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Preface

About the Book
We are living in the dawn of what has been termed as the "Fourth Industrial Revolution" by
the World Economic Forum (WEF) in 2016. The Fourth Industrial Revolution is marked
through the emergence of "cyber-physical systems" where software interfaces seamlessly
over networks with physical systems, such as sensors, smartphones, vehicles, power grids or
buildings, to create a new world of Internet of Things (IoT). Data and information are fuel of
this new age where powerful analytics algorithms burn this fuel to generate decisions that
are expected to create a smarter and more efficient world for all of us to live in. This new
area of technology has been defined as Big Data Science and Analytics, and the industrial
and academic communities are realizing this as a competitive technology that can generate
significant new wealth and opportunity.

Big data is defined as collections of datasets whose volume, velocity or variety is so large
that it is difficult to store, manage, process and analyze the data using traditional databases
and data processing tools. In the recent years, there has been an exponential growth in the both
structured and unstructured data generated by information technology, industrial, healthcare,
retail, web, and other systems. Big data science and analytics deals with collection, storage,
processing and analysis of massive-scale data on cloud-based computing systems. Industry
surveys, by Gartner and e-Skills, for instance, predict that there will be over 2 million job
openings for engineers and scientists trained in the area of data science and analytics alone,
and that the job market is in this area is growing at a 150 percent year-over-year growth rate.

There are very few books that can serve as a foundational textbook for colleges looking
to create new educational programs in these areas of big data science and analytics. Existing
books are primarily focused on the business side of analytics, or describing vendor-specific
offerings for certain types of analytics applications, or implementation of certain analytics
algorithms in specialized languages, such as R.

We have written this textbook, as part of our expanding "A Hands-On Approach"TM
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series, to meet this need at colleges and universities, and also for big data service providers
who may be interested in offering a broader perspective of this emerging field to accompany
their customer and developer training programs. The typical reader is expected to have
completed a couple of courses in programming using traditional high-level languages at the
college-level, and is either a senior or a beginning graduate student in one of the science,
technology, engineering or mathematics (STEM) fields. The reader is provided the necessary
guidance and knowledge to develop working code for real-world big data applications.
Concurrent development of practical applications that accompanies traditional instructional
material within the book further enhances the learning process, in our opinion. Furthermore,
an accompanying website for this book contains additional support for instruction and
learning (www.big-data-analytics-book.com)

The book is organized into three main parts, comprising a total of twelve chapters. Part
I provides an introduction to big data, applications of big data, and big data science and
analytics patterns and architectures. A novel data science and analytics application system
design methodology is proposed and its realization through use of open-source big data
frameworks is described. This methodology describes big data analytics applications as
realization of the proposed Alpha, Beta, Gamma and Delta models, that comprise tools
and frameworks for collecting and ingesting data from various sources into the big data
analytics infrastructure, distributed filesystems and non-relational (NoSQL) databases for
data storage, processing frameworks for batch and real-time analytics, serving databases,
web and visualization frameworks. This new methodology forms the pedagogical foundation
of this book.

Part II introduces the reader to various tools and frameworks for big data analytics, and the
architectural and programming aspects of these frameworks as used in the proposed design
methodology. We chose Python as the primary programming language for this book. Other
languages, besides Python, may also be easily used within the Big Data stack described in this
book. We describe tools and frameworks for Data Acquisition including Publish-subscribe
messaging frameworks such as Apache Kafka and Amazon Kinesis, Source-Sink connectors
such as Apache Flume, Database Connectors such as Apache Sqoop, Messaging Queues such
as RabbitMQ, ZeroMQ, RestMQ, Amazon SQS and custom REST-based connectors and
WebSocket-based connectors. The reader is introduced to Hadoop Distributed File System
(HDFS) and HBase non-relational database. The batch analysis chapter provides an in-depth
study of frameworks such as Hadoop-MapReduce, Pig, Oozie, Spark and Solr. The real-time
analysis chapter focuses on Apache Storm and Spark Streaming frameworks. In the chapter
on interactive querying, we describe with the help of examples, the use of frameworks and
services such as Spark SQL, Hive, Amazon Redshift and Google BigQuery. The chapter
on serving databases and web frameworks provide an introduction to popular relational and
non-relational databases (such as MySQL, Amazon DynamoDB, Cassandra, and MongoDB)
and the Django Python web framework.

Part III focuses advanced topics on big data including analytics algorithms and data
visualization tools. The chapter on analytics algorithms introduces the reader to machine
learning algorithms for clustering, classification, regression and recommendation systems,
with examples using the Spark MLlib and H2O frameworks. The chapter on data visualization
describes examples of creating various types of visualizations using frameworks such as
Lightning, pygal and Seaborn.

Bahga & Madisetti, c© 2016
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Through generous use of hundreds of figures and tested code samples, we have attempted
to provide a rigorous "no hype" guide to big data science and analytics. It is expected that
diligent readers of this book can use the canonical realizations of Alpha, Beta, Delta, and
Gamma models for analytics systems to develop their own big data applications. We adopted
an informal approach to describing well-known concepts primarily because these topics are
covered well in existing textbooks, and our focus instead is on getting the reader firmly on
track to developing robust big data applications as opposed to more theory.

While we frequently refer to offerings from commercial vendors, such as Amazon,
Google and Microsoft, this book is not an endorsement of their products or services, nor is
any portion of our work supported financially (or otherwise) by these vendors. All trademarks
and products belong to their respective owners and the underlying principles and approaches,
we believe, are applicable to other vendors as well. The opinions in this book are those of the
authors alone.

Please also refer to our books "Internet of Things: A Hands-On ApproachTM" and
"Cloud Computing: A Hands-On ApproachTM" that provide additional and complementary
information on these topics. We are grateful to the Association of Computing Surveys (ACM)
for recognizing our book on cloud computing as a "Notable Book of 2014" as part of their
annual literature survey, and also to the 50+ universities worldwide that have adopted these
textbooks as part of their program offerings.

Proposed Course Outline
The book can serve as a textbook for senior-level and graduate-level courses in Big Data
Analytics and Data Science offered in Computer Science, Mathematics and Business Schools.

Business 
Analytics

Big Data Analytics

Big Data Science &
Analytics Book Data Science

Mathematics and 
Computer Science 
courses with focus on 
statistics, machine 
learning, decision 
methods and 
modeling

Data Science

Business Analytics
Business school 
courses with focus 
on applications of 
data analytics for 
businesses

Big Data Analytics
Computer Science courses with focus on big data tools & frameworks, 
programming models, data management and  implementation aspects 
of big data applications

Big Data Science & Analytics: A Hands-On Approach
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We propose the following outline for a 16-week senior level/graduate-level course based
on the book.

Week Topics

6 Data acquisition 
•Publish - Subscribe Messaging Frameworks
•Big Data Collection Systems
•Messaging queues
•Custom connectors
• Implementation examples

7 Big Data storage
•HDFS
•HBase

8 Batch Data analysis
•Hadoop & YARN
•MapReduce & Pig
• Spark core
•Batch data analysis examples & case studies

9 Real-time Analysis
• Stream processing with Storm
• In-memory processing with Spark Streaming
• Real-time analysis examples & case studies

10 Interactive querying
•Hive
• Spark SQL
• Interactive querying examples & case studies

Week Topics

1 Introduction to Big Data
• Types of analytics
•Big Data characteristics
•Data analysis flow
•Big data examples, applications & case studies

2 Big Data stack setup and examples
•HDP
•Cloudera CDH
• EMR
•Azure HDInsights

3 MapReduce
•Programming model
• Examples
•MapReduce patterns

4 Big Data architectures & patterns

5 NoSQL Databases
•Key-value databases
•Document databases
•Column Family databases
•Graph databases

Bahga & Madisetti, c© 2016
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Week Topics

11 Web Frameworks & Serving Databases
•Django - Python web framework
•Using different serving databases with Django
• Implementation examples

12 Big Data analytics algorithms
• Spark MLib
•H2O
•Clustering algorithms

13 Big Data analytics algorithms
•Classification algorithms
•Regression algorithms

14 Big Data analytics algorithms
•Recommendation systems

15 Big Data analytics case studies with implementations

16 Data Visualization 
•Building visualizations with Lightning, 

pyGal & Seaborn

Book Website
For more information on the book, copyrighted source code of all examples in the book, lab
exercises, and instructor material, visit the book website: www.big-data-analytics-book.com

Big Data Science & Analytics: A Hands-On Approach
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BIG DATA ANALYTICS
CONCEPTS





1 - Introduction to Big Data

This chapter covers

• What is Analytics?
• What is Big Data?
• Characteristics of Big Data
• Domain Specific Examples of Big Data
• Analytics Flow for Big Data
• Big Data Stack
• Mapping Analytics Flow to Big Data Stack
• Analytics Patterns
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1.1 What is Analytics?

Analytics is a broad term that encompasses the processes, technologies, frameworks and
algorithms to extract meaningful insights from data. Raw data in itself does not have
a meaning until it is contextualized and processed into useful information. Analytics is
this process of extracting and creating information from raw data by filtering, processing,
categorizing, condensing and contextualizing the data. This information obtained is then
organized and structured to infer knowledge about the system and/or its users, its environment,
and its operations and progress towards its objectives, thus making the systems smarter and
more efficient.

The choice of the technologies, algorithms, and frameworks for analytics is driven by the
analytics goals of the application. For example, the goals of the analytics task may be: (1) to
predict something (for example whether a transaction is a fraud or not, whether it will rain on
a particular day, or whether a tumor is benign or malignant), (2) to find patterns in the data
(for example, finding the top 10 coldest days in the year, finding which pages are visited the
most on a particular website, or finding the most searched celebrity in a particular year), (3)
finding relationships in the data (for example, finding similar news articles, finding similar
patients in an electronic health record system, finding related products on an eCommerce
website, finding similar images, or finding correlation between news items and stock prices).

The National Research Council [1] has done a characterization of computational tasks
for massive data analysis (called the seven “giants"). These computational tasks include:
(1) Basis Statistics, (2) Generalized N-Body Problems, (3) Linear Algebraic Computations,
(4) Graph-Theoretic Computations, (5) Optimization, (6) Integration and (7) Alignment
Problems. This characterization of computational tasks aims to provide a taxonomy of
tasks that have proved to be useful in data analysis and grouping them roughly according to
mathematical structure and computational strategy.

We will also establish a mapping between the analytics types the seven computational
giants. Figure 1.1 shows the mapping between analytics types and the seven computational
giants.

1.1.1 Descriptive Analytics

Descriptive analytics comprises analyzing past data to present it in a summarized form
which can be easily interpreted. Descriptive analytics aims to answer - What has happened?
A major portion of analytics done today is descriptive analytics through use of statistics
functions such as counts, maximum, minimum, mean, top-N, percentage, for instance. These
statistics help in describing patterns in the data and present the data in a summarized form.
For example, computing the total number of likes for a particular post, computing the average
monthly rainfall or finding the average number of visitors per month on a website. Descriptive
analytics is useful to summarize the data. In Chapter-3, we describe implementations of
various MapReduce patterns for descriptive analytics (such as Count, Max/Min, Average,
Distinct, and Top-N).

Among the seven computational tasks as shown in Figure 1.1, tasks such as Basic
Statistics and Linear Algebraic Computations can be used for descriptive analytics.

Bahga & Madisetti, c© 2016



1.1 What is Analytics? 23

Pr
ed

ic
tiv

e 
An

al
yti

cs
De

sc
rip

tiv
e 

An
al

yti
cs

Di
ag

no
sti

c A
na

ly
tic

s
Pr

es
cr

ip
tiv

e 
An

al
yti

cs

Ba
si

c S
ta
tis

tic
s

Ty
pe

s o
f A

na
ly
tic

s

Co
m

pu
ta
tio

na
l G

ia
nt

s o
f M

as
si

ve
 D

at
a 

An
al

ys
is

Ge
ne

ra
liz

ed
  N

-B
od

y
Pr

ob
le

m
Li

ne
ar

 A
lg

eb
ra

ic
 

Co
m

pu
ta
tio

ns
Gr

ap
h-

th
eo

re
tic

 
Co

m
pu

ta
tio

ns
O

pti
m

iz
ati

on
In

te
gr

ati
on

Al
ig

nm
en

t P
ro

bl
em

s

-M
ea

n
-M

ed
ia

n
-V

ar
ia

nc
e

-C
ou

nt
s

-T
op

-N
-D

isti
nc

t

-D
ist

an
ce

s
-K

er
ne

ls
-S

im
ila

rit
y 

be
tw

ee
n 

  
pa

irs
 o

f p
oi

nt
s

-N
ea

re
st

 
N

ei
gh

bo
r

-C
lu

st
er

in
g 

-K
er

ne
l S

VM

-L
in

ea
r A

lg
eb

ra
-L

in
ea

r R
eg

re
ss

io
n

-P
CA

-G
ra

ph
 S

ea
rc

h
-B

et
w

ee
nn

es
s

-C
en

tr
al

ity
 

-C
om

m
ut

e 
di

st
an

ce
-S

ho
rt

es
t P

at
h

-M
in

im
um

 
Sp

an
ni

ng
 T

re
e

-M
in

im
iza

tio
n

-M
ax

im
iza

tio
n 

-L
in

ea
r 

Pr
og

ra
m

m
in

g
-Q

ua
dr

ati
c 

Pr
og

ra
m

m
in

g 
-G

ra
di

en
t D

es
ce

nt

-B
ay

es
ia

n 
In

fe
re

nc
e

-E
xp

ec
ta
tio

ns
-M

ar
ko

v 
Ch

ai
n 

M
on

te
 C

ar
lo

-M
at

ch
in

g 
be

tw
ee

n 
da

ta
 se

ts
(t

ex
t, 

im
ag

es
, 

se
qu

en
ce

s)
-H

id
de

n 
M

ar
ko

v 
M

od
el

(W
ha

t h
ap

pe
ne

d?
)

(W
hy

 d
id

 it
 h

ap
pe

n?
)

(W
ha

t i
s l

ik
el

y 
to

 h
ap

pe
n?

)
(W

ha
t c

an
 w

e 
do

 to
 m

ak
e 

it 
ha

pp
en

?)
-R

ep
or

ts
-A

le
rt

s
-Q

ue
rie

s
-D

at
a 

M
in

in
g

-F
or

ec
as

ts
-S

im
ul

ati
on

s
-P

la
nn

in
g

-O
pti

m
iza

tio
n

Fi
gu

re
1.

1:
M

ap
pi

ng
be

tw
ee

n
ty

pe
s

of
an

al
yt

ic
s

an
d

co
m

pu
ta

tio
na

lt
as

ks
or

‘g
ia

nt
s’

Big Data Science & Analytics: A Hands-On Approach



24 Introduction to Big Data

1.1.2 Diagnostic Analytics

Diagnostic analytics comprises analysis of past data to diagnose the reasons as to why certain
events happened. Diagnostic analytics aims to answer - Why did it happen? Let us consider
an example of a system that collects and analyzes sensor data from machines for monitoring
their health and predicting failures. While descriptive analytics can be useful for summarizing
the data by computing various statistics (such as mean, minimum, maximum, variance, or
top-N), diagnostic analytics can provide more insights into why certain a fault has occurred
based on the patterns in the sensor data for previous faults.

Among the seven computational tasks, the computational tasks such as Linear Algebraic
Computations, General N-Body Problems, and Graph-theoretic Computations can be used
for diagnostic analytics.

1.1.3 Predictive Analytics

Predictive analytics comprises predicting the occurrence of an event or the likely outcome
of an event or forecasting the future values using prediction models. Predictive analytics
aims to answer - What is likely to happen? For example, predictive analytics can be used
for predicting when a fault will occur in a machine, predicting whether a tumor is benign
or malignant, predicting the occurrence of natural emergency (events such as forest fires or
river floods) or forecasting the pollution levels. Predictive Analytics is done using predictive
models which are trained by existing data. These models learn patterns and trends from
the existing data and predict the occurrence of an event or the likely outcome of an event
(classification models) or forecast numbers (regression models). The accuracy of prediction
models depends on the quality and volume of the existing data available for training the
models, such that all the patterns and trends in the existing data can be learned accurately.
Before a model is used for prediction, it must be validated with existing data. The typical
approach adopted while developing prediction models is to divide the existing data into
training and test data sets (for example 75% of the data is used for training and 25% data
is used for testing the prediction model). In Chapter-11, we provide implementations of
various algorithms for predictive analytics (including clustering, classification and regression
algorithms) using frameworks such as Spark MLlib and H2O.

Among the seven computational tasks, tasks such as Linear Algebraic Computations,
General N-Body Problems, Graph-theoretic Computations, Integration and Alignment
Problems can be used for predictive analytics.

1.1.4 Prescriptive Analytics

While predictive analytics uses prediction models to predict the likely outcome of an event,
prescriptive analytics uses multiple prediction models to predict various outcomes and the
best course of action for each outcome. Prescriptive analytics aims to answer - What can we
do to make it happen? Prescriptive Analytics can predict the possible outcomes based on the
current choice of actions. We can consider prescriptive analytics as a type of analytics that
uses different prediction models for different inputs. Prescriptive analytics prescribes actions
or the best option to follow from the available options. For example, prescriptive analytics
can be used to prescribe the best medicine for treatment of a patient based on the outcomes of
various medicines for similar patients. Another example of prescriptive analytics would be to
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suggest the best mobile data plan for a customer based on the customer’s browsing patterns.
Among the seven computational tasks, tasks such as General N-Body Problems, Graph-

theoretic Computations, Optimization and Alignment Problems can be used for prescriptive
analytics.

1.2 What is Big Data?

Big data is defined as collections of datasets whose volume, velocity or variety is so large that
it is difficult to store, manage, process and analyze the data using traditional databases and
data processing tools. In the recent years, there has been an exponential growth in the both
structured and unstructured data generated by information technology, industrial, healthcare,
Internet of Things, and other systems.

According to an estimate by IBM, 2.5 quintillion bytes of data is created every day [9].
A recent report by DOMO estimates the amount of data generated every minute on popular
online platforms [10]. Below are some key pieces of data from the report:
• Facebook users share nearly 4.16 million pieces of content
• Twitter users send nearly 300,000 tweets
• Instagram users like nearly 1.73 million photos
• YouTube users upload 300 hours of new video content
• Apple users download nearly 51,000 apps
• Skype users make nearly 110,000 new calls
• Amazon receives 4300 new visitors
• Uber passengers take 694 rides
• Netflix subscribers stream nearly 77,000 hours of video
Big Data has the potential to power next generation of smart applications that will

leverage the power of the data to make the applications intelligent. Applications of big data
span a wide range of domains such as web, retail and marketing, banking and financial,
industrial, healthcare, environmental, Internet of Things and cyber-physical systems.

Big Data analytics deals with collection, storage, processing and analysis of this massive-
scale data. Specialized tools and frameworks are required for big data analysis when: (1)
the volume of data involved is so large that it is difficult to store, process and analyze data
on a single machine, (2) the velocity of data is very high and the data needs to be analyzed
in real-time, (3) there is variety of data involved, which can be structured, unstructured or
semi-structured, and is collected from multiple data sources, (5) various types of analytics
need to be performed to extract value from the data such as descriptive, diagnostic, predictive
and prescriptive analytics. Big Data tools and frameworks have distributed and parallel
processing architectures and can leverage the storage and computational resources of a large
cluster of machines.

Big data analytics involves several steps starting from data cleansing, data munging (or
wrangling), data processing and visualization. Big data analytics life-cycle starts from the
collection of data from multiple data sources. Specialized tools and frameworks are required
to ingest the data from different sources into the dig data analytics backend. The data is stored
in specialized storage solutions (such as distributed filesystems and non-relational databases)
which are designed to scale. Based on the analysis requirements (batch or real-time),
and type of analysis to be performed (descriptive, diagnostic, predictive, or predictive)
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specialized frameworks are used. Big data analytics is enabled by several technologies such
as cloud computing, distributed and parallel processing frameworks, non-relational databases,
in-memory computing, for instance.

Some examples of big data are listed as follows:
• Data generated by social networks including text, images, audio and video data
• Click-stream data generated by web applications such as e-Commerce to analyze user

behavior
• Machine sensor data collected from sensors embedded in industrial and energy systems

for monitoring their health and detecting failures
• Healthcare data collected in electronic health record (EHR) systems
• Logs generated by web applications
• Stock markets data
• Transactional data generated by banking and financial applications

1.3 Characteristics of Big Data
The underlying characteristics of big data include:

1.3.1 Volume
Big data is a form of data whose volume is so large that it would not fit on a single machine
therefore specialized tools and frameworks are required to store process and analyze such data.
For example, social media applications process billions of messages everyday, industrial and
energy systems can generate terabytes of sensor data everyday, cab aggregation applications
can process millions of transactions in a day, etc. The volumes of data generated by modern
IT, industrial, healthcare, Internet of Things, and other systems is growing exponentially
driven by the lowering costs of data storage and processing architectures and the need to
extract valuable insights from the data to improve business processes, efficiency and service
to consumers. Though there is no fixed threshold for the volume of data to be considered as
big data, however, typically, the term big data is used for massive scale data that is difficult
to store, manage and process using traditional databases and data processing architectures.

1.3.2 Velocity
Velocity of data refers to how fast the data is generated. Data generated by certain sources
can arrive at very high velocities, for example, social media data or sensor data. Velocity
is another important characteristic of big data and the primary reason for the exponential
growth of data. High velocity of data results in the volume of data accumulated to become
very large, in short span of time. Some applications can have strict deadlines for data analysis
(such as trading or online fraud detection) and the data needs to be analyzed in real-time.
Specialized tools are required to ingest such high velocity data into the big data infrastructure
and analyze the data in real-time.

1.3.3 Variety
Variety refers to the forms of the data. Big data comes in different forms such as structured,
unstructured or semi-structured, including text data, image, audio, video and sensor data. Big
data systems need to be flexible enough to handle such variety of data.
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1.3.4 Veracity

Veracity refers to how accurate is the data. To extract value from the data, the data needs to
be cleaned to remove noise. Data-driven applications can reap the benefits of big data only
when the data is meaningful and accurate. Therefore, cleansing of data is important so that
incorrect and faulty data can be filtered out.

1.3.5 Value

Value of data refers to the usefulness of data for the intended purpose. The end goal of any
big data analytics system is to extract value from the data. The value of the data is also
related to the veracity or accuracy of the data. For some applications value also depends on
how fast we are able to process the data.

1.4 Domain Specific Examples of Big Data

The applications of big data span a wide range of domains including (but not limited to)
homes, cities, environment, energy systems, retail, logistics, industry, agriculture, Internet
of Things, and healthcare. This section provides an overview of various applications of big
data for each of these domains. In the later chapters, the reader is guided through reference
implementations and examples that will help the readers in developing these applications.

1.4.1 Web
• Web Analytics: Web analytics deals with collection and analysis of data on the user

visits on websites and cloud applications. Analysis of this data can give insights about
the user engagement and tracking the performance of online advertisement campaigns.
For collecting data on user visits, two approaches are used. In the first approach, user
visits are logged on the web server which collects data such as the date and time of
visit, resource requested, user’s IP address, HTTP status code, for instance. The second
approach, called page tagging, uses a JavaScript which is embedded in the web page.
Whenever a user visits a web page, the JavaScript collects user data and sends it to
a third party data collection server. A cookie is assigned to the user which identities
the user during the visit and the subsequent visits. The benefit of the page tagging
approach is that it facilitates real-time data collection and analysis. This approach
allows third party services, which do not have access to the web server (serving the
website) to collect and process the data. These specialized analytics service providers
(such as Google Analytics) are offer advanced analytics and summarized reports. The
key reporting metrics include user sessions, page visits, top entry and exit pages,
bounce rate, most visited page, time spent on each page, number of unique visitors,
number of repeat visitors, for instance.
• Performance Monitoring: Multi-tier web and cloud applications such as such as

e-Commerce, Business-to-Business, Health care, Banking and Financial, Retail and
Social Networking applications, can experience rapid changes in their workloads. To
ensure market readiness of such applications, adequate resources need to be provisioned
so that the applications can meet the demands of specified workload levels and at the
same time ensure that the service level agreements are met.
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Provisioning and capacity planning is a challenging task for complex multi-tier
applications since each class of applications has different deployment configurations
with web servers, application servers and database servers. Over-provisioning in
advance for such systems is not economically feasible. Cloud computing provides a
promising approach of dynamically scaling up or scaling down the capacity based on
the application workload. For resource management and capacity planning decisions,
it is important to understand the workload characteristics of such systems, measure
the sensitivity of the application performance to the workload attributes and detect
bottlenecks in the systems. Performance testing of cloud-based applications prior to
deployment can reveal bottlenecks in the system and support provisioning and capacity
planning decisions.
For performance monitoring, various types of tests can be performed such as load
tests (which evaluate the performance of the system with multiple users and workload
levels), stress tests (which load the application to a point where it breaks down) and
soak tests (which subject the application to a fixed workload level for long periods
of time). Big data systems can be used to analyze the data generated by such tests,
to predict application performance under heavy workloads and identify bottlenecks
in the system so that failures can be prevented. Bottlenecks, once detected, can be
resolved by provisioning additional computing resources, by either scaling up systems
(vertical scaling by using instances with more computing capacity) or scaling out
systems (horizontal scaling by using more instances of the same kind).
• Ad Targeting & Analytics: Search and display advertisements are the two most

widely used approaches for Internet advertising. In search advertising, users are
displayed advertisements ("ads"), along with the search results, as they search for
specific keywords on a search engine. Advertisers can create ads using the advertising
networks provided by the search engines or social media networks. These ads are setup
for specific keywords which are related to the product or service being advertised. Users
searching for these keywords are shown ads along with the search results. Display
advertising, is another form of Internet advertising, in which the ads are displayed
within websites, videos and mobile applications who participate in the advertising
network. Display ads can either be text-based or image ads. The ad-network matches
these ads against the content on the website, video or mobile application and places the
ads. The most commonly used compensation method for Internet ads is Pay-per-click
(PPC), in which the advertisers pay each time a user clicks on an advertisement.
Advertising networks use big data systems for matching and placing advertisements
and generating advertisement statistics reports. Advertises can use big data tools for
tracking the performance of advertisements, optimizing the bids for pay-per-click
advertising, tracking which keywords link the most to the advertising landing pages
and optimizing budget allocation to various advertisement campaigns.
• Content Recommendation: Content delivery applications that serve content (such as

music and video streaming applications), collect various types of data such as user
search patterns and browsing history, history of content consumed, and user ratings.
Such applications can leverage big data systems for recommending new content to
the users based on the user preferences and interests. Recommendation systems
use two broad category approaches - user-based recommendation and item based
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recommendation. In user-based recommendation, new items are recommended to a user
based on how similar users rate those items. Whereas in item-based recommendation,
new items are recommended to a user based on how the user rated similar items. In
Chapter-11, we describe a case study on building a movie recommendation system.

1.4.2 Financial
• Credit Risk Modeling: Banking and Financial institutions use credit risk modeling

to score credit applications and predict if a borrower will default or not in the future.
Credit risk models are created from the customer data that includes, credit scores
obtained from credit bureaus, credit history, account balance data, account transactions
data and spending patterns of the customer. Credit models generate numerical scores
that summarize the creditworthiness of customers. Since the volume of customer
data obtained from multiple sources can be massive, big data systems can be used for
building credit models. Big data systems can help in computing credit risk scores of
a large number of customers on a regular basis. In Chapter-11, we describe big data
frameworks for building machine learning models. These frameworks can be used to
build credit risk models by analysis of customer data.
• Fraud Detection: Banking and Financial institutions can leverage big data systems

for detecting frauds such as credit card frauds, money laundering and insurance claim
frauds. Real-time big data analytics frameworks can help in analyzing data from
disparate sources and label transactions in real-time. Machine learning models can
be built for detecting anomalies in transactions and detecting fraudulent activities.
Batch analytics frameworks can be used for analyzing historical data on customer
transactions to search for patterns that indicate fraud.

1.4.3 Healthcare
The healthcare ecosystem consists of numerous entities including healthcare providers
(primary care physicians, specialists, or hospitals), payers (government, private health
insurance companies, employers), pharmaceutical, device and medical service companies, IT
solutions and services firms, and patients. The process of provisioning healthcare involves
massive healthcare data that exists in different forms (structured or unstructured), is stored in
disparate data sources (such as relational databases, or file servers) and in many different
formats. To promote more coordination of care across the multiple providers involved
with patients, their clinical information is increasingly aggregated from diverse sources
into Electronic Health Record (EHR) systems. EHRs capture and store information on
patient health and provider actions including individual-level laboratory results, diagnostic,
treatment, and demographic data. Though the primary use of EHRs is to maintain all medical
data for an individual patient and to provide efficient access to the stored data at the point
of care, EHRs can be the source for valuable aggregated information about overall patient
populations [5, 6].

With the current explosion of clinical data the problems of how to collect data from
distributed and heterogeneous health IT systems and how to analyze the massive scale clinical
data have become critical. Big data systems can be used for data collection from different
stakeholders (patients, doctors, payers, physicians, specialists, etc) and disparate data sources
(databases, structured and unstructured formats, etc). Big data analytics systems allow
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massive scale clinical data analytics and facilitate development of more efficient healthcare
applications, improve the accuracy of predictions and help in timely decision making.

Let us look at some healthcare applications that can benefit from big data systems:
• Epidemiological Surveillance: Epidemiological Surveillance systems study the distri-

bution and determinants of health-related states or events in specified populations and
apply these studies for diagnosis of diseases under surveillance at national level to
control health problems. EHR systems include individual-level laboratory results,
diagnostic, treatment, and demographic data. Big data frameworks can be used
for integrating data from multiple EHR systems and timely analysis of data for
effectively and accurately predicting outbreaks, population-level health surveillance
efforts, disease detection and public health mapping.
• Patient Similarity-based Decision Intelligence Application: Big data frameworks

can be used for analyzing EHR data to extract a cluster of patient records most similar
to a particular target patient. Clustering patient records can also help in developing
medical prognosis applications that predicts the likely outcome of an illness for a
patient based on the outcomes for similar patients.
• Adverse Drug Events Prediction: Big data frameworks can be used for analyzing

EHR data and predict which patients are most at risk for having an adverse response to
a certain drug based on adverse drug reactions of other patients.
• Detecting Claim Anomalies: Heath insurance companies can leverage big data

systems for analyzing health insurance claims to detect fraud, abuse, waste, and
errors.
• Evidence-based Medicine: Big data systems can combine and analyze data from a

variety of sources, including individual-level laboratory results, diagnostic, treatment
and demographic data, to match treatments with outcomes, predict patients at risk for
a disease. Systems for evidence-based medicine enable providers to make decisions
not only based on their own perceptions but also from the available evidence.
• Real-time health monitoring: Wearable electronic devices allow non-invasive and

continuous monitoring of physiological parameters. These wearable devices may be
in various forms such as belts and wrist-bands. Healthcare providers can analyze
the collected healthcare data to determine any health conditions or anomalies. Big
data systems for real-time data analysis can be used for analysis of large volumes of
fast-moving data from wearable devices and other in-hospital or in-home devices, for
real-time patient health monitoring and adverse event prediction.

1.4.4 Internet of Things
Internet of Things (IoT) refers to things that have unique identities and are connected to the
Internet. The "Things" in IoT are the devices which can perform remote sensing, actuating
and monitoring. IoT devices can exchange data with other connected devices and applications
(directly or indirectly), or collect data from other devices and process the data either locally
or send the data to centralized servers or cloud-based application back-ends for processing
the data, or perform some tasks locally and other tasks within the IoT infrastructure, based
on temporal and space constraints (i.e., memory, processing capabilities, communication
latencies and speeds, and deadlines).

IoT systems can leverage big data technologies for storage and analysis of data. Let us
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look at some IoT applications that can benefit from big data systems:
• Intrusion Detection: Intrusion detection systems use security cameras and sensors

(such as PIR sensors and door sensors) to detect intrusions and raise alerts. Alerts can
be in the form of an SMS or an email sent to the user. Advanced systems can even send
detailed alerts such as an image grab or a short video clip sent as an email attachment.
• Smart Parkings: Smart parkings make the search for parking space easier and

convenient for drivers. Smart parkings are powered by IoT systems that detect the
number of empty parking slots and send the information over the Internet to smart
parking application back-ends. These applications can be accessed by the drivers
from smart-phones, tablets and in-car navigation systems. In a smart parking, sensors
are used for each parking slot, to detect whether the slot is empty or occupied. This
information is aggregated by an on-site smart parking controller and then sent over the
Internet to cloud-based big data analytics backend.
• Smart Roads: Smart roads equipped with sensors can provide information on driving

conditions, travel time estimates and alerts in case of poor driving conditions, traffic
congestions and accidents. Such information can help in making the roads safer and
help in reducing traffic jams. Information sensed from the roads can be communicated
via Internet to cloud-based big data analytics applications. The analysis results can
be disseminated to the drivers who subscribe to such applications or through social
media.
• Structural Health Monitoring: Structural Health Monitoring systems use a network

of sensors to monitor the vibration levels in the structures such as bridges and buildings.
The data collected from these sensors is analyzed to assess the health of the structures.
By analyzing the data it is possible to detect cracks and mechanical breakdowns, locate
the damages to a structure and also calculate the remaining life of the structure. Using
such systems, advance warnings can be given in the case of imminent failures of the
structures.
• Smart Irrigation: Smart irrigation systems can improve crop yields while saving

water. Smart irrigation systems use IoT devices with soil moisture sensors to determine
the amount of moisture in the soil and release the flow of water through the irrigation
pipes only when the moisture levels go below a predefined threshold. Smart irrigation
systems also collect moisture level measurements in the cloud where the big data
systems can be used to analyze the data to plan watering schedules.

1.4.5 Environment
Environment monitoring systems generate high velocity and high volume data. Accurate and
timely analysis of such data can help in understanding the current status of the environment
and also predicting environmental trends. Let us look at some environment monitoring
applications that can benefit from big data systems:
• Weather Monitoring : Weather monitoring systems can collect data from a number

of sensor attached (such as temperature, humidity, or pressure) and send the data
to cloud-based applications and big data analytics backends. This data can then be
analyzed and visualized for monitoring weather and generating weather alerts.
• Air Pollution Monitoring: Air pollution monitoring systems can monitor emission

of harmful gases (CO2, CO, NO, or NO2) by factories and automobiles using gaseous
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and meteorological sensors. The collected data can be analyzed to make informed
decisions on pollution control approaches.
• Noise Pollution Monitoring: Due to growing urban development, noise levels in

cities have increased and even become alarmingly high in some cities. Noise pollution
can cause health hazards for humans due to sleep disruption and stress. Noise pollution
monitoring can help in generating noise maps for cities. Urban noise maps can help
the policy makers in urban planning and making policies to control noise levels near
residential areas, schools and parks. Noise pollution monitoring systems use a number
of noise monitoring stations that are deployed at different places in a city. The data on
noise levels from the stations is sent to cloud-based applications and big data analytics
backends. The collected data is then aggregated to generate noise maps.
• Forest Fire Detection: Forest fires can cause damage to natural resources, property

and human life. There can be different causes of forest fires including lightening,
human negligence, volcanic eruptions and sparks from rock falls. Early detection
of forest fires can help in minimizing the damage. Forest fire detection systems
use a number of monitoring nodes deployed at different locations in a forest. Each
monitoring node collects measurements on ambient conditions including temperature,
humidity, light levels, for instance.
• River Floods Detection: River floods can cause extensive damage to the natural and

human resources and human life. River floods occur due to continuous rainfall which
causes the river levels to rise and flow rates to increase rapidly. Early warnings of
floods can be given by monitoring the water level and flow rate. River flood monitoring
system use a number of sensor nodes that monitor the water level (using ultrasonic
sensors) and flow rate (using the flow velocity sensors). Big data systems can be used
to collect and analyze data from a number of such sensor nodes and raise alerts when a
rapid increase in water level and flow rate is detected.
• Water Quality Monitoring: Water quality monitoring can be helpful for identifying

and controlling water pollution and contamination due to urbanization and
industrialization. Maintaining good water quality is important to maintain good health
of plant and animal life. Water quality monitoring systems use sensors to autonomously
and continuously monitor different types contaminations in water bodies (such as
chemical, biological, and radioactive). The scale of data generated by such systems
is massive. Big data systems can help in real-time analysis of data generated by
such systems and generate alerts about any any degradation in water quality, so that
corrective actions can be taken.

1.4.6 Logistics & Transportation
• Real-time Fleet Tracking: Vehicle fleet tracking systems use GPS technology to track

the locations of the vehicles in real-time. Cloud-based fleet tracking systems can be
scaled up on demand to handle large number of vehicles. Alerts can be generated in
case of deviations in planned routes. Big data systems can be used to aggregate and
analyze vehicle locations and routes data for detecting bottlenecks in the supply chain
such as traffic congestions on routes, assignment and generation of alternative routes,
and supply chain optimization.
• Shipment Monitoring: Shipment management solutions for transportation systems
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allow monitoring the conditions inside containers. For example, containers carrying
fresh food produce can be monitored to detect spoilage of food. Shipment monitoring
systems use sensors such as temperature, pressure, humidity, for instance, to monitor
the conditions inside the containers and send the data to the cloud, where it can
be analyzed to detect food spoilage. The analysis and interpretation of data on the
environmental conditions in the container and food truck positioning can enable more
effective routing decisions in real time. Therefore, it is possible to take remedial
measures such as - the food that has a limited time budget before it gets rotten can be
re-routed to a closer destinations, alerts can be raised to the driver and the distributor
about the transit conditions, such as container temperature exceeding the allowed limit,
humidity levels going out of the allowed limit, for instance, and corrective actions can
be taken before the food gets damaged.
For fragile products, vibration levels during shipments can be tracked using accelerometer
and gyroscope sensors. Big data systems can be used for analysis of the vibration
patterns of the shipments to reveal information related to its operating environment
and integrity during transport, handling and storage.
• Remote Vehicle Diagnostics: Remote vehicle diagnostic systems can detect faults

in the vehicles or warn of impending faults. These diagnostic systems use on-board
devices for collecting data on vehicle operation (such as speed, engine RPM, coolant
temperature, or fault code number) and status of various vehicle sub-systems. Modern
commercial vehicles support on-board diagnostic (OBD) standards such as OBD-II.
OBD systems provide real-time data on the status of vehicle sub-systems and diagnostic
trouble codes which allow rapidly identifying the faults in the vehicle. Vehicle
diagnostic systems can send the vehicle data to cloud-based big data analytics backends
where it can be analyzed to generate alerts and suggest remedial actions.
• Route Generation & Scheduling: Modern transportation systems are driven by data

collected from multiple sources which is processed to provide new services to the
stakeholders. By collecting large amount of data from various sources and processing
the data into useful information, data-driven transportation systems can provide new
services such as advanced route guidance, dynamic vehicle routing, anticipating
customer demands for pickup and delivery problem, for instance. Route generation
and scheduling systems can generate end-to-end routes using combination of route
patterns and transportation modes and feasible schedules based on the availability of
vehicles. As the transportation network grows in size and complexity, the number of
possible route combinations increases exponentially. Big data systems can provide
fast response to the route generation queries and can be scaled up to serve a large
transportation network.
• Hyper-local Delivery: Hyper-local delivery platforms are being increasingly used by

businesses such as restaurants and grocery stores to expand their reach. These platforms
allow customers to order products (such as grocery and food items) using web and
mobile applications and the products are sourced from local stores (or restaurants).
As these platforms scale up to serve a large number of customer (with thousands
of transactions every hour), they face various challenges in processing the orders in
real-time. Big data systems for real-time analytics can be used by hyper-local delivery
platforms for determining the nearest store from where to source the order and finding
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a delivery agent near to the store who can pickup the order and deliver to the customer.
• Cab/Taxi Aggregators: On-demand transport technology aggregators (or cab/taxi

aggregators) allow customers to book cabs using web or mobile applications and the
requests are routed to nearest available cabs (sometimes even private drivers who
opt-in their own cars for hire). The cab aggregation platforms use big data systems for
real-time processing of requests and dynamic pricing. These platforms maintain record
of all cabs and match the trip requests from customers to the nearest and most suitable
cabs. These platforms adopt dynamic pricing models where the pricing increases or
decreases based on the demand and the traffic conditions.

1.4.7 Industry
• Machine Diagnosis & Prognosis: Machine prognosis refers to predicting the perfor-

mance of a machine by analyzing the data on the current operating conditions and
the deviations from the normal operating conditions. Machine diagnosis refers to
determining the cause of a machine fault. Industrial machines have a large number
of components that must function correctly for the machine to perform its operations.
Sensors in machines can monitor the operating conditions such as (temperature and
vibration levels). The sensor data measurements are done on timescales of few
milliseconds to few seconds, which leads to generation of massive amount of data.
Machine diagnostic systems can be integrated with cloud-based storage and big data
analytics backends for storage, collection and analysis of such massive scale machine
sensor data. A number of methods have been proposed for reliability analysis and fault
prediction in machines. Case-based reasoning (CBR) is a commonly used method
that finds solutions to new problems based on past experience. This past experience is
organized and represented as cases in a case-base. CBR is an effective technique for
problem solving in the fields in which it is hard to establish a quantitative mathematical
model, such as machine diagnosis and prognosis. Since for each machine, data from a
very large number of sensors is collected, using such high dimensional data for creation
of a case library reduces the case retrieval efficiency. Therefore, data reduction and
feature extraction methods are used to find the representative set of features which
have the same classification ability as the complete set of features.
• Risk Analysis of Industrial Operations: In many industries, there are strict require-

ments on the environment conditions and equipment working conditions. Monitoring
the working conditions of workers is important for ensuring their health and safety.
Harmful and toxic gases such as carbon monoxide (CO), nitrogen monoxide (NO),
Nitrogen Dioxide (NO2), for instance, can cause serious health problems. Gas
monitoring systems can help in monitoring the indoor air quality using various gas
sensors. Big data systems can also be used to analyze risks in industrial operations
and identify the hazardous zones, so that corrective measures can be taken and timely
alerts can be raised in case of any abnormal conditions.
• Production Planning and Control: Production planning and control systems measure

various parameters of production processes and control the entire production process
in real-time. These systems use various sensors to collect data on the production
processes. Big data systems can be used to analyze this data for production planning
and identifying potential problems.
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1.4.8 Retail

Retailers can use big data systems for boosting sales, increasing profitability and improving
customer satisfaction. Let us look at some applications of big data analytics for retail:

• Inventory Management: Inventory management for retail has become increasingly
important in the recent years with the growing competition. While over-stocking of
products can result in additional storage expenses and risk (in case of perishables),
under-stocking can lead to loss of revenue. RFID tags attached to the products allow
them to be tracked in real-time so that the inventory levels can be determined accurately
and products which are low on stock can be replenished. Tracking can be done using
RFID readers attached to the retail store shelves or in the warehouse. Big data systems
can be used to analyze the data collected from RFID readers and raise alerts when
inventory levels for certain products are low. Timely replenishment of inventory can
help in minimizing the loss in revenue due to out-of-stock inventory. Analysis of
inventory data can help in optimizing the re-stocking levels and frequencies based on
demand.
• Customer Recommendations: Big data systems can be used to analyze the customer

data (such as demographic data, shopping history, or customer feedback) and predict
the customer preferences. New products can be recommended to customers based
on the customer preferences and personalized offers and discounts can be given.
Customers with similar preferences can be grouped and targeted campaigns can
be created for customers. In Chapter-11, we describe a case study on building a
recommendation system based on collaborative filtering. Collaborative filtering allows
recommending items (or filtering items from a collection of items) based on the
preferences of the user and the collective preferences of other users (i.e. making use of
the collaborative information available on the user-item ratings).
• Store Layout Optimization: Big data systems can help in analyzing the data on

customer shopping patterns and customer feedback to optimize the store layouts. Items
which the customers are more likely to buy together can be placed in the same or
nearby racks.
• Forecasting Demand: Due to a large number of products, seasonal variations in

demands and changing trends and customer preferences, retailers find it difficult to
forecast demand and sales volumes. Big data systems can be used to analyze the
customer purchase patterns and predict demand and sale volumes.

1.5 Analytics Flow for Big Data

In this section we propose a novel data science and analytics application system design
methodology that can be used for big data analytics. A generic flow for big data analytics,
detailing the steps involved in the implementation of a typical analytics application and the
options available at each step, is presented. Figure 1.2 shows the analytics flow with various
steps. For an application, selecting the options for each step in the analytics flow can help in
determining the right tools and frameworks to perform the analyses.
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1.5.1 Data Collection
Data collection is the first step for any analytics application. Before the data can be
analyzed, the data must be collected and ingested into a big data stack. The choice of
tools and frameworks for data collection depends on the source of data and the type of
data being ingested. For data collection, various types of connectors can be used such
as publish-subscribe messaging frameworks, messaging queues, source-sink connectors,
database connectors and custom connectors. Chapter-5 provides implementations of several
of these connectors.

1.5.2 Data Preparation
Data can often be dirty and can have various issues that must be resolved before the data can
be processed, such as corrupt records, missing values, duplicates, inconsistent abbreviations,
inconsistent units, typos, incorrect spellings and incorrect formatting. Data preparation step
involves various tasks such as data cleansing, data wrangling or munging, de-duplication,
normalization, sampling and filtering. Data cleaning detects and resolves issues such as
corrupt records, records with missing values, records with bad formatting, for instance. Data
wrangling or munging deals with transforming the data from one raw format to another. For
example, when we collect records as raw text files form different sources, we may come
across inconsistencies in the field separators used in different files. Some file may be using
comma as the field separator, others may be using tab as the field separator. Data wrangling
resolves these inconsistencies by parsing the raw data from different sources and transforming
it into one consistent format. Normalization is required when data from different sources
uses different units or scales or have different abbreviations for the same thing. For example,
weather data reported by some stations may contain temperature in Celsius scale while data
from other stations may use the Fahrenheit scale. Filtering and sampling may be useful when
we want to process only the data that meets certain rules. Filtering can also be useful to reject
bad records with incorrect or out-of-range values.

1.5.3 Analysis Types
The next step in the analysis flow is to determine the analysis type for the application. In
Figure 1.2 we have listed various options for analysis types and the popular algorithms for
each analysis type. In Chapter-11, we have described several of these analysis types and the
algorithms along with the implementations of the algorithms using various big data tools and
frameworks.

1.5.4 Analysis Modes
With the analysis types selected for an application, the next step is to determine the analysis
mode, which can be either batch, real-time or interactive. The choice of the mode depends
on the requirements of the application. If your application demands results to be updated
after short intervals of time (say every few seconds), then real-time analysis mode is chosen.
However if your application only requires the results to be generated and updated on larger
timescales (say daily or monthly), then batch mode can be used. If your application demands
flexibility to query data on demand, then the interactive mode is useful. Once you make a
choice of the analysis type and the analysis mode, you can determine the data processing
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pattern that can be used. For example, for basic statistics as the analysis type and the
batch analysis mode, MapReduce can be a good choice. Whereas for regression analysis as
the analysis type and real-time analysis mode (predicting values in real-time), the Stream
Processing pattern is a good choice. The choice of the analysis type, analysis mode, and the
data processing pattern can help you in shortlisting the right tools and frameworks for data
analysis.

1.5.5 Visualizations
The choice of the visualization tools, serving databases and web frameworks is driven by the
requirements of the application. Visualizations can be static, dynamic or interactive. Static
visualizations are used when you have the analysis results stored in a serving database and
you simply want to display the results. However, if your application demands the results to
updated regularly, then you would require dynamic visualizations (with live widgets, plots, or
gauges). If you want your application to accept inputs from the user and display the results,
then you would require interactive visualizations.

1.6 Big Data Stack

While the Hadoop framework has been one of the most popular frameworks for big data
analytics, there are several types of computational tasks for which Hadoop does not work
well. With the help of the mapping between the analytics types and the computational “giants”
as shown in Figure 1.1, we will identify the cases where Hadoop works and where it does
not, and describe the motivation for having a Big Data stack that can be used for various
types of analytics and computational tasks.

Hadoop is an open source framework for distributed batch processing of massive scale
data using the MapReduce programming model. The MapReduce programming model is
useful for applications in which the data involved is so massive that it would not fit on a
single machine. In such applications, the data is typically stored on a distributed file system
(such as Hadoop Distributed File System - HDFS). MapReduce programs take advantage of
locality of data and the data processing takes place on the nodes where the data resides. In
other words, the computation is moved to where the data resides, as opposed the traditional
way of moving the data from where it resides to where the computation is done. MapReduce
is best suited for descriptive analytics and the basic statistics computational tasks because the
operations involved can be done in parallel (for example, computing counts, mean, max/min,
distinct, top-N, filtering and joins). Many of these operations are completed with a single
MapReduce job. For more complex tasks, multiple MapReduce jobs can be chained together.
However, when the computations are iterative in nature, where a MapReduce job has to be
repeatedly run, MapReduce takes a performance hit because of the overhead involved in
fetching the data from HDFS in each iteration.

For other types of analytics and computational tasks, there are other alternative frameworks
which we will discuss as a part of the Big Data Stack. In this Chapter, we propose and
describe a big data stack comprising of proven and open-source big data frameworks that
form the foundation of this book. Figure 1.3 shows the big data stack with the Chapter
numbers highlighted for the various blocks in the stack. The successive chapters in the book
describe these blocks in detail along with hands-on examples and case studies. We have used
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Python as the primary programming language for the examples and case studies throughout
the book. Let us look at each block one-by-one:

1.6.1 Raw Data Sources

In any big data analytics application or platform, before the data is processed and analyzed, it
must be captured from the raw data sources into the big data systems and frameworks. Some
of the examples of raw big data sources include:
• Logs: Logs generated by web applications and servers which can be used for

performance monitoring
• Transactional Data: Transactional data generated by applications such as eCommerce,

Banking and Financial
• Social Media: Data generated by social media platforms
• Databases: Structured data residing in relational databases
• Sensor Data: Sensor data generated by Internet of Things (IoT) systems
• Clickstream Data: Clickstream data generated by web applications which can be

used to analyze browsing patterns of the users
• Surveillance Data: Sensor, image and video data generated by surveillance systems
• Healthcare Data: Healthcare data generated by Electronic Health Record (EHR) and

other healthcare applications
• Network Data: Network data generated by network devices such as routers and

firewalls

1.6.2 Data Access Connectors

The Data Access Connectors includes tools and frameworks for collecting and ingesting data
from various sources into the big data storage and analytics frameworks. The choice of the
data connector is driven by the type of the data source. Let us look at some data connectors
and frameworks which can be used for collecting and ingesting data. These data connectors
and frameworks are described in detail in Chapter-5. These connectors can include both
wired and wireless connections.
• Publish-Subscribe Messaging: Publish-Subscribe is a communication model that

involves publishers, brokers and consumers. Publishers are the source of data. Publishers
send the data to the topics which are managed by the broker. Publish-subscribe
messaging frameworks such as Apache Kafka and Amazon Kinesis are described in
Chapter-5.
• Source-Sink Connectors: Source-Sink connectors allow efficiently collecting,

aggregating and moving data from various sources (such as server logs, databases,
social media, streaming sensor data from Internet of Things devices and other sources)
into a centralized data store (such as a distributed file system). In Chapter-5 we have
described Apache Flume, which is a framework for aggregating data from different
sources. Flume uses a data flow model that comprises sources, channels and sinks.
• Database Connectors: Database connectors can be used for importing data from

relational database management systems into big data storage and analytics frameworks
for analysis. In Chapter-5 we have described Apache Sqoop, which is a tool that allows
importing data from relational databases.
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• Messaging Queues: Messaging queues are useful for push-pull messaging where the
producers push data to the queues and the consumers pull the data from the queues.
The producers and consumers do not need to be aware of each other. In Chapter-5 we
have described messaging queues such as RabbitMQ, ZeroMQ, RestMQ and Amazon
SQS.
• Custom Connectors: Custom connectors can be built based on the source of the data

and the data collection requirements. Some examples of custom connectors include:
custom connectors for collecting data from social networks, custom connectors for
NoSQL databases and connectors for Internet of Things (IoT). In Chapter-5 we have
described custom connectors based on REST, WebSocket and MQTT. IoT connectors
such as AWS IoT and Azure IoT Hub are also described in Chapter-5.

1.6.3 Data Storage
The data storage block in the big data stack includes distributed filesystems and non-relational
(NoSQL) databases, which store the data collected from the raw data sources using the
data access connectors. In Chapter-6, we describe the Hadoop Distributed File System
(HDFS), a distributed file system that runs on large clusters and provides high-throughput
access to data. With the data stored in HDFS, it can be analyzed with various big data
analytics frameworks built on top of HDFS. For certain analytics applications, it is preferable
to store data in a NoSQL database such as HBase. HBase is a scalable, non-relational,
distributed, column-oriented database that provides structured data storage for large tables.
The architecture of HBase and its use cases are described in Chapter-4.

1.6.4 Batch Analytics
The batch analytics block in the big data stack includes various frameworks which allow
analysis of data in batches. These include the following:
• Hadoop-MapReduce: Hadoop is a framework for distributed batch processing of big

data. The MapReduce programming model is used to develop batch analysis jobs
which are executed in Hadoop clusters. Examples of MapReduce jobs and case studies
of using Hadoop-MapReduce for batch analysis are described in Chapter-7.
• Pig: Pig is a high-level data processing language which makes it easy for developers to

write data analysis scripts which are translated into MapReduce programs by the Pig
compiler. Examples of using Pig for batch data analysis are described in Chapter-7.
• Oozie: Oozie is a workflow scheduler system that allows managing Hadoop jobs. With

Oozie, you can create workflows which are a collection of actions (such as MapReduce
jobs) arranged as Direct Acyclic Graphs (DAG).
• Spark: Apache Spark is an open source cluster computing framework for data

analytics. Spark includes various high-level tools for data analysis such as Spark
Streaming for streaming jobs, Spark SQL for analysis of structured data, MLlib
machine learning library for Spark, and GraphX for graph processing. In Chapter-7
we describe the Spark architecture, Spark operations and how to use Spark for batch
data analysis.
• Solr: Apache Solr is a scalable and open-source framework for searching data. In

Chapter-7 we describe the architecture of Solr and examples of indexing documents.
• Machine Learning: In Chapter-11 we describe various machine learning algorithms
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with examples using the Spark MLib and H2O frameworks. Spark MLlib is the Spark’s
machine learning library which provides implementations of various machine learning
algorithms. H2O is an open source predictive analytics framework which provides
implementations of various machine learning algorithms.

1.6.5 Real-time Analytics

The real-time analytics block includes the Apache Storm and Spark Streaming frameworks.
These frameworks are described in detail in Chapter-8. Apache Storm is a framework
for distributed and fault-tolerant real-time computation. Storm can be used for real-time
processing of streams of data. Storm can consume data from a variety of sources such as
publish-subscribe messaging frameworks (such as Kafka or Kinesis), messaging queues (such
as RabbitMQ or ZeroMQ) and other custom connectors. Spark Streaming is a component
of Spark which allows analysis of streaming data such as sensor data, click stream data,
web server logs, for instance. The streaming data is ingested and analyzed in micro-batches.
Spark Streaming enables scalable, high throughput and fault-tolerant stream processing.

1.6.6 Interactive Querying

Interactive querying systems allow users to query data by writing statements in SQL-like
languages. We describe the following interactive querying systems, with examples, in
Chapter-9:
• Spark SQL: Spark SQL is a component of Spark which enables interactive querying.

Spark SQL is useful for querying structured and semi-structured data using SQL-like
queries.
• Hive: Apache Hive is a data warehousing framework built on top of Hadoop. Hive

provides an SQL-like query language called Hive Query Language, for querying data
residing in HDFS.
• Amazon Redshift: Amazon Redshift is a fast, massive-scale managed data warehouse

service. Redshift specializes in handling queries on datasets of sizes up to a petabyte
or more parallelizing the SQL queries across all resources in the Redshift cluster.
• Google BigQuery: Google BigQuery is a service for querying massive datasets.

BigQuery allows querying datasets using SQL-like queries.

1.6.7 Serving Databases, Web & Visualization Frameworks

While the various analytics blocks process and analyze the data, the results are stored in
serving databases for subsequent tasks of presentation and visualization. These serving
databases allow the analyzed data to be queried and presented in the web applications. In
Chapter-10, we describe the following SQL and NoSQL databases which can be used as
serving databases:
• MySQL: MySQL is one of the most widely used Relational Database Management

System (RDBMS) and is a good choice to be used as a serving database for data
analytics applications where the data is structured.
• Amazon DynamoDB: Amazon DynamoDB is a fully-managed, scalable,

high-performance NoSQL database service from Amazon. DynamoDB is an excellent
choice for a serving database for data analytics applications as it allows storing and
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retrieving any amount of data and the ability to scale up or down the provisioned
throughput.
• Cassandra: Cassandra is a scalable, highly available, fault tolerant open source

non-relational database system.
• MongoDB: MongoDB is a document oriented non-relational database system.

MongoDB is powerful, flexible and highly scalable database designed for web
applications and is a good choice for a serving database for data analytics applications.

In Chapter-10, we also describe Django, which is an open source web application
framework for developing web applications in Python. Django is based on the
Model-Template-View architecture and provides a separation of the data model from the
business rules and the user interface. While web applications can be useful for presenting the
results, specialized visualizing tools and frameworks can help in understanding the data, and
the analysis results quickly and easily. In Chapter-12, we describe the following visualization
tools and frameworks:
• Lightning: Lightning is a framework for creating web-based interactive visualizations.
• Pygal: The Python Pygal library is an easy to use charting library which supports

charts of various types.
• Seaborn: Seaborn is a Python visualization library for plotting attractive statistical

plots.

1.7 Mapping Analytics Flow to Big Data Stack

For any big data application, once we come up with an analytics flow, the next step is to
map the analytics flow to specific tools and frameworks in the big data stack. This section
provides some guidelines in mapping the analytics flow to the big data stack.

For data collection tasks, the choice of a specific tool or framework depends on the
type of the data source (such as log files, machines generating sensor data, social media
feeds, records in a relational database, for instance) and the characteristics of the data. If
the data is to ingested in bulk (such as log files), then a source-sink such as Apache Flume
can be used. However, if high-velocity data is to be ingested at real-time, then a distributed
publish-subscribe messaging framework such as Apache Kafka or Amazon Kinesis can be
used. For ingesting data from relational databases, a framework such as Apache Sqoop can
be used. Custom connectors can be built based on HTTP/REST, WebSocket or MQTT, if
other solutions don’t work well for an application or there are additional constraints. For
example, IoT devices generating sensor data may be resource and power constrained, in
which case a light-weight communication protocol such as MQTT may be chosen and a
custom MQTT-based connector can be used.

For data cleaning and transformation, tools such as Open Refine [3] and Stanford
DataWrangler [4] can be used. These tools support various file formats such as CSV,
Excel, XML, JSON and line-based formats. With these tools you can remove duplicates,
filter records with missing values, trim leading and trailing spaces, transpose rows to columns,
transform the cell values, cluster similar cells and perform various other transformations.
For filtering, joins, and other transformations, high-level scripting frameworks such as Pig
can be very useful. The benefit of using Pig is that you can process large volumes of
data in batch mode, which may be difficult with standalone tools. When you are not sure
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about what transformation should be applied and want to explore the data and try different
transformations, then interactive querying frameworks such as Hive, SparkSQL can be useful.
With these tools, you can query data with queries written in an SQL-like language.

For the basic statistics analysis type (with analysis such as computing counts, max, min,
mean, top-N, distinct, correlations, for instance), most of the analysis can be done using the
Hadoop-MapReduce framework or with Pig scripts. Both MapReduce and Pig allow data
analysis in batch mode. For basic statistics in batch mode, the Spark framework is also a
good option. For basic statics in real-time mode, Spark Streaming and Storm frameworks can
be used. For basic statistics in interactive mode, a framework such as Hive and SparkSQL
can be used.

Like, basic statistics, we can similarly map other analysis types to one of the frameworks
in the big data stack. Figures 1.4 and 1.5 show the mappings between the various analysis
types and the big data frameworks.

1.8 Case Study: Genome Data Analysis

Let us look at a case study of using the Big Data stack for analysis of genome data. For this
case study, we will use the synthetic data generator provided with the GenBase [2] genomics
benchmark. This data generator generates four types of datasets: (1) Microarray data which
includes the expression values for a large number of genes for different patients, (2) Patient
meta-data which contains the demographic data (patient age, gender, zip code) and clinical
information (disease and drug response) for each patient whose genomic data is available
in the microarray dataset, (3) Gene meta-data which contains information such as target
of the gene (i.e. ID of another gene that is targeted by the protein from the current gene),
chromosome number, position (number of base pairs from the start of the chromosome to
the start of the gene), length (in base pairs) and function (coded as an integer), (4) Gene
Ontology (GO) data which specifies the GO categories for different genes. Figure 1.6 shows
small samples for the four types of datasets.

To come up with a selection of the tools and frameworks from the Big Data stack that can
be used for genome data analysis, let us come up with the analytics flow for the application
as shown in Figure 1.7(a).

Data Collection

Let us assume that we have the raw datasets available either in an SQL database or as raw
text files. To import datasets from the SQL database into the big data stack, we can use an
SQL connector. Whereas for importing raw dataset files, a source-sink connector can be
useful.

Data Preparation

In the data preparation step, we may have to perform data cleansing (to remove missing
values and corrupt records) and data wrangling (to transform records in different formats to
one consistent format).
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1.8 Case Study: Genome Data Analysis 47

Analysis Types
Let us say, for this application we want to perform two types of analysis as follows:
(1) predict the drug response based on gene expressions, (2) find correlations between
expression values of all pairs of genes to find genes which have similar expression patterns
and genes which have opposing expression patterns. The first analysis comes under the
regression analysis category, where a regression model can be built to predict the drug
response. The target variable for the regression model is the patient drug response and the
independent variables are the gene expression values. The second type of analysis comes
under the basic statistics category, where we compute the correlations between expression
values of all pairs of genes.

Analysis Modes
Based on the analysis types determined the previous step, we know that the analysis modes
required for the application will be batch and interactive.

Visualizations
The front end application for visualizing the analysis results would be dynamic and interactive.

Mapping Analytics Flow to Big Data Stack
With the analytics flow for the application created, we can now map the selections at each
step of the flow to the big data stack. Figure 1.7(b) shows a subset of the components of the
big data stack based on the analytics flow. The implementation details of this application are
provided in Chapter-11.

Figure 1.8 shows the steps involved in building a regression model for predicting drug
response and the data at each step. Before we can build the regression model, we have to
perform some transformations and joins to make the data suitable for building the model.
We select genes with a particular set of functions and join the gene meta-data with patient
meta-data and microarray data. Next, we pivot the results to get the expression values for
each type of gene for each patient. Then we select the patient-ID, disease and drug response
from the patient meta-data. Next, we join the tables obtained in previous two steps to generate
a new table which has all the data in the right format to build a regression model.

Figure 1.9 shows the steps involved in computing correlation between the expression
levels of all pairs of genes and the data at each step. We select patients with a specific disease
and join the results with the microarray table. Next, we pivot the table in the previous step
to get the expression values for all genes for each patient. We use this table to create the
correlation matrix having correlations between the expression values of all pairs of genes.

Big Data Science & Analytics: A Hands-On Approach
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1.9 Case Study: Weather Data Analysis

Let us look at a case study of using the big data stack for analysis of weather data. To come
up with a selection of the tools and frameworks from the big data stack that can be used for
weather data analysis, let us first come up with the analytics flow for the application as shown
in Figure 1.10.

Data Collection
Let us assume, we have multiple weather monitoring stations or end-nodes equipped with
temperature, humidity, wind, and pressure sensors. To collect and ingest streaming sensor
data generated by the weather monitoring stations, we can use a publish-subscribe messaging
framework to ingest data for real-time analysis within the Big Data stack and a Source-Sink
connector to ingest data into a distributed filesystem for batch analysis.

Data Preparation
Since the weather data received from different monitoring stations can have missing values,
use different units and have different formats, we may need to prepare data for analysis by
cleaning, wrangling, normalizing and filtering the data.

Analysis Types
The choice of the analysis types is driven by the requirements of the application. Let us say,
we want our weather analysis application to aggregate data on various timescales (minute,
hourly, daily or monthly) to determine the mean, maximum and minimum readings for
temperature, humidity, wind and pressure. We also want the application to support interactive
querying for exploring the data, for example, queries such as: finding the day with the
lowest temperature in each month of a year, finding the top-10 most wet days in the year,
for instance. These type of analysis come under the basic statistics category. Next, we also
want the application to make predictions of certain weather events, for example, predict the
occurrence of fog or haze. For such an analysis, we would require a classification model.
Additionally, if we want to predict values (such as the amount of rainfall), we would require
a regression model.

Analysis Modes
Based on the analysis types determined the previous step, we know that the analysis modes
required for the application will be batch, real-time and interactive.

Visualizations
The front end application for visualizing the analysis results would be dynamic and interactive.

Mapping Analysis Flow to Big Data Stack
Now that we have the analytics flow for the application, let us map the selections at each step
of the flow to the big data stack. Figure 1.11 shows a subset of the components of the big
data stack based on the analytics flow. To collect and ingest streaming sensor data generated
by the weather monitoring stations, we can use a publish-subscribe messaging framework

Bahga & Madisetti, c© 2016



1.9 Case Study: Weather Data Analysis 53

Da
ta

 P
re

pa
ra
tio

n
An

al
yti

cs
 M

od
es

Vi
su

al
iz

ati
on

s
Da

ta
 

Co
lle

cti
on

Ba
tc

h

Re
al

-ti
m

e

An
al

ys
is

 Ty
pe

s

Cl
as

sifi
ca
tio

n

Re
gr

es
sio

n

Ba
sis

 St
ati

sti
cs

Pu
bl

ish
-

Su
bs

cr
ib

e

So
ur

ce
-S

in
k

Da
ta

 C
le

an
in

g

W
ra

ng
lin

g/
M

un
gi

ng

N
or

m
al

iz
ati

on

Fi
lte

rin
g

Dy
na

m
ic

M
ap

Re
du

ce

St
re

am
 P

ro
ce

ss
in

g

Da
ta

 P
ro

ce
ss

in
g 

Pa
tt

er
ns

In
-M

em
or

y P
ro

ce
ss

in
g

In
te

ra
cti

ve

In
te

ra
cti

ve

Fi
gu

re
1.

10
:A

na
ly

tic
s

flo
w

fo
rw

ea
th

er
da

ta
an

al
ys

is
ap

pl
ic

at
io

n

Big Data Science & Analytics: A Hands-On Approach



54 Introduction to Big Data

Da
ta

 A
cc

es
s

Co
nn

ec
to

rs

Ba
tc

h 
An

al
ys

is

Re
al

-ti
m

e 
An

al
ys

is

Se
rv

in
g 

Da
ta

ba
se

s,
 

W
eb

 F
ra

m
ew

or
ks

, 
Vi

su
al

iza
tio

n 
Fr

am
ew

or
ks

Pu
bl

is
h-

Su
bs

cr
ib

e
(K

afk
a)

So
ur

ce
-S

in
k

(F
lu

m
e)

N
oS

Q
L

(D
yn

am
oD

B)

M
ap

Re
du

ce
(H

ad
oo

p)
DA

G
(S

pa
rk

)

Sc
rip

t
(P

ig
)

St
re

am
 

Pr
oc

es
si

ng
(S

to
rm

)

In
-M

em
or

y
(S

pa
rk

 
St

re
am

in
g)

An
al

yti
c 

SQ
L

(S
pa

rk
 S

Q
L)

M
ac

hi
ne

 
Le

ar
ni

ng
(S

pa
rk

 M
lib

)

In
te

ra
cti

ve
 

Q
ue

ry
in

g

Da
ta

 S
to

ra
ge

Di
st

rib
ut

ed
 

Fi
le

sy
st

em
(H

DF
S)

Ra
w

 D
at

a

W
ea

th
er

 
M

on
ito

rin
g 

Sy
st

em
(S

en
so

rs
)

W
eb

/A
pp

Se
rv

er
s

W
eb

 
Fr

am
ew

or
ks

(D
ja

ng
o)

Fi
gu

re
1.

11
:U

si
ng

B
ig

D
at

a
st

ac
k

fo
rw

ea
th

er
da

ta
an

al
ys

is

Bahga & Madisetti, c© 2016
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such as Apache Kafka (for real-time analysis within the Big Data stack). Each weather
station publishes the sensor data to Kafka. Python examples of publishing data to Kafka are
described in Chapter-5. Real-time analysis frameworks such as Storm and Spark Streaming
can receive data from Kafka for processing. Python examples of real-time analysis with
Kafka as data source are described in Chapter-8.

For batch analysis, we can use a source-sink connector such as Flume to move the data
to HDFS. Once the data is in HDFS, we can use batch processing frameworks such as
Hadoop-MapReduce. We can also use Spark for such Map and Reduce transformations.
Python examples of batch processing using Hadoop- MapReduce and Spark are described in
Chapter-7.

While the batch and real-time processing frameworks are useful when the analysis
requirements and goals are known upfront, interactive querying tools can be useful for
exploring the data. We can use interactive querying framework such as Spark SQL, which
can query the data in HDFS for interactive queries. Examples of Spark SQL for interactive
querying of weather data are described in Chapter-9.

For presenting the results of batch and real-time analysis, a NoSQL database such
as DynamoDB can be used as a serving database. Python examples of writing data to
DynamoDB tables and reading data from the tables are described in Chapter-10. For
developing web applications and displaying the analysis results we can use a web framework
such as Django. Examples of Django applications are described in Chapter-10.

1.10 Analytics Patterns

In the previous sections we proposed a novel data science and analytics application system
design methodology and its realization through use of open-source big data frameworks. In
this section we propose, four analytics patterns: Alpha, Beta, Gamma and Delta, that comprise
tools and frameworks for collecting and ingesting data from various sources into the big data
analytics infrastructure, distributed filesystems and non-relational (NoSQL) databases for
data storage, processing frameworks for batch and real-time analytics, interactive querying
frameworks, serving databases, and web and visualization frameworks. These patterns and
the data science and analytics application system design methodology, forms the pedagogical
foundation of this book.
• Alpha Pattern: Figures 1.12(a) shows the Alpha pattern for batch data analysis. This

pattern can be used for ingesting large volumes of data into a distributed filesystem
(such as HDFS) or a NoSQL database (such as HBase) using source-sink connectors
(such as Flume) and SQL connectors (such as Sqoop). After the data is moved to
the stack, the data can be analyzed in batch mode with batch analysis frameworks
including MapReduce (using Hadoop), scripting frameworks (such as Pig), distributed
acyclic graph frameworks (such as Spark), machine learning frameworks (such as
Spark MLlib). The analysis results are stored either in relational or non-
relational databases. Some of the domain specific applications described in section
1.4 that can use the Alpha pattern include: web analytics, weather monitoring,
epidemiological surveillance, and machine diagnosis.
• Beta Pattern: Figures 1.12(b) shows the Beta pattern for real-time analysis. This

pattern can be used for ingesting streaming data using publish-subscribe messaging

Big Data Science & Analytics: A Hands-On Approach
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frameworks, queues and custom connectors. For real-time analysis, we can use stream
processing frameworks (such as Storm) or in-memory processing frameworks (such as
Spark). The Beta pattern can be used by various Internet of Things applications and
real-time monitoring applications described in section 1.4.
• Gamma Pattern: Figures 1.13(a) shows the Gamma pattern which combines batch

and real-time analysis patterns. This pattern is meant for ingesting streaming data
into a big data stack and analyzing the data both in real-time and in batch modes. For
batch analysis, the data is collected and analyzed over certain intervals. For example,
let us see how this pattern can be used for a system that detects forest fires based on
sensor data collected from a large number of IoT devices deployed in a forest. The
real-time analysis blocks in this pattern can filter and analyze the data in real-time
and make predictions using pre-trained machine learning models. Whereas the batch
analysis blocks can analyze data aggregated over certain intervals (such as hourly,
daily monthly or yearly).
• Delta Pattern: Figures 1.13(b) shows the Delta pattern for interactive querying. This

pattern uses, source-sink connectors (such as Flume) or SQL connectors (such as
Sqoop) to ingest bulk data into the big data stack. After the data is moved to a
distributed filesystem, you can use interactive querying frameworks (such as Hive or
Spark SQL) for querying data with SQL-like queries in an interactive mode. The
Delta pattern can be used by applications such as web analytics, advertisement
targeting, inventory management, production planning and control, and various types
of enterprise applications.

The proposed patterns are generic in nature and specific realizations of these patterns can
be created by mapping them to the specific frameworks or cloud and analytics services from
different cloud vendors. For example, in Figure 1.14 we provide the mappings of the various
blocks used in the analytics patterns to specific services from Amazon AWS and Microsoft
Azure. The patterns enable reuse of code, thus making the design process quicker. Code
templates for specific realizations of the patterns can be used to automate the generation or
construction of the code for various components which can then be customized for specific
applications.

For each of these patterns, there can be multiple levels of complexity and configuration
options based on features such as performance, scalability, fault tolerance and security.
Figure 1.15 describes the various levels for these patterns. For example, the Alpha pattern can
be scaled up to thousands of nodes to store and process several petabytes of data. Similarly,
the Beta pattern can be scaled to hundreds of nodes to process very high throughout streaming
data. Most of the frameworks used for these patterns have distributed and fault tolerant
architectures. Security is another important aspect for big data applications which store and
process sensitive data. For securing the big data frameworks, specialized security frameworks
such as Apache Ranger [16] and Apache Knox [17] can be used. Apache Ranger, for example,
brings security features such as authorization, authentication, auditing, data encryption and
centralized security administration to most of the frameworks that can used for realizing
these patterns. Apache Knox is a REST API Gateway for Hadoop clusters, that provides
security features such as authentication, authorization identity federation, and auditing.
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Summary
In this chapter, we described what is analytics and the various types of analytics applications.
Analytics is the process of extracting and creating information from raw data by filtering,
processing, categorizing, condensing and contextualizing the data. Descriptive analytics deals
with analyzing past data to present it in a summarized form which can be easily interpreted.
Diagnostic analytics deals with the analysis of past data to diagnose the reason for happening
of certain events. Predictive analytics involves predicting the occurrence of an event or
the likely outcome of an event or forecasting the future values using prediction models.
Prescriptive analytics uses multiple prediction models to predict various outcomes and the
best course of action for each outcome. Big data analytics deals with collection, storage,
processing and analysis of massive-scale data. Big data analytics involves several steps
starting from data cleansing, data munging (or wrangling), data processing and visualization.
We described the characteristics of big data including volume, velocity, variety, veracity
and value. Domain specific examples and applications of big data were described. Next,
we proposed a generic flow for big data analytics, detailing the steps involved in a typical
analytics task and the options available at each step. Data preparation step involves various
tasks such as data cleansing, data wrangling or munging, de-duplication, normalization,
sampling and filtering. We described the various analysis types and the computational
‘giants’. We proposed and described a big data stack comprising of proven and open-source
big data frameworks that form the foundation of this book. An approach for mapping the
analytics flow to specific tools and frameworks in the big data stack was described. Finally,
we propose four analytics patterns that include different categories of big data frameworks
such as data acquisition, data storage, batch analysis, real-time analysis, interactive querying,
serving databases, and web and visualization frameworks. The proposed patterns are generic
in nature and specific realizations of these patterns can be created by mapping them to the
specific frameworks or cloud and analytics services from different cloud vendors.
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This chapter covers

• Setting up Big Data Stack
– Hortonworks Data Platform
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– Azure HDInsight cluster
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This chapter provides various options for setting up big data stacks and the big data
frameworks used for the examples in this book. The trademarks belong to their respective
owners.

2.1 Hortonworks Data Platform (HDP)

The Hortonworks Data Platform (HDP) [7] is an open source platform distribution comprising
of various big data frameworks for data access and integration, batch processing, real-time
processing, interactive querying, security and operations tools. The key frameworks in the
HDP stack which are used for the examples in this book include:
• Hadoop
• YARN
• HDFS
• HBase
• Hive
• Pig
• Sqoop
• Flume
• Oozie
• Storm
• Zookeeper
• Kafka
• Spark
For setting up these frameworks, we recommend using Apache Ambari [15]. Ambari is

a tool for provisioning, managing and monitoring clusters that run these frameworks. This
section provides the instructions for setting up a Big Data stack comprising of the frameworks
listed above using Apache Ambari.

Ambari cluster can be setup on any machine(s) running the following supported operating
systems:
• Ubuntu Precise 12.04 or 14.04
• Red Hat Enterprise Linux (RHEL) v6.x
• CentOS v6.x
• Oracle Linux v6.x
• SUSE Linux Enterprise Server (SLES) v11, SP1 and SP3

Launching an AWS EC2 instance

In this section, we describe how to launch an Amazon EC2 instance running Ubuntu 14.04,
on which we will later setup an Apache Ambari cluster. Sign into your Amazon AWS account
and open the EC2 console. To launch a new instance click on the launch instance button from
the Amazon EC2 console. Select Ubuntu 14.04 Amazon Machine Image (AMI) as shown in
Figure 2.1.

Next, choose the instance type as shown in Figure 2.2. We recommend an m4.2xlarge
instance type if you want to setup an Ambari cluster on a single instance.

In the next step, configure the instance details as shown in Figure 2.3.
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Figure 2.1: Select Ubuntu 14.04 AMI

Figure 2.2: Select instance type

Figure 2.3: Amazon EC2 instance launch wizard showing instance details
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Add storage in the next step as shown in Figure 2.4. We recommend at least 20GB
storage.

Figure 2.4: Amazon EC2 instance launch wizard showing storage details

Specify instance tags that can be used to identify the instance as shown in Figure 2.5.

Figure 2.5: Amazon EC2 instance launch wizard showing instance tags

Figure 2.6 shows the security groups page of the instance launch wizard. This page
allows you to choose an existing security group or create a new security group. Security
groups are used to open or block a specific network port for the launched instances. Create a
new security group and open all TCP traffic. The frameworks we will setup with Apache
Ambari use different ports for their web interfaces. So it is easier (though not recommended
in a production environment) to open all TCP traffic without having to identify the individual
ports for the various frameworks.

In the final step, review the instance details and create a new key-pair (or select an
existing key-pair) for the instance and launch the instance as shown in Figure 2.7.

The status of the launched instance can be viewed in the EC2 console. When an instance
is launched, its state is pending. It takes a couple of minutes for the instance to come into the
running state. When the instance comes into the running state, it is assigned a public DNS,
private DNS, public IP and private IP. We will use the public DNS to connect securely to the
instance using SSH.
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Figure 2.6: Amazon EC2 instance launch wizard showing security groups

Figure 2.7: Amazon EC2 instance launch wizard showing key-pair selection window
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Apache Ambari Setup

Connect to the EC2 instance launched in the previous section from your local machine using:

� ssh -i myKeyPair.pem ubuntu@publicDNS

where publicDNS is the Public DNS of the instance you created.

Box 2.1 shows the commands for installing Apache Ambari, the dependencies and some
other packages that are used for the examples in this book.

� Box 2.1: Commands for setting up Ambari

sudo apt-get -q -y update
sudo ufw disable
sudo apt-get -q -y install ntp
sudo service ntp start
sudo wget http://public-repo-1.hortonworks.com/ambari/
ubuntu12/1.x/updates/1.7.0/ambari.list

sudo cp ambari.list /etc/apt/sources.list.d/
sudo apt-key adv -recv-keys -keyserver
keyserver.ubuntu.com B9733A7A07513CAD
sudo apt-get -q -y update

sudo apt-get -q -y install ambari-server

sudo apt-get -q -y install ant gcc g++ libkrb5-dev libmysqlclient-dev
libssl-dev libsasl2-dev libsasl2-modules-gssapi-mit libsqlite3-dev
libtidy-0.99-0 libxml2-dev libxslt-dev python-dev python-simplejson
python-setuptools maven libldap2-dev python2.7-dev make python-pip

On your local machine run the following command to copy the keypair to the EC2
instance (change publicDNS to the public DNS of your instance):

� scp -i myKeyPair myKeyPair.pem ubuntu@publicDNS:/home/ubuntu/.ssh/

On your EC2 instance change the name of the keypair you just copied from your local
machine to id_rsa:

� cd /home/ubuntu/.ssh/
mv myKeyPair.pem id_rsa

Run the following command to setup Apache Ambari:

� sudo ambari-server setup

Start Apache Ambari:
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� sudo ambari-server start

Setting up HDP Stack with Ambari
Open the URL http://<publicDNS>:8080 in a browser. Login into Ambari Server with
username admin and password admin as shown in Figure 2.8.

Figure 2.8: Apache Ambari login page

Figure 2.9: Apache Ambari setup wizard

Next, launch the install wizard as shown in Figure 2.9. Provide a name for the cluster as
shown in Figure 2.10 and then select the HDP stack to install as shown in Figure 2.11.

Enter the private DNS of the instance in the Target Hosts section. Select the EC2 key-pair
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Figure 2.10: Apache Ambari setup wizard - provide cluster name

Figure 2.11: Apache Ambari setup wizard - select stack

file associated with the instance and change SSH user to ubuntu as shown in Figure 2.11.
Follow the wizard to create the cluster as shown in the Figures 2.12 - 2.18.
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Figure 2.12: Apache Ambari setup wizard - install options

Figure 2.13: Apache Ambari setup wizard - confirm hosts
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Figure 2.14: Apache Ambari setup wizard - choose services
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Figure 2.15: Apache Ambari setup wizard - assign masters
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Figure 2.16: Apache Ambari setup wizard - assign slaves and clients

Figure 2.17: Apache Ambari setup wizard - customize services
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Figure 2.18: Apache Ambari setup wizard - review and deploy

After the wizard is complete, you will have a working HDP cluster as shown in
Figure 2.19. You can monitor the services and frameworks installed from the Ambari
dashboard. Make sure all services are running. For each of these services, you can edit the
configurations, monitor and restart the services from the Ambari dashboard.

Figure 2.19: Apache Ambari dashboard showing the installed frameworks

Big Data Science & Analytics: A Hands-On Approach



76 Setting up Big Data Stack

2.2 Cloudera CDH Stack
Cloudera CDH [8] is an open source platform distribution that includes various big data tools
and frameworks. The key frameworks in the CDH stack which are used for the examples in
this book include:
• Hadoop
• YARN
• HDFS
• HBase
• Hive
• Pig
• Sqoop
• Flume
• Zookeeper
• Kafka
• Spark
There are various methods to setup a CDH stack, the easiest one being the automated

method using Cloudera Manager. Cloudera Manager installer can be downloaded and run
from the command line as shown in the box below:

� wget http://archive.cloudera.com/cm5/installer/
latest/cloudera-manager-installer.bin

chmod a+x cloudera-manager-installer.bin
sudo ./cloudera-manager-installer.bin

Follow the steps shown in Figures 2.20-2.22 to install Cloudera Manager Server.

Figure 2.20: Cloudera Manager install wizard
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Figure 2.21: Cloudera Manager installation in progress

Figure 2.22: Cloudera Manager installation confirmation
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Once the Cloudera Manager Server is installed, you can open the URL:
http://<hostname>:7180 in a browser to access the Cloudera Manager. Follow the steps as
shown in Figures 2.23-2.33 to complete the installation of CDH stack.

Figure 2.23: Cloudera Manager login page

Figure 2.24: Select Cloudera edition to install
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Figure 2.25: Cloudera Express edition services

Figure 2.26: Select repository for CDH installation
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Figure 2.27: Specify hosts for CDH installation

Figure 2.28: Provide SSH login credentials for hosts
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Figure 2.29: Cloudera Manager showing cluster installation in progress

Figure 2.30: Cloudera Manager showing installation of selected parcels in progress

Figure 2.31: Cloudera Manager showing cluster installation summary

Big Data Science & Analytics: A Hands-On Approach



82 Setting up Big Data Stack

Figure 2.32: Select CDH services to install

Figure 2.33: Customize role assignments

Bahga & Madisetti, c© 2016



2.3 Amazon Elastic MapReduce (EMR) 83

After the installation wizard is complete, you will have a working CDH cluster as shown
in Figure 2.34. You can monitor the services installed, edit the service configurations and
restart the services from the dashboard.

Figure 2.34: Cloudera Manager dashboard showing installed services

2.3 Amazon Elastic MapReduce (EMR)
Amazon Elastic MapReduce is a managed big data cluster platform that supports the following
frameworks:
• Hadoop
• Hive
• Hue
• Mahout
• Pig
• Spark
EMR supports two launch modes - Cluster and Step execution. With the cluster launch

mode, you can create clusters running the big data frameworks. You can choose the type of
stack to use for the cluster (or the vendor type - EMR stack or MapR big data stack).

With the Step execution option, you add steps (which is a unit or work) to run after the
cluster launches. The EMR service automatically determines the applications/frameworks
that are required to complete the steps. When you create the cluster, the steps are completed,
and the cluster is terminated automatically. EMR supports the following types of steps:
• Custom JAR: Custom JAR job flow runs a Java program that you have uploaded to

Amazon S3.
• Hive program: You can create a Hive job flow with EMR which can either be an

interactive Hive job or a Hive script.
• Streaming job: Streaming job flow runs a single Hadoop job consisting of the map and

reduce functions implemented in a script or binary that you have uploaded to Amazon
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S3. You can write map and reduce scripts in Ruby, Perl, Python, PHP, R, Bash, or
C++.
• Pig programs: You can create a Pig job flow with EMR which can either be an

interactive Pig job or a Pig script.
• Spark application: You can run a Spark application by providing the Spark application

JAR and the Spark-submit options.
An EMR cluster can be created from the EMR dashboard as shown in Figure 2.35.

Provide a cluster name, select an EMR release and the applications to install. Next, select the
instance type to use for the cluster and the number of instances in the cluster. Next, select the
EC2 key-pair that you will use to connect securely to the cluster.

Figure 2.35: Creating an Amazon EMR cluster
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Once the cluster is setup, you can obtain the cluster connection details and the links to
the web interfaces of the individual applications from the cluster details page as shown in
Figure 2.36.

Figure 2.36: Amazon EMR cluster details

Figures 2.37-2.39 show the web interfaces of some of the applications installed on the
EMR cluster.

Figure 2.37: Apache Hue interface
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Figure 2.38: Hadoop ResourceManager interface

Figure 2.39: Hadoop HDFS NameNode interface
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2.4 Azure HDInsight
Azure HDInsight service allows you to setup managed clusters running the Hadoop ecosystem
of components. HDInsight cluster can be created from the Azure portal as shown in
Figure 2.40. The supported cluster types include Hadoop, HBase, Spark, and Storm.

Figure 2.40: Creating Azure HDInsight cluster

Summary
In this chapter we provided four options of setting up the big data stacks and the frameworks
for batch, real-time and interactive processing that are used for the examples in this book.
The readers can choose any stack that suits their requirements. While the Amazon EMR
and Azure HDInsight services require you to setup accounts on the respective cloud service
platforms, the HDP and CDH stacks can be setup on local machines as well.
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This chapter covers
• Analytics Architectural Components & Styles

– Load Leveling with Queues
– Load Balancing with Multiple Consumers
– Leader Election
– Sharding
– Consistency, Availability & Partition Tolerance (CAP)
– Bloom Filter
– Materialized Views
– Lambda Architecture
– Scheduler-Agent-Supervisor
– Pipes & Filters
– Web Service
– Consensus in Distributed Systems

• MapReduce Patterns
– Numerical Summarization
– Top-N
– Filter
– Distinct
– Binning
– Inverted Index
– Sorting
– Joins
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In this chapter, we will describe various architectural components and design styles for
big data systems and applications.

3.1 Analytics Architecture Components & Design Styles
3.1.1 Load Leveling with Queues
Messaging queues can be used between the data producers and data consumers in a big
data system, for load leveling. Queues are are useful for push-pull messaging where the
producers push data to the queues and the consumers pull the data from the queues. Since
big data applications can experience high velocity of data being ingested for processing,
queues can be used as buffers between the producers and consumers to prevent the consumers
from being overloaded during peak loads. Queues allow decoupling of the producers and
consumers. The producers and consumers do not need to be aware of each other and can run
asynchronously.

When queues are used, the consumers can be scaled-up or down based on the load
levels. Queues help in improving the system reliability and availability. In case the consumer
becomes unavailable temporarily, the producer can still continue pushing messages to the
queue.

In Chapter-5, we describe messaging queues such as RabbitMQ, ZeroMQ, RESTMQ
and Amazon SQS.

Producer

Messaging Queue

ConsumerProducer

Producer

Figure 3.1: Load Leveling with Queues

3.1.2 Load Balancing with Multiple Consumers
While messaging queues can be used between data producer and consumer for load leveling,
having multiple consumers can help in load balancing and making the system more scalable,
reliable and available. Data producer(s) push messages to the queue and the consumers
retrieve and process the messages. Multiple consumers can make the system more robust as
there is no single point of failure. More consumers can be added on-demand if the workload
is high. Load balancing between consumers improves the system performance as multiple
consumers can process messages in parallel. This patterns is useful when the messages can
be processed independently without any dependencies. When multiple consumers are used,
the messaging queue is configured to deliver each message at-least once. When a consumer
retrieves a message, it is not deleted from the queue, but hidden from other consumers (with
a visibility timeout) to prevent duplicate processing. After the message is processed, the

Bahga & Madisetti, c© 2016



3.1 Analytics Architecture Components & Design Styles 91

consumer deletes it from the queue. In case the consumer fails while processing a message,
the message become available to other consumers after the visibility timeout period. This
ensures that the message is not lost and is processed by one of the consumers before being
deleted.

Consumer-2

Consumer-3

Consumer-1

Messaging Queue

Producer

Producer

Producer

Figure 3.2: Load Balancing with Multiple Consumers

3.1.3 Leader Election

Big data systems include multiple nodes or instances which store, process and analyze data.
In such systems, there is a need for coordinating the actions performed by the instances, as
the instances may be accessing shared resources. Coordination becomes important when
the instances are running in parallel and each instance is computing a small portion of a
complex computation. In such distributed systems, a leader is assigned the role of managing
the instances and coordinating their state and actions.

Leader election is a mechanism by which the instances in a distributed system can elect
one of the instances as their leader. In the simplest leader election mechanism the instance
with the highest ID is elected as the leader. This mechanism works when the instances
have unique IDs assigned to them. When the leader election process is run, the instances
communicate amongst themselves and elect the instance with highest ID as their leader.
Each instance is aware of the leader when the election process is completed. An important
requirement for any leader election mechanism is that the mechanism should be able to elect
exactly one instance as the leader and all the instances should know who the leader is when
the election process completes.

Another leader election algorithm is the Bully algorithm. This algorithm assumes that the
instances are able to communicate with each other and each instance knows the ID of every
other instance. The Bully algorithm works as follows. An instance A initiates the leader
election if it notices that the leader has failed. The instance A sends the election message
to other instances with higher IDs and awaits for their response. If no response is received,
A declares itself as the leader and notifies all other instances. If the instance A receives a
response from some other instance, it drops out of the election and waits for another instance
to declare itself as the leader. If the instance does not receive any response from another
instance declaring itself as the leader, it resends the election message to instances with higher
IDs. If the instance A receives a message from an instance with lower ID declaring itself as
the leader, the instance A initiates a new election.
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3.1.4 Sharding

Sharding involves horizontally partitioning the data across multiple storage nodes in a data
storage system. In big data applications, the volume of data involved is so large that is
not possible to store the data on a single machine. While vertical scaling (by addition of
more compute, storage and memory resources) can be a temporary solution to handle larger
volumes of data, however, the data will ultimately become too large to be stored on a single
storage node. Moreover, a single machine can only serve a limited number of concurrent
user queries. When applications have large number of concurrent users, sharding can help
in improving the system performance and response times for the users as the queries are
served by multiple nodes. Many data storage systems provide auto-sharding, where the data
is automatically partitioned and distributed among the storage nodes. Sharding enables the
storage system to be scaled out by addition of new nodes. The data shards (partitions) can be
replicated across the storage nodes to make the system more reliable. When the shards are
replicated, load balancing of queries can be done to improve the response times.

Sharding can be accomplished by various sharding strategies, that can either be managed
by the application or the data storage system. Sharding strategies determine which data
should be sent to which shard. Most sharding strategies use one or more fields in the data
as the shard key (or partition key). The shard key used must be unique (can be either the
primary key or a composite key). The most common approach is to use a hash function that
evenly partitions the data across the storage nodes. The hash function is applied to the shard
key to determine the shard in which the data should be stored. By evenly spreading the data
across the storage nodes, the hashing approach prevents a single storage node becoming a
hotspot. Another approach is to store data within a range of shard keys in one shard. The
system maintains a map of the range keys and the corresponding shards. This strategy is
useful when you want to keep data which is retrieved and updated together in one shard
to avoid repeated lookups. For example, the most recent orders (with order IDs within a
particular range) in an eCommerce application can be stored in one shard.

Application-1

Sharding Logic

Node-1

• Hash Function
• Range Key
• Custom Shard Logic

Node-2

Lookup 
Shard

Node-N

Store/Retrieve 
Data

Storage nodes with data shards

Application-2

Store/Retrieve 
Data

Lookup 
Shard

Shards may be replicated on the storage nodes

Figure 3.3: Sharding
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3.1.5 Consistency, Availability & Partition Tolerance (CAP)
For distributed data systems, a trade-off exists between consistency and availability. These
trade-offs are explained with the CAP Theorem, which states that under partitioning, a
distributed data system can either be consistent or available but not both at the same time.

A consistent system is one in which all reads are guaranteed to incorporate the previous
writes. In a consistent system, after an update operation is performed by a writer, it is seen
by all the readers. Availability refers to the ability of the system to respond to all the queries
without being unavailable. A distributed data system is called available when it can continue
to perform its operations even in the event of failure of some of the nodes. Partition tolerance
refers to the ability of the system to continue performing its operations in the event of network
partitions. Network paritions can occur when two (or more) sets of nodes are unable to
connect to each other.

The CAP theorem states that the system can either favor consistency and partition
tolerance over availability, or favor availability and partition tolerance over consistency. Let
us take the example of NoSQL databases such as Amazon DynamoDB and Cassandra. These
databases prefer consistency and partition tolerance over availability. Such systems are said
to be “eventually consistent” as all the writes are eventually (not immediately) seen by all
the nodes. In an eventually consistent system, clients can experience an inconsistent state of
the system while the updates are being propagated to all the nodes and the system has not
yet reached a steady state. In the event of network partitions, all the nodes may not have the
most recent updates and may return inconsistent or out-dated information. When the network
partitions are resolved all the nodes eventually see the updates.

HBase, in contrast to DynamoDB and Cassandra, prefers consistency and partition
tolerance over availability. By adopting strong consistency, HBase ensures that updates
are immediately available to all clients. In the event of network partitions, the system can
become unavailable to ensure consistency.

3.1.6 Bloom Filter
In many big data systems and applications, there may be a requirement to test whether an
element is a member of a set. For example, testing whether a record is a member of a set
of values. In distributed data systems, where the tables are partitioned across a set of nodes,
there may be a requirement to check whether a record (or particular row-key) is present on a
particular partition. For such systems, Bloom filters can be useful for testing set membership.

Bloom filter is a probabilistic data structure represented as an array of m bits which are
initially set to 0. To add an element to the set, Bloom filter uses k hash functions, which
map the element to one of the positions in the bit array and that bit is set to 1. To test for
set membership of an element, the same hash functions are used to map to a position in the
bit array. If the bit in that position is 0, the element is definitely not in the set. However, the
bit is 1, the element may or may not be present in set, because some other element which
mapped to the same position could have set the bit to 1. The nature of Bloom filter is such
that it can give a definitive answer whether an element is not in the set, but it might report
false positives, claiming that an element is in the set while it is not. The number of false
positives can be tuned to less 1%. False positives are not a problem for systems using Bloom
filters because the systems are designed to further check for set membership after checking
with Bloom filter.
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The benefit of using Bloom filter is that it is a space-efficient structure and stores only
a small number of bits instead of storing the elements themselves. The time required for
adding a new element to the set or testing for set membership is a fixed constant (O(k)) and
independent of the number of elements already in set.

h1 hk

x

1 11 11 0 0 0 0 0 000

k hash functions

m bits

Figure 3.4: Bloom Filter

3.1.7 Materialized Views

For big data applications that involve certain queries that are frequently performed, it is
beneficial to pre-compute such queries to improve the response times. Such pre-computed
views are called Materialized Views. Materialized views are suitable for queries that are
either too complex to compute in real-time (such as complex joins) or involve large volumes
of data to be aggregated. Such queries can be precomputed and stored on the disk or a cache.
Materialized views are also beneficial for applications which use distributed data storage
systems such as distributed NoSQL databases. In such data storage systems, the data stored
may not be in a format to enable fast computation of complex queries (as the data may be in
a normalized form or unstructured). For example, let us consider an eCommerce application
that allows various sellers to list and sell their products online. In such an application, each
seller can view the total orders in last 30 days or total sale volume in last 30 days. For such
queries, materialized views can be used to improve the application performance as computing
these at runtime may involve retrieving a large number of orders. Materialized views can
either be updated on a regular basis (hourly or daily basis) or every time there is an update to
the data involved (for example, every time a new order comes in). Materialized views are
suitable for queries where even approximate or slightly inconsistent results would suffice.
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3.1.8 Lambda Architecture

Lambda Architecture is a scalable and fault-tolerant data processing architecture suitable for
applications involving fast streams of incoming data (which is immutable and timestamped).
Lambda architecture enables both querying real-time and historical data, by pre-computing
the queries. Lambda architecture comprises of the following layers:
• Batch Layer: Batch layer is responsible for storing the master dataset (which is

immutable and append-only set of raw data), and pre-computing the batch views.
• Serving Layer: The Serving layer indexes the batch views to enable fast querying of

the data.
• Speed Layer: The Speed layer fills in the gap created due to the high latency of

updates of the batch layer, by processing the recent data in real time. Speed layer uses
incremental algorithms to process the recent data and generate real-time views.

To batch views and real-time views are merged to respond to the incoming queries.
In Chapter-7 we describe the Hadoop framework that can be used for the batch layer. In
Chapter-8, we describe the Storm and Spark frameworks that can be used for the speed layer.
In Chapter-10, we describe various NoSQL databases which can be used for the serving
layer.

Lambda architecture can be used to respond to queries in an ad-hoc manner by
pre-computing the views. While the batch layer processes all the data, the speed layer only
processes the most recent data. The speed layer processes the recent data which is not
represented in the batch view, i.e. the data which comes in after the batch view is updated
(and while the batch layer is processing the next batch). The speed layer does not process all
the recent data at one time. Instead, speed layer uses incremental algorithms which enable
the speed layer to update the real-time views as the new data comes in. If new queries are
to be served which are not precomputed, the batch and speed layers can be updated with
the logic to pre-compute the new queries and batch analytics tasks can be run on the entire
dataset to pre-compute views. The serving layer supports batch updates, so that whenever
new views are generated they can be updated and indexed. By indexing the views, serving
layers enables fast random reads to serve the queries.

Batch Layer Serving Layer

Speed Layer

Master  Dataset

Batch Processing
Batch 
Views

Real-time
Views

Data Stream

Real-time 
Processing

Merged
View Queries

Figure 3.5: Lambda Architecture
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3.1.9 Scheduler-Agent-Supervisor

Big data systems comprising of distributed set of worker nodes that executes the tasks
submitted by the applications, require some mechanism to ensure that the task executions
can be coordinated and the tasks that fail can be retried. The Scheduler-Agent-Supervisor
pattern can be used to make the system more resilient and fault tolerant.

Supervisor

Worker Node

Tasks
Agent

Application

Worker Node

Agent

Worker Node

Agent

Scheduler

State Store

Figure 3.6: Scheduler-Agent-Supervisor

This pattern defines three types of components:
• Scheduler: The Scheduler component is responsible for assigning the tasks to the

worker nodes and tracking the progress of each task. Applications submit new tasks
to the Scheduler, which assigns them to the available worker nodes. The Scheduler
maintains a state store (which can be maintained in a NoSQL database or an in-memory
key-value store), in which the status of each task is stored and updated as the tasks
progress. The state information for each task may include the status of the task (such
as scheduled, running, completed or failed) and the desired time by which the task
should be completed (complete-by time).
• Agent: The scheduler assigns the tasks to the worker nodes by notifying the agent.

Each worker node has an agent (typically running on the node itself). Agent is
responsible for communicating with the scheduler for new tasks and notifying the
worker node for provisioning the resources required for execution of the tasks. Agent
sends the information on the task progress to the scheduler. In some implementations,
the agent may send heart-beast messages to the scheduler to notify it about the task
progress. Alternatively, the scheduler while assigning a task can notify the agent of the
complete-by time. When the task completes, the agent notifies the scheduler. If the
scheduler does not receive the task completion notification, it can assume that the task
failed.
• Supervisor: The Supervisor is responsible for monitoring the status of each task (for
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which the task status is tracked by the Scheduler). The Supervisor, checks for tasks
which have failed or tasks which have timed out, and notifies the Scheduler to retry the
tasks. In some implementations, the Supervisor can keep track of the retry-counts for
each task to prevent the tasks which continually fail from being retried. The Supervisor
can also increase the retry-interval after each unsuccessful attempt to complete a task.

3.1.10 Pipes & Filters

In many big data applications, a complex data processing task can be split into a series of
distinct tasks to improve the system performance, scalability, and reliability. This pattern of
splitting a complex task into a series of distinct tasks is called the Pipes and Filters pattern,
where pipes are the connections between the filters (processing components).

Complex  
Processing Task

Data Source Data Sink

Data Source Data Sink

Split complex processing task 
into series of tasks

(E.g. streaming 
data source)

(E.g. NoSQL database, 
cloud storage)

Data Source Data Sink

Running multiple workers for 
a processing component for 

load balancing

Figure 3.7: Pipes and Filters
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The benefit of this pattern is that each task performs a portion of the work and can be
scaled independently. By running multiple workers for each task, processing can be done
in parallel. Running multiple workers also makes the system more reliable, because even if
some workers fail, the entire pipeline does not fail as other workers can continue processing.
This pattern is particularly useful for real-time analytics applications that involve processing
of streams of data. In Chapter-8, we describe how the Storm framework makes use of a
similar pattern for reliable processing of streams of data.

3.1.11 Web Service

Big data systems can use different data storage systems and databases. A client application
that accesses the big data systems for querying and retrieving the data can be decoupled
from the big data system by using a web service. The web service can provide an interface
that exposes the functionality of the system to the clients in the form of various endpoints.
When a web service is used, the client does not need to be aware of how the data is stored
by the system. The client can send a request to the web service in a standard format (such
as REST) and receive the response in a standard format (such as JSON or XML). The web
service allows the client and the system to be developed independently. The system can
switch to a different database (while keeping the web service interface the same) and the
client is unaffected by the change.

To make the system more secure, a Gatekeeper component can be used, which is typically
deployed on a separate node. The gatekeeper performs authentication, authorization, and
validation of the requests. Authentication involves verifying the identity of a client whereas
authentication involves verifying if the client has sufficient permissions for the requested
operation. The use of a Gatekeeper makes the system more secure and minimizes the risk
of a client gaining access to the system (or the servers) which processes the request and has
access to the data.

Client Gatekeeper Trusted Host

Web Service

Big Data System

Analytics 
Components

Relational
(SQL) 

Database

Non-Relational
(NoSQL) 
Database

Figure 3.8: Web service to decouple client from big data system
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3.1.12 Consensus in Distributed Systems

In distributed systems, the consensus is the problem of getting all the nodes to agree on
something. Consensus may be required for various purposes such as agreeing on a data value
to commit, deciding if a transaction should be committed, agreeing on a node to act as the
leader or synchronization of clocks. The consensus problem becomes more complicated for
distributed systems in which the nodes can be unreliable and can fail. Consensus protocols
for such systems must be fault tolerant. A consensus protocol for a distributed system is
correct if it satisfies the following properties:
• Agreement: The nodes in the distributed system must agree on some value.
• Validity: Only a value that has been proposed by some node must be chosen.
• Termination: All nodes must eventually agree on some value.
The most famous protocol for consensus in distributed systems is the Paxos protocol that

was proposed by Leslie Lamport [19]. In this section, we will briefly describe the Paxos
protocol. (For a more detailed description on Paxos, refer to the ‘Paxos Made Simple’ paper
from Leslie Lamport [20]). Paxos defines the following actors:
• Proposer: Proposer is the node which initiates the protocol and acts as the coordinator.
• Acceptor: Acceptors are the nodes which try to agree on some value which is proposed

by a proposer.
• Learners: Learners are the nodes which learn the value which is agreed on by the

acceptors.
The protocol proceeds with the following steps:
• Prepare: A Proposer sends a proposal identified by a sequence number N to a majority

of the Acceptors (called the Quorum) and waits for their response.
• Promise: Each Acceptor on receiving a proposal compares it with the highest numbered

proposal which it has already received. If the new proposal has a higher sequence
number, the acceptor agrees to accept the proposal with the Promise that all future
proposals with a sequence number lower than N will be rejected. When the Acceptors
agree on a proposal, they also send back to the proposer, the value of any proposal
already accepted.
If the new proposal has a sequence number lower than some earlier proposal, the
Acceptors reject the new proposal.
• Accept Request: When the Proposer receives responses from a majority of the

Acceptors (i.e. the Quorum), accepting the proposal, it knows the value accepted
by the Acceptors and any value previously accepted. The Proposer then picks the value
with the highest sequence number and sends an Accept Request to the Acceptors. If
the Acceptors have not agreed on any previous value, the Proposer selects its value
and send the Accept Request.
If the majority of the Acceptors reject the proposal, the proposal is abandoned and the
process is initiated again.
• Accepted: When the Acceptors receive the Accept Request, they accept the value,

if it is the same as any previously accepted value and its sequence number is the
highest number they have agreed to. Otherwise, the request is rejected. When the
Accept Request is accepted, the accepted value is committed by the acceptors and also
communicated to all the Learners.
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Since the process of agreeing on a value proposed by a proposer also identifies the
proposer whose value is accepted, the same process can also be used for leader election.
The protocol discussed above is the basic form of Paxos protocol. However, in practice, a
more optimized version of the protocol called Multi-Paxos is used which does away with the
Prepare and Promise steps assuming that in a steady state, one of the proposers has already
been chosen as the distinguished proposer (or the leader) and leadership change is going to
be rare.

The use of sequence numbers for proposal allows the acceptors to order the proposals
and accept the proposal with the highest sequence number. Since in a distributed system
where messages are delivered asynchronously, the messages can take arbitrarily long time to
get delivered, the acceptors can decide on which value to agree by ordering the proposals by
the sequence numbers.

Prepare

Promise

Accept Request

Accepted

Prepare (N)

Promise (N, Va , Vb , Vc)

Accept (N, Vn)

Accepted (Vn)

Proposer Acceptors (Quorum) Learners

Figure 3.9: Paxos consensus protocol
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3.2 MapReduce Patterns
MapReduce is a popular programming model for data intensive applications. MapReduce
has been used for batch analysis of data in a wide range of applications (such as social
networking, e-Commerce, finance, entertainment, government, healthcare, telecom, etc.).
MapReduce allows the developers to focus on developing data-intensive applications without
having to worry about issues such as input splitting, scheduling, load balancing and failover.

MapReduce programming model for processing data on large clusters was originally
proposed by Dean and Ghemawat [22]. Hadoop, which is an open source large-scale
distributed batch processing framework, provides an implementation of the MapReduce
model. Hadoop and MapReduce have made it easier for developing scalable and data
intensive applications for cloud computing environments.

MapReduce model has two phases: Map and Reduce. MapReduce programs are written
in a functional programming style to create Map and Reduce functions. The input data to the
map and reduce phases is in the form of key-value pairs. Run-time systems for MapReduce
are typically large clusters built of commodity hardware. The MapReduce run-time systems
take care of tasks such partitioning the data, scheduling of jobs and communication between
nodes in the cluster. This makes it easier for programmers to analyze massive scale data
without worrying about tasks such as data partitioning and scheduling.

OutputInput

Map

Map

Map

Map

Map

Reduce

Reduce

Figure 3.10: Data flow in MapReduce

Figure 3.10 shows the flow of data for a MapReduce job. MapReduce programs take a
set of input key-value pairs and produce a set of output key-value pairs. In the Map phase,
data is read from a distributed file system, partitioned among a set of computing nodes in the
cluster, and sent to the nodes as a set of key-value pairs. The Map tasks process the input
records independently of each other and produce intermediate results as key-value pairs. The
intermediate results are stored on the local disk of the node running the Map task. The choice
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of the key and value pairs at this step depends on the data analysis task to be accomplished.
When all the Map tasks are completed, the Reduce phase begins with the shuffle and sort

step, in which the intermediate data is sorted by the key and the key-value pairs are grouped
and shuffled to the reduce tasks. The reduce tasks then take the key-value pairs grouped by
the key and run the reduce function for each group of key-value pairs. The data processing
logic in reduce function depends on the analysis task to be accomplished.

An optional Combine task can be used to perform data aggregation on the intermediate
data of the same key for the output of the mapper before transferring the output to the Reduce
task.

In this section, we will describe various MapReduce patterns for data analysis, along
with the implementations in Python. The Python implementations use the MRJob Python
library which lets you write MapReduce jobs in Python and run them on several platforms
including local machine, Hadoop cluster and Amazon Elastic MapReduce (EMR). The
Hadoop framework is covered in detail in Chapter-7, where more detailed case studies for
batch analysis of data using MapReduce are described. MapReduce schedulers are also
described in Chapter-7.

3.2.1 Numerical Summarization
Numerical summarization patterns are used to compute various statistics such as counts,
maximum, minimum, mean, etc. These statistics help in presenting the data in a summarized
form. For example, computing the total number of likes for a particular post, computing the
average monthly rainfall or finding the average number of visitors per month on a website.

For the examples in this section, we will use synthetic data similar to the data collected
by a web analytics service that shows various statistics for page visits for a website. Each
page has some tracking code which sends the visitor’s IP address along with a timestamp to
the web analytics service. The web analytics service keeps a record of all page visits and the
visitor IP addresses and uses MapReduce programs for computing various statistics. Each
visit to a page is logged as one row in the log. The log file contains the following columns:
Date (YYYY-MM-DD), Time (HH:MM:SS), URL, IP, Visit-Length.

Count
To compute count, the mapper function emits key-value pairs where the key is the field to
group-by and value is either ‘1’ or any related items required to compute count. The reducer
function receives the key-value pairs grouped by the same key and adds up the values for
each group to compute count. Let us look at an example of computing the total number of
times each page is visited in the year 2014, from the web analytics service logs. Box 3.1
shows the Python program for counting the page visits using MapReduce. Figure 3.11 shows
the data and the key-value pairs at each step of the MapReduce job for computing count.
The mapper function in this example parses each line of the input and emits key-value pairs
where the key is the URL and value is ‘1’. The reducer receives the list of values grouped by
the key and sums up the values to compute count.
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� Box 3.1: Python program for computing count with MapReduce

#Total number of times each page is visited in the year 2014

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()

#Extract year from date
year=date[0:4]

#Emit URL and 1 if year is 2014
if year==’2014’:
yield url, 1

def reducer(self, key, list_of_values):
yield key,sum(list_of_values)

if __name__ == ’__main__’:
MRmyjob.run()
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Max/Min
To compute maximum or minimum, the mapper function emits key-value pairs where the key
is the field to group-by and value contains related items required to compute maximum or
minimum. The reducer function receives the list of values grouped by the same key and finds
the minimum or maximum value. Let us look at an example of computing the most visited
page in each month of the year 2014, from the web analytics service logs. Box 3.2 shows the
Python program for computing the most visited page using MapReduce. Figure 3.12 shows
the data and the key-value pairs at each step of the MapReduce job for finding most visited
page. This example uses the multi-step feature of the mrJob Python library which allows
you to have multiple reduce phases within a job. The MapReduce execution framework
may consider it as multiple MapReduce jobs chained together. The mapper function in this
example parses each line of the input and emits key-value pairs where the key is a tuple
comprising of month and URL, and the value is ‘1’. The reducer receives the list of values
grouped by the key and sums up the values to count the visits for each page in each month.
The reducer emits month as the key and a tuple comprising of page visit count and page URL
as the value. The second reducer receives a list of (visit count, URL) pairs grouped by the
same month, and computes the maximum visit count from the list of values. The second
reducer emits month as the key and a tuple comprising of maximum page visit count and
page URL and the value. In this example, a two-step job was required because we need to
compute the page visit counts first before finding the maximum count.

� Box 3.2: Python program for computing maximum with MapReduce

# Most visited page in each month of year 2014

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper1(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()

#Extract year from date
year=date[0:4]
month=date[5:7]

#Emit (month,url) pair and 1 if year is 2014
if year==’2014’:
yield (month,url), 1

def reducer1(self, key, list_of_values):
yield key[0], (sum(list_of_values), key[1])

Big Data Science & Analytics: A Hands-On Approach
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def reducer2(self, key, list_of_values):
yield key, max(list_of_values)

def steps(self):
return [self.mr(mapper=self.mapper1,
reducer=self.reducer1), self.mr(reducer=self.reducer2)]

if __name__ == ’__main__’:
MRmyjob.run()

Bahga & Madisetti, c© 2016
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Average
To compute the average, the mapper function emits key-value pairs where the key is the field
to group-by and value contains related items required to compute the average. The reducer
function receives the list of values grouped by the same key and finds the average value. Let
us look at an example of computing the average visit length for each page. Box 3.3 shows the
Python program for computing the average visit length using MapReduce. Figure 3.13 shows
the data and the key-value pairs at each step of the MapReduce job. The mapper function
in this example parses each line of the input and emits key-value pairs where the key is the
URL and value is the visit length. The reducer receives the list of values grouped by the key
(which is the URL) and finds the average of these values.

� Box 3.3: Python program for computing average with MapReduce

#Average visit length for each page

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())

year=date[0:4]
month=date[5:7]

yield url, visit_len

def reducer(self, key, list_of_values):
count = 0
total = 0.0
for x in list_of_values:
total = total+x
count=count+1

avgLen = ("%.2f" % (total/count))
yield key, avgLen

if __name__ == ’__main__’:
MRmyjob.run()

Bahga & Madisetti, c© 2016
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3.2.2 Top-N
To find the top-N records, the mapper function emits key-value pairs where the key is the
field to group by and value contains related items required to compute top-N. The reducer
function receives the list of values grouped by the same key, sorts the values and emits the
top-N values for each key. In an alternative approach, each mapper emits its local top-N
records and the reducer then finds the global top-N. Let us look at an example of computing
the top 3 visited page in each month of the year 2014. Box 3.4 shows the Python program
for computing the top visited pages using MapReduce. Figure 3.14 shows the data and the
key-value pairs at each step of the MapReduce job. The mapper function in this example
parses each line of the input and emits key-value pairs where the key is the URL and value
is ‘1’. The reducer receives the list of values grouped by the key and sums up the values to
count the visits for each page. The reducer emits None as the key and a tuple comprising of
page visit count and page URL and the value. The second reducer receives a list of (visit
count, URL) pairs all grouped together (as the key is None). The reducer sorts the visit
counts and emits top 3 visit counts along with the page URLs. In this example, a two-step
job was required because we need to compute the page visit counts first before finding the
top 3 visited pages.

� Box 3.4: Python program for computing Top-N with MapReduce

# Top 3 visited page in each month of year 2014

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len=int(data[4].strip())
#Extract year from date
year=date[0:4]
month=date[5:7]

#Emit url and 1 if year is 2014
if year==’2014’:
yield url, 1

def reducer(self, key, list_of_values):
total_count = sum(list_of_values)
yield None, (total_count, key)

def reducer2(self, _, list_of_values):

Bahga & Madisetti, c© 2016
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N = 3
list_of_values = sorted(list(list_of_values), reverse=True)
return list_of_values[:N]

def steps(self):
return [self.mr(mapper=self.mapper1,
reducer=self.reducer1), self.mr(reducer=self.reducer2)]

if __name__ == ’__main__’:
MRmyjob.run()

Big Data Science & Analytics: A Hands-On Approach
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3.2.3 Filter
The filtering pattern is used to filter out a subset of the records based on a filtering criteria.
The records themselves are not changed or processed. Filtering is useful when you want
to get a subset of the data for further processing. Filtering requires only a Map task. Each
mapper filters out its local records based on the filtering criteria in the map function. Let
us look at an example of filtering all page visits for the page ‘contact.html’ in the month of
Dec 2014, in the web analytics service log. Box 3.5 shows the Python program for filtering
records using MapReduce. Figure 3.15 shows the data and the key-value pairs at each step
of the MapReduce job. The mapper function in this example parses each line of the input,
extracts the month, year and page URL and emits key-value pairs if the month and year are
Dec 2014 and the page URL is ’http://example.com/contact.html’. The key is the URL, and
the value is a tuple containing the rest of the parsed fields.

� Box 3.5: Python program for filtering data with MapReduce

# Filter all page visits for the page ’contact.html’ in the month of Dec
2014.

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len=int(data[4].strip())
#Extract year from date
year=date[0:4]
month=date[5:7]

#Emit (month,url) pair and 1 if year is 2014
if year==’2014’ and month==’12’ and
url==’http://example.com/contact.html’:
yield url, (date,time,ip,visit_len)

if __name__ == ’__main__’:
MRmyjob.run()

Big Data Science & Analytics: A Hands-On Approach
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3.2.4 Distinct
Distinct pattern is used to filter out duplicate records or emit distinct values of sub-fields in
the dataset. Finding distinct records is simple with MapReduce as the records with the same
key are grouped together in the reduce phase. The mapper function emits key-value pairs
where key is the field for which we want to find distinct (maybe a sub-field in a record or the
entire record) and value is None. The reducer function receives key-value pairs grouped by
the same key and emits the key and value as None. Let us look at an example of distinct IP
addresses in the web analytics service log. Box 3.6 shows the Python program for finding
distinct values using MapReduce. Figure 3.16 shows the data and the key-value pairs at each
step of the MapReduce job. The mapper function in this example parses each line of the input
and emits key-value pairs where the key is the IP address and value is None. The reducer
receives the list of values (all None) grouped by the key (unique IP addresses) and emits the
key and value as None.

� Box 3.6: Python program for computing distinct with MapReduce

# Distint IP addresses

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_printlen=int(data[4].strip())
yield ip, None

def reducer(self, key, list_of_values):
yield key, None

if __name__ == ’__main__’:
MRmyjob.run()

Big Data Science & Analytics: A Hands-On Approach



116 Big Data Patterns

In
pu

t

20
14

-0
4-

01
  1

3:
45

:4
2 

 h
ttp

:/
/e

xa
m

pl
e.

co
m

/p
ro

du
ct

s.
ht

m
l  

77
.1

40
.9

1.
33

  
89

20
14

-1
0-

01
  1

4:
39

:4
8 

 h
ttp

:/
/e

xa
m

pl
e.

co
m

/in
de

x.
ht

m
l 

11
3.

10
7.

99
.1

22
  

13
20

14
-0

6-
23

  2
1:

27
:5

0 
 h
ttp

:/
/e

xa
m

pl
e.

co
m

/a
bo

ut
.h

tm
l  

50
.9

8.
73

.1
29

   
   

 7
3

20
14

-0
1-

15
  2

1:
27

:0
9 

 h
ttp

:/
/e

xa
m

pl
e.

co
m

/s
er

vi
ce

s.
ht

m
l  

14
9.

59
.5

1.
52

   
   

 5
9

20
14

-0
5-

13
  1

1:
43

:4
2 

 h
ttp

:/
/e

xa
m

pl
e.

co
m

/a
bo

ut
.h

tm
l  

61
.9

1.
88

.8
5 

   
   

  4
6

20
14

-0
2-

17
  0

3:
17

:3
7 

 h
ttp

:/
/e

xa
m

pl
e.

c o
m

/c
on

ta
ct

.h
tm

l  
68

.7
8.

59
.1

17
   

   
  9

8

M
ap

77
.1

40
.9

1.
33

, N
on

e
11

3.
10

7.
99

.1
22

, N
on

e
50

.9
8.

73
.1

29
, N

on
e

68
.7

8.
59

.1
17

, N
on

e
14

9.
59

.5
1.

52
, N

on
e

Re
du

ce

O
ut

pu
t

14
9.

59
.5

1.
52

, N
on

e
68

.7
8.

59
.1

17
, N

on
e

11
3.

10
7.

99
.1

22
, N

on
e

78
.1

34
.2

2.
93

, N
on

e
73

.1
40

.7
0.

11
5,

 N
on

e

11
3.

10
7.

99
.1

22
, N

on
e

78
.1

34
.2

2.
93

, N
on

e
83

.1
39

.9
0.

14
1,

 N
on

e
14

9.
59

.5
1.

52
, N

on
e

50
.9

8.
73

.1
29

, N
on

e

77
.1

40
.9

1.
33

, N
on

e
11

3.
10

7.
99

.1
22

, N
on

e
50

.9
8.

73
.1

29
, N

on
e

68
.7

8.
59

.1
17

, N
on

e
14

9.
59

.5
1.

52
, N

on
e

78
.1

34
.2

2.
93

, N
on

e

IP
, N

on
e

(D
at

e,
 T

im
e,

 U
RL

, I
P,

 V
isi

t-
Le

ng
th

)

77
.1

40
.9

1.
33

, N
on

e

11
3.

10
7.

99
.1

22
, N

on
e

11
3.

10
7.

99
.1

22
, N

on
e

11
3.

10
7.

99
.1

22
, N

on
e

50
.9

8.
73

.1
29

, N
on

e
50

.9
8.

73
.1

29
, N

on
e

68
.7

8.
59

.1
17

, N
on

e
68

.7
8.

59
.1

17
, N

on
e

14
9.

59
.5

1.
52

, N
on

e
14

9.
59

.5
1.

52
, N

on
e

14
9.

59
.5

1.
52

, N
on

e

So
rt

 &
 S

hu
ffl

e

78
.1

34
.2

2.
93

, N
on

e
78

.1
34

.2
2.

93
, N

on
e

77
.1

40
.9

1.
33

, N
on

e

11
3.

10
7.

99
.1

22
, N

on
e

50
.9

8.
73

.1
29

, N
on

e

68
.7

8.
59

.1
17

, N
on

e

14
9.

59
.5

1.
52

, N
on

e

78
.1

34
.2

2.
93

, N
on

e

IP
, N

on
e

Fi
gu

re
3.

16
:F

in
di

ng
di

st
in

ct
w

ith
M

ap
R

ed
uc

e

Bahga & Madisetti, c© 2016



3.2 MapReduce Patterns 117

3.2.5 Binning
The Binning pattern is used to partition records into bins or categories. Binning is useful
when you want to partition your dataset into different bins (based on a partitioning criteria)
and further process records in each bin separately or process records in certain bins. Binning
requires a Map task only. In the mapper function, each record is checked using a list of
criteria and assigned to a particular bin. The mapper function emits key-value pairs where
the key is the bin and value is the record. No processing is done for the record in this pattern.
Let us look at an example of partitioning records by the quarter (Q1-Q4) in the web analytics
service log. Box 3.7 shows the Python program for partitioning records using MapReduce.
Figure 3.17 shows the data and the key-value pairs at each step of the MapReduce job.

� Box 3.7: Python program for binning data with MapReduce

# Parition records by Quarter

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len=int(data[4].strip())

#Extract year from date
year=date[0:4]
month=int(date[5:7])

#Emit url and 1 if year is 2014
if year==’2014’:
if month<=3:
yield "Q1", (date, time, url, ip, visit_len)

elif month<=6:
yield "Q2", (date, time, url, ip, visit_len)

elif month<=9:
yield "Q3", (date, time, url, ip, visit_len)

else:
yield "Q4", (date, time, url, ip, visit_len)

if __name__ == ’__main__’:
MRmyjob.run()

Big Data Science & Analytics: A Hands-On Approach
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3.2.6 Inverted Index
An inverted index is an index data structure which stores the mapping from the content (such
as words in a document or on a webpage) to the location of the content (such as document
filename or a page URL). Search engines use inverted indexes to enable faster searching of
documents or pages containing some specific content.

To generate an inverted index, the mapper function emits key-value pairs where key
contains the fields for the index (such as each word in the document), and the value is a
unique identifier of the document. The reducer function receives the list of values (such as
document IDs) grouped by the same key (word) and emits a key and the list of values. Let us
look at an example of an inverted index for multiple books. Let us assume we have all the
content from all the books combined into one large file with two fields separated by a pipe
symbol (’|’). The first field is the filename and the second field contains all the content in the
file. Box 3.8 shows the Python program for generating an inverted index using MapReduce.
Figure 3.18 shows the data and the key-value pairs at each step of the MapReduce job. The
mapper function in this example parses each line of the input and emits key-value pairs where
the key is each word in the line and value is the filename. The reducer receives the list of
values (filenames) grouped by the key (word) and emits the word and the list of filenames in
which the word occurs.

� Box 3.8: Python program for computing inverted index with MapReduce

#Inverted index

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
doc_id, content = line.split(’|’)
words = content.split()
for word in words:
yield word, doc_id

def reducer(self, key, list_of_values):
docs=[]
for x in list_of_values:
docs.append(x)

yield key, docs

if __name__ == ’__main__’:
MRmyjob.run()

Big Data Science & Analytics: A Hands-On Approach



120 Big Data Patterns

In
pu

t

m
ilt

on
.tx

t |
 O

f M
an

's 
fir

st
 d

iso
be

di
en

ce
 , 

an
d 

th
e 

fr
ui

t O
f t

ha
t f

or
bi

dd
en

…
au

st
en

.tx
t |

 E
m

m
a 

W
oo

dh
ou

se
 , 

ha
nd

so
m

e 
, c

le
ve

r ,
 a

nd
 ri

ch
 , 

w
ith

 a
…

ed
ge

w
or

th
.tx

t |
 N

ea
r t

he
 ru

in
s o

f t
he

 c
as

tle
 o

f R
os

sm
or

e,
 in

 Ir
el

an
d…

ch
es

te
rt

on
.tx

t |
 T

he
 fl

yi
ng

 sh
ip

 o
f P

ro
fe

ss
or

 L
uc

ife
r s

an
g 

th
ro

ug
h 

th
e 

sk
ie

s l
ik

e…
sh

ak
es

pe
ar

e.
tx

t |
 A

ct
us

Pr
im

us
 . 

Sc
oe

na
Pr

im
a 

. E
nt

er
 F

la
ui

us
, M

ur
el

lu
s,

 a
nd

…

M
ap

ye
ar

s,
 w

hi
tm

an
.tx

t
w

om
an

, w
hi

tm
an

.tx
t

ye
t, 

w
hi

tm
an

.tx
t

cl
ev

er
, a

us
te

n.
tx

t
w

or
k,

 a
us

te
n.

tx
t

Re
du

ce

O
ut

pu
t

w
om

an
, e

dg
ew

or
th

.tx
t

ca
st

le
, e

dg
ew

or
th

.tx
t

sh
ip

, c
he

st
er

to
n.

tx
t

sa
ng

, c
he

st
er

to
n.

tx
t

w
or

k,
 ch

es
te

rt
on

.tx
t

En
te

r, 
sh

ak
es

pe
ar

e.
tx

t
sh

ip
, s

ha
ke

sp
ea

re
.tx

t
ye

t, 
sh

ak
es

pe
ar

e.
tx

t
ye

ar
s,

 m
ilt

on
.tx

t

ye
ar

s,
 [w

hi
tm

an
.tx

t, 
m

ilt
on

.tx
t]

w
om

an
, [

w
hi

tm
an

.tx
t, 

ed
ge

w
or

th
.tx

t]
ye

t, 
[w

hi
tm

an
.tx

t, 
sh

ak
es

pe
ar

e.
tx

t]
cl

ev
er

, [
au

st
en

.tx
t]

sh
ip

, [
ch

es
te

rt
on

.tx
t, 

sh
ak

es
pe

ar
e.

tx
t]

w
or

k,
 [a

us
te

n.
tx

t, 
ch

es
te

rt
on

.tx
t]

W
or

d,
 F

ile
na

m
e

Fi
le

na
m

e 
| 

Fi
le

 C
on

te
nt

s

ye
ar

s,
 w

hi
tm

an
.tx

t
ye

ar
s,

 m
ilt

on
.tx

t

So
rt

 &
 S

hu
ffl

e

w
om

an
, w

hi
tm

an
.tx

t
w

om
an

, e
dg

ew
or

th
.tx

t

ye
t, 

w
hi

tm
an

.tx
t

ye
t, 

sh
ak

es
pe

ar
e.

tx
t

cl
ev

er
, a

us
te

n.
tx

t

sh
ip

, c
he

st
er

to
n.

tx
t

sh
ip

, s
ha

ke
sp

ea
re

.tx
t

w
or

k,
 a

us
te

n.
tx

t
w

or
k,

 ch
es

te
rt

on
.tx

t

W
or

d,
 F

ile
na

m
es

ye
ar

s,
 [w

hi
tm

an
.tx

t, 
m

ilt
on

.tx
t]

w
om

an
, [

w
hi

tm
an

.tx
t

ed
ge

w
or

th
.tx

t]

ye
t, 

[w
hi

tm
an

.tx
t, 

sh
ak

es
pe

ar
e.

tx
t]

cl
ev

er
, [

au
st

en
.tx

t]

sh
ip

, [
ch

es
te

rt
on

.tx
t, 

sh
ak

es
pe

ar
e.

tx
t]

w
or

k,
 [a

us
te

n.
tx

t, 
ch

es
te

rt
on

.tx
t]

In
ve

rt
ed

 In
de

x

Fi
gu

re
3.

18
:C

om
pu

tin
g

in
ve

rt
ed

in
de

x
w

ith
M

ap
R

ed
uc

e

Bahga & Madisetti, c© 2016



3.2 MapReduce Patterns 121

3.2.7 Sorting
The sorting pattern is used to sort the records based on a particular field. Let us look at
an example of sorting records in the web analytics service log by the visit length. Box 3.9
shows the Python program for sorting using MapReduce. Figure 3.19 shows the data and the
key-value pairs at each step of the MapReduce job. The mapper function in this example
parses each line of the input and emits key-value pairs where the key is None and value is
a tuple comprising of visit length and the rest of the fields in the record (as a nested tuple).
The reducer receives the list of values all grouped together (as the key is None). The reducer
uses the sorted function of Python, which sorts the list of tuples by the first elements in the
tuples (which is the visit length).

� Box 3.9: Python program for sorting with MapReduce

# Sort by visit length

from mrjob.job import MRJob

class MRmyjob(MRJob):
def mapper(self, _, line):
#Split the line with tab separated fields
data=line.split(’�’)

#Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len=int(data[4].strip())
#Extract year from date
year=date[0:4]
month=date[5:7]

#Emit url and 1 if year is 2014
if year==’2014’:
yield None, (visit_len, (date, time, url, ip))

def reducer(self, key, list_of_values):
list_of_values = sorted(list(list_of_values), reverse=True)
return list_of_values

if __name__ == ’__main__’:
MRmyjob.run()

Big Data Science & Analytics: A Hands-On Approach
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3.2.8 Joins
When datasets contain multiple files, joins are used to combine the records in the files for
further processing. Joins combine two or more datasets or records in multiple files, based on
a field (called the join attribute or foreign key). Let take the example of joining two tables A
and B. Figure 3.20 shows various types of joins. An Inner Join returns rows from both the
tables which have the same value of the matching columns or the foreign key. The output
contains columns of both tables with the matching foreign keys. Any unmatched records
from both tables are not included in the output. A Full Outer Join is another type of join
which includes all the matched and unmatched records from both the tables. Full Outer Join
returns all the rows from both tables and returns NULL values in columns of each table
where no row matches. In Left Outer Join, the unmatched columns in the table of the left
side of the join are included and along with all the matched records from both tables. Left
Outer Join returns all rows from the table of the left side of the join and returns NULL in
columns of the table on the right where no row matches. In Right Outer Join, the unmatched
columns in the table of the right side of the join are included and along with all the matched
records from both tables. Right Outer Join returns all rows from the table of the right side of
the join and returns NULL in columns of the table on the right where no row matches.

Full Outer JoinInner Join

Left Outer Join Right Outer Join

A B A B

A B A B

Returns all rows from table A and returns
NULL in columns of table B where no row matches

Returns all rows from table B and returns
NULL in columns of table A where no row matches

Returns all rows from both tables and returns
NULL in columns of each table where no row matches

Returns rows from both tables which have the same
value for the matching column or foreign key

Figure 3.20: Types of Joins

Let us look at examples of joins using MapReduce. For these examples, we will use two
datasets containing records of employees and departments in an organization. The employees
dataset contains fields such as Employee ID, Employee Name, Department ID, Joining Data
and Salary. The departments dataset contains fields such as Department ID, Department

Big Data Science & Analytics: A Hands-On Approach



124 Big Data Patterns

Name and Number of Employees. The first field in the employees dataset contains the word
’Employee’ followed by the rest of the fields containing employee details. Similarly, the first
field in the departments dataset contains the word ’Department’, followed by the rest of the
fields containing department details. Let us look at examples of joining the employee and
department datasets by the Department ID field. Box 3.10 shows the Python program for
inner join using MapReduce. Figure 3.21 shows the data and the key-value pairs at each step
of the MapReduce job. The mapper function in this example parses each line of the input and
emits key-value pairs where the key is the Department ID and value is the complete record.
The reducer receives the list of values all grouped by the Department ID. In the reducer,
we check the first field of each value and if the field is ’Employee’, we add the value to an
employees list and if the first field is ’Department’, we add the value to the departments list.
Next, we iterate over both the lists and perform the join.

Boxes 3.11, 3.12 and 3.13 show the Python programs for left outer join, right outer join,
and full outer join respectively. The only difference in these programs is in the reducer where
we iterate over the employees and departments lists to perform the join.

� Box 3.10: Python program for computing inner join with MapReduce

from mrjob.job import MRJob

class MyMRJob(MRJob):
def mapper(self, _, line):
data=line.split(’�’)
if data[0]==’Employee’:
deptID = data[3]

elif data[0]==’Department’:
deptID = data[1]

yield deptID, data

def reducer(self, key, list_of_values):
values = list(list_of_values)
employees = [ ]
departments=[ ]
for v in values:
if v[0]==’Employee’:

employees.append(v)
elif v[0]==’Department’:

departments.append(v)

#Inner Join
for e in employees:
for d in departments:
yield None, (e+d)

if __name__ == ’__main__’:
MyMRJob.run()
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� Box 3.11: Python program for computing left outer join with MapReduce

from mrjob.job import MRJob

class MyMRJob(MRJob):
def mapper(self, _, line):
data=line.split(’�’)
if data[0]==’Employee’:
deptID = data[3]

elif data[0]==’Department’:
deptID = data[1]

yield deptID, data

def reducer(self, key, list_of_values):
values = list(list_of_values)
employees = []
departments=[]
for v in values:
if v[0]==’Employee’:

employees.append(v)
elif v[0]==’Department’:

departments.append(v)

#Left Outer Join
for e in employees:
if len(departments)>0:
for d in departments:
yield None, (e+d)

else:
yield None, (e)

if __name__ == ’__main__’:
MyMRJob.run()

� Box 3.12: Python program for computing right outer join with MapReduce

from mrjob.job import MRJob

class MyMRJob(MRJob):
def mapper(self, _, line):
data=line.split(’�’)
if data[0]==’Employee’:
deptID = data[3]

elif data[0]==’Department’:
deptID = data[1]

yield deptID, data

def reducer(self, key, list_of_values):
values = list(list_of_values)
employees = []
departments=[]
for v in values:
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if v[0]==’Employee’:
employees.append(v)

elif v[0]==’Department’:
departments.append(v)

#Right Outer Join
for d in departments:
if len(employees)>0:
for e in employees:
yield None, (e+d)

else:
yield None, (d)

if __name__ == ’__main__’:
MyMRJob.run()

� Box 3.13: Python program for computing full outer join with MapReduce

from mrjob.job import MRJob

class MyMRJob(MRJob):
def mapper(self, _, line):
data=line.split(’�’)
if data[0]==’Employee’:
deptID = data[3]

elif data[0]==’Department’:
deptID = data[1]

yield deptID, data

def reducer(self, key, list_of_values):
values = list(list_of_values)
employees = []
departments=[]
for v in values:
if v[0]==’Employee’:

employees.append(v)
elif v[0]==’Department’:

departments.append(v)

#Full Outer Join
if len(employees)>0:
for e in employees:
if len(departments)>0:
for d in departments:
yield None, (e+d)

else:
yield None, (e)

else:
for d in departments:
yield None, (d)

if __name__ == ’__main__’:
MyMRJob.run()
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Summary
In this chapter we described various architectural component patterns and design styles for
big data systems and applications. Messaging queues can be used between the data producers
and data consumers in a big data system, for load leveling. Queues allow decoupling of the
producers of data from the consumers. Having multiple consumers can help in load balancing
and making the system more scalable, reliable and available. We described approaches for
leader election, by which the instances in a distributed system can elect one of the instances
as their leader. Next, we described sharding which involves horizontally partitioning the
data across multiple storage nodes in a data storage system. For distributed data systems, a
trade-off exists between consistency and availability. These trade-offs are explained with
the CAP Theorem, which states that under partitioning, a distributed data system can either
be consistent or available but not both at the same time. Next, we described Bloom filter,
a probabilistic data structure for testing set membership. For big data applications that
involve certain queries that are frequently performed, it is beneficial to pre-compute such
queries. These pre-computed queries are called materialized views. We described the Lambda
architecture which comprises of batch, speed and serving layers. Lambda architecture enables
both querying real-time and historical data, by pre-computing the queries. Next, we described
the Scheduler-Agent-Supervisor pattern, which can be used to make big data systems more
resilient and fault tolerant. The pipes and filter pattern involves splitting a complex task
into a series of distinct tasks. We described the benefits of using a web service, which
provides an interface that exposes the functionality of the system to the clients in the form
of various endpoints. Next, we described the Paxos consensus protocol. In the second part
of the chapter, we described various MapReduce patterns for data analysis, along with the
implementations in Python.
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4 - NoSQL

This chapter covers

• Key-value databases
• Document databases
• Column family databases
• Graph databases
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Non-relational databases ("NoSQL databases") are becoming popular with the increasing
use of cloud computing services. Non-relational databases have better horizontal scaling
capability and improved performance for big data at the cost of having less rigorous
consistency models.

NoSQL databases are popular for applications in which the scale of data involved is
massive and the data may not be structured. Furthermore, real-time performance is more
important than consistency. These systems are optimized for fast retrieval and appending
operations on records. Unlike relational databases, the NoSQL databases do not have a strict
schema. The records can be in the form of key-value pairs or documents. Most NoSQL
databases are classified in terms of the data storage model or type of records that can be
stored.

In this chapter, we describe some frequently used NoSQL databases, the characteristics of
each database type, an example of each type of database and implementations with complete
source code for reading and writing data.

4.1 Key-Value Databases

Key-value databases are the simplest form of NoSQL databases. These databases store data
in the form of key-value pairs. The keys are used to identify uniquely the values stored
in the database. Applications that want to store data generate unique keys and submit the
key-value pairs to the database. The database uses the key to determine where the value
should be stored. Most key-value databases have distributed architectures comprising of
multiple storage nodes. The data is partitioned across the storage nodes by the keys. For
determining the partitions for the keys, hash functions are used. The partition number for a
key is obtained by applying a hash function to the key. The hash functions are chosen such
that the keys are evenly distributed across the partitions.

Key-value databases provide a lot of flexibility in terms of the type of values that can be
stored. The values can be virtually of any type (such as strings, integers, floats, binary large
object (BLOB), etc.). Most key-value stores have support for native programming language
data types. There are limits on the size of the values that can be stored.

Unlike relational databases in which the tables have fixed schemas and there are constraints
on the columns, in key-value databases, there are no such constraints. Key-value databases
do not have tables like in relational databases. However, some key-value databases support
tables, buckets or collections to create separate namespaces for the keys. Keys within a table,
bucket or collection are unique.

Key-value databases are suited for applications that require storing unstructured data
without a fixed schema. These databases can be scaled up horizontally and can store a very
large number of key-value pairs. Unlike relational databases which provide specialized query
languages (such as SQL), the key-value databases only provide basic querying and searching
capabilities. Key-value databases are suitable for applications for which the ability to store
and retrieve data in a fast and efficient manner is more important than imposing structure or
constraints on the data. For example, key-value databases can be used to store configuration
data, user data, transient or intermediate data (such as shopping cart data), item-attributes
and BLOBs (such as audio and images).
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4.1.1 Amazon DynamoDB
Amazon DynamoDB is a fully-managed, scalable, high-performance NoSQL database
service from Amazon. DynamoDB provides fast and predictable performance and seamless
scalability without any operational overhead. DynamoDB is an excellent choice for a serving
database for data analytics applications as it allows storing and retrieving any amount of data
and the ability to scale up or down the provisioned throughput depending on the application’s
performance requirements. DynamoDB is a highly available and reliable service. The data
stored in DynamoDB is replicated across multiple availability zones.

Application

Hash Function

Partition-1 Partition-N

Key value
161305173 {name: ̀ Ivor Merritt’, address: ̀ Ap #527-9960 Vel St.’, 

city: ̀ Lauw’,zip: `5624’,country: ̀ Peru’}
162307206 {name: ̀ Cade Nguyen’, address: ̀ 486, 6221 Et St.’, 

city: ̀ Barnstaple’,zip: ̀ 10903’,country: `Ukraine’}

Application writes the data

Partition for the data is determined
by passing the partition key value
to the hash function

Figure 4.1: Using key-value database for storing customer records

DynamoDB’s data model includes Tables, Items, and Attributes. A table is a collection
of items and each item is a collection of attributes. Tables in DynamoDB do not have a fixed
schema. While creating a table, only the primary key needs to be specified. The primary key
uniquely identifies the items in a table. The primary key is a combination of a partition key
and an optional sort key. The partition key is hashed using a hash function to determine the
partition where the item should be stored. The partition key value must be unique across
all items if no sort is specified. An optional sort key can be specified which is used to sort
items within a partition. If the primary key used is a combination of the hash key and sort key
then it is possible for two items to have the same value of the partition key, but the sort key
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must have different values. Items are composed of attributes. The attributes can be added at
runtime. Different items in a table can have different attributes. Each attribute is a key-value
pair.

For reading items, DynamoDB provides scan and query operations. The scan operation is
used to retrieve all items in the table. You can specify optional filtering criteria. The filtering
criteria can look for specific values of attributes or range of values. The query operation is
used to query for items with the primary key (either only the partition key or the partition key
and the sort key). To query the table using attributes other than the primary key, secondary
indexes can be added.

Let us look at an example of using DynamoDB to store customer information for an
eCommerce application. The first step is to create a DynamoDB table. You can either create
a table from the DynamoDB dashboard or using the DynamoDB APIs. Figure 4.2 shows an
example of creating a DynamoDB table. In this example, the customerID is specified as the
partition key and the customer name as the sort key. We use rest of the default settings for
secondary indexes, provisioned capacity and alarms.

Figure 4.2: Creating a DynamoDB table
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Box 4.1 shows a Python example of writing data to a DynamoDB table. For this example,
we created synthetic customer data from www.generatedata.com and saved the data in a CSV
file. In the Python example, each row of the CSV file is read one by one in a loop and the
customer data is written to the DynamoDB table.

� Box 4.1: Writing data to DynamoDB table

import boto.dynamodb2
from boto.dynamodb2.table import Table
from awscredentials import ACCESS_KEY,SECRET_KEY
import csv

REGION="us-east-1"

conn = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

table=Table(‘customers’,connection=conn)
desc = table.describe()
print desc

reader = csv.reader(open(‘customers.csv’,‘r’))
header=reader.next()
for row in reader:
item = table.put_item(data={
‘customerID’:row[0],
‘name’:row[1],
‘address’: row[2],
‘city’: row[3],
‘zip’: row[4],
‘country’: row[5],
‘createdAt’: row[6]

},overwrite=True)

Figure 4.3 shows an example of using a scan operation from the DynamoDB dashboard
for retrieving data. Box 4.2 shows a Python example of reading data from DynamoDB using
scan and query operations.

� Box 4.2: Reading data from DynamoDB table with query and scan operations

import boto.dynamodb2
from boto.dynamodb2.table import Table
from awscredentials import ACCESS_KEY,SECRET_KEY,EC2_KEY_HANDLE

REGION="us-east-1"

conn = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)
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table=Table(’customers’,connection=conn)
desc = table.describe()
print desc

#Scan table
result=table.scan()

for item in result:
print item.items()

#Scan table with filter
result = table.scan(country__eq=’India’)

for item in result:
print item.items()

#Scan table with filters
result = table.scan(name__beginswith=’A’,
createdAt__between=[’2012-03-26T00:00:00-00:00’,
’2016-03-26T00:00:00-00:00’])

for item in result:
print item.items()

#Query table with partition key
result = table.query_2(customerID__eq=’1623072020799’)

for item in result:
print item.items()

Figure 4.3: Scanning a table from DynamoDB Dashboard
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4.2 Document Databases

Document store databases store semi-structured data in the form of documents which are
encoded in different standards such as JSON, XML, BSON or YAML. By semi-structured
data we mean that the documents stored are similar to each other (similar fields, keys or
attributes) but there are no strict requirements for a schema. Documents are organized in
different ways in different document database such in the form of collections, buckets or
tags.

Each document stored in a document database has a collection of named fields and
their values. Each document is identified by a unique key or ID. There is no need to define
any schema for the documents before storing them in the database. While it is possible
to store JSON or XML-like documents as values in a key-value database, the benefit of
using document databases over key-value databases is that these databases allow efficiently
querying the documents based on the attribute values in the documents. Document databases
are useful for applications that want to store semi-structured data with a varying number of
fields.

While in relational databases the data is stored in a normalized form to eliminate
duplicates, in document databases data is stored in denormalized form. Document databases
do not provide the join functionality provided by relational databases. Therefore, all data
that needs to be retrieved together is stored in a document. For example, in an eCommerce
application all data related to a particular product is usually retrieved together. In this case,
a document can be created for each product. Each document comprises of the data on the
product features and attributes.

4.2.1 MongoDB

MongoDB is a document-oriented non-relational database system. MongoDB is powerful,
flexible and highly scalable database designed for web applications and is a good choice for
a serving database for data analytics applications. The basic unit of data stored by MongoDB
is a document. A document includes a JSON-like set of key-value pairs.

� Box 4.3: Commands for setting up and running MongoDB

#Import the public key used by the package management system
sudo apt-key adv -keyserver hkp://keyserver.ubuntu.com:80 -recv 7F0CEB10

#Create a list file for MongoDB
echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.0
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.0.list

#Reload local package database
sudo apt-get update

#Install MongoDB
sudo apt-get install -y mongodb-org

#Start MongoDB service
sudo service mongod start
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Documents are grouped together to form collections. Collections do not have a fixed
schema and different documents in a collection can have different sets of key-value pairs.
Collections are organized into databases, and there can be multiple databases running on
a single MongoDB instance. Box 4.3 shows the commands for setting up and running
MongoDB.

ID Document
56fd4f59849f6367af489537 {

"title" : "Motorola Moto G (3rd Generation)",
"features" : [

"Advanced water resistance",
"13 MP camera",
"5in HD display",
"Quad core processing power",
"5MP rear camera",
"Great 24hr battery",
"4G LTE Speed"

],
"specifications" : {

"Color" : "Black",
"Size" : "16 GB",
"Dimensions" : "0.2 x 2.9 x 5.6 inches",
"Weight" : "5.4 ounces"

},
"price" : 219.99

}
56fd504d849f6367af489538 {

"title" : "Canon EOS Rebel T5",
"features" : [

"18 megapixel CMOS (APS-C) sensor",
"EF-S 18-55mm IS II standard zoom lens",
"3-inch LCD TFT color, liquid-crystal monitor",
"EOS 1080p full HD movie mode"

],
"specifications" : {

"Color" : "Black",
"MaximumAperture" : "ƒ/3.5",
"Dimensions" : "3.94 x 3.07 x 5.12 inches",
"Weight" : "1.06 pounds"

},
"price" : 399

}

Figure 4.4: Using document database for storing product records

Box 4.4 shows examples of using the MongoDB shell commands for writing data to a
MongoDB database and querying the data. The data used in this example is the products data
for an eCommerce application. Data for each product is stored as a single document.
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� Box 4.4: Using MongoDB shell commands

#Launch MongoDB shell
mongo localhost:27017

#Switch to new database named storedb
> use storedb
switched to db storedb

post = {
"title" : "Motorola Moto G (3rd Generation)",
"features" : [
"Advanced water resistance",
"13 MP camera which includes a color-balancing dual LED Flash",
"5in HD display",
"Quad core processing power",
"5MP rear camera",
"Great 24hr battery performance with a 2470mAh battery",
"4G LTE Speed"
],
"specifications" : {
"Color" : "Black",
"Size" : "16 GB",
"Dimensions" : "0.2 x 2.9 x 5.6 inches",
"Weight" : "5.4 ounces"
},
"price" : 219.99
}

> db.collection.insert(post)
WriteResult({ "Inserted" : 1 })

#Get all documents
> db.collection.find()
{ "_id" : ObjectId("56fd4f59849f6367af489537"),
"title" : "Motorola Moto G (3rd Generation)",
"features" : [ "Advanced water resistance",
"13 MP camera which includes a color-balancing dual LED Flash",
"5in HD display", "Quad core processing power", "5MP rear camera",
"Great 24hr battery performance with a 2470mAh battery", "4G LTE Speed" ],
"specifications" : { "Color" : "Black", "Size" : "16 GB",
"Dimensions" : "0.2 x 2.9 x 5.6 inches", "Weight" : "5.4 ounces" },
"price" : 219.99 }

{ "_id" : ObjectId("56fd504d849f6367af489538"),
"title" : "Canon EOS Rebel T5",
"features" : [ "18 megapixel CMOS (APS-C) sensor",
"EF-S 18-55mm IS II standard zoom lens",
"3-inch LCD TFT color, liquid-crystal monitor",
"EOS 1080p full HD movie mode" ],
"specifications" : { "Color" : "Black",
"MaximumAperture" : "f3.5", "Dimensions" : "3.94 x 3.07 x 5.12 inches",
"Weight" : "1.06 pounds" }, "price" : 399 }
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#Get documents with specific attribute values
> db.collection.find({"title" : "Canon EOS Rebel T5"})
{ "_id" : ObjectId("56fd504d849f6367af489538"),
"title" : "Canon EOS Rebel T5",
"features" : [ "18 megapixel CMOS (APS-C) sensor",
"EF-S 18-55mm IS II standard zoom lens",
"3-inch LCD TFT color, liquid-crystal monitor",
"EOS 1080p full HD movie mode" ],
"specifications" : { "Color" : "Black",
"MaximumAperture" : "f3.5", "Dimensions" : "3.94 x 3.07 x 5.12 inches",
"Weight" : "1.06 pounds" }, "price" : 399 }

Box 4.5 shows a Python program for writing data to MongoDB and reading the data. For
this example, we use the pyMongo python library.

� Box 4.5: Python program for writing data to MongoDB and reading the data

import time
from datetime import date
import datetime
import cPickle
from pymongo import MongoClient

client = MongoClient()
db = client[‘storedb’]
collection = db[‘current’]

item = {
"title" : "Motorola Moto G (3rd Generation)",
"features" : [
"Advanced water resistance",
"13 MP camera which includes a color-balancing dual LED Flash",
"5in HD display",
"Quad core processing power",
"5MP rear camera",
"Great 24hr battery performance with a 2470mAh battery",
"4G LTE Speed"

],
"specifications" : {
"Color" : "Black",
"Size" : "16 GB",
"Dimensions" : "0.2 x 2.9 x 5.6 inches",
"Weight" : "5.4 ounces"

},
"price" : 219.99

}

#Insert an item
collection.insert_one(item)

#Retrieve all items
results=db.collection.find()
for item in results:
print item
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#Find an item
results = collection.find({"title" : "Motorola Moto G"})

for item in results:
print item

4.3 Column Family Databases

In column family databases the basic unit of data storage is a column, which has a name and
a value. A collection of columns make up a row which is identified by a row-key. Columns
are grouped together into columns families. Unlike, relational databases, the column family
databases do not need to have fixed schemas and a fixed number of columns in each row.
The number of columns in a column family database can vary across different rows. A
column family can be considered as a map having key-value pairs and this map can vary
across different rows. Column family databases store data in a denormalized form so that
all relevant information related to an entity required by the applications can be retrieved by
reading a single row. Column family databases support high-throughput reads and writes and
have distributed and highly available architectures.

4.3.1 HBase
HBase is a scalable, non-relational, distributed, column-family database that provides
structured data storage for large tables. HBase can store both structured and unstructured
data. The data storage in HBase can scale linearly and automatically by the addition of new
nodes. HBase has been designed to work with commodity hardware and is a highly reliable
and fault tolerant system. HBase allows fast random reads and writes.

Data Model
Figure 4.5 shows the structure of an HBase table. A table is consists of rows, which
are indexed by the row key. Each row includes multiple column families. Each column
family includes multiple columns. Each column includes multiple cells or entries which are
timestamped. HBase tables are indexed by the row key, column key and timestamp. Unlike
relational database tables, HBase tables do not have a fixed schema. HBase columns families
are declared at the time of creation of the table and cannot be changed later. Columns can be
added dynamically, and HBase can have millions of columns.

HBase is often described as a sparse, distributed, persistent, multi-dimensional sorted
map. Let us look at these features in detail:
• Sparse: In traditional relational databases, tables have fixed schemas. Each row in a

table has the same number of columns. Each row has all the columns even if all of
them are not populated. HBase, in contrast, has sparse tables as each row doesn’t need
to have all the columns. Only the columns which are populated in a row are stored.
• Distributed: HBase is a distributed database. HBase tables are partitioned based on

row keys into regions. Each region contains a range of row keys. A typical HBase
deployment contains multiple Region Servers. Each Region Server contains several
regions from different tables.
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• Persistent: HBase works on top of HDFS and all data stored in HBase tables is
persisted on HDFS.
• Multi-dimensional : HBase stores data as key-value pairs where the keys are

multi-dimensional. A key includes: (Table, RowKey, ColumnFamily, Column,
TimeStamp) as shown in Figure 4.6. For each entry/cell, multiple versions are stored,
which are timestamped.
• Sorted Map: HBase rows are sorted by the row key in lexicographic order. Columns

in a column family are sorted by the column key.
HBase cells cannot be over-written. Since the cells are versioned with timestamps, when

newer values are added, the older values are also retained. Data is stored in cells as byte
arrays. The applications are responsible for correctly interpreting the data type.

RowKey-1

RowKey-2

RowKey-3

ColumnFamily-1 ColumnFamily-2

Table

Column-1 Column-2 Column-3

Column-2

Column-1 Column-2 Column-4

.. ..

.. ..

.. ..

.. ..
.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

Figure 4.5: HBase table structure

Key 
Length

Value
Length

Row
Length

Row
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Time
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Key
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Value

Figure 4.6: HBase key-value format
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Architecture

HBase has a distributed architecture as shown in Figure 4.7. An HBase deployment comprises
multiple region servers which usually run on the same machines as the Hadoop data nodes.
HBase tables are partitioned by the row key into multiple regions (HRegions). Each region
server has multiple regions. HBase has a master-slave architecture with one of the nodes
acting as the master node (HMaster) and other nodes are slave nodes. The HMaster is
responsible for maintaining the HBase meta-data and assignment of regions to region servers.

HBase uses Zookeeper for distributed state coordination. HBase has two special tables -
ROOT and META, for identifying which region server is responsible for serving a read/write
request for a specific row key.

Client
Zookeeper 

Quorum
HBase Master

Region Server

Block Cache

Write Ahead Log (HLog)

Region
MemStore

StoreFile
(HFile)

StoreFile
(HFile)

StoreFile
(HFile)

Region Server

Block Cache

Region
MemStore

StoreFile
(HFile)

StoreFile
(HFile)

StoreFile
(HFile)

Write Ahead Log (HLog)

Figure 4.7: HBase architecture

Data Storage & Operations

Each Region Server stores two types of files - a store file (HFile) and a write-ahead log
(HLog).

The HFile contains a variable number of data blocks and the fixed blocks for file
information and trailer. Each data block contains a magic number and multiple key-value
pairs. The default size of a data block is 64 KB. The index block stores the offset for the
data and the meta-blocks. The trailer stores pointers to other blocks. HFiles are persisted on
HDFS.

Each Region Server has a Memstore and a Block Cache. The Memstore stores the recent
edits to the data in memory and the Block Cache caches the data blocks.

Each Region Server also maintains a write-ahead log (WAL) known as the Hlog which
logs the writes (that are also written to Memstore). Since HLog is stored on HDFS, it ensures
that even in the event of loss of Memstore (which is an in-memory buffer), the writes are
never lost.

Big Data Science & Analytics: A Hands-On Approach



142 NoSQL

Each Region Server has a Block cache, which is an in-memory store that caches the most
recently used blocks for fast lookup.

HBase supports the following operations:
• Get: Get operation is used to return values for a given row key.
• Scan: Scan operation returns values for a range of row keys.
• Put: Put operation is used to add a new entry.
• Delete: Delete operation adds a special marker called Tombstone to an entry. Entries

marked with Tombstones are removed during the compaction process (discussed later
in this chapter).

The storage structure used by HBase is a Log Structured Merge (LSM) Tree. LSM Tree
uses two trees, one which is a smaller in-memory tree (in Memstore) and the other is a larger
tree that is persisted on the disk (as store files). When the size of the in-memory tree exceeds
a certain limit, it is merged with the larger tree on the disk using merge sort algorithm and a
new in-memory tree is created. LSM Tree enables HBase to handle fast random reads and
writes for large amounts of data. LSM Tree achieves this by transforming random data access
to sequential data access.

Read Path
For read operations (get or scan) the client first contacts Zookeeper to get the location of the
ROOT table. The client then checks the ROOT table for correct META table containing the
row key and obtains the Region Server name that is responsible for serving requests for that
row-key. The client then contacts the Region Server directly to complete the read operation.
The ROOT and META table lookups are cached by the client so that in subsequent read
operations the client can directly contact the correct Region Server for a given row-key.

Write Path
All write requests are first logged into the WAL (HLog) sequentially. Once data is logged,
it is also written to the Memstore. The Memstore stores the most recent updates to enable
fast lookups. Over time, the Memstore starts filling up as new updates are stored. When the
Memstore is filled up, it is flushed to the disk creating a new store file (HFile).

Compactions
Every time the Memstore is flushed to the disk, a new store file is created. Over time,
many small store files are created on HDFS. Since HDFS is designed to work better with a
smaller number of large files (as opposed to a large number of small files), a process called
compaction is performed to merge the small files into a single file. The compaction process
improves the read efficiency as a large number of small files don’t need to be looked up.
HBase compactions are of two types - minor and major. Minor compaction merges the small
files into a single file when the number exceeds a threshold. Minor compactions are done
on a regular basis (typically multiple times in a day). Major compactions merge all store
files into a single large store file. In the major compaction process, the outdated and deleted
values (cells which have expired versions or cells marked with Tombstones) are removed.
Compaction process improves the performance of HBase as looking up a single large store
file for a get or scan operation is more efficient than looking up multiple small store files.
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Bloom Filters
HBase uses Bloom Filters for the exclusion of store files that need to be looked up while
serving read requests for a particular row key. Bloom filter is a probabilistic data structure
which is used to test whether an element is a member of a set. Bloom filter can give a
definitive answer if the element is in the set, however, it can also say that an element is in
the set while it is not. In other words, false positives are possible, but false negatives are not
possible. The number of false positives can be tuned to less than 1%.

HBase Usage Examples
Command Line
HBase comes with an interactive shell from where the users can perform various HBase
operations. The HBase shell can be launched as follows:

� # Launch HBase Shell
$ hbase shell
hbase(main):001:0>

To create a table, the create command is used as shown below. The table name and
column families are specified while creating a table.

� # Create HBase table
> create ‘products’, ‘details’, ‘sale’

=> Hbase::Table - products

In this example, we created a table named products having two column families named
details and sale. The list command can be used to list all the tables in HBase, as shown
below:

� #List HBase tables
> list
TABLE
products
1 row(s) in 1.7470 seconds
=> ["products"]

To write data to HBase, the put command can be used. The box below shows an example
of writing to the products table. For row with row keys row-1 and row-2 data is written to the
column family details and column (name).

� > put ‘products’, ‘row-1’, ‘details:name’, ‘Cloud Book’
> put ‘products’, ‘row-2’, ‘details:name’, ‘IoT Book’

Columns can be added dynamically. The box below shows examples of adding new
columns to the rows previously created.
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� > put ‘products’, ‘row-1’, ‘details:ISBN’, ‘9781494435141’
> put ‘products’, ‘row-2’, ‘sale:Price’, ‘50’

For reading data, HBase provides get and scan operations. The box below shows an
example of reading the row with row-key row-1.

� hbase(main):027:0> get ‘products’, ‘row-1’
COLUMN CELL
details:name timestamp=1434772884378, value=Cloud Book
details:ISBN timestamp=1434772890556, value=9781494435141

The results of the get operation show two cells in row-1. The values are timestamped,
and multiple versions can be stored for a cell. The box below shows an example of a scan
operation which returns all rows in a table.

� > scan ‘products’
ROW COLUMN+CELL
row-1 column=details:name, timestamp=1434772884378, value=Cloud Book
row-2 column=details:name, timestamp=1434772923678, value=IoT Book
2 row(s) in 0.0210 seconds

HBase - Python Examples
Let us look at some examples of HBase operations using Python. We will use happybase
Python library for these examples.

� Box 4.6: HBase operations using Python

# Start thrift server first:
# hbase thrift start

import happybase

connection = happybase.Connection(host=‘localhost’)
table = connection.table(‘products’)

# Put
table.put(‘row-1’, ‘details:name’: ‘Cloud Book’)

# Get
row = table.row(‘row-1’)
print row[‘details:name’]

# Scan
for key, data in table.scan():
print key, data

# Delete row
row = table.delete(‘row-1’)

# Batch put
b = table.batch()
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b.put(‘row-key-1’, ‘details:name’: ‘Cloud Book’,
‘details:ISBN’: ‘9781494435141’,
‘sale:StartSale’: ‘01-01-2014’, ‘sale:Price’:‘50’)

b.put(‘row-key-2’, ‘details:name’: ‘IoT Book’,
‘details:ISBN’: ‘9780996025515’,
‘sale:StartSale’: ‘01-01-2015’, ‘sale:Price’:‘55’)
b.send()

HBase Web Interface
Figures 4.8 - 4.10 show the HBase web interface.

Figure 4.8: HBase web interface showing details of HBase Master and list of tables
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Figure 4.9: HBase web interface showing table details

Figure 4.10: HBase web interface showing region server details
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4.4 Graph Databases
Graph stores are NoSQL databases designed for storing data that has graph structure with
nodes and edges. While relational databases model data in the form of rows and columns,
the graph databases model data in the form of nodes and relationships. Nodes represent the
entities in the data model. Nodes have a set of attributes. A node can represent different types
of entities, for example, a person, place (such as a city, restaurant or a building) or an object
(such as a car). The relationships between the entities are represented in the form of links
between the nodes. Links also have a set of attributes. Links can be directed or undirected.
Directed links denote that the relationship is unidirectional. For example, for two entities
author and book, a unidirectional relationship called ‘writes’ exists between them, such that
an author writes a book. Whereas for two friends, say A and B, the friendship relationship
between A and B is bidirectional. In the graph theory terminology, the vertices in a graph are
the nodes representing the entities and the edges between the vertices are the links between
the nodes representing the relationships between the entities. A set of nodes along with the
links between them form a path.

Graph databases are useful for a wide range of applications, where you may need to
model entities and the relationships between them, such as social media, financial, networking
or various types of enterprise applications. In relational databases, the relationships between
entities are modeled in the form on different tables with primary keys and foreign keys. The
steps involved in mapping an entity-relationship diagram into relational tables are described
in Chapter-10. Computing relationships and querying related entities in relational databases
require complex join operations between the database tables. Graph databases, in contrast
to relational databases, model relationships in the form of links between the nodes. Since
the relationships between the entities are explicitly stored in the form of links, querying for
related entities in graph databases is much simpler and faster than relational databases as
the complex join operations are avoided. Graph databases are suitable for applications in
which the primary focus is on querying for relationships between entities and analyzing the
relationships.

4.4.1 Neo4j
In this section, we will describe the Neo4j graph database with the help of some examples.
Neo4j is one the popular graph databases which provides support for Atomicity, Consistency,
Isolation, Durability (ACID). Neo4j adopts a graph model that consists of nodes and
relationships. Both nodes and relationships have properties which are captured in the
form of multiple attributes (key-value pairs). Nodes are tagged with labels which are used
to represent different roles in the domain being modeled. Box 4.7 shows the commands for
setting up Neo4j.

� Box 4.7: Setting up Neo4j graph database

#Download the stable release of Neo4j for Linux
#from http://neo4j.com/download/

#Extract the archive
tar -xf neo4j-*.tar.gz
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#Run neo4j
NEO4J_HOME/bin/neo4j start

#Visit http://localhost:7474 in your web browser.

Let us look at an example of using a Graph database for an eCommerce application.
Figure 4.11 shows a labeled property graph model for an eCommerce application. In this
graph, we have two types of nodes: Customer and Product. The Customer nodes have
attributes such as customer name, address, city, country and zip code. The Product nodes
have attributes such as product title, price and various other product-specific properties (such
as color, size, weight, etc.). There are two types of relationships between the customer and
product nodes: Orders or Rates. The Order relationship between a customer and product has
properties such as the order date and quantity. The Rates relationship between a customer
and product has a single property to capture the customer rating.

Product
Customer

Orders
(Date, Quantity)

Name

Address

Title

Price

Color

Size

City

Country

Zip Weight

Other specs
Rates

(Rating)

Figure 4.11: Labeled property graph example

For create, read, update and delete (CRUD) operations, Neo4j provides a query language
called Cypher. Cypher has some similarities with the SQL query language used for relational
databases. Figure 4.12 describes the usage of some of the commonly used Cypher constructs.

Bahga & Madisetti, c© 2016



4.4 Graph Databases 149

CREATE (n:LABEL {property:value}) RETURN n

CREATE (node1)-[: RELATIONSHIP]->(node2)

n is the variable which captures the result

Label assigned to node

Node properties in the form of key-value pairs

Label assigned to relationship

Creating a node

Creating a relationship

MATCH (node) RETURN node.property

MATCH (node1)-[:RELATIONSHIP]->(node2) RETURN node1, node2

MATCH (n:LABEL) RETURN n

Node to query for

Querying for a node

Querying for a relationship

Querying for a label

n is the variable which captures the result

Relationship label to query for

Node label to query for

Variables which capture the nodes with the relationship being queried

Node properties to be returned

Figure 4.12: Commonly used Cypher constructs
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Box 4.8 shows examples of using Cypher for creating customer and product nodes and
the relationships between the nodes.

� Box 4.8: Examples of Neo4j Cypher statements

#Create customer
CREATE (c:CUSTOMER {name: "Bradley Russo",

address:"P.O. Box 486, 6221 Et St.,Barnstaple",
country:"Ukraine", zipcode:"10903"});

#Create product
CREATE (p:PRODUCT {title : "Motorola Moto G",

Color : "Black", Size : "16 GB",
Weight : "5.4 ounces", price : 219.99 });

#Create relationship between customer and product
MATCH(c:CUSTOMER{name:"Bradley Russo"}),
(p:PRODUCT{title:"Motorola Moto G"}) WITH c, p
CREATE (c)-[:RATES]->(p);

#Return all data
MATCH (n) RETURN n;

#Query for a customer
MATCH (n:CUSTOMER {name: "Bradley Russo"}) RETURN n;

#Query for a product
MATCH (n:PRODUCT) WHERE n.price>200 RETURN n;

Neo4j also exposes a variety of REST APIs for performing the CRUD operations. These
REST APIs enabled the development of language-specific client libraries for Neo4j. Let us
look at some examples of using the Python Py2neo client library for Neo4j. Box 4.9 shows
an example of using the Py2neo client library. In this example, we first authenticate with a
Neo4j server by providing the server hostname, username and password. Next, we create an
instance of the Graph class which provides methods for creating nodes and relationships,
searching nodes, executing Cypher queries and various other methods. To define a node, we
create an instance of the Node class by providing the node label, name and properties. In
this example, we define three nodes (c1,c2,c3) to represent three customers and two nodes
(p1,p2) to represent two products. Next, we define the relationships between the nodes by
creating instances of the Relationship class. For each relationship, we provide the related
nodes, a label for the relationship and relationship properties. Finally, we use the create
method of the Graph class to create the nodes and relationships.

� Box 4.9: Using Python Py2neo client library for Neo4j

import py2neo
from py2neo import Graph, Node, Relationship

# Authenticate the user using py2neo.authentication
py2neo.authenticate("localhost:7474", "neo4j", "password")

Bahga & Madisetti, c© 2016



4.4 Graph Databases 151

# Connect to Graph and get the instance of Graph
graph = Graph("http://localhost:7474/db/data/")

#Define nodes
c1 = Node("CUSTOMER", name="Bradley Russo",
address="486, 6221 Et St.,Barnstaple",
country="Ukraine", zipcode="10903")

c2 = Node("CUSTOMER", name="Jarrod Nieves",
address="198-550 At, Rd.,Hines Creek",
country="Greece", zipcode="10903")

c3 = Node("CUSTOMER", name="Ivor Merritt",
address="527-9960 Vel Street,Lauw",
country="Peru", zipcode="5624")

p1 = Node("PRODUCT",title = "Motorola Moto G (3rd Generation)",
features = ["Advanced water resistance", "13 MP camera",
"5in HD display", "Quad core processing power",
"5MP rear camera", "4G LTE Speed"],
Color ="Black", Size = "16GB",
Dimensions = "0.2 x 2.9 x 5.6 inches",
Weight = "5.4 ounces",price = 219.99)

p2=Node("PRODUCT",title = "Canon EOS Rebel T5",
features = ["18 megapixel CMOS (APS-C) sensor",
"EF-S 18-55mm IS II standard zoom lens", "3-inch LCD TFT color,
liquid-crystal monitor", "EOS 1080p full HD movie mode"],
Color = "Black", MaximumAperture = "f3.5",
Dimensions = "3.94 x 3.07 x 5.12 inches",
Weight = "1.06 pounds", price = 399)

#Define relationships
r1 = Relationship(c1,"ORDERS",p1,date="2015-11-03", quantity="2")
r2 = Relationship(c2,"ORDERS",p1,date="2015-11-03", quantity="1")
r3 = Relationship(c1,"ORDERS",p2,date="2015-11-03", quantity="1")
r4 = Relationship(c2,"ORDERS",p2,date="2015-11-03", quantity="1")

r5 = Relationship(c1,"RATES",p1,rating="4.8")
r6 = Relationship(c2,"RATES",p2,quantity="4.5")

#Create nodes
result = graph.create(c1, c2, p1, p2)

#Create relationships
result = graph.create(r1, r2, r3, r4, r5, r6)

#Print the results
print result

Neo4j provides a web interface from where you can execute Cypher statements and view
the graphs in the database. Figure 4.13 shows the graph created using the Python program in
Box 4.9.
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Summary
Non-relational databases or NoSQL databases are popular for applications in which the
scale of data involved is massive and the data may not be structured. Furthermore, real-time
performance is considered more important than consistency. In this chapter we described four
types of NoSQL databases. Figure 4.14 provides a comparison of these four types of NoSQL
databases. The key-value databases store data in the form of key-value pairs where the keys
are used to identify uniquely the values stored. Hash functions are applied to the key to
determine where the value should be stored. Document store databases store semi-structured
data in the form of documents which are encoded in different standards such as JSON, XML,
BSON or YAML. The benefit of using document databases over key-value databases is that
these databases allow efficiently querying the documents based on the attribute values in the
documents. Column family databases store data as columns where a column has a name and
a value. Columns are grouped into column families and a collection of columns make up
a row which is identified by a row-key. Column family databases support high-throughput
reads and writes and have distributed and highly available architectures. Graph databases
model data in the form of nodes and relationships. Nodes represent the entities in the data
model and have a set of attributes. The relationships between the entities are represented in
the form of links between the nodes.
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In Chapter-1, we proposed a big data stack and various analytics patterns. An important
component of the analytics stack and the patterns is the data connectors which allow collecting
data from various data sources into a distributed file system or a NoSQL database for batch
analysis of data, or which connect the data sources to stream or in-memory processing
frameworks for real-time analysis of data.

5.1 Data Acquisition Considerations
Before we look at specific tools and frameworks for data acquisition and data connectors, let
us first look at the various considerations for data acquisition, which will drive the choice of
the tools or frameworks.

5.1.1 Source Type
The type of the data source has to be kept into consideration while making a choice for a
data connector. Data sources can either publish bulk data in batches or data in small batches
(micro-batches) or streaming real-time data.

Some examples of batch data sources are:
- Files
- Logs
- Relational databases

Some examples of real-time data sources are:
- Machines generating sensor data
- Internet of Things (IoT) systems sending real-time data
- Social media feeds
- Stock market feeds

5.1.2 Velocity
The velocity of data refers to how fast the data is generated and how frequently it varies. For
data with a high velocity (real-time or streaming data), communication mechanisms which
have low overhead and low latency are required. Later in this Chapter, we describe how
WebSocket and MQTT based connectors can be used for ingesting real-time and streaming
data. For such applications, distributed publish-subscribe messaging frameworks such
as Apache Kafka are also good choices as they support high throughput and low latency
communication. With such frameworks the downstream data consumers can subscribe to the
data feeds and receive data in near real-time.

5.1.3 Ingestion Mechanism
The data ingestion mechanism can either be a push or pull mechanism. The choice of the
specific tool or framework for data ingestion will be driven by the data consumer. If the
consumer has the capability (or requirement) to pull data, publish-subscribe messaging
frameworks which allow the consumers to pull the data (such as Apache Kafka) or messaging
queues can be used. The data producers push data to the a messaging framework or a queue
from which the consumers can pull the data. An alternative design approach that is adopted
in systems such as Apache Flume is the push approach, where the data sources first push
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data to the framework and the framework then pushes the data to the data sinks. Figures 5.1
and 5.2 show the data flow in push-pull and publish-subscribe messaging.

Consumer-1

Producer

Sends 
messages to 
queue

Queues

Consumer-2

Messages pushed 
to queues

Messages pulled 
from queues

Figure 5.1: Push-Pull messaging

Consumer-1Producer

Sends 
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topics

Broker

Topic-1
Subscribers: 
Consumer-1, 
Consumer-2

Message published 
to Topic-1

Consumer-2

Consumer-3

Topic-2
Subscribers: 
Consumer-3

Message published 
to Topic-2

Messages are either 
pushed to consumers, or
pulled by the consumers

Figure 5.2: Publish - Subscribe Messaging

5.2 Publish - Subscribe Messaging Frameworks

Publish-Subscribe is a communication model that comprises publishers, brokers and consumers.
Publishers are the sources of data. Publishers send data to topics which are managed by the
broker. Publishers are not aware of the consumers. Consumers subscribe to the topics which
are managed by the broker. When the broker receives data for a topic from a publisher, it
sends the data to all the subscribed consumers. Alternatively, the consumers can pull data for
specific topics from the broker.

In this section, we will describe two publish-subscribe messaging frameworks - Apache
Kafka and Amazon Kinesis.
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5.2.1 Apache Kafka
Apache Kafka is a high throughput distributed messaging system. Kafka can also be
considered as a distributed, partitioned, replicated commit log service. Kafka can be used
for applications such as stream processing, messaging, website activity tracking, metrics
collection and monitoring, log aggregation, etc.

Architecture
Figure 5.3 shows the architecture and components of Kafka.

Producer

Producer

Kafka Cluster

Broker 1
ConsumerTopic 1

Topic 2

Broker 2

Topic 1

Topic 2

Broker 3

Topic 1

Topic 2

Consumer

Consumer

Figure 5.3: Kafka Architecture

A Kafka system includes the following components:
• Topic: A topic is a user-defined category to which messages are published.
• Producer: Producer is a component that publishes messages to one or more topics.
• Consumer: Consumer is a component that subscribes to one or more topics and

processes the messages.
• Broker: Broker is a component that manages the topics and handles the persistence,

partitioning, and replication of the data. A Kafka cluster can have multiple Kafka
Brokers (or servers), with each Broker managing multiple topics.

Partitions
Kafka topics are subdivided into multiple partitions as shown in Figure 5.4. Each partition is
an ordered and immutable sequence of messages. Topics are stored on the disk in the form
of partitioned logs (commit logs). The benefit of using partitions is that the log can scale
to massive sizes, which will not fit onto the disk of a single server. Partitions also allow
multiple consumers to consume messages in parallel.

Partitions are distributed among the brokers, where each broker is typically a separate
physical server. Partitions are also replicated across multiple brokers for fault tolerance
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Figure 5.4: Kafka topic partitions

purposes. For each partition, one of the servers acts as the ‘leader’ for the partition and
handles all the writes and reads for the partition. Other servers which hold the partition
replicas are called the ‘followers’. Partitions and replicas can be reassigned between the
brokers as more brokers become available.

Publishing Messages
Producers publish messages to topics. A producer decides which message should be published
to which partition of a topic. Producers can either publish messages to different partitions
of a topic in a round-robin fashion (for load balancing purposes) or publish messages with
specific keys to specific partitions.

Consuming Messages
Consumers consume (and later process) messages from topics. Each message in a partition
is assigned a sequence ID called the offset. Offsets are used by the consumers to track which
messages have been consumed. Kafka Brokers are not responsible for keeping a track of the
messages consumed by the consumers. The published messages are retained on the disk for
a configurable duration of time. Since the topics are retained on the disk, the consumers can
replay the messages using the offset. The consumers increment the offset as they consume
the messages in a sequence.

Consumers can be grouped together into consumer groups. Each message which is
published to a topic by a producer is delivered to one consumer within a consumer group.
The consumers within a consumer group can either be separate processes or separate instances.
Having multiple consumers within a consumer group makes the system scalable and fault
tolerant. The partitions in a topic are assigned to consumers such that each partition is
consumed by exactly one consumer in a consumer group. The individual consumer processes
can process different partitions in parallel. Since only one consumer process consumes from
a given partition, messages are delivered in order. Kafka provides ordering of messages
within a partition, but not between partitions.
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Log Storage & Compaction
Kafka is structured to store messages in the form of append-only logs. For each partition of
each topic, a log file is maintained which contains an ordered and immutable sequence of
messages. Messages are made available to consumers only after they have been committed
to the log. This ensure that all the messages which are consumed by the consumers also
persist in the logs so that they can be consumed by other consumers if need be. Unlike,
queuing systems which delete the messages after they have been consumed, Kafka retains
the messages in the log files, which are retained for a certain amount of time (that can be
configured). Kafka provides two options for log cleanup policy - delete or compact. Log
for a topic partition is stored as a directory of segment files. The maximum size to which a
segment file can grow before a new segment is rolled over in the log can be configured. If
the log cleanup policy is set to delete, the log segments are deleted when they reach the size
or time limits set. If the log cleanup policy is set to compact, then log compaction is used to
clean out obsolete records. While for temporal data the delete retention policy works well,
the compact policy is useful when you have keyed and mutable data. For example, if each
message which is published to a topic is uniquely identified by a primary key (like a row in a
database table), and the message values are going to change over time, then it is preferable
to use log compaction which removes old and obsolete values for a key. Log compaction
ensures that at least the last known value for each message key for each topic partition is
retained.

Using Kafka
In this section, we will describe some examples of Kafka producers and consumers. We will
the use the Kafka python library called kafka-python for the examples. The kafka-python
library can be installed using pip as follows:

� sudo pip install kafka-python

Kafka uses Zookeeper for state coordination. A Kafka topic can be created as follows:

� bin/kafka-topics.sh --create --zookeeper localhost:2181
--replication-factor 1 --partitions 1 --topic test

If Zookeeper is running on a separate machine than Kafka, then change the Zookeeper
hostname from localhost to the correct hostname.

To make sure that the topic has been created, you can use the following command to list
all topics:

� bin/kafka-topics.sh --list --zookeeper localhost:2181

Box 5.1 shows an example of a Kafka producer that sends messages synchronously.

� Box 5.1: Kafka Producer for sending messages synchronously

import time
from datetime import datetime
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from kafka.client import KafkaClient
from kafka.producer import SimpleProducer

client = KafkaClient("localhost:6667")
producer = SimpleProducer(client)

while True:
ts=time.time()
timestamp = datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)
data = "This is a test string generated at: " + str(timestamp)

producer.send_messages(‘test’, data)

time.sleep(1)

Box 5.2 shows an example of a Kafka producer that sends messages asynchronously.

� Box 5.2: Kafka Producer for sending messages asynchronously

import time
from datetime import datetime
from kafka.client import KafkaClient
from kafka.producer import SimpleProducer

client = KafkaClient("localhost:6667")
producer = SimpleProducer(client, async=True)

while True:
ts=time.time()
timestamp = datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)
data = "Test message sent asynchronously at: " + str(timestamp)

producer.send_messages(‘test’, data)

time.sleep(1)

Box 5.3 shows an example of a Kafka producer that sends messages in batch. The
producer collects the messages and sends the messages after 20 messages are collected or
after every 60 seconds.

� Box 5.3: Kafka Producer for sending messages in batch

import time
from datetime import datetime
from kafka.client import KafkaClient
from kafka.producer import SimpleProducer

client = KafkaClient("localhost:6667")

#The following producer will collect messages in batch
#and send them to Kafka after 20 messages are
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# collected or every 60 seconds

producer = SimpleProducer(client,batch_send=True,
batch_send_every_n=20,
batch_send_every_t=60)

while True:
ts=time.time()
timestamp = datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)
data = "This is a test string generated at: " + str(timestamp)

producer.send_messages(‘test’, data)

time.sleep(1)

Box 5.4 shows an example of a Kafka producer that sends keyed messages. The default
partitioner class for partitioning messages is the HashedPartitioner that partitions based on
the hash of the key. Another option is to use the RoundRobinPartitioner that sends messages
to different partitions in a round-robin fashion.

� Box 5.4: Kafka Producer for sending keyed messages

import time
import datetime
from kafka import KafkaClient, KeyedProducer,
from kafka import HashedPartitioner, RoundRobinPartitioner

kafka = KafkaClient("localhost:6667")

#Default partitioner is HashedPartitioner
producer = KeyedProducer(kafka)
producer.send("test", "key1", "Test message with key1")
producer.send("test", "key2", "Test message with key2")

#Using RoundRobinPartitioner
producer = KeyedProducer(kafka, partitioner=RoundRobinPartitioner)
producer.send("test", "key3", "Test message with key3")
producer.send("test", "key4", "Test message with key4")

Box 5.5 shows an example of a Kafka consumer that consumes messages from a topic.

� Box 5.5: Kafka Consumer

from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer

client = KafkaClient("localhost:6667")
consumer = SimpleConsumer(client, "test-group", "test")

for message in consumer:
#Print message object
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print message

#Print only message value
print message.message.value

Box 5.6 shows an alternative implementation of a Kafka consumer.

� Box 5.6: Kafka Consumer - alternative implementation

from kafka.client import KafkaClient
from kafka.consumer import KafkaConsumer

client = KafkaClient("localhost:6667")
consumer = KafkaConsumer("test", metadata_broker_list=[‘localhost:6667’])

while True:
data = consumer.next().value
print data

5.2.2 Amazon Kinesis

Amazon Kinesis is a fully managed commercial service for ingesting real-time streaming
data. Kinesis scales automatically to handle high volume streaming data coming from a large
number of sources. The streaming data collected by Kinesis can be processed by applications
running on Amazon EC2 instances or any other compute instance that can connect to Kinesis.

Kinesis allows rapid and continuous data intake and support data blobs of size upto 50Kb.
The data producers write data records to Kinesis streams. A data record comprises a sequence
number, a partition key, and the data blob. Data records in a Kinesis stream are distributed in
shards. Each shard provides a fixed unit of capacity, and a stream can have multiple shards.
A single shard of throughput allows capturing 1MB per second of data, at up to 1,000 PUT
transactions per second and allows applications to read data at up to 2 MB per second.

Producer

Producer

AWS Kinesis

ConsumerShard 1

Shard 2

Shard N

Consumer

Figure 5.5: Amazon Kinesis architecture
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Box 5.7 shows a Python program for writing to a Kinesis stream. In this example, a
connection to the Kinesis service is first established and then a new Kinesis stream is either
created (if not existing) or described. The data is written to the Kinesis stream using the
kinesis.put_record function.

� Box 5.7: Python program for writing to a Kinesis stream

from random import randrange
import time
import datetime
import boto
import json
from boto.kinesis.exceptions import ResourceNotFoundException

ACCESS_KEY = "<enter>"
SECRET_KEY = "<enter>"

kinesis = boto.connect_kinesis(aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

#Send some synthetic data to AWS Kinesis
while True:
ts=time.time()

data = str(ts) + ‘,’ + str(randrange(0,60)) + ‘,’ +
str(randrange(0,100)) + ‘,’ + str(randrange(5000,12000)) +
‘,’ + str(randrange(0,100))

print data
response = kinesis.put_record(‘forestfire’, data, data)
print response
time.sleep(1)

Box 5.8 shows a Python program for reading from a Kinesis stream. In this example, a
shard iterator is obtained using the kinesis.get_shard_iterator function. The shard iterator
specifies the position in the shard from which you want to start reading data records
sequentially. The data is read using the kinesis.get_records function which returns one
or more data records from a shard.

� Box 5.8: Python program for reading from a Kinesis stream

from random import randrange
import time
import datetime
import boto
import json
from boto.kinesis.exceptions import ResourceNotFoundException

ACCESS_KEY = "<enter>"
SECRET_KEY = "<enter>"
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kinesis = boto.connect_kinesis(aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

response = kinesis.describe_stream(‘forestfire’)

if response[‘StreamDescription’][‘StreamStatus’] == ‘ACTIVE’:
shard_id = response[‘StreamDescription’][‘Shards’][0][‘ShardId’]

response = kinesis.get_shard_iterator(‘forestfire’, shard_id,
‘TRIM_HORIZON’)
shard_iterator = response[‘ShardIterator’]

response = kinesis.get_records(shard_iterator)
shard_iterator = response[‘NextShardIterator’]

for record in response[‘Records’]:
print record

5.3 Big Data Collection Systems
Data collection systems allow collecting, aggregating and moving data from various sources
(such as server logs, databases, social media, streaming sensor data from Internet of Things
devices and other sources) into a centralized data store (such as a distributed file system or a
NoSQL database).

5.3.1 Apache Flume
Apache Flume is a distributed, reliable, and available system for collecting, aggregating, and
moving large amounts of data from different data sources into a centralized data store.

Flume Architecture
Flume’s architecture is based on data flows and includes the following components:
• Source: Source is the component which receives or polls for data from external sources.

A Flume data flow starts from a source. For example, Flume source can receive data
from a social media network (using streaming APIs).
• Channel: After the data is received by a Flume source, the data is transmitted to a

channel. Each channel in a data flow is connected to one sink to which the data is
drained. A data flow can comprise of multiple channels, where a source writes the data
to multiple channels.
• Sink: Sink is the component which drains data from a channel to a data store (such as

a distributed file system or to another agent). Each sink in a data flow is connected to a
channel. Sinks either deliver data to its final destination or are chained to other agents.
• Agent: A Flume agent is a collection of sources, channels and sinks. Agent is a

process that hosts the sources, channels and sinks from which the data moves from an
external source to its final destination.
• Event: An event is a unit of data flow having a payload and an optional set of attributes.

Flume sources consume events generated by external sources.
Flume uses a data flow model which includes sources, channels and sinks, encapsulated

into agents. Figure 5.7 shows some examples of Flume data flows. The simplest data flow
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has one source, one channel and one sink. Sources can multiplex data to multiple channels
for either load balancing purposes, or, for parallel processing. More complex data flows can
be created by chaining multiple agents where the sink of one agent delivers data to a source
of another agent.

Source Channel Sink

Sources

Avro Source

Thrift Source

Exec Source

JMS Source

Spooling 
Directory 

Source

Sinks

HDFS Sink

Avro Sink

Thrift Sink

File Roll Sink

Logger SinkTwitter
Source

NetCat
Source

Sequence 
Generator 

Source

Syslog Source

HTTP Source

Custom 
Source

Flume

IRC Sink

HBase Sink

ElasticSearch
Sink

Custom Sink

Figure 5.6: Apache Flume architecture

Flume agents are defined in the configuration files. Box 5.9 shows a generic definition of
a Flume agent. In the configuration file, first the sources, channels and sinks for the agent are
listed and then each source, channel and sink is defined. Finally the bindings between the
sources, channels and sinks are defined.

� Box 5.9: Generic definition of a Flume agent

<agent name>.sources = <source-1> <source-2> ... <source-N>
<agent name>.channels = <channel-1> <channel-2> ... <channel-N>
<agent name>.sinks = <sink-1> <sink-2> ... <sink-N>

# Define sources
<agent name>.sources.<source-1>.type = <source type>
:
<agent name>.sources.<source-N>.type = <source type>

# Define sinks
<agent name>.sinks.<sink-1>.type = <sink type>
:
<agent name>.sinks.<sink-1>.type = <sink type>

# Define channels
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Figure 5.7: Flume data flow examples
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myagent.channels.<channel-1>.type = <channel type>
:
myagent.channels.<channel-N>.type = <channel type>

# Bind the sources and sinks to the channels
myagent.sources.<source-1>.channels = <channel-1>
myagent.sinks.<sink-1>.channel = <channel-1
:
myagent.sources.<source-N>.channels = <channel-1> ... <channel-N>
myagent.sinks.<sink-N>.channel = <channel-N

� #Format of command to run a Flume agent
#sudo flume-ng agent -c <conf file path> -f <conf file> -n <agent name>

#Example
sudo flume-ng agent -c /etc/flume/conf -f

/etc/flume/conf/flume.conf -n myagent

Flume Sources
Flume comes with multiple built-in sources that allow collecting and aggregating data from a
wide range of external systems. Flume also provides the flexibility to add custom sources.
• Avro Source: Apache Avro is a data serialization system that provides a compact and

fast binary data format. Avro uses an Interface Definition Language (IDL) to define the
structure of data in the form of schemas. Avro is defined with JSON, and the schema
is always stored with the data, which allows the programs reading the data to interpret
the data. Avro can also be used with Remote Procedure Calls (RPC) where the client
and server exchange the schemas in the handshake process. Avro provides serialization
functionality similar to other systems such as Thrift and Protocol Buffers. The Flume
Avro source receives events from external Avro client streams. An Avro source can be
setup using the following properties in the Flume configuration file for the agent:

� myagent.sources = source1
myagent.sources.source1.type = avro
myagent.sources.source1.bind = 0.0.0.0
myagent.sources.source1.port = 4141

The bind and port properties specify the hostname of the external Avro client and the
Avro port.
• Thrift Source: Apache Thrift is a serialization framework similar to Avro. Thrift

provides a software stack and a code generation engine to build services that transparently
and efficiently work with multiple programming languages. Like Avro, Thrift also
provides a stack for Remote Procedure Calls (RPC). The Flume Thrift source receives
events from external Thrift client streams. A Thrift source can be setup using the
following properties in the Flume configuration file for the agent:

� myagent.sources = source1
myagent.sources.source1.type = thrift
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myagent.sources.source1.bind = 0.0.0.0
myagent.sources.source1.port = 4141

• Exec Source: Exec source can be used to ingest data from the standard output. When
an agent with an Exec source is started, it runs the Unix command (specified in the
Exec source definition) and continues to receive data from the standard output as long
as the process runs. The typical use case for the Exec source is the tail command
which emits few lines of any text file given to it as an input and writes them to standard
output. The tail when used with the -F options outputs the appended data as the file
grows. The box below shows an example of setting up an Exec source with the tail
command.

� myagent.sources = source1
myagent.sources.source1.type = exec
myagent.sources.source1.command = tail -F /var/log/eventlog.log

• JMS Source: Java Message Service (JMS) is a messaging service that can be used by
Java applications to create, send, receive, and read messages. The JMS source receives
messages from a JMS queue or topic. The box below shows an example of setting up
a JMS source:

� myagent.sources = s1
myagent.sources.s1.type = jms
myagent.sources.s1.initialContextFactory =

org.apache.activemq.jndi.ActiveMQInitialContextFactory
myagent.sources.s1.connectionFactory = GenericConnectionFactory
myagent.sources.s1.providerURL = tcp://mqserver:61616
myagent.sources.s1.destinationName = DATA
myagent.sources.s1.destinationType = QUEUE

To connect with a JMS destination an initial context factory name, a connection factory
and a provider URL are required. The destination type can either be a queue or a topic.
• Spooling Directory Source: Spooling Directory source is useful for ingesting log

files. A spool directory is setup on the disk from where the Spooling Directory source
ingests the files. To use the source for ingesting logs, the log generation system is
setup such that when the log files are rolled over they are moved to the spool directory.
The Spooling Directory source parses the files and creates events. The parsing logic
can be configured for the source. The default logic is to parse each line as an event.
Though an alternative approach to Spooling Directory source is to use Exec source
with tail command, however, it is not as reliable. The box below shows an example of
setting up a Spooling Directory source:

� myagent.sources = source1
myagent.sources.source1.type = spooldir
myagent.sources.source1.spoolDir = /var/log/apache/flumeSpool
myagent.sources.source1.fileHeader = true

• Twitter Source: The Flume Twitter source connects to the Twitter streaming API and
receives tweets in real-time. The Twitter source converts the tweet objects to Avro
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format before sending them to the downstream channel. The box below shows an
example of setting up a Twitter source:

� myagent.sources = source1
myagent.sources.source1.type =

org.apache.flume.source.twitter.TwitterSource
myagent.sources.source1.consumerKey = CONSUMER_KEY
myagent.sources.source1.consumerSecret = CONSUMER_SECRET
myagent.sources.source1.accessToken = ACCESS_TOKEN
myagent.sources.source1.accessTokenSecret = ACCESS_TOKEN_SECRET
myagent.sources.source1.maxBatchSize = 10
myagent.sources.source1.maxBatchDurationMillis = 200

Before setting up the Twitter source, you will need to create a Twitter application from
the Twitter developer account and obtain the consumer and access tokens and secrets
for the application.
• NetCat Source: NetCat is a simple Unix utility which reads and writes data across

network connections, using TCP or UDP protocol. The NetCat source listens to a
specific port to which the data is written by a NetCat client and turns each line of text
received into a Flume event. The box below shows an example of setting up a NetCat
source:

� myagent.sources = source1
myagent.sources.source1.type = netcat
myagent.sources.source1.bind = 0.0.0.0
myagent.sources.source1.port = 6666

• Sequence Generator Source: Sequence Generator source generates events with a
sequence of numbers starting from 0 and incremented by 1. This source is mainly
used for testing purposes. The box below shows an example of setting up a Sequence
Generator source:

� myagent.sources = source1
myagent.sources.source1.type = seq

• Syslog Source: Syslog source is used for ingesting syslog data. The box below shows
an example of setting up a Syslog TCP source.

� myagent.sources = source1
myagent.sources.source1.type = syslogtcp
myagent.sources.source1.host = localhost
myagent.sources.source1.port = 5140

• HTTP Source: HTTP source receives HTTP events (POST or GET requests) and
converts them into Flume events. While the source can receive events in the form
of HTTP POST and GET requests, GET command is used for experimentation only.
To convert the HTTP requests into events, a pluggable handler is used. The default
handler is JSONHandler, which expects an array of JSON objects. The box below
shows an example of setting up a HTTP source:
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� myagent.sources = source1
myagent.sources.source1.type = http
myagent.sources.source1.bind = localhost
myagent.sources.source1.port = 81
myagent.sources.source1.handler =

org.apache.flume.source.http.JSONHandler

The bind and port properties specify the hostname and port on which the source should
listen to.
• Custom Source: Flume allows customs sources to be integrated into the system.

Custom sources are implemented in Java. The Java class files of the custom source
along with the dependencies are included in the classpath of the Flume agent and also
specified in the agent configuration file shown below:

� myagent.sources = source1
myagent.sources.source1.type = org.example.MySource

Flume Sinks

Flume comes with multiple built-in sinks. Each sink in a Flume agent connects to a channel
and drains the data from the channel to a data store.

• HDFS Sink: The Hadoop Distributed File System (HDFS) Sink drains events from a
channel to HDFS. The data is written to HDFS in the form of a configurable file type.
HDFS sink supports SequenceFile, DataStream and CompressedStream file types.
HDFS sink allows the files to be rolled either when the size of the file exceeds a certain
limit, or after a specified interval, or after a certain number of events have been written
to a file. The box below shows an example of setting up an HDFS sink:

� myagent.sinks = sink1
myagent.sinks.sink1.type = hdfs
myagent.sinks.sink1.hdfs.fileType = DataStream
myagent.sinks.sink1.hdfs.path = /flume/events
myagent.sinks.sink1.hdfs.filePrefix = eventlog
myagent.sinks.sink1.hdfs.fileSuffix = .log
myagent.sinks.sink1.hdfs.batchSize = 1000

• Avro Sink: An Avro sink retrieves events from a channel and drains the events
to a downstream host. The box below shows an example of setting up an Avro
sink:

� myagent.sinks = sink1
myagent.sinks.sink1.type = avro
myagent.sinks.sink1.hostname = 10.10.10.10
myagent.sinks.sink1.port = 4545

• Thrift Sink: A Thrift sink retrieves events from a channel and drains the events
to a downstream host. The box below shows an example of setting up an Thrift
sink:
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� myagent.sinks = sink1
myagent.sinks.sink1.type = thrift
myagent.sinks.sink1.hostname = 10.10.10.10
myagent.sinks.sink1.port = 4545

• File Roll Sink: A File Roll sink drains the events to a file on the local filesystem. The
box below shows an example of setting up an File Roll sink:

� myagent.sinks = sink1
myagent.sinks.sink1.type = file_roll
myagent.sinks.sink1.sink.directory = /var/log/flume

• Logger Sink: A Logger sink retrieves events from a channel and logs the events. The
box below shows an example of setting up an Logger sink:

� myagent.sinks = sink1
myagent.sinks.sink1.type = logger

• IRC Sink: An IRC sink retrieves events from a channel and drains the events to an
IRC host. The box below shows an example of setting up an IRC sink:

� myagent.sinks = sink1
myagent.sinks.sink1.type = irc
myagent.sinks.sink1.hostname = irc.example.com
myagent.sinks.sink1.nick = flume
myagent.sinks.sink1.chan = #flume

• HBaseSink: An HBase sink retrieves events from a channel and drains the events
to an HBase table. The box below shows an example of setting up an HBase
sink:

� myagent.sinks = sink1
myagent.sinks.sink1.type = hbase
myagent.sinks.sink1.table = mytable
myagent.sinks.sink1.columnFamily = myfam
myagent.sinks.sink1.serializer =

org.apache.flume.sink.hbase.RegexHbaseEventSerializer

• Custom Sink: Flume allows customs sinks to be integrated into the system. Custom
sinks are implemented in Java. The Java class files of the custom sink along with the
dependencies are included in the classpath of the Flume agent and also specified in the
agent configuration file shown below:

� myagent.sinks = sink1
myagent.sinks.sink1.type = org.example.MySink

Flume Channels

Channels store the events while they are being moved from a source to sink.
• Memory Channel: Memory channel stores the events in the memory and provides
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high throughput. However, in the event of an agent failure, the events can be lost. The
box below shows an example of setting up a memory channel.

� myagent.channels = channel1
myagent.channels.channel1.type = memory
myagent.channels.channel1.capacity = 10000
myagent.channels.channel1.transactionCapacity = 10000
myagent.channels.channel1.byteCapacityBufferPercentage = 20
myagent.channels.channel1.byteCapacity = 800000

• File Channel: File channel stores the events in files on the local filesystem. Events are
stored in a checkpoint file in the data directory specified in the channel configuration.
The a maximum file size for the checkpoint file can be specified. The box below shows
an example of setting up a file channel.

� myagent.channels = channel1
myagent.channels.channel1.type = file
myagent.channels.channel1.checkpointDir = /mnt/flume/checkpoint
myagent.channels.channel1.dataDirs = /mnt/flume/data

• JDBC Channel: JDBC channel stores the events in an embedded Derby database.
This channel provides a durable storage for events, and the events can be recovered
easily in case of agent failures. The box below shows an example of setting up a JDBC
channel.

� myagent.channels = channel1
myagent.channels.channel1.type = jdbc

• Spillable Memory Channel: Spillable Memory channel stores events in an in-memory
queue and when the queue fills up, the events are spilled onto the disk. This channel
provides high throughput and fault tolerance. The box below shows an example of
setting up a Spillable Memory channel.

� myagent.channels = channel1
myagent.channels.channel1.type = SPILLABLEMEMORY
myagent.channels.channel1.memoryCapacity = 10000
myagent.channels.channel1.overflowCapacity = 1000000
myagent.channels.channel1.byteCapacity = 800000
myagent.channels.channel1.checkpointDir = /mnt/flume/checkpoint
myagent.channels.channel1.dataDirs = /mnt/flume/data

Maximum number of events stored in a memory queue are specified using the
memoryCapacity property and the maximum size of the memory queue is specified
using the byteCapacity property. The in-memory queue is considered full, and the
events are spilled to the disk when either the memoryCapacity or byteCapacity limit is
reached.
• Custom Channel: Flume allows customs channels to be integrated into the system.

Custom channels are implemented in Java. The Java class files of the custom channel
along with the dependencies are included in the classpath of the Flume agent and also
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specified in the agent configuration file shown below:

� myagent.channels = channel1
myagent.channels.channel1.type = org.example.MyChannel

Channel Selectors
Flume agents can have a single source connected to multiple channels. In such cases, the
channel selector defines policy about distributing the events among the channels connected
to a single source.
• Replicating Channel Selector: The default channel selected is the replicating selector,

which replicates events received from the source to all the connected channels. The
box below shows an example of the configuration of an agent which has a single source
connected to three channels and uses a replicating channel selector.

� myagent.sources = source1
myagent.channels = channel1 channel2 channel3
myagent.source.source1.selector.type = replicating
myagent.source.source1.channels = channel1 channel2 channel3
myagent.source.source1.selector.optional = channel3

• Multiplexing Channel Selector: Multiplexing channel selector distributes events
from a source to all the connected channels. The box below shows an example of the
configuration of an agent which has a single source connected to three channels and
uses a multiplexing channel selector.

� myagent.sources = source1
myagent.channels = channel1 channel2 channel3
myagent.sources.source1.selector.type = multiplexing
myagent.sources.source1.selector.header = country
myagent.sources.source1.selector.mapping.IN = channel1
myagent.sources.source1.selector.mapping.US = channel2
myagent.sources.source1.selector.default = channel3

The header property specifies the attribute name to check for distributing the events
among the channels and the mapping properties specify the mappings between the
attribute values and the channels. For example, in the above configuration the header
property is set to the country attribute. All the events which have the country attribute
value as IN are sent to channel1 while all the events with country attribute value as the
US are sent to channel2. The default channel is set as channel3.
• Custom Channel Selector: Flume allows customs channel selectors to be integrated

into the system. Custom channel selectors are implemented in Java. The Java class
files of the custom channel selector along with the dependencies are included in the
classpath of the Flume agent and also specified in the agent configuration file shown
below:

� myagent.sources = source1
myagent.channels = channel1
myagent.sources.source1.selector.type =

Bahga & Madisetti, c© 2016



5.3 Big Data Collection Systems 177

org.example.MyChannelSelector

Sink Processors
Flume allows creating sink groups where a channel can be attached to a sink group to which
the events are drained. A sink processor defines how the events are drained from a channel to
a sink. Sink processors enable parallelism, priorities, and automatic failover.
• Load balancing Sink Processor: The load balancing sink processor allows load

balancing of events drained from a channel between the sinks in the attached sink
group. The load is distributed among the list of sinks specified using a round robin or
random selection mechanism. The box below shows an example of an agent with a
sink group and a load balancing sink processor.

� myagent.sinkgroups = group1
myagent.sinkgroups.group1.sinks = sink1 sink2
myagent.sinkgroups.group1.processor.type = load_balance
myagent.sinkgroups.group1.processor.backoff = true
myagent.sinkgroups.group1.processor.selector = random

• Failover Sink Processor: With Failover Sink processor, priorities can be assigned
to sinks between in a sink group. The attached channel then drains the events to the
highest priority sink. When the highest priority sink fails, the events are drained to the
sink with one lower priority, providing automatic failover. The box below shows an
example of an agent with a sink group and a failover sink processor.

� myagent.sinkgroups = group1
myagent.sinkgroups.group1.sinks = sink1 sink2
myagent.sinkgroups.group1.processor.type = failover
myagent.sinkgroups.group1.processor.priority.sink1 = 2
myagent.sinkgroups.group1.processor.priority.sink2 = 4
myagent.sinkgroups.group1.processor.maxpenalty = 10000

Flume Interceptors
Flume interceptors allow events to be modified, filtered or dropped as they flow from the
source to a channel. Interceptors are connected to the source. Interceptors can also be chained
to each other.
• Timestamp Interceptor: The Timestamp interceptor adds the current timestamp to

the headers of the events processed. Timestamp interceptor can be configured as
follows:

� myagent.sources = source1
myagent.sources.source1.interceptors = i1
myagent.sources.source1.interceptors.i1.type = timestamp

• Host Interceptor: The Host interceptor adds the hostname of the Flume agent to the
headers of the events processed. Host interceptor can be configured as follows:

� myagent.sources = source1
myagent.sources.source1.interceptors = i1
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myagent.sources.source1.interceptors.i1.type = host
myagent.sources.source1.interceptors.i1.hostHeader = hostname
myagent.sources.source1.interceptors.i1.useIP = false

• Static Interceptor: Static interceptor adds a static header to the events processed. The
box below shows an example of adding a static header, country, with the value set to
US.

� myagent.sources = source1
myagent.sources.source1.interceptors = i1
myagent.sources.source1.interceptors.i1.type = static
myagent.sources.source1.interceptors.i1.key = country
myagent.sources.source1.interceptors.i1.value = US

• UUID Interceptor: The UUID adds a universally unique identifier to the headers of
the events processed. UUID interceptor can be configured as follows:

� myagent.sources = source1
myagent.sources.source1.interceptors = i1
myagent.sources.source1.interceptors.i1.type = uuid
myagent.sources.source1.interceptors.i1.headerName=id

• Regex Filtering Interceptor: Regex Filtering interceptor applies a regular expression
to the event body and filters the matching events. The events matching the regular
expression can either be included or excluded. Regex Filtering interceptor can be
configured as follows:

� myagent.sources = source1
myagent.sources.source1.interceptors = i1
myagent.sources.source1.interceptors.i1.type = regex_filter
myagent.sources.source1.interceptors.i1.regex = .*
myagent.sources.source1.interceptors.i1.excludeEvents = false

Flume Examples
Box 5.10 shows an example of setting up a Flume agent with NetCat Source & File Roll
Sink.

� Box 5.10: Flume agent with NetCat Source & File Roll Sink

myagent.sources = r1
myagent.channels = c1
myagent.sinks = k1

# Define source
myagent.sources.r1.type = netcat
myagent.sources.r1.bind = 0.0.0.0
myagent.sources.r1.port = 6666

#Define Sink
myagent.sinks.k1.type = file_roll
myagent.sinks.k1.sink.directory = /var/log/flume
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#Define Channel
myagent.channels.c1.type = file
myagent.channels.c1.checkpointDir = /var/flume/checkpoint
myagent.channels.c1.dataDirs = /var/flume/data

# Bind the source and sink to the channel
myagent.sources.r1.channels = c1
myagent.sinks.k1.channel = c1

To test the agent, run the Flume agent and then open a new terminal and run the following
command:

� nc localhost 6666

Type some text. The same text will be sent to sink file.

� sudo flume-ng agent -c /etc/flume/conf -f /etc/flume/conf/flume.conf -n
myagent

Box 5.11 shows an example of setting up a Flume agent with Twitter Source & HDFS Sink.

� Box 5.11: Flume agent with Twitter Source & HDFS Sink

myagent.sources = r1
myagent.channels = c1
myagent.sinks = k1

# Define source
myagent.sources.r1.type = org.apache.flume.source.twitter.TwitterSource
myagent.sources.r1.consumerKey = <enter key here>
myagent.sources.r1.consumerSecret = <enter secret here>
myagent.sources.r1.accessToken = <enter token here>
myagent.sources.r1.accessTokenSecret = <enter token secret here>
myagent.sources.r1.maxBatchSize = 10
myagent.sources.r1.maxBatchDurationMillis = 200

#Define sink
myagent.sinks.k1.type = hdfs
myagent.sinks.k1.hdfs.fileType = DataStream
myagent.sinks.k1.hdfs.path = /flume/events
myagent.sinks.k1.hdfs.filePrefix = eventlog
myagent.sinks.k1.hdfs.fileSuffix = .log
myagent.sinks.k1.hdfs.batchSize = 1000

#Define Channel
myagent.channels.c1.type = file
myagent.channels.c1.checkpointDir = /var/flume/checkpoint
myagent.channels.c1.dataDirs = /var/flume/data

# Bind the source and sink to the channel
myagent.sources.r1.channels = c1
myagent.sinks.k1.channel = c1
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Box 5.12 shows an example of setting up a Flume agent with HTTP Source & File Roll Sink.

� Box 5.12: Flume agent with HTTP Source & File Roll Sink

myagent.sources = r1
myagent.channels = c1
myagent.sinks = k1

# Define source
myagent.sources.r1.type = http
myagent.sources.r1.bind = 0.0.0.0
myagent.sources.r1.port = 8000
myagent.sources.r1.handler = org.apache.flume.source.http.JSONHandler
myagent.sources.r1.handler.nickname = randomprops

#Define sink
myagent.sinks.k1.type = file_roll
myagent.sinks.k1.sink.directory = /var/log/flume

#Define Channel
myagent.channels.c1.type = file
myagent.channels.c1.checkpointDir = /var/flume/checkpoint
myagent.channels.c1.dataDirs = /var/flume/data

# Bind the source and sink to the channel
myagent.sources.r1.channels = c1
myagent.sinks.k1.channel = c1

5.3.2 Apache Sqoop

Apache Sqoop is a tool that allows importing data from relational database management
systems (RDBMS) into the Hadoop Distributed File System (HDFS), Hive or HBase tables.
Sqoop also allows exporting data from HDFS to RDBMS. Table 5.1 lists the various Sqoop
commands.

Tool Function

import Import a table from a database to HDFS

import-all-tables Import tables from a database to HDFS

export Export an HDFS directory to a database table

codegen Generate code to interact with database records

create-hive-table Import a table definition into Hive

eval Evaluate a SQL statement and display the results

list-databases List available databases on a server

list-tables List available tables in a database

Table 5.1: Sqoop Tools
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5.3.3 Importing Data with Sqoop

Figure 5.8 shows the process of importing data from RDBMS using Sqoop. The import
process begins with the user submitting a Sqoop import command. The format of an import
command is shown below:

� sqoop import --connect jdbc:mysql://<IP Address>/<Database Name>
--username <Username> --password <Password> --table <Table Name>

The import command includes a connection string which specifies the database type,
database server hostname (or IP address) and database name. Sqoop can connect to any
JDBC compliant database.

An example of an import command for importing data from a table named Courses from
MySQL database named Department is shown below:

� sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Courses

Sqoop import command launches multiple Map tasks (default is four tasks) which connect
to the database and import the rows in the table in parallel to HDFS as delimited text files,
binary Avro files or Hadoop SequenceFiles. The number of Map tasks used for importing
data (and hence the parallelism) can be controlled using the —m option as shown in example
below:

� #Use 8 map tasks to import sqoop import --connect
jdbc:mysql://localhost/Department
--username admin --password admin123 --table Courses --m 8
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Sqoop

Map Task

Data Store

Map Task

Map Task

RDBMS

Sqoop
import 

command
Map tasks 
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Map tasks 
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RDBMS and 
import data
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Figure 5.8: Importing data using Apache Sqoop
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5.3.4 Selecting Data to Import

While in the previous example, we imported all the data from a table, Sqoop also allows
importing selected data. With Sqoop import, it is possible to select a subset of columns
(using the columns option) to import from a table as shown in the example below:

� sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Courses
--columns "name,semester,year"

You can also use an SQL query with Sqoop import to select the data to import as shown in
the example below:

� sqoop import --connect jdbc:mysql://localhost/myDB --username admin
--password admin123 --query ‘SELECT a.*, b.* FROM a JOIN b on
(a.id == b.id) WHERE $CONDITIONS’
--split-by a.id --target-dir /user/admin/joinresults

In the above example, Sqoop will import the results of the query in parallel. Since each
Map task will execute the same query, certain conditions are required to split the data that
each Map task imports. The $CONDITIONS token is replaced with the conditions by the
Sqoop import tool at the run time. The split-by option specifies, on which column the data
split should be performed to import data in parallel. When using an SQL query to specify
what data to import, the target-dir option is required to provide the target location for the
data to be imported.

5.3.5 Custom Connectors

While Sqoop ships with a generic JDBC connector, it may be preferable to use a vendor-specific
JDBC connector as they can provide higher performance. Moreover, some databases provide
data movement tools which can move data with higher performance. For example, MySQL
provides mysqldump tool which can be used to export data from MySQL databases. Sqoop
allows such database-specific tools to be used with the Sqoop import command using the
direct option. The box below shows an example of importing data from MySQL with Sqoop
using the mysqldump tool:

� sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Courses --direct

#Passing additional arguments to database-specific tool
sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123
--table Courses --direct -- --default-character-set=latin1

5.3.6 Importing Data to Hive

Sqoop allows importing data into Hive using the hive-import option as shown in the example
below. When this option is set, Sqoop will automatically create a Hive table and import data
into the table.

Bahga & Madisetti, c© 2016



5.3 Big Data Collection Systems 183

� sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Courses --hive-import

5.3.7 Importing Data to HBase
Sqoop allows importing data into HBase using the hbase-table option along with a target
HBase table name, as shown in the example below. Sqoop also supports bulk loading of data
into HBase using the hbase-bulkload option.

� sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Courses
--hbase-table Courses

5.3.8 Incremental Imports
Incremental imports are useful when you have previously imported some rows from a
table, and you want to import the newer rows. Sqoop provides an incremental option for
incremental imports. When this option is used, a mode is also required, which can either be
append or lastmodified. The append mode is used when a table is updated with new rows
with increasing row ID values. The column to check for the row IDs is specified using the
check-column option.

The lastmodified mode is used when the rows of a table are updated and the timestamp
when a row was last modified is set in a last-modified column. The column to check for the
last modified timestamp is specified using the check-column option. The last-value option
is used in the lastmodified mode to specify the timestamp. When Sqoop import process
completes it prints the last-value. In the next import, this last-value is specified, so that Sqoop
can import only rows which have a last-modified timestamp greater than the last-value.

The box below shows examples of incremental imports:

� sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Students
--check-column id --incremental append

#Import last modified rows
sqoop import --connect jdbc:mysql://localhost/Department
--username admin --password admin123 --table Students
--check-column last-modified --incremental
lastmodified --last-value “2015-04-03 15:08:45.66”

5.3.9 Importing All Tables
The Sqoop import-all-tables command can be used to import all tables from a database to
HDFS, as shown the following example:

� sqoop import-all-tables --connect jdbc:mysql://localhost/Department

5.3.10 Exporting Data with Sqoop
The Sqoop export command can be used to export files from HDFS to RDBMS, as shown in
the following example:
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� sqoop export --connect jdbc:mysql://localhost/Department -table Courses
-export-dir /user/admin/courses

The target table must exist in the database. Sqoop translates the export command into a
set of INSERT statements to append new rows to the table. The data from the input files is
parsed and inserted into the target table. Instead of the default “insert” mode, you can also
specify an “update” mode, in which Sqoop will use UPDATE statements to replace existing
records in the target table. The update-mode option can be used to specify the “update” mode.
With update-mode option, a mode needs to be specified which can either be updateonly or
allowinsert. When updateonly mode is specified, the rows in the table are updated in the
export process only if they exist. With allowinsert mode, the rows are updated if they exist in
the table already or inserted if they do not exist.

5.4 Messaging Queues
Messaging queues are useful for push-pull messaging where the producers push data to the
queues, and the consumers pull the data from the queues. The producers and consumers do
not need to be aware of each other. Messaging queues allow decoupling of producers of data
from the consumers. In this section, we will describe some message queuing systems based
on protocols such as Advanced Message Queuing Protocol (AMQP) and ZeroMQ Message
Transfer Protocol (ZMTP).

5.4.1 RabbitMQ
RabbitMQ implements the Advanced Message Queuing Protocol (AMQP), which is an open
standard that defines the protocol for exchanges of messages between systems. AMQP
clients can either be producers or consumers. The clients conforming with the standard
can communicate with each other through brokers. Broker is a middleware application that
receives messages from producers and routes them to consumers. The producers publish
messages to the exchanges, which then distribute the messages to queues based on the defined
routing rules (or bindings). AMQP brokers provide four types of exchanges: direct exchange
(for point-to-point messaging), fanout exchange (for multicast messaging ), topic exchange
(for publish-subscribe messaging) and header exchange (that uses header attributes for
making routing decisions). Exchanges use bindings which are the rules to route messages to
the queues. The consumers consume the messages from the queues. AMQP is an application
level protocol that uses TCP for reliable delivery. A logical connection between a producer or
consumer and a broker is called a Channel. For applications which need to establish multiple
connections with a broker, it is undesirable to have multiple TCP connections. For such
applications, multiple Channels can be setup over a single connection.

RabbitMQ is an AMQP Broker implemented in Erlang and is designed to be highly
scalable and reliable. The commands for setting up RabbitMQ are given in Box 5.13.

� Box 5.13: Setting up RabbitMQ

echo ‘deb http://www.rabbitmq.com/debian/ testing main’ |
sudo tee /etc/apt/sources.list
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wget https://www.rabbitmq.com/rabbitmq-signing-key-public.asc
sudo apt-key add rabbitmq-signing-key-public.asc
sudo apt-get install rabbitmq-server
sudo pip install pika

Box 5.14 shows an example of a producer that sends data to a RabbitMQ queue. This
example uses the pika library which is a pure-Python implementation of AMQP. The producer
sends synthetic data along with the timestamp to a RabbitMQ queue.

� Box 5.14: Example of a Producer that sends data to RabbitMQ

import pika
from time import time
import json
import pickle, re, os, urllib, urllib2
from datetime import datetime
from random import randrange
import time
import datetime

connection = pika.BlockingConnection(pika.ConnectionParameters(
host=‘localhost’))
channel = connection.channel()

channel.queue_declare(queue=‘test’)

while True:
data = str(randrange(0,60)) + ‘,’ +

str(randrange(0,100)) + ‘,’ + str(randrange(5000,12000)) +
‘,’ + str(randrange(50,350))

ts=time.time()
timestamp =
datetime.datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)

msg=‘timestamp’: timestamp, ‘data’: data
print msg

channel.basic_publish(exchange=‘’,
routing_key=‘test’,
body=json.dumps(msg))

print data
time.sleep(1)

Box 5.15 shows an example of a consumer that consumes data from RabbitMQ queue.

� Box 5.15: Example of a Consumer that consumes data from RabbitMQ

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
host=‘localhost’))
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channel = connection.channel()

channel.queue_declare(queue=‘hello’)

def callback(ch, method, properties, body):
print "Received %r" % (body,)

channel.basic_consume(callback,
queue=‘hello’,
no_ack=True)

channel.start_consuming()

5.4.2 ZeroMQ
ZeroMQ is a high-performance messaging library which provides tools to build a messaging
system. Unlike other message queuing systems, ZeroMQ can work without a message broker.
ZeroMQ provides various messaging patterns such as Request-Reply, Publish-Subscribe,
Push-Pull and Exclusive Pair.

The commands for setting up ZeroMQ are given in Box 5.16.

� Box 5.16: Setting up ZeroMQ

sudo apt-get install libtool
autoconf automake uuid-dev build-essential
wget http://download.zeromq.org/zeromq-4.0.4.tar.gz
tar zxvf zeromq-4.0.4.tar.gz && cd zeromq-4.0.4
./configure
make
sudo make install
sudo apt-get install python-zmq

Box 5.17 shows an example of a producer that sends data to a ZeroMQ queue.

� Box 5.17: Example of Producer that sends data to ZeroMQ

import zmq
from time import time
import json
from random import randrange
import time
import datetime

context = zmq.Context()

socket = context.socket(zmq.PUSH)
socket.bind(‘tcp://127.0.0.1:5555’)

while True:
#Generate some synthetic data

data = str(randrange(0,60)) + ‘,’ +
str(randrange(0,100)) + ‘,’ + str(randrange(5000,12000)) +
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‘,’ + str(randrange(50,350))

ts=time.time()
timestamp =
datetime.datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)

msg=‘timestamp’: timestamp, ‘data’: data
print msg
data = zmq.Message(json.dumps(msg))
socket.send(data)

print data
time.sleep(1)

Box 5.18 shows an example of a consumer that consumes data from ZeroMQ queue.

� Box 5.18: Example of a Consumer that consumes data from ZeroMQ

import zmq
context = zmq.Context()

socket = context.socket(zmq.PULL)
socket.connect(‘tcp://127.0.0.1:5555’)

while True:
data = socket.recv()
print data

5.4.3 RestMQ
RESTMQ is a message queue which is based on a simple JSON-based protocol and uses
HTTP as transport. The queue is organized as REST resources. RESTMQ can be used by
any client which can make HTTP calls. The commands for setting up RestMQ are given in
Box 5.19.

� Box 5.19: Setting up RESTMQ

#Install RESTMQ
sudo apt-get install build-essential curl python-pip redis-server

libffi-dev python-dev -y libssl-dev python-setuptools
git clone https://github.com/gleicon/restmq.git
cd restmq
sudo pip install -r requirements.txt
sudo python setup.py install

# Start RESTMQ
cd restmq/start_scripts
touch acl.conf
bash restmq_server -acl=acl.conf -listen=0.0.0.0 &

Box 5.20 shows an example of a producer that sends data to a RESTMQ queue.
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� Box 5.20: Example of a Producer that sends data to RESTMQ

import requests
import json
import urllib2
from random import randrange
import time
import datetime

while True:
#Generate some synthetic data

data = str(randrange(0,60)) + ‘,’ +
str(randrange(0,100)) + ‘,’ + str(randrange(5000,12000)) +

‘,’ + str(randrange(50,350))

ts=time.time()
timestamp =

datetime.datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)

msg=‘timestamp’: timestamp, ‘data’: data

data = urllib.urlencode(‘queue’:‘test’, ‘value’:json.dumps(msg))
r = urllib2.Request(‘http://localhost:8888/’, data)
f = urllib2.urlopen(r)
data = f.read()
f.close()

Box 5.21 shows an example of a consumer that consumes data from RESTMQ queue.

� Box 5.21: Example of a Consumer that consumes data from RESTMQ

import json
from twisted.web import client
from twisted.python import log
from twisted.internet import reactor

class CometClient(object):
def write(self, content):

try:
data = json.loads(content)

except Exception, e:
log.err("cannot decode json: %s" % str(e))
log.err("json is: %s" % content)

else:
log.msg("got data: %s" % repr(data))

def close(self):
pass

if __name__ == "__main__":
log.startLogging(sys.stdout)
client.downloadPage("http://localhost:8888/c/test", CometClient())
reactor.run()
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� #Post data to RESTMQ
curl -X POST -d "value=data" http://localhost:8888/q/test

#Get data from RESTMQ
curl http://localhost:8888/c/test

5.4.4 Amazon SQS
Amazon SQS offers a highly scalable and reliable hosted queue for storing messages as they
travel between distinct components of applications. SQS only guarantees that the messages
will arrive, not that they will arrive in the same order in which they were put in the queue.
Though, at first look, Amazon SQS may seem to be similar to Amazon Kinesis, however, both
are intended for very different types of applications. While Kinesis is meant for real-time
applications that involve high data ingress and egress rates, SQS is simply a queue system
that stores and releases messages in a scalable manner.

SQS can be used in distributed applications in which various application components
need to exchange messages. Let us look at some examples of using SQS. Box 5.22 shows
the Python code for creating an SQS queue. In this example, a connection to SQS service
is first established by calling boto.sqs.connect_to_region. The AWS region, access key and
secret key are passed to this function. After connecting to SQS service, conn.create_queue
is called to create a new queue with queue name as an input parameter. The function
conn.get_all_queues is used to retrieve all SQS queues.

� Box 5.22: Python program for creating an SQS queue

import boto.sqs

ACCESS_KEY="<enter access key>"
SECRET_KEY="<enter secret key>"
REGION="us-east-1"

print "Connecting to SQS"

conn = boto.sqs.connect_to_region(
REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

queue_name = ‘mytestqueue’

print "Creating queue with name: " + queue_name
q = conn.create_queue(queue_name)

print "Created queue with name: " + queue_name

print " \n Getting all queues"

rs = conn.get_all_queues()
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for item in rs:
print item

Box 5.23 shows the Python code for writing to an SQS queue. After connecting to an
SQS queue, the queue.write method is called with the message as an input parameter.

� Box 5.23: Python program for writing to an SQS queue

import boto.sqs
from boto.sqs.message import Message
import time

ACCESS_KEY="<enter access key>"
SECRET_KEY="<enter secret key>"

REGION="us-east-1"

print "Connecting to SQS"

conn = boto.sqs.connect_to_region(
REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

queue_name = ‘mytestqueue’

print "Connecting to queue: " + queue_name
q = conn.get_all_queues(prefix=queue_name)

msg_datetime = time.asctime(time.localtime(time.time()))

msg = "Test message generated on: " + msg_datetime
print "Writing to queue: " + msg

m = Message()
m.set_body(msg)
status = q[0].write(m)

print "Message written to queue"

count = q[0].count()

print "Total messages in queue: " + str(count)

Box 5.24 shows the Python code for reading from an SQS queue. After connecting to an
SQS queue, the queue.read method is called to read a message from a queue.

� Box 5.24: Python program for reading from an SQS queue

import boto.sqs
from boto.sqs.message import Message

ACCESS_KEY="<enter access key>"
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SECRET_KEY="<enter secret key>"

REGION="us-east-1"

print "Connecting to SQS"

conn = boto.sqs.connect_to_region(
REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

queue_name = ‘mytestqueue’

print "Connecting to queue: " + queue_name
q = conn.get_all_queues(prefix=queue_name)

count = q[0].count()

print "Total messages in queue: " + str(count)

print "Reading message from queue"

for i in range(count):
m = q[0].read()
print "Message %d: %s" % (i+1,str(m.get_body()))
q[0].delete_message(m)

print "Read %d messages from queue" % (count)

5.5 Custom Connectors
Custom connectors and web services for acquiring data from data producers can be developed
to meet the application requirements.

5.5.1 REST-based Connectors
Figure 5.9 shows the architecture of a REST-based custom connector. The connector exposes
a REST web service. Data producers can publish data to the connector using HTTP POST
requests which contain the data payload. The request data received by the connector is stored
to the sink (such as local filesystem, distributed filesystem or cloud storage). The data sinks
in the connector provide the functionality for processing the HTTP request and storing the
data to the sink. The benefit of using a REST-based connector is that any client that can make
HTTP requests can send data to the connector. Requests are stateless in nature, and each
request carries all the information that is required to process the request. The HTTP headers
add to the request overhead making this method unsuitable for high-throughput and real-time
applications.

Implementing a REST-based Custom Connector
Let us look at an example of implementing a custom REST-based connector as shown in
Figure 5.9. Box 5.25 shows the Python implementation of the REST-based connector. In
this example, we use the Flask Python web framework to implement the web service. This
connector publishes a single end point (such as ‘http://public-ip/api/data’ ), to which the
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Figure 5.9: REST-based custom connector

client applications can send an HTTP POST request along with the data payload. Box 5.26
shows an example of a client which sends some synthetic sensor data to the web service. The
web service receives the data from the POST request payload and then publishes the data to
an Amazon SQS queue and also writes the data to an Amazon DynamoDB table.

The benefit of having such a custom connector is that the client and the server become
independent of each other. The web service decouples the client from the server. The
server can add or change the actions (such as publishing data to a queue or storing data in a
database) without the client having to be aware of the changes. The client can use any tool or
programming language from which it can make an HTTP POST request. (Note: Though we
call this as a REST-connector, it is not fully REST compliant as we have only implemented
the POST functionality. Other methods such as GET, PUT, DELETE may not be required if
the connector only allows data to be ingested.)

� Box 5.25: Python implementation of a REST-based custom connector

import boto.sqs
from boto.sqs.message import Message
import boto.dynamodb2
from boto.dynamodb2.table import Table
import cPickle as pickle
import time
import datetime
import json
from flask import Flask, jsonify, abort,
from flask import request, make_response, url_for

app = Flask(__name__, static_url_path="")

ACCESS_KEY = <Enter AWS Access Key>
SECRET_KEY = <Enter Secret Key>
REGION="us-east-1"
queue_name = ‘sensordata’
table_name = ‘sensordata’
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#Connect to AWS SQS
conn = boto.sqs.connect_to_region(REGION,aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

q = conn.get_all_queues(prefix=queue_name)

#Connect to AWS DynamoDB
conn_dynamo = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

table=Table(table_name,connection=conn_dynamo)

#Publishes data to SQS
def publish_to_sqs(data):

m = Message()
m.set_body(data)
status = q[0].write(m)
return status

#Writes data to DynamoDB table
def publish_to_dynamo(datadir):

item = table.put_item(data=datadir)

@app.errorhandler(400)
def bad_request(error):

return make_response(jsonify({‘error’: ‘Bad request’}), 400)

@app.errorhandler(404)
def not_found(error):

return make_response(jsonify({‘error’: ‘Not found’}), 404)

@app.route(‘/api/data’, methods=[‘POST’])
def post_data():

data = json.loads(request.data)

publish_to_sqs(pickle.dumps(data))

publish_to_dynamo(data)

return jsonify({‘result’: ‘true’}), 201

if __name__ == ‘__main__’:
app.run(debug=True)
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� Box 5.26: Python implementation of client program that publishes data to a
custom connector

from random import randint
import time
import datetime
import requests
import json

def getData():
ts=time.time()
timestamp = datetime.datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)

temp = str(randint(0,100))
humidity = str(randint(0,100))
co2 = str(randint(50,500))
light = str(randint(0,10000))
data = {"timestamp": timestamp, "temperature": temp,

"humidity": humidity , "co2": co2, "light": light}
return data

def publish(datadir):
r = requests.post("http://localhost:5000/api/data",

data = json.dumps(datadir),
headers={"Content-Type": "application/json"})

while True:
data = getData()
print data
publish(data)
time.sleep(1)

5.5.2 WebSocket-based Connectors

Figure 5.10 shows the architecture of a WebSocket-based custom connector. The connector
exposes a WebSocket web service. The Web Application Messaging Protocol (WAMP)
which is a sub-protocol of WebSocket can be used for creating a WebSocket-based connector.
WAMP provides publish-subscribe and remote procedure call (RPC) messaging patterns.
Clients (or data producers) establish a TCP connection with the connector and send data
frames. WebSocket connection is stateful in nature and allows full duplex communication
over a single TCP connection. Data producers publish data to the WebSocket endpoints
which are published by the connector. The subscribers subscribe to the WebSocket endpoints
and receive data from the WebSocket web service.

Unlike request-response communication with REST, WebSockets allow full duplex
communication and do not require a new connection to be setup for each message to be
sent. WebSocket communication begins with a connection setup request sent by the client to
the server. This request (called a WebSocket handshake) is sent over HTTP and the server
interprets it as an upgrade request. If the server supports WebSocket protocol, the server
responds to the WebSocket handshake response. After the connection is setup, the client and
server can send data/messages to each other in full-duplex mode. There is no overhead for
connection setup and termination requests for each message. WebSocket communication is
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Figure 5.10: WebSocket-based custom connector

suitable for applications that have low latency or high throughput requirements.

5.5.3 MQTT-based Connectors
MQTT (MQ Telemetry Transport) is a lightweight publish-subscribe messaging protocol
designed for constrained devices. MQTT is suitable for Internet of Things (IoT) applications
that involve devices sending sensor data to a server or cloud-based analytics backends to be
processed and analyzed. The entities involved in MQTT include:
• Publisher: Publisher is the component which publishes data to the topics managed by

the Broker.
• Broker/Server: Broker manages the topics and forwards the data received on a topic to

all the subscriber which are subscribed to the topic.
• Subscriber: Subscriber is the component which subscribes to the topics and receives

data published on the topics by the publishers.

Implementing a MQTT-based Custom Connector
Let us look at an example of implementing a custom MQTT-based connector. Boxes 5.27 and
5.28 show the Python implementation of the MQTT subscriber and publisher components.
The subscriber component in this example runs on the server, which also has an MQTT
Broker running. The publisher component runs on the devices which need to publish data
to the server. The devices publish data to an MQTT topic (e.g. $iot/test). The subscriber
which is subscribed to the topic receives the data and processes or forwards the data. The
forwarding actions may include forwarding the data to a messaging queue, writing the data
to a NoSQL database or storing the data to a distributed file system.

The benefit of using the MQTT-based custom connector is that it decouples the client and
the server (in space, time and synchronization dimensions). By space decoupling, we mean
that the client and server do not need to know about each other. Time decoupling means that
the client and server do not need to be running simultaneously. Synchronization decoupling
means that the communication between client and server can happen asynchronously. The
client and server do not have to wait while the messages are being processed.
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� Box 5.27: Python implementation of a MQTT-based custom connector
(subscriber)

import paho.mqtt.client as mqtt
import json
import boto.sqs
from boto.sqs.message import Message

REGION="us-east-1"
queue_name = ‘sensordata’
ACCESS_KEY = <Enter AWS Access Key>
SECRET_KEY = <Enter Secret Key>

conn = boto.sqs.connect_to_region(REGION,aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

q = conn.get_all_queues(prefix=queue_name)

def publish_to_sqs(data):
m = Message()
m.set_body(data)
status = q[0].write(m)
return status

def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
client.subscribe("$iot/test")

def on_message(client, userdata, msg):
data = json.loads(msg.payload)
publish_to_sqs(data)

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect("localhost", 1883, 60)

client.loop_forever()

� Box 5.28: Python implementation of a MQTT-based custom connector
(publisher)

import paho.mqtt.client as mqtt
import paho.mqtt.publish as publish
import time
from random import randint
import datetime
import requests
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import json

def getData():
ts=time.time()
timestamp = datetime.datetime.fromtimestamp(ts).strftime(‘%Y-%m-%d %H:%M:%S’)

temp = str(randint(0,100))
humidity = str(randint(0,100))
co2 = str(randint(50,500))
light = str(randint(0,10000))

data = {"timestamp": timestamp,
"temperature": temp, "humidity": humidity ,
"co2": co2, "light": light}

return data

def publish_to_topic(data):
publish.single("$iot/test", payload=json.dumps(data),

hostname="localhost")

while True:
data = getData()
print data
publish_to_topic(data)
time.sleep(1)

5.5.4 Amazon IoT
Amazon IoT is a service for collecting data from Internet of Things (IoT) devices (such as
sensors and smart appliances) into the AWS cloud. The data collected can be sent to various
AWS services, e.g. stored in Amazon DynamoDB database, stored in a file on S3, sent to an
Amazon Kinesis data stream, sent to Amazon SNS as a push notification and inserted into a
code for executing it with Amazon Lambda service.

Figure 5.11 shows the various components of the AWS IoT service.
• Device Gateway: Device Gateway enables devices to communicate with AWS IoT

using MQTT or HTTP protocols. Devices can publish or subscribe to topics.
• Device Registry: Device registry (also called things registry) maintains the resources

associated with each device including attributes, certificates and meta-data.
• Device Shadow: Device shadow maintains the state of a device as a JSON document.

Applications can retrieve or update the device state using the AWS IoT REST APIs.
Device shadow persists the state of the device even when the device is offline. When a
device becomes online, the state is synchronized with the device shadow.
• Rules Engine: Rules engine allows you to define rules for processing messages

received from devices. Using an SQL-like language, you can define rules to select
data, process data and send the data to other AWS services such as DynamoDB, S3,
Kinesis, SNS and Lambda.
• Security and Identity Service: This service allows devices to securely exchange data

with the AWS IoT service. For devices communicating via MQTT, certificate-based
authentication is used. Certificates have policies associated with them which authorize
devices to access specific resources.
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Figure 5.11: Amazon IoT components

Let us look at some examples of using AWS IoT service. The first step is to create a
thing from the AWS IoT dashboard as shown in Figure 5.12. Thing represents a device in
the AWS IoT service. When a thing is created, an entry is created in the device registry for
the device and a device shadow is also created. At this step, you can also add the optional
attributes to describe the device capabilities.

Figure 5.12: Creating a Thing from Amazon IoT dashboard

In the next step, we create a certificate which is used by the device for connecting to AWS
IoT. The certificate is attached to a thing. Three files are created in this step - a certificate file,
a public key file, and a private key file. Next, we create a policy and attach the policy to the
certificate to assign permissions.

Box 5.29 shows a Python example for publishing messages to AWS IoT. This example
uses the Paho Python MQTT client. For connecting to AWS IoT a Root Certificate Authority
(CA) certificate, a client certificate and private key file is required. This example simulates a
thermostat device sending the current state (temperature) to AWS IoT, which stores the state
in the device shadow. To report the state over MQTT, a message is published on the topic
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$aws/things/thingName/shadow/update.

� Box 5.29: Python code for publishing messages to AWS IoT

import paho.mqtt.client as mqtt
import ssl
import paho.mqtt.publish as publish

connection={
"host": "A26VGTA50P1HNL.iot.us-east-1.amazonaws.com",
"port": 8883,
"clientId": "thermostat",
"thingName": "thermostat",
"caCert": "root-CA.crt",
"clientCert": "9795072c41-certificate.pem.crt",
"privateKey": "9795072c41-private.pem.key"
}

tlsdict= {‘ca_certs’:connection[‘caCert’],
‘certfile’:connection[‘clientCert’],
‘keyfile’:connection[‘privateKey’],
‘tls_version’:ssl.PROTOCOL_SSLv23, ‘ciphers’:None}

state="{ \"state\": {\"reported\": { \"temperature\": \"70\" } } }"

publish.single("$aws/things/thermostat/shadow/update", payload=str(state),
qos=1, retain=False, hostname=connection[‘host’],
port=8883, client_id=connection[‘clientId’], keepalive=60,
will=None, auth=None, tls=tlsdict,
protocol=mqtt.MQTTv311)

The current state for a device can be seen from the AWS IoT dashboard as shown in
Figure 5.13. Box 5.30 shows a Python example for subscribing to the state updates for a
device. To receive updates from the device shadow over MQTT, the device/application can
subscribe to topic the $aws/things/thingName/shadow/update/accepted.

Applications can also use the AWS IoT REST API to query for the last reported state
for a device or update the device state. For example, a mobile application that controls
the temperature setting for a smart thermostat can be built. The thermostat reports its
current state (temperature) to AWS IoT, and the state is stored in the device shadow. The
mobile application can update the desired state in the device shadow instead of directly
communicating with the thermostat. The desired state is synchronized with the device, the
next time it is connected to the AWS IoT service. The device state can also be updated from
the AWS IoT dashboard as shown in Figure 5.14.

Big Data Science & Analytics: A Hands-On Approach



200 Data Acquisition

Figure 5.13: Viewing the state of a thing from Amazon IoT dashboard

� Box 5.30: Python code for subscribing to a topic in AWS IoT

import paho.mqtt.client as mqtt
import ssl
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connection={
"host": "A26VGTA50P1HNL.iot.us-east-1.amazonaws.com",
"port": 8883,
"clientId": "thermostat",
"thingName": "thermostat",
"caCert": "root-CA.crt",
"clientCert": "9795072c41-certificate.pem.crt",
"privateKey": "9795072c41-private.pem.key"
}

def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
client.subscribe("$aws/things/rpi/shadow/update/accepted")

def on_message(client, userdata, msg):
print(msg.topic+" "+str(msg.payload))

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.tls_set(ca_certs=connection[‘caCert’],
certfile=connection[‘clientCert’],
keyfile=connection[‘privateKey’], cert_reqs=ssl.CERT_REQUIRED,
tls_version=ssl.PROTOCOL_SSLv23, ciphers=None)

client.connect(connection[‘host’], connection[‘port’])

client.loop_forever()

Figure 5.14: Updating the state of a thing from Amazon IoT dashboard

Let us now look at a more advanced example where we use the rule engine to send
data collected from a device to different AWS services. For this example, we will create a
new thing called ‘forest’ which represents a device deployed in a forest for reporting data
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collected from various sensors (temperature, humidity, light, CO2). Data collected from
multiple such devices deployed in a forest can be analyzed to detect forest fires. While you
can use the AWS IoT Starter Kits to build physical devices with real sensors connected to
them, for simplicity we will use a program which generates and sends synthetic data to AWS
IoT. Box 5.31 shows a Python program for sending synthetic sensor data to AWS IoT.

� Box 5.31: Python program for sending synthetic sensor data to AWS IoT

from random import randrange
import time
import datetime
import paho.mqtt.client as mqtt
import ssl
import paho.mqtt.publish as publish

connection={
"host": "A26VGTA50P1HNL.iot.us-east-1.amazonaws.com",
"port": 8883,
"clientId": "forest",
"thingName": "forest",
"caCert": "root-CA.crt",
"clientCert": "9795072c41-certificate.pem.crt",
"privateKey": "9795072c41-private.pem.key"
}

tlsdict= {‘ca_certs’:connection[‘caCert’],
‘certfile’:connection[‘clientCert’],
‘keyfile’:connection[‘privateKey’],
‘tls_version’:ssl.PROTOCOL_SSLv23, ‘ciphers’:None}

#Send some synthetic data to AWS IoT
while True:
ts=time.time()

data = "{ \"state\": { \"location\": \"123\",
\"timestamp\": \""+str(ts)+"\",
\"temperature\": "+str(randrange(0,60))+",
\"humidity\": "+str(randrange(0,60))+",
\"light\": "+str(randrange(0,60))+", \"co2\": "+str(randrange(0,60))+"

}}"

print data

publish.single("$aws/things/forest/test", payload=str(data),
qos=1, retain=False, hostname=connection[‘host’],
port=8883, client_id=connection[‘clientId’],
keepalive=60, will=None, auth=None, tls=tlsdict,
protocol=mqtt.MQTTv311)

time.sleep(1)

Next, we create two different rules in AWS IoT for analyzing this data further. The first
rule as shown in Figure 5.15 sends data to an Amazon Kinesis data stream. The second rule
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as shown in Figure 5.16 writes the data to an Amazon DynamoDB table.

Figure 5.15: Creating a rule from Amazon IoT dashboard

With the rules defined, run the Python program in Box 5.31. The synthetic data generated
by this program will be published to the topic $aws/things/forest/test in AWS IoT. The
rules will send the data to Amazon Kinesis and Amazon DynamoDB. Figure 5.17 shows a
screenshot of the Amazon DynamoDB table with the data published by the device. To read

Big Data Science & Analytics: A Hands-On Approach



204 Data Acquisition

Figure 5.16: Creating a rule from Amazon IoT dashboard

data from the Kinesis data stream, you can use the program shown in Box 5.8.
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Figure 5.17: Viewing the data stored by an AWS IoT rule into a DynamoDB table

5.5.5 Azure IoT Hub
Azure IoT Hub is a fully managed service for bi-directional communication between IoT
devices and the Azure cloud. Azure IoT Hub receives messages from IoT devices and sends
them to various Azure services (such as Azure Stream Analytics) for further processing of
messages. IoT Hub can store up to 7 days of data. Applications can use IoT Hub to send
messages to the devices. Azure provides device libraries for connecting various devices to
the IoT Hub. Supported protocols include HTTP 1.1 and AMQP 1.0. Support for MQTT
can be added by running Azure IoT Protocol Gateway, an open source component, which
can be run either locally or in the cloud. IoT Hub includes a device identity registry which
is used to provision devices with their own security keys for securely connecting to the IoT
Hub. Figure 5.18 shows the various components of Azure IoT Hub.

IoT
Device

IoT Hub

Device Identity
Registry

Azure Services

• Stream 
Analytics

• Event Hub

Messages
(HTTP or AMQP)

Authentication
& Authorization

IoT
Device

Azure IoT
Protocol Gateway

Messages
(MQTT)

Messages
(AMQP)

Messages
Azure IoT

Figure 5.18: Azure IoT components

In the previous section, we described the example of IoT devices deployed in a forest
for reporting data collected from various sensors (temperature, humidity, light, CO2) for
detecting forest fires. Let us repeat the same example using Azure IoT Hub. The first step is
to create an IoT Hub that will receive data from devices. Log into the Azure Preview Portal
and create a new IoT Hub as shown in Figure 5.19. Once the IoT Hub has been created, open
the IoT hub tile in the Preview Portal, and note down the IoT Hub Hostname. Next, select
the Key icon in the IoT Hub and click on the iothubowner shared access policy as shown in
Figure 5.20. Note down the connection string and primary key.

Now that the IoT Hub is operational, let us register a device with the Hub. To create a
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Figure 5.19: Creating an Azure IoT hub

new device identity, you can either use a standalone tool called Device Explorer (which runs
on Windows) or a NodeJS tool called iothub-explorer. NodeJS can be installed as follows:

� #Installing NodeJS
curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
sudo apt-get install -y nodejs

Next, install the iothub-explorer tool and then generate a unique identity and connection
string as follows:

� #Create a new device identity in the IoT Hub
npm install -g iothub-explorer
node iothub-explorer "<enter iothubowner connection string>"
create mydevice -connection-string

Note down the device connection string generated by iothub-explorer. As of writing
this book, Python support libraries for IoT Hub have not been released. Therefore, we will
provide an example using NodeJS. Box 5.32 shows a simple example of sending data to
IoT Hub using NodeJS. In this example, use the device connection string generated by the
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Figure 5.20: Viewing details of an Azure IoT hub

iothub-explorer tool. This program generates some random synthetic data and sends it to the
IoT Hub every second.

� Box 5.32: NodeJS code for sending data to Azure IoT Hub

var device = require(‘azure-iot-device’);
var connectionString = ‘<enter>’;
var client = new device.Client(connectionString, new device.Https());

// Send some synthetic data to IoT Hub every second
setInterval(function(){
var temperature = Math.random() * 100 ;
var humidity = Math.random() * 100 ;
var light = Math.random() * 10000 ;
var co2 = Math.random() * 300 ;

var data = "{d̈eviceid:̈"̈ + "mydevice" + ",̈ẗemperature:̈" +
String(temperature) + ", ḧumidity:̈" + String(humidity) +
", l̈ight:̈" + String(light) + ", c̈o2:̈" + String(co2) + " }";

var message = new device.Message(data);
console.log("Sending message: " + message.getData());
client.sendEvent(message);

}, 1000);

To run the program use the commands show in box below:

� #Running NodeJS program shown in Box 5.32
npm install node .
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You will be able to see the count of messages received and the devices connected in the
IoT Hub dashboard as seen in Figure 5.20. Now that we can send messages to IoT Hub, let
us define some rules for further processing of messages. In the case of AWS IoT, we used the
Rule Engine to define the rules using an SQL-like language. Azure provides a real-time event
processing engine called Azure Stream Analytics. Azure Stream Analytics allows defining
real-time analytic computations on streaming data using an SQL-like language (called Stream
Analytics query language). Let us create a Stream Analytics job as shown in Figure 5.21
from the Azure dashboard. A Stream Analytics job includes an input source of streaming
data, a query expressed in SQL-like language and an output sink to which the results are
sent. Figures 5.22, 5.23 and 5.24 show the settings for the input, query and output of the
Stream Analytics job. The input source, in this case, is the IoT Hub we created previously
and the output sink is an Azure Event Hub. Event Hub is a managed service for reliably
collecting and processing massive amounts of data with low latency. Event Hub provides
similar functionality as Amazon Kinesis.

Figure 5.21: Creating an Azure stream analytics job

Figure 5.25 shows how to create a new Event Hub from the Azure dashboard. Once the
Event Hub is created, go to the configure tab and add a new shared access policy (with Name
= "read-write" and Permissions = Send, Listen). Copy the Primary Key for the read-write
policy. This policy name and the primary key are used while creating the output sink for the
Stream Analytics job as shown in Figure 5.24.

Next, run the program show in Box 5.32 and monitor the Stream Analytics job and Events
Hub from the Azure dashboard. You will be able to see messages being processed by the
Stream Analytics job and the output being posted to the Events Hub as seen in Figures 5.26
and 5.27.

� #Running the Javascript code in Box 5.32
npm install node .
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Figure 5.22: Input settings for stream analytics job

Figure 5.23: Query settings for stream analytics job
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Figure 5.24: Output settings for stream analytics job

Figure 5.25: Creating an Event Hub from Azure dashboard
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Figure 5.26: Azure Events Hub output

Figure 5.27: Azure Events Hub output
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Summary
In this chapter, we described various data connectors which allow collecting data from raw
data sources for ingesting into a distributed file system or a NoSQL database, for batch
analysis of data, or which connect the data sources to stream or in-memory processing
frameworks for real-time analysis of data. We described the publish-subscribe and push-pull
messaging models. Publish-Subscribe is a communication model that involves publishers,
brokers and consumers. Publishers send the data to the topics which are managed by the
broker. When the broker receives data for a topic from the publisher, it sends the data
to all the subscribed consumers. We described the Apache Kafka and Amazon Kinesis
publish-subscribe messaging frameworks. Next, we described a source-sink data collection
framework called Apache Flume. Apache Flume is a distributed, reliable, and available
system for collecting, aggregating, and moving large amounts of data from different data
sources into a centralized data store. Next, we described Apache Sqoop, which is a tool
that allows importing data from relational database management systems (RDBMS) into the
HDFS, Hive or HBase tables. We described various messaging queues such as RabbitMQ,
ZeroMQ, RestMQ and Amazon SQS. Examples of building REST-based and MQTT-based
custom connectors were provided. Finally, we described IoT services from Amazon and
Azure which allow collecting data from Internet of Things (IoT) devices into the cloud,
where the data can be processed further.
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In the previous chapter we described tools and frameworks for the acquisition of data
from various types of sources and ingesting the data into a big data stack. The options for
data storage within a big data stack include a distributed filesystem or a NoSQL database.
In this chapter, we will describe the Hadoop Distributed File System (HDFS) for big data
storage. Once the data is moved from the data source to HDFS, we can use specialized
frameworks for batch analysis or interactive querying for analyzing the data.

6.1 HDFS

HDFS is a distributed file system (DFS) that runs on large clusters and provides high-throughput
access to data. HDFS is a highly fault-tolerant system and is designed to work with
commodity hardware. HDFS stores each file as a sequence of blocks. The blocks of
each file are replicated on multiple machines in a cluster to provide fault tolerance.

Let us look at the characteristics of HDFS:
• Scalable Storage for Large Files: HDFS has been designed to store large files

(typically from gigabytes to terabytes in size). Large files are broken into chunks
or blocks and each block is replicated across multiple machines in the cluster. HDFS
has been designed to scale to clusters comprising of thousands of nodes.
• Replication: HDFS replicates data blocks to multiple machines in a cluster which

makes the system reliable and fault-tolerant. The default block size used is 64MB and
the default replication factor is 3.
• Streaming Data Access: HDFS has been designed for streaming data access patterns

and provides high throughput streaming reads and writes. The HDFS design relaxes
some of the POSIX requirements to enable streaming data access and make it suitable
for batch operations thus trading off interactive access capability. This design choice
has been made to meet the requirements of applications that involve write-once, read
many times data access patterns. HDFS is not suited for applications that require
low-latency access to data. Instead, HDFS provides high throughput data access.
• File Appends: HDFS was originally designed to have immutable files. Files once

written to HDFS could not be modified by writing at arbitrary locations in the file or
appending to the file. Recent versions of HDFS have introduced the append capability.
The file append process is discussed later in the chapter.

6.1.1 HDFS Architecture

Figure 6.1 shows the architecture of HDFS. HDFS has two types of nodes: Namenode and
Datanode.

Namenode

Namenode manages the filesystem namespace. All the filesystem meta-data is stored on
the Namenode. While Namenode is responsible for executing operations such as opening
and closing of files, no data actually flows through the Namenode. Namenode executes
the read and write operations while the data is transferred directly to/from the Datanodes.
HDFS splits files into blocks, and the blocks are stored on the Datanodes. For each block,
multiple replicas are kept. Namenode persistently stores the filesystem meta-data and the
mappings of the blocks to the datanodes, on the disk as two files: fsimage and edits files. The
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fsimage contains a complete snapshot of the filesystem meta-data. The edits file stores the
incremental updates to the meta-data.

When the Namenode starts, it loads the fsimage file into the memory and applies the edits
file to bring the in-memory view of the filesystem up-to-date. Namenode then writes a new
fsimage file to the disk.

HDFS Client Secondary 
NameNodeNameNode

Rack-1 Rack-N

DataNode DataNode DataNode DataNode

Figure 6.1: HDFS architecture

Secondary Namenode

The edits file keeps growing in size, over time, as the incremental updates are stored. The
responsibility of applying the updates to the fsimage file is delegated to the Secondary
Namenode, as the Namenode may not have enough resources available, as it is performing
other operations. This process is called checkpointing. The checkpointing process is done
either periodically (default 1 hour) or after a certain number of uncheckpointed transactions
have been reached on the Namenode.

When the checkpointing process begins, the Secondary Namenode downloads the fsimage
and edits files from the Namenode to the checkpoint directory on the Secondary Namenode.
The Secondary Namenode then applies the edits on the fsimage file and creates a new fsimage
file. The new fsimage is uploaded by the Secondary Namenode to the Namenode.

Datanode

While the Namenode stores the filesystem meta-data, the Datanodes store the data blocks and
serve the read and write requests. Datanodes periodically send heartbeat messages and block
reports to the Namenode. While the heartbeat messages tell the Namenode that a Datanode
is alive, the block reports contain information on the blocks on a Datanode.

Data Blocks & Replication

Blocks are replicated on the Datanodes and by default three replicas are created. The
placement of replicas on the Datanodes is determined by a rack-aware placement policy. This
placement policy ensures reliability and availability of the blocks. For a replication factor
of three, one replica is placed on a node on a local rack, the second replica is placed on a
different node on a remote rack and the third replica is placed on a different node on the same
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remote rack. This ensures that even if the rack becomes unavailable, at least one replica will
remain available. Placement of replicas on different nodes in the same rack minimizes the
network traffic between the racks.

HDFS Read Path
Figure 6.2 shows the HDFS read path. The read process begins with the client sending a
request to the Namenode to obtain the locations of the data blocks for a file. The Namenode
checks if the file exists and whether the client has sufficient permissions to read the file. The
Namenode responds with the data block locations sorted by the distance to the client. This
helps in minimizing the traffic between the nodes as the client can read the blocks from the
nearest node. For example, if the client is on the same node as a data block, it can read the
data block locally. The client reads the data blocks directly from the Datanodes in order, till
all the blocks have been read. The Datanodes stream the data to the client. During the read
process, if a replica becomes unavailable, the client can read another replica on a different
Datanode.

HDFS Client

NameNode

DataNode-1

Metadata
{file.txt

Block A: 1,3,5
Block B: 2,4,5

..}

DataNode-N

1. Get block 
locations

2. Read 
blocks

Figure 6.2: HDFS read path
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HDFS Write Path
Figure 6.3 shows the HDFS write path. The write process begins with the client sending a
request to the Namenode to create a new file in the filesystem namespace. The Namenode
checks if the user has sufficient permissions to create the file and whether the file doesn’t
already exist in the filesystem. The Namenode responds to the client with an output stream
object. The client writes data to the output stream object which splits the data into packets
and enqueues them into a data queue. The packets are consumed from the data queue in a
separate thread, which requests the Namenode to allocate new blocks on the Datanodes to
which the data should be written. Namenode responds with the locations of the blocks on
the Datanodes. The client then establishes direct connections to the Datanodes on which the
blocks are to be replicated forming a replication pipeline. The data packets consumed from
the data queue are written to the first Datanode on the replication pipeline, which writes data
to the second Datanode in the pipeline and so on. Once the packets are successfully written,
each Datanode in the pipeline sends an acknowledgment. The client keeps a track of which
all packets are acknowledged by the Datanodes. The process of writing data packets to the
Datanodes proceeds till the block size is reached. Upon reaching the block size, the client
again requests the Namenode to return a set of new blocks on the Datanodes. The client then
streams the packets to the Datanodes. This process repeats till all the data packets are written
and acknowledged. Finally, the client closes the output stream and sends a request to the
Namenode to close the file.

HDFS Client
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DataNode-1

Metadata
{file.txt

Blocks: [],
…}

DataNode-N

1. Create file

2. Write 
block

DataNode-N

3. Write 
block

4. Write 
block

7. Ack
6. Ack 5. Ack

8. Complete

Figure 6.3: HDFS write path
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6.1.2 HDFS Usage Examples

HDFS Command Line Tools

� #Copy file to HDFS
#Format of command:
hdfs dfs -put <local source> <destination on HDFS>

#Example:
hdfs dfs -put file /user/hadoop/file

� #Get file from HDFS
#Format of command:
hdfs dfs -get <source on hdfs> <local destination>

#Example:
hdfs dfs -get /user/hadoop/file file

� #List files on HDFS
#Format of command:
hdfs dfs -ls <args>

#Example:
hdfs dfs -ls /user/hadoop/

� #Show contents of a file on HDFS
#Format of command:
hdfs dfs -cat <HDFS Path>

#Example:
hdfs dfs -cat /user/hadoop/file

� #Remove a file on HDFS
#Format of command:
hdfs dfs -rm <HDFS Path>

#Example:
hdfs dfs -rm /user/hadoop/file

� #Create a directory on HDFS
#Format of command:
hdfs dfs -mkdir <paths>

#Example:
hdfs dfs -mkdir /user/hadoop/dir
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Accessing HDFS with Python
In this section we provide Python examples of accessing HDFS using the Snakebite python
package.

� #Listing files on HDFS with Python
from snakebite.client import Client
client = Client("localhost", 8020, use_trash=False)
list(client.ls(["/"]))

� #Reading a file from HDFS with Python
from snakebite.client import Client
client = Client("localhost", 8020, use_trash=False)
list(client.text(["/user/input.txt"]))

� #Copying a file from HDFS with Python
from snakebite.client import Client
client = Client("localhost", 8020, use_trash=False)
list(client.copyToLocal(["/user/input.txt"], ’/home/ubuntu/’))

HDFS Web Interface
HDFS provides a web interface from where you can browse the filesystem and also also
download specific files as shown in Figures 6.4 and 6.5.

Figure 6.4: Browsing files on HDFS using web interface
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Figure 6.5: Download a file from HDFS using web interface

Summary
HDFS is a distributed file system that runs on large clusters and provides high-throughput
access to data. HDFS provides scalable storage for large files which are broken into blocks.
The blocks are replicated to make the system reliable and fault-tolerant. The HDFS Namenode
stores the filesystem meta-data and is responsible for executing operations such as opening
and closing of files. The Secondary Namenode helps in the checkpointing process by applying
the updates in the edits file to the fsimage file which contains a complete snapshot of the
filesystem meta-data. Datanodes store the data blocks which are replicated. The placement
of replicas on the Datanodes is determined by a rack-aware placement policy. We described
examples of accessing HDFS using the command line tools, a Python library for HDFS and
the HDFS web interface.
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In this chapter we describe tools and frameworks for "batch processing" of data including:
Hadoop-MapReduce, Pig, Oozie, Spark, and Solr.

7.1 Hadoop and MapReduce
Apache Hadoop [64] is an open source framework for distributed batch processing of big
data. Similarly, MapReduce is a parallel programming model [22] suitable analysis of big
data. MapReduce algorithms allow large-scale computations to be automatically parallelized
across a large cluster of servers.

7.1.1 MapReduce Programming Model
MapReduce is a parallel data processing model for processing and analysis of massive scale
data [22]. MapReduce model has two phases: Map and Reduce. MapReduce programs
are written in a functional programming style to create Map and Reduce functions. The
input data to the map and reduce phases is in the form of key-value pairs. Run-time
systems for MapReduce are typically large clusters built of commodity hardware. The
MapReduce run-time systems take care of tasks such partitioning the data, scheduling of
jobs and communication between nodes in the cluster. This makes it easier for programmers
to analyze massive scale data without worrying about tasks such as data partitioning and
scheduling.

In the Map phase, data is read from a distributed file system, partitioned among a set of
computing nodes in the cluster, and sent to the nodes as a set of key-value pairs. The Map
tasks process the input records independently of each other and produce intermediate results
as key-value pairs. The intermediate results are stored on the local disk of the node running
the Map task. When all the Map tasks are completed, the Reduce phase begins in which the
intermediate data with the same key is aggregated. An optional Combine task can be used
to perform data aggregation on the intermediate data of the same key for the output of the
mapper before transferring the output to the Reduce task.

MapReduce programs take advantage of locality of data and the data processing takes
place on the nodes where the data resides. In traditional approaches for data analysis, data
is moved to the compute nodes which results in the delay in data transmission between the
nodes in a cluster. However, the MapReduce programming model moves the computation
to where the data resides thus decreasing the transmission of data and improving efficiency.
The MapReduce programming model is well suited for parallel processing of massive scale
data in which the data analysis tasks can be accomplished by independent map and reduce
operations.

Figures 7.1 and 7.2 show the execution flow of word count and inverted index MapReduce
jobs. As seen from these figures, the sort and shuffle phase begins as soon as a map task
completes and the reduce phase begins after the intermediate key-value pairs from all the
map tasks are shuffled to the reducer.

7.1.2 Hadoop YARN
Hadoop YARN is the next generation architecture of Hadoop (version 2.x). In the YARN
architecture, the original processing engine of Hadoop (MapReduce) has been separated
from the resource management component (which is now part of YARN) as shown in
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Figure 7.1: Map/Reduce slot assignments for a word count MapReduce job
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Figure 7.2: Map/Reduce slot assignments for an inverted index MapReduce job

Figure 7.3. This makes YARN effectively an operating system for Hadoop that supports
different processing engines on a Hadoop cluster such as MapReduce for batch processing,
Apache Tez [60] for interactive queries, Apache Storm [65] for stream processing, for
instance.
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Figure 7.3: Comparison of Hadoop 1.x and 2.x architectures
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Figure 7.4 shows the MapReduce job execution workflow for the next generation Hadoop
MapReduce framework (MR2). The next-generation MapReduce architecture divides the two
major functions of the JobTracker in Hadoop 1.x - resource management and job life-cycle
management - into separate components - ResourceManager and ApplicationMaster. The
key components of YARN are described as follows:
• Resource Manager (RM): RM manages the global assignment of compute resources

to applications. RM consists of two main services:
– Scheduler: Scheduler is a pluggable service that manages and enforces the

resource scheduling policy in the cluster.
– Applications Manager (AsM): AsM manages the running Application Masters in

the cluster. AsM is responsible for starting application masters and for monitoring
and restarting them on different nodes in case of failures.

• Application Master (AM): A per-application AM manages the application’s life
cycle. AM is responsible for negotiating resources from the RM and working with the
NMs to execute and monitor the tasks.
• Node Manager (NM): A per-machine NM manages the user processes on that

machine.
• Containers: Container is a bundle of resources allocated by RM (memory, CPU and

network). A container is a conceptual entity that grants an application the privilege to
use a certain amount of resources on a given machine to run a task. Each node has an
NM that spawns multiple containers based on the resource allocations made by the
RM.

Figure 7.4 shows a YARN cluster with a Resource Manager node and three Node Manager
nodes. There are as many Application Masters running as there are applications (jobs). Each
application’s AM manages the application tasks such as starting, monitoring and restarting
tasks in case of failures. Each application has multiple tasks. Each task runs in a separate
container. Containers in YARN architecture are similar to task slots in Hadoop MapReduce
1.x (MR1). However, unlike MR1 which differentiates between map and reduce slots, each
container in YARN can be used for both map and reduce tasks. The resource allocation model
in MR1 consists of a predefined number of map slots and reduce slots. This static allocation
of slots results in low cluster utilization. The resource allocation model of YARN is more
flexible with the introduction of resource containers which improve cluster utilization.

To better understand the YARN job execution workflow let us analyze the interactions
between the main components on YARN. Figure 7.5 shows the interactions between a Client
and Resource Manager. Job execution begins with the submission of a new application
request by the client to the RM. The RM then responds with a unique application ID and
information about cluster resource capabilities that the client will need in requesting resources
for running the application’s AM. Using the information received from the RM, the client
constructs and submits an Application Submission Context which contains information such
as scheduler queue, priority and user information. The Application Submission Context also
contains a Container Launch Context which contains the application’s jar, job files, security
tokens and any resource requirements. The client can query the RM for application reports.
The client can also "force kill" an application by sending a request to the RM.

Figure 7.6 shows the interactions between Resource Manager and Application Master.
Upon receiving an application submission context from a client, the RM finds an available
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Figure 7.4: Hadoop MapReduce Next Generation (YARN) job execution
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Figure 7.5: Client - Resource Manager interaction

container meeting the resource requirements for running the AM for the application. On
finding a suitable container, the RM contacts the NM for the container to start the AM process
on its node. When the AM is launched it registers itself with the RM. The registration process
consists of handshaking that conveys information such as the RPC port that the AM will be
listening on, the tracking URL for monitoring the application’s status and progress, etc. The
registration response from the RM contains information for the AM that is used in calculating
and requesting any resource requests for the application’s individual tasks (such as minimum
and maximum resource capabilities for the cluster). The AM relays heartbeat and progress
information to the RM. The AM sends resource allocation requests to the RM that contains a
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list of requested containers, and may also contain a list of released containers by the AM.
Upon receiving the allocation request, the scheduler component of the RM computes a list of
containers that satisfy the request and sends back an allocation response. Upon receiving the
resource list, the AM contacts the associated NMs for starting the containers. When the job
finishes, the AM sends a Finish Application message to the RM.

Figure 7.7 shows the interactions between the an Application Master and the Node
Manager. Based on the resource list received from the RM, the AM requests the hosting NM
for each container to start the container. The AM can request and receive a container status
report from the Node Manager. Figure 7.8 shows the MapReduce job execution within a
YARN cluster.

7.1.3 Hadoop Schedulers
The scheduler is a pluggable component in Hadoop that allows it to support different
scheduling algorithms. The pluggable scheduler framework provides the flexibility to support
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Figure 7.8: MapReduce job execution within a YARN cluster

a variety of workloads with varying priority and performance constraints. The Hadoop
scheduling algorithms are described as follows:

FIFO

FIFO scheduler maintains a work queue in which the jobs are queued. The scheduler pulls
jobs in first-in first-out manner (oldest job first) for scheduling. There is no concept of priority
or size of the job in FIFO scheduler.

Fair Scheduler

The Fair Scheduler [50] was originally developed by Facebook. Facebook uses Hadoop to
manage the massive content and log data it accumulates every day. It is our understanding
that the need for Fair Scheduler arose when Facebook wanted to share the data warehousing
infrastructure between multiple users. The Fair Scheduler allocates resources evenly between
multiple jobs and also provides capacity guarantees. Fair Scheduler assigns resources to jobs
such that each job gets an equal share of the available resources on average over time. Unlike
the FIFO scheduler, which forms a queue of jobs, the Fair Scheduler lets short jobs finish
in reasonable time while not starving long jobs. Tasks slots that are free are assigned to the
new jobs, so that each job gets roughly the same amount of CPU time. The Fair Scheduler
maintains a set of pools into which jobs are placed. Each pool has a guaranteed capacity.
When there is a single job running, all the resources are assigned to that job. When there are
multiple jobs in the pools, each pool gets at least as many task slots as guaranteed. Each
pool receives at least the minimum share. When a pool does not require the guaranteed share
the excess capacity is split between other jobs. This lets the scheduler guarantee capacity
for pools while utilizing resources efficiently when these pools don’t contain jobs. The Fair
Scheduler keeps track of the compute time received by each job. The scheduler computes
periodically the difference between the computing time received by each job and the time
it should have received in ideal scheduling. The job which has the highest deficit of the
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compute time received is scheduled next. This ensures that over time, each job gets its fair
share of compute time.

Fair scheduler is useful when a small or large Hadoop cluster is shared between multiple
groups of users in an organization. Though the fair scheduler ensures fairness by maintaining
a set of pools and providing guaranteed capacity to each pool, it does not provide any timing
guarantees and hence it is ill-equipped for real-time jobs.

Capacity Scheduler

The Capacity Scheduler [51] was developed by Yahoo. Capacity scheduler has similar
functionality as the Fair Scheduler but adopts a different scheduling philosophy. In Capacity
Scheduler, multiple named queues are defined, each with a configurable number of map and
reduce slots. Each queue is also assigned a guaranteed capacity. The Capacity Scheduler
gives each queue its capacity when it contains jobs, and shares any unused capacity between
the queues. Within each queue FIFO scheduling with priority is used. For fairness, it is
possible to place a limit on the percentage of running tasks per user, so that users share a
cluster equally. A wait time for each queue can be configured. When a queue is not scheduled
for more than the wait time, it can preempt tasks of other queues to get its fair share. When
a TaskTracker has free slots, the Capacity Scheduler picks a queue for which the ratio of
number of running slots to capacity is the lowest. The scheduler then picks a job from the
selected queue to run. Jobs are sorted based on when they’re submitted and their priorities.
Jobs are considered in order, and a job is selected if its user is within the user-quota for the
queue, i.e., the user is not already using queue resources above the defined limit.

The capacity scheduler is useful when a large Hadoop cluster is shared between with
multiple clients and different types and priorities of jobs. Though the capacity scheduler
ensures fairness by maintaining a set of queues and providing guaranteed capacity to each
queue, it does not provide any timing guarantees and, therefore, it may be ill-equipped for
real-time jobs.

7.2 Hadoop - MapReduce Examples

7.2.1 Batch Analysis of Sensor Data

Figure 7.9 shows a Hadoop MapReduce workflow for batch analysis of weather data. Batch
analysis is done to aggregate data (such as computing mean, maximum, and minimum) on
various timescales. For this example, we will assume that we have a data collector which
retrieves the sensor data collected in the cloud database and creates a raw data file in a form
suitable for processing by Hadoop. The raw data file consists of the raw sensor readings
along with the timestamps as shown below:
"2015-04-29 10:15:32",38,42,34,5
:
"2015-04-30 10:15:32",87,48,21,4

Box 7.1 shows the map program for the batch analysis of sensor data. The map program
reads the data from standard input (stdin) and splits the data into the timestamp and individual
sensor readings. The map program emits key-value pairs where the key is a portion of the
timestamp (that depends on the timescale on which the data is to be aggregated), and the
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Figure 7.9: Using Hadoop MapReduce for batch analysis of sensor data

value is a comma separated string of sensor readings.

� Box 7.1: Map program - mapper.py

#!/usr/bin/env python
import sys

#Calculates mean temperature, humidity, light and CO2
# Input data format:
#"2014-04-29 10:15:32",37,44,31,6
#Output:
#"2014-04-29 10:15 [48.75, 31.25, 29.0, 16.5]"

#Input comes from STDIN (standard input)
for line in sys.stdin:

# remove leading and trailing whitespace
line = line.strip()
data = line.split(‘,’)
l=len(data)

#For aggregation by minute
key=str(data[0][0:17])

value=data[1]+‘,’+data[2]+‘,’+data[3]+‘,’+data[4]
print ‘%s \t%s’ % (key, value)

Box 7.2 shows the reduce program for the batch analysis of sensor data. The key-value
pairs emitted by the map program are shuffled to the reducer and grouped by the key. The
reducer reads the key-value pairs grouped by the same key from standard input and computes
the means of temperature, humidity, light and CO readings. Box 7.3 shows the commands for
submitting the MapReduce job on a Hadoop cluster and viewing the output files on HDFS.
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� Box 7.2: Reduce program - reducer.py

#!/usr/bin/env python
from operator import itemgetter
import sys
import numpy as np

current_key = None
current_vals_list = []
word = None

#Input comes from STDIN
for line in sys.stdin:

# remove leading and trailing whitespace
line = line.strip()

#Parse the input from mapper
key, values = line.split(‘\t’, 1)
list_of_values = values.split(‘,’)

#Convert to list of strings to list of int
list_of_values = [int(i) for i in list_of_values]

if current_key == key:
current_vals_list.append(list_of_values)

else:
if current_key:

l = len(current_vals_list)+ 1
b = np.array(current_vals_list)
meanval = [np.mean(b[0:l,0]),np.mean(b[0:l,1]),
np.mean(b[0:l,2]), np.mean(b[0:l,3])]
print ‘%s\t%s’ % (current_key, str(meanval))

current_vals_list = []
current_vals_list.append(list_of_values)
current_key = key

#Output the last key if needed
if current_key == key:

l = len(current_vals_list)+ 1
b = np.array(current_vals_list)
meanval = [np.mean(b[0:l,0]),np.mean(b[0:l,1]),

np.mean(b[0:l,2]), np.mean(b[0:l,3])]
print ‘%s\t%s’ % (current_key, str(meanval))

� Box 7.3: Running MapReduce program on Hadoop cluster

#Testing locally
$cat data.txt | python mapper.py | python reducer.py

#Running on Hadoop cluster
#Copy data file to HDFS sudo -u user1 bin/hadoop dfs -copyFromLocal
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data.txt input

#Run MapReduce job bin/hadoop jar
contrib/streaming/hadoop-*streaming*.jar
-mapper mapper.py -reducer reducer.py
-file /home/ubuntu/hadoop/mapper.py
-file /home/ubuntu/hadoop/reducer.py
-input input/* -output output

#View output bin/hadoop dfs -ls output
bin/hadoop dfs -cat output/part-00000

7.2.2 Batch Analysis of N-Gram Dataset

Let us look at another example of MapReduce to analyze Google N-Gram dataset [29], which
is a freely-available collection of n-grams (fixed size tuples of words) extracted from the
Google Books corpus. The n specifies the number of elements in the tuple, so for example, a
5-gram contains five words.

The n-grams in this dataset were produced by passing a sliding window over the text of
books and outputting a record for each new token. For example, for the line – ‘Python is a
high level language’, The 2-grams (or bigrams) will be:
(Python, is)
(is, a)
(a, high)
(high, level)
(level, language)

Each row of data contains:
1) n-gram itself
2) year in which the n-gram appeared
3) number of times the n-gram appeared in the books from the corresponding year (count)
4) number of pages on which the n-gram appeared in this year (page-count)
5) number of distinct books in which the n-gram appeared in this year (book count)

Example (5-gram): analysis is often described as 1991 1 1 1
Interpretation of the 5-gram: In 1991, the phrase "analysis is often described as" occurred
one time (that’s the first 1), and on one page (the second 1), and in one book (the third 1).

Box 7.4 shows MapReduce program that calculates the most popular bigram (2-gram)
of all time in the dataset. This example uses the MRJob Python library which lets you
write MapReduce jobs in Python and run them on several platforms including local machine,
Hadoop cluster and Amazon Elastic MapReduce (EMR). MRJob can be installed as follows:

� #Installing MRJob
sudo apt-get install git
git clone https://github.com/Yelp/mrjob.git
cd mrjob
python setup.py install
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The example in Box 7.4 implements a class MyMRJob that defines mapper and reducer
functions. In this example, we have one map-reduce pair and another reduce function which
is chained to the output of the first reducer. When the program is run, the mapper function is
invoked for each line of the input file.

� Box 7.4: MapReduce program that calculates the most popular bigram of all
time - mr.py

from mrjob.job import MRJob

class MyMRJob(MRJob):
def mapper(self, _, line):

data=line.split(‘\t’)
ngram = data[0].strip()
year = data[1].strip()
count = data[2].strip()
pages = data[3].strip()
books = data[4].strip()

#Emit key-value pairs where key is ngram+year and value is count
yield ngram+year, int(count)

def reducer(self, key, list_of_values):
# Send all (count, ngram+year) pairs to the same reducer.
# So we can easily use Python’s max() function.
yield None, (sum(list_of_values),key)

def reducer2(self, _, list_of_values):
# Reducer-2 get input tuples as follows:
# None, [(212, cloud computing 2006), (156, mobile phones 2003)]
# max function will yield tuple with max value of the count
yield max(list_of_values)

def steps(self):
return [self.mr(mapper=self.mapper,
reducer=self.reducer), self.mr(reducer=self.reducer2)]

if __name__ == ‘__main__’:
MyMRJob.run()

The MapReduce program is run as follows:

� #Running MapReduce program
python mr.py googlebooks-eng-us-all-2gram-20090715-50-subset.csv

7.2.3 Find top-N words with MapReduce

Let us look at another MapReduce example that finds the top-N words in a text file, where N
is a configurable number. Box 7.5 shows a Python MapReduce program for finding top-3
words in a file. When this program is executed, the lines in the input text file are passed to
the mapper. The mapper function splits the lines and emits key-value pairs where key is
each word in the line and value is 1. The first reducer function sums up the list of values
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for each key, thus computing the word counts. The reducer function emits key-value pairs
where key is None and value is a tuple containing the count and the word. Setting the key as
None ensures that all (count, word) tuples are sent to the same reducer. The second reducer
function sorts the list of values (where each value is a (count, word) tuple ) and emits the
top-N values.

� Box 7.5: MapReduce program that finds the top-N words in a file- topNwords.py

from mrjob.job import MRJob

class MyMRJob(MRJob):
def mapper(self, _, line):

line = line.strip()
words = line.split()
for word in words:

yield (word, 1)

def reducer(self, key, list_of_values):
word = key
total_count = sum(list_of_values)
yield None, (total_count, word)

def reducer2(self, _, list_of_values):
N = 3
list_of_values = sorted(list(list_of_values), reverse=True)
return list_of_values[:N]

def steps(self):
return [self.mr(mapper=self.mapper,
reducer=self.reducer), self.mr(reducer=self.reducer2)]

if __name__ == ‘__main__’:
MyMRJob.run()

7.3 Pig

While MapReduce is a powerful programming model for big data analysis, for certain
complex analysis jobs developers may find it difficult to identify the key-value pairs involved
at each step and then implement the map and reduce functions. Moreover, complex analysis
jobs may require multiple MapReduce jobs to be chained.

Pig is a high-level data processing language which makes it easy for developers to write
data analysis scripts, which are translated into MapReduce programs by the Pig compiler. Pig
includes: (1) a high-level language (called Pig Latin) for expressing data analysis programs
and (2) a complier which produces sequences of MapReduce programs from the pig scripts.

Pig can be executed either in local mode or MapReduce mode. In local mode, Pig runs
inside a single JVM process on a local machine. Local mode is useful for development
purpose and testing the scripts with small data files on a single machine. MapReduce mode
requires a Hadoop cluster. In MapReduce mode, Pig can analyze data stored in HDFS. Pig
compiler translates the pig scripts into MapReduce programs which are executed in a Hadoop
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cluster. Pig provides an interactive shell called grunt, for developing pig scripts. Grunt can
be launched as follows:

� # Launching Pig Grunt Shell
# Pig local mode
>pig -x local

#Pig MapReduce mode
>pig

Let us look at some commonly used Pig operators with examples. We will use the NCDC
weather dataset [52] for the examples. NCDC provides access to daily data from the U.S.
Climate Reference Network / U.S. Regional Climate Reference Network (USCRN/USRCRN)
via FTP.

7.3.1 Loading Data

Pig provides the LOAD operator for loading data. LOAD operator loads data from a file into
a relation. A Pig relation is a collection of tuples where each tuple has multiple fields. An
example of LOAD operator is shown below:

� # LOAD example
data = LOAD ‘data.txt’ as (text:chararray);

7.3.2 Data Types in Pig

Pig support simple data types such as int, long, float, double, chararray, bytearray, boolean,
datetime, and complex data types such as tuple, bag and map. The simple data types work
the same way as in other programming languages. Let is look at the complex data types in
detail.
Tuple
A tuple is an ordered set of fields.

� # Tuple example
(1,10)

Bag
A bag is an unordered collection of tuples. A bag is represented with curly braces.

� # Bag example
{(1,10.4),(1,4.9),(1,5.0)})

Map
A Map is a set of key-value pairs. Map is represented with square brackets and a # is used to
separate the key and value.

� # Map example
[temp#20.0, humidity#70]
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7.3.3 Data Filtering & Analysis
The FOREACH operator is used to process each row in a relation and the GENERATE
operator is used to define the fields and generate a new row from the original. For example,
with the weather dataset loaded previously, to generate a relation with only the month and
the temperature, FOREACH and GENERATE can be used as follows:

� # FOREACH example
monthTemp = FOREACH data GENERATE SUBSTRING(text, 10,12) as month,
(double)SUBSTRING(text, 38,45) as temp;
DUMP monthTemp;
(01,22.9)
:
(12,5.6)

The FILTER operator is used to filter out tuples from a relation based on the condition
specified. For example, to filter out all rows with temperature less than 20, the FILTER
operator can be used as follows:

� # FILTER example
low = FILTER monthTemp by temp<20.0;
DUMP low;
(01,10.4)
:
(12,4.8)

The GROUP operator can be used to group data in one or more relations. For example, to
group monthTemp relation by the month field, the GROUP operator can be used as follows:

� #GROUP example
monthTempGroup = GROUP monthTemp by month;
DESCRIBE monthTempGroup;
monthTempGroup: {group: chararray,monthTemp: {(month: chararray,temp:
double)}}
DUMP monthTempGroup;
(1,{(1,11.7),...,(1,9.7)})
(12,{(12,20.3),...,(12,4.8)})

The UNION operator can be used to merge the contents of two or more relations. The
example below shows how to obtain union of two relations:

� #UNION example
low = FILTER monthTemp by temp<10.0;
high = FILTER monthTemp by temp>20.0;
lowHigh = UNION low,high;

The JOIN operator is used to join two relations. For example to join two relations (one
which holds the maximum temperature in each month and the other which holds the minimum
temperature in each month), JOIN can be used as follows:
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� # JOIN example
maxTemp = FOREACH monthTempGroup GENERATE group, MAX(monthTemp.temp);
minTemp = FOREACH monthTempGroup GENERATE group, MIN(monthTemp.temp);
maxMinTemp = JOIN maxTemp BY $0, minTemp BY $0;

Pig provides various built-in functions such as AVG, MIN, MAX, SUM, and COUNT.
In the above example, MAX and MIN were used to obtain the maximum and minimum
temperature in each month. The $N expression in the join statement is used to specify the
column by which the join should be performed. Alternatively, the column name can also be
provided.

7.3.4 Storing Results
To save the results on the filesystem the STORE operator is used. Pig uses a lazy evaluation
strategy and delays the evaluation of expressions till a STORE or DUMP operator triggers
the results to be stored or displayed.

� # STORE example
low = FILTER monthTemp by temp<20.0;
STORE low;

7.3.5 Debugging Operators
The DUMP operator is used to dump the results on the console. DUMP is used in interactive
mode for debugging purposes.

The DESCRIBE operator is used to view the schema of a relation.

� # DESCRIBE example
monthTempGroup = GROUP monthTemp by month;
DESCRIBE monthTempGroup;
monthTempGroup: {group: chararray, monthTemp:
{(month: chararray,temp: double)}}

The EXPLAIN operator is used to view the logical, physical, and MapReduce execution
plans for computing a relation. The following example shows the execution plan for
computing monthTemp relation.

� # EXPLAIN example

EXPLAIN monthTemp;

#---------------------------------

# Map Reduce Plan

#---------------------------------

MapReduce node scope-308

Map Plan

monthTemp: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-307

|

|--monthTemp: New For Each(false,false)[bag] - scope-306

| |
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| POUserFunc(org.apache.pig.builtin.SUBSTRING)[chararray] - scope-298

| |

| |--Project[chararray][0] - scope-295

| |

| |--Constant(10) - scope-296

| |

| |--Constant(12) - scope-297

| |

| Cast[double] - scope-304

| |

| |--POUserFunc(org.apache.pig.builtin.SUBSTRING)[chararray] - scope-303

| |

| |--Project[chararray][0] - scope-300

| |

| |--Constant(38) - scope-301

| |

| |--Constant(45) - scope-302

|

|--data: New For Each(false)[bag] - scope-294

| |

| Cast[chararray] - scope-292

| |

| |--Project[bytearray][0] - scope-291

|

|--data:

Load(file:///home/ubuntu/pig-0.15.0/data.txt:org.apache.pig.builtin.PigStorage) -

scope-290-----

Global sort: false

-----------

The ILLUSTRATE operator is used to display the step by step execution of statements to
compute a relation with a small sample of data. The example below shows the ILLUSTRATE
statement for monthTemp relation.

� # ILLUSTRATE example
ILLUSTRATE monthTemp;
-----------------------
| data | text:chararray
|
-----------------------
| | 03739 20140207 2.422 -75.93 37.29 3.7 -2.8 0.5 0.8 0.0 12.02 C
15.1 -5.0 1.9 89.5 41.2 67.1 0.231 0.214 0.214
0.215 0.214 2.9 3.2 3.4 4.0 5.2 |
-----------------------------
| monthTemp | month:chararray | temp:double |
---------------------------------------
| | 02 | 3.7 |
---------------------------------------
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7.3.6 Pig Examples

Let us look at some examples of batch data analysis with Pig. Box 7.6 shows an example
of computing word count with Pig. In this example, the data is first loaded from a text file.
The lines are tokenized using the TOKENIZE function which creates a bag of tuples (from
the words in a line) for each line in the text file. The FLATTEN function is used to flatten
the bag so that the tuples can be grouped. The GROUP operator is used to group the words.
Finally, the COUNT function is used to count the occurrences for each word. The best way to
understand the relations involved at each step is to use the debugging operators like DUMP,
DESCRIBE and ILLUSTRATE.

� Box 7.6: Pig script for computing word count

data = LOAD ‘input.txt’ as (lines:chararray);
words = FOREACH data GENERATE FLATTEN(TOKENIZE(lines)) AS word;
wordGroup = GROUP words BY word;
counts = FOREACH wordGroup GENERATE group, COUNT(words);
store counts into ‘counts’;

Earlier in this chapter, we described an example of a MapReduce program that calculates
the most popular bigram of all time from the Google N-Gram dataset. Let us look at an
example of using Pig for computing the most common bigram in each year in the dataset.
Box 7.7 shows a Pig script for computing the most common bigram in each year.

� Box 7.7: Pig script for computing the most common bigram in each year in the
dataset

#Expted output: (year, bigram, count)
data = LOAD ‘hdfs:///ngraminput’ using
PigStorage() AS (ngram:chararray, year:int,count:int);
yearData = GROUP data BY year;
maxYearData = FOREACH yearData GENERATE
group AS groupId, MAX(data.count) AS maxCount;
joinResult = JOIN maxYearData BY
(groupId,maxCount), data by (year,count);
result = FOREACH joinResult GENERATE
$0 AS year, $1 AS count, $2 AS ngram;
STORE result into ‘hdfs:///result’;

7.4 Case Study: Batch Analysis of News Articles

In this section, we will describe a case study on a system for batch analysis of news articles
aggregated from multiple news websites. The system computes the sentiment of each news
article and finds the trending topics.

Given the analysis requirements of this system, let us map the system to one of the
analytics patterns proposed in Chapter-1. Since the system processes news articles in batch
model, we suggest the use of the Alpha pattern. Figure 7.10(a) shows a realization of Alpha
pattern for this system, with the specific tools and frameworks that can be used. The system
uses MapReduce and Pig for batch analysis, such as computing the most common word and
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most common phrase among all news articles. Figure 7.10(b) shows the architecture of the
news analysis system.

To collect news articles from different websites, the Python program shown in Box 7.8 is
used. In this program, the RSS (Rich Site Summary) feed links for different news websites
are provided. An RSS feed parsing library called feedparser is used. The Python program
runs continuously to collect RSS feeds every five minutes and computes sentiment scores of
the news headlines. The output of the Python program is a CSV file which has the following
columns: sentiment analysis score, news headline, URL, source, and timestamp.

To compute the sentiments, we use the AFINN [18] sentiment lexicon, which is a list
of over 2400 English words rated for sentiment which is an integer between minus five
(negative) and plus five (positive).

The CSV files generated by the Python program are then moved to HDFS for further
analysis. For this, the Apache Flume framework is used. The Flume configuration used
includes a spool directory source and an HDFS sink. The CSV files generated by the
Python program are ingested from the spool directory to HDFS using Flume. Box 7.9
shows the Flume configuration used. With the aggregated dataset in HDFS, MapReduce
and Pig programs are used to perform computation for all of the application features such
as dividing news into categories based on sentiment scores, analyzing hourly news traffic,
and determining trending words and topics. A Flask web application is used to display the
results.

� Box 7.8: Python program for aggregating news articles

import feedparser
import threading
import sys
import time
import subprocess
from datetime import datetime

refresh_time = 300 #in seconds

rss_feeds = [
(‘http://rss.cnn.com/rss/cnn_topstories.rss’, ‘CNN’),
(‘http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml’,
‘The New York Times’),
(‘http://www.wsj.com/xml/rss/3_7085.xml’, ‘Wall Street Journal’),
(‘http://www.news.gatech.edu/rss/all’, ‘Georgia Tech News’)]

csv_file = open("Output.csv","a")

sentiments={}
file = open(‘AFINN-111.txt’)
lines = file.readlines()
for line in lines:
s = line.split("\t")
sentiments[s[0]] = s[1].strip()
file.close()
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def get_sentiment_score(phrase):
phrase = phrase.strip()
total = 0.0
for word in phrase.split():

word = word.lower()
for char in ‘[!@#$)(*<>=+/:;&%#|{},.? ‘]-’̈:

word = word.replace(char,‘’)
if word in list(sentiments):

total = total + float(sentiments[word])
return total

last_round_headlines = []
this_round_headlines = []

def get_headlines(rss_feed):
feed = feedparser.parse(rss_feed[0])
for entry in feed.entries:

title = entry.title.encode(‘utf-8’)
this_round_headlines.append(title)
if title not in last_round_headlines:

score = get_sentiment_score(title)
title = title.replace(‘,’,‘’)
#Format: # score, title, link, source, timestamp
to_print = "" + str(score) + ", " + title + ", "
+ entry.link.encode(‘utf-8’) + ", " + rss_feed[1] +
", " + str(datetime.now())

csv_file.write(to_print)

while True:
for rss_feed in rss_feeds:

t = threading.Thread(target=get_headlines, args = (rss_feed,))
t.start()

time.sleep(refresh_time)
last_round_headlines = list(this_round_headlines)
this_round_headlines = list()

� Box 7.9: Flume configuration

agent.sources = pstream
agent.channels = memoryChannel
agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000000
agent.channels.memoryChannel.transactionCapacity = 10000000
agent.sources.pstream.channels = memoryChannel
agent.sources.pstream.type = spooldir
agent.sources.pstream.spoolDir = test
agent.sinks = hdfsSink
agent.sinks.hdfsSink.type = hdfs
agent.sinks.hdfsSink.channel = memoryChannel
agent.sinks.hdfsSink.hdfs.path = /spooldirtest
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agent.sinks.hdfsSink.hdfs.fileType = DataStream
agent.sinks.hdfsSink.hdfs.writeFormat = Text
agent.sinks.hdfsSink.hdfs.batchSize = 10000000
agent.sinks.hdfsSink.hdfs.rollCount = 0
agent.sinks.hdfsSink.hdfs.rollInterval = 0
agent.sinks.hdfsSink.hdfs.rollSize = 0
agent.sinks.hdfsSink.hdfs.fileSuffix = .csv

Box 7.10 shows a MapReduce program for finding the most common two-word phrase
from the input.

� Box 7.10: MapReduce program for finding the most common two-word phrase
from the input

from mrjob.job import MRJob
import string

stop_words = ["for","of","the","in","a",
"to","is","news", "breaking", "and",
"you", "by", "your", "on", "at",
"as", "this", "it", "with", "from"]

exclude = set(string.punctuation)

#----- Load Ignore Words Dict ---
stopFile = open(‘StopWords.txt’)
lines = stopFile.readlines()
for line in lines:

s = line.split("\t")
stop_words.append(s)

stopFile.close()

class MyMRJob(MRJob):
def mapper(self, _, line):

#Get data
data=line.split(‘,’)
sentiment = data[0].strip()
headline = data[1].strip()
headline = headline.lower()
words = headline.split()

good_words = []
for word in words:

good_words.append(word)

# Create phrases
phrases = []
for i in range(0, len(good_words) - 1):

word1 = good_words[i]
word2 = good_words[i+1]
if word1 in stop_words:

continue
if word2 in stop_words:

continue
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phrase = ‘%s %s’ %(word1, word2)
phrases.append(phrase)

link = data[2].strip()
for phrase in phrases:

yield phrase, (1, sentiment, link)

def reducer(self, key, list_of_values):
totalCount = 0.0
totalSentiment = 0.0
list_of_links = []
for item in list_of_values:

#Skip if the link has already been processed
if item[2] in list_of_links:

continue

#Add count
totalCount = totalCount + item[0]
#Add sentiment
totalSentiment = totalSentiment + float(item[1])
#Append links
list_of_links.append(item[2])

avgSentiment = totalSentiment / totalCount
yield None, (totalCount, key, avgSentiment, list_of_links)

def reducer2(self, _, list_of_values):
#Print top 25
count = 0
for item in sorted(list_of_values, reverse = True):

if count > 25:
break

print item
count = count + 1

def steps(self):
return [self.mr(mapper=self.mapper,
reducer=self.reducer), self.mr(reducer=self.reducer2)]

if __name__ == ‘__main__’:
MyMRJob.run()

Box 7.11 shows a Pig program for finding the most common word from the news.

� Box 7.11: Pig program for finding the most common word from the news

data = LOAD ‘data.csv’ USING PigStorage(‘,’) as
(sentiment:float, headline:chararray, link:chararray);
/* Remove any duplicates */
data = DISTINCT data;

/* Group by each headline*/
headlines = group data BY headline;
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words = FOREACH data GENERATE flatten(TOKENIZE(headline)) as wordTuple;
C = group words by wordTuple;

/* Get count, organize by count, limit to the top 50 */
wordCount = foreach C generate COUNT(words) as count, group as word;
OUT = ORDER wordCount by count DESC;
OUT = LIMIT OUT 50;
STORE OUT into ‘mostCommonWords.txt’;

7.5 Apache Oozie
Many batch analysis applications require more than one MapReduce job to be chained to
perform data analysis. This can be accomplished using Apache Oozie system. Oozie is a
workflow scheduler system that allows managing Hadoop jobs. With Oozie, you can create
workflows which are a collection of actions (such as MapReduce jobs) arranged as Direct
Acyclic Graphs (DAG). Control dependencies exist between the actions in a workflow. Thus,
an action is executed only when the preceding action is completed. An Oozie workflow
specifies a sequence of actions that need to be executed using an XML-based Process
Definition Language called Hadoop Process Definition Language (hPDL). Oozie supports
various types of actions such as Hadoop MapReduce, Hadoop file system, Pig, Java, Email,
Shell, Hive, Sqoop, SSH and custom actions.

7.5.1 Oozie Workflows for Data Analysis
Let us look at an example of analyzing log data. Assuming that the data received has the
following structure (including time stamp and the status/error code):

� #timestamp, status/error "2014-07-01 20:03:18",115
"2014-07-01 20:04:15",106
:
"2014-07-01 20:10:15",110

The goal of the analysis job is to find the counts of each status/error code and produce an
output with a structure as shown below:

� #status/error, count 111, 6
112, 7
113, 12

Figure 7.11 shows a representation of the Oozie workflow comprising a Hadoop streaming
MapReduce job action and Email actions that notify the success or failure of the job.

Boxes 7.12 and 7.13 show the map and reduce programs which are executed in the
workflow. The map program parses the status/error code from each line in the input and emits
key-value pairs where the key is the status/error code and value is 1. The reduce program
receives the key-value pairs emitted by the map program aggregated by the same key. For
each key, the reduce program calculates the count and emits key-value pairs where the key is
the status/error code and the value is the count.

Bahga & Madisetti, c© 2016



7.5 Apache Oozie 245

Figure 7.11: Oozie workflow

� Box 7.12: Map program for computing counts of status/error codes

#!/usr/bin/env python
import sys

#Data format
#"2014-07-01 20:03:18",115

# input comes from STDIN (standard input)
for line in sys.stdin:

# remove leading and trailing whitespace
line = line.strip()
# split the line into words
data = line.split(‘,’)
print ‘%s\t%s’ % (data[1], 1)
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� Box 7.13: Reduce program for computing counts of status/error codes

#!/usr/bin/env python
from operator import itemgetter
import sys

current_key = None
current_count = 0
key = None

# input comes from STDIN
for line in sys.stdin:

line = line.strip()

key, count = line.split(‘\t’, 1)
count = int(count)

if current_key == key:
current_count += count

else:
if current_key:

unpackedKey = current_key.split(‘,’)
print ‘%s�%s’ % (current_key, current_count)

current_count = count
current_key = key

if current_key == key:
unpackedKey = current_key.split(‘,’)
print ‘%s\t%s’ % (current_key, current_count)

Box 7.14 shows the specification for the Oozie workflow shown in Figure 7.11. Oozie
workflow has been parameterized with variables within the workflow definition. The values
of these variables are provided in the job properties file shown in Box 7.15

� Box 7.14: Oozie workflow for computing counts of status/error codes

<workflow-app name="PythonOozieApp" xmlns="uri:oozie:workflow:0.1">
<start to="streamingaAction"/>
<action name="streamingaAction">

<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${outputDir}"/>

</prepare>
<streaming>
<mapper>python Mapper.py</mapper>
<reducer>python Reducer.py</reducer>

</streaming>
<configuration>

<property>
<name>oozie.libpath</name>
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<value>${oozieLibPath}/mapreduce-streaming</value>
</property>

<property>
<name>mapred.input.dir</name>
<value>${inputDir}</value>

</property>
<property>
<name>mapred.output.dir</name>
<value>${outputDir}</value>

</property>
<property>

<name>mapred.reduce.tasks</name>
<value>1</value>

</property>
</configuration>

<file>${appPath}/Mapper.py#Mapper.py</file>
<file>${appPath}/Reducer.py#Reducer.py</file>

</map-reduce>
<ok to="sendEmailSuccess"/>
<error to="sendEmailKill"/>

</action>

<action name="sendEmailSuccess">
<email xmlns="uri:oozie:email-action:0.1">

<to>${emailToAddress}</to>
<subject>Status of workflow ${wf:id()}</subject>
<body>The workflow ${wf:id()} completed successfully</body>

</email>
<ok to="end"/>
<error to="end"/>

</action>
<action name="sendEmailKill">
<email xmlns="uri:oozie:email-action:0.1">
<to>${emailToAddress}</to>
<subject>Status of workflow ${wf:id()}</subject>
<body>The workflow ${wf:id()} had issues and was killed.

The error message is: ${wf:errorMessage(wf:lastErrorNode())}</body>
</email>
<ok to="killJobAction"/>
<error to="killJobAction"/>

</action>

<kill name="killJobAction">
<message>"Killed job due to error:

${wf:errorMessage(wf:lastErrorNode())}"</message>
</kill>

<end name="end" />
</workflow-app>

� Box 7.15: Job properties file for Oozie workflow

nameNode=hdfs://master:54310
jobTracker=master:54311
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queueName=default

oozie.libpath=${nameNode}/user/hduser/share/lib
oozie.use.system.libpath=true
oozie.wf.rerun.failnodes=true

oozieProjectRoot=${nameNode}/user/hduser/oozieProject
appPath=${oozieProjectRoot}/pythonApplication
oozie.wf.application.path=${appPath}
oozieLibPath=${oozie.libpath}

inputDir=${oozieProjectRoot}/pythonApplication/data/
outputDir=${appPath}/output

Figure 7.12: Oozie workflow for computing status/error code with maximum count

Let us now look at a more complicated workflow which has two MapReduce jobs.
Extending the example described earlier in this section, let us say we want to find the
status/error code with the maximum count. The MapReduce job in the earlier workflow
computed the counts for each status/error code. A second MapReduce job, which consumes
the output of the first MapReduce job computes the maximum count. The map and reduce
programs for the second MapReduce job are shown in Boxes 7.16 and 7.17.

Figure 7.12 shows a DAG representation of the Oozie workflow for computing status/error
code with maximum count. The specification of the workflow is shown in Box 7.18.
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� Box 7.16: Map program for computing status/error code with
maximum count

#!/usr/bin/env python
import sys

#Data format
#"2014-07-01 20:03:18",115

# input comes from STDIN (standard input)
for line in sys.stdin:

# remove leading and trailing whitespace
line = line.strip()
# split the line into words
data = line.split(‘\t’)

#For aggregation by minute
print ‘%s\t%s’ % (data[0], data[1])

� Box 7.17: Reduce program for computing status/error code with
maximum count

#!/usr/bin/env python
from operator import itemgetter
import sys

current_key = None
current_count = 0
key = None
maxcount=0
maxcountkey=None

# input comes from STDIN
for line in sys.stdin:

# remove leading and trailing whitespace
line = line.strip()

# parse the input we got from mapper.py
key, count = line.split(‘\t’, 1)

# convert count to int
count = int(count)

if count>maxcount:
maxcount=count
maxcountkey=key
print ‘%s\t%s’ % (maxcountkey, maxcount)
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� Box 7.18: Oozie workflow for computing status/error code with
maximum count

<workflow-app name="PythonOozieApp" xmlns="uri:oozie:workflow:0.1">
<start to="streamingaAction"/>
<action name="streamingaAction">

<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${outputDir}"/>

</prepare>
<streaming>
<mapper>python Mapper.py</mapper>
<reducer>python Reducer.py</reducer>

</streaming>
<configuration>

<property>
<name>oozie.libpath</name>

<value>${oozieLibPath}/mapreduce-streaming</value>
</property>

<property>
<name>mapred.input.dir</name>
<value>${inputDir}</value>

</property>
<property>
<name>mapred.output.dir</name>
<value>${outputDir}</value>

</property>
<property>

<name>mapred.reduce.tasks</name>
<value>1</value>

</property>
</configuration>

<file>${appPath}/Mapper.py#Mapper.py</file>
<file>${appPath}/Reducer.py#Reducer.py</file>

</map-reduce>
<ok to="streamingaAction2"/>
<error to="killJobAction"/>

</action>

<action name="streamingaAction2">
<map-reduce>

<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<streaming>
<mapper>python Mapper1.py</mapper>
<reducer>python Reducer1.py</reducer>

</streaming>
<configuration>

<property>
<name>oozie.libpath</name>

<value>${oozieLibPath}/mapreduce-streaming</value>
</property>
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<property>
<name>mapred.input.dir</name>
<value>${outputDir}</value>

</property>
<property>
<name>mapred.output.dir</name>
<value>${outputDir}/output2</value>

</property>
<property>

<name>mapred.reduce.tasks</name>
<value>1</value>

</property>
</configuration>

<file>${appPath}/Mapper1.py#Mapper1.py</file>
<file>${appPath}/Reducer1.py#Reducer1.py</file>

</map-reduce>
<ok to="end"/>
<error to="killJobAction"/>

</action>

<kill name="killJobAction">
<message>"Killed job due to error:

${wf:errorMessage(wf:lastErrorNode())}"</message>
</kill>

<end name="end" />
</workflow-app>

Figure 7.13 shows a screenshot of the Oozie web console which can be used to monitor
the status of Oozie workflows.

Figure 7.13: Screenshot of Oozie web console
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7.6 Apache Spark
Apache Spark is an open source cluster computing framework for data analytics [62]. Spark
supports in-memory cluster computing and promises to be faster than Hadoop. Spark supports
various high-level tools for data analysis such as Spark Streaming for streaming jobs, Spark
SQL for analysis of structured data, MLlib machine learning library for Spark, and GraphX
for graph processing. Spark allows real-time, batch and interactive queries and provides APIs
for Scala, Java and Python languages.

Spark Core

Spark 
Streaming

Spark 
SQL

MLlib
(Machine
Learning)

GraphX
(Graph 

Computation)

Figure 7.14: Spark tools

• Spark Core: Spark Core provides common functionality (such as task scheduling
and input/output), which is used by other Spark components. Spark provides a data
abstraction called resilient distributed dataset (RDD) which is a collection of elements
partitioned across the nodes in a Spark cluster. The RDD elements can be operated on
in parallel in the cluster. RDDs are immutable and distributed collection of objects.
• Spark Streaming: Spark Streaming is a Spark component for analysis of streaming

data such as sensor data, click stream data, web server logs, etc.
• Spark SQL: Spark SQL is a Spark component that enables interactive querying of

data using SQL queries. Spark SQL is described in detail in Chapter-9 where we
describe tools for interactive querying.
• Spark MLlib: Spark MLlib is Spark’s machine learning library that provides

implementations of commonly used machine learning algorithms for clustering,
classification, regression, collaborative filtering and dimensionality reduction.
• Spark GraphX: Spark GraphX is a component for performing graph computations.

GraphX provides implementations of common graph algorithms such as PageRank,
connected components, and triangle counting.

Figure 7.15 shows the components of a Spark cluster. Each Spark application consists
of a driver program and is coordinated by a SparkContext object. Spark supports various
cluster managers including Spark’s standalone cluster manager, Apache Mesos and Hadoop
YARN. The cluster manager allocates resources for applications on the worker nodes. The
executors which are allocated on the worker nodes run the application code as multiple tasks.
Applications are isolated from each other and run within their own executor processes on the
worker nodes.

Spark comes with a spark-ec2 script (in the spark/ec2 directory) which makes it easy to
setup Spark cluster on Amazon EC2. With spark-ec2 script you can easily launch, manage
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Driver Program

SparkContext

Cluster Manager
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Task Task

Cache

Executor

Worker Node

Task Task

Cache

Executor
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Figure 7.15: Components of a Spark cluster

and shutdown Spark cluster on Amazon EC2. To start a Spark cluster use the following
command:

� ./spark-ec2 -k <keypair> -i <key-file> -s <num-slaves>
launch <cluster-name> -instance-type=<INSTANCE_TYPE>

Spark cluster setup on EC2 is configured to use HDFS as its default filesystem. To analyze
contents of a file, the file should be first copied to HDFS using the following command:

� bin/hadoop fs -put file.txt file.txt

Spark supports a shell mode with which you can interactively run commands for analyzing
data. To launch the Spark Python shell, run the following command:

� ./bin/pyspark

When you launch a PySpark shell, a SparkContext is created with the variable name sc.

Creating RDDs
RDDs can be created either by parallelizing existing collections or by loading an external
dataset as shown in box below:

� #Create RDD from a local file
lines = sc.textFile("file:///root/spark/README.md")

#Create RDD by parallelizing an existing collection
data = sc.parallelize([1, 2, 2, 3, 3, 4, 5])

7.6.1 Spark Operations
Spark RDDs support two types of operations:
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• Transformations: Transformations are used to create a new dataset from an existing
one.
• Actions: Actions return a value to the driver program after running a computation on

the dataset.
Transformations
Let us look at some commonly used transformations with examples. For the examples, we
will use the three datasets as shown below:

� lines = sc.textFile("file:///root/spark/README.md")

data1 = sc.parallelize([1, 2, 2, 3, 3, 4, 5])
data2 = sc.parallelize([3, 4, 5, 6, 7, 8])

map
The map transformation takes as input a function which is applied to each element of the
dataset and maps each input item to another item.

� #map transformation example
lineLengths = lines.map(lambda s: len(s))
lineLengths.take(5)
[14, 0, 78, 72, 73]

filter
The f ilter transformation generates a new dataset by filtering the source dataset using the
specified function.

� #filter transformation example
filteredLines = lines.filter(lambda line: line.find(‘Spark’)>0)
filteredLines.take(3)
[u‘# Apache Spark’, u‘rich set of higher-level tools including Spark SQL
for SQL and structured’, u‘and Spark Streaming for stream processing.’]

reduceByKey
The reduceByKey transformation when applied on dataset containing key-value pairs,
aggregates values of each key using the function specified.

� # reduceByKey transformation example
splitLines = lines.flatMap(lambda line: line.split())
words=splitLines.map(lambda word: (word, 1))

counts=words.reduceByKey(lambda a, b: a+b)
counts.take(5)
[(u‘all’, 1), (u‘when’, 1), (u‘"local"’, 1),
(u‘including’, 3), (u‘computation’, 1)]

flatMap
The f latMap transformation takes as input a function which is applied to each element of
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the dataset. The f latMap transformation can map each input item to zero or more output
items.

� #flatMap transformation example
splitLines = lines.flatMap(lambda line: line.split())
splitLines.take(10)
[u‘#’, u‘Apache’, u‘Spark’, u‘Spark’, u‘is’,
u‘a’, u‘fast’, u‘and’, u‘general’, u‘cluster’]

sample
The sample transformation samples the data with or without replacement.

� #sample transformation example
datasample = data1.sample(False, 0.5)
datasample.collect()
[3, 3, 4]

union
The union transformation generates a new dataset from the union of two datasets.

� #union transformation example
data = data1.union(data2)
data.collect()
[1, 2, 2, 3, 3, 4, 5, 3, 4, 5, 6, 7, 8]

intersection
The intersection transformation generates a new dataset from the intersection of two datasets.

� #intersection transformation example
data = data1.intersection(data2)
data.collect()
[4, 5, 3]

join
The join transformation generates a new dataset by joining two datasets containing key-value
pairs.

� #join transformation example
a=sc.parallelize([(‘John’, 1), (‘Tom’, 2), (‘Ben’, 3)])
b=sc.parallelize([(‘John’, ‘CA’), (‘Tom’, ‘GA’), (‘Ben’, ‘VA’)])
c=a.join(b)
c.collect()
[(‘Ben’, (3, ‘VA’)), (‘John’, (1, ‘CA’)), (‘Tom’, (2, ‘GA’))]

Transformations are lazy and not computed till an action requires a result to be returned
to the driver program. By computing transformations in a lazy manner, Spark is able to
perform operations in a more efficient manner as the operations can be grouped together.
Spark API allows chaining together transformations and actions.
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Actions
Let us look at some commonly used actions with examples:
reduce
The reduce action aggregates the elements in a dataset using the specified function.

� #reduce transformation example
lineLengths = lines.map(lambda s: len(s))
totalLength = lineLengths.reduce(lambda a, b: a + b)
3526

collect
The collect action is used to return all the elements of the result as an array.

� #Map transformation example
lineLengths = lines.map(lambda s: len(s))
lineLengths.collect()
[14, 0, 78, 72, 73, ... , 70]

count
The count action returns the number of elements in a dataset.

� #count transformation example
lines.count()
98

first
The f irst action returns the first element in a dataset.

� #Map transformation example
lines.first()
u‘# Apache Spark’

take
The take action returns the first n elements in a dataset.

� #Map transformation example
lines.take(3)
[u‘# Apache Spark’, u‘’, u‘Spark is a fast and general
cluster computing system for Big Data. It provides’]

takeSample
The takeSample action returns a sample containing a specified number of elements from a
dataset with or without replacement.

� #takeSample transformation example
data1.takeSample(False, 2)
[2, 2]

saveAsTextFile
The saveAsTextFile action writes the elements in a dataset to a text file either on the local
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filesystem or HDFS.

� #saveAsTextFile transformation example
lines.saveAsTextFile(‘/path/to/file’)

saveAsSequenceFile
The saveAsSequenceFile action writes the elements in a dataset to Hadoop SequenceFile on
the local filesystem or HDFS.

� #saveAsSequenceFile transformation example
data.saveAsSequenceFile(‘/path/to/file’)

Let us now look at a standalone Spark application that computes word counts in a file.
Box 7.19 shows a Python program for computing word count. The program uses the map
and reduce functions. The f latMap and map transformation take as input a function which
is applied to each element of the dataset. While the f latMap function can map each input
item to zero or more output items, the map function maps each input item to another item.
The transformations take as input, functions which are applied to the data elements. The
input functions can be in the form of Python lambda expressions or local functions. In the
word count example f latMap takes as input a lambda expression that splits each line of the
file into words. The map transformation outputs key value pairs where the key is a word
and value is 1. The reduceByKey transformation aggregates values of each key using the
function specified (add function in this example). Finally, the collect action is used to return
all the elements of the result as an array.

� Box 7.19: Apache Spark Python program for computing word count

from operator import add
from pyspark import SparkContext

sc = SparkContext(appName="WordCountApp")
lines = sc.textFile("file.txt")
counts = lines.flatMap(lambda x:
x.split(‘ ’)).map(lambda x: (x, 1)).reduceByKey(add)

output = counts.collect()

for (word, count) in output:
print "%s: %i" % (word, count)

7.7 Search

7.7.1 Apache Solr

Apache Solr is a scalable and open-source framework for searching data. Solr is built on
Apache Lucene, which is an open source library for indexing and search. To enable searching
of documents, Solr creates an index of the documents. Solr can index documents in XML,
JSON, CSV and binary formats. Solr provides a REST-like web service that can be used for
indexing and querying.
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Figure 7.16: Apache Solr components

Figure 7.16 shows the components of Solr. Solr using Lucene for building and maintaining
an inverted index which contains mappings from the search terms to the documents. While
Lucene manages the index structure and executes the queries, Solr is used to define the
structure of the index. With Solr, the index structure can be defined within an XML file
(schema.xml), which contains definitions of the various fields and the data types used in the
index. Solr provides dynamic fields which can be used to automatically define the field types
without explicitly defining them in the index schema. Solr runs as a Java web application and
provides a REST-like web service based on HTTP. Solr can also be accessed using Solr clients
available for different programming languages such as Python, Java, PHP and Ruby. The Solr
Update Handlers process the requests and update the index. Request types supported by the
update handlers include add, delete, commit and optimize. When new documents are added
in the index, they are visible in search only after they have been committed to the index.
Solr provides normal-commit (or hard-commit), soft-commit and auto-commit options for
committing changes to the index. Normal-commit, commits all the changes to Lucene index
files to the disk. In soft-commit, all the changes are committed to the Lucene data structures
but the changes are not committed to the disk. Soft-commit is used for the near real-time
search feature, discussed later in this section. The auto-commit option allows the changes to
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be committed on a regular basis or when the number of uncommitted documents become
greater than a threshold. The Solr Request Handlers process the incoming requests which
can be either query requests or index update requests. The Solr Response Writers generate
the response in the desired formats (such as XML, CSV, JSON). Solr provides various Search
Components, which provide implementations of search features such as faceting, highlighting,
etc., described later in this section. All the update requests are run through a chain of plugins
called the Update Request Processor Chain. Figure 7.16 shows the Solr components involved
in the indexing and querying processes.

Solr provides a deployment functionality called SolrCloud which makes it easier to setup
clusters of Solr servers. SolrCloud provides distributed indexing and search capabilities.
SolrCloud uses Zookeeper for centralized configuration and coordination. SolrCloud enables
load balancing and fail-over for queries and highly-available and fault-tolerant Solr deployments.
Each Solr instance can have multiple indexes. Solr can scale to index millions of documents
and handle queries from millions of users.
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Solr Core

add/update/delete

Config

Search Request Handler

Query 
parser

Response
Writer

Analysis Pipeline
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Search Com
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U
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Figure 7.17: Indexing and Querying in Apache Solr

Let us look at some of the key-features of Solr:
• Faceting: Faceting is a feature in Solr that allows the results to be grouped based on

a specific field or defined criteria. With faceting, users can refine search results. For
example, faceting can be used in a search system for an eCommerce application to
group products based on price, vendor, color, size, etc.
• Auto-Suggest: The auto-suggest feature, also called auto-complete or type-ahead

search, provides suggestions to the users as they type in the queries. Auto-suggest
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provides a list of suggested queries based on the documents indexed.
• Spell Check: Spell check feature in Solr enables spelling corrections in the queries by

providing query suggestions based on similar terms in the index.
• Highlighting: The hit highlighting features enables highlighting specific portions of

the documents that match the user’s query. The matching portions are included in the
query response and formatting clues are included to highlighting the matching portion.
• Clustering: Clustering groups the related documents in the search results and assigns

labels to the groups. Clustering prevents multiple documents with similar content being
returned separately in the search results. The similar documents in the search results
are grouped in a process called online-clustering. Solr also supports offline-clustering
of documents in the index.
• Spatial Search: Solr supports spatial search which enables filtering search results

based on location. Solr can index spatial data such a latitude/longitude,
• Pagination and Ranking: Solr provides pagination of search results. When the user

searches for a term, only the top-N results are returned for the first page. The results
are ranked based on a relevance score. The benefit of pagination is that instead of
returning all matching documents, only a subset of the documents are returned on a
particular page, which speeds up the response.
• Results Grouping: Solr supports grouping the results based on a grouping field so

that instead of returning separate documents, the documents are grouped together and
the top documents in each group are returned. For example, while searching for a
collection of books, the results can be grouped by the genre field. The results will then
contain all the unique genres and the top books in each genre.
• Near Real-time Search: Near real-time search feature in Solr enables searching of

documents immediately after being indexed. This feature is useful for applications
with dynamically changing content such as news and social media applications.
• MoreLikeThis: This feature enables users to query for documents which are similar

to the documents returned for a search query.

Solr Examples
In this section, we will describe examples of indexing and querying data with Solr. To setup
Solr, obtain the latest release from the Solr website. For the examples, we will create a
SolrCloud deployment on a local machine using the commands shown below:

� wget http://apache.arvixe.com/lucene/solr/5.2.1/solr-5.2.1.tgz
tar -xzf solr-5.2.1.tgz
cd solr-5.2.1/

bin/solr start -e cloud -noprompt

When Solr starts, you can access the admin user interface at: http://localhost:8983/solr/.
Before we can start using Solr for querying data, we need to index some data. Box 7.20

shows a sample JSON file that we will index. This file contains product details about four
mobile phones.
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� Box 7.20: Sample JSON file to index

[
{

"id" : "1",
"name" : "HTC Desire 816",
"brand" : "HTC",
"display_t" : "5.5 inch S-LCD Display",
"memory_s" : "8 GB",
"price_f" : 150.00,
"color" : "black",
"features" : ["Android 4.4 Kit Kat OS","13 MP Rear Facing BSI Camera",

"5 MP Front Facing"]
},

{
"id" : "2",
"name" : "LG Tribute",
"brand" : "LG",
"display_t" : "4.5 inch Capacitive Display",
"memory_s" : "8 GB",
"price_f" : 65.00,
"color" : "black",
"features" : ["Android 4.4 Kit Kat OS",

"5 MP Rear Facing FSI Camera"]
},

{
"id" : "3",
"name" : "Samsung Galaxy S5 White",
"brand" : "Samsung",
"display_t" : "5.1inch Full HD Super AMOLED",
"memory_s" : "16 GB",
"price_f" : 499.99,
"color" : "white",
"features" : ["Android 4.4 Kit Kat OS","16 megapixel camera",

"2.5 GHz quad-core processor"]
},

{
"id" : "4",
"name" : "Kyocera Hydro Vibe",
"brand" : "Kyocera",
"display_t" : "4.5 inch qHD IPS screen",
"memory_s" : "8 GB",
"price_f" : 49.90,
"color" : "black",
"features" : ["Andriod 4.3 Jelly Bean OS",

"8 MP Rear Facing BSI Camera", "2 MP Front Facing"]
}

]
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Solr provides a utility called post for indexing. The basic unit of data indexed is called a
document. A document is a collection of fields. Each field in the document is either indexed
or stored or both. An indexed field is one which is searchable and sortable, but the field is
not returned in the search results. During the indexing process, the indexed fields undergo an
analysis phase in which various transformations are applied. A stored field is one which is
returned in the search results. Stored fields are saved as is without undergoing analysis.

Solr requires a schema (defined in schema.xml), which includes the field definitions
and information on how the fields should be analyzed in the indexing process. While it
is recommended to define the schema explicitly for fine-grained control over the indexing
process, Solr also provides the option of Dynamic fields which allows Solr to index fields
that are not explicitly defined in the schema. Dynamic fields have wild cards in their names,
for example, fields that end with ‘_i’ are treated as integer fields, fields that end with ‘_s’ are
treated as string fields, fields that end with ‘_f’ are treated as float fields, and so on.

The box below shows how to index the JSON file. A new collection named products is
created with the indexed JSON file.

� /solr-5.2.1$ bin/post -c products products.json

java -classpath /home/ubuntu/solr-5.2.1/dist/solr-core-5.2.1.jar
-Dauto=yes -Dc=products -Ddata=files org.apache.solr.util.SimplePostTool
products.json SimplePostTool version 5.0.0
Posting files to [base] url http://localhost:8983/solr/products/update..
Entering auto mode. File endings considered are xml,json,csv,
pdf,doc,docx, ppt,pptx,xls,xlsx,odt,odp,ods,ott,otp,ots,rtf,htm,
html,txt,log POSTing file products.json (application/json) to [base]
1 files indexed.
COMMITting Solr index changes to
http://localhost:8983/solr/products/update...
Time spent: 0:00:00.071

Once the documents have been indexed, Solr can be queried either using the Solr admin
dashboard or via REST clients. Figure 7.18 shows an example of querying Solr from the
admin dashboard.
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Figure 7.18: Querying from Apache Solr dashboard

The box below shows an example of querying Solr using the CURL utility. In this query,
we query for all the documents in the products collection (by setting q = *:*) and specify the
response type as JSON (by setting wt = json). The JSON response is also shown.

� $ curl "http://localhost:8983/solr/products/select?q=*%3A*&wt=json
&indent=true"
{
"responseHeader":{

"status":0,
"QTime":1,
"params":{
"indent":"true",
"q":"*:*",
"wt":"json"}},

"response":{"numFound":4,"start":0,"docs":[
{
"id":"1",
"name":["HTC Desire 816"],
"brand":["HTC"],
"display_t":["5.5 inch S-LCD Display"],
"memory_s":"8 GB",
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"price_f":150.0,
"color":["black"],
"features":["Android 4.4 Kit Kat OS",
"13 MP Rear Facing BSI Camera",
"5 MP Front Facing"],

"_version_":1509468909469696000},
{
"id":"2",
"name":["LG Tribute"],
"brand":["LG"],
"display_t":["4.5 inch Capacitive Display"],
"memory_s":"8 GB",
"price_f":65.0,
"color":["black"],
"features":["Android 4.4 Kit Kat OS",
"5 MP Rear Facing FSI Camera"],

"_version_":1509468909473890304},
{
"id":"3",
"name":["Samsung Galaxy S5 White"],
"brand":["Samsung"],
"display_t":["5.1inch Full HD Super AMOLED"],
"memory_s":"16 GB",
"price_f":499.99,
"color":["white"],
"features":["Android 4.4 Kit Kat OS",
"16 megapixel camera",
"2.5 GHz quad-core processor"],

"_version_":1509468909474938880},
{
"id":"4",
"name":["Kyocera Hydro Vibe"],
"brand":["Kyocera"],
"display_t":["4.5 inch qHD IPS screen"],
"memory_s":"8 GB",
"price_f":49.9,
"color":["black"],
"features":["Andriod 4.3 Jelly Bean OS",
"8 MP Rear Facing BSI Camera",
"2 MP Front Facing"],

"_version_":1509468909475987456}]
}}

The box below shows an example of querying for a specific term.

� $ curl "http://localhost:8983/solr/products/select?q=htc&wt=json
&indent=true"
{
"responseHeader":{

"status":0,
"QTime":2,
"params":{
"indent":"true",
"q":"htc",
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"wt":"json"}},
"response":{"numFound":1,"start":0,"docs":[

{
"id":"1",
"name":["HTC Desire 816"],
"brand":["HTC"],
"display_t":["5.5 inch S-LCD Display"],
"memory_s":"8 GB",
"price_f":150.0,
"color":["black"],
"features":["Android 4.4 Kit Kat OS",
"13 MP Rear Facing BSI Camera",
"5 MP Front Facing"],

"_version_":1509468909469696000}]
}}

Let us look at an example of Faceting, which allows the results to be grouped based on a
specific field or defined criteria. The box below shows an example of arranging the results
into subsets using the price field. The response shows the number of products for each price.

� $ curl "http://localhost:8983/solr/products/select?q=*:*&wt=json
&indent=on&rows=0&facet=true&facet.field=price_f"
{
"responseHeader":{

"status":0,
"QTime":1,
"params":{
"facet":"true",
"indent":"on",
"q":"*:*",
"facet.field":"price_f",
"wt":"json",
"rows":"0"}},

"response":{"numFound":4,"start":0,"docs":[]
},
"facet_counts":{

"facet_queries":{},
"facet_fields":{
"price_f":[
"49.9",1,
"65.0",1,
"150.0",1,
"499.99",1]},

"facet_dates":{},
"facet_ranges":{},
"facet_intervals":{},
"facet_heatmaps":{}}}

Solr also allows partitioning the results using range facets. The box below shows an
example of range facet where the range start value, end value and range gap is specified. The
response shows the number of products in each range.
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� $ curl "http://localhost:8983/solr/products/select?q=*:*&wt=json
&indent=on&rows=0&facet=true&facet.range=price_f
&f.price_f.facet.range.start=0.0&f.price_f.facet.range.end=500.0
&f.price_f.facet.range.gap=100"
{
"responseHeader":{

"status":0,
"QTime":2,
"params":{
"facet":"true",
"indent":"on",
"q":"*:*",
"f.price_f.facet.range.end":"500.0",
"facet.range":"price_f",
"wt":"json",
"f.price_f.facet.range.gap":"100",
"f.price_f.facet.range.start":"0.0",
"rows":"0"}},

"response":{"numFound":4,"start":0,"docs":[]
},
"facet_counts":{

"facet_queries":{},
"facet_fields":{},
"facet_dates":{},
"facet_ranges":{
"price_f":{
"counts":[
"0.0",2,
"100.0",1,
"200.0",0,
"300.0",0,
"400.0",1],

"gap":100.0,
"start":0.0,
"end":500.0}},

"facet_intervals":{},
"facet_heatmaps":{}}}

The box below shows an example of adding a new document to the index using the Solr
web service.

� curl http://localhost:8983/solr/products/update/json?commit=true -d
’[{"id" : "5",
"name" : "Samsung Galaxy S4",
"brand" : "Samsung",
"display_t" : "5 inch Super AMOLED",
"memory_s" : "16 GB",
"price_f" : 329.90,
"color" : "white",
"features" : ["Andriod 4.3 Jelly Bean OS","13 MP Rear Facing Camera"]}]’

{"responseHeader":{"status":0,"QTime":4}}

Bahga & Madisetti, c© 2016



7.7 Search 267

You can retrieve a document using the ID as shown in box below.

� curl http://localhost:8983/solr/products/get?id=5
{
"doc":
{

"id":"5",
"name":["Samsung Galaxy S4"],
"brand":["Samsung"],
"display_t":["5 inch Super AMOLED"],
"memory_s":"16 GB",
"price_f":329.9,
"color":["white"],
"features":["Andriod 4.3 Jelly Bean OS",
"13 MP Rear Facing Camera"],
"_version_":1509469873669931008}}

Summary
In this chapter you learned how to use tools and frameworks for batch processing of data
including: Hadoop-MapReduce, Pig, Oozie, Spark, and Solr. Apache Hadoop is an open
source framework for distributed batch processing of big data. MapReduce is a parallel data
processing model for processing and analysis of massive scale data. MapReduce model has
two phases: Map and Reduce. In the Map phase, data is read from a distributed file system,
partitioned among a set of computing nodes in the cluster, and sent to the nodes as a set of
key-value pairs. The Map tasks process the input records independently of each other and
produce intermediate results as key-value pairs. The intermediate results are stored on the
local disk of the node running the Map task. When all the Map tasks are completed, the
Reduce phase begins in which the intermediate data with the same key is aggregated. We
described the next generation Hadoop architecture and the YARN cluster manager. Next, we
described the Hadoop FIFO, Fair and Capacity schedulers. We introduced Pig, which is a
high-level data processing language. Pig makes it easy for developers to write data analysis
scripts, which are translated into MapReduce programs by the Pig compiler. The Apache
Oozie workflow scheduler system was described. Next, we introduced the Apache Spark
framework and described various transformations and actions that can be performed with
Spark. Finally, we described the Apache Solr framework for searching data.
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In this chapter we describe the Apache Storm and Spark Streaming frameworks for
implementing real-time data analytics applications.

8.1 Stream Processing

8.1.1 Apache Storm

Apache Storm is a framework for distributed and fault-tolerant real-time computation [65].
Storm can be used for real-time processing of streams of data. Storm can ingest data
from a variety of sources such as publish-subscribe messaging frameworks (such as Kafka
or Kinesis), messaging queues (such as RabbitMQ, ZeroMQ or SQS) and other custom
connectors described in Chapter-5. Storm is a scalable and distributed framework, and
offers reliable processing of messages. Storm has been designed to run indefinitely and
process streams of data in real-time. The processing latencies with Storm are in the order of
milliseconds.

Concepts
• Topology: A computation job on the Storm cluster, called a “topology”, is a graph

of computation. A Storm topology comprises multiple worker processes that are
distributed on the cluster. Each worker process runs a subset of the topology. A
topology is composed of two types of nodes; Spouts and Bolts. Figure 8.1 shows
some examples of these Storm topologies. The nodes in a topology are connected by
directed edges. Each node receives a stream of data from other nodes and emits a new
stream.
• Tuples: The nodes in a topology consume data which is in the form of tuples. Each

node receives data tuples from the previous node and emits tuples which are processed
further by the downstream nodes. A tuple is an ordered list of values. Tuples can
contain primitive data types such as integers, floats, doubles, strings, booleans, shorts,
longs, etc, and also custom types (with custom serializers provided).
• Stream: Stream is an unbounded sequence of tuples. The nodes in a topology receive

streams, process them and emit new streams. The output streams can be consumed
and processed by any downstream nodes in the topology. In complex topologies, as
shown in Figure 8.1(b), a node can emit or ingest multiple streams.
• Spout: Spout is a type of a node in a topology, which is a source of streams. Spouts

receive data from external sources and emit them into the topology as streams of tuples.
Spouts do not process the tuples; they simply emit the tuples which are consumed by
the bolts in the topology.
• Bolt: Bolt is a type of a node in a topology that processes tuples. Bolts receive

streams of tuples, process them and emit output streams. Bolts can receive streams
either from spouts or other bolts. Bolts can perform various types of data processing
operations such as filtering, aggregation, joins, custom functions, etc. Storm topologies
are designed such that each bolt performs simple transformations on the data stream.
Complex transformations are broken down into simpler transformations, which are
performed by multiple bolts. Since the different bolts process data in parallel, Storm
can achieve low latencies for data processing.
• Workers: Spouts and bolts have multiple worker processes. Each worker process
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itself has multiple threads of execution (called tasks). These tasks process the data in
parallel.

BoltBolt

Bolt

Bolt

Bolt Bolt

Bolt

Spout

Spout

Spout

Spout

(a)

(b)

Figure 8.1: Storm topology examples

Stream Groupings

Since the bolts in a topology can have multiple tasks (threads of execution), some mechanism
is required to define how the streams should be partitioned among the tasks. This partitioning
is defined in terms of stream groupings. Stream groupings define how the tuples emitted by a
spout or bolt are distributed among the tasks of a downstream bolt.

Storm supports the following types of stream groupings:
• Shuffle Grouping: In shuffle grouping, tuples are randomly distributed across the

tasks such that each task gets an equal number of tuples.
• Field Grouping: In field grouping, a grouping field is specified by which the tuples in

a stream are grouped. Tuples with the same value of the grouping field are always sent
to the same task.
• All Grouping: In all grouping, the stream is broadcast to all the tasks in the bolt.

This type of grouping is used where the stream is to be replicated to all tasks in the
destination bolt.
• Global Grouping: In global grouping, the entire stream is sent to a particular task of

the destination bolt (task with the lowest ID).
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• Direct Grouping: In direct grouping, the sender node (spout or bolt) decides which
task in the destination bolt should receive the stream.

Figure 8.2 shows the various types of stream groupings.

Shuffle
Grouping

Field
Grouping

Field A

Field C

Field B
Field B

Field C

Global
Grouping

All
Grouping

Direct
Grouping

Figure 8.2: Stream groupings in Storm

Architecture
Figure 8.3 shows the components of a Storm cluster. A Storm cluster consists of the Nimbus,
Supervisor and Zookeeper components. Nimbus is responsible for distributing topology
code and tasks around the cluster, launching workers across the cluster, and monitoring the
execution of topologies. A Storm cluster has one or more Supervisor nodes on which the
worker processes run. Nimbus sends signals to supervisors to start or stop processes.

Supervisor nodes communicate with Nimbus through Zookeeper. Zookeeper is a high
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performance distributed coordination service for maintaining configuration information,
naming, providing distributed synchronization and group services [66]. Zookeeper is required
for coordination of the Storm cluster. Zookeeper maintains the operational state of the cluster.

Storm topologies include implementations of spouts and bolts and the topology definitions.
Topologies are packaged as JAR files and submitted to the Nimbus node for execution. The
Nimbus uploads the topology to all supervisors and signals the supervisors to launch worker
processes. The spout and bolt tasks (threads of execution) are assigned to the worker
processes on the supervisor nodes. The topologies are monitored by the Nimbus node. If
a worker on a supervisor fails, the supervisor restarts it. If a supervisor fails the Nimbus
re-assigns the tasks to other supervisors. If the Nimbus dies, the worker processes are not
affected as the state information is maintained by Zookeeper. The Nimbus and Supervisor
daemons are run under supervision (using tools such as monit, supervisord), so that they can
be restarted if they die.

Nimbus

Supervisor SupervisorSupervisor Supervisor

Zookeeper

Supervisor

Worker Worker

Tasks

Figure 8.3: Storm cluster components

Reliable Processing
Storm provides reliable processing of tuples. Storm guarantees that each tuple emitted by a
spout is processed. Within a topology, a tuple which is emitted by a spout is processed by
the bolts resulting in the creation of multiple tuples which are based on the original tuple.
This results in a tuple tree as shown in Figure 8.4. Bolts in a topology acknowledge the
processing of tuples to the upstream bolts or spouts. If all bolts in a tuple tree acknowledge
that a tuple has been successfully processed, the spout marks the tuple processing to be
completed, performs cleanup and sends an acknowledgment to the external data source. If
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Figure 8.4: Tuple tree

any bolt in the tuple tree indicates that tuple processing failed (or timed-out), the spout marks
the tuple processing as failed. When tuple processing fails, the spout re-emits the tuple.

8.2 Storm Case Studies
8.2.1 Real-time Twitter Sentiment Analysis
In this section, we will describe a case study on a system for real-time sentiment analysis of
Twitter feeds. Given the analysis requirements of this system, let us map the system to one of
the analytics patterns proposed in Chapter-1. Since the system processes social media feeds
in real-time, we can use the Beta pattern. Figure 8.5(a) shows a realization of Beta pattern for
this system, with the specific tools and frameworks that can be used. For this system, we will
use the Apache Storm and Apache Kafka frameworks. Figure 8.5(b) shows the components
of the real-time sentiment analysis system including:
• Listener: The listener component connects to Twitter with the streaming API and

retrieves tweets in real-time. A Python library called tweepy is used for retrieving the
tweets containing specific keywords. The listener publishes the tweets to a Kafka topic
managed by a Kafka Broker.
• Storm Spout: Storm Spout contains a Kafka consumer which retrieves the tweets

from the Kafka topic and emits tuples (containing tweets) to be processed by the Storm
Bolt.
• Storm Bolt: Storm Bolt analyzes the tweets and computes their sentiment using a

sentiment lexicon.
• DynamoDB: The timestamped tweets and their sentiments are stored by the Storm

Bolt to an Amazon DynamoDB table.
• Flask Web App: The Flask web application retrieves the tweets and their sentiments

from DynamoDB and displays them.
Let us look at the steps involved in building the real-time sentiment analysis system along
with the implementations of the various components.
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Create Kafka Topic
The listener component publishes the tweets to a Kafka topic. To create Kafka topic, follow
the commands below:

� #Creating a Kafka Topic
cd /usr/hdp/2.2.0.0-2041/kafka
bin/kafka-topics.sh -create -zookeeper

ip-10-179-181-24.ec2.internal:2181 -replication-factor 1
-partitions 1 -topic mytopic

bin/kafka-topics.sh -list -zookeeper ip-10-179-181-24.ec2.internal:2181

(Change the DNS in the above commands to the
DNS of the instance on which Kafka is setup)

Figure 8.6: Creating DynamoDB table to store tweets and their sentiments

Create DynamoDB Table
In this case study, we will use Amazon DynamoDB database for storing the analyzed results.
To use DynamoDB we need to create a new table as shown in Figure 8.6.

Getting Twitter App Keys
To connect to the Twitter streaming API, the listener requires Twitter application keys. You
can register for a Twitter developer account and create a new application at:
https://dev.twitter.com/apps

Bahga & Madisetti, c© 2016



8.2 Storm Case Studies 277

Note down the application access token, access token secret, consumer key and consumer
secret from the application details page as shown in Figure 8.7.

Figure 8.7: Getting Twitter application credentials from Twitter developer account

Implement Listener
The listener component connects to Twitter with the streaming API, retrieves tweets in
real-time and publishes the tweets to a Kafka topic. Box 8.1 shows a Python implementation
of the listener component.

� Box 8.1: Python implementation of listener that receives tweets

from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
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import time
import datetime
from kafka.client import KafkaClient
from kafka.producer import SimpleProducer

#Connect to Kafka
client = KafkaClient("ip-172-31-60-0.ec2.internal:6667")
producer = SimpleProducer(client)

#Get Twitter API keys from Twitter developer account
access_token = "<Enter>"
access_token_secret = "<Enter>"
consumer_key = "<Enter>"
consumer_secret = "<Enter>"

def publish(data):
producer.send_messages(‘mytopic’, data.encode())

class StdOutListener(StreamListener):

def on_data(self, data):
publish(data)

def on_error(self, status):
print status

if __name__ == ‘__main__’:
print ‘Listening...’
#This handles Twitter authetification and
#the connection to Twitter Streaming API
#sets callback on data
l = StdOutListener()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
stream = Stream(auth, l)

#This line filter Twitter Streams to capture data by the keywords
stream.filter(track=[‘basketball’])

Implement Storm Spout and Bolt
Box 8.2 shows a Python implementation of the Storm Spout. The Spout retrieves tweets
from the Kafka topic and emits them as tuples into the topology.

� Box 8.2: Python implementation of Spout

from storm import Spout, emit, log
from kafka.client import KafkaClient
from kafka.consumer import KafkaConsumer
from kafka.producer import SimpleProducer
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client = KafkaClient("ip-172-31-60-0.ec2.internal:6667")
consumer = KafkaConsumer("tweetsent",

metadata_broker_list=[‘ip-172-31-60-0.ec2.internal:6667’])

#gets the tweet
def getData():
data = consumer.next().value
return data

class MySpout(Spout):
def nextTuple(self):

data = getData()
emit([data])

MySpout().run()

Box 8.3 shows a Python implementation of the Storm Bolt, which computes the tweet
sentiments and stores the results in a DynamoDB table.

� Box 8.3: Python implementation of Bolt

import storm
from datetime import date
import time
import datetime
import boto.dynamodb2
from boto.dynamodb2.table import Table
import json
import re

ACCESS_KEY="<Enter>"
SECRET_KEY="<Enter>"
REGION="us-east-1"

#Connect to DynamoDB
conn = boto.dynamodb2.connect_to_region(REGION,

aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

TERMS={}
#----- Load Sentiments Dict ---
sent_file = open(‘AFINN-111.txt’)
sent_lines = sent_file.readlines()
for line in sent_lines:

s = line.split("�")
TERMS[s[0]] = s[1]

sent_file.close()

#----- Find Sentiment -------
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def findsentiment(tweet):
sentiment=0.0

if tweet.has_key(‘text’):
text = tweet[‘text’]
text=re.sub(‘[!@#$)(*<>=+/:;&%#|{},.? ’]’, ‘’, text)
splitTweet=text.split()

for word in splitTweet:
if TERMS.has_key(word):

sentiment = sentiment+ float(TERMS[word])

return sentiment

def analyzeData(data):
#Add your code for data analysis here
tweet = json.loads(data)
sentiment= findsentiment(tweet)
return sentiment

class MyBolt(storm.BasicBolt):
def process(self, tup):

now = datetime.datetime.now()
data = tup.values[0]

output = analyzeData(data)
tweet=json.loads(data)
today = date.today()
timestampp=now.strftime("%H:%M:%S")
#Store analyzed results in DynamoDB
table=Table(‘twittersentiment’,connection=conn)
item = table.put_item(data={

‘date’:str(today),
‘timestamp’:str(timestampp),
‘tweet’: tweet[‘text’],
‘sentiment’:str(output)
},overwrite=True)

MyBolt().run()

Though Storm Spouts and Bolts can be implemented in Python (and other languages),
there is no direct way of implementing Storm topologies with Python. Box 8.4 shows a Java
implementation of the Storm topology.

� Box 8.4: Storm topology implementation

package com.mycompany.app;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.task.ShellBolt;
import backtype.storm.spout.ShellSpout;
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import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import java.util.Map;

public class App {

public static class SensorSpout extends ShellSpout implements IRichSpout
{

public SensorSpout() {
super("python", "myspout.py");

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));
}

@Override
public Map<String, Object> getComponentConfiguration() {

return null;
}

}

public static class SensorBolt extends ShellBolt implements IRichBolt {
public SensorBolt() {

super("python", "mybolt.py");
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));
}

@Override
public Map<String, Object> getComponentConfiguration() {

return null;
}

}

public static void main(String[] args) throws Exception {

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout", new SensorSpout(), 5);
builder.setBolt("analysis",

new SensorBolt(), 8).shuffleGrouping("spout");

Config conf = new Config();
conf.setDebug(true);
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if (args != null && args.length > 0) {
conf.setNumWorkers(3);
StormSubmitter.submitTopology(args[0], conf,

builder.createTopology());
}
else {

conf.setMaxTaskParallelism(3);

LocalCluster cluster = new LocalCluster();
cluster.submitTopology("mytopology", conf,

builder.createTopology());

Thread.sleep(10000);

cluster.shutdown();
}

}

}

Build Storm Project

Storm projects are packaged as JAR files. The box below shows a directory tree of a Storm
project. The Spout and Bolt Python files are included in the multilang/resources folder, and
the topology implementation is in the App.java file.

� #Storm Project Directory Tree
/home/ubuntu/storm-project
|- multilang
| ‘- resources
| |- mybolt.py
| |- myspout.py
| ‘- storm.py
|- pom.xml
|- src
| |- main
| | ‘- java
| | ‘- com
| | ‘- mycompany
| | ‘- app
| | |- App.java
‘- target

‘- storm-project-jar-with-dependencies.jar

� #Build Storm Project
cd /home/ubuntu/storm-project
mvn clean package

The Storm project JAR file (storm-project-jar-with-dependencies.jar) will be generated within
storm-project/target folder.
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Implement Web Application

Finally, we implement a web application to present the sentiment analysis results. Box 8.5
shows a Python implementation of the web application using the Python Flask web framework.

� Box 8.5: Flask web application for visualizing tweet sentiments

from flask import Flask
import urllib2
import boto.dynamodb2
from boto.dynamodb2.table import Table

app = Flask(__name__)
from datetime import date
today = date.today()

#-----Connect to DynamoDB------
ACCESS_KEY="<Enter>"
SECRET_KEY="<Enter>"
REGION="us-east-1"

conn_db = boto.dynamodb.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

table = conn_db.get_table(‘twittersentiment’)
#-----------------------

@app.route(‘/’)
def tweet_home():

#Scan DynamoDB table
results=table.scan()

html = ‘<html><body><table width=80% border=1 align="center">’+
’<tr><td><strong>Timestamp</strong></td>
<td><strong>Date</strong></td>
<td><strong>Tweet</strong></td>
<td><strong>Sentiment</strong></td>
</tr>’

for result in results:
html+=‘<tr><td>’+result[‘timestamp’]+‘</td><td>’+
result[‘date’]+‘</td><td>’+result[‘tweet’]+‘</td><td>’+
result[‘sentiment’]+‘</td></tr>’

html+=‘</table></body></html>’

return html

if __name__ == ‘__main__’:
app.run(host=‘0.0.0.0’)

Big Data Science & Analytics: A Hands-On Approach



284 Real-time Analysis

Submit Storm Topology
To submit and run the Storm topology, run the following command on the Storm cluster:

� #Submit Storm Topology
storm jar

/home/ubuntu/storm-project/target/storm-project-jar-with-dependencies.jar

com.mycompany.app.App mytopology

Figure 8.8: Screenshot of Storm Topology page

Figure 8.9: Screenshot of Storm Spout page

After submitting the topology, run the listener and the Flask web application. You can
view the status of the Storm topology, Spout and Bolt from the Storm UI pages as shown
in Figures 8.8, 8.9 and 8.10. You will be able to see the tweets along with the computed
sentiments in the DynamoDB dashboard as shown in Figures 8.11 and the web application as
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shown in Figures 8.12.

Figure 8.10: Screenshot of Storm Bolt page

Figure 8.11: DynamoDB table showing analyzed tweets

Figure 8.12: Screenshot of Flask web application showing tweets and the computed
sentiments
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8.2.2 Real-time Weather Data Analysis
Let us look at the another case study on a system for real-time analysis of weather data
to make predictions on the occurrence of fog or haze in a specific location. The system
determines whether fog or haze is expected based on various parameters including current
temperature, humidity, wind, and pressure. The dataset used in this case study was obtained
from National Oceanic and Atmospheric Administration (NOAA). The NOAA dataset is
used to train a Support Vector Machine (SVM) based machine learning classifier. To test the
system, historical data regarding temperature, humidity, wind, and pressure for a particular
location is fed to the system (as synthetic real-time data).

Given the analysis requirements of this system, let us map the system to one of the
analytics patterns proposed in Chapter-1. Since the system processes weather data in
real-time, we can use the Beta pattern. Figure 8.13(a) shows a realization of Beta pattern for
this system, with the specific tools and frameworks that can be used. For this system, we
will use the Apache Storm and Apache Kafka frameworks. Figure 8.13(b) shows the system
architecture. The system includes the following components:
• Listener: The listener component connects to the weather data source and obtains the

current temperature, humidity, wind, and pressure data.
• Kafka: The listener publishes data to a Kafka topic.
• Storm Spout: Storm Spout subscribes to the Kafka topic and receives all published

messages from the listener. The spout receives this data and emits tuples containing
the hourly observations.
• Storm Bolt: Storm Bolt receives the data and loads the SVM models from the pickle

files. The SVM models are used to predict for fog and haze.
• Cassandra Database: The predictions along with timestamps are stored in a Cassandra

database.
• Flask Web App: The Flask web application is used to visualize the results.

Dataset
The data used for both testing and training the machine learning classifier as well as the
real-time data is from the NOAA U.S. Local Climatological Data. The specific dataset used
was the Quality Controlled Local Climatological Data (QCLCD).

Listener
Box 8.6 shows a python implementation of the listener component. The listener connects
to the weather data source. For this case study, the listener used data from NOAA. The
listener used data from the same months but for a different year from the data used to train
the classifier. Listener replays data from three CSV files: PositiveFog.csv, PositiveHaze.csv,
and NegativeFogHaze.csv. The listener publishes a new data entry to Kafka every 5 seconds
to simulate periodically receiving data from real sensors.
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� Box 8.6: Python implementation of Listener

from random import randrange
import time
import datetime
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
from kafka.producer import SimpleProducer
import csv
import json
import time

#Connect to Kafka
#change to private DNS
client = KafkaClient("127.0.0.1:6667")
producer = SimpleProducer(client)

def is_number(s):
try:

float(s) except ValueError:
return False

return True

def sysTest(filename):
f = open(filename)
csv_f = csv.reader(f)
tList=[]
tClass=[]
counter=0
for row in csv_f:

new_list=[]
if counter < 2:

counter=counter+1
continue

for item in row:
if not(is_number(item)):

continue
new_list.append(float(item))

#print new_list
if len(new_list)!=5:

continue
dataSend=json.dumps(new_list).encode(‘utf-8’)
producer.send_messages(‘weather’,dataSend)
time.sleep(5)
print dataSend
print type(dataSend)

f.close()

if __name__ == ‘__main__’:
print ‘Publishing...’
sysTest(‘PositiveFog.csv’)
sysTest(‘PositiveHaze.csv’)
sysTest(‘NegativeFogHaze.csv’)
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Prediction Model
The NOAA dataset is used to train two SVM-based machine learning classifiers, one for fog
and one for haze. The SVM’s are trained on positive hourly data (fog or haze did occur)
and negative hourly data. The training data is structured in three CSV files: FogTrain.csv,
HazeTrain.csv, and NegativeTrain.csv. FogTrain.csv has positive data for hourly observations
of fog, HazeTrain.csv has positive data for hourly observations of haze, and NegativeTrain.csv
has negative data for hourly observations of haze and fog. Once both SVMs are trained, they
are stored in pickle files: svmHaze.pkl and svmFog.pkl. These files are used within the Storm
Bolt for making predictions. Box 8.7 shows the python code for training SVM classifiers for
fog and haze. We use the Python scikit-learn machine learning library for building the SVM
models.

� Box 8.7: Python code for training SVM Classifier

from sklearn import svm
import csv
import numpy as np
from sklearn.externals import joblib

def is_number(s):
try:

float(s) # for int, long and float
except ValueError:

return False

return True

def svmTrain():
f = open(‘PositiveHaze.csv’)
csv_f = csv.reader(f)
tList=[]
tClass=[]
counter=0
for row in csv_f:

new_list=[]
if counter < 2:

counter=counter+1
continue

for item in row:
if not(is_number(item)):

continue
new_list.append(float(item))

print new_list
if len(new_list)!=5:

print "ERROR"
continue

tList.append(new_list)
tClass.append(1)

f.close()
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f=open(‘NegativeHazeAndNegativeFog.csv’)
csv_f=csv.reader(f)
counter=0
for row in csv_f:

new_list=[]
if counter < 2:

counter=counter+1
continue

for item in row:
if not(is_number(item)):

continue
new_list.append(float(item))

print new_list
if len(new_list)!=5:

print "ERROR"
continue

tList.append(new_list)
tClass.append(0)

f.close();
f=open(‘PositiveFog.csv’)
csv_f= csv.reader(f)
tFogList=[]
tFogClass=[]
counter=0

for row in csv_f:
new_list=[]
if counter < 2:

counter=counter+1
continue

for item in row:
if not(is_number(item)):

continue
new_list.append(float(item))

print new_list
if len(new_list)!=5:

continue
exit(2)

tFogClass.append(1)
tFogList.append(new_list)

f.close()
f=open(‘NegativeHazeAndNegativeFog.csv’)
csv_f=csv.reader(f)
counter=0
for row in csv_f:

new_list=[]
if counter < 2:

counter=counter+1
continue

for item in row:
if not(is_number(item)):

continue
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new_list.append(float(item))
print new_list
if len(new_list)!=5:

continue
tFogClass.append(0)
tFogList.append(new_list)

svmThunder = svm.SVC()

svmThunder.fit(tList,tClass)

svmFog = svm.SVC()

svmFog.fit(tFogList,tFogClass)

joblib.dump(svmThunder, ‘svmHaze.pkl’)
joblib.dump(svmFog, ‘svmFog.pkl’ )

if __name__ == ‘__main__’:
svmTrain()

Storm Spout

The Storm Spout subscribes to the Kafka topic and receives messages published by the
listener. The Spout emits this data as a stream of tuples into the Storm topology to be
processed by the Bolt. Box 8.8 shows a Python implementation of the Storm Spout.

� Box 8.8: Python implementation of Storm Spout

from storm import Spout, emit, log
from kafka.client import KafkaClient
from kafka.consumer import KafkaConsumer
from kafka.producer import SimpleProducer
from kafka.consumer import SimpleConsumer

client = KafkaClient("127.0.0.1:6667")
consumer = KafkaConsumer("weather",

metadata_broker_list=[‘127.0.0.1:6667’])

def getData():
data = consumer.next().value
data = data.replace(‘[’,”).replace(’]’,”).split(‘,’)
data = [ float(x) for x in data ]
return data

class SensorSpout(Spout):
def nextTuple(self):

data = getData()
emit([data])

SensorSpout().run()
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Storm Bolt

The Storm Bolt receives the data emitted by the Spout and loads the trained SVM classifiers
for fog and haze from the pickle files. The input data is passed to these classifiers to predict
for fog and haze. To store the predictions along with timestamps, a Cassandra database is
used. Cassandra is an open source distributed database management system designed for
large data applications. Box 8.9 shows a Python implementation of the Storm bolt.

� Box 8.9: Python implementation of Bolt

import storm
import json
import re
from cassandra.cluster import Cluster
import blist
from sklearn import svm
from sklearn.externals import joblib
import datetime
#------- Load Clf files -------
svmFog = joblib.load(‘svmFog.pkl’)
svmHaze = joblib.load(‘svmHaze.pkl’)

#----- Connect to Cassandra -----
cluster = Cluster([‘127.0.0.1’])
session = cluster.connect(‘predictions’)

def analyzeData(data):
fog_predict = svmFog.predict(data)
haze_predict = svmHaze.predict(data)
return [str(fog_predict[0]), str(haze_predict[0])]

class SensorBolt(storm.BasicBolt):
def process(self, tup):

data = tup.values[0]

output = analyzeData(data)
result = "Result: "+ str(output)
timestamp= datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

#Store analyzed results in Cassandra
session.execute(
"""
INSERT INTO data(timestamp, fog_prediction, haze_prediction)
VALUES (%s, %s, %s)
""",
(timestamp, output[0], output[1])
)

storm.emit([result])

SensorBolt().run()
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Web Application

Box 8.10 shows the Python code for the Flask web application that pulls the data from the
Cassandra database and shows it in a table.

� Box 8.10: Flask web application code

from flask import Flask
import urllib2
app = Flask(__name__)
import blist

from cassandra.cluster import Cluster

cluster = Cluster([‘127.0.0.1’])
session = cluster.connect(‘predictions’)

@app.route(‘/’)
def tweet_home():

html = ‘<html><body><table width=80% border=1 align="center">’+
‘<tr><td><strong>Timestamp</strong></td>’+
‘<td><strong>Fog Prediction</strong></td>’+
‘<td><strong>Haze Prediction</strong></td></tr>’

data = session.execute(‘SELECT * FROM data’)
for each in data:

html+=‘<td>’+each.timestamp+‘</td><td>’+
each.fog_prediction+‘</td><td>’+
each.haze_prediction+‘</td></tr>’

html+=‘</table></body></html>’

return html

if __name__ == ‘__main__’:
app.run(host=‘0.0.0.0’)

To run the system, run the listener and web application Python programs and submit the
Storm topology. You will be able to see the fog/haze predictions from the Cassandra shell as
shown in Figures 8.14 and the web application as shown in Figures 8.15.

8.3 In-Memory Processing

8.3.1 Apache Spark

We described Spark architecture and Spark operations in the previous chapter and how
Spark can be used for batch processing of data. In this section, we will describe the Spark
Streaming component for analysis of streaming data such as sensor data, clickstream data,
web server logs, etc. The streaming data is ingested and analyzed in micro-batches. Spark
Streaming enables scalable, high throughput and fault-tolerant stream processing. Spark
Streaming provides a high-level abstraction called DStream (discretized stream). DStream
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Figure 8.14: Screenshot of Cassandra shell showing fog/haze predictions

Figure 8.15: Screenshot of Flask web application showing fog/haze predictions

is a sequence of RDDs. Spark can ingest data from various types of data sources such as
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publish-subscribe messaging frameworks, messaging queues, distributed file systems and
custom connectors. The data ingested is converted into DStreams. Figure 8.16 shows the
Spark Streaming components.

Publish-
Subscribe

(Kafka)

Source-Sink
(Flume)

DFS
(HDFS)

Queues
(ZeroMQ, SQS)

Custom 
Connectors

(Twitter)

Input Stream
Divide data 
into batches

DStream Spark 
Engine

Spark Streaming

RDD RDD RDD RDD

Output Stream

Stream 
Computations

Figure 8.16: Spark Streaming

Just like operations for RDDs described in the previous chapter, Spark provides operations
for DStreams. Figure 8.17 shows a DStream, which is composed of RDDs, where each
RDD contains data from a certain time interval. The DStream operations are translated into
operations on the underlying RDDs. DStream transformations such as map, flatMap, filter,
reduceByKey are stateless as the transformation are applied to the RDDs in the DStream
separately.

T1 T2 T3 T4 T5Original DStream

Transformed DStream T1
, T2

, T3
, T4

, T5
,

Transformation

Figure 8.17: Spark DStream transformation

Spark also supports stateful operations such as windowed operations and updateStateByKey
operation. Stateful operations require checkpointing for fault tolerance purposes. For
stateful operations, a checkpoint directory is provided to which RDDs are checkpointed
periodically. Figure 8.18 shows an example of a window operation. Window operations
allow the computations to be done over a sliding window of data. For window operations, a
window length and a slide interval in specified. In the example in Figure 8.18, the window
length is 3 and slide interval is 2.
Window Operations
Let us look at some commonly used window operations:
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T1 T2 T3 T4 T5

Window Length

Slide Interval

Original DStream

Windowed DStream

Figure 8.18: Spark DStream window transformation

window
The window operation returns a new DStream from a sliding window over the source
DStream.

� #Format: window(windowLength, slideInterval)
# Example: Return a new DStream with RDDs containing last
# 8 seconds of data, every 4 seconds
windowStream = sourceStream.window(8,4)

countByWindow
The countByWindow operation counts the number of elements in a window over the DStream.

� #Format: countByWindow(windowDuration, slideDuration)
# Example: Count the number of elements in a sliding window with
# window duration of 10 and slide interval of 4 seconds
count = sourceStream.countByWindow(10,4)

reduceByWindow
The reduceByWindow operation aggregates the elements in a sliding window over a stream
using the specified function.

� #Format: reduceByWindow(func, windowLength, slideInterval)
# Example: In a text data stream compute the running line lenghts
# with window duration of 10 and slide interval of 4 seconds
totalLength = lineLengths.reduceByWindow(lambda a, b: a + b, 10, 4)

reduceByKeyAndWindow
The reduceByKeyAndWindow operation when applied on DStream containing key-value
pairs, aggregates values of each key in a sliding window over a stream using the specified
function. The reduceByKeyAndWindow operation has two forms. In one form the reduced
value over a new window is calculated by applying the specified function over the whole
window. In the other form, the reduced value over a new window is calculated by applying
the function to the new values which entered the window and an inverse function over the
values which left the window.
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� #Format: reduceByKeyAndWindow(func, windowLength,
slideInterval, numPartitions)

# Example: Count the number of words in a text stream
# with a sliding window of duration 10 seconds
and slide interval of 4 seconds

words = textStream.flatMap(lambda line: line.split(" ")).map(lambda word: (word,

1))

counts = reduceByKeyAndWindow(lambda a, b: a + b, 10, 4)

# Alternative and optimized implementation
#Format: reduceByKeyAndWindow(func, invFunc, windowLength,
slideInterval, numPartitions)

counts = reduceByKeyAndWindow(lambda a, b: a + b,
lambda a, b: a - b, 10, 4)

countByValueAndWindow
The reduceByKeyAndWindow operation when applied on DStream containing key-value
pairs, returns a new DStream with key-value pairs where the value is the count for each key
(number of elements) in the sliding window.

� #Format: countByValueAndWindow(windowLength,
slideInterval, numPartitions)
# Example: Count the number of elements for each key in a sliding
window with # window duration of 10 and slide interval of 4 seconds
count = sourceStream.countByValueAndWindow(10,4)

updateStateByKey
Another type of stateful operation is the updateStateByKey operation which maintains and
tracks the state for each key in a dataset. The updateStateByKey operation requires a state to
be defined and an update function for updating the state using the previous state and the new
values.

� #Format: updateStateByKey(func)
# Example: Compute a running count of number of words
# in a text stream counts = lines.flatMap(lambda line: line.split(" "))
.map(lambda word: (word, 1))
.updateStateByKey(updateFunc)

8.4 Spark Case Studies
In this section we present two case studies on real-time sensor data analysis and one case
study on real-time sentiment analysis of Twitter tweets. The first case study is about a system
for detecting forest fires by analysis of sensor data collected from a number of IoT devices
deployed in a forest. The second case study is about a smart parking system that detects the
empty slots in a parking lot.

Given the analysis requirements of both the systems, let us map the systems to one of
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the analytics patterns proposed in Chapter-1. Since these systems processes sensor data in
real-time, we can use the Beta pattern. Figure 8.19 shows a realization of Beta pattern for the
forest fire detection and smart parking systems, with the specific tools and frameworks that
can be used.

Data Access
Connectors Real-time Analysis

Serving Databases, 
Web Frameworks, 

Visualization 
Frameworks

Publish-
Subscribe

(Kafka)

NoSQL
(Cassandra)

In-Memory
(Spark 

Streaming)

Raw Data

Sensors

Web 
Frameworks

(Flask)

Figure 8.19: A realization of Beta pattern for forest fire detection and smart parking systems

8.4.1 Real-time Sensor Data Analysis
This case study is about real-time sensor data analysis for a forest fire detection system. The
system has multiple end-nodes which are deployed in a forest. The end-nodes are equipped
with sensors for measuring temperature, humidity, light and carbon monoxide (CO) at various
locations in a forest. Each end node sends data independently to a Kafka topic. The system
uses Spark for data analysis and making predictions.

Timestamp Temperature (C) Humidity (%) Light (Lux) CO (ppm)
2014-05-01 01:21:00 30 42 107500 0.2

2014-05-01 01:22:00 31 42 107500 0.2

2014-05-01 01:23:00 30 43 107500 30

2014-05-01 05:25:00 36 30 90000 100

Average, minimum, maximum 
values for temperature, humidity, light and CO

in the day

Real-time data 
analytics 

Prediction using 
machine learning 

methods

Batch data analytics 

Figure 8.20: Format of data collected for forest fire detection

Figure 8.20 shows an example of the data collected for forest fire detection. Each row
in the table shows a time-stamped readings of temperature, humidity, light and CO sensors.
By analyzing the sensor readings in real-time (each row of the table), predictions can be
made about the occurrence of a forest fire. The sensor readings can also be aggregated on
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various timescales (minute, hourly, daily or monthly) to determine the mean, maximum and
minimum readings. This data can help in developing prediction models.

Filtering Data

Let us look at a Spark Streaming application for filtering sensor data. The Python code for
the Spark application is shown in Box 8.11. A StreamingContext is created by specifying
the underlying SparkContext and a batch interval for creating small batches of data for
analysis. This example uses the Spark’s Kafka utilities to create a DStream. The DStream is
transformed with map and filter operations.

� Box 8.11: Apache Spark Python program for filtering sensor readings

#Data format:
#"2014-06-25 10:47:44",26,36,2860,274

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

sc = SparkContext(appName="FilterSensorData")
scc = StreamingContext(sc,1)

#Replace with DNS of instance running Zookeeper
zkQuorum = "ip-172-31-33-135.ec2.internal:2181"
topic = "forestfire"

kvs = KafkaUtils.createStream(ssc, zkQuorum,
"spark-streaming-consumer", topic:1)

lines = kvs.map(lambda x: x[1])

splitlines = lines.map(lambda line: line.split(‘,’))
filteredlines = splitlines.filter(lambda line: int(line[1])>20 and

int(line[2])>20 and int(line[3])>6000
and int(line[4])>200)

filteredlines.pprint()

ssc.start()
ssc.awaitTermination()

8.4.2 Real-Time Parking Sensor Data Analysis for Smart Parking System

In this case study, we describe a system for real-time analysis of parking sensor data in a
smart parking lot for dynamic pricing of parking spots. The system analyzes parking data
from the various sensors located in a parking lot and dynamically varies the pricing for each
parking spot based on occupancy. The occupancy rate of the parking lots are calculated, and
a dynamic pricing model is used to compute the price. The processed data can be stored in a
database for further historical and usage pattern analysis.

For the purpose of this case study we will use a synthetic data generator which generates
data with the format as shown below:

Big Data Science & Analytics: A Hands-On Approach



300 Real-time Analysis

� Parking Lot ID, Parking Spot ID, Timestamp, Occupied
Example:
5235, 20, 20:30, True

In an ideal scenario, each parking sensor would transmit the data every few seconds. For
this case study, we generate the start and end time for each parking spot only. The duration
of the parking sessions is chosen from a probability distribution function. Box 8.12 shows
the Python code for generating synthetic parking sensor data. The sensor data is sent to a
Kafka topic.

Controller Device

Ultrasonic sensor 
fixed on the roof

Figure 8.21: Smart parking system
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� Box 8.12: Python program for generating synthetic parking sensor data

import signal
import sys
import random
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
from kafka.producer import SimpleProducer

#Connect to kafka
client = KafkaClient(‘ip-172-31-39-49.ec2.internal:6667’)
producer = SimpleProducer(client)

class sensorMessage(object):
def __init__(self,lotId,spotId,timeStamp,occupied):

self.lotId = lotId
self.spotId = spotId
self.timeStamp = timeStamp
self.occupied = occupied

def getKey(self):
return self.timeStamp

class parkingLot(object):
def __init__(self,lotId):

self.emptySpots = range(1,101)
self.lotId = lotId

def getLotId(self):
return self.lotId

def getEmptySpotId(self):
if(len(self.emptySpots) != 0):

return random.choice(self.emptySpots)
else:

return 0

class timeStamp(object):
def __init__(self):

self.hours = range(0,24,1)
self.minutes = range(0,60,1)
self.offset = [1,1,1,1,1,2,2,4,4,8,8,8,8,8,8,8,8,6]

def getTime(self):
hour_start = random.choice(self.hours)
min_start = random.choice(self.minutes)
min_end = min_start
hour_end = (hour_start + random.choice(self.offset)) % 24
return (str(hour_start) + ":" + str(min_start),str(hour_end) +

":" + str(min_end))

def startParkingSession(lotId,spotId,timestamp):
return sensorMessage(lotId,spotId,timestamp,True)

Big Data Science & Analytics: A Hands-On Approach



302 Real-time Analysis

def endParkingSession(lotId,spotId,timestamp):
return sensorMessage(lotId,spotId,timestamp,False)

parkingMessages = []

lots = [parkingLot(1),parkingLot(2),parkingLot(3)]

timeObj = timeStamp()

for i in range(0,200000):
lot = random.choice(lots)
lotId = lot.getLotId()
spotId = lot.getEmptySpotId()

if spotId == 0:
continue

startTime,endTime = timeObj.getTime()

parkingMessages.append(startParkingSession(lotId,spotId,startTime))
parkingMessages.append(endParkingSession(lotId,spotId,endTime))

parkingMessages.sort(key = lambda msg:msg.getKey())

for msg in parkingMessages:
x = str(msg.lotId), str(msg.spotId), str(msg.timeStamp),
str(msg.occupied)

producer.send_messages("smartparking",bytes(x))

We use Spark Streaming for real-time analysis of parking sensor data. The Spark
Streaming instance connects to Kafka by creating a new Data Stream called DStream. Spark
Streaming creates micro batches of data received from Kafka. The batch interval is set to
250ms. Thus, every 250ms, the set of sensor data is combined into one RDD. The Spark
program counts the total number of occupied slots in each parking lot and computes the
dynamic price based on a simple gradient heuristic. The results are stored in a Cassandra
database. Box 8.13 shows the Python code for the Spark Streaming application that analyzes
the parking data. The program calculates the occupancy ratio for each parking lot.

� Box 8.13: Spark Streaming application for parking data analysis

import random
import sys
import uuid
from cassandra.cluster import Cluster
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from operator import add
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
from kafka.producer import SimpleProducer
from pyspark.sql import SQLContext
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from pyspark.sql.types import Row, StructField,
StructType, StringType, IntegerType

import datetime
from datetime import timedelta

timestamp = datetime.datetime.utcnow()
client = KafkaClient(‘ip-172-31-39-49.ec2.internal:6667’)
producer = SimpleProducer(client)

cluster = Cluster()
session = cluster.connect(‘test’)
baseRate = 2
totalSlots = 500.0

def printel(x):
global timestamp
l = x.collect()
if len(l) !=3:
return
print l
for lot,cars in l:

lotid= lot.strip("’")
occrate = ( cars / totalSlots) * 100

if occrate > 100:
occrate = 100

price = -1
else:

price = 2 + (occrate/100) * 20

session.execute("INSERT INTO smartpark (key,lotid,
occrate,time,price) VALUES (%s,%s,%s,%s,%s)", [uuid.uuid4(),

int(lotid),occrate,str(timestamp)[:-7],price])
seconds = random.randint(1800,2400)
timestamp = timestamp + datetime.timedelta(0,seconds)

sc = SparkContext(appName="SmartParking")
sqlContext = SQLContext(sc)
ssc = StreamingContext(sc, 0.250)

# Replace with DNS of instance running Zookeeper
zkQuorum = "ip-172-31-39-49.ec2.internal:2181"
topic = "smartparking"

kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer",
topic: 1)
lines = kvs.map(lambda x: x[1])

lines = lines.map(lambda line: line.encode(‘ascii’,‘ignore’))
lines = lines.map(lambda line: line.split(","))
lines = lines.map(lambda line: (line[0][1:] ,1
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if line[3][2:-2] == "True" else 0)).reduceByKey(add)

lines.foreachRDD(lambda rdd: printel(rdd))
ssc.start()
ssc.awaitTermination()

Box 8.14 shows the Python code for the Flask web application that displays the occupancy
ratio for different parking lots and Figure 8.22 shows a screenshot of the web application.

� Box 8.14: Python code for the Flask web application

from flask import Flask, render_template
from cassandra.cluster import Cluster

cluster = Cluster()
app = Flask(__name__)

@app.route(‘/’)
def index():

session = cluster.connect(‘test’)
lot1 = session.execute(‘Select occrate, price from smartpark where

lotid = 1 limit 1’)

lot2 = session.execute(‘Select occrate, price from smartpark where
lotid = 2 limit 1’)

lot3 = session.execute(‘Select occrate, price from smartpark where
lotid = 3 limit 1’)

return render_template(‘index.html’, price1=str(lot1[0].price),
price2=str(lot2[0].price), price3=str(lot3[0].price),
occrate1=str(lot1[0].occrate), occrate2=str(lot2[0].occrate),
occrate3=str(lot3[0].occrate))

@app.route(‘/ParkingLot/<pid>’)
def ParkingLot(pid=1):

session = cluster.connect(‘test’)
lot = session.execute(‘Select occrate,price from smartpark where

lotid = %s limit 30’, [int(pid)])

return render_template(‘plot.html’, pid=pid,
price=lot[0].price, occrate= lot[0].occrate, lot=lot)

if __name__ == ‘__main__’:
app.run(host=‘0.0.0.0’, debug = True)
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Figure 8.22: Smart parking web application showing occupancy ratio for different parking
lots

8.4.3 Real-time Twitter Sentiment Analysis
In this section, we will describe a case study on a system for real-time sentiment analysis of
Twitter feeds using Spark Streaming. Figure 8.23 shows a realization of Beta pattern for this
system, with the specific tools and frameworks that can be used.

The components of this system include:
• Listener: The listener component connects to Twitter with the streaming API and

retrieves tweets in real-time. A Python library called tweepy is used for retrieving the
tweets containing specific keywords. The listener publishes the tweets to a Kafka topic
managed by a Kafka Broker.
• Spark Streaming: The Spark Streaming component creates a DStream by connecting

to the Kafka topic and computes their sentiment using a sentiment lexicon.
• SQS: The timestamped tweets and their sentiments are pushed by the Spark Streaming

component to an SQS queue.
• DynamoDB: The analyzed tweets are also stored in an Amazon DynamoDB table.
• Flask Web App: The Flask web application retrieves the tweets from the SQS queue

and displays them.

Twitter API
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Figure 8.23: A realization of Beta pattern for real-time Twitter sentiment analysis

Box 8.15 shows the Python code for the Listener component that retrieves the tweets
using the Twitter API and publishes the tweets to a Kafka topic. The keywords_list in this
program contains the list of keywords related to which the Tweets are retrieved. For this case
study, we use the keyword - ‘cricket’.
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� Box 8.15: Listener component for fetching Tweets and publishing to Kafka

from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
from random import randrange
import time
import datetime
from kafka import KafkaProducer
import httplib
import json

#Variables that contains the user credentials to access Twitter API
access_token = "<enter>"
access_token_secret = "<enter>"
consumer_key = "<enter>"
consumer_secret = "<enter>"

#List of keywords to filter
keywords_list = [’cricket’]

#Connect to Kafka
producer = KafkaProducer(bootstrap_servers=[’127.0.0.1:6667’])

#This is a function publishes data to a Kafka topic
def publish(data):
tweet = json.loads(data)
if("retweeted" in tweet.keys()):
if(tweet[’retweeted’] == False):
print tweet[’text’]

#Send tweet to a topic named Cricket
producer.send(’Cricket’, data.encode("utf"))

#This is a basic listener that just prints received tweets to stdout.
class StdOutListener(StreamListener):
def on_data(self, data):
publish(data)
return True

def on_error(self, status):
print status

if __name__ == ’__main__’:
#This handles Twitter authetification and
#the connection to Twitter Streaming API
l = StdOutListener()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
while True:
try:
stream = Stream(auth, l)

stream.filter(track=keywords_list,languages =[’en’])
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except httplib.IncompleteRead:
print "Incomplete Read!!!!"
pass

Box 8.16 shows the Python code for the Spark Streaming application that computes the
tweet sentiments. To enable integration with Kafka in the Spark Streaming application we
use the KafkaUtils library. A DStream is set up to consume the stream of tweets from the
Kafka topic (to which the listener published the tweets). The streams of tweets are partitioned
into separate RDDs using the map function in order to perform parallel transformations on
their respective elements (each single tweet).

Using the foreachRDD method, as well as the foreach method, the program first breaks
the collection of RDDs into separate RDDs, then passes each element of the discrete RDD to
a custom function to reformat the tweet, parse the tweet, compute sentiment, and finally push
the processed data to an Amazon SQS queue for web consumption, as well as a DynamoDB
database for storage.

To compute the sentiments, we use the AFINN [18] sentiment lexicon, which is a list
of over 2400 English words rated for sentiment which is an integer between minus five
(negative) and plus five (positive).

� Box 8.16: Spark Streaming application for sentiment analysis of tweets

import boto.dynamodb2
from boto.dynamodb2.table import Table
import boto.sqs
from boto.sqs.message import Message
import cPickle as pickle
import json
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import random
from random import randint
import string
import time
import datetime
from datetime import datetime as newdatetime
import pytz

# Create connection to DynamoDB service
conn_dynamo = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

# Retrieve handle to DynamoDB table
table1=Table(’tweets’,connection=conn_dynamo)

# Create connection to SQS service
conn_sqs = boto.sqs.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

Big Data Science & Analytics: A Hands-On Approach



308 Real-time Analysis

# Retrieve handle to queue
q1 = conn_sqs.get_all_queues(prefix=’cricket’)

TERMS={}

#----- Load Sentiments Dict ---
sent_file = open(’AFINN-111.txt’)
sent_lines = sent_file.readlines()
for line in sent_lines:
s = line.split("�")
TERMS[s[0]] = s[1]

sent_file.close()

#----- Find Sentiment -------
def findsentiment(tweet):
sentiment=0.0

if tweet.has_key(’text’):
text = tweet[’text’]
text=re.sub(’[!@#$)(*=+/:;&%#|{},.? ‘]’, ”, text)
splitTweet=text.split()

for word in splitTweet:
if TERMS.has_key(word):
sentiment = sentiment+ float(TERMS[word])

return sentiment

#---Send analyzed Tweet to SQS and DynamoDB---
def send_results(words):
tweet = json.loads(words)

sentimentScore = findsentiment(tweet)

datas={}
datas[’timestamp’] =str(newdatetime.strptime(tweet[’created_at’],
’%a %b %d %H:%M:%S +0000 %Y’).replace(tzinfo=pytz.UTC))[:-6]

datas[’id_str’] = tweet[’id_str’]
datas[’sentiment’] = sentimentScore
datas[’tweet_name’] = tweet[’user’][’name’]
datas[’tweet_text’] = tweet[’text’]
datas[’tweet_user_id’] = tweet[’user’][’screen_name’]

p = pickle.dumps(json.loads(json.dumps(datas)))
m = Message()
m.set_body(p)
status = q1[0].write(m)

item = table1.put_item(data=datas)
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# Create a local StreamingContext
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 5)

cricket_kvs = KafkaUtils.createStream(ssc, ’127.0.0.1’,
"spark-streaming-consumer", {’Cricket’: 1})

cricket_lines = cricket_kvs.map(lambda x: x[1])

cricket_lines.pprint()

cricket_lines.foreachRDD(lambda rdd: rdd.foreach(send_results))

# Start the computation
ssc.start()

# Wait for the computation to terminate
ssc.awaitTermination()

Box 8.17 shows the Python code for the Flask web application. Due to space constraints,
we have included only the Python code for the Flask web application and omitted the HTML
and JavaScript code for the user interface. Figure 8.24 shows a screenshot of the Flask web
application that displays the analyzed tweets.

� Box 8.17: Flask web application to displays analyzed Tweets

from flask import Flask, jsonify, abort, request, make_response, url_for
from flask.ext.cors import CORS
import sqlite3
import json
import random
from random import randint
import string
import datetime
import boto.sqs
from boto.sqs.message import Message
import cPickle as pickle
from time import sleep

app = Flask(__name__, static_url_path="")
cors = CORS(app, resources={r"/api/*": {"origins": "*"}})

#Create connection to SQS service
conn_sqs = boto.sqs.connect_to_region(REGION,
aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)

# Retrieve handle to queue
q1 = conn_sqs.get_all_queues(prefix=’weather’)

@app.route(’/api/update’, methods=[’GET’])
def get_updates():
topics = {}
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tweets = []
flag = False
data1 = {’empty’: ’null’}

count = q1[0].count()
if count > 0:
m = q1[0].read()
bod = m.get_body()
data1 = pickle.loads(str(bod))
q1[0].delete_message(m)

topics[’Cricket’] = data1
print topics
return jsonify(topics)

if __name__ == ’__main__’:
app.run(debug=True, host=’0.0.0.0’)

Figure 8.24: Screenshot of Flask web application to show analyzed tweets
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8.4.4 Windowed Analysis of Tweets
This case study is about the windowed analysis of tweets. For this case study, the same
listener component as described in the previous section can be used. The listener sends tweets
to a Kafka topic. Box 8.18 shows the code for a Spark streaming application for analysis of
tweets. This application uses the reduceByKeyAndWindow operation to find the number of
positive, negative and neutral tweets received in the last 30 seconds every 10 seconds.

� Box 8.18: Spark Streaming application for windowed analysis of tweets

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

#Load Sentiments Dictionary
sent_file = open(‘AFINN-111.txt’)
sent_lines = sent_file.readlines()
for line in sent_lines:

s = line.split("�")
TERMS[s[0]] = s[1]

sent_file.close()

def findsentiment(tweet):
sentiment=0.0
if tweet.has_key(‘text’):

text = tweet[‘text’]
splitTweet=text.split()

for word in splitTweet:
if TERMS.has_key(word):

sentiment = sentiment+ float(TERMS[word])

return sentiment

def analyzeData(data):
tweet = json.loads(data)
sentiment= findsentiment(tweet)
if sentiment>0:

return ("Positive", 1)
elif sentiment<0:

return ("Negative", 1)
else:

return ("Neutral", 1)

sc = SparkContext(appName="SentimentAnalysis")
scc = StreamingContext(sc,1)

#Replace with DNS of instance running Zookeeper
zkQuorum = "ip-172-31-33-135.ec2.internal:2181"
topic = "tweets"

kvs = KafkaUtils.createStream(ssc, zkQuorum,
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"spark-streaming-consumer", topic:1)
tweets = kvs.map(lambda x: x[1])

sentiments = tweets.map(analyzeData)

windowedSentiments = sentiments.reduceByKeyAndWindow(lambda x,
y: x + y, lambda x, y: x - y, 30, 10)

windowedSentiments.pprint()

ssc.start()
ssc.awaitTermination()

Summary
In this chapter we described the Apache Storm and Spark Streaming frameworks, for real-time
data analytics. Storm is a framework for distributed and fault-tolerant real-time computation.
Storm is a scalable and distributed framework, and offers reliable processing of messages.
A computation job on the Storm cluster is called a topology. Spout is a type of a node in a
topology, which is a source of streams. Bolt is a type of a node in a topology that processes
tuples. Spouts and bolts have multiple worker processes and each worker has multiple tasks.
We described various types of stream groupings for partitioning of streams among the tasks.
We described the roles of Nimbus, Supervisor and Zookeeper, in Storm cluster. In the second
part of the chapter, we described the Spark Streaming framework, which enables scalable,
high throughput and fault-tolerant stream processing. Spark Streaming provides a high-level
abstraction called DStream. Spark can ingest data from various types of data sources and the
data ingested is converted into DStreams. Spark supports DStream transformations which are
stateless, and also stateful operations such as windowed operations. Case studies of real-time
social media, weather and sensor data analysis using Storm and Spark were described.
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Interactive querying is useful when your analytics application demands flexibility to
query data on demand. This chapter describes tools and frameworks for interactive querying
of big data. These include Spark SQL, Hive, Google BigQuery and Amazon RedShift. These
tools and frameworks allow users to query data by writing statements in SQL-like languages.

9.1 Spark SQL

Spark SQL is a component of Spark which enables interactive querying. Spark SQL can
interactively query structured and semi-structured data using SQL-like queries. Spark SQL
provides a programming abstraction called DataFrames. A DataFrame is a distributed
collection of data organized into named columns. DataFrames can be created from existing
RDDs, structured data files (such as text files, Parquet, JSON, Apache Avro), Hive tables and
also from external databases. Spark provides a Data Sources API, which allows accessing
structured data though Spark SQL.

Let us look at examples of using Spark SQL for interactive querying of data from the
Spark shell. To launch the Spark Python shell use the command shown in box below:

� bin/pyspark

Spark SQL provides an SQLContext, which is the entry point for Spark SQL. SQLContext
provides functionality for creating a DataFrame, registering DataFrame as a table and
executing SQL statements over a table. SQLContext can be created from a SparkContext as
shown in the box below.

� from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
from pyspark.sql.types import *

Let us look at an example where we create and use a DataFrame. We will use the Google
N-Gram dataset [29] in this example. The dataset file is in CSV format and contains data on
bigrams with the following columns: Bigram, Year, Count, Pages, Books. In this example,
an RDD is first created by loading the dataset file. The lines in the file are split to obtain the
individual columns which are then converted into Row objects by passing the list of key-value
pairs to the Row class. SQLContext provides a createDataFrame function to convert the
RDD of Row objects to a DataFrame by inferring the data types.

� lines = sc.textFile("file:///home/hadoop/
googlebooks-eng-us-all-2gram-20090715-50.csv")

parts = lines.map(lambda l: l.split("�"))

ngrams = parts.map(lambda x: Row(ngram=x[0],
year=int(x[1]), ngramcount=int(x[2]), pages=int(x[3]), books=int(x[4])))

schemaNGrams = sqlContext.createDataFrame(ngrams)
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To view the rows in the created DataFrame, the show function can be used which prints
the first N rows to the console (default N=20).

� »> schemaNGrams.show()

+---+----+-------+---+---+
|books| ngram|ngramcount|pages|year|
+---+----+-------+---+---+
| 1| ! 09| 1| 1|1829|
| 3| ! 09| 3| 3|1879|
| 2| ! 09| 2| 2|1911|
| 4| ! 09| 4| 4|1941|
| 4| ! 09| 4| 4|1969|
| 12| ! 09| 17| 17|1994|
| 1|! 13.5| 1| 1|1936|
| 1|! 1430| 1| 1|1861|
| 1|! 1430| 1| 1|1959|
| 2|! 16th| 3| 3|1854|
| 1|! 16th| 1| 1|1959|
| 2|! 1791| 2| 2|1856|
| 1|! 1791| 1| 1|1968|
| 1|! 1847| 1| 1|1859|
| 2|! 1847| 2| 2|1909|
| 2|! 1847| 2| 2|1962|
| 2|! 1944| 2| 2|1945|
| 2|! 1944| 8| 8|1977|
| 1|! 1944| 1| 1|2007|
| 2|! 23rd| 2| 2|1957|
+---+----+-------+---+---+

To view the schema of the DataFrame the printSchema function can be used as shown
below:

� »> schemaNGrams.printSchema()
root
|- books: long (nullable = true)
|- ngram: string (nullable = true)
|- ngramcount: long (nullable = true)
|- pages: long (nullable = true)
|- year: long (nullable = true)

An alternative method of creating a DataFrame is to specify the schema as shown in the
example below. An RDD of tuples is first created, and the schema is defined using StructType.
Finally, the schema is applied to the RDD of tuples to create the DataFrame.

� ngrams = parts.map(lambda x: (x[0], x[1], x[2], x[3], x[4]))
schemaString = "ngram year ngramcount pages books"
fields = [StructField(field_name, StringType(), True)
for field_name in schemaString.split()]
schema = StructType(fields)
schemaNGrams = sqlContext.createDataFrame(ngrams, schema)

Having looked at methods of creating DataFrames, now let us look at some examples
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of querying data. The box below shows an example of the filter function which filters rows
using the given condition. In this example, we filter all N-grams which have a count greater
than five.

� schemaNGrams.filter(schemaNGrams[‘ngramcount’] > 5).show()

+---+-----+-------+---+---+
|books| ngram|ngramcount|pages|year|
+---+-----+-------+---+---+
| 12| ! 09| 17| 17|1994|
| 2| ! 1944| 8| 8|1977|
| 11| ! 28| 15| 15|1866|
| 10| ! 28| 10| 10|1891|
| 32| ! 28| 37| 37|1916|
| 14| ! 28| 14| 14|1941|
| 41| ! 28| 48| 47|1966|
| 57| ! 28| 76| 76|1991|
| 15| ! 56| 15| 15|1979|
| 54| ! 56| 61| 61|2004|
| 3| ! 936| 16| 15|1943|
| 6| ! 936| 9| 9|1973|
| 14| ! ANNE| 108| 95|1916|
| 4| ! ANNE| 35| 26|1941|
| 6| ! ANNE| 28| 26|1969|
| 6| ! AS| 6| 6|1892|
| 6| ! AS| 6| 6|1943|
| 6| ! AS| 7| 7|1968|
| 10| ! AS| 17| 15|1993|
| 17|! Abort| 24| 21|2004|
+---+-----+-------+---+---+

The groupBy function can be used to group the DataFrame using the specified columns.
Aggregations (such as avg, max, min, sum, count) can then be applied to the grouped
DataFrame. The box below shows an example of grouping the N-Grams by year and then
applying the count aggregations to find the total number of N-Grams in each year.

� schemaNGrams.groupBy("year").count().show()

+---+---+
|year|count|
+---+---+
|1831| 79|
|1832| 57|
|1833| 56|
|1834| 47|
|1835| 71|
|1836| 66|
|1837| 74|
|1838| 56|
|1839| 63|
|1840| 66|

Bahga & Madisetti, c© 2016



9.1 Spark SQL 317

|1841| 71|
|1842| 54|
|1843| 87|
|1844| 81|
|1845| 91|
|1846| 95|
|1847| 72|
|1848| 76|
|1849| 101|
|1850| 104|
+---+---+

Spark SQL allows registering a DataFrame as a temporary table for querying the data
using SQL-like queries. With the created DataFrame (schemaNGrams) a temporary table
(ngrams) is created using registerTempTable function. An SQL query for filtering all N-grams
which have count greater than five is shown below:

� schemaNGrams.registerTempTable("ngrams")

result = sqlContext.sql("SELECT ngram, ngramcount
FROM ngrams WHERE ngramcount >= 5").show()
+----+-------+
| ngram|ngramcount|
+----+-------+
| ! 09| 17|
|! 1944| 8|
| ! 28| 15|
| ! 28| 10|
| ! 28| 37|
| ! 28| 14|
| ! 28| 48|
| ! 28| 76|
| ! 56| 5|
| ! 56| 5|
| ! 56| 15|
| ! 56| 61|
| ! 936| 16|
| ! 936| 9|
|! ANNE| 108|
|! ANNE| 35|
|! ANNE| 28|
| ! AS| 5|
| ! AS| 6|
| ! AS| 6|
+----+-------+

The box below shows an example of an SQL query that uses the GROUP BY clause
to group the N-Grams by the year column and COUNT statement to count the number of
N-Grams in each year. The results are ordered by the count of N-Grams.
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� result = sqlContext.sql("SELECT year, COUNT(*) AS cnt FROM
ngrams GROUP BY year ORDER BY cnt DESC").show()

+---+--+
|year|cnt|
+---+--+
|2007|470|
|2002|450|
|2000|447|
|2003|446|
|2006|445|
|2001|445|
|1997|441|
|2004|440|
|1988|437|
|1999|436|
|2005|435|
|1991|432|
|1998|421|
|1995|415|
|1996|410|
|1987|408|
|1994|402|
|1990|397|
|1978|390|
|1986|390|
+---+--+

The box below shows an example of finding the N-Gram with the maximum count (most
popular N-Gram) in each year. The GROUP BY clause is used to group the N-Grams by the
year, and the MAX clause is used to find the maximum count.

� result = sqlContext.sql("SELECT ngram, year, MAX(ngramcount) AS
maxCount FROM ngrams GROUP BY ngram, year").show()

+----------+---+-----+
| ngram|year|maxCount|
+----------+---+-----+
| ) î|1900| 2|
| ) $15|1939| 3|
| ( HCOa|1989| 1|
| """ THERE’S"|1894| 3|
|""" obliterate"|1969| 10|
| ’ Mulberry|1839| 1|
| ) refinery|1951| 3|
| & RH|1982| 13|
| & Covington|1955| 1|
| "|1942| 208|
| ( 1260|1887| 13|
| """ Rain’s"|1956| 3|
| """ khaki"|1912| 5|
| """ Miinchner"|1919| 5|
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| """ effects"|1960| 329|
| ( Menin|2001| 4|
| ( FVR|1966| 1|
| ! Branch|1881| 1|
| """ muchas"|1911| 4|
| """ Days"|1887| 40|
+----------+---+-----+

9.1.1 Case Study: Interactive Querying of Weather Data
In this section we present a case study on a system for interactive querying of weather data.
We will use the NCDC weather dataset [52] for this case study. NCDC provides access to
daily data from the U.S. Climate Reference Network / U.S. Regional Climate Reference
Network (USCRN/USRCRN) via FTP.

Given the analysis requirements of this system, let us map the system to one of the
analytics patterns proposed in Chapter-1. Since the system allows interactive querying of
weather data, we can use the Delta pattern. Figure 9.1 shows a realization of Delta pattern
for this system, with the specific tools and frameworks that can be used. In this section we
describe the use of Spark SQL for interactive querying of the weather dataset. The use of
Hive for querying the same dataset is described in the next section.

Data Access
Connectors

Batch Analysis

Source-Sink
(Flume)

MapReduce
(Hadoop)

Data Storage

Distributed 
Filesystem

(HDFS)

Raw Data

Records

Analytic SQL
(Hive, 

Spark SQL)

Interactive 
Querying

Figure 9.1: A realization of Delta pattern for interactive querying of weather data

To move the weather data to HDFS from an external source, we can use a source-sink
connector such as Flume. Since the dataset used in this case study is in the form of a
single text file, we simple move the text file into HDFS using the HDFS command line
tools. The box below shows the Python code for creating a DataFrame from the dataset
using createDataFrame function which converts the RDD of Row objects to a DataFrame by
inferring the data types.

� from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
from pyspark.sql.types import *

lines = sc.textFile("file:///home/hadoop/
CRND0103-2014-VA_Cape_Charles_5_ENE_T.txt")
parts = lines.map(lambda l: l.split(" "))
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weatherdata = parts.map(lambda x: Row(WBANNO=int(x[0]),
LST_DATE=int(x[1]),
CRX_VN=float(x[2]),
LONGITUDE=float(x[3]),
LATITUDE=float(x[4]),
T_DAILY_MAX=float(x[5]),
T_DAILY_MIN=float(x[6]),
T_DAILY_MEAN=float(x[7]),
T_DAILY_AVG=float(x[8]),
P_DAILY_CALC=float(x[9]),
SOLARAD_DAILY=float(x[10]),
SUR_TEMP_DAILY_TYPE=x[11],
SUR_TEMP_DAILY_MAX=float(x[12]),
SUR_TEMP_DAILY_MIN=float(x[13]),
SUR_TEMP_DAILY_AVG=float(x[14]),
RH_DAILY_MAX=float(x[15]),
RH_DAILY_MIN=float(x[16]),
RH_DAILY_AVG=float(x[17]),
SOIL_MOISTURE_5_DAILY=float(x[18]),
SOIL_MOISTURE_10_DAILY=float(x[19]),
SOIL_MOISTURE_20_DAILY=float(x[20]),
SOIL_MOISTURE_50_DAILY=float(x[21]),
SOIL_MOISTURE_100_DAILY=float(x[22]),
SOIL_TEMP_5_DAILY=float(x[23]),
SOIL_TEMP_10_DAILY=float(x[24]),
SOIL_TEMP_20_DAILY=float(x[25]),
SOIL_TEMP_50_DAILY=float(x[26]),
SOIL_TEMP_100_DAILY=float(x[27]) ))

schemaWeather = sqlContext.createDataFrame(weatherdata)
schemaWeather.registerTempTable("weather")

The box below shows the schema of the created DataFrame.

� »> schemaWeather.printSchema()
root
|- WBANNO: string (nullable = true)
|- LST_DATE: string (nullable = true)
|- CRX_VN: string (nullable = true)
|- LONGITUDE: string (nullable = true)
|- LATITUDE: string (nullable = true)
|- T_DAILY_MAX: string (nullable = true)
|- T_DAILY_MIN: string (nullable = true)
|- T_DAILY_MEAN: string (nullable = true)
|- T_DAILY_AVG: string (nullable = true)
|- P_DAILY_CALC: string (nullable = true)
|- SOLARAD_DAILY: string (nullable = true)
|- SUR_TEMP_DAILY_TYPE: string (nullable = true)
|- SUR_TEMP_DAILY_MAX: string (nullable = true)
|- SUR_TEMP_DAILY_MIN: string (nullable = true)
|- SUR_TEMP_DAILY_AVG: string (nullable = true)
|- RH_DAILY_MAX: string (nullable = true)
|- RH_DAILY_MIN: string (nullable = true)
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|- RH_DAILY_AVG: string (nullable = true)
|- SOIL_MOISTURE_5_DAILY: string (nullable = true)
|- SOIL_MOISTURE_10_DAILY: string (nullable = true)
|- SOIL_MOISTURE_20_DAILY: string (nullable = true)
|- SOIL_MOISTURE_50_DAILY: string (nullable = true)
|- SOIL_MOISTURE_100_DAILY: string (nullable = true)
|- SOIL_TEMP_5_DAILY: string (nullable = true)
|- SOIL_TEMP_10_DAILY: string (nullable = true)
|- SOIL_TEMP_20_DAILY: string (nullable = true)
|- SOIL_TEMP_50_DAILY: string (nullable = true)
|- SOIL_TEMP_100_DAILY: string (nullable = true)

The box below shows an example of an SQL query for fetching the station WBAN
number, date and maximum daily temperature sorted in descending order. The LIMIT clause
is used to limit the number of rows returned.

� # Sort by maximum temperature
result = sqlContext.sql("SELECT WBANNO, LST_DATE, T_DAILY_MAX FROM
weather ORDER BY T_DAILY_MAX DESC LIMIT 10").show()
+----+-----+-------+
|WBANNO|LST_DATE|T_DAILY_MAX|
+----+-----+-------+
| 3739|20140618| 33.4|
| 3739|20140708| 33.1|
| 3739|20140902| 32.9|
| 3739|20140702| 32.6|
| 3739|20140901| 32.1|
| 3739|20140709| 32.0|
| 3739|20140619| 31.8|
| 3739|20140906| 31.7|
| 3739|20140707| 31.6|
| 3739|20140617| 31.5|

The box below shows an example of an SQL query for finding the maximum temperature
observed in the entire year.

� # Max Temp observed in entire year
result = sqlContext.sql("SELECT WBANNO, MAX(T_DAILY_MAX) AS
maxTemp FROM weather GROUP BY WBANNO").show()

+----+-----+
|WBANNO|maxTemp|
+----+-----+
| 3739| 33.4|
+----+-----+

The box below shows an example of an SQL query for finding the minimum temperature
observed in the entire year. Note the use of WHERE clause to filter out missing values (set to
-9999.0).

� # Min Temp observed in entire year
result = sqlContext.sql("SELECT WBANNO, MIN(T_DAILY_MIN) AS

Big Data Science & Analytics: A Hands-On Approach



322 Interactive Querying

minTemp FROM weather WHERE T_DAILY_MIN <> -9999.0
GROUP BY WBANNO").show()

+----+-----+
|WBANNO|minTemp|
+----+-----+
| 3739| -15.1|
+----+-----+

9.2 Hive
Apache Hive is a data warehousing framework built on top of Hadoop. Hive provides an
SQL-like query language called Hive Query Language, for querying data residing in HDFS.
Hive organizes data into tables like a relational database. While the table data resides on
HDFS, Hive includes a Metastore which stores table metadata (such as table schema). Hive
tables are serialized and stored in HDFS. For each table, Hive has a directory on HDFS.
Tables are divided into partitions which speed up queries. Partitions are further divided into
buckets. Hive converts the SQL-like queries into series of jobs which are executed on the
Hadoop cluster. Hive can use either MapReduce or Apache Tez as the execution engines.

Hive provides a shell for creating tables and querying data. The Hive shell can be
launched with the hive command. The box below shows an example of creating a Hive table
from Hive shell.

� # Creating Hive table
hive> CREATE TABLE weatherdata
(station INT, country STRING, timestamp INT, temperature FLOAT, humidity
FLOAT);

Additional options such as the row format, storage format, partitions and buckets can
also be specified while creating a table as shown in the example below:

� # Creating Hive table
hive> CREATE TABLE weatherdata
(station INT, timestamp INT, temperature FLOAT, humidity FLOAT)
PARTITIONED BY(country STRING)
CLUSTERED BY(station) SORTED BY(timestamp) INTO 4 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ‘\t’
STORED AS TEXTFILE;

Tables can be partitioned by one or more columns. When a table is partitioned, Hive
creates a separate data directory for each distinct value combination in the partition columns.
Tables can be stored as plain textfiles, SequenceFiles or in ORC file format. Tables or
partitions can be further divided into buckets by specifying CLUSTERED BY columns. The
data can be sorted within buckets by specifying the SORT BY columns.

For the examples in this section, we will use Apache Hue, which an open source Web
interface for analyzing data with Hadoop. With Hue, you can create Hive tables, compose
and execute Hive queries from the web interface.

Figure 9.2 shows how to create a Metastore table from the Hue web interface. The data
file can either be uploaded directly from the wizard or if the file already exists on HDFS, the
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Figure 9.2: Creating Hive table from Hue - step 1

Figure 9.3: Creating Hive table from Hue - step 2
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file path is specified. For the examples in this section, we will use weather dataset for the
city of Atlanta for the year 2014, obtained from Weather Underground [31]. In the next step,
the delimiter for the dataset file is specified as shown in Figure 9.3.
In the next step, the column names and the data types for the columns are specified as shown
in Figure 9.4.

Figure 9.4: Creating Hive table from Hue - step 3

Upon completion of the table creation wizard, you can view the columns of the table along
with the data types as shown in Figure 9.5.

Figure 9.5: Hive table created from Hue
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Let us now look at examples of some SQL queries that can be executed from the Hive query
editor in Hue. Figure 9.6 shows an SQL query for retrieving ten records from the table. The
query output can also be seen in the figure.

Figure 9.6: Querying data with Hive

Figure 9.7 shows an SQL query for finding the maximum, minimum and mean temperature
in the entire year.

Figure 9.7: Querying data with Hive

Figure 9.8 shows an SQL query for finding the ten most wet days in the year, ordered by the
precipitation.
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Figure 9.8: Querying data with Hive

9.3 Amazon Redshift

Amazon Redshift is a fast, massive-scale managed data warehouse service. Redshift
specializes in handling queries on datasets of sizes up to a petabyte or more through the use
of a Massively Parallel Processing (MPP) architecture, which parallelizes SQL queries across
all resources in the Redshift cluster. Redshift provides a columnar storage and advanced data
compression which enable very fast searches on keys.

A Redshift data warehouse comprises clusters which include a collection of nodes.
Redshift is highly scalable and allows additional nodes to be added or removed from the
cluster while remaining operational. Redshift is a fully managed data warehouse and provides
features such as automated backups, fault tolerance, security, and restorations.

To begin working with Redshift, first a data cluster must be created using either the
Redshift dashboard or Redshift API. Figure 9.9 shows a screenshot of the wizard for creating
a Redshift cluster. A unique name for the cluster and a database must be specified.
In the next step, the node type and cluster type needs to be specified as shown in Figure 9.10.
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Figure 9.9: Screenshot of Redshift cluster launch wizard - step 1

Figure 9.10: Screenshot of Redshift cluster launch wizard - step 2

In the next step, additional configuration for the cluster is specified as shown in Figure 9.11.
Figure 9.12 shows the review page of the cluster launch wizard.
When the cluster is launched, you can view the cluster details from the Redshift dashboard
as shown in Figure 9.13.
To connect to the Redshift cluster, you will need to configure a security group to authorize
access. In the security group for the launched cluster add a custom TCP rule and enable port
5439 (which is the default port for Redshift).
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Figure 9.11: Screenshot of Redshift cluster launch wizard - step 3

Figure 9.12: Screenshot of Redshift cluster launch wizard - step 4

You can now connect to the Redshift cluster and execute SQL queries from an SQL
client. For the examples in this chapter, we will use SQL Workbench/J client. To setup SQL
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Figure 9.13: Screenshot of Redshift dashboard showing the details of the cluster

Figure 9.14: Screenshot of SQL WorkBench - adding Redshift driver

Figure 9.15: Screenshot of SQL WorkBench - connecting to Redshift cluster
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Workbench/J client to connect to Redshift, download the Redshift JDBC driver from the
Redshift dashboard and add the driver to SQL Workbench/J from the manage drivers dialog
as shown in Figure 9.14.

In SQL Workbench/J, create a new connection profile and copy the JDBC URL of the
Redshift cluster in the connection profile dialog as shown in Figure 9.15. You can obtain the
JDBC URL of the Redshift cluster from the Redshift dashboard.

For the examples, we will use a dataset of employees [30]. Box 9.1 shows the SQL
statements for creating the database tables.

� Box 9.1: SQL statements for creating database tables

CREATE TABLE employees (
emp_no INT NOT NULL,
birth_date VARCHAR(14) NOT NULL,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(20) NOT NULL,
gender VARCHAR(10) NOT NULL,
hire_date VARCHAR(14) NOT NULL,
PRIMARY KEY (emp_no)

);
CREATE TABLE departments (

dept_no VARCHAR(10) NOT NULL,
dept_name VARCHAR(40) NOT NULL,
PRIMARY KEY (dept_no),
UNIQUE (dept_name)

);
CREATE TABLE dept_manager (

dept_no VARCHAR(10) NOT NULL,
emp_no INT NOT NULL,
from_date VARCHAR(14) NOT NULL,
to_date VARCHAR(14) NOT NULL,
FOREIGN KEY (emp_no) REFERENCES employees (emp_no) ,
FOREIGN KEY (dept_no) REFERENCES departments (dept_no),
PRIMARY KEY (emp_no,dept_no)

);
CREATE TABLE dept_emp (

emp_no INT NOT NULL,
dept_no VARCHAR(10) NOT NULL,
from_date VARCHAR(14) NOT NULL,
to_date VARCHAR(14) NOT NULL,
FOREIGN KEY (emp_no) REFERENCES employees (emp_no) ,
FOREIGN KEY (dept_no) REFERENCES departments (dept_no),
PRIMARY KEY (emp_no,dept_no)

);
CREATE TABLE titles (

emp_no INT NOT NULL,
title VARCHAR(50) NOT NULL,
from_date VARCHAR(14) NOT NULL,
to_date VARCHAR(14),
FOREIGN KEY (emp_no) REFERENCES employees (emp_no),
PRIMARY KEY (emp_no,title, from_date)

);
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CREATE TABLE salaries (
emp_no INT NOT NULL,
salary INT NOT NULL,
from_date VARCHAR(14) NOT NULL,
to_date VARCHAR(14) NOT NULL,
FOREIGN KEY (emp_no) REFERENCES employees (emp_no),
PRIMARY KEY (emp_no, from_date)

);

Figure 9.16 shows the execution of the SQL statements for creating tables in SQL WorkBench/J.

Figure 9.16: Screenshot of SQLWorkBench - creating tables
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The dataset files for the individual tables (in CSV format) are copied to an Amazon S3
bucket. To load the data to the Redshift cluster, the SQL COPY command is used as shown
in Box 9.2.

� Box 9.2: Loading data into tables

copy departments FROM ’s3://abahgacloud/departments.csv’
credentials ’aws_access_key_id=<enter-key>;
aws_secret_access_key=<enter-secret>’
delimiter ’,’;

COPY employees FROM ’s3://abahgacloud/employees.csv’
credentials ’aws_access_key_id=<enter-key>;
aws_secret_access_key=<enter-secret>’
delimiter ’,’;

COPY dept_manager FROM ’s3://abahgacloud/dept_manager.csv’
credentials ’aws_access_key_id=<enter-key>;
aws_secret_access_key=<enter-secret>’
delimiter ’,’;

COPY dept_emp FROM ’s3://abahgacloud/dept_emp.csv’
credentials ’aws_access_key_id=<enter-key>;
aws_secret_access_key=<enter-secret>’
delimiter ’,’;

COPY titles FROM ’s3://abahgacloud/titles.csv’
credentials ’aws_access_key_id=<enter-key>;
aws_secret_access_key=<enter-secret>’
delimiter ’,’;

COPY salaries FROM ’s3://abahgacloud/salaries.csv’
credentials ’aws_access_key_id=<enter-key>;
aws_secret_access_key=<enter-secret>’
delimiter ’,’;

With the data loaded into the database, you can now query the data using SQL statements.
Figure 9.17 shows the SQL SELECT statements to get a subset of rows from all the tables in
the Employees database. Figure 9.18 shows the execution details of a query in the Redshift
dashboard.

Bahga & Madisetti, c© 2016



9.3 Amazon Redshift 333

Figure 9.17: Screenshot of SQLWorkBench - querying data

Figure 9.18: Screenshot of Redshift dashboard showing query execution details
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Now, let us look at some more advanced SQL queries. Box 9.3 shows an SQL query for
retrieving the salaries (and the effective dates) for an employee with ID 10009.

� Box 9.3: Get all the salaries and the effective dates for employee with ID 10009

SELECT first_name, last_name, salary, from_date, to_date
FROM employees, salaries
WHERE employees.emp_no=salaries.emp_no
AND employees.emp_no=’10009’;

’Sumant’ ’Peac’ 60929 ’1985-02-18’ ’1986-02-18’
’Sumant’ ’Peac’ 64780 ’1987-02-18’ ’1988-02-18’
’Sumant’ ’Peac’ 69042 ’1989-02-17’ ’1990-02-17’
’Sumant’ ’Peac’ 71434 ’1991-02-17’ ’1992-02-17’
’Sumant’ ’Peac’ 76518 ’1993-02-16’ ’1994-02-16’
’Sumant’ ’Peac’ 80944 ’1995-02-16’ ’1996-02-16’
’Sumant’ ’Peac’ 85875 ’1997-02-15’ ’1998-02-15’
’Sumant’ ’Peac’ 90668 ’1999-02-15’ ’2000-02-15’
’Sumant’ ’Peac’ 94443 ’2001-02-14’ ’2002-02-14’
’Sumant’ ’Peac’ 64604 ’1986-02-18’ ’1987-02-18’
’Sumant’ ’Peac’ 66302 ’1988-02-18’ ’1989-02-17’
’Sumant’ ’Peac’ 70889 ’1990-02-17’ ’1991-02-17’
’Sumant’ ’Peac’ 74612 ’1992-02-17’ ’1993-02-16’
’Sumant’ ’Peac’ 78335 ’1994-02-16’ ’1995-02-16’
’Sumant’ ’Peac’ 82507 ’1996-02-16’ ’1997-02-15’
’Sumant’ ’Peac’ 89324 ’1998-02-15’ ’1999-02-15’
’Sumant’ ’Peac’ 93507 ’2000-02-15’ ’2001-02-14’
’Sumant’ ’Peac’ 94409 ’2002-02-14’ ’9999-01-01’

Box 9.4 shows an SQL query for finding most recent salary of the employee with ID 10009.

� Box 9.4: Find most recent salary of the employee with ID 10009

SELECT first_name, last_name, salary
FROM employees, salaries
WHERE employees.emp_no=salaries.emp_no
AND employees.emp_no=’10009’
AND to_date=(

SELECT MAX(to_date)
FROM salaries
WHERE emp_no = ’10009’

);

’Sumant’ ’Peac’ 94409
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Box 9.5 shows an SQL query for retrieving the details of the manager of the department with
ID d009.

� Box 9.5: Get details of the manager of the department with ID d009

SELECT * FROM employees
WHERE emp_no = (

SELECT emp_no
FROM dept_manager
WHERE dept_no = ’d009’
AND to_date = (

SELECT max(from_date)
FROM dept_manager
WHERE dept_no = ’d009’

)
);

111939 ’1960-03-25’ ’Yuchang’ ’Weedman’ ’M’ ’1989-07-10’

Box 9.6 shows an SQL query for retrieving all the titles held and the effective dates, for the
employee with ID 10009.

� Box 9.6: Get all the titles held and the effective dates for the employee with ID
10009

SELECT first_name, last_name, title, from_date, to_date
FROM employees, titles
WHERE employees.emp_no=titles.emp_no
AND employees.emp_no=’10009’;

’Sumant’ ’Peac’ ’Engineer’ ’1990-02-18’ ’1995-02-18’
’Sumant’ ’Peac’ ’Assistant Engineer’ ’1985-02-18’ ’1990-02-18’
’Sumant’ ’Peac’ ’Senior Engineer’ ’1995-02-18’ ’9999-01-01’

9.4 Google BigQuery

Google BigQuery is a service for querying massive datasets. BigQuery allows querying
datasets using SQL-like queries. The BigQuery queries are run against append-only tables
that use the processing power of Google’s infrastructure for speeding up queries. To query
data, it is first loaded into BigQuery using the BigQuery console or BigQuery command line
tool or BigQuery API. Data can be either in CSV or JSON format. The uploaded data can be
queried using BigQuery’s SQL dialect.

The primary difference between Amazon Redshift and Google BigQuery is that while
Redshift offers a standard SQL database which has a Massively Parallel Processing (MPP)
architecture and needs to be provisioned before it can be used, BigQuery is an online service
which does not require users to provision the service. BigQuery is an always available service
to which the users can load data and then query the data. For Redshift, the users are charged
based on the number of nodes provisioned and the hours for which the nodes run. BigQuery,
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in contrast to Redshift, charges users for the amount of data stored and the amount of data
consumed at the query time.
Figure 9.19 shows a screenshot of the BigQuery wizard for loading data. A dataset ID and
table ID is specified in the first step.

Figure 9.19: Screenshot of BigQuery dashboard - creating table - step 1

Figure 9.20 shows the next step in which the format of the source file (CSV or JSON) is
specified. The data file can either be uploaded directly from the wizard or if the file already
exists on Google Cloud Storage, the file URI is specified. For the examples in this section,
we will use weather dataset for the city of Atlanta for the year 2014, obtained from Weather
Underground [31].

Figure 9.20: Screenshot of BigQuery dashboard - creating table - step 2
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In the next step, the schema of the table is specified as shown in Figure 9.21.

Figure 9.21: Screenshot of BigQuery dashboard - creating table - step 3

In the last step, the field delimiter used in the dataset file, the number of header lines to skip
and other advanced options are specified as shown in Figure 9.22.

Figure 9.22: Screenshot of BigQuery dashboard - creating table - step 4
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With the data loaded into BigQuery table, the table details can seen from the BigQuery
dashboard as shown in Figure 9.23.

Figure 9.23: Screenshot of BigQuery dashboard showing table details

Let us now look at examples of some SQL queries that can be executed from the BigQuery
dashboard. Figure 9.24 shows an SQL query for retrieving ten records from the table. The
query output can also be seen in the figure.

Figure 9.24: Screenshot of BigQuery dashboard showing query results
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Figure 9.25 shows an SQL query for finding the maximum, minimum and mean temperature
in the entire year.

Figure 9.25: Screenshot of BigQuery dashboard showing query results

Figure 9.25 shows an SQL query for finding the ten most wet days in the year, ordered by
the precipitation.

Figure 9.26: Screenshot of BigQuery dashboard showing query results

Big Data Science & Analytics: A Hands-On Approach



340 Interactive Querying

Till now we looked at BigQuery examples which used the BigQuery web interface.
BigQuery also provides an API for creating datasets and querying data. Box 9.7 shows the
Python program for creating a BigQuery dataset. The jobs().insert method of the Google
BigQuery API is used for inserting a new dataset. The request body of this method contains
properties such as configuration, load, and schema. In this example, the data is loaded from
a CSV file. The schema property specifies the schema of the CSV file. The jobs().insert
method returns immediately, therefore, the jobs.get is called to get the job status.

� Box 9.7: Python program for creating a BigQuery dataset

import json
import uuid
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials

credentials = GoogleCredentials.get_application_default()
bigquery_service = build(‘bigquery’, ‘v2’, credentials=credentials)

PROJECT_ID = ‘mycloud’
DATASET_ID = ‘wud’
TABLE_ID = ‘weather’

job_data = {
‘jobReference’: {
‘projectId’: PROJECT_ID,
‘job_id’: str(uuid.uuid4())

},
‘configuration’: {
‘load’: {
‘sourceUris’: [‘gs://abahga/wud.csv’],
‘schema’: {
‘fields’: [
{
‘name’: ‘EST’,
‘type’: ‘STRING’
},
{
‘name’: ‘Max_TemperatureC’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Mean_TemperatureC’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Min_TemperatureC’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Dew_PointC’,
‘type’: ‘FLOAT’
},
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{
‘name’: ‘MeanDew_PointC’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Max_Humidity’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Mean_Humidity’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Min_Humidity’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Max_Sea_Level_PressurehPa’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Mean_Sea_Level_PressurehPa’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Min_Sea_Level_PressurehPa’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Max_VisibilityKm’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Mean_VisibilityKm’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Min_VisibilitykM’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Max_Wind_SpeedKmph’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Mean_Wind_SpeedKmph’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Max_Gust_SpeedKmph’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Precipitationmm’,
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‘type’: ‘FLOAT’
},
{
‘name’: ‘CloudCover’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘Events’,
‘type’: ‘FLOAT’
},
{
‘name’: ‘WindDirDegrees’,
‘type’: ‘FLOAT’
}

]
},
‘destinationTable’: {
‘projectId’: PROJECT_ID,
‘datasetId’: DATASET_ID,
‘tableId’: TABLE_ID

}
}

}
}

insertResponse = bigquery_service.jobs().insert(projectId=PROJECT_ID,
body=job_data).execute(num_retries=5)

print insertResponse

while True:
job = bigquery_service.jobs().get(projectId=PROJECT_ID,
jobId=insertResponse[‘jobReference’][‘jobId’]).execute()
print job[‘status’][‘state’]
if ‘DONE’ == job[‘status’][‘state’]:
print ‘Done!’
break

print ‘Loading data...’
time.sleep(10)

Box 9.8 shows the Python program for querying a dataset with BigQuery. The jobs().query
method of the Google BigQuery API is used for querying the dataset. This method runs a
BigQuery SQL query synchronously and returns query results.

� Box 9.8: Python program for querying a dataset with BigQuery

import json
import uuid
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
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credentials = GoogleCredentials.get_application_default()
bigquery_service = build(‘bigquery’, ‘v2’, credentials=credentials)

PROJECT_ID = ‘mycloud’

query_data = {‘query’:‘SELECT EST, Precipitationmm
FROM [wud.weather] ORDER BY Precipitationmm DESC LIMIT 10 ;’}

query_response = bigquery_service.jobs().query(projectId=PROJECT_ID,
body=query_data).execute()

print query_response

print ‘Query Results:’
for row in query_response[‘rows’]:
result_row = []
for field in row[‘f’]:
result_row.append(field[‘v’])

print (‘�’).join(result_row)

Summary
In this chapter, we described tools and frameworks for interactive querying of big data
including Spark SQL, Hive, Google BigQuery and Amazon RedShift, along with examples
of querying. Spark SQL is a component of Spark which enables interactive querying. Spark
SQL is useful for querying structured and semi-structured data using SQL-like queries.
Hive is a data warehousing framework built on top of Hadoop. Hive provides an SQL-like
query language called Hive Query Language, for querying data residing in HDFS. Amazon
Redshift is a fast, massive-scale managed data warehouse service. Redshift specializes in
handling queries on datasets of sizes up to a petabyte or more through the use of a Massively
Parallel Processing (MPP) architecture, which parallelizes SQL queries across all resources
in the Redshift cluster. Google BigQuery allows querying datasets using SQL-like queries.
The BigQuery queries are run against append-only tables that use the processing power of
Google’s infrastructure for speeding up queries.
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In the first part of this chapter, we describe various options for serving databases for big
data applications. A comparison of the relational and non-relational NoSQL databases for
this purpose is provided. Implementation examples of various databases are also provided.
In the second part of the chapter, we describe the Django Python web framework which can
be used for developing web applications to present the analysis results to the users.

10.1 Relational (SQL) Databases

A relational database is a database that conforms to the relational model that was popularized
by IBM’s Edgar Codd in 1970 [34]. A relational database has a collection of relations (or
tables). A relation is a set of tuples (or rows). Each relation has a fixed schema that defines
the set of attributes (or columns in a table) and the constraints on the attributes. Each tuple in
a relation has the same attributes (columns). The tuples in a relation can have any order and
the relation is not sensitive to the ordering of the tuples. Each attribute has a domain, which
is the set of possible values for the attribute. Relations can be modified using insert, update
and delete operations. Every relation has a primary key that uniquely identifies each tuple in
the relation. An attribute can be made a primary key if it does not have repeated values in
different tuples. That is, no two tuples can have the same value for the primary key attribute.

A relational database has various constraints described as follows:
• Domain Constraint: Domain constraints restrict the domain of each attribute or the

set of possible values for the attribute. Domain constraints specify that the value of
each attribute must be a value from the domain of the attribute.
• Entity Integrity Constraint: Entity integrity constraint states that no primary key

value can be null. Since primary key is used to identify uniquely each tuple in a
relation, having a null value for a primary key value will make it impossible to identify
tuples in the relation.
• Referential Integrity Constraint: Referential integrity constraints are required to

maintain consistency among the tuples in two relations. Referential integrity requires
every value of one attribute of a relation to exist as a value of another attribute in
another relation. In other words, tuples in a relation that refers to another relation must
refer to tuples that exist in the other relation.
• Foreign Key: For cross-referencing between multiple relations foreign keys are used.

Foreign key is a key in a relation that matches the primary key of another relation.
Relational databases support at least one comprehensive sub-language, the most popular

being the Structured Query Language (SQL). Relational databases provide ACID guarantees
that are a set of properties that guarantee that database transactions are processed reliably,
described as follows:
• Atomicity: Atomicity property ensures that each transaction is either “all or nothing”.

In other words, an atomic transaction ensures that all parts of the transaction complete
or the database state is left unchanged. Partially completed transactions in the event of
system outages can lead to an invalid state. Atomicity ensures that the transaction is
indivisible and is either committed or aborted.
• Consistency: Consistency property ensures that each transaction brings the database

from one valid state to another. In other words, the data in a database always conforms
to the defined schema and constraints.
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Pros Cons
Well-defined consistency model. An
application that runs on one relational
database (such as MySQL) can
be easily changed to run on other
relational databases (eg. Microsoft SQL
server). The underlying model remains
unchanged.

Performance is the major constraint for
relational databases. The performance
depends on the number of relations
and the size of the relations. Scaling
out relational database deployments is
difficult.

Provide ACID guarantees.

Limited support for complex data
structures. Eg. if the data is naturally
organized in a hierarchical manner and
stored as such, the hierarchical approach
can allow quick analysis of data.

Relational integrity maintained
through entity and referential integrity
constraints.

A complete knowledge of the database
structure is required to create ad hoc
queries.

Well suited for Online Transaction
Processing (OLTP) applications.

Most relation database systems are
expensive.

Sound theoretical foundation (based on
relational model) which has been tried
and tested for several years. Stable and
standardized databases available.

Some relational databases have limits on
the size of the fields.

The database design and normalization
steps are well defined and the underlying
structure is well understood.

Integrating data from multiple relational
database systems can be cumbersome.

Table 10.1: Pros and Cons of relational databases

• Isolation: Isolation property ensures that the database state obtained after a set
of concurrent transactions is the same as would have been if the transactions were
executed serially. This provides concurrency control, i.e. the results of incomplete
transactions are not visible to other transactions. The transactions are isolated from
each other until they finish.
• Durability: Durability property ensures that once a transaction is committed, the data

remains as it is, i.e. it is not affected by system outages such as power loss. Durability
guarantees that the database can keep track of changes and can recover from abnormal
terminations.

Table 10.1 lists some pros and cons of relational databases.

10.1.1 MySQL
MySQL is an open source Relational Database Management System (RDBMS). MySQL is
one of the most widely used RDBMS and a good choice to be a serving database for data
analytics applications where the data is structured.

Let us look at an example of using MySQL for a reference application that maintains a
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record of employees in a company. Figure 10.1 shows the Entity-relationship (ER) diagram
for the reference application which graphically represents the entities and their relationships
to each other. The ER diagram shows three entities - Employee, Department and Project. Note
that a one-to-one relationship exists between Employee and Department entities, whereas a
many-to-many relationship exists between Employee and Project.

Employee Department

Project

Number Salary

Name

Works at

Number Name

Number Name

Works on

1N

M

N

Figure 10.1: Entity-relationship (ER) diagram for the reference application

To map the ER model represented in the ER diagram to a relation model we follow the
following rules:
• For each regular entity in the ER model, create a relation (table).
• Make the attributes of the entity as the attributes of the table (or columns in a table).

Choose one of the key attributes of the entity as the primary key for the relation.
• For 1:1 relationship between two entities (say P and Q), include as a foreign key in one

of the relations, say the relation for entity P, the primary key of the other relation Q.
• For 1:N relationship between two entities (say R and S), include as a foreign key in

relation for entity S (where S is the entity on the N side of the relationship), the primary
key of relation for entity R.
• For a M:N relationship between two entities (say U and V), create a new relation and

in that relation include as foreign keys, the primary keys of the relations for entities U
and V. If the M:N relationship has any simple attributes, include those as well in the
new relation.

Following the above rules, we come up with the relations (tables) and their attributes (columns
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in the tables). Box 10.1 shows the ‘CREATE TABLE‘ SQL statements for creating the tables.

� Box 10.1: SQL statements for creating tables

CREATE TABLE department(
number varchar(50) NOT NULL PRIMARY KEY,
name varchar(200) NULL
);

CREATE TABLE employee (
number varchar(100) NOT NULL PRIMARY KEY,
name varchar(100) NOT NULL,
salary varchar(20) NOT NULL,
department_id varchar(20) REFERENCES department (number),
);

CREATE TABLE project (
number varchar(20) NOT NULL PRIMARY KEY,
name varchar(100) NOT NULL
);

CREATE TABLE workson (
id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
employee_id varchar(20) NOT NULL REFERENCES employee (number),
project_id varchar(20) NOT NULL REFERENCES project (number)
);

After creating the tables, data can be inserted into the tables using the ‘INSERT INTO’ SQL
statements as shown in Box 10.2.

� Box 10.2: SQL statements for inserting data into tables

INSERT INTO department VALUES ("1001", "ECE");

INSERT INTO employee (number, name,
salary,department_id) VALUES ("5001",
"Alex", "50000", "1001");

INSERT INTO project VALUES ("201", "Cloud");

INSERT INTO workson(employee_id,project_id)
VALUES ("5001", "201");

Finally, the data can be queried using the SELECT statements as shown in Box 10.3.

� Box 10.3: SQL statements for querying tables

# Retrieve all employees
SELECT * FROM employee;

# Retrieve top 3 employees with highest salary
SELECT * FROM employee ORDER BY salary DESC LIMIT 3;
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# Retrieve all employees in department ’ECE’
SELECT e.name, e.number, d.name FROM
employee e, department d WHERE d.name=’ECE’ ;

# Count the number of employees working on ’IoT’ project
SELECT COUNT(*) FROM project p, workson w WHERE p.name=’IoT’ ;

10.2 Non-Relational (NoSQL) Databases

In Chapter-4, we described various types of Non-Relational (NoSQL) databases. Unlike
relational databases, NoSQL databases do not provide ACID guarantees. Most NoSQL
databases offer ‘eventual’ consistency, which means that given a sufficiently long period of
time over which no updates are made, all updates can be expected to propagate eventually
through the system and the replicas will be consistent. Some authors have referred to the
term BASE (Basically Available, Soft state, Eventual consistency) guarantees for NoSQL
databases as opposed to ACID guarantees provided by relational databases.

Pros Cons

Easy to scale-out. Higher performance
for massive scale data as compared to
relational databases. Allows sharing of
data across multiple servers.

Do not provide ACID guarantees,
therefore less suitable for applications
such as transaction processing that
require strong consistency.

Most solutions are either open-source
or cheaper as compared to relational
databases.

No fixed schema. There is no common
data storage model. Different solutions
have different data storage models.

High availability and fault tolerance
provided by data replication.

Limited support for aggregation (SUM,
AVG, COUNT, GROUP BY) as
compared to relational databases.

Support complex data structures and
native programming objects.

Performance for complex joins is poor
as compared to relational databases.

No fixed schema. Support unstructured
data.

No well defined approach for database
design, since different solutions have
different data storage models.

Very fast retrieval of data. Suitable for
real-time applications.

Lack of a consistent model can lead to
solution lock-in, i.e., migrating from one
solution to other may require significant
remodeling of the application.

Most solutions provide support for
MapReduce programming model for
processing massive scale data.

Table 10.2: Pros and Cons of non-relational databases

The driving force behind the NoSQL databases is the need for databases that can achieve
the performance-related measures of high scalability, fault tolerance, and availability. These
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databases can be distributed on a large cluster of machines. Fault tolerance is provided by
storing multiple replicas of data on different machines. For, example with a replication factor
set equal to N for a NoSQL database, each record has N replicas on different machines.
Table 10.2 lists some pros and cons of non-relational databases.

10.2.1 Amazon DynamoDB
We described Amazon DynamoDB in Chapter-4. In this section, we will describe an example
of using DynamoDB for a reference application that retrieves and stores weather data for
different cities. The first step is to create a DynamoDB table from the DynamoDB dashboard
as shown Figure 10.2. A DynamoDB table can either have a simple primary key which is
composed of a hash attribute (or partition key) or a composite primary key which is composed
of a hash attribute and a range attribute (or sort key). The hash attribute is used to build an
unordered hash index and the range attribute is used to build an ordered range index.

Figure 10.2: Creating DynamoDB table - step-1

In the next step, you can specify additional indexes as shown in Figure 10.3. DynamoDB
gives the option to define one or more secondary indexes on a table. Two types of secondary
indexes are supported - global secondary index and local secondary index. A global secondary
index can be created with hash and range key attributes which are different from the primary
key. Whereas a local secondary index can be created from the same hash attribute as for the
primary key but a different range attribute.

In the next step, you can specify the provisioned throughput capacity as shown in
Figure 10.4. DynamoDB provides a consistent and predictable performance by allowing
the users to specify the provisioned throughput capacity while creating or updating a table.
The provisioned throughput is defined in terms of read and write capacity units. A read
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Figure 10.3: Creating DynamoDB table - step-2

capacity unit is one strongly consistent read or two eventually consistent reads per second
for items as large as 4 KB. A write capacity unit represents one write per second for items
as large as 1 KB. For example, if you want to read 100 items per seconds (where each item
is up to 4 KB in size), a read capacity of 100 must be provisioned. For items larger than 4
KB, the read capacity is calculated by rounding up to the next multiple of 4. For example,
to read 100 items per second where each item is of 6 KB, a read capacity of 200 must be
provisioned. Similarly, for writes, if an item is greater than 1 KB, the write capacity is
calculated by rounding up to the next 1 KB. In the next step, you can specify any throughput
alarm notifications for the table as shown in Figure 10.5.

For the reference weather data application we will use the PyOwm Python library to
fetch data from OpenWeatherMap (OWM) [35]. OpenWeatherMap is an online service that
provides a free API for weather data. Box 10.4 shows the Python code for fetching the current
weather data and weather forecast for a list of cities and writing the data to DynamoDB tables.
In this example, a connection is first established with DynamoDB service and a handle to an
existing table is retrieved. To write data to DynamoDB, the table.put_item function is used.

� Box 10.4: Python program for retrieving weather data and writing to DynamoDB

import pyowm
import boto.dynamodb2
from boto.dynamodb2.table import Table
import time
from datetime import date
import datetime
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Figure 10.4: Creating DynamoDB table - step-3

Figure 10.5: Creating DynamoDB table - step-4

import cPickle

PYOWM_KEY=‘<enter>’
owm = pyowm.OWM(PYOWM_KEY)

REGION="us-east-1"
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print "Connecting to DynamoDB"

conn = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=‘<enter>’,
aws_secret_access_key=‘<enter>’)

table=Table(‘weather’,connection=conn)

places=[‘New York,US’,‘Los Angeles,US’,
‘Chicago,US’,‘Houston,US’, ‘Philadelphia,US’,
‘Phoenix,US’, ‘San Antonio,US’,‘San Diego,US’,
‘Dallas,US’,‘San Jose,US’]

for place in places:
print place
observation = owm.weather_at_place(place)
w= observation.get_weather()

item = table.put_item(data={
‘city’:place,
‘time’: str(w.get_reference_time(timeformat=‘iso’)),
‘currentTemperature’: str(w.get_temperature(unit=‘celsius’)[‘temp’]),
‘weatherStatus’: str(w.get_detailed_status()),
‘cloudCoverage’: str(w.get_clouds()),
‘rainVolume’: str(w.get_rain()),
‘windSpeed’: str(w.get_wind()[‘speed’]),
‘humidity’: str(w.get_humidity()),
‘pressure’: str(w.get_pressure()[‘press’])

})

forecastTable=Table(‘forecast’,connection=conn)

for place in places:
print place
fc = owm.daily_forecast(place, limit=7)
f = fc.get_forecast()
forecast_list=[]
for w in f.get_weathers():
forecast_dict={}
t=w.get_reference_time()
forecast_dict[‘date’] =
datetime.datetime.fromtimestamp(t).strftime(‘%Y-%m-%d’)
forecast_dict[‘tempMin’]= w.get_temperature(unit=‘celsius’)[‘min’]
forecast_dict[‘tempMax’]= w.get_temperature(unit=‘celsius’)[‘max’]

rain= w.get_rain()
if rain.has_key(‘all’):
forecast_dict[‘rain’] = rain[‘all’]

else:
forecast_dict[‘rain’] = 0
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forecast_dict[‘status’]= w.get_detailed_status()
forecast_list.append(forecast_dict)

item = forecastTable.put_item(data={
‘city’:place,
‘forecastList’: cPickle.dumps(forecast_list)

},overwrite=True)

Box 10.5 shows the Python example for reading data from DynamoDB. DynamoDB
supports two types of read operations - Query and Scan. Query operation allows you to query
a table by providing a hash key attribute name and value. Additionally, a range key attribute
and value can be specified along with a comparison operator to refine the results. The Scan
operation can be used to read all the items in a table.

� Box 10.5: Python program for reading data from DynamoDB

import boto.dynamodb2
from boto.dynamodb2.table import Table

REGION="us-east-1"

conn = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=‘<enter>’,
aws_secret_access_key=‘<enter>’)

table=Table(‘weather’,connection=conn)

#Scan table
all_items=table.scan()

for item in all_items:
print item.items()

#Query for a particular city
results = table.query_2(city__eq=‘New York,US’)

for r in results:
print r[‘time’]
print r[‘currentTemperature’]
print r[‘weatherStatus’]
print r[‘pressure’]
print r[‘humidity’]
print r[‘windSpeed’]
print r[‘rainVolume’]
print r[‘cloudCoverage’]

Figures 10.6 and 10.7 show examples of scanning and querying a DynamoDB table from the
DynamoDB dashboard.
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Figure 10.6: Scanning table from DynamoDB Dashboard

Figure 10.7: Querying table from DynamoDB Dashboard
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10.2.2 Cassandra
Cassandra is a scalable, highly available, fault tolerant open source non-relational database
system. Cassandra has a distributed, decentralized and peer-to-peer architecture where all the
nodes have the same role. The data stored is replicated across multiple nodes in a cluster and
the database performance can scale linearly by the addition of new nodes. The Cassandra
data model is similar to the HBase model described in Chapter-4. The basic unit of data
storage is a Column which has a name, value and timestamp. A Row has multiple columns
and is identified by a unique row key. A ColumnFamily has multiple rows and is analogous
to a table in a relational database. Different rows in a ColumnFamily can have different sets
of columns, and columns can be added anytime. A Keyspace in Cassandra is analogous to a
database in a relational database system. Keyspace contains operational elements such as the
replication strategy and replication factor.
Box 10.6 shows the commands for setting up and running Cassandra.

� Box 10.6: Setting up Cassandra

#Download Cassandra distribution
wget http://www.eu.apache.org/dist/cassandra/2.1.10/
apache-cassandra-2.1.10-bin.tar.gz
tar -xzf apache-cassandra-2.1.10-bin.tar.gz
cd apache-cassandra-2.1.10

#Run Cassandra
bin/cassandra -f

#Run CQL shell
bin/cqlsh

Cassandra provides a query language called Cassandra Query Language (CQL) which is
similar to SQL. The CQL shell can be used to interact with Cassandra.

In this section, we will describe an example of using Cassandra for the reference weather
data application. Box 10.7 shows the CQL statements for creating tables for storing current
weather data and weather forecasts.

� Box 10.7: Creating Cassandra tables

#Create keyspace
CREATE KEYSPACE weatherkeyspace
WITH REPLICATION = { ‘class’ : ‘SimpleStrategy’, ‘replication_factor’ :
1 };

#Use keyspace
USE weatherkeyspace;

#Create tables
CREATE TABLE weathernew (
city text,
time text,
currentTemperature float,
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weatherStatus text,
cloudCoverage text,
rainVolume text,
windSpeed float,
humidity float,
pressure float,
PRIMARY KEY (city, time)

);

CREATE TABLE forecast (
city text,
forecastList text,
PRIMARY KEY (city)

);

Box 10.8 shows Python code for fetching the current weather data and weather forecast for a
list of cities and writing the data to Cassandra tables.

� Box 10.8: Python program for retrieving weather data and writing to Cassandra

import pyowm
import time
from datetime import date
import datetime
import cPickle
from cassandra.cluster import Cluster

PYOWM_KEY=‘<enter>’
owm = pyowm.OWM(PYOWM_KEY)

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect(‘weatherkeyspace’)
places=[‘New York,US’,‘Los Angeles,US’,‘Chicago,US’,
‘Houston,US’, ‘Philadelphia,US’, ‘Phoenix,US’,
‘San Antonio,US’,‘San Diego,US’,‘Dallas,US’,‘San Jose,US’]

for place in places:
print place
observation = owm.weather_at_place(place)
w= observation.get_weather()

rain= w.get_rain()
if rain.has_key(‘all’):
rainVolume = rain[‘all’]

else:
rainVolume = 0

statement="INSERT INTO weathernew (city, time,
currentTemperature, weatherStatus, cloudCoverage,
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rainVolume, windSpeed, humidity, pressure) VALUES(‘" +
str(place)+"’,‘"+ str(w.get_reference_time(timeformat=’iso‘))+
"’,"+ str(w.get_temperature(unit=‘celsius’)[‘temp’])+",‘"+
str(w.get_detailed_status())+"’,‘"+ str(w.get_clouds())+"’,‘"+
str(rainVolume) +"’,"+ str(w.get_wind()[‘speed’])+","+
str(w.get_humidity())+","+ str(w.get_pressure()[‘press’])+")"

session.execute(statement)

for place in places:
print place
fc = owm.daily_forecast(place, limit=7)
f = fc.get_forecast()
forecast_list=[]
for w in f.get_weathers():
forecast_dict={}
t=w.get_reference_time()
forecast_dict[‘date’] =
datetime.datetime.fromtimestamp(t).strftime(‘%Y-%m-%d’)
forecast_dict[‘tempMin’]= w.get_temperature(unit=‘celsius’)[‘min’]
forecast_dict[‘tempMax’]= w.get_temperature(unit=‘celsius’)[‘max’]

rain= w.get_rain()
if rain.has_key(‘all’):
forecast_dict[‘rain’] = rain[‘all’]

else:
forecast_dict[‘rain’] = 0

forecast_dict[‘status’]= w.get_detailed_status()
forecast_list.append(forecast_dict)

statement="INSERT INTO forecast (city, forecastList)
VALUES(‘"+str(place)+"’,‘"+
cPickle.dumps(forecast_list).encode("hex") +"’)"

session.execute(statement)

Figure 10.8 shows a screenshot of a query executed in CQL shell.

Figure 10.8: Querying Cassandra table from CQL shell
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10.2.3 MongoDB
We described MongoDB in Chapter-4. In this section, we will describe an example of using
MongoDB for the reference weather data application. MongoDB provides a shell which
can be used for performing various database operations. Box 10.9 shows some examples of
various database operations using the MongoDB shell.

� Box 10.9: Using MongoDB shell commands

#Launch MongoDB shell
mongo localhost:27017

#Switch to new database named weatherdb
> use weatherdb
switched to db weatherdb

#Insert a document
> post = {
"city" : "New York,US",
"windSpeed" : "5.7",
"currentTemperature" : "12.01",
"time" : "2015-10-23 09:15:00+00",
"cloudCoverage" : "20",
"rainVolume" : "{u‘1h’: 0.25}",
"humidity" : "54",
"pressure" : "1021",
"weatherStatus" : "light rain"

}
> db.collection.insert(post)
WriteResult({ "nInserted" : 1 })

# Retrieve all documents
> db.collection.find()
{ "_id" : ObjectId("5629fee545c8be72b82fc60e"), "city" : "New York,US",
"windSpeed" : "5.7", "currentTemperature" : "12.01",
"time" : "2015-10-23 09:15:00+00", "cloudCoverage" : "20",
"rainVolume" : "{u‘1h’: 0.25}", "humidity" : "54",
"pressure" : "1021", "weatherStatus" : "light rain" }

{ "_id" : ObjectId("5629ff4d45c8be72b82fc60f"), "city" : "Chicago,US",
"windSpeed" : "4.6", "currentTemperature" : "10.98",
"time" : "2015-10-23 09:01:04+00", "cloudCoverage" : "90",
"rainVolume" : "{}", "humidity" : "66", "pressure" : "1024",
"weatherStatus" : "overcast clouds" }

# Retrieve documents matching the query
> db.collection.find({"city" : "New York,US"})
{ "_id" : ObjectId("5629fee545c8be72b82fc60e"), "city" : "New York,US",
"windSpeed" : "5.7", "currentTemperature" : "12.01",
"time" : "2015-10-23 09:15:00+00", "cloudCoverage" : "20",
"rainVolume" : "{u‘1h’: 0.25}", "humidity" : "54",
"pressure" : "1021", "weatherStatus" : "light rain" }

#Show current database name

Bahga & Madisetti, c© 2016



10.2 Non-Relational (NoSQL) Databases 361

> db
weatherdb

#Show collections in the database
> show collections
collection
system.indexes

Box 10.10 shows the Python code for fetching the current weather data and weather forecast
for a list of cities and writing the data to MongoDB.

� Box 10.10: Python program for retrieving weather data and writing to MongoDB

import pyowm
import time
from datetime import date
import datetime
import cPickle
from pymongo import MongoClient

PYOWM_KEY=‘<enter>’
owm = pyowm.OWM(PYOWM_KEY)

client = MongoClient(‘mongodb://root:password@hostname:53688/weather’)
db = client[‘weather’]
weather_collection = db[‘current’]
forecast_collection = db[‘forecast’]

places=[‘New York,US’,‘Los Angeles,US’,
‘Chicago,US’,‘Houston,US’, ‘Philadelphia,US’,
‘Phoenix,US’, ‘San Antonio,US’,‘San Diego,US’,
‘Dallas,US’,‘San Jose,US’]

for place in places:
print place
observation = owm.weather_at_place(place)
w= observation.get_weather()

item = {
‘city’:place,
‘time’: str(w.get_reference_time(timeformat=‘iso’)),
‘currentTemperature’: str(w.get_temperature(unit=‘celsius’)[‘temp’]),
‘weatherStatus’: str(w.get_detailed_status()),
‘cloudCoverage’: str(w.get_clouds()),
‘rainVolume’: str(w.get_rain()),
‘windSpeed’: str(w.get_wind()[‘speed’]),
‘humidity’: str(w.get_humidity()),
‘pressure’: str(w.get_pressure()[‘press’])

}

weather_collection.insert_one(item)
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for place in places:
print place
fc = owm.daily_forecast(place, limit=7)
f = fc.get_forecast()
forecast_list=[]
for w in f.get_weathers():
forecast_dict={}
t=w.get_reference_time()
forecast_dict[‘date’] =
datetime.datetime.fromtimestamp(t).strftime(‘%Y-%m-%d’)
forecast_dict[‘tempMin’]= w.get_temperature(unit=‘celsius’)[‘min’]
forecast_dict[‘tempMax’]= w.get_temperature(unit=‘celsius’)[‘max’]

rain= w.get_rain()
if rain.has_key(‘all’):
forecast_dict[‘rain’] = rain[‘all’]

else:
forecast_dict[‘rain’] = 0

forecast_dict[‘status’]= w.get_detailed_status()
forecast_list.append(forecast_dict)

item = {
‘city’:place,
‘forecastList’: forecast_list

}

forecast_collection.insert_one(item)

10.3 Python Web Application Framework - Django

Django is an open source web application framework for developing web applications in
Python [61]. A web application framework, in general, is a collection of solutions, packages
and best practices that allow development of web applications and dynamic websites. Django
is based on the Model-Template-View architecture and provides a separation of the data
model from the business rules and the user interface. Django provides a unified API to
a database backend. Thus, web applications built with Django can work with different
databases without requiring any code changes. Django consists of an object-relational
mapper, a web templating system, and a regular-expression-based URL dispatcher.

Given the separation of the models, views and templates, flexibility to use different
databases, combined with the powerful capabilities of the Python language and the Python
ecosystem, Django is one of the most suitable web application frameworks for big data
analytics and cloud applications.

10.3.1 Django Architecture

Django adopts a Model-Template-View (MTV) architecture. The roles of model, template
and view are as follows:

Model

The model acts as a definition of stored data and handles the interactions with the database.
A Django model is a Python class that outlines the variables and methods for a particular
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type of data.

Template
In a typical Django web application, the template is simply an HTML page with a few extra
placeholders. Django‘s template language can be used to create various forms of text files
(XML, email, CSS, Javascript, CSV, etc.)

View
The view ties the model to the template. The view is where you write the code that generates
the web pages. View determines what data is to be displayed, retrieves the data from the
database and passes the data to the template.

For describing the implementation of the model, template and view components of a
Django application we will use a reference application that maintains a record of employees
in a company. The ER diagram for the application for the reference application was described
earlier in the chapter.

10.3.2 Starting Development with Django
Django can be installed with the following commands:

� # Installing Django
sudo apt-get install python-pip
sudo pip install Django==1.8.5

In this section, you will learn how to start developing web applications with Django.

Creating a Django Project and App
Box 10.11 provides the commands for creating a Django project and an application within a
project.

When you create a new Django project the following files are created:
• __init__.py: This file tells Python that this folder is a Python package
• manage.py: This file contains an array of functions for managing the project
• settings.py: This file contains the project settings
• urls.py: This file contains the URL patterns that map URLs to pages
A Django project can have multiple applications. Apps are where you write the code that

makes your web application function. Each project can have multiple apps and each app can
be part of multiple projects.

When a new application is created a new directory for the application is created which
has multiple files including:
• model.py: This file contains the description of the models for the application
• views.py: This file contains the application views

� Box 10.11: Creating a new Django project and an app in the project

#Create a new project
django-admin.py startproject myproject
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#Create an application within the project
python mangage.py startapp myapp

#Starting development server
python manage.py runserver

#Django uses port 8000 by default
#The project can be viewed at the URL:
#http://localhost:8000

Django comes with a built-in, lightweight Web server that can be used for development
purposes. When the Django development server is started the default project can be viewed
at the URL: http://localhost:8000.

Configuring a Database
Till now you have learned how to create a new Django project and an app within the
project. Most web applications have a database backend. Developers have a wide choice of
databases that can be used for web applications including both relational and non-relational
databases. Django provides a unified API for database backends thus giving the freedom to
choose the database. Django supports various relational database engines including MySQL,
PostgreSQL, Oracle and SQLite3. Support for non-relational databases such as MongoDB
can be added by installing additional engines (e.g. Django-MongoDB engine for MongoDB).

Let us look at an example of setting up a MySQL database with a Django project. The
first step in setting up a database is to install and configure a database server. After installing
the database, the next step is to specify the database settings in the setting.py file in the
Django project.

Box 10.12 shows the commands to setup MySQL. Box 10.13 shows the database setting
to use MySQL with a Django project.

� Box 10.12: Setting up MySQL database

#Install MySQL
sudo apt-get install mysql-server mysql-client
sudo mysqladmin -u root -h localhost password ‘mypassword’

� Box 10.13: Configuring MySQL with Django - settings.py

DATABASES = {
‘default’: {

‘ENGINE’: ‘django.db.backends.mysql’,
‘NAME’: ‘<database-name>’
‘USER’: ‘root’
‘PASSWORD’: ‘mypassword’
‘HOST’: ‘<hostname>’, # set to empty for localhost
‘PORT’: ‘<port>’, #set to empty for default port

}
}
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Defining a Model
Model acts as a definition of the data in the database. Box 10.14 shows the Python code
for the Django models for the reference application. The various database tables for this
application are defined as Classes in the Django model. Each class that represents a database
table is a subclass of d jango.db.models.Model class which contains all the functionality
that allows the models to interact with the database. To sync the models with the database
simply run the following command:
>python manage.py syncdb

When the syncdb command is run the first time, it creates all the tables defined in the Django
model in the configured database.

� Box 10.14: Django model for reference application

from django.db import models
from django.contrib.auth.models import User
from django.conf import settings

class Department(models.Model):
name = models.CharField(verbose_name="Name",
max_length=1000,blank = True,null=True)

number = models.CharField(verbose_name="Number",
max_length=1000,blank = True,primary_key=True)

def __unicode__(self):
return str(self.name)+" - "+str(self.number)

class Project(models.Model):
name = models.CharField(verbose_name="Name",
max_length=1000,blank = True,null=True)

number = models.CharField(verbose_name="Number",
max_length=1000,blank = True,primary_key=True)

def __unicode__(self):
return str(self.name)+" - "+str(self.number)

def project_ids(self):
return "project_"+str(self.id)

class Employee (models.Model):

name = models.CharField(verbose_name="Name",
max_length=1000,blank = True,null=True)

number = models.CharField(verbose_name="Number",
max_length=1000,blank = True,primary_key=True)

salary = models.CharField(verbose_name="Salary",
max_length=1000,blank = True,null=True)
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department= models.ForeignKey(Department, null=True,blank=True,
related_name=‘departmentname’, default="null")

project=models.ManyToManyField(Project,through=‘WorksOn’)

def __unicode__(self):
return str(self.name)+" - "+str(self.number)+
" - "+str(self.department.number)

class WorksOn(models.Model):
employee = models.ForeignKey(Employee)
project = models.ForeignKey(Project)

def __unicode__(self):
return str(self.employee.name)+" - "+str(self.project.name)

Django Admin Site
Django provides an administration system that allows you to manage the project without
writing additional code. The admin system reads the Django model and provides an interface
that can be used to add content to the project. The Django admin site is enabled by adding
d jango.contrib.admin and d jango.contrib.admindocs to the INSTALLED_APPS section
in the settings.py file. The admin site also requires URL pattern definitions in the urls.py file
described later in the URLs sections.

To define the application models which can be edited in the admin interface, a new file
named admin.py is created in the application folder as shown in Box 10.15.

� Box 10.15: Enabling admin for Django models

from django.contrib import admin
from django.contrib.auth.models import User

from myapp.models import Department,
Employee, Project, WorksOn

admin.site.register(Department)
admin.site.register(Employee)
admin.site.register(Project)
admin.site.register(WorksOn)

Figure 10.9 shows a screenshot of the Django admin interface. You can see all the tables
corresponding to the Django models in this screenshot. Figures 10.10, 10.11, 10.12 and
10.13 show how to add new items in the Department, Employee, Project and WorksOn tables
using the admin site.
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Figure 10.9: Screentshot of Django admin site

Figure 10.10: Django admin site - adding new items to department table
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Figure 10.11: Django admin site - adding new items to employee table

Figure 10.12: Django admin site - adding new items to project table
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Figure 10.13: Django admin site - adding new items to works-on table

Defining a View

View contains the logic that glues the model to the template. The view determines the data to
be displayed in the template, retrieves the data from the database and passes it to the template.
Conversely, the view also extracts the data posted in a form in the template and inserts it into
the database. Typically, each page in a web application has a separate view, which is a Python
function in the views.py file. Views can also perform additional tasks such as authentication,
sending emails, etc.

Box 10.16 shows the source code for the Django views for the reference application.
The views correspond to the web pages that display the list of employees, employee details,
department details and project details.

In the views, the Django’s built in object-relational mapping API is used to retrieve the
data from the database tables. The object-relational mapping API allows the developers to
write generic code for interacting with the database without worrying about the underlying
database engine. So the same code for database interactions works with different database
backends. You can optionally choose to use a Python library specific to the database backend
used (e.g. MySQLdb for MYSQL, PyMongo for MongoDB, etc.) to write database-backed
specific code.

In the views shown in Box 10.16, the table.ob jects.all query returns a QuerySet with
all the entries in a table. To retrieve specific entries, you can use table.ob jects. f ilter(∗ ∗
kwargs) to filter out queries that match the specified condition. For example, the query
Employee.ob jects. f ilter(number =′ 123′) returns the details of the employee with
employee-number 123. To render the retrieved entries in the template, the render_to_response
function is used. This function renders a given template with a given context dictionary and
returns an Htt pResponse object with that rendered text.
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� Box 10.16: Django view for reference application

from django.shortcuts import render_to_response
from django.template import RequestContext
from django.shortcuts import render
from django.shortcuts import redirect
from django.contrib.auth import authenticate, login
from django.contrib.auth import logout
from django.contrib.auth.decorators import login_required
from django.contrib.auth.models import User
from myapp.models import Department, Employee, Project, WorksOn

def logout_view(request):
logout(request)
return redirect(‘/’)

def home(request):
if request.method == ‘POST’:
username = request.POST[‘username’]
password = request.POST[‘password’]
user = authenticate(username=username, password=password)
if user is not None:
if user.is_active:
login(request, user)
username = request.user.username
authorusername = str(request.user.username)

if request.user.is_authenticated():
authorusername = str(request.user.username)

employeecount = Employee.objects.all().count()
departmentcount = Department.objects.all().count()
projectcount = Project.objects.all().count()

return render_to_response(‘index.html’,{
‘authorusername’: authorusername, ‘employeecount’:employeecount,
‘departmentcount’:departmentcount, ‘projectcount’:projectcount},
context_instance=RequestContext(request))

return redirect(‘/accounts/login’)

@login_required
def employees(request):

if request.user.is_authenticated():
authorusername = str(request.user.username)

employees = Employee.objects.all()
project_list=[]
len_e=len(employees)
for it in range(len(employees)):
temp1=employees[it].project.all()
for items3 in temp1:
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project_list.append((items3.name,employees[it].number))
return render_to_response(‘employees.html’,{

‘authorusername’: authorusername,‘employees’:employees,
‘len’:len_e,‘project_list’:project_list},
context_instance=RequestContext(request))

@login_required
def employeedetail(request, query):
if request.user.is_authenticated():
authorusername = str(request.user.username)

employee = Employee.objects.filter(number=query).get()
project_list=employee.project.all()
return render_to_response(‘employeedetail.html’,{
‘authorusername’: authorusername,‘employee’:employee,
‘project_list’:project_list},
context_instance=RequestContext(request))

@login_required
def departmentdetail(request, query):
if request.user.is_authenticated():
authorusername = str(request.user.username)

department = Department.objects.filter(number=query).get()
employee_count = Employee.objects.filter(department__pk=query).count()
return render_to_response(‘departmentdetail.html’,{
‘authorusername’: authorusername,‘department’:department,
‘employee_count’:employee_count},
context_instance=RequestContext(request))

@login_required
def projectdetail(request, query):
if request.user.is_authenticated():
authorusername = str(request.user.username)

project = Project.objects.filter(number=query).get()
employee_count = Employee.objects.filter(project__pk=query).count()
return render_to_response(‘projectdetail.html’,{
‘authorusername’: authorusername,‘project’:project,
‘employee_count’:employee_count},
context_instance=RequestContext(request))

Defining a Template

A Django template is typically an HTML file (though it can be any text file such as XML,
email, CSS, JavaScript, CSV, etc.). Django templates allow separation of the presentation of
data from the actual data by using placeholders and associated logic (using template tags). A
template receives a context from the view and presents the data in context variables in the
placeholders.

Boxes 10.17, 10.18, 10.19 and 10.20 show the templates for the reference application.
The data is retrieved from the database in the view and passed to the template in the form
of a context dictionary. The f or tags in the template loop over each item in a sequence and
the items are inserted with the placeholder tags (variable name surrounded by braces, e.g.
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{{entry.email}}). Template tag is any text that is surrounded by curly braces and percent
signs (e.g. {% for entry in student_entries %}). Django’s template language offers basic tags
such as f or, i f , etc. and a number of built-in filters for modifying the output of variables.
Filters are attached to variables using a pipe character (|). For example the filter join in
{{entry.courses.all|join:", "}} joins a list with a string.

� Box 10.17: Django template for showing employees list

<html lang="en">
<head>
<title> Dashboard</title>
<!- Bootstrap Core CSS ->
<link href="/static/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<div id="page-wrapper">
<div class="container-fluid">
<!- Page Heading ->
<div class="row">
<div class="col-lg-12">
<h1 class="page-header">
Employees
</h1>
</div>
</div>
<!- /.row ->
</div>
<!- /.row ->
<div class="row">
<div class="col-lg-6">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Employees List</h3>
</div>
<div class="panel-body">
<div class="table-responsive">
<table class="table table-bordered table-hover table-striped">
<thead>
<tr>
<th>Employee No.</th>
<th>Name</th>
<th>Salary</th>
<th>Department</th>
</tr>
</thead>
<tbody>
{% for employee in employees%}
<tr>
<td>

<a href="/employee/{{employee.number}}/">{{employee.number}}</a></td>
<td>{{employee.name}}</td>
<td>{{employee.salary}}</td>
<td><a href="/department/{{employee.department.number}}/">
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{{employee.department.name}}</a></td>
</tr>
{% endfor %}
</tbody>
</table>
</div>
<!- /.row ->
</div>
</div>
<!- /#page-wrapper ->
</div>
<!- /#wrapper ->
<!- jQuery ->
<script src="/static/js/jquery.js"></script>
<!- Bootstrap Core JavaScript ->
<script src="/static/js/bootstrap.min.js"></script>
</body>
</html>

� Box 10.18: Django template for showing employee details

<html lang="en">
<head>
<title> Dashboard</title>
<!- Bootstrap Core CSS ->
<link href="/static/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<div id="wrapper">
<div id="page-wrapper">
<div class="container-fluid">
<!- Page Heading ->
<div class="row">
<div class="col-lg-12">
<h1 class="page-header">
{{employee.name}}
</h1>
</div>
</div>
<!- /.row ->
</div>
<!- /.row ->
<div class="row">
<div class="col-lg-6">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Employee Detail</h3>
</div>
<div class="panel-body">
<div class="table-responsive">
<table class="table table-bordered table-hover table-striped">
<tbody>
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<tr>
<td>Name</td>
<td>{{employee.name}}</td>
</tr>
<tr>
<td> Number</td>
<td>{{employee.number}}</td>
</tr>
<tr>
<td>Salary</td>
<td>{{employee.salary}}</td>
</tr>
<tr>
<td>Projects</td>
<td>
{% for project in project_list%}
<a href="/project/{{project.number}}/">{{project.name}}</a><br>
{% endfor %}
</td>
</tr>
</tbody>
</table>
</div>
<!- /.row ->
</div>
</div>
<!- /#page-wrapper ->
</div>
<!- /#wrapper ->
<!- jQuery ->
<script src="/static/js/jquery.js"></script>
<!- Bootstrap Core JavaScript ->
<script src="/static/js/bootstrap.min.js"></script>
</body>
</html>

� Box 10.19: Django template for showing project details

<html lang="en">
<head>
<title>Dashboard</title>
<!- Bootstrap Core CSS ->
<link href="/static/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<div id="wrapper">
<div id="page-wrapper">
<div class="container-fluid">
<!- Page Heading ->
<div class="row">
<div class="col-lg-12">
<h1 class="page-header">
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{{project.name}}
</h1>
</div>
</div>
<!- /.row ->
</div>
<!- /.row ->
<div class="row">
<div class="col-lg-6">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title"> Project Details</h3>
</div>
<div class="panel-body">
<div class="table-responsive">
<table class="table table-bordered table-hover table-striped">
<tbody>
<tr>
<td>Name</td>
<td>{{project.name}}</td>
</tr>
<tr>
<td>Number</td>
<td>{{project.number}}</td>
</tr>
<td>Total Employees Working on the Project</td>
<td>{{employee_count}}</td>
</tr>
</tbody>
</table>
</div>
<!- /.row ->
</div>
</div>
<!- /#page-wrapper ->
</div>
<!- /#wrapper ->
<!- jQuery ->
<script src="/static/js/jquery.js"></script>
<!- Bootstrap Core JavaScript ->
<script src="/static/js/bootstrap.min.js"></script>
</body>
</html>

� Box 10.20: Django template for showing department details

<html lang="en">
<head>
<title> Dashboard</title>
<!- Bootstrap Core CSS ->
<link href="/static/css/bootstrap.min.css" rel="stylesheet">
</head>
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<body>
<div id="wrapper">
<div id="page-wrapper">
<div class="container-fluid">
<!- Page Heading ->
<div class="row">
<div class="col-lg-12">
<h1 class="page-header">
{{department.name}}
</h1>
</div>
</div>
<!- /.row ->
</div>
<!- /.row ->
<div class="row">
<div class="col-lg-6">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Department Detail</h3>
</div>
<div class="panel-body">
<div class="table-responsive">
<table class="table table-bordered table-hover table-striped">
<tbody>
<tr>
<td>Name</td>
<td>{{department.name}}</td>
</tr>
<tr>
<td>Number</td>
<td>{{department.number}}</td>
</tr>
<tr>
<td>Total Employees in Department</td>
<td>{{employee_count}}</td>
</tr>
</tbody>
</table>
</div>
<!- /.row ->
</div>
<!- /.container-fluid ->
</div>
<!- /#page-wrapper ->
</div>
<!- /#wrapper ->
<!- jQuery ->
<script src="/static/js/jquery.js"></script>
<!- Bootstrap Core JavaScript ->
<script src="/static/js/bootstrap.min.js"></script>
</body>
</html>
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Defining the URL Patterns

URL Patterns are a way of mapping the URLs to the views that should handle the URL
requests. The URLs requested by the user are matched with the URL patterns and the view
corresponding to the pattern that matrices the URL is used to handle the request. Box 10.21
shows an example of the URL patterns for the reference application. As seen in this example,
the URL patterns are constructed using regular expressions. The simplest regular expression
(r‘∧ $’) corresponds to the root of the website or the home page. More complex URLs allow
capturing values. For example the pattern:
url(r‘∧ employee/(?P<query>\w+)’, ‘myapp.views.employeedetail’)

captures the employee number from the URL to the variable query and passes it to the
employeedetail view.

� Box 10.21: Example of a URL configuration

from django.conf.urls import patterns, include, url
from myapp import views
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns(‘’,
url(r‘∧$’, ‘myapp.views.home’, name=‘home’),
url(r‘∧employees/$’, ‘myapp.views.employees’, name=‘employees’),
url(r‘∧employee/(?P<query>\w+)/$’, ‘myapp.views.employeedetail’),
url(r‘∧department/(?P<query>\w+)/$’, ‘myapp.views.departmentdetail’),
url(r‘∧project/(?P<query>\w+)/$’, ‘myapp.views.projectdetail’),
url(r‘∧admin/doc/’, include(django.contrib.admindocs.urls)),
url(r‘∧admin/’, include(admin.site.urls)),
)

Figures 10.14, 10.15, 10.16 and 10.17 show the various pages of the reference application
which are rendered from the templates shown in Boxes 10.17, 10.18, 10.19 and 10.20.

Figure 10.14: Screenshot of employees list page rendered from template in Box 10.17
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Figure 10.15: Screenshot of employee details page rendered from template in Box 10.18

Figure 10.16: Screenshot of project details page rendered from template in Box 10.19

Figure 10.17: Screenshot of department details page rendered from template in Box 10.20
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10.4 Case Study: Django application for viewing weather data
Let us look at a case study of a Django application that displays the current weather data and
weather forecast for different cities. In the sections on DynamoDB, Cassandra and MongoDB
we described examples of obtaining weather data using the OpenWeatherMap API and
writing the data to the respective databases. Let us now build a Django web application
that retrieves the weather data from these databases and presents the data in a web page.
We will describe three alternative implementations based on DynamoDB, Cassandra and
MongoDB. Box 10.22 shows the source code for the Django view that retrieves weather data
from DynamoDB tables and renders it in the Django template.

� Box 10.22: Django view for retrieving weather data from DynamoDB

from django.shortcuts import render_to_response
from django.template import RequestContext
import boto.dynamodb2
from boto.dynamodb2.table import Table
import cPickle
import pyowm

REGION="us-east-1"

conn = boto.dynamodb2.connect_to_region(REGION,
aws_access_key_id=‘<enter>’,
aws_secret_access_key=‘<enter>’)

table=Table(‘weather’,connection=conn)
forecastTable=Table(‘forecast’,connection=conn)

PYOWM_KEY=‘<enter>’
owm = pyowm.OWM(PYOWM_KEY)

def home(request):
if request.method == ‘POST’:
city=request.POST.get(‘city’)

else:
city = ‘New York,US’

results = table.query_2(city__eq=city, reverse=True, limit=1)
for r in results:
time=r[‘time’]
temp=r[‘currentTemperature’]
status=r[‘weatherStatus’]
pressure=r[‘pressure’]
humidity=r[‘humidity’]
wind=r[‘windSpeed’]
rain=r[‘rainVolume’]
clouds=r[‘cloudCoverage’]

results = forecastTable.query_2(city__eq=city)
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for r in results:
data = str(r[‘forecastList’])

forecast_list = cPickle.loads(data)

return render_to_response(‘index.html’,{
‘city’:city,‘time’:time, ‘temp’:temp, ‘status’:status,
‘pressure’:pressure, ‘humidity‘:humidity,
‘wind’:wind, ‘rain’:rain, ‘clouds’:clouds,
‘forecast_list’:forecast_list},
context_instance=RequestContext(request))

Box 10.23 shows the source code for the Django view that retrieves weather data from
Cassandra tables and renders it in the Django template.

� Box 10.23: Django view for retrieving weather data from Cassandra

from django.shortcuts import render_to_response
from django.template import RequestContext
import cPickle
import pyowm
from cassandra.cluster import Cluster
PYOWM_KEY=‘<enter>’
owm = pyowm.OWM(PYOWM_KEY)

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect(‘weatherkeyspace’)

def home(request):
if request.method == ‘POST’:
city=request.POST.get(‘city’)

else:
city = ‘New York,US’

results = session.execute(‘SELECT * FROM weather
WHERE city=’́+city+’ÓRDER BY time DESC LIMIT 1’)

for r in results:
time=r[1]
temp=r[2]
status=r[3]
pressure=r[4]
humidity=r[5]
wind=r[6]
rain=r[7]
clouds=r[8]

results = session.execute(‘SELECT * FROM forecast
WHERE city=’̀+city+‘’́)

for r in results:
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data = r[1]

forecast_list = cPickle.loads(data.decode("hex"))

return render_to_response(‘index.html’,{
‘city’:city,‘time’:time, ‘temp’:temp,
‘status’:status, ‘pressure’:pressure, ‘humidity’:humidity,
‘wind’:wind, ‘rain’:rain, ‘clouds’:clouds,
‘forecast_list’:forecast_list},
context_instance=RequestContext(request))

Box 10.24 shows the source code for the Django view that retrieves weather data from
MongoDB and renders it in the Django template.

� Box 10.24: Django view for retrieving weather data from MongoDB

from django.shortcuts import render_to_response
from django.template import RequestContext
import pyowm
from pymongo import MongoClient

client = MongoClient(‘mongodb://root:password@hostname:53688/weather’)
db = client[‘weather’]
weather_collection = db[‘current’]
forecast_collection = db[‘forecast’]

PYOWM_KEY=‘<enter>’
owm = pyowm.OWM(PYOWM_KEY)

def home(request):
if request.method == ‘POST’:
city=request.POST.get(‘city’)

else:
city = ‘New York,US’

results = weather_collection.find({"city":
city}).sort("_id",-1).limit(1)

for r in results:
time=r[‘time’]
temp=r[‘currentTemperature’]
status=r[‘weatherStatus’]
pressure=r[‘pressure’]
humidity=r[‘humidity’]
wind=r[‘windSpeed’]
rain=r[‘rainVolume’]
clouds=r[‘cloudCoverage’]

results = forecast_collection.find({"city": city})

for r in results:
data = r[‘forecastList’]

forecast_list = data
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return render_to_response(‘index.html’,{
‘city’:city,‘time’:time, ‘temp’:temp,
‘status’:status, ‘pressure’:pressure, ‘humidity’:humidity,
‘wind’:wind, ‘rain’:rain, ‘clouds’:clouds,
‘forecast_list’:forecast_list},
context_instance=RequestContext(request))

Box 10.25 shows the source code of the Django template for the weather application and
Figure 10.18 shows a screenshot of the web page rendered from the template.

� Box 10.25: Django template for weather application

<html lang="en">
<head>
<title> Dashboard</title>
<!- Bootstrap Core CSS ->
<link href="/static/css/bootstrap.min.css" rel="stylesheet">
<!- Morris Charts CSS ->
<link href="/static/css/plugins/morris.css" rel="stylesheet">
<!-[if lt IE 9]>
<script src="/static/js/html5shiv.js"></script>
<script src="/static/js/respond.min.js"></script>
<![endif]->
<script src="/static/js/raphael-min.js"></script>
<script src="/static/js/jquery-1.8.2.min.js"></script>
<script src="/static/js/morris-0.4.1.min.js"></script>
</head>
<body>
<div id="wrapper">
<div id="page-wrapper">
<div class="container-fluid">
<!- Page Heading ->
<div class="row">
<div class="col-lg-12">
<h1 class="page-header">
{{city}}
</h1>
</div>
</div>
<!- /.row ->
<div class="row">
<div class="col-lg-4">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Current Weather</h3>
</div>
<div class="panel-body">
<div class="table-responsive">
<table class="table table-bordered table-hover table-striped">
<tbody>
<tr>
<td>Temperature</td>
<td>{{temp}} &#176;C</td>
</tr>
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<tr>
<td>Humidity</td>
<td>{{humidity}} %</td>
</tr>
<tr>
<td>Pressure</td>
<td>{{pressure}} hpa</td>
</tr>
<tr>
<td>Wind</td>
<td>{{wind}} meter/sec</td>
</tr>
<tr>
<td>Cloud Coverage</td>
<td>{{clouds}} %</td>
</tr>
<tr>
<td>Status</td>
<td>{{status}}</td>
</tr>
<tr>
<td>Last Updated Time</td>
<td>{{time}}</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
<div class="col-lg-4">
<div class="panel panel-green">
<div class="panel-heading">
<h3 class="panel-title">Search</h3>
</div>
<div class="panel-body">
<form method="post" action="/">{%csrf_token%}
<input type="text" name="city" id="city" placeholder="City" />
<input type="submit" value="Search" />
</form>
</div>
</div>
</div>
</div>
<!- /.row ->
<div class="row">
<div class="col-lg-4">
<div class="panel panel-green">
<div class="panel-heading">
<h3 class="panel-title">Forecast - Temperature</h3>
</div>
<div class="panel-body">
<script>
$(function() {
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Morris.Line({
element: ‘morris-line-chart’,
data: [
{% for f in forecast_list %}

{ y: ‘{{f.date}}’, ‘a’: {{f.tempMax}}, ‘b’: {{f.tempMin}} },
{% endfor %}

],
xkey: ‘y’,
ykeys: [‘a’, ‘b’],
xLabels:‘day’,
lineColors: [‘red’,‘blue’],
labels: [‘Maximum Temperature’, ‘Minimum Temperature’]
});
});

</script>
<div id="morris-line-chart"></div>
</div>
</div>
</div>
<div class="col-lg-4">
<div class="panel panel-yellow">
<div class="panel-heading">
<h3 class="panel-title">Forecast - Rain</h3>
</div>
<div class="panel-body">
<script>
$(function() {
Morris.Line({
element: ‘morris-line-chart1’,
data: [
{% for f in forecast_list %}

{ y: ‘{{f.date}}’, ‘a’: {{f.rain}} },
{% endfor %}

],
xkey: ‘y’,
ykeys: [‘a’],
xLabels:‘day’,
labels: [‘Rain’],
lineColors: [‘green’]
});
});

</script>
<div id="morris-line-chart1"></div>
</div>
</div>
</div>
</div>
<!- /.row ->
</div>
<!- /.container-fluid ->
</div>
<!- /#page-wrapper ->
</div>
<!- /#wrapper ->
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<!- jQuery ->
<script src="/static/js/jquery.js"></script>
<!- Bootstrap Core JavaScript ->
<script src="/static/js/bootstrap.min.js"></script>
</body>
</html>

Figure 10.18: Screenshot of Django application for displaying weather data

Summary
In this chapter we provide a comparison of relational and non-relational NoSQL databases
and also examples of some popular databases which can be used as serving databases for
big data applications. Relational databases have a well defined consistent model and fixed
schemas for the relations. Relational databases provide Atomicity, Consistency, Isolation
and Durability (ACID) guarantees. Non-relational databases do not have fixed schemas and
not provide ACID guarantees. Non-relational databases are more scalable as compared to
relational databases and have distributed, highly available and fault tolerant architectures.
We described examples of using MySQL, DynamoDB, Cassandra and MongoDB as serving
databases. Next, we described the Django Python web framework which can be used for
developing web applications to present the analysis results to the users. Django adopts a
model-template-view architecture and offers a unified API to the database backend. We also
described examples of creation the models, views and templates for a reference application.

Big Data Science & Analytics: A Hands-On Approach





Part III

ADVANCED TOPICS





11 - Analytics Algorithms

This chapter covers
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• Spark MLlib
• H2O
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In this chapter, you will learn algorithms for big data analytics including clustering,
classification, regression and recommendation. For the examples in this chapter, we will use
Spark MLlib and H2O machine learning frameworks.

11.1 Frameworks

11.1.1 Spark MLlib

Spark MLlib is the Spark’s machine learning library which provides implementations
of various machine learning algorithms including classification, regression, clustering,
collaborative filtering and dimensionality reduction. The MLlib APIs are built on top of
the Spark’s resilient distributed datasets (RDDs). MLlib also provides high-level data types
such as Vector, LabeledPoint, Rating and Matrix, which are backed by RDDs. The benefit
of using MLlib over machine learning libraries is that it provides parallel implementations
of machine learning algorithms and can process large distributed datasets. Spark MLlib
provides APIs for Python, Scala, and Java programming languages. Figure 11.1 shows the
various components of Spark MLlib.
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Figure 11.1: Spark MLlib components
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11.1.2 H2O
H2O is an open source predictive analytics framework which provides implementations
of various machine learning algorithms for clustering, classification, and dimensionality
reduction. Figure 11.2 shows the various components of H2O framework. H2O provides APIs
for Python, Scala, R and Java programming languages. H2O also provides a notebook-style
web interface called H2O which allows users to import data from various sources, build
machine learning models and make predictions using the models. H2O can either run as a
standalone cluster or on top of existing Hadoop or Spark clusters. H2O’s Sparkling Water
library integrates the H2O machine learning engine with Spark. H2O can connect to various
sources of data such as HDFS, S3, SQL, and NoSQL.
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Figure 11.2: H2O components
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Setting up H2O

H2O can be either run as a standalone cluster or on top of a Hadoop cluster. To setup a
standalone cluster of H2O, download the latest H2O release from
http://h2o.ai/download/ and follow the commands shown in the box below:

� unzip h2o-3.2.0.5.zip
cd h2o-3.2.0.5
java -jar h2o.jar

To run H2O on a Hadoop cluster, download an H2O release specific to your Hadoop
version and follow the commands shown in the box below:

� unzip h2o-3.2.0.5-hdp2.2.zip
cd h2o-3.2.0.5-hdp2.2
hadoop jar h2odriver.jar -nodes 1 -mapperXmx 6g -output hdfsOutputDir

The above command will launch an H2O cluster with one node and 6GB memory. The
URL of the H2O Flow UI can be obtained from the output as shown below:

� Determining driver host interface for mapper->driver callback...
[Possible callback IP address: 172.31.2.74]
[Possible callback IP address: 127.0.0.1]
Using mapper->driver callback IP address and port: 172.31.2.74:41892
(You can override these with -driverif and -driverport.)
Memory Settings: mapreduce.map.java.opts: -Xms1g -Xmx1g -XX:PermSize=256m
-verbose:gc -XX:+PrintGCDetails
-XX:+PrintGCTimeStamps -Dlog4j.defaultInitOverride=true
Extra memory percent: 10
mapreduce.map.memory.mb: 1126
15/10/01 05:58:35 INFO impl.TimelineClientImpl:
Timeline service address: http://ip-172-31-2-74.ec2.internal:8188/ws/v1/timeline/
15/10/01 05:58:35 INFO client.RMProxy:
Connecting to ResourceManager at ip-172-31-2-74.ec2.internal/172.31.2.74:8050
15/10/01 05:58:36 INFO mapreduce.JobSubmitter: number of splits:1
15/10/01 05:58:36 INFO mapreduce.JobSubmitter:
Submitting tokens for job: job_1443678868179_0002
15/10/01 05:58:37 INFO impl.YarnClientImpl:
Submitted application application_1443678868179_0002
15/10/01 05:58:37 INFO mapreduce.Job: The url to track the job:
http://ip-172-31-2-74.ec2.internal:8088/proxy/application_1443678868179_0002/
Job name ‘H2O_87495’ submitted
JobTracker job ID is ‘job_1443678868179_0002’
For YARN users, logs command is
‘yarn logs -applicationId application_1443678868179_0002’
Waiting for H2O cluster to come up...
H2O node 172.31.2.74:54321 requested flatfile
Sending flatfiles to nodes...
[Sending flatfile to node 172.31.2.74:54321]
H2O node 172.31.2.74:54321 reports H2O cluster size 1
H2O cluster (1 nodes) is up
(Note: Use the -disown option to exit the driver after cluster formation)

Open H2O Flow in your web browser: http://172.31.2.74:54321

(Press Ctrl-C to kill the cluster)
Blocking until the H2O cluster shuts down...
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Figure 11.3 shows a screenshot of the H2O Flow UI.

Figure 11.3: H2O Flow UI

11.2 Clustering
Clustering is the process of grouping similar data items together such that data items that are
more similar to each other (with respect to some similarity criteria) than other data items are
put in one cluster. Clustering big data is of much interest, and happens in applications such
as:
• Clustering social network data to find a group of similar users
• Clustering electronic health record (EHR) data to find similar patients.
• Clustering sensor data to group similar or related faults in a machine
• Clustering market research data to group similar customers
• Clustering clickstream data to group similar users
Clustering is achieved by clustering algorithms that belong to a broad category algorithms

called unsupervised machine learning. Unsupervised machine learning algorithms find the
patterns and hidden structure in data for which no training data is available.

11.2.1 K-Means
K-means is a clustering algorithm that groups data items into k clusters, where k is user
defined. Each cluster is defined by a centroid point. All points in a cluster are closer
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(with respect to some distance measure) to their centroid as compared to the centroids of
neighboring clusters. K-means clustering begins with a set of k centroid points which are
either randomly chosen from the dataset or chosen using some initialization algorithm such
as canopy clustering. The algorithm proceeds by finding the distance between each data
point in the dataset and the centroid points. Based on the distance measure, each data point
is assigned to the cluster belonging to the closest centroid. In the next step the centroids
are recomputed by taking the mean value of all the data points in a cluster. This process
is repeated till the centroids no longer move more than a specified threshold. The k-means
clustering algorithm is shown in Box 11.1.

Figure 11.4: Example of clustering 300 points with k-means: (a) iteration 1, (b) iteration 2,
(c) iteration 3, (d) iteration 5, (e) iteration 10, (f) iteration 100.

� Box 11.1: k-means clustering algorithm

Start with k centroid points

while the centroids no longer move beyond a threshold or maximum number of iterations reached:
for each point in the dataset:

for each centroid:
find the distance between the point and the centroid
assign the point to the cluster belonging to the nearest centroid

for each cluster:
recompute the centroid point by taking mean value of all points in the cluster

Figure 11.4 shows an example of clustering 300 data points. The centroid points are
recomputed after each iteration, and as seen in this figure there is little movement of centroids
after ten iterations.

There are various distance measures that can be used for clustering algorithms including:
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• Euclidean distance measure: This is the simplest of all distance measures. The
Euclidean distance between points p and q in N-dimensional space is given as:

d(p,q) =

√
N

∑
i=1

(pi−qi)2 (11.1)

• Cosine distance measure: Cosine distance measure finds the cosine of angle between
two vectors (vectors drawn from the origin to the points).

d = cos(θ) =
A.B
||A||||B||

(11.2)

• Manhattan distance measure: Manhattan distance measure is the sum of the
absolute differences of the coordinates of two points given as:

d(p,q) =
∣∣∣ N

∑
i=1

(pi−qi)
∣∣∣ (11.3)

Let us look at an example of k-means clustering using H2O framework. For this example,
we will use the Wine dataset from the UCI Machine learning repository [39]. This dataset
has results of a chemical analysis of wines grown in Italy. The chemical analysis determined
the quantities of 13 constituents (such as alcohol, malic acid, magnesium, etc. ) found in
three types of wines.

Using the wine dataset and ignoring the class labels (types of wines) let us try to cluster
the data to identify patterns in the data using H2O. Launch an H2O cluster using the following
command:

� java -jar h2o.jar

When the H2O cluster is launched with the above command the output will include a
URI of the H2O Flow UI (default for local machine is http://localhost:54321). With the
H2O cluster launched, let us import the data into H2O from the H2O Flow UI as shown in
Figure 11.5. You can either use the H2O importFiles command or choose the import files
option from the H2O Flow UI menu. Enter the path to the data file and press the import
button.

The next step is to parse the imported file. Click the Parse button after importing the
file. Figure 11.6 shows setting up the parser. In this step, you can specify various parsing
options such as the data types for each column, the type of parser to use (CSV, XLS, etc.),
the separator used, etc. For most data parsing, H2O automatically recognizes the data type.
After selecting the parse options, click the Parse button to parse the file. The data from the
parsed file is stored in an H2O frame. Figure 11.7 shows the H2O frame created by parsing
the dataset file.

With the data imported and parsed, let us now build a k-means clustering model. Click
the Build Model button in the actions of the parsed frame or choose the Build Model option
from the menu. Figure 11.8 shows the various options for the model. Select the algorithm
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Figure 11.5: Importing dataset files using H2O Flow UI

Figure 11.6: Parsing the dataset file using H2O Flow UI
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Figure 11.7: Viewing the H2O frame created from parsed dataset file

type to be K-means, training frame as wine.hex, and enter the number of clusters (k=3) and
maximum iterations (max_iterations=100). After specifying the model options, click the
Build Model button to build the model.

Figure 11.9 shows the details of the k-means model built from the Wine dataset. The
model summary shows the various model statistics such as the number of clusters, number of
categorical columns, number of iterations, etc. The centroid statistics and cluster means can
also be seen in the model output.

While it is convenient to use the H2O Flow UI for analyzing the data, for datasets that
require additional processing you can implement Python programs that use the H2O Python
APIs. Let us look at a Python implementation of clustering data with k-means using the H2O
Python API. Box 11.2 shows a Python program for k-means clustering using H2O. In this
program, we import the H2O python library and then initialize H2O. This will launch a new
H2O cluster. The import_frame is used to import the data into an H2O frame. With the data
imported, we use the kmeans function to build a k-means clustering model.

� Box 11.2: Python program for k-means clustering using H2O

import h2o

h2o.init()

data = h2o.import_frame(path="/home/ubuntu/wine.data.txt")

data.describe()
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Figure 11.8: Building a k-means clustering model using H2O Flow UI

model = h2o.kmeans(x=data[1:], k=3,
init="Random", seed=2, standardize=True)

total_within_sumofsquares = model.tot_withinss()
number_of_clusters = len(model.centers())
number_of_dimensions = len(model.centers()[0])
number_of_rows = sum(model.size())

Let us repeat the clustering example using Spark MLlib. Box 11.3 shows a Python
program for clustering data using Spark MLlib. Spark MLlib includes a parallel implementation
of k-means which can be used for clustering big data. This program can be run in the PySpark
shell. In this program we implement a parseVector function which takes each line of the
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Figure 11.9: H2O Flow UI showing the details of the k-means clustering model

input file, splits the line into individual columns separated by commas, converts the values to
floats and returns a Python numpy array. The KMeans class of the MLlib clustering module is
used to build a k-means clustering model. After the model has been built, the clusterCenters
method of the KMeans class can be used to view the cluster centers.
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� Box 11.3: Python program for k-means clustering using Spark MLlib

import numpy as np
from pyspark import SparkContext
from pyspark.mllib.clustering import KMeans

def parseVector(line):
return np.array([float(x) for x in line.split(‘,’)])

sc = SparkContext(appName="KMeans")

lines = sc.textFile(‘file:///home/hadoop/wine.data.txt’)

data = lines.map(parseVector)

k = 3

model = KMeans.train(data, k)

print("Final centers: " + str(model.clusterCenters))

11.3 Case Study: Song Recommendation System
In this section, we will describe a case study on building a music recommendation system
using Apache Spark. While most of the song recommendation systems use collaborative
filtering, which requires access to user profile data such as the songs played by users and
the song ratings given the users, in the absence of such information, it becomes difficult to
recommend songs to a user. For the purpose of this case study we will use a content-based
filtering approach which does not require information about the users, instead, it leverages
the properties of the songs for recommending new songs to the users.

For this case study, we will use the Million Songs Dataset [44]. The dataset contains the
information about a million contemporary songs such as the song metadata, artist metadata
and acoustic features of the songs. The dataset files are available in HDF5 format. For this
case study, we will use a subset of the data. Box 11.4 shows the Python code for reading an
H5 file and extracting the metadata fields of interest into a CSV file.

� Box 11.4: Python program for reading H5 files and exporting meta-data to CSV

import hdf5_getters as GETTERS
import csv

h5 = GETTERS.open_h5_file_read("input.h5")
c = csv.writer(open("data.csv", "w+"))

all_artist_id = []
all_artist_names = []
all_songs_id = []
all_songs_names = []
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all_tempo = []
all_loudness = []
all_key_confidence = []
all_mode_confidence = []
all_song_hottness=[]
all_year =[]

artist_id = GETTERS.get_artist_id(h5)
all_artist_id.append(artist_id)

artist_name = GETTERS.get_artist_name(h5)
all_artist_names.append(artist_name)

song_id = GETTERS.get_song_id(h5)
all_songs_id.append(song_id)

song_name = GETTERS.get_title(h5)
all_songs_names.append(song_name)

loudness = GETTERS.get_loudness(h5)
all_loudness.append(loudness)

song_hottness = GETTERS.get_song_hotttnesss(h5)
all_song_hottness.append(song_hottness)

tempo = GETTERS.get_tempo(h5)
all_tempo.append(tempo)

key_confidence = GETTERS.get_key_confidence(h5)
all_key_confidence.append(key_confidence)

mode_confidence = GETTERS.get_mode_confidence(h5)
all_mode_confidence.append(mode_confidence)

year=GETTERS.get_year(h5)
all_year.append(year)

for k in range(len(list(all_artist_names))):
artist_id=list(all_artist_id)[k]
artist_name=list(all_artist_names)[k]
song_id=list(all_songs_id)[k]
song_name=list(all_songs_names)[k]
loudness=list(all_loudness)[k]
tempo=list(all_tempo)[k]
key_confidence=list(all_key_confidence)[k]
mode_confidence=list(all_mode_confidence)[k]
year=list(all_year)[k]

c.writerow([artist_id, artist_name, song_id, song_name,
loudness, tempo,key_confidence, mode_confidence, year])

The box below shows the format and a sample of the meta-data extracted into a CSV file
from the original dataset.
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� #Sample of data extracted into CSV
Artist ID, Artist Name, Song ID, Song Name, Loudness, Song Hottness, Tempo, Key Confidence, Mode Confidence,
Year
ARE26EG1187B990AEF, Sunscreem, SOICLQB12A8C13637C, Exodus, -8.955, 0.79, 130.201, 0.625, 0.558, 1995

Box 11.5 shows a Spark program for finding the top 10 songs and top 10 artists in each
year. This program takes as input the CSV file generated in the previous step. The map
transformation was used to split the comma separated values into words. The blank lines
are then filtered out. The next step is to map the comma separated values into (artist_id,
artist_name, artist_hotness, year) and (song_id, song_name, song_hotness, year). There are
artists with multiple songs, so the distinct() transformation is used to find the unique artists
so that they are not repeated while calculating top artists. Next, a for loop is used to calculate
the top artists and songs for each year. The next step is to change the keys from artist_id and
song_id to artist_hotness and song_hotness which was done with another map transformation.
However, some of the songs had the song_hotness value as NaN. So these values had to be
filtered out. The sortByKey operator is used to arrange the entries in descending order of
hotness values and the take operator is used to return a list of top 10 songs and artists.

� Box 11.5: Spark program for finding the top 10 songs and top 10 artists in each
year

from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

step1=sc.textFile("file:///output_csv.csv")
step2=step1.map(lambda line: line.split(",")).filter(lambda line:
len(line)>1)

step3=step2.map(lambda line: ((str(line[1].encode(‘utf-8’)),
str(line[0].encode(‘utf-8’)))))

step4=step2.map(lambda line: ((line[1].encode(‘utf-8’),
line[0].encode(‘utf-8’),float(line[4]),int(line[9])))).distinct()

for i in range (10)
inp_year = 1990 + i

step5=step4.filter(lambda line: line[3]==inp_year).map(lambda
line: ((float(line[2]),(line[0],line[1],line[3]))))

step6=step5.sortByKey(False)

#Emit top 10 artists
topArtists=step6.take(10)

step8=step2.map(lambda line: ((line[3].encode(‘utf-8’),
line[2].encode(‘utf-8’),float(line[5]),int(line[9])))).distinct()

step9=step8.filter(lambda line: line[3]==inp_year).map(lambda line:
((float(line[2]),(line[0],line[1],line[3])))).filter(lambda
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line: not math.isnan(line[0]))

step10=step9.sortByKey(False)

#Emit top 10 songs
topSongs=step10.take(10)

sc.stop

To recommend similar songs, the songs are first clustered into 10 clusters. Songs in a
particular cluster are more correlated/similar to each other as compared to the songs in other
clusters. Spark’s MLlib provides an implementation of the K-Means clustering algorithm.
After clustering the songs, we append the corresponding cluster information of each song
into the CSV file which also has the song metadata. The cluster centers are stored in a pickle
file. Figure 11.10 shows the steps involved in song recommendation.

Select a subset of fields from songs dataset

Cluster the songs using K-Means

Save cluster centers and cluster for each song

Find the corresponding cluster

Calculate similarity with every other 
song in the cluster

Find top 10 songs with highest similarity

Input Song

Figure 11.10: Steps involved in song recommendation

For recommending a song, the user provides a song-ID as input. The system then looks
up the CSV file containing cluster information to find the corresponding cluster and loads
the pickle file to find the corresponding cluster center. The next step is to find every other
song in the corresponding cluster apart from the user input song and compute the Euclidean
distance between each song and the user input song. Note that, after clustering the search
space is significantly reduced and this search can potentially be performed in real time. The
songs in the cluster are then sorted according to their Euclidean distance with the user input
song and top 10 songs are selected for displaying to the user.

Box 11.6 shows the Spark program for clustering the songs, and Box 11.7 shows the
Spark program for recommending similar songs.
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� Box 11.6: Spark program for clustering the songs

from pyspark import SparkContext
from pyspark.mllib.clustering import KMeans
from math import sqrt
import sys
import pickle

sc = SparkContext("local", "App")

def closestPoint(p,centers):
bestIndex = 0
closest = float("+inf")
for i in range(len(centers)):

tempDist = np.sum((p - centers[i]) ** 2)
if tempDist < closest:

closest = tempDist
bestIndex = i

return bestIndex

Parseddata=sc.textFile("file:///data.csv").map(lambda line:
line.split(",")).filter(lambda line:
len(line)>1).map(lambda line:
(float(line[4]),float(line[5]),float(line[6]),float(line[7])))

clusters = KMeans.train(Parseddata, 10, maxIterations=100,
runs=100, initializationMode="random")

print str(clusters.clusterCenters)

cc=clusters.clusterCenters
pickle.dump(cc,open("cluster_centers.p","wb"))

PD1 = sc.textFile("file:///data.csv").map(lambda line:
line.split(",")).filter(lambda line: len(line)>1).map(lambda p:
(p[0].encode(‘utf-8’),p[1].encode(‘utf-8’),p[2].encode(‘utf-8’),
p[3].encode(‘utf-8’),float(p[4]),float(p[5]),float(p[6]),
float(p[7]),closestPoint([float(p[4]),float(p[5]),
float(p[6]),float(p[7])],cc),p[8].encode(‘utf-8’)))

PD1.saveAsTextFile("file:///data_clustered.txt")

logData = sc.textFile("file:///data_updated.csv").cache()

sc.stop()

� Box 11.7: Spark program for recommending similar songs

from pyspark import SparkContext
from operator import add
from pyspark.mllib.clustering import KMeans
import numpy as np
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from numpy import array
from math import sqrt
import sys
import pickle
import re
import datetime
sc = SparkContext("local", "Simple App")

def g(x):
print x

def line_strip(p):
a = p[0].encode(‘ascii’)
b = p[1].encode(‘ascii’)
c = (p[2].encode(‘ascii’)).strip(" ")
d = p[3].encode(‘ascii’)
e=float(p[4])
f=float(p[5])
g=float(p[6])
h=float(p[7])
i=int(p[8].encode(‘ascii’))
k = p[9].encode(‘ascii’)
j=(a,b,c,d,e,f,g,h,i,k)
return j

def euclid_dist(p,user_point,center):
a=user_point-center
b=p-center

c=np.array([(user_point[0]/center[0]-1),(user_point[1]/center[1]-1),
(user_point[2]/center[2]-1),(user_point[3]/center[3]-1)])

d=np.array([(p[0]/center[0]-1),(p[1]/center[1]-1),
(p[2]/center[2]-1),(p[3]/center[3]-1)])

dist1=np.linalg.norm(c)
dist2= np.linalg.norm(d)
dot=np.dot(c,d)
cosine=dot/dist1/dist2
similarity=np.sqrt(cosine*cosine+(dist1-dist2)*(dist1-dist2))
return str(similarity)

PD4_read=sc.textFile("file:////data.csv")
PD4_read_count=PD4_read.count()
PD4_iter=PD4_read.map(lambda line: line.split(",")).filter(lambda
line: len(line)>1).map(lambda line:line_strip(line)).collect()

for item in range(len(PD4_iter)):
input_user=PD4_iter[item][2]

PD4_read2=PD4_read.map(lambda line: line.split(",")).filter(lambda
line: len(line)>1).map(lambda line:line_strip(line))

PD4_filt=PD4_read2.filter(lambda line:(line[2]==input_user))
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PD4_filt.foreach(g)
CF=PD4_filt.collect()

Cl_found=CF[0][8]
print ‘Cluster Found=’,Cl_found
cc = pickle.load(open("cluster_centers.p", "rb" ))
print ‘Cluster Center=’,cc[Cl_found][0],‘,’,

cc[Cl_found][1],‘,’,cc[Cl_found][2],‘,’,
cc[Cl_found][3],‘’,type(Cl_found)

PD6=PD4_read2.filter(lambda line:
(line[8]==Cl_found)).filter(lambda line:(line[2]!=input_user))

PD7=PD6.map(lambda p:(euclid_dist(np.asarray((p[4],p[5],p[6],p[7])),
np.asarray((CF[0][4],CF[0][5],CF[0][6],CF[0][7])),cc[Cl_found]),
(p[0],p[1],p[2],p[3]))).sortByKey().collect()

post = {"name": (CF[0][3]).encode(‘ascii’),
"artist":(CF[0][1]).encode(‘ascii’),
"spark-id":(CF[0][2]).encode(‘ascii’),
"year":(CF[0][9]).encode(‘ascii’),
"tags": ["mongodb", "python", "pymongo"],
"date": datetime.datetime.utcnow()}

post["similar"]=[]

print ‘Similar Songs are ’

for item in range(10):
song = {"name": (PD7[item][1][3]).encode(‘ascii’),

"artist":(PD7[item][1][1]).encode(‘ascii’),
"spark-id":(PD7[item][1][2]).encode(‘ascii’)}

post["similar"].append(song)

print post

sc.stop()

11.4 Classification & Regression

Classification is the process of categorizing objects into predefined categories. Classification
is achieved by classification algorithms that belong to a broad category of algorithms called
supervised machine learning. Supervised learning involves inferring a model from a set of
input data and known responses to the data (training data) and then using the inferred model
to predict responses to new data. There are various types of classification approaches for big
data analytics including:
• Binary classification: Binary classification involves categorizing the data into two

categories. For example, classifying the sentiment of a news article into positive or
negative, classifying the state of a machine into good or faulty, classifying the health
test into positive or negative, etc.
• Multi-class classification: Multi-class classification involves more than two classes

into which the data is categorized. For example, gene expression classification problem
involves multiple classes.
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• Document classification: Document classification is a type of multi-class classification
approach in which the data to the classified is in the form of text document. For
example, classifying news articles into different categories such as politics, sports, etc.

Regression
While in classification, the response variable is categorical and unordered (for example
yes/no or positive/negative in binary classification) in Regression, the response variable
takes continuous values. Regression involves modeling the relationship between a dependent
variable (response variable) and one or more independent variables. For example, in linear
regression a dependent variable y is modeled as a linear combination of the independent
variables. In regression, the goal is to learn a function h(x) from the training set, which can
predict the values of y. The function h(x) is called the hypothesis. For linear regression,

h(x) =
n

∑
i=0

θixi

where θ0, θ1, ..., θn are the parameters.

11.4.1 Performance Evaluation Metrics
For a binary classification problem (with two classes Positive and Negative) we can have four
possible cases: (1) For a Positive class if the prediction is Positive then this is a TruePositive,
(2) For a Positive class if the prediction is Negative then this is a FalseNegative, (3) For a
Negative class if the prediction is Negative then this is a TrueNegative, (4) For a Negative
class if the prediction is Positive then this is a FalsePositive, The performance of classification
algorithms can be evaluated using the following metrics:
• True Positive Rate (TPR)/ Sensitivity / Recall: True Positive Rate (TPR) also called

Sensitivity or Recall is the fraction of the positives which are classified correctly.

T PR =
TruePositive

(TruePositive+FalseNegative)
(11.4)

• True Negative Rate (TNR)/ Specificity: True Negative Rate (TPR) also called
Specificity is the fraction of the negatives which are classified correctly.

T NR =
TrueNegative

(TrueNegative+FalsePositive)
(11.5)

• False Positive Rate (FPR): False Positive Rate (FPR) is defined as,

FPR =
FalsePositive

(FalsePositive+TrueNegative)
(11.6)

• Precision: Precision is the fraction of objects that are classified correctly. Precision
is defined as,

Precision =
TruePositive

(TruePositive+FalsePositive)
(11.7)
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• Accuracy: Accuracy is defined as,

Accuracy =
(TruePositive+TrueNegative)

(TruePositive+TrueNegative+FalsePositive+FalseNegative)
(11.8)

• F1-score: F1-score is a measure of accuracy that considers both precision and recall.
F1-score is the harmonic means of precision and recall given as,

F1−Score =
2(Precision)(Recall)
(Precision+Recall)

(11.9)

• Receiver Operating Characteristics (ROC) Curve: ROC curve is the plot of the
True Positive Rate (TPR) versus the False Positive Rate (FPR). For different values of
the discrimination threshold (threshold for the probability above which we choose a
positive class), we get a number of pairs of (TPR, FPR) values.
• Area Under Curve (AUC): AUC is the area under the ROC curve.
• Mean Squared Error (MSE): Mean Squared Error is the mean of the sum of the

square of the errors between the estimated and actual values.

MSE =
1
n

n

∑
i=1

(h(x(i))− y(i))2 (11.10)

• Coefficient of Determination (R2): Coefficient of Determination also called R2 or
R-Squared, is a measure of how well the model is able to explain the variation of the
data. R2 is defined as,

R2 = 1− ∑
n
i=1(y

(i)−h(x(i)))2

∑
n
i=1(y(i)−µ)2 = 1− SSE

SST
(11.11)

where SSE is the residual sum of squares and SST is the total sum of squares. R2

varies between 0 and 1. R2=1 means that the model explains all the variability of the
data around its mean.

11.4.2 Naive Bayes
Naive Bayes is a probabilistic classification algorithm based on the Bayes theorem with a
naive assumption about the independence of feature attributes. Given a class variable C and
feature variables F1, ...,Fn, the conditional probability (posterior) according to Bayes theorem
is given as,

P(C|F1, ...,Fn) =
P(F1, ...,Fn|C)P(C)

P(F1, ...,Fn)
(11.12)

where, P(C|F1, ...,Fn) is the posterior probability, P(F1, ...,Fn|C) is the likelihood and
P(C) is the prior probability and P(F1, ...,Fn) is the evidence. Naive Bayes makes a naive
assumption about the independence every pair of features given as,
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P(F1, ...,Fn|C) =
n

∏
i=1

P(Fi|C) (11.13)

In practice, since the evidence P(F1, ...,Fn) is constant for a given input and does not
depend on the class variable C, only the numerator of the posterior probability is important
for classification. Therefore we get,

P(C|F1, ...,Fn) ∝ P(C)
n

∏
i=1

P(Fi|C) (11.14)

With this simplification, classification can then be done as follows,

C = argmaxCP(C)
n

∏
i=1

P(Fi|C) (11.15)

There are different versions of Naive Bayes which differ in the naive assumption made.
Some of them include:
• Gaussian Naive Bayes: Gaussian Naive Bayes assumes the likelihood P(F1, ...,Fn|C)

as,

P(F1, ...,Fn|C) =
n

∏
i=1

P(Fi|C) (11.16)

where,

P(Fi|C) =
1√

2πσ2
C

exp
(−(Fi−µC)

2

2πσ2
C

)
(11.17)

where µ is the mean and σC is the standard deviation for values in Fi in class C.
Gaussian Naive Bayes is suitable for problems in which the feature variables have
continuous values which are assumed to have a Gaussian distribution.
• Multinomial Naive Bayes: Multinomial Naive Bayes uses multinomial distribution

for each of the feature variables. This is suitable for problems which have discrete
features such as document classification.
• Bernoulli Naive Bayes: Bernoulli Naive Bayes is also suitable for problems which

have discrete features. The likelihood in Bernoulli Naive Bayes is as follows,

P(Fi|C) = P(i|CFi(1−P(i|C))(1−Fi) (11.18)

where each feature is assumed to be binary valued.
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Let us look at an example of Naive Bayes classification using H2O framework. For this
example, we will use the UCI Parkinsons dataset [43]. This dataset is composed of a range
of biomedical voice measurements. Each column represents a particular voice measure. The
status column has a value 1 for people who have Parkinsons disease and 0 for people who
do not have the disease. We will use the training dataset to train a Naive Bayes model and
then use the model to make predictions for the test dataset. (i.e. classify people into two
categories: those who have Parkinsons disease and those who do not have the disease).

The first step is to import the dataset file into H2O from the H2O Flow UI as shown in
Figure 11.11.

Figure 11.11: Importing dataset files using H2O Flow UI
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Figure 11.12: Parsing the dataset file using H2O Flow UI

Next, we parse the dataset file as shown in Figure 11.12. In this step, you can specify
various parsing options. After selecting the parse options, click the Parse button to parse the
file. The data from the parsed file is stored in an H2O frame. Figure 11.13 shows the H2O
frame created by parsing the dataset file.
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Figure 11.13: Viewing the frame created from the parsed dataset file

With the data imported and parsed, let us now build a Naive Bayes classification model.
Click the Build Model button in the actions of the parsed frame or choose the Build Model
option from the menu. Figure 11.14 shows the various options for the model. Select the
algorithm type to be Naive Bayes, training frame as train.hex and response column as C1.
After specifying the model options, click the Build Model button to build the model.
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Figure 11.14: Building a Naive Bayes model using H2O Flow UI

Figure 11.15 shows the details of the Naive Bayes model. The model summary shows
the various model statistics such as mean squared error (MSE), coefficient of determination
(R2) and area under the curve (AUC).

Next, import and parse the test dataset in the same way as we imported and parsed the
training dataset. To make the predictions for the test dataset, enter the predict command or
choose the predict option from the menu and then select the model and test frame and then
click the Predict button, as shown in Figure 11.16.

Figure 11.17 shows the prediction summary including the plot of true positive rate (TPR)
and false positive rate (FPR) called the receiver operating characteristic (ROC) curve. Finally,
the prediction frame can be exported (as a CSV file) as shown in Figure 11.18.
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Figure 11.15: Viewing details of the Naive Bayes model

Figure 11.16: Making predictions for the test data
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Figure 11.17: Viewing the prediction results

Figure 11.18: Viewing and exporting the prediction frame
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Let us look at a Python implementation of Naive Bayes classification using the H2O
Python API. Box 11.8 shows a Python program for Naive Bayes classification. The
import_frame function is used to import the training and test data. Next, we specify the
response columns in the training and test frames. We use the naive_bayes function to build
a Naive Bayes model. To this function we pass the training data without response column
(x=train[1:]), response column in the training data (y=train[0]), test data without response
column (validation_x= test[1:]) and the response column in the test data (validation_y=test[0]).
With the model built, we can then use the show() function to view the model summary, predict
function to make predictions, and model_performance function to view the performance of
the model with the test data. To export the prediction frame into a CSV file, the download_csv
function can be used.

� Box 11.8: Python program for Naive Bayes classification using H2O

import h2o

h2o.init()

train = h2o.import_frame(path=h2o.locate("/home/ubuntu/train.csv"))
test = h2o.import_frame(path=h2o.locate("/home/ubuntu/test.csv"))

train[0] = train[0].asfactor()
test[0] = test[0].asfactor()

model = h2o.naive_bayes(x=train[1:], y=train[0], validation_x= test[1:],
validation_y=test[0])

model.show()

prediction = model.predict(test)

prediction.head()

perf = model.model_performance(test)
perf.show()

print ‘Confusion Matrix: ’
print (perf.confusion_matrix())

print ‘Precision: ’
print (perf.precision())

print ‘Accuracy: ’
print (perf.accuracy())

print ‘AUC: ’
print (perf.auc())

h2o.download_csv(prediction, ‘prediction.csv’)

Box 11.9 shows the output of the Python program for Naive Bayes classification.
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� Box 11.9: Output of program for Naive Bayes classification using H2O

>>> model.show()

Model Details
=============
H2OBinomialModel : Naive Bayes
Model Key: NaiveBayes_model_python_1441787876875_21

Model Summary:

number_of_response_levels min_apriori_probability max_apriori_probability

- ------------------ ----------------- -----------------

2 0.218978 0.781022

ModelMetricsBinomial: naivebayes

** Reported on train data. **

MSE: 0.303730509167
R2: -0.775924587712
LogLoss: 4.06592781328
AUC: 0.858878504673
Gini: 0.717757009346

Confusion Matrix (Act/Pred) for max f1 @ threshold = 2.32859177356e-09:

-1 1 Error Rate
--- --- -- ----- --------
-1 12 18 0.6 (18.0/30.0)
1 1 106 0.0093 (1.0/107.0)
Total 13 124 0.1387 (19.0/137.0)

Maximum Metrics:

metric threshold value idx
----------------- ------- ----- ---
max f1 2.32859e-09 0.917749 87
max f2 1.89463e-10 0.963964 90
max f0point5 2.96126e-07 0.889101 67
max accuracy 1.14672e-08 0.861314 83
max precision 1 1 0
max absolute_MCC 2.32859e-09 0.551268 87
max min_per_class_accuracy 5.64389e-06 0.766355 52

ModelMetricsBinomial: naivebayes

** Reported on validation data. **

MSE: 0.291725313697
R2: -0.36300549344
LogLoss: 3.97527089485
AUC: 0.888888888889
Gini: 0.777777777778

Confusion Matrix (Act/Pred) for max f1 @ threshold = 9.23991456735e-09:

-1 1 Error Rate
--- --- -- ----- -------
-1 10 8 0.4444 (8.0/18.0)
1 1 39 0.025 (1.0/40.0)
Total 11 47 0.1552 (9.0/58.0)
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Maximum Metrics:

metric threshold value idx
----------------- ------- ----- ---
max f1 9.23991e-09 0.896552 30
max f2 5.78867e-10 0.952381 33
max f0point5 1.31851e-05 0.916667 18
max accuracy 1.31851e-05 0.844828 18
max precision 0.0441224 0.961538 9
max absolute_MCC 1.31851e-05 0.675148 18
max min_per_class_accuracy 1.31851e-05 0.825 18

>>> prediction
First 10 rows and first 3 columns:
predict p-1 p1
------ ------- -------

1 4.04867e-06 0.999996
1 0.0174331 0.982567
1 1 9.23991e-09
1 3.86239e-67 1
1 1.39996e-27 1
1 1.10407e-17 1
1 1 9.9068e-08
-1 1 1.92925e-09
-1 1 5.84447e-10
1 1 1.04785e-08

>>> perf = model.model_performance(test)
>>> perf.show()

ModelMetricsBinomial: naivebayes

** Reported on test data. **

MSE: 0.291725313697
R2: -0.36300549344
LogLoss: 3.97527089485
AUC: 0.888888888889
Gini: 0.777777777778

Confusion Matrix (Act/Pred) for max f1 @ threshold = 9.23991456735e-09:

-1 1 Error Rate
--- --- -- ----- -------
-1 10 8 0.4444 (8.0/18.0)
1 1 39 0.025 (1.0/40.0)
Total 11 47 0.1552 (9.0/58.0)

Maximum Metrics:

metric threshold value idx
----------------- ------- ----- ---
max f1 9.23991e-09 0.896552 30
max f2 5.78867e-10 0.952381 33
max f0point5 1.31851e-05 0.916667 18
max accuracy 1.31851e-05 0.844828 18
max precision 0.0441224 0.961538 9
max absolute_MCC 1.31851e-05 0.675148 18
max min_per_class_accuracy 1.31851e-05 0.825 18

>>> print ‘Precision: ’
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Precision:
>>> print (perf.precision())
[[0.04412240492341057, 0.9615384615384616]]
>>>
>>> print ‘Accuracy: ’
Accuracy:
>>> print (perf.accuracy())
[[1.3185115335693565e-05, 0.8448275862068966]]
>>>
>>> print ‘AUC: ’
AUC:
>>> print (perf.auc())
0.888888888889

Let us now look at a Naive Bayes classification example using Spark MLlib. For this
example, we will use the Wine dataset from the UCI Machine learning repository [39] which
includes results of a chemical analysis of wines. The chemical analysis determined the
quantities of 13 constituents (such as alcohol, malic acid, magnesium, etc. ) found in three
types of wines.

Box 11.10 shows a Python program for Naive Bayes classification using Spark MLlib.
This program can be run in the PySpark shell. In this program we implement a parseLine
function which takes each line of the input file, splits the line into individual columns
separated by commas, converts the values to floats and returns a Python numpy array. In
this function, we also change the wine labels from 1.0, 2.0 and 3.0 to 0.0, 1.0 and 2.0 as the
Spark’s implementation of Naive Bayes expects the labels from 0 to N-1 where N is the total
number of classes in the data.

The NaiveBayes class of the MLlib classification module is used to build a Naive Bayes
model. After the model has been built, the predict method of the NaiveBayes class can
be used to make the predictions. Finally, we compare the labels in the test dataset and the
predicted labels and compute the test error and the accuracy of the model.

� Box 11.10: Python program for Naive Bayes classification using Spark MLlib

from pyspark.context import SparkContext
from pyspark.mllib.classification import NaiveBayes
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint

def parseLine(line):
parts = line.split(‘,’)
label = float(parts[0])
if label==1.0:

label =0.0
if label==2.0:

label = 1.0
if label==3.0:

label = 2.0
features = Vectors.dense([float(x) for x in parts[1:]])
return LabeledPoint(label, features)

sc = SparkContext(appName="NBExample")
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trainingData = sc.textFile(‘file:///home/hadoop/wine.data.txt’).map(parseLine)

testData = sc.textFile(‘file:///home/hadoop/wine.test.txt’).map(parseLine)

model = NaiveBayes.train(trainingData, 1.0)

predictions = model.predict(testData.map(lambda x: x.features))

labelsAndPredictions = testData.map(lambda lp:
lp.label).zip(predictions)

testErr = labelsAndPredictions.filter(lambda v_p:
v_p[0] != v_p[1]).count()/float(testData.count())

print(‘Test Error = ’ + str(testErr))
# Test Error = 0.333333333333

predictionAndLabel = testData.map(lambda p : (model.predict(p.features),
p.label))

predictionAndLabel.take(10)
#[(0.0, 0.0), (0.0, 0.0), (1.0, 1.0), (1.0, 1.0), (2.0, 1.0), (1.0, 2.0),
(1.0, 2.0), (2.0, 2.0), (2.0, 2.0)]

accuracy = 1.0 * predictionAndLabel.filter(lambda (x, v):
x == v).count() / testData.count()

print accuracy
#0.666666666667

sc.stop()

11.4.3 Generalized Linear Model

While ordinary linear regression models are used for modeling response variables which are
continuous, normally distributed and have constant variance, Generalized Linear Models
(GLM) are a generalization of ordinary linear regression models that allows response variables
which are discrete, non-normally distributed and/or non-constant variance. Generalized
Linear Models are useful for modeling quantities which vary over a wide range (e.g. house
prices), categorical and unordered data (e.g. classifying whether a tumor is benign or
malignant) and ordinal data (e.g. movie ratings on a scale of 0 to 10), where the exact
numerical value has no significance other than ranking (in other words, a movie A with rating
8 is better than a movie B with rating 4, but it does not imply that movie A is twice as better
than movie B).

A Generalized Linear Model has three components:
• Random Component: The random component of a GLM is a probability distribution

of the response variable (y) from the exponential family.
• Systematic Component: The random component of a GLM is a linear predictor η

which includes the independent variables and the model parameters,
η = β0 +β1x1 + ...+βnxn = Xβββ

• Link Function: The link function specifies the relationship between the expected
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value of the response variable (E(y)) and the linear predictor (η),
E(Y) = µ = g−1(η)

Linear regression is a special case of a Generalized Linear Model where the random
component (probability distribution of the response variable) is a normal distribution; the
systematic component predicts continuous values and the link function is an identity function.

η = Xβββ = g(µ) = µ

Logistic regression is a special case of a Generalized Linear Model where the random
component is a Bernoulli distribution, the systematic component predicts categorical values
and the link function is a Logit function.

η = Xβββ = g(µ) = ln
(

µ

1−µ

)
In logistic regression, the predicted values are probabilities which are restricted to (0,1)
through the Logit function.

Regression

Let us look at an example of Linear regression using H2O framework. For this example, we
will use the UCI Wine Quality dataset [40]. This dataset includes data on physicochemical
tests for red and white variants of a Portuguese wine. There are 11 input variables (such
as fixed acidity, volatile acidity, citric acid, etc.), and the output variable is a quality score
between 0 and 10.

The first step is to import the dataset file into H2O from the H2O Flow UI as shown in
Figure 11.19.

Figure 11.19: Importing dataset file from the H2O Flow UI

Next step is to parse the dataset file. Click the Parse button after importing the file.
Figure 11.20 shows how to set up the parser. In this step, you can specify various parsing
options. After selecting the parse options, click the Parse button to parse the file.
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Figure 11.20: Parsing the imported dataset file using H2O Flow UI

The data from the parsed file is stored in an H2O frame. Figure 11.21 shows the H2O
frame created by parsing the dataset file.

The data is split into training and test frames as shown in Figure 11.22. In the next step,
we build a GLM model. Figure 11.23 shows the various options for the model. Select the
algorithm type to be Generalized Linear Model, training frame (wine_frame_0.750) and
family (random component for GLM) to be Gaussian. Choose the family default option for
the link function, which will automatically select the default link function for the selected
family (Gaussian family). After specifying the model options, click the Build Model button
to build the model.
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Figure 11.21: Viewing the H2O frame created from the parsed dataset file

Figure 11.22: Splitting the H2O frame into training and test frames
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Figure 11.23: Building a GLM model from H2O Flow UI

Figure 11.24: Viewing GLM model details
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Figure 11.24 shows the model summary including the standardized coefficient magnitudes
for the linear regression model. To make the predictions for the test dataset, enter the predict
command or choose the predict option from the menu, then select the model and test frame,
and then click the Predict button. Figure 11.25 shows the prediction summary. Finally, the
prediction frame can be exported (as a CSV file) as shown in Figure 11.26.

Figure 11.25: Making predictions with GLM model

Figure 11.26: Exporting the prediction frame from H2O Flow UI

Box 11.11 shows a Python implementation of the same example using H2O’s Python
library and Box 11.12 shows the program output.
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� Box 11.11: Python program for GLM regression using H2O

import h2o

h2o.init()

data = h2o.import_frame(path=h2o.locate("/home/ubuntu/winequality.csv"))

data_split = data.split_frame(ratios = [0.75,0.25])
train = data_split[0]
test = data_split[1]

train[11] = train[11].asfactor()
test[11] = test[11].asfactor()

model = h2o.glm(x=train[0:11], y=train[11],
validation_x= test[0:11], validation_y=test[11],
family=‘gaussian’, link=‘identity’)

model.show()

prediction = model.predict(test)

prediction.head()

perf = model.model_performance(test)
perf.show()

h2o.download_csv(prediction, ‘/home/ubuntu/prediction.csv’)

� Box 11.12: Output of program for GLM regression using H2O

>>> model.show()
Model Details
=============
H2ORegressionModel : Generalized Linear Model
Model Key: GLM_model_python_1441864435922_77

ModelMetricsRegressionGLM: glm

** Reported on train data. **

MSE: 0.407159182645
R2: 0.378282135573
Mean Residual Deviance: 0.407159182645
Null degrees of freedom: 1198
Residual degrees of freedom: 1187
Null deviance: 785.217681401
Residual deviance: 488.183859991
AIC: 2351.25188426

ModelMetricsRegressionGLM: glm

** Reported on validation data. **

MSE: 0.459194439276
R2: 0.274000886521
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Mean Residual Deviance: 0.459194439276
Null degrees of freedom: 399
Residual degrees of freedom: 388
Null deviance: 258.264326472
Residual deviance: 183.67777571
AIC: 849.838209107

>>> prediction = model.predict(test)

>>>prediction.head()
First 10 rows and first 1 columns:
predict
------
5.16886
5.56495
6.16603
6.28652
5.15812
6.12444
6.12444
6.12444
5.42637
6.12444

>>> perf = model.model_performance(test)
>>> perf.show()

ModelMetricsRegressionGLM: glm

** Reported on test data. **

MSE: 0.459194439276
R2: 0.274000886521
Mean Residual Deviance: 0.459194439276
Null degrees of freedom: 399
Residual degrees of freedom: 388
Null deviance: 258.264326472
Residual deviance: 183.67777571
AIC: 849.838209107

Classification

Let us look at an example of GLM classification (Logistic Regression model) using H2O
framework. For this example, we will use the UCI Parkinsons dataset. Import and parse
the dataset in the same manner as shown in the Naive Bayes classification example (Figures
11.11 and 11.12).

With the data imported and parsed, let us now build a GLM classification model. Click
the Build Model button in the actions of the parsed frame or choose the Build Model option
from the menu. Figure 11.27 shows the various options for the model. Select the algorithm
type to be Generalized Linear Model, the training frame, and the family (random component
for GLM) to be Binomial. Choose the family default option for the link function, which will
automatically select the default link function for the selected family (Binomial family). After
specifying the model options, click the Build Model button to build the model. Figures 11.28
and 11.29 show the details of the GLM model including the ROC curve and standardized
coefficient magnitudes.

Next, import and parse the test dataset in the same way as we imported and parsed the
training dataset. To make the predictions for the test dataset, enter the predict command or
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Figure 11.27: Building a GLM model from H2O Flow UI

choose the predict option from the menu, then select the model and test frame, and then click
the Predict button. Figure 11.30 shows the prediction summary. Finally, the prediction frame
can be exported (as a CSV file) as shown in Figure 11.31.
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Figure 11.28: Viewing GLM model details

Figure 11.29: Viewing GLM model details
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Figure 11.30: Making predictions using GLM model

Figure 11.31: Exporting the prediction frame
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Box 11.13 shows a Python implementation of the same example using H2O’s Python
library and Box 11.14 shows the program output.

� Box 11.13: Python program for GLM classification using H2O

import h2o

h2o.init()

train = h2o.import_frame(path=h2o.locate("/home/ubuntu/train.csv"))
test = h2o.import_frame(path=h2o.locate("/home/ubuntu/train.csv"))

train[0] = train[0].asfactor()
test[0] = test[0].asfactor()

model = h2o.glm(x=train[1:], y=train[0],
validation_x= test[1:], validation_y=test[0],
family=‘binomial’, link=‘logit’)

model.show()

prediction = model.predict(test)

prediction.head()

perf = model.model_performance(test)
perf.show()

print ‘Confusion Matrix: ’
print (perf.confusion_matrix())

print ‘Precision: ’
print (perf.precision())

print ‘Accuracy: ’
print (perf.accuracy())

print ‘AUC: ’
print (perf.auc())

h2o.download_csv(prediction, ‘/home/ubuntu/prediction.csv’)

� Box 11.14: Output of program for GLM classification using H2O

>>> model.show()
Model Details
=============
H2OBinomialModel : Generalized Linear Model
Model Key: GLM_model_python_1442483162375_2

GLM Model:

family: binomial
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link: logit
regularization: Elastic Net (alpha = 0.5, lambda = 0.04384 )
number_of_predictors_total: 22
number_of_active_predictors: 10
number_of_iterations: 6
training_frame: py0cdd7344-bfca-42a5-a122-7d4db9da9615

ModelMetricsBinomialGLM: glm

** Reported on train data. **

MSE: 0.10081486084
R2: 0.410531425821
LogLoss: 0.3256156667
Null degrees of freedom: 136
Residual degrees of freedom: 127
Null deviance: 144.017560202
Residual deviance: 89.2186926758
AIC: 109.218692676
AUC: 0.893769470405
Gini: 0.78753894081

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.439216360065:

-1 1 Error Rate
--- --- -- ----- --------
-1 15 15 0.5 (15.0/30.0)
1 0 107 0 (0.0/107.0)
Total 15 122 0.1095 (15.0/137.0)

Maximum Metrics:

metric threshold value idx
----------------- ------- ----- ---
max f1 0.439216 0.934498 121
max f2 0.439216 0.972727 121
max f0point5 0.734741 0.903491 94
max accuracy 0.480394 0.890511 119
max precision 0.998257 1 0
max absolute_MCC 0.439216 0.662212 121
max min_per_class_accuracy 0.748936 0.766667 89

ModelMetricsBinomialGLM: glm

** Reported on validation data. **

MSE: 0.104925736208
R2: 0.509763643607
LogLoss: 0.337658509376
Null degrees of freedom: 57
Residual degrees of freedom: 48
Null deviance: 74.4483748993
Residual deviance: 39.1683870876
AIC: 59.1683870876
AUC: 0.927777777778
Gini: 0.855555555556

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.568524772441:

-1 1 Error Rate
--- --- -- ----- -------
-1 12 6 0.3333 (6.0/18.0)
1 0 40 0 (0.0/40.0)
Total 12 46 0.1034 (6.0/58.0)
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Maximum Metrics:

metric threshold value idx

----------------- ------- ----- ---

max f1 0.568525 0.930233 45

max f2 0.568525 0.970874 45

max f0point5 0.767793 0.914634 30

max accuracy 0.568525 0.896552 45

max precision 0.999028 1 0

max absolute_MCC 0.568525 0.761387 45

max min_per_class_accuracy 0.749704 0.8 34

>>> prediction = model.predict(test)
>>> prediction.head()
First 10 rows and first 3 columns:
predict p0 p1
------ ------- -----

1 0.0329049 0.967095
1 0.0378409 0.962159
1 0.412367 0.587633
1 0.00664681 0.993353
1 0.0211856 0.978814
1 0.08681 0.91319
1 0.431475 0.568525
-1 0.715825 0.284175
-1 0.743189 0.256811
-1 0.83547 0.16453

>>> perf = model.model_performance(test)
>>> perf.show()

ModelMetricsBinomialGLM: glm

** Reported on test data. **

MSE: 0.104925736208
R2: 0.509763643607
LogLoss: 0.337658509376
Null degrees of freedom: 57
Residual degrees of freedom: 48
Null deviance: 74.4483748993
Residual deviance: 39.1683870876
AIC: 59.1683870876
AUC: 0.927777777778
Gini: 0.855555555556

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.568524772441:

-1 1 Error Rate
--- --- -- ----- -------
-1 12 6 0.3333 (6.0/18.0)
1 0 40 0 (0.0/40.0)
Total 12 46 0.1034 (6.0/58.0)

Maximum Metrics:

metric threshold value idx

----------------- ------- ----- ---

max f1 0.568525 0.930233 45

max f2 0.568525 0.970874 45

max f0point5 0.767793 0.914634 30

max accuracy 0.568525 0.896552 45

max precision 0.999028 1 0

max absolute_MCC 0.568525 0.761387 45
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max min_per_class_accuracy 0.749704 0.8 34

>>>

>>> print ‘Confusion Matrix: ’
Confusion Matrix:
>>> print (perf.confusion_matrix())

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.568524772441:

-1 1 Error Rate
--- --- -- ----- -------
-1 12 6 0.3333 (6.0/18.0)
1 0 40 0 (0.0/40.0)
Total 12 46 0.1034 (6.0/58.0)

>>>
>>> print ‘Precision: ’
Precision:
>>> print (perf.precision())
[[0.9990275569821115, 1.0]]
>>>
>>> print ‘Accuracy: ’
Accuracy:
>>> print (perf.accuracy())
[[0.568524772440684, 0.896551724137931]]
>>>
>>> print ‘AUC: ’
AUC:
>>> print (perf.auc())
0.927777777778

Let us now repeat the same example using Spark MLlib. Box 11.15 shows a Python
program for GLM classification (logistic regression model) using Spark MLlib. This program
can be run in the PySpark shell. In this program we implement a parseLine function which
takes each line of the input file, splits the line into individual columns separated by commas,
converts the values to floats and returns LabeledPoints. The LogisticRegressionWithLBFGS
class of the MLlib classification module is used to build a Logistic Regression model. After
the model has been built, the predict method of the LogisticRegressionWithLBFGS class can
be used to make the predictions. Finally, we compare the labels in the test dataset and the
predicted labels and compute the test error. The predictions can be saved to a text file using
the saveAsTextFile function.

� Box 11.15: Python program for GLM classification (logistic regression) using
Spark MLlib

from pyspark.context import SparkContext
from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint

def parseLine(line):
parts = line.split(‘,’)
label = float(parts[0])
if label==-1.0:

label =0.0
features = Vectors.dense([float(x) for x in parts[1:]])
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return LabeledPoint(label, features)

sc = SparkContext(appName="GLMExample")

trainingData = sc.textFile(‘file:///home/hadoop/train.csv’).map(parseLine)

testData = sc.textFile(‘file:///home/hadoop/test.csv’).map(parseLine)

model = LogisticRegressionWithLBFGS.train(trainingData)

predictions = model.predict(testData.map(lambda x: x.features))

labelsAndPredictions = testData.map(lambda lp:
lp.label).zip(predictions)

testErr = labelsAndPredictions.filter(lambda v_p:
v_p[0] != v_p[1]).count()/ float(testData.count())

print(‘Test Error = ’ + str(testErr))

labelsAndPredictions.saveAsTextFile(‘file:///home/hadoop/prediction.txt’)
sc.stop()

11.4.4 Decision Trees
Decision Trees are a supervised learning method that use a tree created from simple decision
rules learned from the training data as a predictive model. The predictive model is in the form
of a tree that can be used to predict the value of a target variable based on several attribute
variables. Each node in the tree corresponds to one attribute in the dataset on which the
“split” is performed. Each leaf in a decision tree represents a value of the target variable. The
learning process involves recursively splitting on the attributes until all the samples in the
child node have the same value of the target variable or splitting further results in no further
information gain. To select the best attribute for splitting at each stage, different metrics can
be used. The two most popular metrics used to determine the best attribute for splitting are:
• Information Gain: Information content of a discrete random variable X with

probability mass function (PMF), P(X), is defined as,

I(X) =− log2 P(X) (11.19)

Information gain is defined based on the entropy of the random variable which is
defined as,

H(X) = E[I(X)] = E[− log2 P(X)] =−∑
i

log2 P(xi) (11.20)

Entropy is a measure of uncertainty in a random variable and choosing the attribute
with the highest information gain results in a split that reduces the uncertainty the most
at that stage.
• Gini Coefficient: Gini coefficient measures the inequality, i.e. how often a randomly

chosen sample that is labeled based on the distribution of labels, would be labeled
incorrectly. Gini coefficient is defined as,

G(X) = 1−∑
i

P(xi)
2 (11.21)
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There are different algorithms for building decisions trees, the popular ones being ID3
and C4.5. Let us look at the steps involved in the ID3 algorithm:
• Attributes are discrete. If not, discretize the continuous attributes.
• Calculate the entropy of every attribute using the dataset.
• Choose the attribute with the highest information gain.
• Create branches for each value of the selected attribute.
• Repeat with the remaining attributes.
The ID3 algorithm can result in over-fitting to the training data and can be expensive

to train especially for continuous attributes. The C4.5 algorithm is an extension of the ID3
algorithm. C4.5 supports both discrete and continuous attributes. To support continuous
attributes, C4.5 finds thresholds for the continuous attributes and then splits based on the
threshold values. C4.5 prevents over-fitting by pruning trees after they have been created.
Pruning involves removing or aggregating those branches which provide little discriminatory
power.

Let us now look at a Decision Tree classification example using Spark MLlib. For this
example, we will use the UCI Parkinsons dataset. Box 11.16 shows a Python program for
Decision Tree classification using Spark MLlib. This program can be run in the PySpark
shell. In this program we implement a parseLine function which takes each line of the input
file, splits the line into individual columns separated by commas, converts the values to floats
and returns a Python numpy array. In this function, we also change the wine labels from -1.0,
1.0 to 0.0 and 1.0 as the Spark expects the labels from 0 to N-1 where N is the total number
of classes in the data.

The DecisionTree class of the MLlib classification module is used to build a Decision
Tree model. After the model has been built, the predict method of the DecisionTree class can
be used to make the predictions. Finally, we compare the labels in the test dataset and the
predicted labels and compute the test error of the model.

� Box 11.16: Python program for Decision Tree classification using Spark MLlib

import sys

from pyspark.context import SparkContext
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint

def parseLine(line):
parts = line.split(‘,’)
label = float(parts[0])
if label==1.0:

label =1
if label==-1.0:

label = 0
features = Vectors.dense([float(x) for x in parts[1:]])
return LabeledPoint(label, features)

sc = SparkContext(appName="DTExample")
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trainingData = sc.textFile(‘file:///home/hadoop/train.csv’).map(parseLine)

testData = sc.textFile(‘file:///home/hadoop/test.csv’).map(parseLine)

model = DecisionTree.trainClassifier(trainingData, numClasses=3,
categoricalFeaturesInfo=, impurity=‘gini’, maxDepth=5, maxBins=32)

predictions = model.predict(testData.map(lambda x: x.features))

labelsAndPredictions = testData.map(lambda lp:
lp.label).zip(predictions)

labelsAndPredictions.take(10)
#[(1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0),
(1.0, 1.0), (1.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)]

testErr = labelsAndPredictions.filter(lambda v_p:
v_p[0] != v_p[1]).count()/ float(testData.count())

print(‘Test Error = ’ + str(testErr))
#Test Error = 0.155172413793

labelsAndPredictions.saveAsTextFile(‘file:///home/hadoop/prediction.txt’)

sc.stop()

X[18] <= -6.3178
error = 0.342053385902

samples = 137
value = [  30.  107.]

X[1] <= 229.1805
error = 0.461419753086

samples = 36
value = [ 23.  13.]

X[9] <= 0.1905
error = 0.129006960102

samples = 101
value = [  7.  94.]

X[17] <= 10.7284
error = 0.48347107438

samples = 22
value = [  9.  13.]

error = 0.0000
samples = 14

value = [ 14.   0.]

error = 0.0000
samples = 11

value = [  0.  11.]

X[20] <= 22.2466
error = 0.297520661157

samples = 11
value = [ 9.  2.]

error = 0.0000
samples = 8

value = [ 8.  0.]

X[0] <= 192.7595
error = 0.444444444444

samples = 3
value = [ 1.  2.]

error = 0.0000
samples = 2

value = [ 0.  2.]

error = 0.0000
samples = 1

value = [ 1.  0.]

X[19] <= 0.1942
error = 0.39349112426

samples = 26
value = [  7.  19.]

error = 0.0000
samples = 75

value = [  0.  75.]

X[3] <= 0.0031
error = 0.444444444444

samples = 9
value = [ 6.  3.]

X[0] <= 118.4630
error = 0.110726643599

samples = 17
value = [  1.  16.]

error = 0.0000
samples = 2

value = [ 0.  2.]

X[4] <= 0.0000
error = 0.244897959184

samples = 7
value = [ 6.  1.]

error = 0.0000
samples = 6

value = [ 6.  0.]

error = 0.0000
samples = 1

value = [ 0.  1.]

error = 0.0000
samples = 1

value = [ 1.  0.]

error = 0.0000
samples = 16

value = [  0.  16.]

Figure 11.32: Example of a generated decision tree
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Figure 11.32 shows an example of a decision tree generated for the Parkinsons dataset.
The tree shows the attributes on which splitting is done at each step and the split values. Also
shows are the error, total number of samples at each node and the number of samples in each
class (in the value array). For example, the first split is done on the 19th column (attribute
X[18]) and the total number of samples in the training set is 137. On the first split, there are
30 samples in first class and 107 samples in the second class.

11.4.5 Random Forest
Random Forest is an ensemble learning method that is based on randomized decision
trees [38]. Random Forest trains a number decision trees and then takes the majority
vote by using the mode of the class predicted by the individual trees. The Random Forest
algorithm (Breiman’s algorithm) is shown in Box 11.17.

� Box 11.17: Random Forest algorithm

1. Draw a bootstrap sample (n times with replacement from the N samples in the training set) from
the dataset
2. Train a decision tree

- Until the tree is fully grown (maximum size)
– Choose next leaf node
– Select m attributes (m is much less than the total number of attributes M) at random.
– Choose the best attribute and split as usual

3. Measure out-of-bag error
- Use the rest of the samples (not selected in the bootstrap) to estimate the error of the tree, by

predicting their classes.
4. Repeat steps 1-3 k times to generate k trees.
5. Make a prediction by majority vote among the k trees

Let us look at an example of Random Forest classification using H2O framework. For
this example, we will use the Wine dataset. Import and parse the dataset file in the same way
as done in the example for k-means clustering (as shown in Figure 11.5 and Figure 11.6).
With the data imported and parsed, let us now build a Random Forest model. Click the Build
Model button in the actions of the parsed frame or choose the Build Model option from the
menu. Figure 11.33 shows the various options for the model. Select the algorithm type to
be Distributed RF, the training frame, and the response column as C1. After specifying the
model options, click the Build Model button to build the model.

Figures 11.34, 11.35 and 11.36 show the details of the Random Forest model built from
the Wine dataset.
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Figure 11.33: Building a Random Forest model using H2O Flow UI
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Figure 11.34: Viewing details of the Random Forest model
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Figure 11.35: Viewing details of the Random Forest model
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Figure 11.36: Viewing the model summary and training metrics
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Next, import and parse the test dataset in the same way as we imported and parsed the
training dataset. To make the predictions for the test dataset, enter the predict command or
choose the predict option from the menu, then select the model and test frame, and then click
the Predict button. Figure 11.37 shows the prediction summary.

Figure 11.37: Viewing the prediction results

Box 11.18 shows a Python implementation of the same example using H2O’s Python
library.

� Box 11.18: Python program for Random Forest classification using H2O

import h2o

h2o.init()
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train = h2o.import_frame(path=h2o.locate("/home/ubuntu/wine.data.txt"))
test = h2o.import_frame(path=h2o.locate("/home/ubuntu/wine.test.txt"))

train[0] = train[0].asfactor()
test[0] = test[0].asfactor()

model = h2o.random_forest(x=train[1:], y=train[0],
validation_x= test[1:], validation_y=test[0], seed=12, ntrees=10,

max_depth=20, balance_classes=True)

model.show()

prediction = model.predict(test)

prediction.head()

perf = model.model_performance(test)
perf.show()

print ‘Confusion Matrix: ’
print (perf.confusion_matrix())

print ‘Precision: ’
print (perf.precision())

print ‘Accuracy: ’
print (perf.accuracy())

print ‘AUC: ’
print (perf.auc())

h2o.download_csv(prediction, ‘prediction.csv’)

Box 11.19 shows the output of program for Random Forest classification using H2O.

� Box 11.19: Output of program for Random Forest classification using H2O

model.show()
Model Details
=============
H2OMultinomialModel : Distributed RF
Model Key: DRF_model_python_1441787876875_28

Model Summary:

number_of_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves

- ----------- -------------- ------- ------- -------- -------- -------- ---------

30 4805 3 9 4.86667 5 15 8.4

ModelMetricsMultinomial: drf

** Reported on train data. **

MSE: 0.0242244865001
R2: 0.963923431738
LogLoss: 0.383920432907
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Confusion Matrix:

1 2 3 Error Rate
-- -- -- ------ -----
70 0 0 0 0 / 70
0 66 2 0.0294118 2 / 68
0 1 68 0.0144928 1 / 69
70 67 70 0.0144928 3 / 207

Top-3 Hit Ratios:

k hit_ratio
-- -------
1 0.985507
2 0.995169
3 1

ModelMetricsMultinomial: drf

** Reported on validation data. **

MSE: 0.0110899144456
R2: 0.982034338598
LogLoss: 0.0536092821889

Confusion Matrix:

1 2 3 Error Rate
-- -- -- ----- ----
2 0 0 0 0 / 2
0 3 0 0 0 / 3
0 0 4 0 0 / 4
2 3 4 0 0 / 9

Top-3 Hit Ratios:

k hit_ratio
-- -------
1 1
2 1
3 1

Variable Importances:

variable relative_importance scaled_importance percentage
------- -------------- ------------- --------
C13 310.435 1 0.266665
C2 197.323 0.635635 0.169502
C14 165.101 0.531839 0.141823
C11 99.1768 0.319477 0.0851934
C8 72.4592 0.233412 0.0622428
C3 59.1769 0.190626 0.0508333
C12 53.6374 0.172782 0.0460749
C10 44.0346 0.141848 0.0378259
C6 43.2904 0.139451 0.0371867
C5 41.5202 0.133749 0.0356661
C7 40.4724 0.130373 0.034766
C9 21.3045 0.0686277 0.0183006
C4 16.2047 0.0521999 0.0139199

perf = model.model_performance(test)
>>> perf.show()
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ModelMetricsMultinomial: drf

** Reported on test data. **

MSE: 0.0110899144456
R2: 0.982034338598
LogLoss: 0.0536092821889

Confusion Matrix:

1 2 3 Error Rate
-- -- -- ----- ----
2 0 0 0 0 / 2
0 3 0 0 0 / 3
0 0 4 0 0 / 4
2 3 4 0 0 / 9

Top-3 Hit Ratios:

k hit_ratio
-- -------
1 1
2 1
3 1
>>>
>>> print ‘Confusion Matrix: ’
Confusion Matrix:
>>> print (perf.confusion_matrix())

Confusion Matrix:

1 2 3 Error Rate
-- -- -- ----- ----
2 0 0 0 0 / 2
0 3 0 0 0 / 3
0 0 4 0 0 / 4
2 3 4 0 0 / 9

Let us now repeat the same example using Spark MLlib with the Wine dataset. Box 11.20
shows the python program for Random Forest classification using Spark MLlib. This program
can be run in the PySpark shell. In this program we implement a parseLine function which
takes each line of the input file, splits the line into individual columns separated by commas,
converts the values to floats and returns LabeledPoints. In this function, we also change the
wine labels from 1.0, 2.0 and 3.0 to 0.0, 1.0 and 2.0 as the Spark expects the labels from 0
to N-1 where N is the total number of classes in the data. The RandomForest class of the
MLlib classification module is used to build a Random Forest model. After the model has
been built, the predict method is used to make the predictions. Finally, we compare the labels
in the test dataset and the predicted labels and compute the test error. The predictions can be
saved to a text file using the saveAsTextFile function.

� Box 11.20: Python program for Random Forest classification using Spark MLlib

import sys

from pyspark.context import SparkContext
from pyspark.mllib.tree import RandomForest, RandomForestModel
from pyspark.mllib.linalg import Vectors
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from pyspark.mllib.regression import LabeledPoint

def parseLine(line):
parts = line.split(‘,’)
label = float(parts[0])
if label==1.0:

label =0.0
if label==2.0:

label = 1.0
if label==3.0:

label = 2.0
features = Vectors.dense([float(x) for x in parts[1:]])
return LabeledPoint(label, features)

sc = SparkContext(appName="RandomForestExample")

trainingData = sc.textFile(‘file:///home/hadoop/wine.data.txt’).map(parseLine)

testData = sc.textFile(‘file:///home/hadoop/wine.test.txt’).map(parseLine)

model = RandomForest.trainClassifier(trainingData, numClasses=3,
categoricalFeaturesInfo=,
numTrees=3, featureSubsetStrategy="auto",
impurity=‘gini’, maxDepth=4, maxBins=32)

predictions = model.predict(testData.map(lambda x: x.features))

labelsAndPredictions = testData.map(lambda lp:
lp.label).zip(predictions)

labelsAndPredictions.take(10)
#[(0.0, 0.0), (0.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0),
(2.0, 2.0), (2.0, 2.0), (2.0, 2.0)]

testErr = labelsAndPredictions.filter(lambda v_p:
v_p[0] != v_p[1]).count()/float(testData.count())

print(‘Test Error = ’ + str(testErr))
#0

labelsAndPredictions.saveAsTextFile(‘file:///home/hadoop/prediction.txt’)

11.4.6 Gradient Boosting Machine

Gradient Boosting Machine is an ensemble learning algorithm like Random Forest. When
Decision Trees are as used as prediction models in Gradient Boosting, the model is called
Gradient-Boosted Trees (GBT). In Random Forest, each tree is built independently from a
random (bootstrap) sample, whereas in GBT a decision tree is trained at each step which
corrects and compliments the previously built trees. While in Random Forest, the ensemble
is built from a random sample of data, in GBT the ensemble is built on the residuals (errors
of the previous trees).

Gradient Boosting is the process which combines weak learners into strong learners by
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sequentially improving upon the learner at each step by adding a new estimator which is
trained on the residual at each step [45]. Let fm(x) be the model at the step m. In the step
m+1 the model is improved as follows:

fm+1(x) = fm(x)+h(x)

where h(x) is the new estimator trained on the residual, i.e., h(x) = y− fm(x).
Let us look at an example of GBM classification using H2O framework. For this example

we will use the UCI Adult dataset [41] also called the Census Income dataset. This dataset
includes census income data with attributes such as age, education, occupation, etc. The
prediction task for this dataset is to determine whether a person makes over 50K a year. Let
us first import the dataset file using H2O Flow UI as shown in Figure 11.38.

Figure 11.38: Importing dataset file from the H2O Flow UI

Next step is to parse the dataset file. Figure 11.39 shows how to set up the parser. After
selecting the parse options, click the Parse button to parse the file. The data from the parsed
file is stored in an H2O frame. Figure 11.40 shows the H2O frame created by parsing the
dataset file.

With the data imported and parsed, let us now build a GBM model. Click the Build
Model button in the actions of the parsed frame or choose the Build Model option from the
menu. Figure 11.41 shows the various options for the model. Select the algorithm type to be
Gradient Boosting Machine, the training frame as adult_data.hex, the response column as
C15 and the number of trees to be 50. After specifying the model options, click the Build
Model button to build the model.
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Figure 11.39: Parsing the imported dataset file using H2O Flow UI

Figure 11.42 shows the details of the GBM model built from the Wine dataset. The model
summary shows the various model statistics such as mean squared error (MSE), coefficient
of determination (R2) and area under the curve (AUC).

Next, import and parse the test dataset in the same way as we imported and parsed the
training dataset. To make the predictions for the test dataset, enter the predict command or
choose the predict option from the menu, then select the model and test frame, and then click
the Predict button. Figure 11.43 shows the prediction summary including the ROC curve.
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Figure 11.40: Viewing the H2O frame created from the parsed dataset file
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Figure 11.41: Building a GBM model from H2O Flow UI
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Figure 11.42: Viewing GBM model details
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Figure 11.43: Viewing the prediction results

Box 11.21 shows a Python implementation of the same example using H2O’s Python
library and Box 11.22 shows the program output.

� Box 11.21: Python program for GBM classification using H2O

import h2o

h2o.init()

train = h2o.import_frame(path=h2o.locate("/home/ubuntu/adult.data.csv"))
test = h2o.import_frame(path=h2o.locate("/home/ubuntu/adult.test.csv"))

train[14] = train[14].asfactor()
test[14] = test[14].asfactor()

model = h2o.gbm(x=train[0:14], y=train[14], validation_x= test[0:14],
validation_y=test[14], distribution = "bernoulli",
ntrees=50, learn_rate=0.1)
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model.show()

prediction = model.predict(test)

prediction.head()

perf = model.model_performance(test)
perf.show()

print ’Confusion Matrix: ‘
print (perf.confusion_matrix())

print ’Precision: ‘
print (perf.precision())

print ’Accuracy: ‘
print (perf.accuracy())

print ’AUC: ‘
print (perf.auc())

h2o.download_csv(prediction, ’prediction.csv‘)

� Box 11.22: Output of program for GBM classification using H2O

>>> model.show()
Model Details
=============
H2OBinomialModel : Gradient Boosting Machine
Model Key: GBM_model_python_1441787876875_57

Model Summary:

number_of_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves

- ----------- -------------- ------- ------- -------- -------- -------- ---------

50 20417 5 5 5 22 32 28.84

ModelMetricsBinomial: gbm

** Reported on train data. **

MSE: 0.0859247340554
R2: 0.530004451115
LogLoss: 0.276624227866
AUC: 0.933188510192
Gini: 0.866377020384

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.390088332148:

<=50K >50K Error Rate
--- ----- ---- ----- -----------
<=50K 22634 2086 0.0844 (2086.0/24720.0)
>50K 1992 5849 0.254 (1992.0/7841.0)
Total 24626 7935 0.1252 (4078.0/32561.0)

Maximum Metrics:

metric threshold value idx
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----------------- ------- ----- ---
max f1 0.390088 0.741506 195
max f2 0.174504 0.815484 287
max f0point5 0.607379 0.776164 119
max accuracy 0.460468 0.87829 170
max precision 0.982202 1 0
max absolute_MCC 0.393242 0.658941 194
max min_per_class_accuracy 0.275248 0.847851 240

ModelMetricsBinomial: gbm

** Reported on validation data. **

MSE: 0.0905793133771
R2: 0.497962558845
LogLoss: 0.28949793511
AUC: 0.92284044478
Gini: 0.84568088956

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.36326916669:

<=50K >50K Error Rate
--- ----- ---- ----- -----------
<=50K 11150 1285 0.1033 (1285.0/12435.0)
>50K 992 2854 0.2579 (992.0/3846.0)
Total 12142 4139 0.1399 (2277.0/16281.0)

Maximum Metrics:

metric threshold value idx
----------------- ------- ----- ---
max f1 0.363269 0.71484 211
max f2 0.172859 0.799287 291
max f0point5 0.553204 0.757278 141
max accuracy 0.514136 0.871568 155
max precision 0.9865 1 0
max absolute_MCC 0.468827 0.625792 169
max min_per_class_accuracy 0.26159 0.836973 250

Variable Importances:

variable relative_importance scaled_importance percentage
------- -------------- ------------- --------
C8 5012.7 1 0.302438
C11 3214.44 0.641258 0.193941
C4 2816.11 0.561795 0.169908
C6 1444.81 0.28823 0.0871717
C7 1423.55 0.283988 0.0858887
C12 921.112 0.183756 0.0555747
C1 780.083 0.155621 0.0470658
C13 464.666 0.0926977 0.0280353
C14 195.269 0.0389548 0.0117814
C2 184.469 0.0368003 0.0111298
C3 53.7663 0.010726 0.00324396
C10 41.7206 0.00832298 0.00251718
C5 17.0094 0.00339327 0.00102625
C9 4.61617 0.000920896 0.000278514
>>> prediction = model.predict(test)
>>>
>>>prediction.head()
First 10 rows and first 3 columns:
predict <=50K >50K
------ ------ ------
<=50K 0.984939 0.015061
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<=50K 0.783672 0.216328
<=50K 0.703814 0.296186
>50K 0.0240078 0.975992
<=50K 0.988003 0.0119969
<=50K 0.982786 0.0172137
<=50K 0.981567 0.0184325
>50K 0.260574 0.739426
<=50K 0.985382 0.0146176
<=50K 0.911547 0.0884534

>>> perf = model.model_performance(test)
>>> perf.show()

ModelMetricsBinomial: gbm

** Reported on test data. **

MSE: 0.0905793133771
R2: 0.497962558845
LogLoss: 0.28949793511
AUC: 0.92284044478
Gini: 0.84568088956

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.36326916669:

<=50K >50K Error Rate
--- ----- ---- ----- -----------
<=50K 11150 1285 0.1033 (1285.0/12435.0)
>50K 992 2854 0.2579 (992.0/3846.0)
Total 12142 4139 0.1399 (2277.0/16281.0)

Maximum Metrics:

metric threshold value idx
----------------- ------- ----- ---
max f1 0.363269 0.71484 211
max f2 0.172859 0.799287 291
max f0point5 0.553204 0.757278 141
max accuracy 0.514136 0.871568 155
max precision 0.9865 1 0
max absolute_MCC 0.468827 0.625792 169
max min_per_class_accuracy 0.26159 0.836973 250

>>> print ‘Confusion Matrix: ’
Confusion Matrix:
>>> print (perf.confusion_matrix())

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.36326916669:

<=50K >50K Error Rate
--- ----- ---- ----- -----------
<=50K 11150 1285 0.1033 (1285.0/12435.0)
>50K 992 2854 0.2579 (992.0/3846.0)
Total 12142 4139 0.1399 (2277.0/16281.0)

>>> print ‘Precision: ’
Precision:
>>> print (perf.precision())
[[0.9864996454832976, 1.0]]
>>>
>>> print ‘Accuracy: ’
Accuracy:
>>> print (perf.accuracy())
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[[0.5141359851152871, 0.8715680854984338]]
>>>
>>> print ‘AUC: ’
AUC:
>>> print (perf.auc())
0.92284044478

Let us repeat the same example of GBM classification using Spark MLlib with the Adult
dataset. Box 11.23 shows the python program for GBM classification using Spark MLlib.
Since some of the attributes in this dataset are non-numbers (string attributes), we use Spark’s
Tokenizer and HashingTF classes for feature extraction and transformation. The Tokenizer
converts the input string to lowercase and then splits it by white spaces. HashingTF is a
transformer which takes sets of terms (bag of words) and converts those sets into fixed-length
feature vectors (term frequencies). Also note that in this example we convert the labels from
<=50 and >50 to 0.0.and 1.0 as the Spark expects the labels from 0 to N-1 where N is the total
number of classes in the data. The GradientBoostedTrees class of the MLlib classification
module is used to build a GBM model. After the model has been built, the predict method of
the GradientBoostedTrees class is used to make the predictions.

� Box 11.23: Python program for GBM classification using Spark MLlib

from pyspark.context import SparkContext
from pyspark.mllib.tree import GradientBoostedTrees
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.feature import HashingTF
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.sql import Row

LabeledDocument = Row("text", "label")

def parseLine(line):
parts = line.split(‘,’)
label = parts[-1].strip()
if label==‘<=50K’:
label =0.0
if label==‘>50K’:
label =1.0
text=line
return LabeledDocument(text, label)

lines = sc.textFile(‘file:///home/hadoop/data.csv’).map(parseLine)

training = lines.toDF()

training.show()

tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
outputCol="features")

tokenized = tokenizer.transform(training)
hashed = hashingTF.transform(tokenized)
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hashedrdd=hashed.select(‘label’,‘features’).rdd

data=hashedrdd.map(lambda a: LabeledPoint(float(a.label), a.features))

(trainingData, testData) = data.randomSplit([0.7, 0.3])

model = GradientBoostedTrees.trainClassifier(p, categoricalFeaturesInfo=,
numIterations=3)

predictions = model.predict(p.map(lambda x: x.features))

predictions.take(10)

11.4.7 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning approach used for
classification and regression. The basic form of SVM is a binary classifier that classifies the
data points into one of the two classes [37]. SVM training involves determining the maximum
margin hyperplane that separates the two classes. The maximum margin hyperplane is one
which has the largest separation from the nearest training data point. Figure 11.44 shows the
margins for an SVM. Given a training data set (xi,yi) where xi is an n dimensional vector
and yi = 1 if xi is in class 1 and yi =−1 if xi is in class 2, a standard SVM finds a hyperplane
w.x−b = 0, which correctly separates the training data points and has a maximum margin
which is the distance between the two hyperplanes w.x−b = 1 and w.x−b =−1, as shown
in Figure 11.45.

Margin

Figure 11.44: Margins for an SVM

The optimal hyperplane with maximum margin can be obtained by solving the following
quadratic programming problem,
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X1
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Figure 11.45: Maximum margin hyperplane

min{w,b}
1
2
||w||2 +C

l

∑
i=1

ξi (11.22)

subject to yi(w.xi−b)≥ 1−ξi, ξi > 0, 1 < i < l where C is the soft margin parameter
and ξ is a slack variable for the non-separable case. The optimal hyperplane is given as,

f (x) = sign
(

C
l

∑
i=1

αiyiK(xi,x)−b
)

(11.23)

where αi is the Lagrange multiplier and K(xi,x) is the kernel function. A standard SVM
is a two-class classier where the outcome is 1 or −1. When sets are not linearly separable,
the data points in the original finite-dimensional space are mapped to a higher dimensional
space where they can be separated easily. The performance of an SVM classifier depends on
the selection of kernel, the kernel’s parameters, and soft margin parameter C. The commonly
used kernels include:
• Linear: k(xi,x j) =< xi,x j >
• Polynomial: k(xi,x j) = (γ < xi,x j >+r)d

• Radial Basis Function (RBF): k(xi,x j) = exp(−γ||xi− x j||2)
• Sigmoid: k(xi,x j) = (tanh < xi,x j >+r)
Let us look at an example of SVM classification using Spark MLlib. For this example, we

will use the Wine dataset. Box 11.24 shows the Python program for SVM classification. This
program can be run in the PySpark shell. In this program we implement a parseLine function
which takes each line of the input file, splits the line into individual columns separated by
commas, converts the values to floats and returns LabeledPoints. In this function, we also
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change the wine labels from 1.0, 2.0 and 3.0 to 0.0, 1.0 and 2.0 as the Spark expects the
labels from 0 to N-1 where N is the total number of classes in the data. The SVMWithSGD
class of the MLlib classification module is used to build an SVM model. After the model
has been built, the predict method is used to make the predictions. Finally, we compare the
labels in the test dataset and the predicted labels and compute the test error. The predictions
can be saved to a text file using the saveAsTextFile function.

� Box 11.24: Python program for SVM classification using Spark MLlib

from pyspark.context import SparkContext
from pyspark.mllib.tree import SVMWithSGD
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint

def parseLine(line):
parts = line.split(‘,’)
label = float(parts[0])
if label==1.0:

label =0.0
if label==2.0:

label = 1.0
if label==3.0:

label = 2.0
features = Vectors.dense([float(x) for x in parts[1:]])
return LabeledPoint(label, features)

sc = SparkContext(appName="SVMExample")

trainingData = sc.textFile(‘file:///home/hadoop/wine.data.txt’).map(parseLine)

testData = sc.textFile(‘file:///home/hadoop/wine.test.txt’).map(parseLine)

model = SVMWithSGD.train(trainingData, iterations=100)

predictions = model.predict(testData.map(lambda x: x.features))

labelsAndPredictions = testData.map(lambda lp:
lp.label).zip(predictions)

testErr = labelsAndPredictions.filter(lambda v_p:
v_p[0] != v_p[1]).count()/float(testData.count())

print(‘Test Error = ’ + str(testErr))

labelsAndPredictions.saveAsTextFile(‘file:///home/hadoop/prediction.txt’)

sc.stop()

11.4.8 Deep Learning

Deep Learning algorithms are based on artificial neural networks. Artificial neural networks
are inspired from biological neural networks and include a system of interconnected neurons.
Figure 11.46 shows the structure of a neuron in an artificial neural network. The neuron has
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multiple inputs (xi) and each input has a weight (wi). A weighted combination of the inputs
is aggregated, and the activation function ( f ) is applied to the aggregated inputs. A bias b is
also added which accounts for the activation threshold of the neuron.
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Figure 11.46: Neuron
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Figure 11.47: Multi-layer feed-forward artificial neural network

In this section, we will look at an example of Deep Learning using the H2O framework.
The H2O’s implementation of deep learning is based on a multi-layer feed-forward artificial
neural network which includes multiple layers of interconnected neurons as shown in
Figure 11.47. Neurons in each layer are directly connected to the neurons in the subsequent
layer and there are no loops in the network. The number of neurons in the input layer is equal
to the number of features in the input and the number of neurons in the output layer matches
the number of outputs. In the learning process, given the inputs and the known outputs, the
system adapts the weights to minimize the prediction error.

Let us look at an example of Deep Learning using H2O framework. In this example,
we will use UCI breast cancer dataset [42]. The dataset consists of measurements of ten
attributes each describing the features computed from digitized images of fine needle aspirate
(FNA) of breast mass. The class variable has two values (2 for benign, 4 for malignant).

The first step is to import the dataset file into H2O from the H2O Flow UI as shown in
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Figure 11.48.

Figure 11.48: Importing dataset file from the H2O Flow UI

Figure 11.49: Parsing the imported dataset file using H2O Flow UI
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Next step is to parse the dataset file. Click the Parse button after importing the file.
Figure 11.49 shows how to set up the parser. In this step, you can specify various parsing
options. After selecting the parse options, click the Parse button to parse the file. The
data from the parsed file is stored in an H2O frame. Figure 11.50 shows the H2O frame
created by parsing the dataset file. The data is split into training and test frames as shown in
Figure 11.51.

Figure 11.50: Viewing the H2O frame created from the parsed dataset file

With the data imported and parsed, let us now build a Deep Learning model. Click the
Build Model button in the actions of the parsed frame or choose the Build Model option from
the menu. Figure 11.52 shows the various options for the model. Select the algorithm type to
be Deep Learning, training frame (frame_0.750_train), validation frame (frame_0.250_test)
and response column as C11. After specifying the model options, click the Build Model
button to build the model.

Figures 11.53 and 11.54 show the details of the Deep Learning model such as the training
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Figure 11.51: Splitting the H2O frame into training and test frames

and validation ROC curves, and various model statistics.
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Figure 11.52: Building a deep learning model from H2O Flow UI
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Figure 11.53: Viewing the details of the deep learning model
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Figure 11.54: Viewing deep learning model validation results

Box 11.25 shows a Python implementation of the same example using H2O’s Python
library and Box 11.26 shows the program output.

� Box 11.25: Python program for Deep Learning classification using H2O

import h2o

h2o.init()

data = h2o.import_frame(path=h2o.locate("/home/ubuntu/breast-cancer.csv"))

data_split = data.split_frame(ratios = [0.8,0.2])
train = data_split[0]
test = data_split[1]

train[10] = train[10].asfactor()
test[10] = test[10].asfactor()

model = h2o.deeplearning(x=train[0:10], y=train[10],
validation_x= test[0:10], validation_y=test[10],
variable_importances=True, loss="Automatic")

model.show()

prediction = model.predict(test)

prediction.head()
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perf = model.model_performance(test)
perf.show()

print ‘Confusion Matrix: ’
print (perf.confusion_matrix())

print ‘Precision: ’
print (perf.precision())

print ‘Accuracy: ’
print (perf.accuracy())

print ‘AUC: ’
print (perf.auc())

h2o.download_csv(prediction, ‘/home/ubuntu/prediction.csv’)

� Box 11.26: Output of the program for Deep Learning classification using H2O

>>> model.show()
Model Details
=============
H2OBinomialModel : Deep Learning
Model Key: DeepLearning_model_python_1441787876875_43

Status of Neuron Layers:

layer units type dropout l1 l2 mean_rate rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

- ----- ----- ------ ------ --- --- -------- -------- ------- --------- -------- --------- --------

1 10 Input 0.0

2 200 Rectifier 0.0 0.0 0.0 0.0051586363 0.004284294 0.0 -0.0038918303 0.09932074 0.47159594 0.01983153

3 200 Rectifier 0.0 0.0 0.0 0.042859647 0.12210885 0.0 -0.0014745063 0.06997566 0.99559456 0.007935624

4 2 Softmax 0.0 0.0 0.0019927532 0.0024083003 0.0 -0.03239843 0.40508103 7.2054856e-05 0.0016424061

ModelMetricsBinomial: deeplearning

** Reported on train data. **

MSE: 0.0431564371515
R2: 0.814549813835
LogLoss: 0.287324374181
AUC: 0.99416925658
Gini: 0.98833851316

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.954812765121:

2 4 Error Rate
--- -- -- ----- --------
2 339 14 0.0397 (14.0/353.0)
4 2 204 0.0097 (2.0/206.0)
Total 341 218 0.0286 (16.0/559.0)

Maximum Metrics:

metric threshold value idx

----------------- ------- ----- ---

max f1 0.954813 0.962264 63
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max f2 0.913903 0.980861 66

max f0point5 0.999977 0.961945 30

max accuracy 0.992785 0.971377 59

max precision 0.999999 0.993711 9

max absolute_MCC 0.954813 0.940216 63

max min_per_class_accuracy 0.993953 0.968839 56

ModelMetricsBinomial: deeplearning

** Reported on validation data. **

MSE: 0.0254503614803
R2: 0.864264738772
LogLoss: 0.145122767088
AUC: 1.0
Gini: 1.0

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.999943256378:

2 4 Error Rate
--- -- -- ----- -------
2 105 0 0 (0.0/105.0)
4 0 35 0 (0.0/35.0)
Total 105 35 0 (0.0/140.0)

Maximum Metrics:

metric threshold value idx

----------------- ------- ----- ---

max f1 0.999943 1 14

max f2 0.999943 1 14

max f0point5 0.999943 1 14

max accuracy 0.999943 1 14

max precision 1 1 0

max absolute_MCC 0.999943 1 14

max min_per_class_accuracy 0.999943 1 14

Variable Importances:

variable relative_importance scaled_importance percentage

------- -------------- ------------- --------

C9 1 1 0.108707

C8 0.981525 0.981525 0.106698

C3 0.954005 0.954005 0.103707

C7 0.94194 0.94194 0.102395

C2 0.941813 0.941813 0.102381

C4 0.92944 0.92944 0.101036

C1 0.89463 0.89463 0.0972522

C10 0.889871 0.889871 0.0967349

C5 0.864056 0.864056 0.0939286

C6 0.801792 0.801792 0.0871601

>>> prediction = model.predict(test)
>>>
>>> prediction.head()
First 10 rows and first 3 columns:
predict p2 p4
------ ------- -------

2 0.985993 0.0140068
2 0.957854 0.042146
2 0.957854 0.042146
2 0.999733 0.000266882
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2 0.998995 0.00100492
2 0.979549 0.0204512
4 5.65749e-10 1
2 0.992313 0.0076873
2 0.974153 0.025847
4 2.68044e-06 0.999997

>>> perf = model.model_performance(test)
>>> perf.show()

ModelMetricsBinomial: deeplearning

** Reported on test data. **

MSE: 0.0254503614803
R2: 0.864264738772
LogLoss: 0.145122767088
AUC: 1.0
Gini: 1.0

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.999943256378:

2 4 Error Rate
--- -- -- ----- -------
2 105 0 0 (0.0/105.0)
4 0 35 0 (0.0/35.0)
Total 105 35 0 (0.0/140.0)

Maximum Metrics:

metric threshold value idx

----------------- ------- ----- ---

max f1 0.999943 1 14

max f2 0.999943 1 14

max f0point5 0.999943 1 14

max accuracy 0.999943 1 14

max precision 1 1 0

max absolute_MCC 0.999943 1 14

max min_per_class_accuracy 0.999943 1 14

>>> print ‘Confusion Matrix: ’
Confusion Matrix:
>>> print (perf.confusion_matrix())

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.999943256378:

2 4 Error Rate
--- -- -- ----- -------
2 105 0 0 (0.0/105.0)
4 0 35 0 (0.0/35.0)
Total 105 35 0 (0.0/140.0)

>>>
>>> print ‘Precision: ’
Precision:
>>> print (perf.precision())
[[1.0, 1.0]]
>>>
>>> print ‘Accuracy: ’
Accuracy:
>>> print (perf.accuracy())
[[0.9999432563781738, 1.0]]
>>>
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>>> print ‘AUC: ’
AUC:
>>> print (perf.auc())
1.0

11.5 Case Study: Classifying Handwritten Digits
In this section, we will describe a case study on building a system for classifying handwritten
digits. For this case study, we will use the MNIST (Modified National Institute of Standards
and Technology) dataset [46]. The MNIST database of handwritten digits is a collection
of 60,000 images of handwritten digits which were sampled from documents written by
employees of the US Census Bureau and American high school students. The digits have
been size-normalized and centered in fixed-size gray-scale images of 28 x 28 pixels in
dimension. Each image has a total of 784 pixels (28×28). Each pixel has a value between 0
and 255 (with higher numbers meaning darker pixel). The dataset file used in the example
in this section can be downloaded from [47]. This a CSV file containing 60,000 rows (one
column for each image) and 785 columns (columns 1-784 denoting the pixel values and
column 785 has the image label - 0 to 9).

Figure 11.55 shows the components of the digit classification system We will describe
two alternative implementations of the system based on H2O and Spark. The classification
models are built using H2O or Spark with the training data. The web service component
makes the classification system available as a web service. A Python client is used to test the
system.

Classification Model
(H2O/Spark)
(analysis.py)

Web Service
(server.py)

- SVM
- Logistic Regression
- Naive Bayes
- Decision Trees
- Random Forests 
- Gradient-Boosted Trees
- Deep Learning

Digit images

Client
(client.py)

Training Data
(train.csv)

Predicted digits

Figure 11.55: Digit recognition

11.5.1 Digit Classification with H2O
Box 11.27 shows the Python implementation of the analysis component for digit classification
using H2O. In this program, we implement an AnalysisEngine class with methods for training
a classification model and making predictions. The classification model type (Naive Bayes,
Random Forest, Deep Learning, GBM) is specified in the class constructor.
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� Box 11.27: Analysis component for digit classification using H2O - analysis.py

import h2o

class AnalysisEngine:
def make_prediction(self, data):
testframe=h2o.H2OFrame(data)
prediction = self.model.predict(testframe)
result = str(prediction[0].as_data_frame())
return result

def train_model(self, trainingFile, responseColumn, modelType):
train = h2o.import_frame(path=h2o.locate(trainingFile))
train[responseColumn] = train[responseColumn].asfactor()

if modelType==‘deeplearning’:
self.model = h2o.deeplearning(x=train[0:responseColumn],

y=train[responseColumn])

elif modelType==‘gbm’:
self.model = h2o.gbm(x=train[0:responseColumn],

y=train[responseColumn])

elif modelType==‘naivebayes’:
self.model = h2o.naive_bayes(x=train[0:responseColumn],

y=train[responseColumn])

elif modelType==‘randomforest’:
self.model = h2o.random_forest(x=train[0:responseColumn],

y=train[responseColumn])

def __init__(self):
h2o.init()
trainingFile = "/home/ubuntu/h2o/data/mnistdata/test.csv"
responseColumn = 784
modelType=‘deeplearning’

self.train_model(trainingFile, responseColumn, modelType)

Box 11.28 shows the Python implementation of the server component for digit classification
using H2O. For the server component, we use the Flask Python web framework. When the
server component is run, it creates an instance of the AnalysisEngine class of the analysis
component. The server component exposes an endpoint (/predict). When the client sends an
HTTP POST request to this endpoint with the image data, the make_prediction function of
the AnalysisEngine class is called to classify the image.

� Box 11.28: Server component for digit classification using H2O - server.py

import json
from flask import Flask, request
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from analysish2o import AnalysisEngine

app = Flask(__name__)

@app.route(‘/predict’, methods=[‘POST’])
def predict():
data = request.json[‘data’]
result = analysis_engine.make_prediction(data)
return json.dumps(result)

if __name__ == ‘__main__’:
global analysis_engine

analysis_engine = AnalysisEngine()

app.run(host=‘0.0.0.0’, port=5000, debug=False)

Box 11.29 shows the Python client for testing the digit classification system. This client
reads an image file, converts it into a list of pixel values and makes an HTTP POST request
to the server with the image data.

� Box 11.29: Python client for digit classification - client.py

import requests
import numpy as np
import Image
import json

imgFilename = ‘/home/ubuntu/5.png’
img = Image.open(imgFilename).convert(‘L’)
imga = np.asarray(img.getdata())
imgl = imga.tolist()

payload={‘data’:imgl}

headers = {‘content-type’: ‘application/json’}
r = requests.post("http://localhost:5000/predict",

data=json.dumps(payload), headers=headers)

print r.text

To test the system, run the server.py file first and then run the client.py file.

11.5.2 Digit Classification with Spark
Box 11.30 shows the Python implementation of the analysis component for digit classification
using Spark. In this program, we implement an AnalysisEngine class with methods for
training a classification model and making predictions. The classification model type (Naive
Bayes, Decision Tree, Random Forest, GBM) is specified in the class constructor.
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� Box 11.30: Spark analysis component for digit classification - analysis.py

from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.classification import NaiveBayes
from pyspark.mllib.tree import RandomForest
from pyspark.mllib.tree import DecisionTree
from pyspark.mllib.tree import GradientBoostedTrees

class AnalysisEngine:
def parseLine(self,line):
parts = line.split(‘,’)
label = float(parts[784])
features = Vectors.dense([float(x) for x in parts[0:784]])
return LabeledPoint(label, features)

def make_prediction(self, data):
testData = Vectors.dense([float(x) for x in data[0:784]])
result = self.model.predict(testData)
return result

def train_model(self,sc,modelType):
data = sc.textFile(‘file:////home/hadoop/train.csv’)
header = data.first() #extract header
data = data.filter(lambda x:x !=header) #filter out header
trainingData = data.map(self.parseLine)

if modelType==‘naivebayes’:
self.model = NaiveBayes.train(trainingData, 1.0)

elif modelType==‘randomforest’:
self.model = RandomForest.trainClassifier(trainingData,

numClasses=10, categoricalFeaturesInfo={},
numTrees=10, featureSubsetStrategy="auto",
impurity=‘gini’, maxDepth=10, maxBins=32)

elif modelType==‘decisiontree’:
self.model = DecisionTree.trainClassifier(trainingData,

numClasses=10, categoricalFeaturesInfo={},
impurity=‘gini’, maxDepth=10, maxBins=32)

elif modelType==‘gbm’:
self.model = GradientBoostedTrees.trainClassifier(trainingData,
categoricalFeaturesInfo=, numIterations=3)

def __init__(self, sc):
modelType=‘naivebayes’
self.train_model(sc, modelType)

Box 11.31 shows the Python implementation of the server component for digit classification
using Spark. For the server component, we use the Flask Python web framework. When the
server component is run, it creates a Spark Context and passes it to the AnalysisEngine class
constructor to create an instance of the class. The server component exposes an endpoint
(/predict). When the client sends an HTTP POST request to this endpoint with the image
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data, the make_prediction function of the AnalysisEngine class is called to classify the image.

� Box 11.31: Server component for digit classification using Spark - server.py

import analysis
import json
from flask import Flask, request
from pyspark import SparkContext, SparkConf

app = Flask(__name__)

@app.route(‘/mnist/predict’, methods=[‘POST’])
def predict():
data = request.json[‘data’]
result = analysis_engine.make_prediction(data)
return json.dumps(result)

if __name__ == ‘__main__’:
global analysis_engine
conf = SparkConf().setAppName("MySparkApp")
sc = SparkContext(conf=conf, pyFiles=[‘analysis.py’])
analysis_engine = analysis.AnalysisEngine(sc)

app.run(host=‘0.0.0.0’, port=5000, debug=False)

To test the system, run the server.py file first (bin/spark-submit server.py) and then run
the client.py (python client.py) file.

11.6 Case Study: Genome Data Analysis (Implementation)
In Chapter-1, we described the case study on analysis of genome data. The following two
types of analysis were described: (1) predict the drug response based on gene expressions,
(2) find correlations between expression values of all pairs of genes to find genes which have
similar expression patterns and genes which have opposing expression patterns.

In this section, we will describe the implementation of the two types of analysis. For the
first analysis, we will use Spark to build a regression model to predict the drug response. The
target variable for the regression model is the patient drug response, and the independent
variables are gene expression values. However, before we can build the regression model, we
have to perform some transformations and joins to make the data suitable for building the
model.

Box 11.32 shows the implementation of the program for building a regression model
for predicting drug response. In this program, first, we read the four dataset files (shown
in Figure 1.6) and convert them into Spark DataFrames, so that we can apply SparkSQL
operations for filtering, transforming and joining the datasets. With the dataframes created,
we select the genes with a particular set of functions and join the gene meta-data with patient
meta-data and microarray data. Next, we pivot the results to get the expression values for each
type of gene for each patient (this is table ‘g2’ in the code). Then we select the patient-ID,
disease and drug response from the patient meta-data (this is table ‘g3’ in the code). Next,
we join the tables ‘g2’ and ‘g3’ to get table ‘g4’ which has all the data in the right format to
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build a regression model. We use the Spark MLib’s LinearRegressionWithSGD module to
build a linear regression model. We described these steps with a small sample of the data in
Chapter-1 (as shown in Figure 1.8).

� Box 11.32: Spark implementation for predicting drug response using
regression model

from pyspark import SparkContext
from pyspark.sql import SQLContext, Row
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.regression import LinearRegressionWithSGD
from pyspark.mllib.regression import LinearRegressionModel

sc = SparkContext(appName="App")

sqlContext = SQLContext(sc)

genes = sc.textFile(‘/home/ubuntu/GeneMetaData-10-10.txt’)
header = genes.first() #extract header
genes = genes.filter(lambda x:x !=header)

gparts = genes.map(lambda l: l.split(", "))
geneframe = gparts.map(lambda p: Row(geneid=int(p[0]),

target=int(p[1]), position = long(p[2]),
length=int(p[3]), function=int(p[4])))

schemaGene = sqlContext.createDataFrame(geneframe)
schemaGene.registerTempTable("genes")

patients = sc.textFile(‘/home/ubuntu/PatientMetaData-10-10.txt’)
header = patients.first() #extract header
patients = patients.filter(lambda x:x !=header)

pparts = patients.map(lambda l: l.split(", "))
patientsframe = pparts.map(lambda p: Row(patientid=int(p[0]),

age=int(p[1]), gender=int(p[2]),
zipcode=int(p[3]), disease=int(p[4]),
drugResponse = float(p[5])))

schemaPatients = sqlContext.createDataFrame(patientsframe)
schemaPatients.registerTempTable("patients")

geo = sc.textFile(‘/home/ubuntu/GEO-10-10.txt’)
header = geo.first() #extract header
geo = geo.filter(lambda x:x !=header)

geoparts = geo.map(lambda l: l.split(", "))
geoframe = geoparts.map(lambda p: Row(geneid=int(p[0]),

patientid=int(p[1]), exValue = float(p[2])))

schemaGEO = sqlContext.createDataFrame(geoframe)
schemaGEO.registerTempTable("geo")
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g = sqlContext.sql("SELECT p.patientid, p.disease,
e.geneid, e.exValue, p.drugResponse FROM
genes AS g, patients AS p, geo AS e
WHERE g.function < 300 AND
g.geneid = e.geneid
AND p.patientid = e.patientid")

g.registerTempTable("responses")

g2=g.groupBy(‘patientid’).pivot(‘geneid’).sum(‘exValue’)

g2.registerTempTable("gen")

g3 = sqlContext.sql("SELECT patientid, disease,
drugResponse FROM patients")

g3.registerTempTable("gen3")

g4 = sqlContext.sql("SELECT * FROM gen3, gen WHERE
gen3.patientid=gen.patientid")

def parsePoint(x):
return LabeledPoint(x[2], x[4:])

parsedData = g4.map(parsePoint)

# Build the model
model = LinearRegressionWithSGD.train(parsedData)

# Evaluate the model on training data
valuesAndPreds = parsedData.map(lambda p:

(p.label, model.predict(p.features)))

MSE = valuesAndPreds.map(lambda
(v, p): (v - p)**2).reduce(lambda x, y: x + y) / valuesAndPreds.count()

print("Mean Squared Error = " + str(MSE))

For the second type of analysis, we will use Spark to compute correlations between
the expression values of all pairs of genes. Box 11.33 shows the implementation of the
program for this example. After loading the dataset files and converting the datasets into
Spark DataFrames, we select patients with a specific disease and join the results with the
microarray table. Next, we pivot the table in the previous step to get the expression values
for all genes for each patient. We use this table to create the correlation matrix having
correlations between the expression values of all pairs of genes. We described these steps
with a small sample of the data in Chapter-1 (as shown in Figure 1.9).
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� Box 11.33: Spark implementation for computing correlation between
the expression levels of all pairs of genes

from pyspark import SparkContext
from pyspark.sql import SQLContext, Row
from pyspark.mllib.stat import Statistics
from pyspark.mllib.linalg import Vectors
#sc = SparkContext(appName="App")

sqlContext = SQLContext(sc)

genes = sc.textFile(‘/home/ubuntu/GeneMetaData-10-10.txt’)
header = genes.first() #extract header
genes = genes.filter(lambda x:x !=header)

gparts = genes.map(lambda l: l.split(", "))
geneframe = gparts.map(lambda p: Row(geneid=int(p[0]),

target=int(p[1]), position = long(p[2]),
length=int(p[3]), function=int(p[4])))

schemaGene = sqlContext.createDataFrame(geneframe)
schemaGene.registerTempTable("genes")

patients = sc.textFile(‘/home/ubuntu/PatientMetaData-10-10.txt’)
header = patients.first() #extract header
patients = patients.filter(lambda x:x !=header)

pparts = patients.map(lambda l: l.split(", "))
patientsframe = pparts.map(lambda p: Row(patientid=int(p[0]),

age=int(p[1]), gender=int(p[2]), zipcode=int(p[3]),
disease=int(p[4]), drugResponse = float(p[5])))

schemaPatients = sqlContext.createDataFrame(patientsframe)
schemaPatients.registerTempTable("patients")

geo = sc.textFile(‘/home/ubuntu/GEO-10-10.txt’)
header = geo.first() #extract header
geo = geo.filter(lambda x:x !=header)

geoparts = geo.map(lambda l: l.split(", "))
geoframe = geoparts.map(lambda p: Row(geneid=int(p[0]),

patientid=int(p[1]), exValue = float(p[2])))

schemaGEO = sqlContext.createDataFrame(geoframe)
schemaGEO.registerTempTable("geo")

g = sqlContext.sql("SELECT p.patientid, p.disease,
e.geneid, e.exValue FROM patients AS p,
geo AS e WHERE p.disease =18
AND p.patientid = e.patientid")

g1=g.groupBy(‘patientid’).pivot(‘geneid’).sum(‘exValue’)
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def parseFunc(x):
return Vectors.dense(x[1:])

parsedData = g1.map(parseFunc)

pearsonCorr = Statistics.corr(parsedData)

print(str(pearsonCorr).replace(‘nan’, ‘NaN’))

11.7 Recommendation Systems

Recommendation systems are used in a wide range of applications (such as e-Commerce,
social networking, or content delivery applications), to recommend new products or new
content to the users. The two broad categories of approaches used for recommendation
systems are as follows:
• Content-based filtering: In content-based filtering approach, recommendations are

provided to users (for items such as books, movies, songs, or restaurants) based on
the features or characteristics of the items. The basic idea behind this approach is
that if a user has liked an item, he may also like other similar items. In other words,
this approach finds all items similar to the items a user has liked and recommends
those items to the users. This approach doesn’t require user ratings or implicit user
preferences. While this approach works for recommending items similar to the items a
user has liked, it does not recommend something new which the user may like. To find
similar items, similarity measures (such as cosine similarity) or neighborhood methods
(such as clustering methods) are used. This approach requires the items to have certain
meaningful features which can be used for computing similarity. However, when it is
not possible to extract meaningful features from the items, the collaborative filtering
approach is used.
• Collaborative filtering: Collaborative filtering allows recommending items (or filtering

items from a collection of items) based on the preferences of the user and the collective
preferences of other users (i.e. making use of the collaborative information available
on the user-item ratings). Collaborative filtering makes use of the ratings given by the
users to various items for recommending the items to users which they have not rated.
The input to any recommendation system that uses collaborative filtering is the data
about user ratings for different items. Collaborative filtering approaches are of two
types:

– Memory-based approach: There are two types of memory-based approaches:
user-based collaborative filtering and item-based collaborative filtering. User-based
collaborative filtering finds users similar to a given user and recommends the
items they have liked. Item-based collaborative filtering finds items similar to the
items a user has previously liked. The similarity between users (in user-based
collaborative filtering) or items (in item-based collaborative filtering) is calculated
using the users’ ratings of the items.

– Model-based approach: In model-based collaborative filtering approach, a model
of user ratings is built first and then the model is used to make predictions. This

Big Data Science & Analytics: A Hands-On Approach



480 Analytics Algorithms

method adopts a probabilistic approach and predicts the user ratings for the items
which the user has not rated.

The benefit of using collaborative filtering over content-based filtering is that it can
discover hidden patterns and recommend something new.

11.7.1 Alternating Least Squares (ALS)

In this section, we will describe a model-based collaborative filtering approach based on
Alternating Least Squares (ALS) algorithm.
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Figure 11.56: Factorizing user-item rating matrix into user feature vector and item feature
vector

Let us formulate the collaborative filtering problem. Let
m = number of users
n= number of items
k = number of latent factors (or number of user/item features)
r(u,i) = rating given by user u to item i
w(i, j) = 1 if user i has rated item j and 0 otherwise
x(u) = feature vector for user u
y(i) = feature vector for item i

Figure 11.56 shows a user rating matrix where each row belongs to a user and the columns
are the ratings given to items. Given the user-item rating matrix, the learning objective is to
learn the user and item latent features (that represent the user preferences and item features).
In other words, given an m×n dimensional user-item matrix, we want to factorize the matrix
into an m× k matrix (user feature vector) and k×n matrix (item feature vector).

To learn the user features (x(1),x(2), ...,x(m)) for all users and item features (y(1),y(2), ...,y(n))
for all items, we can define the cost functions for x(u) and y(i) as follows:

J(x(1),x(2), ...,x(m)) = minx(u)
1
2

m

∑
u=1

∑
i:w(i, j)=1

(x(u)T y(i)− r(u,i))2 +
λ

2

m

∑
u=1

k

∑
l=1

(x(u)l )2
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J(y(1),y(2), ...,y(n)) = miny(i)
1
2

n

∑
i=1

∑
u:w(i, j)=1

(x(u)T y(i)− r(u,i))2 +
λ

2

n

∑
i=1

k

∑
l=1

(y(i)l )2

where λ is the regularization parameter which is added to prevent over-fitting of data.
The cost functions for x(u) and y(i) can be combined as follows:

J(x(1), ...,x(m),y(1), ...,y(n)) = min(x(u),y(i))
1
2 ∑
(u,i):w(i, j)=1

(x(u)T y(i)− r(u,i))2+

λ

2
(

m

∑
u=1

k

∑
l=1

(x(u)l )2 +
n

∑
i=1

k

∑
l=1

(y(i)l )2)

To solve this optimization problem, the Alternating Least Squares (ALS) algorithm can
be used. The ALS algorithm is summarized as follows:

1. Initialize x(u) and y(i) (user and item feature vectors) to random values.
2. Fix the item vectors (y(i)) and solve for optimal user vectors (x(u)) by minimizing the cost
function J(x(u),y(i)).
3. Fix the user vectors (x(u)) and solve for optimal item vectors (y(i)) by minimizing the cost
function J(x(u),y(i)).
4. Repeat until convergence.

Let us now look at an example of a system for making movie recommendations using the
collaborative filtering approach. For this example, we will use the MovieLens dataset [48]
which includes ratings given by users to movies. For development purpose, a smaller version
of the dataset (MovieLens 100K) which includes 100,000 ratings from 943 users on 1682
movies, is used. For testing the working code with a big dataset, you can use the MovieLens
20M dataset which includes 20 million ratings applied to 27,000 movies by 138,000 users.

Box 11.34 shows a Python implementation of the recommendation system that uses the
Spark MLlib’s implementation of the Alternating Least Squares (ALS) algorithm. In this
example, we first load the MovieLens dataset and split it into training and test datasets. The
dataset file is tab separated with the following columns:
user id | item id | rating | timestamp

The ratings are parsed into Spark’s Rating objects which represent (user, product, rating)
tuples. The train function of the ALS class is used to build an ALS model. The train function
takes input parameters such as the training data, rank (number of latent factors in the model),
number of iterations and lambda (regularization parameter). The ALS model is then used
to predict the ratings for a given user and product (using predict(user, product) function).
Spark’s ALS class also provides other functions such as predictAll(user_product) which
returns a list of predicted ratings for input user and product pairs, recommendProducts(user,
num) function for returning the top num products for a given user, recommendUsers(product,
num) function for returning the top num users for a given product. To view the user and
product features, the userFeatures() and productFeatures() functions can be used.
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� Box 11.34: Python program for building a recommendation system based on
ALS

from pyspark.mllib.recommendation import ALS, Rating

# Load and parse the data
data = sc.textFile("file:///home/hadoop/ml-100k/u.data")

(trainingRatings, testRatings) = data.randomSplit([0.7, 0.3])

trainingRatings.first()
#Output: u‘196,242,3,881250949’

testRatings.first()
#Output: u‘244,51,2,880606923’

trainingData = trainingRatings.map(lambda l:
l.split(‘,’)).map(lambda l:
Rating(int(l[0]), int(l[1]), float(l[2])))

trainingData.first()
#Output: Rating(user=196, product=242, rating=3.0)

testData = testRatings.map(lambda l:
l.split(‘,’)).map(lambda l:
(int(l[0]), int(l[1])))

testData.first()
#Output: (244, 51)

# Build the recommendation model using Alternating Least Squares
rank = 10
numIterations = 50
model = ALS.train(trainingData, rank, numIterations)

#Predict rating for the given user and product.
model.predict(253, 465)
#Output: 4.5738394508197189

#Return a list of predicted ratings for input user and product pairs
predictions = model.predictAll(testData)
predictions.first()
#Rating(user=58, product=1084, rating=1.0564932954594659)

predictions = predictions.map(lambda l: ((l[0], l[1]), l[2]))
predictions.take(5)
#Output: [((58, 1084), 1.0564932954594659),
#((316, 1084), 5.7316694387562022),
#((330, 1084), 3.5890840644277131),
#((195, 1084), 4.4394359038624369),
#((541, 1084), 5.9725270274011484)]

testRatings = testRatings.map(lambda l:
l.split(‘�’)).map(lambda l: ((int(l[0]), int(l[1])), float(l[2])))
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testRatings.take(5)
#[((244, 51), 2.0), ((115, 265), 2.0),
#((6, 86), 3.0),
#((200, 222), 5.0),
#((234, 1184), 2.0)]

ratingsAndPredictions = testRatings.join(predictions)
ratingsAndPredictions.take(5)
#[((105, 333), (3.0, 2.4070588034521849)),
#((109, 365), (4.0, 2.974229204549999)),
#((360, 14), (5.0, 4.5625799637027171)),
#((720, 286), (5.0, 3.9581844170381464)),
#((501, 829), (3.0, 2.4709893659891664))]

MSE = ratingsAndPredictions.map(lambda r: (r[1][0] - r[1][1])**2).mean()
print "Mean Squared Error = " + str(MSE)
#Output: Mean Squared Error = 1.29853954685

#Recommend the top N products for a given user
model.recommendProducts(253, 5)
#Output: [Rating(user=253, product=1063, rating=6.7525296445231611),
#Rating(user=253, product=459, rating=6.7239131863565023),
#Rating(user=253, product=844, rating=6.643750789521941),
#Rating(user=253, product=960, rating=6.175726236721804),
#Rating(user=253, product=394, rating=6.1395628318225901)]

#Recommend the top N users for a given product
model.recommendUsers(465, 5)
#Output: [Rating(user=519, product=465, rating=7.5049478754749002),
#Rating(user=180, product=465, rating=7.3478113160070091),
#Rating(user=217, product=465, rating=7.2194201952177766),
#Rating(user=808, product=465, rating=6.5398839496324266),
#Rating(user=93, product=465, rating=6.4988971770196038)]

#View features corresponding to a user
model.userFeatures().take(1)[0]
#Output: (2, array(‘d’, [-0.041698437184095383, -0.29158979654312134,
#0.60749232769012451, 0.6784324049949646, -0.12671113014221191,
#0.76399964094161987, -0.52530914545059204, 0.25506862998008728,
#0.54997712373733521, -1.3625633716583252]))

#View features corresponding to a product
model.productFeatures().take(1)[0]
#Output: (2, array(‘d’, [-1.2220950126647949, 0.26224410533905029,
#0.31355467438697815, 0.7695726752281189,
#0.072056755423545837, 1.233315110206604,
#0.5064246654510498, -0.024322325363755226,
#-0.10120454430580139, -0.98879802227020264]))
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11.7.2 Singular Value Decomposition (SVD)
In this section, we will describe a collaborative filtering approach based on Singular Value
Decomposition (SVD) algorithm.

SVD is a matrix factorization method that can be used to factorize a matrix X of
dimensions (n× d) into matrices U of dimensions (n× n), S of dimensions (d× d) and
V of dimensions (n×d) as follows:

Xn×d =Un×nSd×dV T
n×d

For a recommendation system that maintains user-item ratings, the user-items matrix is
typically very sparse, because the matrix may have a very large number of users and items
but a given user may have rated only a small number of items. The matrix in this case would
consist of most of the fields set to 0 with only a few fields consisting of the actual values,
which are the ratings. Working with such a sparse matrix involves high space complexity to
store the entire matrix and increased time complexity to parse the matrix and compute the
relationship for an item and a user. SVD can be used for matrix dimension reduction for
reducing a sparse matrix to extract the latent relationship between a user and an item. This
helps in obtaining the relationship between the user and an item in a more efficient manner
and helps in increasing the accuracy of the recommendation system.

11.7.3 Case Study: Movie Recommendation System
In this section we describe a case study of a movie recommendation system that uses both
ALS and SVD based recommendation algorithms. For implementing ALS we have used
Spark MLLib and for SVD we have used the Python-RecSys library [28].

Figure 11.57 shows the architecture of the recommendation system. The dataset used for
the recommendation system is the MovieLens dataset [48]. In addition to the MovieLens
dataset, additional information is added to the dataset with IMDbPY, an API to access the
IMDb database [49]. From the MovieLens dataset we used the following files: movies.csv,
ratings.csv and links.csv. The movies.csv has the format: movie id, title, genres. The
ratings.csv has the format: user id, movie id, rating, timestamp. The links.csv the format:
MovieLens movieID, IMDb movieID, TMDb movieID.

Since MovieLens movie-IDs have a one-to-one relationship with IMDb movie-IDs,
IMDbPy is used to retrieve the movie object associated with a MovieLens movie-ID.
The movie object contains a list of directors and a list of cast members. For the movie
recommendation system, the first director in the list and the top nine cast member are added
to the links.csv file. Given a movie-ID, the modified links file (links_modified.csv) can be
used to retrieve more information about a movie for front end presentation. Box 11.35 shows
the Python code for adding details to the links file using IMDbPy. The MovieLens dataset
files and the modified links file are converted into SparkSQL DataFrames and saved as tables
which are used within the recommendation engine at run time. Box 11.36 shows the Python
program for saving the dataset files as SparkSQL tables.
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Spark SQL
(save_tables.py)

MovieLens Dataset

movies.csv

ratings.csv

links.csv

IMDbPy
(add_details.py)

links_modified.csv Spark
(engine.py)

Spark MLlib
(als_model.py)

Python RecSys
(svd_model.py)SVD 

Model

ALS
Model

Flask
Web App
(app.py)

JSON

Fields in MovieLens dataset files:

movies.csv: 
movie id, title, genres

ratings.csv:
user id, movie id, rating, timestamp

links.csv:
MovieLensmovieID, IMDb movieID, TMDb movieID

Figure 11.57: Architecture for movie recommendation system

� Box 11.35: Python program for adding details to links file using IMDbPy -
add_details.py

import imdb
import csv
import codecs

#Add director and cast info to the links.csv file

#Fetch from IMDB server
ia = imdb.IMDb(accessSystem=’http’)

file_name = ’datasets/links.csv’

old = open(file_name, ’rb’)
new = codecs.open(’links_modified.csv’, ’wb’, ’utf-8’)
reader = csv.reader(old, delimiter=’,’)
next(reader)

new.write(’movieId,imdbId,tmdId,director,cast\n’)

for row in reader:
id = row[1]
m = ia.get_movie(id)
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director=”
cast_list=[]
cast = []

if m.get(’director’):
director = m.get(’director’)[0].get(’name’)

if m.get(’cast’):
cast_list = m.get(’cast’)
l = len(cast_list)
if l >= 10:
cast_list = cast_list[0:9]

else:
cast_list = cast_list[0:l]

cast = [c[’name’] for c in cast_list]
cast_elements = ’|’.join(cast)
line = [row[0], id, row[2], director, cast_elements]
new.write(’,’.join(line))
new.write(’\n’)
print id

old.close()
new.close()

� Box 11.36: Python program for saving the dataset files as SparkSQL tables -
save_tables.py

import os
import re
from pyspark import SparkContext
from pyspark.sql import SQLContext, Row

# Regex used to seperate movie movieId, name, year, and genres
RE = re.compile(r’(?P<movieId>\d+),
"?(?P<name>.+)\((?P<year>\d+))
?"?,(?P<genres>.+)’)

# Initialize the Spark context
sc = SparkContext("local", "DataImporter")
# Initialize the SparkSQL context
sqlContext = SQLContext(sc)

#----Import Movies File----------

# Read in the text file as an RDD
data = sc.textFile(’movies.csv’)

header = data.first() # Get the csv header
# Filter out the csv header
#data = data.filter(lambda line: line != header)
# Split the CSV file into rows
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# Formatter that takes the CSV line and
# outputs it as a list of datapoints
# Uses a regex with named groups
def formatter(line):
m = RE.match(line) # Seperates datapoints
if (m != None):
m = m.groupdict()
movieId = int(m[’movieId’])
name = m[’name’]
year = int(m[’year’])
genres = m[’genres’].split(’|’)
return [movieId, name, year, genres]

data = data.map(formatter)
# Filter out rows that dont match
data = data.filter(lambda line: line != None)
# Map the data into a Row data object to prepare it for insertion
rows = data.map(lambda r: Row(movieId=r[0], name=r[1],

year=r[2], genres=r[3]))

# Create the schema for movies and register a table for it
schemaMovies = sqlContext.createDataFrame(rows)
schemaMovies.registerTempTable("movies")
schemaMovies.save(’tables/movies’)

#----Import Ratings File----------

# Regex used to seperate movie movieId, name, year, and genres
RE = re.compile(r’(?P<userId>\d+),(?P<movieId>\d+),
(?P<rating>\d\̇d),(?P<timestamp>\d+)’)

# Read in the text file as an RDD
data = sc.textFile(’ratings.csv’)

header = data.first() # Get the csv header
# Filter out the csv header
#data = data.filter(lambda line: line != header)
# Split the CSV file into rows
def formatter(line):
m = RE.match(line) # Seperates datapoints
if (m != None):
m = m.groupdict()
userId = int(m[’userId’])
movieId = int(m[’movieId’])
rating = float(m[’rating’])
timestamp = m[’timestamp’]
return [userId, movieId, rating, timestamp]

data = data.map(formatter)
# Filter out rows that dont match
data = data.filter(lambda line: line != None)
# Map the data into a Row data object to prepare it for insertion
rows = data.map(lambda r: Row(userId=r[0], movieId=r[1],

rating=r[2], timestamp=r[3]))
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# Create the schema for movies and register a table for it
schemaRatings = sqlContext.createDataFrame(rows)
schemaRatings.registerTempTable("ratings")
schemaRatings.save(’tables/ratings’)

#----Import Details File----------

# Regex used to seperate movie movieId, imdbId, and tmdbId
RE = re.compile(r’(?P<movieId>\d+),(?P<imdbId>\d+),
(?P<tmdbId>\d+),(?P<director>.+),(?P<cast>.+)’)

# Read in the text file as an RDD
data = sc.textFile(’links_modified.csv’)

header = data.first() # Get the csv header
# Filter out the csv header
#data = data.filter(lambda line: line != header)
# Split the CSV file into rows
def formatter(line):
m = RE.match(line) # Seperates datapoints
if (m != None):
m = m.groupdict()
movieId = int(m[’movieId’])
imdbId = int(m[’imdbId’])
if m[’tmdbId’] != None:
tmdbId = int(m[’tmdbId’])

else:
tmdbId = -1

director = m[’director’]
cast = m[’cast’].split(’|’)
print [movieId, imdbId, tmdbId, director, cast]
return [movieId, imdbId, tmdbId, director, cast]

data = data.map(formatter)
# Filter out rows that dont match
data = data.filter(lambda line: line != None)
# Map the data into a Row data object to prepare it for insertion
rows = data.map(lambda r: Row(movieId=r[0], imdbId=r[1],
tmdbId=r[2], director=r[3], cast=r[4]))

# Create the schema for movies and register a table for it
schemaLinks = sqlContext.createDataFrame(rows)
schemaLinks.registerTempTable("detail")
schemaLinks.save(’tables/detail’)

Building ALS Model

We use Spark MLlib for implementing the ALS algorithm and for building the ALS model.
Box 11.37 shows the Python code for training and saving an ALS model. The model is saved
as to a file and then used within the recommendation engine. This approach is efficient since
the model needs to be computed only once. Thus, the time latency of the recommendation
algorithm is reduced due to this model based recommendation approach.
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� Box 11.37: Python program for training and saving an ALS model - als_model.py

from pyspark import SparkContext
from pyspark.mllib.recommendation import ALS
from pyspark.mllib.recommendation import Rating

sc = SparkContext("local", "collaborative_filtering") #initializing sc

#Loading the data using SparkContext
ratings = "./ratings.csv"
data = sc.textFile(ratings)
ratings_data = data.map(lambda l: l.split(’,’))
ratings = ratings_data.map(lambda l: Rating(int(l[0]),
int(l[1]), float(l[2])))

#Building the recommendation model using Alternating Least Squares
rank = 10
numIterations = 5
model = ALS.train(ratings, rank, numIterations)

#Lets save the model for future use
model_path = "./ALS_Model"
model.save(sc,model_path)

Building SVD Model

For building the SVD model, we use the Python-RecSys library which provides an
implementation of the SVD algorithm. Box 11.38 shows the Python code for training
and saving an SVD model. The model is saved as to a file and then used within the
recommendation engine.

� Box 11.38: Python program for training and saving an SVD model - svd_model.py

import recsys.algorithm
from recsys.algorithm.factorize import SVD

#SVD Model Computation

#To obtain make the script verbose.
recsys.algorithm.VERBOSE = True

#Load the ratings file
svd = SVD()
svd.load_data(filename=’ratings.csv’,

sep=’,’ , format={’col’:0, ’row’:1, ’value’:2, ’ids’:int})

#Now, lets compute the SVD. k = 100
svd.compute(k=k, min_values=10, pre_normalize=None,

mean_center=True, post_normalize=True,
savefile=’movielens_model’)

print("Model Computed and Created")
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Recommendation Engine
The recommendation engine receives inputs from the web application (user-ID and movie
name), and provides the recommendations using the ALS and SVD models previously trained.
Box 11.39 shows the Python code for the recommendation engine.

The ALS model provides recommendations by seeking out users which are similar to
the given user and then predicting the ratings for the top rated movies of the similar users.
The recommended movies are basically the list of movies which have a high predicted rating
amongst the top rated movies of the similar users. For this case study, the list of recommended
movies is limited to five.

The SVD model provides two types of recommendations:
• Recommending movies for a particular user in the database: This produces a list of

movies which are top rated by other users which are similar to the target user. This is a
personalized movie recommendation and returns a list of movies which are more in
line with the user’s preferences.
• Recommending movies based on a particular movie: This is a type of non-personalized

movie recommendation which takes in a movie as an input and predicts the ratings of
other movies and returns the list of those movies.

� Box 11.39: Recommendation engine program - engine.py

import recsys.algorithm
from recsys.algorithm.factorize import SVD
from operator import add
from pyspark import SparkContext
from pyspark.sql import SQLContext, Row
from pyspark import SparkConf
from pyspark.mllib.recommendation import ALS
from pyspark.mllib.recommendation import MatrixFactorizationModel
from pyspark.mllib.recommendation import Rating

recsys.algorithm.VERBOSE = True

”’
This is the main file which initializes the backend and gets the machine
learning algorithms running on spark. Use this file for running.
”’

def get_counts_and_averages(ID_and_ratings_tuple):
nratings = len(ID_and_ratings_tuple[1])
return ID_and_ratings_tuple[0],
(nratings, float(sum(x for x in ID_and_ratings_tuple[1])) / nratings)

class RecommendationSystem():
def __init__(self, sc, datapath=’frontend/’, model=’movielens_model’):
self.sc = sc
self.start = True
self.sqlContext = SQLContext(self.sc)

self.svd = SVD(filename=datapath+model)
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self.als_model_path = datapath + ’ALS_Model’
self.als_model = MatrixFactorizationModel.load(sc, self.als_model_path)
self.movie_df = self.sqlContext.read.load(datapath+’tables/movies’)
self.detail_df = self.sqlContext.read.load(datapath+’tables/detail’)
self.rating_df = self.sqlContext.read.load(datapath+’tables/ratings’)

# call this function to get all recommendations
def get_all_recomm(self, userid, moviename):
movieid = self.get_movie_id(moviename)

# all recommendation algorithms return a list of movie ids
recom1 = self.svd_recomm(userid)
recom2 = self.svd_similar(movieid)
recom3 = self.als_new(userid)

#get info about the movie based on movie ids
brief_info1 = self.get_brief_list(recom1)
brief_info2 = self.get_brief_list(recom2)
brief_info3 = self.get_brief_list(recom3)

return [brief_info1, brief_info2, brief_info3]

# get movie id based on movie name input
def get_movie_id(self, moviename):
r = self.movie_df.where(self.movie_df[’name’].startswith(moviename)).first()

# return movie id 1 if not found
if r is None:
return 1

return r[’movieId’]

# svd recommendation algorithm based on the user’s rating history
def svd_recomm(self, userid, only_unknown):
# output format: (movieid, similarity value)
similar_list = self.svd.recommend(userid, n=10,

only_unknowns=True, is_row=True)

movieid_list = self.get_id_list(similar_list)
return movieid_list

# svd recommendation algorithm based on similar movie
def svd_similar(self, movieid):
similar_list = self.svd.similar(movieid)
movieid_list = self.get_id_list(similar_list)
return movieid_list

# an ALS recommendation algorithm based on user rating history
def als_new(self, userid):
recommended_movies = self.als_model.recommendProducts(userid, 10)
recommended_movie_list = []
for movie in recommended_movies:
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recommended_movie_list.append(movie[1])

return recommended_movie_list

# return a list of movie id
def get_id_list(self, l):
movieid_list = []
for s in l:
movieid_list.append(s[0])

return movieid_list

# get a list of movie info given a list of movie ids
def get_brief_list(self, movieList):
info_list = []
for m in movieList:
info = self.get_brief(m)
if info[’title’] != ’unknown’:
info_list.append(info)

if len(info_list) == 5:
break

return info_list

# get movie info (title, direction, genres, rating, cast)
def get_brief(self, movieid):
info = {}
info[’movieid’] = movieid
info[’title’] = ’unknown’
info[’genres’] = ’unknown’
info[’rating’] = 0
info[’director’] = ’unknown’
info[’cast’] = ’unknown’

m = self.movie_df.where(self.movie_df[’movieId’] == movieid).first()
if m is not None:
info[’title’] = m[’name’]
info[’genres’] = m[’genres’]
if len(info[’genres’]) > 3:
info[’genres’] = info[’genres’][0:3]

d = self.detail_df.where(self.detail_df[’movieId’] == movieid).first()
if d is not None:
info[’director’] = d[’director’]
info[’cast’] = d[’cast’]

r = self.rating_df.where(self.rating_df[’movieId’] == movieid)

# default rating to be 4.6
if r.count()==0:
info[’rating’] = 4.6

else:
avg = r.map(lambda row:row[’rating’]).reduce(lambda x, y: x+y)/r.count()

info[’rating’] = avg

return info
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Web Application
Box 11.40 shows the Python code for the Flask web application. Due to space constraints, we
have not included the HTML, JavaScript and CSS files for the web application. Figure 11.58
shows a screenshot of the web application. In the web interface, a user can search for a movie
name in the search bar. The recommendations based on the three different algorithms are
listed in the three separated columns. The movie recommendations in the left column are the
outputs from SVD algorithm based on user-ID. Results from SVD recommendation based on
the input movie name are listed in the middle column. The right columns are results from
the ALS collaborative filtering. Brief information of each recommended movie, such as title,
rating, top two genres, director, and top nine cast members of the movie, is also displayed.

The Flask web application is used to serve the static HTML, CSS and JavaScript files
and act as the server, as well as connect the backend recommendation engine to the front end.
The JavaScript code handles user interaction and initiates the backend processing by sending
a HTTP POST request to the Flask application which in turn calls the functions for getting
the recommendations using the ALS and SVD models. The JavaScript waits for a JSON
response to its POST request and then parses the response and inserts the information into
the HTML template.

� Box 11.40: Python Flask web application - app.py

from flask import Flask
from flask import request, render_template, jsonify, url_for
import json
from engine import RecommendationSystem
from pyspark import SparkContext, SparkConf

import imdb
import csv
import codecs

#Add director and cast info to the links.csv file

#Fetch from IMDB server
ia = imdb.IMDb(accessSystem=’http’)

file_name = ’datasets/links.csv’

old = open(file_name, ’rb’)
new = codecs.open(’links_modified.csv’, ’wb’, ’utf-8’)
reader = csv.reader(old, delimiter=’,’)
next(reader)

new.write(’movieId,imdbId,tmdId,director,cast\n’)

for row in reader:
id = row[1]
m = ia.get_movie(id)

director=”

Big Data Science & Analytics: A Hands-On Approach



494 Analytics Algorithms

cast_list=[]
cast = []

if m.get(’director’):
director = m.get(’director’)[0].get(’name’)

if m.get(’cast’):
cast_list = m.get(’cast’)
l = len(cast_list)
if l >= 10:
cast_list = cast_list[0:9]

else:
cast_list = cast_list[0:l]

cast = [c[’name’] for c in cast_list]
cast_elements = ’|’.join(cast)
line = [row[0], id, row[2], director, cast_elements]
new.write(’,’.join(line))
new.write(’\n’)
print id

old.close()
new.close()
app = Flask(__name__)

conf = SparkConf().setAppName("movie_recommendation_server")
sc = SparkContext(conf=conf, pyFiles=[’frontend/engine.py’])

global data
global userid

@app.route("/")
def index():
global data
global userid
data = {"data": "Empty"}
userid = 1
return render_template(’index.html’)

# change user id through url
@app.route("/<int:user_id>")
def index_id(user_id):
global data
global userid
data = {"data": "Empty"}
userid = user_id
return render_template(’index.html’)

# post movie recommendation results
@app.route("/data", methods=[’POST’])
def post_data():
global data
global userid
d = request.get_data()
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data = json.loads(d)

# calling backend to get all movie recommendations
info = recomsys.get_all_recomm(userid, data[’data’])
return jsonify({’data’: info})

if __name__ == "__main__":
global data
global recomsys

# initialize backend engine
recomsys = RecommendationSystem(sc)

data = {"data": "Empty"}
app.run()

Figure 11.58: Screenshot of the movie recommendation web application

Summary

In this chapter we provided an overview of big data analysis algorithms for machine learning
that include clustering, classification, regression and recommendation. Implementations
and examples of applying these algorithms using Spark MLlib and H2O machine learning
frameworks were provided. Clustering is the process of grouping similar data items together
such that data items that are more similar to each other than other data items are put in one
cluster. The k-means clustering algorithm groups data items into k clusters, such that all points
in a cluster are closer to their centroid as compared to the centroids of neighboring clusters.
We described various distance measures that can be used for clustering algorithms including
Euclidean, Cosine, and Manhattan distance measures. Next, we described classification and
regression algorithms. Classification is the process of categorizing objects into predefined
categories. While in classification, the response variable is categorical and unordered, in
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Regression, the response variable takes continuous values. Naive Bayes is a probabilistic
classification algorithm based on the Bayes theorem with a naive assumption about the
independence of feature attributes. Generalized Linear Models (GLM) are a generalization
of ordinary linear regression models that allows response variables which are discrete,
non-normally distributed and/or non-constant variance. In Decision Trees, the predictive
model is in the form of a tree that can be used to predict the value of a target variable
based on several attribute variables. Random Forest trains a number decision trees and
then takes the majority vote by using the mode of the class predicted by the individual
trees. In Random Forest, each tree is built independently from a random (bootstrap) sample,
whereas in Gradient-Boosted Trees a decision tree is trained at each step which corrects
and compliments the previously built trees. In SVM, a maximum margin hyperplane is
determined, that separates the two classes. Next, we described a specific implementation of
deep learning, which is based on a multi-layer feed-forward artificial neural network which
includes multiple layers of interconnected neurons. Next, we provided a comparison of
recommendation algorithms. While in content-based filtering approach, recommendations
are provided to users based on the features or characteristics of the items, collaborative
filtering makes use of the ratings given by the users to various items for recommending the
items to users which they have not rated.
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This chapter covers
Data visualization frameworks and libraries:

• Lightning
• Pygal
• Seaborn
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In this chapter, we will describe frameworks and Python libraries for data visualization.
Visualizations can help in understanding the data and the results of analysis quickly and
easily. When the amount of data is massive, visualizations become important as they help us
in understanding the patterns in the results or the data which may not be discernible.

12.1 Frameworks & Libraries

12.1.1 Lightning

Lightning is a framework for creating web-based interactive visualizations [67]. Lightning
provides a REST API and client libraries for Python, Scala, R and JavaScript programming
languages. Lightning can be deployed either in a server mode or in a local server-less mode.
Lightning server can be installed and run using the following commands:

� sudo apt-get install nodejs npm
sudo npm install -g lightning-server
lightning-server

Lightning can also be run without a server using the Python client. The Lightning Python
client can be installed with the follows command:

� sudo pip install lightning-python

To create visualizations you can either use the Lightning REST API or one of client
libraries. The examples in this chapter use Lightning Python client library for creating
visualizations.

12.1.2 Pygal

Since we have used Python as the primary programming language for the examples in this
book, a Python charting library may be handy in visualizing the data and the analysis results.
The Python Pygal library is an easy to use charting library which supports charts of various
types. The charts built with Pygal can be rendered in output formats such as SVG, PNG or in
the browser. The Pygal library can be installed with the following commands:

� sudo pip install pygal

12.1.3 Seaborn

Seaborn is a Python visualization library for plotting attractive statistical plots [36]. Seaborn
is built on top of matplotlib and uses data structures from Python numpy and pandas libraries
and statistical routines from scipy and statsmodels. Seaborn can be installed with the
following commands:

� sudo apt install python-scipy python-pandas
sudo pip install seaborn
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12.2 Visualization Examples

12.2.1 Line Chart

Line chart is one of the simplest charts that can be used to display information as a series
of data points connected by a line. Let us look at an example of plotting line charts for
maximum, minimum and mean temperatures recorded in the month of October 2014 in
Atlanta. The data was obtained from Weather Underground [31]. Box 12.1 shows the Python
code creating the line charts using Lightning and the output is shown in Figure 12.1.

� Box 12.1: Python program for plotting line chart using Lightning

from lightning import Lightning

from numpy import random

lgn = Lightning(ipython=True,local=True)

x = range(1,32)

y1 = [30,29,25,18,21,26,27,29,29,30,28,29,
29,24,21,20,26,23,22,22,24,21,21,23,24,
28,29,25,21,19,16]

y2 = [22,22,22,13,13,17,20,23,23,23,24,23,
23,19,17,15,17,18,15,14,17,14,13,15,16,
19,19,18,15,12,10]

y3 = [14,15,18,8,4,9,13,16,18,17,19,17,
17,13,12,10,8,12,8,7,9,8,5,7,7,9,10,
11,8,5,4]

lgn.line([y1,y2,y3],thickness=6,index=x,
xaxis=‘Day of Month’,yaxis=‘Temperature (C)’)

Figure 12.1: Line chart plotted with Lightning
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Let us repeat the example using Pygal charting library. Box 12.2 shows the Python code
creating the line charts using Pygal and the output is shown in Figure 12.2.

� Box 12.2: Python program for plotting line chart using Pygal

import pygal

line_chart = pygal.Line(fill=True)
line_chart.x_title = ’Day of Month’
line_chart.y_title = ’Temperature (c)’
line_chart.title = ’Temperature in Atlanta (Oct 2014)’

line_chart.x_labels = [’1’,’2’,’3’,’4’,’5’,’6’,’7’, ’8’,’9’,’10’,’11’,
’12’,’13’, ’14’,’15’, ’16’,’17’,’18’,’19’,’20’,’21’,’22’,
’23’, ’24’,’25’,’26’,’27’, ’28’,’29’,’30’,’31’]

line_chart.add(’Max Temp’, [30, 29, 25, 18, 21, 26, 27, 29, 29, 30, 28,
29, 29, 24, 21, 20, 26, 23, 22, 22, 24, 21, 21,
23, 24, 28, 29, 25, 21, 19, 16])

line_chart.add(’Min Temp’, [22, 22, 22, 13, 13, 17, 20, 23, 23, 23, 24,
23, 23, 19, 17, 15, 17, 18, 15, 14, 17, 14, 13,
15, 16, 19, 19, 18, 15, 12, 10, ])

line_chart.add(’Mean Temp’, [14, 15, 18, 8, 4, 9, 13, 16,
18, 17, 19, 17, 17, 13, 12, 10, 8, 12, 8, 7, 9, 8, 5, 7, 7, 9, 10,
11, 8, 5, 4, ])

line_chart.render_to_png(’line.png’)

Figure 12.2: Line chart plotted with Pygal
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12.2.2 Scatter Plot

Scatter plots can be used to visualize two variables along the X and Y axes. Scatter plots and
are useful for identifying the relationships between two sets of data, for example fitting a
regression line for bivariate data.

Let us look at examples of scatter plots for visualizing the mean temperature and mean
humidity recorded in Atlanta in May 2012, May 2013 and May 2014. Box 12.3 shows the
Python code creating a scatter plot using Lightning and the output is shown in Figure 12.3.
The groups (shown in different colors) denote data from different years for the month of
May.

� Box 12.3: Python program for plotting scatter plot using Lightning

from lightning import Lightning

from numpy import random

lgn = Lightning(ipython=True,local=True)

#Mean Temp
x=[25,23,23,24,24,24,22,23,18,17,17,
21,18,22,21,22,21,22,21,22,23,22,22,22,24,
26,26,26,26,26,24,19,18,17,13,14,11,15,17,
20,19,20,16,13,17,22,22,21,21,19,23,24,24,
25,18,17,19,22,24,23,24,26,16,17,16,19,22,
22,21,22,22,21,23,24,24,22,15,15,14,15,18,
20,22,23,26,24,24,23,23,24,24,25,24 ]

#Mean Humidity
y=[61,62,71,76,69,66,79,79,81,62,61,66,90,
81,81,67,70,66,63,57,70,73,65,61,65,65,
60,65,70,70,61,70,78,76,84,74,81,76,70,
69,70,77,61,60,66,58,63,68,83,90,76,70,
68,66,57,61,61,64,57,67,68,63,67,53,55,
57,60,61,58,62,73,85,76,71,65,72,73,57,
70,89,77,68,62,68,65,66,69,76,79,74,71,78,71]

g=[1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3]

lgn.scatter(x,y,group=g,
xaxis=’Mean Temp (C)’,yaxis=’Mean Humidity (%)’)

Lightning supports special type of scatter plot in which the size of the dots can be made
proportional to a third variable. Box 12.4 shows the Python code creating a scatter plot
where the size of the dots are proportional to the mean wind speed. The output is shown in
Figure 12.4. The different color dots show the data from different years.
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Figure 12.3: Scatter plot plotted with Lightning

� Box 12.4: Python program for plotting scatter plot using Lightning

from lightning import Lightning

from numpy import random

lgn = Lightning(ipython=True,local=True)

#Mean Temp
x=[25,23,23,24,24,24,22,23,18,17,17,
21,18,22,21,22,21,22,21,22,23,22,22,22,24,
26,26,26,26,26,24,19,18,17,13,14,11,15,17,
20,19,20,16,13,17,22,22,21,21,19,23,24,24,
25,18,17,19,22,24,23,24,26,16,17,16,19,22,
22,21,22,22,21,23,24,24,22,15,15,14,15,18,
20,22,23,26,24,24,23,23,24,24,25,24 ]

#Mean Humidity
y=[61,62,71,76,69,66,79,79,81,62,61,66,90,
81,81,67,70,66,63,57,70,73,65,61,65,65,
60,65,70,70,61,70,78,76,84,74,81,76,70,
69,70,77,61,60,66,58,63,68,83,90,76,70,
68,66,57,61,61,64,57,67,68,63,67,53,55,
57,60,61,58,62,73,85,76,71,65,72,73,57,
70,89,77,68,62,68,65,66,69,76,79,74,71,78,71]

g=[1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3]
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#Mean Wind Speed
s=[5,5,3,3,5,3,6,6,6,5,5,10,8,8,
3,3,3,5,3,3,3,5,3,2,2,2,6,13,13,
10,5,17,19,22,14,7,7,5,6,4,6,6,10,
8,5,7,4,5,7,6,3,5,7,11,15,4,3,4,
9,8,10,9,9,6,7,6,7,6,5,7,6,4,3,
6,5,9,13,11,3,2,4,6,8,10,8,4,3,
3,4,4,5,4,4]

lgn.scatter(x,y,group=g,size=s,
xaxis=’Mean Temp (C)’,yaxis=’Mean Humidity (%)’)

Figure 12.4: Scatter plot plotted with Lightning

Let us look at another example of a scatter plot built using Pygal library. Box 12.5
shows the Python code creating a scatter plot of mean temperature and mean humidity for
the months of March and October in the year 2014 in Atlanta. The output is shown in
Figure 12.5.

� Box 12.5: Python program for plotting scatter plot using Pygal

import pygal

xy_chart = pygal.XY(stroke=False)
xy_chart.title = ’Mean Temp vs Mean Humidity’
xy_chart.x_title = ’Mean Temp (C)’
xy_chart.y_title = ’Mean Humidity (%)’

xy_chart.add(’Mar’, [(11, 62), (13, 66), (8, 79), (4, 66),
(9, 58), (6, 61), (10, 76), (11, 66), (14, 59), (14, 58), (16, 64),
(14, 69), (7, 44), (9, 59), (16, 56), (14, 84), (11, 93), (7, 79),
(12, 77), (12, 57), (10, 59), (15, 61), (13, 67), (8, 58), (7, 49),
(5, 44), (9, 51), (14, 77), (14, 79), (12, 48), (15, 48) ])

xy_chart.add(’Oct’, [(22, 68), (22, 70), (22, 81), (13, 55), (13, 57),
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(17, 66), (20, 68), (23, 74), (23, 74), (23, 72), (24, 74), (23, 74),
(23, 72), (19, 77), (17, 68), (15, 76), (17, 65), (18, 67), (15, 67),
(14, 69), (17, 70), (14, 56), (13, 63), (15, 61), (16, 62), (19, 65),
(19, 70), (18, 73), (15, 83), (12, 61), (10, 71)])

xy_chart.render_to_png(’scatter.png’)

Figure 12.5: Scatter plot plotted with Pygal

12.2.3 Bar Chart
Bar chart can be used to display grouped data as bars with lengths proportional to the values
represented. Box 12.6 shows the Python code for plotting a bar chart of the maximum,
minimum and mean temperatures recorded in October 2014 in Atlanta. The output is shown
in Figure 12.6.

� Box 12.6: Python program for plotting bar chart using Pygal

import pygal

bar_chart = pygal.Bar()
bar_chart.x_title = ’Day of Month’
bar_chart.y_title = ’Temperature (C)’
bar_chart.title = ’Temperature in Atlanta (Oct 2014)’

bar_chart.x_labels = [’1’,’2’,’3’,’4’,’5’,’6’,’7’, ’8’,’9’,’10’,’11’,
’12’,’13’, ’14’,’15’, ’16’,’17’,’18’,’19’,’20’,’21’,’22’,
’23’, ’24’,’25’,’26’,’27’, ’28’,’29’,’30’,’31’]

bar_chart.add(’Max Temp’, [30, 29, 25, 18, 21, 26, 27, 29, 29, 30, 28,
29, 29, 24, 21, 20, 26, 23, 22, 22, 24, 21, 21,
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23, 24, 28, 29, 25, 21, 19, 16])

bar_chart.add(’Min Temp’, [22, 22, 22, 13, 13, 17, 20, 23, 23, 23, 24,
23, 23, 19, 17, 15, 17, 18, 15, 14, 17, 14, 13,
15, 16, 19, 19, 18, 15, 12, 10, ])

bar_chart.add(’Mean Temp’, [14, 15, 18, 8, 4, 9, 13, 16,
18, 17, 19, 17, 17, 13, 12, 10, 8, 12, 8, 7, 9, 8, 5, 7, 7, 9, 10,
11, 8, 5, 4, ])

bar_chart.render_to_png(’bar.png’)

Figure 12.6: Bar chart plotted with Pygal

Let us look at another example of a bar plot plotted using Seaborn. The Seaborn bar
plot shows an estimate of central tendency (mean or median) for a numeric variable (as the
height of a rectangular bar) and the uncertainty around that estimate (using error bars). For
plotting the box plot we will use the Auto MPG Data Set from the UCI Machine learning
repository [32]. This dataset can be used for regression problems to predict the city-cycle
fuel consumption (in mpg), in terms of three multivalued discrete attributes (cylinders, model
year, origin) and four continuous attributes (displacement, horsepower, weight, acceleration).
Box 12.7 shows the Python program for plotting bar plot using Seaborn and Figure 12.7
shows the bar plot. This plot shows the mean values for the fuel consumption (in mpg) for
different number of cylinders in automobiles.

� Box 12.7: Python program for plotting bar plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
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data = pd.read_csv("auto-mpg.csv")

sns.barplot(x="cylinders", y="mpg", data=data)

savefig("bar.png")

Figure 12.7: Bar plot plotted with Seaborn

12.2.4 Box Plot
Box plot can be used to display the minimum, medium and maximum for a data set. In a
box plot, the whiskers denote the extremes of the dataset and the middle line is the median.
The box goes from the first quartile to the third quartile of the data set. Box 12.8 shows the
Python code for plotting a box plot of the total precipitation recorded in Atlanta for every
month in the years 2012, 2013 and 2014. The output is shown in Figure 12.8.

� Box 12.8: Python program for plotting box plot using Pygal

import pygal
box_plot = pygal.Box()
box_plot.title = ’Total Precipitation (mm)’

box_plot.add(’2012’, [67.81, 25.41 , 30.72, 78.49, 87.12,
119.62, 98.56, 78.23 , 86.11 , 66.53, 25.65 , 149.59])

box_plot.add(’2013’, [28.68, 120.89, 41.90, 34.80, 81.54,
266.70, 91.67, 46.73, 56.14 , 15.48, 69.09, 117.35])

box_plot.add(’2014’, [82.31, 96.01, 102.36, 82.30, 72.63,
66.55, 116.07, 44.44, 17.77, 148.06, 133.86, 166.61 ])
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box_plot.render_to_png(’box.png’)

Figure 12.8: Box plot plotted with Pygal

Let us look at another example of a box plot plotted using Seaborn. The Seaborn box
plot shows the quartiles of the dataset with whiskers denoting the extremes and dots denoting
the points that are determined to be outliers. For plotting the box plot we will use the Wine
dataset from the UCI Machine learning repository [39]. This dataset has results of a chemical
analysis of wines grown in Italy. The chemical analysis determined the quantities of 13
constituents (such as alcohol, malic acid, magnesium, etc. ) found in three types of wines.
Box 12.9 shows the Python program for plotting box plot using Seaborn and Figure 12.9
shows the box plot. This plot shows the distribution of the alcohol content in three types of
wines.

� Box 12.9: Python program for plotting box plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("wine.csv")

sns.boxplot(x="Wine Type", y ="Alcohol", data=data)

savefig("box.png")
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Figure 12.9: Box plot plotted with Seaborn

12.2.5 Pie Chart
Pie chart is used to display numerical proportions on a circle where the arc length is
proportional to the quantity represented. Box 12.10 shows the Python code for plotting
a pie chart of the total populations of the continents. The output is shown in Figure 12.10.

� Box 12.10: Python program for plotting pie chart using Pygal

import pygal

pie_chart = pygal.Pie()
pie_chart.title = ’Population of Continents (in millions)’

pie_chart.add(’Asia’, 4397)
pie_chart.add(’Africa’, 1171)
pie_chart.add(’Europe’, 742)
pie_chart.add(’South America’, 630)
pie_chart.add(’North America’, 357)
pie_chart.add(’Oceania’, 40)

pie_chart.render_to_png(’pie.png’)
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Figure 12.10: Pie chart plotted with Pygal

12.2.6 Dot Chart

Dot charts are used to display different datasets where the size of the dots are proportional
to the values represented. Box 12.11 shows the Python code for plotting a dot chart of the
January mean temperatures recorded in Atlanta in the years 2012, 2013 and 2014. The output
is shown in Figure 12.11.

� Box 12.11: Python program for plotting dot chart using Pygal

import pygal
dot_chart = pygal.Dot(x_label_rotation=30)
dot_chart.title = ’January Mean Temperatures’
dot_chart.x_title = ’Day of Month’
dot_chart.y_title = ’Temperature (C)’

dot_chart.x_labels = [’1’,’2’,’3’,’4’,’5’,’6’,’7’, ’8’,’9’,’10’,
’11’,’12’,’13’,’14’,’15’, ’16’,’17’,’18’,’19’,’20’,’21’,’22’,
’23’, ’24’,’25’,’26’,’27’,’28’,’29’,’30’,’31’]

dot_chart.add(’Jan 2012’, [11, 3, -2, 2, 8, 8, 12, 11, 14, 14, 13,
7, 0, 3, 6, 7, 12, 7, 6, 11, 13, 10, 10, 10, 10, 17, 10, 8, 6, 7, 9] )

dot_chart.add(’Jan 2013’, [9, 7, 4, 4, 3, 7, 6, 7, 14, 17, 17,
18, 19, 13, 11, 14, 7, 7, 6, 7, 6, 2, 6, 7, 4, 8, 8, 11, 14, 14, 5])

dot_chart.add(’Jan 2014’, [2, -1, -6, -7, -1, -2, 6, 7, 11, 13, 10,
-1, -3, -4, 0, -1, 7, 1, -3, 7, 8, 7, 7, 4, 1, 12, 4, -1, 0, -3, -1])

dot_chart.render_to_png(’dot.png’)
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Figure 12.11: Dot chart plotted with Pygal

12.2.7 Map Chart

Let us look at some example of plotting world map charts using Lightning and Pygal.
Box 12.12 shows the Python code for plotting world map chart using Lightning showing the
top 20 most populated countries. The output is shown in Figure 12.12.

� Box 12.12: Python program for plotting map using Lightning

from lightning import Lightning

from numpy import random

lgn = Lightning(ipython=True,local=True)

countries = [’CHN’,’IND’,’USA’,’IDN’,’BRA’,
’PAK’,’NGA’,’BGD’,’RUS’,’JPN’,
’MEX’,’PHL’,’ETH’,’VNM’,’EGY’,
’DEU’,’IRN’,’TUR’,’COG’,’THA’]

values = [1393783836,1267401849,322583006,
252812245,202033670,185132926,178516904,
158512570,142467651,126999808,123799215,
100096496,96506031,92547959,83386739,82652256,
78470222,75837020,69360118,67222972]

lgn.map(countries,values,colormap=’Pastel1’,width=900)

Box 12.13 shows the Python code for plotting world map chart using Pygal showing the
top 20 most populated countries. The output is shown in Figure 12.13.
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Figure 12.12: Map plotted with Lightning

� Box 12.13: Python program for plotting map chart using Pygal

import pygal

worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = ’Top 20 most populated countries ’
worldmap_chart.add(’Population’,
’cn’: 1393783836,
’in’: 1267401849,
’us’: 322583006,
’id’: 252812245,
’br’: 202033670,
’pk’: 185132926,
’ng’: 178516904,
’bd’: 158512570,
’ru’: 142467651,
’jp’: 126999808,
’mx’: 123799215,
’ph’: 100096496,
’et’: 96506031,
’vn’: 92547959,
’eg’: 83386739,
’de’: 82652256,
’ir’: 78470222,
’tr’: 75837020,
’cg’: 69360118,
’th’: 67222972
)
worldmap_chart.render_to_png(’map.png’)
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Figure 12.13: Map plotted with Pygal

12.2.8 Gauge Chart
Gauge charts display data on a circular gauge (as in automobile speedometers) where different
needles represent different values. Box 12.14 shows the Python code for plotting a gauge
chart of the total precipitation recorded in Atlanta in the years 2012, 2013 and 2014. The
output is shown in Figure 12.14.

� Box 12.14: Python program for plotting gauge chart using Pygal

import pygal

gauge_chart = pygal.Gauge()
gauge_chart.title = ’Total Precipitation (mm)’
gauge_chart.range = [0, 1000]
gauge_chart.add(’2012’, 765)
gauge_chart.add(’2013’, 860)
gauge_chart.add(’2014’, 962)

gauge_chart.render_to_png(’gauge.png’)
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Figure 12.14: Gauge chart plotted using Pygal

12.2.9 Radar Chart

Radar chart (also called Kiviat diagram) is used to display multivariate data on a two-dimensional
chart with the zero point in the middle. Box 12.15 shows the Python code for plotting a radar
chart of the total precipitation recorded in Atlanta in every month of the years 2012, 2013
and 2014. The output is shown in Figure 12.15.

� Box 12.15: Python program for plotting radar chart using Pygal

import pygal

dot_chart = pygal.Radar()
dot_chart.title = ’Total Precipitation (mm)’

dot_chart.x_labels = [’Jan’,’Feb’,’Mar’,’Apr’,’May’,
’Jun’,’Jul’,’Aug’,’Sep’,’Oct’,’Nov’,’Dec’]

dot_chart.add(’2012’, [67.81, 25.41 , 30.72, 78.49, 87.12,
119.62, 98.56, 78.23 , 86.11 , 66.53, 25.65 , 149.59])

dot_chart.add(’2013’, [28.68, 120.89, 41.90, 34.80, 81.54,
266.70, 91.67, 46.73, 56.14 , 15.48, 69.09, 117.35])

dot_chart.add(’2014’, [82.31, 96.01, 102.36, 82.30, 72.63,
66.55, 116.07, 44.44, 17.77, 148.06, 133.86, 166.61 ])

dot_chart.render_to_png(’radar.png’)
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Figure 12.15: Radar chart plotted using Pygal

12.2.10 Matrix Chart
Matrix chart can be used to display data in a grid format. Box 12.16 shows the Python
code for plotting matrix chart using Lightning showing a matrix of ratings given by users to
different items. The output is shown in Figure 12.16.

� Box 12.16: Python program for plotting matrix using Lightning

from lightning import Lightning
from numpy import random

lgn = Lightning(ipython=True, local=True)

rows = [’User-’ + str(x) for x in range(1,11)]
columns = [’Item-’ + str(x) for x in range(1,11)]

mat = (random.rand(10,10) * 10).astype(’int’)
lgn.matrix(mat, row_labels=rows,

column_labels=columns, colormap=’Reds’, numbers=True)
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Figure 12.16: Matrix plotted with Lightning

Circle Plot
Circle plots show groups of nodes as points around a circle with the connections between the
nodes represented by lines between the points. Box 12.17 shows the Python code for plotting
circle plot using Lightning showing direct flights between cities (for a random synthetic
dataset) in three different countries (shown as three groups in a different color). The output
is shown in Figure 12.17.

� Box 12.17: Python program for plotting circle chart using Lightning

from lightning import Lightning
from random import randint
from numpy import random

lgn = Lightning(ipython=True, local=True)

#Nodes denoting cities
nodes = range(50)

#Links denoting direct flights between cities
links = [ ]
for i in range(20):

x= [randint(0,50),randint(0,50)]
links.append(x)
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labels = [’City-’ + str(x) for x in range(50)]

#Groups denoting countries
groups = [ ]
for i in range(50):

groups.append(randint(0,2))

lgn.circle(links, group=groups, labels=labels)

Figure 12.17: Circle chart plotted using Lightning

12.2.11 Force-directed Graph

Force-directed graphs are used to display data in an aesthetically pleasing graph. The edges
represent connections between the nodes and are of more or less equal length. The layout of
the nodes in the graph is such that there are as few crossing edges as possible. Box 12.18
shows the Python code for plotting force-directed graph using Lightning showing direct
flights between cities (for a random synthetic dataset) in three different countries (shown as
nodes in a different color). The output is shown in Figure 12.18.
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� Box 12.18: Python program for plotting force-directed graph using Lightning

from lightning import Lightning
from numpy import random
from random import randint

lgn = Lightning(ipython=True, local=True)

#Nodes denoting cities
nodes = range(50)

#Links denoting direct flights between cities
links = [ ]
for i in range(20):

x= [randint(0,50),randint(0,50)]
links.append(x)

labels = [’City-’ + str(x) for x in range(50)]

#Groups denoting countries
groups = [ ]
for i in range(50):

groups.append(randint(0,2))

lgn.force(links, group=groups)

Figure 12.18: Force-directed graph plotted using Lightning
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Figure 12.19: Force-directed graph plotted using Lightning

Box 12.19 shows the another Python example for plotting force-directed graph with a
random dataset. The output is shown in Figure 12.19.

� Box 12.19: Python program for plotting force-directed graph using Lightning

from lightning import Lightning
from numpy import random
from random import randint

lgn = Lightning(ipython=True, local=True)

mat = random.rand(20,20) mat[mat>0.40] = 0
group = (random.rand(20) * 4).astype(’int’)

lgn.force(mat, group=group)

12.2.12 Spatial Graph
Spatial graphs can be used to display nodes with fixed spatial positions, and the links between
them. Box 12.20 shows a Python example for plotting a spatial graph with a random dataset.
The output is shown in Figure 12.20.

� Box 12.20: Python program for plotting spatial graph using Lightning

from lightning import Lightning
from numpy import random
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from random import randint

lgn = Lightning(ipython=True, local=True)

x = random.randn(20)
y = random.randn(20)
mat = random.rand(20,20)
mat[mat>0.50] = 0

lgn.graphbundled(x, y, mat)

Figure 12.20: Spatial graph potted using Lightning

12.2.13 Distribution Plot
Distribution plots are used to visualize the univariate distributions of the observations.
Box 12.21 shows the Python program for plotting distribution plot using Seaborn and
Figure 12.21 shows the distribution plot. This plot shows the kernel density estimate and
histogram for the fuel consumption (mpg) values in the Auto MPG dataset.

� Box 12.21: Python program for plotting distribution plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import numpy as np

data = pd.read_csv("auto-mpg.csv")

x=np.array(data.ix[0:,0])

g = sns.distplot(x)

savefig("dist.png")
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Figure 12.21: Distribution Plot

12.2.14 Kernel Density Estimate (KDE) Plot
The KDE plot can be used to plot univariate or bivariate kernel density estimates. Box 12.22
shows the Python program for plotting KDE plot using Seaborn and Figure 12.22 shows
the KDE plot. This plot shows the bivariate density for the fuel consumption (mpg) and
displacement variables in the Auto MPG dataset.

� Box 12.22: Python program for plotting KDE plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import numpy as np

data = pd.read_csv("auto-mpg.csv")

x=np.array(data.ix[0:,0])
y=np.array(data.ix[0:,2])

g = sns.kdeplot(x, y, shade=True)

savefig("kde.png")
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Figure 12.22: KDE Plot

12.2.15 Regression Plot
Regression plot can be used to plot the data and a linear regression model fit. Box 12.23
shows the Python program for plotting regression plot using Seaborn and Figure 12.23 shows
the regression plot. This plot shows the displacement versus the fuel consumption (mpg)
data in the Auto MPG dataset and a linear regression model fit line.

� Box 12.23: Python program for plotting regression plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import numpy as np

data = pd.read_csv("auto-mpg.csv")

#extract mpg column
x=np.array(data.ix[0:,0])

#extract displacement column
y=np.array(data.ix[0:,2])

sns.regplot(x="displacement", y="mpg", data=data, color="g")

savefig("regplot.png")
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Figure 12.23: Regression plot

12.2.16 Residual Plot

Residual plot can be used to plot the residuals of a linear regression. Box 12.24 shows the
Python program for plotting residual plot using Seaborn and Figure 12.24 shows the residual
plot. This plot shows the residuals of a linear regression between the displacement and the
fuel consumption (mpg) variables in the Auto MPG dataset.

� Box 12.24: Python program for plotting residual plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import numpy as np

data = pd.read_csv("auto-mpg.csv")

#extract mpg column
x=np.array(data.ix[0:,0])

#extract displacement column
y=np.array(data.ix[0:,2])

# plot the residuals after fitting a linear model
sns.residplot(x="displacement", y="mpg", data=data, lowess=True,
color="g")

savefig("resi.png")
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Figure 12.24: Residual Plot

12.2.17 Interaction Plot
Interaction plot can be used to visualize a continuous two-way interaction with a contour
plot. Box 12.25 shows the Python program for plotting interaction plot using Seaborn and
Figure 12.25 shows the interaction plot. This plot shows the two-way interaction between
two independent variables (displacement and horsepower) and the dependent variable (mpg)
in the Auto MPG dataset.

� Box 12.25: Python program for plotting interaction plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import numpy as np

data = pd.read_csv("auto-mpg.csv")

sns.interactplot("displacement", "horsepower", "mpg", data)

savefig("interactplot.png")
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Figure 12.25: Interaction Plot

12.2.18 Violin Plot
Violin plot can be used to plot a combination of box plot and kernel density estimate.
Box 12.26 shows the Python program for plotting violin plot using Seaborn and Figure 12.26
shows the violin plot. This plot shows the distribution of fuel consumption (mpg) data for a
different number of cylinders (which is the categorical variable).

� Box 12.26: Python program for plotting violin plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("auto-mpg.csv")

g = sns.violinplot(y="mpg", x ="cylinders", data=data)

savefig("violin.png")
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Figure 12.26: Violin Plot

12.2.19 Strip Plot
Strip plot can be used to plot a scatter plot where one variable is categorical. Box 12.27
shows the Python program for plotting strip plot using Seaborn and Figure 12.27 shows the
strip plot. This plot shows the scatter plot of fuel consumption (mpg) data for a different
number of cylinders (which is the categorical variable).

� Box 12.27: Python program for plotting strip plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("auto-mpg.csv")

sns.stripplot(x="cylinders", y="mpg", data=data, jitter=True)

savefig("strip.png")
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Figure 12.27: Strip Plot

12.2.20 Point Plot
Point plot can be used to plot an estimate of central tendency (e.g. mean) for a numeric
variable (as scatter plot points) and uncertainty around that estimate (using error bars).
Box 12.28 shows the Python program for plotting point plot using Seaborn and Figure 12.28
shows the point plot. This plot shows the mean fuel consumption (mpg) for a different
number of cylinders for the Auto MPG dataset.

� Box 12.28: Python program for plotting point plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("auto-mpg.csv")

sns.pointplot(x="cylinders", y="mpg", data=data)

savefig("pointplot.png")
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Figure 12.28: Point Plot

12.2.21 Count Plot
Count plot can be used to plot the counts of observations in each categorical bin using bars.
Box 12.29 shows the Python program for plotting count plot using Seaborn and Figure 12.29
shows the count plot. This plot shows the count of observations for the three types of wines
in the Wines dataset.

� Box 12.29: Python program for plotting count plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("wine.csv")

sns.countplot(x="Wine Type", data=data)

savefig("count.png")
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Figure 12.29: Count Plot

12.2.22 Heatmap
Heatmap can be used to plot a color-encoded matrix. Box 12.30 shows the Python program
for plotting heatmap using Seaborn and Figure 12.30 shows the heatmap. In this heatmap
the index (month) and column (year) information is used to label the rows and columns and
the values (total precipitation) are used for color coding. In this example, we use the pivot
function of the Python pandas library for reshaping the data.

� Box 12.30: Python program for plotting heatmap using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("data.csv")
data_to_plot = data.pivot(index="Month", columns="Year",
values="Total Precipitation")
sns.heatmap(data_to_plot)

savefig("heatmap.png")

Bahga & Madisetti, c© 2016



12.2 Visualization Examples 529

Figure 12.30: Heatmap

12.2.23 Clustered Heatmap
Clustered heatmap can be used to plot a hierarchically clustered heatmap. Box 12.31 shows
the Python program for plotting clustered heatmap using Seaborn and Figure 12.31 shows
the clustered heatmap.

� Box 12.31: Python program for plotting clustered heatmap using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("data.csv")
data_to_plot = data.pivot(index="Month", columns="Year",
values="Total Precipitation")
sns.clustermap(data_to_plot)

savefig("clustermap.png")
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Figure 12.31: Clustered Heatmap

12.2.24 Joint Plot
Joint plot can be used to plot two variables with bivariate and univariate graphs. Box 12.32
shows the Python program for plotting joint plot using Seaborn. The joint plot in Figure 12.32
shows a scatterplot of weight vs mpg (for the Auto MPG dataset) and the regression and
kernel density fits. The joint plot in Figure 12.33 shows the density estimates for cylinders
and mpg.

� Box 12.32: Python program for plotting joint plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("auto-mpg.csv")
#g = sns.jointplot("weight", "mpg", data=data, kind="scatter", color="r")
g = sns.jointplot("cylinders", "mpg", data=data, kind="kde", color="b")

savefig("joint.png")
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Figure 12.32: Joint Plot

Figure 12.33: Joint Plot
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12.2.25 Pair Grid
Pair grid is used for plotting pairwise relationships in a dataset. Box 12.33 shows the Python
program for plotting pair plot using Seaborn and Figure 12.34 shows the pair plot. This plot
shows scatter plots for each pairwise relationship between the Alcohol, Malic acid, Ash and
Alkalinity of ash variables in the Wines dataset.

Figure 12.34: Pair Grid

� Box 12.33: Python program for plotting pair grid using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import matplotlib.pyplot as plt

data = pd.read_csv("wine.csv")
features_to_plot = [’Wine Type’,’Alcohol’,’Malic acid’,’Ash’,’Alkalinity
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of ash’]
df_to_plot = data.ix[:, features_to_plot]

g = sns.PairGrid(df_to_plot, hue="Wine Type")
g = g.map(plt.scatter)
g = g.add_legend()

savefig("pair.png")

12.2.26 Facet Grid
Facet grid is used for drawing a grid of plots with upto three dimensions where row and
column variables produce an array of axes and the hue variable acts as the third dimension.
Box 12.34 shows the Python program for plotting facet grid for the Automobile dataset from
the UCI machine learning repository [33]. Figure 12.35 shows the facet grid which uses
two dimensions (Drive-wheels for column and Body-style for hue). The facet grid shows the
scatter plot of the wheel-base and price.

� Box 12.34: Python program for plotting facet plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig
import matplotlib.pyplot as plt

data = pd.read_csv("imports-85.data.csv")

g = sns.FacetGrid(data, col="Drive-wheels",
hue="Body-style", margin_titles=True)
g = g.map(plt.scatter, "Wheel-base", "price")
g.add_legend()

savefig("facet.png")

Figure 12.35: Facet Plot

Box 12.35 shows the Python program for plotting facet grid showing the point plots for
the wheel base and the highway-mpg and Figure 12.36 shows the plot.
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� Box 12.35: Python program for plotting facet plot using Seaborn

import pandas as pd
import seaborn as sns
from pylab import savefig

data = pd.read_csv("imports-85.data.csv")
g = sns.FacetGrid(data, col="Engine-type",
col_wrap=3, margin_titles=True)
g = g.map(sns.pointplot, "Wheel-base", "Highway-mpg")
g.add_legend()

savefig("facet.png")

Figure 12.36: Facet Plot

Summary
In this chapter, we described the Lightning, Pygal and Seaborn frameworks for data
visualization. These visualizations can be used either in a standalone manner or inside a web
application built with a web framework such as Django.
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