




Data Science for
Business

Professionals

A Practical Guide for Beginners

by
Probyto Data Science and

Consulting Pvt. Ltd.



FIRST EDITION 2020
Copyright © BPB Publications, India
ISBN: 978-93-89423-280

All Rights Reserved. No part of this publication may be reproduced or distributed in any form or by
any means or stored in a database or retrieval system, without the prior written permission of the
publisher with the exception to the program listings which may be entered, stored and executed in a
computer system, but they can not be reproduced by the means of publication.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s & publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but cannot
be held responsible for any loss or damage arising from any information in this book.
All trademarks referred to in the book are acknowledged as properties of their respective owners.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747



Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New Delhi-110002
and Printed by him at Repro India Ltd, Mumbai



Dedicated to
Students & Data Science Enthusiast

The Probyto Team Members, who are at
forefront of sharing their knowledge



About the Author
Probyto Data Science and Consulting Private Limited (referred as Probyto)
is leading solution provider in Artificial Intelligence (AI) domain for
business from different sizes and industries. Probyto develops AI Solutions
for businesses and delivers them through fully Managed AI platform. AI
Platform enables businesses of any size to subscribe AI solutions and get
started within 7 days. The vision of Probyto is to become “AI Success
Partner” to our clients by “Accelerating the AI Journey” in quick, secure,
scalable and affordable manner.
Probyto create AI equity by feeding in the value cycle, good talent, quality
output and client value, hence creating AI equity for societies and
companies. With Probyto AI resources bouquet, the innovation process is
streamlined to innovate at scale.

Founded in 2015 in India; Expanded our services to Ireland, Singapore
and US
Striving to deliver best value through our rich experience across
geographies and industries using finest of Data Science and
Technology
Our approach is to become your AI Success Partner and help you
climb the AI success ladder

Probyto activities and contribution in the field of AI are driven by three key
goals.

AI Democratization – Be it small shop or a large business the benefit
of AI/ML should reach everyone
Affordable AI - The cost of AI development and operations should
allow higher adoption rate
Good for Society - Whatever AI solutions Probyto develops, it needs
to keep overall good of society at its core

To fulfil Probyto’s goals, the book has been written by collective experience
of many of Probyto past client projects, academic collaborations and team



members for last 5 years. The collective work is represented by different
experts in data driven decision making and portion they deal with in
creating value for the clients. The team has experienced professionals and
freshers who have gained from the approach as mentioned in the book as
well.
Visit Probyto to know about our team and our offerings for academia &
Industry: https://probyto.com

https://probyto.com/


Acknowledgement
The book is not just a collection of topics in the Data Science domain but a
journal of what Probyto team has learned in practical application of Data
Science over past 5+ years implementing solutions and nurturing fresh
talent.
This book has been possible by the support and work of a multidisciplinary
team comprising of researchers, cloud architects, developers and business
consultants at Probyto. Special mention goes to the team members who led
the efforts for writing the book manuscript, Parvej Reja Saleh,
Namachivayam Dharmalingam, Srivathshan KS, Devjit Dey, Jayeesha
Ghosh and Md Rakibul Ashiquee. A special thank goes to Abhishek Singh
from Probyto for facilitation of the whole effort with BPB.
The book learnings have been gathering by our numerous interactions with
academic institutions, our interns, researchers and most important the
clients. The feedback from clients help us build the right skillset in team
and influence the freshers to look at data science as a tool to solve business
problems rather than mastery of tools itself.
“I would like to express my deep gratitude to all the Probyto Team
members for their valuable contribution in this book. I would like to thank
Abhishek Singh, for his advice and assistance in keeping my progress on
schedule. My grateful thanks are also extended to the co-author
Namachivayam for his contribution and constant support. Finally, I wish to
thank SM Saleh (Father), Roushanara Saleh (Mother), BS Hasina (Aunt)
and Late Saheda Akhtar (Aunt) for their constant support and
encouragement.”

- Parvej Reja Saleh

“I personally thank Probyto and our team members who supports to share
the knowledge to successfully write this book. Hope this book will make a
good starting point of Data Science journey for the students”

- Namachivayam Dharmalingam



A big thanks for the team at BPB, for making this book possible for our
freshers in India and Abroad. This book will open opportunities for students
to see the Data Science domain from professional perspective and give
them path to learn the valuable skills.



Preface
Data Science has emerged as a standalone industry itself serving needs of
multiple other industries and sectors by providing valuable factual insights
and automation of data driven tasks. Further, due to multiple reasons of
which talent being most significant one, the adoption rate of Data Science is
slower. It has been proven that data driven decision tools can reduce cost
for companies’ operations and at the same time create new markets.
Nowadays, the data science training programs are growing with high rate
due to steep increase in demand of skilled candidates for open roles in Data
Science domain. Data Science trainings offered by various platforms are
designed to cover three crucial parts of skilling the freshers; theoretical
concepts in Machine Learning, technology and programming skills, and the
skills to create data-based solutions for business problems. For a fresher or
enthusiast, accessing so many different aspects of data science is a
challenge due to;

1. Too much and too varied content provided by platforms
2. Difficulty in stitching together technology, business and cloud skills to

build a solution
3. Lack of innovative and real-world examples of application

implementation

The core data science community has started to emphasise the need to re-
structure the way we train the freshers by providing them a view of actual
implementation of the end-to-end solution in a business set-up. It is
important to equip the Data Scientist with the facts that “most accurate and
optimised solution might not be the right solution in a dynamic business &
technology environment”. Business value delivery is core to Data Science
in any enterprise or in society.
This book tries to set first step in combing the complex parts of Data
Science skills and their application in creating a real business solution. This
include having enough knowledge of business processes, mathematics,
technology and other technological innovation in cloud computing.



The book is divided into eight sections covering all aspects of creating
value from data science in business set-up.

1. Data Science Overview: Explain everything a programmer needs to
know about data science, from what data science is all about? Why
data science is important? And how does data science work in real
implementations.

2. Mathematics and Statistics: Introduce basics of linear algebra and its
importance in solving data problems. Introduce basic mathematics to
understand machine learning including optimization and calculus.
Explain importance of statistics in data science. Cover key concepts of
statistics required to solve data science problems.

3. Machine Learning: Introduces the basics of machine learning
including exploratory data analysis, data preparation steps and
algorithms for model training

4. Data Engineering: Introduces the concept of data pipelines and their
significance. Also discuss how to build simple data pipelines. It also
touched upon big data systems and databases.

5. Cloud Computing: Introduces the key enabling concept behind cloud
computing – Hypervisors. It further will show with example how to
work with cloud to put application on cloud for end-user use.

6. Business Intelligence: The business intelligence concepts are
introduced what it is and how to make use of tools. Further, an
example is built on Power BI to show how to frame business questions
and answer them using visualisation tools.

7. Industry Use Cases: Two uses cases have been discussed at length to
show how starting from problem we build a solution and put to use by
end-user as an AI application.

8. Self-Assessment: The self-assessment is collection of typical
questions and gaps that industry is looking for in people to hire them
for entry level roles.
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D

CHAPTER 1
Data Science Overview

In ancient times land was the most important asset in the world. In
the modern era, machines and factories became more important than
land. In the twenty-first century, however, data will eclipse both land
and machinery as the most important asset.

- Yuval Noah Harari

ata is undoubtedly the most valuable asset of our society. It captures
our entire understanding of mankind, space, nature, and learnings

from all our existence. In modern days, we have developed tools and
methods to understand that data for path-breaking discoveries in medicine,
space, machine, and so on. Now, in the 21st century, we are ready to use the
technology and data to catapult mankind into the data age. It is not an
exaggeration in any sense, just compare how our life is different from our
grandparents’ life, and you would see how technology and data have
changed the way we live and work.
This book titled Introduction to Data Science for Business - A Practical
Guide for Freshers is an attempt to cover the practical scope of data science
teams in real industry set-up. The book will touch upon major areas of work,
how you lead there, their significance, and some examples to start hands-on
training. The book will take you to a journey and significance of the
multidisciplinary nature of data science.
In this chapter, we will have a preview of the books and their content to
provide an overview of data science. The chapter will build the use case of
what a newcomer to data science or fresher need to be aware of before
starting the data science journey.

Structure



Evolution of data analytics
Define data science
Domain knowledge
Mathematical and scientific techniques
Tools and technology
Data science analysis types
Data science job roles
ML model development process
Data visualizations
Result communication
Responsible and ethical AI
Career in data science
Summary

Objectives
After studying this chapter, you should be able to:

Understand the fundamentals of data science and the importance of
domain knowledge.
Identify the mathematical techniques and technology required to build
any data science application.
Recognize the various opportunities around the data science application
development process.
Understand the importance of data visualization and how it can be used
in result communication.

Evolution of data analytics
Data has been collected and analyzed for very old times. The information
capture and dissemination have been part of managing kingdoms, having
records of lands and army. The modern use of statistics started in the 18th
century with systematic ways of capturing data, and the evolution of printing
the system helped in storing data.



In the context of the book, we would see the journey of data analysis in the
following stages:

Figure 1.1: Evolution of Data Analysis

Statistics have been around for a long time sparingly across the world. The
systematic development of statistics happened in the 18th century and was
used in administrative purposes across the world. The great advancements in
science during and post-industrial era set the foundation for the computer
age. Starting with Alan Turing groundbreaking work in the Theory of
computing and advancement in semiconductors, the computers started
getting more powerful year on year.
During the mid-19th century, a lot of research work gone into understanding
how a human brain learns and advancementsin the understanding structure
of the brain. Early papers with Neural Networks emerged. The methodology
to learn and repeat some events was entirely different from how a
distribution based statistical methods explained. Databases also started
getting into exclusive use by the 1980s. Digitization also started getting well
recognized in the industry and government. Same time, early experiments
with networking, emails, and interconnected web were emerging.
During the late 1990s, the computers were household things in the US with
Microsoft having released a power operating system MS Windows 98,
macOS was in the market as well. Same time enterprising computing was on
rising with giants like IBM becoming the core providers of powerful servers
and the internet getting its pace. This time Data mining become prominent
for creating reports, analyzing customer data, and making decisions driven
by basic data analysis (MS Excel was in Windows by that time). Knowledge
databases, Support Vector Machine (SVM), SQL databases, and increased
computing power market the early stages of Data Science before it exploded
around 2008.
Hadoop, 2006, the distributed file storage and computation was a project
started by visionary computer scientist, Doug Cutting, as he saw a huge
wave of Big Data coming. By March 2009, Amazon had already started
providing MapReduce hosting service, Elastic MapReduce. This started the



era of Big Data; at the same time, GPU and cloud computing made the cost
of computing cheap, leading to rapid development in deep learning and
cloud infrastructure.
Today, we have a better understanding of how data science creates value for
companies by making them data-driven. All the ecosystem and pre-requite to
make the value of data are available now at a reasonable cost.
The data science as a discipline has grown now and had a universal appeal
across the organizations and its benefits. The technology giants are shaping
and directing the industry towards data-driven organizations. In Figure 1.2,
you can see some of the biggest companies of today are based on the latest
technology and data-driven decision making:

Figure 1.2: Data Science Growth

Some of the popular use cases in the industry are listed below for a
reference. The reader must try to understand more about these use-cases and
discover how data science adding direct value to the business:

Fraud and risk detection
Healthcare
Internet search
Targeted advertising
Website recommendations
Advanced image recognition
Speech recognition
Airline route planning
Gaming
Augmented reality
Talent acquisition



Credit scoring
Price forecasting and many more.

The businesses are rapidly adopting new technologies and using AI/ML for
competitive and comparative advantage. In the coming years, the adoption of
data-driven features will be faster in governance and general public
discourse.

Define data science
Data Science is the umbrella term that comprises the science and its
application related to data. The early definition of data science was built on a
combination of multiple disciplines, and moreover, it is expanding fields as
data keeps adding value to multiple disciplines.

Figure 1.3: Define Data Science

The key features of these fields are as follows (as shown in Figure 1.3):



Multi-disciplinary: A new discipline that combines aspects of
mathematics, statistics, programming, and visualization.
Automation: An automated way to analyze the enormous amount of
data and extract information
Data discovery: A powerful new way to make discoveries from data.

Further, data science as a discipline defines some foundational knowledge
that the practitioner needs to have to be able to harness value from data.
Figure 1.4 is the Venn diagram which is a representation of such a
practitioner:

Figure 1.4: Data Science Practitioner



The core areas bring relevant expertise to help build data solutions;

Domain knowledge

Engineering
Science
Business
Medicine
Economics
Finance

Mathematical and scientific techniques

Linear algebra
Classic statistical tools like regression
Clustering and classification
Machine learning

Tools and Technology

Programming
Operating systems
Analysis tools (R, SAS, Python)
Visualization tools (Tableau)

Note: The above list is just indicative of some very popular sub-areas
for data scientists.

The different subareas within data science are not confined to traditional
knowledge but also include the powerful method of experimentations and
learning; he automated learning from machines is what we popularly call as
Machine Learning. The tools and technology do the analysis at scale and
provide the medium to deliver results to end-users.

Domain knowledge
Domain knowledge means the understanding of the domain from where the
data problem/opportunity is originating. This is important as the data is a
representation of a process or phenomenon captured by data. The data



scientist is responsiblefor discovering the relationships in data in the context
of that domain.
For illustration, assume we are working on a problem statement for a bank.
The problem: The bank gets of loan applications from potential borrowers.
The loan officer must make a decision to issue a loan or not.
Now there are so many domain questions to be understood before starting
the analysis:

What are the terms and conditions to issue a loan?
How different factors affect borrowing power?
What are the chances of full recovery of loans?
What data about the borrower can we capture as per statutory and
regulations?
What are market conditions now? How they define the relationship
with loan recovery?

And so many other aspects of the banking process and its implications on the
loan approval process. Economics and bank policies need to be part of the
analysis. If we do not have this background, we would just crunch the data
without any context and applicability of results.

Mathematical and scientific techniques
Domain knowledge will provide the context of the data and the desired
results from the data science process. Mathematical and scientific techniques
provide a theoretical understanding of how to quantify the behavior the
business wants to investigate the data.
For Illustration, in the previous example, we had generic domain questions.
For instance,
Question: What are the chances of full recovery of a loan?
The domain expert would look at application details and, based on
experience, can say it’s High. But how HIGH? He would not be able to
quantify until he has some statistical technique to define and calculate
HIGH. This is the area where techniques help the domain understanding gets
a quantifiable number to them, so that decision boundaries can be created.



Machine learning algorithms are the techniques of learning the relationships
among datasets automatically and build functional relationships for future
predictions. Figure 1.5 shows how machine learning differs from the
standard computer application:

Figure 1.5: Traditional Rule-Based Vs. Machine Learning

The expert systems are driven by intuition and experience of experts. In
those cases, the computer is fed with input data, and a program (collection of
rules/logic) and an output is generated. Referring to our previous section
loan example, the loan officer will set a bar that I will only issue a loan of
less than $25,000. Then the input becomes the loan application amount. The
program becomes a rule that if more than $25,000, then reject or accept.
Now, this sounds a good way to start deciding the loan applications by
making decisions with numbers. However, what we are missing here is the
lack of evidence that $25,000 and more loan recovery are very bad. How
does the loan office assume this number/logic? May be more than $25,000
loans are very profitable for the bank as they repay.
Hence, we switch to the second approach, which does not assume anything
beforehand. It takes inputs (loan amount), the output (If repaid or not), and
then creates a program to identify with high accuracy which bank of the loan
amount is riskier and by how much. This way, the machine learning models
generate the program learning from data, and then this program can be used
in the traditional system to generate output for new entities.
Machine learning can be of any of three types as below:

Supervised learning: We have enough historical data of input and
output pairs to learn the relationship.



Unsupervised learning: We do not have an output to optimize the
behavior relationship but discover the internal structure of the data.
Re-enforcement learning: We keep learning from feedback from the
output. This allows us to have continuous learning.

Figure 1.6 depicts the type of machine learning algorithms, and each of
these classes of algorithms has various types of algorithms, used for various
purposes to solve different types of problems:

Figure 1.6: Types of Machine Learning

The Machine Learning section of the book will discuss aspects of machine
learning in detail. Below table enumerates some popular algorithm of each
type:

Algorithm category Examples

Supervised algorithms Naive Bayes
Decision Trees
Linear Regression
Support Vector Machines (SVM)
Neural Networks

Unsupervised algorithms k-means clustering
Association Rules
Self-Organizing Maps
Principle Component Analysis

Reinforcement learning Q-Learning
Temporal Difference (TD)



Deep Adversarial Networks

Table 1.1: Machine learning algorithms with category and example

All the above algorithms are now standardized for off-the-shelf use in
different programming languages. R language has been the most popular
among statisticians and researchers to code their algorithms, and Python is
catching up fast.
To be a prudent data scientist, one has to learn the underlying concepts from
mathematics as well to understand what these algorithms are actually doing.
Many data science professionals ignore the solid foundation in mathematics
and statistics and remain reliant on the accuracy of packages developed by
others to run an algorithm. Though open-source implementations are very
stable and work in most cases, however lack of knowledge of algorithms
working leads to sub-optimal or wrong decision son part of models.
The Mathematics and statistics section of the book will have a primer to
most important topics that are encountered very frequently by data science
professionals in designing and implementing algorithms for business
problems. The most basic concepts include:

Linear algebra (Matrix Computations)
Optimization
Multivariate calculus
Probability
Hypothesis testing
Distributions

And many more sub-topics. A well-read data scientist never simply trusts a
package and blindly usesthe output of libraries. It is important to critically
analyze the algorithms and hasa sharp eye for any limitations or deviations
from the theory of the algorithms.

Tools and technology
After acquiring the knowledge of the domain and having methods to
quantify behaviors, data science requires means to implement those solutions
at scale. Technology is the enabler to implement the mathematical and
scientific knowledge for end-use. Internet, cloud, and programming are the



key to creating solutions for end-user. Tools are the means to accomplish a
task; the knowledge to implement is the same implemented in different ways
by different tools.
For example, you may want to have an addition done in C or Python; the
way you do with these two programming languages may be different by the
result will always be the same. Hence, it’s important for data science
professionals to be updated with the latest tools so that they always have the
most efficient and economical way to produce results.
Figure 1.7 shows the KDnuggets analytics/data science 2018 poll results for
the tools the community is using to develop data solutions. Python stands out
as one of the most favored tools in the community:

Figure 1.7: KDnuggets Analytics/Data Science 2018 poll results (Credits:
https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html)

The open-source nature of tools has fuelled the development of
programming languages and packaged resources. Proprietary tools like

https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html


Tableau and Excel are also part of the list as the enterprise uses them
extensively.
Cloud computing is another set of technology which has changed the way
data science is adopted, implemented, and maintained by big corporates. The
whole cloud technology has made computing cheaper, on-demand, and very
powerful. Now, even a small start-up can afford multi-million infrastructures
by paying per hour as per need. This has changed the whole ecosystem of
data-driven products. Below you see some companies which are just built on
data-centric platforms and are now the biggest success stories in the
corporate world:

Figure 1.8: Data Success Stories

All the above companies and solutions are hosted by public cloud vendors
like Amazon Web services, Google Cloud Platform, and Azure. These
platforms provide massive storage capacity and GPU computations for
complex AI/ML models. Not only this, the cloud has given rise to three new
types of technology service models:

Software as a Service (SaaS)
Platform as a Service (PaaS)
Infrastructure as a Service (IaaS)



In SaaS service, a fully hosted business application is provided on
subscription bases, not only that reduced cost of the company, due to
consolidation nature allows SaaS provider profits. The Silicon Valley start-
up ecosystem is a true reflection of how the SaaS model allowed some of the
biggest companies of our time to grow from start-ups to multi-billion-dollar
companies.
Data Engineering is the new role that has emerged around extensive use of
cloud technologies to build data pipelines having AI/ML results to be
delivered to clients and businesses. The role of a data engineer is then to
make sure that the required data by algorithms and end-user is delivered on
time and with integrity. The Data engineering section will talk in detail
about data engineering/pipelines, and the Cloud computing section of the
book will talk in detail the technicalities and its benefits for data science
growth.

Data science analysis types
Data Science analysis types can be divided into 4 types and can be seen as
how the new tools are impacting the data analysis in more advanced
methodologies and tools. Figure 1.9 shows the types of analysis and how
they differ from each other. All these types are now grown up as a separate
area within the organization and also looking for having their own well-
defined job roles:

Figure 1.9: Types of data science analysis



The descriptive analysis has been historically well studied and applied in
statistical methods. It reflects the empirical measurement of what is
happening in the system/business under observation. The next step to that is
diagnosing the happening by investigating the data by different slices and
time window views to essentially answer why it happened.
For example, my business grew by 45% in last quarter is a descriptive
measure, if we also add why it grew it become diagnostics as well, that is,
our new product segment grew by 90%, balancing the slowdown in an old
product by 45%. Now you can observe we know what happened and why it
happened. Both these analyses are very business-centric and allow the
business to make quick and accurate decisions.
The modern, powerful computing environment enabled predictive and
prescriptive data analysis as well. The predictive analysis helps find
relationships among data points and help predict one data point if another is
available, while prescriptive go one step further and recommend which
variable or data point to control to get the desired results.
For example, the sales will grow by 25% next quarters as the festival season
is going to start next month. This is a predictive outcome of analysis, as
historical data would suggest the sales go up in the festive season. Further,
the prescriptive analysis outcome will be like if we give a 10% discount, the
sales will go up by 35% in the upcoming festive season. Here, we can
control the discount rate, and the analysis prescribes it to be 10% for optimal
gains.

Data science job roles
In the previous session, you observed the types of analysis and skillsets that
have emerged to define job roles that scope the work and bring synergies and
in-depth analysis capabilities in professionals. If you refer to Figure 1.4,
which describes the three key subject areas comprising data science, you
would be able to relate the job roles with the data science function. The three
areas of a domain, statistical techniques, and technology give rise to three
roles data analyst, data scientist, and data engineer, respectively. The roles
are described in Figure 1.10, with their high-level responsibilities in the role:



Figure 1.10: Data science job roles

The job roles are essential to understand as it’s not possible to keep juggling
in roles in the early stage of career. All the roles are interconnected to each
other; however, as a new entrant, you need to have adequate skills in one
area as a major, and you can pick another area as minor. Having the
knowledge, all job roles within the data science function brings high synergy
in work.

ML model development process
Data science, as perceived by most of the online courses and recent public
discourse, has been around how to develop accurate models for prediction.
The key area within data science is focused on the development of models,
that is, artificial intelligence, machine learning, and deep learning. The areas
are a complete subset of the prior to them one respectively:

Artificial intelligence: Programs that have the ability to learn and
reason like humans.
Machine learning: Programs that have the ability to learn without
being explicitly programmed.
Deep learning: Programs that can learn from a vast amount of
complex data using artificial neural networks.

For fresher’s who are starting their journey into data science, the first they
need to learn is the process of developing a machine learning model and



interpret them. Figure 1.11 shows the process which has been studied and
provided an indicative guideline for developing models:

Figure 1.11: Data science modeling process

The steps arerising in detail in the next section of chapters on machine
learning. Here we provide a basicdefinition of each step:

1. Problem definition: Any data analysis starts with setting up an
objective that we want to achieve out of model development exercise.
These objectives can be in terms of hypothesis or target results in
business metrics after using the models.

2. Data collection: Now, the data which can help solve the problem
statement is gathered through different channels and sources. Best
efforts are made to have accurate and timely data for the analysis.

3. Data wrangling: Data wrangling has many parts to it, including
cleaning the data from missing and erroneous values, removing
outliers, transforming the data, feature engineering, and other steps to
make data ready for empirical analysis.

4. Exploratory Data Analysis (EDA): EDA step is a pre-model-analysis
of descriptive and diagnostic nature where we use visualizations,
distributions, frequency tables, and other techniques to understand the
data relationships and make the choice of right algorithm for desired
analysis.



5. Machine Learning Algorithms: Now, we train, test, and validate
algorithms with appropriate dependent and independent variables, with
appropriate techniques from the set of supervised, unsupervised, and
reinforcement learning algorithms.

6. Prediction and insights: The algorithms will quantify all the
relationships and allow us to make predictions and derive insights from
the model outputs. The model results need to be transformed back to
business language and presented on the same scale as of original data.

7. Visualization and communication: The results need to communicate
back to business executives or end-user for making decisions. The
results need to be communicated in simple terms while not
undermining the assumptions of probability and modeling techniques.

The process is what has been observed in most of the cases, but it does not
limit the data science professionals to explore new ways to bring value out
of their data. Exploration and being curious is the key to develop good
models that derive business.

Data visualizations
Data visualization is not an integral part of organizations and end-user
applications. In today’s applications, you would always start your
application experience with a Dashboard and then go further into the
application features. Data visualization tools, like Power BI and Tableau,
have grown to the extent that they provide a self-service platform to builds
visualizations to communicate data analysis for both business intelligence
purpose and exploratory data analysis from machine learning. Figure 1.12
shows the cognitive side of visualizations and how they are beneficial to
users to interpret complex data and make business decisions:



Figure 1.12: Data visualizations

In the section, Business intelligence, we talked in detail about how to build
visualizations and how the tools play an important role in speed-up your
analysis and communication of results to stakeholders.

Result communication
Result communication is both art and science. With years of experience, you
develop the right balance between the two to become anefficient
communicator of data science. You can assume this role be like that of a
translator of language, here the data is to be communicated to business and
vice versa. The choice of rights words, right visualizations, and
interpretations are important for communicating the right understanding of
the data. Figure 1.13 shows two examples of effective communication and a
summary of analysis which could have taken weeks and multiple tools to
come to the conclusions:



Figure 1.13: Result communication

It is important for data science professionals to be aware of how business
communications happen and how they can be more effective to
communicate their findings, and also convert their pain points into
dataproblems. This role is usually done by experienced professionals, and
junior resources need to learn from them.

Responsible and ethical AI
As data science and AI become more day to day affairs and start impacting
how we operate our daily life and business, it becomes important to get
aware of the negative aspects that AI will bring to the fore. The data science
professionals need to be aware ofthe consequences of their work and the
impact it can have on society. It is important to have the highest ethical
practices for data science professionals. Figure 1.14, from ngu.eu, shows the
key areas and questions pertaining to the responsible and ethical use of AI:



Figure 1.14: Responsible and Ethical AI (Credits: ngi.eu)

The leading name in technology and consulting, along with governments, are
leading the efforts to make AI use fair and ethical. It will have regulatory
effects, like the General Data Protection Regulation (GDPR), Data
Privacy Framework, and other self-governing structures of organizations. As
a professional in the domain, one needs to pay adequate attention to their
work and being fair as the models developed by them may deny a loan to a
needy just because you ignored a bias in historical data for class, color, or
religion. It is our duty to NOT bring our biases to systems and make it a
system for the future.

Career in data science



Towards the end of the overview section, Probyto, with its years of
experience, would like to give some advice to budding data scientists for a
successful career. The key to success in any field is asking questions and
remain a learner forever. Data science is no different. Having a strong
foundation in mathematics is very helpful in a long career in data science; as
technology has masked a lot of hard facts behind easy to use menu driven
approached, you still need to have adequate knowledge of Mathematics.
Figure 1.15 shows the various skills required for getting into data science
career:

Figure 1.15: Key Skills Required for Data Science Career

Some of the skills you are required to possess for a job in data science are,
not exhaustive;

1. Asking the right questions
2. Understanding data structures
3. Data exploration and interpretation
4. Applying models
5. Visualization of data



In Chapter 19: Data Science Learning Resources, we also provide you a
small list of some popular resources that help you be updated with data
science all the latest happenings. A career in data science is very dynamic by
ever-growing technology, research in algorithms, and new problems to solve.
While its exciting career but also very challenging and require you to be up
to date always.

Conclusion
The chapter sets the primer for the data science beginners by introducing
multiple ideas, origin, process, and definitions in the data science domain.
We talked about how the landscape of data analysis has been changing and
evolved from past to today, what triggered those changes, and the
development of data science. Then we defined data science as a Venn
diagram having the right balance of domain knowledge, mathematics, and
technology, to enable bringing value from data. The different types of
analysis are then discussed to allow the reader to differentiate between
multiple types of approaches to data as per need. We have then talked about
different role types is data science and how they differ from each other. The
ML model building process is also introduced for readers to have a preview
of the next sections on machine learning. Data visualization is introduced as
key to allowingthe user to interpret data faster by a visual view rather than
raw data. Result communication is an important part of becoming atranslator
between data and business problems. Responsible and Ethical AI is the need
of the time with so much invasion of AI in our daily lives, and technology
companies and government actively working to contain that. The chapter
ended with some suggestions on the key skills and requirements to start a
career in data science.
By reading this chapter, the reader haspreviewedthebook and its content on
an overview of data science. He or she will understand what a beginner
needs to acquire before stepping into the data science journey.
In the next chapter, we will discuss the mathematics concepts needed in
modern data science. This will bestrong foundation to apply data science in
real-world problems.
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CHAPTER 2
Mathematics Essentials

athematics is the foundation of any modern-day discipline of
science. When we look into the modern data science principles,

there must be some deep mathematical behind it. Understanding and
learning the fundamentals of mathematics is very important for any data
scientist or junior analyst. Because they have to apply those techniques in
solving problems. Mathematics foundation works like the heart of the
problem-solving using data science. Other items will come in the category of
just by using an API or using the new algorithms.
In order to make ameaningful prediction and recommendation to the users,
we have to use algorithms very carefully. To develop a better algorithm, we
must have astrong understanding ofthe mathematical principles behind the
algorithms. When we have the mathematical foundation very solid, then it
creates more confidence forpeers to work on it.
In this chapter, we are going to learn the very important mathematical
concepts, which will be the strong foundation to apply data science in real-
world problems.

Structure
Introduction to linear algebra
Scalars, vectors, matrices, and tensors
Eigenvalues and eigenvectors
Eigen decomposition and singular value decomposition
The determinant
Principal component analysis
Introduction to the multivariate calculus
Differential and integral calculus
Partial derivatives



The Gradient, Hessian, Jacobian, Laplacian, and Lagrangian
Distribution
The Gradient Descent algorithm
Conclusion

Objectives
After studying this chapter, you should be able to:

Understand the fundamentals of linear algebra and data representations.
Apply the basic properties of matrix and vectors in data science
applications.
Derive the mathematical concepts behind data science problems.
Build the mathematical model of an algorithm.

Introduction to linear algebra
Linear algebra is the branch of mathematics to study lines and planes, vector
spaces and mappings that are required for linear transforms. Linear algebra
can be called basic mathematics to understand the data, which has the
intention of finding related values using linear combinations. In other words,
it is the application of the problem-solving system of linear equations to find
unknown or new findings from data.
Vectors and matrices are the basic notions of data. When data represented
using a column-based notion, we call that as vectors, if the array is used to
represent the data that has been considered as matrix format.
Example:

1.  where, V is the vector which has data in column-based

representation (that is, single column with three data).

2.  where M is the matrix data in array-based

representation (that is, rows and columns are used to represent nine
data).



Even though vectors and matrices are the languages to represent data, we
have to understand some of the basic data representation with geometry
space. The following section will briefly introduce those concepts.

Scalar, vectors, matrices, and tensors
Let us start exploring the fundamentals of data representation
frommathematics perspective.

Scalar
A scalar is a one-dimensional representation of data. It contains only the
magnitude in the form of numerical value. For example, consider the
scenario to travel from one place to another place; the following are the data
represented in the scalar values:

Distance between the starting place and destination place (that is, 100
km)
Speed of the vehicle (that is, 20 km/h)
Traveling fair (that is, Rs 20)
Weight of the person (that is, 60 kgs)

This example gives a brief idea about the scalar representation of data. When
we represent data in higher-dimensional geometry, space will move with
further additional information.

Vectors
A vector is a notion of one or more values of scalars. Already we have
introduced the vector we can now explore the characteristics of vectors and
how it is used to represent the data in geometry space. From the scenario of
travel, we can take the example of vector data:

Acceleration is given to the direction.
The velocity of the vehicle traveling towards a destination.
Displacement, i.e., traveling from one point to another point.

Characteristics of the vector:



The vector contains magnitude and direction.
Vector changes if either the magnitude or direction changes or both
change.

Figure 2.1: Vector Addition

Vector plays the main role in the linear algebra because both with vectors, it
is in two operations. Vector addition and scaling the vector by multiplying
some scalar value. To represent those operations in geometrically refer to
Figure 2.1 and Figure 2.2:



Figure 2.2: Scalar multiplication to Vector

Understanding the capabilities of vector operations provides the confidence
in estimating the scalability of values and make use of them in data
representation is an easier process.

Matrices
Data are represented in a rectangular arrangement is known as matrices.
Where data is arranged in the form of rows and columns. For example, to
represent the data with 2 rows and 3 columns, we will use the below
notation:

The representation of rows and columns is also known as the dimension of
the matrix. In other words, we can say that is the size of the matrix. So, the
dimension of the above matrix is 2 (rows) × 3 (colums).
As matrices can hold the higher dimensional space in geometry, we can
interpret that it is possible to hold data which comes in the form of multi-
dimensional format.
A data in a matrix entry is simply a matrix element. Each element of data in
a matrix is recognized by naming the row and column in which it appears.
For example, let us consider the above matrix A. The A23 is the entry of
scalar data value 3 is identified by calling the second row and third column.
By using this representation, we can easily access the data from the matrix.
It also provides the flexibility to pick the data directly without going into the
sequential way.
In general, the matrix representation is in the following format:

To access the element, we have to use the representation of amn, where m
represents the row value, and n represents the column value. Matrices



mainly used to solve systems of equations. But first, we must learn how to
represent linear systems with matrices.
A system of equations can be solved easily by representing its data in an
augmented matrix. An augmented matrix in linear algebra is a matrix
generated by adding columns of two different matrices, typically for the
purposes of carrying out the same simple row operations on each of those
matrices.
For example, consider the linear equation system:

We can represent the coefficient matrices of the system as:

Then the augmented matrix is,

The augment matrix will help to represent the data thatcan be solved using a
combination of operation performed on matrices rows to get unknown values
of coefficients in the linear equation representation.
Even though we can apply all the basic arithmetic operations on matrices,
addition and multiplication play vital roles. Letus start the discussion on
those operations.
The Matrix addition is quite easy and is performed input-wise. For example:



Here, the elements from matrix A and B are mapped together, and simple
addition performed to get the newvalue (that is, 2 + 0 = 2). The generated
new matrix follows the same rules for all the entries.
In matrix multiplication operation, we must follow the different scenarios to
do the multiplication of scalar values. When we perform the operation, we
must check the dimensionality of both matrices.
If we want to perform multiplication between two matrices, we have to
check that the number of columns in a matrix is equal to the number of rows
in the next matrix. If it is not equal, then we can’t perform the multiplication.
For example, consider the matrices:

Here, in matrix A, a number of columns are 2, and in matrix B number of
rows is 2. Hence, we can compute the solution of AB like this.

If the dimension of matrices goes more than 2, then it is difficult to apply the
multiplication easily for that we have to use another format to represent the
data. So, handling higher dimensional data is done by tensors.

Tensors
The tensor is mathematically an N-dimensional vector, which means that an
N-dimensional data can be represented by tensor. It is a multidimensional
array.
Mathematically a tensor is an N-dimensional vector, which means a tensor
can be used to represent N-dimensional data. A tensor is a simplification of
vectors and matrices, and it can easily understand as a multidimensional
array:



Figure 2.3: Simplified tensor with minimum dimensions

We can say a vector is a 1D or 1st order tensor, and a matrix is a two-
dimensional or second-order tensor. Tensors have the ability to perform all
types of operations with scalars, matrices, or vectors by reformulation.

The determinant
Determinants are mathematical entities that are widely used in the analysis
and find the solution of systems that have the property of linear equations.
The determinant value of a matrix is a special value, and it is very important
that it can be calculated from a square matrix. We will discuss the
calculation of determinant of a matrix with an example.
Let  be the square matrix with size 2 × 2 then, determinant of
matrix A is represented using the notion |A|. The value of the determinant is
calculated using the below method:

|A|=6*3-4*1=14

Now, we can generalize this calculation. Letus assume,  then determinant



value, |M|=ad-bc. Finding the determinant value for 3 × 3 matrix is a similar
way only. For example:

Therefore, the determinant is |G|=5. In general, we can represent the
calculation using the symbol:

a(e * i - f * h) - b (d * i - f * g) + c (d * h - e * g)

aei + bfg + cdh - afh - bdi - ceg
From the calculation of determined of the matrix, we can tell whether that
matrix can be inverted or not. It also consider the scalar property of a matrix.

Eigenvalues and Eigenvectors
Eigenvectors and eigenvalues are used to decrease noise in data. This
impacts efficiency in the computation of the tasks. So, to improve efficiency
in computationally more complex tasks, estimation of Eigenvalues and
Eigenvectors plays a vital role. We can represent multidimensional data in a
matrix. One eigenvalue and eigenvector are useful to capture significant
information that is stored in a large matrix. Performing computations on a
large matrix is a very time-consuming process. One of the key
methodologies to enhance the efficiency in computationally demanding tasks
is to reduce the dimensions of data after ensuring most of the important
information is maintained.



Before mathematically explaining the eigenvalues, we first see the details
about eigenvectors. When we apply the scalar multiplication on a vector
almost, it will change the direction. In opposite to this, any vector which is
not changing its direction even it is multiplied by a scalar value is known as
eigenvector. Multiply an eigenvector by A, and the vector Ax is a number λ
times to the original value. The basic representation is Ax=λx, where λ is an
eigenvalue of matrix A. This value only determines whether the x is
expanded or shrunk or unchanged when it is multiplied by A. In graphical
way it is shown like Figure 2.4:

Figure 2.4: Eigenvalue λ and eigenvector A representation

Now consider the linear transformation of N-dimensional vectors defined by
an n by n matrix A:

Ax = w,



Where for each row, wi = Ai1 x1 + Ai2 x2 + … + Axn= ∑(j=1)Aij xj

If it occurs that x and ware scalar multiples, that is if, Ax=w=λx. Then v is
the value of an eigenvector of the linear transformation of matrix A, and the
scale factor λ is the eigenvalue corresponding to that eigenvector. We can
rewrite the eigenvalue equation like, (A-λI) x = 0. Where I is the n by an n
identity matrix, and 0 is the zero vector. The eigenvalues of A are values of λ
that satisfy the equation, |A-λI|=0.
From this equation, we can get eigenvalue λ of matrix A by taking the roots
of the polynomial. For example, consider the matrix, .

First, multiply λ to an identity matrix and then subtract the two matrices:

Apply, |M - λI|=0. Then, λ2 + 4λ - 5 = 0 by solving this equation, we can get
λ values. λ=-5 and λ=1. These values are the eigenvalues of the matrix M. To
find the eigenvector substitute the values of λ in the equation (M-λI) x=0
Substitute . By solving this linear equation, we will get

the vector  is one of the eigenvectors for the matrix M. Using, λ = 1,

we will get the vector  is another linearly independent eigenvector for

the matrix M.

Eigenvalue decomposition and Singular Value
Decomposition (SVD)
In linear algebra, eigenvalue decomposition or sometimes spectral
decomposition is the factorization of a matrix into a canonical form,
whereby the matrix is represented in terms of its eigenvalues and
eigenvectors. Only diagonalizable matrices can be factorized in this way.
Let A be a square n × n matrix with n linearly independent eigenvectors qi
(where i = 1, …, n). Then A can be factorized as,



A = Q ∧ Q(-1)

Where Q is the square n × n matrix whose ith column is the eigenvector qi of
A, and ∧ is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues, ∧ii=λi. Note that only the diagonalizable matrix
cab be factorized in this way.
The n eigenvectors qi are usually normalized, but they need not be. A non-
normalized set of n eigenvectors, vi can also be used as the columns of Q.
That can be implied by observing that the magnitude of the eigenvectors in
Q gets canceled during the decomposition by the existence of Q-1.
The decomposition can be derived from the fundamental property of
eigenvectors.

Av = λv
AQ = QΛ

A = Q ∧ Q(-1)

For example, consider, may be decomposed into a diagonal matrix

through the multiplication of a non-singular matrix .

Then, 

For some real diagonal matrix  multiplying both sides of the

equation on the left by B:

The above equation can be decomposed into two simultaneous equations:



Letting, this gives us two vector equations:

And can be represented by a single vector equation involving two solutions
as eigenvalues:

Au = λu
Where λ represents the two eigenvalues x and y. From eigenvalue equation
we can write:

(A - λI) u = 0

By solving the equation:

Thus, the matrix B required for the Eigen decomposition of A is

That is:

Singular value decomposition
In short, we can call SVD for Singular-Value Decomposition. The reduction
of a matrix into its integral parts to make subsequent matrix is called as



SVD. Simply, we can call this as a matrix decomposition method to split a
matrix. It makes the matrix calculation as a simpler process.
For the case of simplicity, we will focus on the SVD for real-valued matrices
and ignore the case for complex numbers.

A = U.Sigma.VT

Where A is the real m x n matrix that we wish to decompose, U is an m x m
matrix, Sigma (often represented by the uppercase Greek letter Sigma) is an
m x n diagonal matrix, and V^T is the transpose of an n x n matrix where T is
a superscript.
The diagonal values in the Sigma matrix are known as the singular values of
the original matrix A. The columns of the U matrix are called the left-
singular vectors of A, and the columns of V are called the right-singular
vectors of A.
The SVD is calculated via iterative numerical methods. We will not go into
the details of these methods. Every rectangular matrix has singular value
decomposition, although the resulting matrices may contain complex
numbers, and the limitations of floating-point arithmetic may cause some
matrices to fail to decompose neatly.
The common problem is that the response matrix is singular or close to
singular, so it has no well-defined inverse. Of the various algorithms that
have been developed to deal with this problem, singular value
decomposition (SVD) has emerged as the most popular. Any matrix can be
represented with SVD as follows:

Where vk is a set of orthonormal steering magnet vectors, uk is a
corresponding set of orthonormal BPM vectors, and wk are the singular
values of the matrix M.
Given the SVD of a matrix, the matrix inverse is:



It follows from the orthonormality of the two vector sets. It is immediately
apparent from the singular value decomposition if the response matrix is
singular one or more of singular values, wk, are zero. Physically, a zero wk
implies that there is some combination of steering magnet changes, vk,
which gives no measurable change in orbit. The orbit shift from this vk is
zero at all the BPMs. Removing the terms with zero wk from the sum in the
above equation produces a pseudo inverse for orbit correction, which
generates no changes in the steering magnet strengths along the
corresponding eigenvectors vk.

Principal component analysis
Principal component analysis (PCA) is a technique that is useful for the
compression and classification of data. The purpose is to reduce the
dimensionality of a data set (sample) by finding a new set of variables,
smaller than the original set of variables that nonetheless retains most of the
sample's information. By information, we mean the variation present in the
sample, given by the correlations between the original variables. The new
variables, called principal components (PCs), are uncorrelated and are
ordered by the fraction of the total information each retains.

Figure 2.5: Plot of n observations with two variables and a plot of the same wrt their principal axes.

PCA is mathematically defined as an orthogonal linear transformation
(meaning it rotates and scales) that transforms the data to a new coordinate
system such that the greatest variance by any projection of the data comes to



lie on the first coordinate (called the first principal component), the second
greatest variance on the second coordinate, and so on.
Consider a sample space of p random variables where n observations are
made. x = (x1,x2,x3,…xp ). When we apply a linear transformation to the
observations along with the first principal component z1 we will have the
below equation:

Where the vector a1 = (a11, a21, a31, … ap1)

z1 will be our first principal component only when var [z1] is maximum.
Likewise, when the kth principal component has to be calculated, the above
equation can be transformed as below:

Where the vector ak = (a1k, a2k, a3k,…apk) must be chosen such that var [zk]
is the maximum subject to a1

T a1 = 1:

var [zk] = ak
T Σak

Where Σ is the covariance of the variables(x1, x2, x3,…xp ). The problem
seems to be a constraint optimization problem. Applying LaGrange
multipliers where λ is the LaGrange multiplier.

ak
TΣak-λk)

Optimization involves differentiating and equating to 0 when we have to
find a maximum or minimum of a function. Applying differentiation:

Σak - λak = 0 can also be written as Σak = λak

Therefore referring to previous topics of eigenvectors we can say for Σ as a
covariance matrix ak will be the kth eigenvectors and λk will be the kth

eigenvalue.



Multivariate calculus
Multivariate Calculus (also known as multivariable calculus) is the extension
of calculus in one variable to calculus with functions of several variables: the
differentiation and integration of functions involving multiple variables,
rather than just one:

Figure 2.6: Multivariate Calculus (Credit: https://www.toppr.com/bytes/multivariable-calculus/)

Calculus is a set of tools for analyzing the relationship between functions
and their inputs. In Multivariate Calculus, we can take a function with
multiple inputs and determine the influence of each of them separately.

Why is Multivariate Calculus important in data science?

https://www.toppr.com/bytes/multivariable-calculus/


In data science, we try to find the inputs which enable a function to best
match the data. The slope or descent describes the rate of change off the
output with respect to an input. Determining the influence of each input on
the output is also one of the critical tasks. All this requires a solid
understanding of Multivariate Calculus.

What is a function?
A function is a connection between input and output. In that, the notation of
f(x) is a function of the variable x. This relationship can be seen as the
growth over therun of how the change in one variable affects the relationship
in another variable.

Differential Calculus
The gradient of a variable in a function is the rise over run against the other
variables. Figure 2.7 shows the gradient representation using run and rise in
a plot. In the normal x, y coordinated plot, the rise over run is computed
using two points plotted on the graph:

Figure 2.7: Gradient is equal to Rise over Run



The representation for the derivative or the gradient can also be shown as
such:

If we apply the gradient for a non-linear function, it changes based on the
value of the variable change. Considering only the two data points to
calculate gradient will produce inaccurate gradient value.

Figure 2.8: As dx tends to 0, the gradient becomes more accurate

Let us take Figure 2.8 as an example. Considering two points x and x + dx,
we can get an evaluation of the gradient at x. However, if we were to change
the value of the second point, where dx tends to 0, the gradient we calculate
will be more accurate. Hence, we should aim to get a dx where it is infinitely
small yet not 0. Using the notation given above, let’s try an example where
f(x)=3x+2.



The above example shows how we can use the gradient calculations between
the two points.

Sum rule
The derivatives of the sum of two functions are the sum of the derivative of
each function on its own. This rule extends indefinitely.

Power rule
The derivative of a function with respect to a variable with an exponent is
given by taking the value of the exponent and multiplying the function with
it. Then deduct one from the value of the exponent.

Forf(x)=axb

f^' (x)=abx(b-1)

The above equations represent how we can use the power rule in
representing the function.

Special cases
The f(x) = 1/x function is a special one which includes a discontinuity:



Figure 2.9: Discontinuity in the f(x) = 1/x graph

Figure 2.10 show that this function also has a negative gradient for all values
of x, excluding x = 0 which is undefined:



Figure 2.10: Discontinuity in the f’(x) = -1/x² graph

Another special case:

f(x)=ex

This has the special property in which f(x) = f’(x), the function is equal to its
derivative. Where f(x) = f’(x) holds, its values are either positive, negative,
or 0. Taking the negative of the above equation gives a negative example
while taking f(x) = 0 gives the 0 example. Figure 2.11 shows the plot of the
above function:

Figure 2.11: f(x)=e^x

These representations are the few special cases in differential calculus but
not always occurs in data representation.

Trigonometric functions
The two trigonometric functions that we are focusing on will be the sine and
cosine functions. Figure 2.12 represents the notation sign(x):

Sine:f(x)=sin(x)



Figure 2.12: Sine triangle and sine graph

The derivative of the sine function is the cosine function which represented
in Figure 2.13:

Cosine:f(x)=cosin(x)

Figure 2.13: Cosine triangle and cosine graph

The derivative of the cosine function is the negative sine function. The two
functions form a derivative loop that returns to the start every 4th derivation.
Figure 2.14 shows the sine cosine derivative loop:

Figure 2.14: Sine Cosine derivative loop

Understanding the functions of sin and cosine will provide support when we
plot the data in a graph then interpret the information from the data.



Product rule
Product rule defines identifying a derivative when two functions are in the
product:

Chain rule
In general, a function has an inside function and an outside function. We can
say the chain rule identifies derivatives as the inside function and the outside
function. We can differentiate the outside function leaving the inside
function alone and multiply all of this by the derivative of the inside
function. This is represented in the below equation:

The application of chain rule is very helpful when we try to find derivatives
in function has the looping property.

Quotient rule



This rule can be derived from the product rule:

This rule can be used when we want to estimate the function fractional
value.

Multiple variables
In a function, there are independent variables, dependent variables, and
possibly constants as well. Consider Figure 2.15 shows the example of plot
car’s speed time to time basis. Here, time is the variable of independent in
nature. Where the speed is a dependent variable. The relationship between
these two variables is such that at any given speed, there can be time periods
matching that particular speed, while at each time period, there is only one
speed:



Figure 2.15: Speed vs. Time

As such, the speed of the car is dependent on the time period mentioned. The
parameter's valuesa function that may vary in their variable types based on
the context in which the function is used.

Partial differentiation
Partial differentiation is differentiating with respect to each variable in turn.
For each partial differentiation, regard the other variables as constants in the
differentiation context.

Total derivative
The total derivative is the derivative with respect to a specific variable where
the function is dependent on the variable not only directly but also on other
variables that are dependent on that specific variable.

Integral calculus



Integration is a way of adding slices to find the whole. Integration can be
used to find areas, volumes, central points, and many useful things. But it is
easiest to start with finding the area under the curve of a functionlike this:

Figure 2.16: What is the area undery = f(x)?

Slices
We could calculate the function at a
few points and add up slices of width
Δx like this (but the answer won't be
very accurate) as shown in Figure
2.17:

Figure 2.17: shows adding slices of width Δx:

We can make Δx a lot smaller and add
up many small slices (the answer is
getting better) as shown in Figure
2.18:

Figure 2.18: shows adding smaller slices of width Δx.

And as the slices approach zero in
width, the answer approaches the true
answer, as shown in Figure 2.19.



We now write dx to mean the Δx slices
are approaching zero in width.

Figure 2.19: shows slices of zero width.

These are the different representations of slices in multiple variable
estimations.

Definite vs.indefinite integrals
We have been doing Indefinite Integrals so far, which is If f(x) is an anti-
derivative of f(x) then the most general anti-derivative of f(x) is called an
indefinite integral and denoted:

∫f(x)dx=F(x)+c
Where c is any constant.
Figure 2.20 shows the representation of finite integral and infinite integral
values. A Definite Integral has actual values to calculate between (they are
put at the bottom and top of the S):

Figure 2.20: Indefinite Integral & finite Integral

The definite integral of f(x) from a to b is:



Given a function f(x) that is continuous on theinterval [a,b],we divide the
interval into n subintervals of equal width (Δx) and from each interval
choose a point, xi.

The Gradient
To calculate a derivative of a function which is dependent on more than one
variable or multiple variables, a Gradient takes its place. A gradient is
calculated using Partial Derivatives. Also, another major difference between
the Gradient and aderivativeis that a Gradient of a function produces a
Vector Field.

The Jacobian
The Jacobian of a set of functions is a matrix of partial derivatives of the
functions. If you have just one function instead of a set of functions, the
Jacobian is the gradient of the function.

The Hessian
The rate of change of the function is simply described as Hessian. It is
positive definite and helps us to check if point x is a local maxima, local
minima, or a saddle point. The function attains an isolated local minimum
and an isolated local maximum at x, if the Hessian is positive definite
negative definite at x, respectively. X is a saddle-point for function, if the
Hessian has both positive and negative eigenvalues.

The Lagrange multipliers
The Lagrange multiplier technique lets you find the maximum or minimum
of a multivariable function f(x,y,…) when there is some constraint on the
input values you are allowed to use.

Laplace interpolation



Consider a (two dimensional) data matrix with some values missing, and you
want to fill the holes by interpolated values. One particularly simple but at
the same time powerful method is Laplace interpolation. For each missing
value, take the average over the 4 surrounding values, that is, of the entries
above, below, left and right. The Laplace interpolation replaces these values
by interpolated ones and writes them back to the input matrix sample2.

Optimization
In ML, the focus is onlearning from data. A cost function is a measure of
how wrong the model is in terms of its ability to estimate the relationship
between X and Y.
The objective of an ML model, therefore, is to find parameters, weights, or a
structure thatminimizesthe cost function. The cost function can be estimated
by iteratively running the model to compare the estimated predictions of y
by the model against the known values ofy.
We will use the Mean Squared Error function to calculate the cost. At first,
we will find the difference between the actual y and predicted y value (y =
mx + c), for a given x. Then we will square this difference. Finally, we will
calculate the mean of the squares for every value in X.

The Gradient Descent algorithm
Gradient Descent is an iterative optimization algorithm to find the minimum
of a function. Here that function is our Loss Function.
Let’s try applying gradient descent tomandcand approach it step-by-step:



1. Initially let m = 0 and c = 0. Let L be our learning rate. This controls
how much the value ofmchanges with each step. L could be a small
value like 0.0001 for good accuracy.

2. Calculate the partial derivative of the loss function with respect to m,
and plug in the current values of x, y, m and c in it to obtain the
derivative value D. Dm is the value of the partial derivative with respect
to m.

Similarly let’s find the partial derivative with respect to c, Dc:

Below is a Python code showing the Gradient Descent Algorithm:

m = 0

c = 0

L = 0.0001# The learning Rate

iterations = 1000 # The number of iterations to perform gradient

descent

n = float(len(X)) # Number of elements in X # Performing

Gradient Descent

for i in range(iterations):

Y_pred = m*X + c # The current predicted value of Y

D_m = (-2/n) * sum( X * (Y - Y_pred)) # Derivative w.r.t m

D_c = (-2/n) * sum( Y - Y_pred) # Derivative w.r.t c

m = m - L * D_m # Update m

c = c - L * D_c # Update c

print (m, c)



Figure 2.21 shows the red straight line as the linear regression line fitting:

Figure 2.21: Linear regression line fitting

The equation: Y_pred = mX + c will give the best fit linear equation for the
data set as shown as the red straight line in the Figure 2.21.

Conclusion
In this chapter, we have learned the essential mathematics for any data
science applications. This is not limited to learn the concepts behind the
algorithms. The sections are created starting from basic mathematical
notation data to the advanced level mathematical concepts applied in the
data science applications.
By reading this chapter, the reader will have better learning to approach any
data science applications from the mathematical perspective. In the next
chapter, we will start exploring statistical analysis and the techniques



involved in the data analysis. We will discuss the basic statistical concepts
that a data science practitioner needs to understand.



I

CHAPTER 3
Statistics Essentials

f we consider data science as an art, then statistics is the key to perform
the operations on it. If we see from the perspective of high-level

concepts, we can say statistics is the application of mathematics to perform
technical based analysis on data. Simply by using the bar chart, we infer
some high-level information from the data, but if we use statistics, we can
get deeper into the data and find much more information towards the
objectives of the analysis. Statistics provide solid proof about our data, not
just random estimation.
Using statistics, we can go further in deep and more fine-grained essential
insights into how exactly the given data is structured and based on that
structure how we can optimally apply other data science techniques to get
even more information. In the previous chapter, we studied the essentials of
mathematics. In this chapter, we’re going to look at basic statistics concepts
that data scientists need to know and how they can be applied most
effectively.

Structure
Introduction to probability and statistics
Descriptive statistics
Conditional probability
Random variable
Inferential statistics
Conclusion

Objectives
After studying this chapter, you should be able to:

Understand the fundamentals of probability.



Understand the importance of descriptive statistics and apply related
techniques.
Apply the conditional probability calculations in a real-world problem.
Understand the usage of random variables and inferential statistics.

Introduction to probability and statistics
Meteor showers are rare, but the probability of them occurring can be
calculated. (credit: Navicore/Flickr). Probability is the chance that
something will happen and how likely it is that some event will happen.
Probability of an event happening P(E) = Number of ways it can happen
n(E)/ Total number of outcomes n(T)
We can say the probability is the measure of the chance of an event
occurrence. The probability is measured with a scale of 0 to 1. Where 0
means impossibility and 1 is a certainty. In different aspects of our day to
day activities, randomness and uncertainty happen. To understand those
uncertainties, understanding the probability is very helpful. It enables us to
create an estimationof what is going to come next. Also, we can say that
probability learning works based on the informed assessment with the
pattern of information collected earlier. In general, data science uses
information based on the statistical properties. It must forecast or perform
some analysis on the data to find some trends in it. Probability distribution
has a major impact on statistical information formation. That makes that
knowing probability and its application is very important to work with data
science applications.
Statistics is a mathematical tool for collecting, analyzing, interpreting, and
presenting the information. Statistics is used to deal with complicated issues
in the actual globe so that data scientists and analysts can search for relevant
trends and data modifications. In easy words, statistics can be used by
making mathematical computations on it to obtain significant ideas from the
information. In order to analyze raw information and create a statistical
model and predict the outcome, different statistical functions, and algorithms
are applied. Statistics has an impact on all areas of life, but to name a few are
the stock market, insurance, weather, life sciences, retail, and education.

Descriptive statistics



In descriptive statistics, analysis of data is done so that information can be
described, revealed, or summarized meaningfully so that anyone who sees it
can detect specific patterns. The first stage in your statistical analysis, when
looking at information, is to determine whether the dataset is a population or
a sample.
Figure 3.1 shows that collecting the interest items based on the study gives
the population and the notation of it is capital letter N:

Figure 3.1: Population, Sample, and Inference

From that parameters are the calculated values in the analysis of the
population. On other hand, the population subset is known as a sample. It is
denoted by using the small letter n.
It is very difficult to evaluate and define the populations in real life.
Studying the entire population and it influences. This process is inefficient
because of time-consuming process as well; its cost is too high. Errors will
easily acquire when we use the entire population as it is.
A sample is opposite to the population, meaning that a sample will consider
only part of a population to evaluate, and this makes the process easier
because it reduces the size of data. It directly implies the assessment time of
a sample is very less expensive, and the occurrences of mistakes are very



less. If we choose a random size sample, then that must act as a
representative for the entire population. This must provide the flexibility to
anybody to deduct the population from the sample.
Figure 3.2 shows that there are different varieties of data. In a dataset, data
may be in the form of numerical or categorical values. Categorical data
represented by groups or categories in which they belong. For example,
ages, names, automotive brands are coming under the categorical data.
Numerical data further divided into two categories discrete numbers and
continuous numbers. Let us see in brief about the types of numerical data:

Discrete: This type of data can only take certain values. Only a set of
values to which you have access are defined. Age, number of vehicles
on a road, number of fingers, for instance.
Continuous: This type of data may, without limitations, take any true
or fractional value between certain ranges. For example, weight, the
balance of a bank account, purchase value, examination grade.

Figure 3.2: Types of Data

Measurement of data can be done in two levels: qualitative and quantitative.

Qualitative data: This type of data measurement characterizes data
but doesn’t measure the attributes in data. It can be further divided into
two groups: nominal and ordinal.



Nominal: Nominal data are not numbers, and it can’t be placed in
any order.
Example: Gender (for example,male, female, others)
Ordinal: Ordinal data consist of groups and categories in strict
order
Example: Grades (for example,good, satisfy, bad)

Quantitative data: It measures attributes in the data. It can be divided
into two groups: interval and ratio.

Interval: It is represented by numbers, without having a true zero.
In this case, the zero value is meaningless.
Ratio: It is represented by numbers and has a true zero.

Based on the context, we can take the quantitative data as an interval or
ratio. For instance, consider the temperature value. When we say, 00 Celsius
or 00 Fahrenheit is not having any significance, since it is not really zero.
It depends on the context in which the quantitative data is considered as an
interval or ratio. Think of the temperature, for instance. There is no
significance saying 0º Celsius or 0º Fahrenheit since it is not the real zero.
The value of absolute zero temperature is -273.15 ºC and -459.67 ºF. So, the
temperature must, therefore, be considered as interval data in this instance,
since the zero value is irrelevant.
But if the temperature is measured in Kelvin is analyzed, the value of
absolute zero is 0º Kelvin, so now the value of the temperature is ratio since
it is a true zero.

The measure of central tendency
The measure of central tendency relates to the concept that there is a number
that summarizes the whole set best. Mean, median, and mode are the most
popular.

Mean
It is the most reliable measure of central tendency for hypothesizing a single
sample population. In the case of a population value, μ symbol is used,
whereas the sample means denoted byx (Refer Figure 3.3):



Figure 3.3: Mean value calculation

Mean is calculated by adding all the components and then divide the sum
value by the number of components. This is the most commonly used
measure of central tendency of data. But it can get affected by the outlier’s
data easily. It is not enough to come to a conclusion sometimes because of
the excess amount of outliers’ presence. The below equation is representing
the mean of x value with n components:

Median
In an orderly ascending dataset, the median of the data set is the center
value, also known as the 50th percentile. It is generally a good idea to
calculate the median to prevent the error in the mean by outliers.
Below are the two equations for finding the median in the sets of data with
an odd and even number of values:

1,3,3,6,7,8,9 Median = 6

1,2,3,4,5,6,8,9 Median = (4+5) ÷ 2 = 4.5



Mode
The mode gives us the most frequent value. It can be used for both
numerical and categorical variables. If no single value appears more than
once, then we can say that there is no mode. Rather than independently, the
measures should be used together. In addition, these measures all appear at
the same midline point in a normal distribution. The mean, mode, and
medium are all the same!

Measures of variability
The measure of variability relates to the concept of evaluating the dispersion
in our data by the mean value. Range, interquartile, variance, and standard
deviation are the most common measures of variability.

Range
The range shows the difference between the largest and the smallest points
in your data.

12,24,41,51,67,67,85,99
Range is 99-12 = 87

Variance
The variance and standard deviation are the most challenging methods to
measure the dispersion of the data from the mean value of the dataset:

The variance is calculated by measuring the difference between every data
point and the mean and by squaring that value and adding all available data
points. Lastly, the sum is divided by a total number of data points; thus the
variance is calculated.
There are two main purposes for squaring the differences:



Dispersion is a positive value because we square the subtraction to
ensure that the negative values are not present and that they are not
canceled.
The effect of huge differences is amplified.

While calculating variance, squaring changes the unit of measurement from
the original data. To nullify this problem, the standard deviation is
computed, which is in the original unit.

Covariance
Covariance measures the changes in the two variables, x, and y, together:

When two variables are the same, the variance is the covariance.

σ(x, x)=σ2 (x)
The variables are uncorrelated when the covariance value is 0
Moreover σ(x,y)=σ(y,x)
In an n-dimensional dataset, the covariance matrix, Σ, computes all
possible pairs of dimensions:

 where Xi refers to the i-th

element of all the vectors in the feature space, the covariance matrix is
a symmetric matrix.
From a set of vectors, if we subtract the mean value from each vector is
known as Mean Centering. You can form n mean-centered vectors into
a matrix, Z, where each row of the matrix will match one of the
vectors. The covariance matrix is then directly proportional to the
transpose of Z multiplied by Z.
Σ ZT Z

Standard Deviation



Standard deviation is usually far more significant than a variance. It is the
preferred variation metric, as it can be interpreted directly. Standard
deviation is the square root of our variance.

The best use of standard deviation is when data is in a unimodal shape
(Refer Figure 3.4). In one standard deviation away from the mean,
approximately 34% of data points are distributed in a normal distribution.
Thus, we have 68.2% of data points arranged one standard deviation away
from the mean since the normal distribution is symmetrical. Between the two
standard deviations aside from the mean, approximately 95% of points are
allocated, whereas, under three standard deviations, it is around 99.7%.
Using Z-score, you can verify the total standard deviations below or above
the mean.

Figure 3.4: Standard Deviation calculation

This is how the measure of variability has been calculated by using standard
deviation calculation. Let us move to the measure of asymmetry.

Measure of asymmetry
To measure the asymmetry in data, we can use two methods: Modality and
Skewness. Let will start exploring the concepts.

Modality



The number of peaks presented by data allows for determining the Modality
of a distribution. Figure 3.5 shows different types of models. Generally, the
majority of distribution is unimodal, and it has one value occurring
frequently. There are two frequently occurring values in a bimodal. In
uniform modal, the data distributed uniformly. In multi-modal data, more
than two frequently occurring values will be there.

Figure 3.5: Types of Modal

Skewness
Skewness is one of the tools to measure asymmetry in data distribution. To
view the where the data clustered more skewness helps to visualize it.
Another important use of skewness is it can be used to capture the outliers in
data. Based on the position of mean, mode, and median calculation, we find
the skewness. Figure 3.6 shows the different position of those values and
how the asymmetry is calculated based on that. If the data has median value
between the mean and mode, then it is called positive skew. In other words,
we say outliers more towards the right side of the distribution. On the
contrary, a median value higher than the mean value, then that is called as



left-skewed. If the mean, median, and mode are at the same point, then that
distribution is called symmetrical distribution.

Figure 3.6: Measurement of asymmetry using Skewness

The connection between probability theory and central tendency measures
are the measures of asymmetry. It helps to acquire more insights into the
data we deal with.

Populations and samples
If the dataset contains entire data values, then that is called as populations. If
we choose some random data from the population then that is called as
samples. Figure 3.7 shows that from the perspective of statistics, populations
are parameters and samples are used to do statistical analysis:

Population: It is the set of all possible states of a random variable. The
size of the population may be either infinite or finite.
Sample: It is a subset of the population. Normally, when the
population is big enough to analyze the entire set, we use samples.



Figure 3.7: Population and Sample

Appropriate selection of populations and samples will provide more clarity
on the processing of the data. That also helps to get more information about
the data with less computing time and power.

Central Limit Theorem
It is a powerful and most crucial theorem of Mathematics. It states that the
sampling distribution will look like a normal distribution regardless of the
population you are analyzing.

Sampling distribution
As discussed earlier, to estimate the parameters of a population, we take a
sample. But it's not the only way of extracting the exact estimates of the
parameters. Figure 3.8 shows the sampling distribution from a population.
We can also take multiple samples from the population. For instance, we will
calculate the average for every sample. So, at the end of the day, we have
several mean estimate values, and we can then visualize them on a chart.
This will be called the sampling distribution of the sample mean.



Figure 3.8: Sampling Distribution

Identifying the sample distribution on the sample means it is very important
to understand the data in a better way. The visualization of sample
distribution is more useful to investigate the data distribution easily.

Conditional probability
Conditional probability can be characterized as a measure of the probability
of an event provided that some other event has occurred.

The probability of an event B if event A is equivalent to the probability of
event A and event B divided by the probability of event A. Most of the data
science techniques depend on Bayes’ Theorem. It is a formula that describes
how to update the probability of hypotheses if the evidence is provided:

Given a new set of attributes, it is possible to create a learner using the
Bayes’ theorem that calculates the probability of the variable belonging to
some other class:



In a case, where A represents a hypothesis Hand B represents some observed
evidence E, the equation can be written as:

It co-relates the probability of the hypothesis before acquiring evidence
P(H), to the probability of the hypothesis after receiving the evidence,
P(H/E). Thus,P(H)is called theprior probability, while P(H∣E)is called

theposterior probability and , is called thelikelihood ratio. Hence,

Bayes' theorem can be rephrased as the posterior probability equals the
prior probability times the likelihood ratio.

Random variables
A random variable is a collection of probable values of a random
experiment, or it can be characterized as a variable whose probable values
are the product of a random experiment. There can be discrete or continuous
random variables. Within a range, continuous random variables can take any
value, but discrete random variables can only take certain values.
A discrete random variable can be defined as a variable that can only take
into consideration a limited amount of specific values such as 0, 1, 2, 3, 4,
…….. A random variable must be discrete if it is able to take only a finite
number of distinct values. For example, we can take counting the number of
candidates in the examination hall, the number of students in a school, the
number of patients in a doctor's chamber, the number of faulty light bulbs in
a set of eight are coming under the distinct random variables.
A discrete random variable’s probability distribution is a list of probabilities
associatedwith every possible value. Let us suppose kdifferent values are
taken by a random variable X, with the probability that X = xi, which can be
defined as P (X = xi) = pi. The probabilities pi must meet the following
requirements:

1. 0≤ pi≤1 for each i
2. p1+ p2+ … + pk= 1



For all the discrete and continuous random variables, there must be a
cumulative distribution function. For every value of x, the probability that
the random variable X being less than and equal to x is given by this
function. The cumulative distribution function can be determined by
summing up all the probabilities for a discrete random variable.
Acontinuous random variableis one which takes an infinite set of possible
values. They are basically measurements; for example: height, weight, the
amount of salt in toothpaste, the time required to walk 1 kilometer. A
continuous variable is defined over anintervalof values and is expressed by
thearea under a curve. As the random variable may take an infinite number
of values, hence the probability of occurrence of value is found to be 0.
Let us suppose that over an interval of real numbers, all values are taken by a
random variable X. Then, the probability that X is in the set of outcomes A,
P(A), is defined to be the area above A and under a curve. The curve
representing a function p(x), must meet the below points:

1. There are no negative values in the curve (p(x)≥0 for all x).
2. The total area under the curve is 1.

Understanding the random variables is very important to use them
effectively in the analysis of data based on inferential statistics. Let us start
reading more about the inferential statistics in the next section.

Inferential statistics
In Inferential statistics, a random sample of data from a population is used
for the purpose of describing the population and predicting it. Inferential
statistics are basically intended to make inferences on populations based on
the samples taken from data. This gives us a conclusion that descriptive
statistics describe the data, and inferential statistics enables you to estimate
from that data.
In this chapter, we will be analyzing the below concepts.

Probability distributions
Normal
Binomial



Poisson
Geometric
Exponential

What is a probability distribution?
A probability distribution is a mathematical function that can be interpreted
to be the probability that various possible effects happen during an
experiment. Also, you can say that it is a function showing the probable
values and how often they occur. It is the rule that determines the relation of
the values with each other. Figure 3.9 describes associations between
different distributions. Most of them follow Bernoulli distribution:

Figure 3.9: Types Probability Distribution

Let us begin with the most widely used distribution, normal distribution.

Normal distribution



The most common continuous variable probability distribution is the normal
distribution, which is also known as Gaussian distribution or the Bell curve.
Figure 3.10 shows the normal distribution with its function. It is represented
by the below notation:

N(μ,σ2 )

Where N means normal, ~ represents the distribution, μis the mean, and σ2 is
the variance.
Normal distribution does not have any skewness as it is symmetrical, and its
median, mean, and mode are of the same value.

Figure 3.10: Normal Distribution

For example, using Python’s scipy.stats module’s rvs() method, let us
generate 10000 random variables. The loc parameter defines the mean and
scale defines the standard deviation of the distribution.
Let us start to generate some random numbers and see how the normal
distribution is applied by code:

import pandas as pd

import seaborn as sns

from scipy import stats

from scipy.stats import norm, binom

# generate random numbers from N(0,1)

norm_data = norm.rvs(size=10000,loc=0,scale=1)



Using the Pandas library, we transform these 10000 random variables into a
Series and then plot it using the histogram style:

pd.Series(norm_data).plot(kind="hist", bins=100)

From Figure 3.11, we can be clearly able to visually see that a normal
distribution with the highest frequency of values lying around the mean
value, that is 0:

Figure 3.11: Normalized Data

As we have attained our distribution, we can able to start obtaining more
insights from the data using some other functions.

Cumulative distribution function:cdf()

This function gives us the probability of a certain random observation will
have a lower value than the one provided by the user. For example, imagine
we select a random variable being 1.5, so what percentage of the values will
be lesser than this number?

stats.norm.cdf(x=1.5, #Limit value to check

loc=0, #Mean

scale=1) #Standard Deviation

0.9331927987311419

Percent point function:ppf()

It is the opposite of the Cumulative distribution function. Here, we input the
probability and receive the quantile.



We want to know above which number are 93.3% of 10000 random
variables!

stats.norm.ppf(q=0.933, #Limit value to check

loc=0, #Mean

scale=1) #Standard Deviation

1.4985130678799763

Probability density function:pdf()

Assuming a certain value, this function gives us the likelihood of a random
variable.

stats.norm.pdf(x=1.2, #Limit value to check

loc=0, # Mean

scale=1)#Standard Deviation

0.19418605498321298

The Standard Normal Distribution
The Standard Normal Distribution is acaseof the Normal distribution. It has
a mean of 0 and a standard deviation of 1. Every Normal distribution can be
‘standardized’ using the following formula:

Where z represents the standard normal distribution, μ represents mean
value, σ, and represents the standard deviation. X is the data value.

Binomial distribution
A binomial distribution is a type of distribution that has two possible
outcomes and can be simplified as the probability of a SUCCESS or FAILURE
outcome in any experiment that is repeated multiple times. Figure 3.12
shows the binomial distribution of data with no. of events against the
frequency of occurrences. For example, flipping a coin is a type of Binomial
distribution B(n,p), where n is the total number of events, and p is the
probability of success in each flip.
Now let us toss the coin 20 times and assume the probability of getting heads
is 50% for each time. Therefore, n = 20 and p= 0.5 and our binomial



distribution is equal to B (20,0.5). Now let us generate 10,000 data points
assuming this distribution, meaning we will perform 10,000 experiments in
which we flip a coin 20 times. Python’s stats.binomlibrary and thervs()
method are used here.

binom_data = binom.rvs(size=10000, n=20, p=0.5)

pd.Series(binom_data).plot(kind="hist", bins = 50)

Figure 3.12: Binomial Distribution

Cumulative distribution function:cdf()

As discussed earlier, this function will provide us the probability of a
random variable. For instance, what is the probability of getting 8 head in 10
flips with a coin?

stats.binom.cdf(k=8, n=10, p=0.8)

0.6241903616

Wherek is the probability of k = 8 or less, n is the number of flips, and p =
0.8 is the success probability.

Probability mass function:pmf()

The binomial distribution is a discrete probability distribution; therefore, to
check the proportion of observation at a certain point, we need to make use
of the pmf() method. Let’s check the probability of getting exactly 5 heads
in 10 flips on our biased coin.

stats.binom.pmf(k=5, n=10, p=0.8)

0.02642411520000004



Where k is the probability of k = 5 heads, n is the total number of flips, and
the p = 0.5 success probability.

Poisson distribution
The Poisson distribution is the distribution of something that occurred a
number of times. It is denoted by an average rate of λ. The Poisson
distribution is very useful when you want to measure events during a certain
period because of repeated events. For example, consider the number of
devotees coming to a temple in an hour is the data distribution. Therefore, in
a certain period, we can think of such a distribution as the probability that an
occurrence will happen multiple times.
When the below assumptions are valid, a distribution is called Poisson
distribution:

The results of a successful event should not be influenced by any
successful event.
The probability of success over a longer period must be equal to the
probability of success over a short period.
With a shorter interval, the probability of success approaches to zero.

Geometric distribution
The Geometric distribution is called the Negative Binomial Distribution. It
analyzes the number of successes in an order of independent and identically
distributed trials before a specified number of failures occur. As the number
of failed attempts is the ultimate outcome of the Geometric distribution,
therefore it is parameterized by the probability of that final success. For
example, in the case of the Binomial distribution, you raise the question of
How many successes? But in case of the Geometric distribution, you ask,
How many failures until a success?

Exponential distribution
The exponential distribution is one of the continuous distributions
commonly used. It models the time between events. A random variable X is
said to have an exponential distribution with PDF:

f(x) = λe - λx, x ≥ 0



and rate λ > 0.
At any time, t, λ is the failure rate; that is, it has survived up to t.
The mean and variance of a random variable X following an exponential
distribution:

Mean — E(X) = 1/λ
Variance — Var(X) = (1/λ) ²

The curve drops faster with an increasing rate, but it gets flatten with a
decreasing rate. The below plot explains it better:

Figure 3.13: Exponential Distribution

Also, there are some formulas as given below, which ease the computation.

The area under the density curve to the left of x can be represented by
P{X≤x} = 1 – e-λx

The area under the density curve to the right of x can be represented by
P{X>x} = e-λx

The area under the density curve between x1 and x2 is P {x1<X≤ x2} =
e-λx1– e-λx2

Conclusion
Statistical analysis is the main important analysis to be made before further
steps in applying any algorithms. In this chapter, we introduced the
fundamentals of probability and statistics. We explored the various



descriptive statistics calculations techniques. In addition to that, we learned
about the conditional probability and random variables used in the statistical
analysis. We also learned important statistical distributions under the
inferential statistics section. In the next chapter, we will start the machine
learning concepts that are essential for any data science application.
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CHAPTER 4
Exploratory Data Analysis

nalysis of the data is one of the key important steps in the machine
learning process. In other words, we can say this is the first step we

have to do in the entire machine learning process. By analyzing the data, we
can get the clarity of the given dataset. The collected data from the various
data sources may have some errors. Sometimes the data may be inconsistent
with the corresponding machine learning process. In order to avoid those
situations, we need to have a better understanding of the data given to the
process.
Exploratory Data Analysis (EDA) is an approach to understand the dataset
by making some summarization and visual representation on it. While
summarizing the data, we can get some essential information that can be
utilized while building our machine learning model. EDA will give better
features to be used to find more useful insight from the data. This gives the
different perspectives of data from visualizing the information.
So, in this chapter, we introduce the EDA process with corresponding
methods used in EDA, and also we were given the key concepts to be known
while processing the data in EDA process steps. Along with this, we have
the example discussion to get a better understanding when they go for some
real data analysis. This will enable the learners to know the basic needs to
get into the analysis of data using these methods.

Structure
Introduction to EDA
Understanding Data
Methods of EDA
Key concepts of EDA
Example Discussion
Conclusion



Objectives
After studying this chapter, you should be able to:

Understand the fundamentals of EDA.
Utilize statistic techniques to evaluate the data.
Recognize the various approaches and steps involved to perform the
EDA process.
Implement the EDA process on a different dataset.

What is EDA?
Anyone who is exploring or working with data needs to understand the data
with multiple perspectives before use that further in machine learning model
building. To analyze the data, we can approach the data by visualization
technique, and by applying statistical analysis, we geta better view.
Exploratory Data Analysis (EDA) is the process of discovering hidden
patterns and useful information from the data. Figure 4.1 shows that the
EDA process comprisedof different steps such as data collection, data
preprocessing, data cleaning, and data analysis. EDA will support to validate
the questions on the data, which comes from the technical perspective.
Results come from the EDA will provide the confidence to the machine
learning model performance will be good by selecting essential features:



Figure 4.1: EDA Process

To be brief EDA process performs initial researches on data to uncover
patterns that are hidden, to identify irregularities, and to validate the
assumptions with the help of summary statistics and visual representations.
Let us start to explore the EDA process from the next sections.

Need for the EDA
The main aim of the EDA process is to use statistics techniques efficiently
summarize and visualizations to a better view of data, and find values about
the importance of the data, its quality and to derive the new perspective and
the suggestion of our analysis. EDA is always trying to give an answer to the
questions on the data.
EDA is an approach for data analysis that involves a variety of techniques
to:



1. Exploit understanding into a dataset
2. Discover different underlying structure into a dataset
3. Important feature extraction from the dataset
4. Identify outliers and irregularities
5. Getting the answer to the various assumptions on the dataset

EDA process is iterative in nature because we will make some thoughts and
assumptions on our first look over the data, then we try to extract some
useful insights from that data to build the machine learning models. Finally,
we will make use of visualization techniques to preview the model results
and tune them according to the applications.

Understanding data
Before getting into the learning about data exploration, let us first try to
understand the types of data or levels of dimension on the data.
Data comes in various forms but can be classified into two main groups:
structured data and unstructured. Structured data is datathat is a form of data
that has a high degree of an organization such as numerical or categorical
data. Temperature, phone numbers, gender are examples of structured data.
Unstructured data is data in a formthat doesn’t explicitly have the structure
we are used to. Examples of unstructured data are photos, images, audio,
language text, and many others. There is an emerging field called deep
learning, which is using aspecialized set of algorithms that perform well with
unstructured data. In this guide, we are going to focus on structured data but
provide brief information for the relevant topics in deep learning. The two
common types of structured we commonly deal with are categorical
variables (which have a finite set of values) or numerical values (which are
continuous).

Categorical variables
Categorical variables can also be nominal or ordinal. Nominal data has no
intrinsic ordering to the categories. For example, gender (male, female,
other) has no specific ordering. Ordinal data as clear ordering such as three
settings on a toaster (high medium and low). A frequency table (count of
each category) is the common statistic for describing categorical data of each



variable, and a bar chart or a waffle chart (shown below) are two
visualizations that can be used.

Numeric variables
Numeric or continuous variables can be any value within a finite or infinite
interval. Examples include temperature, height, and weight. There are two
types of numeric variables that are interval and ratios. Interval variables have
numeric scales and the same interpretation throughout the scale but do not
have an absolute zero. For example, the temperature in Fahrenheit or Celsius
can meaningfully be subtracted or added (the difference between 10 degrees
and 20 degrees is the same difference as 40 to 50 degrees) but cannot be
multiplied. For example, a day which is twice as hot may not be twice the
temperature.
The ratio scale of measurement is the most informative scale. It is an
interval scale with the additional property that it is zero position indicates
the absence of the quantity being measured. You can think of a ratio scale as
the three earlier scales rolled up in one. Like a nominal scale, it provides a
name or category for each object (the numbers serve as labels). Like an
ordinal scale, the objects are ordered (in terms of the ordering of the
numbers). Like an interval scale, the same difference at two places on the
scale has the same meaning. And in addition, the same ratio at two places on
the scale also carries the same meaning.
A good example of a ratio scale is weight since it has a true zero and can be
added, subtracted, multiplied, or divided.

Binning (numeric to categorical)
Binning, otherwise known as discretization, is the process of transforming
numerical variables into categorical. For example, age can be categories into
0-12 (child), 13-19 (teenager), 20-65 (adult), 65+ (senior). Binning is
powerful as it can be used as a filter to reduce noise or non-linearity, and
some algorithms such as decision trees require categorical data. Binning also
allows data scientists to quickly evaluate outliers, invalid, or missing values
for numerical values. Techniques for binning include using equal width
(based on range), equal frequency in each bin, sorted rank, quantiles, or math



functions (such as log). Binning can be used based on information entropy or
information gain.

Encoding
Encoding, otherwise known as a continuation, is the transformation of
categorical variables into numerical (or binary) variables. A basic example
of encoding is gender: -1, 0, 1 could be used to describe male, other, and
female. Binary encoding is a special case of encoding where the value is set
to a 0 or 1 to indicate the absence or presence of a category. One hot
encoding is a special case where multiple categories are each binary
encoded. Given we have k categories, this will create k extra features (thus
increasing the dimensionality of the data). Another method for encoding is
using a target and probability-based encoding. The category is the average
value and includes a probability.

Methods of EDA
It is always better to explore each data set using multiple exploratory
techniques and compare the results. Once the data set is fully understood, it
is quite possible that data scientists will have to go back to data collection
and cleansing phases in order to transform the data set according to the
desired business outcomes. The goal of this step is to become confident that
the data set is ready to be used in a machine learning algorithm.
EDA is majorly performed using the following methods:

Univariate visualization: Provides summary statistics for each field in
the raw data set.
Bivariate visualization: It is performed to find the relationship
between each variable in the dataset and the target variable of interest.
Multivariate visualization: It is performed to understand the
interactions between different fields in the dataset.
Dimensionality reduction: It helps to understand the fields in the data
that account for the most variance between observations and allow for
the processing of a reduced volume of data.

Through these methods, the data scientist validates assumptions and
identifies patterns that will allow for the understanding of the problem and



model selection and validates that the data has been generated in the way it
was expected to. So, the value distribution of each field is checked, several
missing values are defined, and the possible ways of replacing them are
found.
Another side benefit of EDA is that it allows specifying or even defining the
questions you are trying to get the answer to from your data. Companies that
are only starting to leverage data science and AI technologies often face the
situation when they realize that they have a lot of data and no ideas of what
value that data can bring to their business decision making.
However, the questions always come first in data analysis. It doesn’t matter
how much data a company has, how many tools they have available, whether
the data is historical or real-time unless business stakeholders have the
questions they are trying to solve with their data. EDA can help such
companies to start formalizing the right questions, since, with wrong
questions, you get the wrong answers, and take the wrong decisions.
One of the important things about EDA is data profiling. Data profiling is
concerned with summarizing your dataset through descriptive statistics. You
want to use a variety of measurements to better understand your dataset. The
goal of data profiling is to have a solid understanding of your data so you
can afterward start querying and visualizing your data in various ways.
However, this doesn’t mean that you don’t have to iterate: exactly because
data profiling is concerned with summarizing your dataset, it is frequently
used to assess the data quality. Depending on the result of the data profiling,
you might decide to correct, discard, or handle your data differently.

Key concepts of EDA
Two types of data analysis

Confirmatory Data Analysis
Exploratory Data Analysis

Four objectives of EDA

Discover Patterns
Spot Anomalies
Frame Hypothesis



Check Assumptions

Two types of Exploration

Univariate Analysis
Bivariate Analysis

Stuff has done during EDA

Trends
Distribution
Mean
Median
Outlier
Spread measurement (SD)
Correlations
Hypothesis testing
Visual Exploration

Let us now perform a similar approach to explore a dataset. Here, we will
take a Kaggle problem (https://www.kaggle.com) to view insightsinto the
data. The objective of the problem is to predict the salary of any UK job ad
based on its contents (https://www.kaggle.com/c/job-salary-
prediction/overview). We have a training data set on which we need to
build a model, whichincludes various variables, including salary. A test data
set and a validation data set are also available. We will prepare the model
using Python libraries.
Initially, we will import the Python libraries, which will be used for
mathematical computing, data manipulation, and data visualizations. The
following code snippet shows how to import the required libraries to
perform the corresponding operations.

import math

import numpy as np

import pandas as pd

import nltk

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

https://www.kaggle.com/
https://www.kaggle.com/c/job-salary-prediction/overview


from IPython.display import display,HTML

from patsy import dmatrices

import warnings

warnings.filterwarnings("ignore")

%pylab inline

Populating the interactive namespace from numpy and matplotlib

Loading the dataset

Train dataset contains 244768 rows × 12 columns

Id: A unique identifier for each job ad.
Title: A freetext field supplied to us by the job advertiser as the Title
of the job ad.
LocationRaw: The freetext location as provided by the job advertiser.
LocationNormalized: Adzuna's normalized location from within our
own location tree, interpreted by us based on the raw location. This
normalizer is not perfect.
ContractType: full_time or part_time, interpreted by Adzuna from
a description or a specific additional field we received from the
advertiser.
ContractTime: Permanent or contract, interpreted by Adzuna from a
description or a specific additional field we received from the
advertiser.
Company: The name of the employer as supplied to us by the job
advertiser.
Category: Which of 30 standard job categories this ad fits into,
inferred in a very messy way based on the source the ad came from.
There is a lot of noise and error in this field.
SalaryRaw: The freetext salary field we received in the job advert from
the advertiser.
SalaryNormalised: The annualized salary interpreted by Adzuna from
the raw salary. Note that this is always a single value based on the
midpoint of any range found in the raw salary. This is the value we are
trying to predict.
SourceName: The name of the website or advertiser from whom we
received the job advert.



#Read Train data using Pandas library

data_train = pd.read_csv('Train_rev1.csv')

#Check the first 5 rows of the data set

data_train.head()

After executing this code, you will get output similar shown in Figure 4.2. It
displays the top 5 rows of the training dataset:

Figure 4.2: Top 5 rows of the training dataset

Validation set: It is a sample of data used to provide an unbiased evaluation
of a model fit on the training dataset.

#Read Validation data using Pandas library

data_val = pd.read_csv('Valid_rev1.csv')

#Check the first 5 rows of the data set

data_val.head()

After executing this code, you will get output similar shown in Figure 4.3. It
displays the top 5 rows of the validation dataset:

Figure 4.3: Top 5 rows of the validation dataset



The test data dataset contains 122463 rows × 10 columns. It will be used to
predict the SalaryRaw and SalaryNormalised. To view, the data details run
the code given below. It will display the top 5 rows of the data.

#Read Test data using Pandas library

data_test = pd.read_csv('Test_rev1.csv')

#Check the first 5 rows of the data set

data_test.head()

After executing this code, you will get output similar shown in Figure 4.4. It
displays the top 5 rows of the test dataset:

Figure 4.4: Top 5 rows of the test dataset

We can check the shape of all the three data sets using the below commands.
Figure 4.5 displays the shape of the training, validation, and testing datasets:

Figure 4.5: Checking the dimension of datasets

The training dataset can be described using the function describe(). Figure
4.6 shows that descriptive statistical analysis data to understand the data
furthermore:



Figure 4.6: Statistical description of the training dataset.

This will be helpful when applying the statistical evaluationof data.
Similarly, investigationof data can be doneand then taken the decision based
on the observation on the data.

Conclusion
This chapter provides the detailed introduction of Exploratory Data
Analysis (EDA) with the needs of the EDA process in the data science
process. Describes the various types of data that are used in real-world
problems and how it can be represented in terms of mathematical values.
This chapter also includes the methods of the EDA process and the
important concepts necessary to understand the EDA process thoroughly.
With a small EDA process example has been discussed. In the upcoming
chapters, we will learn the concepts of data preprocessing, feature
engineering, and machine learning model building.
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CHAPTER 5
Data Preprocessing

eal-world data is often incomplete, inconsistent, and/or lacking in
certain behaviors or trends, and is likely to contain many errors.

Whenever the data is gathered from different sources, it is collected in raw
format, which is not feasible for the analysis. In Chapter 4, Chapter 4:
Exploratory Data Analysis, we discussed the Exploratory Data Analysis
(EDA) that provides a better understanding of the data. For achieving good
results from the applied model for machine learning, the format of the data
must be in a proper manner. The collected data is said to be impure
sometimes not valuable if it is missing properties corresponding to the data,
values of properties, contain misleading or outliers, and identical or
completely wrong data. The presence of any of these will degrade the quality
of the results. To make the data useful next step is to process the data in an
appropriate structure to adopt with our machine learning model. Data
preprocessing is also known as a subset of data mining technique that
involves transforming raw data into an understandable format. Data
preprocessing is a proven method of resolving such issues. Data
preprocessing prepare raw data for further processing.
In this chapter, we will learn the fundamentals of data preprocessing and
what are the methods used to preprocess the data. Also, we will discuss an
example of the application of preprocessing. From this, the learner will have
a better understanding of the underlying concepts of data preprocessing.

Structure
Introduction to data preprocessing
Methods of data preprocessing
Application of preprocessing with example
Conclusion



Objectives
After studying this chapter, you should be able to:

Understand the fundamentals of data preprocessing and the importance
of machine learning model building.
Understand the various methods involved in data preprocessing.
Apply the data preprocessing steps in real-world datasets.

Introduction to data preprocessing
Data preprocessing is also an important step in machine learning because of
the value of data and the beneficial data that can be resultant from it directly
affects the capability of our model to learn; therefore, it is really important
that we preprocess our data before sending it into our model. The following
Figure 5.1 shows the essential steps to be followed during the preprocessing
of the data.

Figure 5.1: Data preprocessing lifecycle

Essential steps during data preprocessing:



Data cleaning: Data is cleansed through processes such as filling in
missing values, smoothing the noisy data, or resolving the
inconsistencies in the data.
Data integration: Data with different representations are put together,
and conflicts within the data are resolved.
Data transformation: Data is normalized, aggregated, and
generalized.
Data reduction: This step aims to present a reduced representation of
the data in a data warehouse.

The above are the very important steps of the data preprocessing process.
Let we will get into the methods that can be applied in data preprocessing.

Methods in data preprocessing
Data Preprocessing is a huge topic because the preprocessing techniques
vary from data to data. Different kinds of data (images, text, sounds, videos,
CSV files, and many more) have different methods for preprocessing, but
there are some methods, which are common for almost any kind of data. The
most important ones of these methods happen to be:

Transformation into vectors
Normalization
Dealing with the missing values

Transformation into vectors
All the ML models need the input data to be in the form of vectors. If you
got raw text data, you need some mechanism to convert those strings into
some meaningful numerical representation, like tf-idf, word2vec, and many
more. If you got images, they are processed as matrices of pixels, and if you
got sounds, they need to be converted from analog waves to digital signals,
if you got categorical data in a CSV file, you might want to apply label
encoding or one-hot-encoding. You basically convert almost all your data
into float (or in some cases, integers), so that your ML model can easily
process all that. Every record (each sentence, if it’s a text; soundwave, if it’s
a sound) represents a single row of your input, and for multiple records, you
get your input matrix (generally denoted by X).



Normalization
It’s highly recommended that your data is properly scaled, which means that
your data should not have a huge deviation for every column (feature). If
you have a column whose values are between 0–1 and you have another
feature whose values are between 100–1000, then this difference of value
ranges can cause large gradient updates by your optimizer, and your
network/model might not converge. So, a good way will be to normalize
your values, which are between 100–1000, scaling them between 0–1.
Breaking into steps, the following points should be applied to get the
maximum benefit out of normalization:

Smaller values: Try to have all the values between 0 and 1, or -1 to 1.
Homogeneity: All the columns should have values in roughly the same
range.
Mean: Normalize in a way that you have a mean of 0 for each column
independently.
Standard deviation: Normalize in a way that you have a standard
deviation of 1 for each column independently.

From the normalization process, we get the properly structured features that
are useful when building the machine learning model.

Dealing with the missing values
Your data might not always be the ideal one. Having missing values in a
dataset is very common, and an effective way to handle missing values leads
to a better model trained. One way is to replace all the missing values to be
0, provided that 0 doesn’t already represent meaningful information in your
data. If there are a lot of missing values in the data, and you replace them
with 0, the model will eventually learn that all the 0s aren’t playing any
constructive role in the decision-making process of the model, and will
pretty much ignore them by assigning them lower weights. If your data is
consistent, especially in the case of time-series, or sequenced-based datasets,
interpolation of the data becomes a meaningful option in there as well.
Otherwise, mostly the missing values are replaced by mean or median values
of the respective column they’re a part of.



Let us continue the discussion of chapter 4 example in that we already did
the EDA process to understand the data and its different properties. Now we
need to apply a few preprocessing techniques to get the appropriate structure
of data. We will start by displaying the information about the dataset using
the below commands.

data_train.info()

data_val.info()

data_test.info()

After running the codes, you will get results similar shown in the below
figures. Figure 5.2 shows the information related to the training dataset:

Figure 5.2: Training data information

Similarly, if we try to see the validation dataset information, we will get a
similar output shown in Figure 5.3:

Figure 5.3: Validation of data information

Understanding the test data is very important because it will give a better
idea to see the particular dataset which we are going to approach. Figure 5.4



shows the resultant information related to the test dataset:

Figure 5.4: Test data information

Based on the observations made on the above studies, now we are ready to
apply the preprocessing on the data. Now let us load the libraries for the
same. Then, we will start with cache the stop words and remove those words
from the dataset.

import re

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize, sent_tokenize

stop_words = set(stopwords.words('english'))

from string import punctuation

from collections import Counter

cachedStopWords = stopwords.words("english") #cache stop words

to speed-up removing them.

wordset = set()

text = ' '.join(

data_train['Title'].replace(r'[^0-9a-zA-Z]+',' ',regex=True)

.fillna('').str.lower()

)

data_train['Title'].replace(r'[^0-9a-zA-Z]+','

',regex=True).fillna('').str.lower().str.split().apply(wordset.u

pdate)

print(list(wordset)[1:100])

most_common_terms = Counter([w for w in text.split(' ') if w not

in cachedStopWords]).most_common(50)



After running the above code, you will be able see the output like the Figure
5.5. Which is cleaned data from the English stop words? Only the keywords
are displayed. This can be used further for preprocessing next stages:

Figure 5.5: Dataset after removing stop words

Next, we will do the identification of unique values from the each columns
of dataset. For that we are going to assign the training dataset columns
values to one variable names and applying the iteration process to get all the
unique values:

names = data_train.columns.values

uniq_vals = {}

for name in names:

uniq_vals[name] = data_train.loc[:,name].unique()

print("Count of %s: %d" %(name,uniq_vals[name].shape[0]))

The following Figure 5.6 displays the unique values for each column in the
training dataset. It shows the count of the unique values:

Figure 5.6: Unique values for each column in training dataset



Further we are going to take the most common terms in the dataset and plot
that in bar graph show in Figure 5.6:

labels, values = zip(*most_common_terms)

indexes = np.arange(len(labels))

width = 0.7

plt.bar(indexes, values, width)

plt.xticks(indexes + width * 0.5, labels, rotation='vertical')

plt.show()

The following Figure 5.7 shows the most common terms used in the dataset.
This will be helpful to visualize the dataset further to understand better:

Figure 5.7: Most common terms

To understand the distribution of salaries based on the available trained data
after preprocessing can be visualized using the below codes. Figure 5.8
shows the output of the code:

# Distribution of salaries based on the train data

pylab.rcParams['figure.figsize'] = (20,10)

plt.hist(data_train['SalaryNormalized'], bins='auto')

plt.xlabel('Salaries')

plt.ylabel('Number of postings')

plt.title('Histogram of Salaries')



The following Figure 5.8 displays the information on salary distribution
from the training data:

Figure 5.8: Distribution of salaries based on the train data

Once the preprocessing is completed, we can choose some of the sample
data randomly to train the machine learning model. For example, we can
select random 2500 rows to train the classifier by using the below codes:

import random

random.seed(1)

indices = list(data_train.index.values)

random_2500 = random.sample(indices,2500)

# Subsetting the train data based on the random indices

data_train1 = data_train.loc[random_2500].reset_index()

pylab.rcParams['figure.figsize'] = (20,10)

plt.hist(data_train1['SalaryNormalized'], bins='auto')

plt.xlabel('Salaries')

plt.ylabel('Number of postings')

plt.title('Histogram of Salaries')

Figure 5.9 displays the dataset which randomly selected after applying the
preprocessing on the training dataset:



Figure 5.9: Randomly selected data to train the classifier

The above figure shows that when salary getting more the no of postings
going downand also, salaries between 20000 to 40000 has the major impact
in training process.

# To obtain the full width of a cell in a dataframe

pd.set_option('display.max_colwidth', -1)

desc = data_train1.loc[1,'FullDescription']

# Creating a list of words from all the job descriptions in

train_df1 data

all_desc = []

for i in range(0,data_train1.shape[0]):

desc = data_train1.loc[i,'FullDescription']

desc1 = desc.lower()

# Removing numbers, *** and www links from the data

desc2 = re.sub('[0-9]+\S+|\s\d+\s|\w+[0-9]+|\w+

[\*]+.*|\s[\*]+\s|www\.

,→ [^\s]+','',desc1)

# Removing punctuation

for p in punctuation:

desc2 = desc2.replace(p,'')

all_desc.append(desc2)



# Creating word tokens for all the descriptions

final_list = []

for desc in all_desc:

word_list = word_tokenize(desc)

final_list.extend(word_list)

# 3. Tagging parts of speech

pos_tagged = nltk.pos_tag(final_list)

# 4. Identifying the most common parts of speech

tag_fd = nltk.FreqDist(tag for (word, tag) in pos_tagged)

tag_fd.most_common()[:5]

Output: [('NN', 139026), ('JJ', 63231), ('IN', 57908), ('DT',

45695), ('NNS', 45681)]

In the next chapter, we will continue this program and show the methods of
feature engineering.

Conclusion
In this chapter, we have discussed data preprocessing. It is one of the key
processes in the machine learning model building. Understanding the key
concepts and the techniques underlying in preprocessing will gives more
confidence and clarity on the model building process. In this chapter, we
have covered the basic concepts of data preprocessing with its methods.
Various methods involved in preprocessing have been discussed, and finally,
we demonstrated the few steps of data preprocessing and how we can
approach data to get ready for the next stage.
By reading this chapter, the reader will be able to understand the basics and
methods of data preprocessing. He or she will be able to work on a dataset
and apply these methods. In the next chapter, we will introduce a very
important topic feature engineering, which plays a vital role before going to
the model building process.
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CHAPTER 6
Feature Engineering

Coming up with features is difficult, time-consuming, requires expert
knowledge. Applied machine learning is basically feature engineering.

- Andrew Ng

eature engineering is a vital step in the machine-learning pipeline, yet this
topic is rarely examined on its own. With this practical book, you will learn

techniques for extracting and transforming feature—the numeric representations
of raw data—into formats for machine-learning models. Each chapter guides you
through a single data problem, such as how to represent text or image data.
Together, these examples illustrate the main principles of feature engineering.
Machine learning fits mathematical models to data in order to derive insights or
make predictions. These models take features as input. A feature is a numeric
representation of an aspect of raw data. Features sit between data and models in
the machine learning pipeline. Feature engineering is the act of extracting features
from raw data and transforming them into formats that are suitable for the
machine learning model.
Nevertheless, feature engineering is not just an ad hoc practice. There are deeper
principles at work, and they are best illustrated in it. In this chapter, we introduce
the feature engineering concepts to the learner. By explaining the techniques of
feature engineering, the learner will have the ability to use the techniques with
data. We are going to see the example application of the feature engineering
process with the sample data. This will give a better perspective about the feature
engineering process in real data.

Structure
Introduction to feature engineering
Feature engineering techniques
Application of feature engineering with example



Conclusion

Objectives
After studying this chapter, you should be able to:

Understand the fundamentals of the feature engineering process and the
importance of machine learning model building.
Understand the various techniques that can be used in the feature
engineering process.
Apply the feature engineering steps in real-world datasets.

Introduction to feature engineering
A feature is a numeric representation of raw data. A feature is also a measurable
property of the object you’re trying to analyze. In datasets, features appear as
columns, as shown in Figure 6.1:

Figure 6.1: Sample dataset

Figure 6.1 contains a snippet of data from a sample dataset with information
about the passengers on the ill-fated Titanic maiden voyage. Each feature, or
column, represents a measurable piece of data that can be used for analysis:
Name, Age, Sex, Fare, and so on. Features are also sometimes referred to as
variables or attributes. Depending on what you’re trying to analyze, the features
you include in your dataset can vary widely.
There are many ways to turn raw data into numeric measurements, which is why
features can end up looking like a lot of things. Naturally, features must derive
from the type of data that is available. Perhaps less obvious is the fact that they
are also tied to the model; some models are more appropriate for some types of
features and vice versa. The right features are relevant to the task at hand and
should be easy for the model to ingest. Feature engineering is the process of
formulating the most appropriate features given the data, the model, and the task.
The number of features is also important. If there are not enough informative
features, then the model will be unable to perform the ultimate task. If there are



too many features, or if most of them are irrelevant, then the model will be more
expensive and trickier to train. Something might go awry in the training process
that impacts the model’s performance.

Importance of feature variable
Features are the basic building blocks of datasets. The quality of the features in
your dataset has a major impact on the quality of the insights you will gain when
you use that dataset for machine learning. Additionally, different business
problems within the same industry do not necessarily require the same features,
which is why it is important to have a strong understanding of the business goals
of your data science project.
You can improve the quality of your dataset’s features with processes like feature
selection and feature engineering, which are notoriously difficult and tedious. If
these techniques are done well, the resulting optimal dataset will contain all the
essential features that might have a bearing on your specific business problem,
leading to the best possible model outcomes and the most beneficial insights.

Feature engineering in machine learning
Features and models sit between raw data and the desired insights (see Figure
6.2). In a machine learning workflow, we pick not only the model but also the
features. This is a double-jointed lever, and the choice of one affects the other.
Good features make the subsequent modeling step easy, and the resulting model
more capable of completing the desired task. Bad features may require a much
more complicated model to achieve the same level of performance.

Figure 6.2: Place of feature engineering in the machine learning workflow



Feature engineering is the process of transforming raw data into features that
better represent the underlying problem to the predictive models, resulting in
improved model accuracy on unseen data. Machine learning algorithms will
consume input data and produces the results. In this process, the input data
contains features, which are represented in the form of a structured column.
Features selected to use in algorithm development should have some specific
requirements to work the algorithm efficiently. Here, the essential for feature
engineering arises. Feature engineering efforts mainly have two goals:

Input data preparation that is suitable for the algorithm requirements.
Improving the efficiency of models built by machine learning algorithms.

These metrics are useful to show the essence of feature engineering in data
science. In the next section, we have concise the main techniques involved in the
feature engineering process with their brief descriptions.

Feature engineering techniques
Feature engineering has several techniques, but in this section, we covered major
techniques used in the machine learning model building. The following are the
important feature engineering techniques mostly used in the process of getting
better features for machine learning algorithms.

Imputation
Handling outliers
Binning
Log transform
One-hot encoding
Grouping operations
Feature split
Scaling
Extracting date

Let we will discuss each of these techniques in brief.

Imputation
Sometimes while collecting data from different sources, data will have some
missing values that are one of the most common problems you can come across
when we try to prepare the data for machine learning. This error may happen



because of wrong entry by humans, conversion data may miss some information,
some of the privacy data will not be given for the public access, and so on. These
missing values in data will affect the performance of the machine learning
models. Some advanced machine learning platforms will try to drop the rows
where the missing values present in data but that too will cause some performance
decrease because of the size of data further reduced automatically. Few algorithms
straightaway reject the dataset, which has the missing values.
In an optimal way, if the missing value goes beyond some values, we may try to
drop the rows. If the data has 70% as an example missing value and try to drop
the rows and columns which have missing values with higher than this value. The
below pseudocode shows how to implement that in a programming way:

maxvalue = 0.7

#Dropping columns with missing value rate higher than maxvalue

data = data[data.columns[data.isnull().mean() < maxvalue]]

data = data.loc[data.isnull().mean(axis=1) < maxvalue]

An imputation is a preferable option rather than dropping because it preserves the
data size. However, there is an important selection of what you impute to the
missing values. I suggest beginning with considering a possible default value of
missing values in the column. For example, if you have a column that only has 1
and NA, then it is likely that the NA rows correspond to 0. For another example,
if you have a column that shows the customer visit count in last month, the
missing values might be replaced with 0 if you think it is a sensible solution.
Another reason for the missing values is joining tables with different sizes, and in
this case, imputing 0 might be reasonable as well. Except for the case of having a
default value for missing values, I think the best imputation way is to use the
medians of the columns:

#Filling all missing values with 0

data = data.fillna(0).

#Filling missing values with medians of the columns

data = data.fillna(data.median())

Replacing the missing values with the maximum occurred value in a column is a
good option for handling categorical columns. But if you think the values in the
column are distributed uniformly, and there is not a dominant value, imputing a
category like Other might be more sensible, because in such a case, your
imputation is likely to converge a random selection.

#Max fill function for categorical columns



data['column_name'].fillna(data['column_name'].value_counts().idxmax

(), inplace=True).

From the above approaches, we can avoid the dataset contain missing values, and
we can use the imputation is one the process of basic feature engineering
techniques.

Handling outliers
Before mentioning how outliers can be handled, I want to state that the best way
to detect the outliers is to demonstrate the data visually. All other statistical
methodologies are open to making mistakes, whereas visualizing the outliers
gives a chance to make a decision with high precision. Anyway, I am planning to
focus on visualization deeply in another article, and let’s continue with statistical
methodologies. Statistical methodologies are less precise, as I mentioned, but on
the other hand, they have superiority; they are fast. Here I will list two different
ways of handling outliers. These will detect them using standard deviation and
percentiles. Outlier detection with standard deviation. If a value has a distance to
the average higher than x * standard deviation, it can be assumed as an outlier.
Then what x should be? There is no trivial solution for x, but usually, a value
between 2 and 4 seems practical:

#Dropping the outlier rows with standard deviation

factor = 3

upper_lim = data['column'].mean () + data['column'].std () * factor

lower_lim = data['column'].mean () - data['column'].std () * factor

data = data[(data['column'] < upper_lim) & (data['column'] >

lower_lim)]

In addition, Z-score can be used instead of the formula above. Z-score (or
standard score) standardizes the distance between a value and the mean using the
standard deviation. Outlier detection with percentiles, another mathematical
method to detect outliers is to use percentiles. You can assume a certain
percentage of the value from the top or the bottom as an outlier. The key point is
here to set the percentage value once again, and this depends on the distribution of
your data, as mentioned earlier. Additionally, a common mistake is using the
percentiles according to the range of the data. In other words, if your data ranges
from 0 to 100, your top 5% is not the values between 96 and 100. Top 5% means
here the values that are out of the 95th percentile of data:

#Dropping the outlier rows with Percentiles

upper_lim = data['column'].quantile(.95)



lower_lim = data['column'].quantile(.05)

data = data[(data['column'] < upper_lim) & (data['column'] >

lower_lim)]

An outlier dilemma: Drop or cap another option for handling outliers is to cap
them instead of dropping. So, you can keep your data size, and at the end of the
day, it might be better for the final model performance. On the other hand,
capping can affect the distribution of the data, thus it better not to exaggerate it.

#Capping the outlier rows with Percentiles

upper_lim = data['column'].quantile(.95)

lower_lim = data['column'].quantile(.05)

data.loc[(df[column] > upper_lim),column] = upper_lim

data.loc[(df[column] < lower_lim),column] = lower_lim

These are the steps that can apply while processing the data with outliers. Let us
discuss the binning process now.

Binning
The main motivation of binning is to make the model more robust and prevent
overfitting. However, it has a cost to the performance. Every time you bin
something, you sacrifice information and make your data moreregularized.
Binning can be applied on both categorical and numerical data:

#Numerical Binning Example

Value Bin

0-30 -> Low

31-70 -> Mid

71-100 -> High

Figure 6.3 illustrates the binning process applied to the numerical data:

Figure 6.3: Binning illustration of numerical data



#Categorical Binning Example

Value Bin

Spain -> Europe

Italy -> Europe

Chile -> South America Brazil -> South America

The trade-off between performance and overfitting is the key point of the binning
process. In my opinion, for numerical columns, except for some obvious
overfitting cases, binning might be redundant for algorithms, due to its effect on
model performance.
However, for categorical columns, the labels with low frequencies probably affect
the robustness of statistical models negatively. Thus, assigning a general category
to these less frequent values helps to keep the robustness of the model. For
example, if your data size is 100,000 rows, it might be a good option to unite the
labels with a count less than 100 to a new category like Other.



These are some of the examples of the binning process. We will discuss the next
technique, that is, log transform.

Log Transform
Log Transform logarithm transformation (or log transform) is one of the most
commonly used mathematical transformations in feature engineering.
Below are the benefits of Log Transform.

It helps to handle skewed data, and after transformation, the distribution
becomes more approximate to normal.
In most of the cases, the magnitude order of the data changes within the
range of the data. For instance, the difference between the ages of 15 and 20
is not equal to the ages 65 and 70. In terms of years, yes, they are identical,
but for all other aspects, 5 years of difference in young ages mean a higher
magnitude difference. This type of data comes from a multiplicative
process, and log transform normalizes the magnitude differences like that.
It also decreases the effect of the outliers due to the normalization of
magnitude differences, and the model becomes more robust.



A critical note: The data you apply for log transform must have only
positive values; otherwise, you receive an error. Also, you can add 1 to
your data before transforming it. Thus, you ensure the output of the
transformation to be positive.

Log(x+1)

data = pd.DataFrame({'value':[2,45, -23, 85, 28, 2, 35, -12]})

data['log+1'] = (data['value']+1).transform(np.log).

Note that the values are different:

This is the output of data after applying the log transformation. Let us discuss the
next technique that is, one-hot encoding.

One-hot encoding
One-hot encoding is one of the most common encoding methods in machine
learning. This method spreads the values in a column to multiple flag columns
and assigns 0 or 1 to them. These binary values express the relationship between
grouped and encoded column.
This method changes your categorical data, which is challenging to understand
for algorithms, to a numerical format, and enables you to group your categorical
data without losing any information. Figure 6.4 shows the one-hot encoding
process applied to the User and City dataset:



Figure 6.4: One hot encoding example in City column

After the application one-hot encoding, the dataset dimension has been changed.

Grouping operations
In most machine learning algorithms, every instance is represented by a row in
the training dataset, where every column shows a different feature of the instance.
Datasets such as transactions rarely fit the definition of tidy data above, because
of the multiple rows of an instance. In such a case, we group the data by the
instances, and then every instance is represented by only one row.
The key point of the group by operations is to decide the aggregation functions of
the features. For numerical features, average and sum functions are usually
convenient options, whereas for categorical features, it more complicated.

Categorical column grouping
Different ways for aggregating categorical columns:

The first option is to select the label with the highest frequency. In other
words, this is the max operation for categorical columns, but ordinary max
functions generally do not return this value, you need to use a lambda
function for this purpose:

data.groupby('id').agg(lambda x: x.value_counts().index[0])

The second option is to make a pivot table. This approach resembles the
encoding method in the preceding step with a difference. Instead of binary
notation, it can be defined as aggregated functions for the values between
grouped and encoded columns. This would be a good option if you aim to
go beyond binary flag columns and merge multiple features into aggregated
features, which are more informative.



#Pivot table Pandas Example

data.pivot_table(index='column_to_group',

columns='column_to_encode', values='aggregation_column',

aggfunc=np.sum, fill_value = 0)

Figure 6.5 shows the output of one-hot encoding after applying the pivot
table technique:

Figure 6.5: Pivot table example: Sum of Visit Days grouped by Users

The last categorical grouping option is to apply a group by function after
applying one-hot encoding. This method preserves all the data -in the first
option, you lose some, and in addition, you transform the encoded column
from categorical to numerical in the meantime. You can check the next
section for the explanation of numerical column grouping.

Numerical column grouping
Numerical columns are grouped using sum and mean functions in most of the
cases. Both can be preferable according to the meaning of the feature. For
example, if you want to obtain ratio columns, you can use the average of binary
columns. In the same example, sum function can be used to obtain the total count
either.

#sum_cols: List of columns to sum

#mean_cols: List of columns to average

grouped = data.groupby('column_to_group')

sums = grouped[sum_cols].sum().add_suffix('_sum')

avgs = grouped[mean_cols].mean().add_suffix('_avg')

new_df = pd.concat([sums, avgs], axis=1)

The above commands are used to apply the numerical column grouping method.
Let us now discuss the feature split technique.

Feature split



Splitting features is a good way to make them useful in terms of machine
learning. Most of the time, the dataset contains string columns that violate tidy
data principles. By extracting the utilizable parts of a column into new features:

We enable machine learning algorithms to comprehend them.
Make it possible to bin and group them.
Improve model performance by uncovering potential information.

A split function is a good option; however, there is no one way of splitting
features. It depends on the characteristics of the column, how to split it. Let’s
introduce it with two examples. First, a simple split function for an ordinary name
column:

The example above handles the names longer than two words by taking only the
first and last elements, and it makes the function robust for corner cases, which
should be regarded when manipulating strings like that. Another case for the split
function is to extract a string part between two chars. The following example
shows an implementation of this case by using two split functions in a row:



These are some of the examples to show how to use feature split in the data. Next,
we will explore the scaling technique.

Scaling
In most cases, the numerical features of the dataset do not have a certain range,
and they differ from each other. In real life, it is nonsense to expect age and
income columns to have the same range. But from the machine learning point of
view, how these two columns can be compared?
Scaling solves this problem. The continuous features become identical in terms of
the range, after a scaling process. This process is not mandatory for many
algorithms, but it might still be nice to apply. However, the algorithms based on
distance calculations such as k-NN or k-Means need to have scaled continuous
features as model input.
Basically, there are two common ways of scaling:

Normalization:

Normalization (or min-max normalization) scale all values in a fixed range
between 0 and 1. This transformation does not change the distribution of the
feature and due to the decreased standard deviations, the effects of the outliers



increases. Therefore, before normalization, it is recommended to handle the
outliers.

These examples show how to apply scaling technique to normalize the data. Let
us now discuss the extracting date method.

Extracting date
Though date columns usually provide valuable information about the model
target, they are neglected as an input or used nonsensically for the machine
learning algorithms. It might be the reason for this, that dates can be present in
numerous formats, which make it hard to understand by algorithms even they are
simplified to a format like 01–01–2017. Building an ordinal relationship between
the values is very challenging for a machinelearning algorithm if you leave the
date columns without manipulation. Here, I suggest three types of preprocessing
for dates:

Extracting the parts of the date into different columns: Year, month, day, and
many more.
Extracting the time period between the current date and columns in terms of
years, months, days, and more.
Extracting some specific features from the date: Name of the weekday,
Weekend or not, holiday or not, and many more.

If you transform the date column into the extracted columns like above, the
information of them become disclosed and machine learning algorithms can
easily understand them:



from datetime import date

data = pd.DataFrame({'date':

['01-01-2017',

'04-12-2008',

'23-06-1988',

'25-08-1999',

'20-02-1993',

]})

#Transform string to date

data['date'] = pd.to_datetime(data.date, format="%d-%m-%Y")

#Extracting Year

data['year'] = data['date'].dt.year

#Extracting Month

data['month'] = data['date'].dt.month

#Extracting passed years since the date

data['passed_years'] = date.today().year - data['date'].dt.year

#Extracting passed months since the date

data['passed_months'] = (date.today().year - data['date'].dt.year) *

12 + date.today().month - data['date'].dt.month

With this the major techniques used in the feature engineering has been explained.
Now let us discuss the application of feature engineering with the example.

Applying feature engineering
From Chapter 5, Data Preprocessing, we will continue to apply the feature
engineering process to the dataset, which we are already using in our examples.



We will start the application of identifying the most common parts of speech in
the dataset for that we have to run the following code:

# Excluding stopwords from the analysis

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))

list_wo_stopwords = []

for w in final_list:

if w not in stop_words:

list_wo_stopwords.append(w)

# 3. Tagging parts of speech

pos_tagged_wo_sw = nltk.pos_tag(list_wo_stopwords)

# 4. Identifying the most common parts of speech

tag_fd_wo_sw = nltk.FreqDist(tag for (word, tag) in

pos_tagged_wo_sw)

tag_fd_wo_sw.most_common()[:5]

The output would be like this shown below:

[('NN', 134734), ('JJ', 65288), ('NNS', 44913), ('VBG', 22828),

('VBP', 15395)]

We can perform the normalization operation to get the normalized values for the
salary. For that we have to use the below code:

p_75 = np.percentile(data_train1['SalaryNormalized'], 75)

data_train1['target'] = data_train1['SalaryNormalized'].apply(lambda

x: 1 if x>=p_75 else 0)

costly_cities =

['London','Brighton','Edinburgh','Bristol','Southampton','Portsmouth

','Exeter','Cardiff','Manchester',

'Birmingham','Leeds','Aberdeen','Glasgow','Newcastle','Sheffield','L

iverpool']

costly_cities_lower = [x.lower() for x in costly_cities]

# More robust if lower() is applied

data_train1['location_flag'] =

data_train1['LocationNormalized'].apply(lambda x: 1 if x in

costly_cities else 0)

The dataset has extra column job description we have to remove that to get better
result:



# Dropping job description column from the dataset

data_train2 =

data_train1.drop(['FullDescription','index','Id','LocationRaw','Titl

e','Company','LocationNormalized','SalaryRaw','SalaryNormalized',

'target'],axis=1)

data_train3 = pd.get_dummies(data_train2,drop_first=True)

X_n = np.array(data_train3)

y_n = np.array(data_train1['target'])

After performing the above operations our dataset will be good to supply for the
next step of machine learning model. That is, machine learning model selection
and fitting the data with that.

Conclusion
In this chapter, we have learned the fundamental methods that can be beneficial in
the feature engineering process. This will be most important to know all those
techniques when we go for real-time problems. Most of the techniques applied in
different scenarios with different levels of applications. Once the dataset is
prepared with an appropriate feature engineering process, then it will be easier to
get better results while building our machine learning models. We have discussed
the application of feature engineering using examples. By reading this chapter, the
reader will be able to gain the basic understanding of feature engineering and its
techniques. He or she will be able to apply these techniques in datasets. In the
next chapter, we will discuss about the machine learning algorithms. We will also
build a model using one of the algorithms.
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CHAPTER 7
Machine Learning Algorithms

rom the previous chapter, we learned the important steps that need to apply
to the data before building machine learning models. Machine learning

(ML) is a subset of Artificial intelligence (AI) algorithms. It makes the software
applications more efficient and accurate in processing the historical data to predict
the outcomes of future data. A notable point is machine learning algorithms try to
get the output without explicitly programmed. The flow of machine learning is to
build the algorithms with the input of data from the past and near future and use
the standard statistical analysis methods to find the new outcomes whenever the
new data becomes comes into the algorithm. Increasing the input data exposure to
the algorithms during the training phase will make the algorithm performance
better. This process of processing the input data is also known as the learning of
the machine learning algorithm. This means that the algorithm will try to change
and adopt the results based on the data it consumes over time. It makes the
resemblance of human learning process by the experience. Machine learning
algorithms always tries to fine-tune its parameters according to the learning
experience gained from the dataset. Also, it considers the feedback from the
previous output and improves it. So, it is important to know the concepts behind
the machine learning algorithms and different types of machine learning
algorithms. In this chapter, we try to cover those basic machine learning concepts
and techniques in detail.

Structure
Introduction to machine learning
Explaining important machine learning algorithms
Building a machine learning model with an example
Conclusion

Objectives
After studying this chapter, you should be able to:



Understand the fundamentals of machine learning and the evolution of
machine learning.
Understand the different types of machine learning algorithms.
Build the machine learning models for the dataset.

Introduction to machine learning
Machine learning follows the concept of making the machine to learn based on its
previous experience and examples, but everything happens without being
explicitly programmed. Machine learning creates a major impact on the industry
because of its ability to produce output more accurately for future decision
making from the data it observed. The current trend in computation power has
improved from the past few years will also make the implementation of the
machine learning process a better one. Machine learning is applied in various
domains and industries. Let we will see some of the areas where this produces
more effective results.
Application areas of machine learning are as follows:

Prediction problems: Machine learning can also be useful in prediction-
based systems. Let us consider the bank loan processing example to predict
the potential customer who may want a home loan in the future can be
classified by machine learning algorithms.
Image recognition: Facial recognition application is the best example to
tell the usage of machine learning. It tries to separate the people based on
their face data.
Speech recognition: Using the audio data detection of the language. It is
also useful to translate the language into another language. Translating the
human voice data to textual format to make documents.
Medical domain: Machine learning is used to recognize tumorous tissues.
Financial industry and trading: This company uses machine learning to
investigate fraud and checks the credit card activities to find defaulters.

Let us start our voyage with a brief history of machine learning and then will
discuss the different types of machine learning. Finally, we will cover the details
about the machine learning model building steps with an example.

Brief history of machine learning



Machine learning is not a very new concept in the world. It has existed before six
decades itself. From Figure 7.1, we get the idea of machine learning starts from
the 1940s itself. This is the period when the first computer system started to
operate. At that time, that computer is called a numerical computing machine.
Because the word computer was being used in the form of a human with the
additional capability to perform numerical computation:

Figure 7.1: Evolution of machine learning (Credit: Impact of Artificial Intelligence and Machine Learning
on Various Industries by Imran Uddin)

Game programing starts evolving from the 1950s by beating the world champion
in checkers. This helps to improve the skills of checkers players. During that
period, only the perceptron invention comes from Frank Rosenblatt. That was the
breakthrough in the development of artificial intelligence. From there several
years, we are faced with difficulties in solving certain problems using neural
network concepts. In the 1990s, the statistics come into the picture of machine
learning. That provides support for combining computer science with statistics to
form probabilistic approaches in artificial intelligence. This changes the direction
of the field towards the data-driven problem-solving methodology. It provides a
base for the invention of intelligent based systems that can use large-scale data to
analyze and learn. Now in trending the deep learning, a subset of machine
learning used widely in the application of machine learning to solve some real-
time problems.

Classification of machine learning algorithms



There are many ways to classify the machine learning algorithms. But based on
the learning process, we can majorly classify them as supervised, unsupervised,
and reinforcement learning algorithms. In other words, we can call this the type of
machine learning technique. Let us briefly discuss the classification of machine
learning algorithms.
Types of machine learning algorithms:

Supervised learning: Name itself clearly says that this type of machine
learning algorithm uses supervising concepts on the mapping of input data
to the corresponding future prediction value. Simply we can say that input
data is tagged with resultant output during the training phase of algorithms.
It establishes the learning by comparing the predicted results with the actual
results of input data and adjusts the model continuously until it achieves the
required accuracy. Regression and classification problems are coming into
this category.
Figure 7.2 shows the spam prediction example. In that input, data initially
marked with tags as Spam or Not Spam. This input data also called as
labeled input data, which is going to use in training the supervised model.
Once the model gets the training based on the labeled data, then we can test
the model with new data (that is, new mails). From this process, we can get
the model that can be able to predict the right output for the new data.
Decision Trees, Bayesian Classification, and Linear Regression are the few
examples of supervised machine learning algorithms.



Figure 7.2: Example of Supervised Learning

Unsupervised learning: In this type of machine learning algorithms Input
data has no tags. Here the algorithms itself try to infer the common
relationship that exists in data. Association rule learning and clustering
algorithms are common examples of this type of learning method. For
example, consider the classification of cartoon characters' data to identify
the ducks' character. In Figure 7.3 example, we have given some characters
to our model, which are Ducks and Not Ducks. In our training data, we don’t
provide any label to the corresponding data. The unsupervised model can
separate both the characters by looking at the type of data and models the
underlying structure or distribution in the data in order to learn more about
it. Common algorithms include independent component analysis, K-Means,
and Apriori algorithms:

Figure 7.3: Example of Unsupervised Learning

Reinforcement learning: Input data as feedback to the model, emphasizing
how to act based on the environment to maximize the expected benefits. In
Figure 7.4 example, we can see that the agent is given 2 options, that is, a
path with water or a path with fire. A reinforcement algorithm works on
reward a system; that is, if the agent uses the fire path, then the rewards are
subtracted, and the agent tries to learn that it should avoid the fire path. If it
had chosen the water path or the safe path, then some points would have
been added to the reward points; the agent then would try to learn what path
is safe and what path isn’t. It is basically leveraging the rewards obtained;
the agent improves its environment knowledge to select the next action. The
difference between supervised learning is that it does not require the correct
input/output pairs and does not require a precise correction of sub-optimal
behavior. Reinforcement learning is more focused on online planning and



requires a balance between exploration (in the unknown) and compliance
(existing knowledge):

Figure 7.4: Example of Reinforcement Learning

The following Figure 7.5 shows the mind map of the different types of machine
learning techniques withcorresponding algorithms:



Figure 7.5: Machine Learning Algorithms Mind Map

According to the function to divide, machine learning, including:

Regression algorithm

Linear regression
Logistic regression
Multiple Adaptive Regression (MARS)
Local scatter smoothing estimate (LOESS)

Instance-based learning algorithm

K — Nearest Neighbor algorithm (kNN)
Learning vectorization (LVQ)
Self-Organizing Mapping Algorithm (SOM)
Local Weighted Learning Algorithm (LWL)

Regularization algorithm

Ridge Regression
LASSO (Least Absolute Shrinkage and Selection Operator)
Elastic Net



Minimum Angle Regression (LARS)

Decision tree algorithm

Classification and Regression Tree (CART)
ID3 algorithm (Iterative Dichotomiser 3)
C4.5 and C5.0
CHAID Chi-squared Automatic Interaction Detection
Random Forest
Multivariate Adaptive Regression Spline (MARS)
Gradient Boosting Machine (GBM)

Bayesian algorithm

Naive Bayes
Gaussian Bayes
Polynomial naive Bayes
AODE (Averaged One-Dependence Estimators)
Bayesian Belief Network

Kernel-based algorithm

Support vector machine (SVM)
Radial Basis Function (RBF)
Linear Discriminate Analysis (LDA)

Clustering Algorithm

K — mean
K — medium number
EM algorithm
Hierarchical clustering

Association rule learning

Apriori algorithm
Eclat algorithm

Neural Networks

sensor



Backpropagation algorithm (BP)
Hopfield network
Radial Basis Function Network (RBFN)

Deep learning

Deep Boltzmann Machine (DBM)
Convolutional Neural Network (CNN)
Recurrent neural network (RNN, LSTM)
Stacked Auto-Encoder

Dimensionality reduction algorithm

Principal Component Analysis (PCA)
Principal component regression (PCR)
Partial least squares regression (PLSR)
Salmon map
Multidimensional scaling analysis (MDS)
Projection pursuit method (PP)
Linear Discriminant Analysis (LDA)
Mixed Discriminant Analysis (MDA)
Quadratic Discriminant Analysis (QDA)
Flexible Discriminant Analysis (FDA)

Integrated algorithm

Boosting
Bagging
AdaBoost
Stack generalization (mixed)
GBM algorithm
GBRT algorithm
Random forest

Other algorithms

Feature selection algorithm
Performance evaluation algorithm



Natural language processing
Computer vision
Recommended system
Reinforcement learning
Migration learning

Even though we have several algorithms listed above. We will briefly look into
the most important and frequently used machine learning algorithms in the next
section.

Top 10 algorithms of machine learning explained
The following are the very important machine learning algorithms used widely to
solve real-world problems:

Linear regression: For statistical technique, linear regression is used in
which the value of the dependent variable is predicted through independent
variables. A relationship is formed by mapping the dependent and
independent variable on a line, and that line is called the regression line,
which is represented by Y= a*X + b where Y= Dependent variable (for
example, weight) X= Independent Variable (e.g., height) b= Intercept and a
= slope.
Logistic regression: In logistic regression, we have a lot of data whose
classification is done by building an equation. This method is used to find
the discrete dependent variable from the set of independent variables. Its
goal is to find the best fit set of parameters. In this classifier, each feature is
multiplied by a weight, and then all are added. Then the result is passed to a
sigmoid function, which produces the binary output. Logistic regression
generates the coefficients to predict a logit transformation of the probability.
Decision tree: It belongs to a supervised learning algorithm. The decision
tree can be used to classification and regression, both having a tree like
structure. In a decision tree building algorithm first, the best attribute of the
dataset is placed at the root, and thenthe training dataset is split into subsets.
Splitting of data depends on the features of datasets. This process is done
until the whole data is classified, and we find the leaf node at each branch.
Information gain can be calculated to find which feature is giving us the
highest information gain. Decision trees are built for making a training
model that can be used to predict class or the value of the target variable.



Support Vector Machine (SVM): The support vector machine is a binary
classifier. Raw data is drawn on the n-dimensional plane. In this, a
separating hyperplane is drawn to differentiate the datasets. The line drawn
from the center of the line separating the two closest data-points of different
categories is taken as an optimal hyperplane. This optimized separating
hyperplane maximizes the margin of training data. Through this hyperplane,
new data can be categorized.
Naive-Bayes: It is a technique for constructing classifiers, which is based
on Bayes theorem used even for highly sophisticated classification methods.
It learns the probability of an object with certain features belonging to a
particular group or class. In short, it is a probabilistic classifier. In this
method occurrence of each feature is independent of occurrence another
feature. It only needs a small amount of training data for classification, and
all terms can be precomputed; thus, classifying becomes easy, quick, and
efficient.
KNN: This method is used for both classification and regression. It is
among the simplest method of machine learning algorithms. It stores the
cases, and for new data, it checks the majority of the k neighbors with which
it resembles the most. KNN makes predictions using the training dataset
directly.
K-means Clustering: It is an unsupervised learning algorithm used to
overcome the limitation of clustering. To group the datasets into clusters, the
initial partition is done using Euclidean distance. Assume if we have k
clusters, for each cluster, a center is defined. These centers should be far
from each other, and then each point is examined thus added to the
belonging nearest cluster in terms of Euclidean distance to the nearest mean
until no point remains pending. A mean vector is re-calculated for each new
entry. The iterative relocation is done until proper clustering is done. Thus
for minimizing the objective squared error function process is repeated by
generating a loop. The results of the K-means clustering algorithm are 1.
The centroids of the K clusters, which are used to label newly entered data.
2. Labels for the training data.
Random Forest: It is a supervised classification algorithm. Multiple
numbers of decision trees taken together form a random forest algorithm,
that is, the collection of many classification trees. It can be used for
classification as well as regression. Each decision tree includes some rule-
based systems. For the given training dataset with targets and features, the
decision tree algorithm will have a set of rules. In a random forest, unlike
decision trees, there is no need to calculate information gain to find the root



node. It uses the rules of each randomly created decision tree to predict the
outcome and stores the predicted outcome. Further, it calculates the vote for
each predicted target. Thus, a high voted prediction is considered as the
final prediction from the random forest algorithm.
Dimensionality Reduction Algorithms: It is used to reduce the number of
random variables by obtaining some principal variables. Feature extraction
and feature selection are types of dimensionality reduction methods. It can
be done by principal component analysis(PCA) is a method of extracting
important variables from a large set of variables. It extracts the low
dimensionality set of features from high dimensional data. It is basically
used when we have more than 3-dimensional data.
Gradient boosting and Ada Boost Algorithms: Gradient boosting
algorithm is a regression and classification algorithm. AdaBoost only selects
those features which improve the predictive power of the model. It works by
choosing a base algorithm like decision trees and iteratively improving it by
accounting for the incorrectly classified examples in the training set. Both
algorithms are used for the boosting of the accuracy of a predictive model.

The above are the top 10 machine learning algorithms used in the industry for
solving the data science problems. Let we will discuss how to build the machine
learning model with an example in the next section.

Building a machine learning model
This is the process where the preprocessed features are used to build the machine
learning model. Initially, the dataset must be split for training and testing. Then
the data has to be fitted with different model algorithms as briefed in the previous
section. Here we have the sample code that is used to implement the model for the
use case, which already discussed in previous chapters. Once you run the code,
you can able to get the prediction accuracy values that are used to measure the
algorithm performance on the dataset. The mean squared error is also computed
for each of the predicted models.
The following code defines the machine learning model using the python
language. Here we start with splitting the dataset. Eventually, we will use the
Bernoulli Naive-Bayes and Multinomial Naive-Bayes models:

from sklearn.model_selection import train_test_split

X_train_num, X_val_num, y_train_num, y_val_num =

train_test_split(X_n, y_n,␣,→ test_size=0.3, random_state=1)

# Bernoulli



from sklearn.naive_bayes import BernoulliNB

clf = BernoulliNB()

clf.fit(X_train_num, y_train_num)

from sklearn import metrics

from sklearn.metrics import mean_squared_error

prediction_train = clf.predict(X_val_num)

mat_n = metrics.confusion_matrix(y_val_num, prediction_train)

mat_n

print (metrics.accuracy_score(y_val_num, prediction_train))

Output: 0.7533333333333333

# Baseline accuracy

1-(sum(y_val_num)/len(y_val_num))

# sum(prediction_train)

Output: 0.7493333333333334

Now let us use the CountVectorizer to count the occurrence of each word:

def models(l):

# Counting the occurrence of each word in the corpus

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

X_train_counts = count_vect.fit_transform(l)

count_vect.get_feature_names()

X_matrix= X_train_counts.todense()

y = np.array(data_train1['target'])

# Creating the train and test split

from sklearn.model_selection import train_test_split

X_train_m, X_val_m, y_train_m, y_val_m =

train_test_split(X_train_counts, y, test_size=0.3, random_state=1)

#Multinomial

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB().fit(X_train_m, y_train_m)

labels_m = clf.predict(X_val_m)

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

mat_m = confusion_matrix(y_val_m, labels_m)



# Bernoulli

# Changing the data to binary to input BernoulliNB

x_train_b1 = X_train_counts.todense()

X_train_counts_ber = np.where(x_train_b1 >=1,1,0)

# Creating the train and test split for bernoulli

from sklearn.model_selection import train_test_split

X_train_b, X_val_b, y_train_b, y_val_b =

train_test_split(X_train_counts_ber, y, test_size=0.3,

random_state=1)

from sklearn.naive_bayes import BernoulliNB

clf = BernoulliNB().fit(X_train_b, y_train_b)

labels_b = clf.predict(X_val_b)

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

mat_b = confusion_matrix(y_val_b, labels_b)

print ('Confusion matrix:',mat_b)

print ('Accuracy using BernoulliNB:',accuracy_score(y_val_b,

labels_b))

print('Mean Squared Error:', mean_squared_error(y_val_b, labels_b))

print ('Confusion matrix:',mat_m)

print ('Accuracy using MultinomialNB:',accuracy_score(y_val_m,

labels_m))

print('Mean Squared Error:', mean_squared_error(y_val_m, labels_m))

models(all_desc)

Figure 7.6 shows the sample output, which you will get when you run the above
code. This shows that the model which builds is having the accuracy 76% when
using the Bernoulli Naïve Bayes algorithm and 80% by using the Multinomial
Naïve Bayes algorithm. However, the Mean Squared Error can be improved
further:

Figure 7.6: Score Accuracy and Mean Squared Error of the current Model



Now let’s remove the stopwords and then check the accuracy of the models and
its respected mean squared error:

# Removing stopwords

def remove_stopwords(s):

big_regex = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, ␣, →
stop_words)))

return big_regex.sub('',s)

all_desc_wo_sw = [remove_stopwords(s) for s in all_desc]

models(all_desc_wo_sw)

Figure 7.7: Improved Accuracy and Mean Squared Error of the updated model

It is seen that the accuracy of both models has slightly increased now. Also, the
mean squared error hasdecreased significantly. We can still enhance both the
models by incorporating additional methods. One of them is Lemmatization. It is
the process of grouping together the different forms of a word so that they can be
analyzed as a single word. Let us now do the same in our existing code:

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

from nltk.corpus import wordnet

def get_wordnet_pos(treebank_tag):

if treebank_tag.startswith('J'):

return wordnet.ADJ

elif treebank_tag.startswith('V'):

return wordnet.VERB

elif treebank_tag.startswith('N'):

return wordnet.NOUN

elif treebank_tag.startswith('R'):

return wordnet.ADV

else:

return None

# Lemmatizing the data



all_desc_lemm = []

for i in range(0,len(all_desc_wo_sw)):

desc = all_desc_wo_sw[i]

desc2 = re.sub('[0-9]+\S+|\s\d+\s|\w+[0-9]+|\w+

[\*]+.*|\s[\*]+\s|www\.[^\s]+','',desc)

for p in punctuation:

desc2 = desc2.replace(p,'')

tagged = nltk.pos_tag(word_tokenize(desc2))

list_lemmatized = []

for word, tag in tagged:

wntag = get_wordnet_pos(tag)

if wntag is None:# not supply tag in case of None

list_lemmatized.append(lemmatizer.lemmatize(word))

else:

list_lemmatized.append(lemmatizer.lemmatize(word, pos=wntag))

k = ' '.join(list_lemmatized)

all_desc_lemm.append(k)

models(all_desc_lemm)

Figure 7.8: Improved Accuracy and Mean Squared Error of the updated model after Lemmatization

A slight improvement in the model using the Lemmatization method can be seen.
Thus we can keep on improving the model with proper methods.

Conclusion
In this chapter, we introduced the fundamental concepts of machine learning
algorithm along with the history of machine learning evolution. Also, we
discussed the various types of machine learning algorithms. In the next section,
we briefly see the best machine learning algorithms used in the current trends.
Finally, we concluded the chapter with a simple example of how to build the
machine learning model. By reading this chapter, the reading will gain an
understanding of various machine learning models available. He or she will also



be able to build an ML model based on a dataset. In the next chapter, we will
discuss the productionizing the algorithms for implementation.
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CHAPTER 8
Productionizing Machine Learning

Models
he machine learning models existed for decades in our research labs
and worked on by researchers to develop new features in products. The

recent developments in cloud computing have lowered the price of
computation and storage, as well as made internet services available across
the world. Now, the end customer expects the benefits of AI/ML to be
delivered to him via web-applications and smartphones. The process to
deliver ML result to end customer over the internet is called productionizing
the machine learning.
In previous sections, you learned about algorithms and the type of problems
they solve using data. In this chapter, we will introduce the basic concepts of
productizing algorithms. The chapter will also introduce REST APIs to
deliver the model result in real-time environment. The interface produced for
a general user will show how ML delivers value in the simplest and most
impactful manner. We will productionize an ML model using the Flask
framework and show the steps.
In any machine learning project, productionizing a machine learning model
is a significant part. You can build an attractive website and a REST API
using Flask. It's just a matter of a few lines of code.

Structure
Type of ML production system
Introduction to REST APIs
Flask framework
Jupyter application to the flask server
Front end interface
Key considerations for a scalable system



Conclusion

Objectives
After studying this chapter, you should be able to:

Understand the concepts of different types of ML production system.
Understand the REST APIs.
Build the Jupyter application to the flask server.
Design the frontend interface and understand considerations for a
scalable system.

Types of ML production system
ML production system refers to a large stack of processes and infrastructure
to support delivering ML predictions to end-user. The production system is
characterized by two key factors:

Model training (online or offline)
Model scoring (on-demand or batch)

The above two factors help decide on what type of production system to be
built for the given use case.
The use cases can then be further divided into four quadrants based on
training and scoring preferences. Figure 8.1 shows the four quadrants:



Figure 8.1: ML production systems

In the above framework, we divide the production environment into four
types; all four systems cover the popular approaches applied by industry to
deliver ML models to end-users. The environments are discussed below.

Batch prediction
Batch prediction is the simplest machine learning flow. This flow typically
involves historic data available as a static file, for example, CSV, database
dump, and many more, and model being developed in local systems. This
ML flow you will find mostly in academia, research teams, and historical
data analysis tasks. For example, you get a CSV file of data, train, and test
your model and output a CSV file of predictions. This type of output makes
very little use in industry setting accepts in historical reports.
Batch prediction puts up a sequence of automated steps and provides the
output by scoring new data on a model in regular intervals and store the
output in bulk as a flat file or into a database. This type of ML flow allows
doing analysis at regular intervals on bulk data.

Batch learning
There are many cases where a large historical data dump requires complete
retraining of the models to be applied on new datasets. In these cases, Batch



learning is required where a volume of data needs to be analyzed in real-time
to create a new model. This method is also known as automated machine
learning.
This method is very handy in cases like recommendation engines for large e-
commerce websites, where they update all recommendation score once in
every 24 hours automatically in their system.

REST APIs
This is the most popular method to deliver ML results to end-users. In this
method, the model is trained offline and put behind an HTTP server to
provide predictions to data points as and when required. Most of the client-
side applications handle one request at a time for prediction, and hence
having a REST APIs can provide system-independent on-demand scoring of
models.
Assume you developed an object detection model offline, and you want to
build that into a mobile application. The mobile application will be snapping
one picture at a time and asking the REST API to return the predictions for
objects detected. In these cases, a REST API based web service makes it
easy to manage and handle requests from multiple types of systems.

Online learning
The online learning is becoming very popular as the algorithms allow
training or models in a live production system with every new datapoint.
This helps in keeping model up-to-date and adapt to changing behaviors
very fast. Frequent changes also come with the risk of distortion by outliers.
However, most of the online learning system has rollback features to make
sure we do monitor and adjust online learning models in production.
You can think of a customer segmentation models deployed as online
learning models, which keeps learning behavior from each new customer
visiting your system. The segmentations keep adoption according to the data
flowing into the system. This is a very different approach to REST API
based web services, where the models are trained offline and only exposed
via web services.

All types of production systems can be controlled and managed by
REST APIs and through web services. Read carefully the distinction



between what the APIs functionality is in the system.

Introduction to REST APIs
REST stands for REpresentational State Transfer. REST is an
architectural style for APIs. APIs stands for Application Programming
Interface. REST architecture was introduced by Roy Fielding in his Ph.D.
thesis Architectural Styles and the Design of Network-based Software
Architectures in 2000 at UC Irvine. You can read the thesis here.
RESTful APIs are a very vast topic that covers network architectures and
application design patterns. Within the scope of this book, we will only
discuss how to use the REST architecture to create APIs for our python-
based ML models. To understand the REST concepts, we will briefly
introduce key terms; APIs, http, client-server architecture, and resource.

Application Programming Interface (APIs)
APIs are a collection of communication protocols and subroutines used by
programs to communicate with each other. APIs provide an open-source
standard accepted for programs to communicate with each other and hence
allowing developers to develop different parts of the application
independently. APIs are developed for different types and purposes and
differ in the way they work. In our scope, we will focus on Web APIs, which
are delivered via Http protocol.
For example, as shown in Figure 8.2, the Twitter API allows the interface
between a user and twitter through the API interface:

Figure 8.2: API Interfaces

An application can call the twitter API to collect information or post a new
tweet. This makes the developer and twitter two completely different



software talk to each other.

Hyper Text Transfer Protocol (HTTP)
The Hyper Text Transfer Protocol (HTTP) is the client-server network
protocol that has been in use by the World-Wide Web since 1990. It is
important to note that it’s the HTTP protocol that allowed the browsers and
website to become so popular and accessible. Every time you access a web
page, the browser sends an HTTP request messages for HTML pages,
images, scripts, and styles sheets from the server as defined by the URL.
URL stands for Universal Resource Locator. An example of an URL
decoding for http request is shown in Figure 8.3:

Figure 8.3: URL decoding for http request

An important feature of http is that it’s a stateless protocol meaning that the
server isn’t required to store session information, and each request is
independent of the other. This allows multiple requests to the same resource
from clients.
HTTP request comprises three mandatory lines in any http request; method,
resource path, and protocol version. An example could be:

GET /predict.htm HTTP/1.1

Here, the method type is GET (HTTP protocol allows various methods
POST, PUT, DELETE, and more.), the resource path is /predict.htm at the
server/IP, and the protocol used in HTTP version 1.1. You can read more
about method types (https://developer.mozilla.org/en-
US/docs/Web/HTTP/Methods).
For each request, there is a response. The response comprises of request
status code, 1 or more headers, and optional body message. For example, if
you are fetching a webpage from a server and the request is successful, it

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods


will return a status code on 200 along with the request webpage content. You
can read about response codes
(https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Client-server architecture
The Client-Server architecture is the architecture of a computer network
where multiple clients (users) request and receive service from a centralized
server (the host). The clients have an interface to make such requests to the
server, while the server is always running and waiting for requests to deliver
the resources. In an APIs driven system, the server and clients can be
entirely independent and create width with very different programming
languages and hosted anywhere on the internet accessible by http protocol.
Figure 8.4 is a basic architecture of a Client-Server. You can read more
(https://cio-wiki.org/wiki/Client_Server_Architecture):

Figure 8.4: Client Server Architecture

In this model, we can develop an ML model and store it at the host machine,
open a server interface for APIs, and listen to requests for prediction from
multiple different clients' on-demand basis. The communication between

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://cio-wiki.org/wiki/Client_Server_Architecture


host and clients is controlled by TCP/UDP transport layer protocol; this is
out of scope for discussion.

Resource
The resource is a fundamental concept in the RESTful API. It is an object
with a type, associated data, relationships to other resources, and a set of
methods that operate on it. The http methods are defined on the resource to
operate on them when a request is made. JavaScript Object Notation
(JSON), a lightweight data-interchange format, is best suited to define the
data model for RESTful resources. You can read more about JSON
(http://www.json.org/). There are other popular representations for RESTful
resources like XML, YAML, HTML, and others. You can read more about
resources (https://restful-api-
design.readthedocs.io/en/latest/resources.html). Figure 8.5 is an example
of resource access through RESTful APIs:

Figure 8.5: Resource Access through RESTful APIs

For example, in Twitter API, a resource can be a user, hashtag, photo,
location, etc. Each resource has a unique identified by which the program
operates upon them and then transfer in the appropriate format, that is,
JSON.
Now, we have the basic concepts covered to define what must be the
functionality of the RESTful web server/application. This application has to
provide itself with information in the sort of its resources’ information. Its
service allows customers to access these resources via http requests. In
RESTful web service, the server transfers a statement of the state of the
requested resource to the client, when a RESTful API is called.
For instance, while calling a Twitter API so as to get a user’s tweets, the API
would return the user’s name, number of followers, number of posts, and

http://www.json.org/
https://restful-api-design.readthedocs.io/en/latest/resources.html


more.

Flask framework
Flask is a python web application framework. The framework provides the
tools, libraries, and infrastructure communication protocols to allow the
developer to build a web application. The Flask web framework is based on
python as the web application runtime environment. Flask also falls into the
category of micro-frameworks, where it has little to no dependency on
external libraries to server requests. The core dependency of the Flask
framework is very minimal. Below is the list of those dependencies:

Werkzeug or Gunicorn: It is a Web Services Gateway Interface
(WSGI) utility library that helps Python web server communication
with a Python application running in the server host machine
jinja2: It is a template engine which allows flask to create html
pages/templates and embedded them with application responses.

The Flask based Python applications are very popular in AI/ML deployment
as that allows developers to directly integrate complex Python ML models
into a web application. Figure 8.6 shows a simple framework to
productionize the ML models using Flask:



Figure 8.6: Flask Web Service Architecture

The key components and their functions are explained below:

Client side: All the applications that want to access our ML model will
be a unique client. It can be a mobile application or a web server or
another system. The client will make an HTTP request over the
RESTful APIs interface to access the resource in the host/server side.
Server side: All the applications and resources required to fulfill the
request by the client are on the server side of the application. In very
large production environments, the architecture might require a lot of
more considerations, but at basic, it requires a web server, WSGI
interface, access to data/file system, and the python application running
inside Flask.
Web Server: The web server keeps listening to http requests over the
internet for any new request coming for any client accessing the
resources. Flask provides a single threaded web server to host
applications, but single threaded cannot handle more than 1 request at a
time. Having a scalable server like NGINX or Apache is
recommended.
WSGI interface: WSGI interface provides the bridge between a
Python application and the web server. The flask application runs a
Python code at the host machine accessible by http request.
Flask application: The flask application is a micro-service itself; it
encapsulates the Python application and runs behind a WSGI interface.
Data/File System: The Python application can interact with databases
and files system as required by the application. This layer can be
communicated by the application within server-side processing using
Python programming language tools and libraries.

Now let’s build a machine learning model and create a Flask application to
host the model.

Simple flask application
The ML models are built by data scientistsusually in the Integrated
Development Environment (IDE) for Python, or R. Jupyter is a popular
IDE for Python while RStudio is very popular for R. R has a similar web



framework like Flask, named Shiny. R practitioners can read more about
Shiny here (https://shiny.rstudio.com/). In this section, we will build a
simple ML model in Jupyter Notebook and host that as a Flask application to
respond to the HTTP request.
We will take the example of salary prediction to showcase the process for
setting up a linear regression model as a web service.

Salary prediction model
The salary prediction model tries to fit a linear regression model on the mean
salary of the employee against their experience in the company. We will not
focus much on the model building process but more on how a basic model is
built and productionize using the Flask framework.
We will first load the data and have a look at the data structure:

#Import libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

# Importing the datasets

data = pd.read_csv('Salary_Data.csv')

The dataset has two columns, years of experience and salary. The general
hypothesis we will assume here is that as the experience increases, the salary
increases. The linear regression model should fit this hypothesis.
Now we create a train and test split (75% Train and 25% Test) of data. The
model will be trained on Train split using sklearn linear regression. We will
also store the model in a pickle object for future use. Read more about model
storage (https://scikit-learn.org/stable/modules/model_persistence.html).

#Load the values on variables in a array

https://shiny.rstudio.com/
https://scikit-learn.org/stable/modules/model_persistence.html


X = data[['YearsExperience']].values

Y = data[['Salary']].values

# Splitting the into the Training set and Test set

from sklearn.model_selection import train_test_split

X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y,

test_size = 0.25, random_state = 0)

# Fitting Simple Linear Regression to the training set

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(X_Train, Y_Train)

#Store the model as a pickle object

import pickle

pickle.dump(regressor,open( "linear_reg_salary_model.p", "wb" ))

Now the linear regression model has been trained on training data and is
available in the regression Python object. Before we declare this model
ready for productizing let's look at its fit on test data:

# Predicting the Test set result  

Y_Pred = regressor.predict(X_Test)

# Visualising the Test set results

plt.scatter(X_Test, Y_Test, color = 'red')

plt.plot(X_Train, regressor.predict(X_Train), color = 'blue')

plt.title('Salary vs Experience (Training Set)')

plt.xlabel('Years of experience')

plt.ylabel('Salary')

plt.show()

Figure 8.7: shows a reasonably good fit on the test data:



Figure 8.7: Salary vs. Experience Plot for Test Data

We can now move onto the next step of making this model available for use
by end users. Now, let's revisit the productionization framework we
discussed in the earlier section.

Batch mode: If the users like to predict the salary of bulk of
employees in their own choice or frequency. The model can be applied
by loading the model from memory and using the predict method on
the set of employee data. This method a CSV can be the output.
Web service (REST APIs): If the results of salary are required to be
available on demand for individual requests, we need to host the
application on the web as REST APIs. This case is more likely to
happen for individual user interfacing applications. For example,
suppose this is a feature on the job portal to check the expected salary.

Now, let us show how both methods will work. For the batch model, let's
have assumed a new bulk of employee is uploaded to the system, having
their experience data stored in a CSV file new_employee.csv.
We would need to invoke our python script in our IDE, or some other
method to load the new data, the stored model, and predict the expected
salary and store as CSV file.

#Load the New Employee Data

new_data = pd.read_csv('new_employee.csv')

new_employee_exp = new_data[['YearsExperience']].values



#Load the model

import pickle

pickle.load(open( "linear_reg_salary_model.p", "rb" ))

#Make the predictions

predict_new = regressor.predict(new_employee_exp)

print(predict_new)

#Store the predictions into a csv file

np.savetxt("New Employee Salary Prediction.csv", predict_new,

delimiter=",")

[[46684.08334982]

[57939.73594016]

[41056.25705466]

[64505.53328452]

[66381.47538291]

[54187.85174338]

[73885.24377647]

[75761.18587486]

[57001.76489096]

[80451.04112083]]

Now, you can see in this method we are making a bulk prediction on the
offline trained model. We cannot run these predictions every time a new user
comes in, asking for their salary predictions.

This is a limitation on delivering value for ML models into the real
production environment for individual users.

Now we understand we cannot deliver our model as Python notebooks or
python scripts as they still require a programmer to run the code and always
assist whenever someone needs a prediction to be done. This is not possible
to scale and available 24x7.
In method 2, below, we implement our prediction script inside a Flask app
and explain its components in the comments:

#Load the Libraries

from flask import Flask, request, jsonify

import pickle

import json



import pandas as pd

#Start a flask app

app = Flask(__name__)

# Load the model

regressor = pickle.load(open( "linear_reg_salary_model.p", "rb"

))

@app.route('/predict', methods=['POST'])

def predict():

#Retrieve the value of 'YearsofExperince' from the request body

data = request.get_json()

df = pd.DataFrame([float(data['YearsExperience'])], columns=

['content'])

predict_new = regressor.predict(df)

result = {'predicted_salary': predict_new.tolist()[0]}

return json.dumps((result))

if __name__ == '__main__':

app.run(port=3000, debug=True)

Store the above code in salary_flask_app.py and got to the command line
to run it by using the following command. Please refer the code python
sample_flask_app.py.

This will start a web server with the following details on your console.
Debugger pin is randomly generated for each instance of server:

* Serving Flask app "salary_flask_app" (lazy loading)

* Environment: production

WARNING: This is a development server. Do not use it in a

production deployment.

Use a production WSGI server instead.

* Debug mode: on

* Restarting with stat

* Debugger is active!

* Debugger PIN: 276-578-683

* Running on http://127.0.0.1:3000/ (Press CTRL+C to quit)

The above out states that the web service is up and listening to
http://127.0.0.1:3000/predict address for HTTP RESTful requests. We will

http://127.0.0.1:3000/predict


make a request by using request module in Python to test if the service
returns the expected salary if we pass the YearsExperience via an HTTP
web request.

#import the request library which allows us to make Post/Get etc

web request

import requests

#Define the address of host where the application is running

url = 'http://127.0.0.1:3000/predict'

payload = { "YearsExperience": 3.2 }

res = requests.post(url,json = payload)

print(res.json())

{'predicted_salary': [57001.7648909645]}

The client can send as many requests on-demand to the server to get the
predictions being returned to the client. The client does not need to create a
csv file or wait for the batch prediction script to run. This makes the
prediction of real time for the clients.
In the above section, we showed how a model could be trained and then
hosted as RESTful APIs using a flask server. Technically, we made the
developers' life easy who wants to integrate the smart ML model output into
an application. The APIs can deliver the required insights to the application
as and when required. It is equally important for the data scientist to interact
with the application as a normal user to ascertain the productization will be
fruitful.
In the above example, if a user needs to check his expected salary, he needs
to install python, start a Jupyter notebook, create post request using requests
package, and a lot of other technical considerations. A normal user is not
knowledgeable enough to use your model outputs. Therefore, we need to
look at how we can create a simple interface to interact with our models.
This is achieved by created website/frontend applications to accept user
inputs from front-end/webpages and return the result in easy to consume
over webpages. In the next section, we will build a simple webpage to
deliver the expected salary to end users.

ML model user interface

http://127.0.0.1:3000/predict


The front-end engineers are responsible for creating an intuitive and impact
UI to display and interact with the user. The user interface plays important
role in delivering the results from a productionized ML model. In this
section, we will build a small HTML page to be rendered over http and
accessible over a web-browser.
The core purpose of the webpage will be to allow the user to input the
experience in a number of years and get the expected salary printed on the
screen.

HTML template
An HTML template will create the structure of the webpage to be delivered
via a webpage. For our purpose, the webpage needs to have three essential
features:

Input field: An input field to allow the user to input the years of
experience.
Output div: An output div container to display the result returned by
the Flask APIs.
Form: A form will capture the input and send the input to the Flask
Server for a response as a POST request.

Below, you can see a sample HTML page for our salary prediction
application:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<meta http-equiv="X-UA-Compatible" content="ie=edge">

<title>Salary Prediction ML Model</title>

<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/boo

tstrap.min.css" integrity="sha384-

ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T

" crossorigin="anonymous">

https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css


</head>

<body style="width:60%; margin-left:20%;">

<h1 class="text-center">Salary Prediction ML Model</h1>

<form action="/predict" method="post">

<input class="form-control" type="number" name="YearsExperience"

step="any" min = "0" placeholder="Number of years of

Experience">

<input class="btn btn-primary" type="submit" value="Predict

Salary">

</form>

{% if salary %}

<p>The Expected Salary is: {{salary}}</p>

{% endif %}

</body>

</html>

You can observe the HTML template the three essential components we
described above. The form elements get data from the input field and make a
POST request at /predict route. The result is returned in the variable name
salary and displayed with the div below form elements.
You put this HTML file inside a folder named templates in the home
directoryand then defines the directory in the Flask app to point templates in
this folder. The update Flask app code is provided below:

#Load the Libraries

from flask import Flask,request,render_template

import pickle

import pandas as pd

#Start a flask app

app = Flask(__name__,template_folder="templates")

# Load the model

regressor = pickle.load(open( "linear_reg_salary_model.p", "rb"

))

@app.route('/predict', methods=['GET','POST'])

def predict():

if request.method == 'POST':



#Retrieve the value of 'YearsofExperince' from the request

body

data = request.form.get('YearsExperience')

df = pd.DataFrame([str(data)], columns=['content'])

print(data)

predict_new = regressor.predict(df)

return render_template('index.html',

salary=predict_new.tolist()[0])

return render_template('index.html', salary = '')

if __name__ == '__main__':

app.run(port=3000, debug=True)

You can see the app invocation mentions the relative location of templates
while starting the Flask app. The /predict route now listens to both GET and
POST requests, even though the form does the only POST request. The GET
request makes sure the page loads even before you make your first POST
request from the form.
Also, you can observe the return statement returns the full HTML page
along with the predicted salary in the variable salary. You can save the Flask
app as salary_flask_app_website.py in the home directory and run the
app as below. Please refer to the code file Python
salary_flask_app_website.py.
A webpage now can be accessed at http://127.0.0.1:3000/predict and can
be used by end user to input his experience, and in return, it will show his
expected salary. Figure 8.8 is a snapshot of the webpage:

Figure 8.8: Salary Prediction ML Model Webpage

In this section, we created a basic frontend exposure of our productionized
ML model. Now the user can simply access this URL and access our
productionized model. This way we just exposed our Ml model to a novice
who can use and get benefited from the model.

http://127.0.0.1:3000/predict


You can see though we have productionized our model. But they still
host on 127.0.0.1, which is our localhost/local machine. You need to
keep your machine on and can be accessed only by you.

In further chapters, we will discuss how we optimize the way we
productionize the models and what are options for deploying the applications
on the cloud. The cloud deployment will allow you to give access to your
ML models to the open world through the internet.

Conclusion
In this chapter, we have discussed the limitations of ML models being
restricted to data scientists only without productioning them. It is important
to productionize the models to make them available to other applications and
users. We discussed the productionizing methods, broadly classified by
model training and model scoring methods. Further, we discussed RESTful
APIs and https requests as a primer to our efforts to productionize the
models as a web service. The salary prediction model is developed to show a
simple model building and testing in Jupyter notebook settings. Then we
tried to emulate a process of bulk forecasting the model developed in the
previous step. Once we confirmed the bulk mode works, we introduced
Flask applications and the architecture that allows our models to be exposed
as RESTful APIs through Flask applications. We developed a basic Flask
application that loads the models and make a prediction on a POST request.
To facilitate non-technical users to access the application without making a
POST request, we introduced the idea of front-end web pages. The last
section then shows how a web-page can be created as a template and
delivered via a Flask app to end users.
By reading this chapter, the reader has understood the productionizing
methods, RESTful APIs, and HTTP requests. He or she will also gain the
experience of building a basic machine learning model and developing a
basic Flask application on top of it.
In the upcoming chapters, we will show how to host these applications on
the cloud and make them accessible from anywhere. We will start by
defining some of the technology involved in designing a data pipeline.
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CHAPTER 9
Data Flows in Enterprises

n enterprise is a very complex system of technology and business
processes. Applications for enterprise are designed to handle multiple

sources of data operating asynchronously and controlled by different factors.
Any new solution that is created needs to fit into the specific organization’s
technology infrastructure. In this chapter, we will define some of the
technology involved in data collection and data transport from one system to
another by designed a data pipeline. The data pipeline will be built for a
sample application along with Python codes provided within the chapters.
We will show how to host these applications on the cloud and make them
accessible from anywhere. We will start by defining some of the technology
involved in designing a data pipeline.

Structure
Introducing data pipeline
Designing data pipeline
ETL vs. ELT
Scheduling jobs
Messaging queue
Passing arguments to the data pipeline

Objectives
After studying this unit, you should be able to:

Understand why we need data pipelines in implementation of AI/ML
models
How to design simple data pipeline for a model
Difference between ETL and ELT, and when to use what



Introducing data pipeline
The data pipeline is the end to end process, which defines how the data
flows within the enterprise system for all the data needs. The data pipeline
can be subcategorized into many specific data pipelines, like data science
modeling, forecasting, reporting, and many more. The data pipeline is a
broader term that encompasses many processes in the transfer of data from
one system to another, including security, reading, serialization, transfer,
transformations, writing, and other steps.
The efficient and secure flow of the data from the warehouse to the
application, application to application, and application to warehouse is a
very important process to keep running the system. The key component of
the data pipeline is the ETL process. ETL stands for Extract Transform
and Load process, as shown in Figure 9.1. In a pipeline, there may be many
ETL sub-process running to deliver the data applications needed to run and
store them:

Figure 9.1: Extract Transform Load (ETL) Flow

An example of ETL can be reading the data from the manufacturing
database, adding 5 days to the due date, and writing that data into the order
management database. While a data pipeline is broader implications and
could mean reading the data, streaming it to order management systems,
applying ML models, and getting the results back to manufacturing database
and storing the data in some visualization dashboard.
In this way, you can understand the data pipeline is a broader process that
ensures that the system is efficiently and securely able to transfer data when
required by the processes. Another important aspect of the data pipeline is
that it does not start and end but is capable of taking data from any system to
any system. This feature of the data pipeline makes them multi-directional in
nature.



The data pipelines can be further categorized into three types, based on what
kind of data flow they handle:

Batch processing: Batch processing pipelines are the most popular and
used to handle large volumes of data moving in/out of warehouses for
various purposes of reporting, processing, and storage. The key feature
of batch processing is that it is usually scheduled for a fixed time and
does not require to deal with real-time data.
Stream processing: Stream processing pipelines are designed to
handle real-time data. The latency between the point of data origination
and next process is nearly zero. This type of pipelines is used for real-
time analysis of data in time-critical applications.
Cloud-native processing: The cloud infrastructure provides multiple
options and configurations to design the pipelines, native to cloud
storage, and distributed services. They can be real-time, quasi real-
time, batch, and can be configured to be hybrid. All the tools and
infrastructure are provided by the cloud provider and pipeline managed
by them. AWS, Azure, and Google cloud are the leading provider of
managed cloud native pipelines.

To understand the different basic concepts of the pipeline, we will be
showing the concepts with a live example. The reader is encouraged to
follow so that he/she gets a hands-on understanding.
Business Case: Design a data pipeline to get data from data.gov.in website
for the Current Daily Price of Various Commodities from Various Markets
(Mandi) and store that data in a CSV file.
You have to register at data.gov.in to get the API key. Visit here
(https://data.gov.in/) to create an account.

Designing data pipeline
Designing a data pipeline is a core responsibility of a data engineer. A data
engineer knows where the data get generated, how that can be transferred,
the memory, and bandwidth limitations of the network, security best
practices, and infrastructure status. The key considerations before designing
the pipeline could be to answer some of the following questions:

1. Where is the data source?

https://data.gov.in/


2. What type of data is to be extracted from the source?
3. What transformation to be applied to the data in the pipeline?
4. What is the destination of data?
5. Does the destination produce some data which needs to be transported

or stored?
6. Is the pipeline batch processing or stream processing?
7. Who can trigger the pipeline, or will be scheduled?

And other questions to cover are configurations and infrastructure aspects of
design. Overall, the whole pipeline design has to deliver the value; business
is looking from the technology. We will now discuss a simple pipeline
design, as explained by our example, and show its implementation in
Python.
You must have the API key available with you to run the examples. Figure
9.2 shows a simple data pipeline design to be written in the Python language.

Figure 9.2: Basic Data Pipeline Design for example

The pipeline can be written in any other language as well, which provides
support for various functionalities of the pipeline. Here is what this pipeline
will do:

1. It will first get connected to the data.gov.in website and provide its
authentication key (the API key).

2. Once the key is authorized, depending upon the parameters, the data
will be transferred to the client as a JSON object.



3. The client reads the JSON file and opens up a stream to a local CSV
file.

4. The client then transforms the data into CSV format and writes it into
the local file.

5. Once the process is complete, the pipeline closes.

Now let's write a simple Python script to achieve this data pipeline objective:

##Python Script to Implement the Pipeline

#Define the API KEY (this can be found in the data.gov.in

account section for registered users)

API_KEY = <YOUR API KEY>

#Import the requests library

import requests

#Construct the GET REQUEST

response = requests.get(

'https://api.data.gov.in/resource/9ef84268-d588-465a-

a308-a864a43d0070',

params=[('api-key',API_KEY),

('format','json'),

('offset',0),

('limit',1)],

)

#Check if the request was successful - a success request returns

a status code 200

if response.status_code == 200:

print('Success!')

else:

print('Some Error Occurred')

#If the you see a success message then you can extract the

values from the JSON response

json_response = response.json()

Success!

You can see the above call to data.gov.in. API returns a success, which
means it authenticated our API key and sends the data as JSON to our client.



The response variable has JSON in it, which is being extracted using json()
function. Below we print out the output using pprint library:

import pprint

pprint.pprint(json_response)

{'active': '1',

'catalog_uuid': '6141ea17-a69d-4713-b600-0a43c8fd9a6c',

'count': 1,

'created': 1543321994,

'created_date': '2018-11-27T18:03:14Z',

'desc': 'Current Daily Price of Various Commodities from

Various Markets '

'(Mandi)',

'field': [{'id': 'timestamp', 'name': 'timestamp', 'type':

'double'},

{'id': 'state', 'name': 'state', 'type': 'keyword'},

{'id': 'district', 'name': 'district', 'type': 'keyword'},

{'id': 'market', 'name': 'market', 'type': 'keyword'},

{'id': 'commodity', 'name': 'commodity', 'type':

'keyword'},

{'id': 'variety', 'name': 'variety', 'type': 'keyword'},

{'id': 'arrival_date', 'name': 'arrival_date', 'type':

'date'},

{'id': 'min_price', 'name': 'min_price', 'type': 'double'},

{'id': 'max_price', 'name': 'max_price', 'type': 'double'},

{'id': 'modal_price', 'name': 'modal_price', 'type':

'double'}],

'index_name': '9ef84268-d588-465a-a308-a864a43d0070',

'limit': '1',

'message': 'Resource detail',

'offset': '0',

'org': ['Ministry of Agriculture and Farmers Welfare',

'Department of Agriculture, Cooperation and Farmers

Welfare',

'Directorate of Marketing and Inspection (DMI)'],

'org_type': 'Central',

'records': [{'arrival_date': '04/10/2019',

'commodity': 'Tomato',



'district': 'Chittor',

'market': 'Kalikiri',

'max_price': '2000',

'min_price': '1000',

'modal_price': '1660',

'state': 'Andhra Pradesh',

'timestamp': '1570178103',

'variety': 'Local'}],

'sector': ['Agriculture', 'Agricultural Marketing'],

'source': 'data.gov.in',

'status': 'ok',

'target_bucket': {'field': '9ef84268-d588-465a-a308-

a864a43d0070',

'index': 'daily_mandi',

'type': '6141ea17-a69d-4713-b600-0a43c8fd9a6c'},

'title': 'Current Daily Price of Various Commodities from

Various Markets '

'(Mandi)',

'total': 4156,

'updated': 1570178114,

'updated_date': '2019-10-04T14:05:14Z',

'version': '2.1.0',

'visualizable': '1'}

You would observe that a lot of data has been returned by the API apart from
the specific daily price and commodity fields. Now, it becomes important for
the pipeline to read the JSON and only keep relevant data points to be
written into the CSV file. The data pipeline needs to transform the data into
CSV format (that is, pandas) and write in a local file.
Let's assume that we only need the following data from the JSON file to be
written in the CSV file:

'arrival_date': '04/10/2019',

'commodity': 'Tomato',

'district': 'Chittor',

'market': 'Kalikiri',

'max_price': '2000',

'min_price': '1000',



'modal_price': '1660',

'state': 'Andhra Pradesh',

'timestamp': '1570178103',

'variety': 'Local'

Let's write the transform script in Python to extract the above fields into a
pandas data frame:

#Define an empty list where the extracted data will be cached

before being written to data frame

import pandas as pd

arrival_date = []

commodity = []

district = []

market = []

max_price = []

min_price = []

modal_price = []

state = []

timestamp = []

variety = []

#Extract the data from json response

records = json_response["records"]

print("The records in records fields are of type

",type(records))

# Run a loop over list to extract sub-list data

for item in records:

arrival_date.append(item["arrival_date"])

commodity.append(item["commodity"])

district.append(item["district"])

market.append(item["market"])

max_price.append(item["max_price"])

min_price.append(item["min_price"])

modal_price.append(item["modal_price"])

state.append(item["state"])

timestamp.append(item["timestamp"])

variety.append(item["variety"])



#All the data extract via API is now stored in list. let's

combine all lists into one single data frame.

df = pd.DataFrame({'arrival_date':arrival_date,

'commodity':commodity,

'district':district,

'market':market,

'max_price':max_price,

'min_price':min_price,

'modal_price':modal_price,

'state':state,

'timestamp':timestamp,

'variety':variety

})

#Preview the data frame

df.head()

The records in records fields are of type <class 'list'>

You can observe that we have transformed the raw JSON file into a clean
tabular structure that can be written into a CSV file as required by our
pipeline objectives. You can control how many records you want from the
API by setting a limit in the GET request.
We can write the data frame as a CSV file by using native pandas function:
to_csv. We append the name of the file with a timestamp for easy
recognition of the time, during which the file has been created:

#Write the file now with timestamp suffixed

import time

timestamp = time.strftime('%d%m%Y%H%M%S')

df.to_csv('Daily_Commodity_Prices_{}.csv'.format(timestamp),

index = False)

#Check if the file has been written and print pipeline success

message

import os.path

from os import path

if

path.exists('Daily_Commodity_Prices_{}.csv'.format(timestamp)):

print("The pipeline was executed successfully")



else:

print("The pipeline could not execute")

The pipeline was executed successfully

The pipeline is successfully executed, and you can see the CSV file is
created in the present working directory. This completes a simple data
pipeline to load data from the data.gov.in website and store it as a CSV file.

ETL vs. ELT
We discussed ETL is the introduction section, and in the previous example,
we saw a basic example of a data pipeline that does the ETL process on API
data. It gets data from API source (data.gov.in), transforms it into required
fields, and then load into a CSV file on the local disk.
ETL process does the transformation before loading the data. That step
requires a clear understanding of end use of data. For instance, in our
example, we wanted to monitor commodity prices and hence only extracted
that information. There may be a lot of other use cases from the same data,
which we do not know right now. In such cases, it’s better to load the data
into a persistent store and let the applications transform it as per the
requirement. Figure 9.3 shows the flow of an ELT data pipeline:

Figure 9.3: Extract Load Transform (ELT) Data Pipeline Flow

In modern data pipelines, the transform step is delayed until the end use is
defined and accessed by the application. This way, the data can be stored in



raw form, and later as per requirements, it can be transformed. This new
process is named the ELT process, where the order of data process is
extracted, loaded, and transformed by the applications. The concept of Data
Lake follows the ELT logic of data flow in enterprises.
We will discuss more on data storage in the next chapter, and the following
chapter will talk about big data systems and how they facilitate the creation
of Data Lakes.

Scheduling jobs
Scheduler, as the name suggests, is a process that can periodically execute
the process, that is, jobs. This is an important concept in data pipelines as the
data pipelines need to be triggered by events. In the above example, you can
observe that we are able to fetch the data from data.gov.in when we run this
script. But how will you be able to get the same data on an hourly basis?
The solution is certainly not manually running the script every 1 hour. This
exact problem is solved by a Scheduler. A job is a set of tasks that can be
executed by a Scheduler. A Scheduler is a software product that allows an
enterprise to schedule and track computer batch tasks.
Let's design our example pipeline to execute the task every hour using Cron
jobs. Cron is a software utility that allows us to schedule tasks on Unix-like
systems. The tasks in Cron are defined in a crontab, which is a text file
containing the commands to be executed.
Cron requires the frequency of running the task in the following units.



We will now install the crontab library in Python and schedule the jobs to
run the data pipeline script every 1 minute and check if the CSV file is
automatically written at every 1-minute interval. There are 5 methods of
using a crontab library; three works on Linux and two can work in windows
as well. Read more details here:

!pip install CronTab

Requirement already satisfied: CronTab in c:\anaconda3\lib\site-

packages (0.22.6)

from crontab import CronTab

file_cron = CronTab(tabfile='filename.tab')

cron = CronTab()

job = cron.new(command='python

Code_9_1_Designing_Data_Pipeline.py')

job.minute.every(1)

cron.write()

The above script will run the Code_9_1_Designing_Data_Pipeline.py
script at every 1-minute interval. After setting this up, the data pipeline
Code_9_1_Designing_Data_Pipeline.py will be triggered by the scheduler,
and results will be stored as a CSV file in the directory. Check your
operating system to run cron jobs in the kernel.

Messaging queue
In many cases, the trigger of the data pipeline is not just a particular time but
could be other events as well. For example, we may want to get commodity
price data whenever it rains, or we may want data when a new data gets
updated, and more. In all such cases, the trigger to run data pipeline can
come asynchronously and must allow you to run the data pipeline job either
in real-time or as per some queuing logic.
A messaging queue mechanism allows the queuing of all such triggers
(messages) and runs the desired application. The working of the messaging
queue is simple; there are clients that create messages, called producers, and
deliver them to the queuing system. Another set of applications called
consumers, connects to the queue and gets themessage processed by



desired/targeted applications. Figure 9.4 shows the flow of the Messaging
Queue components:

Figure 9.4: Messaging Queue Components

The above example is a simple illustration of the messaging queue. Assume
an example where we allow a user to fetch the data from the data.gov.in
website on demand. The producer will create the requests and puts them in
the queue, waiting for the consumer to trigger the pipeline and brings data as
per user demands. This way, the system allows services to keep in touch
with each other without getting blocked by responses. The consumer will
fulfill the request in the order they have come and fulfill all requests. A good
tutorial to learn about queues can be found from a leading messaging queue
system, RabbitMQ.

Passing arguments to data pipeline
In our example, you would observe that the data pipeline does not need any
argument from the user and will produce the same result every time it runs,
except when the data is changed at source. In general, the data pipeline
allows the user to pass custom arguments to run the pipeline to produce
results that are desired.
For instance, in our example, you can see that you can pass an argument in
the API call to limit the number of results to fetch from the source. Having
arguments that define the number of values to fetch will allow the data
pipeline to behave as per the arguments passed to the data pipeline. In our
example, to incorporate such behavior, we would pass arguments via the
command line.
In the following example, you can see how command line arguments can be
retrieved by the sys library in Python. Store the below script in a Python file
and name it Code_9_3_Example_sys_args.py:

#Import the library

import sys



#Print the arguments passed to the script

argument_1 = sys.argv[1]

argument_2 = sys.argv[2]

print("\n The First argument passed is ", argument_1, "\n\n The

Second argument passed is ", argument_2)

Now, we will call the above script with two arguments; let's say Hello and 5.
The script should catch the arguments and make them available as two
arguments values:

!Python Code_9_3_Example_sys_args.py Hello 5

The First argument passed is Hello

The Second argument passed is 5

We now will modify our script of the data pipeline to see if it can take the
limit as command line arguments and fetch as many records as required by
the user. The following script is the modified script to show the use of argv
in data pipeline arguments. Save the script as
Code_9_4_Command_line_data-pipeline.py and run it from console to see
how the results differ for two different arguments:

#Import the library to catch command line arguments

import sys

#store the first argument as the limit

limit = sys.argv[1]

##Python Script to Implement the Pipeline

#Define the API KEY ( this can be found in the data.gov.in

account section for registered users)

API_KEY = <YOUR API KEY>

#Import the requests library

import requests

#Construct the GET REQUEST - here pass limit as the variable got

from command line

response = requests.get(

'https://api.data.gov.in/resource/9ef84268-d588-465a-

a308-a864a43d0070',

params=[('api-key',API_KEY ),



('format','json'),

('offset',0),

('limit',limit)],

)

#Check if the request was successful - a success request returns

a status code 200

if response.status_code == 200:

print('Success!')

else:

print('Some Error Occurred')

#If the you see a success message then you can extract the

values from the JSON response

json_response = response.json()

#Display the result of data pipeline run

import pprint

pprint.pprint(json_response)

Now we will call the data pipeline script for fetching 1 record and 2 records
by passing the arguments. Below is the result for 1:

!Python Code_9_4_Command_line_data-pipeline.py 1

Success!

{'active': '1',

'catalog_uuid': '6141ea17-a69d-4713-b600-0a43c8fd9a6c',

'count': 1,

'created': 1543321994,

'created_date': '2018-11-27T18:03:14Z',

'desc': 'Current Daily Price of Various Commodities from

Various Markets '

'(Mandi)',

'field': [{'id': 'timestamp', 'name': 'timestamp', 'type':

'double'},

{'id': 'state', 'name': 'state', 'type': 'keyword'},

{'id': 'district', 'name': 'district', 'type': 'keyword'},

{'id': 'market', 'name': 'market', 'type': 'keyword'},

{'id': 'commodity', 'name': 'commodity', 'type':

'keyword'},



{'id': 'variety', 'name': 'variety', 'type': 'keyword'},

{'id': 'arrival_date', 'name': 'arrival_date', 'type':

'date'},

{'id': 'min_price', 'name': 'min_price', 'type': 'double'},

{'id': 'max_price', 'name': 'max_price', 'type': 'double'},

{'id': 'modal_price', 'name': 'modal_price', 'type':

'double'}],

'index_name': '9ef84268-d588-465a-a308-a864a43d0070',

'limit': '1',

'message': 'Resource detail',

'offset': '0',

'org': ['Ministry of Agriculture and Farmers Welfare',

'Department of Agriculture, Cooperation and Farmers

Welfare',

'Directorate of Marketing and Inspection (DMI)'],

'org_type': 'Central',

'records': [{'arrival_date': '06/10/2019',

'commodity': 'Tomato',

'district': 'Chittor',

'market': 'Mulakalacheruvu',

'max_price': '1900',

'min_price': '550',

'modal_price': '1500',

'state': 'Andhra Pradesh',

'timestamp': '1570383302',

'variety': 'Local'}],

'sector': ['Agriculture', 'Agricultural Marketing'],

'source': 'data.gov.in',

'status': 'ok',

'target_bucket': {'field': '9ef84268-d588-465a-a308-

a864a43d0070',

'index': 'daily_mandi',

'type': '6141ea17-a69d-4713-b600-0a43c8fd9a6c'},

'title': 'Current Daily Price of Various Commodities from

Various Markets '

'(Mandi)',

'total': 1823,



'updated': 1570383307,

'updated_date': '2019-10-06T23:05:07Z',

'version': '2.1.0',

'visualizable': '1'}

Now we pass the argument as 2 and except to see two records:

!Python Code_9_4_Command_line_data-pipeline.py 2

Success!

{'active': '1',

'catalog_uuid': '6141ea17-a69d-4713-b600-0a43c8fd9a6c',

'count': 2,

'created': 1543321994,

'created_date': '2018-11-27T18:03:14Z',

'desc': 'Current Daily Price of Various Commodities from

Various Markets '

'(Mandi)',

'field': [{'id': 'timestamp', 'name': 'timestamp', 'type':

'double'},

{'id': 'state', 'name': 'state', 'type': 'keyword'},

{'id': 'district', 'name': 'district', 'type': 'keyword'},

{'id': 'market', 'name': 'market', 'type': 'keyword'},

{'id': 'commodity', 'name': 'commodity', 'type':

'keyword'},

{'id': 'variety', 'name': 'variety', 'type': 'keyword'},

{'id': 'arrival_date', 'name': 'arrival_date', 'type':

'date'},

{'id': 'min_price', 'name': 'min_price', 'type': 'double'},

{'id': 'max_price', 'name': 'max_price', 'type': 'double'},

{'id': 'modal_price', 'name': 'modal_price', 'type':

'double'}],

'index_name': '9ef84268-d588-465a-a308-a864a43d0070',

'limit': '2',

'message': 'Resource detail',

'offset': '0',

'org': ['Ministry of Agriculture and Farmers Welfare',

'Department of Agriculture, Cooperation and Farmers

Welfare',

'Directorate of Marketing and Inspection (DMI)'],



'org_type': 'Central',

'records': [{'arrival_date': '06/10/2019',

'commodity': 'Tomato',

'district': 'Chittor',

'market': 'Mulakalacheruvu',

'max_price': '1900',

'min_price': '550',

'modal_price': '1500',

'state': 'Andhra Pradesh',

'timestamp': '1570383302',

'variety': 'Local'},

{'arrival_date': '06/10/2019',

'commodity': 'Beetroot',

'district': 'Chittor',

'market': 'Palamaner',

'max_price': '3000',

'min_price': '1000',

'modal_price': '2000',

'state': 'Andhra Pradesh',

'timestamp': '1570383302',

'variety': 'Beetroot'}],

'sector': ['Agriculture', 'Agricultural Marketing'],

'source': 'data.gov.in',

'status': 'ok',

'target_bucket': {'field': '9ef84268-d588-465a-a308-

a864a43d0070',

'index': 'daily_mandi',

'type': '6141ea17-a69d-4713-b600-0a43c8fd9a6c'},

'title': 'Current Daily Price of Various Commodities from

Various Markets '

'(Mandi)',

'total': 1823,

'updated': 1570383307,

'updated_date': '2019-10-06T23:05:07Z',

'version': '2.1.0',

'visualizable': '1'}



Now, you can allow the client to control how the data should be fetched
using arguments to customize the data pipeline flow. These features make
the data pipeline more robust, useful, and adaptable to the needs of the
applications. These same pipelines can be built for the streaming process as
well by using the message broker system like RabbitMQ, Kafka, etc. tools.
There are lots of tools developed by cloud computing giants to automate the
data pipeline and make the life of the developer easy. Readers are
encouraged to learn more about data pipelines and read the tools at offering
at GCP, AWS, and Azure cloud providers.

Conclusion
In this chapter, we have introduced the concept of the data pipeline and its
importance in designing any modern-day application. The chapter then
introduces the concept of the Extract Transform Load (ETL). The ETL
concept is an important concept within the broader domain of data pipelines.
To explain concepts, we took a real example of fetching data from the
data.gov.in website using a REST API interface and store that as a CSV file.
After that example, we have talked about the significance of Extract Load
Transform (ELT) flows for the most cases in applications, where the
application does the transformation as per the need and the data pipeline
extract and store data in a Data Lake. The concept of Scheduler is explained
to automate the execution of a data pipeline by time frequency. Further, we
have introduced the concept of message queue to handle asynchronous and
on-demand run of data pipelines. The last section gives a brief understanding
of the importance of passing arguments to the data pipeline to make it more
adoptable to the use case. The concept is explained by showing an example
of limiting the count of data fetch by getting a limit argument from the
command line.
By reading this chapter, the reader will be able to gain the understanding of
the use of data pipelines in the implementation of AI/ML models. He or she
will also be able to figure out the difference between ETL and ELT. The
reader can now design a simple data pipeline for a model.
In the next chapter, we will discuss databases and how to use them to store
data. The same example will be extended to show how the data pipeline can
store data into a database and then retrieve it for application needs.
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CHAPTER 10
Introduction to Databases

atabases are important applications which store data for optimized
data storage for faster retrieval and efficient data addition. In the

previous chapter, we discussed Data in Motion, where the data was flowing
from one source to another and in between getting transformed and
manipulated by the data pipeline. The data finally ended up as a CSV file in
local storage.
CSV storage is not an efficient way to store data as it is not stored by any
logic but simply dumped by the stream of data coming in by the data
pipeline. It is thus very important to store the data in an optimized way by
using databases. In this chapter, we will introduce databases and use the
same data.gov.in example to show how to operate with the databases. Using
the example, we will show how the data pipeline can store data into the
database and then retrieve it for application needs.

Structure
Modern databases and terminology
Relational database or SQL database
Document oriented database or SQL database
Graph databases
Filesystem as storage

Objectives
After studying this unit, you should be able to:

Understand the concept of databases
Setup SQL and No-SQL databases
Use Neo4j to understand graph databases



Manage data storage and Indexing using Filesystem

Modern databases and terminology
The database is an organized way of collecting and retrieval of data through
electronic means by a computer system in various ways. The database allows
efficient storage of huge amounts of data having an inherent nature of
search-ability. In modern times, the database technology has evolved a lot,
and now it supports modern applications with TBs of data being stored and
retrieved in near real-time. Figure 10.1 shows the survey of the databases,
ranked in terms of popularity, as provided by DB-Engine:

Figure 10.1: DB-Engine Rankings (Credit: DB-Engines.com)

The DB-engine survey points out the lead in SQL databases, which is
Oracle, and next in the lead are MongoDB and Redis, which are the No-SQL
database. There are other feature-rich databases that are suited for specific
purpose and performance needs like graph databases, elastic search, and
others. In this chapter, we would introduce only SQL, No-SQL, and graph
databases. The domain of databases is a huge domain and provides a
separate track of expertise in Information Technology. The reader, who is
aiming to become database designers and DB admins, is encouraged to get
into the depth of database technologies.



There is some key terminology that will help us understand this world of
databases. We would provide you a plain English definition and encourage
the reader to read more.

Query: A query defines a single transaction on the database. It can be
an update, insert, select, or delete operation.
Structure Query Language (SQL): SQL defines standard rules to
write a query for operating on a relational database. The databases that
allow SQL types syntax to access databases are generally called SQL
databases.
Relational databases: In relational databases, the data is organized as
a table, and it allows us to identify and access data in relation to
another piece by columnar relations.
No-SQL: No-SQL means a non-relational database. In this case, the
data is stored without strict schema and can be stored as a document
with semi-structured data.
Document-oriented databases: Document oriented databases store,
retrieve, and managing document-oriented information, also known as
semi-structured data. These groups of databases are also called No-
SQL databases.
ACID properties: Atomicity, Consistency, Isolation, Durability

Atomicity: Each transaction is a unique, atomic unit of work. If
one operation fails, data remains unchanged.
Consistency: All data written to the database is subject to any
rules defined. When completed, a transaction must leave all data
in a consistent state.
Isolation: Changes made in a transaction are not visible to other
transactions until they are complete.
Durability: Changes completed by a transaction are stored and
available in the database, even in the event of a system failure.

Database Management System (DBMS): A DBMS provides the user
all the features for definition, creation, querying, update, and
administration of databases. MySQL, PostgreSQL, MongoDB, Neo4j,
MS SQL are some examples of popular DBMS systems.



Schema: A database schema is a logical structure of how the database
is constructed and relates data points to each other via tables, indexes,
etc. Static schema is defined before the program is written and hence,
can only hold the data as per the schema, while dynamic schema allows
the incoming data to construct schema to accommodate the incoming
data.
JOIN operations: The join operations allow combining different
datasets by some defined logic or rules, using indexes, combined
indexes. Their multiple types of joins defined with the DBMS system
and vary as per the database. The generic joins are LEFT, RIGHT,
INNER and OUTER join. The concept of joins is typically used in
relational databases. The reader, must read details about joins, as they
are very key concepts in databases.
Object-Relational Mapping (ORM): ORM is the set of techniques
used for translating the logical representation of objects (as in object-
oriented programming) into a more atomized form that is capable of
being stored in a relational database (and back again when they are
retrieved). The concept of ORM is very relevant to our examples in the
next sections, as the data pipeline written in Python needs to interact
with the databases as the ORMs provide that bridge to allow us to
operate databases using ORMs in programming languages. More
details here https://www.fullstackpython.com/object-relational-
mappers-orms.html.

In the above set of key terminologies, we tried to just scratch the surface to
provide the starting point for further studies into databases. There are
numerous resources for databases publicly available for study and
implementations with various programming languages. With the advent of
cloud computing, the databases have also adopted cloud-native forms and
provide a very powerful system for applications on the cloud.

Relational database or SQL database
Relational databases are the most popular databases existing in the
informational technology world. They represent data as tables and connect
data in different tables by foreign keys and define each row in each table by
a unique key. A very good resource to learn about important concepts in
SQL can be found at w3school here (https://www.w3schools.com/sql/).

https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.w3schools.com/sql/


With relation to our scope of the book of using databases to store and
retrieve the data within our data science applications, we would demonstrate
how you can store and retrieve data from the PostgreSQL database and
integrate that into our data pipeline in data.gov.in example.

Install PostgreSQL and pgAdmin
PostgreSQL open-source SQL based database, which is very popular and
power many enterprise scale applications. In terms of syntax and
terminology, it is very similar to Oracle, MS SQL, and MySQL databases.
For open-source development, Postgres is most popular.
You can install Postgres from the official website. Visit this web page
https://www.postgresql.org/download/ and follow the instructions.
To have access to the database, we need some clients as well. pgAdmin is
one such client to access the Postgres database. You can have any other SQL
compliant client as well to manage the database. You can download and
install pgAdmin from here https://www.pgadmin.org/download/.

Note: Read the documentation before installation as some version of
pgAdmin may notbe compatible with older Postgres Db engines.

Once installed, you can start the client window and see a window, similar to
Figure 10.2:

Figure 10.2: PGAdmin Window

If you have difficulty in installing the set-up, you can refer to the YouTube
tutorial here https://www.youtube.com/watch?v=e1MwsT5FJRQ.

Set-up a database and table

https://www.postgresql.org/download/
https://www.pgadmin.org/download/
https://www.youtube.com/watch?v=e1MwsT5FJRQ


In Postgres, data is stored in tables, and the tables are created within a
database. So, we first need to create a database to store our daily commodity
price data (refer data.gov.in example) and then create a table to store the
data.
Let's create a database name data-gov-in and a table name
commodity_prices with a schema same as dataframe/csv. Figure 10.3
shows the window snippet of creating database in Postgres:

Figure 10.3: Creating database in pgAdmin

After creating the Database, create a table with following schema:

'field': [{'id': 'timestamp', 'name': 'timestamp', 'type':

'double'},

{'id': 'state', 'name': 'state', 'type': 'keyword'},

{'id': 'district', 'name': 'district', 'type':

'keyword'},

{'id': 'market', 'name': 'market', 'type': 'keyword'},

{'id': 'commodity', 'name': 'commodity', 'type':

'keyword'},

{'id': 'variety', 'name': 'variety', 'type':

'keyword'},



{'id': 'arrival_date', 'name': 'arrival_date', 'type':

'date'},

{'id': 'min_price', 'name': 'min_price', 'type':

'double'},

{'id': 'max_price', 'name': 'max_price', 'type':

'double'},

{'id': 'modal_price', 'name': 'modal_price', 'type':

'double'}],

Figure 10.4 shows the window snippet of a table created in pgAdmin:

Figure 10.4: Creating Table in pgAdmin

Now we have the database and table ready to use in our data pipeline to store
and retrieve data. As our pipeline is written in Python, first we have to find



out a suitable ORM to interact with Postgre database. We will be using
SQLAlchemy to connect our Python script to database.

Connect Python to Postgres
SQLAlchemy consists of two distinct components, known as the Core and
the ORM. An illustration of how it will be used is shown below:

#Import the SQLAlchemy Library

from sqlalchemy import create_engine

# Configuration String

#dialect+driver://username:password@host:port/database

db_string = "postgresql://postgres:postgres@localhost:5432/data-

gov-in"

db = create_engine(db_string)

# Insert a Records into table

db.execute("INSERT INTO public.commodity_prices(timestamp,

state, district, market, commodity, variety, arrival_date,

min_price, max_price, modal_price) VALUES

(1570178103,'04/10/2019','Andhra

Pradesh','Chittor','Tomato','Kalikiri','Local', 2000,

1000,1660);")

# Read

result_set = db.execute("SELECT * FROM public.commodity_prices")

for r in result_set:

print(r)

# Update

db.execute("UPDATE public.commodity_prices SET min_price= 980

WHERE commodity='Tomato'")

# Delete

db.execute("DELETE FROM public.commodity_prices WHERE

commodity='Tomato'")

(1570178103.0, '04/10/2019', 'Andhra Pradesh', 'Chittor',

'Tomato', 'Kalikiri', 'Local', 2000.0, 1000.0, 1660.0)

You can read more about SQLAlchemy here https://www.sqlalchemy.org/.

https://www.sqlalchemy.org/


Modify data pipeline to store in Postgres
While the reader can play with database and set-up on their own, we would
quickly edit our data pipeline script to write the data to database table
commodity_prices. The following change is being done to achieve the
same. The new file is named as Code_10_1_Data_pipeline_sql.py.

Code_10_1_Data_pipeline_sql.py is the code to write the data frame into a
database:

##Once the data frame df is ready - we open a database

connection and write the data frame into database

from sqlalchemy import create_engine

db_string = "postgresql://postgres:postgres@localhost:5432/data-

gov-in"

db = create_engine(db_string)

#Write data to data table

#if_exists: {'fail', 'replace', 'append'}, default 'fail'

#How to behave if the table already exists.

#fail: Raise a ValueError.

#replace: Drop the table before inserting new values.

#append: Insert new values to the existing table.

df.to_sql('commodity_prices', con=db,if_exist = 'replace')

#Retrieve data to see if got written properly

result_set = db.execute("SELECT * FROM public.commodity_prices")

for r in result_set:

print(r)

Now let's run the data pipeline code to see if the database gets

updated with the latest commodity prices.

!python Code_10_1_Data_pipeline_sql.py

Success!

The records in records fields are of type <class 'list'>:

(0, '1570437302', 'Andhra Pradesh', 'Chittor', 'Kalikiri',

'Tomato', 'Local', '07/10/2019', '530', '1330', '1000')

(1, '1570437302', 'Andhra Pradesh', 'Chittor',

'Mulakalacheruvu', 'Tomato', 'Local', '07/10/2019', '550',



'1900', '1500')

(2, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Beetroot', 'Beetroot', '07/10/2019', '2000', '4000', '3000')

(3, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Bhindi(Ladies Finger)', 'Bhindi', '07/10/2019', '500', '1000',

'750')

(4, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Bitter gourd', 'Bitter Gourd', '07/10/2019', '1250', '2250',

'1750')

(5, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Bottle gourd', 'Bottle Gourd', '07/10/2019', '250', '500',

'375')

(6, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Brinjal', 'Brinjal', '07/10/2019', '750', '1750', '1250')

(7, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Cabbage', 'Cabbage', '07/10/2019', '250', '750', '500')

(8, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Carrot', 'Carrot', '07/10/2019', '625', '1125', '875')

(9, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Cauliflower', 'Cauliflower', '07/10/2019', '600', '1200',

'900')

(10, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Cluster beans', 'Cluster Beans', '07/10/2019', '2000', '4000',

'3000')

(11, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Cucumber(Kheera)', 'Cucumbar', '07/10/2019', '1000', '2000',

'1500')

(12, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Green Chilli', 'Green Chilly', '07/10/2019', '1000', '3000',

'2000')

(13, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Potato', '(Red Nanital)', '07/10/2019', '1000', '2000', '1500')

(14, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Raddish', 'Raddish', '07/10/2019', '750', '1750', '1250')

(15, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Ridgeguard(Tori)', 'Ridgeguard(Tori)', '07/10/2019', '750',

'1250', '1000')



(16, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Sweet Potato', 'Sweet Potato', '07/10/2019', '600', '1000',

'800')

(17, '1570437302', 'Andhra Pradesh', 'Chittor', 'Palamaner',

'Tomato', 'Hybrid', '07/10/2019', '200', '1200', '600')

(18, '1570437302', 'Andhra Pradesh', 'Chittor', 'Piler',

'Tomato', 'Deshi', '07/10/2019', '500', '1000', '750')

(19, '1570437302', 'Andhra Pradesh', 'Chittor', 'Vayalapadu',

'Tomato', 'Local', '07/10/2019', '400', '2040', '1200')

Below Figure 10.5 is the snapshot from the pgAdmin client GUI with above
created table:

Figure 10.5: Created Table in pgAdmin



Now let's discuss on No-SQL databases in the upcoming section.

Document-oriented database or No-SQL
No-SQL databases are getting very popular in the last two decades, and the
main advantage of using the No-SQL database is the ability to store
unstructured data and object-oriented programming, which makes it easy to
code in OOPs scripting languages. You can read about the benefits and
features here https://www.mongodb.com/scale/advantages-of-nosql.
The No-SQL database has a flexible schema and stores the data in document
format, where each document may have semi-structure data. You can learn
more about No-SQL databases and how to use them at w3schools here
https://www.w3schools.in/mongodb/introduction-to-nosql/. To establish
the use case in the data pipeline, we will show the example of data.gov.in to
store the data into a MongoDB, a leading No-SQL database. In this case, we
would see that we need not convert unstructured JSON file into tabular data
frame, but we can directly store the whole document.

Install MongoDB and compass client
MongoDB is an open-source document database that provides high
performance, high availability, and automatic scaling. We would install the
community edition to show the example. You can follow instructions to
install the MongoDB here https://docs.mongodb.com/v3.2/installation/.
We will also need a client to access the database in case we want to manage
the database outside the python environment as well. This is always the case
as database administration is easy with GUI based clients. The client we will
be using with Mongo DB is called MongoDB Compass, and you can install
the same from this link,
https://docs.mongodb.com/compass/master/install/. Once installed with
default settings, you can see below a similar window, as shown in Figure
10.6:

https://www.mongodb.com/scale/advantages-of-nosql
https://www.w3schools.in/mongodb/introduction-to-nosql/
https://docs.mongodb.com/v3.2/installation/
https://docs.mongodb.com/compass/master/install/


Figure 10.6: MongoDB Compass Window

You can follow instructions from this video tutorial here
https://www.youtube.com/watch?v=lu7YXYbLmdM.

Create a database and collection
To start using the Mongo DB database, we need to create a database. The
database can be created from the Mongo DB Compass GUI as well. During
database creation, we have to define the collection as well. A collection is
analogous to a data table in the SQL database. Figure 10.7 is the snapshot of
the window creating the database in Mongo DB Compass:

https://www.youtube.com/watch?v=lu7YXYbLmdM


Figure 10.7: Creating Database in MongoDB Compass

We will create a database of name data-gov-in and collection as
commodity_prices, similar to our SQL example.

Connect Python to MongoDB
To connect python to MongoDB, we will use a library name pymongo.
Pymongo provides the ORM layer to document type interactions between
Python and MongoDB. We will use the following document structure to
store data.
This code describes the use of PyMongo library in python and store data in
the database:

#Import the MongoClient from PyMongo Library

from pymongo import MongoClient



#Define the connection string to your MongoDB instance

# You remember we did not set-up any password while installing

MongoDB

client = MongoClient('mongodb://localhost:27017')

#Access the Database

db = client['data-gov-in']

#Access the Collection

posts = db.commodity_prices

#Single data to be pushed to the database

post_data = {'arrival_date': '04/10/2019',

'commodity': 'Tomato',

'district': 'Chittor',

'market': 'Kalikiri',

'max_price': '2000',

'min_price': '1000',

'modal_price': '1660',

'state': 'Andhra Pradesh',

'timestamp': '1570178103',

'variety': 'Local'}

#Insert the first commodity price data into database

result = posts.insert_one(post_data)

#Print the inserted_id to display the unique document reference

and a success in insertion

print('First Commodity Price: {0}'.format(result.inserted_id))

First Commodity Price: 5d9b52248e19fd632e2216cd

Once successfully inserted, the data can be seen in the Mongo DB compass
as well. We can retrieve this data back into Python by using the find_one
method. Figure 10.8 is the snapshot of the data inserted in the Mongo DB
Compass:



Figure 10.8: Data inserted in MongoDB Compass

The below code snippet is to retrieve a post and print it:

#Retrieve a post with district as Chittor

get_post = posts.find_one({'district': 'Chittor'})

#Print the retrieved document

print(get_post)

{'_id': ObjectId('5d9b52248e19fd632e2216cd'), 'arrival_date':

'04/10/2019', 'commodity': 'Tomato', 'district': 'Chittor',

'market': 'Kalikiri', 'max_price': '2000', 'min_price': '1000',

'modal_price': '1660', 'state': 'Andhra Pradesh', 'timestamp':

'1570178103', 'variety': 'Local'}

In the next section, we will modify the data pipeline to store in MongoDB.

Modify data pipeline to store in MongoDB
As you can observe, the Mongo DB can store the whole document in JSON
format into the database, we need not worry about transformations. If we
store the whole incoming stream of JSON to MongoDB, we can retrievethe
data later with ease from the database. Though we can store exactly the same
data as Postgres, however, we make use of MongoDB properties to store the
whole JSON in this case.
We will modify the code with following to allow writing the data into
MongoDB rather than CSV and store the file as
Code_10_2_Data_pipeline_nosql.py:



#Import the MongoClient from PyMongo Library

from pymongo import MongoClient

#Define the connection string to your MongoDB instance

# You remember we did not set-up any password while installing

MongoDB

client = MongoClient('mongodb://localhost:27017')

#Access the Database

db = client['data-gov-in']

#Access the Collection

posts = db.commodity_prices

#Insert the first commodity price data into database

result = posts.insert_one(response)

!python Code_10_2_Data_pipeline_nosql.py

Success!

You can see that the database returned a success message, which means our
data pipeline has successfully written the JSON data into the database.
Figure 10.9 shows how the new data looks like in MongoDB compass:



Figure 10.9: Modified data in MongoDB

This concludes the discussion on No-SQL databases. In the next section, we
will discuss on the Graph databases.

Graph databases
Graph database is based on nodes and their relationships. The relations are
defined by the edges, and the nodes define the entities having those
relationships. The ability to directly state the relationship between two
objects within a graph database provides a big advantage over relational
database systems for datasets having a lot of relationships within them.
Figure 10.10 is an example of a graph database:



Figure 10.10: An example of Graph Database

A good use case for graph databases is social media analysis, where the
relationship of entities has significant information other than the node
properties themselves.
In the current example of commodity prices, let's assume that the
commodities have two relationships defined as follows:

SELLS_AT: The commodity {name,min_price, modal_price,

max_price} sells at market {state, district, mandi}

IS_OF_VARIETY: The commodity {name, min_price, modal_price,
max_price} is of variety {variety}

If we create this relationship structure in our graph database, we would be
able to query the relationships between the commodities faster. The graph
will create three types of the node (commodity, market, and variety) and two
nodes SELLS_AT and IS_OF_VARIETY.



Note: The commodity price data is not a very tightly connected row
relationship. However, you can see with this example of how to work
with graph databases.

Install and start Neo4j
Neo4j is a leading graph database technology. A lot of use cases in
enterprises are built on top of the Neo4j Platform. Graph databases also
require a strong knowledge of graph theory, as the property-based graphs
also require that knowledge. The graphs we are discussing here are having
node properties and not just connected entities. The reader needs to
differentiate this from the graph of traveling salesman/Network Analysis
kind of graph problems.
Install Neo4j by following instructions from here
https://neo4j.com/docs/operations-manual/current/installation/. After
installation, you can start the server and provide the default credentials
neo4j/neo4j. You would see a window, as shown in Figure 10.11:

Figure 10.11: Neo4j Graph Database

You can read more about Neo4j from https://neo4j.com/developer/.

Add nodes and relations
##Python Script to Implement the Pipeline

#Define the API KEY ( this can be found in the data.gov.in

account section for registered users)

API_KEY = <YOUR API KEY>

#Import the requests library

import requests

#Construct the GET REQUEST

response = requests.get(

'https://api.data.gov.in/resource/9ef84268-d588-465a-

a308-a864a43d0070',

params=[('api-key',API_KEY ),

https://neo4j.com/docs/operations-manual/current/installation/
https://neo4j.com/developer/


('format','json'),

('offset',0),

('limit',100)],

)

#Check if the request was successful - a success request returns

a status code 200

if response.status_code == 200:

print('Success!')

else:

print('Some Error Occurred')

#If the you see a success message then you can extract the

values from the JSON response

json_response = response.json()

#Define a empty list where the extracted data will be cached

before being written to data frame

import pandas as pd

arrival_date = []

commodity = []

district = []

market = []

max_price = []

min_price = []

modal_price = []

state = []

timestamp = []

variety = []

#Extract the data from json response

records = json_response["records"]

print("The records in records fields are of type

",type(records))

# Run a loop over list to extract sub-list data

for item in records:

arrival_date.append(item["arrival_date"])

commodity.append(item["commodity"])

district.append(item["district"])



market.append(item["market"])

max_price.append(item["max_price"])

min_price.append(item["min_price"])

modal_price.append(item["modal_price"])

state.append(item["state"])

timestamp.append(item["timestamp"])

variety.append(item["variety"])

#All the data extracted via API is now stored in list. let's

combine all lists into one single data frame

df = pd.DataFrame({'arrival_date':arrival_date,

'commodity':commodity,

'district':district,

'market':market,

'max_price':max_price,

'min_price':min_price,

'modal_price':modal_price,

'state':state,

'timestamp':timestamp,

'variety':variety

})

Success!

The records in records fields are of type <class 'list'>:

#Writing to neo4j graph

from py2neo import Graph

#Set-up the connection

graph = Graph("bolt://neo4j:admin@localhost:7687")

#Define the nodes, their properties and relationships

for index, row in df.iterrows():

graph.run('''

MATCH (a:commodity

{commodity:$commodity,min_price:$min_price,modal_price:$moda

l_price,max_price:$max_price}), (b:market

{state:$state,district:$district,market:$market}),

(c:variety {variety:$variety})

MERGE (a)-[:SELLS_AT]->(b)



MERGE (b)-[:IS_OF_VARIETY]->(c)

''', parameters = {'commodity': row['commodity'],

'min_price': row['min_price'],'modal_price':

row['modal_price'], 'max_price': row['max_price'],'state':

row['state'], 'district': row['district'],'market':

row['market'],'variety': row['variety']})

The result of the graph created can be seen in the neo4j browser as well. The
browser starts by default at http://localhost:7474/browser/ and in there, run
the following command to get the all node graph for an interactive view:

#The below query returns all the matches in the graph

MATCH(n) RETURN n

The graph will be similar as shown in Figure 10.12. Now, let us show a
simple example to query Tomato prices across all markets using py2neo
library. The collect command will group the markets as per the max_price
on Tomato:

Figure 10.12: An example of Neo4j Graph Database

This code shows the use of py2neo library and provides an example to query
Tomato prices across all the markets:

#Reading from neo4j graph

from py2neo import Graph

#Set-up the connection

graph = Graph("bolt://neo4j:admin@localhost:7687")

#Run the query to bring "Tomato" prices across markets

graph.run('''

MATCH (b:market)<-[:SELLS_AT]-(a:commodity)

WHERE a.commodity = 'Tomato'

RETURN a.max_price, collect(b.market)

''').to_table()

The below table shows the maximum prices of Tomato across the markets:

a.max_price collect(b.market)

1330 ['Kalikiri', 'Kalikiri']

http://localhost:7474/browser/


1900 ['Mulakalacheruvu', 'Mulakalacheruvu']

4000 ['Chandigarh(Grain/Fruit)', 'Chandigarh(Grain/Fruit)',

'Chandigarh(Grain/Fruit)', 'Chandigarh(Grain/Fruit)',

'Chandigarh(Grain/Fruit)', 'Chandigarh(Grain/Fruit)',

'Chandigarh(Grain/Fruit)', 'Chandigarh(Grain/Fruit)',

'Chandigarh(Grain/Fruit)', 'Chandigarh(Grain/Fruit)']

1800 ['Ramanagara', 'Ramanagara', 'Ramanagara', 'Ramanagara',

'Ramanagara', 'Ramanagara', 'Ramanagara', 'Ramanagara',

'Ramanagara', 'Ramanagara', 'Ramanagara', 'Ramanagara',

'Ramanagara', 'Ramanagara', 'Ramanagara']

3500 ['Hindol', 'Hindol', 'Hindol', 'Hindol', 'Hindol', 'Hindol',

'Hindol', 'Hindol', 'Hindol', 'Hindol']

1500 ['Baraut', 'Baraut', 'Baraut', 'Baraut', 'Baraut', 'Baraut',

'Baraut', 'Baraut', 'Baraut', 'Baraut', 'Baraut', 'Baraut',

'Baraut', 'Baraut', 'Baraut', 'Baraut', 'Baraut', 'Baraut',

'Baraut']

Graph databases are powerful for use cases related to connecting entities,
like fraud detection, profile matching, social media analysis,
recommendation engine, and many other use cases. It is important to choose
the right use case before using graph databases.

Filesystem as storage
The choice of data storage for any applications require many factors to be
taken care of, including the following, and many other aspects of cost and
performance:

Type of retrieval: How you would be retrieving the data? By querying
or loading line-by-line?
Frequency of access: How frequently you want to read/write the data?
Type of access: Single user or multi-user

The above three are listed to show how they differ in the File system vs. the
databases we discussed in previous sections.

What is Filesystem?
A filesystem manages and controls how the data is stored and retrieved from
the hardware and logical storage layer. In the absence of a file system, the



disk will be just storing data without a definite way to retrieve and update it.
The rules and structures which control the storage and later retrieval of files
is called a file system.
The different operating system has a different way of managing files and
hence different file systems. The key difference between file systems arises
from different structures and logic, properties of speed, flexibility, security,
and size. FAT, Apple File System, and NTFS are few popular file systems.

Filesystem as data store
The data that we are retrieving from data.gov.in is for a specific purpose and
needs to be retrieved in the future when required. Filesystem at the logical
layer is divided into directories and subdirectories, and the names of files.
The file system defines naming conventions, storage locations along with the
information such as the size of the file, as well as its attributes, location, and
hierarchy in the directory. This set of metadata makes it possible to retrieve
the data when required by the applications.
For instance, go back to our basic example where the data from data.gov.in
was stored in a CSV file. The file was stored on the windows file system and
had the attributes, as shown in Figure 10.13:

Figure 10.13: Snippet of the attributes of the file stored

Though the file is stored and can be retrieved by applications by referring to
the location, still to find a record, you need to load the entire file into
memory. You cannot access the file items in any other sorted or index way.

Hierarchy to store CSV
In the case of file systems, a basic level of the hierarchy can be created to
facilitate easy search and smaller chunk of files to be loaded into a disk for
operations. Assume that our applications are designed in a way that
commodity prices are retrieved mostly by locations. In that case, if we want
to see the price of a commodity, let's say Tomato at Delhi, we should only
load files for Delhi and not for all the states in India.
We can store our CSV files in the following filesystem hierarchy to facilitate
faster and less costly retrieval of data:



Figure 10.14: An example of hierarchy to store CSV

In Figure 10.14, you can see, if we break our CSV files into smaller chunks
and store as per the hierarchy, the applications can easily access the relevant
data faster. You can learn more from the given link,
https://habiletechnologies.com/blog/better-saving-files-database-file-
system/.

Conclusion
This chapter introduces the concept of databases and how they are used to
store data. We discussed the key terminologies in modern databases and their
significance for designing a database solution. Then we discussed setting up
a SQL database, Postgre, how to use the databases, and integrated our data
pipeline to store data into the database. Next, we discussed No-SQL
database and how-to setup MongoDB. Further, we also introduced the idea
of graph databases and showed an example of the same with neo4j. The file
system is introduced in the last section to show how we can manage data
storage and indexing with the file system as well. By reading this chapter,
the reader has gained the understanding of the databases. He or she will now
be able to setup SQL and No-SQL Databases. The reader has also acquired
knowledge in using Neo4j for graph databases.
In the next chapter, we will discuss the case of what if the data outgrow our
database or file system, how to manage and analyze that using Big Data.

https://habiletechnologies.com/blog/better-saving-files-database-file-system/
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CHAPTER 11
Introduction to Big Data

e have been talking about data all through the chapters and how
technology helps us bring value from that data. The term Big Data

is coined for the datasets, which are too huge to handle by our traditional set
of tools and technologies. The way we store, manage, process, and control
big data is very different from the way we will do the same from small
datasets. A single machine processing and computation power is not enough
to store process such data. While vertical scaling by increasing RAM and
processors has a limit. Horizontal scaling by adding more machines is
infinitely scalable. Hence, the case of Big Data lies in the distributed nature
of storage and computations. In this chapter, we will discuss the Hadoop
distributed file system and computation framework. We will also explain the
key MapReduce function by discussing a word count example. The chapter
will help you understand the basics of Big Data and Hadoop. You will also
be able to manage HDFS and MapReduce and use YARN and Hadoop
common utilities by following the wordcount example.

Structure
Introducing Big Data
Introducing Hadoop
Settingup a Hadoop Cluster
Word-count MapReduce program

Objectives
After studying this unit, you should be able to:

Understand the basics of Big Data and Hadoop
Install Hadoop Cluster
Run an example with Hadoop



Introducing Big Data
To understand the enormity of data in real applications, consider the example
of daily commodity prices we discussed in previous chapters. The data.gov.
in website release data on the current price of the commodity in various
markets. In total, it gets 3649 records per day from various mandis. This is
about 338 Kb of CSV file. Assume that we have a machine of 4GB RAM to
process this data. If we have to analyze 100 years of data, then how much
memory the machine would require to load and manipulate the data?
Below is the calculation to find out the minimum RAM required to process
the data:

# Number of Days in Year = 365

# Size of Each day File = 338 Kb

# Years worth of Data = 100

# 1 Gb contain 1048576 Kbs

Total_RAM_GB = (365*338*100)/1048576

print(‘\nMinimum RAM required to process the data ‘,

Total_RAM_GB)

Minimum RAM required to process the data: 11.765480041503906 GB

You can see it require at-least three times the RAM to load and then
manipulate the data. As we started accumulating more data, the processing
requires more RAM to process in a single machine. Hence, we require
distributed computing to deal with big data.
The above example was to show, Big Data from computation requirements.
Big data is impossible to store in one physical disk as well. Consider data
generated by web traffic; it can generate TBs of data in a couple of hours.
With disk size limited physical storage, it is important to store data in a
distributed manner.
The Big Data area itself has become a vast discipline with the advent of
large requirements for computations and storage facilitated by cloud
computations. Distributed storage and computation are at the core of Big
Data. In this chapter, we will discuss the basic concepts and some
terminologies on Big Data. Further, we would show examples of how our
data.gov.in pipeline can write into Hadoop Distributed File System
(HDFS) and retrieve it using Apache Hive.



Definition of Big Data
Big Data definition has been evolving over time as we get to know more
about nature and technology around the data. The core definition of Big Data
still can be summarized into three aspects to define data as being big data or
not:

Volume: How much?
Variety: How many types?
Velocity: How fast?

The above three aspects are popularly called 3Vs (Volume, Variety, and
Velocity) of big data, and they are explained in Figure 11.1:

Figure 11.1: The 3Vs of Big Data

The definition has been expanded to include many other factors as well, such
as veracity, value, and others. At the core of Big Data remains the power of
distributed storage and processing.



Consider a few examples of big data and how they possessthe above
properties to require big data processing framework:

Volume: The government is trying to digitize all the paper forms of
land records. They are scanning the documents and storing them for
future retrieval. There are millions of pages to be scanned and stored.
This quality for Big Data distributed storage.
Variety: The data in telecom comes from multiple sources. It can be
coming from telecom towers, which is a stream of bytes, also from
online recharges, OTT providers also send data to telecom provider,
and it gets data from ERPs, consumer complaints and so many varied
sources in a variety of formats. The data need storage that can store any
type of data, and while retrieval allows flexibility.
Twitter: Twitter processes millions of tweets each day coming in from
so many users and bots at asynchronous times. Though the tweets have
the same kind of data, but the velocity is so huge to handle in a
monolithic system. It requires distributed storage and processing
system to derive insights from the twitter data.

These are few examples that qualify for a Big Data infrastructure and
distribute processing. The business requirements allow the IT manager to
choose the right set of tools and configurations for the management of Big
Data.

Introducing Hadoop
Hadoop started as Apache Nutch project in 2002 by Doug Cutting and Mike
Cafarella. Later in 2003, Google released a white paper outlining Google
Filesystem (GFs) and in the next paper about MapReduce. While GFS was
trying to solve big data distributed storage, MapReduce started the evolution
of distributed computations. Later, Doug took the project to Yahoo!, where
after development and testing, publicized it as an open-source project in
2009. After 2009, the project has seen tremendous growth across industry
sectors and cloud technologies.
At its core, Hadoop has two major layers, namely:

Processing/Computation layer (MapReduce)
Storage layer (Hadoop Distributed File System)



There are then resource manager and other common libraries assisting the
process of distributed storage and computations. Each of the components
described in Figure 11.2 is part the Hadoop core package:

Figure 11.2: Hadoop Architecture

There are additional applications that enhance the utility and monitoring of
Hadoop.

Hadoop Distributed File System (HDFS)
HDFS got conceptualized on the ideas of GFS. In this type of file system,
the data is converted into blocks of memory and stored in nodes on multiple
systems. The logic to break a file and then combine them for retrieval is a
part of HDFS architecture. With this capability, you can store data far bigger
in size for one node/system to be stored in multiple systems. It is highly
fault-tolerant (a property that allows a system to function appropriately in
the event that some of its components malfunctions) and is designed to be
deployed on low-cost hardware. It provides high throughput access to
application data and is suitable for applications having large datasets:



Figure 11.3: HDFS architecture

HDFS architecture has two types of nodes:

NameNode: It is the master node in the HDFS architecture. The node
which maintains the address table of each memory block.
DataNode: These are the slave nodes in the HDFS architecture. The
node which actually stores the memory block.

To achieve fault tolerance, the data memory blocks are replicated so that
even if one memory block goes unavailable, we can still access the data from
another node. The configuration of HDFS is managed at the metadata store
in NameNode. You can read details of HDFS here,
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

MapReduce
MapReduce is within the Hadoop framework, which is used to process data
stored in HDFS. It is a programming model, being a key part and functional
component of the Hadoop framework. MapReduce makes it possible to
process petabytes of data in parallel on data nodes, by dividing them into
smaller chunks. Eventually, it adds up all data from several servers to give
the application a consolidated result:

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html


Figure 11.4: Example of a MapReduce program

Figure 11.4 shows how a MapReduce program will work for a word count
problem. The MapReduce program will divide the task into the small
parallel process, then the process (or task) is pushed to each node to do the
processing locally, once the processing is done, the Reducer program will
combine the results of each node and give the result back to application or
HDFS.

YARN
There is a resource management and a job scheduling technology within the
Hadoop distributed processing framework known as Apache Hadoop YARN.
Apache Hadoop’s YARN allocates the system resources to the various
Hadoop cluster applications and schedules tasks to be performed on various
cluster nodes:



Figure 11.5: YARN Architecture

YARN can allocate resources to applications dynamically as required, which
is capable of improving the use of resources and application performance in
contrast with the more static MapReduce allocation approach. It also
supports multiple scheduling techniques for submitting processing jobs, on
the basis of a queue format. There exists a generic FIFO scheduler that
operates on a first-in-first-out basis for the various applications.

Hadoop common
The backbone of the Hadoop framework is the Hadoop common package
that offers the key services as well as the basic processes. The essential Java
Archive (JAR) files and scripts required to start Hadoop is incorporated in
the Hadoop Common. A contribution section is also available, provided by
the Hadoop common package that includes different projects from the
Hadoop Community, bringing forth the availability of source code and
documentation as well.

Setting-up a Hadoop Cluster
The native filesystem in our windows or mac machine is not designed to
handle distributed filesystem. The Hadoop environment needs to be installed



with its own filesystem and the process to perform operations on them. As
discussed in previous sections to work with Hadoop File System, we need to
set-up the four critical components of Hadoop; filesystem, resources
manager and mapper/reducers functions, and Hadoop common libraries.

Installing a Hadoop Cluster
There are multiple ways to start working in the Hadoop system; depending
upon your need, and you can choose the right set-up for your use case. The
most popular method for starting to learn Hadoop is by installing a virtual
machine and install Cloudera sandbox. The Sandbox can be downloaded
from here (https://www.cloudera.com/downloads/quickstart_vms/5-
13.html). The minimum requirements to start a single-node Hadoop cluster
are as follows (source: cloudera.com):

64-bit VMs running on a 64-bit OS of host and VMware
VMware with workstation 8.x or Player 4.x or Fusion 4.x
Minimum RAM required by VM is 4 GB to install, however, to run the
decent example you need minimum 10GB

As you can see, the Hadoop system is very heavy and requiresa lot of
infrastructures to run it. It is recommended that you check the system before
trying to run and test the Hadoop system.
In real production, the Hadoop system runs on massive IT infrastructure
supported by hardware and big data engineers. The minimum requirement
for the production level is 64 GB RAM/16 cores/256 GB HDD per server.
The configurations are just indicative to show the enormity of hardware
infrastructure required to churn PB of data each day in enterprise systems.
To run through a simple example of word-count and explain the MapReduce
process, we will use a Docker installation of Hadoop. Docker installation of
Hadoop is not recommended for any heavy data processing in the Hadoop
system. You have already been introduced to Docker concepts in the
previous chapter. We will directly install the cluster and discuss the HDFS
and MapReduce with word-count example.

Starting Hadoop cluster in Docker

https://www.cloudera.com/downloads/quickstart_vms/5-13.html


Hadoop Cluster in Docker is an easier way to test basic examples in Hadoop
and learning purposes. In this section, we will show you how you can start a
Hadoop cluster using docker-compose. To run through the example, you
need to have some prerequisites:

1. Install Docker Engine in your system
(https://docs.docker.com/install/).

2. Check if Docker Compose, Docker Engine, is installed and working.
Run following commands in your command prompt/bash:

$ docker --version

$ docker-compose --version

$ docker-machine –version

3. Make sure the Docker can use at least 4 CPUs and 8 GB RAM.

Note: The example in this chapter is developed on a PC with the
following configurations 16 GB RAM, 1 TB HDD, 8 CPUs, and
2.6GHz processor.

For creating the cluster, we will be using the Docker compose file provided
by the big-data-europe public repository on GitHub.
Link to Repository: https://github.com/big-data-europe/docker-hadoop
The below Figure 11.6 shows commands you need to run on your terminal to
get the required files copied to your system. This requires that you have
already installed Git in your system (https://git-
scm.com/book/en/v2/Getting-Started-Installing-Git):

Figure 11.6: Snippet of the terminal while cloning using Git

Once you run the docker-compose command, the Docker system will start
searching for images, and if they do not exist will try to fetch them. The
fetching process is shownin Figure 11.7 below. It can take several minutes

https://docs.docker.com/install/
https://github.com/big-data-europe/docker-hadoop
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git


while the system tries to fetch the images required to build the Hadoop
cluster:

Figure 11.7: Snippet of terminal showing fetching process

After several minutes of processing, the Hadoop cluster will start, and you
will see a different system of Hadoop starting up in different nodes. You will
observe logs of nodemanager, namenode, history server, and datanode.
You can also view the number of servers started by the Docker system by
using docker ps command, as shown in below Figure 11.8:

Figure 11.8: Snippet of terminal showing output of docker ps

The Hadoop system also comes with UI written to access the status and
health of cluster using URLs. These URLs show the basic statistics of the
node and the processes it is running along with a lot of other information.
If you are running the cluster in local machine, by default all services will
expose the URLs at localhost, if running on VMs or cloud you can use



Docker network inspect to get the cluster IP to get access to following
URLs:

Namenode: http://<docker-
hadoop_IP_address>:9870/dfshealth.html#tab-overview
History server: http://<docker-
hadoop_IP_address>:8188/applicationhistory
Datanode: http://<docker-hadoop_IP_address>:9864/
Nodemanager: http://<docker-hadoop_IP_address>:8042/node
Resource manager: http://<docker-hadoop_IP_address>:8088/

The main URLs would be the Namenode one as that contains information
about all other nodes and their health. The URL will show a window similar
to below Figure 11.9:

Figure 11.9: Hadoop Overview window

Now we can confirm that the Hadoop cluster is up and running. We can now
push files to the HDFS and run the computations in distributed forms by
using MapReduce functions. Next Section, we show you what has to be
written in Map and Reduce function for a word-count sample problem. The



basic engine for Hadoop in Java so we have to write our MapReduce for
work-count in Java.

Word-count MapReduce Program
Word count is a very important problem statement discussed in many
tutorials and all 101 courses on Hadoop. The problem statement explains all
the concepts of distributed storage and distributed computation on a Hadoop
system. The word count problem ingests numerous files and outputs the
working frequency. The data could be stored in thousands of different files
across multiple machines; still, the MapReduce program will be able to
successfully compute the frequency. As this is an aggregation problem, also
shown in Figure 11.4, it is a perfect fit to show MapReduce working.

Map program
The Map program will take all the inputs and tokenize them into words.
After tokenizing, it will map each word to its count in that input file. In this
way, all the input files will be tokenized and will have the word count in
each file. A sample Java program for the Mapper class is shown below in
Figure 11.10:

Figure 11.10: Sample Java program for Mapper class



You can see in the above code the mapper function tokenizes the text input
at line 18 and collect all words by their count in line 21.

Reducer program
The reducer program will combine the result of the mapper program for each
map task running across the cluster. The mapper function for wordcount
example is shown in below Figure 11.11:

Figure 11.11: Mapper function for word count example

You can see the above function sum up all tokens and create output as key-
value pair in line 18.

MapReduce JAR
Now we need to combine the Map and Reduce function by writing a runner
code which will trigger the mapper and reducer functions, and then allow us
to get the final output. The Java code, as shown below in Figure 11.12, need
to be converted into an executable JAR file before pushing to the cluster for
using for our word-count problem:



Figure 11.12: Java code for word count problem

You can see in the above code, the job is defined at line 16. The mapper and
reducer classes are called here and used to manage MapReduce operations.
We need to convert these files into an executable JAR file (Example:
https://www.webucator.com/how-to/how-create-jar-file-java.cfm)
For easy usage, we will provide the JAR file for wordcount problem that can
be used to replicate the tutorial for data processing in Hadoop.

Running Word Count in HDFS Cluster
Now we have set-up the Hadoop cluster and checked its health as well. The
MapReduce program is also written to find word count after processing
multiple input files. Now we will test the word count problem with the
illustrative image, as shown in Figure 11.13.
We will be using 4 input files with the following content in each of them, as
shown in Table 11.1:

Input/f1.txt Probyto Data Science Company

Input/f2.txt Data Science Data Analysis

Input/f3.txt Innovation Probyto

https://www.webucator.com/how-to/how-create-jar-file-java.cfm


Input/f4.txt Data Science Probyto

Table 11.1

The steps to follow would be as follows;

1. We will first enter into the namenode.
2. Create a new directory named input and write the 4 files in it.
3. Push the directory into the HDFS cluster.
4. Copy the word count JAR file into the name node.
5. Run the JAR file program inside namenode.
6. Display the output and verify it is the same as shown in Figure 11.12.

Step 1: Enter into the namenode by running exec bash command, as shown
in Figure 11.13:

Figure 11.13: Snippet of terminal showing entering into namenode

Step 2: Create a new directory with mkdir and write 4 input files, as shown
in Figure 11.14:

Figure 11.14: Snippet of terminal showing creating directory and writing 4 files

Step 3: Push all the files into the HDFS cluster by using hdfs put

command, as shown in Figure 11.15:

Figure 11.15: Snippet of terminal showing files getting pushed to hdfs



Step 4: Copy the JAR file into the namenode as shown in Figure 11.16:

Figure 11.16: Snippet of terminal showing JAR file getting copied to namenode

Step 5: The JAR file then can be executed inside the namenode with
following commands, as shown in Figure 11.17:

Figure 11.17: Snippet of terminal showing JAR file getting executed

Step 6: Finally, you can see the output of word count, as shown below in
Figure 11.18:

Figure 11.18: Snippet of terminal showing the output of word count

In the above set of 6 steps, we showed how the wordcount example would
work for 4 input files. The HDFS system allows us to do distributed
computation son millions of records without any problem, though there will
be latency as the data size will be huge.
There are better solutions than MapReduce now, such as Apache Spark,
which is way faster and more compatible with other programming languages
like Python and R for data science related programs. There are mature
libraries in the Big Data ecosystem to run multiple ML algorithms in the
HDFS system.

Conclusion
In this chapter, we have introduced Big Data and explained its definition.
Thereafter, we have introduced Hadoop and discussed its two layers, HDFS
and MapReduce. We have discussed the architecture of HDFS and also



explained the architecture of MapReduce with an example. We gave a high-
level idea of YARN and Hadoop common utilities. Then we have shown
setting up a Hadoop cluster and explained MapReduce solving a word count
problem.
By reading this chapter, the reader has gained a basic understanding of Big
Data and Hadoop. He or she will be able to excel in his or her skills to
manage HDFS and MapReduce.
In the next chapter, we will introduce DevOps and discuss its functionalities.
We will also discuss the source code management platforms.
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CHAPTER 12
DevOps for Data Science

evOps is a term created by coming two important IT terms;
development and operations. Development is the part of the IT

process where the application is developed, while operations are the process
that brings the application to the operational state for end users.
In previous chapters, the focus was on developing applications and putting
them to work in your local environment for the desired business purpose.
Cloud brings applications to real-life by having the available application
24X7 across the globe. However, before we start the cloud computing world,
we need to understand the core bridge function of DevOps, which facilitate
the movement of application from developers to IT operations. This chapter
will introduce some core concepts, tools, and examples to give readers a
starting point into DevOps for data science.

Structure
Introduction to DevOps
Agile methodology, CI/CD, and DevOps
DevOps for data science
Source code management
Quality assurance
Model objects andsecurity
Production deployment
Communication and collaboration

Objectives
After studying this unit, you should be able to:

Understand the basics of software development



Manage source code
Discuss containers and VMs

Introduction to DevOps
DevOps is not a concrete method but rather a cultural movement. It is a
series of activities that automates software development and IT department
processes so that they can develop, test, and release software more
confidently. The theory of DevOps is based on the development of a culture
of teamwork between groups. As shown in Figure 12.1, DevOps sits at the
junction of three critical functions; development, quality assurance (QA),
and IT operations. QA is many time parts of the development process as the
development needs to be of set quality before being pushed to operations:

Figure 12.1: The three functions of DevOps: Development, QA, and IT Operations

This is to note that, in the case of ML models, we call out Productization as
the process to bring models to operational use. DevOps take that as well to
integrate with a larger application and deploy to cloud for public use.
Consider the following scenario to understand the genesis of DevOps.



The development team is developing an application as per the business
requirements. The team just finished building the application and asked the
QA team to test the code. Now, at this handover lot of problems will happen
as QA team will identify bugs, which may be bug of development or
wrongly stated objectives, along with actual bugs. After a round of
exchanges, the QA team and development team finalizes the code and send
it to the operations team for production deployment. This is the second spot
where the handover of application may create issues, where the deployment
team would not be able to deploy the code in production blaming the QA
and Dev, while they claim it all worked fine in their environment. Even if
deployed, the application caused load issues in the virtualized environment.
And now, you will everyone worried and running around to run the
application.
The solution to the above issues lies in better coordination among teams and
timely input to the teams. The whole mindset shift in the software
development process and coordination mechanism resulted in DevOps.
DevOps brings all the processes together to make them work in tandem for
efficient and faster delivery of IT products:

Figure 12.2: DevOps cycle

A new mindset or approach to software delivery needed to implement to
increase time to deploy and reduce production issues. A new approach to the
distribution of software needed to increase deployment time and reduce
production problems. The new process connects all key steps in the product



and creates a feedback system to help deliver value to the whole process.
The key benefits include:

Shorter development cycles, faster innovation.
Resilient deployment models (Reduce implementation failure,
reflections, and recovery time).
Less operational expenditures in break/fix and more time allocated to
innovation.
Better communication and cooperation.
Reduce costs and IT staff.

In the 2015 State of DevOps Report, Puppet Labs mentioned, High-
performing IT organizations experience 60x fewer failures and recover from
failure 168x faster than their lower-performing peers. They also deploy 30x
more frequently, with 200x shorter lead times. The value of this opportunity
means that businesses are starting to move towards this approach for profit.
A good resource to get into details can be accessed here,
https://devops.com.

Agile methodology, CI/CD, and DevOps
The three terms, Agile methodology, CI/CD (Continuous
Integration/Continuous Delivery), and DevOps are three common terms
that are used software development. All these areas have some level of
overlap and own sphere of significance in every software development
cycle. Figure 12.3 gives a summary of Agile, CI/CD and DevOps:

https://devops.com/


Figure 12.3: Three terms in Software Development

As you can see, the core mandate of the processes, they are tools that bring
best practices to the software development process. The Software
Development Life Cycle (SDLC) domain discusses these concepts in detail
and provides the best practices:

Agile focuses on processes highlighting change while accelerating
delivery.
CI/CD focuses on software-defined life cycles highlighting tools that
emphasize automation.
DevOps focuses on culture, highlighting roles that emphasize
responsiveness.

In the following sections, we will discuss specific tools and subprocesses to
enable data science models to be part of bigger applications and
operationalized by IT operations.

DevOps for data science
Data scientist differs from developers in the scope of their work in bigger
application development, though they need to care as much about their
deliverable as a developer will do. While developer role is mature in
software development industry, data scientist role is still evolving from a
software development for data science products or features. The deliverable
of data scientist including model structure, data processing, prediction
variables and other, keep changing making it tough to manage in application
development process. The data science models/features have a huge
influence on resources and environments running them. The quality
assessment and IT operations teams need to make sure that the data science
features work as expected and can be deployed in the enterprise
infrastructure. Cybersecurity is also a concern for data science applications
as they expose data pipelines in the application. Hence, the DevOps
functions also need to take care of data science DevOps needs as well. The
data science DevOps is also called Artificial Intelligence DevOps (AIOps).
Generally, DevOps service will include:

Source Code Management
QA



Model objects and security
Production deployment
Collaboration and communication

The areas will be discussed in brief in following sections for an overview of
the respective functions. Readers are encouraged to focus on the problems
the tools solve, but not the tools itself in next sections. There are many tools
and frameworks available to follow best practices in DevOps for data
science.

Source Code Management
Data scientist write codes which do the complex task of model training,
EDA, data pipelines, and other AI/ML specific code. As the model gets
mature, the data science codebase also evolves and that too in a non-linear
form. The situation becomes complex when multiple people are working on
same data science model. It is important to manage the data science code as
well like an application code. A Source Code Management is a tool to
manage the source codes, used by programmers. In Agile
(https://www.agilealliance.org/agile101/) style code development, the
product continues to develop over an indefinite time. Some form of version
control is very beneficial for such applications. Figure 12.4 shows a snippet
of a Bitbucket repository:

Figure 12.4: Snippet of a Bitbucket Repository

Git is a very popular version management system (https://git-scm.com/);
SVN is another popular version management

https://www.agilealliance.org/agile101/
https://git-scm.com/


system(https://subversion.apache.org/). Git works on all forms of
platforms like GitHub, GitLab (https://gitlab.com/), andBitBucket. If you
are storing binary files, consider looking into Git LFS. Readers can take a
tutorial at Atlassian to master their skills in using Git version management
System (link: https://www.atlassian.com/git/tutorials). A very useful
feature among lot others is able to compare different version of codes to
make sure all the changes in the script are tracked and approved before
deploying to production. Figure 12.5 shows a snippet of two different
versions of codes getting merged in Bitbucket:

Figure 12.5: Merging Two different Version of code in Bitbucket

A data science specific problem with version control is to manage the code
of Jupyter or Zeppelin notebooks. The notebook generates HTML pages and
can be version managed by the Git system. For production, the code written

https://subversion.apache.org/
https://gitlab.com/
https://www.atlassian.com/git/tutorials


in Python/R or other languages is treated the same as other application
development code.

Quality Assurance
Quality Assurance (QA) is a holistic term used for managing the desired
quality of the application and makes sure it delivers the desired outcomes. A
substantial part of QA is testing. For a data, scientist testing can be broadly
of two types:

Unit testing:This is a testing mechanism adopted from the software
development world where the test script test that the script works as per
the desired input/output pair. It does not check for logical flaws, but
make sure the script works for a pre-defined case.
Model testing: This testing is to make sure that the quality of data and
prediction mechanism in working as expected by the offline analysis
done by the data scientist. If the results deviate materially from
expectations, the model cannot be applied/deployment in production.

Model testing plays a very important role as there are multiple versions of
algorithms, different libraries, floating-point issues, convergence speed, and
other environment-related conditions that differ between a data scientist’s
development environment and production environment.
It is important to test that the model performance and/or other metrics
provide the same result as they do in a development environment for a given
test data. Figure 12.6 shows a basic test of performance between
development and production environment; they both must be same to be able
to get deployed:



Figure 12.6: Model Performance Testing in both Development and Production Environment

QA has many scenarios that ask for automated testing rather than a manual
testing set-up. Automated testing means that the test cases are written, and
the system keeps testing automatically when the changes are encountered in
the application, or new build is required.
There are multiple tools and methods of writing tests for your data science
applications. It is an important part of data scientist code to provide test
cases and the ability to test their model automatically. One such popular tool
is Jenkins (https://jenkins.io/), it allows you to schedule tests, assign
specific branches from a version control repository to test, and in case
something breaks emails you. All the automated test process keeps running
in behind without manual attention required. Figure 12.7 is a snippet of the
Jenkins home page:

https://jenkins.io/


Figure 12.7: Jenkins Home Page

Unit tests are very common. JUnit
(https://www.tutorialspoint.com/junit/junit_test_framework.htm) is
provided for Java users. For Python developers, unittest
(https://docs.python.org/3/library/unittest.html) is available.
Nevertheless, developers can forget to execute the unit test appropriately
before codes are put into production. Although crontab
(http://www.adminschoice.com/crontab-quick-reference) can be used to
run an automated test, specialized applications, such as Travis CI, Circle CI
(https://circleci.com/) or Jenkins (https://jenkins.io/) are safer to be used.

Model objects andsecurity
The trained models are usually delivered at model objects, which are a type
of binaries that can be loaded in the production system for scoring/prediction
on new data. There are multiple methods of creating model objects and
delivering them to operations teams for deployment. In the Python world,
the pickle package allows us to store the model from the current
environment and then can be later loaded into another environment.

https://www.tutorialspoint.com/junit/junit_test_framework.htm
https://docs.python.org/3/library/unittest.html
http://www.adminschoice.com/crontab-quick-reference
https://circleci.com/
https://jenkins.io/


Sometimes, we also deliver the prediction model in a running API service,
which has the running exe but not exposing the code.
The model objects contain sensitive information and cannot be trusted for
cross-platform usage if the source of the object is not trusted. For instance,
you cannot download a model object from the internet and run that, it could
be malicious and cause system breakdown. At the same time, if someone
gets access to your model object, he can open the model and infer training
data.
Although Security is very important, it is often overlooked in the data
science world. There are many cases where the data used for model training
and analysis contain sensitive information like credit card or insurance
records, healthcare data, requiring regulatory measures, such as GDPR, and
HIPAA. When deploying at client servers, the model structure and variables
require a level of authentication. Therefore, very often before they are stored
in the client database, a model is deployed as an encrypted executable.
You need to be aware of encryption and decryption methods before using
them for a production build. Figure 12.8 below show an encrypted file looks
like; even if someone gets access to model files, he would not be able to
understand the model object or its content:

Figure 12.8: Encrypted JAR file



Human is always the weakest link in data security. It is important that data
scientists are also made aware of the security protocols around the usage of
data. Production standards for delivering output in an encrypted format. It is
not practically possible to achieve perfect security; however, a data scientist
needs to make sure they are not the weakest link to the application and data
security for the company.

Production deployment
Production deployment of models is specific task that the IT operations team
does in enterprise IT infrastructure. There are two keys considerations that
the IT team takes sin for production deployment of models:

Provisioning hardware/servers (physical or virtual)
Setting up the environment

Hardware or servers in logical terminology are the machines that will be
running the model code, whilethe environment is the application set-up
required to run the code like Python3.6 and its dependencies. The first step
to deploy is to get the computational resources ready, and that can be done
by either provisioning virtual machines or actual hardware. The actual
hardware will then be configured to just run that application and its
dependencies. In modern applications, the cloud is preferred place for
deployment on Virtual Machines (VMs). You will learn more about cloud
computing in upcoming chapters. Figure 12.9 shows the conceptual model
VM have, which in turn allows multiple applications running on the same
infrastructure:



Figure 12.9: VMs vs. Docker Containers

The other way to run an application is by containerizing the applications and
use Docker to run those containers. A container contains the operating
system, Docker daemon, the dependencies, and the applications packaged
into one unit. You just need to deploy this container onto a system running
any OS, Linux, Windows, or centOS or other.
Before the model goes to production, it needs to be tested for the
environment in production, how the model will behave in that environment
or efficiency of the code. This can be done by creating a VM with Virtual
Box (https://www.virtualbox.org/) or using docker popular containerization
technologies include Docker (https://www.docker.com/) or Kubernetes
(https://kubernetes.io/).
Kubernetes is a portable, extensible, open-source platform for managing
containerized workloads and services that facilitates both declarative
configuration and automation. You can deploy multiple applications and
manage them using Kubernetes cluster manager. Figure 12.10 shows an
example of Kubernetes Cluster:

https://www.virtualbox.org/
https://www.docker.com/
https://kubernetes.io/


Figure 12.10: Kubernetes Cluster

Containerization helps with scalability. This is particularly true when model-
based software gets used by multiple users for training or prediction.

Communication and collaboration
As a data scientist, it is relevant to be up-to-date with needs and expectations
when dealing with DevOps or IT, which include programming languages,
package versions, and many more. Indeed it is extremely difficult for
DevOps and Data Scientists to tackle challenges. Data scientists are not
specialists in DevOps; similarly, DevOps professionals have less knowledge
in data science. Therefore, communication is important for profitable
business results.
A set of right tools and mindset among team members is important to realize
the power of DevOps. The tools available are aplenty and depend on the
maturity stage of your team and product which tools to pick. Figure 12.11
shows one of the popular toolsets provided by Atlassian for software
development, equally useful to manage complex data science workstreams
as well:



Figure 12.11: Atlassian Toolkit

The toolset includes project management, issue tracking, service desk,
documentation, and all other relevant tools to allow teams to ship products
faster.

Conclusion
In this chapter, we have introduced DevOps, explaining its functions and
benefits. The three terms, Agile methodology, CI/CD, and DevOps, are then
discussed. The functionalities of DevOps, such as integration, testing,
packaging, and deployment, are discussed extensively. The source code
management is then explained using examples, such as Git, Bitbucket, and
many more. Further, we have talked about Unittest and available platforms
for performing the same. Security in production and scalability using
containerization is then discussed. Thus, we have learned how to bring data
science applications into operation. In the next chapter, we will introduce
Cloud Computing and discuss its functionalities.
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CHAPTER 13
Introduction to Cloud Computing

torage and analysis of the huge amount of data is now the priority of
organizations, big or small. Now, this has caused a big challenge for

companies, as they have limited storage and computation power, and on top
of it, it has limited staff to manage infrastructures. Cloud computing comes
into this space to solve these issues for organizations and allow them to
make the best of data.
In previous chapters, we learned about machine learning, data pipeline, and
DevOps to bring data science applications into operations. In this chapter,
we will introduce cloud computing and its role in enabling all that we have
discussed before. Beyond facilitating the storage and computation
challenges, as the cloud is paying as go, they have opened opportunities for
all size organizations.

Structure
Operating system model
Types of cloud services
Types of cloud infrastructure
Data science and cloud computing
Market growth of cloud

Objectives
After studying this unit, you should be able to:

Understand the concepts of cloud computing, OS model, and
virtualization
Deal with the types of cloud computing and cloud infrastructure
Understand how cloud computing and data science growth is coupled



Introducing cloud computing
Every computing device has some basic set-up over which the high-level
programming works, including what all we have discussed using Python in
previous chapters. To have a comprehensive understanding of cloud
computing, we need to build an understanding of how computation happens
in a machine or servers. If you're on a bus or train, you're buying a ticket and
hanging on to your seat until you get to your destination. Also, other
passengers will travel with you on the same bus, and you will hardly be
disturbed where they are going. You get off the bus when you arrive, and
thank the driver. Like this bus, cloud computing delivers data and
information to different users and enables the technology to be used at
reduced prices.

Operating system model
The simplistic way to look at the whole OS model is presented in Figure
13.1. It manages computer hardware, software resources, and provides
common services for software programs.

Figure 13.1: Operating System Model

It is important to understand the role of an operating system in the OS
model. OS provides all the necessary functionalities for the application layer
to interact with the hardware. The application layer includes your https
servers, Microsoft Word, databases, and scripting languages like Python, R,
Java, andmany more.
When we talk about cloud, we talk about de-coupling these important layers
and hence allow scalability and distribution of resources at a logical layer.



You must have observed that when you buy a PC/laptop, you do not need to
buy and configure any hardware and also don’t need any OS to install onto
it. You get a machine that starts all your applications out-of-the-box.
Cloud computing intends to do the same over the internet. You pay for cloud
access, and you can immediately start working on your machine, hosted and
maintained by your cloud service provider.
In traditional system designs, the hardware of a computer and the OS are tied
to each other, and hence to horizontally scale; you need to invest in hardware
and also OSes. You must haveheard that your system either can run
Windows or Linux at a time. This was a huge limitation that did not allow
dynamic OS provision on large shared hardware. Virtualization removed this
constraint and made the cloud possible.

What is virtualization?
The separation of hardware layer from the OS layer will require an
intermediate layer, which creates a virtual layer for OS to run on top of it. In
the early days, hardware emulators were used to running OS inside an OS;
also, in later years, we had VM Ware set-ups that can run a virtual
environment inside Windows OS to host other operating systems. However,
to enable the full potential and performance of multiple OS on the same
hardware required a virtualization layer to be present between multiple OS
and hardware. Virtualization does the same thing by creating that virtual
layer between two parts of the OS model, such as an operating system, a
server, storage, or network systems.
Virtualization allows multiple operating systems and applications on top of
those instances to run concurrently on a single computer and by enabling a
virtualization layer (or a Hypervisor) on the computer hardware. Figure 13.2
shows such a set-up where three different OS are running different
applications on the same hardware:



Figure 13.2: Virtualization Layers

Some of the key terms from a virtualized OS model are discussed below:

Physical hardware layer: This is the physical machine having RAM,
storage, I/O bus, network cards, microprocessors, routers, and other
peripheral devices.
Virtual infrastructure layer: This is also called the hypervisor layer.
It can be thought of as an OS itself, which is customized to be a virtual
layer between the hardware and OS running inside it. A hypervisor is a
program that creates VM, which behaves exactly the same as a
complete machine for the incoming OS. The hypervisor manages the
actual physical resource share, such as memory, I/O, Network, and
processing. It ensures that a completely segregated and secure
environment is proving to all host OSes.
Virtual machine layer: This is the layer where numerous virtual
machines are created. These machines are like a fresh PC/laptop, ready
to be configured with OS of choice. In terms of cloud, these are VM
instances or servers running in a virtualized environment. It hosts the
OS the applications they are configured to run.
User layer: The user interacts with the applications hosted in virtual
servers like as if it controls both OS and underlying hardware. The end-



user will never be able to differentiate between a virtual or physical
server as this does not impact the application.

The virtualization layer allows the centralization of hardware and
dynamically provision resources as per the demand of the user. This
technology allows building Virtual Data Centers with just a bunch of high-
power computing hardware. For example, a powerful server with 100 GB of
RAM is good to run 25 virtual windows machines each with 4 GB RAM. So
rather than buying 25 PC/Laptop, you can work with 1 server and minimal
client devices.

What is cloud computing?
Cloud computing can be though of as the virtualization done at large scale
with very powerful hardware managed professionally in big physical data
centers. Cloud computing is more of a popular term used to describe a
service where the end-user does not need to manage the underlying
hardware, where the hardware is hosted, the networking access, or the
software. All the computing needs are provided over an internet browser in a
matter of clicks. A generic framework of cloud computing is shown in
Figure 13.3:



Figure 13.3: The Cloud Computing World

By decoupling hardware and software, theoretically, the virtual platform can
scale to infinity if the data center has the required hardware. The resources
and access can be dynamically provisioned, and virtual resources can be
added, deleted, and modified on the fly. All the tools and access are provided
through web browsers, and the interface is exactly the same as if you were
using those computing resources locally.
While virtualization is the program that makes multi-tenant hardware, the
concept of infrastructure convergence and shared service allows cloud
computing, as we see now in Google, AWS, and Azure. It allows enterprises
to get their applications deployed faster, with easier manageability and less
maintenance and enables IT to more rapidly adjust IT resources to match
unpredictable business demand.
The cloud impact is huge on modern applications and IT infrastructure; it
has brought huge savings in IT infrastructure across private and government
IT infrastructure. Cloud applications have grown exponentially across the



globe due to cloud computing and better internet connectivity. Cloud
adoption is happening at a fast pace across the full spectrum of businesses.

Types of cloud services
Cloud computing has stacked hardware and its manageability around
application into a managed environment. This opens new types of
applications that are delivered through the cloud infrastructure. There are
three types of services that have been built upon the cloud computing
industry:

Infrastructure as a Service (IaaS): On-demand infrastructure and pay
only for the time you use the infrastructure.
Platform as a Service (PaaS): On-demand platform access, which
covers infrastructure and platform to build your own applications.
Software as a Service (SaaS): On-demand access to software hosted
on the cloud and pay per use.

Modern cloud services in data science and analytics domain can be stacked,
as shown in Figure 13.4:

Figure 13.4: Cloud services models

Depending upon the business model of analytics delivery, the services are
classified by each model as follows:

Data layer: Who will provide the infrastructure, database, security,
access management, and update jobs for the data to be used in



applications.
Integration and ingestion layer: Who will create, schedule,
execute/compute, and manage data integration and ingestion from
APIs, file uploads, and ERP system.
Processing layer: Who will bring value to add on the data by parsing,
merging, cleaning, metadata merging, AI/ML inputs, and updates to the
data.
Analytics and BI layer: Who will create data visuals, dashboards,
bring insights, communicate insights, publish and update the insights.

Infrastructure as a Service (IaaS)
Table 13.1 provides a detail description of IaaS:

# Meta Description

1 Define Infrastructure as a Service (IaaS) is nothing but making the
computing resources self-service based fully automated
and highly scalable by the client itself. In this type of
service, the client can access and manage the required
networks, storage directly.

2 Delivery mode Here the infrastructure will be maintained somewhere
around the globe. In IaaS, virtualization technology is the
core concept to deliver the resources. Such as operating
systems, network, and storage. Including servers also can
be provided to the client in IaaS. The client can take
control over the infrastructure through dashboards and can
make the changes in using API calls.

3 Characteristic • Entire infrastructure resources are made available as a
Service.
• Pay per usage.
• Resources can conveniently be resized based on their
needs.
• Single hardware infrastructure can be utilized by multiple
users.
• Cloud providers can take care of managing the entire
infrastructure cost depends on usage services are highly
scalable multiple users on a single piece of hardware
organization retains complete control of the infrastructure.

4 Advantages • Flexibility is the most important in this cloud computing
model.
• The client needs not to worry about maintaining the
infrastructure. Simply they want only to use the services.



• Pay per usage adds cost management very easy
• Automated deployment of networks, storage, processing
power, and servers.
• The client has full control of the infrastructure as per
their usage.
• No need to bring the hardware to on-premise.
• The client can have complete control of the entire
infrastructure.
• Easy to automate the deployment of storage, networking,
servers, and processing power.
• Hardware purchases can be based on consumption.
• The most flexible cloud computing model.

5 Limitations • The security layer between host and VMs is not in client
control.
• Cloud set-up may go incompatible because of the usage
of legacy systems.
• Internal resources and training are required to re-skill IT
staff.
• Multi-tenant security.

6 Best use case In order to save time and money for buying and creating
hardware and software, startups or small companies may
prefer IaaS. Whereas large firms that want to scale certain
of their systems shortly choose the IaaS model.

7 Example DigitalOcean, Linode, Rackspace, Amazon Web Services
(AWS), Cisco Metapod, Microsoft Azure, Google
Compute Engine (GCE)

Table 13.1: IaaS

Platform as a Service (PaaS)
Table 13.2 provides a detail description of PaaS:

# Meta Description

1 Define Platform as a Service (PaaS), supports to provide cloud
components to specific software and delivers a full
framework for developers that they can develop and build
based on the user to create customized applications.

2 Delivery mode PaaS based services provide a standard platform for
software development delivered via the web console,
giving developers the full concentration to building the
software having concern about operating systems, software
updates, storage, or infrastructure.

3 Characteristic • Resources can be easily scaled up or down as it is built
on virtualization technology.



• It offers a range of services to help create, review, and
deploy apps.
• It is accessible to numerous users through the same
development application.
• Integrates web services and databases.

4 Advantages • Simple, scalable, cost-effective development and
deployment of apps.
• Without worrying about maintaining the software,
developers can customize apps.
• The amount of coding needed will be reduced
significantly.
• Easy automation and migration.

5 Limitations • Data security – your data is stored in remote VMs.
• Vendor lock-in – once all your development happens in
the cloud you might get locked-in to the vendor.
• Runtime issues.
• Operational limitation.

6 Best Use Case PaaS can be very helpful in designing custom applications
with simplified workflows operating on the same project
with several developers while improving collaboration,
deployment resources standardization, and development
speed.

7 Example AWS Elastic Beanstalk, Windows Azure, Heroku,
Force.com, Google App Engine, Apache Stratos,
OpenShift

Table 13.2: PaaS

Software as a Service (SaaS)
Table 13.3 provides a detail description of SaaS:

# Meta Description

1 Define SaaS uses the internet to provide its customers with
business applications operated by a third-party vendor.

2 Delivery mode SaaS is distributed viathe internet, removing the need for
IT professionals to download and install software on every
device.

3 Characteristic • Managed from a centralized location.
• It is hosted on a remote server/VMs.
• Accessible over the internet.
• Users are not responsible for hardware or software
updates.



4 Advantages • Out-of-the-box applications.
• The deployment, maintenance, and upgrading software
are no difficult process. It offers skilled staff plenty of time
to spend their valuable time on urgent problems and
concerns of the organization.

5 Limitations • Interoperability.
• Application lock-in.
• Data security can be an issue.
• Customization is not possible.
• Feature limitations.
• Performance and downtime.

6 Best Use Case • Small companies or startups that need to quickly start e-
commerce and have no time to deal with server issues or
technology problems.
• Short-term projects that need fast, easy, and affordable
collaboration.
• Apps that are not too often necessary, such as tax
software.

7 Example Google Apps, Dropbox, Salesforce, Cisco WebEx, Concur,
GoToMeeting

Table 13.3: SaaS

Types of cloud infrastructure
All the cloud services mentioned in the previous section are delivered
through a cloud infrastructure. The type of cloud infrastructure also allows
large companies to decide how much of cloud services they want to have
from private vendors and how many they want to build in-house. As the
technology, specifically virtualization and shared resources, is not
proprietary to one vendor, it is possible to have multiple types of cloud
infrastructure.
The three-key models for cloud infrastructure are:

Public cloud: Independent cloud managing vendors providing service
to anyone in public
Private cloud: Internal cloud to an organization exclusively meant for
the private use
Hybrid cloud: Combination of private and public cloud, where few
outside world facing applications are hosted on public cloud, while
others are kept private.



Figure 13.5 illustrates these three cloud, infrastructure models:

Figure 13.5: Cloud computing types

Public cloud
Table 13.4 provides a detail description of the public cloud:

# Meta Description

1 Definition The most common way to implement cloud computing is
public clouds. The cloud resources are owned and operated
by and delivered via the Internet by a third-party cloud
service provider. With a public cloud, the cloud provider
manages and administers all hardware, applications, and
other supporting infrastructure.

2 Advantages • No initial investments required for IT infrastructure
deployment and maintenance.
• High scalability and flexibility to meet unforeseen
demands for the workload.
• Since cloud vendor is responsible for the infrastructure
management, reduced complexity, and requirements on IT
expertise.
• Flexible pricing choices based on various SLA offerings.



• Cost flexibility enables companies to follow a lean
approach for development and to concentrate resources on
technology initiatives.

3 Limitations • The total ownership cost (TCO) for large-scale use,
particularly for medium and large companies, will increase
exponentially.
• Not the most viable solution for sensitive IT workloads,
which are important for security and availability.
• Low infrastructure visibility and control, which may not
be sufficient to comply with regulatory compliance.

4 Best Use Case • Predictable computing requirements for a certain number
of users, such as communication services.
• Software and services needed for IT and business
activities.
• Further requirements of resources to meet different peak
requests.
• Software development and test environments.

5 Example Amazon Web Services, Google Cloud Platform, Microsoft
Azure, and Alibaba

Table 13.4: Public Cloud

Private cloud
Table 13.5 provides a detail description of a private cloud:

# Meta Description

1 Definition The private cloud refers to a single organization's cloud
solution that uses data center resources on site or operated
by a third-party provider on site. The computing assets are
isolated and shared with other customers through secure
private networks.

2 Advantages • Environments committed and safe that other
organizations cannot access.
• Compliance with strict regulations as organizations will
conduct protocols, configurations, and safety assessments
based on unique requirements for the workload.
• High scalability and flexibility to meet volatile safety and
performance requirements.
• Efficiency and high SLA efficiency.
Flexible infrastructure transformation based on the
organization’s continuously changing business and IT
needs.

3 Limitations • Compared to public cloud alternatives for short-term
purposes, the costly solution is a high cost of ownership.



• With the high-security measures in place, mobile users
can have limited access to the private cloud.
If the cloud data center is limited to on-site computing
resources, the network cannot offer high scalability to
meet unpredictable requirements.

4 Best use case • Heavily regulated sectors and agencies of government.
• Technological organizations need strong control and
security over the underlying infrastructure and IT
workloads.
• Big companies that require the efficient and cost-
effective operation of advanced data center technologies.
Organizations that can invest in high-performance
technology and accessibility.

5 Example Private Data Centersfor companies running out of
dedicated locations

Table 13.5: Private Cloud

Hybrid cloud
Table 13.6 provides a detail description of the hybrid cloud:

# Meta Description

1 Definition Hybrid cloud refers to the mix of public and private
solutions that are part of a cloud infrastructure
environment. Usually, services are structured as an
integrated network environment. Applications and data
workloads are capable of sharing assets between public
and private cloud deployment in compliance with
operational and technological security, reliability,
scalability, cost, and productivity policies.

2 Advantages • Sustainable policy implementation, with security, quality,
and cost demands as the basis, to disperse workloads
across public and private networks.
• Without exposing critical IT workloads to the inherent
security risk, scalability in public cloud systems is
accomplished.
• High reliability as the services are allocated over various
data centers through public and private data centers.
• Enhanced security as critical IT workloads run on private
cloud dedicated resources while ongoing workloads are
spread throughout low-cost public club infrastructure to
compromise cost expenditure.

3 Limitations • It could be costly.
• Solid compatibility and integration between the different
locations and categories of cloud infrastructure are



required. This is a constraint on public cloud deployment
for which companies do not have direct control over the
infrastructure.
• A further layer of infrastructure complexity is added as
companies handle and run a modern mix of private and
public cloud architecture.

4 Best Use Case • Various hierarchical organizations with different IT
safety, regulatory, and quality criteria.
• Optimize infrastructure development without
jeopardizing public or private cloud technology value
offerings.
• Enhance the safety of current cloud solutions such as
SaaS that have to be delivered through secure private
networks.
• Cloud resources were deliberately addressed to move and
swap between the best cloud service distribution system
available on the market.

5 Example Website of travel agency hosted on AWS but booking
system on private cloud

Table 13.6: Hybrid cloud

Data science and cloud computing
Cloud computing and its affordability have the largest impact on how data
science growth has been in the last decade. Cloud computing has impacted
all parts of a data science process and enabling organizations and society to
make the best use of the data. Data Science community appreciates the fact
that cloud is the medium that has taken the benefit of ML and AI
(subbranches of data science) into everyone’s reach as a SaaS application on
mobile or web.
The data science enabled or building blocks can be divided into four (04)
blocks; each block is now enabled by cloud technologies. This can be seen
as follows, as shown in Figure 13.6:



Figure 13.6: Cloud and Data Science

The four quadrants bring out the importance of cloud in the data science
fields. They are discussed in brief below for the reader to understand the use
of the cloud in each building block.

Data
The data is growing at a massive size, and the process of collecting it is also
very diverse. There could be big data use case where the data is in Terabytes,
which make it impossible to work in local machine or one machine
infrastructure. Cloud computing allows a large amount of distributed storage
resources to store big data.
In terms of data collection and process, the data input sources are varied;
some come from APIs, some come from databases, some just file sand so
one. The cloud provides the flexibility and easy provision of resources to
handle such variety.

Compute
There is a limitation of a single machine for computation, and there is a high
cost for machines with high computation resources. The price from a 16 GB
RAM machine to 32 GB RAM machine to 64 GB RAM machine grows
exponentially. For complex models, like deep learning and XGboost, it is
either impossible or takes hours of CPU time to train the model. The cloud



provides powerful machines at the click of the button to run such high
compute model training jobs.
It also saves money as the local hardware utilization is very low; cloud
optimizes hardware utilization by using the shared resources. For example,
you might need a 64 GB RAM machine for 2 hours, and rest time, it can be
allocated to other users.

Integration
A data science model itself is not useful for an end-user who has no
knowledge of the internal working of models. For an end-user, an AI/ML
model is delivering using insights through easy-to-use the application
through his/her browser or mobile phone. To enable such ease of use, the
data science model needs to be integrated with applications.
Cloud provides the full end to end platform to enable the integration of
applications with data science models. The data can be collected, stored, and
streamed to the data science model in an integrated cloud environment.

Deployment
The AI/ML models, once integrated with the applications, need to be made
available to end-user in a highly scalable and secure environment 24×7. This
can be done by provisioning and managing IT infrastructure to operate 24×7.
However, only large corporations can afford that kind of IT costs. The public
cloud helps even small companies to deploy the applications and pay per
use.
The pay per use model has been very successful as well, as it takes away the
capital expenditure in IT resources away, and rather become an operating
expense. This has been one of the biggest reasons for the innovation and
growth of SaaS products. Even a small startup can develop and deploy an
enterprise-ready application.

Market growth of cloud
Gartner anticipates global public cloud revenue to rise in 2019 by 17.5% and
expects that the cloud services industry should evolve rapidly by 2022.
According to Gartner, Inc., the worldwide demand for public cloud



computing services is expected to grow to $214.3 billion by 17.5% in 2019
from $182.4 billion in 2018. In 2019, it had been expected to grow by 27.5%
to $38.9 billion compared to $30.5 billion in 2018 and will be a growing
market for the cloud infrastructure or IaaS, as shown in Table 13.7. Cloud
application infrastructure services or PaaS will achieve the second-highest
growth rate of 21.8 percent:

Table 13.7: Worldwide Public Cloud Service Revenue Forecast (Billions of U.S. Dollars)

Figure 13.7 shows the survey result from RightScale, on how the public
cloud adoption was for major cloud vendors in 2019. Amazon Web Services
leads the cloud space with the highest adoption rate and the plethora of
service. All cloud vendors also have dedicated AI/ML services as well,
provide complex deep learning pre-trained models for a complex task like
object detection, sentiment analysis, and many more:



Figure 13.7: RightScale report of the Cloud Share (Credit: RightScale 2019 State of the Cloud Report
from Flexera)

It is now important for data science professionals to have the capability to
work on the cloud for their routine work as most of the organization has
already adopted cloud for their storage and computation needs. Having a
good understanding and skills in cloud computing will be an added asset to a
data scientist.

Conclusion
In this chapter, we have introduced the concept of cloud computing and what
are the key enablers to cloud growth. The chapter discussed the OS model to
explain the user, how a machine is logically designed, and divided into
major working blocks of hardware, operating system, and applications. The
next section then discusses the concept of hypervisor, which can create a
layer of virtual hardware, allowing multiple host OS and applications to
share the same hardware. This whole concept of virtualization allows the
infrastructure to be separated from applications. The cloud then can be
created and provide access to shared resources as IaaS,PaaS, or SaaS model.
After discussing the service models of cloud, the chapter also discusses the
type of cloud infrastructure. That is public, private, and hybrid. The next
section then highlights how cloud computing and data science growth are
coupled across four building blocks of data science, that is, data, compute,
integration, and deployment. In the end, we have also highlighted the market
trends and growth prospects of the public cloud. By reading this chapter, the
reader has gained an understanding of the basics of cloud computing, OS
model, and virtualization. He or she has understood how to deal with the
cloud infrastructure. In the next chapter, we will show a hands-on demo for
the deployment of a data science application on Google Cloud Platform.
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CHAPTER 14
Deploy Model to Cloud

oogle Cloud Platform (GCP) enables developers to build, test, and
deploy applications on Google’s highly scalable and reliable

infrastructure. It provides powerful tools and services. Many companies are
moving to the cloud to help create software applications and manage data,
and GCP is one of the many platforms available for cloud computing.
In previous chapter, we have learned about cloud computing, OS model,
virtualization, and cloud computing services and infrastructures. In this
chapter, we will introduce GCP and its console. We will start by a free GCP
account and explore its features and functionalities.

Structure
Register for GCP free account
GCP console
Create VM and its properties
Connecting and uploading code to VM
Executing Python model on cloud
Access the model via browser
Scaling the resources in cloud
Conclusion

Objectives
After studying this unit, you should be able to:

Understand the GCP platform
Use the GCP console and its features
Deploy and execute machine learning model in cloud



Register for GCP free account
Google’s infrastructure provides four options for creating applications in the
cloud:

Google Compute Engine
Google App Engine
Google Kubernetes Engine
Google Cloud Functions

To start using the GCP, you need to have a GCP account. You will need to
sign up for it at https://cloud.google.com/free/#always-free. Figure 14.1 is
the home page of the GCP:

Figure 14.1: Google Cloud Platform (GCP) free tier home page

Click the Get started for free button and provide your requested
information. Upon signup, you will be benefited with the below:

A 12-month free trial with $300 credit to use with any GCP services.
Always free, which provides limited access to many common GCP
resources, free of charge.



Now you are all set to create your first GCP Project. On the top right corner,
click the Console button. Figure 14.2 shows the Console to access, which is
located in the top right of the window.

Figure 14.2: Accessing Console from GCP Console

You will then be directed to the GCP Console. Initially, we will need to
create a new project.

GCP console
On the top left, near the GCP button, click the three-dot icon. Figure 14.3 is
the pop-up window in the GCP console to choose a project:

Figure 14.3: Choose the project in the GCP Console

The console has a Dashboard and an Activity window. Of any selected
project, the Dashboard provides quick information such as Project Info,
Resources, Compute Engine, APIs, Google Cloud Platform status,

and many more. The Navigation panel on the left shows a list of GCP
products and services, such as Compute Engines, Storage, Networking,
Stackdriver, Tools, Big Data, AI, and many more. We will discuss in



detail about these services and products in the below sections. Figure 14.4 is
the GCP Dashboard:

Figure 14.4: GCP Dashboard

The services and products provided by GCP can be accessed in the GCP
Console. The App engine allows you to build scalable apps in any language.
The Compute Engine shows the list of the VM instances. We will discuss
about creating VMs in the next section. The Kubernetes Engine is a
managed and production-ready environment for deploying containerized
applications. GCP also has Google Cloud Functions (GCF), which is a
lightweight, event-based, asynchronous compute solution that allows you to
create small, single-purpose functions that respond to cloud events, without
the need to manage a server or a runtime environment.

Create VM and its properties
In the left navigation panel of the GCP Console, the compute services are
listed. Among them, the Compute Engine service allows you to create VM,
attach disks, and as well as create snapshots of disks. The other related
services can be found in the left navigation panel of the Compute Engine
page. The main page shows you the list of VMs created along with its
location zone, internal IP, and external IP. Here, you can select any instance



and start, stop, reset, or delete the same. Now let's see how to create
instances in the GCP console. Figure 14.5 shows the list of VM instances.

Figure 14.5: VM Instances home page

While clicking the Create Instance button in the top navigation bar, you
will be directed to a page where you can create a new VM instance. You will
need to choose a few important options according to your requirements and
fill some of the required information. While following the instructions, you
can also view the detailed billing estimate on the right side of the window. It
provides you the monthly and hourly estimates in US dollars as per your
machine configuration. By default, the region and zone will be us-central1
and us-central1-a. However, you can customize it according to your
needs. A region is a specific geographical location where you can run your
resources. A zone is an isolated location within a region. The zone
determines what computing resources are available and where your data is
stored and used. Figure 14.6 shows the window of creating VM instance:



Figure 14.6: Creating a VM instance

For a basic machine configuration, a single first-generation CPU with a 3.75
GB memory is enough. However, you can customize the number of CPUs
and memory allocation accordingly. There is also an option to add a GPU in
your current configuration. Figure 14.7 shows the VM configurations:



Figure 14.7: VM Configurations

The boot disk allows you to se lect an image of available operating systems
with a minimum disk size of 10 GB. The default disk type is the standard
persistent disk, where you can also choose an SSD persistent disk too.
Figure 14.8 shows how you can choose a boot disk:

Figure 14.8: Boot disk selection

We usually prefer to allow HTTP and HTTPS option of the firewall. With
these instructions, you are now ready to create the VM instance. Once
created, you can connect it with SSH. As of now, your new VM instance has
an internal IP only. If an instance requires a fixed internal IP address that
does not change, you can obtain a static internal IP address for that instance.
You can reserve static address by browsing to external IP addresses from the



VPC network services in the left navigation panel of the GCP console.
Figure 14.9 shows the options for networking configuration:

Figure 14.9: Network Configuration

As shown in Figure 14.10, you will see your IP listed. While clicking the
static reserve address in the top navigation panel, you will be directed
to a page. Here you can choose the Network Service Tier as Standard, IP
version as IPv4, and type as Regional:

Figure 14.10: External IP Assignment

The region should preferably be the same one as you had chosen while
creating the VM instance. You can refer to Figure 14.11. In Attached to
option, you should select the VM instance for which you are reserving the
static address:



Figure 14.11: Static IP address assignment

Connecting and uploading code to VM
Once you created the VM in GCP, go to the VM instances dashboard, as
shown in Figure 14.12:



Figure 14.12: GCP VM instances dashboard

Select the VM instance created by clicking the name of the instances:

Figure 14.13: Edit the VM instance

Scroll down and go to the place where SSH key will be placed (Refer to
Figure 14.14):



Figure 14.14: Add SSH key in VM instance

Here you can use your SSH key to connect the computer to the VM. If the
SSH (Security Shell) is new to and you may want to use it, it is a network
protocol that allows encrypted data communication between two machines
that are connected over the Internet.
To build an SSH connection, depending on your operating system, you may
need software that can do so. I prefer and recommend PuTTY, as it is open-
source and easy to use. Browse to https://www.putty.org/ to download and
install this application.
After installing PuTTY, open PuTTY Key Generator, and click create. It will
generate a random key by you moving the mouse over the blank area. Once
done, a screen similar to Figure 14.15 can be seen. You can change the key
comment field to something easy to type and recognizable, as this will be
your username eventually. By clicking the corresponding icons shown in
Figure 14.15, you can save both the public and private keys. You then need
to copy the key field for the PuTTY Key Generator and paste it in Google
Cloud’s key data field. Figure 14.15 shows the SSH key generation in
PuTTY:

https://www.putty.org/


Figure 14.15: SSH key generation using Putty

The SSH key that has been created is then added in the VM instance, as
shown in Figure 14.16:



Figure 14.16: Add the SSH key in the VM instance

In the meantime, you can go to PuTTY. Go to SSH|Auth and browse for the
private key file that you saved. Figure 14.17 shows Auth page in the PuTTY,
where you can add the private key:



Figure 14.17: Auth Private key in Putty

Next, go to Google Cloud and copy the external IP from the VM instance
that you just created, as shown in Figure 14.18:

Figure 14.18: Access the VM External IP Address

And paste it on the Host field under Session in PuTTY and hit Enter:



Figure 14.19: Connect with Putty using VM External IP

You might see an error message, to which you can ignore it and click Yes.
Go ahead and enter your username, which was created while generating the
key. Now you can connect with the VM.
You connect to the server using SSH from GCP. Figure 14.20 shows the
Compute Engine in the GCP window:



Figure 14.20: Computer Engine Selection in GCP

Figure 14.21 shows the snippet window, where you can see the SSH access:

Figure 14.21: Access SSH to upload file

Once you SSH, you will be a similar window, as shown in Figure 14.22. The
gear button on the top-right provides access to various settings, including file
upload option:



Figure 14.22: Upload the files to the VM instance

Now let’s create the following files in the local system, as shown in Figure
14.23:

Figure 14.23: Folder structure

You can configure your App Engine app’s settings in the app.yaml file. The
app.yamlfile contains information about your app's code, Python runtime,
entrypoint, and environment variables. Figure 14.24 shows a snippet ofthe
code:

Figure 14.24: Code for app.yaml file

The main.py is our Python file, which lives on the cloud. Now let us deploy
the salary prediction model file. The code will look similar to this:



#Import libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

# Importing the datasets

data = pd.read_csv('Salary_Data.csv')

#Load the values on variables in a array

X = data[['YearsExperience']].values

Y = data[['Salary']].values

# Splitting the into the Training set and Test set

from sklearn.model_selection import train_test_split

X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y,

test_size = 0.25, random_state = 0)

# Fitting Simple Linear Regression to the training set

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(X_Train, Y_Train)

#Store the model as a pickle object

import pickle

pickle.dump(regressor,open( "linear_reg_salary_model.p", "wb" ))

#Load the Libraries

from flask import Flask,request,jsonify

import pickle

import json

import pandas as pd

#Start a flask app

app = Flask(__name__)

# Load the model

regressor = pickle.load(open( "linear_reg_salary_model.p", "rb"

))

@app.route('/predict', methods=['POST'])

def predict():

#Retrieve the value of 'YearsofExperince' from the request body



data = request.get_json()

df = pd.DataFrame([float(data['YearsExperience'])], columns=

['content'])

predict_new = regressor.predict(df)

result = {'predicted_salary': predict_new.tolist()[0]}

return json.dumps((result))

if __name__ == '__main__':

app.run(port=3000, debug=True)

#import the request library which allows us to make Post/Get

etc. web request

import requests

#Define the address of the host where the application is running

URL = 'http://127.0.0.1:3000/predict'

payload = { "YearsExperience": 3.2 }

res = requests.post(url,json = payload)

The requirements.txt contain Python modules that needed for

main.py:

Sample

Flask==0.12.3

gunicorn==19.6.0

Executing Python model on cloud
Go to GCP Console Home, click on Cloud Shell icon. It will open-shell
CMD prompt on the bottom screen. Figure 14.25 shows the option to access
the GCP Cloud shell:

Figure 14.25: Access the GCP cloud shell

Click on the little pen icon on the top right of the shell. it will take you to
cloud shell UI site. Figure 14.26 is a snippet of accessing the Cloud Shell
UI:



Figure 14.26: Access the Cloud Shell UI

In your folder directory of VM, run following command. This may take
some time to deploy your app. Figure 14.27 shows an instant while
deploying the app in the Cloud Shell:

Figure 14.27: Deploy the App in Cloud Shell

Once deployed, run below command and it will show deployed address and
paste this address in your browser. This will show deployed python WebApp
response:

gcloud app browse

Access the model via browser
Create the HTML file using the below code. Below, you can see a sample
HTML page for out salary prediction application:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<meta http-equiv="X-UA-Compatible" content="ie=edge">

<title>Salary Prediction ML Model</title>



<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/boo

tstrap.min.css" integrity="sha384-

ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T

" crossorigin="anonymous">

</head>

<body style="width:60%; margin-left:20%;">

<h1 class="text-center">Salary Prediction ML Model</h1>

<form action="/predict" method="post">

<input class="form-control" type="number" name="YearsExperience"

step="any" min = "0" placeholder="Number of years of

Experience">

<input class="btn btn-primary" type="submit" value="Predict

Salary">

</form>

{% if salary %}

<p>The Expected Salary is: {{salary}}</p>

{% endif %}

</body>

</html>

Provide the external address of the VM with route /predict.
A webpage can now be accessed at http://external_ip_VM:3000/predict
and can be used by the end-user to input his experience, and in return, it will
show his expected salary. Below is a snapshot of the web page. Figure 14.28
shows the output in a web browser:

Figure 14.28: View the output in Web Browser

Scaling the resources in Cloud
Instance groups in Google Cloud are either managed or unregulated. For
Compute Engine, we need managed instance groups that have common



features and can scale according to certain circumstances. We have already
taken care of the instance template on which the instance groups depends on.
Now let's set the instance group. Figure 14.29 is the window snippet of
creating an instance group in GCP:

Figure 14.29: Instance Group Creation

Scaling out relies primarily on load balancing, and this requires one. Now
let’s configure one. Loadbalancerfrom Google compute is way advanced in
contrast to the standard Loadbalancer of AWS ELB or Azure. With respect
to this content, we will proceed with Network Loadbalancer. Figure 14.30
shows the basic setup window of creating Network Load Balancing:



Figure 14.30: Creating Load Balancer

Figure 14.31 shows the window for creating a target pool for load balancing.
Target pool distributes traffic among the VM instances:



Figure 14.31: Target Pool creation for load balancing

That’s all about it. Your application will now scale up and down depending
upon how you configured it.

Conclusion
In this chapter, we have learned how to create an account in GCP. We have
also learned the fundamentals of creating VM in GCP and its properties.



Further, we have learned how to deploy a flask application in GCP with the
salary prediction example. Finally, scaling the resources in GCP using a load
balancer has been explained. From this overall procedure to use a cloud
computing platform to implement the machine learning model has been
successfully done. In the next chapter, we will give an overview of business
intelligence and the key steps in building a business intelligence practice.
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CHAPTER 15
Introduction to Business Intelligence
ommunication in data science is very important. So far, in our
previous chapters, we paid very little attention to the communication

of data insights to business users and decision-makers. Data science
professionals, specifically those in the role of Analyst, need to be good at
understanding data, apply basic analysis, and read the model outputs in the
business context.
The business intelligence domain specifically bridges this gap between
business, data scientist, and technology, by providing data insights in easy to
read and interpret manner. The core practitioners who engage in the role of
BI are called data analystor BI analyst, and the tools used for BI are
typically called visualization tools.
In this chapter, we will give an overview of business intelligence and the key
steps in building a business intelligence practice. The next chapter will be
fully hands-on on one of the very popular BI Tools, Microsoft Power BI.

Structure
What is business intelligence?
Business intelligence analysis
Business intelligence process
Business intelligence trends
Gartner 2019 Magic Quadrant

Objectives
After studying this unit, you should be able to:

Understand the vast area of business intelligence
Explore the process of business intelligence



Get updated with business intelligence trends

What is business intelligence?
Business Intelligence (BI) is an amalgamation of multiple parts of the data
universe as it combines visualization, data tools, data mining, and analytics.
The system thus provides a unified view of the enterprise data and allows the
business to analyze it to drive and communicate insights. A successful BI
system in place would mean that any user in the organization can have a
360-degree view of the enterprise’s data and make use of that data to make
data-driven decisions.
Business Intelligence started as a mechanism to share information across
different business verticals to break silos of decision making. Later, with the
help of database and improved IT process evolved into micro decision-
making systems inside business verticals. Cloud and Big Data have now
enabled the BI to take its modern view, which now connects to the enterprise
data lake and can provide a complete view of an organization using
Visualizations tools with few clicks.
Modern BI tools and data lake technology has now matured to the point that
it has become commoditized and available for small and medium companies
as well. BI provides flexible self-service, data governance, privacy,
accessibility, user-friendly UI, and speed to draw insights and share them
across the organization. Figure 15.1 shows a conceptual flow diagram of BI:

Figure 15.1: BI Conceptual Flow

BI is sometimes seen as a prerequisite for organizations to adopt advanced
ML and AI into the organization's decision making. In Figure 15.1, you can



see how the BI conceptual flow brings a new stream of a data-driven
approach to decision making. The BI system helps business to discover
trends and causation to key business metrics. Businesses can formulate a
hypothesis to solve the problems with advanced ML and AI techniques.
The BI conceptual flow can be realized into DIKI framework:

Data
Information
Knowledge
Insights

And thus, insights lead to decision making based on the data facts rather than
intuition. The DIKI framework will impact the organization's people as well
as performance and decision making. The framework influences the cultural
shift in the organization for taking day to day decisions.
BI adoption is happening at a rapid pace and has created new job roles in
companies. A BI analyst is not replacing a Business Analyst(BA) role, the
key addition to BA role is now extensive use of BI techniques and tools to
make decisions. The data scientist also prefers communicating their model
results in easy to read and interpret data visualization dashboards. There are
many areas where BI is helping business, including:

Customer behavior analysis
Sales analysis and buying behavior
Demographic and customer segmentation
Financial performance
Tracking and monitoring marketing campaigns
Supply chain analysis
Risk analysis and scenario analysis
Strategic value driver analysis
Web analytics
ML/AI model performance analysis

And many more use cases developed by either self-service or by BI analyst.



Business intelligence analysis
Business intelligence analysis is an evolved way of doing business analysis
using empirical evidence. With the proliferation of data and analysis tools, it
has been proved that organizations of all sizes benefit from adopting
business intelligence best practices and encourage their employee to become
data-driven.
While all organizations get benefited from BI, there are some signs when it
becomes an absolute necessity for organizations to adopt BI. Few of those
signs are listed below:

We need to integrate data across applications and business verticals.
Reduced visibility into companies’ different departments, that is,
Finance, HR, Marketing, operations, and others.
Delayed decision making due to data gathering.
End-User requiring analytical capabilities in the system.
Lack of real-time monitoring of business processes.
IT environment upgrades to facilitate data-driven decision making.

The list above is a clear sign to adopt BI analysis to empower the business to
make decisions driven by data. There are multiple benefits an organization
gets from the BI system in place, including:

Faster analysis of business pain points
Alignment of strategy to operations by means of tracking dashboards
360-degree view of an organization
Boost in internal productivity by focusing on analysis

While so far, we have been discussing the benefits a BI system brings for the
organization, and it’s important to understand how that is being made
possible by such a system in place.
Tableau is one of the leading BI tools in the market, helping large enterprises
to adopt BI technology and create a data-driven culture. The learning series
of Tableau lists down 9 ways in which BI helps a business achieve its full
potential by using data:

Data mining Using databases, statistics, and machine learning to uncover trends in
large datasets.



Reporting Sharing data analysis to stakeholders so they can draw conclusions
and make decisions.

Performance metrics and
benchmarking

Comparing current performance data to historical data to track
performance against goals, typically using customized dashboards.

Descriptive analytics Using preliminary data analysis to find out what happened.

Querying Asking the data specific questions, BI pulling the answers from the
datasets.

Statistical analysis Taking the results from descriptive analytics and further exploring
the data using statistics such as how this trend happened and why.

Data visualization Turning data analysis into visual representations such as charts,
graphs, and histograms to more easily consume data

Visual analysis Exploring data through visual storytelling to communicate insights
on the fly and stay in the flow of analysis.

Data preparation Compiling multiple data sources, identifying the dimensions and
measurements, preparing it for data analysis.

Table 15.1: Tableau’s list of BI helping business

Business intelligence process
BI success is critical to data-driven decision making for companies of all
sizes. The BI integration to core business use must go through rigorous self-
awareness of data and needs. Like garbage in garbage out model of data
science models, the same is applicable to BI systems. The BI system
generates long term gains if implemented properly with control over a full
stack of BI.
The success road map of BI process is described in Figure 15.2:

Figure 15.2: Business intelligence process



Every BI platform needs to be built with the above steps being an essential
part of the process. In the last section, we will list down some tools and
stacks that make the adoption easier by SaaS and PaaS model for BI
intelligence.
There are two ways to look at developing a BI system for business;

Business needs are known: Business defines the needs and
expectations of the BI system. The IT, analyst, and database team, work
to build those using the best available tools.
Business needs are not-known: The enterprise creates a platform by
bringing all enterprise data into one place and enable general users to
derive insights by self-service capabilities of tools

The former process works like a typical software development cycle, while
later is more of a long-term success platform, liberating end-user from
SDLC. Also, in the first case, we lose the agility to pivot the analysis for
different purposes. The following sections explain how a BI system is
developed for an enterprise, keeping future use cases unknown.

Step 1: Data awareness
Data awareness is the first step in any analysis related to BI. The business
can define the data it collects, for what purpose, from what system, and other
known factors into its architecture. This data awareness allows the business
to understand what it captured and create a meta-store of data for business
users to know what is available for analysis. Two key considerations in the
data collection stage are; data types and data sources.

Data types
The data types refer to what type of data is flowing through the enterprise.
The data types can be generally divided into three buckets:

Unstructured data: Data has no inherent structure and usually stored
in a file system. For example, text, PDFs, images, and many more.
Semi-structured: Textual data which can be structured by tools and
knowledge of patterns in file. For example, XML, JSON, and more.
Structured data: Data having a defined structure and stored in a pre-
defined format. For example, SQL database, CSVs, and more.



The data for analysis may be in any format and type. The BI system needs to
be able to define a method, to access the data of different types, subject to
business needs.

Data sources
Another flexibility the BI system needs to have is the ability to read data
from multiple sources. The data can be coming from multiple types of
systems, e.g., flat files, APIs, No-SQL databases, SQL databases, stream
data, and other legacy systems. Different parts of the business operate at
different maturity of IT in their organization. The diversity in data sources is
a challenge, and bringing all this together is the most difficult task in the BI
system set-up.

Step 2: Store data
After developing the understanding of data types and sources across the
enterprise, it needs to be stored in a system and format that is readily
available for analytical purposes. Data storage also requires having data
availability for all BI users, controlled by privacy and confidential
mechanisms; for example, you don’t wantthe marketing team to see credit
card numbers of customers.

Data models
Data models are the structure in which data is stored logically for easier
access to desired business purpose. Here, we need to differentiate between
how the data was stored in source systems (for application logic purpose)
with how we want it to be stored in the analytical database (for BI purpose).
The key considerations include:

We do not make a simple copy of data from operational to an analytical
database; we re-model the data for business needs. (For example,
customer profile, product profile, and more.)
The data is stored in appropriate Normalized form (Modern BI tools
capable of faster joins)

Data storage



Data storage is another significant factor to enable on the fly analysis with
high agility. In the early days, schema defined data warehouses and data
marts were the popular choices for Data storage as the business data growth
was slow and predictable. The data warehouse is SQL databases with
structured data. In recent years, the data has outgrown both in size and type,
hence more powerful data storage in terms of Big Datastore is more
appropriate to use. The Schema is also not pre-defined, and data is stored in
RAW format; these systems are called Data Lake.
The key considerations include:

Operational databases to analytics databases
Apply appropriate transformations and load to a BI tool
Automate the process of loading (ETL for Data warehouse and ELT for
Data Lake)

The process of data loading into storage and keeping it updated with
operational databases needs to be an automated process so that the BI always
reports near real-time status of actual.

Step 3: Business needs
Data itself cannot provide decisions to the business. Business needs to define
what are the basic metrics and process it wants to monitor. Business initiates
the strategic goals, and they require decisions to be made to realize those
goals. The data help make empirical decisions by using the BI system.
The business requirements also set the basic expectations from the
visualization tools and the training requirement of employees to adopt the BI
systems. There are two key considerations in capturing business needs; the
Key Performance Indicators (KPIs) and Data Visuals/Dashboards.

Key Performance Indicators (KPI)
The business performance is monitoring by some selective measures, and
these measures are called KPIs. For business, it is neither necessary nor
feasible to track too many data points, and they lead to decision paralysis.
Some key performance metrics must be defined and then tracked by looking
at real data using the BI system. A good selection of KPIs is needed:

To track company health.



To measure progress.
To make adjustments and stay on track.
To solve problems or tackle opportunities.
To analyze patterns over time.

Data Visuals
While KPIs will tell us, what needs to be presented by easy to read and
impactful manner. The data visuals are the end-user consumable outcome of
your BI system. They need to be interactive, clean, sharable, and impactful.
One must consider the following points while creating data visuals;

Plots are just representations of data; they do not give actionable
outputs.
Business-specific KPIs need to be built to quantify in plots.
Reports are periodic outputs from your BI system to help you make
decisions.

Step 4: a Visualization tool
The selection of the right toolset for generating data insights and
visualization is an important decision. While all the previous steps and the
following steps can be independently implemented using the technology
stack as per business needs, the visualization tool sits in between the data
and end-user. With plenty of visualization tools available in the market, it is
important for us to categorize them for a better understanding of the BI
landscape and their capabilities.
The two factors that are very much relevant to the visualization tool adoption
are:

Time to insight:How much time it takes to create insights from data
using the tool?
Ease of use: How easy is it to use the toolset to derive insights?

The two dimensions cover the complexity to build the solution using these
tools and user experience of doing the same. Figure 15.3 compares the
powerful BI with two factors, ease of use and time to insight:



Figure 15.3: BI tool landscape

Time to insight
In a fast-paced business environment, the process of driving insights from
raw data must be fast. The dimension of time is important to consider, not
just as the development but also time to build a new visual/analysis in the BI
system. Business analysis requires a complex drill-down of questions across
multiple dimensions; the tool needs to be fast enough to adopt those.
Tools like Power BI and Tableau allows you to get started with data metrics
and visuals in no time and hence allows business users to derive insights
faster.
The shortcoming of these tools is that they do not allow much customization,
less developer-friendly, more user-friendly, and are costly for small
businesses.

Ease of use
While a robust dashboard can be built for business needs from scratch using
native technology of JavaScript, they remain very developer-friendly. In
reality, the user BI system is usually Business Analyst and management
executives. They need an easy way to play with data in the visualization



tool. Here as well, Power BI type of tools provides that kind of user interface
and interactive features.
Making things easy and exposing with so many options to end-user many
times confuses them and, due to excess options, creates a problem in
decision making.

Step 5: Enable platform
The end goal of any BI system is to enable a platform that can be used by
business users removing the data silos and allow cross-functional analysis.
This results in synergy across functions and better decision making at the
enterprise level.
The platform creates a conducive environment to facilitate data share among
different business users, sharing insights among different business users,
present reports, and persist analysis. The two key enablers for BI systems
are; data access and business users.

Data access
Data access here is referred to as the ability of the BI system to provide
protected access for cross-functional teams for their data. The data storage
for the BI system automatically brings data into the common storage and
allows users to access the data they require to complete the analysis.
BI system breaks the silos and enables the platform to access any data from
authorized users. This leads to the democratization of data inside the
enterprise.

Business users
There are multiple stakeholders in any BI system, including IT teams,
CXOs, Business Analyst, reporting staff, and many more. The platform
should be enabled to the users as per their needs and mandate of their job
functions. For example, a CXO might just be a consumer for the dashboard
view, while a BI analyst needs to create the dashboard, and both are served
by the same platform.

Business intelligence trends



Tableau conducts an annual survey among its huge customer base and open
market BI users to understand what is the current status of the BI tools and
what advanced users are looking for in the coming years in BI systems. The
study emphasizes the growing trend of the BI system is now an integral part
of the businesses. There are now dedicated roles of visualizationanalystsand
BI analysts.
Table 15.2 shows the findings from the survey of Tableau for 2019:

Trend Outlook

The rise of explainable AI Nowadays, the organizations rely more on Artificial Intelligence and
its derivative application. This shows the definite growth in the
business trends, and the importance of trust in data also comes into
the flow.

Natural language
humanizes your data

Understanding the people based on their conversation data will be
more effective by the use of advanced techniques in NLP systems.

Actionable analytics put
data in the context

Evolution in the BI platforms supports the people to visualize the
data and take actions based on that.

Data collaborative amplify
the social good impact

More private-sectors and public-sector based organizations take
efforts on the data to create a good impact on community
development.

Codes of ethics catch up to
data

Considering regulations like GDPR, leaders judge the future of
ethical data practices.

Data management
converges with modern BI
platforms

The curation of data in a well-governed manner can bridge the gap
between business and data.

Data storytelling is the
new language of
corporations

Visualizing and finding the insights from the data is an art. And
communicating those insights in the right way is now like a team
sport.

Enterprises get smarter
about analytics adoption

Organization leaders have the thought to go more about the
adaptation of analytics in their business.

Data democracy elevates
the data scientist

Soft skills are essential in business intelligence. So, get to know
about the skill is an important addition to the data scientists.

Accelerated cloud data
migration fuels modern BI
adoption

Putting the data in cloud is a common task in data analysis. This
helps the organizations to think moreabout their business based on
the strategy that comes through the data.

Table 15.2: Survey of Tableau for 2019

Gartner 2019 Magic Quadrant



The BI initiative in organizations is now lead by BI tools. The IT teams
work with the BI tool vendors to establish the data storage, warehouse, or
lakes, and many provide the data layer for faster adoption of their respective
BI tools. It becomes important for the reader of the book to be aware of the
tools in the market for BI, and they can learn those tools to master data
visualization and may prepare themselves for a career in visualization
analyst or BI analyst.
Gartner is a credible and globally recognized publishing house for
technology trends. They annually publish their Magic Quadrants for
Analytics and BI platforms. Figure 15.4 shows the magic quadrant for
Analytics and BI platforms:



Figure 15.4: Gartner Report Snapshot (Credit:
https://www.gartner.com/en/documents/3900992/magic-quadrant-for-analytics-and-business-

intelligence-p)

The magic quadrants distribute the BI players into four quadrants;

Leaders: The leading players in the market, to large extent, market
makers in the BI domain. For example, Power Bi, Tableau, Qlik, and
ThoughtSpot.
Visionaries: The players in the market have a clear vision of their
product offering and working on improving the execution—for

https://www.gartner.com/en/documents/3900992/magic-quadrant-for-analytics-and-business-intelligence-p


example, TIBCO, Salesforce, and more.
Nice Players: The players who are very focused on particular domains
and facilitating analysis. For example, Domo, GoodData, and more.
Challengers: The players who are very good at execution and building
a clear vision for their offering. For example, Microstrategy.

Tableau and Power BI are the clear winners in the race for large deployments
in big corporates, and hence creating a lot of opportunities for job and skill
development at the university level as well. In the next chapter, we will show
hands-on working in Power BI with real data from our data.gov.in example.

Conclusion
The chapter focused on the introduction of the vast area of Business
Intelligence. The BI system allows a business to break silos and build a
cross-functional analysis of data. The BI process includes building data
awareness and data storage in the appropriate models. The process requires
laying down business goals and metrics that they want to track for better
decisi on making; these are called KPIs. The visualization tool then works as
a bridge between the end-user and your data to provide a platform for
business analysis and drawing insights. The tools are plenty in the market
and require careful selection of the business requirements. The end-goal of
the BI system is to enable users to use enterprise data and work
collaboratively, which in turn leads to data democratization in the enterprise.
Towards the end, we have discussed the Tableau report on BI trends for 2019
and also briefly talked about the BI landscape as assessed by Gartner 2019
Magic quadrants. In the next chapter, we will build a dashboard on our
data.gov.in data to bring insights from commodity price data using the free
version of Power BI.
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CHAPTER 16
Data Visulazation Tools

ata visualization tools are the main interface that the end-user sees on
top of their data. There are types of roles, and a user can play when it

interacts with the BI systems; the two main roles are the author and the
reader. The author is the person who created visualization or dashboards
using BI skills, and the reader isa user who looks at the output to make a
decision, usually management or operational professional. In the previous
chapter, we covered the whole stack of BI systems, which not only provides
the basis of data visualization but also supports decision systems. In this
chapter, we will shift our focus on the data visualization field and show you
an example of working in the Power BI tool.

Structure
Introduction to data visualization
Data visualization tools
Introduction to Microsoft Power BI

Objectives
After studying this unit, you should be able to:

Understand the data visualization tools
Load, view summary, create data visuals and publish it
Create various types of plots

Introduction to data visualization
Data visualization is a graphical representation of data. The data
visualization uses different types of charts, graphs, and spatial maps to
present a massive amount of data in more understandable work. There are



more than a dozen types of charts, and hundreds of their variation created for
a different purpose and industry problems.
Our brain process colors and shapes very quickly compared to a list of
objects. This type of cognizance feature of mind comes into play when we
use data visuals to present complex data points. Data visualization is a form
of visual art that grabs our attention and keeps our brain focus on the
message or critical elements we want to show, for example, trends, outliers,
and patterns.
Consider Table 16.1 and observe how much time it takes you to identify top
5 populous cities of India:

City Population

Agra 1,430,055

Ahmedabad 3,719,710

Bengaluru 5,104,047

Bhopal 1,599,914

Chennai 4,328,063

Delhi 10,927,986

Hyderabad 3,597,816

Indore 1,837,041

Jaipur 2,711,758

Kanpur 2,823,249

Kolkata 4,631,392

Lucknow 2,472,011

Ludhiana 1,545,368

Mumbai 12,691,836

Nagpur 2,228,018

Navi Mumbai 2,600,000

Patna 1,599,920

Pune 2,935,744

Surat 2,894,504

Tirunelveli 1,435,844

Table 16.1: Indian cities with their population size



Now, we represent the same data in a geo-plot. The size of the bubble is a
representation of the population size, anda bigger bubble means more
population. Figure 16.1 shows the geo-plot of various cities of India with its
population size:

Figure 16.1: Geo-plot of various cities with its population size

You would observe that finding the top 5 cities wasquicker, accurate, and
less straining in case of visual representation compared to the table. The five
most populous cities of India are Mumbai, Delhi, Bangalore, Kolkata, and
Chennai.
With the advent of Big Data, the data has grown huge in size and variety.
Data visualization is now a necessity to study any data and present it to
derive insights.

Data visualization types



There are many types of data charts and visual representations of data. The
most common generalization types are:

Charts
Tables
Graphs
Maps
Infographics
Dashboards

These are basic types of visual representations, while charts are a
representation of dimensions and measures, the graphs are geotagged data,
an infographic is an amalgamation of information and data visuals,
dashboards are a combination of all other types of visuals.
In the chapter on EDA, you must have encountered different types of graphs
to represent data in different forms. Figure 16.2 shows the most common 4
types of charts:

Figure 16.2: the four types of charts; Bar, Pie, Line, and Cartesian

Bar graphs: show numbers that are independent of each other in a
count bar.
Pie charts show the whole quantity divided into categories by the
angle of the pie.
Line plots: show continuous variable change over other continuous
scales, usually time.
Cartesian plots: you have two or three orthogonal axes to represent
different continuous quantities on a different axis.

There are also various types of charts to represent any data. But the above
four are the most common.



Data visualization tools
Data visualization tools have been in existence for more than a decade now.
Their genesis lies in the performance reports generated from the data
warehouses. After the proliferation of Big Data and cloud, the data
visualization tools spin-off as a separate toolset providing multiple features
to help bring insights faster, and above all, BI is cheaper for small businesses
by SaaS and PaaS model.
The market has a plethora of data visualization tools now. From the point of
view of technology, there can be three broad categories:

Developer friendly: The tools which are based on JavaScript libraries
and allow full flexibility to the developer. They are very popular among
SaaS models, where data visualization is built to solve some pre-
defined problems.
Example: D3.js, ggplot, Plotly, HighCharts, GoogleCharts, and others.
Business-friendly: The tools which are dragand drop nature, driven by
a pre-fixed menu. These pre-defined options cover most of the need for
business and quick to learn. They are full-fledged systems deployed on
cloud or on-premise.
Example: Power BI, Tableau, Qlik, and others
Cloud-Native: These sets of tools are developed by public cloud
providers to allow users to access data visualization of their cloud-
native storage. They provide a quick way to sneak into your data stored
at databases and filesystems native to the cloud.
Example: Amazon QuickSight, Google Data Studio, and others.

Visualization tool features
The data visualization tool is part of a broader BI stack of an organization.
They play an important role in providing an interface to data visualizations
and insight generation by business users. While all data visualization tool
differs in their offerings, there are some functionalities which user expect
from their data visualization tool.
The top 10 features that the model data visualization tool provides for the
user are listed below (in order). The following sections will show those
features using Microsoft Power BI:



Robust Data Connectors and Data Model Management.
Pre-defined charts with drag and drop functionality.
Allow computed fields and coding in R/Python.
Filters and actions on charts.
Ability to create dashboards (collection of charts).
Publish dashboards via email, social media, and web.
Host or embed the dashboards in applications.
Periodic reports and notifications.
User management.
Desktop + Mobile + Web Interfaces.

These features are a small set of features compared to the full feature set of
the tools provided to the users. You can visit their website or register for a
trial to fully explore the tool of interest.

Introduction to Microsoft Power BI
Disclaimer: The authors of this book do not, in any way, endorse or
recommend Power BI for end users. The sections and features are listed to
help make the reader understand a popular BI tool and kickstart their BI
exploration.
As per Gartner Magic Quadrants 2019 for BI tools, the Power BI leads the
market by setting itself into Leaders Quadrants along with Tableau and Qlik.
For discussion in this chapter, we have picked Power BI, a Microsoft
product, for a hands-on explanation of Visualization tool features.
As per the Power BI website (https://powerbi.microsoft.com/en-us/what-
is-power-bi/), the product is defined as
Power BI is a business analytics solution that lets you visualize your data
and share insights across your organization or embeds them in your app or
website. Connect to hundreds of data sources and bring your data to life
with live dashboards and reports.
You can install Power BI Desktop for free from the Microsoft Store. The
desktop version is handy as that does not require cloud infrastructure and can
be used on a PC or laptop.

https://powerbi.microsoft.com/en-us/what-is-power-bi/


For advanced features and hosting support, it has a different pricing model.
The pricing on Power BI is in two-tiers:

Power BI Pro

Self-service and modern BI in the cloud.
Collaboration, publishing, sharing, and ad hoc analysis.
Fully managed by Microsoft.

Power BI Premium

Enterprise BI, big data analytics, cloud, and on-premises
reporting.
Advanced administration and deployment controls.
Dedicated cloud computes and storage resources.
Allow any user to consume Power BI content.

Use case Microsoft Power BI
Building the dashboard in Power BI is a fast and quick process. The
important responsibility of critically analyzing the visuals is with the BI
analyst. We will define a use case to build a dashboard and show the features
we defined in section 4 using Power BI.
Use case: Build a dashboard of commodity prices for a commodity trader
using the agricultural market data for daily commodity prices from
data.gov.in
Dataset: The dataset can be downloaded from
https://data.gov.in/resources/current-daily-price-various-commodities-
various-markets-mandi/
Top 5 Business Questions to Answer

What is the costliest commodity of the day?
Which state mandates are selling tomato, and of which variety?
The distribution of markets across states by the number of markets they
have for agricultural commodities.
Distribution of onion prices across markets.
The commodity and their various types sold across markets in India.

https://data.gov.in/resources/current-daily-price-various-commodities-various-markets-mandi/


Microsoft Power BI console
Once you start the Power BI, you will see a console like this below. The
console view is market with a specific area to explain the usage. Figure 16.3
shows the Power BI console:

Figure 16.3: Power BI Console

Table 16.2 provides a list of features in the Power BI console.

Area Description

1 The functionality Ribbon. Here you can save, publish, load data and other
functionalities

2 This has the visualization canvas, the data table view, and the data model

3 This place has filters, categorical as well as continuous scale filters

4 Thiswill list all the data points in the datafile and allow the user to drag them to
area 5

5 This area is where the visualization is created. It can have multiple visuals in
the same canvas

6 This is like sheets in excel. Here separate analysis can be separated by sheets.

Table 16.2: List of features in Power BI console



Load the data
The downloaded data is in a CSV file named
daily_commodity_prices_15102019.csv.

Go to getting Data in Ribbon Area to open a window like below. Select
Text/CSV to browse the CSV file in your system, as shown in Figure 16.4.
You can observe there are numerous data connection options:

Figure 16.4: Loading data in Power BI

After you load the file, you will see the data summary like below, as shown
in Figure 16.5:



Figure 16.5: Data summary of the loaded data in Power BI

The data summary looks good, and the system has identified the data types
accurately. We can load this data into the tool to create visualizations.

Create data visuals
We have been looking for some business questions by means of business
questions; we will create the visuals to extract those insights/ answers to the
questions:

# Business question Supporting data visual

1 What is the costliest
commodity of the day?

Bar plot in descending
order of average modal
price



Figure 16.6: Bar Plot

Solution: Cardamoms is the costliest commodity with the average modal
price of Rs 440,000/100Kg

# Business question Supporting data visual

2 Which state mandis are
selling tomato, and of
which variety?

A TreeMap with state and
variety in dimensions,
filter tomato, and shows
distinct count as size.

Figure 16.7: TreeMap

Solution: Almost all states are selling the major one being in Uttar Pradesh



# Business question Supporting data visual

3 The distribution of
markets across states by
the number of markets
they have for agricultural
commodities.

Geo Map on Indian
political map with bubble
as a number of distinct
markets in that state

Figure 16.8: Geo Map

Solution: Uttar Pradesh has the highest number of agriculture markets with
a count of 1868 markets:

# Business question Supporting data visual

4 Distribution of Onion
prices across markets

Stacked Area Plot by
markets, commodity filter
set to Onion



Figure 16.9: Stacked Area Plot

Solution: The distribution of prices of Onion is observed with the highest
being at Boudh market:

# Business question Supporting data visual

5 The commodity and their
various types sold across
markets in India.

A Pivot Table with
relevant filters

Figure 16.10: Pivot Table

Solution: The pivot table can be filtered to get the exact commodity and
variety.



Publish the visuals
The visuals can now be shared with other users using the publish button in
the ribbon area. Login to your Power BI account and the visual will be
published and then will be available through mobile phone, PC and iPads:

Figure 16.11: Publish Visualization

This concludes the brief hands-on work on Power BI. The data file and
Power BI can be further explored bythe user to answer more business
questions and bring more insights.

Conclusion
In this chapter, we have discussed Data Visualization tools and how they
play a central role in BI systems of organizations. There is a type of data
visualizations and charts that constitute the summary of data in visual form.
Further, the chapter talks about the features of modern visualization tools
and how the tool universe can be divided into three types of business user-
friendly, developer-friendly, or cloud-native. The chapter then introduces a
popular tool, Microsoft’s Power BI, and build a use case on data.gov.in
dataset. The business questions are then answered using appropriate data
visualization in the Power BI tools. The reader is encouraged to learn more
about tools and their functionalities. This chapter concludes the section on
the Business Intelligence of the book. In the next two chapters, we will



provide you two research papers published around data science solutions on
industrial use cases.



I

CHAPTER 17
Industry Use Case 1 - Form Assist

n the previous chapter, we have learned all the concepts in machine
learning and related methods applicable to solve real-time problems.

From this chapter, we are going to see the real use cases of application of
machine learning technologies in the industry. It will provide enough support
to enhance the knowledge of learner how we approach the research problems
and what are the steps they can follow while they work on any real-time use
cases which need to be solved by using the machine learning algorithms.
This chapter gives the idea of how to convert the handwritten forms into
digital data format by using deep learning methods.

Structure
Introduction
Related works
Proposed work
Data augmentation
Optimization
Feature extraction
Image thresholding
Classifier
Results
Conclusion

Objective
After studying this chapter, you should be able to:

Understand the problem in the conversion of handwritten form to
digital format.



Understand the concepts behind the deep learning algorithm to use it in
the real-time problem.
Evaluate the results based on different visualization techniques.

Abstract
Customer agreement is required to follow statuary and legal requirements,
which include agreements to be manually signed. In India, paper forms are
still prevalent in the Banking Industry. The paper forms require customers to
fill a template form in capital letters and manually sign by agreeing to the
terms. This creates a challenge in analytical systems as the data is captured
outside the system and requires time to become part of the data pipeline. The
future of banks is poised to be digital. However, we still need historical data
for train models for current data applications. This limitation is a known
bottleneck in designing data applications for real-time decision making.
Developing Optical Character Recognition (OCR) with capabilities
commensurable to that of human is still not achievable, despite decades of
excruciating research. Due to the idiosyncrasy of individual form, analysts
from industry and scholastic circles have coordinated their considerations
towards OCR. The work in this paper shows an efficient model to capture
offline handwritten forms and convert them into digital records. The model
techniques are based on deep learning methodologies and show higher
accuracy for our testing set of real application forms of selected Banks. We
have experimented with different feature extraction techniques to extract
handwritten characters in the forms. Our experimentation has evolved over
time to find a generalized solution and better results. The final model uses
the relative position of the characters for extracting characters from the
forms and Convolutional Neural Networks (CNNs) to predict the
characters. The paper also discusses the serverless architecture to host the
FormAssist as a REST API with a model calibration feature to accommodate
multiple types of forms.

Introduction
Pattern recognition is the science of making inferences from perceptual data
based on either a priori knowledge or on statistical information. It is a vital
challenge in the field of computer vision and deep learning. It is generally
done with feature extraction and classification. The feature extraction



regularly utilizes an assortment of techniques to get a portrayal of the
information and afterward utilize the classifier to arrange the information.
The procedure is led physically and independently [1].
Handwritten recognition is an area of pattern recognition that characterizes
the capacity of a machine to dissect designs and distinguish the character. It
has been hailed as a standout amongst the most interesting and testing
branch in the field of artificial intelligence and optical character recognition
[2]. An assortment of procedures and approaches has been proposed, yet it
still an uncertain issue. Notwithstanding, it is a testing errand, particularly
handwriting recognition on form documents. A few issues in handwriting
recognition are because of the high ambiguity of the information, as the
composed characters of every individual are unique, a few characters have
fundamentally the same as shape, disengaged, or bending characters [3].
OCR is a procedure that can change over content, exhibit in the
computerized picture, to editable content. It enables a machine to perceive
characters through optical components. The procedure includes some pre-
handling of the picture document and, after that, obtaining vital information
about composed content. That learning or information can be utilized to
perceive characters [4-8]. OCR comprises of numerous stages, for example,
pre-processing, normalization, feature extraction, classification, and
recognition. The contribution of one stage is the yield of the following stage
[9]. The errand of preprocessing identifies with the expulsion of commotion
and variety in manually written.
OCR problems can be solved with various machine learning algorithms. We
here have taken a real-life use case of a sample bank form to apply popular
techniques to extract handwritten data from it. The numbers from research
look exciting, but the real-time scenario is different and more challenging.
The first question from a person who needs an OCR solution is the scanner
type used. The final output depends on lots of factors starting from the
scanner model to the algorithm selection. we have tried to scrutinize them to
choose the most economical and accurate solution. In our attempt to provide
a complete solution to a data science problem, we have built a user-friendly
web portal to read the scanned paper forms and display results.

Related Work



Handwritten digit recognition has as of late been of extremely enthusiasm
among the scientists on account of the development of different machine
learning, deep learning and computer vision algorithms. Anuj Dutt and Aashi
Dutt in their paper (IJARCET-VOL-6-ISSUE-7-990-997) [10], analyze the
consequences of probably the most broadly utilized machine learning
algorithms like SVM, KNN, and RFC and with deep learning algorithms like
multilayer CNN utilizing Keras with Theano and TensorFlow. Utilizing
these, they could get the exactness of 98.70% using CNN (Keras+Theano)
when contrasted with 97.91% using SVM, 96.67% using KNN, 96.89%
using RFC.
Darmatasiaet al.[1] propose a workflow and a machine learning model for
recognizing handwritten characters on form documents. Their learning
model depends on CNN as a powerful feature extraction and SVM as a high-
end classifier. The proposed technique is more effective than altering CNN
with complex architecture. They have assessed some SVM and found that
the linear SVM using L1loss functionand L2 regularization, giving the best
execution both of the accuracy rate and the calculation time. The recognition
rate accomplished by the proposed strategy is 98.85% on numeral characters,
93.05% on capitalized characters, 86.21% on lowercase characters, and
91.37% on the merger of the numeral and capitalized characters, while the
first CNN accomplishes a precision rate of 98.30% on numeral characters,
92.33% on capitalized characters, 83.54% on lowercase characters, and
88.32% on the merger of the numeral and capitalized characters. The
proposed strategy was additionally validated by utilizing ten folds cross-
validation, and it demonstrates that the proposed technique still can enhance
the precision rate. Theoverallsystem gives an accuracy rate of 83.37% on ten
different test form documents.
Balci et al. [11] seek to classify an individual handwritten word so that
handwritten text can be translated into a digital form. They have utilized two
principle ways to deal with achieve this errand: classifying words directly
and character segmentation. For the former, they have used CNN with
various architectures to train a model that can precisely classify words. For
the latter, they have used LSTM with convolution to build bounding boxes
for each character. They, at that point, pass the segmented characters to a
CNN for classification, and after that, reconstruct each word as indicated by
the results of classification and segmentation.



The choice of classifiers and feature extraction strategies has a prime part in
accomplishing the ideal classification exactness in the character recognition
system. In Katiyar et al. [12], and efficient Support Vector Machine based
off-line handwritten character recognition system has been developed. It is
obvious from the experimental results that the execution of SVM
outperforms other states of the art techniques.
Pai et al [13] present the basics of the OCR method with its parts, for
example, pre-processing, feature extraction, classification, post-processing,
and many more. This survey additionally examines distinctive thoughts
executed before for recognition of a character.

Proposed work
A leading banking institution account opening application form was
considered using economical scanning options starting from a phone camera
to a daily use scanner. A regular day to day used Flatbed Scanner has been
chosen. The snippet of the scanned copy of the original unfilled form is
shown in Figure 17.1. As a fresh mind to solve a problem in OCR, we
started from a basic level. Initially started with extracting the characters out
from the forms and then applied a machine learning model to predict the
characters in the form:



Figure 17.1: Snippet of the scanned form

Figure 17.2 shows the snippet of the filled form:

Figure 17.2: Snippet of the filled form

Work architecture
The proposed work architecture is based on CNN to classify the images.
This algorithm takes the image as an input, passes it through a series of
convolutional, non-linear, pooling (down-sampling), and fully connected
layers, and hence provides an output. The output can be a single class or a



probability of classes that describe the image in a better way. A flowchart is
shown in Figure 17.3, which describes the entire proposed model briefly:

Figure 17.3: Flowchart of the FormAssist Model

The weights(w) in this algorithm are updated with the equation as stated
below:



An optimal learning rate was targeted so that the algorithm runs smoothly
and fast. L is the loss function, and δL/δw is the derivative of the loss
function with respect to w.

NIST dataset
For training the alphabets and numeric models, NIST Handprinted Forms
and Characters Database was used. The numeric model was trained using
the MNIST dataset, which is a subset of the larger NIST dataset. The
MNIST dataset consists of the 10 digits. For training the alphabet model, the
EMNIST dataset was used. Below in Figure 17.4, an example of the MNIST
dataset is shown:

Figure 17.4: Example of the MNIST dataset

There were a few challenges while training the model. Numpy's
np.loadtxt() was a very slow method for loading the dataset as compared



to pandas'PD.read_csv(). Pandas load the dataset exponentially faster than
Numpy.
The task of minimizing the loss involves adjusting the weights so that the
loss is minimal. Visually, we want to get to the lowest point in the bowl-
shaped loss function, as shown in Figure 17.5. This figure shows the idea of
minimizing the loss. Therefore, the derivatives of the loss function are taken
with respect to the weights in the backpropagation step:

Figure 17.5: Optimization algorithm works to get an optimal value of the weights so as to minimize
the cost(error).

Activation function – ReLU
ReLU (Rectified Linear Units) is used as the activation function for the
hidden layers in the network. The function is defined in the below-given
equation. Figure 17.6 shows the graph of the ReLU function:



Figure 17.6: ReLU function graph

Dropout
Dropout regularization is used to prevent overfitting. Dropout randomly
shuts down some neurons in the network during forwarding propagation and
backward propagation. This ensures that weights are not too large, and the
model is not overfitting. In Figure 17.7, the dropout process is shown
briefly:



Figure 17.7: Example of the dropout process

Data augmentation
Before training the model, data augmentation is used to make full use of the
dataset. In data augmentation, the image is randomly distorted in random
manners to create new additional data, which helps to train the model better.
In Figure 17.8, digit 6 is shown as an example of data augmentation:

Figure 17.8: Example of Data Augmentation of digit 6

Optimization
Adam is used as the optimization algorithm. It is an extension of Stochastic
Gradient Descent and is used to update weights in the neural network by
iterating through the dataset. Adam has the combined advantages of
optimization algorithms, AdaGrad, and RMSprop.
In the article [14], a good representation of Adam's algorithm can be seen.
The advantages of using Adam on non-convex optimization problems are
stated below [14]:

Straightforward to implement.
Computationally efficient.
Little memory requirements.
Invariant to diagonal rescale of the gradients.
Well suited for problems that are large in terms of data and/or
parameters.
Appropriate for non-stationary objectives.
Appropriate for problems with very noisy/or sparse gradients.



Hyper-parameters have intuitive interpretation and typically require
little tuning.

The performance of various optimization algorithms [15] is shown in Figure
17.9. It is clearly seen that Adam performs the best. While training with
Adam Optimization algorithm, we get the lowest cost (the pink line):

Figure 17.9: Comparison of Adam to Other Optimization Algorithms [15]

Feature extraction
Feature extraction is one of the most important partsof optical character
recognition. Here we try to extract the most important features from the
image, and a good algorithm for feature extraction can significantly improve
the accuracy of the model. The feature extraction method is shown in Figure
17.10:

Figure 17.10: Example of Feature Extraction



The challenge in this work was the boundaries of the box, which is not clear
in the scanned copy. This becomes hard to extract character based on the
boxes. A more robust approach is used to extract the characters based on the
relative position of the black markers on the four corners of the form. The
position of each character in the form is manually taken into account.
OpenCV is used to read the image files, and each image is divided into three
equal parts. For matching the black boxes in the original image and the
scanned image, OpenCV's cv2.matchTemplate is used. Template Matching is
a technique for looking and finding the location of a template image in a
bigger image. It essentially slides the template image over the input image
and compares the template and patch of input image under the template
image. After template matching, the images are converted into grayscale
images using cv2.cvtColor and cv2.BGR2GRAY.

Image thresholding
There is some noise in the image, which can decrease the efficiency and
accuracy of the model. Image thresholding is used to prevent decrease in
accuracy and efficiency due to noise in image. In this process, we set a
threshold value, and the pixel values that are greater than this threshold
value are set to white (a value of 255), and other pixel values are set to black
(a value of 0). Figure 17.11 is an example of different types of image
thresholding:



Figure 17.11: Example of different types of image thresholding

Classifier
The training part is done using Keras API. Keras is a high-level neural
network API written in Python language, capable of running on top of
TensorFlow, CNTK, and Theano.

Results
A confusion matrix is printed that provides the percentage of accuracy with
which each digit and each alphabet has been recognized. A confusion matrix
defines a specific table that allows the visualization of the performance of an
algorithm by providing the accuracy corresponding to each of the input and
output classes [16].
The model is tested on a few sample forms, and a confusion matrix is
obtained. Confusion matrix of digits and alphabets are shown in Figure
17.12 and Figure 17.13, respectively:



Figure 17.12: Confusion Matrix of 10 digits



Figure 17.13: Confusion Matrix of 26 alphabets

Most of the characters show excellent accuracy, which more than 90%. Few
similar-looking characters were giving a lower but good accuracy above
75%. The details are shown in Table 17.1 below:

CHARACTERS ACCURACY ACCURACY (in %)

0, 1, 2, 5, 7, 9
C, D, E, G, H, K, L, N, T, U, W,
X, Y, Z

EXCELLENT 90 +



6, 7
J, M, O, R

VERY GOOD 80-90

3, 4
A, B, F, I, P, Q, S, V

GOOD 70-80

Table 17.1: Accuracy of the Characters

A web-based UI is created so that a user can view and edit the response.
Then it can be saved in a JSON file. This entire framework is hosted on a
webpage, shown in Figure 17.14:

Figure 17.14: Screenshot of the web-based UI of FormAssist

Conclusion
The improved performance of OCR with the latest developments in Deep
Learning has opened up scope for high-value business use cases in Banking
and Insurance Industry. The impact of improved OCR methodologies will be
far-reaching in the near future, mainly due to the need for data for real-time
analytics. The above-discussed methodology is implemented in Probyto's
Business solution for industrial use – FormAssist.



Figure 17.15: FormAssist: End to End Solution for Handwritten Forms using Deep Learning

The application helps businesses to archive the digital data and provide near
real-time data for deploying data analytics applications. The algorithm is
part of the research team and keeps on updating with the latest developments
in deep learning.

Acknowledgment
This work is supported by PROBYTO Data Science and Consulting Pvt Ltd
and is being developed during Data Science Summer Camp 2018.



References
1. Darmatasia and Mohamad Ivan Fanany, "Handwriting Recognition on

Form Document Using Convolutional Neural Network and Support
Vector Machines (CNN-SVM)"

2. Jindal and M. Amir, “Automatic classification of handwritten and
printed text in ICR boxes,” Souvenir 2014 IEEE Int. Adv. Comput.
Conf. IACC, 2014, pp. 1028– 1032, 2014.

3. N. Sharma, T. Patnaik, and B. Kumar, “Recognition for Handwritten
English Letters: A Review,” vol. 2, no. 7, pp. 318–321, 2013

4. Dan ClaudiuCires¸an and Ueli Meier and Luca Maria Gambardella
and JurgenSchmidhuber, “Convolutional Neural Network Committees
for Handwritten Character Classification,”2011 International
Conference on Document Analysis and Recognition, IEEE, 2011

5. GeorgiosVamvakas, Basilis Gatos, Stavros J. Perantonis, “Handwritten
character recognition through two-stage foreground sub-sampling,”
Pattern Recognition, Volume 43, Issue 8, August 2010

6. Shrey Dutta, Naveen Sankaran, PramodSankar K., C.V. Jawahar,
“Robust Recognition of Degraded Documents Using Character N-
Grams,” IEEE, 2012

7. Naveen Sankaran and C.V Jawahar, “Recognition of Printed
Devanagari Text Using BLSTM Neural Network,”IEEE, 2012

8. Yong-Qin Zhang, Yu Ding, Jin-Sheng Xiao, Jiaying Liu, and Zongming
Guo1, “Visibility enhancement using an image filtering approach,”
Zhang et al. EURASIP Journal on Advances in Signal Processing 2012

9. Bhatia, "Optical Character Recognition Techniques: A Review,"
International Journal of Advanced Research in Computer Science and
Software Engineering 4(5), May - 2014, pp. 1219-1223

10. Anuj Dutt, AashiDutt, "Handwritten Digit Recognition Using Deep
Learning," IJARCET, Volume 6, Issue 7, July 2017, ISSN: 2278 –
1323

11. Batuhan Balci, Dan Saadati, Dan Shiferaw, "Handwritten Text
Recognition using Deep Learning."

12. Gauri Katiyar, Ankita Katiyar, Shabana Mehfuz, "Off-Line
Handwritten Character Recognition System Using Support Vector



Machine," American Journal of Neural Networks and Applications
2017; 3(2): 22-28

13. Nikhil Pai, Vijaykumar S. Kolkure, "OPTICAL CHARACTER
RECOGNITION: AN ENCOMPASSING REVIEW," IJRET, Volume:
04 Issue: 01 | Jan-2015

14. Jason Brownlee, "Gentle Introduction to the Adam Optimization
Algorithm for Deep Learning," Deep Learning, Machine Learning
Mastery

15. Diederik Kingma, Jimmy Ba, “Adam: A Method for Stochastic
Optimization, “University of Toronto, 2015 ICLR paper (poster)

16. Alsaad, A., 2016. Enhanced root extraction and document
classification algorithm for Arabic text (Doctoral dissertation, Brunel
University London).



N

CHAPTER 18
Industry Use Case 2 - People Reporter

owadays, we are getting the news very fast through social media, like
Facebook; Twitter is the major source of every news. But analyzing

that news and evaluating the true value is one of the major problems in real-
time. So, in this chapter, we are going to see how that problem can be solved
using a machine learning method. From this, we can understand how to use
the text analytics to perform the analysis on real-time datasets.

Structure
Introduction
Event detection
Work architecture
Results
Conclusion

Objective
After studying this chapter, you should be able to:

Understand the fundamentals concepts of social media analysis.
Understand the importance of identifying the credibility of news
Apply the text analysis to perform real-time analysis.

Abstract
With a total of 4,156,932,140 internet users by 2017, the number of internet
users has increased drastically, reaching 54% of the total population and
counting. An increase in the total number of users means more user-
generated content across several online platforms, which is predominantly in
real-time. The user-generated content is being leveraged by applications to



derive insights into customer analyzing, opinion mining, marketing, and for
providing niche services like banking in real-time. In recent years, we have
also seen a rise in citizen journalism and public posting real-time events on
social media channels. Social media has emerged as a supporting player for
traditional media as well as powerful stand-alone expression tools for the
public, and hence changing the reliance on traditional media for reports and
news. Further, the increase in smartphones and better coverage of data
networks has shown increased credible news sourced by mainstream media
to be from social media. Not only media agencies but the real-time event
identification can be used by security departments, disaster management,
and others for quick action. The most prominent source of information is the
micro-blogging site, Twitter providing geolocation and other features like
time, author id, author name, source, link, people’s reaction towards that
data, etc. and can be easily extracted, stored and analysis using Big Data
Tools. Entities extraction in Natural language Processing (NLP) is used for
identifying the type of event and proceeds further. The fundamental goal of
our work is to limit the spread of falsehood by halting the proliferation of
fake news in the system. This helps us in taking the lead in collecting
information on certain events ahead of local media platforms. For example,
when an earthquake occurs, people make many posts related to the
earthquake, which enables detection of earthquake occurrence promptly. Our
model delivers such notifications of such events much faster than the
announcements of other media sources. In this paper, we have utilized the
information from the social platforms in real-time based upon some
keywords and geolocation and visualized it with powerful BI tools. The
continuous monitoring helps us analyzing the events occurring in the
respective geolocation and defining its credibility. The credibility of such an
event is detected with the help of the credit score factors developed
considering multiple factors, including temporal and spatial features of the
reported content.

Introduction
Internet-based life has picked up a great deal of consideration today.
According to Kaplan and Haenlain [1], social media is an application that
keeps running on the Internet that enables its clients to make and trade
content. Magazines, websites, microblogging, wikis, social networks, and
video sharing sites are considered as social media. The ubiquity of social



media is expanding quickly because of the spread of the Internet and the
improvement of cell phones. Individuals can access and utilize web-based
life at any place and anytime. Many individuals, generally teenagers and
youthful grown-ups, joined via social media and utilized them every day.
Microblogging and social media sites, like Facebook and Twitter, have
expanded in popularity among the others sort of online networking.
Facebook, which is considered as the biggest social networking sites right
now, reported that it has one billion members around the world, as in
October 2012 [2]. People use social media not just for communicating with
their friends, but also for many other things. For example, people could use
Twitter as a source of information. News organizations could use Twitter to
spread more information because people tend to broadcast anything that they
think is matter. Even, sometimes, people could share news ahead of
newswire [3]. People could also use social media to express their opinion
towards something [4, 5].
The new era of the Internet has conveyed a transformation with it. A period
where people felt the intensity of articulation. A time where each
communicated word holds the possibility to have an effect. Social media
particularly had a colossal part to play in this strengthening. With each
passing day, the time spent on web-based networking media by people is
expanding, to an ever-increasing extent. In April 2018, Facebook had 2.2
billion clients for each month and Twitter 330 million active users, for every
month, these numbers just suggest the extent of these online platforms. The
data generated from these networking platforms are of extraordinary esteem
and can be gathered effortlessly from web crawlers and public APIs.
Data shared by social media users could be used for various purposes like
news detection, security, etc. An update by users on these platforms can be
checked and hailed as seed for a potential future occasion or present
developing event, i.e., detecting news. Concerning news detection proof,
there are two points to it, breaking news and the other being trending news.
This paper considers both the segments in an enduring movement. The need
being an acknowledgment of the news as it happens took after by
examination of as it advances. A legitimacy score is delivered after some
time to decide the confirmation of the news. For this situation, Twitter and
Facebook could be utilized as emergency notification tools about a
catastrophe that is going ahead. At the point when the tsunami hit Japan in



2011, Twitter was utilized as a specialized device when alternate methods for
correspondence are down [6].

Event detection
Dou et al. [7] outlined event detection is said to spot the primary story on
topics of interest through perpetually monitor news streams. Petrovic et al.
[3] outlined the goal of event detection is to spot the primary story to debate
a selected event that happened at a specific time and place using social
media as a source of event detection. There is literally another field of
analysis associated with an event. Dou et al. [7] declared that, together with
event detection, there are event trailing, event summarization, and event
association. Event trailing connected with the event of some events over
time. Event summarization producesa summary of the event from given
knowledge. Meanwhile, the event association discovers the connection
between one event towards another. These three topics are representing
Topic Detection and Tracking (TDT) fields.
There are 3 reasons why event detection in social media streams is additional
challenging: short and howling contents, various and quick changing topics,
and enormous data volumes [3, 8]. Besides that reason, text generated from
social media streams typically short and use informal literary genre. Totally
different approaches must be preferred to handle this type of data. Dou et al.
[7] outlined two subtasks associated with event detection: retrospective and
on-line event detection. Retrospective event detection detects events from
pre-collected sources, whereas online event detection detects events from
real-time sources [3, 9]. There are some approaches that use pre-collected
data from social media. There is some corpus available to train and test these
strategies. Twitter was the source for most of the available because of its
popularity as social media sites [10]. A total of 97 million tweets in one
corpus come from the Edinburgh Twitter corpus [11].
Various event detection approaches are discussed in detail in the paper Event
Detection in Social Media: a Survey [12]. Different approaches also
developed to process social media streams. Baldwin et al. [13] querying data
stream with specified keywords directly. Non-English messages then being
filtered out and then normalized. After being normalized, the location of the
events is detected. There are some problems that arise, such as the little
proportions of geotagging usage, user registered location, and no assurance



of the quality of user locations. One approach is to predict the geolocation of
the message along with the probabilistic indications of the quality. Detecting
events from social media could show great benefits. Sakaki et al. [14]
showed how updates from Twitter could be used to detect an earthquake and
even predict the center of the earthquake in real-time. Another event, such as
the death of Michael Jackson, could also detect from social media [15]. In
general, there are many kinds of events or trends that could be detected from
social media. Researchers have studied disaster, traffic, outbreak, and news
detection in social media. The summary of past researches covered in this
paper is shown in Table 18.1:

Event Author Method

Disaster Sakki et al. (2010) The temporal and spatial model

Disaster Abel et al. (2012) NER, classification, filtering

Disaster Abel et al. (2012) Faceted search and analytics

Disaster Terpstra et al. (2012) Geographical display, message content filters,
tweet type filters

Disaster Adam et al. (2012) Semantic reasoning, event classification /
grouping

Traffic Kosala et al. (2012) Keyword analysis, abbreviation analysis,
location and traffic condition search

Outbreak Ritterman et al. (2009) Prediction market: SVM (internal) and n-gram
(external)

Outbreak Achrekar et al. (2011) Group average clustering (GAC) and
incremental clustering (INCR)

News Petrovic et al. (2010) Locality sensitivity hashing

News Osborne et al. (2012) Streaming model and events cross-checking

News Ishikawa et al. (2012) Clustering, burst detection

Table 18.1: Summary of event detection researchers [12]

While testing our model, we took under consideration a plane crash in
suburb Ghatkopar, Mumbai, on 28th June 2018, claiming multiple lives. The
aircraft got airborne from Juhu Aerodrome at approx. 12:20 hours IST on
June 28th June 2018 with 2 pilots employed by U.Y. Aviation Private
Limited and 2 technical personnel of Indamer Aviation Private Limited
(MRO) and flew for approximately 40 minutes as per the Air Test profile.



Contact with Mumbai ATC was reportedly lost at around approx. 13:00
hours IST [16]. At 13:36 hours IST, Media houses came to know about the
crash and started publishing about the tragic incident. The model proposed in
this paper explains how the time gap between the time delay between the
event and its media publication can be decreased. The above-described
example took place around 13:25 hours IST, and while running, our model
helped us to discover that the first information related to this accident was
registered at 13:26 hours IST, which is hardly a minute difference with the
accident.

Work architecture
Twitter was considered as the source of study in this case. Data extraction
was carried out using APIs. Twitter allows users to interact with its data; that
is, Tweets and other attributes of the tweets using APIs. Using server-side
scripting language, a request was made, and data extraction was done. In this
model, we propose a dashboard where a user can access using a web portal.
The keywords and geolocation provided by the user act as a filter to proceed
for the data extraction. This extraction is stored as indices and is analyzed
continuously and later visualized according to the keyword and geo-location.
This leads to the detection of cases that started escalating. All the features
which are extracted with the help of the APIs are used for decision making
and setting a parameter for decisiveness. The result is displayed on the
dashboard, along with all the parameter values and contender news.

Figure 18.1: Work architecture of PeopleReporter

The work architecture is based on Real-time Event Detection of Events using
Twitter. The event in the flow chart (Figure 18.2) defines that the tweets



which are in relation to certain predefined keywords, very specifically
generic news keywords. These filtered tweets can come from people, local
news agencies, and mainstream news media. These tweets are extracted
using Twitter APIs. These APIs extract not only the content of the tweets but
also the other attributes, such as number of likes, number of retweets,
number of comments, number of followers, verified user or not, and many
more, which assists in determining the credibility of news. All these
attributes are stored along with tweets. Users from the web portal enter
keywords or geolocation or both and filters out all the desired tweets. These
sorted out tweets are visualized and analyzed for detection of topics which
are just in and are being talked by people:



Figure 18.2: Flowchart of the end-to-end solution of the PeopleReporter

Using Twitter APIs, all the tweets and content are taken in real-time, and
then the event processing pipeline is used. The event processing pipeline has
three stages: Input, Filters, and Output. Input is a collection of all thetweets
where it’s attributes are filtered. Only these filtered outputs can pass for
analysis. These input and output files are in JSON format and are stored in
indices. This is a real-time data handling, and the data increases over time,



which calls for a search engine which is distributed, fast and can handle such
ever-increasing data.

Results
In this paper, we present three examples of real events occurring within the
country. Table 18.2 gives an overview of the selected events. These three are
considered with respect to the different categories and events happening
during the third week of May 2018:

# Category of
event

Title of the event Reporting date Reporting region

1 Outbreak Nipah virus outbreak in
Kerala

21/05/2018 Kerala

2 Live CSK enters the final of IPL
2018

22/05/2018 Chennai

3 News Oneplus 6 Launched in
India

20/05/2018 Bengaluru

Table 18.2: List of events

Nipah virus outbreak in Kerala
On 19 May 2018, three deaths due to Nipah virus infection were reported
[17] in Kozhikode district, Kerala state, India. As of 28 May 2018, and since
the beginning of the outbreak, because of further investigations and contact
tracing, 15 people [17] have tested positive for NiV in Kozhikode and
Malappuram districts, Keralastate. In this paper, we take this outbreak as an
event and utilize the tweets related to it. Figure 18.3 shows the frequency of
tweets starting from 21 May 2018 (00:25:43 hours) to 23 May 2018
(07:09:04 hours). The total tweets count was 16242. On the afternoon of 21
May, it is seen that the frequency of tweets reaches maximum to ~140
(yellow), which reflects the detection of an event. But the frequency gets
doubled (red) on the next day morning (22/05/2018), which defines the event
to be breaking news. This is when people start talking more about the
outbreak of the Nipah virus in Kerala. The purple circle shows the decaying
of the event gradually:



Figure 18.3: the Increasing magnitude of peaks with increasing credibility

CSK enters the final of IPL 2018:
Brilliant innings from Faf du Plessis (67*) [18] helped Chennai Super
Kings (CSK) beat SunRisers Hyderabad (SRH) by two wickets in the first
qualifier of the Indian Premier League (IPL) 2018 at the Wankhede
Stadium to enter the IPL 2018 final. Needing 140 runs to win, Chennai
chased down the target with five balls to spare. Figure 18.4 shows the
frequency of tweets starting from 22 May 2018 (01:57:31 hours) to 23 May
2018 (10:56:00 hours). The total tweets count was 495. In the evening
(18:00 hours) of 22 May, it is seen that the frequency of tweets reaches
maximum to ~35 (yellow), which reflects the starting of the match between
CSK and SRH. The frequency almost gets tripled (red) by 23:00 hours when
CSK beats SRH. This live event becomes breaking news at this point, and
people start talking more about seeing CSK in the finals. The purple circle
shows the decaying of the discussions gradually:



Figure 18.4: Single peak to represent instantaneous joy and decay

OnePlus 6 launched in India
Chinese smartphone player OnePlus launched its next flagship OnePlus 6 in
India on 17 May 2018. In India, OnePlus 6 was launched in Mumbai [19],
and the OnePlus Community was the first to try out the device at the
experience zone at the launch venue. The device will be available for pre-
bookings for Amazon Prime Members from May 21. The company hosted a
live streaming of OnePlus 6 India launch event on its YouTube channel.
Figure 18.5 shows the frequency of tweets starting from 20 May 2018
(00:01:34 hours) to 21 May 2018 (23:53:17 hours). The total tweets count
was 13424. Usually, the rumors of the most awaited phones, such as
OnePlus 6, starts even before a month or two. However, we started analyzing
the event, a day before its launches. Descent number of discussions were
noted on Twitter on 20 May 2018, reaching a tweet frequency of ~100. On
the day of launch, by 05:00 hours, there was a high increase in the frequency
(yellow). This shows the excitement of people waiting for the launch. At
10:00 hours, there was a significant increase in the frequency (red) again,
which defines the product getting launched in India. The launch event
becomes breaking news with all its features listed and along with its price
for the customers. The frequency almost increases by 9 times (red) as



compared to the earlier day. The purple circle shows the decaying of the
event gradually, and the rumors, discussion and excitements for their
OnePlus 6 decreases eventually:

Figure 18.5: Multi peaks as people talks about product features

Conclusion
Social media and, in general, the web have become a precious source of
information in real-time, contributed by individuals. This new source has
created opportunities for media companies, governments, and disaster
management authorities to leverage People’s reporting or information they
broadcast on the web. This paper shows possibilities with a simple metric as
frequency over the period can provide credible news information. Further
research is being done by the team to develop an ML trained gradient-based
credibility threshold to break the news before mainstream media. The future
work will also focus on spatial and temporal features to measure the
credibility of news.





Figure 18.6: Product Design for Social Media monitoring

The working prototype has a powerful engine to continuously scan the web
and social media to detect news reported in pre-defined areas. The datastore
created and validation from mainstream media sources is a valuable source
for future research in the domain.
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CHAPTER 19
Data Science Learning Resources

ata science is a vast interdisciplinary field and requires continued
learning to stay relevant with the latest happenings and technology

swings. Sitting at the junction of research, technology, and business, it’s is a
highly dynamic and difficult field to stay abreast of. We already discussed
as an industry we are learning what the skillsets and resources required to
deliver a data-driven product or service are. As you may appreciate by the
width of this book as well, it is impractical to find a single person who is an
expert in all areas and remain to stay expert.
The industry has recognized this fact and has started grooming talent in
specific sub-fields of data science and creating career paths in the industry
for them. You must have stumbled upon the data function of large
organizations hiring data scientists, data engineers, DevOps, researchers,
analysts, visualization experts, and software developers, and so on. and all
of these roles are now required to bring an idea into business use. In many
cases, the internal teams are also re-organizing. In such an environment,
continuous learning is of utmost importance. In this chapter, we will make
the reader aware of the type of resources they can engage with and keep
learning.

Structure
Books
Online courses
Competitions
Blogs and magazines
University courses
Conferences and events
Meet-ups and interested groups



YouTube channels and Podcasts
Analytic reports and white papers
Talk to people

Objective
After studying this chapter, you should be able to:

Find resources to explore more on data science and related works.
Know more about the industry trends and various opportunities to
learn from major resources about the data science field.

Note: The author does not endorse any resource or encourage or
soliciting to use that resource. These are just good resources as per
a general understanding amount the authors.

Books
Books are very good sources when you want to build the concepts and ideas
from scratch. Books provide a structured approach to your learning and act
as quick references for the future. There are numerous books published in
data science and its sub-domains. Some of them are listed below:

The Hundred-Page Machine Learning Book - by Andriy Burkov
Introduction to Statistical Learning - by Gareth James
Practical Statistics for Data Scientistsby Peter Bruce
Introduction to Machine Learning with Python: A Guide for Data
Scientists-by Andreas Muller
An Introduction to Probability Theory and its Applications – by
William Feller

Online courses
Online courses are very popular among corporate learners as they provide
the flexibility of time and usually delivered through video lectures. This
makes the courses available 24 hours and self-paced as per the capability of
leaner. Some good courses:



Machine Learning – by Andrew Ng
(https://www.coursera.org/learn/machine-learning)
Introduction to Python for Data Science – by Datacamp
(https://www.datacamp.com/courses/intro-to-python-for-data-
science)
Introduction to Computational Thinking and Data Science – by MIT
(https://www.edx.org/course/6-00-2x-introduction-to-
computational-thinking-and-data-science-3)
Python for Data Science and Machine Learning Bootcamp – by
Udemy (https://www.udemy.com/course/python-for-data-science-
and-machine-learning-bootcamp/)
MicroMasters® Program in Statistics and Data Science– by MIT
(https://www.edx.org/micromasters/mitx-statistics-and-data-
science)

Competitions
There are many platforms that source good quality problem statements from
Industry and roll them out for crowd-solving them as a competition. These
competitions are a good place to see how other participants solve the same
problem and share their results in a very healthy and competitive manner.
Here we are going to list out top 5 competitions in the data science field:

Kaggle (https://www.kaggle.com/)
Driven Data (https://www.drivendata.org/)
DataHack (https://datahack.analyticsvidhya.com/)
HackerRank(https://www.hackerrank.com/categories/ai/machine-
learning)
Innocentive (https://www.innocentive.com/ar/challenge/browse)

Blogs and magazines
Blogs and magazines provide a good source of individuals' experience with
different tools, processes, challenges, and other evolving ideas. The blogs
are usually reflective of near real-time trends in data science.

https://www.coursera.org/learn/machine-learning
https://www.datacamp.com/courses/intro-to-python-for-data-science
https://www.edx.org/course/6-00-2x-introduction-to-computational-thinking-and-data-science-3
https://www.udemy.com/course/python-for-data-science-and-machine-learning-bootcamp/
https://www.edx.org/micromasters/mitx-statistics-and-data-science
https://www.kaggle.com/
https://www.drivendata.org/
https://datahack.analyticsvidhya.com/
https://www.hackerrank.com/categories/ai/machine-learning
https://www.innocentive.com/ar/challenge/browse


Top 5 blogs and magazines participating actively in the development of data
science are listed below:

Towards Data Science (https://towardsdatascience.com/)
Data Science Central (https://www.datasciencecentral.com/)
KDnuggets (https://www.kdnuggets.com/)
Analytics Vidhya (https://www.analyticsvidhya.com/)
Data Science Dream Job
(https://www.datasciencedreamjob.com/blog)

University courses
If you have very little background with statistics or programming, maybe
having a good course from university helps the most to build the
foundational concepts and understanding of what to expect in the industry.
There are a lot of data science courses in different capacities running across
the institutions. Some are given below:

Data Science: Machine Learning – Harvard University
MicroMasters Program in Statistics and Data Science - Massachusetts
Institute of Technology
Master of Information and Data Science – The University of
California, Berkeley
Foundations for Data Science – Stanford University
Master of Computer Science in Data Science – University of Illinois

Conferences and events
There has been a rise in data science and its sub-field specific conferences
and events across theworld. This shows the growing interest in the business
to adopt data science and create an executive-level network by means of
events and conferences.
Top 5 conferences most frequently in the data science field are listed below:

Strata Data Conference – by O’Reilly
Open Data Science Conference – by Cambridge

https://towardsdatascience.com/
https://www.datasciencecentral.com/
https://www.kdnuggets.com/
https://www.analyticsvidhya.com/
https://www.datasciencedreamjob.com/blog


Kaggle Days – by Kaggle
Machine Learning Developer Summit – by Analytics Magazine
Data Hack Summit – by Analytics Vidhya

Meet-ups and interest groups
Meet-ups are also events where different groups of similar interest
professionals meet and discuss ideas. They can be offline at places or
gathered over some open source projects as well.

Data Science Network - Bangalore
Hyderabad Data Science Group - Hyderabad
Practical Data Science - Bangalore
Datagiri – San Francisco
Deep Learning Bangalore - Bangalore

YouTube channels and Podcasts
Sometimes you need an individual explaining concepts and delivering
through multi-media mode. YouTube and podcast are such sources which
provide you bite-sized information on the targeted topics that you want to
learn:

Statistics in Machine Learning - https://www.youtube.com/playlist?
list=PLZoTAELRMXVMhVyr3Ri9IQ-t5QPBtxzJO
Data Science by Arpan Gupta IIT,Roorkee -
https://www.youtube.com/channel/UCjrGJITO_pggWmjgPvUiHF
A/videos
Intellipaat -
https://www.youtube.com/channel/UCCktnahuRFYIBtNnKT5IYy
g
Machine Learning Tutorial in Python - Edureka
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-
g8GUpKI3hHOwM_9Dn
365 Data Science -
https://www.youtube.com/channel/UCEBpSZhI1X8WaP-

https://www.youtube.com/playlist?list=PLZoTAELRMXVMhVyr3Ri9IQ-t5QPBtxzJO
https://www.youtube.com/channel/UCjrGJITO_pggWmjgPvUiHFA/videos
https://www.youtube.com/channel/UCCktnahuRFYIBtNnKT5IYyg
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9Dn
https://www.youtube.com/channel/UCEBpSZhI1X8WaP-kY_2LLcg


kY_2LLcg

Analytic reports and white paper
Active organizations in the field of data science, as well as consulting
companies, regularly publish reports and white papers which contain
valuable information from a business perspective of how data science is
helping them achieve better results or as a market trend.

Big Data and Analytics Hub -
https://www.ibmbigdatahub.com/whitepapers
Inside BigData - https://insidebigdata.com/
Analytics Insight - https://www.analyticsinsight.net/
Data Science Foundation - https://datascience.foundation/
Data Science Journal - https://datascience.codata.org/

Talk to people
Talking to people from the same field or other fields is always rewarding
where you get to know new things and different perspectives. A data
scientist understands these perspectives and builds impact data products for
society and organizations.

Conclusion
In this chapter, we have seen several resources based on the different
variety of sources, such as a book, online communities, conferences are a
few examples. But this not only the resources to learn about data science.
These are some of the recommended learning resources to explore more.

https://www.youtube.com/channel/UCEBpSZhI1X8WaP-kY_2LLcg
https://www.ibmbigdatahub.com/whitepapers
https://insidebigdata.com/
https://www.analyticsinsight.net/
https://datascience.foundation/
https://datascience.codata.org/
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CHAPTER 20
Do It Your Self Challenges

his chapter lists out 5 real-life industry-grade challenges for the
readers to attempt to solve. Some resources are also provided to get

started on the challenges. The reader is expected to start learning from the
challenges by doing hands-on problem-solving.

Structure
Challenge overview
Challenge statement
Target users
Resources
IP source

Objectives
After studying this chapter, you should be able to:

Understand the real use cases and their challenges.
Able to give some useful and effective solutions to the challenges.
Identify resources to solve them.

DIY challenge 1 – Analyzing the pathological slide
for blood analysis
This challenge is from the healthcare industry, where a shortage of lab
professionals causesa lot of delay in essentials test results in semi-urban and
rural areas where the blood slides are manually analyzed.

Challenge overview



Medical diagnosis is the very first step and necessary prerequisites for
recommending any medicines and planning further treatment. This process
consists of an analysis of the multimedia data of X-rays, ECGs, pathology
tests, ultrasounds, and other required tests. But that is not easy to perform
for any emergency cases with high efficiency. By involving the Artificial
Intelligence technologies, we can assist analyze on the multimedia data
quickly to make decisions smartly. Pathology test based medical diagnosis
is one of the key areas recently gets the attention towards the usage of AI
application development. In this test, we will perform the analysis like
counting of WBC and RBC cells, thickness, foreign body detection, shape,
and many more. Especially this analysis takes the input as images. Deep
learning algorithm-based image analysis techniques show a greater impact
on these tasks very effectively.
We can take the use case of analyzing a blood sample to detect the presence
of any unwanted foreign body in the blood. Normally, this a standard
process performed by a pathologist with the tiny help eye-piece of a
microscope to analyze slides manually. But there is a high possibility of
error-prone during the analysis, and also it is a complicated process. To
assist this process, the involvement of AI has two main components:
capturing the slide content as a high-resolution image and an AI algorithm
to help the pathologist to analyze the corresponding output. The captured
image will be stored in the cloud environment. Through the API calls, we
perform the analysis on those images, and we can get the report
automatically.

Challenge statement
This challenge is coming under Image analysis techniques. So, computer
vision is the perfect technique to adopt this challenge. In short, we can state
the challenge statement as below:
Can you build a computer vision-based application to analyze pathological
blood samples?

Target users
Pathology labs, clinics, and healthcare service providers.



Resources
The following are the key resources the learning can explore more about
this challenge:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996871/
http://www.virtualpathology.leeds.ac.uk/research/analysis/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556681/
https://blog.athelas.com/classifying-white-blood-cells-with-
convolutional-neural-networks-2ca6da239331

IP source
Probyto AI Lab (https://ailab.probyto.com)

DIY challenge 2 – IoT based weather monitoring
system
Deterioration weather in big cities and in urban clusters is a problem to
tackle for healthy living. This challenge comes from the renewed interest in
monitoring the weather to manage the industrial activities to maintain
healthy air.

Challenge overview
Nowadays, climate changes happen very fast and drastically. So, the
researchers get attention towards forecasting the weather changesbecause it
directly affects humans’ life and livelihood. Collecting the temporal
dynamics of weather changes is a very important process. From the
perspective of any industry, if any certain disaster comes, they must monitor
the weather very closely.
IoT based system with the support of machine learning algorithms can be
effective in solving this kind of problem. IoT system can be developed by
embedding a system to design a weather monitor system with the capability
of monitoring the parameters of climate changes in a field or an industry
remotely. This system may have components like sensory used to detect

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996871/
http://www.virtualpathology.leeds.ac.uk/research/analysis/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556681/
https://blog.athelas.com/classifying-white-blood-cells-with-convolutional-neural-networks-2ca6da239331
https://ailab.probyto.com/


light, temperature, humidity, and many more, and to transmit the data, it
needs the module to store the data in clouds.

Challenge statement
Can you build a machine learning application along connected to an IoT
weather monitoring sensors to monitor and recommend air quality
parameters?

Target Users
Agriculture, food processing, utilities, cold storage, weather/geospatial
forecasting, disaster management agencies.

Resources
The following are the key resources the learning can explore more about
this challenge:

http://nevonprojects.com/iot-weather-reporting-system/
https://www.ijarcce.com/upload/2016/september-
16/IJARCCE%2066.pdf
http://ijesc.org/upload/c1ad40d536ccca051ff4af59252ab9d6.Smart
%20City%20IoT%20Based%20Weather%20Monitoring%20Syst
em.pdf

IP source
Probyto AI Lab (https://ailab.probyto.com)

DIY challenge 3 – Facial image-based BMI
calculator
Knowing the human body and its functions from secondary sources have
been around for centuries. With the advent of technology, our observable
features can be used to understand the health and functioning of different
parts of the body. Body Mass Index (BMI) is an important metric to

http://nevonprojects.com/iot-weather-reporting-system/
https://www.ijarcce.com/upload/2016/september-16/IJARCCE%2066.pdf
http://ijesc.org/upload/c1ad40d536ccca051ff4af59252ab9d6.Smart%20City%20IoT%20Based%20Weather%20Monitoring%20System.pdf
https://ailab.probyto.com/


monitor the risk of health lifestyle-related disease; this challenge comes
from this domain.

Challenge overview
Research in physiology has shown that facial expressions provide a lot of
cues to human psychological and physical features. In today's world, where
selfie has become common among millennial, a lot of use-cases in
recruitment and user tagging are being built. Life Insurance companies
require BMI for underwriting life policies, as they are looking for
automating underwriting process they want to have approximate BMI by
image.

Challenge statement
Can you create an application that allowsthe user to take a selfie and report
the BMI?

Target users
Life insurance, e-commerce, retail, banking, and healthcare.

Resources
The following are the key resources the learning can explore more about
this challenge:

https://arxiv.org/pdf/1703.03156.pdf
https://www.sciencedirect.com/science/article/pii/S0262885613000
462
http://www.fasebj.org/doi/abs/10.1096/fasebj.31.1_supplement.955
.11
http://journals.plos.org/plosone/article/file?
id=10.1371/journal.pone.0169336&type=printable

IP source
Probyto AI Lab (https://ailab.probyto.com)

https://arxiv.org/pdf/1703.03156.pdf
https://www.sciencedirect.com/science/article/pii/S0262885613000462
http://www.fasebj.org/doi/abs/10.1096/fasebj.31.1_supplement.955.11
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169336&type=printable
https://ailab.probyto.com/


DIY challenge 4 – Chatbot assistant for Tourism
in North East
Chatbots are now ubiquitous. They allow a conversation with a machine in
natural language. This has opened the delivery of useful applications to
even naïve users as they work on normal spoken language. This challenge
finds the opportunity for the same in the tourism domain.

Challenge overview
Visiting beautiful places is the aim of any tourist. During the visit, they
want to know more about the places. The tourism development department
has the responsibility to enable all the facilities to the tourist. For example,
if they want to stay for a night, they must know the availability of hotels
around that place. Similarly, related offerings to the tourist must be shown
to them. This is common for any travel agency, hotel booking services, and
other businesses around the place.
In order to help those situations, we can use a chatbot based digital service
to interact the human beings lively and get understanding their expectations,
answers to their questions. Consider, product purchase enablement, will
help them to get the most precious products. This can be done by providing
some rule-based AI systems to converse with them. This is known as
chatbots. It can converse with real people via mobile messaging apps such
as Telegram and Facebook Messenger or web platforms directly answer
their questions.

Challenge statement
Can you develop a chatbot that can help tourists know more about Assam
and North East?

Target users
Travel agencies, hotel booking services, and other businesses built around
travel and tourism

Resources



The following are the key resources the learning can explore more about
this challenge:

https://chatbotsmagazine.com/travel-chatbot-how-chatbots-can-
help-city-tourism-a2f122c0896d
https://medium.com/@onlim_com/chatbots-alexa-co-in-the-
tourism-industry-8f8fe0d95662
https://blogs.msdn.microsoft.com/uk_faculty_connection/2017/09/
08/how-to-build-a-chat-bot-using-azure-bot-service-and-train-it-
with-luis/

IP source
Probyto AI Lab (https://ailab.probyto.com)

DIY challenge 5 – Assaying and grading of fruits
for e-procurement
This challenge comes from the agriculture domain, where assaying and
grading are still a manual process in mandis. The assay and grading are
important to get the real price of a commodity and help farmers and quality
testers to have transparency.

Challenge overview
Across India creating a unified national market for processing agriculture
commodities can be done by Electronic National Agriculture Marget
(eNAM). It is an online based virtual market with the back-end support of
mandi (a physical market where directly agriculture products will present).
This type of trading can be done across the pan-India. The examination of
agricultural produce at the market level is of extreme importance to
improve and enhance the marketability of the product and to enable the
farmers to realize and get the price appropriate to the quality of their
agricultural produce.
A quick analysis of the quality of the products handled by mandis is the
essential solution required. Because mandis handle the large volume of
products (that is, lots), arrival and smaller lots also present there.

https://chatbotsmagazine.com/travel-chatbot-how-chatbots-can-help-city-tourism-a2f122c0896d
https://medium.com/@onlim_com/chatbots-alexa-co-in-the-tourism-industry-8f8fe0d95662
https://blogs.msdn.microsoft.com/uk_faculty_connection/2017/09/08/how-to-build-a-chat-bot-using-azure-bot-service-and-train-it-with-luis/
https://ailab.probyto.com/


Challenge statement
Can you develop an application based on IoT (Computer Vision) for quick
grading and assaying solution for fruits (for example, Apple or orange),
which can also be connected to the internet to increase the efficiency of the
agricultural chain?

Target users
Farmer, procurement mandis, storage houses, and food companies.

Resources
The following are the key resources the learning can explore more about
this challenge:

https://www.sciencedirect.com/science/article/pii/S2214317316300
385
https://pdfs.semanticscholar.org/4aa0/a0cdfe036b512b9c6a0e9f34c
7f47382a27d.pdf
http://pubs.ub.ro/dwnl.php?id=CSCC6201601V01S01A0008
http://tmu.ac.in/college-of-computing-sciences-and-it/wp-
content/uploads/sites/17/2016/10/CCSIT114.pdf

IP source
Probyto AI lab (https://ailab.probyto.com)

Conclusion
In this chapter, we have provided five real industry challenges to solve.
Each problem statement has an overview and also references to follow. By
solving these problems, the reader will have a good hands-on experience in
data science/analytics. In the next chapter, we will provide a data science
assessment, which tests your aptitude, technology, programming,
algorithms, and many other areas.

https://www.sciencedirect.com/science/article/pii/S2214317316300385
https://pdfs.semanticscholar.org/4aa0/a0cdfe036b512b9c6a0e9f34c7f47382a27d.pdf
http://pubs.ub.ro/dwnl.php?id=CSCC6201601V01S01A0008
http://tmu.ac.in/college-of-computing-sciences-and-it/wp-content/uploads/sites/17/2016/10/CCSIT114.pdf
https://ailab.probyto.com/
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CHAPTER 21
Qs for DS Assessment

he selection process for data science job roles is very rigorous and
goes through multiple rounds. A Data Science assessment exam is a

balanced assessment which tests your aptitude, technology, programming,
algorithms, and many other areas. To help readers get a realistic assessment
of their own learning and a standard data science assessment, Probyto is
open-sourcing its recruitment test to the readers. In this chapter, we will
showcase the various probable questions from the previous chapters.

Structure
Data Science Overview
Mathematics Essentials
Statistics Essentials
Exploratory Data Analysis
Data Preprocessing
Feature Engineering
Machine Learning Algorithms
Productionizing Machine Learning Models
Data Flows in Enterprises
Introduction to Databases
Introduction to Big Data-driven
DevOps for Data Science
Introduction to Cloud Computing
Deploy Model to Cloud
Introduction to Business Intelligence
Data Visualization Tools



Objectives
After studying this chapter, you should be able to:

Assess yourself for a data science / analytics role.
Identify the knowledge required to build yourself for a specialist data
role.
Prepare yourself for any data science interview.

Data Science Overview
1. What are the 4 transitional ages of data analytics? Explain will

examples.
2. Discuss five uses cases of data analytics applied in industry.
3. Explain the three key components of data science; domain knowledge,

tools and technology, and mathematical and scientific techniques
4. Give at least two examples of supervised learning algorithms and their

application?
5. Which of the following is a database technology?

a. SQL
b. Python
c. R
d. Postgres

6. Wat is Software as a Service business model?
7. What is the difference between predictive and prescriptive data

analysis?
8. Discuss the responsibilities of the following job roles.

a. Data Analyst
b. Data Science
c. Data Engineer

9. Why is data visualization important for summarizing large amounts of
data?



10. What is bias in AI algorithms? Research online and build awareness of
Responsible AI

Mathematics Essentials
1. Differentiate between matrices and tensors.
2. Why are eigenvectors and eigenvalues used in data analysis? Select all

the correct options.

a. Increase the noise in data
b. Decrease the noise in data
c. Capture significant information
d. Reduce the dimensions of data

3. Explain Eigenvalue decomposition with proper example.
4. Explain Single value decomposition with proper example.
5. Explain Principal component analysis (PCA).
6. What is the use of the Principal component analysis technique in data

analysis?
7. Differentiate between definite and indefinite variables.
8. Explain the gradient descent algorithm with an example.
9. What are the special rules in differential calculus? Discuss.

10. Write a short note on

a. Vectors
b. Matrices
c. Tensors
d. Determinant
e. Multivariate Calculus

Statistics Essentials
1. Define the population and sample statistics.
2. Enumerate different sampling techniques and give an example of each.



3. Is numerical data always continuous in nature?

a. True
b. False

4. What is the typical data we capture in surveys?

a. Qualitative
b. Quantitative

5. Define the following measure of central tendency and give one
example each.

a. Mean
b. Mode
c. Median

6. Define the following measure of variability and give one example
each.

a. Range
b. Variance
c. Covariance
d. Standard Deviation

7. What is the difference between asymmetry and variability?
8. Define the central limit theorem and its significance in statistical

inferences.
9. Give an example of a conditional probability to explain the naive

Bayes theorem.
10. Does the coin toss follow binomial distribution?

a. True
b. False

Exploratory Data Analysis
1. What is Exploratory Data Analysis (EDA) in data science?
2. Discuss the importance of EDA with an example scenario.



3. Explain the steps involved in the EDA process.
4. Discuss in detail the different types of data.
5. Briefly explain about the methods in EDA.
6. What are the objectives of EDA?
7. is the stuff done during the EDA process?
8. Define the following terms:

a. Training data
b. Validation data
c. Testing data

9. How to display the rows in a dataset? Give an example.
10. What is the use of describing () function?

Data Preprocessing
1. What is data preprocessing?
2. What are the important steps in the data preprocessing technique?
3. Enumerate the methods of data preprocessing.
4. Discuss the process of data transformation.
5. What is Normalization?
6. What are the benefits of Normalization?
7. How to handle the missing values in a dataset?
8. What is the use of .info() in data preprocessing?
9. How to visualize the output of preprocessed data?

10. Demonstrate the data preprocessing with sample data.

Feature Engineering
1. What is the core purpose of feature engineering step in Machine

Learning development?
2. What is the difference between raw data and features?
3. Do algorithms also influence the choice of features?



a. True
b. False

4. What is an outlier, and how to handle it?
5. What are the different types of imputation techniques?
6. How binning is helpful in creating features from continuous data?
7. When should log-transform be applied?
8. Does one-hot encoding increase the cardinality of a dataset?

a. True
b. False

9. When scaling of a variable is useful? Give an example.
10. Explain the process flow of features engineering and its impact on the

accuracy of the model.

Machine Learning Algorithms
1. What is machine learning?
2. What areas is machine learning being used?
3. How statistics changed the way we viewed machine learning in the

1990s?
4. Differentiate between supervised, unsupervised, and reinforcement

learning.
5. Which of the following machine learning algorithms falls under

supervised learning?

a. K-Means
b. Apriori algorithm
c. Linear Regression algorithm
d. Hierarchical clustering

6. How is linear regression different from logistic regression?
7. Give examples of day to day life problems that can be solved with

linear regression.
8. What is the random forest algorithm? Explain.



9. What are the Python modules which are used for machine learning?
10. What is meant by Lemmatization? Explain.

Productionizing Machine Learning Models
1. What is the difference between model training and model scoring?
2. Discuss the model production system and its types with examples.
3. Explain the difference between batch prediction and batch learning.
4. What is the concept of REST APIs and why they are so ubiquitous in

modern application development?
5. Give an example of an HTTP URL and its components?
6. What are the different types of HTTP methods and their use?
7. What is a resource in client-server architecture?
8. What is Flask, and what are its key components?
9. Build a simple algorithm and create a flash application to host it as a

REST API.
10. Build a simple HTML interface for the application and access your

application from the web-browser.

Data Flows in Enterprises
1. What is a Data Pipeline?
2. Define: Extract Transform Load (ETL)
3. Mention the different functionalities of the data pipeline.
4. What are the different categories of data pipelines?
5. Enumerate the key considerations before design any data pipeline.
6. Compare: ETL and ELT
7. Draw the ETL data pipeline flow and explain it in brief.
8. What is a Job in the scheduler?
9. Illustrate the process of job scheduling with an example.

10. Discuss the messaging queue system with its components.



Introduction to Databases
1. Define Query?
2. What do you mean by Structure Query Language (SQL)?
3. What is the difference between relational databases and NoSQL

databases?
4. Discuss Acid properties?
5. What is database schema?
6. Write the names of popular DBMS that are available in the market?
7. Discuss different JOIN operations.
8. What is ORM?
9. Describe the installation of MongoDB.

10. Describe the Graph database.

Introduction to Big Data
1. What is Big Data? How can we define Big Data?
2. What is the abbreviation of HDFS?
3. Discuss the Hadoop distributed file system and the principles briefly

behind it
4. What is the significance of MapReduce in HDFS? Explain how the

algorithm works?
5. How does Hadoop manage resources and job scheduling?
6. What are the key ingredients to start a Hadoop cluster?
7. Write a program to count words in document using MapReduce?
8. What are the steps to follow to run the program you wrote above in an

HDFS cluster?
9. What is the default size of a block in an HDFS?

10. Consider you have an HDFS cluster with 1 name node and 2 data
nodes? What happens when there is a disk failure in one data node
while accessing data using your above-written word count code?



DevOps for Data Science
1. What do you mean by DevOps?
2. What is the difference between Agile methodology and CI/CD?
3. What are the three functions of DevOps?
4. What is the DevOps cycle? Describe it.
5. Write the name of two popular version management systems?
6. Describe QA and its different types.
7. What do you mean by unit testing?
8. What is the difference between unit testing and model testing?
9. What is Docker Container?

10. What are the differences between the virtual machine and Docker
containers?

Introduction to Cloud Computing
1. What are the key components of the OSmodel?
2. What is the role of an operating system in the OS model?
3. Can you use the same hardware to run multiple operating systems at

the same time? Explain your answer.
4. What is virtualization technology?
5. Define the functionality of the hypervisor layer.
6. What is cloud computing, and how it differs from VM?
7. Explain the following Cloud service models with examples.

a. IaaS
b. PaaS
c. SaaS

8. Explain the types of cloud infrastructure and their use cases.

a. Private Cloud
b. Public Cloud
c. Hybrid Cloud



9. Discuss the applicability of cloud to data science with respect to the
four key areas.

a. Data Storage
b. Computing
c. Integration
d. Deployment

10. List key cloud service providers and their major services.

Deploy Model to Cloud
1. What options does GCP provide to deploy any application on the

cloud?
2. How can we access the resources on GCP?

a. GCP web console
b. GCP cloud shell
c. GCP cloud API
d. All the above

3. What is the minimum disk space required to start a VM?
4. How to connect to a VM in GCP?
5. What is the command to deploy an application to an app engine?
6. What is the default config file required by the app engine to recognize

an application for deployment?
7. What would you do if you have figured out memory or disk is not

enough for your application? How would you achieve it in GCP?
8. What does gcloud app browse do?
9. What is the counterpart of Google loadbalancer in AWS?

10. What is a significant cloud service provides other than Google?

Introduction to Business Intelligence
1. How does business intelligence conceptual flow work?



2. What are the key areas BI is helping the business?
3. What are the benefits of an organization from BI analysis?
4. When does an organization find the necessity for BI analysis?
5. What are the different ways that businesses can achieve their full

potential according to Tableau's learning series?
6. Explain briefly the process involved in BI analysis.
7. What are the different types of data available in the real world?
8. What are the key performance indicators? And why is it significant in

a BI process?
9. What are the key factors which determine the adoption of a

visualization tool?
10. What are the key BI trends identified by Tableau?

Data Visualization Tools
1. What are the different types of data charts and visual representations

of data?
2. What is the difference between bar graphs and pie charts?
3. What are line plots?
4. Write the names of different visualization tools that are available in

the market?
5. What are the features of Microsoft Power BI?
6. What is the difference between Power BI Pro and Power BI Premium?
7. Write two features of Power BI premium?
8. Write the names of three Business-friendly data visualization tools?
9. Write the definition of Data visualization?

10. What do you mean by Cartesian plots?

Conclusion
In this chapter, we have provided 10 questions each from the previous 16
chapters. By reading this chapter, the reader will be able to assess
himself/herself for a data science role. He or she will be able to identify the



skill and knowledge requirements in the current data science world. Thus,
the reader can prepare well for a data science interview.
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