliSense

icons, 11
using when writing code, 9–11

interfaces
abstract classes and, 312–314
declaring, 323
defining, 296–297, 302–304
generic

contravariant, 415–417
covariant, 414–415

implementing, 297–298, 300–302, 304–309, 323
indexers in, 378–379, 387
keyword, 296
multiple, 299

790 Index

interfaces, continued

naming, 297
overview, 295–296
properties of, 358–359, 370
referencing classes through, 298–299
restrictions, 302
sealed methods and, 314

Interface template, 304
Intersect method, 503
IntersectWith method, 429, 430
int keyword, 219, 407
int parameter, 69
int.Parse statement, 139
intQueue queue, 394
int type, 216

using, 371–373
using arithmetic operators on, 54–55
using as array of bits, 373–375

int variable, 63, 535
intVar variable, 50
Invalidate method, WriteableBitmap class, 551
InvalidCastException, 206, 207, 413
InvalidOperationException, 156, 157, 421, 446, 755
Invoke method, 589
IPrintable interface, 396
IRetrieveWrapper object, 415
IRetrieveWrapper<T> interface, 414, 414–415
IsAddingOrEditing property, 757, 767
IsAdding property, 756
IsAtEnd property, 705
IsAtStart property, 705, 710
IsBrowsing property, 756
IsBusy property, 752
IsCancellationRequested property, 566, 567, 568
IsCardAlreadyDealt method, 249, 436
iscardChanges Command variable, 760
IsChecked property, 156
IsEditing property, 757
IsEnabled property, 767
IsItemClickEnabled property, 723
IsMatch method, 758
IsNullOrEmpty method, 384
is operator, 207
isplayData method, 121
IsProperSubsetOf method, 430
IsProperSupersetOf method, 430
IsSticky property, 708
IsSubsetOf method, 429
IsSuitEmpty method, 249

IStoreWrapper<T> interface, 414–415
ItemClick property, 723
ItemsControl control, 714
ItemsSource property, 694, 723
iteration statement, 126
iteration statements. See do statements; for

statements; while statements
do statements

stepping through, 129–134
syntax, 125
writing, 127–129

for statements
multiple initializations and updates in loop, 124
omitting parts of, 124
purpose of, 123
scope of, 125
syntax, 123
use with arrays, 238, 255

while statements, 135
purpose of, 117
syntax, 117
terminating, 117
writing, 118–123

iteration variable, 239
i variable, 117, 190, 205
IWrapper<A> object, 413
IWrapper interface, 413
IWrapper<string> interface, 413

J
jagged arrays, 243–244
JavaScript Object Notation (JSON), 741
joining data, 500–501
Join method, 500
join operator, 502–503
JSON (JavaScript Object Notation), 741

K
Key property, 427
keys, associating with values, 427–429
key/value pair, 428
KeyValuePair<TKey, TValue> structure, 427, 428
keywords, table of, 40–41

 MainWindow.xaml file

 Index 791

L
lambda expressions

anonymous methods and, 476
delegates and, 474–476
forms of, 475–476
overview, 432–433

Land method, 284
Language-Integrated Query (LINQ). See also PLINQ

(Parallel LINQ)
deferred evalutation and, 509–513
joining data, 500–501
ordering data, 497–498
overview, 491–492
querying in Tree<TItem> objects, 503–509
query operators, 501–503
selecting data, 494–496

LastError property, 767, 771
LastName field, 500
LayoutAwarePage.cs file, 716
learning about items, gesture for, 629
leftHandSide parameter, 68, 107
Left Operand text box, 55, 142
left-shift (<<) operator, 372
LeftTree property, 402
Length property, 238, 241, 255, 423
less than 0 value, 400
less than (<) operator, 97, 99, 114, 400, 522
less than or equal to (<=) operator, 97, 99, 114, 522
lhsOperand control, 56
libraries, folder for, 7
license, developer, 19
lifetime of Windows Store apps, 630
LinearGradientBrush, 683
lines, wavy red, 13
line variable, 121
LinkedList<T> collection class

description of, 420
Find method, 431–433
overview, 423–424

LINQ (Language-Integrated Query)
deferred evaluation and, 509–513
joining data, 500–501
ordering data, 497–498
overview, 491–492, 586
Parallel (PLINQ)

canceling queries, 604–605, 624
overview, 599–600

parallelizing query joining two collections,
602–604

parallelizing query over simple collection,
600–602

querying in Tree<TItem> objects, 503–509
query operators, 501–503
selecting data, 494–496

ListBox control, 47
List<Employee> collection, 512
List<Object> object, 417
List<Person> class, 460
List<Person> collection, 432
List<PlayingCard> collection, 435, 437
List<T> collection class

description of, 420
features of, 421
Find method, 431–433, 459–460
methods of that use delegates to perform

operations, 460
number of elements for, determining, 423
overview, 417
vs. arrays, 421

ListView control, 466
lname variable, 263
LoadState method, 715, 718
local scope, 74–75
Locals window, 130
Location field, 5
locking data, 608
lock statement, 342, 343
locX field, 316
locY field, 316
login method, 355
Log method, 180
long data type, 43, 216
long keyword, 219

M
MachineOverheating event, 477, 478
Main method, 8, 31, 32, 240
MainPage class, 30
MainPage.xaml.cs file, 20–21, 30–33, 31, 35
MainPage.xaml file, 684
MainPage.xaml tab, 36
MainViewModel property, 716
MainWindow class, 34, 383, 471, 486
MainWindow.xaml.cs file, 33–34, 35, 47
MainWindow.xaml file, 21, 34

MainWindow.xaml node

792 Index

MainWindow.xaml node, 251
MainWindow.xaml tab, 36
Mammal class, 272
Mammal.Talk method, 277
managed execution environment, 230
mandatory parameters, 86
ManualResetEventSlim class, 609
Margin property, 24, 637, 640, 653
Match Case check box, 48
matched character pairs, 10
matchingFirstNames collection, 719
Matching First Names filter, 722
matchingLastNames collection, 719
Math class, 166, 180
Max method, 459, 460, 499
MaxValue property, 149
memory

boxing and, 205
multidimensional arrays and, 243
object creation and, 326
overview, 202–204
use of int types to save, 372

menu bar, Visual Studio 2012, 6
MessageBox class, 36
MessageDialog class, 36, 596
MessageDialog object, 36
Message Passing Interface (MPI), 542
Message property, 139
methodName, 68
method parameter, 177
methods. See also constructors; delegates

abstract, 312–314, 314
accessibility of, 168
adapter methods, 474–475
asynchronous. See multitasking; parallel

processing; tasks
defined, 586
modifying application to use, 592–594
problem solved by, 586–589
that return values, 595–596
Windows Runtime APIs and, 596–597

belonging to other objects, calling, 74
body statements, 68
calling, 73–74, 93
declaring, 68–69, 93, 277–278
defined, 67
disposal methods, 331, 332–336
encapsulation and, 166

extension methods, 288–292, 294
creating, 290–292
purpose of, 289

finding in class, 49
generic

creating, 409
defining to build binary tree, 410–412

global, 68
implementing encapsulation using, 349–352
vs. indexers, 375
inheritance and, 272
in interfaces, 296, 297, 298, 302
instance methods

writing, 178–180
length of, 71
memory for, 202
naming, 67, 68, 169, 648
overloaded, 10
overloading, 76, 257–258
overriding

declaring override methods, 280
vs. hiding, 279

parameters of, 68, 72. See also optional
parameters
mandatory, 86
named, passing argument as, 87–88, 93
overloading, 76

polymorphic, 281
private, 168
public, 168
replacing with properties, 359–363
return arrays from, 239–240
returning data from, 69–71, 93
scope of, 74–75
sealed, 315
signature of, 277
statements and, 39
statements in, 68
static, 180–181, 184, 187
stepping out of/into, 93
virtual, declaring, 279, 293
writing using Generate Method Stub Wizard, 77–

80
method signatures, 268
Method Stub option, 78
methodToDetectCanExecute field, 700–701
methodToExecute field, 700–701
Microsoft IntelliSense

icons, 11
using when writing code, 9–11

 myVar variable

 Index 793

Microsoft Visual C#
arithmetic operators. See also variables

associativity and, 60–61
controlling precedence, 59
overview, 52
prefix and postfix forms, 62
types and, 52–53
using on int values, 54–55

as “free format” language, 40
identifiers, 40–41
primitive data types

displaying, 44–47
table of, 43
using in code, 47–52

statements, 39–40
syntax, 39
variables, 42–43

Microsoft Visual Studio 2012
console application, creating, 3–8. See

also namespaces
building and running application, 12–14
using Intellisense, 9–11

debugger, 81–85
examining exceptions in, 140
graphical applications, creating

developer license for, 19
for Windows Store apps, code for, 30–33
for WPF applications, code for, 30–31
MainPage.xaml.cs file, 20–21
OK button, code for, 35–37
overview, 18
templates for, 18, 21
user interface, creating, 23–28

menu bar, 6
overview, 3
starting, 4

Microsoft Visual Studio IDE, 298
Min method, 258, 260, 261, 460, 499
MinValue property, 149
mi variable, 263
mm parameter, 225
mobility, 629
Model-View-ViewModel pattern. See MVVM (Model-

View-ViewModel) pattern
Mode parameter, 689
ModifiedDate property, 761
modifying data using data binding, 689–693
modulus (%) operator, 53, 98
monetary values, data type for, 44

Month.cs file, 216
Month first variable, 217
Month.January variable, 217
Month property, 105
Moore, Gordon E., 543
Moore’s Law, 543
MouseButtonEventArgs parameter, 310
MouseRightButtonDown event, 311
MoveNext method, 442, 443, 445, 446, 451
MPI (Message Passing Interface), 542
mscorlib.dll assembly, 17
multicore processors, 542–543
multidimensional arrays, 242–243, 255
multiline comments, 11
multiple interfaces, 299
multiplicative operators, 59, 98
multiplicity of operators, 516
multiply (*) operator, 98
multiplyValues method, 71, 151
multitasking. See also asynchronous methods;

parallel processing; Task class; tasks
defined, 544
reasons for using, 541–542

multiword identifiers, 42
mutipleValues method, 58
MVVM (Model-View-ViewModel) pattern, 682. See

also ViewModel
data binding

displaying data, 682–689
modifying data, 689–693
using with ComboBox control, 693–695

overview, 681–682
myAnonymousObject variable, 185
MyData array, 378
myData variable, 377
MyDoubleMethod method, 530
myField variable, 75
MyFileUtil application, 240
myFp variable, 328
myInt2 variable, 61
myInt3 variable, 61
MyIntMethod method, 531
myInt variable, 60
myMammal variable, 282
myOtherVariable variable, 63
mySquare variable, 326
myVariable variable, 63
myVar variable, 75

Name.cs file

794 Index

N
Name.cs file, 381
named arguments, 87–88, 93
Name field, 185
Name parameter, 379
Name property, 26, 640
namespaces

and scope, 15, 17
assemblies and, 17
longhand names, 16
purpose of, 14–15
used with WPF application, 34
with using directive, 15, 17

Names type, 496
naming

array variables, 234
fields, 169, 353
identifiers, 169
interfaces, 297
methods, 67, 68, 169, 648
properties, 353
variables, 42

NaN (not a number) value, 53
narrowing conversion, 531
native code, 230
Navigate method, 724
navigationParameter parameter, 715
Negate method, 288
NegInt32 type, 288
nested loops, 117
nesting if statements, 101–106
.NET Framework, class library, 17
newCust object, 755
new keyword, 167, 185, 189, 202, 203, 322

arrays and, 234, 255
turning off warnings with, 278

new line, 40
NewNamespace.Greeting class, 15
new operator, 325
New Project dialog box, 19, 402
New Project dialog box, Visual Studio 2012, 5
NextAppBarButtonStyle, 708
NextCustomer command

adding to ViewModel class, 704–711
NextCustomer property, 706–707
nextDigit variable, 131, 132
Next method, 236, 248
Next property, 423

NodeData property, 402, 403, 453
nodeValue parameter, 403
noiseToMakeWhenStarting parameter, 284
noiseToMakeWhenStopping parameter, 284
nongeneric collections, 420
non-params method, 261
noOfDays parameter, 91
NoResultsFound state, 719
noResultsTextBlock control, 715
not a number (NaN) value, 53
not equal to (!=) operator, 99, 522, 527–530
Notify method, 478
NotImplementedException exception, 78, 248, 306
NotImplementedException() method, 78, 79
NotImplementedException(); statement, 446
NotOnCanceled option, 547
NotOnFaulted option, 547
NotOnRanToCompletion option, 547
NOT (!) operator, 96, 98, 198
NOT (~) operator, 372
NOT operator, 96
nullable structure variables, 223
nullable value types, 197–198
nullable variable, 197
NullReferenceException exception, 463, 479
null value

defined, 196
Number field, 194
number generator, 236
NumberOfLegs method, 297
numbers, data types for, 43
NumCircles field, 181
NumCircles++ statement, 181
numElements field, 390
numeric types, infinite values and, 53
numPointsInCircle variable, 616, 617
NumSides property, 367
NumSuits field, 247

O
Object class, 204–205, 412, 529
Object Collection Editor, 641, 642
ObjectComparer object, 416
ObjectCount method, 184
Object.Finalize method, 328
object initializers, 366–368
object keyword, 204, 219
objects, 167

behavior of vs. properties of, 357

 overriding methods

 Index 795

converting to its string representation, 50
creating, 325–326
destroying. See garbage collection
initializing using properties, 365–369
referencing through interfaces, 298–299
vs. classes, 167

obj folder, 14
OData Client Tools, 745
okayClick method, 480
OK button, code for, 35–37
okClick method, 35, 36
oldCustomer variable, 759
on clause, of LINQ expression, 503
OnLaunched method, 33
OnlyOnCanceled option, 547
OnlyOnFaulted option, 547
OnlyOnRanToCompletion option, 547
OnModelCreating method, 740
OnNavigatedTo method, 31, 34, 724
OnPropertyChanged method, 692, 704
OnSearchActivated method, 726
Open dialog box, 119
openFileClick method, 120
openFileDialogFileOk method, 120
OpenFileDialog window, 120
Open file picker, 118
OpenText method, 120
operands

and prefix/postfix forms of operators, 62
defined, 52
of = operator, 60
type of result of operation and, 53

OperationCanceledException, 575, 575–578, 581,
605, 611

OperationCanceledException exception, 576, 579
operators. See also arithmetic operators; Boolean

operators
for accessing/manipulating bits in ints, 372
associativity of, 516
bitwise, 372–373
compound assignment operators

evaluating, 520
constraints, 516
conversion operators

built-in conversions, 530–531
overview, 530
user-defined, 531–532
writing, 533–535

implementing in exercise, 523–529
multiplicity of, 516

overloading, 516–517
overview, 515–516
in pairs, defining, 522–523
precedence of, 98–99, 516
query operators, 501–503
in structures vs. classes, 521–522
symmetric, 518–519, 532–533

operator symbols, 516
optional parameters

ambiguities with, resolving, 87–88
defining, 86–87, 93
defining and calling method taking, 89–92
overview, 85–86
vs. parameter arrays, 266–268

optMethod method, 86, 88
OrderByDescending method, 498
OrderBy method, 497–498, 498
orderby operator, 502
Order Details pane, 467
ordering data, 497–498
Order parameter, 471
Order Placed message, 473
OrdersInMemory class, 602
orientation, 18
origin variable, 179
OR operation, 372
OR (|) operator, 372
OR (||) operator, 97, 98, 99, 114
outcome variable, 57
out keyword, 200
OutOfMemoryException, 204, 243, 549, 616
out parameters, indexers used as, 377
Output window, Visual Studio 2012, 12, 22
o variable, 204
Overall Utilization option, 553
overflow checking, 150

controlling using checked/unchecked
keywords, 151

OverflowException, 139, 141, 150, 153
overloaded methods, 10
overloading

constructors, 170–171
indexers, 376
methods, 76, 257–258

override keyword, 280, 281, 322
overriding methods

declaring override methods, 280
vs. hiding, 279

Package.appxmanifest file

796 Index

P
Package.appxmanifest file, 631
Pack.cs file, 434
<Page.BottomAppBar> element, 768
Page class, 634
<Page.Resources> section, 715
pages, in Windows Store apps

size of, 27
use of term, 22

<Page> tag, 633
PaintOff method, 474
Parallel class, 559, 573
Parallel.For construct, 559
Parallel.ForEach method, 566, 573
Parallel.ForEach<T> method, 560
Parallel.For method, 559–560, 560, 562, 566, 573
Parallel.Invoke construct, 566
Parallel.Invoke method, 560, 564
Parallel LINQ. See PLINQ
ParallelLoopState object, 560, 573
ParallelLoopState parameter, 573
ParallelPI method, 615–621
parallel processing. See also asynchronous methods;

multitasking; PLINQ; Task class; tasks
abstracting tasks using Parallel class, 559–563
implementing parallelism using Task class

modifying application to use Task objects,
555–559

running single-threaded application, 548–553
when to avoid using Parallel class, 564–566

ParallelQuery object, 599
ParallelTest method, 607
parameter arrays

declaring, 260–261
Main method and, 240
of type object, 262
purpose of, 257
Sum method used with, 263–266
vs. optional parameters, 266–268

parameterList, 68
parameters

optional, vs. parameter arrays, 266–268
passing arrays as, 239
ref, 199, 200–202, 210

parameters of methods, 68, 72
mandatory, 86
named, passing argument as, 87–88, 93

optional
ambiguities with, resolving, 87–88
defining, 86–87, 93
defining and calling method taking, 89–92
overview, 85–86

overloading, 76
Parameters project, 192
paramList array, 265
paramList parameter, 264
param parameter, 194
params array, 261
ParamsArray dialog box, 264
ParamsArray project, 263
params int[] parameter, 263
params keyword, 260
parentheses ()

if statements and, 100
in Boolean expressions, 97
in methods, 68, 72
use in precedence, 60

Parse method, 57, 73, 138
partial classes, 172
partial keyword, 172
ParticipantCount property, 611
ParticipantsRemaining property, 611
partitionEnd parameter, 556
partitionStart parameter, 556
PascalCase naming scheme, 169
Pass.cs file, 192
Pass.Reference method, 194
Pass.Value method, 193
passwords, 355
percent sign (%), 53
Performance tab, 553
performCalculationDelegate delegate, 458
performCalculation method, 458
personal computers, price and capacity of, 542–543
Person values, 394
PhoneBook class, 379
PhoneBook.cs file, 381
PhoneNumber.cs file, 381
PhoneNumber parameter, 379
Phone Number text box, 385
Phone property, 691
pi, calculating

using parallel tasks, 619–620
using single thread, 615–618

PickSingleFileAsync method, 596
"pinch" gesture, 629

 properties

 Index 797

pins array, 235
pi variable, 208
PixelBuffer property, WriteableBitmap object, 551
pixelHeight field, 550
pixelHeight variable, 549
pixels, 25
pixelWidth variable, 549
PlayingCard class, 246, 434
playingCardCount field, 250
playingCardCount variable, 251
playingCardCount variable., 437
PlayingCard.cs file, 246
PLINQ (Parallel LINQ)

canceling queries, 604–605, 624
overview, 599–600
parallelizing query joining two collections,

602–604
parallelizing query over simple collection,

600–602
plotButton button, 550
plotButton_Click method, 550, 557, 558–559, 569,

570, 571, 592, 593
plotButton control, 549
Plot Graph button, 571
Plot Graph option, 552
plotXY method, 551
Point class, 174
Point.cs file, 176
pointers, 208, 209
pointsList collection, 620
Point structure, 310
Polygon class, 367–368
Polygon.cs file, 367
polymorphic methods, 280, 281
polymorphism, 321
Pop method, 439
populate method, 446
populating arrays, 235–236
Portable Class Library template, 402
portrait mode, 27
post-decrement (--) operator, 98
postfix form, 62, 521
postfix form of operator, 62
post-increment (++) operator, 98
precedence of operators, 59, 65, 98–99, 516
precedence override () operator, 98
prefix form of operator, 62
pre-increment (++) operator, 98
PresentationCore assembly, 320

PresentationFramework assembly, 320
"press and hold" gesture, 629
“Press any key to continue . . .” prompt, 13
PreviousAppBarButtonStyle, 708
PreviousCustomer command, 704–711
Previous property, 423
primary operators, 98
primitive data types. See also value types

displaying, 44–47
table of, 43
using in code, 47–52

PrimitiveDataTypes program, 44
PrintableCollection class, 396
Print method, 396
private data, and copying reference types, 191
private fields, 178, 192, 321, 350–351, 352
private _isBusy field, 752
private keyword, 70, 168, 191, 322
private _mainPageViewModel field, 716
ProcessData method, 239
ProcessFile method, 240
Processor object, 458
processors, multicore, 542–543
Program class, 8, 600
Program.cs file, 8, 454
ProgressRing control, 753
PROJECT menu, 307
properties

accessibility of, 355–356
assigning values through, 356
automatic

defining, 367–368
generating, 363–364

explicit implementation of, 359
exposing arrays as, 377
initializing objects using, 365–369
of interfaces, declaring, 358–359, 370
naming, 353
read-only, 354–355, 364, 369
read/write, 354, 369
replacing methods with, 359–363
restrictions applying to, 356–357
for secure data, 355
static, declaring, 354
syntax, 351–352
using, 354
vs. behavior of objects, 357
vs. fields, 356
write-only, 355, 364

Properties folder, Solution Explorer

798 Index

Properties folder, Solution Explorer, 7
Properties window, 24, 636

context sensitivity, 24
description of, 24

PropertyChanged event, 690–691, 704, 758, 760
PropertyChangedEventArgs parameter, 692
protected access, 282–283
protected keyword, 282, 322
pseudorandom number generator, 236
public data, 350
public fields, 168, 350–351, 363
public keyword, 168, 322
public methods, 168
public properties, 352
Push method, 419, 439
p variable, 78
px suffix, 25
Pythagoras theorem, 178

Q
quad-core machines, 555
QueryBinaryTree solution, 503
query operators, 501
queryText variable, 715, 718
Queue class, 389–392, 391
Queue<Horse> parameter, 395
Queue<int> collection, 425
Queue object, 390
Queue<T> class, 395, 420, 425
Quick Find dialog box, 48
Quick Replace dialog box, 48

R
radio buttons, 156
radius field, 191
randomCardSelector variable, 247
Random class, 236
random number generator, 236
range checks, 375
RanToCompletion, 572, 578
ReadData method, 240
readDouble method, 77
reader.Dispose function, 159
reader.ReadLine method, 121
reader variable, 120

ReaderWriterLockSlim class, 610
readInt method, 77, 79
ReadLine method, 78, 79, 331
readonly fields, 247
read-only properties, 354–355, 364, 369
read/write properties, 354, 369
Real property, 528
Rebuild Solution option, 527
Rectangle class, 305
Rectangle control, 683
rectangular arrays, 243
rect field, 307
recursive algorithms, 443
red lines, 13
refactoring code, 81, 313
Reference Manager dialog box, 407
Reference method, 194
reference objects, 239
reference parameters, 192–195
References folder, 7, 17
referenceToMyFp variable, 328
reference type parameters, 202
reference types, 189

copying, 191, 210
vs. value types, 190

ref keyword, 199, 210, 476
ref parameters, 199, 200–202, 210, 377
Regex class, 758
Register method, 568
RegularExpressions namespace, 758
regular methods, 433
relational operators, 96–97, 99
Release folder, 14
remainderValues method, 58, 71
RemoveAt method, 421
RemoveFirst method, 423
RemoveLast method, 423
Remove method, 421, 464
RemoveParticipant method, 610
RenderTransform property, 675
Representational State Transfer (REST), 741
requestPayment method, 469
Reset method, 445, 609
resizing

controls, 26
forms, 27

resolutions, screen, 27, 644, 649, 688
ResourceDictionary.MergeDictionaries element, 671
response time. See asynchronous methods

 Shift+F11 shortcut

 Index 799

responsiveness, improving, 541
REST (Representational State Transfer), 741
Result property, 595
resultsGridView control, 714, 723
resultsListView control, 715
Result text box, 55, 147
return statement, 69–70, 93, 110
Reverse property, 451
rhsOperand control, 56
rhsOperand text box, 73
rightHandSide parameter, 68, 107
Right Operand text box, 55, 146
RightTapped event, 311
RightTree property, 402
Rotate Clockwise button, 648
Rotate Counterclockwise button, 658
"rotate" gesture, 629
round brackets. See parentheses
RoutedEventArgs object, 479
RoutedEventHandler delegate, 479
RowDefinition item, 484
Row property, 653
Run method, 546, 575
Running status, 572
Run to Cursor option, 82

S
Sample Value box, 46
SaveAppBarButtonStyle style, 769
SaveChanges command, 757, 770
SaveChanges Command variable, 763
SaveChanges method, 755
Save dialog box, 345
Save method, 761
saving files, when not necessary, 13
sbyte keyword, 219
scalability, improving, 542
sCardAlreadyDealt method, 250
scope

blocks and, 101
namespaces and, 15, 17
of classes, 75
of methods, 74–75
of variables, 74

ScreenPosition structure, 352
screen resolution, 27, 644, 649, 688
sealed classes, 314, 323
sealed keyword, 314, 315, 322

sealed methods, 315
Search charm, starting application from, 725–729
Search contract

implementing in example application, 712–720
overview, 712
testing, 721–722

SearchPageResults.xaml.cs file, 723
searchResults collection, 719
SearchResultsPage class, 716
SearchResultsPage.xaml.cs file, 713
SearchResultsPage.xaml file, 712
Season enumeration, 214
secondDate control, 102
secondDate TextBlock control, 106
Second label control, 638
seconds variable, 100
Second TextBlock control, 642
Second TextBox control, 639, 642
secure data, properties for, 355
security constraints on Windows Store apps, 630
Security Warning message box, 739
Segoe UI, Windows 7, 25
selectedFilter variable, 716
SelectedValue property, 693
selecting item, gesture for, 629
SelectionChanged event, 47
SelectionChangedEventArgs parameter, 716
Select method, 494, 495–497, 500, 501, 507
selector parameter, 495
SemaphoreSlim class, 609
semicolon (;), 40
sentinel variable, 117
separators, 40
sequence of characters, data type for, 44
SerialPI method, 615–621
SerialTest method, 606, 607
set accessors

for indexers, 376
in interfaces, 378–379
overriding property accessibility for, 355–356

SetColor method, 302, 307, 310, 311, 316, 361
SetData method, 412, 413
set keyword, 352, 378
SetLeft method, Canvas class, 307
SetLocation method, 302, 306, 308, 316, 360, 361
SetTop method, Canvas class, 307
SetX modifier, 350
shared fields, 181
Share Target contract, 711
Shift+F11 shortcut, 84

shift operator

800 Index

shift operator, 215
ShipOrder method, 469, 473
Shipper class, 468, 473, 482
ShippingCompleteDelegate delegate, 483
ShipProcessingComplete event, 483
short-circuiting, 98
short keyword, 219
Show All Files toolbar button, 13
showBoolValue method, 51
showDoubleValue method, 51
showFloatValue method, 49
showIntValue method, 50
showResult method, 71, 73
Show Steps button, 127
showStepsClick method, 127, 133
Shutdown method, 463
shutdown methods, 462
side1Length field, 365
side2Length field, 365
side3Length field, 365
SideLength property, 367
SignalAndWait method, 610
signatures of methods, 277, 280
Simulator, testing Windows Store apps using, 647
single characters, data type for, 44
single quotation mark ('), 112
single string parameter, 366
Sin method, 180
SizeChanged event, 667, 736
sizing. See resizing
SkipAheadAppBarButtonStyle style, 736
SkipBackAppBarButtonStyle style, 736
Skip method, 503
slates, 18
"slide" gesture, 629
.sln suffix, 45
slowMethod method, 587, 589
Snapped view, 27, 554, 644, 659, 662–665, 688
SolidColorBrush object, 307, 362
Solution Explorer pane, Visual Studio 2012

files in, 7–8
overview, 6–7

Solution ‘TestHello’ file, 7
SomeBehavior method, 336
SortedDictionary<TKey, TValue> collection class, 428
SortedDictionary<TKey, TValue> object, 428
SortedList<TKey, TValue> collection class, 420,

428–429

SortedSet<T> collection type, 431
sorting data. See binary trees
Sort method, 417, 421
source parameter, 495
Source property, 551
space character, 40
SpinWait method, 601
Split method, 603
SQL SELECT commands, 735
SQL (Structured Query Language), 492
Sqrt method, 178, 180
square brackets ([]), 60, 234
Square class, 304–305, 309–312, 318–319, 326
Square.cs file, 304
src variable, 120
stack memory, 203
StackOverflowException exception, 353
StackPanel control, 636, 708
stacks, 202–204, 205
Stack<T> class, 419, 420, 426
StandardSmallIcon70ItemTemplate style, 715
StandardStyles.xaml file, 20, 671, 708, 715
StartCheckoutProcessing method, 471
Start Debugging command, 13
StartEngine method, 283
Start method, 546
StartNew method, 550
StartupUri property, 34
Start Visual Studio button, 4
Start Without Debugging command, DEBUG

menu, 29
statements

checked, 150
explanation of, 39–40
grouping, 100–101
in methods, 68

static classes, 182
static fields, 180–181, 182, 187
static methods, 180–181, 184, 187
static properties, 354
StaticResource keyword, 670
static void method, 410
Status property, Task object, 572
Step Out command, debugger, 83
Step Over command, debugger, 83
Stop Debugging option, 28
StopEngine method, 283
StopFolding method, 474

 System.Single structure

 Index 801

stopMachinery delegate, 474
StopMachineryDelegate delegate, 477
stopMachinery variable, 464
Stop method, 573
Stopwatch object, 550
StorageFile class, 597
Stream interface, 597
StreamReader class, 331, 334
String class, 226, 412, 603
string data type, 44
String.IsNullOrEmpty(personsPhoneNumber.Text)

expression, 384
string keyword, 219, 407
StringReader class, 331
strings of characters, 42
StructsAndEnums.Date string, 226
StructsAndEnums namespace, 216
Structured Query Language (SQL), 492
structures

vs. classes, 221–222
creating and using, 224–227
declaring, 220
declaring variables, 222–223
inheritance not applicable to, 274
initialization, 223–224
operators in, vs. in classes, 521–522
overview, 218
types of, 219
variables, copying, 227–228
vs. classes, 221–222, 228–230

styles, applying to user interface, 669–678
<Style> tag, 709
subscribing to events, 478, 488
Subtitle control, 720
subtraction (-) operator, 98
subtractValues method, 58, 71, 149
subtrees, 396
SuckleYoung method, 272
Suit.cs file, 246
Suit parameter, 249
suit variable, 436
summary methods, 499
Sum method, 263, 263–266, 267, 460
sumTotal variable, 265
SuppressFinalize method, 336, 341, 342
Swap<T> method, 409
Swim method, 273
switch statements, 114

break statements and, 110
overview, 107–108
rules, 109–110
syntax, 108–109
writing, 111–112

symmetric operators, 517, 518–519, 532–533
synchronizing concurrent access to data. See

also concurrent collection classes
cancelling synchronization, 611
concurrent collection classes

list of, 612
locking data, 608
overview, 608–610
synchronization primitives for coordinating

tasks, 608–611
syntax rules, 40
System.Array class, 238, 241, 442
System.Boolean structure, 219
System.Byte structure, 219
System.Collections.Concurrent namespace, 620
System.Collections.Generic namespace, 395, 396,

417, 419, 428, 442
System.Collections.Generics namespace, 395
System.Collections.IEnumerable interface, 441
System.Collections.IEnumerator.Current, 446
System.Collections.IEnumerator interface, 442
System.Console class, 15
System.Data.Services.Client namespace, 749
System.Decimal structure, 219
System.Double structure, 219
System.Exception exception, 589
SystemException family, 141
System.Generic.Concurrent namespace, 420
System.IComparable interface, 400, 401
System.IComparable<T> interface, 401
System.Int16 structure, 219
System.Int32 structure, 219, 288, 407
System.Int64 structure, 219
System.InvalidCastException, 392
System.IO namespace, 120, 331
System.Linq namespace, 495, 501
System.Math class, 178
System namespace, 297, 461
System.Numerics namespace, 524
System.Object class, 204–205, 219, 274, 276
System.Object namespace, 523
System.Random class, 236
System.SByte structure, 219
System.Single structure, 219

System.String class

802 Index

System.String class, 190, 219
System.Threading.CancellationToken parameter, 566
System.Threading.CancellationTokenSource

object, 567
System.Threading namespace, 544, 608, 609
System.Threading.Tasks namespace, 544, 559
System.Threading.Tasks.TaskStatus enumeration, 572
System.UInt16 structure, 219
System.UInt32 structure, 219
System.UInt64 structure, 219
System.ValueType class, 274
System.Windows.Controls, 34
System.Windows.Media namespace, 304
System.Windows namespace, 36, 320
System.Windows.Shapes namespace, 305

T
tablet computers, 18
Take method, 503
TakeOff method, 284
Tan method, 180
TappedRoutedEventArgs parameter, 310
Task class, 544, 544–545, 605, 748

implementing parallelism using
modifying application to use Task objects,

555–559
running single-threaded application, 548–555

Task constructor, 545
TaskContinuationOptions type, 547
TaskCreationOptions enumeration, 546
TaskFactory class, 599, 755
Task<int> type, 595
Task List window, 173
Task Manager window, 29, 554
Task objects, 544

creating, 545–546
running, 546

Task Parallel Library, 748
tasks. See also parallel processing

abstracting, using Parallel task, 559–563
cooperative cancellation of

acknowledging cancellation, 576–578
adding cancellation functionality to applica-

tion, 568–572
displaying status of tasks, 574–576
overview, 566–568

using continuations with canceled/faulted
tasks, 581–582

coordinating, synchronization primitives for, 608–
611

exceptions generated by, 579
using continuations with, 581–582

TaskScheduler class, 546
TaskScheduler object, 546
Task<TResult> class, 595
Task type, 587
Task.WaitAll method, 570, 579
Task.WaitAny method, 579
TemperatureMonitor class, 477, 478
templates, 18
tempMonitor.MachineOverheating event, 478
Test1 method, 601
Test2 method, 603
TestHello.csproj file, 7
TestHello.exe file, 14
TestHello file, 7
TestHello.Greeting class, 15
TestHello.sln file, 7
TestIfTrue method, 601
testing

Search contract, 721–722
Tree<TItem> class, 406–408

text
aligning, 24
wrapping, 24

TextBlock control, 23, 24, 549, 636
TextBox control, 23
Text Editor window, 556
Text property, 24, 25, 50, 121, 383, 684
TextReader class, 120, 331
TextReader variable, 120
TextWrapping property, 640
ThenByDescending method, 498
ThenBy method, 498
Third label control, 638
Third TextBox control, 639
this keyword, 177, 289, 374, 375, 411
this.stopMachinery() method, 463
Thread class, 544
threading, 544–545
ThreadPool class, 544–545, 545
threads, 330, 545
thread-safe data access

calculating pi using parallel tasks, 619–620
calculating pi using single thread, 615–618

 ushort type

 Index 803

general discussion, 612–614
using thread-safe collection, 621–622

Thread.Sleep method, 566
three-dimensional arrays, 244
ThrowIfCancellationRequested method, 575, 577
throwing exceptions, 154–156, 161
Thrown column for Common Language Runtime

Exceptions option, 153
throw statement, 110, 154
tilde (~) character, 327
Time structure, 222
Time variable, 223
TItem parameter, 447
TItem property, 402
title bars, 27
Title property, 27, 720
ToArray method, 434, 510, 512
TODO comments, 173
token parameter, 569
tokenSource field, 569
tokenSource variable, 569, 571
token variable, 570
ToList method, 510, 512
Toolbars command, 82
Toolbox

keeping visible, 23
use in user interface creation, 23

ToString method, 50, 70, 73, 215, 219, 225, 226, 279,
504, 525

touch-based gestures, 18, 629
transistors, 543
Tree class, 402
TreeEnumerator class, 443, 443–446
TreeEnumerator.cs file, 444
TreeEnumerator<TItem> class, 444
Tree<int> object, 454
Tree<TItem> class, 402

creating, 402–405
defining enumerator for, using iterator, 452–454
implementing IEnumerable<TItem> interface

in, 447–449
querying data in objects, 503–509
testing, 406–408

TResult type parameter, 460, 495
Triangle class, 365
Trot method, 273
try blocks, 138–139

destructors and, 328
exception matching multiple catch handlers at end

of, 142

exception thrown by with no corresponding catch
handler, 139–140

try/catch statement block, writing, 144–147
TSource type parameter, 495
T type parameter, 394
two-dimensional array, 242
two-way data binding, 689–693
TwoWay mode, 690
type parameters, 394–395, 447
types. See data types
typeSelectionChanged method, 47, 48, 49

U
uint keyword, 219
uint type, 216
ulong keyword, 219
ulong type, 216
unary operators, 62, 98, 516, 517
unassigned variables, 44
unboxing, 206–207
unchecked block statements, 150
unchecked keyword, 151
underscore (_) character, 40, 42, 169, 353
unhandled exceptions, 139–140, 158
Union method, 503
UnionWith method, 429
unmanaged applications, 230
unsafe code, 209
unsafe keyword, 209
unsubscribing from events, 478, 489
UPDATE command, 741
UpdateObject method, 754, 762
updates, multiple, 124
usCompanies collection, 510
usComp variable, 497
user-defined constructors, 224
user-defined conversion operators, 531–532
user interface

applying styles to, 669–678
creating, 23–28
events, 479–480
scalable, implementing

adapting layout using Visual State
Manager, 660–669

laying out page, 634–645
tabular layout using Grid control, 650–660

User-unhandled check box, 577
ushort keyword, 219
ushort type, 216

using directive

804 Index

using directive, 15, 17
Util class, 263, 264, 289
Util.cs file, 264
Util.Negate method, 289

V
ValidateCustomer method, 757, 758, 765, 771
Value.cs file, 246
value keyword, 376
Value method, 192
value parameters, 192–195
Value property, 197, 198, 427
values

assigning
same to several variables, 65
through properties, 356
to variables, 43

associating keys with, 427–429
asynchronous methods returning, 595–596
changing, 65
comparing, 114
determining whether equivalent, 114
infinite, 53
integer, using arithmetic operators on, 54–55
operators and, 52
string, converting to integer, 52

Value text box, 50
value type parameters, 202
value types

copying, 210
structures

creating and using, 224–227
declaring, 220
declaring variables, 222–223
initialization, 223–224
overview, 218
types of, 219
vs. classes, 221–222

vs. reference types, 190
varargs macros, 260
variables. See also values

adding amount to, 135
array

declaring, 234, 255
naming, 234

Boolean
as expression for if statement, 100
declaring, 95–96, 114

declaring, 42–43, 65
defined with type parameter, initializing, 447
enumeration, 214–215
explanation of, 42
global, 138
implicitly typed local, declaring, 63–64
in classes, 167
incrementing and decrementing, 61–62
local, 74–75
naming, 42
nullable, 197
pointers, 208, 209
scope of, 74
static. See static fields
structure variables, copying, 227–228
subtracting amount from, 135
unassigned, 44

Variant type, 63
Variant variables, 63
var keyword, 63, 68, 185, 496
Vehicle class, 283
Vehicle.cs file, 283
Vehicles dialog box, 283
Vehicle variable, 288
VerticalAlignment property, 24, 637, 640, 653, 656
View Detail dialog box, 146
VIEW menu, 31, 32
ViewModel

add and edit functionality, implementing in, 756–
764

adding commands to
ICommand Interface, creating class that imple-

ments, 700–704
ICommand interface, items defined by, 699–700
NextCustomer and PreviousCustomer com-

mands, 704–711
creating, 697–699
error reporting, adding to, 764–766

ViewModel.cs file, 696, 704
virtual keyword, 279, 322, 359
virtual methods

declaring, 279, 293
list of from IntelliSense, 287
polymorphism and, 281
signatures of, 280

Visibility property, 662
Visual C#

arithmetic operators. See also variables
associativity and, 60–61
controlling precedence, 59

 Windows.UI.Xaml.Controls

 Index 805

overview, 52
prefix and postfix forms, 62
types and', 52–53
using on int values, 54–55

as "free format" language, 40
identifiers, 40–41
primitive data types

displaying, 44–47
table of, 43
using in code, 47–52

statements, 39–40
syntax, 39
variables, 42–43

Visual State Manager, 660–669
Visual Studio 2012. See Microsoft Visual Studio 2012
Visual Studio Debugger, 153
void keyword, 69

W
WaitAll method, Task class, 548
WaitAny method, Task class, 548
WaitingToRun status, 572
Wait method, 548, 579, 609
WalkTree method, 405, 407, 412
warnings, turning off, 278
wavy red line, 13
WCF Data Service, 754–764
WCF Data Service template, 741, 773
WCF (Windows Communication Foundation), 741
weddingAnniversaryCopy variable, 229
weddingAnniversary variable, 227, 229
Whale class, 273
Where filter, 510
Where method, 497, 507
while construct, 124
while loop, 117, 121, 202, 436
while statements, 135

purpose of, 117
syntax, 117
terminating, 117
writing, 118–123

white space, 40
whole numbers, data type for, 43
Width property, 640
Win32 APIs, 230
Windows 7. See graphical applications, creating; WPF

applications

Windows 8. See also Windows Store apps
touch-based gestures and, 18
Windows Store apps and, 18
WinRT (Windows Runtime) on, 320

WindowsBase assembly, 320
Windows class, 477
Windows Communication Foundation (WCF), 741
Windows error handling, 143
Windows Forms Application template, 18
WindowSizeChanged method, 667, 724, 736
Windows Presentation Foundation applications.

See WPF applications
Windows Presentation Foundation Application

template. See WPF Application template
Windows Presentation Foundation (WPF), 18, 172,

303, 585, 702
Windows Runtime (WinRT), 231, 320, 321, 585,

596–597
Windows Store apps, 18. See also Blank App

template
assemblies used with, 34
closing, 29
command buttons on, locating, 245
design features, 628
developer license, 19
displaying code file for page, 31
displaying data in using data binding, 682–689
distribution and deployment of, 630
general explanation of, 628–631
graphical application, creating, 30–33
interactions with other apps, 630. See

also contracts
lifetime of, 630
look and feel of, 628
mobility and, 629
modifying data in using data binding, 689–693
pages in, use of term, 22
portrait mode, viewing in, 27
searching in. See Search charm; Search contract
security constraints on, 630
specifying of initial form to display, 34
testing using Simulator, 647
viewing on various devices, 27
WinRT and, 320

Windows Store style, 18
Windows.UI namespace, 320
Windows.UI.Popups namespace, 36
Windows.UI prefix, 34
Windows.UI.Xaml.Controls, 34

Windows.UI.Xaml.Media.Imaging namespace

806 Index

Windows.UI.Xaml.Media.Imaging namespace, 549
Windows.UI.Xaml namespace, 702
Windows.UI.Xaml.Shapes namespace, 305
window, use of term, 22
WinRT data type, 320
WinRT (Windows Runtime), 231, 320, 321, 585,

596–597
WithCancellation method, 604
Withdraw method, 357
wi variable, 194
WPF Application icon, 21
WPF applications

assemblies used with, 34
graphical application, creating for, 33–34
namespaces used with, 34
specifying of initial form to display, 34

WPF Application template, 18, 21
WPF (Windows Presentation Foundation), 18, 172,

303, 585, 702
WrappedInt class, 194
Wrapper structure, 377
Wrapper<T> class, 413, 414–415
wrapping text, 24
WriteableBitmap object, 549, 550, 551, 597
WriteAsync method, 597
writeFee method, 77, 80
WriteLine method, 76, 80, 258

overloads for, 263
versions of, 10

WriteLine statement, 12
Write method, 597
write-only properties, 355, 362, 364

X
XAML (Extensible Application Markup

Language), 19, 21, 480
XAML pane, 24, 25
x-coordinate, 551
xCoord variable, 616, 622
xDiff variable, 178
x:Name property, 640
XOR (̂) operator, 376
X property, 354

Y
yCoord variable, 616, 622
yDiff variable, 178
yield keyword, 451
Y property, 354

Z
ZIndex property, 753
zooming

gesture for, 629
in and out of Design View window, 47

about the author

JOHN SHARP is a principal technologist working for Content Master Ltd in
the United Kingdom. He gained an honors degree in Computing from Impe-
rial College, London. He has been developing software and writing training
courses, guides, and books for over 25 years. John has experience in a wide
range of technologies, from database systems and UNIX through to C, C++,
and C# applications for the .NET Framework, together with Java and JavaScript

development. Apart from six editions of C# Step By Step, he has authored several other
books, including Windows Communication Foundation Step By Step and the J# Core
Reference.

How To
Download
Your eBook

Please note: This access code is non-transferable and is void if altered or revised in any way. It may not be
sold or redeemed for cash, credit, or refund.

TXDQPNM

Your access code:

Microsoft® Visual C#® 2012 Step by Step

 To download your eBook, go to

http://go.microsoft.com/FWLink/?Linkid=224345
 and follow the instructions.

Thank you for purchasing this Microsoft Press® title. Your companion PDF eBook is ready to
download from O’Reilly Media, official distributor of Microsoft Press titles.

Your PDF eBook allows you to:

• Search the full text
• Print
• Copy and paste

Best yet, you will be notified about
free updates to your eBook.

If you ever lose your eBook file, you
can download it again just by logging
in to your account.

Need help? Please contact:
mspbooksupport@oreilly.com
or call 800-889-8969.

Please note: You will be asked to create a
free online account and enter the access
code below.

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

	Table of Contents
	Introduction
	Part I: Introducing Microsoft Visual C# and Microsoft
	Chapter 1: Welcome to C#
	Beginning Programming with the
Visual Studio 2012 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Examining the Windows Store App
	Examining the WPF Application
	Adding Code to the Graphical Application

	Summary
	Chapter 1 Quick Reference

	Chapter 2: Working with Variables, Operators, and Expressions
	Understanding Statements
	Using Identifiers
	Identifying Keywords

	Using Variables
	Naming Variables
	Declaring Variables

	Working with Primitive Data Types
	Unassigned Local Variables
	Displaying Primitive Data Type Values

	Using Arithmetic Operators
	Operators and Types
	Examining Arithmetic Operators
	Controlling Precedence
	Using Associativity to Evaluate Expressions
	Associativity and the Assignment Operator

	Incrementing and Decrementing Variables
	Prefix and Postfix

	Declaring Implicitly Typed Local Variables
	Summary
	Chapter 2 Quick Reference

	Chapter 3: Writing Methods and Applying Scope
	Creating Methods
	Declaring a Method
	Returning Data from a Method
	Calling Methods

	Applying Scope
	Defining Local Scope
	Defining Class Scope
	Overloading Methods

	Writing Methods
	Using Optional Parameters and Named Arguments
	Defining Optional Parameters
	Passing Named Arguments
	Resolving Ambiguities with Optional Parameters
and Named Arguments

	Summary
	Chapter 3 Quick Reference

	Chapter 4: Using Decision Statements
	Declaring Boolean Variables
	Using Boolean Operators
	Understanding Equality and Relational Operators
	Understanding Conditional Logical Operators
	Short-Circuiting
	Summarizing Operator Precedence and Associativity

	Using if Statements to Make Decisions
	Understanding if Statement Syntax
	Using Blocks to Group Statements
	Cascading if Statements

	Using switch Statements
	Understanding switch Statement Syntax
	Following the switch Statement Rules

	Summary
	Chapter 4 Quick Reference

	Chapter 5: Using Compound Assignment
	Using Compound Assignment Operators
	Writing while Statements
	Writing for Statements
	Understanding for Statement Scope

	Writing do Statements
	Summary
	Chapter 5 Quick Reference

	Chapter 6: Managing Errors and Exceptions
	Coping with Errors
	Trying Code and Catching Exceptions
	Unhandled Exceptions
	Using Multiple catch Handlers
	Catching Multiple Exceptions
	Propagating Exceptions

	Using Checked and Unchecked Integer Arithmetic
	Writing Checked Statements
	Writing Checked Expressions

	Throwing Exceptions
	Using a finally Block
	Summary
	Chapter 6 Quick Reference

	Part II: Understanding the C# Object Model
	Chapter 7: Creating and Managing Classes and Objects
	Understanding Classification
	The Purpose of Encapsulation
	Defining and Using a Class
	Controlling Accessibility
	Working with Constructors
	Overloading Constructors

	Understanding static Methods and Data
	Creating a Shared Field
	Creating a static Field by Using the const Keyword
	Understanding static Classes
	Anonymous Classes

	Summary
	Chapter 7 Quick Reference

	Chapter 8: Understanding Values and References
	Copying Value Type Variables and Classes
	Understanding Null Values and Nullable Types
	Using Nullable Types
	Understanding the Properties of Nullable Types

	Using ref and out Parameters
	Creating ref Parameters
	Creating out Parameters

	How Computer Memory Is Organized
	Using the Stack and the Heap

	The System.Object Class
	Boxing
	Unboxing
	Casting Data Safely
	The is Operator
	The as Operator

	Summary
	Chapter 8 Quick Reference

	Chapter 9: Creating Value Types with Enumerations and Structures
	Working with Enumerations
	Declaring an Enumeration
	Using an Enumeration
	Choosing Enumeration Literal Values
	Choosing an Enumeration’s Underlying Type

	Working with Structures
	Declaring a Structure
	Understanding Structure and Class Differences
	Declaring Structure Variables
	Understanding Structure Initialization
	Copying Structure Variables

	Summary
	Chapter 9 Quick Reference

	Chapter 10: Using Arrays
	Declaring and Creating an Array
	Declaring Array Variables
	Creating an Array Instance

	Populating and Using an Array
	Creating an Implicitly Typed Array
	Accessing an Individual Array Element
	Iterating Through an Array
	Passing Arrays as Parameters and Return Values for a Method

	Copying Arrays
	Using Multidimensional Arrays
	Creating Jagged Arrays

	Summary
	Chapter 10 Quick Reference

	Chapter 11: Understanding Parameter Arrays
	Overloading: A Recap
	Using Array Arguments
	Declaring a params Array
	Using params object[]
	Using a params Array

	Comparing Parameter Arrays and Optional Parameters
	Summary
	Chapter 11 Quick Reference

	Chapter 12: Working with Inheritance
	What Is Inheritance?
	Using Inheritance
	The System.Object Class Revisited
	Calling Base Class Constructors
	Assigning Classes
	Declaring new Methods
	Declaring virtual Methods
	Declaring override Methods
	Understanding protected Access

	Understanding Extension Methods
	Summary
	Chapter 12 Quick Reference

	Chapter 13: Creating Interfaces and
	Understanding Interfaces
	Defining an Interface
	Implementing an Interface
	Referencing a Class Through Its Interface
	Working with Multiple Interfaces
	Explicitly Implementing an Interface
	Interface Restrictions
	Defining and Using Interfaces

	Abstract Classes
	Abstract Methods

	Sealed Classes
	Sealed Methods
	Implementing and Using an Abstract Class

	Summary
	Chapter 13 Quick Reference

	Chapter 14: Using Garbage Collection and Resource Management
	The Life and Times of an Object
	Writing Destructors
	Why Use the Garbage Collector?
	How Does the Garbage Collector Work?
	Recommendations

	Resource Management
	Disposal Methods
	Exception-Safe Disposal
	The using Statement and the IDisposable Interface
	Calling the Dispose Method from a Destructor

	Implementing Exception-Safe Disposal
	Summary
	Chapter 14 Quick Reference

	Part III: Defining Extensible Types with C#
	Chapter 15: Implementing Properties
	Implementing Encapsulation by Using Methods
	What Are Properties?
	Using Properties
	Read-Only Properties
	Write-Only Properties
	Property Accessibility

	Understanding the Property Restrictions
	Declaring Interface Properties
	Replacing Methods with Properties

	Generating Automatic Properties
	Initializing Objects by Using Properties
	Summary
	Chapter 15 Quick Reference

	Chapter 16: Using Indexers
	What Is an Indexer?
	An Example That Doesn’t Use Indexers
	The Same Example Using Indexers
	Understanding Indexer Accessors
	Comparing Indexers and Arrays

	Indexers in Interfaces
	Using Indexers in a Windows Application
	Summary
	Chapter 16 Quick Reference

	Chapter 17: Introducing Generics
	The Problem with the object Type
	The Generics Solution
	Generics vs. Generalized Classes
	Generics and Constraints

	Creating a Generic Class
	The Theory of Binary Trees
	Building a Binary Tree Class by Using Generics

	Creating a Generic Method
	Defining a Generic Method to Build a Binary Tree

	Variance and Generic Interfaces
	Covariant Interfaces
	Contravariant Interfaces

	Summary
	Chapter 17 Quick Reference

	Chapter 18: Using Collections
	What Are Collection Classes?
	The List<T> Collection Class
	The LinkedList<T> Collection Class
	The Queue<T> Collection Class
	The Stack<T> Collection Class
	The Dictionary<TKey, TValue> Collection Class
	The SortedList<TKey, TValue> Collection Class
	The HashSet<T> Collection Class

	Using Collection Initializers
	The Find Methods, Predicates, and Lambda Expressions
	Comparing Arrays and Collections
	Using Collection Classes to Play Cards

	Summary
	Chapter 18 Quick Reference

	Chapter 19: Enumerating Collections
	Enumerating the Elements in a Collection
	Manually Implementing an Enumerator
	Implementing the IEnumerable Interface

	Implementing an Enumerator by Using an Iterator
	A Simple Iterator
	Defining an Enumerator for the Tree<TItem> Class
by Using an Iterator

	Summary
	Chapter 19 Quick Reference

	Chapter 20: Decoupling Application Logic
	Understanding Delegates
	Examples of Delegates in the .NET Framework Class Library
	The Automated Factory Scenario
	Implementing the Factory Control System
Without Using Delegates
	Implementing the Factory by Using a Delegate
	Declaring and Using Delegates

	Lambda Expressions and Delegates
	Creating a Method Adapter
	The Forms of Lambda Expressions

	Enabling Notifications with Events
	Declaring an Event
	Subscribing to an Event
	Unsubscribing from an Event
	Raising an Event

	Understanding User Interface Events
	Using Events

	Summary
	Chapter 20 Quick Reference

	Chapter 21: Querying In-Memory Data by Using Query Expressions
	What Is Language-Integrated Query?
	Using LINQ in a C# Application
	Selecting Data
	Filtering Data
	Ordering, Grouping, and Aggregating Data
	Joining Data
	Using Query Operators
	Querying Data in Tree<TItem> Objects
	LINQ and Deferred Evaluation

	Summary
	Chapter 21 Quick Reference

	Chapter 22: Operator Overloading
	Understanding Operators
	Operator Constraints
	Overloaded Operators
	Creating Symmetric Operators

	Understanding Compound Assignment Evaluation
	Declaring Increment and Decrement Operators
	Comparing Operators in Structures and Classes
	Defining Operator Pairs
	Implementing Operators
	Understanding Conversion Operators
	Providing Built-in Conversions
	Implementing User-Defined Conversion Operators
	Creating Symmetric Operators, Revisited
	Writing Conversion Operators

	Summary
	Chapter 22 Quick Reference

	Part IV: Building Professional Windows 8 Applications with C#
	Chapter 23: Improving Throughput
	Why Perform Multitasking by Using Parallel Processing?
	The Rise of the Multicore Processor

	Implementing Multitasking with the .NET Framework
	Tasks, Threads, and the ThreadPool
	Creating, Running, and Controlling Tasks
	Using the Task Class to Implement Parallelism
	Abstracting Tasks by Using the Parallel Class
	When Not to Use the Parallel Class

	Canceling Tasks and Handling Exceptions
	The Mechanics of Cooperative Cancellation
	Using Continuations with Canceled and Faulted Tasks

	Summary
	Chapter 23 Quick Reference

	Chapter 24: Improving Response Time by Performing Asynchronous Operations
	Implementing Asynchronous Methods
	Defining Asynchronous Methods: The Problem
	Defining Asynchronous Methods: The Solution
	Defining Asynchronous Methods That Return Values
	Asynchronous Methods and the Windows Runtime APIs

	Using PLINQ to Parallelize Declarative Data Access
	Using PLINQ to Improve Performance
While Iterating Through a Collection
	Canceling a PLINQ Query

	Synchronizing Concurrent Access to Data
	Locking Data
	Synchronization Primitives for Coordinating Tasks
	Cancelling Synchronization
	The Concurrent Collection Classes
	Using a Concurrent Collection and a Lock
to Implement Thread-Safe Data Access

	Summary
	Chapter 24 Quick Reference

	Chapter 25: Implementing the User Interface for a Windows Store App
	What Is a Windows Store App?
	Using the Blank App Template to Build a Windows Store App
	Implementing a Scalable User Interface
	Applying Styles to a User Interface

	Summary
	Chapter 25 Quick Reference

	Chapter 26: Displaying and Searching for Data in a Windows Store App
	Implementing the Model-View-ViewModel Pattern
	Displaying Data by Using Data Binding
	Modifying Data by Using Data Binding
	Using Data Binding with a ComboBox Control
	Creating a ViewModel
	Adding Commands to a ViewModel

	Windows 8 Contracts
	Implementing the Search Contract
	Navigating to a Selected Item
	Starting an Application from the Search Charm

	Summary
	Chapter 26 Quick Reference

	Chapter 27: Accessing a Remote Database in a Windows Store App
	Retrieving Data from a Database
	Creating an Entity Model
	Creating and Using a Data Service

	Inserting, Updating, and Deleting Data in a Database
	Performing Insert, Update, and Delete Operations
Through a WCF Data Service
	Reporting Errors and Updating the User Interface

	Summary
	Chapter 27 Quick Reference

	Index

