
Architecture for
Blockchain
Applications

Xiwei Xu
Ingo Weber
Mark Staples

Architecture for Blockchain Applications

Xiwei Xu • Ingo Weber • Mark Staples

Architecture for
Blockchain
Applications

123

Xiwei Xu
Data61, CSIRO
Eveleigh, NSW
Australia

Ingo Weber
Data61, CSIRO
Eveleigh, NSW
Australia

Mark Staples
Data61, CSIRO
Eveleigh, NSW
Australia

ISBN 978-3-030-03034-6 ISBN 978-3-030-03035-3 (eBook)
https://doi.org/10.1007/978-3-030-03035-3

Library of Congress Control Number: 2018962552

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover illustration: © Shashkin/stock.adobe.com

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-03035-3

Foreword

This book provides an excellent overview of the engineering aspects of block-

chains. You will learn what blockchains are, the current options for platforms,

the application areas in which they may be used, and how do you, as a software

engineer, design software to utilize blockchain technology. What I will do in this

foreword is explore the disruptive nature of blockchains. Every popular article about

blockchains mentions its disruptive nature. What does this mean?

Let me begin by discussing the general problem of technology transition. It is

generally accepted in the technology transition community that it takes roughly 15

years from the inception of a technology to its broad adoption. Some technologies,

notably the smart phone and the World Wide Web, have shortened that period

and others have languished until the supporting infrastructure is ready for the

technology. Containerization is a technology that existed for almost 30 years before

Docker began and made it mainstream. Two important elements that help determine

the time for a concept to become mainstream are the existence of educational

materials such as this book and the publicity around the technology.

Although blockchains did not spring fully realized and built on prior work, the

introduction of Bitcoin in 2009 can be considered the birth of blockchain. Since we

are now a decade into its life, the 15-year estimate for widespread adoption seems

to be proving out. As detailed in this book, preliminary applications are emerging

beyond cryptocurrency. It seems reasonable that in another 5 years, blockchains

will have entered the software engineering toolbox as a mature option with various

offerings, and an engineer can apply the techniques discussed here to help design

systems that utilize blockchains in some form.

Now let us turn to the disruptive nature of blockchains. Calling blockchains

disruptive begs two questions: disruptive to whom and what does the disruption

consist of?

Technologies that are disruptive to the consumer are actually quite rare. Smart

phones and the World Wide Web are two of the most recent ones. These have

changed the lives of almost everyone. The distinction between the disruption caused

by the World Wide Web and the cloud is a useful example. One changed the lives of

the consumers, and the other changed the lives of the producers.

v

vi Foreword

The World Wide Web changed the manner in which people interact with each

other, with businesses, and with government. The cloud, on the other hand, is

an enabling technology that supports the expansion of the World Wide Web but

is mostly invisible to the consumer. As a consumer, I do not care whether my

news source is delivered from a cloud platform or a local platform. As a producer,

however, I am concerned with production issues such as reliability, scalability, and

cost. Consumers see an indirect impact for the cloud, but the disruption is primarily

to the producers.

Blockchains in this dichotomy are disruptive to the producer, and their existence

will be only indirect on the consumer. To use a supply chain example, as a supplier,

I am happy to have a more efficient and reliable mechanism for me to get paid, but

it is not disruptive to a great extent. One place where the use of blockchains disrupts

the life of consumers is in areas where there is no functioning bank system. An

example of this is the UN use of blockchains for refugees.1

In places with functioning government services, it is the producers who are

potentially disrupted by blockchains. So let us dig more deeply into some of the

use cases for blockchains and see where the disruption might occur.

• Supply chain. The current process for a supply chain that traverses international

borders is that the producer and consumer agree on a price. The purchaser

provides some proof of funds—for example, a letter of credit. The producer now

produces the goods and ships the goods. They travel through several changes of

responsibility and end up at the consumer. To see what is meant by changes

of responsibility, consider a cotton grower in Australia who sells cotton to a

consumer in Thailand. Cotton is priced in US dollars. The cotton grower loads

the cotton on a train (one change in responsibility), the train goes to a port where

it is loaded on a ship (another change in responsibility), the ship goes to a port

in Thailand where it is loaded onto a truck (another change in responsibility),

and the truck goes to the consumer where it is finally delivered. At this point, the

cotton grower can cash in the letter of credit. Two points to mention. First, this

process takes months, and the Australian dollar may have fluctuated relative to

the US dollar, so the cotton grower is engaged in currency speculation. Secondly,

each of the changes of responsibility is accompanied by entering information into

at least one computer system, if not two. Any discrepancy between the relevant

computer systems must be reconciled manually.

How does this process change utilizing blockchains? It changes in two

fashions. First there is only one source of truth—the blockchain. All of the

participants have agreed to interact with the blockchain. Thus, there is no

reconciliation necessary. Secondly, the consumer deposits the purchase money

(in US dollars) into the blockchain, replacing the letter of credit. This allows the

cotton grower to get incremental payments at each change of responsibility. This

reduces the risk of currency fluctuation to the grower.

1https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-
blockchain/.

https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-blockchain/
https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-blockchain/

Foreword vii

Now where is the disruption in this scenario? Because there is no need for

reconciliation, the labour costs for reconciliation disappear. Secondly, letters

of credit are difficult for banks to handle, as they involve much manual

operation. Thus, the disruption consists of automating some processes that used

to be manual. Easier, smoother, faster—yes. Disruptive? In the same sense that

automation is disruptive to those displaced.

• Proof of identity. Currently, you acquire a proof of identity—e.g. driver’s license

or passport—by providing some other proof of identity, e.g. a birth certificate, to

a trusted authority that then issues the proof of identity. You can carry this proof

with you and produce it on demand.

How will this change with blockchain? You prove your identity by providing

some proof of identity—the UN in the example cited uses retinal scans—to a

trusted authority that then enters your identity onto the blockchain. You can save

this proof of identity on a smart card or retrieve it through some form of secure

access. The individual or system that is interested in your identity will recover it

from the blockchain, although the person or system checking your identity may

be interested in some attribute of you that they can retrieve from the blockchain

without the necessity of retrieving your identity.

Where is the disruption here? Proofs of identity do not depend on physical

papers such as passports, although they do depend on the ability to retrieve

the proof of identity. You will not need multiple forms of identification; the

blockchain will suffice, although this depends on all of the institutions that

you interact with accepting the blockchain identification and being able only to

retrieve information relevant to them. Disruptive? More than the supply chain

in that there is a single source of identity and attributes for you. This will

simplify life for you and, again, displace personnel involved in the production

and verification of identification documents. It will also reduce the incidence of

forgery of identification documents.

• As a final example, let us examine the problem of compliance. Financial insti-

tutions, e.g. banks, must comply with a variety of regulations. Each regulation

is verified by individuals in some regulatory agency. Compliance is verified

through an audit process. Individuals from the regulatory agency coordinate

with individuals from the financial institution to perform an audit. This requires

the individuals from the financial institution to collect the relevant information.

The individuals from the regulatory agency will then examine the information

provided to determine whether it conforms to the regulation. They will also

do spot audits of the source of the information to determine that the provided

information is, in fact, representative of the data that they are auditing. Errors and

‘red flags’ are identified by the regulators, and they work with representatives of

the financial institution to resolve errors and determine processes to eliminate the

‘red flags’.

How will this change with blockchains? First, the auditors and the financial

institution can both access the data from the blockchain with assurance that they

are looking at the same data. The auditors will have extraction software that will

produce the reports they need without them relying on the financial institution.

viii Foreword

Since the auditors have real-time access to up-to-date information, they are able

to produce the quarterly reports that they need to have. Since the blockchain

provides a single source of truth for the information, automated systems can

produce the reports either on the regulatory side or the financial institution side.

Where is the disruption here? Both regulators and financial institutions will

find their work simplified. Since there is only a single source of truth, errors

are reduced. Since the auditors will have real-time access to the blockchain, the

delay in gathering the information is reduced. Again, the personnel involved in

producing reports from the financial institution will be reduced, and the personnel

involved in auditing will be reduced.

Examining other use cases enumerated in Chapter 1, my conclusion is that

introduction of blockchain technology will speed up existing processes, reduce the

labour involved in performing operations, and reduce errors. These advantages are

substantial, but disruptive in the same way that smart phones or the World Wide

Web have been? I do not think so.

Why then does every popular article about blockchain mention ‘disruption’?

First, there is the question of what could be achieved with existing technol-

ogy. A blockchain is a distributed data base + encryption + immutability + stored

procedures (in the form of ‘smart contracts’). There is no inherent reason why

existing distributed database systems cannot be extended to add cryptography and

immutability as features. So, the disruption consists of replacing one technology

with another. Better, faster, less error prone, but not necessarily life changing for

any of the participants except for those displaced by the labour savings.

Secondly, let us go back to the compliance example. The World Economic

Forum, when discussing the disruption caused by blockchain, has this to say

about compliance2: ‘Given no legal/regulatory precedent, establishing a shared

arrangement between the regulator and [financial institutions] will be arduous’.

They say something similar for all of the use cases they analyse.

In other words, to achieve the benefits touted from blockchain will require a

degree of cooperation among institutions that has not yet been achieved and that

could have been achieved with modifications of existing technology.

So why all the hype and discussion of disruption? Blockchains offer the

opportunity to rethink financial systems and arrangements. This is a tough sell to

top management who must sign off on the costs associated with redoing existing

systems. A look back in history might be instructive in this regard.

Recall the year 2000 (Y2K) problem. The year 2000 was coming, and the

problems it would cause were well known in advance. Suppose you are an IT

manager in a bank in 1995. You know you have to fix the Y2K problem but you also

know that your systems are dated and need to be updated. You have been telling

management for years that the systems needed to be updated, but they have been

unwilling to allocate the money. Now you have a forcing function. You need to

2World Economic Forum, The Future of Financial Infrastructure, p. 99.

Foreword ix

update your systems by the year 2000 or your bank will not be able to function.

Management caves.

Now fast forward 20 years. The last time you updated your systems was 1999.

They are again dated and badly in need of being updated. Your management again

is reluctant to spend the money necessary. Now comes blockchain. Your argument

is that all of the organizations with which you are interacting will be moving to

blockchains and your bank needs to do this in order to function in the global market.

More than this, there will be cost savings from the automation of tasks that are

currently manual. Your argument is not as compelling as the year 2K argument,

but it still carries weight with your management partially because of the publicity

surrounding blockchains. Management is in the process of providing the financing

for updating and rethinking your systems.

As a software engineer, you are on the receiving end of questions and instructions

to convert your systems to use blockchains. Hence, you should read this book since

it will provide answers to the questions and instructions for the conversion. You

should look for opportunities both to deepen your understanding about blockchains

and to apply them in situations where they provide the correct set of functionalities

that you need for your particular problem.

Pittsburgh, PA, USA Len Bass

August 2018

How to Read This Book

When we first learned about Ethereum and its smart contracts, we were thrilled

about the world of possibilities enabled by blockchain technology. As researchers,

we have worked in this area from around mid-2015, which also marked the genesis

of the public Ethereum blockchain. In our project work with startups, corporates,

and government agencies, and in many interactions with the community, we found

that the knowledge, tools, and methodologies for tapping into that potential were

lacking. Therefore, we started investigating the issues in our core research: what do

architects and developers need to build applications on blockchain? The result is

this book, based on a stream of our earlier research publications, tools, and projects.

This book is primarily written for developers, software architects, and CIOs

(Chief Information Officers), as well as students and researchers in these areas. The

book captures the architectural view on software systems that use blockchain.

It provides guidance on assessing the suitability of blockchain, on designing

blockchain applications, and on assessing different architecture designs and trade-

offs. The book is also a reference for blockchain design patterns and design analysis

and refers to practical examples of blockchain-based applications.

This book is not a step-by-step tutorial on coding for blockchain, although

the case study chapters contain code samples where these provide added insights.

Instead, we focus on the bigger picture, the concepts, and technical considerations in

the design of blockchain-based applications. We also limit the use of mathematical

formulas except where they are critical, for cost estimation.

Readers who are familiar with particular platforms can easily skip that back-

ground, and also the initial example use cases which are more for illustration.

Because we have drawn on our previous publications, there are a number of

experiments that are included in the book. These experiments are similar to practical

benchmarking and design studies that might be conducted by system architects, but

in case the exact results matter less to you, you can jump over those sections easily.

At the end of each chapter, we include a section called Further Reading, where

references to additional material and the relevant literature can be found.

The book is structured into four parts, starting with the background. The

introduction gives an overview of the issues discussed throughout the book, and

xi

xii How to Read This Book

motivates the use of blockchain. It also contains a number of textual definitions of

the most important terms, and a non-technical explanation of blockchain, in case

you have to explain it to your parents, partner, or kids.

Chapter 2 gives background on existing blockchain platforms. We start, of

course, with Bitcoin, and describe Ethereum. For enterprise use, several blockchain

platforms have emerged, and we describe Hyperledger Fabric as an example of that

class. The chapter closes with an overview of other platforms.

There are many varieties of blockchain platforms and possible configurations. In

order to help the architect navigate this space, we describe the main dimensions and

their implications for non-functional properties in Chapter 3.

In Chapter 4, we provide four use case examples of blockchain-based applica-

tions to convey a concrete understanding of how blockchain can be used to solve

real-world issues. The domains of these use cases are supply chains, government

registries, international money transfers, and electricity provision.

In Part II, we focus on the functional part of software architecture. We start with

the main roles blockchain can play in an architecture in Chapter 5. Blockchain can

be used as a data store, a computational element, a communication mechanism, and

to manage assets and exert control. We also discuss considerations for integrating

blockchain into a bigger system design.

Chapter 6 describes the design process, starting with the question of suitability:

when should you use blockchain and when should you not? Once you settled on

using blockchain, we then discuss how to make important decisions, such as what

functionality to provide on-chain and what off-chain.

Making good use of blockchain in systems often requires solutions that are non-

obvious, especially when starting out in this area. Chapter 7 provides a catalogue

of 15 design patterns with in-depth descriptions, which have proven valuable in

practice.

Due to specific properties of blockchain technology, model-driven engineering

(MDE) is particularly amenable for blockchain-based applications. Chapter 8

describes two MDE methods, one for business processes and one for registries of

assets.

Part III covers the non-functional aspects of blockchain applications, which are

often cross-cutting concerns. Cost and cost estimation are discussed in Chapter 9.

Similarly, Chapter 10 discusses performance, with a focus on latency. In both cases,

estimates allow understanding the implications of a particular choice of platform,

parameters, or blockchain configuration.

Dependability and security are discussed in Chapter 11. These two topics are

related to six properties: confidentiality, integrity, safety, maintainability, availabil-

ity, and reliability. We include some insights from observing the Ethereum and

Bitcoin blockchains in this chapter, which architects and developers should consider

when designing and building applications.

In Part IV, three use cases give practical insights. AgriDigital describe their

experiences from three supply chain pilots in Chapter 12, with a focus on reducing

the counterparty risk in supply chains. SecureVote developed a blockchain-based

voting solution, which they describe in Chapter 13. This system runs in production

How to Read This Book xiii

on the public Ethereum blockchain. originChain’s use case in Chapter 14 is also on

supply chain, but specifically targets provenance tracking in international trade.

Finally, in the Epilogue we reflect on the contents of the book and its major

points. There we also speculate on the role blockchain and its applications can play

in the future.

Acknowledgements

Writing a book is a long journey, which requires the support of many. We want to

thank the contributors to individual chapters, Cesare Pautasso, Qinghua Lu, Alex

Ponomarev, An Binh Tran, Paul Rimba, Rajitha Yasaweerasinghelage, Sin Kuang

Lo, Ralph Holz, and Vincent Gramoli, as well as Bridie Ohlsson, Katherine Davison,

and Emma Weston from AgriDigital, and Max Kaye and Nathan Spataro from

SecureVote. We further thank members of the blockchain community in Sydney and

generally in Australia, and numerous academics globally, for the many discussions

that helped us shape and sharpen our thinking on this complex topic.

In this book, we draw on a number of our previous publications. Thanks go to

our co-authors (in alphabetical order): Alex Ponomarev, An Binh Tran, Bin Liu,

Cesare Pautasso, Guido Governatori, Jan Bosch, Jan Mendling, Len Bass, Liming

Zhu, Paul Rimba, Qinghua Lu, Régis Riveret, Rajitha Yasaweerasinghelage, Ralph

Holz, Shiping Chen, Sin Kuang Lo, Vincent Gramoli, Xiao Liang Yu, and Yin Kia

Chiam. We also want to thank the anonymous reviewers of our papers and Tim

Wellhausen, the shepherd for the design patterns paper, for their helpful comments.

We are also grateful to the management of Data61, CSIRO, for their support and

encouragement. Deep thanks go to our families for their endless patience in this

long effort—which was long enough for two out of three authors to have a baby

each. Finally, we want to thank Len Bass for writing an insightful foreword.

xv

Legal Disclaimer for Code Samples

This book contains a number of code samples, in the following referred to as

‘SOFTWARE’.

The SOFTWARE is provided ‘as is’, without warranty of any kind, express or

implied, including but not limited to the warranties of merchantability, fitness for a

particular purpose, and noninfringement. In no event shall the authors, contributors,

or copyright holders be liable for any claim, damages or other liability, whether in

an action of contract, tort or otherwise, arising from, out of or in connection with

the SOFTWARE or the use or other dealings in the SOFTWARE.

xvii

Contents

Part I Blockchain in Software Architecture

1 Introduction . 3

1.1 What Is Blockchain and Why Should I Care? . 3

1.2 Blockchain-Based Applications . 9

1.3 Blockchain Functionality . 14

1.4 Blockchain Non-functional Properties . 19

1.5 Blockchain Architecture Design . 21

1.6 Summary.. 24

1.7 Further Reading . 24

2 Existing Blockchain Platforms . 27

2.1 Bitcoin . 27

2.2 Ethereum.. 35

2.3 Hyperledger Fabric . 40

2.4 Other Representative Blockchain Platforms . 44

2.5 Further Reading . 44

3 Varieties of Blockchains . 45

3.1 Fundamental Properties of Blockchain .. 45

3.2 Decentralization . 46

3.3 Ledger Structure . 50

3.4 Consensus Protocol . 51

3.5 Block Configuration .. 53

3.6 Auxiliary Blockchains . 54

3.7 Anonymity .. 57

3.8 Incentives . 58

3.9 Summary.. 58

3.10 Further Reading . 58

4 Example Use Cases . 61

4.1 Agricultural Supply Chains . 61

4.2 Open Data Registry . 67

xix

xx Contents

4.3 International Money Transfers . 71

4.4 Electricity Contract Selection and Continuous Reporting 75

4.5 Further Reading . 78

Part II Architecting Blockchain-Based Applications

5 Blockchain in Software Architecture . 83

5.1 Blockchain as an Architectural Element . 83

5.2 Blockchain as Storage Element . 84

5.3 Blockchain as Computational Element . 88

5.4 Blockchain as Communication Mechanism.. 89

5.5 Blockchain as an Asset Management and Control Mechanism 90

5.6 Integrating Blockchain into a System as a Component 91

5.7 Summary.. 92

5.8 Further Reading . 92

6 Design Process for Applications on Blockchain . 93

6.1 Evaluation of Suitability . 93

6.2 Example Use Cases for Suitability Evaluation.. 100

6.3 Design Process for Blockchain-Based Systems. 104

6.4 Summary.. 111

6.5 Further Reading . 111

7 Blockchain Patterns . 113

7.1 Patterns on Interacting with the External World . 115

7.2 Data Management Patterns . 121

7.3 Security Patterns. 131

7.4 Contract Structural Patterns . 137

7.5 Summary.. 147

7.6 Further Reading . 148

8 Model-Driven Engineering for Blockchain Applications 149

8.1 Introduction .. 149

8.2 Model-Driven Generation of Smart Contract Code

for Collaborative Business Processes . 150

8.3 Model-Driven Registry Generation for Blockchain 162

8.4 Summary.. 170

8.5 Further Reading . 171

Part III Quality Impact of Using Blockchain

9 Cost . 175

9.1 On-Chain Data Cost . 176

9.2 Smart Contract Cost . 178

9.3 Cost Models . 178

9.4 Using and Evaluating the Cost Model . 184

9.5 Discussion . 192

Contents xxi

9.6 Summary.. 194

9.7 Further Reading . 195

10 Performance . 197

10.1 Performance Characteristics of Blockchain . 197

10.2 Architectural Performance Modelling .. 199

10.3 Predicting Latency for Blockchain-Based Systems. 199

10.4 Architectural Decision-Making .. 208

10.5 Summary.. 210

10.6 Further Reading . 211

11 Dependability and Security . 213

11.1 Confidentiality . 214

11.2 Integrity .. 215

11.3 Safety . 216

11.4 Maintainability . 217

11.5 Availability and Reliability . 218

11.6 Variation in Blockchain Transaction Inclusion . 219

11.7 Aborting and Retrying Blockchain Transactions 229

11.8 Summary.. 234

11.9 Further Reading . 234

Part IV Case Studies

12 Case Study: AgriDigital . 239

12.1 Agricultural Supply Chains . 239

12.2 The AgriDigital Vision . 241

12.3 Designing for a Business Use Case. 247

12.4 Summary.. 254

13 Case Study: SecureVote . 257

13.1 Introduction and Background .. 257

13.2 The MVP Prototype .. 259

13.3 Building Tokenvote.. 261

13.4 Details and Code Samples . 267

13.5 Summary.. 278

13.6 Further Reading . 278

14 Case Study: originChain . 279

14.1 Introduction and Background .. 279

14.2 Architecture of originChain.. 282

14.3 Analysis . 287

14.4 Discussion . 291

14.5 Summary.. 292

xxii Contents

Epilogue . 295

References . 299

Index . 305

Part I

Blockchain in Software Architecture

Chapter 1

Introduction

1.1 What Is Blockchain and Why Should I Care?

Blockchains are an emerging digital technology that combine cryptography, data

management, networking, and incentive mechanisms to support the checking,

execution, and recording of transactions between parties. A blockchain ledger is

a list (‘chain’) of groups (‘blocks’) of transactions. Parties proposing a transaction

may add it to a pool of transactions intended to be recorded on the ledger. Processing

nodes within the blockchain system take some of those transactions, check their

integrity, and record them in new blocks on the ledger. The contents of the

blockchain ledger are replicated across many geographically-distributed processing

nodes. These processing nodes jointly operate the blockchain system, without the

central control of any single trusted third-party. Nonetheless, the blockchain system

ensures that all nodes eventually achieve consensus about the integrity and shared

contents of the blockchain ledger.

Transactions between parties such as payments, escrow, notarization, voting,

registration, and process coordination are key in the operations of government

and industry. Traditionally, these transactions are supported by trusted third-parties

such as government agencies, banks, legal firms, accounting firms, and service

providers in specific industries. Blockchains provide a different way to support these

transactions. Instead of trusting third-parties, we would trust the collective jointly

operating the blockchain and the correctness of their shared technology platform.

Blockchain technology was originally used for the Bitcoin digital currency, but

blockchains are now being implemented in many other platforms and used for many

other purposes. Just like a traditional database, a blockchain can in principle be

used to represent transactions or information in any kind of application domain.

But blockchains are different from traditional databases in important ways. These

differences impact the design of systems that use blockchain.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_1

4 1 Introduction

The successful operation of a blockchain system relies on several key elements,

including:

• Appropriate integrity criteria to be checked for each transaction and block

• The correctness of the system’s software and technical protocols

• Strong cryptographic mechanisms to identify parties and check their authority to

add new transactions

• A suite of incentive mechanisms to motivate processing nodes to participate in

the community and to behave honestly, in their interests

For the software architect and engineer, blockchains are exciting because they

can be used as a new foundation for re-imagining systems. They form a neutral

infrastructure for processing transactions and executing programs. That is of poten-

tial interest for innovation at all touch-points between organizations or individuals.

As such, blockchain applications have the potential to disrupt the fabric of society,

industry, and government. Blockchains can also be used as a technology platform to

handle some of the hard issues of data replication and system state synchronization

with high integrity.

A Non-technical Explanation of Blockchain by Analogy

Imagine that a group of people, say the population of your community,

want to introduce a special community currency. Let’s call this currency the

Community Dollar C$, which will be a noncash virtual currency. Initially

everyone gets C$ 100, and everyone starts a physical ledger book where they

note these holdings. The goal is to keep track of C$ ownership in all these

ledger books, by ensuring the ledger books of everyone contain the same

information.

Say, person A wants to pay C$ 50 to person B. Therefore, A asks everyone

in the community to add that transaction to their ledger. Everyone checks if A

has the money and signed the transfer order. If so, the transaction is added to

the ledger. This results in an updated state where A has C$ 50 and B owns C$

150.

Now the Community Dollar is starting to become popular, and many

people use it. We start by grouping transactions onto paper pages, and rather

than agreeing on each transaction individually, the whole community needs

to find agreement which page to include. (Pages correspond to blocks in

the blockchain.) Everyone still checks every transaction. To ensure that no

one claims a transaction did not happen, we introduce cryptographic hashes

that make sure no one can go back on the agreed set of ledger pages and

the transactions on them. Assume we also have an incentive mechanism that

encourages community members to stay honest and process transactions.

That is needed to make such a decentralized system work. All of this can

then happen without a trusted third-party, purely operated by members of the

community.

1.1 What Is Blockchain and Why Should I Care? 5

1.1.1 Defining Blockchain

Before delving further into the details of the technology, we first define the

main concepts. Blockchains maintain a ledger and implement a specific kind of

distributed ledger technology.

Definition 1 (Distributed Ledger) A distributed ledger is an append-only

store of transactions which is distributed across many machines.

Being ‘append-only’ is important: new transactions can be added, but old

transactions cannot be deleted or modified. A new transaction might reverse a

previous transaction, but both of them remain part of the ledger to allow auditability

and ensure long-lasting integrity. We define the concept of a blockchain as follows.

Definition 2 (Blockchain) A blockchain is a distributed ledger that is struc-

tured into a linked list of blocks. Each block contains an ordered set of

transactions. Typical solutions use cryptographic hashes to secure the link from

a block to its predecessor.

A graphical representation of this concept is shown in Fig. 1.1. Cryptographic

hashes ensure that a previous block cannot be changed. If the previous block was

changed, its new hash would not match the originally recorded hash, so the link

between the two blocks would break. We explain this mechanism in more detail in

the next chapter, where we discuss specific blockchain platforms.

Some ingredients are necessary for the blockchain concept to work in practice as

a system.

...

Block

n

Block

n+1

Block

n+2Block n+1

includes hash

of Block n

Block n+2

includes hash

of Block n+1

Fig. 1.1 Blockchain data structure

6 1 Introduction

Definition 3 (Blockchain System) A blockchain system consists of:

(i) a blockchain network of machines, also called nodes;

(ii) a blockchain data structure, for the ledger that is replicated across the

blockchain network. Nodes that hold a full replica of this ledger are

referred to as full nodes;

(iii) a network protocol that defines rights, responsibilities, and means of

communication, verification, validation, and consensus across the nodes

in the network. This includes ensuring authorization and authentication

of new transactions, mechanisms for appending new blocks, incentive

mechanisms (if needed), and similar aspects.

For the verification of transactions, consider the example of Alice spending 2

Bitcoin (BTC), by transferring them to Bob. The system needs to ensure that the

party initiating the transaction has Alice’s authority and that Alice has the 2 Bitcoin

available.

The above definition is still relatively broad and can capture blockchains of

various sizes, degrees of openness, for various purposes, etc. The most well-known

blockchains are Bitcoin and Ethereum, which are public blockchains.

Definition 4 (Public Blockchain) A public blockchain is a blockchain system

that has the following characteristics:

(i) it has an open network where nodes can join and leave as they please

without requiring permission from anyone;

(ii) all full nodes in the network can verify each new piece of data added to the

data structure, including blocks, transactions, and effects of transactions;

and

(iii) its protocol includes an incentive mechanism that aims to ensure the cor-

rect operation of the blockchain system including that valid transactions

are processed and included in the ledger and that invalid transactions are

rejected.

Public blockchains are often open leaderless peer-to-peer systems that manage

the ownership of assets of value. Examples of such assets on Bitcoin and Ethereum

blockchains are Bitcoin (BTC) and Ether (ETH) cryptocurrencies and digital tokens.

In a public blockchain, there is not a high degree of trust in information from other

nodes. Therefore, all full nodes verify everything, to reduce the risk of integrity

violations jeopardizing the value of their own work. While this leads to redundant

computation across the network, it is a direct consequence of the community of

nodes collectively safeguarding the integrity of the blockchain.

1.1 What Is Blockchain and Why Should I Care? 7

In other settings, for example, within a large enterprise or in a consortium

of companies, all blockchain nodes might be known and governed by other

organizational or contractual mechanisms. These applications can be served by

adopting a more relaxed trust assumption.

Finally, we define the term blockchain platform, which refers to the software

used to run a blockchain.

Definition 5 (Blockchain Platform) A blockchain platform is the technology

needed to operate a blockchain. This comprises the blockchain client software

for processing nodes, the local data store for nodes, and any alternative clients

to access the blockchain network.

Note that any blockchain platform must have client software with which

processing nodes can operate the network, including for transaction propagation and

block creation. Light clients may additionally exist, e.g. to enable mobile devices to

read and write transactions to the network; these typically do not hold a full copy

of the blockchain data structure. Alternative clients, both for processing and light

nodes, may exist, particularly if the protocol is specified well.

1.1.2 Smart Contracts and Decentralized Applications

The transactions stored on a blockchain can be more than simple records of the

exchange of assets—emerging blockchain systems also allow computer programs

to be stored and to execute as part of transactions on the ledger. These are often

called ‘smart contracts’, although the programs are typically not very smart and are

often not related to legal contracts.

Definition 6 (Smart Contract) Smart contracts are programs deployed as

data in the blockchain ledger and executed in transactions on the blockchain.

Smart contracts can hold and transfer digital assets managed by the blockchain

and can invoke other smart contracts stored on the blockchain. Smart contract

code is deterministic and immutable once deployed.

The Bitcoin blockchain allows only very simple forms of smart contracts, but

other blockchains such as Ethereum allow computer programs to be written in

a ‘Turing complete’ language, that is, in principle, as expressive as every other

general purpose programming language. As a result, blockchains can be more

than a simple distributed database—they can be general computational platforms—

albeit currently with severe practical limitations on computational complexity. This

8 1 Introduction

capability significantly expands the power of blockchain systems and increases their

range of use and potential for innovation.

Smart contracts can be used to administer the ownership of assets represented

by the blockchain cryptocurrency or by digital token implementations using a smart

contract—more on that below. Although smart contracts are not always used for

legal contracts, they can sometimes be used to automate or monitor the execution of

parts of legal contracts. Smart contracts can also implement games, bets, or lotteries.

They can also define a protocol of interaction between different parties, like in a

collaborative business process across companies, and can support many more use

cases. Throughout the book, you will find many applications of blockchain that are

only possible due to the smart contract capability.

Applications can be designed to provide their main functionality through smart

contracts. Such applications are called decentralized applications or dapps, and

we will discuss them in more detail in Section 2.2.5. Tokenvote, the system

described in Chapter 13, is an example of a dapp. In this book, we generally talk

about blockchain-based applications, i.e. applications that make significant use of

blockchain. This includes dapps but is not limited to them—significant portions of

such applications can be based on traditional systems.

1.1.3 Cryptocurrencies and Tokens

Cryptocurrencies are the base currencies of blockchains. Ether is the currency

of the public Ethereum blockchain, and Bitcoin is the currency of the public

Bitcoin blockchain (thereby highlighting a source of confusion due to overloaded

terminology). The respective blockchain keeps track of the ownership of portions

of that currency. Say, Alice owns 2 Ether and announces a transaction to transfer

1 Ether to Bob, offering a fee of 0.01 Ether. Once the transaction is included in a

block mined by Charly, Alice has 0.99 Ether, Bob has 1, and Charly received the fee

of 0.01 Ether. The sum of the money is not changed by these transactions, but the

ownership of portions of it is.

Fees for transaction inclusion are paid in the base currency of a blockchain,

although the client can choose to offer a fee of 0 (typically reducing the speed

and/or likelihood of inclusion). Fees often relate to the size of a transaction, not

its value: more data (including larger smart contracts to be deployed) incur higher

fees. Similarly, more complex computations as a result of smart contract invocations

incur higher fees. Transfers of 0.01 Ether incur the same fees as transfers of 100

Ether.

Digital tokens can be created and exchanged on blockchains. Usually tokens are

created using smart contracts. Similar to a cryptocurrency, each token is controlled

by an actor on the blockchain. Tokens might represent shares in a company, the right

to benefit from future earnings, or perhaps virtual gold in an online game. The use

of tokens has become widespread, and tokens can be seen as the first ‘killer app’ of

using blockchain for things other than cryptocurrency.

1.2 Blockchain-Based Applications 9

1.2 Blockchain-Based Applications

Bitcoin has been operational since 2009, and its digital currency had a peak market

capitalization of about US$335B in December 2017. The next-largest blockchain,

Ethereum, had a market capitalization of US$138B in the same time frame, and there

are many other small public blockchains with their own digital currencies. Private

blockchains are increasingly deployed inside large enterprises and across industry

consortia. The wide array of interest in blockchain technology is underlined by the

fast evolution of its ecosystem, including easier deployment through Blockchain-as-

a-Service, e.g. from Microsoft Azure1 and IBM.2

Many banks are involved in trials of blockchain technology, including through

the R33 or Ripple4 organizations, which are applying blockchain to trade finance

and cross-border payments. Financial transactions are the first, but not the only

use case being investigated for blockchain technology. A blockchain implements

a distributed ledger, which can in general verify and store any kind of transactions.

Globally, many financial services companies, enterprises, startups, and governments

are exploring its applications in areas as diverse as supply chain, electronic health

records, voting, energy supply, ownership management, and protecting critical civil

infrastructure. New businesses and business models are expected to arise, but as yet

there are not a lot of examples of significant use in production of blockchain systems

within industry or government.

Blockchains, particularly public blockchains, offer opportunities for disruptive

innovation when implementing decentralized applications. Blockchains provide a

new basis for trust in relationships in society, which can allow existing trusted third-

party organizations to be disintermediated. In economies where trusted third-parties

are not always trustworthy, a significant benefit of blockchain systems may be in

the support they can provide for immutability (not changing prior records on the

ledger) and non-repudiation (not being able to disown prior actions on the ledger).

In developed societies, trusted third-party organizations are usually trustworthy,

so the benefits of using blockchain technologies would instead likely arise from

enabling faster business model innovation, reducing the cost of establishing business

relationships and mitigating risks, and perhaps by reducing the cost or risk of

transactions.

For applications of blockchain, there are two categorically different types: (1)

does the blockchain hold the default source of truth, or (2) does it hold a (possibly

incorrect) view of reality? Cryptocurrency is a case of the former: if Bob’s account

on the blockchain holds 1 Ether, he can control that. By default he is the owner—

although a court might determine that he did not fulfil his part of an agreement

1https://azure.microsoft.com/en-us/solutions/blockchain/.
2http://www.ibm.com/blockchain/.
3http://www.r3.com/.
4http://www.ripple.com.

https://azure.microsoft.com/en-us/solutions/blockchain/
http://www.ibm.com/blockchain/
http://www.r3.com/
http://www.ripple.com

10 1 Introduction

and has to pay the 1 Ether back to Alice. In the traditional world, there are some

examples of things whose existence and ownership rely on database entries, such

as land ownership rights, companies, and patents. These could be ported to a

blockchain application of the first type. In contrast, a blockchain record of a physical

asset and its state (location, quality, temperature, etc.) is an example of the second

category. The view of the asset could be outdated, incorrectly measured, or wrong

in some other way. As such, blockchain applications of the first type tend to be

more straightforward in their implementation, although they require higher buy-in

from the adopters due to their higher degree of reliance on a relatively new piece of

technology.

We preview some application areas below and describe some particular use cases

in Chapter 4. Three case study chapters in Part IV give detailed accounts from the

industry.

1.2.1 Enterprise and Industry

Blockchains were first used for cryptocurrency but are now being used for many

other purposes. The full potential of blockchain technology is likely to be realized

outside financial services and government. Blockchains are a foundational hori-

zontal platform technology that could be used in any industrial sector including

agriculture, utilities, mining, manufacturing, retail, transport, tourism, education,

media, healthcare, and the sharing/P2P economy. Generic applications in these

sectors include:

Supply Chain When tracking physical assets through changes in ownership and

handling, key events and agreements can be recorded and communicated through

data stored on a blockchain. This results in provenance information for goods

and can provide improved logistics visibility and supply chain quality. Key events

within the supply chain could also be linked to automatic payments with the use of

smart contracts. Supply chain cases are also captured in the use case chapters on

AgriDigital (Chapter 12) and originChain (Chapter 14) as well as Section 4.1.

Internet of Things (IoT) Storage, Compute, and Management Devices con-

nected to the Internet can use the blockchain as a persistent and highly available

storage solution. They can also use smart contracts to provide a global distributed-

computing capability and can rely on the blockchain as a secure channel for

receiving information about software and configuration updates and dynamically-

delegated access control. This can include physical access control, for locking and

unlocking devices.

Metered Access to Resources and Services Monitoring and payment for usage of

utilities or services can be provided by IoT devices and associated smart contracts.

An electricity use case is described in Section 4.4.

1.2 Blockchain-Based Applications 11

Digital Rights and IP Management A blockchain can provide a trusted registry

of media assets or other intellectual property and can provide the ability to manage,

delegate, or transfer access and rights information for those assets. Note that media

are not necessarily stored on the blockchain itself. Instead, cryptographic hashes,

metadata, and other identifiers stored on the blockchain might be integrated with

bulk off-chain storage and communication technologies.

Data Management A blockchain can create a metadata layer for decentralized

data sharing and analytics. Although large datasets themselves are unlikely to be

stored on it, a blockchain can help to discover and integrate those datasets and data

analytics services. Access control mechanisms implemented on a blockchain may

allow public data sources to be integrated more easily with private datasets and

analysis services. See also Section 4.2 for a use case on open data.

Attestation and Proof of Existence A blockchain can be used to record evidence

of the existence of data or documents, by creating a timestamped record of a

cryptographic hash of the contents of those documents. This can be combined with

records of the attestation or witnessing of corresponding physical documents by

trusted third-parties. However, it can be significantly harder to demonstrate the

uniqueness or non-existence of such document records, unless there is a widely

accepted strict normal form for their contents.

Interdivisional Accounting Multinational companies or large enterprises with

separate divisional business units often have jurisdictional or governance needs

to control their own internal accounting but also share accounting information

with other divisions. A straightforward application of blockchain technologies on

a shared private network can create a shared distributed ledger of interdivisional

accounts at the interfaces between divisions.

Corporate Affairs (Board and Shareholder Voting and Registrations) The

voting authorities of board members or shareholders in companies can be recorded

and proxied on a blockchain. Smart contracts on blockchains can use that record

to adjudicate votes conducted on the blockchain for specific motions. As block-

chain transactions are not necessarily hidden, cryptographic mechanisms may

be required to prevent potentially undesirable strategic voting behaviours. The

company SecureVote describes their approach and architecture in Chapter 13.

1.2.2 Financial Services

Financial services applications using blockchain technology may include:

Digital Currency New forms of money can be implemented on blockchains, but

these can also serve as a foundation for incentive models that support integrity

for many blockchain systems. Blockchains allow digital currency to be transferred

between parties, often without those transfers being processed or recorded by banks

12 1 Introduction

or payment services. With smart contracts, blockchains may be able to support

‘programmable money’, where automatically enforced policies are attached to

specific parcels of currency.

(International) Payments Can be facilitated by blockchain, often via digital

currency with local exchanges between the digital currency and fiat currencies.

Public blockchain cryptocurrency payments are usually pseudonymous. For exam-

ple, on Bitcoin, transacting agents (which are not necessarily persons) are only

identified with a cryptographic key. Therefore international exchange of the Bitcoin

digital currency can be performed without establishing real-world identity, and

we may not know which actual person is behind which account. Nonetheless,

international payments usually have regulatory requirements to establish the identity

of participants, as part of Anti-Money Laundering (AML) and Counter-Terrorism

Financing (CTF) regulations, and AML/CTF requirements are not obviated by the

use of a blockchain. Still, transacting parties can choose to establish their real-world

identities to each other and to local exchanges, and this is typically how regulation

of blockchain-based international payments is enforced. This topic is also covered

in Section 4.3.

Reconciliation for Correspondent Banking Reciprocal nostro/vostro accounts

can be replaced by a single shared ledger. Rather than conducting laborious end-of-

day reconciliation as a batch task, the two banks can create a single shared view of

truth between their accounts, maintained in real time. To limit the distribution of this

commercially sensitive information, usually the shared ledger would be restricted to

just the two correspondent banks concerned.

Securities Settlement The joint exchange of payment and security holdings is

enacted as a single transaction on a blockchain. The exchanged assets are typically

represented by tokens implemented on the blockchain, either using smart contracts

or other asset representation capabilities provided by the underlying blockchain

platform. Payments too are sometimes made using such tokens standing for con-

ventional fiat currency or can sometimes be made using the native cryptocurrency

on the blockchain.

Markets Smart contracts on blockchains can provide a platform for making and

accepting offers to trade assets or services. The blockchain will record the status

of these trade offers. Individual smart contracts could themselves carry the digital

currency required to be paid on fulfilment of these offers. This functions as a kind

of escrow, without the need for a trusted third-party organization. However, today’s

blockchain systems are not suitable for high-frequency (low latency) market trading.

Also, for public blockchains, pending transactions are visible across the network

which can allow a kind of ‘front-running’, where participants (here, usually the

nodes operating the blockchain) might unfairly take advantage of information in

these as-yet unexecuted instructions.

Trade Finance The blockchain can be used to evidence trade-related documents

in order to reduce lending risk and improve access to finance for industry. Smart

1.2 Blockchain-Based Applications 13

contracts could control inter-organizational process execution (see also Chapter 8)

and transparently automate delayed or instalment payments. This can improve

assurance about previous trading history and about current commitments by coun-

terparties, which can reduce risk to trade finance providers, thus allowing more

widespread and economical trade finance offerings into the market. AgriDigital’s

case study chapter, Chapter 12, discusses these issues.

1.2.3 Government Services

Blockchains could target improved government service delivery, and private block-

chains could be used to facilitate information sharing and process coordination

across agencies within government. Application areas being explored in govern-

ments globally include:

Registries and Identity Including the identities and attributes of persons, compa-

nies, or devices, licensing, qualifications, and certifications. Storing registry entries

or cryptographic certification of registry entries on a blockchain can facilitate

access to and validation against the register. Blockchains could be used to share

authenticated identifiers for individuals and companies, and these identifiers could

in turn also enable many other blockchain applications. Blockchains can support

federated management of multiple related registries, by allowing different agencies

to retain authoritative control over the contents of their registers, but still provide a

shared view of truth about how their registers are interrelated—see also Chapter 8.

The contents of some government registers are public, but in general there are often

complex considerations about privacy and confidentiality.

Grants and Social Security Smart contracts could automate the process coor-

dination to apply for, decide on, and distribute payments for grants and social

security. With a sufficiently sophisticated payment environment, a smart contract

could automatically limit payments to approved suppliers or categories of expenses.

One early use of blockchain in this way was to account for allowances and payments

by refugees in a UN refugee camp. Other experiments have been carried out in the

context of disability support grants.

Quota Management Government-granted quotas, allocations, and rights to phys-

ical resources could be awarded and tracked through tokens established on a

blockchain. Examples include water access licences providing rights to take a

certain volume of water from specific sources during specific time frames or CO2

emission credits. Where policy allows, blockchain could support an independent

secondary market for these rights. The blockchain creates an ongoing immutable

audit log of these rights and their use.

Taxation Possible applications range from automated collection of tax using smart

contracts to improved compliance by authoritative publication of taxation regulation

and calculation tools as smart contracts on blockchain.

14 1 Introduction

1.3 Blockchain Functionality

Software architects need to understand functional and non-functional characteristics

of blockchains. In this section, we sketch the functionality of blockchain as a

data store and as a computational infrastructure. Figure 1.2 gives an overview of

the functionality a blockchain can offer. Blockchains are complex, network-based

software components, which can provide data storage, computation services, and

communication services. Blockchain features can include cryptographically secure

payment, mining, transaction validation, incentive mechanisms, and permission

management. What is called an oracle supplies information about the external

world to the blockchain, usually by adding that information to the blockchain as

data in a transaction. Below we expand on the two major functional capabilities of

blockchain, for data storage and for computation.

OracleOracleOracle

Blockchain layer

Application layer

Blockchain network

Off- chain
control

Node

Blockchain

as connector

Chain

Mining

Validation

Cryptography

ChainChain

Permission
mangement

Incentive
mechanism

Off-chain
data

Off- chain
control

Off- chain
control

Fig. 1.2 Overview of the functionality that blockchain can offer as an architecture element. ©
2016 IEEE. Reprinted, with permission, from Xu et al. (2016)

1.3 Blockchain Functionality 15

1.3.1 Blockchain as Data Storage

As a data structure, a blockchain is an ordered list of blocks, where each block

contains a small (possibly empty) list of transactions. Each block in a blockchain is

‘chained’ back to the previous block, by containing a hash of the representation of

the previous block. Thus historical transactions in the blockchain may not be deleted

or altered without invalidating the chain of hashes. Combined with computational

constraints and incentive schemes on the creation of blocks, this can in practice

prevent tampering and revision of information stored in the blockchain. As a data

storage facility, information in a blockchain is recorded within the transactions

and within blocks. Important categories of information are transactions about

cryptocurrency and transactions involving tokens for other kinds of assets.

Transactions

Transactions update the state recorded on a blockchain. For cryptocurrency trans-

actions, the state information is about the transfer of holdings of cryptocurrency

between accounts (addresses). Sometimes additional data can be recorded with

a transaction which might have meaning for participants or systems outside of

the blockchain. On blockchains such as Ethereum, transactions can record code,

variables, and the results of function calls. Public key cryptography and digital

signatures are normally used to identify accounts and to ensure integrity and

authorization of transactions initiated on a blockchain.

A simplified life cycle of transactions is shown in Fig. 1.3. Once created,

the transaction is signed with the signature of the transaction’s initiator, which

provides the authorization to spend the money, create a contract, or pass the data

parameters associated with the transactions. A signed transaction should contain all

the information needed to be executed.

A proposed transaction is sent to a node connected to the blockchain network,

which checks the validity of the transaction. Invalid transactions are discarded.

Valid transactions that are previously unknown to the node are propagated to other

connected nodes. These will in turn further validate the transactions and send them

to their peers, until the transactions reach every node in the network.

In a global network, this flooding approach means that a valid transaction

will usually reach the whole network within a few seconds. To ensure that the

transaction propagates, senders do not need to trust any individual node they send

the transaction to, as long as they send it to enough other nodes. Recipients do not

need to trust senders, because all transactions are signed and can be independently

validated by any node.

When a transaction reaches a ‘mining’ node, it is verified and may be included

in a block. Mining is the process of appending new blocks to the blockchain data

structure. A blockchain network relies on miners to aggregate valid transactions

into blocks and append them to the blockchain. New blocks are broadcast across

the whole network, so that each full node holds a replica of the whole ledger.

16 1 Introduction

Fig. 1.3 Simplified
transaction life cycle

Discarded

Created

Signed by the owner

Validated

Propagated

Verified and recorded

into the blockchain

Confirmed

The network aims to reach a consensus about the latest block to be included into

the blockchain. There are different consensus mechanisms, e.g. ‘proof of work’ or

‘proof of stake’, which we will describe in more detail later.

However, there is no certainty about whether a particular transaction will

eventually be committed or whether it will be outdated. An outdated transaction will

be considered an invalid transaction forever, e.g. due to an alternative transaction

getting committed. Also, it is often impossible to know whether a transaction that is

invalid in some state of the system could ever become valid in a later state. For

some consensus mechanisms, the inclusion of the transaction in a newly mined

block on some branch of the chain is not sufficient to guarantee that a transaction

is permanently added to the blockchain: if the blockchain forks (i.e. conflicting

versions of new blocks are proposed simultaneously), then the block comprising

the transaction may simply be discarded, in which case it could be re-included later.

Each of these inclusions takes time as they require the system to solve computation-

ally hard cryptographic puzzles. If during that time a conflicting transaction Tx′ is

included first, then the original transaction Tx may simply become invalid, e.g. until

a possible third transaction Tx′′ compensates for the effect of transaction Tx′.

Depending on the consensus mechanism and the required guarantees, differ-

ent blockchain platforms and applications can have different notions of when

a transaction is committed or confirmed and thus be immutable. For example,

in Bitcoin users often wait five subsequent blocks to be appended to the block

containing a transaction before viewing the transaction as committed. However, this

is a probabilistic commitment, and so the number of blocks one should wait can

depend on the value at risk in the transaction, and the likelihood of it unexpectedly

failing. In practice, waiting long enough will make that transaction an immutable

part of the earlier history of the Bitcoin blockchain. In contrast, in many private

blockchains, committed transactions are more like normal database transactions and

so, when accepted under the blockchain’s consensus protocol, will immediately be

a permanent part of the ledger.

1.3 Blockchain Functionality 17

Digital Assets

One of blockchain’s most distinctive capabilities is allowing the creation and secure

transfer of digital assets. Normally when you give information or digital files to

someone, then you both end up with a copy. However, the fundamental characteristic

of property is that of exclusion: when I have property, no one else has it; and when

I transfer that property to you, then I no longer have it. Blockchain transactions and

the globally visible blockchain ledger allow everyone to recognize and check the

transfer of control or ownership of digital assets registered on the blockchain. This

is how blockchain technology supports digital assets. The two most important kinds

of digital assets have been discussed earlier: cryptocurrencies and tokens.

Cryptocurrencies are normally ‘baked in’ to the core platform of public block-

chains. They have a kind of symbiotic relationship: the blockchain enables exclusive

ownership and secure transfer of the cryptocurrency, and the cryptocurrency enables

the incentive mechanism for the operation of the blockchain. Cryptocurrency uses

cryptography to control the issuance of money (i.e. minting new coins) and to

secure its transfer. Transfers are performed and recorded as financial transactions

on a ledger. This virtual money can be transferred directly between users without

using a trusted authority such as a bank. The first cryptocurrency, Bitcoin, created in

2009, is still the dominant one in terms of total market value at the time of writing

in 2018. There are many cryptocurrencies, most of which are managed through

the basic platform capabilities of specific blockchains, such as Ethereum’s Ether,

Ripple’s XRP, and Nxt’s NXT. Platforms such as Ripple and Nxt also provide native

capabilities to define new cryptocurrencies.

In contrast to cryptocurrencies, tokens are usually not implemented directly

in the core platform of a blockchain. Instead, they are implemented on top of

blockchain platforms, using transaction data or smart contract features provided

by the blockchain. Bitcoin allows developers to add 40 bytes of arbitrary data to a

transaction, which is then permanently recorded on the blockchain. Thus, Bitcoin

has been used for purposes such as representing digital assets (like document

notarization) or physical assets (like diamonds). Bitcoin can also represent tokens

using ‘overlay networks’, for example, using so-called colored coins, where a

portion of Bitcoins is tainted to represent and manage real-world assets. Other

overlay networks define a completely new transaction syntax, such as Omni and

Counterparty. In Ethereum, tokens are usually implemented using smart contracts

that maintain a register or table of ownership of tokens. Regardless, as a digital asset,

there is much more variation among tokens than there is among cryptocurrencies.

Tokens might represent fungible (interchangeable) commodities or might represent

unique or serialized assets. Tokens might represent rights to use a service or might

represent shares or voting rights in a company. Tokens are often implemented

with features allowing their independent transfer or sale, but it is also possible to

implement tokens that are not transferable or have other limitations on their transfer.

18 1 Introduction

1.3.2 Blockchain as a Computational Infrastructure

Software components are the fundamental building blocks for software architecture,

and blockchain can be a software component offering computational capabilities.

As discussed earlier in Section 1.1.2, smart contracts allow us to execute small

programs on the blockchain.

Ethereum views smart contracts as a first-class element. Smart contracts on

Ethereum can express triggers, conditions, and business logic, to enable complex

programmable behaviours. Smart contracts are used by components connected

to a blockchain to reach agreements and solve common problems with minimal

trust. A common simple example of a smart contract-enabled service is escrow,

which can hold funds until the obligations defined in the smart contract have been

fulfilled. As escrow holder, a smart contract’s code has control over the assets held.

Smart contracts can also be used to enable machine-to-machine communication for

Internet of Things (IoT) applications.

One of the main kinds of architectural decisions is about which pieces of func-

tionality should be allocated to which components. For blockchain-based systems,

this includes the key decisions about which parts of the data and computation should

be placed on-chain or kept off-chain. Parts of an application can be implemented

inside the blockchain component using the blockchain ledger and smart contracts.

However the amount of computational power, data storage space, and control of read

accesses on a blockchain can be limited. So, parts of an application implemented

outside the blockchain component might host off-chain data and application logic.

Blockchain transactions and their effects sit at the interface between on-chain and

off-chain functions.

A common practice is to store hashed data, metadata, and some small-sized

public data on-chain and to keep large or private data off-chain. Due to the limited

size of the data store provided by the blockchain, an off-chain data store is necessary

for some applications. There are existing platforms providing a data layer on top of

the blockchains, such as Factom,5 which stores only the hash of the private data and

small amounts of public data in their own blockchain. Distributed data storage, like

IPFS,6 or systems using DHTs (distributed hash tables) are also sometimes used in

combination with blockchains to build decentralized applications.

Blockchain computation has a closed-world assumption; smart contracts can

usually only examine state that is stored on the blockchain ledger. So in order to

interact with the external world, oracles are invoked to bring external state into

the blockchain. There are various sorts of oracles: some are like normal users of

the blockchain and merely record facts about the world as normal transactions on

the ledger; while others are components or nodes within the blockchain platform

that can invoke smart contracts privileged to them. In either case, oracles typically

become a trusted party for the respective data about the external world.

5https://www.factom.com/.
6InterPlanetary File System (IPFS)—https://ipfs.io/.

https://www.factom.com/
https://ipfs.io/

1.4 Blockchain Non-functional Properties 19

1.4 Blockchain Non-functional Properties

Besides blockchain’s main functionality described above, software architects need

to understand the non-functional properties of a system. We next give an overview

of these for blockchain and touch on the implications for systems built on block-

chain. As we will discuss in Section 1.5, understanding these issues is of central

importance in the design of blockchain-based systems.

1.4.1 Non-functional Properties and Requirements

When specifying a system, software engineers often distinguish functional require-

ments from non-functional requirements. For a computer system, simple functional

requirements characterize the relationship between observable inputs and outputs.

Non-functional requirements (NFRs) are needs expressed for non-functional prop-

erties (NFPs), which are also known as ‘qualities’, or ‘ilities’. These include

characteristics such as cost, security (confidentiality, integrity, availability, privacy,

non-repudiation), performance (latency, throughput), modifiability, and usability.

NFRs are expressed separately from functional requirements because they are

often ‘cross-cutting concerns’ that span many system functions. For example, a

requirement for the scalability of system performance might constrain the resources

that can be used to respond to a given level of concurrent demand in a timely manner,

up to some limit on that demand. The demand in this requirement would typically

be a mix of many different kinds of system functions in normal usage.

Different use cases carry different NFRs. For example, in safety-critical indus-

tries such as medical devices or aerospace systems, NFRs for safety are paramount.

In enterprise software systems, regulatory requirements often constrain NFPs such

as privacy and data integrity. In regulated industries, legislation or regulation can

provide constraints on minimum standards for critical NFPs within the industry.

These constraints may be mandated to provide consumer protections or to manage

systemic risks or negative economic externalities within the industry. NFPs are also

important in understanding innovation: NFPs are quality or performance dimensions

for technology, and technological progress pushes out the frontiers of performance

on these various dimensions. Orders of magnitude improvements in performance on

NFP dimensions open up possibilities for new markets and new business models

using that technology innovation.

1.4.2 Non-functional Properties of Blockchain

Compared to conventional centralized databases and computational platforms (on-

premise or cloud), blockchains can reduce some counterparty and operational risks

20 1 Introduction

by providing neutral territory between organizations. Blockchain technologies may

provide advantages for immutability, non-repudiation, integrity, transparency, and

equal rights. If data is contained in a committed transaction, it will eventually

become in practice immutable. The immutable chain of cryptographically signed

historical transactions provides non-repudiation of the stored data. Cryptographic

tools also support data integrity, the public access provides data transparency, and

equal rights allows every participant the same ability to access and manipulate the

blockchain. These rights can be weighted by the compute power or stake owned by

the miner.

Trust in the blockchain is achieved from the interactions between nodes within

the network. The participants of a blockchain network rely on the blockchain

network itself rather than relying on trusted third-party organizations to facilitate

transactions. These five properties (immutability, non-repudiation, integrity, trans-

parency, and equal rights) are the main properties supported in existing blockchains.

Data privacy and scalability are two points of criticism of public blockchains. As

discussed earlier, in this setting privacy is limited: there are no privileged users, and

every participant can join the network to access all the information on blockchain

and validate new transactions. Often, applications need to find an acceptable trade-

off between data privacy/confidentiality and transparency.

Current public blockchains have scalability limits on:

1. the size of the data on blockchain, due to the global replication of all data across

all full nodes.

2. the transaction processing rate. For example, mainstream public blockchains

can only handle on average 3–20 transactions per second,7 whereas mainstream

payment services, like VISA, handle an average of 1700 transactions per

second.8

3. the latency of data transmission. Because nodes can have a local copy of the

blockchain, read latency can be good, but because updates must be propagated

across a global network, write latency is typically not good. The number of

transactions included in each block is also limited by the bandwidth of nodes

participating in leader election (for Bitcoin the current bandwidth per block is

1 MB). Latency between submission and confirmation that a transaction has been

included on a blockchain is affected by the consensus protocol. This is around 1 h

(10-min block interval with 6-block confirmation) on Bitcoin and around 3 min

(14-s block interval with 12-block confirmation) on Ethereum.

7https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/.
8https://usa.visa.com/run-your-business/small-business-tools/retail.html.

https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://usa.visa.com/run-your-business/small-business-tools/retail.html

1.5 Blockchain Architecture Design 21

1.5 Blockchain Architecture Design

Understanding the main functional and non-functional properties of blockchain

described above is vital for good architectural design for systems using Blockchain,

which we introduce below.

1.5.1 Software Architecture: Design and Analysis

The software architecture of a software-based system is the high-level structure

of relationships between software elements (components and connectors) in the

system. In the creation of a software architecture, there are many possible options

for these structures, and the choices between these options are important design

decisions. A key realization in the discipline of software architecture is that these

design decisions have a critical impact on a system’s ability to meet NFRs. Given

a design candidate for a software system, software engineers may use qualitative,

analytical, or simulation-based tools to evaluate the design for its predicted ability

to achieve an NFR.

To achieve an NFR, the right design decisions must be made, and each design

decision will impact a number of NFPs, either positively or negatively. Often this

will lead to conflicts between NFPs, so it is important to manage trade-offs between

these when designing a system. An important part of software architecture as a

practice is to document the design for a system, including the rationale for why

specific design options were chosen.

1.5.2 Designing Blockchain-Based Applications

Blockchain-based systems can be different from traditional systems in various ways,

as outlined below. Chapter 3 provides a more comprehensive taxonomy.

Admittance of Processing Nodes In a public blockchain system, such as Bitcoin,

anyone may become a processing node (or ‘miner’). In private blockchain systems,

the admittance of processing nodes is controlled by its governing bodies. Public

blockchains provide very low barriers to entry for new participants, which can

facilitate competition, innovation, and productivity. However, public blockchains

typically do not mandate authentication of those participants, which creates chal-

lenges regarding AML/CTF and tax avoidance. Private blockchains can impose

more controls on authentication and access, which can partly address those regu-

latory concerns.

Consensus Mechanism Most public blockchains use Nakamoto consensus, where

processing nodes by convention treat the longest history of blocks as the author-

22 1 Introduction

itative history. The rate at which blocks can be created is limited, often by using

a proof-of-work mechanism, whereby a processing node can only add a new

block by demonstrating that a difficult task has been completed. Proof-of-work is

widely used, but the auxiliary effort required to complete the difficult task can be

economically inefficient. In a proof-of-stake system, the processing node that can

add a new block in the next round is determined by the size of its stakeholding in

the global blockchain and/or in that round. Proof-of-stake can be more efficient than

proof-of-work but to date has been less widely used. Proof-of-work implementations

have demonstrated operational stability over years. Other consensus mechanisms

have been proposed. On private blockchains where there are a smaller number

of more trustworthy processing nodes, conventional replication algorithms such

as Practical Byzantine Fault Tolerance (PBFT) can be used instead of Nakamoto

consensus.

Representation of Transactions A distributed ledger may record financial trans-

actions, such as in Bitcoin. However as a shared database, a distributed ledger might

allow other kinds of data to be recorded. In particular, the data recorded for a

transaction may be the text of a computer program, and the integrity check for that

transaction may involve executing that program. This allows participants to create

smart contracts, which allow transactions to represent behaviour as well as data.

There are several kinds of blockchains, and to provide more general insights

we take a broad view. For example, the Bitcoin system is a public blockchain,

which allows unfettered public participation in both its operation and use. Other

well-known systems, such as the Ethereum9 blockchain, are similar in this regard.

It is possible to use a separate instantiation of the Bitcoin or Ethereum computer

programs to operate a blockchain within a private context, for example, on a virtual

private network. These would then be one kind of ‘private blockchain’. Note that

operators of such networks would not normally use proof-of-work consensus in

private networks, because of limitations with that kind of consensus and because

other controls or assumptions can be used to address integrity. The access controls

possible for private networks and private computer systems allow for greater

administrative control over such blockchains. However, the software for public

blockchains is not always the best technical solution to use in a private setting.

Many industry consortia, such as Hyperledger,10 R3,11 and Ripple,12 are actively

developing specialized private blockchain solutions. These typically support a

smaller number of processing nodes than public blockchain solutions, but can

provide confidentiality and increased performance.

Recently, proof-of-authority (PoA) has gained popularity as a consensus mech-

anism for private or permissioned blockchain systems, and implementations in

9https://www.ethereum.org/.
10https://www.hyperledger.org/.
11https://www.r3.com/.
12https://ripple.com/.

https://www.ethereum.org/
https://www.hyperledger.org/
https://www.r3.com/
https://ripple.com/

1.5 Blockchain Architecture Design 23

Fig. 1.4 Core components of different types of blockchain

Fig. 1.5 Non-functional properties of different types of blockchain

Ethereum client software are gaining adoption. PoA assigns the right to mine new

blocks to a set of authorities (blockchain accounts, i.e. key pairs) that produce new

blocks.

Figures 1.4 and 1.5 show the core components of different types of blockchains

and the corresponding quality impacts. In practice, the lack of standard and reliable

technology evaluation criteria makes a precise comparison difficult. When building

applications based on blockchains, we need to systematically consider the features

and configurations of blockchains and assess their impact on quality attributes for

the overall systems. For example, a blockchain transaction is not appropriate for all

data: because it is replicated globally, transactions should not contain very large data

nor plain-text data which must be kept confidential. Similarly, for competitors within

an industry consortium, private blockchains may not be private enough to provide

24 1 Introduction

normal levels of commercial confidentiality for business operations, competitive

position, and customer relationships. Consequently there are choices about what

data should be stored on-chain inside transactions and what should be stored off

chain, in external systems. Although a specific blockchain platform may have

significant limitations, if it can be combined in a design with other components

in an effective way, then many kinds of business challenges can be targeted by

blockchain-based systems.

1.6 Summary

Blockchains and distributed ledgers are currently very hot topics in computing.

In this chapter, we introduced what they are and why there is wide interest in

them within various application areas. To provide clarity, we have defined the most

important terms used in this book.

Then we discussed, at a high level, the most important aspects for the software

architect and engineer aiming to develop a blockchain-based application: what does

blockchain offer in terms of functional and non-functional properties and how to

approach designing blockchain-based applications?

In the next chapter, we will present an in-depth view of some existing blockchain

platforms. Chapter 3 then discusses the conceptual differences between various

blockchain technologies and their implications for architectural design. Concrete

use cases are discussed in Chapter 4.

1.7 Further Reading

This chapter is partly based on our earlier works (Staples et al. 2017).

The original conception of blockchain was first discussed in the Bitcoin paper

(Nakamoto 2008). A more complete introduction of blockchain and Bitcoin can

be found in Swan (2015) and Antonopoulos (2015). The original conception of

smart contracts predated blockchain technology (Szabo 1997). Smart contracts

were originally a way of realizing legal contracts in physical computing systems.

However, in the blockchain context, smart contracts are not necessarily related to

legal contracts.

Comprehensive surveys on the state of the art of existing cryptocurrencies

include Morisse (2015), Bonneau et al. (2015), and Tschorsch and Scheuermann

(2016). The market value of cryptocurrencies can be found on http://coinmarketcap.

com.

Some government reports discuss potential applications of blockchain in various

scenarios, for example, Walport (2016) and Staples et al. (2017). The case of the

UN refugee camp’s use of blockchain has been described by Juskalian (2018). The

experiments on blockchain for programmable money to automate disability support

grants are described by Royal et al. (2018).

http://coinmarketcap.com
http://coinmarketcap.com

1.7 Further Reading 25

For an interesting historical account of a community dollar, read The Island of

Stone Money by Friedman (1991). It describes the island Yap in Micronesia, where

currency was held by ownership designation on big stones.

The software architecture of a software-based system is the high-level structure

of relationships between software elements (components and connectors) in the

system (Clements et al. 2003; Bass et al. 2012). The design of software architecture

needs to consider non-functional requirements, which are needs expressed for

non-functional properties. These include characteristics such as cost, security and

dependability (Anderson 2008; Avizienis et al. 2014) (confidentiality, integrity,

availability, maintainability, safety, reliability, privacy, non-repudiation), perfor-

mance (latency, throughput), modifiability, and usability.

Chapter 2

Existing Blockchain Platforms

This chapter introduces some of the most prominent and representative blockchain

platforms, including Bitcoin, Ethereum, and Hyperledger Fabric. Other blockchain

platforms are also briefly discussed.

2.1 Bitcoin

Bitcoin is a cryptocurrency operated on a peer-to-peer (blockchain) network. Unlike

traditional banking and payment systems, Bitcoin is based on decentralized trust;

there is no central trusted authority in the Bitcoin system. Trust emerges from

the interactions of different participants in the ecosystem. Figure 2.1 gives an

overview of Bitcoin system. In the Bitcoin system, there is a distributed ledger

that stores all Bitcoin transactions. The content of the ledger is replicated across

many geographically-distributed processing nodes within the Bitcoin network. We

described its operating principles in the sidebar on page 4 in an informal, non-

technical way.

For clarity, we will refer to the tokens on the Bitcoin blockchain using their

currency code BTC. There are three main types of nodes within the Bitcoin network.

(1) Users with wallets: a wallet maintains the key pairs of the user, which are used to

authenticate the transactions initiated by the user by means of digital signatures. (2)

Miners that compete with each other to add new blocks to the shared ledger as the

authoritative source of all the transactions. (3) Exchanges, i.e. places where users

can buy BTC in exchange for other currencies.

Below we describe the pieces and concepts out of which the Bitcoin blockchain

is built. Many of these concepts were known before Bitcoin, but their combination

as a blockchain was new and has created a technology with interesting properties.

Many of these concepts are also used by other blockchain platforms and distributed

ledger technologies. Interestingly, it is not only the technical concepts that make

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_2

28 2 Existing Blockchain Platforms

... ...

Blockchain Network
Blockchain

Data structure

Wallet

Miner

Exchange

Fig. 2.1 Overview of Bitcoin system

public blockchains work but also the economics and social incentives. For instance,

network participants who have invested in the most (computational) power are also

rewarded the most in the Bitcoin system, and because of that investment would

be penalized the most if trust in the network eroded causing the value of BTC to

decrease. So, they are incentivized to act in the interest of the network.

2.1.1 Bitcoin Transactions

A simplified life cycle of a blockchain transaction was introduced in Fig. 1.3.1

A peculiarity of Bitcoin is the way transactions are linked: they transfer currency

from a number of source addresses to a number of destination addresses. As shown

in Fig. 2.2, the outputs of transactions become the inputs of new transactions.

If the sum of the outputs is less than the sum of the inputs, the difference is

interpreted as an additional output that serves as a fee to the miner who creates

the block containing this transaction. The transaction fee is an incentive for miners

to contribute their computing power. As a result, miners tend to optimize block

creation by preferring transactions with higher fees. The transaction fee is often the

only variable that client software asks Bitcoin users to choose consciously when

creating a new transaction.

However, transactions can experience delay due to other factors. One important

factor is that transactions must arrive (roughly) in-order, for a node (and the

network) to be able to process them fast. Incoming transactions are handled by the

so-called mempool. If the referenced input transactions, called parents, are as-yet

unknown, a miner will delay the inclusion of the new transaction—it is then a so-

called orphan. Miners may choose to keep orphans in the mempool while waiting

1The life cycle is simplified in that transactions may not always make it to the ‘confirmed’ state
after the initial validation, e.g. when a conflicting transaction is included instead.

2.1 Bitcoin 29

Fig. 2.2 Bitcoin transactions

TX 0

Input 0

Output 0

Output 1

TX 1

Input 0

Output 0

TX 2

Input 0

Output 0

Output 1

40k

50k

100k

10k

TX fee

for the parent transactions to arrive, but they may also expunge orphans after a

timeout they choose. A second factor that could come into play, albeit one that

only experienced users will set, is so-called locktimes: a transaction can contain a

parameter declaring it invalid until the block with a certain sequence number has

been mined.

2.1.2 Script

Bitcoin uses a scripting system for transactions. The script language is called Script,

which is simple, stack-based, and processed from left to right. Script is not Turing

complete. It has limited complexity without looping and complex flow control. A

script is a list of instructions associated with each transaction that describes how

the BTC transferred with the transaction can be spent. A locking script is placed

on an output, which specifies the conditions that must be met to spend the BTC.

An unlocking script is placed in an input that ‘solves’ or satisfies the conditions of

the locking script. To validate a transaction, the unlocking script and the locking

script are combined and executed. If the result is true, the transaction is valid. The

most common case implements a simple transfer, referred to as Pay-to-PubKey-

Hash (P2PKH), where the locking script specifies which (hashed) public key and

corresponding signature are required to unlock the output. In other words: only the

holder of the designated key pair can spend the output.

Script provides certain flexibility to change the parameters of the conditions to

spend the transferred BTC. For example, a transaction can require multiple keys

30 2 Existing Blockchain Platforms

and signatures. OP_RETURN is a Script keyword, called opcode, used to mark a

transaction output as invalid. OP_RETURN has been used as a standard way to

embed arbitrary data to the Bitcoin blockchain for other purposes, like representing

assets. By design, Script programs are pure functions, which cannot poll external

servers or import any external state. An oracle can be used to include external state

into the blockchain execution environment. See Section 5.4.2 for more details.

2.1.3 Mining

Mining nodes compete in a proof-of-work system to create new blocks by solving

hard cryptographic puzzles. Bitcoin uses the hashcash2 proof-of-work function.

Some miners are full nodes, maintaining a full copy of the blockchain data structure,

while others are lightweight nodes participating in pool mining and depend on a

coordinating pool server to maintain a full replica.

Miners are always listening for new transactions and new blocks, as do all the

nodes. When a transaction reaches a mining node, it is verified, included into the

mempool, and propagated to the network. To the miners, the arrival of a new block

means the completion of the previous round of competition and an announcement

of a winner. The end of one round of a competition is the beginning of the next

round. To start mining a new block, the miner first removes the transactions from

the mempool that belong to the received block and aggregates a set of the remaining

valid transactions into a candidate block, reassessing the validity of each transaction

at the point where it is added to the candidate block. It also adds the so-called

coinbase transaction as the first transaction to the list of transactions for the new

block. The coinbase transaction pays a block reward to the miner, which is another

incentive for mining (in addition to the transaction fees). Then the miner constructs

the block header, which includes a hash of the previous block and a summary of all

the transactions in a binary tree, called a Merkle tree, for more efficient searching.

Next, a solution to the proof-of-work function needs to be found. It requires

finding a value for a free field in the block header, the nonce, which leads to the

block hash being smaller than a given threshold. In short, finding such a nonce

requires a lot of trial and error: at the time of writing, on average 2.4 × 1021 nonces

are tried and hashes computed per Bitcoin block, but across the global network

without coordination on which nonces to try, and therefore highly redundant. The

threshold is adjusted over time to ensure that the average time between blocks is

around 10 min. In other words, the puzzle is so hard that all Bitcoin miners around

the world together still take 10 min on average to solve it. Every candidate block is a

new puzzle, and the likelihood to solve it first is proportional to the compute power

invested relative to all compute power in the network.

Once a solution is found, the result is inserted into the block header, and the

new block is immediately propagated to the network. This situation is depicted in

2https://en.bitcoin.it/wiki/Hashcash.

https://en.bitcoin.it/wiki/Hashcash

2.1 Bitcoin 31

Block

n

Block

n+1
... ?

Block

n

Block

n+1
...

Block

n

Block

n+1
...

Block

n+2

Block

n

Block

n+1
...

?

?

Block

n+2

Block

n+2

Block

n+2

Fig. 2.3 A new block: the miner in the lower left corner found the next block n+2 and broadcasts
it to the network

Fig. 2.3. The nodes receiving the new block verify it, then include it into their replica

of the blockchain data structure, as shown in Fig. 2.4, before starting the search for

the next block.

Mining is also the way in which new coins are minted: the coinbase transaction

has an output but does not consume any inputs. Therefore it creates new BTC. At

the time of writing, each coinbase can have an output of 12.5 BTC, paid to the miner

who created the block.

2.1.4 Accounts and State

An account in Bitcoin is associated with a cryptographic key pair. The public key is

used to create the account address, which is somewhat similar to the bank identifier

and account number in traditional banking (or their combination as an International

Bank Account Number, IBAN). BTC can be sent to an account address. The

corresponding private key is required to sign transactions originating from the

account. Because the source account is known, every node in the network can verify

the signature. This is achieved with the locking/unlocking scripts mentioned above.

The state of the blockchain, and specifically the account balances of all users,

results from the set of transactions and the genesis block, which is the first block

32 2 Existing Blockchain Platforms

Block

n

Block

n+1
...

Block

n+2

Block

n

Block

n+1
...

Block

n+2

Block

n

Block

n+1
...

Block

n+2

Block

n

Block

n+1
...

Block

n+2

Fig. 2.4 After the new block has been propagated (from Fig. 2.3), the other nodes in the network
accept it and append it to their local copy of the blockchain data structure

(block number 0). Some accounts might be preloaded with an initial account balance

from the beginning, i.e. in the genesis block. When a transaction from A to B occurs,

A’s balance is reduced by that amount, and B’s account is increased by that amount.

The miner C may also receive a transaction fee, if A specified that, in which case

B receives less than A sends. The transaction becomes part of the ledger when the

miner creates a block that includes it and when that block is included by consensus

in the blockchain data structure. Then the transfer has occurred. The miner C is

paid a block reward for this new block through the coinbase transaction mentioned

above.

Bitcoin does not track account balances explicitly. The Bitcoin blockchain

platform has exactly two first-class elements: transactions and blocks. The account

balance is therefore derived as the sum of unspent transaction outputs (abbreviated

to UTXO) that an account has control over. Bitcoin’s record-keeping model is

therefore referred to as UTXO, in contrast to Ethereum’s account/balance model.

Either way, every node has access to the full transaction history and thereby knows

which account holds how much currency. Because accounts are pseudonymous,

typically the persons holding each account are not known to most actors. As

transactions are grouped into blocks, the entire system moves from one discrete state

to another through the addition of whole blocks each containing many transactions.

2.1 Bitcoin 33

...

Block

n
฿฿฿฿฿฿ Block

n+1
฿฿฿

Block

n+1
฿฿฿฿฿฿฿฿฿

(a) Fork in the blockchain

...

Block

n
฿฿฿฿฿฿ Block

n+1
฿฿฿

Block

n+1
฿฿฿฿฿฿฿฿฿

Block

n+2
฿฿฿฿฿฿

Block

n+3
฿฿฿฿฿฿฿฿฿

(b) Fork decided, the longer chain wins

Fig. 2.5 A fork in the blockchain offers two possible versions of the new state (a), which are
decided by the additional blocks n + 2 and n + 3 (b)

2.1.5 Nakamoto Consensus

Most public blockchains use Nakamoto consensus, which was introduced with the

Bitcoin blockchain. In Nakamoto consensus, processing nodes by convention treat

the longest history of blocks as the authoritative history—it is called the main chain.

Before one chain is longer than the other, it is unclear which state will prevail. This

situation is illustrated in Fig. 2.5a and resolved in Fig. 2.5b. In combination with

proof-of-work, the longest chain corresponds to the one that (on average) received

most computation.

Mining the next block is a constant global race between ten thousands of comput-

ers in the Bitcoin network. Multiple computers might more or less simultaneously

find and announce the next block, say n + 1 in the example above. The decision

which version of block n+1 becomes part of the main chain is made by the winning

block n + 2 and to which block n + 1 it refers as predecessor. However, there might

be multiple conflicting versions of block n + 2 referring to different predecessors

n+1. While possible, the Bitcoin protocol renders it very unlikely that such parallel

forks continue for more than a block or two (unless the network is separated, which

is unlikely for larger portions of the Internet).

Due to this possibility, users want to determine with high probability that a

transaction is permanently included in the blockchain. Users therefore wait for

several blocks to be mined after the first inclusion of their transaction to gain con-

fidence that the block including their transaction is part of the main chain. Each of

these subsequent blocks is called a confirmation block, and when sufficiently many

confirmations occurred after the transaction block inclusion, then the transaction

is considered committed. Depending on the importance of the transaction and the

risk of it being excluded, the number of required confirmation blocks might need

to be higher or lower. A default number is six blocks (one for inclusion and five

confirmation blocks), though the source of this number is somewhat arbitrary.3 This

equates to a probabilistic guarantee meeting a (usage-specific) likelihood threshold.

3This number goes back to an early wallet of Bitcoin: its UI suggested that the transaction was
finalized after six blocks. Commit after six blocks also corresponds to a double-spending attack

34 2 Existing Blockchain Platforms

2.1.6 Deflationary Cryptocurrency

Blockchains that support primarily a cryptocurrency, like Bitcoin, are regarded as

the first generation of blockchains. Bitcoin provides a deflationary cryptocurrency

by defining certain rules. The total amount of BTC that will be released over the

life cycle of Bitcoin is 21 million. As discussed earlier, new BTCs are issued during

the mining process. Each time a new block is mined and successfully added into the

blockchain, new BTCs are rewarded to the miner who created the valid block. The

reward is halving every 210,000 blocks. Initially, the reward was set to 50 BTC and

fell to 25 BTC in late 2012. Mining rewards in Bitcoin will run out in 2140, when

no more new BTC will be issued (unless the rules change).

2.1.7 Wallets

A software wallet allows users to manage a collection of private keys corresponding

to their accounts and to create and sign transactions on the Bitcoin network. A

wallet may include a full node but does not have to. SPV (Simplified Payment

Verification)4 nodes maintain only part of the blockchain and verify if and when

particular transactions are included in a block without downloading the entire

blockchain ledger. That allows running wallets on resource-constrained devices,

such as smart phones.

Hardware wallets are specialized devices that provide part of the above function-

ality, typically in combination with suitable software. A common split is to create

and store private keys on the hardware; they never leave the device. Public keys are

exported, so that payments can be received. For outgoing payments, the unsigned

transaction is sent from the software to the device, verified by the user on the display

of the device and confirmed with a PIN, and then signed by the device and sent back

to the software wallet.

To avoid accidental loss of private keys, and thereby loss of the ability to spend

one’s funds, there are cold-storage solutions as backups. These work by storing

a representation of the keys in a way that is independent of the user’s current

hardware wallets and machines. The simplest way is to write key pairs down on

paper. More user-friendly methods work by writing (or printing) 12 or 24 words out

of a dictionary on paper. All cold-storage solutions of course need to be protected

from conventional threats. An interesting alternative to paper is custom metal plates

in which the keys are set and physically locked in place—these have the advantage

of being fireproof.

with 10% of the mining power having a 0.1% chance of success, as outlined in a theoretical analysis
paper.
4https://bitcoin.org/en/glossary/simplified-payment-verification.

https://bitcoin.org/en/glossary/simplified-payment-verification

2.2 Ethereum 35

2.1.8 Exchanges

Bitcoin exchanges are places (usually websites) to buy Bitcoin in exchange for other

currencies (fiat currencies like US$ or cryptocurrencies). During this process, the

exchange holds currency on behalf of users, which makes exchanges a kind of

trusted party within the Bitcoin system. Clients may choose to ask the exchange

to transfer purchased Bitcoin to an address under their control. But until they do

that, if the exchange’s system fails, their users may lose control of ‘their’ Bitcoin.

Exchange markets provide liquidity for cryptocurrency, which supports its real-

world value and thus underpins the incentive mechanisms at work for miners to

operate the Bitcoin blockchain. Therefore, exchanges are key stakeholders for public

blockchain platforms.

2.2 Ethereum

Bitcoin led the development of the first generation of blockchain systems, providing

a public ledger to record cryptographically signed financial transactions. Bitcoin

has limited support for programmable transactions, and only very small pieces of

auxiliary data can be embedded in the transactions to serve other purposes. The

second generation of blockchain systems provides a general-purpose programmable

infrastructure where the public ledger not only stores financial transactions but

also has facilities to deploy and execute programs on the blockchain system. The

Ethereum blockchain platform views smart contract as a first-class element and

includes a virtual machine for executing smart contracts.

2.2.1 Ethereum Protocol

Ethereum is configured to have a relatively short time interval between blocks:

13–15 s on average. This of course addresses the issue of long delays of Bitcoin

transactions, where the inter-block time averages around 10 min. Ethereum’s inter-

block time is not many times longer than the time required to propagate information

throughout the global blockchain network. Because of that, it is much more likely in

Ethereum that multiple new (competing) blocks are created concurrently at similar

times. A stale block is one that was successfully created by a miner, propagated to

the network and verified by some nodes as being correct, but is eventually discarded

when another longer chain achieves dominance. As shown in Fig. 2.6, a stale block

is created when miner B and miner C find new blocks and propagate their blocks

almost at the same time. In Bitcoin, the probability of finding a block at the same

time is relatively low because the average inter-block interval is 10 min.

36 2 Existing Blockchain Platforms

Blockn

Miner A

Blockn+1

Miner B

Blockn+2

Miner D

Blockn+2

Miner F

Blockn+1

Miner C

Blockn+2

Miner E

Blockn+3

Miner G

Blockn+4

Miner H

Fig. 2.6 Ethereum blockchain

The Ethereum blockchain uses a modified GHOST (Greedy Heaviest Observed

Subtree) protocol, which was proposed as a way to address this problem. In the

GHOST protocol, miners reference competing independently mined blocks (so-

called uncles in Ethereum terminology; in the figure, BlockMinerB and BlockMinerF

are uncles), to add weight to their chain in the calculation of which chain is longest

or has the highest cumulative difficulty. In Ethereum, not the longest chain wins, but

the ‘heaviest’—and recognized uncles contribute to the weight. This recognition of

concurrent work allows shorter inter-block times which can improve throughput.

The recognition is backed by a strong financial incentive: miners of uncle blocks

receive 87.5% of a standard block reward. For every uncle included in the block, the

miner gains an additional 3.125% and increases the weight of the chain including

its block.

2.2.2 Ethereum Transactions

A high-level life cycle of a transaction is discussed in Fig. 1.3. Here we discuss

the life cycle of an Ethereum transaction, from it arriving in the transaction pool

until it is committed. As shown in Fig. 2.7, the transaction life cycle can be split

into consecutive phases: (i) the announcement of the transaction in the system;

(ii) the inclusion of the transaction in a newly mined block on some branch of

the chain; (iii) the block in which the transaction is included is part of the main

chain; and (iv) the commitment of the transaction after sufficiently many blocks are

subsequently mined.

Before a transaction is included in a block, it gets validated. This includes

checks of the digital signature, parameters such as the nonce (sequence number

of transactions relative to a given source account), and that there are sufficient funds

in the source account.

2.2 Ethereum 37

Tx in pool Tx in block(s)

validated & included

all blocks containing Tx

part of shorter chain

Tx

commi ed

11 subsequent blocks

Tx dropped Tx outdated

superseded

submi ed

Fig. 2.7 Life cycle of an individual Ethereum transaction Tx (notation: state machine). © 2017
IEEE. Reprinted, with permission, from Weber et al. (2017)

Note that Step (ii) above is not sufficient to guarantee that a transaction is

permanently added to the blockchain: if the blockchain forks, then the block

comprising the transaction may simply be discarded, and it could be re-included

later. While uncle blocks may be recognized in Ethereum, their content is discarded

at any rate. If all blocks that include the transaction become part of a shorter

chain than the main chain (i.e. they are uncles), then the transaction returns to the

transaction pool. This might happen repeatedly. While the transaction is in the pool

at a miner, it may also be dropped at the discretion of the miner. It is impossible for

any node in the network to know with certainty whether all miners have dropped the

transaction. Only when the nonce of the transaction becomes outdated, i.e. another

transaction from the same source account with the same nonce has been committed,

can a node be certain that the old transaction cannot be included in any valid block.

Otherwise the transaction might later resurface and be included in the chain.

Ethereum uses proof of work, like Bitcoin, and the GHOST protocol states that

the longest/heaviest chain becomes the main chain. Therefore, like for Bitcoin,

Ethereum users wait for X confirmation blocks before seeing a transaction as

committed. Due to the higher rate of uncle blocks, X is typically higher than for

Bitcoin: 12 blocks (block that includes the transaction + 11 confirmation blocks) are

typical on Ethereum. For an in-depth discussion, see Section 11.6.2.

2.2.3 Smart Contract

Smart contracts are programs deployed and run on a blockchain system. Smart

contracts can express triggers, conditions, and business logic to enable complex

programmable transactions. On the Ethereum blockchain, smart contract developers

38 2 Existing Blockchain Platforms

Ethereum BlockchainCreation TX

Smart
Contract

Function

Function

Invoking TX

Monetary TX

Private
Storage

Account
Balance

Fig. 2.8 Ethereum smart contract

can use high-level programming languages, like Solidity,5 to define smart contracts.

Solidity code is compiled into a low-level stack-based bytecode language, which

is run by the Ethereum Virtual Machine (EVM) included in every node within the

Ethereum blockchain network. To guarantee coherence across different copies of

the blockchain, EVM code is specified to execute deterministically. Smart contracts

in Ethereum should not be seen as representations of legal contracts that should be

‘fulfilled’ or ‘complied with’; rather, they are more like agents that can be invoked

within the Ethereum execution environment.

As shown in Fig. 2.8, a smart contract is deployed on the blockchain through

a contract creation transaction. The data payload of the transaction contains the

object code of the smart contract. The signature of the transaction sender authorizes

the transaction to create the smart contract on the blockchain. After the contract

creation transaction is successfully included in to the blockchain, the smart contract

is identified by a contract address. Every smart contract has a blockchain account

which can hold Ether (the Ethereum cryptocurrency) and internal state. Thus, an

Ethereum smart contract account contains:

• A piece of executable code

• An internal storage to store its internal state

• An amount of Ether, i.e. the contract balance

After a smart contract is successfully deployed on blockchain, blockchain users

can transfer Ether to the smart contract by using a basic monetary transaction.

Smart contracts are programs that need to be externally invoked. Blockchain

users can invoke the functions defined in the smart contract by sending contract-

invoking transaction to the address of the smart contract. The contract-invoking

transaction contains (1) the interface of the function being invoked and its param-

eters in the data payload and (2) an amount of Ether to pay for the execution of

the invoked functions. The signature of the transaction sender authorizes the data

payload of the transaction to execute a smart contract. The functions defined in a

smart contract can also be invoked by other smart contracts.

5https://solidity.readthedocs.io/.

https://solidity.readthedocs.io/

2.2 Ethereum 39

2.2.4 Paying Fees in ‘Gas’

A smart contract on the Ethereum blockchain is locally executed by every miner,

and so consumes their computational resources. In a Turing complete language, it

is not always possible to predict the computational resources that will be required

by a program or even whether the program will terminate. It is important that

the replicated execution of a nonterminating program does not freeze the whole

network.

To limit the use of resources, and to compensate miners for the use of their

computational resources, Ethereum uses the concept of gas, as a fee proportional

to the required data storage and computation. In rough terms, there is a fixed gas

cost for each transaction, plus variable gas cost for data (proportional to its size)

and execution of a smart contract method (charged per bytecode instruction). There

is an additional gas cost for the deployment of new contracts. The Ethereum yellow

paper defines a detailed cost model. All costs in Ethereum follow a pricing table,

specified in the unit gas. Gas cost is converted to Ether according to a user-defined

gas price, i.e. how much Ether-per-gas the creator of a transaction is willing to

pay. By default, Ethereum clients set the gas price to a market rate, an average

over previously included transactions. The gas price can be set to 0, meaning the

transaction sender is not offering a fee. Intuitively, users set higher gas prices if

inclusion of their transaction is urgent for them and lower gas prices if inclusion can

take time or may fail altogether—but this intuition does not always match reality as

we discuss in Chapter 11.

Other than gas price, when users send contract-invoking transactions, a gasLimit

must be set, which bounds the computation for a smart contract. The miner who

successfully includes the transaction in the blockchain receives a transaction fee

corresponding to the amount of gas the execution has actually used, multiplied

by the gas price. An execution which requires more gas than gasLimit causes an

exception, and the state of the smart contract is rolled back to the state before the

execution.

To prevent denial-of-service attacks, Ethereum also defines a gas limit at the

block level: the sum of gas used by the transactions included in a block cannot

exceed this limit. The block gas limit is influenced by the miners, where each miner

winning a block can vote to increase, decrease, or keep the current block gas limit.

However, the block gas limit also limits the complexity for blocks which also bounds

throughput.

2.2.5 Decentralized Application (dapp)

With Ethereum and its smart contract capabilities, the idea of decentralized appli-

cations (dapps) has gained popularity. A dapp is an application whose core logic

resides in smart contracts and where the code is accessible to the users (typically

as open-source). Therefore, the users do not have to trust any single entity: they

40 2 Existing Blockchain Platforms

can inspect the code to understand what it does; and because it is run on top of a

blockchain system and is deterministic, they can trust in its faithful execution.

The backend of a dapp is executed in a decentralized environment. This is

different from the backend of normal apps which are executed on a centralized

server. A dapp, like a normal app, can have frontend code and user interfaces that

interact with its backend through an API. The frontend can be hosted as a website

on a centralized server. A dapp could also, like a normal app, use decentralized

data storage such as IPFS.6 State of the dapps7 is a directory of dapps running on

Ethereum. This directory is also recorded on the Ethereum blockchain.

2.3 Hyperledger Fabric

Hyperledger is an umbrella project of open-source blockchains and related tools.8

It is a global collaboration, hosted by the Linux Foundation since December

2015. Members are from domains such as finance, banking, Internet of Things,

supply chain, manufacturing, and technology. There are currently more than 185

members and 8 ongoing projects, including Hyperledger Fabric. Hyperledger Fabric

is a business blockchain framework, intended as a foundation for developing

blockchain-based applications with a modular architecture. Data can be stored in

multiple formats, and various consensus algorithms can be configured. Figure 2.9

gives an overview of Hyperledger Fabric system. More details can be found in the

Hyperledger documentation.9

... ...

Blockchain
Network

Ledger

Client

Orderer

Endorser

Membership
provider

Channel
Channel

Fig. 2.9 Overview of Hyperledger Fabric system

6https://ipfs.io/.
7https://www.stateofthedapps.com/.
8https://www.hyperledger.org.
9https://hyperledger-fabric.readthedocs.io.

https://ipfs.io/
https://www.stateofthedapps.com/
https://www.hyperledger.org
https://hyperledger-fabric.readthedocs.io

2.3 Hyperledger Fabric 41

2.3.1 Permissioned Blockchain

Hyperledger Fabric is a private and permissioned blockchain. Members of a network

need to enrol through a trusted membership service provider (MSP). All the

participants of a Fabric network have known identities. Public keys are used as

cryptographic certificates tied to organizations, network components, and end users.

Data access control is applied on network and channel levels.

The concept of channels helps to address scenarios where privacy and confiden-

tiality are important and reduced transparency is acceptable. A channel allows a

group of participants to create a separate ledger of transactions, shared only with

a set of members for that channel. A channel might cover the entire blockchain

network, similar to a public blockchain system, or might include only a few

participants from the entire network.

Channels are important for systems where participants might be competitors

and do not want to disclose all of their transactions to each other. For example, a

company will not want to disclose the identity of its customers or the volume of its

sales to its competitors. If a company forms a channel with one of its customers, then

only those two participants and no others can see the transactions on the associated

ledger for that channel.

The ledger associated with a channel comprises two components: the world state

and the transaction log. The world state is the latest state of the contents of the

ledger. The transaction log records all historical transactions which have resulted

in the world state. The ledger of a channel also contains a configuration block that

defines information such as policies and access control lists.

2.3.2 Chaincode as Smart Contract

Hyperledger Fabric leverages container technology to host smart contracts called

chaincode that comprise the application logic of the system. Chaincode can be

implemented in programming languages such as Go or Java and is invoked through

a transaction proposal. The execution of chaincode is based on the world state stored

in the ledger for a channel.

2.3.3 Nodes

There are three types of nodes within a Hyperledger Fabric system: client, peer, and

orderer.

• Client: A client acts on behalf of an end user. It connects to peers to communicate

with the blockchain. A client node can create transactions and broadcasts

messages to Orderers (see below) through communication channels.

42 2 Existing Blockchain Platforms

• Peer: A peer node receives ordered state updates in the form of transactions from

the orderers, commits transactions, and maintains the state of the ledger. Some

peers can take a special role of endorser. Every transaction invoking particular

chaincode needs to be endorsed before being committed. Each chaincode might

specify an endorsement policy that defines the necessary and sufficient conditions

for valid transaction endorsement. Such endorsement might involve multiple

endorsers. In the case of deploying new chaincode through transactions, the

endorsement policy is applied to the system chaincode. System chaincode is a

system-level chaincode for management functions.

• Orderer: An orderer node validates the transactions based on the endorsement

policy and orders the transactions into a sequence before broadcasting them into

the network. Orderers provide shared communication channels to clients and

peers. Clients connected to a channel may broadcast transactions on the channel

which are then delivered to all peers within the channel by the orderers.

The ordering service provided by the orderers supports multiple channels,

similar to the topics of a publish/subscribe messaging pattern. Clients first

connect to a channel and can then send and receive transactions. Clients

connecting to one channel may be unaware of the existence of other channels.

Clients can connect to multiple channels.

2.3.4 Transactions

The life cycle of a Hyperledger Fabric transaction, as shown in Fig. 2.10, is different

from the life cycles discussed in Fig. 1.3 and Section 2.2.2. At a high level, the

life cycle of a transaction starts from a transaction proposal being created by an

Fig. 2.10 Hyperledger
transaction life cycle

TX Proposal
Endorsed

TX Validated

TX Ordered TX Discarded

TX Recorded

TX Proposal
Created

Tx Proposal
Discarded

TX Created

2.3 Hyperledger Fabric 43

application client and sent to specific peers as endorsers. The endorsers verify the

signature of the initiator and execute the referred chaincode functions to prepare

the transaction. The result of the execution is a set of key-value pairs read from

the chaincode and a set of key-value pairs written into the chaincode. The proposal

response with the signature(s) of the endorsement is sent back to the client.

The client composes the endorsements into payload of the transaction before

broadcasting the transaction to an orderer. The orderer is responsible for transaction

validation, ordering transactions into blocks and delivering the blocks to all peers

on the channel. Once the peers receive transactions, they check the endorsement

policy to ensure that the correct peer(s) as endorser(s) have signed the result and

authenticate the signature(s) against the endorsements included in the transaction

payload. The peer(s) ensure data integrity of the transaction through checking that

the data that was read during chaincode execution has not been changed since the

time of endorsement, so that the valid execution result can be committed. If the data

that was read had been changed by other transactions, the transaction in the new

block is marked as invalid. In this case, the client is alerted and needs to handle the

error somehow.

2.3.5 Consensus

Based on the life cycle of transactions, consensus in Hyperledger Fabric requires

the full verification of transactions and is achieved if the order and/or a set of

transactions and execution results of the corresponding chaincode within a block

meet the policy criteria checks. These checks take place during the life cycle of a

transaction, which can be broken out into three stages: endorsement, ordering, and

validation.

• Endorsement is driven by the policy defining which peer(s) endorse a certain

transaction.

• Ordering accepts the endorsed transactions and orders the transactions into a

sequence to be committed to the corresponding ledger.

• The blocks of transactions are ‘delivered’ to all peers on the channel. Validation

checks the correctness of a set of ordered transactions within a block, considering

the endorsement policy and versioning checks for data integrity.

The modular architecture design of Hyperledger Fabric allows pluggable con-

sensus for all the three phases so that applications may use different models

for endorsement, ordering, and validation according to their requirements. Other

than endorsement, ordering, and validation, identity verification occurs during the

consensus process.

44 2 Existing Blockchain Platforms

2.4 Other Representative Blockchain Platforms

Similar to Hyperledger Fabric, Corda10 proposed by R311 also has ledgers shared

only between defined groups of parties. This is aimed to improve privacy and

scalability by reducing the replication of data across the network. Because these

systems do not implement a single global ledger, they are arguably not blockchains

but nonetheless still implement a kind of distributed ledger.

Ripple12 is a real-time gross settlement system, currency exchange, and remit-

tance network across financial institutions. Ripple uses a common ledger that is

managed by a network of independently validating servers that constantly compare

transaction records. These validating servers can belong to individuals or banks.

Various techniques have been proposed to preserve privacy on blockchain.

For example, Zcash13 encrypts payment information in transactions but uses a

cryptographic method to allow any node to nonetheless verify the validity of the

encrypted transactions. A zero-knowledge proof construction is used to allow the

blockchain network to maintain a secure ledger and enable private payment without

disclosing the parties or amounts involved. Monero14 uses other cryptographic tools

to shield sending and receiving addresses and transacted amounts.

2.5 Further Reading

A more comprehensive background of blockchain functionality, features, and

potential applications is discussed in Swan (2015). An early description of smart

contracts on blockchain can be found in Omohundro (2014). A number of other

books focus on the internal details of various blockchain platforms.

The Nakamoto proof-of-work consensus protocol, first used by Bitcoin, was

introduced in the original Bitcoin paper (Nakamoto 2008).

The Ethereum yellow paper defines a detailed cost model (Wood 2015–2018)

to compensate the data storage and computation power contributed by miners. The

GHOST (Greedy Heaviest Observed Subtree) protocol used by Ethereum was first

introduced in Sompolinsky and Zohar (2013) to tackle problems including network

propagation time of blocks, short inter-block times, and miner centralization.

The Hyperledger Fabric platform is described in more detail by Androulaki et al.

(2018) and in online documentation.15

10https://www.corda.net/.
11https://www.r3.com/.
12https://ripple.com/.
13https://z.cash/.
14https://getmonero.org/.
15https://hyperledger-fabric.readthedocs.io.

https://www.corda.net/
https://www.r3.com/
https://ripple.com/
https://z.cash/
https://getmonero.org/
https://hyperledger-fabric.readthedocs.io

Chapter 3

Varieties of Blockchains

Since the advent of Bitcoin in 2008, a diverse range of blockchains has emerged.

Blockchain has a complex internal structure and has many configurations and vari-

ants. When building applications based on blockchains, we need to systematically

consider the features and configurations of blockchains and assess their impact on

quality attributes for the overall systems. Since blockchains are still at an early stage,

there is little product data or reliable technology evaluation available to compare

different blockchains. The lack of product data and reliable technology evaluation

resources makes the comparison difficult.

In this chapter, we address the manifold varieties of blockchains by presenting a

design taxonomy that defines dimensions and categories for classifying blockchains

and ways of using them in systems. Taxonomies have been used in software

architecture to understand existing technologies. The compact framework provided

by a taxonomy allows architects to explore the conceptual design space and to

compare and evaluate design options. Our taxonomy captures major architecturally

relevant characteristics of various blockchains and indicates their support for various

quality attributes. This includes performance and quality attributes of blockchain-

based systems, as well as core concerns of blockchains like decentralization and

the data structure used. The taxonomy is informed by existing industrial products,

technical forums, academic literature, and our own experience of using blockchains

and developing prototypes.

3.1 Fundamental Properties of Blockchain

If data is contained in a committed transaction, it will eventually become in practice

immutable. The immutable chain of cryptographically signed historical transactions

provides non-repudiation of the stored data. Cryptographic tools also support data

integrity, the public access provides data transparency, and equal rights allows

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_3

46 3 Varieties of Blockchains

every participant the same ability to access and manipulate the blockchain. These

rights can be weighted by the compute power or stake owned by the miner. A

distributed consensus mechanism governs addition of new items; it consists of the

rules for validating and broadcasting transactions and blocks, resolving conflicts,

and the incentive scheme. The consensus ensures all stored transactions are valid

and that each valid transaction is added only once.

Trust in the blockchain is achieved from the interactions between nodes within

the network. The participants of blockchain network rely on the blockchain network

itself rather than relying on trusted third-party organizations to facilitate transac-

tions. These five properties (immutability, non-repudiation, integrity, transparency,

and equal rights) are the main properties supported in existing blockchains.

3.2 Decentralization

Decentralization is one of the distinguishing capabilities of blockchain technology,

but there are various aspects and varieties of decentralization. Decentralization

devolves responsibility and capability from a central location or authority. In a

centralized system, all users rely on a central authority to mediate transactions. For

example in a bank, customers rely on the bank’s systems to correctly adjust their

account balances when a bank transfer occurs. A central authority could manipulate

the whole system, including by directly updating backend databases or by upgrading

the software that implements the system. Thus, a central authority is a single point

of failure for a centralized system. In contrast, a fully decentralized currency system

like Bitcoin allows people to reach agreement on who owns what without having

to trust each other or a separate third-party. Such a system is highly available since

every full node in Bitcoin network downloads every block and transaction, checks

them against Bitcoin’s core consensus rules, and provides functionality to process

transactions. There are currently more than 9000 nodes in the Bitcoin network,1

although not all are full nodes that form the backbone of Bitcoin.

Table 3.1 represents a spectrum of (de)centralization, from full centralization

to full decentralization. The column ‘fundamental properties’ refers to the five

properties discussed in Section 3.1. In a system it is possible that some components

or functions are decentralized while others are centralized.

There are two types of centralized systems. In the first there is a monopoly service

provider, including governments and courts within a jurisdiction, and business

monopolies. In the other type, there are competing alternative providers, such as

banks, online payments, or cloud computing providers. Any centralized system is a

single point of failure for its users. However, where there are alternative providers,

the failure of a single service provider only affects its users. Users may switch

providers or may be able to use multiple providers.

1https://bitnodes.21.co/nodes/.

https://bitnodes.21.co/nodes/

3.2 Decentralization 47

T
a
b

le
3
.1

(D
e)

ce
n
tr

al
iz

at
io

n
w

it
h

an
in

d
ic

at
io

n
o
f

th
ei

r
re

la
ti

v
e

im
p
ac

t
o
n

q
u
al

it
y

p
ro

p
er

ti
es

(⊕
,

le
ss

fa
v
o
u
ra

b
le

;
⊕

⊕
,

n
eu

tr
al

;
⊕

⊕
⊕

,
m

o
re

fa
v
o
u
ra

b
le

)

Im
p
ac

t

F
u
n
d
am

en
ta

l

D
es

ig
n

d
ec

is
io

n
O

p
ti

o
n

p
ro

p
er

ti
es

C
o
st

ef
fi

ci
en

cy
P

er
fo

rm
an

ce
#
F

ai
lu

re
p
o
in

ts

F
u
ll

y
ce

n
tr

al
iz

ed
S

er
v
ic

es
w

it
h

a
si

n
g
le

p
ro

v
id

er
(e

.g
.

g
o
v
er

n
m

en
ts

,
co

u
rt

s)
⊕

⊕
⊕

⊕
⊕

⊕
⊕

1

S
er

v
ic

es
w

it
h

al
te

rn
at

iv
e

p
ro

v
id

er
s

(e
.g

.
b
an

k
in

g
,

o
n
li

n
e

p
ay

m
en

ts
,

cl
o
u
d

se
rv

ic
es

)

P
ar

ti
al

ly
ce

n
tr

al
iz

ed
an

d
p
ar

ti
al

ly
d
ec

en
tr

al
iz

ed

P
er

m
is

si
o
n
ed

b
lo

ck
ch

ai
n

w
it

h
p
er

m
is

si
o
n
s

fo
r

fi
n
e-

g
ra

in
ed

o
p
er

at
io

n
s

o
n

th
e

tr
an

sa
ct

io
n

le
v
el

(e
.g

.
p
er

m
is

si
o
n

to
cr

ea
te

as
se

ts
)

⊕
⊕

⊕
⊕

⊕
⊕

*

P
er

m
is

si
o
n
ed

b
lo

ck
ch

ai
n

w
it

h
p
er

m
is

si
o
n
ed

m
in

er
s

(w
ri

te
),

b
u
t

p
er

m
is

si
o
n
-l

es
s

n
o
rm

al
n
o
d
es

(r
ea

d
)

O
ff

-c
h
ai

n
tr

an
sa

ct
io

n
p
ro

to
co

ls

F
u
ll

y
d
ec

en
tr

al
iz

ed
P

er
m

is
si

o
n
-l

es
s

b
lo

ck
ch

ai
n

⊕
⊕

⊕
⊕

⊕
M

aj
o
ri

ty
(n

o
d
es

,
p
ow

er
,

st
ak

e)

©
2
0
1
7

IE
E

E
.

R
ep

ri
n
te

d
,

w
it

h
p
er

m
is

si
o
n
,

fr
o
m

X
u

et
al

.
(2

0
1
7
)

48 3 Varieties of Blockchains

At the other end of the spectrum, fully decentralized systems include permission-

less public blockchains, such as Bitcoin and Ethereum. Permission-less public

blockchains are completely open: new users can at any time join the network,

validate transactions, and mine blocks. Decentralized systems using anonymous

validators need to protect against Sybil attacks, where attackers create many hostile

anonymous nodes. Bitcoin partly guards against this through its proof-of-work

mechanism, so that it is not the total number of nodes that is important for

integrity but rather the total amount of computational power. While it is easy for

an attacker to create anonymous nodes, it is not easy for them to amass large

amounts of computational power. Any system can be defeated if an attacker controls

a majority of authority (nodes, computational power, or stakeholding). Game-

theoretic attacks can change this threshold, requiring a higher (e.g. 66%) majority

to maintain integrity. There is a spectrum of possibilities between centralization

and decentralization. There are two dimensions to classify a blockchain, including

permission and the type of deployment. These two dimensions are discussed in the

next two subsections.

Another hybrid approach is the use of off-chain transaction protocols to progress

transactions between parties and then later to reconcile the effects of those protocol

executions on-chain. The Bitcoin Lightning network2 moves some transactions off-

chain by establishing a multi-signature transaction between two participants as a

micropayment channel to transfer value off-chain. Once both sides wish to close the

micropayment channel and finalize the value transfer, a transaction is submitted

to the global Bitcoin blockchain. Such bidirectional channels can be connected

to establish a payment network leveraging Bitcoin. The intermediate transactions

occurring in the payment channel are not included in the blockchain. Raiden3 is a

similar project on Ethereum, using its smart contract facilities.

3.2.1 Permission

Instead of anonymous public participation, a blockchain may be permissioned

in requiring that one or more authorities act as a gate for participation. This

may include permission to join the network (and thus read information from

the blockchain), permission to initiate transactions, or permission to mine. Some

permissioned blockchains, e.g. MultiChain,4 allow more fine-grained permissions,

such as the permission to create assets. Permissioned blockchain networks include

Ripple5 and Eris.6 The code for public blockchains can also be deployed on private

2https://lightning.network/.
3https://github.com/raiden-network/raiden.
4http://www.multichain.com/.
5https://ripple.com/.
6https://monax.io.

https://lightning.network/
https://github.com/raiden-network/raiden
http://www.multichain.com/
https://ripple.com/
https://monax.io

3.2 Decentralization 49

networks to create a kind of permissioned blockchain using network access controls.

Permission information can be stored either on-chain or off-chain.

Permissioned blockchains may be especially suitable in regulated industries. For

example, banks are required to establish the real-world identity of transacting parties

to satisfy Know Your Customer (KYC) regulation. In contrast, a transaction on

a permission-less blockchain across jurisdictional boundaries can circumvent this

and undermine regulatory controls. Permissioned blockchains may be able to better

control access to off-chain information about real-world assets.

There are often trade-offs between permissioned and permission-less block-

chains including transaction processing rate, cost, censorship resistance, reversibil-

ity, finality, and the flexibility in changing and optimizing the network rules. The

suitability of a permissioned blockchain may also depend on the size of the network.

Nonetheless, the permission management mechanism may itself become a potential

single point of failure, not just operationally but also from a business perspective.

3.2.2 Deployment

When using a blockchain, there are different types of deployments, including public

blockchain, consortium/community blockchain, or private blockchain. An overview

is given in Table 3.2.

Most digital currencies use public blockchains, which can be accessed by anyone

on the Internet. Using a public blockchain results in better information transparency

and auditability but sacrifices performance and has a different cost model. In a public

blockchain, data privacy relies on encryption or cryptographic hashes.

A consortium blockchain is typically used across multiple organizations. The

consensus process in a consortium blockchain is controlled by pre-authorized nodes.

The right to read the blockchain may be public or may be restricted to specific

participants. In a private blockchain network, write permissions are often kept

within one organization, although this may include multiple divisions of a single

organization.7

Whether using a consortium blockchain, private blockchain, or permissioned

public blockchain,8 a permission management component will be required to autho-

rize participants within the network. Private blockchains are the most flexible for

configuration because the network is governed and hosted by a single organization.

Many blockchain platforms support deployment as consortium blockchains or

private blockchains, e.g. MultiChain and Eris.

7There is a grey area between consortium blockchains and private blockchains, and the differences

may be more administrative than technical. Nonetheless we distinguish them here because at their
extremes they have architectural differences.
8Ripple can arguably be seen as a permissioned public blockchain.

50 3 Varieties of Blockchains

Table 3.2 Blockchain deployment (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Deployment option Fundamental properties Cost efficiency Performance Flexibility

Public blockchain ⊕⊕⊕ ⊕ ⊕ ⊕

Consortium/community
blockchain

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Private blockchain ⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

Table 3.3 Ledger structure (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Option Fundamental properties Cost efficiency Performance Flexibility

Global list of blocks
(Bitcoin)

⊕⊕⊕ ⊕ ⊕ ⊕

Global DAG of blocks
(Hashgraph)

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Global DAG of
transactions (IOTA)

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Restricted shared
ledgers (Corda)

⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

3.3 Ledger Structure

The ledger can be structured in different ways; Table 3.3 provides an overview.

In Bitcoin, the history of all transactions is captured in the blockchain structure.

This is a single global list (chain) of lists (blocks) of transactions, as discussed in

Chapters 1 and 2. Bitcoin nodes actually record the blockchain as a tree of blocks,

where shorter branches attached to the main chain represent alternative competing

histories. However, the tree data structure is relevant mainly for the nodes operating

the blockchain and determining consensus; under the logical view from a user’s

perspective, the blockchain is a list of blocks. This is similar for Ethereum.

Other blockchain and distributed ledger systems have different data structures.

For example, the logical view of transactions recorded in Hashgraph9 is based on

a directed acyclic graph (DAG) of blocks, rather than a list. Somewhat similarly,

IOTA10 also uses a DAG but of individual transactions rather than blocks of

transactions.

These systems all maintain a single global transaction history. Other distributed

ledger systems such as Hyperledger Fabric and Corda have been proposed where

there are essentially many small ledgers, shared only between parties of interest

9https://www.hederahashgraph.com/.
10https://www.iota.org/.

https://www.hederahashgraph.com/
https://www.iota.org/

3.4 Consensus Protocol 51

who are authorized to view the transactions recorded in those ledgers. For the Corda

distributed ledger, the abstract logical view of transaction history is of a global graph

of transactions. However, transactions are only distributed to parties of interest;

special agents (notaries) can be used to further limit the distribution of transactions

while attesting to the integrity of unseen parts of the transaction graph. So although

there is notionally a global graph of transactions, the view that most parties see

is a collection of small ledgers, each shared with their related business contacts.

Hyperledger Fabric is somewhat similar, because parties also see a collection of

small ledgers shared with related business contacts (via ‘channels’). However,

Fabric has a more rigid transaction distribution policy, isolating transactions within

the channels.

3.4 Consensus Protocol

The choice of consensus protocol impacts security and scalability. An overview

is given in Table 3.4. Once a new block is generated by a miner, the miner

propagates the block to its connected peers in the blockchain network. However,

miners may encounter different competing new blocks and resolve this using the

blockchain’s consensus mechanisms. Usually the approach is fixed for a particular

blockchain; but Hyperledger Fabric deviates from this norm, as a framework with a

modular architecture that caters for pluggable implementations of various consensus

protocols.

The typical overall approach is called Nakamoto consensus, as introduced in

Section 2.1.5. This relies on participants selecting as authoritative the longest chain

of blocks they have observed at every point in time. In Bitcoin, new blocks are

generated through a proof-of-work mechanism. Proof-of-work uses a cryptographic

puzzle which is easy to verify, but solving it is difficult and takes effectively random

Table 3.4 Consensus protocol (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Fundamental

Option properties Cost efficiency Performance Flexibility

Security-wise Proof-of-work ⊕⊕⊕ ⊕ ⊕ ⊕

Proof-of-
retrievability

⊕⊕⊕ ⊕ ⊕ ⊕

Proof-of-stake ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕⊕

Practical Byzantine
Fault Tolerance
(PBFT)

⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕

Scalability-wise Bitcoin-NG ⊕⊕⊕ ⊕ ⊕ ⊕

RBBC ⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

52 3 Varieties of Blockchains

time. Bitcoin miners compete to solve such a puzzle for each block, using large

amounts of computer power (and hence electricity) to increase their chances of

winning the competition for the block. The investment required by miners for

this acts to align their incentives with the good operation of the overall system.

There are various proof-of-work mechanisms, such as Ethash11 used by Ethereum

and Hashcash12 used by Bitcoin. The work done in proof-of-work systems can

sometimes be put to good use. For example, the mechanism in Primecoin13

generates prime number chains which are of interest to mathematical research.

Permacoin uses ‘proof-of-retrievability’ to repurpose Bitcoin’s mining resources to

distributed storage of archival data.

Proof-of-stake is an alternative mechanism for Nakamoto consensus, which

selects the next mining node based on the control of the native digital currency

of the blockchain network. For example, the miners in Peercoin14 need to prove the

ownership of a certain amount of Peercoin currency to mine blocks. Thus, proof-of-

stake naturally aligns the incentives of digital currency holders in the blockchain

with the good operation of the blockchain. There are various proof-of-stake

protocols, e.g. Tendermint15 used in Eris and Casper16 for Ethereum. These have

different design goals, favouring some non-functional properties over others. Proof-

of-stake does not necessarily select the next miner based on largest stakeholding,

e.g. Nxt17 also uses a random factor, and Peercoin combines randomization and coin

age. BitShares18 uses delegated proof-of-stake, where the accounts may delegate

their stake to other accounts, rather than participating in the process of validating

transactions directly. The representatives take turns in a round-robin manner, signing

blocks. Compared with proof-of-work, proof-of-stake is more cost-efficient because

much less computational power is used in mining and latency is also shorter.

However, passive holding of assets may become harder.

The Practical Byzantine Fault Tolerance (PBFT) protocol has been applied for

consensus in permissioned blockchains, e.g. in Stellar.19 PBFT ensures consen-

sus despite arbitrary behaviour from some fraction of participants. Compared to

Nakamoto consensus, it is a more conventional approach within distributed systems.

Roughly speaking, PBFT-based blockchains offer a much stronger consistency

guarantee and lower latency but for a smaller number of participants. The core

of Tendermint is also a PBFT protocol but uses a proof-of-stake mechanism to

prevent Sybil attacks. PBFT requires that all participants must agree on the list of

11https://github.com/ethereum/wiki/wiki/Ethash.
12https://en.bitcoin.it/wiki/Hashcash.
13http://primecoin.io/.
14http://peercoin.net/.
15http://tendermint.com/.
16https://github.com/ethereum/casper/.
17https://nxt.org/.
18https://bitshares.org/.
19https://www.stellar.org/.

https://github.com/ethereum/wiki/wiki/Ethash
https://en.bitcoin.it/wiki/Hashcash
http://primecoin.io/
http://peercoin.net/
http://tendermint.com/
https://github.com/ethereum/casper/
https://nxt.org/
https://bitshares.org/
https://www.stellar.org/

3.5 Block Configuration 53

participants in the network. Thus, the protocol is normally only used in permissioned

blockchains.

Some new protocols have been proposed to improve scalability. Bitcoin-NG

decouples Bitcoin’s operation into two planes: leader election and transaction

serialization. Once a leader is selected, it is entitled to serialize transactions until the

next leader is selected. Thus, the leader election in Bitcoin-NG is forward-looking

and ensures that the system is able to continually process transactions. Another new

protocol is used in the Red Belly Blockchain (RBBC). This algorithm is a kind

of democratic Byzantine consensus approach in not requiring leader nodes. The

approach starts with submitted transactions being collected by a set of proposers.

These nodes collectively decide on a proposed set of transaction to send to a verifier

nodes, who enforce consensus using hashes exchanged for the proposed sets of

transactions.

3.5 Block Configuration

Block configuration concerns options for the size (number/complexity of transac-

tions) allowed in blocks and the frequency by which blocks are generated. These

choices can impact scalability in terms of transaction processing rate. An overview

is given in Table 3.5.

One configuration change would be to adjust mining difficulty to shorten the

time required to generate a block, thus reducing latency and increasing throughput.

However, a shorter inter-block time would lead to an increased frequency of

forks. Ethereum has a much shorter inter-block time (10–20 s) than Bitcoin, while

still using Nakamoto consensus and proof-of-work. The increased frequency of

forks (‘uncle blocks’ in Ethereum’s terminology) leads to users waiting for more

confirmation blocks than in Bitcoin, though still achieving overall lower transaction

latency.

Another important block configuration parameter concerns block size. Depend-

ing on the blockchain used, this is specified differently, e.g. as block size limit in

Bitcoin (data size in MB) or as block gas limit in Ethereum (limiting the complexity

of the contained transactions). For example, there are some proposals for Bitcoin to

increase its block size from 1 to 8 MB, to include more transactions into a block and

Table 3.5 Block configuration (⊕, less favourable; ⊕⊕, more favourable)

Impact

Option Fundamental properties Cost efficiency Performance Flexibility

Original block
size and
frequency

⊕⊕ n/a ⊕ n/a

Increase block
size/decrease
mining time

⊕ n/a ⊕⊕ n/a

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

54 3 Varieties of Blockchains

thus increase maximum throughput. The decision on the size of blocks is subject

to a trade-off between speed of replication, inter-block time, and throughput and

works as follows. When a new block has been proposed, processing nodes need

to select a set of transactions from the transaction pool/mempool and validate and

execute those. This cannot be done before observing the latest block, because the

state changed as a result of the new block and may render some transactions invalid

or alter their effects. Once that is complete, the block can be formed, and, in the

case of proof-of-work consensus, mining can start. On the one hand, if the block

can be too big or too complex, transaction processing may take too much time.

Take the extreme example of having no limit; then, the system could be subject to

a DoS attack by flooding it with transactions, such that the inter-block time would

rise to unacceptable levels. Very big blocks also take longer to replicate among the

full nodes. On the other hand, high limits can result in higher throughput. For these

reasons, block limits should be set with care in private and permissioned networks.

On the public Bitcoin blockchain, the long-time limit of 1 MB sparked significant

controversy20 and led to an effective increase to 2–4 MB. Public Ethereum’s block

gas limit has changed a number of times (see also Section 11.6.2) and is about eight

million gas at the time of writing.21 On public proof-of-work blockchains, high

block limits also increase the risk of empty blocks. Consider the case where miner

A tries to include many transactions and miner B tries to mine empty blocks. While

A is processing transactions, B is already working on its proof-of-work, thereby

increasing its relative chances to find a new block first. If block limits and block

mining rewards are high, it might actually be economical to mine as many empty

blocks as possible. Unfortunately, that also deteriorates the value of the network,

because now it does not process new transactions anymore.

3.6 Auxiliary Blockchains

When building and deploying a new blockchain, it might be combined with or built

on an existing blockchain, thus forming an auxiliary blockchain. Different strategies

can be used to achieve security and scalability. An overview is given in Table 3.6.

For security, the new blockchain can be aligned with public blockchains, utilizing

existing infrastructure, resources, and trust. The first option is merged mining, which

reuses the mining power of an existing public blockchain to mine and secure the new

blockchain. In this case, a proof-of-work found by a miner of the public blockchain

is used by both blockchains. First, the miner produces a transaction set for both

blockchains. The hash of the block produced for the new blockchain is added

to the public blockchain. Then, once the miner finds a proof-of-work solution at

the difficulty level of either blockchain, the proof-of-work is combined with the

20https://en.bitcoin.it/wiki/Block_size_limit_controversy.
21https://etherscan.io/chart/gaslimit.

https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://etherscan.io/chart/gaslimit

3.6 Auxiliary Blockchains 55

Table 3.6 Auxiliary blockchains (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Fundamental

Option properties Cost efficiency Performance Flexibility

Security-wise Merged mining ⊕⊕⊕ ⊕⊕ ⊕ ⊕

Hook into
popular
blockchain at
transaction level

⊕⊕ ⊕ ⊕⊕ ⊕⊕⊕

Proof-of-burn ⊕ ⊕ ⊕⊕⊕ ⊕⊕

Scalability-wise Sidechains ⊕⊕⊕ ⊕ ⊕ ⊕

Multiple private
blockchains

⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

Mini-blockchain ⊕⊕ ⊕⊕ ⊕ ⊕⊕

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

transaction set and submitted to the corresponding blockchain. Namecoin is the first

blockchain that uses merged mining with the Bitcoin blockchain. Merged mining

reuses an established blockchain network. It might be difficult initially to persuade

the miners of an existing blockchain to join a new blockchain network.

A more loosely coupled way is to hook the new blockchain into a public

blockchain, by periodically adding hashes of the new blockchain to transactions of

the public blockchain. For instance, Factom22 anchors into the Bitcoin blockchain

by submitting a transaction to the Bitcoin blockchain every 10 min, with the current

hash of the Factom blockchain.

The third option is proof-of-burn. The purpose of proof-of-burn is to verifiably

destroy tokens on the existing chain rather than minting new tokens on the new

chain. To ‘transfer’ tokens from a public blockchain to the new blockchain, the

participants need to provide proof that their tokens were sent to a verifiably unspend-

able address. The burnt tokens, originally mined by proof-of-work, represent the

corresponding computational power. Proof-of-burn can be used for bootstrapping a

new cryptocurrency, e.g. Counterparty,23 as it ensures serious commitment.

Auxiliary blockchains can also be used to improve scalability. Rather than using

a unique chain to record all types of transactions, multiple blockchains can be

used to isolate information of separate concerns and with different characteristics

and therefore improve scalability. Different mechanisms have been proposed to

support interaction across multiple blockchains. One of the mechanisms is to use

an off-chain hash lock. In the Bitcoin ecosystem, using a hash lock with contracts

can enable atomic cross-chain trading,24 which allows one cryptocurrency (e.g.

the Bitcoin cryptocurrency, BTC) to be traded for another cryptocurrency (e.g.

22http://factom.org/.
23http://counterparty.io/.
24https://en.bitcoin.it/wiki/Atomic_cross-chain_trading.

http://factom.org/
http://counterparty.io/
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading

56 3 Varieties of Blockchains

tokens on a Bitcoin sidechain). This mechanism is also applicable in the Ethereum

ecosystem.25

The first option for scalability is to use sidechains. Sidechaining is a mechanism

that allows tokens of one blockchain to be securely transferred and used in another

blockchain; eventually, they can be moved back to the original chain securely. The

original chain is called main chain, and the one that accepts the tokens from the

original chain is called sidechain. The second option is to have multiple private

chains, where each of the private chains could link with a public blockchain. With

sidechains, there is a layer of separation between two blockchains, which means

that the main chain can be protected from issues or damages on the sidechains.

Sidechains can help to build a blockchain ecosystem based on a popular main

blockchain, without significantly increasing the load on the main chain. However,

the clients of sidechains may become complex, because they typically need to be

able to process transactions from the main chain and the sidechain.

There are two ways of sidechaining: unilaterally pegged sidechain and bilaterally

pegged sidechain. For a unilateral (or one-way) peg, the interaction is only from

the main chain to the sidechain, e.g. through proof-of-burn. For a bilateral peg, the

interaction is bidirectional. One mechanism to secure bilateral pegged sidechains

is essentially a voting system, where a group of custodians cast votes on when

to lock and unlock tokens on one blockchain and where to send tokens on the

other blockchain. The first option is to have an exchange holding the locked

tokens from one blockchain and the unlocked equivalent tokens from the other

blockchain. The exchange would locally enforce the promise of locking the tokens

from one blockchain before unlocking the tokens of the other blockchain. This

design introduces a central trusted third-party to control the exchange. A better

option is to have a group of notaries control a multi-signature wallet, where a

majority has to approve unlocking tokens. This is more decentralized than the first

option but still centralizes control to a degree. To achieve better decentralization, the

notaries could be from different jurisdictions and geographies with good reputation

and good security.

The full nodes of most blockchain networks need to keep all historical transac-

tions and the state of blockchain network, which requires sizeable storage space.

For example, Bitcoin and Ethereum require more than 200 GB26 and 600 GB27 of

storage space, respectively, at the time of writing, and these sizes keep growing. To

reduce the storage burden of blockchain participants and address other scalability

concerns, applying the concept of sharding to blockchain has been proposed.

Sharding means to divide the state of blockchain into pieces. The participating

blockchain nodes only hold data of some shards instead of the complete blockchain

data structure. There are two types of sharding, including transaction sharding and

25https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/.
26https://bitnodes.earn.com/dashboard/bitcoind/.
27https://bitinfocharts.com/ethereum/.

https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/
https://bitnodes.earn.com/dashboard/bitcoind/
https://bitinfocharts.com/ethereum/

3.7 Anonymity 57

state sharding. Elastico and Zilliqa28 support transaction sharding. Ethereum 2.029

plans to improve scalability of its public blockchain through sharding based on

structuring the network into two layers.

Instead of keeping all transaction information, a mini-blockchain scheme pro-

posed by Cryptonite30 periodically forgets old transaction history. The Cryptonite

network maintains an account tree that holds the balance of all addresses and a

separate proof chain that stores all the historical block headers. The account tree

is updated according to the transactions, and after a period of time, the transactions

are forgotten by the network. Neither off-chain transactions nor the mini-blockchain

stores all the transactions on the blockchain. Thus, both sacrifice the fundamental

properties of blockchain. The mini-blockchain saves space by forgetting historical

transactions, but its performance is not necessarily better because the consensus

mechanism is still the same.

3.7 Anonymity

Although the Bitcoin blockchain is perceived to be anonymous, research has

shown that Bitcoin transactions can be linked to compromise the anonymity of

Bitcoin users. Different techniques have been proposed to preserve anonymity

on blockchain. Zcash,31 also called Zerocash or Zerocoin, encrypts the payment

information in the transactions and uses a cryptographic method to verify the

validity of the encrypted transactions. A zero-knowledge proof construction is used

to allow the blockchain network to maintain a secure ledger and enable private

payment without disclosing the parties or amounts involved.

Mixing services offer an alternative method for anonymization. A mixing service

groups several transactions together so that a payment contains multiple input

addresses and multiple output addresses. Anonymity is preserved because it is

hard to track which output address is paid by which input address. To further

improve the way that mixing service operates, a series of mixing services can be

linked sequentially. If the mixed transactions are uniform in value, the traceability

between input and output addresses is minimized. Uniform values can be achieved

by using standardized denominations, similar to bank notes and coins in traditional

cash. A centralized mixing service requires a third-party to operate, e.g. CoinJoin32

and Blindcoin. Distributed mixing services, on the other hand, do not rely on a

single third-party, e.g. CoinSwap.33 Some blockchains have a kind of native, built-in

28https://zilliqa.com/.
29https://github.com/ethereum/wiki/wiki/Sharding-FAQs.
30http://cryptonite.info/.
31https://z.cash/.
32https://bitcointalk.org/index.php?topic=279249.0.
33https://bitcointalk.org/index.php?topic=321228.0.

https://zilliqa.com/
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
http://cryptonite.info/
https://z.cash/
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0

58 3 Varieties of Blockchains

mixing service, including Dash and Monero. Dash pre-anonymizes funds of users

through mixing rounds, so that the funds can later be spent without delay.34 In

contrast, Monero uses ring signatures, such that the sender of a transaction cannot

be identified among a group of possible senders.

3.8 Incentives

Blockchains and their applications (especially on public blockchains) introduce

financial incentives in the cryptocurrencies of the respective networks. Incentives

are paid to make miners to join the network, validate transactions, generate blocks,

and (where applicable) execute smart contract functions correctly. For example,

in Bitcoin, miners have two incentives: the reward for generating new blocks and

the fees associated with transactions. Miners in Ethereum also charge a fee to

execute smart contracts. Enigma35 has a fixed price for storage, data retrieval, and

computation within the network. Enigma also requires a security deposit for nodes

to join the network. If a node is found to lie, its deposit will be split among the

honest nodes.

3.9 Summary

Blockchain platforms can have various configurations and design options. Using

blockchain in different scenarios requires the comparison of blockchain options

and products with different implementations and configurations. In this chapter,

we discussed a taxonomy of blockchain systems. The taxonomy can be used when

comparing blockchains and assist in the design and evaluation of software archi-

tectures using blockchain technology. Our taxonomy captures major architectural

characteristics of blockchains and the impact of different decision decisions. This

taxonomy is intended to help with important architectural considerations about the

performance and quality attributes (e.g. availability, security, and performance) of

blockchain-based systems.

3.10 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2017).

Taxonomies have long been used in the software architecture community to

understand existing technologies (see, e.g. Mehta et al. 2000; Gorton et al. 2015).

34https://docs.dash.org/en/latest/introduction/features.html#privatesend.
35https://www.media.mit.edu/projects/enigma/overview/.

https://docs.dash.org/en/latest/introduction/features.html#privatesend
https://www.media.mit.edu/projects/enigma/overview/

3.10 Further Reading 59

From a software architecture perspective, blockchain can also be characterized as

a software connector (Xu et al. 2016), which has a complex internal structure and

many configurations and variants. Blockchain is a decentralized system that can be

defeated unless there is a majority of honest or favourable authority (computational

power, stakeholding, etc., depending on the consensus mechanism). Eyal and Sirer

(2018) show that game-theoretic attacks can change this threshold for proof-of-

work, requiring a higher (e.g. 66%) majority to maintain integrity and prevent

double-spending attacks. More definitions of different types of blockchain and

discussion on the trade-offs between them can be found in Swanson (2015) and

Buterin (2015).

Nakamoto consensus provides probabilistic immutability. There is always a

chance that the most recent few blocks get replaced by a competing chain fork.

The impact of inter-block time on the frequency of forks is discussed in Decker and

Wattenhofer (2013). A detailed comparison between proof-of-work and proof-of-

stake can be found in Gervais et al. (2016). Permacoin’s ‘proof-of-retrievability’

is discussed in Miller et al. (2014). Discussion on PBFT-based blockchains can

be found in Vukolić (2015). The Red Belly Blockchain (Crain et al. 2017) uses

a new kind of democratic Byzantine consensus protocol. Some protocols have been

proposed to improve scalability, for example, Bitcoin-NG (Eyal et al. 2016) and the

Bitcoin Lightning network (Poon and Dryja 2016).

More information on sidechaining can be found in Back et al. (2014). Block-

chains that apply sharding technology are discussed in Luu et al. (2016) and Danezis

and Meiklegohn (2016).

Detail of Blindcoin can be found in Valenta and Rowan (2015).

Chapter 4

Example Use Cases

To convey a more concrete picture of applications of blockchain, this chapter

presents four exemplar use cases which illustrate some of the techniques and

considerations discussed in the previous chapters. These use cases are also used as

running examples throughout the book, but their details are not strictly necessary for

understanding later parts of the book. For every use case, we give a brief background

and describe their key non-functional requirements.

4.1 Agricultural Supply Chains

In manufacturing, retail, and agricultural industries, supply chains are critical in

the movement of goods and services across organizational boundaries. Supply

chain contracts are complex, dynamic, multiparty arrangements, with regulatory and

logistical constraints. They often cross jurisdictional boundaries. The information

exchange in a supply chain can be as important as the physical exchange of goods.

For example, customs inspections would not start until both the physical goods

and the information about those goods are present. Confidence in supply chain

documentation can expedite customs and biosecurity processes, reduce risk and

insurance costs, and be used as leverage in trade finance. Payments are made

between parties at many points in the supply chain.

For agricultural food products, being able to tell where ingredients were grown

and how products were processed and distributed can be important in establishing

confidence in food safety, creating and building high-quality brands, reducing fraud,

and improving supply chain efficiency. There are many stakeholders in an agricul-

tural supply chain, ranging from producers to transport providers, sorting/processing

facilities, wholesalers, distributors, retailers, and consumers. In international supply

chains, there are also stakeholders related to customs and biosecurity. A simplified

configuration of some stakeholders and functions is shown in Fig. 4.1.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_4

62 4 Example Use Cases

Producer Processor

Export

Import

Wholesaler

Retailer

Food service

Fig. 4.1 Stakeholders in a simple agricultural supply chain. © 2017 by the Commonwealth
Scientific and Industrial Research Organisation, reprinted with permission

The information systems supporting supply chains normally reside at the indi-

vidual supply chain participants and are integrated to varying degrees, i.e. from no

digital integration to machine-readable barcodes that can be understood by a number

of participants, through to full system integration with digital message exchanges.

4.1.1 Key Non-functional Requirements

• Interoperability: A huge challenge in logistics is to coordinate information

exchange across the many different kinds of goods, modes of transport, and

information systems. Individual shipments can be aggregated into larger con-

signments, which means tracing information about the status of goods can require

integration of different interlinked information sources.

• Latency: The exchange of physical goods must sometimes wait upon exchange

of documentation associated with the delivery. Information exchange should not

introduce significant additional delays at these points.

• Integrity: Supply chain quality and provenance require that information about

goods and supply chain events cannot be falsified or created without proper

authority.

• Confidentiality: Some information in supply chain documentation should be

held commercial-in-confidence. Even metadata can expose aggregate trade flows

which can be commercially sensitive. However, because of long supply chains

and the use of subcontractors, parties’ interests in information about supply

chain events may extend beyond the parties directly involved in that event.

Balancing transparency and commercial confidentiality is a complex business

model problem.

• Scalability: There are many supply chain processes in progress at any time across

a large number of different parties. Each process instance creates a large number

of events, although not all events are relevant to all participants. A system must

scale to handle the total throughput of transactions, with parties using resources

in proportion to their level of involvement in the process.

4.1 Agricultural Supply Chains 63

4.1.2 Conventional Technology

Traditionally, supply chain information is recorded separately by each entity in the

chain. Each participant only sees the information they are a direct party to. As supply

chain systems have become more digitized, information sharing has become more

common. Standards such as GS1’s EPCIS (Electronic Product Code Information

Services) define uniform schemes for representing supply chain events. This can

help parties in a supply chain to record and exchange information.

Figure 4.2 depicts a design for a supply chain system using EPCIS and other data

with conventional technologies. All EPCIS data is sent to a central event aggregation

server for an agreed portion of the supply chain. A group of supply chain participants

agree on a trusted party to operate and control access to the aggregation server. Note

that this design would be an advance over many current supply chain systems, but

it has been implemented in some industrial settings. Note also that the centralized

server creates a risk as a single point of failure, either for operational reasons or

for business reasons. (Business reasons may include complete business failures or

perhaps merely unfavourable changes in pricing or terms of use.)

Supply chain events are not the only type of information that needs to be

exchanged. Other documents may include letters of credit, bills of lading, booking

confirmations, arrival notices, container releases, terminal load lists, delivery orders,

tax invoices, and so on. These other types of documents are normally kept locally to

the systems of the different supply chain participants and exchanged directly using

Fig. 4.2 Model of supply chains using conventional event aggregation server and point-to-point
integration. © 2017 by the Commonwealth Scientific and Industrial Research Organisation,
reprinted with permission

64 4 Example Use Cases

point-to-point integration between parties. Currently, it can be hard to guard against

fraud that uses forged or tampered documents.

4.1.3 A Blockchain Solution

One possible alternative solution using blockchain is to control the execution of

the process of a supply chain using smart contracts. A group of participants that

want to implement a shared supply chain process first agree on a design for the

collaborative process that regulates how their interactions should take place. The

controls for this process are implemented using smart contracts, and the participants

coordinate the progress of that process by calling those smart contracts in turn. The

smart contract can enforce the process as follows. First, it can reject messages if they

arrive at the wrong point in the process. Second, messages are only accepted from

the participant who is authorized to send them. Third, conditions can be specified

within the process model and can be executed in smart contract code directly. So

particular process branches will be automatically activated when their conditions

are met.

Consider an example: containerized export of wine from a rural Australian

producer. This starts when the producer initiates a shipment and ends when the

container is on a ship. One process instance deals with exactly one container, and

once the container number is assigned, it can be used as an identifier of the process

instance. Figure 4.3 shows the process model.

These smart contracts can be generated automatically from process models, as

we discuss in Chapter 8. In the resulting system, the supply chain participants

interact with each other by sending messages through the blockchain. To facilitate

interaction through blockchain, so-called trigger components act as bridges between

the blockchain and enterprise applications. The trigger can translate conventional

service calls to blockchain transactions and vice versa. This can keep the imple-

mentation cost relatively low. For message formats, we can use the same standards

as in the conventional design, i.e. GS1 EPCIS.

4.1.4 Non-functional Property Discussion

Interoperability Both designs use the GS1 EPCIS standard for events. The first

design requires point-to-point integration between any two participants for other

documents. Extending the supply chain to a new participant requires integration

of that participant’s system with all participants that need to exchange documents

directly with the new participant. The second design requires the same amount

of integration initially: the data formats also need to be agreed upfront. However,

each new participant only needs to integrate their systems once, with the blockchain

process, and thus the overall integration burden is reduced.

4.1 Agricultural Supply Chains 65

Producer

starts

export

process

Producer

prepares product

for shipment

Transport provider

picks up empty

container from shipping

line

TP delivers

empty container

to the warehouse

Container is packed at

the warehouse (at

producer’s premises

or outsourced)

TP picks up full

container from

the warehouse

TP delivers

loaded container

at the port to

terminal

Terminal loads

container onto ship &

informs SL and

customs

P / FF informs

receivers of the

shipment

FF arranges land

transport for container

(empty and loaded)

Link to

import

process

FF makes booking for

shipment & requests

container from shipping

line

FF initiates outgoing

customs procedures

Producer tasks freight

forwarder to initiate

shipping

FF creates PRA (Pre-

Receival Advice) to

coordinate with

terminal

TP books time

slot for delivery

to terminal

FF polls the information

that container is loaded

(bill of lading)

Ship leaves port

Warehouse

not ready yet

Deliver directly

Store container

in depot

Delivery time slot

not reached yet

Deliver directly

Store container

in depot

Customs

clearance

received

Fig. 4.3 Process model of an agricultural export supply chain process. FF freight forwarder, TP

transport provider, P producer. Notation: BPMN. © 2017 by the Commonwealth Scientific and
Industrial Research Organisation, reprinted with permission

Latency Supply chains typically involve the physical movements of goods, so

many latency requirements on information transfer are usually on the order of

minutes to hours. Neither of the designs should suffer from latency exceeding

these time frames. However, at points of handover of goods, there may be low

latency requirement for confirmation of receipt of goods. Commit times on public

blockchains are likely to be too long for this, but it may be possible to instead

66 4 Example Use Cases

provide cryptographically signed receipts off-chain, with the delivery agent able

to lodge those to the blockchain at a later time.

Integrity The first design relies on a trusted party to operate the aggregation server

and is subject to the possibility of manipulation with a low chance of detection.

Integrity is a strong inherent feature of blockchains: information captured as part

of committed transactions would be exceedingly hard to change. If large blocks of

data (such as photos or video) need to be stored, this could be done off-chain, with

integrity preserved by storing a cryptographic hash of this data on-chain. This allows

detection of alterations or corruption of the off-chain data, but increases design

complexity.

Scalability In both designs, each party has to deal with the scalability of their own

enterprise applications, which we do not discuss here. Instead, we focus on scala-

bility of the components shared by all parties. In the first design, this is the central

aggregation server. If all participants publish all event data for item movements,

this might become a bottleneck. There are many design options available to address

scaling of web-based centralized information systems, including filtering to only

publish events that are relevant for other parties and using load balancing services

to federate data access across multiple aggregation servers.

In the second design, the component shared by all participants is the blockchain.

Scalability of reading from the blockchain can be good, since each participant can

hold their own full copy of the blockchain. For writing new transactions and smart

contract method calls, scalability is currently limited on public blockchains. For this

design, we propose using a consortium blockchain, where transaction volumes can

be controlled and where other technical options for block formation and consensus

are available to improve performance. As with the first design, only relevant events

should be stored on-chain. In the second design, communication is also limited to

the messages exchanged as part of the collaborative process execution. Throughput

scalability can be achieved by careful design and performance tuning. As discussed

in the previous chapter, specific types of blockchains that do not use Nakamoto

consensus have been designed for private or consortium blockchains with high

scalability requirements.

Confidentiality Confidentiality requirements for supply chain data are not the

same across industries or participants. This affects both designs: for a specific

supply chain and a specific set of participants, the confidentiality requirements

need to be formulated and analysed, and potentially the design needs to be adapted

accordingly. The main trade-off is between the benefits of sharing data within

the group of collaborators—visibility and cross-party optimizations are impossible

without that—retaining confidentiality between competitors where needed. Supply

chain information can be commercial-in-confidence. This may include the identities

of participants, trade volume, prices, and delivery times.

While it is possible to restrict access to the aggregation server in the first design

and the consortium blockchains in the second design, it should be expected that

4.2 Open Data Registry 67

for some supply chain roles multiple competing participants have access to the

same system. Even a private blockchain does not protect commercial-in-confidence

information. Unless the supply chain is entirely vertically integrated within one

organization, competitors will be sharing access to information on the blockchain.

The only way to prevent that is by setting up a separate aggregation server or

blockchain for each group of parties. That is, switching transport providers would

require setting up a separate system, which would not only be tedious and resource-

intensive, but would also severely hamper the analysis of supply chain data across

specific instances. Alternative distributed ledger technologies, such as R3’s Corda

or Hyperledger Fabric, natively support the creation of separate ledgers for related

parties, e.g. through Fabric’s channels. However, they still suffer from the second

issue: the lack of visibility hampers global analysis and optimization.

Data stored on a blockchain is readable to all participants of that blockchain.

Confidential data can be encrypted, and keys can be exchanged between supply

chain participants so that only the ‘right’ group of participants can decrypt that

data. However, this requires off-chain key exchanges and diligent handling of keys.

Moreover, normally encrypted data can itself not be processed by the blockchain or

its smart contracts. Thus, transfers of assets that are managed by the blockchain

cannot be encrypted; and encrypted data cannot be transformed or actioned by

smart contracts. New sophisticated cryptographic techniques such as homomorphic

encryption and zero-knowledge proofs allow various kinds of computation or

transaction validation to be performed on encrypted data, without decrypting it.

These techniques are being explored for use in blockchain platforms and may

provide an alternative treatment for this issue.

Finally, a confidentiality concern can arise from metadata, not just data inside

the transactions. For example, the volume of interactions between parties may

reveal trade volumes. It would be possible to create new account addresses for each

participant and each new process instance, but the flow of assets may still be used to

infer relationships between addresses, revealing aggregate trade volumes. Dummy

transactions might be used to attempt to hide this. Such protection mechanisms

can help, but may erode the benefit of using a blockchain. These trade-offs require

careful consideration.

4.2 Open Data Registry

Registries are authoritative collections of information, usually managed centrally,

often by government agencies. A registry holds information about a class of

entities. Examples of such entities include individuals, businesses, species, and

organizations. In Australia, familiar registries include the immunization registry,

the business name registry, and land title registries. There are also well-known

international registries such as the Domain Name System (DNS). Some government

registries are described as ‘public’ and can be queried by individuals. However,

query access to these registries may be limited to prevent attempts at republishing or

68 4 Example Use Cases

data mining. Unfettered data mining could threaten commercial or personal privacy

and is often restricted using regulatory policies, query rate limits, and user access

controls.

Some government registries contain periodically published open data. In Aus-

tralia, these are published throughdata.gov.au.1 In this use case, we specifically

consider the use of blockchains for managing an open data registry of datasets, data

sources, and data analytics services. This means we do not consider confidentiality

or privacy issues for this use case. Blockchains provide transparency about their

entire transaction history to all processing nodes. In a public blockchain, this means

that the information is openly published. It is possible to run a private blockchain

hidden behind a web service or other interfaces. This could limit access to the

registry in a way that satisfies an appropriate access policy. However, many of the

benefits of using a blockchain would be foregone in such an architecture.

For open data, the major stakeholders are data providers, data consumers, and the

data registry. Data providers may include government agencies, research institutes,

universities, and companies. Data providers record metadata about their datasets on

the data registry and make their data available on their websites. Data consumers

query to discover datasets in the data registry based on the metadata. They can then

download the datasets from the data providers for analysis.

4.2.1 Key Non-functional Requirements

• Integrity: each data provider should only be able to create and change registry

entries for their own datasets.

• Availability: there should be high likelihood of being able to access the registry

when desired, for both data providers and data consumers. This particularly

applies to national public registries, which form the basis for many other services

that utilize the data from the registries.

• Read latency: data consumers may need to repeatedly query the registry while

browsing and searching for relevant datasets. This may be done programmati-

cally from a graphical user interface and so should have low latency.

• Interoperability: a registry may reference other registries to reduce duplication

and errors.

• Ease of integrating new data providers: to grow the network effects of the registry

as a data portal, it is important to have low barriers (time, cost, and administrative

burden) to add new data providers to the registry.

1https://data.gov.au.

https://data.gov.au

4.2 Open Data Registry 69

Fig. 4.4 Design for a registry using conventional technologies, operated by a single agency.
© 2017 by the Commonwealth Scientific and Industrial Research Organisation, reprinted with
permission

4.2.2 Conventional Technology

Data portals such as data.gov.au implement a dataset registry using conven-

tional technologies such as CKAN.2 For each portal, the CKAN software is run and

managed by a single government agency. Data consumers interact with a registry

to discover datasets but retrieve datasets directly from data providers. The data

providers may perform some permission management for data access independently.

An illustrative high-level design is shown in Fig. 4.4.

In the CKAN ecosystem, datasets in different CKAN repositories refer to each

other by importing metadata from each other.

4.2.3 A Blockchain Solution

We consider a design which replaces the registry with a public blockchain. In this

design there is no single agency that operates the registry. Instead the data providers

independently record metadata on the public blockchain and perform their own

permission management and access control for their datasets independently. Note

that there may still be an agency leading governance for the registry. In this design,

data consumers are required to interact directly with the blockchain, rather than

with a consumer-facing user interface or API. Those consumer interfaces may be

provided by commercial or personal systems. An illustrative high-level design is

shown in Fig. 4.5.

2https://ckan.org/.

https://ckan.org/

70 4 Example Use Cases

Fig. 4.5 Design for a registry using a public blockchain. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

4.2.4 Non-functional Property Discussion

Integrity The conventional design relies on a registrar to create registry entries

on behalf of data providers. New registry entries are validated by the registrar.

In the blockchain-based design, registry entries can be created directly by the

data providers, using their private key. Registry entries are validated by smart

contracts checking data integrity conditions, and all transactions are validated by

all processing nodes in the blockchain network. Data consumers hold a local copy

of the blockchain, through which they access the registry.

Availability In the conventional design, the data registry system is a single point of

failure for availability for all stakeholders. In the blockchain-based design, there is

increased data redundancy which can improve read availability for data consumers.

For the open data use case, write latency is not critical, which allows satisfactory

service availability despite possibly lower write availability than the conventional

design.

Interoperability In the conventional design, the datasets in different CKAN

repositories refer to each other by importing the metadata from each other using

standard formats but optionally with customer-defined fields. The blockchain-based

design has a uniform technical infrastructure. The shared smart contract validation

4.3 International Money Transfers 71

rules will reduce the likelihood of incompatible data formats, which means different

registries will be more consistent with each other.

Read Latency Reading in the conventional design is performed through a remote

API over the Internet. Compared with the blockchain-based design, this is slower: a

local blockchain node is collocated with the consumer’s query interface, and reading

is done locally at high speed.

Ease of Adding Providers In the conventional design, new data providers are

added by the central registrar using registry backend services. In the blockchain-

based design, new providers can join by independently creating a new public/private

key pair. Authentication of their public key could be certified by a registrar on

the blockchain or separately off-chain. Data providers must integrate with the

blockchain, and should ideally run a blockchain node.

4.3 International Money Transfers

Many workers in Australia regularly send money back to their families overseas.

These flows of cash constitute up to about 10% of GDP in some developing

countries (and even 27% in Tonga and 20% in Samoa). Thus, high remittance costs

have important implications on socio-economic development of these countries.

Remittances are low-value, high-volume payments. However, remittance costs in

Pacific Island countries are among the highest in the world. For example, to send

$200 from Australia to Vanuatu costs $33.20 and $28.60 to Samoa.

There can be many parties involved in the chain of transactions made for these

payments, and there is sometimes little transparency on the total cost of exchange

rates and fees. Remittance payments can also be complicated by the difficulties

of satisfying AML/CTF (Anti-Money Laundering/Counter-Terrorism Financing)

regulation, especially where the receiving party may not have a bank account. These

transactions can have high latency, with transaction times ranging from less than 1 h

to 5 days.

In this use case, stakeholders include remitters, beneficiaries, and different types

of financial institutions, including banks and Money Transfer Operators (MTOs).

We consider the stakeholders and functions depicted in Fig. 4.6.

To be able to complete a remittance payment, both the remitter and beneficiary

initiate a relationship with the financial institution. A Know Your Customer (KYC)

process is conducted by the financial institution. The remitter pays a financial

institution from the remitting territory who transfers the money across the border.

Another financial institution from the beneficiary territory receives the money,

exchanges it to local currency, and disburses it to the beneficiary. Prior to the

completion of the exchange, and depending on the amount of money transferred,

transactional level Anti-Money Laundering (AML) and Counter-Terrorism Financ-

ing (CTF) checks required by regulators in either territory (and in any financial

72 4 Example Use Cases

Beneficiary Territory Remitting Territory

Remitter

Local financial Institute
(bank or MTO)

Beneficiary

Local financial Institute
(bank or MTO)

Fig. 4.6 Stakeholders and functions for remittance payments. © 2017 by the Commonwealth
Scientific and Industrial Research Organisation, reprinted with permission

institutions in intermediate territories) may be performed on the identity of the

remitter and beneficiary, perhaps including assessment of the purpose of the transfer.

4.3.1 Key Non-functional Requirements

• Transaction latency: completing a remittance payment should ideally be instanta-

neous, or at least take place comfortably within the context of human interaction

with a physical kiosk or web form.

• Cost: the total cost of remittance should be a low percentage of the transaction

value.

• Cost transparency: the total expected cost including fees and exchange rate

should be visible to participants.

• Controlled confidentiality: for regulatory compliance, all required AML/CTF

checks must be performed, but appropriate levels of commercial confidentiality

must also be maintained.

• Barriers to entry: increased competition can drive lower costs and greater service

innovation, but this requires low barriers to entry (cost, time, and regulatory

burden) for new remittance service providers.

4.3.2 Conventional Technologies

The process for banks depicted in Fig. 4.7 starts when the remitter deposits money

into their bank. The remitter’s bank then initiates a SWIFT wire transfer to send

the money across to the beneficiary bank, possibly through several intermediary

4.3 International Money Transfers 73

Beneficiary Territory Remitting Territory

Remitter Beneficiary

1

2

2.1

2.2

2.3

2-3 days

3

Fig. 4.7 Remittance through banks. © 2017 by the Commonwealth Scientific and Industrial
Research Organisation, reprinted with permission

correspondent banks. It can take 2–3 days for the money to be sent. The receiving

bank then informs the beneficiary’s bank that the money in the foreign currency has

arrived and transfers the local currency equivalent to the beneficiary’s bank. Finally,

the beneficiary’s bank disburses the local currency to the beneficiary.

Another widely used way to do remittance is through a Money Transfer Operator

(MTO), as depicted in Fig. 4.8. In this case, a remitter uses either cash or other

payment instruments to pay the MTO. Once a group of payments is received, the

remitting MTO pools all money into a single transaction. The MTO also prepares a

file with instructions on breaking down the remittance to individual orders and sends

the file to the beneficiary MTO. Then, the money is transferred by the MTO to its

foreign bank as a normal international transfer, as per the above process. The bank

Beneficiary Territory Remitting Territory

Remitters Beneficiaries

1 2

3

4

4.1

4.2

4.3

5

6

2-3 days

!" #
!" #

Fig. 4.8 Remittance through MTOs. © 2017 by the Commonwealth Scientific and Industrial
Research Organisation, reprinted with permission

74 4 Example Use Cases

Beneficiary Territory Remitting Territory

KYC
information

Remitter Beneficiary

Fig. 4.9 Payment through blockchain. © 2017 by the Commonwealth Scientific and Industrial
Research Organisation, reprinted with permission

charges the MTO once for all the remittances. When the beneficiary MTO receives

the money, it distributes it according to the instructions received earlier.

4.3.3 A Blockchain Solution

Banks, financial institutions, and MTOs could join a private blockchain to enable

real-time settlement, as depicted in Fig. 4.9. Apart from speeding up money

transfers, blockchain could also help banks to operate continuously, 24 h a day. The

on-chain portion of the design can include SWIFT instructions or other payment

instructions and the payment status. The native currency of the blockchain can be

used as an intermediary currency by banks to facilitate foreign exchange. KYC

and risk information, fees, and foreign exchange rates are exchanged through

conventional means, off-chain.

When Bitcoin is used, this is sometimes called ‘rebittance’. Some companies use

Bitcoin directly as an intermediary currency for foreign exchange. The underlying

Bitcoin layer is invisible to end users. In this case, every remittance has a corre-

sponding transaction recorded on the Bitcoin blockchain. Other companies maintain

a separate blockchain to facilitate settlement among branches and anchor their

blockchain with the Bitcoin blockchain as a way to leverage Bitcoin’s immutable,

independently auditable ledger.

4.3.4 Non-functional Property Discussion

Transaction Latency The systems following conventional designs can result in

time-consuming transactions, e.g. depending on the route, specifically the number of

4.4 Electricity Contract Selection and Continuous Reporting 75

correspondent banks involved. End-of-day batch processing causes delays of up to

24 h, and time zone differences can cause delays of up to 24 h. The blockchain-based

design enables real-time processing with latencies that vary from seconds to hours,

depending on the blockchain. For example, on Bitcoin the latency averages around

1 h if 6 confirmation blocks are used; using public Ethereum with 12 confirmation

blocks would on average take around 3 min.

Cost In both designs, remitting banks charge transaction fees, and liquidity

providers charge via the spread on foreign exchange (FX) rates. There are also

correspondent bank fees in the conventional design.

Transparency In the conventional design, each bank in the payment chain is aware

of its own actions, but some KYC information is transmitted through the chain of

correspondent banks. How FX spread is calculated and what will be charged in fees

is not always predictable. In the blockchain-based design, a common shared view

of the payment status enables real-time fraud analysis and prevention. On Bitcoin,

regulators and others can access historical data in the blockchain but would need

additional information to know how to interpret the pseudonymous addresses and

the identities of senders and recipients.

Controlled Confidentiality In the conventional design, KYC regulatory com-

pliance requires costly technology capabilities and complex business processes.

There is substantial duplicated effort between banks and other financial institutions.

The blockchain-based design replaces intermediary banks with a blockchain to

provide a shared record of payments and KYC checks and thus may simplify

regulatory compliance along the payment chain. Some automated and real-time

compliance checks may be available on-chain using smart contracts, depending on

the blockchains used.

Barriers to Entry The conventional design requires participants to have banking

or financial services licenses, and business relationships with correspondent banks.

The second design requires new technology development and integrations, but

some existing transaction standards can be reused. Interaction between separate

proprietary blockchains would require inter-ledger protocols. Public blockchains

have low barriers to entry for new participants, but regulatory or banking constraints

for digital currency exchanges apply to end-points within countries.

4.4 Electricity Contract Selection and Continuous Reporting

Electricity consumers may change their electricity retailers based on their usage and

current offers from electricity retailers. Typically, there are conditions associated

with the contract between the electricity consumer and the retailer. For example,

retailers may offer discounts if bills are paid on time or may require exit fees if the

contract is terminated ahead of time. Some retailers also allow flexible payments,

such as weekly, fortnightly, or monthly payments. There are two participants in this

76 4 Example Use Cases

scenario: the end user and the electricity retailer. We assume that a smart meter is

attached to the end user’s place of supply and that this smart meter is connected to

the network and can digitally sign messages using a private key.

4.4.1 Key Non-functional Requirements

• Integrity: The monthly usage of an electricity consumer is an important criterion

for consumers to select an electricity retailer and for electricity retailers to make

special offers. Therefore, accurate records of usage are important to prevent

deception between the parties.

• Privacy: Current and historic electricity usage data can be used to infer private

information—researchers have even shown that accurate high-frequency smart

meter readings allow identifying which movie an end user is currently watching.

More coarse-grained data could also be used by burglars to find out when

someone is on vacation. Therefore, usage data should only be shared at the

discretion of the end user.

• Transparency: Historical electricity usage, perhaps associated with previous

electricity retailers, could be used by a prospective retailer to customize new

special offers. As discussed above, we assume that consumers are able to

authorize the sharing of their usage information with other parties.

4.4.2 Conventional Technologies

In conventional environment, every electricity retailer uses its own bespoke system

to maintain customer data and smart meter information. Historical electricity usage

is not normally shared among electricity retailers. Payments are made through

traditional banking systems.

4.4.3 A Blockchain Solution

In this blockchain-based design, we propose using a consortium blockchain as a

platform to track historical electricity usage of every smart meter and to provide

payment services. The architecture of the solution is shown in Fig. 4.10.

When a user wants to find a new retail supplier, they create a retailer selection

smart contract on the blockchain, against which retailers can bid. To bid, retailers

create a smart contract offer from an offer template. The offer contract is defined

using variables such as start time, end time, energy level, level price, service fee, and

charge date. Transactions listed on the blockchain provide a history of usage asso-

ciated with smart meters and users. This information can be accessed by retailers

4.4 Electricity Contract Selection and Continuous Reporting 77

Blockchain

Contract template Basic DB Payment

Post, bid, report usage

User Smart meter Retailer

Fig. 4.10 Architecture of blockchain-based electricity contracts using smart meters. © 2017 by
the Commonwealth Scientific and Industrial Research Organisation, reprinted with permission

Retailer selection
contract

Bid Contract

User Smart Meter

create a case

bid offer

Blockchain

Electricity
Retailer

Service Provider
Account

Electricity
Retailer

bid offer

pay money

create

Usage contract

create a
contract

update usage

charge

Fig. 4.11 Interaction of smart contracts among themselves and with other entities. © 2017 by the
Commonwealth Scientific and Industrial Research Organisation, reprinted with permission

as they prepare their offer. The user’s retailer selection contract collates all the bids,

which can then be shown on a web page accessible to the user for final selection.

The interaction with and among the relevant smart contracts is shown in Fig. 4.11.

After the electricity retailer is selected, a usage contract that is specific to the

pair of the user and the retailer is generated and uploaded to the blockchain. The

usage contract is used by the smart meter to report the monthly usage. There are

two options to pay the bills. The user could either pay the bill to the retailer’s

78 4 Example Use Cases

account directly before the deadline or deposit money into the contract and let

the retailer withdraw from it when the payment is due. When the user decides to

switch retailers, she could create a replacement usage contract from the new retailer

selection contract. The usage contract with the previous retailer will terminate after

the new contract is created.

4.4.4 Non-functional Property Discussion

Integrity The conventional approach relies on individual electricity retailers to

maintain the internal system and usage data. New usage data is validated solely

by the electricity retailer. In the blockchain-based design, usage records can only be

created by the smart meters using their private keys. All transactions are validated

by all processing nodes in the blockchain network. Electricity retailers hold local

copies of the blockchain, through which they can access the historical electricity

usage of any smart meter.

Privacy In the conventional design, the usage data is only shared with the current

electricity provider. In contrast, in the blockchain-based design, the data is shared

with all electricity providers that are on the consortium blockchain. Design of the

blockchain-based system is important to meet privacy requirements. For example,

the blockchain might be a private permissioned blockchain or distributed ledger,

and users and smart meters might access the blockchain only through controlled

web interfaces or APIs.

Transparency In the conventional design, information from smart meters and

historical usage are stored by each separate electricity retailer. Such information

is not accessible by other electricity retailers. The consortium blockchain used in

the blockchain-based design provides a common shared data storage for historical

usage associated with any electricity retailer.

4.5 Further Reading

This chapter is partly based on our earlier works (Staples et al. 2017).

A detailed use case from a startup company, focussing on the reduction of

counterparty risks in agricultural supply chains, is described in Chapter 12.

A model-driven approach is proposed in Weber et al. (2016), which can generate

smart contracts automatically from process models. This approach is also discussed

in Chapter 8.

Reports from the World Bank (Ratha et al. 2016; The World Bank 2016) provide

data and insights about remittance.

Bitcoin has been applied to smart meters deployed in South Africa (Prisco 2015),

where each smart meter is equipped with its own Bitcoin address. The smart meters

4.5 Further Reading 79

directly pay for their metered electricity and water supply from their balance and

form an interesting middle ground between prepaid and post-paid services. Bitcoin

has also been applied in smart grid scenarios (Dimitriou and Karame 2013) to

facilitate aggregating energy production and consumption reports without relying

on a single point of trust. This enables anonymous tasking and privacy-preserving

billing and barter of energy.

The use of smart contracts to enable machine-to-machine communication in IoT

has, for example, been demonstrated by the ADEPT (Autonomous Decentralized

Peer-To-Peer Telemetry) project (IBM 2015).

Part II

Architecting Blockchain-Based
Applications

Chapter 5

Blockchain in Software Architecture

Software components are the fundamental building blocks for software architecture.

In a blockchain-based system, a blockchain platform is a component. A reference

architecture for a software system where blockchain is one of the components

is shown in Fig. 5.1. Viewing the blockchain as a software component helps us

understand important architectural impacts it has on the performance and quality

attributes of systems. These attributes can include security, privacy, scalability,

sustainability, and more. We can then consider design trade-offs regarding these

quality attributes and provide rationales to support architectural decisions about

whether to employ a blockchain or some conventional component.

5.1 Blockchain as an Architectural Element

As a component, blockchain has unique properties and limitations. Blockchains

are complex, network-based software components, which can provide data storage,

computation services, and communication services. Blockchain features can include

cryptographically secure payment, mining, transaction validation, incentive mech-

anisms, and permission management. A so-called oracle may supply information

about the external world to the blockchain, usually by adding that information to

the blockchain as data in a transaction.

One of the main kinds of architectural decisions is about which pieces of func-

tionality should be allocated to which components. For blockchain-based systems,

this includes the key decisions about which parts of the data and computation should

be placed on-chain or kept off-chain. Part of an application can be implemented

inside the blockchain component using the blockchain ledger and smart contracts.

However the amount of computational power, data storage space, and control of read

accesses on a blockchain can be limited. So, parts of an application implemented

outside the blockchain component might host off-line data and application logic.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_5

84 5 Blockchain in Software Architecture

Blockchain
Auxiliary

Databases

Application Application Application

API

Smart
Contracts

Tokens

Shared Data Ledger Big Data

Private Data
Key

Management

Application

Key
ManagementComponentComponent

Fig. 5.1 Blockchain in a software architecture. This work is based on an earlier work: Xu et al.
(2018) © ACM, 2018. https://doi.org/10.1145/doi. Included here by permission

Blockchain transactions and their effects sit at the interface between on-chain

and off-chain functions. Blockchains can be used as software components, which

can provide data storage, computation services, communication services, and asset

management and control functions. We discuss these aspects in the remainder of

this chapter.

5.2 Blockchain as Storage Element

Blockchains emerged as the key technology behind Bitcoin. The Bitcoin blockchain

is a public ledger maintained by all the nodes within its network and stores all

transactions that have ever occurred in the system. Later, the technology concept

was generalized to a distributed ledger able to verify and store a wider variety of

transactions, including transactions that do not transfer cryptocurrency.

As a data structure, a blockchain is an ordered list of blocks, where each block

contains a small (possibly empty) list of transactions. Each block in the data

structure is ‘chained’ back to the previous block, by containing a cryptographic hash

of the representation of the previous block. Historical transactions in the blockchain

may not be deleted or altered without invalidating this chain of hashes. Combined

with computational constraints and incentive schemes on the creation of blocks,

this can in practice prevent tampering and revision of information stored in the

blockchain.

Transactions on a blockchain represent authorized state transitions. Transactions

can record data and transfer control of digital assets among participants. Cryp-

tocurrencies are one kind of digital asset, but other kinds of digital asset tokens

can be implemented on blockchains. For example, on Ethereum digital asset tokens

can be represented using smart contracts, which can represent the tokenized asset

https://doi.org/10.1145/doi

5.2 Blockchain as Storage Element 85

and store holdings as values of private variables. Public key cryptography and

digital signatures are normally used to identify accounts and to ensure integrity and

authorization of transactions initiated on a blockchain.

There are two ways to store data on the blockchain. One is to add data into

transactions, which is the only option in Bitcoin; the other is to add data into

contract storage, which can be done e.g. on Ethereum. Both ways store data through

submitting transactions to the blockchain, which may contain the information of

money transfer (possibly with a transfer value of 0), together with optional other

data. After the transaction is included in the blockchain, the data becomes publicly

accessible to all the participants within the network.

There are various representations of cryptocurrency holdings. In Bitcoin, the

holdings of an address comprise the collection of unspent transaction outputs

(UTXO) from all previous transactions to that address. In Ethereum, the holdings

of an address are represented in a global system state. In Ethereum, every smart

contract has its own storage which only it can update. Contract storage can be

viewed as a flexible key-value data store. Smart contracts have an address, which

can be used to invoke the contract. Blockchains are immutable, so the updates to

variables in the contract store do not change the data in old blocks. Instead, the

transactions only update the values of those variables in the contract store.

5.2.1 Comparison with Centralized Databases

Operation Shared data stores, like key-value stores, provide a basic Create/Read-

/Update/Delete (CRUD) interface. A blockchain is an append-only data store and

does not support in-place updates but rather only supports the creation of new

transactions. The current view of smart contract variable values can mimic the

behaviour of conventional data stores. However, any changes/updates on contract

states are appended to the blockchain as new transactions. An analogy with this so-

called ledger in data stores is the concept of log where data items get appended but

never deleted or updated. This immutability-of-stored-information property is key

to the traceability of assets recorded on blockchains.

Consensus Protocol Traditional shared data stores have their own consensus

protocols to synchronize replicas in a fully trusted environment, such as 2-Phase

Commit and Paxos. Blockchains also rely on consensus protocols, and private

blockchains often use the same protocols as traditional shared data stores. However

on public blockchains, the assumptions required for conventional consensus proto-

cols do not hold. In particular, on a public blockchain there may be no master nodes,

many thousands of nodes, and there may be an unknown number of nodes. Each of

these violates assumptions required for some conventional consensus algorithms.

Some private blockchains assume that nodes are somewhat trustworthy, but on

a public blockchain that assumption is not always reasonable. A comparison of

consensus protocols used for blockchains and for general distributed systems is

given in Section 5.2.4.

86 5 Blockchain in Software Architecture

Consistency Blockchains validate the consistency of transactions by using global

rules implemented in the blockchain platform, and by using application-specific

rules implemented in smart contracts. Global rules on public blockchains include,

for example, that regular cryptocurrency transactions do not create money nor

transfer money without authorization.

5.2.2 Comparison with Cloud Services

When keeping data on conventional cloud storage, cloud providers are trusted to

store data uploaded by users and to provide access to that data. Users are normally

not able to influence to how the data is stored. Data integrity and access availability

may not be guaranteed.

In contrast, on blockchain there is no need to trust a single entity. Storage

integrity is guaranteed (probabilistically) through the actions of the collective of

nodes that operates the blockchain. Users can monitor that collective and could even

participate themselves as nodes that store the blockchain if desired. A variety of on-

premise computers or independent cloud providers could be used to operate nodes.

At the application level, users as smart contract developers define their own storage

mechanisms and interaction with off-chain services. While high read availability

can be achieved, by reading from multiple independent blockchain nodes, there

are no guarantees or defined service-level agreements (SLAs) provided by public

blockchains.

5.2.3 Comparison with Peer-to-Peer Data Storage

Peer-to-peer technology can be used for distributed data storage and file sharing.

Such systems allow users to access data that is stored in other computers connected

to the same peer-to-peer network. A centralized server is not required. Existing

platforms include BitTorrent1 and IPFS (InterPlanetary File System).2 These peer-

to-peer systems use various mechanisms to share data with peers and to replicate

data across nodes. IPFS is an open-source content-addressable, globally distributed

file system for sharing a large volume of data with high throughput.

In contrast, on blockchain access to data will be possible while users have access

to nodes that are active in the blockchain network. Users could access any node

in the network collective, because all nodes will have the same shared copy of the

blockchain data. This can give very high levels of availability for blockchain-based

data storage. On the other hand, blockchain is not suitable for storing large data, and

1http://www.bittorrent.com/.
2https://ipfs.io/.

http://www.bittorrent.com/
https://ipfs.io/

5.2 Blockchain as Storage Element 87

so blockchain is often combined with other data storage mechanisms, such as peer-

to-peer data storage. Blockchain can then provide integrity in the sense of revealing

possible tampering of off-chain files. However, blockchain could not stop off-chain

manipulation of files or file shards, only make it detectable.

5.2.4 Comparison with Replicated State Machines

Replicated state machines are a technology that is somewhat similar to blockchains.

We discuss the differences in terms of key properties below.

Fault Tolerance Replicated state machines are a mechanism to implement fault-

tolerant services in a distributed system. To cope with failures, they replicate state at

several servers and coordinate service requests issued by the clients. Similarly, the

blockchain uses distribution to not depend on any single entity. Smart contracts on

blockchain can then implement many kinds of service logic.

Consensus Replicated state machines typically rely on a consensus protocol that

takes as input update requests from components and decides upon receiving

these requests. In the case of a distributed locking service, the consensus will

guarantee that only one particular client acquires a lock, even if multiple clients

request it concurrently. Blockchain systems also use a consensus protocol to ensure

that among multiple conflicting proposed transactions, only one is approved for

inclusion in the blockchain.

Voting To reach consensus on a transaction request, replicated state machines

typically require a quorum of voters and may use a concept of weighted votes.

Typical blockchain implementations also require a large enough portion of the

community operating the system to agree to achieve consensus. In Ripple, this is

when a minimum of nodes in a unique node list have voted, whereas in Bitcoin

this is (tentatively) when a sufficiently long chain of blocks (ratified by others) is

discovered.

Communication A replicated state machine supports communication by trans-

mitting state update data among components. Components can store and retrieve

information that will persist despite failures. The system guarantees that information

stored by one component is replicated and delivered to the other components

even when some failures occur. Public blockchains offer no strict guarantees on

transaction inclusion, but once transactions are seen as committed, they have been

replicated and persisted and are exceedingly unlikely to be removed.

Cryptography To address arbitrary failures or Byzantine failures, replicated state

machines exploit security mechanisms. The sender of a message is typically

authenticated with public key cryptography by signing their messages with a private

key. Digital signatures are similarly used by blockchains to authorize transactions.

88 5 Blockchain in Software Architecture

Facilitation Finally, a replicated state machine totally orders the requests from

components. It controls concurrency by scheduling requests issued by components

and thus serves as a facilitation connector. Such a total order is also a key property

of the blockchain: blocks in the blockchain data structure are totally ordered and so

are the transactions within a block.

5.3 Blockchain as Computational Element

In first-generation blockchains like Bitcoin, there was very limited native capability

for programmable transactions. Native smart contracts on Bitcoin are very simple

and do not support complex control flow. Some external services attempted to

address this, to allow end users to build self-executing contracts on the Bitcoin

blockchain network,3 but the blockchain platform does not guarantee the integrity

of the execution of these smart contracts. Instead, smart contract execution is

performed by external oracles.

Ethereum is the most widely used blockchain allowing smart contracts to

be written in a Turing complete language that is in principle as expressive as

every other general purpose programming language. Ethereum can be seen as

general computational platform, albeit currently with severe practical limitations on

computational complexity. This kind of capability significantly expands the power

of blockchain systems and increases their range of use and potential for innovation.

In Ethereum, smart contracts are a first-class element. They can control cryp-

tocurrency and express triggers, conditions, or business logic (see also Chapter 8),

to enable complex programmable transactions. Smart contracts are used by compo-

nents connected to a blockchain to reach agreements and solve common problems

with minimal trust. A common simple example of a smart contract-enabled service

is escrow, which can hold funds until the obligations defined in the smart contract

have been fulfilled. Smart contracts can also be used to enable machine-to-

machine communication in IoT, for example, as demonstrated by IBM’s ADEPT

(Autonomous Decentralized Peer-To-Peer Telemetry) project.

The status of smart contracts as legal contracts is currently debated. A legal

contract is an agreement between parties, and a computer program is either the

text of source code or an executing physical machine. Therefore smart contracts,

as computer programs, may be the wrong category of thing to be a legal contract.

Nonetheless, a smart contract may provide evidence for there being a legal contract

and may be able to facilitate the execution of a legal contract. Importantly, as a

mechanism for the execution of provisions of a legal contract, smart contracts can

carry and conditionally transfer digital currency and other digital assets or tokens

between parties. This can be done in a predictable and transparent way on the neutral

ground provided by the mechanized infrastructure of a blockchain.

3http://www.smartcontract.com/.

http://www.smartcontract.com/

5.4 Blockchain as Communication Mechanism 89

5.4 Blockchain as Communication Mechanism

Software components communicate by using communication elements, which are

also components. A communication element can transfer data and coordinate

computation among components. Blockchain systems perform all of these functions

as well, but of course with some differences to traditional communication elements.

5.4.1 Data Communication

Components can use blockchain as a mediator to transfer data, as shown in Fig. 5.2.

The components at the application layer exchange data by sending data to the

blockchain using transactions, and query the blockchain data structure to retrieve

the data.

Most blockchain platforms provide an API or tools to access and filter the

historical transactions. Ethereum suggests to cache all transactions to prevent the

blockchain network from being stressed by frequent queries.

An alternative, discussed in some detail in Chapter 8, is to have a component

that continuously monitors the updates from new blocks. This component can

store relevant data in a local database or pass it on through proactive API calls to

components on the application layer.

Blockchain

layer

Application

layer

Blockchain network

TX TX

Data

Component

Computation

Data

Component

Computation

TX TX

Oracle
Oracle

Oracle

Fig. 5.2 Interaction between applications and blockchain. © 2016 IEEE. Reprinted, with permis-
sion, from Xu et al. (2016)

90 5 Blockchain in Software Architecture

5.4.2 Computation Communication

Different components of an architecture can coordinate computation through a

blockchain. To do so, it is possible to submit transactions to smart contracts to invoke

their functions or use an oracle to sign transactions that depend on external state.

Typically the control flow of an application is initiated from externally owned

accounts and is transferred among contract accounts. Smart contracts behave like

agents that live in the execution environment of the blockchain system and its

network. Contracts are instantiated by submitting transactions with the code of the

contracts to the blockchain network—depending on the blockchain platform, the

code is source code or compiled. A smart contract defines a set of functions. When

invoked in a transaction, the contract runs the function code using the supplied

parameter values. Contracts can also create new contracts, and can terminate

themselves. A contract cannot respond to transactions after termination, but the code

of the contract remains on the blockchain, permanently stored in the transaction that

created the contract.

The execution environment of a blockchain system is a closed environment,

which is not allowed to import external states through polling external servers.

To address this limitation, oracles evaluate conditions about the external world

which cannot be derived solely from information within the blockchain. An oracle

facilitates component coordination with external state. An oracle is a component in

a blockchain-based system. Some blockchain platforms provide direct support for

oracles, while in other blockchain platforms, an oracle is an independent external

service that interacts with the blockchain through normal transactions. When

validation of a transaction depends on some external state, platform-supported

oracles can validate and sign the transaction. This may block progress of the

transaction until the oracle completes. Oracles that are external services inject data

into the blockchain by adding a transaction, and other smart contracts can then use

that data to validate transactions. This can reduce the above-mentioned delay but

can increase the delay between the external state changes and the time when those

are recorded in the blockchain. Often oracles are automated external systems, but

sometimes an oracle represents decisions made by a human, e.g. an arbitrator. When

automated external service oracles are used, they can periodically update values.

Regardless of the approach, oracles are a trusted third-party. However, this does not

always introduce additional trusted parties, if they are already trusted parties. For

example, for government services, the government is inevitably a trusted party.

5.5 Blockchain as an Asset Management and Control

Mechanism

Blockchains can be used for asset management by using the concept of tokenization.

Tokens can represent either digital assets or physical assets. Such assets can

be fungible or non-fungible. Fungible assets are interchangeable, for example,

5.6 Integrating Blockchain into a System as a Component 91

cryptocurrencies, gasoline, and commodities. Non-fungible assets are often unique

and cannot be interchanged, for example, CryptoKitties,4 artwork, and land.

On the first generation of blockchains, the cryptocurrency is the native asset.

However, the identity of portions of that cryptocurrency or other associated data

can be used to represent other kinds of assets. Such tokens are generally used to

track claims of title over physical assets. Transactions on blockchains record the

transfer of title from one user to another in the system. The Bitcoin blockchain

allows developers to add 40 bytes of arbitrary data to a transaction. This has been

used to implement other cryptocurrencies or tokens as overlay networks on Bitcoin.

For example, colored coins5 ‘taint’ a subset of Bitcoins to represent and manage

real-world assets. However, using the native cryptocurrency token in a blockchain

for tokenization of other assets is limited, because few attributes can be recorded

and few conditions can be checked within the blockchain.

Second-generation blockchains, like Ethereum, provide more expressive data

structures and smart contracts. This provides more flexibility for tokenizing a wider

variety of assets. Tokenization as a process starts when an asset under custody is

represented using a cryptographic token. The control of this token aligns with the

ownership of the corresponding asset. The reverse process can take place if the user

redeems the token to recover the asset. By using smart contracts, some conditions

can be implemented and associated with the transfer of ownership. ERC206 has been

proposed as a standard for Ethereum-based fungible tokens. ERC7217 is currently

a draft standard for Ethereum-based non-fungible tokens. These token standards

describe the functions and events that token smart contracts should implement.

Newly proposed tokens should follow the respective standard.

Note that title over assets is a legal construct, which might not always completely

align with the records on a blockchain. For example, the ownership of assets

might be legally transferred during bankruptcy proceedings, without recourse to the

blockchain. So, unless the blockchain is backed by legislation (similar to Torrens

title legislation for land) as an authoritative title of register, it will not necessarily be

authoritative.

5.6 Integrating Blockchain into a System as a Component

In the system shown in Fig. 5.1, the blockchain stores and shares data and executes

smart contracts. The blockchain component might also control digital currency or

represent other assets. Due to limitations of privacy and scalability, there are also

off-chain auxiliary databases used in the system. First, private data is stored in an

4https://www.cryptokitties.co/.
5http://coloredcoins.org/.
6https://theethereum.wiki/w/index.php/ERC20_Token_Standard.
7https://github.com/ethereum/EIPs/issues/721.

https://www.cryptokitties.co/
http://coloredcoins.org/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://github.com/ethereum/EIPs/issues/721

92 5 Blockchain in Software Architecture

internal database. Second, large data is stored separately, e.g. in a cloud service.

There is an API layer between the three data storage mechanisms. Key management

is an essential component when working with blockchains. Every participant in a

blockchain network has one or more private keys, which are used by the participant

to digitally sign its transactions. The security of these private keys is very important.

If the private key of a user is stolen, any other user holding it can forge transactions

from that user to spend the assets belonging to the user or to invoke smart contracts

in their name.

5.7 Summary

In this chapter, we characterized blockchain functions from software architecture

perspective and describe blockchain in the role of a software component. Blockchain

can be used as a storage element, a computation element, or a communication

element for interaction between system components. It can also be used as an

asset management and control mechanism. We compared blockchain as a software

element with central shared data stores, cloud storage, peer-to-peer storage, and

replicated state machines.

5.8 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2016; Yu et al. 2017).

The concept of software components and software connectors was introduced by

Clements et al. (2003). A technical survey on blockchains and distributed ledgers is

given in Tschorsch and Scheuermann (2016).

In this chapter, blockchain is compared with centralized databases having their

own consensus protocols to synchronize replicas in a fully trusted environment,

such as 2-Phase Commit and Paxos. More details are discussed in Kemme and

Alonso (2010). Blockchain is then compared with cloud services. Cloud providers

have access to the data of their users. The issues of data privacy and provenance

on cloud are discussed in Ion et al. (2011) and Asghar et al. (2012). Blockchain

is further compared with replicated state machines (see Schneider 1990; Lamport

1998). Replicated state machines aim to address arbitrary failures or Byzantine

failures, which are described in Lamport et al. (1982) and Castro and Liskov (1999).

The voting mechanism used by replicated state machines is discussed in Malkhi and

Reiter (1997) and Gifford (1979).

Chapter 6

Design Process for Applications
on Blockchain

with Sin Kuang Lo

Software design is a creative process, which includes proposing and evaluating

solutions to complex problems with many conflicting constraints. The final design of

a software system is the result of many design choices about the selection, configura-

tion, and integration of software, hardware, and communications components. This

chapter presents a design process for architecting systems based on blockchains.

For a system that can potentially use blockchain, the first design choice is

to decide whether to use a blockchain or conventional technologies. We discuss

this choice in Section 6.1 and give four examples in Section 6.2. When using a

blockchain, there are subsidiary design choices including whether to use a private

blockchain or a public blockchain, what consensus protocol fits best, and what the

block frequency should be. Chapter 3 identifies a variety of design choices, and in

Section 6.3 we discuss how to address them. Often in a blockchain-based system,

some data is stored on the blockchain, while other data is stored and communicated

using conventional technologies, so another design choice is which data should be

stored where.

6.1 Evaluation of Suitability

Due to their fundamental properties and limitations, blockchains do not fit all

scenarios. Thus, before designing a system, the suitability of blockchain needs to

be evaluated against the scenarios and requirements.

Figure 6.1 shows a process to evaluate the suitability of blockchain technology.

There are seven main questions to be answered, shown as white diamonds. For

some of them, subsidiary questions are shown as grey diamonds. The following

subsections discuss these questions in detail.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_6

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_6

94 6 Design Process for Applications on Blockchain

Is immutability

required?

Consider Blockchain

Consider Conventional
Database

Is transparency

required?

Is multi-party

required?

Is operation

centralised?

Is trusted authority

required?

Is trusted authority
decentralizable?

Is high performance

required?

Can encrypted data

be shared?

Can big data be

stored off-chain?

Consider DLTs

Fig. 6.1 Evaluation of suitability of blockchain and other DLTs. © 2017 IEEE. Reprinted, with
permission, from Lo et al. (2017)

6.1.1 Multiparty

Does the system need to serve multiple different parties? A blockchain is not

suitable for systems that only serve individual isolated users, because a conventional

database will be simpler and more efficient. There are many different kinds

of multiparty systems. Consider the supply chain domain, which has complex,

dynamic, multiparty arrangements with regulatory and logistical constraints span-

ning jurisdictional boundaries. Information exchange in a supply chain can be as

important and difficult as the physical exchange of goods. The multiple users here

may be manufacturers, shipping companies, transport infrastructure organizations,

financial services firms, or regulators. Another example domain might be inter-bank

payments and reconciliation. Here the multiple parties are at least two different

banks, but may also include the account holders performing payment transfers

between the banks. So, parties might be organizations or individuals. In these

examples, the different parties are legally distinct. However, even within one

large enterprise (or government), there may be different functional or geographic

divisions or departments. These informational or administrative ‘silos’ may need to

6.1 Evaluation of Suitability 95

be served as multiple parties. Blockchains can be suitable for supporting multiparty

systems, because the blockchain is a physically distributed but logically centralized

infrastructure, providing a single view of truth across those parties.

6.1.2 Trusted Authority

A trusted authority is an entity that is relied upon to perform a function, like

operating a system. If a single party can or must be relied upon as a trusted authority

by all of the parties served by a system, then a blockchain may not be necessary.

Instead, that trusted authority could implement a traditional centralized solution

using conventional technologies. Most current complex systems are controlled by

a trusted authority. Examples of these authorities include banks and government

departments. The scope of the system being designed is important in deciding this

question. For bank accounts, the bank will be a trusted authority. However, for inter-

bank payments, each participating bank will not be a trusted authority; instead the

conventional approach is for banks to collectively rely upon separate authorities to

facilitate inter-bank payments. For example, within a country that trusted authority

might be a central bank.

Relying on a trusted authority creates a single point of failure for the system.

When a trusted authority experiences a problem, users accessing its services are

affected. Technical single points of failure can be mitigated by using redundancy

in conventional distributed systems architectures. However, those solutions do not

address single points of organizational or business failure that remain present

when relying on a trusted authority. These possible failures might include business

failures, service interruptions, data loss, or fraud. For situations where the trusted

authority is a monopoly or oligopoly service provider, there is also the possibility of

what economists call ‘rent-seeking’ behaviour, which can unreasonably limit access

to the service and can reduce efficiency through excessive charges.

Even when a natural trusted authority might in principle be available, in practice

it might be difficult for everyone to accept reliance on that party. Consider a

government with multiple different departments or agencies. Large enterprises or

government could in principle define a central agency to provide services for

coordinated operation across their whole organization. However, centralization of

services can be perceived as a loss of control or power, and so in practice it may be

difficult to achieve this kind of administrative centralization.

Blockchain can support systems where there is no single party that is acceptable

or suitable for operating the system. That is because a blockchain is operated jointly

by a collective of nodes. Using a blockchain does not remove trust, because users

are still exposed to risk in their use of blockchain technology. In a blockchain, what

is trusted (i.e. relied upon) is the blockchain software, the incentive or contractual

mechanisms driving the behaviour of processing nodes that operate the blockchain

system, and the trusted third-parties that act as ‘oracles’ which record information

about the external world on the blockchain. Although a blockchain does not remove

96 6 Design Process for Applications on Blockchain

trust, it can remove the need to trust a single specific third-party to maintain a ledger

and so is sometimes called a ‘distributed trust’ mechanism.

6.1.3 Operation

Given that a system supports multiple parties, and given no party is suitable as a

trusted authority for administering the system, might centralized operation of the

system still be possible? A common approach is that a group of parties might form

a joint venture to operate a conventional centralized system. Credit card associations

such as Visa and Mastercard are examples of this approach, formed as kinds of joint

ventures between banks.

However in some cases, it is not possible or desirable to centralize operation of

the system. The centralized operation of the system may lead to the administering

party becoming a trusted authority, which will not always be acceptable to the

parties using the system. Forming a new entity like a joint venture might be too

costly for a given scenario. Also, the centralized administration of the system may

still allow single points of business failure for the system. A distinctive benefit of

blockchain-based systems is that there does not have to be a single authority or

system operator. Eliminating single points of failure can increase system reliability

or availability.

6.1.4 Data Immutability and Non-repudiation

Is data immutability required and acceptable? Data immutability means data cannot

be changed or altered after its creation. Immutability supports non-repudiation

which is the assurance that a party cannot deny the authenticity of their signature

on a document or a message from them. Blockchains naturally support data

immutability in the ledger, whereas conventional technologies naturally support

mutable data. What is important as a requirement can vary from system to system.

Although the blockchain transaction history is immutable, the latest view of the

current state in a blockchain can change. For example, a transaction may need to

update the owner of an asset. What is recorded to the ledger in this case is the

new owner for the asset, and so all that changes is our view of the latest owner.

In a blockchain, the linking of blocks in a chain of cryptographic hashes supports

immutability for historical transactions. In practice, past blocks in the blockchain

data structure cannot be changed because it is continually replicated across many

different locations and organizations; attempts to change it in one location will

be interpreted as an attack on integrity by other participants and will be rejected.

In economies where third-party service providers are not always trustworthy, a

significant benefit of blockchain systems may be in the strong support that they can

provide for immutability and non-repudiation. On a blockchain, the immutability

6.1 Evaluation of Suitability 97

of historical transactions which are cryptographically signed means that there is

always strong evidence that those transactions were performed by someone with

control over those cryptographic keys.

On the other hand, it is not possible to change the transaction history in most

blockchains. This is normally a good thing in supporting data integrity. However,

it can cause problems if blockchain contains illegal content, or if a court orders

content to be removed from the blockchain. It will be easier to support these

requirements using conventional technologies. Similarly, in blockchain systems,

problems may arise such as disputed transactions, incorrect addresses, exposure or

loss of private keys, data-entry errors, or unexpected changes to assets tokenized on

blockchain. The immutability of blockchain ledgers may make them less adaptable

than conventional technologies controlled by trusted third-party organizations that

support rollback.

Using blockchain to achieve immutability and non-repudiation may be rela-

tively expensive compared to other persistence mechanisms. There are existing

mechanisms available to prove the originality of data, like hashing technology, and

cryptographically signed data. In traditional database systems, the ACID properties

(Atomicity, Consistency, Isolation, and Durability) are critical. However, for block-

chains that use Nakamoto consensus (longest chain wins), the classic durability

property does not hold because a transaction initially thought by a participant to

be committed (i.e. on the longest chain) may later turn out to have been on a

shorter chain, and so no longer be committed. Such blockchains only offer a long-

run probabilistic durability property, and therefore are not immutable in a simple

way. However, (a) switching to a longer chain is evident to participants, and (b)

when a transaction has been committed to a blockchain for a sufficiently long time,

it will in practice be immutable. Blockchains that use other consensus mechanisms

(such as Practical Byzantine Fault Tolerance) can offer stronger, more conventional

immutability properties. However, typically these consensus mechanisms can only

be used where there is a small number of well-known nodes participating in the

operation of the blockchain.

6.1.5 High Performance

Does the system need to support extremely short response times or process very

large amounts of data? If so, conventional technologies may be more suitable than

blockchain technology.

System performance usually relates to latency which is the system response

time and throughput which is the aggregate system work rate. Blockchain systems

such as Bitcoin and Ethereum cannot currently match the maximum throughput of

conventional transaction processing systems such as the Visa payments network.

This is a known and current limitation but is being addressed by the development of

new mechanisms such as sharding, state channels, and reduced inter-block time.

While blockchains are currently not highly scalable, this is not necessarily an

98 6 Design Process for Applications on Blockchain

inherent limitation, and may be overcome in the future. Consortium and private

blockchains with careful design and performance tuning have much better perfor-

mance compared to public blockchains. When data has previously been written

to the blockchain, read latency is the response time for accessing historical data

from a blockchain client. Read latency can be much faster on blockchain than with

conventional technologies, because clients can keep a full local copy of the database,

and so there are no network delays. The request to write data into a blockchain is

done by sending a transaction to the network. The write latency is probabilistic, and

there are several sources of uncertainty. All blockchains will have small network

delays. For blockchains with Nakamoto consensus, a node should not be highly

confident that the most recent block it saw will ultimately be included in the main

chain. So, to increase the confidence that data has successfully been committed to

the blockchain, we can wait for a number of confirmation blocks. Waiting for more

confirmation blocks will increase write latency.

Blockchains are inherently not suitable for storing Big Data, i.e. large volumes

of data or high-velocity data. This is because on a blockchain there is massive

redundancy in the large number of processing nodes holding a full copy of the

distributed ledger. Big Data is hard to physically move in a distributed system, and

the large numbers of replicas make it infeasible to store it on a blockchain.

6.1.6 Transparency

The third question in the design process is whether data transparency is required or

acceptable in the system. Data transparency is the property that data is available

and accessible to by other parties in the system. Examples include Facebook public

newsfeed posts or Twitter public tweets. Anyone can access and read these posts.

Social media such as Facebook or Twitter support confidentiality by allowing users

to choose what they publish to the public or to specific audiences. Consider also

the supply chain domain. Logistics efficiency can be improved by providing greater

transparency on the status of shipments and processes, which are currently often

opaque. Using blockchain in trade finance to evidence trade-related documents can

reduce lending risk, and smart contracts can control inter-organizational process

execution, and transparently automate delayed or instalment payments. However,

very often customer relationships, pricing, or even aggregate transaction volume are

commercially sensitive information that parties do not want to share widely.

Blockchain provides a neutral platform where all participants can see and

audit the published data. This is important to guard integrity, with validation by

all processing nodes. In a public blockchain, nodes validate that cryptocurrency

transfers are from addresses that have enough cryptocurrency and signed with an

authorized private key. For smart contracts, nodes validate that the effects of the

smart contract program execution are correctly recorded on the blockchain. If data

transparency is required or acceptable, a blockchain may be suitable. However, if

data transparency is not acceptable, it can be difficult to use a blockchain to manage

6.1 Evaluation of Suitability 99

that data. Confidentiality is harder to establish in blockchain-based systems, because

information is visible to all participants.

Another confidentiality concern is the amount of interactions between parties.

It is possible to create a new address for each transaction, but the flow of assets

may still be used to infer relationships between addresses. Even if parties try to use

pseudonyms, the contents of a transaction are publicly visible. Reuse of addresses

and their connection via transfers of digital currency can provide opportunities

to reidentify participants. Nonetheless, this limitation does not matter for all use

cases. For example, public blockchains may be suitable as infrastructure for public

advertising or fully open government registries, even in highly regulated industries.

Consider that banks advertise on television, but television is not a highly regulated

banking transaction system. Integrity in advertising may be required, but rather than

privacy or confidentiality, publicity is important. Public blockchains can provide

integrity and publicity. Other examples might include systems for secure software

package management and IoT device configuration updates.

Sometimes, although raw data cannot be shared, it may be acceptable to

share encrypted forms of that data, and in such cases a blockchain could be

used. Information could be encrypted before being uploaded to the blockchain:

asymmetrically with a particular party’s public key, so that only this party can

decrypt it, or symmetrically with a shared secret key, so that the group of parties

with access to the secret key can decrypt it. The latter case requires a secure means

of exchanging the secret key. Encrypting data before storing it on a blockchain may

increase confidentiality, but will reduce performance and may harm independent

auditability.

Encrypting data will make it difficult or impossible to use smart contracts with

that data. If information needs to be processed by smart contracts, the information

typically has to be decrypted. This is because smart contract code runs on all nodes

of the network, and thus any of them needs to be able to process the input data.

This is required to achieve consensus on the outcomes of smart contract execution.

Embedding keys within a smart contract would reveal the keys to all participants of

the blockchain network.

Sometimes encryption is not acceptable because there may be concerns about

successful encryption key management or future technological developments in

decryption (such as through quantum computing). Encrypted data may still reveal

information as metadata, such as aggregate transaction volume.

Greater transparency is in tension with confidentiality, even if pseudonyms and

encryption are used. Consortium and private blockchains can provide read access

controls, but this will not provide commercial confidentiality between competitors

on a consortium blockchain. The main trade-off is between the benefits of sharing

data within the group of collaborators (visibility) and retaining confidentiality

towards competitors where needed. In situations where full data transparency

between all participants may not be acceptable, and where encrypting data is

not acceptable or workable, a more-controlled data sharing can be enabled by

distributed ledger technology platforms that are not full blockchains. Platforms

such as R3’s Corda or Hyperledger Fabric provide small ledgers shared between

100 6 Design Process for Applications on Blockchain

parties of interest to each transaction. These platforms may be suitable where greater

control is required over confidentiality.

6.2 Example Use Cases for Suitability Evaluation

This section uses the above evaluation framework to assess the suitability of using

blockchain for four use cases. The first use case, supply chain, is aligned with

the one described in Section 4.1. To illustrate other outcomes, we introduce three

additional use cases in brief. Table 6.1 gives the summary of the evaluation results

based on the seven questions. Note that these results are illustrative only and should

not be taken as valid guidance for real-world systems.

6.2.1 Use Case 1: Supply Chain

A supply chain is the collection of processes involved in creating and distributing

goods, from raw materials to completed products, through to consumers. According

to a Deloitte survey, 42% of the companies in consumer goods and manufacturing

planned to spend at least $5 million on blockchain technology in 2017.1 Walmart has

tested blockchain technology for their supply chain management in a pilot project

that started on the first quarter of 2017 on tracking pork in the USA and China. The

use of blockchain for supply chain is an extremely active area of innovation and

technology development.

Supply chains are highly complex multiparty systems that span participants such

as farmers, factories, transport providers, and retailers. Operations are distributed

and often loosely coupled between participants. Data transparency is desired by

participants to support logistics planning and to identify and respond to problems.

Controlled confidentiality is required for open supply chain infrastructure, and

this could be supported by the use of related-party ledgers in distributed ledger

systems or by combining conventional information exchange technologies with

hashed information on blockchains to ensure integrity and authorization. However,

in vertically controlled supply chains, confidentiality can be managed by the use

of a private blockchain. Transaction history and data immutability are desired to

enable traceability back to the origin of goods and to control fraud and substitution.

Current supply chain systems are often still paper-based, and thus cannot easily

share information in real time. Digital solutions often only apply within vertically

controlled parts of the supply chain, and information gaps can be created when

subcontractors are used or when goods leave the scope of control. The time taken in

1 https://www.bloomberg.com/news/articles/2016-11-18/wal-mart-tackles-food-safety-with-test-
of-blockchain-technology.

https://www.bloomberg.com/news/articles/2016-11-18/wal-mart-tackles-food-safety-with-test-of-blockchain-technology
https://www.bloomberg.com/news/articles/2016-11-18/wal-mart-tackles-food-safety-with-test-of-blockchain-technology

6.2 Example Use Cases for Suitability Evaluation 101

T
a
b

le
6
.1

R
es

u
lt

s
o
f

th
e

su
it

ab
il

it
y

ev
al

u
at

io
n

o
f

fo
u
r

ex
am

p
le

u
se

ca
se

s

S
u
p
p
ly

ch
ai

n
E

le
ct

ro
n
ic

h
ea

lt
h

re
co

rd
s

Id
en

ti
ty

S
to

ck
m

ar
k
et

M
u
lt

ip
ar

ty
R

eq
u
ir

ed
R

eq
u
ir

ed
R

eq
u
ir

ed
R

eq
u
ir

ed

T
ru

st
ed

au
th

o
ri

ty
N

o
t

re
q
u
ir

ed
D

ec
en

tr
al

iz
ed

N
o
t

re
q
u
ir

ed
N

o
t

re
q
u
ir

ed

C
en

tr
al

iz
ed

o
p
er

at
io

n
N

o
t

re
q
u
ir

ed
N

o
t

re
q
u
ir

ed
N

o
t

re
q
u
ir

ed
N

o
t

re
q
u
ir

ed

D
at

a
im

m
u

ta
b

il
it

y
an

d
n
o
n
-r

ep
u
d
ia

ti
o
n

R
eq

u
ir

ed
R

eq
u
ir

ed
R

eq
u
ir

ed
R

eq
u
ir

ed

H
ig

h
p
er

fo
rm

an
ce

N
o
t

re
q
u
ir

ed
N

o
t

re
q
u
ir

ed
N

o
t

re
q
u
ir

ed
R

eq
u
ir

ed

D
at

a
tr

an
sp

ar
en

cy
an

d
co

n
fi

d
en

ti
al

it
y

T
ra

n
sp

ar
en

t
(b

u
t

n
o
t

fu
ll

y
p
u
b
li

c)
C

o
n
fi

d
en

ti
al

T
ra

n
sp

ar
en

t
C

o
n
fi

d
en

ti
al

S
am

p
le

re
su

lt
D

L
T

C
o
nv

en
ti

o
n
al

sy
st

em
B

lo
ck

ch
ai

n
C

o
nv

en
ti

o
n
al

sy
st

em

R
es

u
lt

s
ar

e
il

lu
st

ra
ti

v
e

o
n

ly
,

an
d

sh
o

u
ld

n
o

t
b

e
ta

k
en

as
u
lt

im
at

e
g

u
id

an
ce

.
©

2
0
1
7

IE
E

E
.

R
ep

ri
n
te

d
,

w
it

h
p
er

m
is

si
o
n
,

fr
o
m

L
o

et
al

.
(2

0
1
7
)

102 6 Design Process for Applications on Blockchain

a supply chain is dominated by physical transportation and storage, which moderates

demand for performance. Reasonably short latency is required at key points of

handover of goods, but there is no requirement for extreme throughput or latency.

Supply chains are a promising area for blockchain-based applications. The

complex, dynamic structure of business relationships and operations in a supply

chain can be accommodated by the flexible structure of blockchain node networks,

and the logically centralized view of information provided by a blockchain supports

many of the demands for transparency in a supply chain.

6.2.2 Use Case 2: Electronic Health Records (EHRs)

Electronic health records (EHRs) are collections of patient medical records. They

contain clinical data such as blood type, vital signs, past medical records, med-

ications, and radiology reports for patients.2 Currently, these records are often

maintained by specific healthcare providers over time, in siloed systems not

connected to other EHRs.

Multiple parties including patients, professionals, and organizations from dif-

ferent medical jurisdictions are involved in data exchange to allow more efficient

healthcare and research. Healthcare service providers are decentralized trusted

authorities. Each has access to patient data and has the authority to make the

changes to that data. The operation of EHR systems is often distributed across

healthcare service providers. Data transparency remains one of the main issues in

existing EHRs. Patient privacy is critical, and normally information should only

be shared with patient consent. Sometimes exceptions are made, for example, to

access medical records in emergency situations, or to allow access to anonymized

data for approved medical research. Accesses made to EHRs are often required to

be logged for audit purposes. In addition to tight controls on read access, it is also

important that health records cannot be inappropriately created or updated. EHRs

do not typically need very low latency updates, and most patients’ records do not

change often. However, sometimes large diagnostic image information needs to be

managed for an EHR.

Because of privacy constraints, blockchains are not normally used to store

patient records directly, even in encrypted form. Instead, conventional systems are

used to manage EHR source data, with blockchains providing auxiliary services.

One example is the use of blockchains to keep audit logs of accesses made to

EHRs. Records in these audit logs are typically encrypted or hashed to maintain

patient privacy. MedRec3 is an initiative to explore on blockchain architecture in

contributing to secure and interoperable EHR systems. MedRec stores a pointer to

2https://www.cms.gov/Medicare/E-Health/EHealthRecords/index.html.
3https://medrec.media.mit.edu/.

https://www.cms.gov/Medicare/E-Health/EHealthRecords/index.html
https://medrec.media.mit.edu/

6.2 Example Use Cases for Suitability Evaluation 103

patients’ data in the blockchain and allows patients to choose when and with whom

to share their data.

6.2.3 Use Case 3: Identity Management

Identity management underlies most business and social interactions. Individuals,

organizations, devices, and assets can be identified by many schemes such as

passports, wedding certificates, serial numbers, and registration certificates. An

identity management system (IDM) manages user identities within an enterprise

system. Conventionally, the operations of such systems are centralized and managed

by a trusted authority. The authority sets permissions and roles for users to ensure

they only access parts of the system relevant to them. Integrity is critical for IDM, to

allow only authorized updates to users and their authorizations. Authorization can

be complicated by requirements for delegated authorization and by requirements

to enable dynamic revocation of authorizations. Logs of system accesses are often

required, to be able to audit and investigate proper use of the system. Read accesses

to an IDM can be frequent, to confirm authorized access, but updates to information

in an IDM are normally much less frequent. It is often acceptable for there to be

some delay in propagating updates to information about user identities and their

authorizations.

Blockchain has been trialled for the management of individuals’ identity for

authorization, authentication, user role, and privileges within enterprise systems.4,5

Blockchain allows the roles, permissions, and privileges of users to be verified

by the distributed peers connected to the blockchain network. This removes the

need for a centralized administrator and centralized database. Data on blockchain

is transparent to everyone on the network by default. The immutable transaction

history is duplicated to all connected peers. IDMs on a blockchain ensure that

user identities, roles, and authorizations will not be altered improperly. Despite the

fact that most current blockchains’ performance does not match that of existing

systems, it can still be viable to implement IDMs on blockchain because most

operations require read access, which can have low latency for blockchains. Privacy

is a critical requirement for IDMs, and so plaintext identity information for users is

not normally stored directly on a blockchain. Instead, that is either kept off-chain

or perhaps encrypted on-chain. For any solution, a significant privacy concern for

system designers must be the possibility of reidentification attacks that may allow

identities to be inferred from metadata or relationships stored on the blockchain.

4https://www.ibm.com/blogs/blockchain/2017/05/its-all-about-trust-blockchain-for-identity-

management/.
5https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-
and-authentication/.

https://www.ibm.com/blogs/blockchain/ 2017/05/its-all-about-trust-blockchain-for-identity-management/
https://www.ibm.com/blogs/blockchain/ 2017/05/its-all-about-trust-blockchain-for-identity-management/
https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-and-authentication/
https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-and-authentication/

104 6 Design Process for Applications on Blockchain

6.2.4 Use Case 4: Stock Market

A stock market is a place where stocks, bonds, and securities are traded. A stock

market system inherently involves multiple entities to issue and trade stocks and

conventionally is implemented by a centrally controlled and maintained register

of stock ownership. In most jurisdictions, regulatory approval is required for the

operation of stock market infrastructure, and regulatory approval may be required

for the trading of specific stocks. In those contexts, the stock market is a natural

trusted authority. Integrity, immutability, and non-repudiation are critical to ensure

that high-value trades cannot be undone by either party. Transaction history is

important in providing evidence for trades and current stock holdings. Stock markets

typically have a high-volume, extremely low-latency price-setting mechanism to

match buyers and sellers. However, stock markets typically settle trades (i.e.

exchange the stocks and payment) at a later time. Settlement can have high

throughput requirements but typically does not have extreme latency requirements.

Blockchain technology allows trades to be settled by the blockchain infras-

tructure using peer confirmation, removing the need for centralized operation and

centralized authority to verify trades. Data transparency, however, is an issue for

blockchains in the context of the stock market. All investors and market participants

are exposed to blockchain participants. Even in a consortium blockchain between

brokers, this creates a disadvantage to the investor and may be prohibited by a

regulator. Transaction history is important because it keeps track of the ownerships

of shares and also any changes that happen. Data immutability is also crucial

as it ensures that no successful transactions can be tampered with by anyone.

Looking at the scalability of existing stock exchanges, blockchain technology

might not be suitable for this use case until the performance of blockchain can

match up with current conventional technologies. Overall, blockchain is not highly

suitable for the operation of conventional regulated stock markets. However, some

blockchain solutions are being explored. NASDAQ offers its Linq blockchain ledger

for registration and settlement of private securities,6 and the Australian Stock

Exchange (ASX) is also exploring distributed ledger technology to replace their

current Clearing House Electronic Subregister System, for core modules such as

trade registration and settlement.7

6.3 Design Process for Blockchain-Based Systems

In this section, we discuss an indicative model for the design of systems that

might use blockchain technology. The process is shown in Fig. 6.2. Every step

in the process is a procedure to decide between alternative options. The available

6http://ir.nasdaq.com/releasedetail.cfm?releaseid=948326.
7http://www.asx.com.au/services/chess-replacement.htm.

http://ir.nasdaq.com/releasedetail.cfm?releaseid=948326
http://www.asx.com.au/services/chess-replacement.htm

6.3 Design Process for Blockchain-Based Systems 105

Deployment and
Operation

T
ru

s
t

D
e
c
e
n

tr
a
li
z
a
ti

o
n

Has trusted

authority?

How to decentralise the
authority?

Which blockchain?

Storage and computation:
on-chain vs. off-chain

Evaluation of Suitability

Yes

No

Mutable/immutable data
Big/small data
Non-critical/critical data
Raw/Encrypted dataO

n
-c

h
a
in

 v
s
.

O
ff

-c
h

a
in

Block configuration

Fig. 6.2 Design process for blockchain-based systems. © 2017 IEEE. Reprinted, with permission,
from Xu et al. (2017)

options discussed in Chapter 3 are used to assist decision-making and to guide the

system design at different stages of the design process. This enables a systematic

comparison of the capabilities of different design options. Chapter 3 describes

the impact of the design options on quality attributes. Trade-off analysis between

affected quality attributes is the foundation for the comparison of design options.

The design process starts after the initial evaluation of blockchain suitability. The

arrows illustrate one possible sequence of design decisions.

6.3.1 Trade-Off Analysis

As with any software system, there are trade-offs between quality attributes in

the design of blockchain-based systems. Some decisions mainly affect scalability

(like block size and frequency), security (like consensus protocol), cost efficiency

(like type of blockchain), or performance (like data structure). Design decisions

106 6 Design Process for Applications on Blockchain

that improve the performance of one quality attribute for a system may harm the

performance of other quality attributes. Some simple examples of this include:

• Encrypting data before storing it on a blockchain may increase confidential-

ity, but will reduce performance, and may harm transparency or independent

auditability.

• Storing only a hash of data on-chain and keeping the contents off-chain will

improve confidentiality and may improve performance but partly undermines the

distinctive benefit of blockchains in providing distributed trust. This may create

a single point of failure, reducing system availability and reliability.

• Using a private blockchain instead of a public blockchain may allow greater

control over the admittance of processing nodes and transactions into the system

but will also increase barriers to entry for participation and thus partly reduce

some of the benefit of using a blockchain.

• For blockchains that use Nakamoto consensus such as Bitcoin or Ethereum,

waiting for a higher number of confirmation blocks may increase confidence in

integrity and durability of transactions but will harm latency and thus may impact

service availability.

6.3.2 Decentralization

According to the discussion in Section 6.1, a blockchain is used in scenarios where

no single trusted authority is required or acceptable and where the trusted authorities

can be decentralized or partially decentralized. For the deployment and operation

of systems, there is a spectrum of options ranging from centralized monopolies to

central parties with a competition between parties, to services provided jointly by a

consortia, through to fully open service provision in a public peer-to-peer system.

It is possible that some components or functions are decentralized while others

are centralized. Design decisions regarding trust decentralization are discussed in

Section 3.2.

6.3.3 On-Chain vs. Off-Chain

Blockchains are usually combined with other components in a broader system.

Functionality such as user interfaces, cryptographic key management, IoT integra-

tion, and communication with other external systems is inherently off-chain. Many

kinds of data are also better stored off-chain, for scalability reasons (big data), for

confidentiality reasons (private data), or for dealing with legacy databases. Although

we say ‘big data’ is not suitable for storing on a blockchain, even ‘not tiny’ data

may be too large to feasibly store on a blockchain. Cost calculations can help to

determine the resolution of design decisions for this issue (see also Chapter 9).

6.3 Design Process for Blockchain-Based Systems 107

While blockchains provide some unique properties, the amount of computational

power and data storage space available on a blockchain network remains limited.

In addition, the monetary cost of using public blockchains follows a different cost

model than conventional software systems. In regard to cost efficiency, performance,

and flexibility, major design decisions in using a blockchain include choosing what

data and computation should be placed on-chain and what should be kept off-chain.

Table 6.2 captures some of these options, which are described in more detail below.

Data

A common practice for data management in blockchain-based systems is to store

raw data off-chain and to store on-chain just metadata, small critical data, and hashes

of the raw data. However, the applications of storing item data on blockchain are not

just for integration with external data. There are various uses for wholly on-chain

auxiliary data, including ‘colored coins’ which are a class of overlays on Bitcoin to

represent and manage real-world assets.

A detailed discussion of on-chain data storage cost can be found in the respective

cost chapter, in Section 9.1. Here we focus on a higher-level consideration as part

of the design process.

In the Bitcoin blockchain, there are different ways to store data in transactions.

This was not a core feature in the original design of Bitcoin but has now been

incorporated with a specific command, called OP_RETURN. Table 6.2 compares

this mechanism with alternatives. While it offers some level of flexibility, storing

data on the Bitcoin blockchain is slow and costly and limited to 40 bytes.

Ethereum, on the other hand, theoretically allows storing arbitrary structured data

of any size in a transaction directly. However, the size of a transaction is limited

by the maximum size of a block, and in practice transactions typically need to be

smaller to be accepted due to the transaction load from other users. In addition,

Ethereum provides two other ways to store arbitrary data, using smart contracts.

The first option is to store the data as a variable in a smart contract. The second

option is to store arbitrary data as a log event of a smart contract. Storing data as a

variable in a smart contract is more efficient to manipulate, but less flexible due to

the constraints of the Solidity language on the value types and length. The flexibility

and performance of using smart contract log events is intermediate because log

events allow up to three parameters to be queried.

Finally, we reiterate that data storage on blockchain follows a different cost

model than conventional data storage. Although it may seem more expensive,

storing data on blockchain is a one-time cost for permanent storage. (However, note

that Ethereum allows a partial refund on reclaimed smart contract variable storage.)

Selection of off-chain data storage concerns the interaction between the block-

chain and the conventional data storage facilities. Off-chain data storage can

be through conventional enterprise IT systems, a private cloud on the client’s

infrastructure, or a public storage provided by a third-party. The flexibility of using

cloud to store data depends on the implementation. Some peer-to-peer data storage

108 6 Design Process for Applications on Blockchain

T
a
b

le
6
.2

D
es

ig
n

d
ec

is
io

n
s

re
g
ar

d
in

g
st

o
ra

g
e

an
d

co
m

p
u
ta

ti
o
n

w
it

h
an

in
d
ic

at
io

n
o
f

th
ei

r
re

la
ti

v
e

im
p
ac

t
o
n

q
u
al

it
y

p
ro

p
er

ti
es

(⊕
,
L

ea
st

fa
v
o
u
ra

b
le

;
⊕

⊕
,
L

es
s

fa
v
o
u
ra

b
le

;
⊕

⊕
⊕

,
M

o
re

fa
v
o
u
ra

b
le

;
⊕

⊕
⊕

⊕
,

M
o
st

fa
v
o
u
ra

b
le

)

Im
p
ac

t

D
es

ig
n

d
ec

is
io

n
O

p
ti

o
n

F
u
n
d
am

en
ta

l
p
ro

p
er

ti
es

C
o
st

ef
fi

ci
en

cy
P

er
fo

rm
an

ce
F

le
x
ib

il
it

y

D
at

a
O

n
-c

h
ai

n
E

m
b
ed

d
ed

in
tr

an
sa

ct
io

n
(B

it
co

in
)

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

E
m

b
ed

d
ed

in
tr

an
sa

ct
io

n
(P

u
b
li

c
E

th
er

eu
m

)
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

S
m

ar
t

co
n
tr

ac
t

va
ri

ab
le

(P
u
b
li

c
E

th
er

eu
m

)
⊕

⊕
⊕

⊕
⊕

⊕

S
m

ar
t

co
n
tr

ac
t

lo
g

ev
en

t
(P

u
b
li

c
E

th
er

eu
m

)
⊕

⊕
⊕

⊕
⊕

⊕
⊕

O
ff

-c
h
ai

n
P

ri
va

te
/t

h
ir

d
-p

ar
ty

cl
o
u
d

⊕
~

K
B

n
eg

li
g
ib

le
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

P
ee

r-
to

-p
ee

r
sy

st
em

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

C
o
m

p
u
ta

ti
o
n

O
n
-c

h
ai

n
T

ra
n
sa

ct
io

n
co

n
st

ra
in

ts
⊕

⊕
⊕

⊕
⊕

⊕
⊕

S
m

ar
t

co
n
tr

ac
t

O
ff

-c
h
ai

n
P

ri
va

te
/t

h
ir

d
-p

ar
ty

cl
o
u
d

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

©
2
0
1
7

IE
E

E
.

R
ep

ri
n
te

d
,

w
it

h
p
er

m
is

si
o
n
,

fr
o
m

X
u

et
al

.
(2

0
1
7
)

6.3 Design Process for Blockchain-Based Systems 109

facilities are designed to be friendly to blockchain, such as IPFS8 and Storj.9 IPFS is

free, but ensuring availability requires providing an IPFS server that hosts the data.

The cost of Storj is US$0.015/GB/month. In a peer-to-peer data storage, the data is

replicated automatically by the peer-to-peer network or based on the behaviour of

users, e.g. data is replicated once a user accesses it. In a cloud environment, data

replication needs to be managed by the system or consumer.

Computation

Computation in a blockchain-based system can be performed on-chain (e.g. through

smart contracts) or off-chain. Different blockchains offer different levels of expres-

siveness for on-chain computation. For example, Bitcoin only allows simple scripts

and conditions that must be satisfied to transfer Bitcoin payments. Ethereum

allows more general (Turing complete) programs, and these programs can not only

perform conditional payments but also make modifications to the working data in

smart contract variables. There are other smart contract languages which are more

expressive than Bitcoin’s simple scripts, but which are purposefully not Turing

complete, in order to facilitate static analysis. An example is the Digital Asset

Modelling Language (DAML),10 which is designed to codify financial rights and

obligations.

Smart contracts are not processed until their invoking transactions are included in

a new block. Blocks impose an order on transactions, thus resolving nondeterminism

which might otherwise affect their execution results. One benefit of using on-chain

computation, rather than using blockchain as a data layer only, is the inherent

interoperability among the systems built on the same blockchain network. Other

benefits are the neutrality of the execution environment and immutability of the

program code once deployed. This facilitates building trust in the shared code

among untrusting parties.

Other Considerations

Deciding between on-chain and off-chain not only depends on trade-offs among

quality attributes, but also on how information and computation are used by other

components in the broader system. Take identity information (Section 6.2.3) as

an example. Identity supports systems where there is a requirement to know the

individual human or system involved in transactions. Services such as international

payments have regulatory requirements to establish the identity of participants, as

part of Anti-Money Laundering (AML) and Counter-Terrorism Financing (CTF)

8https://ipfs.io/.
9https://storj.io/.
10https://digitalasset.com/press/introducing-daml.html.

https://ipfs.io/
https://storj.io/
https://digitalasset.com/press/introducing-daml.html

110 6 Design Process for Applications on Blockchain

policies. From a purely technical perspective, real-world identities are not necessar-

ily required. For example on Bitcoin, transacting agents (which are not necessarily

persons) are only cryptographically identified, pseudonymously. So international

exchange of the Bitcoin digital currency can be performed without establishing real-

world identity. Nonetheless, AML/CTF requirements are not obviated by the use

of a blockchain. Identity is critical here, and identity on blockchain is sometimes

considered to be a key enabler for many financial services on blockchain. However

identity information does not necessarily need to be stored on-chain, off-chain

protocols might be used instead. Privacy and confidentiality can be a challenge when

integrating identity information into a blockchain-based system.

6.3.4 Blockchain Selection and Configuration

At this stage, a blockchain platform is selected according to the requirement of the

use case and characteristics of blockchain platforms and trade-off analysis discussed

in Chapter 3. Normally, the consensus protocol and some other decisions are fixed

once a particular blockchain is selected. Hyperledger Fabric is an exception, where

a modular architecture is used to support pluggable implementations of various

consensus protocols. For some blockchain platforms, for example, those using a

proof-of-work protocol, the inter-block time can be configured through adjustments

to the difficulty of mining.

6.3.5 Deployment and Operation

Finally, the choice of where to deploy the modules of the blockchain-based system is

also important for the quality attributes of blockchain-based systems. For example,

deploying a blockchain on a cloud provided by a third-party, or using a blockchain-

as-a-service model directly, introduces the uncertainty of cloud infrastructure into

the system. Here the cloud provider becomes a trusted third-party and a potential

single point of failure for the system. Deploying a public blockchain system on a

virtual private network can make it a private blockchain, with permissioned access

controls provided at the network level. However the virtual private network will

introduce its own additional latency overhead.

There are specific design challenges related to the operation of blockchain-based

systems, which architects should be aware of when deciding to use a blockchain.

Blockchain-based systems can be harder to modify than conventional systems. The

blockchain platform software runs on multiple independently operating nodes, and

updating that software can be physically and administratively difficult to coordinate.

The blockchain ledger is also immutable by design and so cannot be retrospectively

updated to facilitate system modification. Similarly, in blockchain-based systems

6.5 Further Reading 111

that use smart contracts to regulate interactions between mutually untrusting parties,

trust is derived partly from the fact that the code cannot be changed easily.

This inherently creates challenges for governance: the management of the

evolution of blockchain-based systems. Changes may be made to correct defects,

add features, or migrate to new IT contexts. However, in a multiparty system with no

single owner, managing these changes is more like diplomacy than traditional risk

management or conventional product management. Hence, the current configuration

of blockchain is not suitable to implement on a system that may need to change or

be modified frequently. Lessons may be drawn from governance in open-source

software, which faces similar development challenges. However, the governance of

a blockchain is not just a software development problem—it is also a deployment

and operations problem. For both public and private blockchain systems, key

stakeholders include the users of the blockchain, software developers with moral

or contractual authority over the code base, miners or processing nodes in the

blockchain ecosystem, and government regulators in related industries. However,

blockchain immutability may also simplify governance oversight to some degree.

For instance, smart contracts deployed on a blockchain will be resistant to tampering

and will continue to be individually available for execution while the whole

blockchain operates normally. These factors should be taken into consideration

when deciding to use blockchain as a component.

6.4 Summary

Due to their fundamental properties and limitations, blockchains do not fit to all

scenarios. Thus, before designing a system, the suitability of a blockchain needs to

be evaluated against the system requirements. This chapter started with a suitability

framework for assessing the suitability of using blockchain in a various contexts,

based on the characteristics of the use case. After the suitability framework, a gen-

eral process for designing blockchain-based applications was discussed. Throughout

this design process, the available options discussed in Chapter 3 are used to assist

decision-making and to guide the system design at different stages of the design

process, by enabling a systematic comparison among the capabilities of different

design options.

6.5 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2017; Lo et al. 2017).

MedRec is an initiative to explore how a blockchain-based architecture can

contribute to secure and interoperable EHR systems. More details of MedRec can

be found in Azaria et al. (2016).

Chapter 7

Blockchain Patterns

with Cesare Pautasso and Qinghua Lu

In this chapter, we present a collection of patterns for the design of blockchain-

based applications. In software engineering, a design pattern is a reusable solution

to a problem that commonly occurs within a given context during software design.

A design pattern defines constraints that restrict the roles of architectural elements

(processing, connectors, and data) and the interaction among those elements.

Adopting a design pattern causes trade-offs among quality attributes. Our pattern

collection includes three patterns about interaction between blockchain and the

external world, four data management patterns, three security patterns, and five

contract structural patterns. The pattern collection provides architectural guidance

for developers to build applications on blockchain. Figure 7.1 gives an overview

of these patterns. Using the patterns in an application architecture can better align it

with the unique properties provided by blockchain, avoid its limitations, and achieve

other quality attributes.

The three patterns that describe different ways for blockchains to communicate

data with the external world are oracle (Section 7.1.1), reverse oracle

(Section 7.1.2), and legal and smart contract pair (Section 7.1.3). The patterns

about managing data on and off blockchain are encrypting on-chain data

(Section 7.2.1), tokenization (Section 7.2.2), off-chain data storage (Section 7.2.3),

and state channel (Section 7.2.4). There are three patterns about the security

of blockchain-based applications: multiple authorization (Section 7.3.1) and off-

chain secret enabled dynamic authorization (Section 7.3.2) are aimed at adding

dynamism to authorization of transactions and smart contracts, and X-confirmation

(Section 7.3.3) further increases the security of transactions. The five structural

patterns are concerned with the dependencies among and the behaviour of smart

contracts. Smart contracts on blockchain are immutable. The challenge of how to

upgrade a smart contract can hinder the evolution of blockchain-based applications.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_7

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_7

114 7 Blockchain Patterns

Patterns for interaction
with external world

Oracle

Legal and smart
contract pair

Reverse oracle

Encrypting on-
chain data

Tokenisation

Off-chain data
storage

State channel

Data management
patterns

Multiple
authorisation

Contract
registry

Data contract

Embedded
permission

Factory contract

Incentive
execution

Off-chain secret
enabled
dynamic

authorisation

Security patterns

Contract Structural
patterns

Fig. 7.1 Overview of the blockchain-based application pattern collection, adapted from Xu et al.
(2018)

Contract registry (Section 7.4.1), data contract (Section 7.4.2), and factory contract

(Section 7.4.4) are three patterns that target improved upgradability of smart

contracts. Embedded permission (Section 7.4.3) aims to provide permission control

of functions of smart contracts. Finally, incentive execution (Section 7.4.5) concerns

maintenance of smart contracts.

In this chapter we follow an established form to describe each pattern, which

includes the name of the pattern, a short summary, the context, the problem

statement, an explicit discussion of the forces which make the problem difficult,

the solution, its consequences, and some examples of known real-world uses of the

pattern. Forces are identified with the corresponding quality attribute, as sometimes

the solution will propose a trade-off between them. Regarding the consequences, we

distinguish the benefits and drawbacks. Some of the discussions are only applicable

to certain types or deployments of blockchain, such as monetary cost of data

storage (public blockchains) and code execution (blockchains with smart contract

capabilities).

7.1 Patterns on Interacting with the External World 115

7.1 Patterns on Interacting with the External World

Due to the unique properties and limitations of blockchain, a major architec-

tural consideration for blockchain-based software applications is what data and

executable code (smart contracts) should be kept on-chain and what should be

kept off-chain. Two factors need particular attention, namely performance and

privacy. Performance highly depends on the type of deployment of the blockchain.

For example, a consortium blockchain can be configured to achieve much better

performance than a public blockchain. As a component of a larger software system,

blockchain needs to communicate data with other components within the software

system (as shown in Fig. 5.1).

7.1.1 Pattern 1: Oracle

Summary Introducing the state of external systems into the closed blockchain

execution environment.

Context From the software architecture perspective, a blockchain can be viewed

as a component within a larger software system. In the case the blockchain is used

as a distributed database for more general purposes other than purely blockchain-

based services, the applications built on a blockchain will need to interact with other

external systems. Thus, the validation of transactions on blockchain will depend on

those external systems.

Problem The execution environment of a blockchain is self-contained. It can only

access information present in the data and transactions on the blockchain. Smart

contracts running on a blockchain are pure functions by design. The state of external

systems is not directly accessible to smart contracts. Yet, function calls in smart

contracts sometimes need to access state of the external world.

Forces

• Closed environment. Blockchain is a secure, self-contained environment, isolated

from external systems. Smart contracts on blockchain cannot directly read the

states of the external systems.

• Connectivity. In addition to the data found on the blockchain, general purpose

applications might require information from external systems. For example,

information such as geolocation information or weather data from a Web API1

may be required.

• Long-term availability. While transactions on a blockchain are immutable, the

external state used to validate a transaction may change or even disappear after

the transactions were originally appended to the blockchain.

1https://openweathermap.org/api.

https://openweathermap.org/api

116 7 Blockchain Patterns

Solution To connect the closed execution environment of a blockchain with the

external world, an oracle is introduced to evaluate conditions that cannot be

expressed in a smart contract running within the blockchain environment. An oracle

is a trusted third-party that provides smart contracts with information about the

external world. When validation of a transaction depends on external state, the

oracle is requested to check the external state and to provide the result to the

validator (miner), which then takes the result provided by the oracle into account

when validating the transaction. The oracle can be implemented inside a blockchain

network as a smart contract with external state being injected into the oracle

periodically by an off-chain injector. Other smart contracts can then access the

data from the oracle smart contract. An oracle can also be implemented as a

server outside the blockchain. Such an external oracle needs permission to sign

transactions. To improve the reliability or trustworthiness of the oracle, a distributed

oracle uses multiple servers. Figure 7.2 is a graphical representation of the pattern

with the external oracle solution approach. Participants who wish to transact with

each other on a blockchain could rely on an ad hoc arbitrator trusted by all the

participants to resolve disputes or check external state. An arbitrator may be a

human with a blockchain account who is able to sign transactions. Alternatively,

an arbitrator may be automated and validate transactions based on state taken from

the blockchain and the external world.

Consequences

Benefits:

• Connectivity. The closed execution environment of a blockchain is connected

with the external world through the oracle. The applications based on blockchain

can access external states through the oracle and use these external states in their

execution.

Fig. 7.2 Oracle pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission

On-chain Off-chain

Blockchain

Oracle

Other components in systems

Oracle

Injector
Validation

result

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.1 Patterns on Interacting with the External World 117

Drawbacks:

• Trust. Using an oracle introduces a trusted third-party into the system. The oracle

selected to verify or supply the external state needs to be trusted by all the

participants involved in relevant transactions.

• Validity. External states injected into the transactions cannot be fully validated by

other miners. Thus, when miners validate transactions including external state,

they rely on the oracle.

Related Patterns Reverse oracle (Section 7.1.2)

Known Uses

• The concept of oracle is used in Bitcoin.2 An oracle is a server outside the Bitcoin

blockchain network which can evaluate user-defined expressions based on the

external state.

• Orisi3 is a distributed oracle scheme on Bitcoin. Orisi maintains a set of

independent oracles and allows participants involved in a transaction to select

a set of oracles and to define the quorum required before initiating a conditional

transaction.

• Hyperledger Fabric chaincode (smart contracts) can in principle invoke any

off-chain function, including to access external state. Chaincode is specified

with endorsement policies, to specify which nodes are required to validate its

execution. Chaincode with a singleton endorser node thus acts as a platform-

supported oracle for Hyperledger Fabric. Endorsement policies can also specify

M-of-N validation constraints, to act as platform-supported distributed oracles.

• Gnosis4 is an example of arbitrator selection by participants. Gnosis is a

decentralized prediction market that allows users to choose any oracle they trust,

such as another user or a web service, e.g. for weather forecasts.

7.1.2 Pattern 2: Reverse Oracle

Summary The off-chain components of an existing system rely on smart contracts

running on a blockchain to supply requested data and check required conditions.

Context In a software system, where a blockchain is one of the components, the

off-chain components might need to use the data stored on blockchain and the smart

contracts running on blockchain to supply data or check conditions.

Problem Many pre-existing or legacy systems do not have direct interfaces to

blockchains. Data or functionality on a blockchain may have to be integrated with

2https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state.
3http://orisi.org/.
4https://gnosis.pm/.

https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
http://orisi.org/
https://gnosis.pm/

118 7 Blockchain Patterns

legacy systems, but a nonintrusive approach is required, not changing the core of

the existing systems.

Forces

• Connectivity. Integrating blockchain into an existing system to leverage the

unique properties or data of a blockchain.

Solution A component that can interact with both the blockchain and existing

system components is added to the system. The reverse oracle component pro-

vides broader system functionality by mediating with blockchain data and smart

contract functionality. Well-known smart contract functions can be configured in

the component to access blockchain functionality, or the identity of transactions on

the blockchain can be made visible to the system for integration. Figure 7.3 is a

graphical representation of the pattern.

Consequences

Benefits:

• Connectivity. The blockchain is integrated into an existing system, either by

configuring well-known smart contract functions to be invoked, or by making

blockchain transactions visible to the system for integration.

Drawbacks:

• Nonintrusive. It is not always possible to use a blockchain in a nonintrusive way

depending on the extensibility of the existing system. In particular, the proba-

bilistic commit of blockchains using Nakamoto consensus may be inconsistent

with normal transaction semantics in enterprise systems. Additional logic in the

reverse oracle component may be required to cover these differences.

Fig. 7.3 Reverse oracle
pattern. This work is based on
an earlier work: Xu et al.

(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission

On-chain Off-chain

Blockchain Other components in systems

Reverse
Oracle

Validation result#Tx

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.1 Patterns on Interacting with the External World 119

Related Patterns Oracle (Section 7.1.1)

Known Uses

• Identitii5 provides a solution to enrich payments in banking systems with

documents and attributes, using blockchain. Identitii uses the concept of identity

token, which is an entity reference stored on a blockchain. Every payment is

associated with an identity token, which is used to exchange enriched information

about a payment. The identity token is exchanged between banks by being

embedded into the SWIFT protocol.

• Slock.it6 aims to build autonomous objects and a universal sharing network

by using blockchain and IoT devices. Devices can sell or rent themselves and

also pay for services provided by others. When renting a device, availability

information is stored on blockchain; thus, validity checking is done using

blockchain.

7.1.3 Pattern 3: Legal and Smart Contract Pair

Summary A bidirectional binding is established between a legal agreement and a

corresponding smart contract.

Context The legal industry is becoming digitized, for example, using digital

signatures has become a valid way to sign legal agreements. The Ricardian contract

was developed in the mid-1990s as a concept for cryptographically identified legal

contracts to also be machine interpretable. Digital legal agreements need to be

executed and enforced.

Problem An independent trustworthy execution platform trusted by all the

involved participants is needed to execute digital legal agreements. Blockchain can

provide that platform, using on-chain smart contracts to digitize legal agreements.

Forces

• Authoritative source. A valid mapping is required between a legal contract and

its corresponding smart contract, so that the smart contract can correspond with

the authoritative legal contract.

• Secure storage. Blockchain provides a trustworthy data storage to keep the legal

agreement.

• Secure execution. Blockchain provides a trustworthy computational platform that

can execute digital agreements to enforce certain conditions as defined in a legal

contract.

5https://identitii.com/.
6https://slock.it/.

https://identitii.com/
https://slock.it/

120 7 Blockchain Patterns

Solution

A smart contract is created to implement some of the conditions defined in the

legal agreement. When deployed, there is a variable to store the hash value of the

legal agreement but initially has a blank value. The address of the smart contract

is included in the legal agreement, and then the hash of the legal agreement is

calculated and added to the contract variable. The immutability of the legal contract

hash variable is implemented in custom code. By binding a physical agreement with

a smart contract, the bridge between the off-chain physical agreement and the on-

chain smart contract is established. The two-directional binding shows the intended

mapping between the legal agreement and smart contract.

The smart contract digitizes some of the conditions defined in the agreement.

These conditions can be checked and enforced automatically by the smart contract.

However, not all legal terms can be digitized. The smart contract can also facilitate

automated regulatory compliance checking, but extent of this might be limited

depending on the data represented on the blockchain and on constraints of smart

contract programming language. Figure 7.4 is a graphical representation of the

pattern.

Consequences

Benefits:

• Automation. Some of the conditions defined in the legal contract, for example, a

conditional payment, can be automatically executed or enforced by blockchain.

• Audit trail. Blockchain permanently records all historical transactions related to

the legal contract and the smart contract. This immutable data enables auditing

of the contract and its execution.

Drawbacks:

• Expressiveness. Smart contracts are written in programming languages. These

programming languages might not be able to express all contractual terms or

regulatory compliance conditions.

Fig. 7.4 Legal and smart
contract pair pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission

On-chain Off-chain

Blockchain

Smart
Contract

Legal
Contract

binding

condition

condition

condition

Addr smart contract# legal contract

condition

condition

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.2 Data Management Patterns 121

• Enforceability. If a public blockchain is used, there is no central administering

authority to decide on disputes nor to enforce court judgements.

• Interpretation. There might be many possible ways to interpret contract condi-

tions and encode them in smart contracts. Ambiguity in natural language makes

it a challenge to accurately implement legal terms in a way that will be agreed

upon by all the involved participants.

Related Patterns N/A

Known Uses

• Ricardian contracts were not defined using blockchain smart contracts but have

subsequently inspired approaches to using blockchain-based smart contracts

for legal contracts in systems such as Corda7 and EOS.8 The Smart Contract

Template proposed by Barclays9 uses legal document templates to facilitate smart

contracts running on Corda blockchain platform.

• Specific proposals for the representation of machine-interpretable legal terms

have been explored in KWM’s project on digital and analogue (DnA) contracts10

and in the Accord Project.11 Academic work has proposed logic-based languages

to declaratively define smart contracts on blockchain.

• Open Law12 is a platform that allows lawyers to make legally binding and

self-executable agreements on the Ethereum blockchain. The legal agreement

templates are stored on a decentralized data storage, IPFS.13 Users can create

customized contracts for specific uses.

7.2 Data Management Patterns

This section discusses three data management patterns that manage data on and off

blockchain.

7.2.1 Pattern 4: Encrypting On-Chain Data

Summary Ensure confidentiality of the data stored on blockchain by encrypting it.

7https://www.corda.net/.
8https://eos.io/.
9https://www.barclays.co.uk/.
10https://github.com/KingandWoodMallesonsAU/Project-DnA.
11https://www.accordproject.org/.
12http://openlaw.io/.
13https://ipfs.io/.

https://www.corda.net/
https://eos.io/
https://www.barclays.co.uk/
https://github.com/KingandWoodMallesonsAU/Project-DnA
https://www.accordproject.org/
http://openlaw.io/
https://ipfs.io/

122 7 Blockchain Patterns

Context For some blockchain applications, commercially sensitive data should be

only accessible to specific participants. An example would be a special discount

price offered by a service provider to a subset of its users. Such information might

not be supposed to be accessible to the other users who do not get the discount.

Problem Data privacy is one of the main limitations of blockchain. All the

information on blockchain is publicly available to participants. There is normally no

privileged user within a blockchain network. On a private or consortium blockchain,

the ability of parties to participate might be limited by the consortium agreement and

by network access controls, but all participants will normally be able to see the full

blockchain history. On a public blockchain, new participants can join the blockchain

network freely.

Forces

• Transparency. Every participant within a blockchain network is able to access all

the historical transactions on blockchain. This enables them to all collectively

validate previous transactions. The transactions on a public blockchain are

accessible to everyone, using blockchain explorer tools such as Etherscan.14

• Lack of confidentiality. Since all the information on blockchain is publicly

available to everyone in the network, commercially sensitive data meant to be

kept confidential should not be stored on blockchain in plain form.

Solution Symmetric or asymmetric encryption can be used to encrypt data before

inserting the data into blockchain. One possible design for sharing encrypted data

among multiple participants is as follows. First, one of the participants creates a

secret key for encrypting data and distributes it during an initial key exchange. When

one of the participants needs to add a new data item to the blockchain, they first

symmetrically encrypt it using the secret key. Only the participants allowed to access

the transaction are given the secret key and can decrypt the information. Figure 7.5

is a graphical representation of the pattern.

Consequences

Benefits:

• Confidentiality. Using encryption, the publicly accessible information on a

blockchain is encrypted, so that is not readable by anyone who does not hold

the secret key.

Drawbacks:

• Key management. Both symmetric and asymmetric encryption require off-chain

key management. If key management is not done properly, it can lead to loss

or disclosure of private or secret keys. If the required private key or secret

key is compromised, the encryption mechanism will not protect the sensitive

information.

14http://etherscan.io.

http://etherscan.io

7.2 Data Management Patterns 123

On-chain Off-chain

Blockchain

Key exchange

Key
generation

Participants

Key
management

Fig. 7.5 Encrypting on-chain data pattern. This work is based on an earlier work: Xu et al. (2018)
© ACM, 2018. http://dx.doi.org/10.1145/3282308.3282312. Included here by permission

• Access revocation. Revoking read access is a challenge after the encrypted data

has been published to the blockchain. It is difficult to ensure that a party has

destroyed their knowledge of a secret key. The encrypted data on a blockchain

is immutable, and so as long as the participant retains the secret key, it retains

access to the encrypted data.

• Immutable data. Even if stored in encrypted form, the sensitive data will remain

in the blockchain forever. In addition to the risk of key compromise, the

encrypted data may be subject to brute force decryption attacks at some time

in the future. Breakthroughs in technology like quantum computing might render

current encryption technologies ineffective. So even if the data is considered to

be secure with a given key size when it is stored in the blockchain, this may no

longer be the case in the future.

• Key sharing. The encryption key needs to be shared before the encrypted data

on the blockchain can be read. Although blockchain itself can be used as a

software connector to communicate data, secret keys cannot be shared in plain

form through blockchain because the shared key would be publicly accessible if

being communicated through blockchain.

Related Patterns N/A

Known Uses

• Oraclize15 is a smart contract running on Ethereum public blockchain, which

provides a service to access state from the external world. Oraclize allows smart

contract developers to encrypt the parameters of their queries locally by using a

15https://blog.oraclize.it/encrypted-queries-private-data-on-a-public-blockchain-71d893fac2bf.

http://dx.doi.org/10.1145/3282308.3282312
https://blog.oraclize.it/encrypted-queries-private-data-on-a-public-blockchain-71d893fac2bf

124 7 Blockchain Patterns

public key before passing them to a smart contract. The only one who can decrypt

the call parameters is Oraclize, using the paired private key.

• Crypto digital signature has been suggested by MLG Blockchain16 to encrypt

data and share the data between the parties who interact through blockchain.

7.2.2 Pattern 5: Tokenization

Summary Using tokens on blockchain to represent transferable digital or physical

assets or services.

Context Physical tokens such as tickets, share certificates, and casino chips are

commonplace examples of representations of assets or services. These tokens (as

paper documents or plastic chips) can be physically transferred between parties.

Holding or redeeming a token will allow access to the assets or services represented

by the token. The underlying assets can be digital or physical. Digital tokens can be

electronically communicated between parties, but like physical tokens can represent

digital or physical assets or services.

Problem Tokens representing assets or services should be transferable, so that they

are no longer held by the original party after the transfer. The holding of a token by

someone should be able to be authoritatively determined by others.

Forces

• Representation. Rather than holding an underlying asset, which might be risky

or physically difficult, a token represents the asset and is easy to handle.

• Holding and transfer. For tokens to function as property or to support other

exclusive rights, it must be possible to determine whether someone holds a token,

and it must be possible to transfer the token, so that the original party no longer

holds the token.

Solution Blockchain provides a trustworthy platform to realize tokenization. There

are different ways to implement tokenization using blockchain. Native tokens

exist on public blockchains (e.g. BTC on Bitcoin, ETH on Ethereum), but in

addition to being cryptocurrency, they can also represent other assets or services

using transaction identifiers or other auxiliary data. Cryptocurrency transfers on

the blockchain are then also interpreted as a transfer of those assets or services.

However, using blockchain cryptocurrency as tokens is limited because there is little

expressive power to represent assets, and there can be limitations on checking token

transfer conditions.

A more flexible solution is to define tokens as a data structure in a smart contract.

For an asset, tokenization is a process starting from an asset (e.g. money) being

held in custody (e.g. at a bank) and being represented as this data in the smart

16https://mlgblockchain.com/crypto-signature.html.

https://mlgblockchain.com/crypto-signature.html

7.2 Data Management Patterns 125

contract. The smart contract imposes constraints to ensure that holding and transfer

of the token support the requirements of the token scheme. Depending on the token

scheme, transfer of the token may correspond to transfer of ownership of the asset,

or perhaps some other right to use the asset. Conditions programmed into the smart

contract can enforce conditions on the transfer of tokens.

Consequences

Benefits:

• Representation. Tokens implemented on blockchain, especially when using smart

contracts, have a great range of expressive power suitable for representing many

kinds of assets or services.

• Holding and transfer. Blockchain transactions record the transfer of tokens and

ensure that a token cannot be ‘double spent’. The transparency of a blockchain

allows all participants to inspect the latest state of token holdings.

Drawbacks:

• Integrity. Integrity of tokens is guaranteed by the blockchain infrastructure, but

bugs in smart contracts can lead to problems in the holding or transfer of assets.

Even if the digital token is secure, the authenticity of the corresponding physical

or digital asset is not guaranteed automatically.

• Legal processes for ownership. A token on a blockchain is not necessarily the

authoritative source of information about the ownership of a physical asset. The

owner of an asset may be entitled to sell the asset without being required to create

a transaction on the blockchain. Also, legal processes such as court orders and

bankruptcy proceedings can change the ownership of physical assets without any

associated transaction being recorded on the blockchain.

Related Patterns Reverse oracle (Section 7.1.2)

Known Uses

• ColoredCoin17 is an open source protocol for tokenizing digital assets on Bitcoin

blockchain.

• Ethereum token standards. Twenty-four percent of the existing financial smart

contracts on Ethereum use tokenization. The ERC2018 token standard has been

proposed for fungible tokens and describes the functions and events that a token

smart contract should implement. Other standard interfaces have been defined for

other token types, such as unique or serialized assets.

• Digix19 uses tokens to track the ownership of gold as a physical asset.

17http://coloredcoins.org/.
18https://theethereum.wiki/w/index.php/ERC20_Token_Standard.
19https://digix.global/.

http://coloredcoins.org/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://digix.global/

126 7 Blockchain Patterns

7.2.3 Pattern 6: Off-Chain Data Storage

Summary Use hashing to ensure the integrity of arbitrarily large datasets which

may not fit directly on the blockchain.

Context Some applications consider using the blockchain to guarantee the integrity

of large amounts of data.

Problem The blockchain, due to its full replication across all participants of the

blockchain network, has limited storage capacity. Storing large amounts of data

within a transaction may be impossible due to the limited size of the blocks of the

blockchain. For example, Ethereum has a block gas limit to constrain the number,

computational complexity, and data size of the transactions included in any block.

Data cannot take advantage of the immutability or integrity guarantees without

being stored on the blockchain.

Forces

• Scalability. Blockchain provides limited scalability because every bit of data is

replicated across all nodes, where it is kept permanently.

• Cost. If a public blockchain is used, storing data on blockchain costs money

(cryptocurrency), although the cost is a one-time cost to write the data. This

is in contrast to traditional distributed data storage, like cloud, where costs are

based on the amount of allocated storage space over time. A piece of data can be

stored on blockchain by being embedded in a transaction, as a variable in a smart

contract or as a log event. Storing data in a contract is an effective way to enable

its manipulation but can have constraints from the smart contract languages on

the value types and length. Different blockchains have different cost models for

storing data.

• Size. There are limits on transaction size or block size. For example, on the

Bitcoin blockchain, the default client only relayed OP_RETURN transactions

up to 80 bytes, which was reduced to 40 bytes in February 2014.20 Ethereum has

a block gas limit that limits the sum of gas all transaction in a block are allowed

to use.

Solution A blockchain can be used as a general purpose replicated database, as

transactions logged in the blockchain can include arbitrary data on some blockchain

platforms. For data of big size (essentially data that is bigger than its hash value),

rather than storing the raw data directly on blockchain, a representation of the data

with smaller size can be stored on blockchain with other small-sized metadata about

the data (e.g. a URI pointing to it). The solution is to store a hash value (also called

digest) of the raw data on chain. The value is generated by a hash function, e.g. one

from the SHA-2 family, which maps data of arbitrary size to data of fixed size. Hash

functions are one-way functions which are easy to compute, but hard to invert. If

20https://github.com/bitcoin/bitcoin/pull/3737.

https://github.com/bitcoin/bitcoin/pull/3737

7.2 Data Management Patterns 127

Fig. 7.6 Off-chain data
storage pattern. This work is
based on an earlier work: Xu
et al. (2018) © ACM, 2018.
http://dx.doi.org/10.1145/
3282308.3282312. Included
here by permission

On-chain Off-chain

Raw
data

Raw
data

Hash value

Calculate
hash value

Calculate
hash value

EB F6

52 00

90 80

4E F5

E4 BE

52 F4

90 80

4E F5

even one bit of the input data changes, its corresponding hash value would change

radically. A hash value can be used as a check to ensure the integrity of the raw data

stored off-chain. The hash value recorded immutably in a blockchain transaction

guarantees the integrity of the hash value as well as the original raw data from

which the hash was derived. Figure 7.6 is a graphical representation of the pattern

solution. Depending on the context, the hash value might double as (part of) a URI.

Consequences

Benefits:

• Integrity. Blockchain guarantees the integrity of the hash value that represents the

raw data. The integrity of the raw data can be checked using the on-chain hash

value.

• Cost. If a public blockchain is used, blockchain is utilized at a lower cost (fixed

cost as the size of the hash value is fixed) for integrity of data with arbitrary size.

Drawbacks:

• Integrity. The raw data is stored off-chain, where the off-chain data store

might not be as secure as blockchain. The raw data might be changed without

authorization. This change will be detected, thanks to the hash of the original data

stored on the blockchain. However, without additional measures, it will neither

be possible to recover the original data nor to prevent the change from happening

in the first place.

• Data loss. Since the raw data is stored off-chain, it may be deleted or lost. Only

its hash value remains permanently on the blockchain.

• Data sharing. The on-chain data can be shared through using blockchain

platforms. Additional communication mechanisms and storage platforms are

required for data sharing off-chain.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

128 7 Blockchain Patterns

Related Patterns N/A

Known Uses

• Proof-of-Existence (POEX.IO21). This service allows entering an SHA-256

cryptographic hash of a document into the Bitcoin blockchain as a ‘proof-of-

existence’ of the document at a certain time. The hash value guarantees the data

integrity of the document.

• Chainy22 is a smart contract running on Ethereum blockchain. Chainy stores a

short link to an off-chain file and its corresponding hash value.

7.2.4 Pattern 7: State Channel

Summary Transactions that are too small in value relative to a blockchain transac-

tion fee or that require much shorter latency than can be provided by a blockchain

are performed off-chain with periodic recording of net transaction settlements on-

chain. Micropayments are a typical example of such transactions, but many other

kinds of state updates or off-chain protocols can be treated in a similar way.

Context Micropayments are payments that can be as small as a few cents and very

frequently executed. For example, payment of a very small amount of money to a

Wi-Fi hotspot might be made frequently for small amounts of Wi-Fi data usage.

Blockchain can back these kinds of transactions, but it is not necessary and cost-

effective to store all such transactions on the blockchain.

Problem The decentralized design of blockchain has limited performance. Trans-

actions can take several minutes or even 1 h (for Bitcoin blockchain) to be committed

on the blockchain. Due to the long commit time and high transaction fees on a public

blockchain (where fees are largely independent of the transacted amount), it is often

infeasible to store many low-value transactions on the blockchain network. During

a recent peak in demand, the average fee per transaction rose to the equivalent

of US$5523 on Bitcoin. On-chain transactions are suitable for transactions with

medium to large monetary value, relative to the transaction fee.

Forces

• Latency. Blockchain transactions may take a long time to be committed, while

users expect many kinds of transactions to happen instantaneously.

• Throughput. Blockchain has limited throughput scalability because every bit of

data is replicated across all nodes and kept permanently.

21https://poex.io/.
22https://chainy.info/.
23Recorded for 22 Dec 2017 by https://bitinfocharts.com/comparison/bitcoin-transactionfees.html.

https://poex.io/
https://chainy.info/
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

7.2 Data Management Patterns 129

• Cost. Storing data on a public blockchain costs money (cryptocurrency). The

transaction fee of an individual micropayment transaction might be higher than

the monetary value associated with the micropayment transaction.

Solution Storing every low-value transaction on blockchain is infeasible due to

the high relative cost of transaction fees. The state channel solution is to establish

an agreed off-chain protocol between two participants, with a deposit from one or

both locked up as security in a smart contract for the lifetime of the channel. The

state channel keeps the intermediate states of the small transactions off-chain, and

only stores the finalized aggregated (net) transaction on chain. The frequency of

transaction settlement depends on the use case and agreement between the two sides.

For example, in scenarios around utilities, internet service providers or electricity

companies might establish payment channels with their consumers for an agreed

monthly billing period. As the consumer uses data or energy daily, the intermediate

state is stored in the off-chain state channel until the end of the month, when

the channel is closed to finalize the payment for the whole month. A network of

micropayment channels can be built where the transactions transferring small values

occur off-chain. The individual transactions take place entirely off the blockchain

and exclusively between the participants, across multiple hops where needed. Only

the final transaction that settles the payment for a given channel or set of channels is

submitted to the blockchain. The technologies used to implement state channels are

specific to each blockchain platform. For example, the Lightning network24 on the

Bitcoin blockchain is a proposed implementation of Hashed TimeLock Contracts

(HTLCs)25 with bidirectional payment channels which allows secure payments

across multiple peer-to-peer channels. A HTLC is a type of payments that use the

features of Script, like hashlocks and timelocks, to require that the receiver of a

payment acknowledges receiving the payment prior to a deadline by generating

cryptographic proof. Figure 7.7 is a graphical representation of the pattern. Such

off-chain channels could be generalized to exchange state for more general purposes

other than monetary value.

Consequences

Benefits:

• Speed. Without involving the blockchain for every transfer, off-chain transactions

can be settled without waiting for the blockchain network to process and commit

each transaction.

• Throughput. The number of off-chain transactions that can be processed is not

limited by the configuration of blockchain, such as the block size, block interval,

or gas limit, and thus a much higher total throughput can be achieved than for

on-chain transactions.

24https://lightning.network/.
25https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts.

https://lightning.network/
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts

130 7 Blockchain Patterns

Fig. 7.7 State channel
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission

On-chain Off-chain

Blockchain

Participants

State
channels

Settle
transaction

• Privacy. Other than the final settlement transaction, the individual off-chain

transactions do not show up in the public ledger; thus, the detail of these

intermediate off-chain transactions is not publicly visible.

• Cost. If a public blockchain is used, only the initial and the final transaction incur

a transaction fee to be included in the blockchain. Individual off-chain transac-

tions do not have blockchain transaction fees. Multi-hop off-chain transactions

may be charged small transaction fees to compensate for reduced liquidity of

channel providers, which are typically charged as a percentage of the transacted

amount.

Drawbacks:

• Trustworthiness. Individual off-chain transactions might not be as trustworthy

as the on-chain transactions because the transactions are not stored in the

blockchain’s immutable data store. The intermediate states of a state channel

might be lost after the channel is closed.

• Reduced liquidity. To establish a payment channel, money from one or both sides

of the channel needs to be locked up in a smart contract for the lifetime of the

payment channel. The liquidity of the channel participants is thereby reduced.

• Wallet. A new wallet or extensions to existing wallets may be needed to support

off-chain protocols.

Related Patterns N/A

Known Uses

• The Lightning network uses an off-chain protocol to enable micropayments

of Bitcoin and several other cryptocurrencies. Micropayments are enabled by

establishing a bidirectional payment channel through committing a funding

transaction to the blockchain. This can be followed by a number of micropayment

transactions that update the distribution of the funds within the channel without

broadcasting transactions to the blockchain network. The payment channel can

be closed by broadcasting the final version of the funding transaction to settle the

payment.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.3 Security Patterns 131

• The Raiden Network26 on the Ethereum blockchain is somewhat similar to

the Lightning network. The basic idea is to avoid the consensus bottleneck

by leveraging a network of off-chain payment channels that allow to securely

transfer monetary value. Smart contracts are used to deposit value into the

payment channels.

• Orinoco27 is a payment channel solution built on the Ethereum blockchain.

Other than payment channels, Orinoco also provides a payment hub for payment

channel management. However, the payment hub introduces an extra party that

needs to be trusted by both the sender and the recipient of the payment channel.

• State channel on Ethereum28 and Gnosis Go29 offer a more generalized form of

state channels that support exchanging state for general purpose applications.

7.3 Security Patterns

This section discusses three security patterns that mainly concern the security of

blockchain-based applications.

7.3.1 Pattern 8: Multiple Authorization

Summary A set of blockchain addresses which can authorize a transaction is

predefined. Only a subset of the addresses is required to authorize transactions.

Context In blockchain-based applications, activities might need to be authorized

by multiple blockchain addresses. For example, a monetary transaction may require

authorization from multiple blockchain addresses.

Problem

• The actual addresses that authorize an activity might not be able to be decided in

advance, due to sporadic or limited availability of some authorities.

Forces

• Flexibility. The actual authorities who authorize the transaction can be from a set

of predefined authorities.

• Tolerance of compromised or lost private key. Authentication on blockchain uses

digital signature. However, blockchain does not offer any mechanism to recover

a lost or a compromised private key. Losing a key results in permanent loss of

control over an account, and potentially smart contracts that refer to it.

26https://raiden.network/.
27http://www.orinocopay.com/.
28http://www.jeffcoleman.ca/state-channels/.
29https://forum.gnosis.pm/t/how-offchain-trading-will-work/63.

https://raiden.network/
http://www.orinocopay.com/
http://www.jeffcoleman.ca/state-channels/
https://forum.gnosis.pm/t/how-offchain-trading-will-work/63

132 7 Blockchain Patterns

Fig. 7.8 Multiple
authorization pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission

On-chain Off-chain

Blockchain

M-of-N

Participants

Solution On the Bitcoin blockchain, a multi-signature mechanism can be used to

require more than one private key to authorize a Bitcoin transaction. In Ethereum,

smart contracts can mimic multi-signature mechanisms. More flexibly, an M-of-N

multi-signature can be used to define that M out of N private keys are required

to authorize the transaction. M is the threshold of authorization. This on-chain

mechanism enables more flexible binding of authorities. Figure 7.8 is a graphical

representation of the pattern.

Consequences

Benefits:

• Flexibility. This pattern enables flexible binding of authorities but depends on the

availability of authorities when the activity is conducted.

• Lost key tolerant. One participant can own more than one blockchain address to

reduce the risk of losing control over their smart contracts due to a lost private

key. In a smart contract implementation, of this pattern, there could be a function

to update the list of allowed authorities and the authorization quorum. This update

function may also require a quorum.

Drawbacks:

• Predefined authorities. Although the pattern enables flexible binding, all the

possible authorities still need to be known in advance of any decision or update.

• Lost key. At least M private keys among the N private keys should be kept safely

to avoid losing control.

• Cost of dynamism. If a public blockchain is used, updating the list of authorities

costs money (cryptocurrency), as does deploying the logic for multiple authori-

ties. There is greater cost for storing multiple addresses compared to only one.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.3 Security Patterns 133

Related Patterns Off-chain secret enabled dynamic authorization (Section 7.3.2).

An off-chain secret enabled dynamic authorization pattern is used when the possible

authorities are unknown beforehand.

Known Uses

• Multisignature mechanism provided by Bitcoin.30

• Multisignature wallet, written in Solidity and running on the Ethereum block-

chain, is available in the Ethereum dapp browser Mist.31

7.3.2 Pattern 9: Off-Chain Secret Enabled Dynamic

Authorization

Summary Using a hash created off-chain to dynamically bind authority for a

transaction.

Context In blockchain-based applications, some activities need to be authorized

by one or more participants that are unknown when a first transaction is submitted

to blockchain.

Problem Sometimes, the authority who can authorize a given activity is unknown

when the corresponding smart contract is deployed or the corresponding transaction

is submitted to the blockchain. Blockchain uses digital signatures for authentication

and transaction authorization. Blockchain does not support dynamic binding with

an address of a participant which is not initially defined in the respective transaction

or smart contract. All accounts that can authorize a second transaction have to be

defined in the first transaction before that transaction is added to the blockchain.

Forces

• Dynamism. Dynamically binding one or more unknown authorities with a second

transaction representing an activity after the first transaction was submitted to

blockchain.

• Predefined authorities. Using only on-chain mechanisms, all the possible author-

ities are required to be defined beforehand.

Solution An off-chain secret can be used to enable a dynamic authorization when

the participant authorizing a transaction is unknown beforehand. In the context of

payment, for example, a smart contract can be used for escrow. When the sender

deposits the money to the escrow smart contract, the hash of a secret (e.g. a random

string, called pre-image) is also submitted with the money. Whoever receives the

secret off-chain can claim the money from the escrow smart contract by revealing

the secret. With this solution, the receiver of the money does not need to be defined

30https://en.bitcoin.it/wiki/Multisignature.
31https://github.com/ethereum/mist.

https://en.bitcoin.it/wiki/Multisignature
https://github.com/ethereum/mist

134 7 Blockchain Patterns

Fig. 7.9 Off-chain secret
enabled dynamic
authorization pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission

On-chain Off-chain

Blockchain

lock

open

open

Participants

beforehand in the escrow contract. This can be generalized to any transaction that

needs authorization from a dynamically bound participant. Note that once the secret

is revealed, it cannot be reused. One variant is to lock multiple transactions with the

same secret—by unlocking one, all of them are unlocked. Figure 7.9 is a graphical

representation of the pattern. This solution is also referred to as Hashlock.

Consequences

Benefits:

• Dynamism. This pattern enables dynamic binding of unknown authorities after

the transaction is added into the blockchain.

• Lost key tolerant. No specific private key is required to authorize transactions.

• Routability. This pattern has the useful property that once the secret is revealed,

any other transactions secured using the same secret can also be opened. This

makes it possible to create multiple transactions that are all locked by the same

secret. This property is used by micropayment channels to enable multi-hop

transfers where the money hosted by every hop and secured by a same secret

can be released after the end receiver claims the money with the secret (i.e. the

secret is revealed). The secret can be exchanged through off-chain channels.

• Interoperability. There is no need for a special protocol to exchange the secret.

The secret can be exchanged in any way off-chain. This provides a mechanism

for other systems to trigger events on blockchain.

Drawbacks:

• One-off secret. The secret used in this pattern is a one-off secret. Verification of

the secret is on-chain. Thus, once a secret is embedded in a transaction submitted

to the blockchain, the secret is revealed.

• Combination of signature and secret. Because this pattern has the property

that once the secret is revealed, any other transactions secured using the same

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.3 Security Patterns 135

secret can also be opened, sometimes the transaction protected by the secret

should also be associated with a public key so that both a correct secret and an

appropriate signature with the respective private key are required to authorize the

transaction. This is applicable to the situation where a large set of authorities

is known beforehand, but not all of them are allowed to authorize a certain

activity/transaction. Thus, a hash secret is used to dynamically bind one or

multiple authorities from the larger predefined set of authorities.

• Lost secret. The sender/initiator of a transaction takes the risk of losing the off-

chain secret. If the secret is lost, the transaction cannot be authorized and being

proceeded anymore. In the case of money transfer, the money associated with

the transaction would be locked forever if the transaction cannot be authorized

properly.

• Man-in-the-middle attack. A man-in-the-middle attack is possible when the

transaction that reveals the secret is in the transaction pool of a miner (not

included in the blockchain yet).

Related Patterns Multiple authorization (Section 7.3.1). The multiple authoriza-

tion pattern is used when all the possible authorities are known beforehand. Multiple

authorization pattern is an on-chain mechanism.

Known Uses

• Raiden Network32 is a network of off-chain payment channels on top of

Ethereum blockchain network, which enables secure value transfer. The multi-

hop transfer mechanism in Raiden Network uses hashlocked transactions to

securely route payments through a middleman.

• In the Bitcoin ecosystem, atomic cross-chain trading33 allows one cryptocur-

rency (e.g. Bitcoin) to be traded for another cryptocurrency (e.g. tokens on a

Bitcoin sidechain) using an off-chain hash secret.

7.3.3 Pattern 10: X-Confirmation

Summary Waiting for sufficiently many blocks as confirmations to ensure that a

transaction added into blockchain is immutable with high probability.

Context The immutability of a blockchain using Nakamoto consensus is only

probabilistic immutability. There is always a chance that the most recent few blocks

are replaced by a competing chain fork.

Problem At the time a fork occurs, there is usually no certainty as to which branch

will be permanently kept in the blockchain and which branches will be discarded.

The transactions that were only included in the unsuccessful branches turn out not to

32https://raiden.network/.
33https://en.bitcoin.it/wiki/Atomic_cross-chain_trading.

https://raiden.network/
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading

136 7 Blockchain Patterns

have been included in the ledger and will revert to the transaction pool to be added

into a later block.

Forces

• Chain fork. Chain fork may occur on a blockchain using Nakamoto consensus,

like Bitcoin and Ethereum.

• Frequency of chain fork. Transaction handling and inter-block time differ

significantly from one blockchain to another. A shorter inter-block time would

lead to an increased frequency of forks.

Solution From the application perspective, one security strategy is to wait for a

certain number (X) of blocks to be generated after the transaction is included into

one block. After X blocks (1 inclusion block and X-1 confirmation blocks), the

transaction is taken to be committed and thus perceived as immutable. The value of

X can be decided by the developers of the blockchain-based applications, based on

characteristics of the blockchain platform and the value or risk of the transaction.

Figure 7.10 is a graphical representation of the pattern.

Consequences

Benefits:

• Immutability. The more blocks being generated after the block including the

transaction, the higher probability of the immutability of the transaction.

Drawbacks:

• Latency. Latency between submission and commit of a transaction is affected by

the consensus protocol, the inter-block time, and the number of confirmation

blocks X. For example, this is around 1 h (10-min block interval with 6-

confirmation) on Bitcoin. The larger value of the X, the longer the latency.

Blockchain

Receive transaction 2-confirmation

announcement

Fig. 7.10 X-Confirmation pattern. This work is based on an earlier work: Xu et al. (2018) © ACM,
2018. http://dx.doi.org/10.1145/3282308.3282312. Included here by permission

http://dx.doi.org/10.1145/3282308.3282312

7.4 Contract Structural Patterns 137

Related Patterns N/A

Known Uses

• Bitcoin users often choose 6-confirmation. The value 6 for the Bitcoin blockchain

corresponds to the assumption that an attacker is unlikely to amass more than

10% of the total amount of computing power within Bitcoin network (measured

by hash rate34) and that a negligible risk of less than 0.1% is acceptable.35

• Ethereum users sometimes recommend to choose 12-confirmation before assum-

ing that a transaction is committed permanently with high probability.36

7.4 Contract Structural Patterns

This section discusses five smart contracts patterns. Essentially, smart contracts are

programs running in transactions on a blockchain. Some of the design patterns and

programming principles for conventional software environments are also applicable

to smart contracts. If a public blockchain is used, the structural design of the smart

contract has large impact on its execution cost. The cost of deploying a smart

contract depends on the size of the smart contract(s) because the code is stored

on blockchain, resulting in a data storage fee that is proportional to the code size.

Thus, a structural design with more lines of compiled code costs more money. A

consortium blockchain does not necessarily have tokens/cryptocurrency; therefore

the monetary cost of smart contract deployment and execution is typically not a

significant issue for consortium blockchains. However, blockchain size is still a

design concern because the total size of the blockchain keeps growing as more

blocks are appended to it and no block can ever be detached from it, and every

full node stores a full replica of blockchain. Different structural designs of smart

contracts may also affect performance.

7.4.1 Pattern 11: Contract Registry

Summary Before invoking a smart contract, the address of the latest version of the

smart contract is located by looking up its name on a contract registry.

Context As with any software application, blockchain-based applications need to

be upgraded to new versions. For instance, the on-chain functions defined in smart

contracts need to be updated to fix bugs as well as to fulfil new requirements.

Problem Smart contracts deployed on blockchain cannot be upgraded because the

code of the smart contracts is a type of data and data stored on a blockchain is

immutable.

34https://blockchain.info/charts/hash-rate.
35https://en.bitcoin.it/wiki/Confirmation.
36https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/.

https://blockchain.info/charts/hash-rate
https://en.bitcoin.it/wiki/Confirmation
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/

138 7 Blockchain Patterns

Forces

• Immutability. Every bit of data (including deployed smart contracts code) stored

on a blockchain is immutable.

• Upgradability. There is a fundamental need to be able to upgrade all but short-

lived applications and their smart contracts over time.

• Human-readable contract identifier. The identifier of a smart contract on block-

chain platforms, like Ethereum, is a hexadecimal address, which is not human-

readable.

Solution An on-chain registry contract is used to maintain a mapping between user-

defined symbolic names and the blockchain addresses of the registered contracts.

The address of the registry contract needs to be advertised off-chain. The creator of

a contract can register the name and the address of the new contract to the registry

contract after the new contract has been deployed. The invoker of a registered

contract retrieves the latest address of the new smart contract from the registry

contract. The corresponding functions provided by the registered contract can be

upgraded by replacing the address of the old version contract in the registry contract

with the address of a new version without breaking the dependency between the

upgraded smart contract and other smart contracts that depend on its functions.

The address of a contract is stored as a variable in the registry contract. The value

of contract variables can be updated. The registry contract can have a permission

control module to maintain write permissions. Note that all the previous values of

the variable are still stored in the blockchain history. Figure 7.11 is a graphical

representation of the pattern.

On-chain Off-chain

Blockchain

Registry
Contract

Contract1

name --> addr

name --> addr

name --> addr

Contract2

Contract3

Contract

X

Fig. 7.11 Contract registry pattern. This work is based on an earlier work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/10.1145/3282308.3282312. Included here by permission

http://dx.doi.org/10.1145/3282308.3282312

7.4 Contract Structural Patterns 139

Consequences

Benefits:

• Human-readable contract name. The registry contract maintains a mapping

between human-readable names and the hexadecimal addresses of the smart

contracts. A human-readable form of smart contract names may be desired, for

example, to be exposed to the user interface. A human-readable name is also

useful for developers.

• Constant contract name. The smart contract associated with a registered name

can be updated without changing its name. This way dependencies relying on the

name of the smart contract do not get broken.

• Transparent upgradability. The smart contract associated with a registered name

could be replaced by a new version without breaking the dependencies based on

the human-readable name.

• Version control. Version control can be integrated in the registry contract to allow

a lookup based on the name and version of a smart contract. Old versions of a

smart contract that are no longer needed should be terminated.

Drawbacks:

• Limited upgradability. Upgradability is still limited if the functions defined

in the smart contract are directly invoked by other contracts. Although the

implementation of the function can be upgraded, the interface (i.e. function

signature) cannot be modified without breaking the link to dependent smart

contracts. Similar methods as for API/service interface management need to be

implemented, e.g. through versioning and depreciation flags.

• Cost. There is an additional cost to maintain a registry that contains the mapping

between the contract names and their addresses. Furthermore, all inter-contract

function calls require a registry lookup to find the latest version of the smart

contract to be invoked.

Related Patterns Embedded permission (Section 7.4.3) can be used for write

permissions. Data contract (Section 7.4.2) and this pattern can work together to

further improve upgradability of smart contracts.

Known Uses

• ENS37 is a name service on Ethereum blockchain, which is implemented as smart

contracts. ENS maintains a mapping between both smart contracts on-chain and

resources off-chain and simple, human-readable names.

• ENS can be viewed as a contract registry built in a blockchain platform, which

is accessible to everyone. A blockchain-based application can also maintain a

separate registry contract for the application.

37https://ens.domains.

https://ens.domains

140 7 Blockchain Patterns

• Regis38 is an in-browser application that makes it easy to build, deploy, and

manage registries as smart contracts on Ethereum. It allows user-defined key-

value pairs. It can be used to create a contract registry.

7.4.2 Pattern 12: Data Contract

Summary Store data in a separate smart contract.

Context Many blockchain-based applications must be upgraded over time. In gen-

eral, the logic and the data that form part of the application on the blockchain may

change at different times and with different frequencies. There are different ways to

store a data on blockchain, as discussed in hash integrity pattern (Section 7.2.3).

Problem Storing data on blockchain is expensive, and there is a limitation on the

amount of data and amount of computation a transaction can contain. In the context

of upgrading smart contracts, the upgrading transactions might contain a large data

storage for copying the data from the old version of the smart contract to the new

version of the smart contract. Porting data to a new version might even require

multiple transactions, e.g. when the block gas limit on Ethereum prevents an overly

complex data migration transaction.

Forces

• Coupling. Smart contracts can live forever on blockchain if they are not explicitly

terminated. If a smart contract is deactivated in this way, the data stored in

the smart contract cannot be accessed through the smart contract functions any

more—although it can still be accessed externally with some effort, e.g. for

provenance or audit purposes.

• Upgradability. Many applications need to be able to be upgraded over time.

• Cost. If a public blockchain is used, storing data on blockchain costs money.

Copying data from an old version of a smart contract to a new version should be

avoided or minimized.

Solution To avoid moving data during upgrades of smart contracts, the data store

is isolated from the rest of the code. In the context of blockchain, data could be

separately stored in different smart contracts to enable isolation. One example of

a generic data structure is a mapping to store SHA3 key and value pairs. The keys

are used in lieu of variable names. Figure 7.12 is a graphical representation of the

pattern.

38https://regis.nu/.

https://regis.nu/

7.4 Contract Structural Patterns 141

Fig. 7.12 Data contract
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission

On-chain Off-chain

Blockchain

Data Contract

Contract
Instance
Contract
Instance

Logic Contract

Consequences

Benefits:

• Upgradability. By separating data from the rest of the code, the logic of the

application can be upgraded without affecting the data contract.

• Cost. Since the data is separated from the rest of the code, there is no cost for

migrating data when the application is upgraded.

• Generality. If the data can be cleanly separated and generalized, there would be

an additional benefit: the generic data contract can be used by all related logic

smart contracts.

Drawbacks:

• Cost. If a public blockchain is used, storing a piece of data in a generic data

structure costs more money than a strictly defined data structure. For example, a

mapping between SHA3 key and value pairs will use more memory than a more

strictly defined data structure that does not store key names. Querying the data is

also more indirect. This is the cost of a generalized solution.

Related Patterns Contract registry (Section 7.4.1) and this pattern can work

together to further improve upgradability of smart contracts.

Known Uses

• ChronoBank39 is a blockchain project that tokenizes labour and provides a

market for professionals to trade their labour time with businesses. It uses a smart

contract with a generic data structure as the data store used by all the other logic

smart contracts.

39https://chronobank.io/.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
https://chronobank.io/

142 7 Blockchain Patterns

• Colony,40 a platform for open organizations running on Ethereum. Similar to

ChronoBank, Colony has a data contract with a generic data structure.

7.4.3 Pattern 13: Embedded Permission

Summary Smart contracts use embedded permission control to restrict access to

the invocation of the functions defined in the smart contracts.

Context All smart contracts running on a blockchain can be accessed and called

by any blockchain participants or other smart contracts by default. There are no

privileged users, and, in the case of public blockchain, anyone can join the network

to access all the information and code stored and running on blockchain.

Problem A smart contract by default has no owner, meaning that once deployed the

author of the smart contract has no special privilege to invoke on the smart contract.

A permission-less function can be triggered by unauthorized users accidentally or

maliciously. Such a permission-less function can be a vulnerability for a blockchain-

based application. For example, a permission-less function discovered in a smart

contract library used by the Parity multi-sig wallet caused the freezing of about

500K Ether.41 In 2016, seven percent of smart contracts on the public Ethereum

blockchain could be terminated without authority.

Forces

• Security. The functions defined in the smart contracts should be only callable

by authorized participants. Due to the transparency of public blockchains, all

smart contracts are also publicly available. In contrast, in a conventional software

system, the internal logic is normally not visible to end users. Interaction with the

software system is either through a user interface or API, where it is possible to

enforce access control policies.

Solution Add permission control to every smart contract function to check per-

missions for every caller that triggers the functions defined in the smart contract.

Permission is determined based on the blockchain addresses of the caller. This

can be done by checking the authorization of the caller before executing the logic

of the function: unauthorized calls are rejected and the execution of the function

terminated before reaching the core logic of the function. Figure 7.13 is a graphical

representation of the pattern.

40https://colony.io/.
41https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/.

https://colony.io/
https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

7.4 Contract Structural Patterns 143

Fig. 7.13 Embedded
permission pattern. This work
is based on an earlier work:
Xu et al. (2018) © ACM,
2018. http://dx.doi.org/10.
1145/3282308.3282312.
Included here by permission

On-chain Off-chain

Blockchain

Smart
Contract

function

function

permission

permission

Consequences

Benefits:

• Security. Only the participants and smart contracts that are authorized by the

smart contract can call the corresponding functions successfully.

• Secure authorization. Authorization is implemented in smart contracts running

on blockchain, which leverages the properties provided by blockchain.

Drawbacks:

• Cost. On a public blockchain, extra code that implements the permission control

mechanism also has additional deployment and runtime cost.

• Lack of flexibility. Permissions are defined in the smart contract before its

deployment; therefore they are difficult to change. However, permissions may

be required to be dynamic. A mechanism is needed to support dynamic granting

and removal of permissions.

Related Patterns Multiple authorization (Section 7.3.1) and off-chain secret

enabled dynamic authorization (Section 7.3.2) are different ways to design autho-

rization.

Known Uses

• The Mortal contract discussed in the Solidity tutorial42 restricts the permission of

invoking the selfdestruct function to the ‘owner’ of the contract—where ‘owner’

is a variable defined in the contract code itself.

• The Restrict access pattern suggested in the Solidity tutorial43 uses modifier

to restrict who can make modifications to the state of the contract or call the

functions of the contract. Modifier is a mechanism to add a piece of code before

the function to check certain conditions. Modifier can make such restrictions

highly readable.

42http://solidity.readthedocs.io/en/develop/contracts.html.
43http://solidity.readthedocs.io/en/develop/common-patterns.html.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
http://solidity.readthedocs.io/en/develop/contracts.html
http://solidity.readthedocs.io/en/develop/common-patterns.html

144 7 Blockchain Patterns

7.4.4 Pattern 14: Factory Contract

Summary An on-chain template contract is used as a factory that generates

contract instances from the template.

Context Applications based on blockchain might need to use multiple instances

of a standard contract with customization. Each contract instance is created by

instantiating a contract template. For example, in a business process management

system, each of the business process instances might be represented by a smart

contract being generated from a contract template representing the business process

model. The template can be stored off-chain in a code repository, or on-chain, within

its own smart contract.

Problem Keeping the contract template off-chain cannot guarantee consistency

between different smart contract instances created from the same template because

the source code of the template can be independently modified.

Forces

• Dependency management. Storing the source code of a smart contract off-chain

in a code repository introduces the issue of integrating more systems into the

blockchain-based application.

• Secure code sharing. Blockchain can be used as a secure platform to share code

of smart contracts. As opposed to a traditional code repository, changes of code

deployed on a smart contract can be strictly limited or prohibited.

• Deployment. If a public code repository, like GitHub, is used to store the source

code of a smart contract, a component is needed to implement the function

of deploying smart contracts on blockchain, otherwise the end users need to

understand how to deploy smart contracts by sending transactions with the

customized source code of the contract definition.

Solution Smart contracts are created from a contract factory deployed on block-

chain. The factory contract is deployed once from the off-chain source code. The

factory may contain the definition of multiple smart contracts. Smart contract

instances are generated by passing parameters to the contract factory to instantiate

customized smart contract instances. A factory contract is analogous to a Class in

an object-oriented programming language. Every transaction that generates a smart

contract instance instantiates an object of the factory contract class. This contract

instance (the object) will maintain its own properties independently of the other

instances but with a structure consistent with its original template. Figure 7.14 is a

graphical representation of the pattern.

7.4 Contract Structural Patterns 145

Fig. 7.14 Factory contract
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission

On-chain Off-chain

Blockchain

Factory
Contract

Contract
Instance

instantiate

Contract

Contract
InstanceContract
Instance

Factory
Contract

Source Code
deploy
once

Consequences

Benefits:

• Security. Keeping the factory contract on-chain guarantees the consistency of the

contract definition.

• Efficiency. If the contract definition is kept on-chain in a factory contract, smart

contract instances are generated by calling a function defined in the factory

contract.

Drawbacks:

• Deployment cost. If a public blockchain is used, using factory contract requires

extra cost to deploy the factory contract.

• Function call cost. If a public blockchain is used, creating a new smart contract

instance requires extra cost to call a function defined in the factory contract.

Related Patterns Contract registry (Section 7.4.1). A contract registry can be used

to store the addresses of all the smart contract instances generated from a factory

contract. The factory and instance registry can be implemented in the same contract,

although that limits upgradability.

Known Uses

• A tutorial from Ethereum developers44 about how to create a contract factory

from which smart contract instances can be created.

• The factory pattern has been applied in a real-world blockchain-based healthcare

application.

44https://ethereumdev.io/manage-several-contracts-with-factories/.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
https://ethereumdev.io/manage-several-contracts-with-factories/

146 7 Blockchain Patterns

• The business process management system in an academic work uses a contract

factory to generate process instances.

7.4.5 Pattern 15: Incentive Execution

Summary A reward is provided to the caller of a contract function for invoking it.

Context Smart contracts are event-driven programs, which cannot execute

autonomously. All the functions defined in a smart contract need to be triggered

by a transaction either from an external account or from another smart contract

to execute. Other than the functions that provide regular services to users, some

functions need to run asynchronously from regular user interaction, for example,

to clean up expired records or make dividend payouts, etc. Such functions usually

involve a time, after which the function should start.

Problem Users of a smart contract have no direct benefit from calling accessory

functions. If a public blockchain is used, executing these functions causes extra

monetary cost. Some accessory functions are expensive to execute.

Forces

• Completeness. The regular services provided by a smart contract are supported

by some accessory functions.

• Cost. Execution of accessory functions causes extra cost to users.

Solution Reward the caller of a function defined in a smart contract for invoking

the execution, for example, sending back a percentage of payout to the caller to

reimburse the (gas) execution cost. Figure 7.15 is a graphical representation of the

pattern.

Fig. 7.15 Incentive
execution pattern. This work
is based on an earlier work:
Xu et al. (2018) © ACM,
2018. http://dx.doi.org/10.
1145/3282308.3282312.
Included here by permission

On-chain Off-chain

Blockchain

Smart
Contract

Normal
function

Maintenance
function

call

call

tokens

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312

7.5 Summary 147

Consequences

Benefits:

• Completeness. The execution of the accessory function helps to complete the

regular services provided by the smart contract.

• Cost. Users who expend resources to execute the accessory functions are

compensated by the reward associated with the execution.

Drawbacks:

• Unguaranteed execution. Execution cannot be guaranteed even with incentives.

Thus, another option is to embed the logic of accessory functions into other

regular functions that users have to call to use the services.

Related Patterns N/A

Known Uses

• Regis45 is an in-browser tool for developers to create smart contracts representing

registries on Ethereum. The functions that clean up the expired records provide

incentives for users to execute them.

• Ethereum alarm clock46 is a service provided by a smart contract running on

Ethereum. It facilitates scheduling function calls for a specified block in the

future and provides incentive for users to execute the scheduled function.

7.5 Summary

Blockchain can be used as a core component of (possibly large-scale) decentralized

software systems. For effective use of blockchain to this end, patterns can convey

means to make good use of blockchain in the design of systems and applications. In

this chapter, we present a pattern collection for blockchain-based applications. Our

pattern collection includes three patterns about interaction between blockchain and

the external world, four data management patterns, three security patterns, and five

contract structural patterns. The pattern collection provides architectural guidance

for developers to build applications on blockchain. Some patterns are designed

specifically for blockchain-based applications considering the unique properties

of blockchain. Others are variants of existing software patterns applied to smart

contracts.

45https://regis.nu/.
46http://www.ethereum-alarm-clock.com/.

https://regis.nu/
http://www.ethereum-alarm-clock.com/

148 7 Blockchain Patterns

7.6 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2018).

In software engineering, a design pattern is a reusable solution to a problem that

commonly occurs within a given context during software design. A definition and

a formalization of design patterns are given in Beck and Cunningham (1987) and

Meszaros et al. (1998).

A few other design patterns of blockchain-based applications or smart contracts

can be found in the literature. Bartoletti and Pompianu (2017) conduct an empirical

analysis on smart contracts supported by different blockchain platforms. The paper

focuses on the two most widespread ones, Bitcoin and Ethereum. Nine common

programming patterns are identified in Solidity-based smart contracts by manually

inspecting the publicly available source code. The identified programming patterns

include tokens, authorization, oracle, randomness, poll, time constraint, termination,

math, and fork check. Zhang et al. (2017) apply four existing object-oriented

software patterns to smart contract programming in the context of a blockchain-

based healthcare application. The applied software patterns include abstract factory,

flyweight, proxy, and publisher-subscriber. Eberhardt and Tai (2017) propose five

patterns for blockchain-based applications focusing on what data and computation

should be on-chain and what should be kept off-chain, which include challenge

response pattern, off-chain signatures pattern, content-addressable storage pattern,

delegated computation pattern, and low contract footprint pattern.

The background of Ricardian contracts as one of the known uses is discussed

in Grigg (2004). The details of the Smart Contract Template proposed by Barclays

are discussed in Clack et al. (2016a,b). The logic-based language for smart contract

definition can be found in Idelberger et al. (2016).

Chapter 8

Model-Driven Engineering
for Blockchain Applications

with Alex Ponomarev and An Binh Tran

8.1 Introduction

Model-driven engineering is a methodology for using models at various levels

of abstraction and for different purposes during software development. For some

models the level of abstraction is low, so that the production code can be directly

derived from the models. Other models use a high level of abstraction and only guide

developers. Intermediate levels of abstraction can support model-based system

analysis or might be used by system management tools. Depending on the purpose

and the system, there can be various dimensions captured in models, from static

structures (such as data models or deployment schemes) to dynamic aspects (like

activity sequences). For code generation specifically, there are further options: code

generation can be once-off, with subsequent evolution of the code independently

of the model; or it can be repetitive, where the code is regenerated from the model

following changes to the model. In the latter case, we can also distinguish one-way

model-to-code code generation from round-trip code generation. In round-trip code

generation, if the generated code is updated, the changes can be propagated back to

the model level. This is an often desired but rarely achieved vision for model-based

development.

In the context of blockchain-based applications, model-driven development is

of particular relevance. First, code generation tools can implement best practices

and well-tested building blocks, thereby avoiding code that contains common

errors or is vulnerable to known attacks. Second, models can be independent of

specific blockchain technologies or platforms, and code generation tools might

cater for multiple target platforms. This can avoid lock-in to a specific blockchain

platform and help application developers migrate to alternative technologies. Third,

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_8

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_8

150 8 Model-Driven Engineering for Blockchain Applications

models are often easier to understand than code. This can be particularly useful

for communicating with business partners about smart contracts, and strengthen

confidence in that code from all parties. Take the example of a contract that will

hold funds in escrow and specifies conditions under which the funds will be paid.

Such a smart contract is written by one party but used by others. All parties need to

rely on the contract code working as expected (and not, say, transfer all funds held in

escrow to its developer). It can be easier to verify the correctness of the model than

the raw code, and tooling can ensure that the deployed code has not been changed

after being derived from the model. Of course, the code generation tool also needs

to be correct, but confidence in that can be established across many and varied uses

of the tool.

We discuss two approaches for model-driven code generation in this chapter.

The first uses process models for collaborative business processes that cross

organizational boundaries. The second targets registries for assets, such as land

titles, cars, or digital assets. It focuses on non-fungible assets, i.e. where the specific

identity of an asset is important. For example, you probably care about which car

you own, not just whether you own one (any) car. This is in contrast to fungible

assets, such as shares in a company, where you care how many shares you own

and where individual shares might not even be easily identifiable. For the latter,

standards like ERC201 exist on Ethereum. Non-fungible assets often have asset-

specific peculiarities that make model-driven development more useful.

8.2 Model-Driven Generation of Smart Contract Code

for Collaborative Business Processes

8.2.1 Motivation

The integration of business processes, e.g. along the supply chain, has been found to

contribute to better operational and business performance. A lack of trust, however,

may hamper collaborative process performance. Once service-level agreements are

in place, it can be a highly delicate question which partner should serve as a hub for

controlling the collaborative process of several parties, or where a mediator process

is hosted. While control asymmetries can be avoided by adopting a decentralized

view (such as process choreographies) instead of central orchestration, it does

not solve the general problem of trust in the control of the collaborative business

process.

In this section, we describe how blockchain technology can address this lack-

of-trust problem in collaborative business processes. More specifically, we describe

an approach to map a collaborative process to a blockchain-based execution infras-

tructure that offers the following benefits. First, it provides a monitoring facility

1https://theethereum.wiki/w/index.php/ERC20_Token_Standard.

https://theethereum.wiki/w/index.php/ERC20_Token_Standard

8.2 Model-Driven Generation of Smart Contract Code for Collaborative. . . 151

that integrates an automatic and immutable transaction history, which is useful for

dispute resolution and even mandatory in some highly regulated industries. Second,

smart contracts can be used as a direct implementation of the process control logic,

specifically the mediator process that orchestrates the coordination between the

involved parties. Third, the process logic can be enforced automatically, including

payments, escrow, and conflict resolution.

8.2.2 Challenges of Collaborative Business Process Execution

We illustrate challenges of executing collaborative business processes by using an

example supply chain scenario, shown in Fig. 8.1. The process starts with a Bulk

Buyer placing an order with a Manufacturer. The latter calculates the demand and

places an order for materials via a Middleman. This Middleman forwards the order

to a Supplier and arranges transportation by a Special Carrier. Once the materials

are produced, the Carrier picks them up at the Supplier site and delivers them to the

Manufacturer. The Manufacturer produces the goods and delivers them to the Bulk

Buyer. The process model as shown falls into the category of choreography since it

is modelled from a global viewpoint and there is no party that sees all messages. A

choreography is a global, participant-independent view of a collaborative process

and focusses on the interaction points between different participants. This view

only vaguely specifies what needs to be done by whom, but not how. In contrast,

if all messages were sent and received by the Manufacturer, it could be modelled

Fig. 8.1 Supply chain process example (Notation: BPMN). © 2016 by Springer International
Publishing, part of Springer Nature, reprinted with permission

152 8 Model-Driven Engineering for Blockchain Applications

as an orchestration with the Manufacturer serving as a mediator. An orchestration

is modelled from the viewpoint of a single party in a collaborative process and

provides sufficient details to be executed on behalf of that party; other parties’

activities are not specified in detail either.

This simple scenario already involves five participants. In case of delays and

errors in the process, it would not be uncommon if the participants started blaming

each other. Consider the case where the Manufacturer receives the materials 3 days

later than agreed, with eight pallets being delivered instead of ten. The Supplier

might argue that this is exactly in line with what was ordered by the Middleman,

while the Middleman would claim the fault to be on the side of the Supplier. The

situation could delicate for the Carrier if the Manufacturer refused to accept the

delivery. The Carrier and the Manufacturer may be entitled to compensation from

the Supplier or the Middleman, depending on who is responsible for the fault.

8.2.3 Blockchain-Based Collaborative Process Execution

In the following, we discuss a blockchain-based approach to address the lack-of-

trust problem in collaborative business processes. A number of technical challenges

arise during the adoption of blockchain for this purpose. As is the case for all

blockchain-based applications, there is a cost (though not necessarily in cryptocur-

rency in private/consortium blockchains) for new transactions, computation, and

data storage on blockchain platforms. As discussed throughout the book, not all

aspects of collaborative processes should be dealt with inside smart contracts. Smart

contracts cannot call external APIs outside the blockchain environment nor directly

create blockchain transactions. This section describes how the approach addresses

these challenges.

An overview of the approach is shown in Fig. 8.2. It uses blockchain to facilitate

the collaborative processes in one of two ways:

(i) As a choreography monitor, a smart contract stores the process execution

status of all participants by observing message exchanges. In this setting, the

blockchain serves as immutable data storage to share process execution status

and create an audit trail. Smart contracts check if interactions conform to the

choreography model and enforce that model. In addition, the choreography

monitor can manage automated payment points and escrow.

(ii) As an active mediator among the participants, it coordinates collaborative

process execution. This includes all the above, as well as using smart contracts

to drive the process execution and to implement data transformation, checking

of conditions, and calculations.

8.2 Model-Driven Generation of Smart Contract Code for Collaborative. . . 153

Translator

BPMN
model

Design Time Run Time

On blockchain

Factory contract

Off blockchain

Internal process

Interface

Internal process

Interface

Internal process

Interface

Data
payload

Data
payload

Data
payload

Key distributor

Trigger

Factory
contract

Process instance contract
(Mediator/Monitor)

Escrow
Deposit
collector

Execution
state

Partial data
payload

Participant
accounts

Process
implementation

Business logic
(Active/
passive)

TriggerTrigger

Verification

Fig. 8.2 Overview of the process model-based approach. © 2016 by Springer International
Publishing, part of Springer Nature, reprinted with permission

These options are supported by the following main components:

• At design time, a translator derives from a process specification described

in, e.g. Business Process Model and Notation (BPMN),2 a smart contract in a

programming language (such as Solidity, the language used by Ethereum). The

generated smart contract is a factory for mediators or choreography monitors and

as such implements the factory contract patterns discussed in Section 7.4.4.

• For Option (i), a choreography monitor or C-Monitor uses smart contracts

to monitor the collaborative business processes. The C-Monitor is split into a

factory and case-specific C-Monitor instances. All of them are smart contracts.

The factory instantiates the case-specific monitors as needed and contains the

blueprint for C-Monitor instances. The C-Monitor instance tracks the interactions

of a choreography instance and combines them into a consolidated view of the

current state of the execution. Optionally, it can trigger automatic conditional

payment from escrow, when certain points in the choreography are reached.

2http://www.bpmn.org/.

http://www.bpmn.org/

154 8 Model-Driven Engineering for Blockchain Applications

• For Option (ii), an active mediator uses a smart contract to implement the

collaborative business processes. As with the C-Monitor, it is split between a

factory and a set of instances and offers a consolidated view of the process state.

In contrast to the C-Monitor, the mediator always plays an active role, receiving

and sending messages according to the business logic defined in the process

model. It also may transform data or execute other computations.

• Interfaces or triggers connect the process executing on blockchain and the

external world. Because smart contracts cannot directly interact with the world

outside the blockchain, a trigger plays the role of an organization’s agent. It

holds confidential information and runs on a full blockchain node, keeping track

of the execution context and status of running business processes. The trigger

calls external APIs if needed, receives API calls from external components, and

updates the process state in the blockchain based on external observations. It

further keeps track of data payload in API calls and keeps the data in an external

database when appropriate.

With these components, the approach ensures that (1) participants can execute

collaborative processes over a blockchain network of untrusted nodes; (2) the state

only progresses when messages (in the form of transactions) are received that are

expected at the current execution state of the process, and only if they come from

the correct party (else they are rejected); (3) payments and escrow can be coded into

the process; and (4) the immutable blockchain ledger keeps a log of all transactions,

successful or not. Next, we explain the above components in more detail.

Design Time: Translator

The translator is used at design time: it takes an existing business process spec-

ification as input and generates a corresponding factory smart contract, which

implements the C-Monitor or mediator and can be deployed and executed on the

blockchain.

In a collaborative process, the complete functionality must be split and dis-

tributed between the smart contract and the triggers. The translator creates the

artefacts in such a way that the triggers and the smart contract collaborate directly

with each other over the blockchain network. The smart contract contains all on-

chain code, and the triggers connect enterprise systems, UIs, and other external

components to the contract and vice versa.

When the translator is called, it is often not known which participants will play

which roles. Also, organizations may want to execute many instances or cases of

a process over time. Therefore, the translator outputs a factory contract, which in

turn contains all information needed for instantiating the process. In addition to the

factory contract, the translator can output an interface specification per role (e.g.

buyer, manufacturer, and shipper) in a collaborative process, to be distributed to the

respective triggers. The factory contract includes a method for instantiation, which,

if invoked, creates a process instance contract. The process instance contract

8.2 Model-Driven Generation of Smart Contract Code for Collaborative. . . 155

contains the implementation of the business logic and takes the form of a C-Monitor

or mediator, depending on the content of the original process specification and how

it was translated.

The process instance contract (see Listing 8.1) is generated from the business

logic which the translator inserted into the factory contract. The process instance

contract consists of a list of storage variables that represent the execution state of

the process instance. To optimize the cost, we could further minimize the size of

the data stored on chain, but that lowers readability of the code, and we therefore

include the less optimized version here. Two types of elements in a business process

are implemented as functions in Solidity, namely, tasks and AND-Join gateways.

Tasks are called by triggers, gateways only internally within the smart contract and

therefore can be marked as private functions.

To start the process execution, the first task is activated in the constructor

function ProcessMonitor(). To execute the task ‘order goods’, the function

Order_Goods() is called in a blockchain transaction, e.g. through an invo-

cation of the trigger. The corresponding function in the code first checks if the

task that has been called is activated and whether it was called by the right

participant (msg.sender == participants[0]); if not, the call is aborted

with return false. Otherwise, task-specific code is executed, and finally the

execution state of the process is advanced by updating the activation variables. The

technology can handle complex processes with various types of gateways, details of

which we omit here.

The task activation variables define the execution state of the process instance.

Each task invocation includes steps that implement process enforcement: The call

is accepted only if the call conforms to the process model in its current state and

only if the call is made by the participant that is assigned to the role that is supposed

to execute the task. Otherwise, it returns false to indicate that the execution has not

succeeded, which can be interpreted as an alert to all participants. The data (e.g. a

message) included in the function call is forwarded, as a smart contract log entry (not

shown in the code). Payments (direct or to/from escrow, relating to cryptocurrencies

or tokens) can be associated with tasks, in which case they are performed on-chain.

Computational tasks, e.g. for data transformation, could be performed on-chain or

off-chain depending on cost analyses.

After generating a smart contract, the translator can also calculate the gas cost

estimates for executing the smart contract. This serves as an indication of the cost to

execute process instances in the blockchain, which can in turn be used for budgeting

and/or capacity planning, depending on the blockchain configuration to be used at

runtime. For more details on cost estimates, see Chapter 9.

Runtime Environment: Executing Processes as Smart Contracts

The translator generates all artefacts needed for runtime execution. We start their

description with C-Monitors, which allow passive monitoring of choreographies

with optional escrow. Active mediators can be seen as an extension of C-Monitors,

156 8 Model-Driven Engineering for Blockchain Applications

1 contract ProcessMonitor {
2 address[] participants;
3
4 // ---------- process variables
5 bool taskOrderGoodsActivated = false;
6 bool taskPlaceOrderForSuppliesActivated = false;
7 ...
8
9 function ProcessMonitor(address[] _participants) {

10 taskOrderGoodsActivated = true;
11 ...
12 }
13
14 function Order_Goods(...) returns(bool) {
15 if ((taskOrderGoodsActivated && msg.sender ==

participants[0]) {
16 // task-specific code
17 ...
18 // update execution state
19 taskOrderGoodsActivated = false;
20 taskPlaceOrderForSuppliesActivated = true;
21 return true;
22 }
23 return false;
24 }
25 ...
26 }

Listing 8.1 Example of C-Monitor contract code in Solidity, © 2016 by Springer International
Publishing, part of Springer Nature, reprinted with permission

and the additional functionality is explained next. The third important concept

for runtime, the triggers, and the interaction between triggers and smart contracts

are covered afterwards. Finally, we describe how technical challenges like key

distribution and encryption are handled.

Choreography Monitor The first way of facilitating collaborative processes is

to use a smart contract as a C-Monitor, with optional escrow and conditional

payment at certain points of the processes. How the private processes of participants

are executed within their regular enterprise systems is largely out of scope here;

however, the assumption is that they can make API calls (to their respective triggers)

for coordination. Of course the internal enterprise systems can be extended to

directly incorporate the triggers as well.

For a new process instance, an instance contract is generated from the fac-

tory contract. Initialization includes registering participants and their public keys

(account addresses) to roles. This enables the instance contract to ensure authentica-

tion, e.g. such that the goods can only be ordered by the Bulk Buyer in our running

example process. The C-Monitor instance contract contains variables for storing

the role assignment and for the process execution status, as shown in Listing 8.1.

8.2 Model-Driven Generation of Smart Contract Code for Collaborative. . . 157

Order goods

Bulk Buyer

Manufacturer

Place order for

supplies

Manufacturer

Middleman

+

Forward order for

supplies

Middleman

Supplier

Place order for

transport

Middleman

Special carrier

+

Deliver supplies

Special carrier

Manufacturer

Report start of

produc�on

Manufacturer

Bulk Buyer

Deliver goods

Manufacturer

Bulk Buyer

Send waybill

Supplier

Special carrier

Request details

Special carrier

Supplier

Provide details

Supplier

Special carrier

Fig. 8.3 BPMN choreography diagram of the process in Fig. 8.1 (Notation: BPMN). © 2016 by
Springer International Publishing, part of Springer Nature, reprinted with permission

During execution, the participants do not interact with each other directly. Instead,

they invoke functions on the instance smart contract to exchange messages as data

payloads. The contract checks if a message is a transaction signed by the correct

participant and that the message is permitted at the current state of the process. It

then writes the result into the smart contract event log. The log is analysed by all

triggers, which react upon observing relevant information. With this mechanism,

participants exchange the messages and simultaneously advance the state of the

collaborative process.

Consider the choreography in Fig. 8.3, which is a representation of the collab-

orative process from Fig. 8.1. All tasks are communication tasks between roles.

The C-Monitor is used to exchange messages, to check conformance with the

choreography model, and to track the status. While triggers and smart contracts

together forward messages and update the state of the process, the state can also be

inferred from the raw blockchain data. In this way, conformance checking is done

implicitly by the C-Monitor, and all transactions (successful or not) are logged in

the blockchain. The handling of escrow is described below.

As discussed throughout the book, a main design decision for blockchain-based

systems is about which parts of computation and data should be on-chain and

which should be off-chain. The blockchain provides neutral territory to verify

computational results and provide agreement on transactions’ outcomes, but the

amount of computational power and data storage space available on the network

remains limited, even in non-public settings. The computational power and data

storage space on public blockchains incur monetary costs. If the input/output data

payload is sizeable, it should likely be stored off-chain. In this case, we can use the

off-chain data storage pattern (Section 7.2.3): the transactions include a URI of the

input/output data payload and its hash value on the blockchain. The data can then be

retrieved from the URI, and the hash allows verification of the integrity of the data.

158 8 Model-Driven Engineering for Blockchain Applications

Mediator The second way of facilitating collaborative processes is to use the smart

contract as an active mediator. This orchestrates calls between different organiza-

tions. Like the C-Monitor, the mediator is implemented as factory and instance

contracts. The instance contracts use the same components as the C-Monitor

instances, including registration of involved participants and their roles, informa-

tion specific to a process instance, and escrow. Mediators also implement active

components, to transform data and to receive and send messages and payments.

While message and payment handling are straightforward to achieve using smart

contracts, data transformation can easily become uneconomical. In this case, we

can apply the oracle pattern from Section 7.1.1 as follows. One of the triggers

can be designated to be called from the mediator, transform the data, and send a

message with the output back to the mediator. The smart contract can also require

that multiple triggers agree on the result of the computation, either using multi-

signatures or using a separate transaction from each trigger confirming the result.

Triggers A blockchain is a closed environment, where the deployed smart contracts

cannot directly call external APIs. In the approach discussed here, a trigger (or

blockchain interface) can connect the participants’ internal processes with the

blockchain. It monitors the process execution status, logically receives messages

from smart contracts and calls external APIs, or receives API calls and logically

sends messages to smart contracts accordingly.

Triggers are programs running on full nodes of the blockchain network. Triggers

can be distributed on multiple full nodes for increased reliability. In the typical

setup, every participant operates its own trigger deployed on a node it controls,

and the participant’s internal systems only communicate with their own triggers.

Since a trigger is required to hold private keys for the participants on whose behalf

it operates, a high degree of trust in the individual trigger is required. Normally each

participant should operate its own trigger.

When a new process instance is created, the participants register their roles

and public keys. Recall that the public key corresponds to the account address of

a participant. All keys and role assignments are passed to all triggers associated

with the process instance, so everyone knows which role is played by whom and

can verify messages accordingly. With the private key it holds, the trigger can

encrypt or sign a message, allowing the contract and the other participants to

verify its messages. In this fashion, it can also create payment transactions using

cryptocurrency held in the accounts it controls.

During process execution, the trigger is receptive to API calls from its owner,

as well as to logical messages from the process instance contracts. The interaction

between internal process implementations, triggers, and the process instance smart

contract is shown in simplified form in Fig. 8.4. When a trigger’s API is called from

its owner, the trigger translates the received message into a blockchain transaction,

test-calls the smart contract locally, and if that is successful sends the transaction

to the instance contract. The local test call allows the trigger to check if the

choreography task that expects this message is activated. If not, the local test call

will return false, and the trigger will know the smart contract is not in a state where

8.2 Model-Driven Generation of Smart Contract Code for Collaborative. . . 159

Bulk Buyer BB Trigger
Smart

Contract

Manufact-

urer
Mf. Trigger

API call:

Order goods
Blockchain

Transac�on

(BCTX)

Smart Contract effect

Check

conformance

API call

MiddlemanMm. Trigger

API call:

Place order

Execute

internal logic

BCTX

Smart Contract effect

Check

conformance

API call

Fig. 8.4 Sequence diagram for the first two tasks in Fig. 8.3. © 2016 by Springer International
Publishing, part of Springer Nature, reprinted with permission

the message can be sent. In turn, the trigger can alert its caller or delay the message

and retry periodically. Note that, even if the local test call is successful, the real

transaction can still fail, e.g. if the status has been updated between the test call and

the transaction being processed. When the trigger receives a logical message from

the instance contract, it updates its local state and makes an API call to the internal

enterprise application that implements the private process for its owner.

Finally, the trigger can take care of sizeable data payloads. For incoming API

calls, it moves the data to secure storage, hashes it, and attaches a URI and the

hash to the outgoing transaction. For incoming messages from the blockchain, it

retrieves the data via its URI, checks if the hash matches, and sends it on to the

internal process implementation.

Encryption and Key Distribution All information on a blockchain is accessible

to all nodes within the network. We store two types of information on blockchain,

namely the process execution status and the data payload (or its URI/hash). To

preserve the privacy of the participants, we have the option to encrypt the data

payload before inserting it into the blockchain. However, the process execution

status is not encrypted because the C-Monitors and mediators need to process this

information. Encrypting the data payload means that mediators cannot perform data

transformation at all, but can resort to the source participant’s trigger for this task.

We assume the participants exchange their public keys with each other before a

process instance is initiated by one of the participants. Thus, the key distribution

is handled off-chain. Since participants need to find each other through off-chain

mechanisms before starting a collaborative process, this typically does not introduce

much overhead.

Encrypting data payload for all process participants can be achieved as follows.

One participant creates a secret key for the process instance and distributes it during

initial key exchange. When a participant adds data payload to the blockchain, it first

symmetrically encrypts this information using the secret key. Thus, the publicly

accessible information on blockchain is encrypted, i.e. useless to anyone who has

160 8 Model-Driven Engineering for Blockchain Applications

no access to the secret key. The participants involved in the process instance have

the secret key and can decrypt the information.

Encrypting data payload between two process participants, in contrast, may

be desired if two participants want to exchange information privately through

the process instance. For this case, the sender can asymmetrically encrypt the

information using the receiver’s public key; only the receiver can decrypt it with

its private key.

Escrow The C-Monitor or mediator can also work as an escrow for conditional

payment at designated points. Similar to an escrow agent, e.g. in real estate

transactions, the smart contract receives money from one or more parties, and only

releases the money to other parties once certain criteria are met. For the receivers

this has the benefit that they can observe that the money is actually there before

doing work; and the sender does not have to pay upfront, trusting it will eventually

receive the goods or service in return.

In the running example process, the Manufacturer needs to pay the Middleman,

Supplier, and Carrier when it receives the goods. But the Supplier is unwilling

to send the goods without some guarantee that it will get paid. Therefore, the

Manufacturer puts the money in escrow, namely the account of the process instance

contract, when ordering the goods. This account is exclusively controlled by the

smart contract code, but the presence of the funds in escrow is visible to everyone on

the blockchain (including the Supplier). Later, both the Carrier and the Manufacturer

confirm the delivery of the goods, which triggers automatic payment from the

escrow account to the Middleman, Supplier, and Carrier.

The smart contract defines under what conditions the money can be transferred

and how the money should be transferred. Thus, when a payment function is

triggered, the smart contract automatically checks the defined conditions, and

transfers the money according to the defined rules. It is, however, of high importance

to specify rules that cover all possible scenarios and the respective outcomes:

e.g. what shall happen with money in escrow if the Manufacturer and the Carrier

disagree about the delivery of the goods or their condition? Implementing the rules

in a smart contract does not prevent possible conflicts, but it allows their automatic

enforcement.

8.2.4 Discussion

Conflict Resolution Following up on the conflict example from Section 8.2.2, we

discuss how conflict resolution can be implemented in our approach. Recall that

there was disagreement about the amount of supplies ordered. The blockchain

inherently provides an immutable audit trail. Thus it is trivial to review the

original order and waybill messages, and the culprit can be identified through such

inspection. Say that the Supplier was at fault, but the Manufacturer paid crypto-coins

into escrow. How does it get its money back? The conditions for reimbursement

8.2 Model-Driven Generation of Smart Contract Code for Collaborative. . . 161

from escrow need to be specified in the smart contract, but then they can be invoked

at a later time. For instance, the participants may agree upfront that the Manufacturer

gets reimbursed only if the Middleman agrees to that; then the Middleman sends a

transaction to that effect, and the Manufacturer’s money is transferred back to its

account.

Trust Blockchain provides a trustworthy environment, without requiring trust in

any single entity. In contrast, in the traditional model participants who do not trust

each other need to agree on a third-party which is trusted by all. Blockchain can

replace this trusted third-party. This is of particular interest in cases of coopetition,

i.e. organizations cooperate for specific cases to achieve business goals that are

mutually beneficial, but compete in other cases. In such cases, it is important

that the entity which executes the joint business process is neutral. Say, Org1,

Org2, and Org3 are in coopetition but want to have a joint process to achieve

some business goal. However, Org1 would not accept Org2 or Org3 to control the

process, and neither of those would accept Org1. Using the blockchain for process

execution enables trustless collaboration, as it is not controlled by a single entity.

The translator allows the deployment of business processes on a blockchain network

without the need to manually implement the corresponding smart contract.

Trust in the deployed bytecode for a process can be established as follows:

each participant has access to the process model, translates it to Solidity with

the translator, and uses an agreed-upon Solidity compiler. This results in the

same bytecode, and each participant can verify that the bytecode deployed on

the blockchain has not been manipulated. Finally, the trigger allows for seamless

integration into service-based message exchanges. However, each trigger is a fully

trusted party, and by default each organization should host its own trigger.

Privacy Public blockchains do not guarantee data privacy: anyone can join a

public blockchain network without permission, and information on the blockchain

is public. Thus, for scenarios like collaborative process execution, a permissioned

blockchain may be more appropriate, configured so that joining it requires explicit

permission. Even with permission management, the information on blockchain

is still available to all the node operators on the blockchain network. While we

discussed a method to encrypt the data payload of messages, the process status

information is available to all nodes. As such, if Org1’s competitor, Org4, knows

which account address belongs to which participant, it can infer with whom Org1 is

doing business and how frequently. This can be mitigated by creating a new account

address for each process instance: the space of addresses is huge and account

creation trivial. However, this method prevents building a reputation, at least on

the blockchain.

Off-Chain Data Store As discussed above, for large data payloads the off-chain

data storage pattern from Section 7.2.3 can be used: only metadata with a URI and

a hash is stored on-chain, and the actual payload data is kept off-chain—accessible

with the URI.

162 8 Model-Driven Engineering for Blockchain Applications

8.2.5 Conclusion

Collaborative process execution is problematic if the participants involved have a

lack of trust in each other. In this section, we discussed using blockchain and its

smart contracts to circumvent the traditional need for a centralized trusted party in a

collaborative process execution. First, a translator can translate process models into

smart contracts that can be executed on a blockchain. Second, the approach utilizes

the computational infrastructure of blockchain to coordinate business processes.

Third, to connect the smart contracts on blockchain with enterprise systems and the

external world, we discussed the concept of triggers. A trigger converts API calls to

blockchain transactions directed at a smart contract and receives status updates from

the contract that it converts to API calls. Triggers can thus act as a bridge between

the blockchain and an organization’s private process implementations. Additional

benefits of this approach include the option to build escrow and automated payments

into the process and that the blockchain transactions from process executions form

an immutable audit trail.

8.3 Model-Driven Registry Generation for Blockchain

In this section, we discuss model-driven development of registries for assets, such

as land titles, cars, or digital assets. A registry is a list of information recorded

and managed by a trusted authority. For example, a government might maintain

a registry to store information about businesses, including their business number

and name. Usually registries are operated as a centralized service, but this creates a

single point of failure for the whole system. One approach to address this limitation

is to use blockchain and smart contract technologies. As explained in the beginning

of the chapter, we focus here on non-fungible assets, where the identity of the

individual asset is important. Fungible assets like interchangeable tokens can instead

make use of well-proven standards like ERC20, and are not discussed here.

Building registries on a blockchain can provide increased confidence in data

integrity, availability, transparency, and immutability, and there is strong interest

from industry and government around this idea. In particular, data integrity and

availability are two of the key requirements of registries. Additionally, if we use a

blockchain as a unified infrastructure, multiple registries can more easily interact

with each other. There are registries being built on blockchain in ad hoc ways, for

example, Namecoin,3 which is a domain name registry that shares the same network

with Bitcoin, and Ascribe,4 which is an artwork registry that allows artists to register

3https://namecoin.org/.
4https://www.ascribe.io/.

https://namecoin.org/
https://www.ascribe.io/

8.3 Model-Driven Registry Generation for Blockchain 163

and manage the ownership of their digital artwork. However, building a registry on

blockchain is non-trivial, and the code needs to be of very high quality since it

typically manages assets of value.

In this section, we discuss Regerator, which is a tool that follows a model-

driven approach to provide templates for developers to create customized registries

by automatically generating and deploying registries on blockchain. For users,

there is a web forms-based interface, and a model that is not closely bound to

the underlying blockchain technology. Regerator includes (1) a smart contract

generator that can generate and deploy smart contracts representing registries on

the Ethereum blockchain and (2) a generator for web-based RESTful APIs and user

interfaces to interact with the generated registries. The feasibility of the approach

is illustrated through a case study of applying it to an open data registry, using

metadata from data.gov.au, and a registry model derived from an existing metadata

registry platform.

8.3.1 Registries on Blockchain

Registries are authoritative databases for specific entities and are used to manage

many aspects of daily life, such as land titles, business names, books, marriages,

births and deaths, music, films, and domain names. Being an authoritative database

means that a registry contains the default version of the truth. Sometimes a registry

will be the legally authoritative source of truth, such as for land under a Torrens

Title system.

Many public registries are hosted and maintained by government agencies whose

authority guarantees authenticity for the registered entities. Every change to a

registry is recorded with a digital fingerprint, which can be verified independently.

A registry should store a history of all changes and be open to independent

scrutiny. A registry may reference other registries to reduce duplication and errors.

Registries should be highly available, because other registries and services depend

on them. Open registries are publicly available, which means that the registry may

be accessed, copied, or derived freely by the public. For instance, a business name

registry, such as the Australian Business Register,5 is a public registry whose entities

can be requested by anyone at any given time. Building registries on blockchain

can leverage key properties provided by blockchain and utilize the infrastructure of

blockchain to achieve interoperability.

The main non-functional properties for registries on blockchain are as follows:

• Integrity concerns the accuracy and consistency of data over its entire life cycle.

Data integrity is a key requirement of a registry, which means that the items

can be only registered and changed by the authorized users. Many blockchain

5https://abr.gov.au/.

www.data.gov.au
https://abr.gov.au/

164 8 Model-Driven Engineering for Blockchain Applications

techniques are censorship-resistant, which helps to ensure the ongoing integrity

of the full log behind the registry.

• Availability is also a key requirement for registries, especially national public

registries, which form the basis for many other services that utilize the data from

the registries. A blockchain system maintains consensus on data that is replicated

across the network with many processing nodes. Therefore, there is no single

point of failure since the infrastructure is fully decentralized.

• Interoperability is needed for registries to refer to and interact with each other

and can be supported on a blockchain as it provides a common underlying

infrastructure.

• Efficient reading is required to allow large-scale users of the registry to access

local copies of the registry directly, to control latency and cost. On a blockchain,

this is achieved because every node within the blockchain network has a local

copy of all historical data. However, light users might find the cost of operating

a full node relatively high, e.g. when compared to API calls.

• Programmability is required to allow more sophisticated, flexible, and finer-

grained access control models to register and manipulate the items in the

registry. On a blockchain this can be supported by using smart contracts. The

computational results are verified by the participants of the network and recorded

on blockchain, providing a full audit log of function calls in transactions as well

as logical states of the registries.

• Immutability is required to enable an audit trail of all historical operations on

the registry, to create complete traceability of records. This is a key property of

blockchains. However, some registries need to provide functionality to remove

records from the registry as if those records were never created, e.g. to respond

to a court order for the removal of those records. This can be a challenge on a

blockchain.

8.3.2 A Tool for Registry Generation: Regerator

In the remainder of this section, we discuss a tool called Regerator, which was

developed in our research. Regerator is a model-driven framework for the generation

of registries on a blockchain and for the generation of interface components for those

registries. Currently it generates registries in Solidity for Ethereum. As a model-

driven framework, it could support additional backend blockchain platforms in the

future, provided that those platforms have sufficiently expressive smart contract

languages. Regerator has three core components: a smart contract generator, a

registry of registries, and interfaces for smart contract management, as shown in

Fig. 8.5.

8.3 Model-Driven Registry Generation for Blockchain 165

Smart contract generator

d
e
p

lo
y

Blockchain

Smart contract

address and interface

DeploymentTemplate

Smart

contract code

Registry of

registries

Smart contract manager

MonitorInteraction

Fig. 8.5 Overview of registry generator on blockchain. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

Smart Contract Generator

The smart contract generator allows the users of Regerator to generate smart contract

registries from registry models and to deploy the generated smart contracts onto the

blockchain. The smart contract model has four parts, including basic information,

registry type, basic operations, and advanced operations.

• Basic information includes the registry name, description, and user-defined data

fields and their types.

• Registry type can be ‘single’ or ‘distributed’. The ‘single’ registry type holds all

records as values in the data store for a singleton smart contract for the registry.

The ‘distributed’ type manages each record as a separate smart contract. A main

registry smart contract creates these contracts and stores pointers to them. The

‘single’ option is suitable for simple registries, while the ‘distributed’ option is

suitable for registries with complex operations, such as finer-grained permission

management at individual record level.

• Basic operations are the operations that can be performed on an individual

record, including Create/Read/Update/Delete and existence checking. Users can

configure whether or not a record is updatable. The Delete operation is a logical

delete only, since it is impossible to remove historic records on a blockchain.

• Advanced operations include access control, foreign key, version control, prove-

nance, trading, and multi-signature. We explain them in more detail below.

– Access control is required to restrict users to certain operations. In the case of

a public registry, only authorized government agencies are allowed to insert or

update records, even though the registry is readable by the public. To enable

permission management, a whitelist or a blacklist of addresses can be provided

for the invocation of operations. We allow for the definition of access control

mechanisms at the registry layer or the record layer. (For more restrictive read

access control, a private blockchain can be hidden behind a web interface that

implements those access control mechanisms, but this is not discussed here.)

166 8 Model-Driven Engineering for Blockchain Applications

We provide two types of access control management. The basic type is to

check the permissions directly before executing an operation. The second type

is to use a separate indirectly invoked permission smart contract as a gateway

to manage a whitelist or blacklist; the operations of the registry then only

check against the address of the permission contract. Deciding between these

two alternatives depends on several factors, such as coupling, modifiability,

and the size of the smart contract, which impacts the cost of deployment.

– Foreign key is a concept borrowed from relational database, which allows

users to include the identity of a record from one registry as an attribute of

a record to another registry as a way to define the relationship between two

registries.

– Version control allows users to explicitly add a version number to an update

on a registry and enables more efficient querying.

– Provenance in the context of registry refers to a log of all the operations

that have been executed on a given registered entity. Such information is

necessary for auditing data integrity. Blockchain-based registries naturally

support provenance, as all data on the blockchain is immutable and valid.

– Trading or transferring ownership is required by registries that allow the

trade of registered items, such as domain names registered in Domain Name

System (DNS). This function is implemented as an escrow, which holds the

money from the buyer first when they make an offer; when the current owner

accepts the offer, the smart contract transfers the money to the seller and

changes the ownership of the item to the buyer.

– Multi-signature requires multiple parties to jointly sign a transaction to

invoke a smart contract operation. For instance, a publication registry like

arXiv.org might require the permissions from all the authors of an article to

update or delete the record. This function is planned for future work.

After registries have been defined, the smart contract generator provides a view

to show the registries and the relationships among them as a graphical model. A

screenshot of this functionality is shown in Fig. 8.6. The user can then decide to

deploy the registries on blockchain.

Registry of Registries on Blockchain

The registry of registries stores references to all registries generated using Regerator

on-chain. This facilitates version control of the generated registries. If a registered

registry is updated to a new version, the address of the new smart contract is added

to the registry of registries. Other tools and users can query the registry of registries

to retrieve the current location and status of a registry or to view a historical version.

www.arXiv.org

8.3 Model-Driven Registry Generation for Blockchain 167

Fig. 8.6 Screenshot of the data model view of Regerator. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

Smart Contract Manager

The smart contract manager provides web-based RESTful APIs and user interfaces

to allow users to manage and interact with the generated registries. Similar to

the business process execution approach discussed in the previous section, there

is a dry-run mechanism that validates and tests the transaction for each of the

functions defined in a registry by invoking the function on the local blockchain node

behind the interface. If the output of the dry-run matches the user’s expectation,

the transaction is submitted into the blockchain network. This dry-run mechanism

allows users to check the effect of their transactions before making permanent

changes and incurring actual cost for submitting the transactions to the blockchain

network. A smart contract monitor provides functionality to monitor contract events.

In Ethereum, smart contracts can emit events and write logs to the blockchain when

a transaction is processed. Tools and users can watch for new events, which show up

on the page when there are events being recorded on blockchain during the contract

execution.

8.3.3 Exemplar Case Study: Open Data Registry

To demonstrate the feasibility of the Regerator approach for model-driven gen-

eration of blockchain-based registries, we used Regerator to build a metadata

168 8 Model-Driven Engineering for Blockchain Applications

registry inspired by the Comprehensive Knowledge Archive Network (CKAN).6 We

populated this example registry with metadata taken from data.gov.au. We discuss

some design considerations from the implementation as well as transaction cost

below.

CKAN

CKAN is a web-based open-source data registration system, which provides

functionalities to streamline publishing, sharing, finding, and using data. CKAN has

been used by public institutions and governments to open their data to the general

public, e.g. data.gov.au and data.gov.uk.

The central entity type in CKAN is a package. A package defines a variety

of metadata of datasets, such as name, description, license, and tags. CKAN also

supports an unlimited amount of customized metadata in the form of key/value pairs.

The relationships between packages can be defined, such as depends on, child of,

and derived from. Another entity type in CKAN is resource, which represents the

raw data in the dataset, such as files or APIs. A package can be associated with

multiple resources.

Implementation

We modelled elements of CKAN’s metadata schema using Regerator and generated

a blockchain-based registry system for the metadata of datasets. One architectural

decision to be made is either to manage one entity as part of the attributes of another

entity or to model both entities as separate registries. For the first choice, the nested

entity will not have a unique, identifiable ID. As for the second choice, foreign key

references between them need to be defined in order to encode the relationship, and

both the entities can be uniquely identified. For the entity to be modelled as registry,

another architectural decision to be made is either to model the entity as a ‘single’

registry or a ‘distributed’ registry. The factors to consider include the complexity of

the data structure, the nature of the relationship between entities (coupling), and the

cost of deploying and executing the registries on blockchain.

In the case of CKAN, there are potentially three entities that could be imple-

mented as separate registries, including package, resource, and organization.

Although resources are associated with a package, a resource is also an independent

entity with its own metadata and can be managed separately. Thus, we have decided

to record resources in a separate registry. Finally, organization is implemented as a

separate registry that groups the address of all the users from the same organization.

The organization registry can be used to define access, akin to role-based access

control (RBAC).

6http://ckan.org/.

www.data.gov.au
www.data.gov.au
www.data.gov.uk
http://ckan.org/

8.3 Model-Driven Registry Generation for Blockchain 169

Table 8.1 Cost of using blockchain

Registry deployment Record creation (average)

Gas cost Cost in US$ Gas cost Cost in US$

Entity Single Distr Single Distr Single Distr Single Distr

Organization 1.84M 2.54M US$30.9 US$42.7 183k 0.93M US$3.0 US$15.8

Package 1.84M 2.54M US$30.9 US$42.7 340k 1.09M US$5.7 US$18.5

Resource 1.78M 2.55M US$29.9 US$42.7 302k 1.07M US$5.0 US$17.8

© 2017 by the Commonwealth Scientific and Industrial Research Organisation, reprinted with
permission

Example Data

After implementing the blockchain-based registry, we queried the metadata of all

the datasets from data.gov.au and added that to our registry to test the feasibility of

our approach. Information about the number of each entity and the collected fields

are shown as below.

• Organization (533 entries): name, jurisdiction, spatial_coverage, email, tele-

phone, website

• Package (33,810 entries): name, owner_org, license_id, contact_point, spa-

tial_coverage, temporal_coverage

• Resource (64,147 entries): name, url, package_id, format, hash, size

During the metadata import, we collected data about the blockchain cost as gas

consumed (i.e. transaction execution cost) for deploying a registry and adding a

record to the registry. We use this information to calculate the monetary cost of

using blockchain as metadata repository according to the cost model of Ethereum.

Table 8.1 reports the cost for the different design options (‘single’ or ‘distributed’

registry). The data also shows how different architectural decisions can affect the

cost of deploying and executing the registry. We assume the gas price is 2 × 10−9

ETH (2 Gwei) and the exchange rate for Ether is US$420/ETH7 as of 2 August

2018.

Discussion

Impact of Architecture Design on Cost On the Ethereum blockchain, the cost

of creating a registry contract is comprised of fixed costs and variable costs. Fixed

costs are the base amount for the transaction itself and the cost for allocating an

address on the blockchain. Variable costs are affected by the architectural design

of the registry contract, e.g. the cost of data payload. Similarly, the cost of adding

records to a registry is also comprised of a fixed cost for the transaction itself and

7ETH is the currency code for Ethereum’s cryptocurrency.

www.data.gov.au

170 8 Model-Driven Engineering for Blockchain Applications

some variable costs including for the data payload and to execute the functions

defined in the registry contract.

In contrast to existing practice, where adding a record is not normally inde-

pendently accounted for financially, using a public blockchain means that adding

a record costs real money (cryptocurrency). However, the blockchain ecosystem

will retain this data indefinitely as long as the blockchain exists, at no additional

cost. The most costly field (with the biggest size) of both package and dataset in

our experiment was ‘description’, which amounted to approx. 85% of the total cost

if included on blockchain. If it is not of high importance to store this information

on-chain, storing it off-chain could significantly reduce the cost.

Interoperability In the ecosystem of CKAN, the datasets in different CKAN

repositories refer to each other through importing the metadata from the referred

repository to the primary repository and transferring it to the correct format due

to the customer-defined fields. Regerator allows references to be defined as foreign

keys, thus avoiding redundancy and preventing inconsistent drift.

8.3.4 Conclusion

In this section we discussed applying a model-driven approach for registries on

blockchain. The Regerator system allows users to configure a registry model in a

browser-based application and to automatically generate and deploy smart contract

code implementing the registry on a blockchain. In addition, Regerator can also

create user interfaces and RESTful APIs.

Execution cost for a generated registry is affected by architectural options repre-

sented within the registry model, and we have explored this through experiments

on the Ethereum blockchain. The cost model for blockchains is different from

conventional (cloud or in-house) servers, because transactions are expensive but data

is retained indefinitely at no additional cost. Qualities like cost will be discussed in

the next part of this book.

8.4 Summary

This chapter started with an argument about why model-driven engineering is

particularly useful for blockchain-based applications: to avoid known vulnerabilities

and technology lock-in, to implement best practices, and to facilitate understanding

across parties and thereby increase trust in smart contract code.

We then elaborated on two methods for model-driven engineering: one for

collaborative business processes and one for registries of non-fungible assets, like

land titles or ownership of intellectual property. We also discussed how architectural

8.5 Further Reading 171

decisions impact qualities like cost and maintainability. The next part of the book

will look at some of these qualities in more detail, starting with cost and how to

estimate it.

8.5 Further Reading

For a brief summary of model-driven engineering, including its history and role in

software engineering, see, e.g., Schmidt (2006).

Parts of this chapter are based on our own research publications, in particular the

business process monitoring and execution approach (Weber et al. 2016), and the

registry generator tool Regerator (Tran et al. 2017). For the business process part,

we devised an optimized version of the approach (García-Bañuelos et al. 2017).

This variant minimizes gas cost by trading it against lower readability of the code

and lower isolation between process instances. It has been implemented in the tool

Caterpillar (see López-Pintado et al. 2017). In contrast to these approaches, Prybila

et al. (2017) present an approach to track flexible processes that can deviate from the

model using the Bitcoin blockchain. Hull et al. (2016) propose to use an artefact-

centric process modelling method for blockchain-based processes. Recently, the two

model-driven engineering approaches discussed in this chapter have been combined

in the Lorikeet tool (Tran et al. 2018).

Findings that the integration of business processes contributes to better opera-

tional and business performance are discussed in Flynn et al. (2010) and Narayanan

et al. (2011). A lack of trust, however, may hamper collaborative process perfor-

mance (Panayides and Lun 2009).

The supply chain scenario shown in Fig. 8.1 is derived from the literature (Fdhila

et al. 2015).

The research literature on collaborative business processes has intensively inves-

tigated different notions of compatibility between the local processes of different

partners and between local processes and a global process. Such compatibility can

be achieved by design, for instance, using a P2P approach (van der Aalst and Weske

2001), transformations from a global choreography (Mendling and Hafner 2008;

Weber et al. 2008), or interaction modelling (Decker and Weske 2011).

Business processes involve different trust issues (see, e.g. Viriyasitavat and

Martin (2011) for a summary) which can be addressed in different ways. For

example, Carminati et al. (2014) relaxed the assumption that the broker hosting the

process engine has to be trusted: using selective encryption, data access for both the

broker and the service partners can be restricted. Mont and Tomasi (2001) designed a

trust service for cross-company collaboration based on a hybrid architecture mixing

a trusted centralized control with untrusted peer-to-peer components. Li et al. (2010)

put forward an agent-based architecture that can remove the scalability bottleneck

of a centralized orchestration engine and provides more efficiencies by executing

portions of processes close to the data they operate on. In virtual organizations,

172 8 Model-Driven Engineering for Blockchain Applications

Squicciarini et al. (2008) proposed to select partners on the basis of disclosure

policies and credentials (i.e. identity attributes issued by a ‘credential authority’).

Key requirements and characteristics of registries were discussed in a UK

Government report by Downey (2016). Regis8 is a contract generator for registries

on the Ethereum blockchain but only provides very basic operations.

8https://regis.nu/.

https://regis.nu/

Part III

Quality Impact of Using Blockchain

Blockchain systems emerged to support financial transactions (digital currency),

and so it is not surprising that the major supported non-functional properties (NFPs)

are those that are critical in that domain: integrity and non-repudiation (including

immutability of data, and transparency). As a highly distributed and redundant data

store, blockchain systems can also support high levels of availability for reading

data. As discussed earlier, there are some well-known limitations on NFPs for

blockchain systems. Some are inherent to the technology, but others are only current

limitations and may well be overcome in the near future. We discuss a variety of

NFPs below.

Chapter 9

Cost

with Paul Rimba and An Binh Tran

In software architecture for blockchain-based applications, one of the most critical

non-functional properties to consider is cost. The (monetary) costs of execution and

storage are as important for blockchain technologies as they are for conventional

technologies. However, blockchain systems have different kinds of cost models,

and the cost for storing too much data on-chain can explode rather quickly. In this

chapter, we discuss different options for storing data, and the principles of cost for

smart contract deployment and execution.

Blockchains enable decentralized trust in storage and execution, but bring trade-

offs against execution cost and latency. Therefore, we present mathematical cost

models for blockchain and a particular cloud technology. Using these models, we

investigate the question: What kinds of cost trade-offs are there for blockchain vs.

cloud?

To illustrate answers to these questions below, we use an exemplar system of col-

laborative business process execution, implemented on both blockchain and cloud

technologies. We use Ethereum because, like cloud platforms, it supports general

purpose computation. In this chapter, we use the exchange rates of US$7650/BTC1

and US$420/ETH2 from August 2, 2018. We also assume a gas price of 2 × 10−9

ETH (2 Gwei) on Ethereum.

1BTC is the currency code for Bitcoin’s cryptocurrency. Source for exchange rates is https://
poloniex.com/exchange#usdt_btc.
2ETH is the currency code for Ethereum’s cryptocurrency. Source for exchange rates is https://
poloniex.com/exchange#usdt_eth.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_9&domain=pdf
https://poloniex.com/exchange#usdt_btc
https://poloniex.com/exchange#usdt_btc
https://poloniex.com/exchange#usdt_eth
https://poloniex.com/exchange#usdt_eth
https://doi.org/10.1007/978-3-030-03035-3_9

176 9 Cost

9.1 On-Chain Data Cost

A common practice for data management in blockchain-based systems is to store

raw data off-chain and to store on-chain just metadata, small critical data, and hashes

of the raw data. We touched on this topic at various points of the book already,

specifically in Section 6.3.3 and its comparison table (Table 6.2). Here we provide an

in-depth discussion of the specific methods that can be used and the costs incurred.

In the Bitcoin blockchain, before OP_RETURN3 was made a valid opcode (i.e.

function of Bitcoin Script language) to store arbitrary bytes in an unspendable

transaction, users were able to include limited information into transactions on-

chain using one of four methods. These were: writing in a coinbase transaction

which is only editable by miners, using the nSequence field, using a fake account

address, or using unreachable script code defined through if and else conditions.

Four Ways to Store Arbitrary Bytes in an Unspendable Bitcoin Transaction

In the first method, every block has a coinbase transaction that mints new coins. The
recipient of the coinbase transaction is the miner who generates the block. There is a
parameter coinbase in the coinbase transaction, which can contain arbitrary data from
the miner, and only the miner has access to this parameter.

In the second method, the blank field nSequence of a normal transaction is used
to distinguish some transactions from other Bitcoin transactions, e.g. presenting assets
other than the BTCs. Every participant which has the permission to submit transaction
can set the value of nSequence.

For the third method, data can be encoded into a fake account address. The data is
recorded on blockchain by sending a small amount of coins to the fake account. Any
coin sent to the fake address is lost forever. One way to extend the mechanism is to use
1-of-n multi-sig transaction. Thus, if the recipient account of the transaction belongs
to the owner of the arbitrary data, no coins are lost. To avoid denial-of-service attacks,
Bitcoin sets a minimum amount of funds that can be transferred to an address, so that
transactions with outputs below this threshold are discarded by the miners.

In the fourth method, smart contracts use conditional statements, such as in
Bitcoin’s Script or Ethereum’s EVM. For example, Bitcoin Script has OP_IF,
OP_ELSE, and OP_ENDIF. A clause within a conditional statement, which cannot

be reached under any condition, can be used to store arbitrary data. This conditional
statement causes extra overhead.

All four methods are deprecated now that OP_RETURN has been introduced as

an official way to embed arbitrary data in a Bitcoin transaction.

Table 6.2 compares the OP_RETURN mechanism with other options provided

by public Ethereum to store arbitrary data. There are trade-offs in cost efficiency,

performance, and flexibility. The OP_RETURN instruction returns immediately

with an error so that the included data is not interpreted as a script. The default

Bitcoin client only relayed OP_RETURN transactions up to 80 bytes, which was

3https://bitcoinfoundation.org/core-development-update-5/.

https://bitcoinfoundation.org/core-development-update-5/

9.1 On-Chain Data Cost 177

reduced to 40 bytes in February 2014.4 Storing 80 bytes of arbitrary data on the

Bitcoin blockchain costs roughly US$0.459.5 It is debatable whether Bitcoin should

be used to record arbitrary data.

Ethereum, on the other hand, theoretically allows storing arbitrary structured data

of any size. According to the cost model given in the Ethereum yellow paper, every

transaction has a fixed cost of 21,000 gas (gas is the internal pricing for executing

a transaction or storing data), and every non-zero byte of data costs additional 68

gas. Thus, the total cost of storing 80 bytes of data on Ethereum blockchain by

submitting a transaction is 26,440 gas (assuming all bytes are non-zero), which is

roughly US$0.22.

Ethereum provides two other ways to store arbitrary data in smart contracts. For

32 bytes of data, the first option is to store the data as a variable in a smart contract

(all simple types in Solidity, the script language on Ethereum, are 32 bytes). The cost

of storing data in the contract storage is based on the number of SSTORE operations

required for the contract variable. In the case of storing 32 bytes, there is one

SSTORE operation that changes the data from zero to non-zero, which costs 20,000

gas. As mentioned, the transaction as the carrier costs a base 21,000 gas. The data

payload of the transaction including the function signature and the actual data costs

extra gas. Other than these two costs, there is a cost for creating the smart contract

depending on its complexity. In total, the cost is larger than US$0.036(20,000 +

21,000 + 32 ×68 gas). A subsequent transaction that updates the variable will incur

5000 gas, instead of 20,000 gas, for keeping the data as non-zero. Therefore, the

subsequent transaction will be US$0.024 (5000 + 21,000 + 32 × 68 gas).

The second option is to store arbitrary data as a log event. This follows different

rules for calculating cost. Logged data is stored in log topics which cost 375 gas,

and where every byte of data in a log topic costs an extra 8 gas. Including the fixed

cost of the carrier transaction with data payload, the rough cost of using a log event

to store 32 bytes of data is US$0.018 (21,000 + 375 + 32 × 8 gas). Storing data as a

variable in a smart contract is more efficient to manipulate but less flexible due to the

constraints of the Solidity language on the value types and length. The flexibility and

performance of using smart contract log events is intermediate because log events

allow up to three parameters to be queried.

Finally, we reiterate that data storage on blockchain follows a different cost

model than conventional data storage. Although it may seem more expensive,

storing data on blockchain is a one-time cost for permanent storage. (However, note

that Ethereum allows a partial refund on reclaimed smart contract variable storage.)

Selection of off-chain data storage concerns the interaction between the block-

chain and the conventional data storage facilities. Off-chain data storage can

4https://github.com/bitcoin/bitcoin/pull/3737.
5Assuming a typical Bitcoin transaction with one input and one output, which has about
220 bytes, the default transaction fee rate of 2 × 10−4 BTC/KB (see https://en.bitcoin.it/wiki/
Transaction_fees).

https://github.com/bitcoin/bitcoin/pull/3737
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Transaction_fees

178 9 Cost

be through conventional enterprise IT systems, a private cloud on the client’s

infrastructure, or a public storage provided by a third-party. The flexibility of using

cloud to store data depends on the implementation. Some peer-to-peer data storage

facilities are designed to be friendly to blockchain, such as IPFS6 and Storj.7 IPFS is

free, but ensuring availability requires providing an IPFS server that hosts the data.

The cost of Storj is US$0.015/GB/month. In a peer-to-peer data storage, the data is

replicated automatically by the peer-to-peer network, or based on the behaviour of

users, e.g. data is replicated once a user accesses it. In a cloud environment, data

replication needs to be managed by the system or consumer.

9.2 Smart Contract Cost

There is a cost charged on Ethereum for transactions in relation to their complexity.

A detailed cost model is presented in Section 9.3.1. In rough terms, there is a fixed

base cost for any transaction, the 21,000 gas mentioned above, plus variable com-

ponents: data attachments as discussed above; executing a smart contract method

is charged per bytecode instruction; and additional cost arises during deployment

of new contracts. All costs in Ethereum follow a fixed pricing table, specified in the

unit gas. Gas cost is converted to Ether, Ethereum’s own cryptocurrency, with a user-

defined gas price factor, i.e. how much Ether-per-gas the creator of the transaction

is willing to pay. By default, Ethereum clients set the gas price to the current market

rate, an average over previously included transactions.

To prevent denial-of-service attacks, Ethereum has a block gas limit: the sum

of gas used by the set of transactions included in a given block cannot exceed this

limit. The block gas limit is set by the miners. Each miner winning a block can

slightly increase or decrease the block gas limit or keep it unchanged. Because the

block gas limit is defined in terms of gas usage, not the transaction fee in Ether,

this limit cannot be influenced by variations that the user has power over (such

as underbidding the market price), effectively making it a limit of complexity for

new blocks. As such, the block gas limit acts also as an upper bound to throughput

scalability. But since the cost of transactions can vary, it is non-trivial to understand

how that bound relates to transaction throughput for a given application.

9.3 Cost Models

In this section, we describe models (formulae) to estimate the cost of running

an application on two different types of infrastructure. We use the execution of

an instance of a business process model as sample application. For blockchain

6https://ipfs.io/.
7https://storj.io/.

https://ipfs.io/
https://storj.io/

9.3 Cost Models 179

infrastructure, we use Ethereum because its smart contracts are in a Turing complete

programming language which can be used to represent business process logic—

see Chapter 8. For conventional cloud infrastructure, we use Simple Workflow

Service (SWF) from Amazon Web Services (AWS), because it is dedicated to

process execution and offered by a leading commercial cloud computing provider

(i.e. Amazon). It can implement the commonly used workflow patterns, as well as

synchronous and asynchronous messaging patterns.

Executing collaborative processes across organizations requires three types

of components: (i) the implementation of the collaborative process model, to

coordinate the work across participants; (ii) implementations of the activities that

participants perform; and (iii) interfaces (or triggers as in Section 8.2) that control

interactions between the collaborative process and the participants’ activities.

The details of a participant’s activities (ii) are typically shielded from external

organizations and given a good interface (iii) are independent of the choice of

coordination technology. As such, we disregard factor (ii) in our cost models.

First, consider (i), the cost overhead of process coordination. For a cost model for

a single instance of a coordinating process, both for blockchain and Amazon SWF,

we send all messages synchronously and in a way that conforms to the business

process model. Next, consider (iii), the cost for running a virtual machine (VM)

that hosts the interface between the coordinating process and the internal systems.

This is dependent on the choice of technology as well as on the workload. When

the workload exceeds the VM’s capacity, a more powerful or additional VM will be

required. Blockchain infrastructure also needs a ‘full node’ of the blockchain, which

is relatively heavyweight.

We describe the two components of the cost model, first for Ethereum in

Section 9.3.1 and then for SWF in Section 9.3.2.

9.3.1 Ethereum Blockchain Cost Model

There are three types of transactions in Ethereum: financial transfer, message

call, and contract creation. Each has the following basic elements: from, to,

gasLimit, value, and data.

The from and to fields signify the sender and the recipient of the transaction,

respectively. For a financial transfer transaction, the amount transferred is given in

the value field. The data field is optional but can contain data in arbitrary other

forms, e.g. XML, pictures, or MP3s. The fee for a transaction with attached data

covers the cost for storing the data permanently in the blockchain and is proportional

to the size of the data—see the details in Section 9.1. A message call transaction

invokes a function of a contract, where the data field carries the method to be

invoked and the parameters. The gasLimit is used to specify the maximum gas

that can be used in this transaction. Gas is paid for each bytecode instruction that

is executed. Finally, a contract creation transaction is indicated by a to value of

180 9 Cost

NULL and data that contains the contract bytecode. For both message call and

contract creation transactions, the value field is optional.

We divide our business process blockchain cost model into two parts, one for the

cost of deploying a smart contract and one for the cost of executing business process

coordination.

A contract creation transaction includes compiled bytecode in the data field,

and the permanent storage of this data incurs cost. An optional ‘endowment’ can

be provided, so that the new contract has a positive balance upon initialization.

When a contract is created, a particular Ethereum address is assigned to it, which is

subsequently used to interact with that contract. This contract address is calculated

with a deterministic function that depends only on the creator’s Ethereum account.

The details of the costs of contract creation are outlined in the Ethereum yellow

paper. We refer to this cost as Ccreate. A contract creation transaction costs a base

amount of 21,000 gas for the transaction itself (Ctx), plus 32,000 for allocating

a new address (Caddr), plus the cost of data payload (Cpload, the size of contract

bytecode multiplied by gas per byte), plus any additional gas that is consumed by

the opcodes in the function definition (Cfndef
). The contract creation cost formula is

shown in Eq. (9.2). An online tool is provided by Ethereum to estimate the amount

of gas required in Ethereum. At the time of writing, the cost of payload for contract

bytecode is 200 gas per byte, while the cost of payload for data in a financial

transaction and message call is 68 gas per non-zero byte and 4 per zero byte.

Cpload = payload (in bytes) × Cgas/byte (9.1)

Ccreate = Ctx + Caddr + Cpload + Cfndef
(9.2)

In Ethereum, a contract can create another contract. This is cheaper because this

does not incur Ctx. So, the cost of creating a new contract by an existing contact,

Ccreateinternal , can be calculated as shown in Eq. (9.3).

Ccreateinternal = Caddr + Cpload + Cfndef
(9.3)

The second part of our cost model concerns the cost for executing the coordi-

nating business process and is summarized in Eq. (9.4). A coordination message

is treated as a function call in Ethereum. A function call costs a base amount of

21,000 gas for the call itself, plus any additional gas that is consumed by the opcodes

present during the function execution (Cfnexec
) and the cost for the data payload.

Ccoord = Ctx + Cpload + Cfnexec
(9.4)

The costs calculated with Eqs. (9.1)–(9.4) are in gas. In order to convert these

costs into Ether, the digital currency of Ethereum, the total gas consumed must be

multiplied by the gas price in wei (one wei is 10−18 Ether). Finally, the cost in

9.3 Cost Models 181

Ether can be converted into another currency through an exchange service at some

exchange rate, EXCETH2CUR. We specify this in Eq. (9.5).

Cin$ = CinGas × gasPrice × 10−18
× EXCETH2CUR (9.5)

Equations (9.2) and (9.4) are concerned with the setup and coordination cost

for component (i) in the introduction of this section, for blockchain infrastructure.

Component (ii) is disregarded as explained, but component (iii) needs to be

considered: the cost of the VM that acts as an interface between the process and

the enterprise systems of participants.

To calculate the cost of the interface VM, we need a few more definitions. Let

EC2t be the set of all available VM types in AWS Elastic Compute Cloud (EC2)8

and ec2t ∈ EC2t . We define each VM type’s capacity as T Pbc : EC2t �→ R.

Next, we define a function that determines the VM type based on the coordination

workload, WLbc, and VM capacity: fbc : (T Pbc, WLbc) �→ EC2t . The cost of

running a VM of this type per billing time unit (BTU) is captured as EC2price :

EC2t �→ R. Finally, we obtain the VM cost by multiplying the price with the

number of BTUs it is required to run, as shown in Eq. (9.6).

Ccomp = EC2price(ec2t) × time (9.6)

Note that, in the blockchain setup, the interface VM operates a full node. As

such, if the VM is not constantly online, the required duration for this VM needs to

include the time to synchronize the blockchain with the network. Ethereum clients

have a ‘fast’ flag that allows faster synchronization: instead of downloading the full

set of known blocks, only transaction receipts from blocks are downloaded. The

receipts show that these transactions happened but do not show the results of the

smart contract function executions, so provide less evidence for integrity. This can

only be done when downloading the blockchain from scratch and takes on the order

of hours to days for the public Ethereum blockchain, depending on the machine and

connectivity chosen and the size of the data structure.

9.3.2 Amazon SWF Cost Model

AWS provides a service for workflow execution, called Simple Workflow Service

(SWF), which we use as a representative for cloud-based business process exe-

cution. We chose SWF as it provides a clear mapping to our process model, for

comparison. SWF has a tiered pricing model,9 i.e. more usage will result in cheaper

8https://aws.amazon.com/ec2/instance-types/; AWS calls VMs ‘instances’. To avoid confusion
with process instances, we use the term ‘VMs’ instead.
9https://aws.amazon.com/swf/pricing/.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/swf/pricing/

182 9 Cost

cost per unit. It has the following main elements: workflow, actor, task, and signal.

A workflow is a collection of activities that can be performed by different actors in a

specified sequence. A workflow in SWF represents an instance of a business process,

while actors play participant roles from the business process. There are two different

types of task: activity and decision. An activity task is used to schedule a notification

to the appropriate actors to proceed with the next activity in the workflow execution.

A decision task is used to determine whether the current state of execution conforms

to the workflow and to determine which activity to execute next. A signal is an

externally triggered event to a currently executing workflow. Table 9.1 shows the

mapping of a business process to elements of Blockchain and SWF.

Figure 9.1 is a sequence diagram that shows how an example of a supply chain

business process is executed using Amazon SWF workflow. Every actor involved in

the business process implements its own trigger, which is a program that interacts

with Amazon SWF through AWS API calls. When a trigger’s API is called by

its owner, the trigger translates the message into an Amazon SWF signal. SWF

then schedules a decision task to evaluate the signal’s content and to perform

conformance checking. If successful, an activity task is scheduled to notify the

actor of the next business activity. Task execution requires the actor to have a

running Amazon SWF worker module, which can be operated either on AWS EC2

Table 9.1 Business process mapping to Amazon SWF elements and blockchain elements

Business process Blockchain Amazon SWF

Process instance Instance of smart contract Workflow

Conformance checking Contract execution (partial) Decision task

Activity Contract execution (partial) Activity task

Incoming message Transaction Signal

Outgoing message Entry in contract event log Notification

© 2017 IEEE. Reprinted, with permission, from Rimba et al. (2017)

Bulk BuyerBulk Buyer BB TriggerBB Trigger
Amazon

SWF

Amazon

SWF
Mf. TriggerMf. Trigger

Manufact-

urer

Manufact-

urer
Mm. TriggerMm. Trigger MiddlemanMiddleman

API call:

Order goods

Amazon SWF API call

(SWF Signal)

Ac�vity Task:

No�fica�on
API call:

Place orderSWF Signal

Decision Task:

Check

conformance

Ac�vity Task:

No�fica�on

Execute

internal logic

Decision Task:

Check

conformance

Bulk Buyer BB Trigger
Amazon

SWF
Mf. Trigger

Manufact-

urer
Mm. Trigger Middleman

API call:

Order goods

Amazon SWF API call

(SWF Signal)

Ac�vity Task:

No�fica�on
API call:

Place orderSWF Signal

Decision Task:

Check

conformance

Ac�vity Task:

No�fica�on

Execute

internal logic

Decision Task:

Check

conformance

Fig. 9.1 Supply chain process implemented using Amazon SWF Workflow (cf. Fig. 8.4). © 2018
by Springer International Publishing, part of Springer Nature, reprinted with permission

9.3 Cost Models 183

or the actor’s own infrastructure. This Amazon SWF worker module will execute

both decision task and activity task scheduled by SWF. Conformance checking is

a technique in process mining, which compares an existing process model with an

event log produced by the process model. Conformance checking is used to check if

what happened in reality conforms to the process model, and can be used at runtime.

The total cost for SWF-based execution has several components. First, the base

cost for workflow instances Cwf can be calculated by multiplying the number of

instances with the SWF cost of starting a workflow execution (SWFwf) as shown

in Eq. (9.7).

Cwf = #wf × SWFwf (9.7)

The execution of activity tasks is done by the SWF worker, which we discuss

below. The cost for scheduling tasks, Ctask, is the price per task (SWF task)

multiplied with the sum of activity tasks and decision tasks that are executed; see

Eq. (9.8). Note that the number of activities in a process instance equals the number

of SWF activity tasks, whereas the number of decision tasks is that number plus one

additional decision task (immediately after the start of the workflow instance).

Ctask = (#actTask + #decTask) × SWF task (9.8)

The number of signals can be obtained from the number of activities in a business

process instance. We can calculate the cost of signals, Csig, by multiplying the

number of signals with the price per signal, as shown in Eq. (9.9).

Csig = #signals × SWF signal (9.9)

Data generated during the workflow execution is retained by SWF for a user-

specified duration after completion of workflow execution (retT) and is charged

for storage per 24 h. The workflow execution time (execT) is also charged per 24 h

at the same rate as data retention cost (SWF ret). This is reflected in Eq. (9.10).

Finally, cost of data transferred, Cdat, inwards and outwards during the workflow

execution, is the total payload data size (payload) multiplied with the cost per data

unit (SWFdata). See Eq. (9.11).

Cret = (execT + retT) × SWF ret (9.10)

Cdat = payload × SWFdata (9.11)

The formula to calculate the total cost of business process execution on Amazon

SWF is shown in Eq. (9.12), which is the sum of individual costs incurred from

Eqs. (9.7) to (9.11).

Cswf = Cwf + Ctask + Csig + Cret + Cdat (9.12)

184 9 Cost

Equation (9.12) provides the coordination cost when using SWF services and

does not include the cost of the VMs to run the triggers and the Amazon SWF

workers. In order to calculate the cost for the VMs, we first need to determine the

VM type required for a specific workload, WLswf . For that we again define the

throughput per VM type as T Pswf : EC2t �→ R. The throughput values here are

different from the ones for blockchain triggers, due to the different modules that

are running for SWF. Analogous to the blockchain calculations, we determine the

required VM type based on the capacity of VM types and the workload: fswf :

(T Pswf , WLswf) �→ EC2t .

We use that information to calculate the cost for running the VMs for the time

needed as per Eq. (9.6). The minimum requirement is one VM to host the trigger

and worker, with the caveat that all participants trust this VM. In a preferable setup,

each participant involved provisions at least one VM to host their own trigger and

worker.

In the cost model, we need to know the maximum throughput of each different

VM type, T P , for process execution on both blockchain and Amazon SWF. These

need to be established through benchmark tests.

9.4 Using and Evaluating the Cost Model

In this section, we show how the cost models can be used to compare costs. We use

the example of business process execution on Ethereum and Amazon SWF. We also

describe some benchmark experiments that allow us to explore the accuracy and

limitations of the cost models. Finally, we discuss how we can use the models to

conduct sensitivity analyses, to better explore the cost consequences of the design

in different business scenarios.

9.4.1 Experiment Setup, Methodology, and Benchmarking

For the cost comparison experiment, we use two datasets. The first is a process

for incident management from the literature. Figure 9.2 shows the business process

model, which has nine tasks and six gateways. The model has four conforming

traces, all of which we use. Such a process would be cross organizational if, e.g. first-

level support was outsourced. The second dataset is based on a real-world invoicing

process, provided to us by the Minit process mining platform in the form of a log

file with 5316 traces that comprise 65,896 events. We derived a process model from

these with standard process discovery methods. The model has 40 tasks and 18

gateways. Due to the presence of loops, there is an infinite number of conforming

traces. We use that model and the 5316 traces.

9.4 Using and Evaluating the Cost Model 185

Start
Key account manager

VIP customer

Customer has a problem

Key account manager

VIP customer

Get problem description

1st level support agent

Key account manager

Ask 1st level support

Key account manager can handle issue

2nd level support agent

1st level support agent

Ask 2nd level support

Software developer

2nd level support agent

Ask developer

2nd level support agent

Software developer

Provide feedback for 2nd
level support

2nd level support
resolved issue

1st level support agent

2nd level support agent

Provide feedback for 1st
level support

1st level support resolved issue

Key account manager

1st level support agent

Provide feedback for
account manager

VIP customer

Key account manager

Explain solution

End

Fig. 9.2 Incident management case study workflow, adapted from literature (Notation: BPMN).
© 2017 IEEE. Reprinted, with permission, from Rimba et al. (2017)

The test instances for the business process are read from a message trace log

file. For each log line, we send a message to the respective actor’s business process

trigger, which sends a transaction to the blockchain or a signal to Amazon SWF.

Blockchain

For the incident management process, we reuse the results from our previous work,

with experiments on the public Ethereum blockchain. For the invoicing process, we

ran separate large-scale experiments. In both scenarios, each actor maintains a local

Ethereum node, running go-Ethereum (geth). For incident management/invoicing

respectively, we used geth versions 1.3.5/1.5.4, connected to the public/a private

Ethereum blockchain, and compiled our smart contracts using Solidity compiler

version 0.2.0/v0.2.1 with optimization enabled. We implemented the triggers in

Node.js using the Ethereum library web3 version 0.15.1 for both processes.

Amazon SWF

For Amazon SWF, each actor was implemented with a business process trigger in

Java, using the AWS SDK for Java version 1.11.13. This trigger calls the Amazon

SWF API to send signals to the Amazon SWF. We deployed the trigger and SWF

worker on an EC2 t2.micro VM.

VM Throughput Measurements

As mentioned in the previous section, we need to establish the maximum throughput

of each different VM type, T P , in order to use the cost model. We have run

186 9 Cost

Table 9.2 AWS EC2 VM types and specification

VM types vCPU specifications Memory (GiB)

t2.small 1 Intel Xeon E5-2676 2.40 GHz v3 w/ Turbo up to 3.3 GHz 2

m3.medium 1 Intel Xeon E5-2670 2.50 GHz v2 (Ivy Bridge) processors 3.75

m3.large 2 Intel Xeon E5-2670 2.50 GHz v2 (Ivy Bridge) processors 7.5

m3.xlarge 4 Intel Xeon E5-2670 2.60 GHz v2 (Ivy Bridge) processors 15

© 2018 by Springer International Publishing, part of Springer Nature, reprinted with permission

Table 9.3 Throughput experiment result

Blockchain Amazon SWF

m3.medium m3.medium

Metrics t2.small m3.medium m3.large (default) (incr. limit)

Transactions or signals 13,580 7336 20,104 73,871 152,404

Network in (MB) 102 114 128 138 168

Network out (MB) 195 131 278 353 376

Duration (s) 3610 3605 3604 3605 3605

Average Tx/s or 3.8 2.0 5.6 20 42

Average signal/s

© 2018 by Springer International Publishing, part of Springer Nature, reprinted with permission

benchmark tests to empirically determine this, using synthetic load based on the

incident management process described earlier. We do not present the details of

this test here but do show the results below. We used several types of EC2 VMs

for a private Ethereum deployment. We used t2 VMs and m3 VMs which provide

a consistent baseline performance for general purpose applications. All the VMs

used solid state drives as disks. The specifications for the VM types are shown in

Table 9.2. Table 9.3 summarizes the results for both blockchain and Amazon SWF.

9.4.2 Blockchain Results

For the invoicing process, we deployed a factory contract and ran 5316 process

instances with a total of 65,896 transactions. As per our business process execution

approach, when invoked for process instantiation, the factory contract generates a

new instance smart contract, which contains the blueprint of the business logic.

This smart contract also performs conformance checking during execution: for each

transaction after instantiation, the process instance contract checks if this transaction

is expected in the current state of the instance. There are 49 unique traces, i.e. 49

different paths through the process model were explored during the experiment. The

deployment of the factory contract costs 0.0031 Ether (approx. US$1.30), and each

unique trace has different costs associated to it, ranging from 0.0006 to 0.0017 Ether.

We ran this experiment on a private blockchain where it cost a total of 15.66 Ether

(approx. US$ 6577.20 on public Ethereum). Our private blockchain uses the same

code as the public one, including for cost calculation.

9.4 Using and Evaluating the Cost Model 187

For the incident management process, we refer to experiment runs that were

reported previously (Weber et al. 2016). In these experiments on the public

Ethereum blockchain, we ran 32 process instances with a total of 256 transactions.

With a gas price of 20 Gwei, which was the market rate at the time (March 2016),

the deployment of the factory contract costs 0.032 Ether, and each run of the

incident management process, with data transformations, cost on average 0.0347

Ether. At the time when we conducted the experiment, the exchange rate was around

US$10/ETH, and these costs equated to about US$0.30–0.40. With a current gas

price of 2 Gwei and exchange rate of US$420ETH, the costs are approx. US$1.34

and US$1.46, respectively. The sharply increased exchange rate has, to a degree,

been compensated by a lower market gas price.

9.4.3 Amazon SWF Results

In the SWF experiment, we created a new process instance (SWF workflow

instance) for each run. On receiving a signal, Amazon SWF schedules a decision

task for the worker. The worker checks the received signal for conformance with

the business process implemented in the workflow and the state of the instance, and

if successful progresses the workflow state accordingly.

If the signal frequency during the execution of a workflow instance is too high,

AWS may schedule the next decision task to handle the decision logic for all the

received messages in a batch. SWF would thus allocate a single decision task to

handle multiple signals for a single workflow instance at once, which could distort

our results. To prevent SWF from batch processing the signals for a single workflow

instance, we send messages synchronously: once the result has been received, we

send the next message for that instance.

We deployed an EC2 t2.micro VM for the trigger and the Amazon SWF task

worker and executed process instances in sequence. For each process instance, the

initialization creates a new workflow (instance) and a decision task to instruct the

workflow to wait for the first signal. For each additional message, the trigger sends

one signal which results in one activity task and two decision tasks: the workflow

schedules a decision task each time it receives a signal or a completion message

from an activity task. Thus, for X process instances with a total of Y events, there

are X workflows, Y − X signals and activity tasks, and 2Y − X decision tasks.

In our experiments, we set both the data retention rate and workflow execution

to 1 day. The total cost for the invoicing experiment with 5316 process instances

was US$7.23. This equates to an average cost of US$0.0014 per process instance,

with 1-day data retention. The cost per process instance would be US$0.00318 if

we increased the data retention to 365 days. Table 9.4 shows the cost breakdown.

Amazon SWF data transfer is charged per GB, with 1 GB as the lowest denomina-

tion. As we incurred 4522 MB of data transfer during the Invoicing experiment, the

cost for data transfer is rounded up to 5 GB.

188 9 Cost

Table 9.4 Amazon SWF
cost breakdown—invoicing

Elements in Unit cost Total cost

Elements experiment (US$) (US$)

Decision task 126,476 0.000025 3.16

Activity task 60,580 0.000025 1.51

Signal 60,580 0.000025 1.51

Workflow 5316 0.0001 0.53

Retention (24 h) 5316 0.000005 0.027

Execution time (24 h) 5316 0.000005 0.027

Data transfer 5 0.09 0.45

© 2018 by Springer International Publishing, part of Springer
Nature, reprinted with permission

Table 9.5 Amazon SWF
cost breakdown—incident
management

Elements in Unit cost Total cost

Elements experiment (US$) (US$)

Decision task 15,000 0.000025 0.375

Activity task 7000 0.000025 0.175

Signal 7000 0.000025 0.175

Workflow 1000 0.0001 0.1

Retention (24 h) 1000 0.000005 0.005

Execution time (24 h) 1000 0.000005 0.005

Data transfer 1 0.09 0.09

© 2017 IEEE. Reprinted, with permission, from Rimba et al.
(2017)

For the incident management process with 1000 process instances, the total cost

for the experiment was US$0.925, resulting in an average cost of US$0.000925

per process instance. If we increased the data retention to 365 days, the cost per

process instance would be US$0.002745. Table 9.5 shows the cost breakdown. The

data transfer volume for incident management was 358 MB, which is rounded up to

1 GB.

9.4.4 Completeness, Correctness, and Comparative Analysis

We believe the cost model is complete because in our implementations of both

variants we did not encounter any cost that is (1) not part of the cost models and

(2) specific to either system. Take, for instance, broadband network access from the

enterprise systems: we take that as a given, and there are no particular differences

between the network requirements for blockchain or Amazon SWF.

In terms of correctness, we found the outputs of the 5348 process instances from

both blockchain experiments to be consistent with the outputs of the Amazon SWF

experiments, given the same inputs.

9.4 Using and Evaluating the Cost Model 189

For the invoicing process, executing one process instance costs US$0.001359

on average in Amazon SWF. In comparison, executing the same process instance

on Ethereum costs on average 0.00294 Ether, or approx. US$ 1.24, plus 0.0031

Ether (US$1.30) as a one-time cost for deploying the factory contract. Excluding the

one-time factory contract deployment, the cost per process instance on blockchain

is currently three orders of magnitude higher than on Amazon SWF. Blockchain

stores the result in perpetuity (as long as the blockchain is in existence), while SWF

has a 90-day limit on data retention. To put the higher one-time cost for executing

a process instance on Ethereum into perspective with the ongoing cost for data

storage on Amazon SWF: to reach break-even, the data would have to be stored for

243,863 days or approx. 668 years.

Similar findings are observed in the incident management process, where

executing one process instance costs US$0.000925 on average on Amazon SWF.

In comparison, executing the same process instance on Ethereum costs on average

0.00347 Ether, or approx. US$ 1.46, plus 0.0032 Ether (US$1.34) as a one-time cost

for deploying the factory contract. The cost per process instance on blockchain in

the incident management process is about three orders of magnitude higher than on

Amazon SWF. The data needs to be retained for 266,447 days or approx. 730 years

to reach break-even.

The Ethereum blockchain cost estimates from the online tool have a difference

of up to ±2.4% for the contract creation part, i.e. factory contract and process

instance deployment. For the cost of coordination (Ccoord), the online tool estimates

this as transactional cost, which is the execution cost (Cfnexec
) + 21,000 gas (Ctx) +

cost of payload (Cpload). The cost of payload is (4 bytes of function signature +

parameters in bytes) × Cgas/byte. For most of the activities in incident management,

our cost model can estimate the gas usage accurately, with the exception of

customer_has_problem activity which has an unusual gas refund behaviour that

affects the calculation of the execution cost by 15,000 gas. To achieve accurate gas

usage and cost estimation for function execution, this is best achieved by deploying

a private Ethereum blockchain. In a private blockchain setting, the conversion to fiat

currency (Eq. (9.5)) may not be required.

The Amazon SWF cost model is accurate in estimating the costs for the SWF

elements, with a possible variation for workflow execution time and data transfer.

Estimating the cost of VM based on the maximum throughput of the VM type and

the workload may vary due to performance variation in AWS EC2 and complexity

of the activity task implementation.

One of the benefits of having a cost model is the ability to predict the cost

for different workload settings. Having previously validated the cost models for

Ethereum blockchain and Amazon SWF, this gives us all the components needed

for us to predict the cost of business process execution for different workloads.

190 9 Cost

Table 9.6 Cost of blockchain experiments for invoicing and incident management processes
under different exchange rates

Exchange rate (in US$)

Costs Ethereum (in Ether) 0.10 1.00 10.00 100.00 1000.00

Incident management
(contract deployment)

0.0032 0.00032 0.0032 0.032 0.320 3.20

Incident management
(per process instance)

0.00347 0.000347 0.00347 0.0347 0.347 3.47

Invoicing process
(contract deployment)

0.0031 0.00031 0.0031 0.031 0.31 3.10

Invoicing process
(per process instance)

0.00294 0.000294 0.00294 0.0294 0.294 2.94

© 2018 by Springer International Publishing, part of Springer Nature, reprinted with permission

9.4.5 On the Volatility of Cryptocurrency to Fiat Currency

Exchange Rate

The results of our comparative analysis are sensitive to the volatility of the exchange

rate from cryptocurrency (Ether in our case) to fiat currency (US$ in our case). In

order to illustrate this, consider a sensitivity analysis where we set the exchange

rates for Ether to US$ in logarithmic scale from US$0.1 to US$1000. Another

parameter we can vary is the retention rate, where we calculate for the cost of 24-

h and 99 years (long-term) data retention. Table 9.6 shows the predicted costs of

business process execution for both invoicing and incident management processes

on Ethereum blockchain in this parameter space.

The costs of business process execution for both the invoicing and incident

management processes on SWF with 24-h retention rate are US$0.001359 and

US$0.000925, respectively. For 99 years retention rate, invoicing process will cost

US$0.182029, and the incident management process will cost US$0.181595.

Blockchain and SWF costs are compared under different exchange rates (for

blockchain) and different retention rates (for SWF) in Table 9.7. For the invoicing

process, the cost on SWF (with long-term data retention) is two orders and one order

of magnitude higher than Blockchain if the exchange rate is US$ 0.10 and US$1.0,

respectively. This is consistent with our finding for the incident management

process, where the cost on SWF is also two orders and one order of magnitude

higher than Blockchain with the same exchange rates.

9.4 Using and Evaluating the Cost Model 191

T
a
b

le
9
.7

C
o
st

co
m

p
ar

is
o
n

o
f

S
W

F
an

d
b
lo

ck
ch

ai
n

fo
r

in
v
o
ic

in
g

an
d

in
ci

d
en

t
m

an
ag

em
en

t
p
ro

ce
ss

es
u
n
d
er

d
if

fe
re

n
t

ex
ch

an
g
e

ra
te

s
an

d
re

te
n
ti

o
n

ra
te

s

S
W

F
co

st
(i

n
U

S
$
)

S
W

F
v
s.

b
lo

ck
ch

ai
n

co
st

co
m

p
ar

is
o
n

in
ra

ti
o

w
it

h
d
if

fe
re

n
t

ex
ch

an
g
e

ra
te

s
(r

at
io

<
1

m
ea

n
s

b
lo

ck
ch

ai
n

is
ch

ea
p
er

)
B

re
ak

-e
v
en

ra
te

(i
n

U
S

$
)

C
o
st

s
$
0
.1

0
$
1
.0

0
$
1
0
.0

0
$
1
0
0
.0

0
$
1
0
0
0
.0

0

In
ci

d
en

t
(2

4
h
)

0
.0

0
0
9
2
5

0
.3

7
5

(0
)

3
.7

5
1

(+
1
)

3
7
.5

1
(+

2
)

3
7
5
.1

4
(+

3
)

3
7
5
1
.3

5
(+

4
)

0
.2

7

In
ci

d
en

t
(9

9
y
ea

rs
)

0
.1

8
1
5
9
5

0
.0

0
2

(−
3
)

0
.0

1
9

(−
2
)

0
.1

9
1
(−

1
)

1
.9

1
(0

)
1
9
.1

1
(+

1
)

5
2
.3

3

In
v
o
ic

in
g

(2
4

h
)

0
.0

0
1
3
5
9

0
.2

1
6

(−
1
)

2
.1

6
(0

)
2
1
.6

3
(+

1
)

2
1
6
.3

4
(+

2
)

2
1
6
3
.3

6
(+

3
)

0
.4

6

In
v
o
ic

in
g

(9
9

y
ea

rs
)

0
.1

8
2
0
2
9

0
.0

0
1
6

(−
3
)

0
.0

1
6

(-
2
)

0
.1

6
2
(−

1
)

1
.6

1
5
(0

)
1
6
.1

5
(+

1
)

6
1
.9

1

P
o
si

ti
v
e

n
u
m

er
ic

va
lu

es
in

th
e

b
ra

ck
et

s
si

g
n
if

y
o
rd

er
o
f

m
ag

n
it

u
d
e

h
ig

h
er

m
o
re

ex
p
en

si
v
e

o
n

b
lo

ck
ch

ai
n
.

©
2
0
1
8

b
y

S
p
ri

n
g
er

In
te

rn
at

io
n
al

P
u
b
li

sh
in

g
,

p
ar

t
o
f

S
p
ri

n
g
er

N
at

u
re

,
re

p
ri

n
te

d
w

it
h

p
er

m
is

si
o
n

192 9 Cost

9.5 Discussion

Below we discuss the cost of business process execution on Amazon SWF vs.

Ethereum blockchain. Section 9.5.1 looks at why we might ever consider using

blockchain if it costs orders of magnitude more than cloud services. We then

look into trade-offs between cost and maintainability for different smart contract

configurations on blockchain. Scalability of blockchain and SWF is discussed in

Section 9.5.3. Finally, we discuss possible cost savings and improved throughput by

improving the business process execution in Section 9.5.4.

9.5.1 Cost of Distrust

We have seen that blockchain costs orders of magnitude more than cloud services for

realistic uses for business process execution. So why should anyone use a blockchain

for this? The key difference is that blockchain technology can provide a trustworthy

storage and execution environment, without requiring trust in any single third-party

organization. In contrast, conventionally participants who do not yet know or trust

each other need to jointly agree on a mutually trusted third-party. In the SWF setup,

participants need to trust both AWS (for confidentiality and truthful execution) and

the party controlling the Amazon SWF account in which the process is hosted.

This is of particular interest in situations of coopetition, where organizations

cooperate for specific cases where achieving some business goals is mutually

beneficial but compete in other cases. In our age of globalization, high market

pressure, diversified organizations, and complex business networks, coopetition is

a common situation. If multiple parties come together to achieve a joint goal, but

some are in coopetition, it is important that the entity executing the joint business

process is neutral.

Blockchain can be used to enable ‘trustless’ collaboration as it is not controlled

by a single entity. However, as our experiments in Section 9.4.4 show, this comes

at a premium price that can be three orders of magnitude higher than using

cloud services like Amazon SWF. Although blockchain provides pseudonymity,

companies involved in the coopetition will need to share their addresses (e.g.

contract addresses and wallet) that will be involved in the business process. These

addresses preserve their pseudonymity to other users of Ethereum.

Public blockchains inherently support payments and escrow handling. Due to

a flat fee structure in blockchains, sending cryptocurrency along with existing

messages would not incur any additional cost. This can offset the premium cost

of distrust offered by blockchain. Commercial escrow services often charge 0.5–

3.25%. Depending on exchange rates and amounts to put into escrow, blockchain’s

flat fees may actually lower the cost of process executions involving monetary

transaction despite the additional cost of smart contract execution and data storage.

9.5 Discussion 193

9.5.2 Cost vs. Maintainability

Different contract deployment methods impact cost and other non-functional prop-

erties. To illustrate this, we set out two sample configurations: (1) one smart

contract with two functions and (2) two smaller contracts, each implementing one

function where one of the contracts acts as an entry point. Both these configurations

provide the same functionality, and intuitively the function definition costs should

be the same. However, the first configuration will have lower deployment cost,

even in terms of payload cost, than the second configuration. This is due to several

reasons:

• For (2), one has to pay Ctx and Caddr twice.

• The total payload of the contracts in (2) is higher than in (1), as there are header

bytes in the payload.

The trade-off is between cost and maintainability. (1) is cheaper but is not as

maintainable as (2). If one of the functions needs to be modified, in (1) the updated

contract needs to be redeployed as a whole. In contrast, in (2) only one of the

contracts needs to be redeployed. Redeployment of a contract means getting a new

address for the updated contract. In (1), the triggers need to be updated to point to

the address of the updated contract, whereas in (2) this can be avoided.

9.5.3 Scaling Triggers for Blockchain and SWF

With increasing workload, additional resources are needed to accommodate the

triggers’ workloads. Two common ways to add resources are vertical (bigger VM)

and horizontal scaling (more VMs). We discuss these for blockchain and SWF.

Blockchain nodes can scale vertically in order to accommodate increasing

workload. However, horizontal scaling has complications. Although it is easy to

add additional VMs into the network, using one account actively from multiple VMs

may lead to what could be considered a double-spending attack. One way around

this may be to use different accounts on different VMs. However, this may create

maintainability issues and increase storage costs across the multiple VMs.

SWF can scale both horizontally and vertically. Vertical scaling is straightfor-

ward in SWF by choosing larger VM configurations. Horizontal scaling requires

launching a new VM and registering it with SWF. SWF then acts as load balancer,

distributing requests to multiple VMs.

194 9 Cost

9.5.4 Optimization and Throughput

Our approach to creating a cost model uses benchmark data collected from specific

versions of our business process execution framework. Optimizations that reduce

the (gas) cost for process execution on blockchain are available. In particular, these

optimizations can minimize the storage space required to capture process execution

state and to reduce the number of write operations. These improvements can reduce

execution cost by around 25%. However, the overall structure of the cost models and

cost modelling methodology outlined in this chapter still applies. The only changes

are in the values for some of the variables in the blockchain cost model, which can

be established by rerunning the cost benchmark tests.

Our cost model calculates the amount of gas that is required to send a particular

transaction. The reduction in cost for this transaction leads to an increase in the

maximum throughput for transactions of this type. This is because maximum

throughput can be obtained by dividing the block gas limit with the gas required

for this transaction type. Furthermore, the cost model can inform an analysis of

whether a public blockchain can cope with the demand of your business process or

application, by calculating the required gas based on the transactions involved.

9.6 Summary

Cost is a critical concern in the design of a software system. The cost of basic

compute and storage on public blockchains has a different cost structure than

conventional cloud infrastructure but can overall be orders of magnitude more

expensive.

To illustrate that, we compared the cost of executing business processes on

blockchain with the cost on cloud services, using a large-scale process dataset

from industry and an example process from the literature. We demonstrated how to

construct and benchmark cost models for both kinds of infrastructure and described

experiments that show the cost models performed consistently. The experiments

also showed that the cost for business process execution on Ethereum blockchain

can be three orders of magnitude higher than on Amazon SWF: for the processes,

the average cost per process instance was US$ 1.22 vs. US$ 0.0013 (invoicing),

respectively, US$ 1.34 vs. $ 0.0010 (incident management). Given the high volatility

of the exchange rate, a cost estimation model that incorporates exchange rate is more

important than ever. Our cost model allows to calculate the gas cost per transaction

for a given application. On this basis, we have discussed how our approach can be

used to build an understanding of the throughput scalability limits for blockchain-

based applications. Furthermore, we analysed the impact of different operational

workload assumptions on the cost.

If blockchain costs so much more than cloud infrastructure, then why should

we use it? The major reason is to benefit from blockchain’s trust assumptions.

9.7 Further Reading 195

Blockchains, especially public blockchains, are not controlled by a single party

and provide a neutral ground for people and organizations. This can be ideal for

multiparty business process execution. The increased cost can be thought of as

offsetting the ‘cost of distrust’ in cloud services across an ecosystem. Another

reason is that some blockchain services are much less expensive than conventional

services. For example, transaction fees and escrow fees for conventional services

can be much higher than on blockchain, and directly incorporating these services

into process execution can lead to blockchain being cheaper overall, despite its

higher cost for storage and computation.

Finally, we note that cost is often in trade-off with other non-functional prop-

erties. We discussed some blockchain-specific factors leading to cost trade-offs for

maintainability and scalability.

9.7 Further Reading

This chapter is partly based on our earlier works (Rimba et al. 2017, 2018). More

details, especially on the experiments, can be found there.

The Ethereum yellow paper (Wood 2015–2018) defines the specification and the

costs of different operations in Ethereum; the experiments reported here are based

on the Homestead Draft version.

The incident management case study workflow is adapted from the litera-

ture (Object Management Group 2010, p. 18), and we use the process execution

approach described in Weber et al. (2016) and the previous chapter. The mentioned

optimizations are discussed in (García-Bañuelos et al. 2017).

The performance variation on AWS EC2 has been investigated in the research

literature (Iosup et al. 2011; Schad et al. 2010).

The book by Bass et al. (2012) lists many non-functional properties of a software

architecture, with cost being one of them.

An online tool to estimate the amount of gas required in Ethereum is available

at http://remix.ethereum.org. Live statistics about gas prices on the public Ethereum

chain are available on https://ethgasstation.info/.

http://remix.ethereum.org
https://ethgasstation.info/

Chapter 10

Performance

with Rajitha Yasaweerasinghelage

The performance characteristics of blockchains (especially public blockchains)

are drastically different from conventional systems. In this chapter we look at

how architects can predict the performance of blockchain-based systems, where a

blockchain is just one component. We start with a general discussion blockchain

performance characteristics, and then describe how to do performance modelling

and simulation for specific blockchain-based system architectures.

10.1 Performance Characteristics of Blockchain

Time-related performance requirements are often critical for software systems.

There are a number of different kinds of performance requirements, and the two

most common are latency, which is about how quickly the system responds to a

request, and throughput, which is about how many requests can be processed within

a time period.

Public blockchain platforms have well-known performance limitations for both

latency and throughput. The maximum throughput for Bitcoin is estimated to be

less than 7 transactions per second and for Ethereum less than 20 transactions per

second. This performance is much less than can be achieved with conventional

technology using administratively centralized distributed systems. Consider also

latency. In a blockchain using Nakamoto consensus (longest chain wins), to confirm

a transaction, it needs to be included in a block, which should be endorsed

by dependent blocks, known as confirmation blocks. Transaction inclusion is

probabilistic, so the number of confirmation blocks that one should wait for is a

risk-dependent decision. However, on Bitcoin, the average inter-block time is about

10 min, and 6-block confirmation is often used. On the public Ethereum blockchain,

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_10

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_10

198 10 Performance

the average block generation time is between 14 and 15 s (in July 2018), and 12

confirmation blocks are typically recommended.1 Individual inter-block times can

deviate substantially from those averages.

Clearly, the latency for initial inclusion of a transaction is already higher than

for traditional systems, and a large number of confirmation blocks will multiply

this delay. Transaction delays can also arise from network delays, the transaction

fee offered, the number of transactions being processed, and the strategic decisions

made by miners. So, transaction inclusion and commit times can vary widely. Some

of these issues are discussed in depth in Section 11.6.

Private blockchain platforms can rely on stronger trust assumptions for nodes

than public blockchains, and use consensus algorithms that result in much better

latency and throughput. In particular, private blockchains tend not to use Nakamoto

consensus, and instead use consensus mechanisms with more conventional commit

semantics; when a transaction is included, it is always included, so confirmation

blocks are unnecessary. However, even private blockchains tend to have worse

latency and throughput than conventional distributed systems.

Regardless, although blockchains often have worse performance than conven-

tional systems, that performance may be perfectly acceptable for some use cases.

Once some basic performance threshold is met, often there are diminishing returns

for improved performance. The question for architects is: will basic performance

requirements be met by the design of a blockchain-based system? This concerns

all the functions of a blockchain which an architecture uses, be it for storage,

computation, communication, or asset management and control as per Chapter 5.

For all these functions, read/receive operations can be very fast and with unbounded

throughput, but write/send operations are subject to limited transaction inclusion

and commit times.

An inability to predict overall performance may itself be a barrier to the adoption

of blockchain technology. It is important for designers to be able to accurately

predict system-level performance, during the design phase. This allows designers to

assess the impact of platform performance limitations on system requirements and

to make choices from among the varieties of blockchains discussed in Chapter 3.

This includes choices between public and private blockchain, the number of

confirmation blocks, and the appropriate integration with off-chain communications

and enterprise systems.

Some high-level performance characteristics are known for blockchain plat-

forms, as discussed above. However it is not as widely known how to predict the

performance of blockchain-based systems. In Section 9.5.4, we discussed how to

obtain throughput estimates from gas price modeling. This chapter shows how we

can use architectural performance modelling and simulation tools to predict the

latency of blockchain-based systems. We use established tools and techniques but

show how blockchain-specific issues can be treated. This includes configuration

1http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-
my-dapp/203#203.

http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203#203
http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203#203

10.3 Predicting Latency for Blockchain-Based Systems 199

options such as the number of confirmation blocks and choice of inter-block

time. We illustrate the approach using a lab-based experimental study of the

incident management system previously introduced in Chapter 9. The method made

predictions of median system-level response time, with a relative error of mostly

under 10%, making the approach precise enough for capacity planning. We discuss

how the approach can be used to support architectural decision-making during the

design of blockchain-based systems.

10.2 Architectural Performance Modelling

Architectural models can be used to predict the non-functional properties including

latency, throughput, resource usage, and cost. These models can be used by

analytical solvers or simulation engines to predict non-functional performance of

a system at various stages of the development life cycle.

There are two types of performance models:

• Analytical performance models capture performance aspects of the system and

serve as input for the analytical solvers. Petri nets (PN), queueing networks (QN),

and layered queueing networks (LQN) are examples for common analytical

models.

• Architecture-level performance models capture key factors influencing the per-

formance of a system. Examples are the Palladio Component Model (PCM);

UML profile for Schedulability, Performance, and Time; and Descartes Mod-

elling Language. Architectural models can be either simulated or automatically

converted to analytical models. Generally, simulations take a longer time than the

solvers to execute but may be more flexible.

In this chapter, we have used the Palladio workbench2 for architecture modelling

of the latency of blockchain-based systems. Palladio is freely available, supports the

simulation of architecture models, has a ‘UML-like’ interface for model construc-

tion, and has proven flexibility for extensions such as architectural optimization and

new qualities.

10.3 Predicting Latency for Blockchain-Based Systems

To enable latency prediction on the architecture level, we first need to measure

latency of individual components. This section first describes our approach to

benchmarking transaction inclusion and commit times for blockchain. We then

describe our approach for system-level performance modelling, using the method

2https://www.palladio-simulator.com.

https://www.palladio-simulator.com

200 10 Performance

for business process execution on the blockchain described in Section 8.2. These

performance models are configured using the benchmarking results.

10.3.1 Benchmarking Transaction Inclusion and Commit

Times

A key parameter for our performance model is the transaction commit time: the

time taken from submitting a transaction until we have sufficient confidence that the

transaction has been successfully included in the blockchain. We need to benchmark

this in a representative deployment of the blockchain to be used by the client

application. The idea is simple: start the clock when we submit a transaction, and

stop the clock when the transaction is ‘committed’. In the Ethereum blockchain we

use in this chapter, a transaction is committed when the broadcasting node receives

a sufficient number of confirmation blocks after receiving a block which includes

the transaction, as mentioned earlier. If one block is enough as confirmation, we

call this transaction inclusion time instead. The total time will depend on the

transaction propagation time, inter-block time, transaction inclusion probability,

block propagation time, and the number of confirmation blocks. Our benchmark

measurement abstracts from these details to create a transaction inclusion time

distribution that we use in our performance model. Our benchmark measurements

also include latency overhead for our trigger code and the communication between

the trigger and the Ethereum node. However, this overhead is in milliseconds range,

compared to the seconds for inter-block times, so it is not significant; and in any

event, client applications using the blockchain encounter similar delays.

As discussed previously, the number of confirmation blocks is a design choice for

client applications using a blockchain. Although 12 confirmation blocks are often

recommended for the public Ethereum blockchain, the ‘right’ number depends on

the business risk involved in the transaction and on other trade-offs with latency.

To demonstrate the approach, we ran benchmarks on a private instance of the

Ethereum blockchain. We used a private deployment to prevent flooding the public

Ethereum blockchain, to reduce our cost, and to be able to vary inter-block time.

We used one virtual machine to deploy the trigger and a go-Ethereum (geth) full

node with mining disabled. The mining node was deployed on a different virtual

machine. This situation would mimic practical deployment to some degree: each

organization would deploy their own full node and trigger in a virtual machine

controlled by them, whereas miner nodes are operated on separate machines. Both

virtual machines run on one Intel(R) Xeon(R) CPU E5-2697 v3 at 2.60 GHz core

each. The virtual machines were located in the same data centre and had a LAN

connection. The trigger was implemented in Node.js version 4.2.6 using Ethereum

JavaScript library (web3) version 0.15.3. Geth version 1.5.4-stable was used, and

10.3 Predicting Latency for Blockchain-Based Systems 201

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

P
e

rc
e

n
�

le
 (

%
)

Transac�on Inclusion Time (s)

Uncontrolled (Avg. inter-block �me ~13.6s)

Controlled (Avg. inter-block �me ~6.3s)

Controlled (Avg. inter-block �me ~2.3s)

Fig. 10.1 Transaction inclusion time measured on Ethereum (cumulative). © 2017 by the
Commonwealth Scientific and Industrial Research Organisation, reprinted with permission

the trigger was configured to use remote procedure call (RPC) communication3 to

interact with the geth node.

For benchmarking latency, we submitted many transactions as follows. A script

invoked the trigger API, which submitted the transaction. The trigger then listened

to the blockchain for the announcement of a sufficient number of confirmation

blocks after observing a block including the transaction and forwarded the result

of successful inclusion/commit back to the script. The script initiated the next

transaction directly afterwards.

As a baseline, we report here the observations of transaction inclusion time

(i.e. where sufficient confidence of inclusion is judged to have occurred on seeing

the transaction in a block, as defined above). We ran the experiment on a private

blockchain, where we varied inter-block time, by either controlling the complexity

mechanism or using the default implementation (uncontrolled). The mean inter-

block time of the uncontrolled blockchain was 13.6 s. In two settings of controlled

private blockchain settings, we measured mean inter-block times of 2.3 and 6.3 s.

For each of the three settings, we measured transaction inclusion time across

1000 transactions. The results are shown as cumulative distributions in Fig. 10.1.

While median transaction inclusion time was 25.8 s on an uncontrolled private

3Note that the communication latency between geth and other components can be reduced by using
inter-process communication, as discussed by García-Bañuelos et al. (2017). Note also that IPC
requires fully asynchronous communication between these components, and the decision should
be made before major refactoring of code becomes necessary to implement that.

202 10 Performance

blockchain, it was 6.91 and 14.65 s, respectively, for the two controlled private

blockchains with 2.3 and 6.3 s mean inter-block times. To understand these times,

note that miners roughly operate as follows: when they receive or mine a block, they

gather a set of transactions from the pool for inclusion in the next block and then

try to solve the proof-of-work puzzle. For a transaction to be included, it therefore

needs to be in the pool already when work on the next block begins. Therefore

transaction inclusion time is always higher than inter-block time. It should also be

noted that median transaction inclusion time would be higher on public blockchains,

because of additional network delays and strategic transaction inclusion by miners.

For inclusion times on the public Ethereum blockchain, refer to the experiments in

Section 11.7.

10.3.2 Blockchain-Based System Performance Modelling

The benchmark tests above tell us the latency for an individual transaction. We

can use those performance benchmarks to build higher-level predictive models

of latency for an entire blockchain-based system. This section describes how,

illustrated using a blockchain-based system generated using the model-driven devel-

opment method described in Section 8.2 and based on the incident management

process model shown in Fig. 9.2. The performance models refer to specific aspects

of the incident management process; therefore we briefly explain it first. There

are four issue resolution stages: account manager, first-level support, second-level

support, and developer support. When a customer reports an issue first, the account

manager requests a problem description and attempts to solve the issue. If the

issue is solved directly, the account manager provides the solution to the customer.

Otherwise, the account manager asks first-level support, and if first-level support

cannot solve the issue, they ask second-level support and so on. At each stage, if

someone finds the solution, they give feedback to the upper level, and finally the

account manager explains the solution to the customer.

For performance prediction, we model the blockchain as a single component,

from the perspective of the client application. So, we do not model the details of the

blockchain mining network, node intercommunication, or consensus algorithm. All

of these factors are aggregated in our abstract model and measurements. The client

application interacts with the blockchain through a local blockchain node, and we

model the resource and performance characteristics of this local blockchain node

running as a component. In the architecture of a scalable client application, one

may need to operate multiple blockchain nodes, each independently participating in

the blockchain system; in such cases, we would model those as multiple deployed

instances of the blockchain client. Note that these blockchain clients do not need

to be resource-intensive mining nodes attempting to create new blocks on the

blockchain. Instead, it is enough for these nodes to be full nodes, submitting and

observing transactions and blocks on the blockchain network.

10.3 Predicting Latency for Blockchain-Based Systems 203

Component Repository Model

In our model-driven development method, off-chain business process systems

interact with the blockchain through trigger components. Figure 10.2 shows an

example Palladio Component Model (PCM) of a trigger component connected

to an Ethereum blockchain client node (using the Ethereum geth client). They

are modelled as two components, each exposing a relevant interface that defines

various operations. These operations correspond to actions in the example incident

management business process. The trigger interface also provides a createInstance

operation, which creates an instance of a process monitor by invoking the factory

smart contract for the business process, pre-configured on the blockchain. The

trigger translates API calls into corresponding blockchain transactions and submits

them for execution on the blockchain through the locally deployed Ethereum client.

Fig. 10.2 PCM repository diagram showing connected components and the operations provided
by their interfaces. © 2017 by the Commonwealth Scientific and Industrial Research Organisation,
reprinted with permission

204 10 Performance

Fig. 10.3 RDSEFF diagram of operation transaction. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

Resource-Demanding Service Effect Specifications (RDSEFF)

The PCM repository diagram is a model of the components, interfaces, and their

relationships. We also need to model the non-functional behaviour of component

operations. In PCM, each component operation’s behaviour is specified in a

resource-demanding service effect specification (RDSEFF). The model describes

how each operation translates an API call to a blockchain transaction and uses

an external action to forward the transaction to the blockchain node, as illustrated

in Fig. 10.3. The resource utilization of each component is configured as a prob-

ability distribution function (PDF) constructed using benchmarks as described in

Section 10.3.1. Each operation is benchmarked and modelled separately to account

for variation in the operations and to demonstrate the capability of modelling their

different behaviours. The manual steps in the process (such as operator resolution

time) must be separately benchmarked for inclusion into the model, but this is not

dealt with in this chapter.

Usage Model

To simulate the execution of the system, we specify a usage model that captures

representative use of the system. Our example usage model in Fig. 10.4 reflects

process flow in our example business process for incident management. The points

of variation are for the optional branches of the process. For the purpose of our

laboratory experiments, we assumed that at each stage of incident response (except

10.3 Predicting Latency for Blockchain-Based Systems 205

F
ig

.
1
0
.4

P
C

M
u
sa

g
e

m
o
d
el

d
ia

g
ra

m
o
f

in
ci

d
en

t
m

an
ag

em
en

t
b
u
si

n
es

s
p
ro

ce
ss

.
©

2
0
1
7

b
y

th
e

C
o
m

m
o
n
w

ea
lt

h
S

ci
en

ti
fi

c
an

d
In

d
u
st

ri
al

R
es

ea
rc

h
O

rg
an

is
at

io
n
,

re
p
ri

n
te

d
w

it
h

p
er

m
is

si
o
n

206 10 Performance

for the final developer stage), 75% of issues received were resolved in that stage.

The final developer support stage resolves every request. Figure 10.4 shows the

branching probabilities used to represent this behaviour.

Here we show a usage model as a single scenario with branching probabilities.

Variation in the possible resolution times, e.g. due to randomness in the path taken,

is explored through multiple simulation runs. However, it would also be possible to

examine multiple usage scenarios separately, each using different probabilities or

execution/resolution times. This could be done to drill down onto specific issues or

opportunities regarding the design of the business process.

10.3.3 Using Simulation for System-Level Latency Predictions

Now we show the simulation results from our performance model, and show how

accurate the predictions (based on micro-benchmarks and architecture models) are

by comparing them to macro-level measurements from an implementation. In our

approach, our system has to use the same or similar underlying blockchain platform

for which we have collected transaction performance benchmarks. So our imple-

mentation here uses the same private Ethereum environment as in Section 10.3.1.

Here we only measure the business process’s end-to-end latency, for example,

incident management process described in Chapter 9. Further details are discussed

below.

A synthetic workload was generated which follows the same 75% resolution

rate at each stage as in Section 10.3.1. Trigger operations were invoked by HTTP

requests using an external python script, which was deployed separately, and

we measured the time from initializing a process instance until observing its

completion. Between the completion of one instance and the start of the next

instance, the script waited for 1 s. The experiment was run for 1000 times (creating

1000 process monitor instances), which took approximately 20 h.

For simulation, the SimuCom simulation engine was used for executing the PCM

model and ran the same number of scenario executions. SimuCom is the standard

simulation engine for PCM model simulation.

The measured and predicted latency results are shown in a boxplot diagram

in Fig. 10.5, where the box indicates median values in red and the first and third

quartiles as upper and lower bound of the box. The predictions appear largely

accurate when compared visually, and statistically the simulation predicted the mean

latency of the process scenario with a relative error of 1.6%. The measured mean

latency of the process was 136.29 s, and the simulation predicts the mean latency as

134.08 s where the standard error of mean (SEM) is 1.27 and 1.07, respectively.

For many applications, 95th and 99th percentiles are significant measures when

considering the latency and the skewness of the distribution. The PCM model

predicted the 95th and 99th percentiles with a relative error of 9.4% and 11.5%

accuracy. Errors in predicted maximum and minimum are, respectively, 7.62% and

16.89%.

10.3 Predicting Latency for Blockchain-Based Systems 207

Fig. 10.5 Boxplot diagrams of measured and simulated scenario latency—measured median is
132.83 s, simulated median is 130.93 s, relative error of median is 1.42%, and relative error of 95th
percentile is 14.6%. © 2017 IEEE. Reprinted, with permission, from Yasaweerasinghelage et al.
(2017a)

Applying Simulation to Other Systems

The architectural performance and simulation approach we have used is largely

consistent with the previous body of work in this field which has been applied

to a variety of application systems. Our approach should similarly apply to other

systems. However, when doing so, a few aspects deserve attention:

• The transaction inclusion time benchmarks we showed in Section 10.3.1 are

specific to our customized version of the Ethereum client. In particular, our

experiment setting had no significant network delays for transaction or block

propagation among peers, and there is no occurrence of uncles (short-lived

alternate competing recent histories). These factors are likely to affect transaction

inclusion and commit times. We recommend benchmarking end-to-end latency

of transaction commit time in the target blockchain platform in order to account

for all sources of delay and variation in transaction inclusion.

• Similarly, our experiments on Ethereum use Nakamoto consensus and proof-of-

work. We expect our modelling approach would be usable for other consensus

mechanisms, after benchmarking transaction inclusion and commit times in

those systems. Our general approach would be applicable in blockchains using

classical distributed consensus algorithms, but the stronger transaction commit

semantics supported by those algorithms means that confirmation blocks would

not be required.

• Our focus in this chapter is on latency, not throughput or scalability. We have

therefore benchmarked latency and evaluated predictions under low demand. In

our experiments, we observed low CPU load, so assume that CPU utilization did

not impact latency. In real-world situations, latency is affected by high demand,

resource bottlenecks, and architectural mechanisms (e.g. load balancing) used for

scalability. We expect that for a particular use case, if a representative load can be

208 10 Performance

used on a representative deployment of a blockchain, then latency benchmarking

could be performed as we have described in this chapter.

• In a blockchain-based system, in addition to CPU, network, and disk, there are

other resources. We have not modelled smart contract gas consumption, gas

limits, and public blockchain transaction fees, although these may able to be

modelled as passive resources in Palladio.

10.4 Architectural Decision-Making

Design alternatives can be evaluated by predicting latency in example scenarios.

This lets us explore what-if questions in architectural decision-making. Here we

focus on latency and how it is impacted by architectural changes.

10.4.1 Choice of Inter-Block Time

In a public blockchain, the target inter-block time is fixed. However, in private

blockchains, it can be varied as a design choice. This reduces transaction inclusion

and commit times, which can reduce system-level latency. When evaluating inter-

block time alternatives, we use the same system-level models and only change the

transaction inclusion time parameters.

We conducted an experimental evaluation of the accuracy of our simulation for

various transaction inclusion times, on a private blockchain. To illustrate this, the

results for transaction inclusion time for a 2.3-s inter-block time is shown as a

boxplot in Fig. 10.6. The relative errors are still good: the relative error of median

was 9.4%, and the relative error of 95th percentiles was 8.5%.

Fig. 10.6 For 2.3-s average inter-block time: median time (measured 28.1 s, simulated 30.7 s),
relative error (median 9.4%, 95th percentile 8.5%). © 2017 IEEE. Reprinted, with permission,
from Yasaweerasinghelage et al. (2017a)

10.4 Architectural Decision-Making 209

The median latency dropped from about 130 s to about 29 s. Whether this is

acceptable for the system design depends on the system requirements, but in any

event the simulation results would provide a reasonable basis for making this

decision before the system is implemented.

10.4.2 Choice of Number of Confirmation Blocks

Blockchain-based systems using Nakamoto consensus can be vulnerable to double-

spending attacks. This vulnerability can be reduced by increasing the number of

confirmation blocks. However, this introduces additional latency to the system.

To illustrate this, we show results from an experiment using 12 confirmation

blocks in Fig. 10.7, using a controlled blockchain with a mean inter-block time

of about 2.3 s. The measured median process latency was 152 s vs. the simulation

prediction of 164 s. The relative error of the median prediction was 7.9%, and the

relative error of 95th percentile was 12.3%.

The latency for 12 confirmation blocks of around 160 s is much higher here

than the latency for 1 confirmation block of around 29 s. Whether this additional

delay matters or not is a question for the system requirements. The key point is

that the simulation model provides a reasonable basis for exploring the performance

consequences of these design options before they are implemented.

Fig. 10.7 12 confirmation blocks: median time (measured 152 s, simulated 164 s), relative
error (median 7.9%, 95th percentile 12.3%). © 2017 IEEE. Reprinted, with permission, from
Yasaweerasinghelage et al. (2017a)

210 10 Performance

Fig. 10.8 Measured and simulated latency of modified business process. Median time (measured
26.8 s, simulated 27.6 s), relative error (median 2.9%, 95th percentile 0.3%). © 2017 IEEE.
Reprinted, with permission, from Yasaweerasinghelage et al. (2017a)

10.4.3 Process-Level Changes

The previous two simulation scenarios have involved changes to the configuration

of the blockchain platform. However, we can also use simulation to predict the

performance impacts of process-level changes. Instead of changing the performance

benchmark parameters, we instead change the Palladio usage model. There are many

kinds of possible process redesign such as task elimination, process integration,

or task composition. All of these can be modelled by changing the workflow.

Most business process control flow patterns can be directly translated to Palladio

Component Model patterns.

To explore this, we experimented with a changed process model, where the

account manager assigns issues directly to second-level support (skipping the first

level) in 5% of cases. We used a private Ethereum blockchain with a mean inter-

block time of 2.3 s. The results are shown in Fig. 10.8. The median process latency

was measured as 26.8 s vs. 27.6 s from simulation. The relative error of median was

2.9%, and the relative error of 95th percentile was 0.3%. So there are some small

performance improvements. However, a full cost-benefit analysis would depend not

just on latency considerations but also on the relative cost and resource utilization

of various support tiers.

10.5 Summary

This chapter started with a broad discussion of performance and blockchain’s

impact on application performance. We have then shown how to predict the

latency of blockchain-based systems using architectural performance modelling

10.6 Further Reading 211

and simulation. In the approach, we benchmark transaction inclusion time for the

blockchain platform being used, then include those performance benchmarks in a

system model. The blockchain is treated as a black-box component, and blockchain

transactions are connected to operations at the application level. In experiments,

the system-level latency predictions have a relative error of mostly under 10%,

which means that the approach is precise enough to use to evaluate designs before

they are implemented. The importance of this for architects is that a wide range

of architectural alternatives can be analysed. Some of these decisions are about

blockchain-specific issues, such as inter-block time or the number of confirmation

blocks. Other design decisions, such as possible business process changes, are

system-level design options but are impacted by latency arising from the blockchain-

related factors.

We have focussed on latency in this chapter, because it is mostly under the control

of designers of blockchain-based systems. The throughput of a blockchain is mostly

governed by the initial choice of blockchain platform and its block configuration,

and this might not be easily changed. However, latency and performance more

generally are not the only non-functional properties that are important in the design

of systems. Trade-off decisions need to balance predicted latency impacts with the

predicted impacts to other qualities.

10.6 Further Reading

This chapter is partly based on our earlier works (Yasaweerasinghelage et al.

2017a,b). Additional details on experiments can be found there.

Architectural models can be used by analytical solvers or simulation engines

to predict non-functional performance of a system at various stages of the devel-

opment life cycle (Brunnert et al. 2015). Analytical performance models capture

performance aspects of the system and serve as input for the analytical solvers. Petri

nets (PN) (Molloy 1982), queueing networks (QN) (Bolch et al. 2006), and layered

queueing networks (LQN) (Franks et al. 2009) are examples for common analytical

models. Architecture-level performance models capture key factors influencing the

performance of a system. Examples are the Palladio Component Model (PCM)

(Becker et al. 2009); UML profile for Schedulability, Performance, and Time (Xu

et al. 2003); and Descartes Modelling Language (Kounev et al. 2014).

In this chapter, we have used the Palladio workbench (Becker et al. 2009)

for architecture modelling of the latency of blockchain-based systems. Palladio’s

extensions allow for architectural optimization (Koziolek et al. 2011; De Gooijer

et al. 2012) and can be enhanced with new qualities (Willnecker et al. 2014).

For live statistics about the public Ethereum chain, including inter-block times

and the influence of the gas price on transaction inclusion times, see https://

ethgasstation.info/ and https://ethstats.net/.

https://ethgasstation.info/
https://ethgasstation.info/
https://ethstats.net/

212 10 Performance

The blockchain-based system we used in our experimental evaluation is a

business process system using the approach from Weber et al. (2016), which also

measured transaction inclusion time and utilized the incident management exemplar

use case we use here. The same system was also discussed in the previous two

chapters, albeit not the experiments mentioned above. García-Bañuelos et al. (2017)

discuss gas cost optimization for such a system and include a large-scale throughput

experiment.

Chapter 11

Dependability and Security

with Ralph Holz, Vincent Gramoli, and Alex Ponomarev

In this chapter, we discuss dependability and security aspects of blockchain-based

applications and analyse how the different properties of dependability and security

relate to these applications. As is the case throughout the book, our viewpoint for the

discussion in this chapter is that of a system architect or developer using blockchain

as a component. We thus analyse how blockchains impact the dependability and

security of systems built upon them, in part with studies using observations from

the mainstream proof-of-work blockchains Ethereum and Bitcoin. As such, we are

not going into the details of cryptography and security infrastructure of blockchain

platforms.

Dependability and security are tightly interlinked. According to the widely

accepted taxonomy of Avizienis et al. (2014), dependability and security are

comprised of six attributes as shown in Fig. 11.1. The first five sections of this

chapter give an overview of the influence on dependability and security attributes of

blockchain as a component within a multiparty system.

We then focus on the availability of functions that such systems need, in

particular transaction inclusion, and how they may be adversely impacted by a

number of factors. When viewing blockchain as a component for data storage,

communication, or code execution, whether a transaction is included or not can

largely be equated to write/send availability.

Finally, in Section 11.7, we discuss issues around aborting and retrying

transactions—a functionality that is not provided by blockchain client software

today.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_11

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_11

214 11 Dependability and Security

Fig. 11.1 Attributes of
security and dependability. ©
2004 IEEE. Reprinted, with
permission, from Avizienis
et al. (2014)

Dependability Security

Confiden�ality

Maintainability

Integrity

Safety

Availability

Reliability

11.1 Confidentiality

Confidentiality means that unauthorized disclosure of information does not take

place. This is usually harder to establish in blockchain-based systems, because the

default is that information is visible for everyone in the network. Information can be

encrypted: asymmetrically with a particular party’s public key, so that only this party

can decrypt it, or symmetrically with a shared secret key, so that the group of parties

with access to the secret key can decrypt it. The latter case requires a secure means

of exchanging the secret key, typically off-chain. However, once information needs

to be processed by smart contract methods, this information needs to be decrypted.

This is because smart contract code runs on all nodes of the network, and thus

any of them needs to be able to process the input data. The ability for anyone to

execute smart contracts is required to achieve consensus on the outcomes of smart

contract execution. Embedding keys within a smart contract would reveal the key to

all participants.

As discussed in the supply chain use case in Section 4.1, commercially sensitive

data can be at risk if it is shared on a blockchain, even if pseudonyms are used

and even if encryption is used. Private and permissioned blockchains can provide

read access controls, but this will not provide commercial confidentiality between

competitors using the same blockchain.

There are interesting technologies on the horizon, which could alleviate some

of these pain points. For instance, zero-knowledge proof methods like zk-SNARKs

can be used to hide the contents of a transaction, while still allowing independent

validation of the integrity of that transaction. Current implementations are limited

to hiding simple transfers of cryptocurrency, but in the future the same could be

achieved for more sophisticated transactions. As for computation on encrypted

data, that is the goal of techniques like homomorphic encryption and confidential

computing. However, such approaches have not been utilized for smart contracts

as yet, in part due to their significantly increased computational requirements

over regular computation. Alternatively, authorized ‘witnesses’ could have special

access to the data. These witnesses could be certifying agencies or consumer group

advocates. The data would be encrypted using the witness’ public key, so that only

the witness can decrypt it. The witness can then pass on the provenance information

to interested parties, but not share information that is commercial in confidence.

How the data is to be encrypted and stored would be part of the smart contracts

created for various supply chain events and, as such, can be customized for different

scenarios and supply chains.

11.2 Integrity 215

11.2 Integrity

Integrity is the absence of improper (invalid or unauthorized) system alterations and

is a key attribute for blockchains. Once a transaction is included in a blockchain and

committed with sufficiently many confirmation blocks, it becomes part of the effec-

tively immutable ledger and cannot be altered. This also applies to smart contracts:

their bytecode is deployed in a transaction and thus is subject to the same integrity

guarantees; and invocation of smart contracts happens through transactions as well.

The key integrity property of Bitcoin is that addresses cannot spend money they

do not have. Ethereum’s integrity property is more complicated, because it requires

the correct operation of a Turing complete smart contract programming language.

However, for client applications, Ethereum provides significant power by allowing

user-defined integrity conditions to be implemented as checked preconditions and

defined behaviours in smart contracts.

Blockchain emerged to support a cryptocurrency, and so it is unsurprising that

integrity is a key dependability attribute, because integrity is the key dependability

attribute for commercial computer security. The seminal work on this topic is the

Clark–Wilson security policy model, and blockchains are broadly consistent with

its requirements. Smart contracts can implement Clark–Wilson’s transformation

procedures to generate and update internal data or other smart contracts that realize

Clark–Wilson’s constrained data items. Blockchains natively create the log required

by Clark–Wilson for reconstructing operations. Finally, blockchains use a kind of

separation of duty through the replicated validation performed by all mining nodes.

Ethereum smart contracts are written in a Turing-complete programming lan-

guage. This makes it more difficult to verify that the smart contracts correctly

implement required integrity properties. Formal verification techniques can be used,

but these can be costly and time-consuming in practice. A lighter-weight approach

is to use a smart contract language with strong typing mechanisms, which can help

programmers support integrity. The Pact language on the Kadena blockchain1 is an

example of that approach. Some blockchains, such as Kadena and Corda,2 avoid

the use of Turing-complete smart contract languages for this reason, and instead use

less-expressive domain-specific languages that can be automatically checked.

High integrity and non-repudiation are not always ideal. For example, sometimes

historical data must be deleted or changed. If a vexatious or improper registry entry

has been created, a court may order the registrar to change the registry to remove

that entry, ‘as if it had never been created’. This is not technically possible on many

blockchain platforms. Similarly, this may create problems for blockchains that have

been ‘poisoned’ by illegal content. Some blockchains have been proposed to deal

with this challenge, but there is not yet widespread acceptance and adoption of good

solutions.

1http://kadena.io/.
2https://www.corda.net/.

http://kadena.io/
https://www.corda.net/

216 11 Dependability and Security

11.3 Safety

As defined by Avizienis et al. (2014), safety means that using a system does not

lead to catastrophic consequences on the users and the environment. The use of

blockchain technology does not directly pose specific risks in this regard, when

compared to other components in distributed systems. There may be economic and

environmental risks from investments in ineffective blockchain mining strategies.

By using non-mining nodes, private or permissioned chains, and/or alternative

consensus mechanisms, these risks can be mitigated. If a blockchain is used as

a component in a safety-critical application, then failures of integrity, confiden-

tiality, availability, or other dependability attributes may have consequences for

safety. However, this is a prevalent issue of safety-critical system engineering.

A noteworthy difference exists when the cryptocurrency or token features of a

public blockchain are used, in which case an organization or user is exposed to

the monetary risk of loss or devaluation of the cryptocurrency and tokens. If this

risk can bankrupt the organization or users, it may lead to situations that could be

seen as catastrophic. With respect to cryptocurrency, a difference to regular internet-

related flow of monetary assets lies in the fact that there is no additional safety net.

No banks will stop attacks on your Bitcoin wallet or reimburse your losses. In most

cases of theft, lost crypto-coins or tokens remain unrecoverable.

An alternative, informal definition of safety by Lamport (1977) states that some

‘bad thing’ does not happen during execution. Alpern and Schneider (1985) later

formalized this definition with regard to discrete execution states of programs but

did not formalize what a ‘bad thing’ might be due to the inherently informal nature

of this concept. Examples of safety properties mentioned in the above sources are

mutual exclusion of concurrent processes, deadlock freedom, partial correctness,

and first-come-first-served execution.

This perspective is indeed interesting when considering blockchain. When

considering a public blockchain network execution itself as the program, discrete

states are almost meaningless: the states of different nodes around the world are

only very loosely synchronized, and substantial differences between, say, the current

transaction pools of set of nodes can be expected. Considering the committed blocks

in a blockchain (e.g. the current Ethereum blockchain minus the most recent 11

blocks), discrete execution states become a valid model. Concerning the above-

quoted examples, concurrent processes and mutual exclusion are a non-issue (since

the execution has been sequentialized).

Deadlocks on the application level can exist as in any other program, be it on

the smart contract level or off-chain programs. It might be easier to avoid deadlocks

in blockchain-based applications, since smart contracts can be used as a neutral

mediator, which handles all resources (e.g. cryptocurrency in exchange for tokens),

instead of distributed processes responsible for different resource types.

11.4 Maintainability 217

Though not mentioned in the early literature, livelocks or infinite loops in a smart

contract would, in the case of Ethereum, be resolved by the platform itself: each

invocation has a limited amount of gas available. If the execution does not terminate

before the gas has been consumed, it is aborted.

Partial correctness on the application level is not impacted by blockchain.

However, correctness of the execution when computing a new block is higher: in

many public blockchains, all full nodes verify each newly announced block by

checking digital signatures and hashes and executing all transactions. If the results—

e.g. of a smart contract invocation check—are inconsistent, the new proposed block

is discarded.

If first-come-first-served is required, typically that requires special consideration

on blockchain. In Bitcoin, strict ordering of transactions can be established by

consuming an output of one transaction as input of another transaction—the second

is only valid once the first has been included, although both transactions can be

included in the same block. Similarly, Ethereum transaction nonces can be used to

ensure ordering of transactions, but this feature is only available for transactions

originating from a single account. A smart contract can ensure ordering to a degree,

e.g. if the order can be prescribed. For scenarios where neither of these options

suffice, e.g. open bidding processes, off-chain mechanisms might be required

to ensure fair processing. Generally, the inclusion of a given transaction is not

guaranteed by blockchain protocols, let alone in any particular order. This issue

of availability from the viewpoint of an application will be discussed in depth in

Section 11.6.

11.4 Maintainability

Maintainability refers to a system’s amenability to undergo modifications and

repairs. In blockchain-based systems that use smart contracts, this is harder to

implement for the smart contracts than in regular distributed systems. This is

because smart contracts comprise code that regulates the interactions between

mutually untrusting parties; trust is derived from the fact that the code cannot be

changed easily. Consider an example where an organization has established trust in

the code of a particular contract and verified that it implements the agreed rules for

handling cryptocurrency. If others can change the code without that organization’s

knowledge or consent, any trust in the code would be void. Although the code of an

Ethereum smart contract cannot be changed, the current state of variables within that

smart contract can be updated by invoking its methods. In particular, these variables

may refer to other smart contracts. This mechanism provides a kind of indirection

that allows the dynamic updating of smart contract code, through mechanisms like

the Contract Registry Pattern (Section 7.4.1). However, support for this kind of

updating must be specifically provisioned ahead of time.

Finally, changes may be made to a blockchain-based system not by changing the

data stored on a blockchain but instead by changing the interpretation of data on the

218 11 Dependability and Security

blockchain. As an extreme example, a client application might choose to not honour

all data previously written to the blockchain under some previously acknowledged

addresses. Instead, the client could in principle re-create all required data on the

blockchain under some new address. A distinctive benefit of blockchain-based

systems is that there is no single party with control of the system. However, this

inherently creates challenges for governance: the management of the evolution of

blockchain-based systems. Changes may be made to correct defects, add features, or

migrate to new IT contexts. However, in a multiparty system with no single owner,

managing these changes is more like diplomacy than traditional risk management

or conventional product management. Lessons may be drawn from governance in

open-source software, which face similar development challenges. However, the

governance of a blockchain is not just a software development problem—it is

also a deployment and operations problem. For both public and private blockchain

systems, key stakeholders include the users of the blockchain, software developers

with moral or contractual authority over the code base, miners or processing nodes

in the blockchain ecosystem, and government regulators in related industries. There

are still lessons being learned about who the key stakeholders for blockchains are.

For instance, the 2016 hard fork of Ethereum in response to the DAO controversy

made it apparent in hindsight that digital currency exchange markets are a key

stakeholder for public blockchain systems. (The market initially provided by the

Poloniex exchange for trading the unforked ‘Ethereum classic’ digital currency has

supported the ongoing operation of that blockchain, which might have otherwise

failed to continue to be viable.)

It is unknown how to best perform governance for blockchains and blockchain-

based systems. How should relevant stakeholders influence and manage changes

to the software and the operational infrastructure for blockchains and blockchain-

based system when there might be no central owner and where the blockchain

platform might be serving many purposes for different stakeholder groups?

11.5 Availability and Reliability

According to Avizienis et al. (2014), availability is the readiness for correct service,

whereas reliability is the continuity of correct service. More specifically in our

context, availability concerns the users or dependent systems’ ability to invoke

functions of the system, whereas reliability refers to receiving consistently correct

outcomes from those invocations.

For blockchains, there are scenarios in which the distinction between reliability

and availability can be blurred as there is no globally specified time by which a

transaction should complete. If a blockchain system never includes a transaction

(perhaps because other connected nodes ostracize that transaction, address, or

interface node), that will be both an availability and reliability failure of the

blockchain system from the perspective of a client application. However, if a

transaction is initially included in some block, that does not guarantee that block will

11.6 Variation in Blockchain Transaction Inclusion 219

be recognized as being part of the blockchain in future. One could take the following

view: first an application designer can specify a number of confirmation blocks by

which they will regard a transaction to have been committed. If a fork happens

that invalidates transactions thought to be committed, the system will have had a

reliability failure, because a transaction thought to have been committed will have

turned out not to be. Alternately, if a fork affects less than the specified number of

confirmation blocks, the system may experience enough delay to have an availability

failure.

The operation of public blockchains can involve hundreds or thousands of

independent processing nodes. Each node holds a full replicated instance of the

blockchain transaction history and can operate for users as a transaction interface

to the blockchain network. Because of this massive redundancy, naively we might

expect that a blockchain system has extremely high availability. We can assume

that local components of a blockchain-based system are connected to a local full

node on the blockchain network. Submitting a transaction to a blockchain network

is done through the local full node, which broadcasts that transaction to all nodes

it is connected to. The availability of a locally reachable full node is thus heavily

reliant on the organization operating a blockchain-based system. The more complex

question is: how certain can one be that the transaction is included in a block and

committed, in a timely manner? We address this question in the next section in

detail.

Transactions deploying smart contracts or invoking their methods add a further

level of complexity. First, they are subject to more parameters, like current gas

limit, that may impact their successful inclusion. Second, they utilize more complex

functionality of the network and thus rely on the network sharing the same accepted

norms about this functionality with the system. For instance, parts of the network

may change to not accept certain commands present in compiled smart contracts. If

the blockchain-based system is unaware of the change, it might attempt to use these

commands, and its contracts might get rejected, or method calls might be terminated

unexpectedly. Again, we discuss these issues in more detail in the next section.

Finally, we note that the well-known CAP theorem indicates that there is

inevitably some trade-off between consistency, availability, and partition-tolerance

for distributed databases. As described above, blockchain platforms sacrifice tradi-

tional notions of consistency, but strive for availability and partition-tolerance.

11.6 Variation in Blockchain Transaction Inclusion

Blockchains are distributed systems, and so the states of different parts of the system

are inevitably different. Different nodes will hear about new pending transactions

and new blocks at different times. There is also variation in how long it takes

for the system to commit transactions in the ledger. For public blockchains like

Bitcoin and Ethereum that use Nakamoto consensus, there is much greater variation

in transaction inclusion time, which is exacerbated by the probabilistic nature of

transaction inclusion.

220 11 Dependability and Security

In fact, there can be so much timing variation that it can impact core dependabil-

ity attributes. If transactions takes too long to be included, they will violate latency

or service availability requirements. Integrity can also be impacted if transaction

reordering occurs because of the probabilistic nature of Nakamoto consensus. This

section explores these issues in some detail, for both Bitcoin and Ethereum.

11.6.1 Variation in Bitcoin Transaction Commit Time

In this section, we explore the factors that impact Bitcoin commit time and show

that reordering of transactions play an active role.

A peculiarity of Bitcoin is the way transactions are linked: they transfer currency

from a number of source addresses to a number of destination addresses. Recall

from Section 2.1 that transaction outputs become the inputs of new transactions. If

the sum of the outputs is less than the sum of the inputs, this is interpreted as an

additional output that pays a fee to the miner who mines the block containing this

transaction. This acts as an incentive for miners. As a result, miners tend to optimize

block creation by preferring transactions with higher fees. The transaction fee is

often the only variable that client software asks Bitcoin users to choose consciously

when creating a new transaction.

However, transactions can also experience delay due to other factors. An

important one is that transactions must arrive (roughly) in order, for a node (and

the network) to be able to process them fast. Incoming transactions are handled

by the so-called mempool. If the referenced input transactions (the ‘parents’) are

yet unknown, a miner will delay the inclusion of the new transaction—it is then

a so-called ‘orphan’. Miners may choose to keep orphans in the mempool while

waiting for the parent transactions to arrive, but they may also expunge orphans

after a timeout they choose. A second factor that could come into play, albeit one

that only experienced users will set, is so-called locktimes: a transaction can contain

a parameter declaring it invalid until the block with a certain sequence number has

been mined. This makes it possible to set an ‘execution date’ for transactions.

Note that out-of-order arrival may be the result of a number of factors: the

forwarding behaviour of a node depends on the implementation and is different

even between versions of the ‘official’ Bitcoin Core client. It may naturally also

depend on the load on miners (leading to low throughput as evidenced by an

ongoing community discussion3). Transient connectivity issues and Internet routing

constellations may also be at play.4 Also note that transactions may be rejected by

the mempool for certain reasons. We explain these below as we encounter them.

3https://en.bitcoin.it/wiki/Block_size_limit_controversy.
4This is why projects such as Fibre (http://bitcoinfibre.org/public-network.html) aim to provide
high-speed links between certain locations.

https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://bitcoinfibre.org/public-network.html

11.6 Variation in Blockchain Transaction Inclusion 221

To observe transaction inclusion and commit times on Bitcoin, we ran an experi-

ment twice to allow for varying network conditions and growth of the network. Each

experiment lasted ca. 25 h; the first was conducted in November 2016, the second

in April 2017. We collected roughly 300,000 transactions in each experiment. It

should be noted that websites like https://blockchain.info/unconfirmed-transactions

reported high network load while the second experiment was being carried out, with

25,000–30,000 transactions waiting for inclusion.

We summarize the commit times (using 6-confirmation) we determined in

Table 11.1. Note that they are significantly higher and more varied in the second

experiment. Figure 11.2 plots the commit times for the two forms of transactions that

are our primary interest. The blue curves refer to transactions that were a ‘straight-

accept’, i.e. the parent transactions were known and the incoming transaction passed

all mempool tests. The violet curves are the transactions that were orphans upon

arrival.

Table 11.1 Summary of commit time distributions (in seconds) for orphans and straight-accepts
during our experiments

Type Min Q1 Median Mean Q3 Max

Experiment 1

Orphans 944 3096 4635 7582 8334 117,585

Accepts 676 2887 4234 5475 5901 150,123

Experiment 2

Orphans 1293 4280 6337 34,912 51,352 174,516

Accepts 1165 3873 5364 18,417 19,286 171,566

© 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

Time between announcement and six−block commit (sec)

P
[c

o
m

m
it
]

0.0

0.2

0.4

0.6

0.8

1.0

l

l

l

l
l

l l l l l l l l l l l l l l l l

ll

l
l

l
l

l
l

l
l

l

l
l l l l l l l l l l

l

Straight−accepts Exp 1
Orphans Exp 1
Straight−accepts Exp 2
Orphans Exp 2

50
0

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

Fig. 11.2 Time between reception of transaction and commit. Note the logarithmic x-axis. © 2017
IEEE. Reprinted, with permission, from Weber et al. (2017)

https://blockchain.info/unconfirmed-transactions

222 11 Dependability and Security

In an underutilized network, the theoretical median 6-block commit time should

be around 3900 s: six blocks of 10 min or 600 s, plus on average half an inter-

block time of waiting time for mining on a new block to start. In experiment 1, the

median commit time for straight-accepts was 4234 s and the 90th percentile 9501 s.

For experiment 2, these times were 5364 s as a median and 55,976 s for the 90th

percentile. In summary, even if waiting twice as long as the median time, more than

10% of transactions were not committed yet. This is an important factor to consider

when building an application based on the Bitcoin blockchain: median commit times

are high, but individual commit times can be much higher.

We then did a number of analyses to examine delays and orphans further. In both

experiments, orphans seem to be committed later than transactions that were directly

accepted. However, the additional delay is much higher in the second experiment

(where the network was under high load). In our first experiment, about 60% of

orphans were included within the same time span as normal transactions. In fact,

31% of orphans took longer than 2 h to be included, 21% longer than 3 h, and 8%

took longer than 5 h. For directly accepted transactions, these values were slightly

different: 17% of them took longer than 2 h, 9.5% longer than 3, and 5% longer than

5 h. In our second experiment, roughly 40% of orphans had similar commit times

as directly accepted transactions. The majority experienced very significant delays:

the median was almost 20% higher, and the third quantile is more than 2.5 times as

high as that for straight-accepts. We also note that only 1.2% of orphans and 1.6% of

directly accepted transactions had not been included by the end of our observation

period in experiment 1. In experiment 2, more than 20% of orphans had not been

included (but almost all straight-accept transactions).

Factors other than the out-of-order arrival might still exercise considerable

influence on commit times. We hence decided to investigate two further factors:

transaction fees and locktimes. We first determined the number of transactions with

a zero fee. This was always very low: for the straight-accepts, it was 74 and 12

transactions in experiments 1 and 2, respectively. The orphans never had a zero

transaction fee. Figure 11.3 shows a box plot of transactions fees with the zero

values filtered out. We can see that transaction fees are considerably higher in the

Fig. 11.3 Box plot of
transaction fees by
transaction category. Note the
logarithmic y-axis. © 2017
IEEE. Reprinted, with
permission, from Weber et al.
(2017)

11.6 Variation in Blockchain Transaction Inclusion 223

second experiment, but there is no difference between straight-accepts and orphans

in experiment 1. In experiment 2, orphans even have slightly higher fees. It is very

unlikely that lower transaction fees are a cause for delayed commit of orphans.

We extracted the locktimes for our collected transactions and the locktimes of

their parents. As our logger had not captured the full content of transactions arriving

in the mempool (but only hash value and timestamp), we conducted this analysis

only for those transactions that had been incorporated into the blockchain. The

vast majority of transactions had no locktime set: in experiment 1, only 15% of

straight-accepts and 12% of orphans had a value that was not zero. In experiment 2,

the numbers were 23% and 17%, respectively. While this may signal an increase

in the use of the feature, orphans never had locktimes beyond the observation

window. Orphans in experiment 1 had locktimes that ended at least 3 h before the

end of the observation window; in experiment 2 it was 6 h. In contrast, straight-

accepts did have locktimes that extended considerably beyond the end of the

observation window. In experiments 1 and 2, nearly 100% of transactions also had

locktimes similarly near the end of the observation window. However, we found

some decidedly optimistic locktimes on the order of 1.5–1.7 billion (block sequence

number). With 10 min being the average time between two Bitcoin blocks, these

transactions cannot be included before the year 30,166. The obvious limitation of

our work here is that we do not know the locktimes of those orphans that were not

included in the blockchain by the end of our observation period. Given the above

results, however, we still feel confident to say that locktimes are not likely to be a

decisive factor in commit delay of orphans.

Naturally, there may still be confounding factors in our study that we could not

control for in this experiment. For example, we do not have information about node

connectivity outside of our observation post, Australia, and could not determine the

(ever changing) Internet routing constellation that the Bitcoin network is exposed to.

Note that propagation times in the Bitcoin network have been investigated before.

Our study suggests that it is worthwhile to revisit this topic.

11.6.2 Variation in Ethereum Transaction Commit Time

In this section, we first explain why Ethereum transactions are not guaranteed to be

committed regardless of their validity. We then analyse if gas price, gas limit, and

the network as factors affect commit time.

Recall the life cycle of individual transactions in the Ethereum blockchain from

Section 2.2, depicted in Fig. 11.4. It starts with the submission of a transaction into

the (virtual distributed) transaction pool across all miners. A transaction lifespan

can be split into consecutive phases: (i) the announcement of the transaction in the

system; (ii) the inclusion of the transaction in a newly mined block on some branch

of the chain; (iii) the inclusion of the transaction in a block part of the main chain;

and (iv) the commit of the transaction after sufficiently many confirmation blocks

are subsequently mined.

224 11 Dependability and Security

Tx in pool Tx in block(s)

validated & included

all blocks containing Tx

part of shorter chain

Tx

commi�ed

11 subsequent blocks

Tx dropped Tx outdated

superseded

submi�ed

Fig. 11.4 Life cycle of an individual Ethereum transaction (notation: state machine; repetition of
Fig. 2.7). © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

There is no certainty whether a particular transaction will eventually be commit-

ted or whether it will be outdated, in that it will be considered an invalid transaction

forever. Moreover, it is impossible to know whether a transaction that is invalid

in some state of the system will never be valid in a later state. More specifically,

the aforementioned step (ii) is not sufficient to guarantee that a transaction Tx

is permanently added to the blockchain: if the blockchain forks, then the block

comprising the transaction may simply be discarded, in which case the transaction

could be re-included later.

To put it differently: there are only two final states in this life cycle, namely,

committed or outdated, and only these and inclusion in a block are observable

transaction states for each client. In order to build a robust application on this basis,

one needs to ensure that each transaction ends up in one of the final two states in

a reasonable time. Otherwise the status of the transaction is, from the viewpoint of

the client, undefined and unknown.

When a transaction is included in a block, it has been validated beforehand, i.e.

its digital signature has been checked, as well as the validity of parameters like the

nonce (sequence number of transactions relative to a given source account), and

that there are sufficient funds in the source account. If all blocks that included the

transaction become uncles—i.e. part of a shorter chain than the main chain—then

the transaction goes back into the transaction pool. This may happen more than

once, and, theoretically, there is no upper limit. While the transaction is in the pool,

it may also be dropped. This is a local decision of miners, and it is impossible for

any node in the network to know with certainty that all miners have dropped the

transaction. Only when the nonce of the transaction becomes outdated, i.e. another

transaction from the same source account with the same nonce got committed, can

a node be certain that the transaction is invalid and will not be included in any valid

block. Otherwise the transaction may resurface at a later point and get included in

the chain.

Ethereum’s transaction handling and inter-block time differ significantly from

Bitcoin, and the chance of a chain fork occurring is higher. If a fork occurs, there is

usually no certainty as to which branch will be permanently kept in the blockchain

11.6 Variation in Blockchain Transaction Inclusion 225

Fig. 11.5 Time (s) for first inclusion and commit (12 or 36 confirmations), as well as second and
third inclusions of transactions that were previously included in uncles. © 2017 IEEE. Reprinted,
with permission, from Weber et al. (2017)

and which branch(es) will be discarded. In particular, transactions that were only

included in uncles need to go back to the transaction pool. Before investigating the

factors that cause commit delays, we investigate how fast transactions proceed from

first inclusion to commit.

To empirically investigate transaction inclusion time in Ethereum, we collected

data on approx. 6 million transactions over a 3.5-month period, discarding any short

periods affected by network or system outages. The observations were conducted

between December 2016 and April 2017. Figure 11.5 depicts the observed distri-

butions of the time it takes for an Ethereum transaction to be included in a block

and committed (using 12-confirmation, i.e. 11 subsequent confirmation blocks after

inclusion, and 36-confirmation).

As shown in the figure, the inclusion times tend to follow similar curves.

However, compare the slopes of the curves for first to third inclusion to the slopes

for 12-confirmation and 36-confirmation: the latter are less steep, indicating the

growing fraction of transactions that have to wait longer for a ‘commit’. For a ‘12-

block commit’, the median time is around 200 s, and even the third quantile is not

much higher. But the more blocks we require for a commit (say, 24 or 36 blocks),

the more likely it becomes that a transaction needs (even considerably) longer than

the median would suggest.

In contrast to Bitcoin, for the observed period the 90th percentile of commit

happened significantly earlier than twice the median: at about 270 s for 12 blocks

and around 650 s for 36 blocks. Still, while the curves converge towards 100%,

they do not reach it within 1000 s. As a consequence, applications sending larger

volumes of transactions need to be prepared that some of these will not be committed

in due time.

Concerning transactions that become ‘unincluded’, however, we find that these

are rare indeed. We observed that 113,122 first transaction inclusions (0.021%) were

not permanent; and the same is true for 2602 second inclusions (0.0005%) and 41

of the third inclusions (0.000007%).

Ethereum has two user-defined parameters around the concept of gas, namely,

the gas price and the maximum gas offered for including a given transaction. We

226 11 Dependability and Security

Fig. 11.6 Commit delay (s) for transactions based on gas price. Note the logarithmic x-axis.
© 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

proceeded to investigate how these affect the commit times. In particular, we were

interested to see if it is possible to speed up the commit time by offering particularly

high rewards for miners by setting a high gas price.

Based on our collected data, we analysed the effect of the user-defined gas price

on the time it took for the transaction to be committed. Figure 11.6 depicts this

relation for five bands of gas price (all in Gwei5): [0, 0], (0, 20), [20, 25), [25, 105),

[105,+∞).

As shown in the graph, the higher the gas price in a given band, the less likely

we observed long delays. However, we did not observe any meaningful differences

from 25 Gwei onwards. At the time of writing in 2018, this observation is unlikely

to hold true to the same degree: from anecdotal evidence, it appears miners behave

more rationally. Finally, there is a sharp contrast between the 0-band and all other

bands: the 0-band has significantly longer commit times.

A second user-defined variable around transaction fees is maximum gas, i.e. how

much gas the execution of the transaction may use. We analysed its impact on

commit delay. While we discovered individual transactions that were delayed due

to an exceedingly high gas limit, our analysis was inconclusive: we could not find

a strong correlation in any direction between maximum gas and commit delay. This

remains an open question for now and warrants longer observation.

We were also curious to see whether the Ethereum network suffered from

transaction reordering as we had observed it for Bitcoin. Ethereum does not link

transactions in the way Bitcoin does, but every transaction has a running sequence

number (‘nonce’) for each sender account. This sequence number starts from 0 and

increments by 1 for each transaction sent from the same account. It is intended to

provide an assurance that transactions from the same account will be executed in a

particular deterministic order. However, it also means that a transaction with a nonce

n + 1 cannot be included into the blockchain unless there is an already included

transaction with nonce n—it is ‘orphaned’. The transaction with the higher nonce

will wait in the transaction pool until the arrival of a transaction with n as nonce.

51 Ether are 1018 wei.

11.6 Variation in Blockchain Transaction Inclusion 227

We hence carried out an experiment that is similar in nature to our previous

Bitcoin experiment. We analysed the commit times for in-order and out-of-order

arrival of transactions during the same interval as for our second Bitcoin experiment,

in April 2017. The total number of transaction announcements, which were also

committed during this period, was 87,384. The number of transactions with out-of-

order nonces was 5403 (6.18%). The commit time for both categories is shown in

Fig. 11.7. The graph suggests that the commit delay for out-of-order transactions is

almost doubled, compared to in-order transactions. To exclude the gas price as a

confounding factor, we plot the gas price distribution for both categories, shown

in Fig. 11.8. We did not find a significant difference in gas prices between two

categories.

As with Bitcoin, it is hard to rule out other confounding factors that we cannot

control for, e.g. Internet routing or overall network connectivity. However, our data

allowed us some partial insight into the latter. We inspected transactions with nonce

n that were announced after transactions with nonce n+ 1 and compared these with

in-order transaction announcements. Figure 11.9 plots the distribution of unique

Ethereum nodes that we saw broadcasting the transaction before inclusion in the

block. We found that delayed transactions were known to much fewer nodes. While

Fig. 11.7 Commit delay (s) for transactions based on ordering. © 2017 IEEE. Reprinted, with
permission, from Weber et al. (2017)

Fig. 11.8 Gas price distribution (GWei) for transactions based on ordering. Note the logarithmic
x-axis. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

228 11 Dependability and Security

Fig. 11.9 Number of different peers from which in-order and out-of-order transactions arrive. ©
2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

not conclusive, this provides first indications that network connectivity may have

negatively impacted transaction propagation.

Ethereum has a second form of limit, the so-called gas limit per block. Unlike

the gas price in a transaction, it is defined by the network of miners and applies to

the sum of gas consumed by all transactions in a block. If the limit is lower than

the gas required for a given transaction, the transaction cannot possibly be included.

The development of the gas limit over time is readily available, e.g. on Etherscan.6

The rationale for the limit is to prevent denial-of-service (DoS) attacks on the

network by limiting the amount of computation that can be done per block. Due to

several DoS attacks against the network, a majority of miners on Ethereum agreed to

lower the limit to approx. 500,000 gas temporarily—from October 15 to 17, 2016,

according to Etherscan. The network still kept a low limit prior to and after these

3 days: from September 23, 2016, to November 22, 2016; with 1-day exception,

the limit was around 2M gas. Around December 5, it returned to 4M gas. This

limitation can negatively impact the inclusion of transactions which require a high

amount of gas. This is not a hypothetical case: in earlier work, we deployed contracts

using around 1.5M gas ourselves. However, simple transfers of assets should not be

negatively impacted.

We hence chose to investigate whether we could find evidence for this hypothesis

in our data. We analysed all transactions that happened before the DoS attacks and

used block 2,303,121 as the pre-DoS cut-off block. We considered the amount of

gas used for three different types of transactions: financial transfers, regular function

calls to contracts, and contract creation.

Figure 11.10 shows the distribution of gas used for these transaction types. It

highlights the gas limits mentioned above as vertical lines. No financial transfer

transaction used more than 100,000 gas. This was an expected finding, as a financial

transfer will incur 21,000 gas as base cost for any transaction, plus possibly a small

amount for attached data: between 4 and 68 gas per byte (used, e.g. for a description

6https://etherscan.io/chart/gaslimit.

https://etherscan.io/chart/gaslimit

11.7 Aborting and Retrying Blockchain Transactions 229

Fig. 11.10 Distribution of gas usage for different types of transactions, prior to DoS attacks.
Dotted vertical lines show limits in response to the attacks. © 2017 IEEE. Reprinted, with
permission, from Weber et al. (2017)

of the transfer. As for function call transactions, 94% of them used at most 200,000

gas. Only 0.62% of the remaining function call transactions would not have been

possible with the 500,000 gas limit. This contradicted a part of our hypothesis and

highlighted that most of the functions that were in use were not highly demanding

in terms of computation or storage.

However, when inspecting contract creation, we found that only 53.79% of all the

contracts created before the DoS attack could have been created with the 500,000

gas limit, while 46.21% required more gas. This confirmed our hypothesis that many

contracts would not have been deployable while the low block gas limit was in place.

Even for the 2-month period where the network kept the block gas limit at about 2

million, 18.78% of contract creation transactions would have been impossible.

11.7 Aborting and Retrying Blockchain Transactions

One issue for a system designer who is building a blockchain-based system is that

there is no option to abort a transaction. In this section, we propose a mechanism

to artificially abort Ethereum transactions by superseding them with an idempotent

or counteracting transaction. This abort mechanism can be useful if, for instance,

the system observes that the transaction has not been committed within a specified

time frame (as can be the case with, e.g. orphans). As such, the retry and abort

mechanisms could be implemented to increase the user-friendliness or robustness

of software clients or wallets.

Another motivation for abort is the accidental duplication of transactions, which

we discovered thousands of times in our observation of Ethereum: the same

transaction was submitted twice, often within seconds, but with different nonces,

and the funds in the sender’s account were insufficient for both transactions to

execute. Seemingly the senders thought they were retrying the same transaction,

230 11 Dependability and Security

when really they created two separate transactions with the same parameters,

except for the nonce. Instead of transferring the desired amount once, it would be

transferred twice (if the balance was or became sufficient). This has also happened

to individuals we know personally.

11.7.1 Aborting and Retrying Transactions in Ethereum

There are some options to achieve an effect that is similar to an explicit abort. In

Ethereum, for instance, the system or user can issue a competing transaction from

the same source account, i.e. another transaction with the same nonce. Assume user

Alice transfers 1 Ether to Bob by issuing transaction Txi with nonce i. After an

acceptable time frame, e.g. 10 min, has elapsed and Txi has not been committed,

Alice wants to abort Txi . She then submits a new transaction Tx′
i , with the same

nonce i as specified in Txi and a higher transaction fee in order to increase the

chances for Tx′
i to be included. For this transaction Tx′

i , she does not want to spend

more Ether than necessary; thus, she sets the transaction value to 0 and her own

account as receiver. Once Tx′
i is committed, Txi is superseded by it and becomes

outdated. If, in the meantime, Txi were to succeed, Tx′
i becomes outdated. This is

acceptable, since that was the original intent.

Alternatively to aborting, Alice can ‘retry’ Txi by submitting Tx′′
i as follows: the

fields in Tx′′
i contain the same data as in Txi , including nonce i—except Alice offers

a higher fee for it. Therefore, the hash and digital signature of Tx′′
i will be different

from Txi , and thus it will be perceived by the miners as a separate transaction.

If Alice tried resending Txi without any changes, hash and signature would be

the same, and the miners would not consider it any differently—unless they have

previously dropped Txi . In the latter case, the reasons for dropping Txi might not

have changed, and thus the same would likely happen again. If either Txi or Tx′′
i

succeeds, the respective other transaction would become outdated and invalid, since

they both have the same nonce i.

11.7.2 Aborting and Retrying Transactions in Bitcoin

The Bitcoin blockchain does not offer transaction abort. In a German newspaper

article from late 2017, the author described that he ‘lost’ BTC7 worth several

hundred Euros, since he did not offer a transaction fee, and his transaction had not

been included for more than 2 weeks. His wallet application did not offer options to

abort or retry the application, and simply reported his account balance to be zero. In

cases like that, we believe the following method should work.

7BTC is the currency code for Bitcoin’s cryptocurrency.

11.7 Aborting and Retrying Blockchain Transactions 231

Say, Alice wants to transfer 5 BTC to Bob. She previously received 2 BTC from

Charlie, as output 0 (abbreviated as #0) in Tx1, 1 BTC from David as #0 in Tx2, and

4 BTC from Erin as #1 in Tx3. Her virtual account thus holds 7 BTC. To achieve the

transfer, Alice creates transaction Txorig that has two inputs: Tx1 #0 (2 BTC) and

Tx3 #1 (4 BTC), so that Txorig has a transaction volume of 6 BTC. Alice then adds

two outputs: #0 with 5 BTC to Bob and #1 with 0.99 BTC to herself. Txorig thus

offers a transaction fee of 0.01 BTC, and subsequently her virtual account will hold

1.99 BTC.

Now, say the commit of this transaction does not happen within Alice’s time-

frame of 6 h and Alice wants to abort. Since each input can only be spent once,

Alice can achieve that by submitting Txabort with the same inputs as Txorig, but as

single output #0 she specifies 5.98 BTC to herself (thus offering a transaction fee of

0.02 BTC). If either Txorig or Txabort succeeds, Alice’s account is not in limbo, and

she can continue to use the network as normal.

As an alternative to abort, Alice can re-attempt the transfer with Txretry as

follows. The inputs are the same as in Txorig, output #0 stays at 5 BTC to Bob,

but output #1 is changed to transfer 0.98 BTC to herself. Txretry thus offers a higher

transaction fee of 0.02 BTC, and if Txretry succeeds then Txorig becomes outdated.

11.7.3 Experiments for Aborting Transactions in Ethereum

We tested the above method for abort on the public Ethereum blockchain for three

scenarios: (i) a transaction does not get included in the usual period of time; (ii) a

client changes its mind and decides to roll-back the issued transaction; and (iii) a

transaction is in indefinite pending state due to insufficient funds. We describe these

below in more detail.

Abort Experiment 1 In order to test the situation where a sent transaction does not

get included in the usual timeframe, we submitted 100 transactions that underbid the

market rate. Specifically, we assumed the average gas price from the previous day

(December 1, 2016) as market rate (mr) and submitted ten transactions each for

different prices, which are 0, 0.1×mr , 0.2×mr , . . . , 0.9×mr . As cut-off time, we

rounded up the 99% percentile from our earlier experiment (cf. Fig. 11.7) to 10 min.

If the transaction had not been included then, we submitted an abort transaction

Txabort as described above, with the same nonce but at full market rate mr , target

0x0, and value of 0.

The results are shown in Fig. 11.11. Surprisingly, most transactions were

accepted by the network. Six out of ten transactions with either 0 or 0.2 × mr

were accepted. In addition, only two out of ten transactions with 0.1 × mr were

accepted. All of the 16 timed-out transactions were successfully aborted with our

Txabort mechanism described above.

Abort Experiment 2 For this experiment, we assumed a client that underbids the

market fee and changes its mind regarding an issued transaction. As in the previous

232 11 Dependability and Security

6

2

6

10 10 10 10 10 10 10

4

8

4

0 0 0 0 0 0 0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered gas price (factor of market price)

Original Tx success Abort Tx success

Fig. 11.11 Underbidding market fee and automatic abort after 10 min if the original Tx was not
included. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

0 0

2

7

3

5
6 6

8

1010 10

8

3

7

5
4 4

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered gas price (factor of market price)

Original Tx success Abort Tx success

Fig. 11.12 Underbidding market fee and automatic abort after 3 min if the original Tx was not
included. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

experiment, we sent another 100 transactions with gas prices as above, i.e. 0, 0.1 ×

mr , 0.2×mr , . . . , 0.9×mr for ten transactions each. Rather than waiting for 10 min,

we set the timeout value to the target median for Ethereum transaction commit, i.e.

3 min.

The results of this experiment are shown in Fig. 11.12. A much higher percentage

of transactions were not included in a block after 3 min, in comparison to Fig. 11.11

with 10-min timeout. As before, 100% of Txabort succeeded. Interestingly, all

of them were included in a block after 3 min. In 2 out of the 100 cases, the

3-min timeout for the original transaction was reached, Txabort was sent, but the

original transaction Txorig still won the race and got included and committed in

11.7 Aborting and Retrying Blockchain Transactions 233

the blockchain. Thereby, Txabort was outdated. As stated above, this is a possibility

that clients should be prepared for. The reasons for such a situation can include

(i) processing time in our client when preparing the Txabort ; (ii) broadcast delays

or other network effects where the winning miner does not receive Txabort before

including Txorig; or (iii) non-rational scheduling of transactions in the pool, where

no preference is given to the transaction with the higher fee.

Abort Experiment 3 In this last experiment, we submitted two transactions, creat-

ing a situation that corresponds to faulty inputs from a user (or user’s program). We

have observed such behaviour during our live observation of the public Ethereum

blockchain. To replicate it, we submitted two transactions, Tx1 and Tx2, as follows.

Assume that the last nonce for the sender address was n and its account balance k.

Then we create Tx1 with nonce n + 1 and value 1
1000k and Tx2 with nonce n + 2

and value 999
1000

k. For both transactions, we set the gas price to 0.7 × mr . Due to the

nonce, Tx1 must be included before Tx2. However, due to the positive gas price, the

account balance resulting from the inclusion of Tx1 is insufficient for Tx2.

Finally, we submit Tx2, wait 5 s, and then submit Tx1. This gives Tx2 the chance

to get broadcast before Tx1 is known to any node, including our own. This procedure

is needed so that the client submits Tx2 to the network; since geth is not aware of Tx1

and its contents when we submit Tx2, it broadcasts Tx2. Otherwise, it might detect

the insufficient balance and not accept Tx2.

Once Tx1 has been included in a block, Tx2 is invalid due to insufficient funds.

However, this does not always get checked, and hence Tx2 may remain in the

transaction pool for a long time. In fact, if another transaction deposited funds

into the sender account, Tx2 would become valid and be executed. This, again, is

behaviour that we observed. Here, we send a Txabort with the nonce n + 2, to abort

Tx2.

We ran this experiment until we had submitted Txabort 100 times. All 100

submitted Txabort were successful. We measured the time it took for Txabort to be

included in a block (first inclusion) and plotted that as shown in Fig. 11.13. The

median for those times was 45 s and the maximum 230 s.

0

5

10

15

20

25

30

20 40 60 80 100 120 140 160 180 200 More

F
re

q
u

e
n

cy

Dura�on (s)

Fig. 11.13 Abort duration histogram, from experiment 3. © 2017 IEEE. Reprinted, with permis-
sion, from Weber et al. (2017)

234 11 Dependability and Security

Our experiments support the hypothesis that transactions can be aborted with our

proposed method. Although it would be better to have explicit abort mechanisms for

blockchains, this is a fall-back method for certain applications to address commit

delays that are due to some of the factors we have described in Section 11.6.2.

11.8 Summary

We started this chapter with a broad discussion on the impact that using blockchain

as a component can have on dependability and security properties. In short,

confidentiality can be harder to achieve, due to the replication of the data structure

to the whole network; integrity is blockchain’s strong suit; in terms of safety,

the picture is less clear; maintainability requires planning and governance; and

availability and reliability features are high for reading/receiving, but potentially

low for writing/sending.

To give a clearer picture of the write/send availability and reliability characteris-

tics, we studied the public Bitcoin and Ethereum networks. For Bitcoin, we found

that even if waiting for a transaction commit twice as long as the median time,

more than 10% of transactions were not committed yet. For Ethereum, this was less

common, but still above 1%. This is important when building an application based

on public blockchains: commit times vary significantly and can take significantly

longer than in common cases.

Finally, we discussed methods for transaction abort and retry, which are not built-

in functions of blockchain clients. Applications can use these methods to handle

transactions that take unusually long.

11.9 Further Reading

This chapter is partly based on Weber et al. (2017) and draws on earlier ideas from

Anderson et al. (2016).

As stated in the beginning of the chapter, we did not cover security infrastructure

or cryptography. A number of books discuss these points in detail, e.g. Bashir

(2018).

In this chapter, we refer to a few seminal works, specifically the Clark–Wilson

security policy model (Clark and Wilson 1987), and the taxonomy of dependable

and secure computing by Avizienis et al. (2014). The alternative definitions of safety

are described in Lamport (1977) and Alpern and Schneider (1985). Finally, the CAP

theorem (Fox and Brewer 1999) indicates that there is inevitably some trade-off

between consistency, availability, and partition-tolerance for distributed databases.

The Ethereum yellow paper (Wood 2015–2018) specifies gas costs for various

operations and describes the function of block gas limits.

11.9 Further Reading 235

As mentioned in the previous chapter, live statistics about the public Ethereum

chain, including inter-block times and the influence of the gas price on transaction

inclusion times, are available at https://ethstats.net/ and the ETH Gas Station

(https://ethgasstation.info/). ETH Gas Station also gives recommendations for gas

price settings, relative to desired inclusion times; these can also be accessed through

an API. From these recommendations it appears that, at the time of writing, miners

now react more to gas prices and the network is less likely to accept transactions

offering no fee than it did when we conducted our experiments.

An earlier investigation on propagation times in the Bitcoin network has been

conducted by Decker and Wattenhofer (2013).

https://ethstats.net/
https://ethgasstation.info/

Part IV

Case Studies

Chapter 12

Case Study: AgriDigital

Blockchain Technology in the Trade

and Finance of Agriculture Supply Chains

with Bridie Ohlsson and Katherine Davison

12.1 Agricultural Supply Chains

12.1.1 Global Agricultural Supply Chains

Agriculture is an industry that provides food and fibre to feed and clothe the world’s

7 billion citizens. Over 25% of the world’s working population are employed in

the agriculture sector.1 In order to meet demand in a globalized world, agriculture

supply chains have formed as long and complex networks of production, processing,

distribution, and marketing channels. They are made up of farmers, processors,

traders, logistics providers, financiers, consumers, and many others, each having

widely varied and often competing interests.

Globally, agriculture is a $6 trillion industry.2 Agriculture broadly includes

the production of commodities such as rice, corn, wheat, livestock, cotton, and

vegetables. While each individual supply chain is unique, across many geographies

and commodities agricultural supply chains face common challenges.

Counterfeit Goods Supply chain participants are vulnerable to fraud, with global

food fraud costing US$40 billion annually.3 More broadly, the annual global trade

in fake goods amounts to a staggering US$460 billion.4 Without verifiable and data-

rich physical assets, counterfeit goods move in large quantities along supply chains.

The human cost of food security has become a very real challenge in many parts of

the world.

1International Labour Organization, ILOSTAT database, 2017.
2World Bank and OECD National Accounts data, 2016.
3John Spink, Michigan State University Food Fraud Initiative 2014.
4OECD & EUIPO ‘Trade in Counterfeit and Pirated Gods: Mapping Economic Impact’, 2016.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_12

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_12

240 12 Case Study: AgriDigital

Counterparty Risk Payment security and counterparty risk are faced by buyers

across the supply chain. Often, buyers and sellers cannot operate with confidence,

because they do not know that they will receive timely payment for their commodi-

ties and be able to access the finance necessary for business stability and growth.

Farmers often do not receive payment for their products and commodities until

months after delivery.

A lack of liquidity across the supply chain makes access to finance a real

challenge for buyers, who are unable to pay farmers in a timely way. Commodity

finance is often limited to reputable borrowers with bricks and mortar security, and

is often only accessible for commodities where the risk price can be hedged. This

results in settlement latency, with title transferring months before payment is made,

introducing enormous counterparty risk which most often falls on the producer at

the start of the supply chain. A key challenge faced by the bulk commodity supply

chains has been providing clear visibility over commodity ownership. Paper-based

systems or spreadsheets provide little to no security for farmers when payment fails.

Cooperation Supply chains are typically characterized by competition rather than

cooperation. Individuals and organizations along supply chains lack the trust and

incentive to openly share data around the status of goods. Only 43% of agri-supply

chain participants feel confident that they can collaborate with their counterparties.5

12.1.2 Blockchain and Agriculture

Despite the overall digitization of the global economy, agriculture remains one of the

world’s least digitized industries.6 Agriculture missed out on many of the benefits

of the ‘first wave’ of the internet and associated technologies, due to a lack of

connectivity and ready technical skills. Global trade is still largely paper-based and

manual, and information around a commodity does not flow freely between supply

chain participants. Costly back-office reconciliation processes, and manual double

data entry, continue to add additional costs and human error into agri-supply chains.

Supply chains are consistently recognized as a natural market for blockchain

technology. These are networks where multiple participants operate who do not trust

each other but who require access to a single set of verifiable data and claims about

a common asset. The natural state of agri-supply chains is distributed networks

relying on a single source of truth. This led AgriDigital to see blockchains as critical

components for building robust digital supply chains.

53M, Supplier Survey Whitepaper, ‘Driving Growth and Innovation through Supplier Partner-
ships’, 2017.
6McKinsey Global Institute Industry Digitization Index 2015.

12.2 The AgriDigital Vision 241

12.2 The AgriDigital Vision

12.2.1 Building Digital Trust

Since being founded in 2015, AgriDigital has been using blockchain technology as

part of a technical stack to build digital trust across agriculture supply chains. At the

core of the AgriDigital vision is a platform and community approach to digitizing

agriculture, and that doing so will bring security, trust, and value to agri-supply

chains.

For AgriDigital, digital trust means supply chain participants can transfer

commodities with complete security, can accurately attribute value to those goods,

and can recognize financially and otherwise where that value has been contributed

along the supply chain. The building of digital trust is the accumulation of a robust

digital infrastructure, comprising multiple different components. Blockchain is part

of the technical solution that will deliver digital trust to agriculture supply chains

globally (Fig. 12.1).

AgriDigital was founded by a team of Australian farmers and agribusiness

professionals. The AgriDigital founding team has a combined 80 years’ experience

in the grains industry and deep personal experience of the challenges agriculture

faces.

Taking the approach of first delivering a cloud-based platform to market in the

Australian grains industry, AgriDigital has been able to gain commercial traction

Fig. 12.1 Building blocks of digital trust in AgriDigital’s vision. © 2018 AgriDigital, reprinted
with permission

242 12 Case Study: AgriDigital

while continuing to pilot and test components of blockchain and other technologies.

The AgriDigital platform is a commodity management solution connecting farmers,

traders, and site operators to seamlessly manage contracts, deliveries, inventory,

invoices, and payments. Through the application layer, AgriDigital is able to capture

and validate information about the physical commodity and streamline interactions

between supply chain participants.

The AgriDigital platform acts as the application layer through which customers

can leverage the benefits of blockchain technology across agri-supply chains.

Using this interface, AgriDigital has conducted world-first proof of concepts and

pilots with leading agribusinesses, applying blockchain technologies to help solve

embedded agri-supply chain challenges.

12.2.2 AgriDigital’s Blockchain Solution

AgriDigital has designed a library of smart contracts to facilitate the trade and

finance of agricultural commodities. In traditional supply chains, trade, finance,

and data flows are kept separate, both within organizations and between them. This

siloed approach to data flows contributes to the risks, delays, and fraud across agri-

supply chains, as participants have a difficult time verifying commodities, managing

costly processes to do so, and only trusting a limited number of counterparties

(Fig. 12.2).

Fig. 12.2 Traditional agri-supply chains, with separate flows for trade, data, and finance. © 2018
AgriDigital, reprinted with permission

12.2 The AgriDigital Vision 243

Fig. 12.3 AgriDigital solution: integrating the flow of data, trade, and finance using digital
technologies. © 2018 AgriDigital, reprinted with permission

There is an enormous opportunity to drive value and innovation along supply

chains, by bringing together these otherwise disparate information flows. Not only

would this provide network and market efficiencies, but it would also act as a single

source of truth providing supply chain assurance and transaction security. Bringing

together trade, finance and data flows, applications, and individual users in one

solution can leverage that information and contribute to solving challenges such

as the lack of liquidity, counterparty risk, and counterfeit goods (Fig. 12.3).

At the core of the AgriDigital solution is the creation of digital assets. The digital

assets become the anchor from which these trade, finance, and data flows are brought

together. As the digital asset moves from participant to participant along the supply

chain, an immutable and data-rich record of the physical asset is created on the

blockchain-based protocol.

Once a digital asset is issued, participants can attach data including certificates

and production records, seamlessly sharing this verifiable information with others in

the network. Using smart contracts, counterparties can execute secure transactions,

providing transparent chains of custody and proof of ownership. With full visibility

over the asset, financiers can provide supply chain finance in new and innovative

ways.

244 12 Case Study: AgriDigital

12.2.3 Architecturally Significant Non-functional

Requirements

The vision and business context described above drive several architecturally

significant non-functional requirements for AgriDigital’s blockchain solution. The

key quality is integrity, to ensure secure records of title and confidence in payments.

Transparency of blockchain data to participants and security of transactions build

digital trust in the physical asset. However in negotiating the commercial use case,

complete transparency may only exist between specified parties; for other parties

and especially competitors, there may be a need for data privacy.

The need for real-time payments and the need to support transactions in the

context of deliveries in the physical world also drive requirements for acceptably

low latency. Implicit in the vision for an industry-scale platform is a demand for high

availability and acceptably high throughput scalability. All of these qualities are

likely to be also requirements for other blockchain-based supply chain platforms. An

interesting non-functional requirement directly related to AgriDigital’s technology

strategy is system adaptability, to allow the trial and gradual digitization at the

application layer to incrementally increase the data richness of digital assets within

the blockchain-based platform.

12.2.4 Pilots and Proof-of-Concept Overview

AgriDigital has conducted a number of proofs of concepts with industry partici-

pants. We give an overview of three of them here, before delving into more in-depth

details of the second proof of concept in the next section.

Pilot 1: Fletcher International Exports

December 2016, Dubbo, NSW

In December 2016, AgriDigital executed the world’s first settlement of a physical

commodity on a blockchain. This pilot was significant in its delivery of real-time

settlement for physical commodity transactions, opening the doors for elimination

of the counterparty risk that all sellers face.

An Australian wheat farmer, David Whillock from Geurie, NSW, delivered 23.46

metric tonnes of wheat to Fletcher International Exports (FIE) who run a processing

and exports business in Dubbo, New South Wales. In a global first, Whillock was

paid instantaneously using blockchain technology.

A smart contract from the proprietary AgriDigital library auto-executed the

settlement. At the moment of delivery to the silo at Dubbo, the quality and

quantity of wheat being delivered was recorded at the weighbridge and sample

station. The smart contract then valued the particular delivery of wheat against

an existing legal contract, then verifying FIE had sufficient funds in their digital

wallet to pay Whillock and securing the funds in Whillock’s name pending delivery

12.2 The AgriDigital Vision 245

confirmation. Once the farmer completed the physical delivery at site, title to the

grain transferred from Whillock to FIE, and simultaneously payment was made from

FIE to Whillock.

For this pilot, though transaction settlement occurred on the blockchain,

Whillock received the payment in local currency using traditional banking methods:

a message was sent out as a bank file for the buyer to upload and pay, on the same

day, via existing payment mechanisms. Typically, payment terms in the Australian

grains industry range from 2 to 5 weeks, and these terms are the ones that pose

counterparty or credit risk to growers. Using smart contracts to match title transfer

to payment provides instant benefits to farmers and other sellers by removing

counterparty risk and increasing security over the asset up until the moment the title

transfers.

The pilot ran in December 2016 using a private instance of the Ethereum block-

chain. AgriDigital managed the three-node network, simulating the situation where

AgriDigital, the buyer, and a third-party regulator each operated a full blockchain

node. The private blockchain was configured to mine approximately one block

per second, where each block may or may not contain transactions. The delivery

information was provided through integrations with electronic weighbridges, which

automatically created messages as measurements were taken and sent these to the

AgriDigital system. Additional manual data entry from the sampling station was

entered into the AgriDigital frontend. At the time, Ethereum was limited in its

handling of decimal values, and thus some rounding error occurred as expected.

Pilot 2: CBH Group

July 2017, Bordertown, SA

In partnership with CBH Group, Australia’s largest grain exporter, AgriDigital

completed a pilot that focused on matching title transfer of a grain asset to payment,

as well as supply chain provenance and traceability of organic oats.

This pilot and the design and architecture decisions are discussed in greater detail

below in Section 12.3.

Proof of Concept: Rabobank

December 2017, Sydney, NSW

AgriDigital teamed up with the world’s leading agricultural bank, Rabobank, to

conduct a proof of concept that successfully demonstrated a purchase and sale of

commodities on a blockchain in a lab environment.

The objective was to test whether the AgriDigital platform, supported by a

blockchain, could facilitate purchase and sale transactions. The proof of concept

simulated the execution of a commodity purchase and sale transaction in the form

of a Rabobank structured inventory product (SIP), with automated settlement of the

purchase and forward sales contract, involving three parties: a farmer, a grain trader,

and Rabobank. Under the traditional SIP arrangement, a grain trader enters into

an agreement with Rabobank to act as an agent in purchasing grain from farmers.

Under the agreement, the trader can purchase the grain from Rabobank within a

specified period, at which point the legal title passes to the trader (Fig. 12.4).

246 12 Case Study: AgriDigital

Rabobank issues AUD token to the Facility under Master Agreement.

Grain delivered and registered at warehouse.

The Digital Title to the grain is issued to the Grower by Trader as Agent acting as
Site Operator.

Grower allocates the grain to Purchase Contract with Trader as Agent for Rabobank.

Digital Transfer Agreement Executes payment from Rabobank to the Grower in AUD
token, ownership of digital title token transfers from the Grower to Rabobank.

Trader requests to purchase the grain which is the subject of a forward Sale Contract.

Simultaneously Swap Agreement Executes payment from Trader to the Rabobank
Facility and beneficiaries (Buyer Digital Wallet and Rabobank) in AUD token.
Ownership transfers from Rabobank to Trader.

Fig. 12.4 Overview of the proof of concept with Rabobank. © 2018 AgriDigital, reprinted with
permission

On a private Quorum blockchain, the smart contract layer auto-executed the

transfer of ownership of the digital title in the commodity from the farmer to

Rabobank in exchange for payment made via the buyer’s SIP facility. At a later time

when the trader was ready to sell the grain to a third-party, smart contracts were

used to simultaneously execute the title transfer and settle a number of payments.

These payments included repaying the Rabobank facility, passing on interest to the

bank and the trader receiving the remaining proceeds of the sale. All payments were

made in real time using a Rabobank-backed digital dollar pegged one to one with

the Australian dollar.

Using smart contracts to execute the complexities of an inventory finance product

goes a long way to automating time-consuming business processes. In turn this

12.3 Designing for a Business Use Case 247

reduces the cost and error rate when making loans under structured inventory

products. Traditionally these types of financing arrangements incur substantial back-

office costs through numerous title transfer processes and asset valuations including

weekly mark-to-market valuation based on third-party reference prices. Financing

digital assets backed by live data inputs reduces the risk and cost in executing these

financing arrangements. Additionally, using a distributed database to store data on

the quality and quantity of grain enables financiers, growers, and traders to access a

single source of truth about the commodity, valued in real time.

A highly novel outcome of this proof of concept was the incorporation of

a bank-backed digital currency, meaning real-time payment to the farmer was

possible in a currency that the farmer recognized and could easily transfer from

digital to traditional Australian dollars. Providing stable, digital currencies that are

widely accepted by traditional businesses remains a challenge across the blockchain

ecosystem globally.

12.3 Designing for a Business Use Case

In this section, we describe the second proof of concept in some technical detail,

including requirements, architecture design decisions, and outcomes.

12.3.1 Overview

In July 2017, AgriDigital and CBH Group, Australia’s largest exporter of grain,

conducted a pilot to test the application of blockchain in the Australian grains

industry at CBH’s wholly owned subsidiary, an oat processor in South Australia.

The pilot comprised two distinct scenarios built on the AgriDigital commodity

management platform, blockchain infrastructure and smart contract library:

1. Generating digital title to a physical commodity and executing payment on a

blockchain, including secure 7-day payment terms

2. Verifying the organic status of a batch of oats along the supply chain: from a

delivery leaving the farm gate, then commingling with other farmers’ produce in

processing and milling, through to the point of sale to a retail customer

The pilot aimed to cater for a real business use case and therefore needed to

integrate seamlessly with existing technology solutions and meet realistic business

requirements. This included more accurately reflecting the industry demands, by

allowing 7-day payment terms while providing security over the asset for the farmer

during this period. It was also important to ensure a level of privacy could be

maintained between participants, as the exact processes and procedures on site

should not be disclosed to all network participants.

248 12 Case Study: AgriDigital

Fig. 12.5 Pilot components (AD, AgriDigital; DB, database). © 2018 AgriDigital, reprinted with
permission

12.3.2 Pilot Scenarios

We explain the solution here, before describing the challenges and design decisions

in the subsequent section.

Components Based on the protocol design decisions discussed below, the infras-

tructure shown in Fig. 12.5 was designed for the purpose of conducting the two

pilot scenarios. The pilot used the AgriDigital platform and a basic web application

as the user interfaces to capture the data. The blockchain protocol ran using a private

Quorum network with three physical nodes.

Scenario 1 Transaction and Payment Security Using the AgriDigital platform,

digital title to a delivery of oats was generated on a private Quorum network and

held in the farmer’s digital wallet. Seven days later, settlement occurred in an atomic

transaction: payment was made from the buyer to the farmer and simultaneously

title transferred from the farmer to the buyer. For the period up until payment, the

farmer had clear ownership of the digital title token that represented the physical

grain delivery and therefore security over their asset (Fig. 12.6).

The farmer’s delivery was received at the buyer’s site using the AgriDigital

platform, where information around the quantity and quality of the commodity

was captured at the point of receival. This information was then pushed through

various integrations in order to generate a digital title token on the blockchain. The

token was then held and flagged for payment in 7 business days. The payment

on the blockchain layer was made using a second token, minted by AgriDigital

and known as ‘AgriCoin’, which was pegged 1:1 with the Australian dollar. Smart

contracts, agreements codified for execution on a digital distributed platform, were

12.3 Designing for a Business Use Case 249

Fig. 12.6 Process flow for grain delivery, sale, and settlement. © 2018 AgriDigital, reprinted with
permission

used to auto-execute payment on the blockchain layer. In parallel, the payment

was processed using traditional banking methods, using a platform named Sybiz,

to ensure the farmer received payment in Australian dollars.

A transaction normally taking days to execute in current grain supply chains

happened in less than 1 s under the pilot conditions. This pilot therefore solved

the challenge of matching delivery to payment and proved the ability to eliminate

counterparty risk by running commodity transactions on a blockchain. This allows

the supply chain to operate in confidence: farmers are assured they continue to own

their commodity up to the moment they are paid. This goes a long way toward

removing counterparty risk along supply chains.

Scenario 2: Provenance and Traceability In a second scenario, AgriDigital and

CBH used a private Quorum blockchain to trace the movement of a batch of organic

oats from the farm gate, through milling and production, to a retail consumer. Data

on the provenance including all intermediate steps was stored and analysed on the

private Quorum network.

A range of physical inventory data points were captured on a web application

and bundled into assertions, each representing an event or claim determined to be

critical to the organic status of the oats. Each assertion was then hashed and recorded

on the blockchain layer. At the point of sale to a consumer, the assertions pertaining

to that particular batch run were analysed to produce a report that either confirmed

or denied the organic status of the oats.

AgriDigital developed an analytics model to determine whether the oats were

organic at the farm gate and checked a predefined business process through hulling,

milling, and packaging. The analytics model then produced a true/false statement

as to whether the organic status had been retained while the batch of oats passed

250 12 Case Study: AgriDigital

Fig. 12.7 Process flow for analysing the organic status of oats along the supply and processing
chain. © 2018 AgriDigital, reprinted with permission

through the various stages of the supply chain to the point of packaging and

readiness for delivery to the retailer (Fig. 12.7).

12.3.3 Design Decisions

1. Choice of Protocol AgriDigital had experience working with the Ethereum

platform from the first proof of concept. However in designing for a commercially

viable use case, there was a strong need to address business concerns around trans-

parency and scalability. The critical technical requirements in designing a solution

to meet the business use case were throughput and privacy, and Ethereum was not

the best fit. As for privacy, production information around the commodity can be

incredibly sensitive and reveal the comparative advantage of individual businesses.

However, at the same time, if information or claims need to be proven, the business

needs to be able to share this data or otherwise reveal a claim or certificate in a way

that the party receiving the information can have complete confidence in its validity.

Regarding throughput, at any point in time an enormous volume of transactions are

being executed across agriculture supply chains. However due to the nature of the

physical transaction, there is a higher degree of tolerance for delay in the transaction

time. For this reason, the transaction speed (latency) itself was not as critical as the

number of transactions processed per unit of time (throughput). For these reasons,

AgriDigital investigated using Quorum as a technology platform for this trial.

The Australian grains industry produces a total of 40–45 million tonnes of grain

(cereal crops, primarily including barley, grain sorghum, maize, oats, triticale, and

wheat) each year, the majority of which is transacted over intense harvest periods.

The Quorum network uses the Raft consensus mechanism with 50 ms block times,

meaning transactions can be processed in real time. This allowed AgriDigital to

produce sub-second transaction times for the exchange of digital currency and

digital title. At a rate of four transactions per second, this settlement method is

scalable to satisfy the throughput and latency requirements of the Australian grains

industry.

12.3 Designing for a Business Use Case 251

In comparison to solutions available in July 2016, Quorum seemed to offer

the most promising solution to business challenges in dealing with the radical

transparency of other blockchain protocols. During the protocol investigation stage,

tests were conducted on the Quorum chain to determine the utility of the privacy

settings in the specified use case. While allowing for some sophistication, ultimately

the privacy settings available at the time were inadequate to properly facilitate

the business case as required. Using the ‘privateFor’ parameter, Quorum allowed

for transaction details to be made visible only to the parties specified in the

contract. However this feature was only available at the level of nodes, rather than

between individual addresses. Requiring each participant within the agri-supply

chain network to run their own node is not a feasible model in this industry. While

Quorum allowed for the transfer of private information in the pilot scenario, it was

recognized this was not a scalable or commercial solution for the problem at hand

at the time.

2. Network Incentives The scenario was conducted in a closed and controlled

network, so there was not a real concern around incentivizing good behaviour by the

pilot participants. However, the design of the solution had to cater for the possible

scenario where participants did not trust one another and might try to gain an unfair

advantage.

The impetus behind including blockchain as part of our technology stack was

specifically to allow for unknown counterparties to trust the business transaction.

It was therefore critical to design a protocol that incentivized good behaviour and

prohibited or revealed bad behaviour wherever possible.

Supply chains are inherently complex, and designs for digital assets must meet

the realities of the industry. AgriDigital’s understanding of these complexities,

particularly in the grains industry with both on-farm and off-farm storage of assets

and the various points of sale, directed the design of the systems architecture. Given

that the grains industry is largely a handshake industry revolving around physical

assets, it was critical to design a network that was capable of giving confidence to

the digital asset. Part of this are the incentive structures and network rewards, to

ensure good behaviour in the digital ecosystem by the range of participants along

the supply chain.

For example, the generation of the digital asset and the issuance of that asset on-

chain needed to incorporate means of protection against the potential for fraudulent

or deceptive behaviour. It is necessary to separate the issuance of the digital asset

from the owner of that commodity, to give confidence that the digital asset was

reflective of the commodity in the physical sense. In practice, this means that while

the farmer is the owner of the physical asset, it is the warehouse or site operator who

takes the quality and quantity measurements and issues the digital asset to the digital

wallet of the farmer. By permissioning the different roles of custodian or owner into

the network, we are able to prevent bad behaviour. Otherwise an actor could, e.g.

issue a digital asset to themselves multiple times without others having any way of

verifying whether this reflects physical commodities.

252 12 Case Study: AgriDigital

3. Secure Payment Terms AgriDigital’s previous work looked at executing smart

contracts that facilitate the payment for a commodity at the exact time that delivery

was made by the farmer. However, to cater for real business needs, a commercial

payment model needs to allow for alternative payment terms. Even where payment

for a commodity is not made at the precise time of delivery, the critical requirement

is that the farmer continues to own the asset in their digital wallet until the payment

is executed.

There were a number of ways this could be managed. AgriDigital decided to

employ a fairly straightforward model where both the digital asset and the payment

amount were locked or escrowed until the moment the smart contract executed the

transactions several days later.

The design of the escrow smart contract was as follows:

1. The buyer adds a pending payee.

2. A smart contract function checks the digital wallet of the buyer to ensure they

have the available balance. If the balance is insufficient, an exception is thrown.

Returning ‘false’ is not useful if we are calling the function directly from the

blockchain API, as this will only return the transaction hash. Alternatively

transaction results could be checked with the hash, but this would be less

convenient and require more API calls.

3. If sufficient funds are available, reduce the balance by the amount required, and

add it to the escrow balance of the smart contract.

4. Add a new mapping from the payee to the amount requested.

5. Emit an escrow event.

If there is an issue with payment, or the sale is otherwise cancelled during the

payment period, the asset or payment amount can be unlocked and returned to the

available balance in the digital wallet.

In the escrow function, digital assets were locked using the same functionality.

Double sale of assets remains a significant challenge in agriculture supply chains.

Revealing a clear and verifiable chain of custody and ownership assists in preventing

the problem of double sale, as each digital asset can only be sold once by each party

in the supply chain.

4. On-Chain and Off-Chain Data Storage Across the various stages of growing,

transporting, and producing organic oats, there are thousands of data points available

to be captured. Determining the data points which are valuable to the supply chain

as a whole, to individual consumers and those relevant to proving the organic status

of the oats, requires close matching of the digital assertions to business processes.

In the provenance model, a range of physical inventory data points were captured on

a web application and bundled into assertions, each representing an event or claim

determined to be critical to the organic status of the oats. The decision was made to

store the majority of data points off-chain, while recording the assertion on-chain.

The analytics model was designed to provide a true/false statement as to whether

the oats were organic at the point of sale to a retail consumer. Fundamental to

making this claim is a model that is flexible enough to cater to a range of use

12.3 Designing for a Business Use Case 253

cases, while ensuring that defined tolerances are not exceeded. Rather than being

stored in a contract state, each assertion was recorded on-chain as log events. The

decision to store as log events significantly reduces the cost of storing data on-chain.

In making this decision, it is important to note that querying log events is much less

straightforward than querying contract state.

From the data stored on the blockchain, a graph database (Neo4J) can then be

created containing each of the assertions. The choice to use a graph database was

made because it provides a flexible model for querying by matching patterns in the

graph. The assertions recorded are, by nature, highly variable—in terms of both their

associated properties and the connections they draw between entities and artefacts in

the supply chain. The flexibility of the graph model was therefore deemed essential

in implementing a system that could adapt to the variety of possible scenarios arising

in the business case. The final analytics model ran in a web application with access

to the graph database.

5. Integrations and the Application Layer Blockchain technology alone does not

provide certainty that the digital record reflects the physical commodity. While

the digital asset can be highly trustworthy, it is the confidence in the broader

data integrity that gives it value. To this end, a commercial solution requires a

robust digital infrastructure that connects the physical commodity to the digital

representation at every stage along the supply chain. AgriDigital sought to use

integrations with platforms and Internet of Things devices, sensors, and machinery

such as weighbridges wherever possible.

It was considered whether users could interact directly with the blockchain or

whether the interaction had to come through an application layer. Manual, human

data input continues to act as a threat to data integrity with poor, incorrect, or

incomplete data being hashed to the blockchain. For this reason, the choice was

made to interact only through application layers, making the AgriDigital platform

and web application both critical components in ensuring that data of a high quality

and consistency was posted to the blockchain.

Given the pilot used a trusted network of selected participants, it ran using a

private three-node Quorum chain and did not operate distributed components or a

clustered graph database. In a completely decentralized system, the Quorum chain

would have multiple operators interacting with various platforms and APIs, with

access to the same raw data allowing them to make independent verifications that

the assertions were correct.

Furthermore, where the blockchain or the application, such as the AgriDigital

platform, can integrate with machines and digital systems, such as a weighbridge

integration and quality testing instrumentation or processing equipment, this is

clearly preferred. Removing human data input and increasing the number of such

integrations allows for much more reliable data entry and increases the integrity

of the blockchain-backed data overall. Part of facilitating these integrations is

increasing digitization across businesses generally in order to build out the entire

digital infrastructure.

As a blockchain is an immutable store of data, it is critical to ensure both the

data and the actor making an assertion are correctly identified at the time of record

254 12 Case Study: AgriDigital

on the blockchain. Digital identity was not a primary requirement for this particular

business use case, and therefore an identity component was considered, though not

integral, in the design for this pilot. A more robust digital identity solution should

be considered in subsequent work.

6. Digital Currency Operating digital currencies across a network remains a

challenge. New kinds of ‘programmable money’ aim to represent fiat currencies and

leverage the benefits of blockchain technology in being programmable. Approaches

such as ‘stablecoins’ attempt to provide stable exchange rates with fiat currencies

but were only in their infancy and were not considered.

Three methods of payment were considered for this pilot:

1. Payment in cryptocurrency

2. Payment in a network token

3. Payment off-chain using traditional banking methods

For the purpose of the business use case, cryptocurrencies such as Bitcoin were

considered to be too volatile and difficult for businesses to hold on a balance sheet.

Without the existence of a centrally issued Australian digital dollar, it was not

feasible to consider making payment in a cryptocurrency.

Payment on a blockchain can be significantly more efficient as it occurs in real

time and has the benefit of being programmable. This means complex sequences

of events and dependencies can be written into the blockchain itself to allow

certain events, such as matching title transfer to payment and automating financing

arrangements, within a single atomic transaction.

However, in designing for a commercial use case, it was critical that the farmer

received payment in a currency of value to them. Therefore a decision was made

to execute the payment on-chain in a network token, AgriCoin, and make a parallel

payment using traditional banking rails. This allowed the smart contracts to leverage

the programmable nature of digital currency through the AgriCoin and allowed the

farmer to receive payment in a currency of value to their business, being Australian

dollars. Payment on a blockchain using digital currency payment was proven to

be significantly more efficient, as it occurred in real time and had the benefit of

matching title transfer to payment. However, the trade-off in this model was that

the full benefit of this efficiency was not realized, and risk reintroduced, by moving

off-chain to make the final payment in Australian dollars.

12.4 Summary

With global caloric demand said to increase by 70% by 2050,7 the agriculture

industry is only growing. AgriDigital is building a piece of the digital infrastructure

to support the development of digital trust across agriculture supply chains. The

7FAO Synthesis Report, ‘How to Feed the World in 2050’, 2009.

12.4 Summary 255

AgriDigital blockchain protocol aims to be a low-cost product accessible to all

participants across the supply chain.

The AgriDigital pilot program has continued to test the logic and technical

solution. Each iteration has included advances in the technology stack and more

complicated use of smart contracts to facilitate novel trade and finance arrange-

ments. Key challenges for the AgriDigital blockchain product going forward include

solving for digital identity, data integrity, and business privacy requirements.

Some commentators claim that in a few years’ time blockchain will no longer be

a buzzword—it will be as ubiquitous as the internet. Others believe that blockchain

is all hype; that it is an untested technology with huge risks and little upside. Farmers

have always been eager adopters of technologies that make sense and deliver real

value. AgriDigital is already starting to realize that value for farmers and agri-

supply chain participants, with a clear vision to incorporate blockchain as part of

the solution to solve the big challenges in agriculture supply chains.

Chapter 13

Case Study: SecureVote

Taking a Dapp from MVP to Production

with Max Kaye and Nathan Spataro

‘Democratise the world.’

— SecureVote’s Massive Transformative Purpose (MTP)

13.1 Introduction and Background

Voting seems simple enough. With paper, voters just fill out a ballot sheet and put

it in a box. To count the votes, the box is emptied and the ballots are counted in

public. However, there are many underlying complications. How do we know extra

votes have not been added? How do we know each voter has voted at most once, or

exactly once? If a voter claims their vote was not in the final tally, how could we

check? How do we know the count is accurate, especially if it can vary every time

votes are counted?

Solving all of these problems can be hard, even with paper systems. With

electronic voting systems, some things become easier. For example, there may be a

public electorate-wide list of voters, and we could ensure each vote has some kind of

verifiable cryptographic authentication. This can help us check to who did not vote.

And, of course, tallying votes is fast and reliable in an electronic system. However,

electronic systems present us with other problems. How can we anonymize votes in

an electronic system? How do voters know whether their vote was included without

revealing who they voted for? How can we decide which votes are valid without a

privileged role?

The potential utility of blockchain technology for voting was identified early,1

and blockchain can help to solve some of these problems. However, using a block-

chain alone is not enough. The exact blockchain chosen, the consensus mechanisms

used, and the architecture of the voting platform are all important design decisions

1At least by December 2010: https://bitcointalk.org/index.php?topic=2299.msg31851#msg31851.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_13

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_13&domain=pdf
https://bitcointalk.org/index.php?topic=2299.msg31851#msg31851
https://doi.org/10.1007/978-3-030-03035-3_13

258 13 Case Study: SecureVote

that impact system capabilities. While this chapter does not describe solutions to all

of the hard problems with online voting, it does describe architectural concerns for

robust, upgradable, multi-user smart contracts used by SecureVote to address these

problems.

This case study concerns the development of Tokenvote, a general purpose, mul-

tichain governance system for blockchain-based tokens developed by SecureVote.

Tokenvote uses the Solidity language and is deployed to Ethereum.2 Tokenvote

supports arbitrarily complex append-only voting systems and has been designed

to be modular, upgradable, and configurable. SecureVote was founded in 2016 to

provide affordable, turn-key voting systems of all types and at all scales.

In this chapter we will cover many of the challenges encountered and trade-

off decisions made while taking this smart contract-based voting solution from a

minimum viable product (MVP) to production. This journey spanned 4 months,

numerous redesigns, and all of the ecosystem issues mentioned above. We will not

describe the voting functionality in detail—the principles are outlined in the sidebar

below—but rather focus on how the architecture and overall design changed over

development. The discussion is in terms of the Solidity language on Ethereum,

but many of the architectural issues apply across smart contract languages and

platforms.

Principles of Anonymous Voting Using Blockchain

Through a combination of public-private key cryptography and peer-to-

peer shuffling, SecureVote achieves that voters can vote anonymously and

later verify and confirm that their vote has been recorded correctly. Voters

cannot prove which vote was theirs, and no one else can find out how they

voted.

To achieve these goals, a ballot is prepared with an electoral roll, contain-

ing all addresses that are allowed to vote. For this ballot, voters first create and

anonymize an ephemeral voting key pair, which is discarded after the ballot

completes. The voters use this key pair to anonymously sign their actual vote.

Two rounds of shuffling are necessary: the first one to create the ephemeral

anonymized key pairs and the second one for the actual voting. In each round,

the shuffling is done off-chain, in a peer-to-peer fashion but relying on on-

chain information like the electoral roll; and the results of the round are

published on-chain. After each round completes, each voter confirms that the

result is well-formed and that their vote/ephemeral public key was recorded

correctly, by signing the result.

(continued)

2Links to the Tokenvote source code and Ethereum documentation appear in Section 13.6 at the
conclusion of this chapter.

13.2 The MVP Prototype 259

Say there are 50 voters. The ballot ensures that each voter can vote at most

once and only voters on the anonymized electoral roll can vote. If all 50 voters

confirm that their individual vote was recorded correctly, then we know that

all votes were recorded correctly. In other words, the number of signatures on

the ballot must match the number of voters exactly.

More details can be found at https://gitlab.com/exo-one/svst-docker/blob/

master/svst-docs/secure.vote.white.napkin.md.

13.2 The MVP Prototype

In late 2017, SecureVote implemented a small MVP to facilitate early governance

for the US-based Swarm Fund, a blockchain-based organization facilitating the

creation of securitized tokens. Although Swarm Fund’s security tokens live on a

Stellar-based blockchain, their organization-wide token (SWM) is an ERC20 token

on Ethereum.

Swarm (unlike many ERC20-based organizations) were proactive about gover-

nance from the start. In their whitepaper they described the first version of their

Liquid Democracy Voting Module (LDVM), a system designed to support the

governance of both the foundation and the investment opportunities offered via

their platform.3 There are two important aspects of their design that are common

in systems of distributed governance: delegation and stake-weighted votes.

• Stake-weighted votes: In many ballots, not every vote is weighted equally, or

some parties may have an unequal number of votes. The most common example

of stake-weighted voting is by shareholders at a company’s annual general

meeting (AGM). Each shareholder votes with a weighting proportional to the

number of shares they own: 1 share, 1 vote; 2000 shares, 2000 votes. For similar

reasons, most token-based communities choose to use stake-weighted votes.

• Delegation: Voters can choose another party to act on their behalf. On a

blockchain, this could be another account they own, for example, allowing voters

to delegate voting power from tokens they own in a cold wallet to a ‘voting-only’

account in a hot wallet. Or, the delegate could be someone else’s account, for

example, a prominent community member. Delegation is a common feature of

modern digital governance systems. It is similar to the idea of a representative

in government but can be done on a per-voter basis. In some systems multiple

delegations can be chained together. The original voter can always stop the

3Swarm’s LDVM design uses fairly standard patterns, and the requirements are currently met by a
subset of Tokenvote’s capabilities.

https://gitlab.com/exo-one/svst-docker/blob/master/svst-docs/secure.vote.white.napkin.md
https://gitlab.com/exo-one/svst-docker/blob/master/svst-docs/secure.vote.white.napkin.md

260 13 Case Study: SecureVote

delegation and vote directly; only if a voter does not vote does the delegate inherit

the voter’s weighting.

SecureVote was responsible for the initial implementation of Swarm’s gover-

nance framework. This initial deployment had only a few requirements:

R1.1 Facilitate an open ballot for all SWM token holders and all delegates.

R1.2 Support optional delegation to arbitrary Ethereum addresses.

R1.3 Stake-weight votes according to voters’ SWM balances and delegations.

R1.4 Support the deterministic audit of the ballot by arbitrary actors.

R1.5 Support the encryption of votes such that the result is unavailable until the

respective secret key has been published.

These requirements seem simple but are practically impossible to meet using

only smart contract platforms like Ethereum and on-chain computation, where all

storage, auditing, and delegation resolution occurs within the blockchain’s virtual

machine. There are two primary reasons for this:

• Historical access: a naive voting system might check a voter’s balance at the

time the vote is cast. However, this approach introduces multiple race conditions

and makes handling delegation difficult. The correct approach is to use snapshots

at the start and end of the voting period to retrieve balances and delegations,

respectively. Ethereum does not support this kind of arbitrary historical access.

• Transaction cost: with fee-per-operation blockchain platforms, like Ethereum, it

is prohibitively expensive to repeatedly load items from storage (like balances,

delegations, and votes) and run tightly looped algorithms such as recursive

delegation resolution or vote counting. As an example: a well-tuned smart

contract could process a maximum of around 400 votes per Ethereum block,

or 1600 votes per minute, based on a gas limit of 8 million gas. Processing

greater volumes requires splitting the operation across multiple transactions, a

tactic which adds overhead and code complexity. Some of the more interesting

features, like on-chain decryption, are simply untenable under fee-per-operation

models.4

SecureVote has previously argued that secure voting (be that on paper or online)

is impossible at scale without the use of a well-constructed blockchain. This is due

to three goals:

• Immutability: the voting record must be append-only and cannot be changed

(even if individual votes can be replaced).

• Censorship resistance: no actor should be capable of preventing a voter from

submitting their vote, except through violence. This requirement precludes

purely proof-of-stake chains in most cases.

4Note: computations like on-chain decryption can be more practical with protocol-layer optimiza-
tions such as the ecrecover function supported by Ethereum.

13.3 Building Tokenvote 261

• Consensus: voters and auditors must agree on which votes are to be counted both

during and after the voting period, and these rules must be non-authoritarian (due

to the need for censorship resistance), objective, and non-discriminatory.

All centralized systems (including recent end-to-end verifiable designs such as Prêt

à Voter) fail at least one of these requirements (usually censorship resistance) and

are thus not fully secure.

Although Requirement R1.4 (deterministic audit) requires a blockchain to store

vote data, it does not require that the audit itself is performed on-chain. The lack of

historical access available to smart contracts5 meant SecureVote needed to audit the

ballot off-chain. Given this, we opted to move as much processing and functionality

off-chain as possible without compromising the platform’s integrity. Decryption of

votes was done every time an audit was run.

The initial MVP was incredibly simple, with only three components:

• A small smart contract of around 100 lines of Solidity code, to securely deliver

ballot details and store votes

• A rudimentary auditor to authenticate voters, decrypt votes, allocate the appro-

priate weighting, and resolve delegations

• A user interface

At this stage, the MVP was unable to handle multiple ballots or communities,

and an individual smart contract had to be deployed for each ballot, costing around

800,000 gas at a minimum. Although this rudimentary system was quite capable of

handling Swarm’s needs for the next few months, it was unsuitable for general use

and required costly manual attention for every deployment.

13.3 Building Tokenvote

Although the MVP was functional and satisfied basic requirements for one-off

ballots, it was not a fully fledged product. Prior to February 2018, SecureVote

intended to launch their platform via a custom, separate blockchain they had been

developing since June 2017. Although development had been progressing steadily

(two prototypes existed at this stage), it was not progressing quickly. In order to

launch a viable platform in the shortest period of time, they made the decision to

pause development of their custom chain, and pivoted to building out the MVP

into a general software-as-a-service (SaaS) platform: Tokenvote. This was to reduce

development time and support most of the features of their custom chain, albeit with

reduced capacity.

This section covers many of the problems SecureVote encountered while building

Tokenvote based on the MVP described above. For each problem we will look at one

5Ethereum smart contracts have access to the past 256 states only (corresponding to the past 256
blocks), a period of approximately 1 h.

262 13 Case Study: SecureVote

or more potential solutions and discuss compromises. Some simplified Solidity code

is used in the presentation.6 The simplifications are made to keep the examples as

short as possible, so best practices are sometimes ignored.

As a more generic platform, there were additional requirements:

R2.1 Centrally manage and track groups (democracies), including Ether payments

and permissions.

R2.2 Allow group administrators to create new ballots, and control permissions

around ballots from community members.

R2.3 Extensibility and maintainability: any component can be upgraded, new

components can be added, and Tokenvote must support migration to another

platform in the future.

R2.4 Browser compatible: the whole stack should be able to be run in a browser,

excluding the Ethereum nodes themselves, without compromising the secu-

rity model.

The goal was for Tokenvote to facilitate everything the Swarm prototype did and

more, but to cater for many groups, each with many ballots, without needing any

interaction with SecureVote staff.

13.3.1 Tokenvote Architecture Overview

The initial, planned architecture for Tokenvote is shown in Fig. 13.1. After numerous

iterations the final architecture is as shown in Fig. 13.3. Each is discussed below.

Planned Architecture

In the initial architecture of Fig. 13.1, administrators interact with an on-chain

component that serves as a central hub, which SecureVote call the Index. This

component is responsible for all administrative functions, including payment of

fees for holding a ballot. The Index also keeps track of groups of voters, called

Democracies. If fees are paid, a ballot is set up for a Democracy through a factory

contract, the Ballot Box Factory. See Section 7.4.4 for a general discussion

of the factory contract pattern. This factory contract can create a ballot by deploying

a new Ballot Box smart contract, through which voters can cast their votes.

For the reasons explained around the MVP above, tallying and weighting of the

votes is done offline through an Auditor component. This component is available

to any voter, so that independent auditing is possible. The Auditor also queries the

relevant ERC20 contract for token holdings and other details as required, including

6Simplifications include omitting keywords like view or pure on function declarations, and
declaring functions public instead of external.

13.3 Building Tokenvote 263

U
se

rla
nd

D
at

a
Fl

ow
D

at
a

R
ef

er
en

ce
 /

Li
nk

Sm
ar

t C
on

tra
ct

Pr
og

ra
m

Le
ge

nd

Et
he

re
um

A
dm

in
is

tr
at

or
Ba

llo
t c

re
at

io
n

an
d

ad
m

in
 fu

nc
tio

ns

D
el

eg
at

io
n

Vo
te

rs

A
ud

ito
rs

Vo
te

rs
 s

en
d

vo
te

s
di

re
ct

ly
 to

 b
al

lo
t

bo
x

co
nt

ra
ct

A
ud

ito
r

Vo
tin

g
U

se
r

In
te

rf
ac

e

A
dm

in
 U

se
r

In
te

rf
ac

e

In
de

x
St

or
es

 a
ll

D
em

oc
ra

ci
es

D
em

oc
ra

cy
 0

xa
82

7.
..

- B
al

lo
tA

dd
re

ss
es

[]
- A

dm
in

A
dd

re
ss

es
[]

- P
ay

m
en

t l
og

 a
nd

su
bs

cr
ip

tio
n

tim
e

re
m

ai
ni

ng
- E

R
C

20
 c

on
tr

ac
t o

r
M

em
be

rs
hi

p
re

co
rd

D
em

oc
ra

cy
 0

xf
9b

3.
..

D
em

oc
ra

cy
 0

x9
80

d.
..

...

Fo
r d

em
oc

ra
cy

 0
xa

82
7.

..
ER

C
20

 C
on

tr
ac

t

D
ep

lo
ys

 a
 s

in
gl

e
ve

rs
io

n
of

th
e

Ba
llo

t c
on

tra
ct

. C
an

 b
e

up
gr

ad
ed

.

B
al

lo
t B

ox
 F

ac
to

ry
Ba

llo
t a

t 0
x8

89
cc

2.
..

Ba
llo

t a
t 0

x8
ee

4d
a.

..

B
al

lo
t C

on
tr

ac
t

at
 0

x7
24

fa
8.

..
- V

ot
es

[]
- B

al
lo

t S
pe

ci
fic

at
io

n
- E

nc
ry

pt
io

n
de

ta
ils

- O
w

ne
r A

dd
re

ss
In

de
x

lo
gs

 re
fe

re
nc

es
to

 in
di

vi
du

al
 b

al
lo

t
bo

x
co

nt
ra

ct
s

an
d

cr
ea

te
s

th
em

 v
ia

 a
n

up
gr

ad
ab

le
 fa

ct
or

y

F
ig

.
1
3
.1

P
la

n
n
ed

ar
ch

it
ec

tu
re

fo
r

T
o
k
en

v
o
te

b
ef

o
re

d
ev

el
o
p
m

en
t

264 13 Case Study: SecureVote

Democracy

ID (democHash)

Admin

ERC20 reference

Time remaining

Ballot

Start �me

End �me

Crea�on �me

Deprecated?

Public key

Private key

Misc data

Vote

Vote data

Cast �me

Sender

Misc data

0..* 1 0..* 1

Fig. 13.2 Logical view of the required data structure, as a UML class diagram

delegation and balances on other chains. This allows the auditor to consider tokens

across the public Ethereum and Ethereum Classic blockchains, among others.

The logical data structure for this design is depicted in Fig. 13.2. As shown, each

democracy can have an arbitrary number of ballots, and each ballot can have many

votes. Each vote belongs to one ballot and each ballot to one democracy.

The reference to the relevant ERC20 contract is stored for the democracy.

Encrypted ballots can be held by generating a key pair, publishing the public key

for all voters to encrypt their votes, and revealing the private (secret) key after the

end time of the ballot. This method avoids influence of intermediate results on voters

while the ballot is ongoing.

Final Architecture

In the final architecture depicted in Fig. 13.3, the basic components are still present,

but there are some significant changes:

• Instead of creating one smart contract per ballot, all ballots that use a particular

feature set are stored in the same contract, the Ballot Box Storage.

This includes ballots from different democracies. It in turn relies on the code

outsourced to the Ballot Box Library contract, implementing the data

contract and library contract patterns from Section 7.4. Collapsing all ballots

into few smart contracts is more efficient in terms of gas cost. As discussed in

earlier chapters, this results in reduced monetary cost, increased throughput, and

reduced danger of network congestion.

• Following the same patterns to achieve upgradability and separation of concerns

in the Index, data on payments is stored in the Payments Backend, and

all other data for the Index is stored in the Data Store Backend. Pricing

for community ballots is calculated in the Community Ballot Payment
contract; adaptive, context-dependent pricing is needed to avoid spamming

democracies with too many ballots.

• To allow easy addressing, the Ethereum Name Service, ENS, is used.

The ENS Proxy implements the contract registry pattern (Section 7.4.1).

Requesters can look up the reference for the latest version of the Index contract.

13.3 Building Tokenvote 265

U
se

rla
nd

D
at

a
Fl

ow
D

at
a

R
ef

er
en

ce
 /

Li
nk

Sm
ar

t C
on

tra
ct

Pr
og

ra
m

Le
ge

nd

Et
he

re
um

A
dm

in
is

tr
at

or
Ba

llo
t c

re
at

io
n

an
d

ad
m

in
 fu

nc
tio

ns

In
de

x
D

em
oc

ra
cy

 0
xa

82
7.

..

D
em

oc
ra

cy
 0

xf
9b

3.
..

D
em

oc
ra

cy
 0

x9
80

d.
..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t 0

x8
ff3

bc
...

B
al

lo
t 0

x0
1f

da
4.

..

B
al

lo
t 0

x4
f0

2c
1.

..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t 0

x8
ff3

bc
...

B
al

lo
t 0

x0
1f

da
4.

..

B
al

lo
t 0

x4
f0

2c
1.

..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t I

D
: 0

x8
ff3

bc
...

- V
ot

es
[]

- V
ot

er
s[

]
- B

al
lo

t D
et

ai
ls

Al
l B

al
lo

ts
 o

f t
he

 s
am

e
ty

pe

B
al

lo
t I

D
: 0

x0
1f

da
4.

..

B
al

lo
t I

D
: 0

x4
f0

2c
1.

..

Pa
ym

en
ts

 B
ac

ke
nd

A
cc

ou
nt

 fo
r 0

xa
82

7.
..

A
cc

ou
nt

 fo
r 0

xf
9b

3.
..

A
cc

ou
nt

 fo
r 0

x9
80

d.
..

C
om

m
un

ity
A

uc
tio

n
Pa

ym
en

ts

EN
S

Pr
ox

y

B
al

lo
t B

ox
 L

ib
ra

ry

Fo
r d

em
oc

ra
cy

 0
xa

82
7.

..
ER

C
20

 C
on

tr
ac

t

D
el

eg
at

io
n

D
at

a
B

ac
ke

nd
D

at
a

fo
r 0

xa
82

7.
..

- B
al

lo
tID

s[
]

- A
dm

in
s,

 e
tc

D
at

a
fo

r 0
xf

9b
3.

..
D

at
a

fo
r 0

x9
80

d.
..

...

Vo
te

rs

A
ud

ito
rs

Vo
te

rs
 s

en
d

vo
te

s
di

re
ct

ly
 to

 b
al

lo
t

bo
x

st
or

ag
e

Th
e

In
de

x
st

or
es

 re
fe

re
nc

es
 to

ea
ch

 b
al

lo
t b

ox
 s

to
ra

ge
co

nt
ra

ct
, a

nd
 e

ac
h

de
m

oc
ra

cy
ho

ld
s

re
fe

re
nc

es
 to

 it
s

ba
llo

ts
.

A
ud

ito
r

Vo
tin

g
U

se
r

In
te

rf
ac

e

A
dm

in
 U

se
r

In
te

rf
ac

e ...

...

...

F
ig

.
1
3
.3

T
h

e
ar

ch
it

ec
tu

re
fo

r
T

o
k
en

v
o

te
at

d
ep

lo
y

m
en

t.
M

an
y

al
te

ra
ti

o
n

s
w

er
e

n
ee

d
ed

b
ef

o
re

S
ec

u
re

V
o
te

co
n
si

d
er

ed
th

e
d
ap

p
p
ro

d
u

ct
io

n
q

u
al

it
y

266 13 Case Study: SecureVote

In Chapter 5, we discussed ways in which blockchain can be used architecturally. In

the Tokenvote architecture, we note the following:

• Tokenvote uses the blockchain as a storage element, as a communication

mechanism for publishing ballots and votes, and as an asset management and

control mechanism for payments and checking stakes.

• The use of blockchain as a computational element in this architecture is limited.

Most computation is done off-chain, for the reasons outlined earlier. On-chain

computation serves primarily to enforce checks such as authorization, what to

store, and hash integrity. Other smart contract codes implement schemas for data,

particularly ballot data stored in the ballot box storage. Not all data schemas are

implemented in smart contract code, to allow for more flexibility in schemas that

are immaterial to the core concerns of the solution.

• Regarding the integration of blockchain into a system as a component, this

architecture is rather interesting, in that there are only in-browser components

in addition to blockchain. However, running the auditor in-browser relies on

SecureVote’s full blockchain nodes, which introduces some level of trust on their

integrity and truthfulness. Alternatively, anyone could host their own full node

to function as an auditor. However, an auditor requires the full history including

all states, which prevents syncing the blockchain through fast-sync, and requires

over 1TB of SSD space at the time of writing.

SecureVote decided to use Ethereum as a technology platform for two main

reasons. First, Ethereum’s ecosystem was the most attractive, especially the support

for ERC20 tokens. Second, despite its limitations, Ethereum was the best available

option in terms of security, the execution environment, and the network. To

benefit from lower fees, Tokenvote contracts can also operate on Ethereum Classic:

transaction fees in fiat currency were a factor of 10–30 lower during the development

of Tokenvote.

Qualities and Trade-offs

The common blockchain trade-off is between transparency and confidentiality, and

this is present in Tokenvote. How voters voted needs to remain confidential, but each

voter needs the transparency and certainty that their vote has been counted. Out of

the options for how data can be stored (discussed in Section 6.3.3), SecureVote

decided to use smart contract variables. This was to (i) avoid the need for offline

interpretation as much as possible and (ii) ensure integrity, since, e.g., logs are

computed in each full node and are not directly part of consensus.7

Cost, as discussed in Chapter 9, played an important role. Gas cost, complexity

bounds, and limitations of the platform and their impact led to the revision of certain

7https://ethereum.stackexchange.com/a/1309.

https://ethereum.stackexchange.com/a/1309

13.4 Details and Code Samples 267

design decisions, such as collapsing all ballots into one smart contract and storing

most ballot details (e.g. title, description, and options) off-chain.

In terms of performance, discussed in Chapter 10, throughput plays the most

important role. The latency requirement is that feedback to users confirming the

recording of their vote should be given within reasonable time, on the order of 1–

2 min. For both throughput performance and cost reasons, SecureVote minimized

the complexity of voting transactions.

Dependability and security concerns (Chapter 11) are of course very important

for a voting platform. In terms of availability, the most impactful issue would

be transactions that are not included. This concerns primarily new or upgraded

contracts and the transactions deploying them, since these transactions can incur

high gas costs. This risk has partly been mitigated by collapsing all ballot contracts

into a few reused contracts. Reliability is prominent when running full nodes with

full history over a long time, due to high network load and high requirements

on fast and sizeable disk space. Maintainability and upgradability are addressed

using the patterns discussed throughout this chapter. Safety in the Lamport-Alpern-

Schneider sense (see Section 11.3) is addressed through good coding practices and

thorough testing with close to full code coverage, including negative tests that

test failure cases. In terms of integrity, the solution relies on the strong, inherent

integrity features of blockchain, and on implementing tight authorization checks

for all functions. To ensure integrity for the stake weighting, stake holdings are

taken from before and after each ballot. Also, the Auditor components ensure

that all votes are counted. Auditing starts only 15 min after end of a ballot, which

corresponds to approximately 60 confirmation blocks.

13.4 Details and Code Samples

In the following, we discuss some of the issues and lessons learned in detail and

provide code samples where they are helpful.

13.4.1 Indexing and Externally Accessing Data

SecureVote’s earliest component for Tokenvote was the multi-democracy framework

(the Index), which would allow ballots to be created within a namespace that only

the democracy’s administrators had access to. Each time a ballot was to be created,

a new BallotBox smart contract would be deployed. To begin, the voting smart

contract MVP was reused, but a different approach was ultimately required.

268 13 Case Study: SecureVote

1 // contract: Index
2 mapping (bytes32 => Democracy) public democs;
3 bytes32[] public democList;
4
5 struct Democracy {
6 address erc20;
7 address admin;
8 Ballot[] ballots;
9 }

10
11 // return the number of democracies
12 function getDemocN() external view returns (uint) {
13 return democList.length;
14 }

Listing 13.1 Referencing rich data types via unique IDs. SecureVote still uses this pattern today

Initially, each democracy had a unique identifier, via a hash generated from

a number of parameters.8 Unique identifiers are important because they facilitate

cheap lookups via arrays or mappings.

In this case, SecureVote stored democracies in the Index as in Listing 13.1. This

code sample uses patterns that are important when upgrading smart contracts. Since

blockchain data cannot be moved easily during an upgrade, it should either be stored

in a separate data contract, following the data contract pattern (Section 7.4.2), or

remain in the older version of the smart contract and locked from further mutations.

This is a direct consequence of Requirement R2.3 and the nature of smart contracts.

For Tokenvote, we adopted the latter solution.

Note that in Listing 13.1, the array democList keeps an index of known keys,

and the function getDemocN returns the number of democracies. These provide

means for external users to discover information about the contract. Solidity does

not have primitives for this nor otherwise directly supports discovery of this kind

of information, so developers have to implement it specifically. The combination of

this mapping, array, and length getter means that it is possible for everything but the

ballots (stored in Democracy.ballots) to be easily read externally.9 Reading

the Ballots in each Democracy requires another set of getter functions (shown

in Listing 13.2).

Accessing all data in a smart contract is an important prerequisite to ensure

upgrade paths are available. For this reason, important state variables (for the most

8Choosing multiple parameters, particularly parameters outside of the user’s control, is important
to avoid collisions when using this technique.
9Technically it is always possible to read any arbitrary data stored on a blockchain at some level;
in the case of Ethereum and Solidity, the curious reader can find out about accessing arbitrary
variables in contract storage here: https://medium.com/aigang-network/how-to-read-ethereum-
contract-storage-44252c8af925.

https://medium.com/aigang-network/how-to-read-ethereum-contract-storage-44252c8af925
https://medium.com/aigang-network/how-to-read-ethereum-contract-storage-44252c8af925

13.4 Details and Code Samples 269

1 // contract: Index
2 struct Ballot {
3 bytes32 ballotSpec; // hash of the ballot specification
4 BallotBox ballotBox; // external smart contract reference
5 }
6
7 function getBallotsN(bytes32 democID) public returns (uint) {
8 return democs[democID].ballots.length;
9 }

10
11 function getBallot(bytes32 democID, uint ballotID)
12 public

13 returns (bytes32, BallotBox)
14 {
15 Ballot memory b = democs[democID].ballots[ballotID];
16 return (b.ballotSpec, b.ballotBox);
17 }

Listing 13.2 Accessing nested dynamic elements in arrays and mappings

part) require external getters. This allows other smart contracts to read the complete

state and helps maximize upgrade potential.

13.4.2 Splitting Up Contracts

Design patterns can increase code size. In general, adding an external function has

a very low runtime overhead. However, the additional space required can easily

be hundreds of bytes, depending on the number of arguments and data returned.

Although this will usually be inconsequential, it can cause issues due to many

blockchain platforms setting limits for the size and deployment cost of smart

contracts. In Ethereum (due to EIP-17010) smart contracts are limited to 0x6000
bytes (approximately 24 KB). Refer also to the deployment risk of large contracts

mentioned in Section 11.6.

In SecureVote’s case, Index grew rapidly during development and hit

Ethereum’s deployment limit. Managing the size of smart contracts is necessary for

any complex dapp deployed to Ethereum and similar networks. In this section we

show three approaches: using auxiliary contracts for non-core but useful operations,

using tightly coupled ‘backend’ contracts to offload storage and data processing,

and using libraries to allow common code to be used by multiple contracts and

hosted separately on the blockchain.

10https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md

270 13 Case Study: SecureVote

Augmenting Smart Contraction Functionality via Auxiliary Contracts

Often, smart contracts serve two purposes: storing data and processing that

data. For example, a ballot box smart contract might include logic for storing,

tracking, and retrieving individual votes. However, to avoid separate HTTP
calls to retrieve each vote, it makes sense to try and batch these requests

to return all votes at once. A straightforward approach would be to add

this function to the ballot box smart contract itself. Rather than just the

function for individual votes, getVote(uint voteID), we could add

another function getAllVotes() to return all votes, and functions such as

getAllVotesFrom(address voter) to return all votes from a particular

voter. However, adding such functions increases contract size and introduces

complexity to the integrity-critical primary contract.

As an alternative approach, we can use auxiliary contracts. In this example, the

primary contract would retain the individual getVote(..) function. However,

getAllVotes() would not be added to the primary ballot box contract. Rather,

we create a second contract with a function getAllVotes(BallotBox bb)
which calls bb.getVote(..) for every vote and returns a corresponding array.

A single auxiliary contract can work with every instance of the primary contract (in

this case BallotBox).

This technique has significant benefits: the auxiliary and primary smart contracts

are only loosely coupled, so the auxiliary contract can be more easily upgraded or

deprecated; code for complex data processing is moved out of the primary contract,

reducing testing and attack surfaces; and there is greater flexibility around the type

of data returned.

SecureVote uses auxiliary contracts for several purposes:

• Delegation between voters and self-delegation across network boundaries

• Retrieval and preprocessing of votes

• As a lookup table for human-readable names

Adding a Backend Smart Contract

Sometimes a large, interconnected contract must be broken up. We discuss several

methods for this purpose here.

The simplest approach is to separate the data storage and longer-term data

processing into different contracts. Exactly what is split between ‘frontend’ and

‘backend’ contracts should be based on an assessment of what functionality is

likely to be more stable in the long term and what is likely to be more frequently

upgraded or replaced. There is a small performance cost to this approach. As a

smart contract is split up, it will need to know about the backend contract (and load

its address from storage), and the backend contract will need to grant permissions

to the frontend contract and verify these permissions. Each call between contracts

will also incur some additional fee for invocation and parameter passing. So, this

13.4 Details and Code Samples 271

approach is valuable for infrequently called functions (such as democracy creation)

rather than for frequently called functions (such as voting).

In Tokenvote, the Index is split in this manner. For example, when democracies

are created (and administrated), most of the operations (like calculating the unique

ID, storing data, and setting initial permissions) take place in the backend. Only

minimal functions are left in the frontend contract. As mentioned, a consequence

of this approach is that two sets of permissions must be verified. The first is for the

user when calling the frontend contract, and the second is for the frontend contract

when calling the backend.

This approach has some nice properties. More than one editor can be added,

provided the backend authentication has been architected appropriately. This means

an alternate frontend can be introduced, or the original frontend swapped out,

augmenting or introducing functionality.

Tokenvote required two dedicated backends and several other supporting smart

contracts all using this approach. Examples are Tokenvote’s ENS (Ethereum Name

Service)11 integration and an auction system for publishing a particular kind of

ballot. The latter contract is currently simply a placeholder for future functionality.

Using Libraries

Another way to split up functionality and code is to use a library. These are deployed

like Solidity contracts but cannot be called directly and have no state of their own.

Rather, they are ‘linked’12 (similarly to the way libraries are linked in C) and allow

the library to modify the state of the contract calling it. This is particularly useful for

logic repeated in multiple contracts. Examples of these sorts of libraries are in the

OpenZeppelin13 framework, which includes many code examples, base contracts,

and useful libraries, such as the ubiquitously used SafeMath library that has safety

checks on inputs.

SecureVote uses libraries in a few specific cases. First, a library is used to handle

code that needs to be identical across contracts, such as extracting data from packed

variables. Second, a library is used to version and manage the handling of votes and

ballots, leaving the container contract (which holds many votes and ballots) with a

cleaner and simpler codebase. Third, libraries are used like macros across multiple

contracts to wrap common multistep operations. Only the first two uses reduce the

calling contract’s size.

11A simple name system has been implemented over Ethereum allowing names like data61.eth
to be registered and resolved to an address (in the same way domain names resolve to an IP
address). In this case the Tokenvote index is resolved via index.tokenvote.eth. More
information can be found at https://docs.ens.domains/en/latest/.
12Libraries are used via the delegatecall operation, which means ‘run this code as if it were
inline here and give it direct access to my storage’.
13https://openzeppelin.org/.

https://docs.ens.domains/en/latest/
https://openzeppelin.org/

272 13 Case Study: SecureVote

Libraries are not as simple to upgrade as contracts, and while this is technically

possible,14 it requires preparation and a deep understanding of the underlying

blockchain. It can be easier and safer to upgrade an individual contract linked to

a new library, rather than the library itself.

13.4.3 Upgrades and Trade-offs

Recently, there has been increased interest in upgradable smart contracts. There

are many reasons to upgrade, including to add functionality, to mitigate potential

attacks, or to fix bugs. In this section we will describe two techniques used

by SecureVote which, when used together, allow for atomic upgrades without

downtime for other smart contracts. We also describe how SecureVote plans to

improve their upgrade procedure to expand atomic interactions to all users and

eliminate any sorts of race conditions entirely.15

We start by looking at a simple case of replacing an existing contract. Then,

we examine the upgrade of a prototype delegation contract and how SecureVote

currently manages upgrading the Index. Finally, we describe an oversight and how

SecureVote plans to address this.

Replacing Smart Contracts

When the interface to a smart contract is well known, it is trivial to replace it at a

future date. A simple way to upgrade a contract factory is shown in Listing 13.3.

There are three smart contracts here: an instance of Frontend and two instances

of contracts which implement the Backend interface. The Index instance stores

a reference to a Backend implementation, and upgrading is as simple as replacing

this reference. This method is very general and forms the foundation for other

methods discussed below.

At compile time, Solidity knows about the interface of remote smart contracts, to

generate logic for communicating with them and to check type safety. At runtime,

these checks are not performed. In Listing 13.3, the doUpgrade function accepts

an address newBackend, and after the contract is deployed, the owner is free to

call doUpgrade with any address, including that of a smart contract which does

not adhere to the AuxContract interface. We can use this lack of runtime checks

to implement upgrade schemes.

14One way to implement upgradable libraries: https://blog.zeppelin.solutions/proxy-libraries-in-
solidity-79fbe4b970fd.
15Although well-designed smart contracts can interact with Tokenvote atomically, a race condition
exists where an upgrade could take place between the creation of a transaction to the index and the
inclusion of said transaction. In this case the transaction would only affect the old index, and would
revert in most cases as the index would have lost permissions to modify data on the backend.

https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd

13.4 Details and Code Samples 273

1 interface Backend {
2 function replaceWith(AuxContract newExternal) public view;
3 }
4
5 contract Frontend {
6 Backend _backend;
7 address owner;
8
9 constructor(Backend initBackend) public {

10 _backend = initBackend;
11 owner = msg.sender;
12 }
13
14 function doUpgrade(Backend newBackend) public {
15 require(msg.sender == owner);
16 // let the current _backend know we are upgrading, if

needed
17 _backend.replaceWith(newBackend);
18 _backend = newBackend;
19 }
20 }

Listing 13.3 A simple, general way to replace smart contracts

SecureVote’s First Upgrade

Delegation in voting systems is usually straight forward. A voter can choose

someone else (the delegate) to act on their behalf, and if the voter abstains the

delegate’s vote is used instead. So each delegate votes with the combined power

of all their delegators (the voters doing the delegation). Many systems of delegation

also include delegation by categories or similar ways for voters to choose one of

multiple delegates depending on context.

Less than a month after deploying their first delegation smart contract,

SecureVote found they had made an oversight. Although users could make and

check delegations, there was no way to iterate through them, and there was no

way to find delegators given some delegate. Although, functionally, delegation only

works in one direction (where a voter chooses a delegate), resolving delegations is

more complex. There were two complications:

• In standard ERC20 implementations, there is no complete list of account holders.

This means it is impractical to iterate through all potential voters to check their

delegations.

• If the voter abstains, only the delegate’s vote and address are known. Without

delegation backlinks it is not possible to efficiently find the voters who have

selected a particular delegate.

274 13 Case Study: SecureVote

1 contract Version1 {
2 mapping (uint => bytes32) data;
3 function getData(uint i) external returns (bytes32) {
4 data[i];
5 }
6 }
7
8 contract Version2 {
9 mapping (uint => bytes32) data;

10 Version1 prevContract;
11
12 constructor(Version1 _prev) public {
13 prevContract = _prev;
14 }
15
16 function getData(uint i) external returns (bytes32) {
17 bytes32 r = data[i]
18 if (r == bytes32(0))
19 r = prevContract.getData(i)
20 return r
21 }
22 }

Listing 13.4 The general pattern of a layered upgrade

Since looping through (and caching) all historic delegations was not particularly

elegant, SecureVote opted to upgrade their delegation functionality by implementing

a second delegation contract which operated ‘over the top’ of the first. Only when

this new contract could not find a delegation would it check the original contract.

Since SecureVote references most contracts via ENS names, the upgrade was a

simple matter of deploying the new contract and updating the ENS resolution. This

general pattern is shown in Listing 13.4.

This simple pattern is very useful in the right contexts. Ideally the first contract

can be locked down when upgrading, such that no data can be added, but often this

is not necessary. That is because the first contract is simply a fall-back, and only in

the case that no new data exists (which would be stored in the second contract) is

the first ever called.

There are also some drawbacks to be aware of. If users continue using the first

contract, they might be able to change the data returned from the second, newer

contract. The approach may also require software updates depending on the dapp

in question. Finally, this technique does not work when contracts need to return

dynamic arrays or strings, as these cannot be passed between contracts. So whether

this technique is appropriate depends on the nature of the contract being upgraded.

SecureVote’s delegation contract was designed to handle all delegation require-

ments across all democracies, so voters could simultaneously delegate on a per-

token basis and globally. If a delegation for a particular token was not found, the

global delegation would be used. This is useful for self-delegating from a cold

wallet to a hot wallet. SecureVote’s first improvement was logging all known tokens

13.4 Details and Code Samples 275

for which delegations had been made, allowing them to iterate through all known

tokens easily.

SecureVote’s other improvement was to look up all delegations to a particular

address, exposed in a function called findPossibleDelegatorsOf. This was

done by looping through all known delegations and constructing an in-memory

array of delegations matching the delegate in question. One consequence of this

approach is that only potential delegators are returned; delegations need to be

checked individually before being treated as valid when calculating the results of

a ballot. This demonstrates a trade-off between work done on-chain and work done

off-chain. If backlinks were stored with the delegations themselves, the contract

would also require additional data structures and logic to store and maintain the

accuracy of these backlinks, increasing the cost for the voter. However, the chosen

approach implies that the findPossibleDelegatorsOf function cannot be

called from other smart contracts. When this function is called, the computation is

only ever done on the Ethereum node responding to the call, not across all full nodes

on the Ethereum network itself.

Complex Upgrades

The method above may be applicable for individual contracts but does not support

upgrades of a complex system of contracts. The pattern used by SecureVote in

Listing 13.5 (called an ‘upgrade pointer’) is suitable for singly linked contracts,

where the contract being called might be upgraded. In this example AContract
would call checkIndexForUpgrade() before sending any data to Index.

This example code shows the core idea, but the doUpgrade function could

be easily extended to allow for upgrade hooks or notifications to be sent to other

contracts. SecureVote extensively use such an extension to manage the multiple

interactions and permissions between Tokenvote’s smart contracts. A sample from

their Index contract is shown in Listing 13.6.

Multiple other contracts are notified of an upgrade via their upgradeMe
(address) method. SecureVote use this mostly for permission management, but

it supports other complex upgrades. When Index calls upgradeMe on another

contract, the permissions of Index are transferred to the new contract. Note also

the modifiers only_owner, which allows only the owner of the contract to execute

this function, and not_upgraded, which checks that the function can only be

called on the latest version of the Index.

Atomic Upgrades and Tokenvote

Two lines in Listing 13.6 differ from the others: ensOwnerPx.setAddr
(nextSC); and ensOwnerPx.upgradeMeAdmin(nextSC);. The contract

ensOwnerPx is an ‘owner proxy’ for index.tokenvote.eth, defined using

the Ethereum Name Service. Since this contract has administrative control over this

276 13 Case Study: SecureVote

1 contract Upgradable {
2 address public _upgradePtr;
3 }
4
5 contract Index is Upgradable {
6 function doUpgrade(address next) external {
7 require(msg.sender == owner);
8 _upgradePtr = next;
9 }

10 }
11
12 contract AContract {
13 Index index;
14
15 function checkIndexForUpgrade() internal {
16 if (index._upgradePtr() != address(0))
17 index = Index(index._upgradePtr);
18 }
19 }

Listing 13.5 This pattern allows other smart contracts to know about an upgrade and act
accordingly

1 function doUpgrade(address nextSC) only_owner() not_upgraded
() external {

2 doUpgradeInternal(nextSC);
3 backend.upgradeMe(nextSC);
4 payments.upgradeMe(nextSC);
5 ensOwnerPx.setAddr(nextSC);
6 ensOwnerPx.upgradeMeAdmin(nextSC);
7 commAuction.upgradeMe(nextSC);
8
9 for (uint i = 0; i < bbFarms.length; i++) {

10 bbFarms[i].upgradeMe(nextSC);
11 }
12 }

Listing 13.6 A sample from SecureVote’s Index contract showing how upgrades notify other
linked contracts. © 2018 SecureVote, reprinted with permission

name, it can expose functionality (like setting the address associated with the ENS

name) to multiple other accounts. In this case, the other accounts are a SecureVote

cold wallet and the Index contract.

When other smart contracts interact with Tokenvote, they first resolve the ENS

name to an address to ensure they are invoking the current version of Tokenvote

and not an old contract. Somewhat similarly, when voters use the Tokenvote UI, the

software finds the Index address via an ENS lookup, but this only guarantees the

address is correct at the time of the lookup. As mentioned above, there may be a race

13.4 Details and Code Samples 277

condition if an upgrade is made after the user loads the UI but before they create a

new ballot.16

As an aside, SecureVote have made extensive use of events in their contracts,

though unfortunately forgot to add an event for upgrades. If they had included one,

it would be entirely feasible for the UI to listen for upgrade events and to reload

contract instances when such an event is emitted. This would reduce the risk of race

conditions causing failed transactions.

13.4.4 Reducing Complexity and Cost

In preparation for production deployment, SecureVote began benchmarking and

optimizing many of the methods users would call regularly, like casting a vote or

creating a ballot. Several optimizations greatly reduced transaction fees for the end

user. One advantage of platforms like Ethereum is that the performance and gas

cost of function invocation can be measured accurately in test environments. As

mentioned in Chapter 9, rather than implementing dynamic gas costs, Ethereum’s

design opts for a dynamic price per gas operation. Thus measuring (and optimizing)

gas costs is separate from the price of a transaction.

During SecureVote’s benchmarking, the primary offender in terms of gas use was

identified to be the creation of a new ballot. The original architecture used a contract

factory to deploy individual contracts to manage each ballot. Although this allowed

them to reuse much of the code from the MVP, as they added features the cost of

deployment grew to 3,000,000 gas. During the worst periods of congestion,17 this

corresponded to a transaction fee of around US$30. SecureVote felt this was too

high and designed a more sustainable architecture for ballot creation.

A standard solution to this kind of problem is to refrain from deploying new

contracts. Instead of deploying one contract per ballot, SecureVote would deploy

one contract per type of ballot: a ballot storage contract, implementing the data

contract pattern described in Section 7.4.2. In order to maximize code reuse, ballot-

specific functionality like recording votes was not included in the ballot storage.

Rather, this was refactored out into a library of its own, allowing SecureVote to reuse

the ballot storage contract and interface with different libraries for vastly different

kinds of ballots. The results of this new architecture reduced ballot creation cost to

between 200,000 and 300,000 gas, a reduction of 85–95%.

However, this kind of change has many flow-on impacts. For example, their

previous voting and auditing architecture included the assumption that each ballot

lived at its own address. Under this new pattern, many ballots lived at the same

16Direct user interaction with the index only occurs on write operations; read operations call the

backend directly, so an update to the index does not affect this functionality.
17Such as the CryptoKitties Congestion Crisis of late 2017. https://media.consensys.net/the-inside-
story-of-the-cryptokitties-congestion-crisis-499b35d119cc.

https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc

278 13 Case Study: SecureVote

address, and each had a unique identifier. Not only did voting-specific code require

updating, but the entire state model of the UI required refactoring to accommodate

ballot storage contracts, each holding multiple ballots. Even the URL routing logic

needed to be updated.

In general a ‘hub and spoke’ architecture (where new spokes are created via

newly deployed contracts) should only be used in cases where the cost of such

deployment is warranted. Any developers using this architecture should strongly

consider whether refactoring to a single, heavily used contract will improve

performance, user experience, and maintainability.

13.5 Summary

In this chapter, SecureVote described their experience of moving from an MVP

to a production dapp. We contrast the initial, planned architecture and the final

one, which resulted from many lessons learned and optimizations made during

the development. We also describe how the architecture relates to the functions

blockchain can play, which patterns are used and how, as well as the considerations

of the qualities and the trade-offs in the architecture. Finally, the previous section

covers many details, code samples, and (occasionally hard) lessons learned.

13.6 Further Reading

The Tokenvote source code is available on GitHub at https://github.com/secure-

vote/sv-light-smart-contracts.

Solidity documentation, including a very good ‘by example’ section, is available

at https://solidity.readthedocs.io/en/latest/.

The end-to-end verifiable voting design Prêt à Voter is described in Ryan et al.

(2009).

https://github.com/secure-vote/sv-light-smart-contracts
https://github.com/secure-vote/sv-light-smart-contracts
https://solidity.readthedocs.io/en/latest/

Chapter 14

Case Study: originChain

A Blockchain-Based Food Traceability System

with Qinghua Lu

14.1 Introduction and Background

A traceability system enables tracking products by providing relevant information

(e.g. origination, item status, events, or locations) during production and distri-

bution. Product suppliers and retailers often work with independent traceability

companies who are certified to inspect the products throughout the supply chain. If

everything satisfies the supply chain quality requirements, the traceability company

issues inspection certificates that attest to the quality and origination of products.

A traceability system is employed to expose these assurances as certificates. In

this context, security is important for accountability and auditability. A traceability

system normally stores information in conventional databases controlled by the

company. However, such a centralized data storage becomes a potential single point

of failure (operationally, and as a business) and is exposed to the risk of insider

tampering.

originChain is the name of the blockchain system concept being developed by an

independent third-party traceability provider (called ‘ITTP’ in this chapter). ITTP’s

conventional system provides traceability information for products imported from

overseas to China. This system has been integrated with several large e-commerce

websites in China and with public service agencies. Its traceability services are used

by hundreds of product suppliers and retailers to manage traceability information

for their products, and by millions of product consumers to access traceability

information. Each product supplier, on average, has about 20 products to be traced;

the granularity of the traceability information is rather coarse as it corresponds to

product packages rather than individual products.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_14

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_14

280 14 Case Study: originChain

This chapter discusses a pilot study on replacing the conventional traceability

system with one based on blockchain. For this purpose, we first extracted a

traceability process with scenarios adapted from ITTP’s current system. Based on

this process, we created a new architecture, replacing the central database with

blockchain and designing the architecture to support better adaptability. The new

system can provide transparent tamper-proof traceability information, enhance the

availability of the data, and automate regulatory compliance checking. We describe

the implementation of this new architecture and its tests under realistic conditions,

using data from the conventional system.

To assess the suitability of blockchain—see also Section 6.1—the following

factors were taken into account. originChain is a multiparty system that spans

many participants such as product suppliers, traceability companies, and service

providers such as testing labs. These participants create and update information

used in product traceability and also access information recorded by others. Data

transparency and immutability are desired because participants and consumers need

to check the origin and authenticity of the products. So, blockchain may be an

appropriate technology to use. Because of the nature of the traceability information

and business characteristics such as the numbers of suppliers and products, the

performance of blockchain is likely to be adequate in this use case.

14.1.1 Traceability Process

In order to illustrate the use case, we depict a simplified traceability process as

shown in Fig. 14.1, using BPMN.1 The traceability company here would administer

originChain, coordinate multiple service providers to perform inspection services,

and issue certificates based on information provided by the service providers.

The process starts when a product supplier submits a quality tracing application

for a batch of products to the traceability company. The administrator processes

the application paper work (e.g. trading contracts, invoices, and order forms) and

payment. Every batch of products triggers the application of traceability services.

The agency assigns a factory examiner to inspect the factory at its address, including

the factory’s production capability and quality control process. After inspecting the

factory, a freight yard examiner is sent to examine products in freight yards and

to inspect on-site loading. The examiner attaches lead seals to the containers with

products if the process of on-site loading meets requirements. Meanwhile, a product

sample is sent to labs for testing. Once the application passes inspections and

testing, the traceability company issues the supplier a traceability certificate for the

commodity. Traditionally, all the traceability-relevant information and certificates

are stored in a conventional database maintained by the traceability company.

1Business Process Model and Notation—http://www.bpmn.org/.

http://www.bpmn.org/

14.1 Introduction and Background 281

Supplier

Admin
Factory

examiner

Freight yard

examiner

Lab

S
u
b
m

it

a
p
p
lic

a
ti
o

n

P
ro

c
e
s
s

a
p
p
lic

a
ti
o
n

In
s
p
e
c
t

fa
c
to

ry

Is
s
u
e

c
e
rt

if
ic

a
te

R
e
c
e
iv

e

c
e
rt

if
ic

a
te

C
h
e
c
k

p
ro

d
u
c
t

S
u
p
e
rv

is
e

S
e
a
l

T
e
s
t

s
a
m

p
le

Traceability company

F
ig

.
1
4
.1

S
im

p
li

fi
ed

o
ri

g
in

C
h
ai

n
tr

ac
ea

b
il

it
y

p
ro

ce
ss

(n
o
ta

ti
o
n
:

B
P

M
N

).
©

2
0
1
7

IE
E

E
.

R
ep

ri
n
te

d
,

w
it

h
p
er

m
is

si
o
n
,

fr
o
m

L
u

an
d

X
u

(2
0
1
7
)

282 14 Case Study: originChain

14.2 Architecture of originChain

A blockchain architecture for originChain is illustrated in Fig. 14.2. It consists of a

UI layer, management layer, data layer (off-chain), and blockchain layer containing

both data and some business logic. In terms of the categories in Chapter 5, the

blockchain layer provides storage, computation, and communication.

14.2.1 Users of originChain

There are three types of users: service users, traceability company/service providers,

and blockchain administrators. Service users include product suppliers, retailers,

and consumers. Product suppliers manage product and enterprise information

through a Product & Enterprise Management module, while product retailers and

consumers check the quality and origin of products through a frontend in the

originChain system. Suppliers apply for traceability services through the system

and aim to receive certificates for compliance with traceability regulations, to

demonstrate the quality and origin of their products to retailers/consumers. Retailers

and consumers trust ITTP as a third-party, to verify the quality and origin of

products.

Depending on agreements reached by the users and ITTP, services may include

factory examination, sample testing, product checking, on-site loading supervision,

and sealing. ITTP manages sample testing results through a Sample Test Manage-

ment module and manages traceability information, certificates, and on-site photos

using a Traceability Management module.

Blockchain administrators develop and deploy smart contracts in a Smart

Contract Management module and control permissions of smart contracts using a

Permission Control module. The settings of the blockchain network are managed

using a Blockchain Management module.

14.2.2 On-Chain vs. Off-Chain

What should be stored on-chain and what should be stored off-chain is a major

design issue for blockchain-based applications. The blockchain contains a full

history of all transactions that have ever occurred in the blockchain network. Such

information remains on the blockchain permanently. The ever-growing size of

blockchain and full replication creates challenges for data storage on blockchains.

originChain only stores sensitive and small data on-chain. This includes the

hashes of certificates and on-site freight yard photos, other traceability information,

and permission control information. Traceability certificates and photos are critical

for end users, and storing the hashes on blockchain can guarantee data integrity.

14.2 Architecture of originChain 283

T
ra

c
e

a
b

ili
ty

 p
ro

v
id

e
r

U
s
e

r

S
a
m

p
le

 t
e
s
t

re
s
u

lt
 d

a
ta

b
a

s
e

T
ra

c
e

a
b

ili
ty

d
a

ta
b

a
s
e

S
m

a
rt

 c
o
n
tr

a
c
t

re
p

o
s
it
o

ry

P
e

rm
is

s
io

n

c
o

n
tr

o
l
d

a
ta

b
a

s
e

S
a
m

p
le

 t
e
s
t

m
a

n
a

g
e

m
e

n
t

T
ra

c
e

a
b

ili
ty

m
a

n
a

g
e

m
e

n
t

S
m

a
rt

 c
o
n
tr

a
c
t

m
a

n
a

g
e

m
e

n
t

P
e

rm
is

s
io

n

c
o
n
tr

o
l

B
lo

c
k
c
h

a
in

 a
d

m
in

E
th

e
re

u
m

s
e
rv

e
r

E
th

e
re

u
m

s
e
rv

e
r

E
th

e
re

u
m

s
e
rv

e
r

E
th

e
re

u
m

s
e

rv
e

r

E
th

e
re

u
m

s
e
rv

e
r

E
th

e
re

u
m

s
e
rv

e
r

E
th

e
re

u
m

s
e
rv

e
r

B
lo

c
k
c
h

a
in

 n
e
tw

o
rk

T
ra

c
e

a
b

ili
ty

In
fo

.,
 h

a
s
h
 o

f

c
e
rt

if
ic

a
te

s

&
 p

h
o

to
s

S
m

a
rt

 c
o
n
tr

a
c
t

&
 b

lo
c
k
c
h

a
in

p
e

rm
is

s
io

n

c
o

n
tr

o
l
in

fo
.

(O
n

-c
h

a
in

)

(O
ff

-c
h

a
in

)

S
m

a
rt

c
o
n
tr

a
c
t

c
o

d
e

C
e
rt

if
ic

a
te

s

&
 p

h
o

to
s

T
e
s
t

re
s
u
lt
s

D
e

p
lo

y
 s

m
a

rt

c
o
n
tr

a
c
ts

T
ra

n
s
a

c
ti
o

n

a
d
d
re

s
s
e
s

S
m

a
rt

 c
o
n
tr

a
c
t
a
d
d
re

s
s
e
s
,

s
m

a
rt

 c
o
n
tr

a
c
t
a
b
i

B
lo

c
k
c
h

a
in

n
e
tw

o
rk

 i
n
fo

.

T
e
s
t

re
p

o
rt

T
ra

c
e

a
b

ili
ty

In
fo

.,

c
e
rt

if
ic

a
te

s

&
 p

h
o
to

s

D
a

ta

la
y

e
r

M
a
n

a
g

e
m

e
n

t
la

y
e

r

U
s
e

r
U

I
T

ra
c
e

a
b

ili
ty

p
ro

v
id

e
r

U
I

B
lo

c
k
c
h

a
in

a
d

m
in

 U
I

B
lo

c
k
c
h

a
in

m
a

n
a

g
e

m
e

n
t

P
ro

d
u
c
t
&

e
n

te
rp

ri
s
e

m
a

n
a

g
e

m
e

n
t

P
ro

d
u
c
t
&

e
n

te
rp

ri
s
e

d
a
ta

b
a
s
e

P
ro

d
u
c
t
&

e
n
te

rp
ri
s
e
 i
n
fo

.

S
y
s
te

m

p
e

rm
is

s
io

n

c
o
n
tr

o
l
in

fo
.

P
ro

d
u

c
t

&

e
n

te
rp

ri
s
e

 i
n

fo
.

S
y
s
te

m
 p

e
rm

is
s
io

n

c
o
n
tr

o
l
in

fo
.

B
lo

c
k
c
h

a
in

n
e

tw
o

rk
 i
n

fo
.

B
lo

c
k
c
h

a
in

n
e
tw

o
rk

 i
n
fo

.

T
ra

c
e
a
b
ili

ty
 I
n
fo

.,

c
e
rt

if
ic

a
te

s
 &

 p
h
o
to

s

S
m

a
rt

c
o
n
tr

a
c
t

In
fo

.
U

I

la
y

e
r

E
th

e
re

u
m

s
e
rv

e
r

T
ra

n
s
a

c
ti
o

n

a
d
d
re

s
s
e
s

T
e
s
t

re
s
u
lt
s

B
lo

c
k
c
h

a
in

la

y
e

r

F
ig

.
1
4
.2

B
lo

ck
ch

ai
n

ar
ch

it
ec

tu
re

fo
r

o
ri

g
in

C
h
ai

n

284 14 Case Study: originChain

Blockchain transactions store this hash value as a proof of existence of the original

raw file. Traceability information includes the information about product (batch

number, traceability result and number, place of origin, manufacturer, manufacture

date, and expiration date) and freight yard (loading port and inspection date). This

information is stored on-chain as variables in smart contracts. Information about

blockchain-level permission control is stored on-chain in a separate smart contract.

Off-chain data includes smart contract addresses, product/enterprise information,

traceability certificates, photos, and smart contract source code. The information

displayed for users consists of product-/enterprise-/traceability-related information

and blockchain-related information. originChain saves the addresses of smart

contracts off-chain to access data on-chain and stores the information of product/

enterprise off-chain due to its size and non-sensitivity. Traceability certificates and

photos are large and not suitable to store on-chain and therefore kept off-chain.

The smart contracts deployed on blockchain are in a binary format rather than

source code. Thus the human-readable source code of smart contracts in high-level

programming languages is stored off-chain in a smart contract repository for the

blockchain administrators to manage.

14.2.3 Design of Smart Contracts

Blockchain can be used as a software connector, providing coordination services

for components to coordinate through shared data and smart contracts. Figure 14.3

illustrates the high-level design of smart contracts used in originChain.

There is a factory contract deployed on the blockchain as a template to generate

smart contracts corresponding to the agreements between ITTP, service providers,

and product suppliers. The factory contract contains a list of contract templates,

which represent different combinations of traceability services. The factory contract

is called when the supplier submits the web form through the frontend UI. The

conditions defined in the web form, e.g. what traceability services are selected,

are passed to the factory contract through parameters for the factory contract to

instantiate new smart contracts. Other than the conditions defined in the legal

agreement, the generated smart contract also implements functions to check if

all the information required by regulation is provided. Other regulatory rules and

procedures can be implemented in the smart contract as well. A parametrized

factory contract provides a flexible way to create smart contracts and improves the

confidence that the smart contract is not modified by unauthorized people.

When the factory contract is called, a registry contract, a service contract, and

a data contract are created. This design implements the patterns contract registry,

data contract, and factory contract from Section 7.4.

The registry contract represents the legal agreement. The legal agreement is

linked with the on-chain smart contract by adding the address of the smart contract

into the legal agreement and adding the hash of the legal contract back to the

14.2 Architecture of originChain 285

Blockchain

Factory contract

Data
contract

Service
contract

Registry contract Registry contract
Authorities []

Threshold

Address of data contract

Address of service contract

Hash of legal agreement

generate

Legal
agreement

Bind

Data contract

Service contract

Legal
agreement

Address of contract

Fig. 14.3 Structural design of smart contracts

smart contract—see also the legal and smart contract pair pattern (Section 7.1.3).

By binding a physical agreement with a smart contract, a bridge between the off-

chain physical agreement and the on-chain smart contract is established. The smart

contract codifies the conditions defined in the agreement. These conditions can be

checked and enforced automatically by the smart contract. The smart contract also

enables some automated regulatory compliance checking.

The registry contract contains the addresses of the service contract and the data

contract. Separating data and control is a basic principle in software design. Such a

separation allows the logic to be updated without affecting the data (and vice versa).

The data contract is not supposed to change often, while the control contract can be

much more flexible.

All the smart contracts running on blockchain can be accessed and called by

all the blockchain participants by default, because there are no privileged users

and every participant can join the network to access all the information and code

on blockchain. A permission-less function might be triggered by unauthorized

users. Empirical studies show that many smart contracts on the public Ethereum

blockchain can be terminated without authority. To prevent unauthorized invoca-

286 14 Case Study: originChain

tion, every smart contract in originChain has an embedded mechanism to check

permissions for every caller that invokes any of the smart contract operations. As

such, the embedded permission pattern (Section 7.4.3) is also implemented.

14.2.4 Dynamic Behaviour of Smart Contracts

In originChain, conducting an activity (i.e. processing a transaction) might be

based on multiple authorities (i.e. multiple account addresses). Smart contracts

are specified with a list of addresses that can authorize the invocation of certain

functions. Quorums of a minimum number of addresses required to authorize a

transaction can also be specified.

Here, an authority is a validation oracle that signs transactions based on external

state. This might block the progress of a transaction until a condition over the

external state is verified by the validation oracle who controls one or multiple of

the predefined trusted addresses.

One reason to introduce multiple authorities is that blockchain does not offer

mechanisms to recover a lost or a compromised private key. Losing a key results in

permanent loss of control over an account or smart contract. Using the mechanism of

multiple authorities, one participant can control more than one blockchain address,

to reduce the risk of losing control over their smart contracts due to a lost or

compromised private key. The list of the authority addresses can be also updated

with authorization from a quorum of trusted addresses.

14.2.5 Permission Control and Blockchain Management

As shown in Fig. 14.2, the deployment of the blockchain layer is as a

geographically-distributed consortium blockchain within ITTP, which has branch

offices in three countries. The vision is to establish a trusted platform that covers

other organizations, including labs certified by government, big suppliers, and

retailers that have long-term relationship with the company (e.g. e-commerce

companies that have already built trusted reputations with their customers).

The control of data on the blockchain is stored in a permission control smart

contract that defines permission for content management, writing smart contracts

and joining the consortium blockchain. To join the traceability platform, a company

sends a request off-line. After successfully passing a number of checks, ITTP

updates the permission control smart contract, which will allow the requesting

company to join the blockchain network and synchronize the historical blockchain

data.

14.3 Analysis 287

14.3 Analysis

On the basis of the prototype implementation, a number of analyses were conducted

to assess if the approach fulfilled requirements and expectations for originChain.

Here we discuss specifically the topics adaptability and latency.

14.3.1 Qualitative Analysis: Adaptability

Changes handled by the originChain system include adding or removing traceability

services from the legal agreement after the initial legal agreement is signed or

dynamic binding of testing labs based on their availability. The structural design

of smart contracts affects how easy it is to update smart contracts and thus the

adaptability of the whole system.

As discussed in Section 14.1.1, traceability services can be dynamically defined,

because the legal agreements signed between the product supplier/retailer and ITTP

often change due to customizations of the traceability process. Customization is

done through the factory contract. The function of a service contract can be updated

by replacing the address of its old version with the address of a new version. As

long as the interface between the service contract and the data contract is the same,

the updated service contract can still use the previously stored data.

If there are new requirements, for example, new types of information required

by a new regulation or new services provided by the service providers, the factory

contract can be updated to a new version to fulfil the new requirements. In this

case, the old factory is disabled, and the configuration of other modules is updated

accordingly.

Dynamic binding of labs is enabled by multiple authorities. Multi-signature

is a mechanism in Bitcoin that requires more than one private key to authorize

a transaction. In Ethereum, we can use functions defined in smart contracts to

implement a multi-signature mechanism. More flexibly, an M-of-N multi-signature

can be used to define that M out of N public keys are required to authorize a

transaction. We call M the quorum, or threshold of authority.

The MultiSignature contract in Listing 14.1 implements a multi-signature mech-

anism. In originChain, a user sends a request to originChain to issue a certificate.

Such a request requires the approval from both the corresponding service provider

and ITTP. The IssueCert contract inherits MultiSignature to use the mechanism.

The addresses of trusted authorities are predefined. The modifier agreeSig-

nature() adds additional code to the function issue() to make sure that certain

conditions are met before proceeding to execute the body of function. An authority

invokes issue() to agree to the request. agreeResult() is called to check whether

there is a quorum of signatures every time issue() is invoked. If so, the certificate

can be issued. The requester can withdraw the request by invoking the function

cancelAgreeRequest().

288 14 Case Study: originChain

1 contract MultiSignature{
2 uint total;
3 address[] authorities;
4 uint agreeThreshold;
5 address agreeRequester;
6 mapping(address => bool) agreeState;
7 ...
8 modifier agreeSignature(){
9 agreeState[msg.sender] = true;

10 if(agreeResult()){_;}
11 }
12 function agreeResult() internal returns

13 (bool signatureResult){
14 uint k = 0;
15 for(uint i = 0; i < total; i++){
16 if(agreeState[authorities[i]] == true)
17 k++;
18 }
19 if(k >= agreeThreshold)
20 return true;
21 else

22 return false;
23 }
24 function cancelAgreeRequest(){
25 if(msg.sender == agreeRequester)
26 ...
27 }
28 ...
29 }
30
31 contract IssueCert is MultiSignature{
32 //inherits MultiSignature
33 string temID;
34 bytes32 temCertHash;
35 mapping(string => bytes32) certificate;
36 function set(string ID, bytes32 certHash){
37 temID = ID;
38 temCertHash = certHash;
39 }
40 function issue() agreeSignature(){
41 //below replaces "_;" in agreeSignature()
42 certificate[temID] = temCertHash;
43 }
44 ...
45 }

Listing 14.1 MultiSignature contract

14.3 Analysis 289

1 contract DynamicBinding{
2 struct hashSecret{
3 bytes32 hashKey;
4 bool init;
5 bool verified;
6 }
7 mapping (address => hashSecret) secret;
8 //distinguish the struct initiated by
9 //different address

10 function initial(bytes32 key){
11 hashSecret a = secret[msg.sender];
12 if(a.init != true){
13 a.hashKey = key;
14 a.init = true;}
15 }
16 function changeKey(string oldKey, bytes32 newKey){
17 hashSecret a = secret[msg.sender];
18 if(a.init == true)
19 if(a.hashKey == sha256(oldKey))
20 a.hashKey = newKey;
21 }
22 modifier verify(address initiator, string inputKey){
23 hashSecret a = secret[initiator];
24 if(a.verified == false) && a.hashKey == sha256(inputKey))

{_; }
25 a.verified = true;
26 }
27 ...
28 }
29
30 contract BindingLab is DynamicBinding{
31 ...
32 function sampleTest(address initiator, string key)
33 verify(initiator, key){...}
34 //passing the parameter to the modifier
35 }

Listing 14.2 DynamicBinding contract

The DynamicBinding contract in Listing 14.2 provides more flexible permission

control, where a user can authorize the execution of the smart contract by using

a hash secret initiated by originChain. The hash secret is generated off-chain and

verified on-chain—see also the off-chain secret pattern in Section 7.3.2. Similar

as above, the BindingLab contract inherits the DynamicBinding contract to use

the mechanism. To initialize a hash secret, an ITTP employee invokes the initial

function to link the hash key with his/her address so that only the employee has

permission to change the hash secret using the changeKey() function after the secret

is revealed. The hash secret is exchanged off-chain to the authorized labs. The secret

key is verified by the modifier verify(). If the result is true, the lab providing the

secret key proceeds with the sampleTest() function to upload the result of a sample

290 14 Case Study: originChain

test. The smart contract requires that the secret is sent in plain form through a

transaction to verify the hash secret. Thus, after verify() is invoked once, the secret

is revealed. As mentioned above, large data is stored off-chain, and hash secrets can

be used for both off-chain and on-chain permission control.

14.3.2 Quantitative Analysis: Latency of Writing and Reading

We conducted experiments to test the performance of originChain. As discussed in

Section 14.2.2, the hashes of traceability certificates and photos are stored on-chain

to support data integrity. Generating and storing the hash value on blockchain and

querying and comparing hash values are the main operations used by originChain

and the end users. Thus, we here describe the experiments that focus on testing the

latency of writing and reading hash values with both the blockchain and a central

database. ITTP currently maintains a central database at one of ITTP’s branch

offices (Section 14.2.5). Thus, we conducted three groups of experiments on a local

database (for the branch office hosting the database), a remote database (for the

other branch offices that access the database remotely), and a physically distributed

consortium blockchain.

Our experiments were run on an Ethereum-based consortium blockchain. The

difficulty of the blockchain was set to 0x4000. On the public Ethereum blockchain,

the difficulty dynamically adjusts so that blocks are generated every 12 s on average.

On a consortium blockchain, difficulty can be configured according to the desired

throughput of the system. In our experiment, the average block interval is 13.3 s, the

maximum block interval was up to 58 s, and the minimum block interval was 1 s.

For each experiment setup, we conducted an experiment that ran 200 times.

Table 14.1 shows some statistics for write latency, in milliseconds. For block-

chain, we report two times: inclusion time and commit time. Inclusion time is the

time spent for the transaction to be first included into a block on the blockchain. For

commit time, we assume 12-block commit—refer to Section 11.6 for an in-depth

discussion. The write latency of a remote database is higher than a local database

due to additional network latency. The write latency of a blockchain is much higher

than a remote database because it includes both network latency for the propagation

of transactions and blocks and latency introduced by the consensus process.

Table 14.1 Latency of
writing (ms)

Blockchain Database

Inclusion Commitment Local Remote

Minimum 1348 72,870 1 418

First quartile 15,971 152,749 8 435

Median 25,494 176,332 10 439

Third quartile 35,666 204,159 11 446

Maximum 106,374 592,270 20 542

Average 29,453 187,938 10 441

14.4 Discussion 291

Table 14.2 Latency of
reading (ms)

Database

Blockchain Local Remote

Minimum 8 1 422

First quartile 10 12 437

Median 11 15 443

Third quartile 13 17 449

Maximum 129 33 485

Average 17 15 444

In this prototype, a private instance of Ethereum with the default consensus

mechanism was used, for convenience. However, in a production implementation,

it would be more likely that an alternative consensus mechanism would be used.

Nakamoto consensus and proof-of-work can be slow to commit transactions and

only has probabilistic commit guarantees. Nonetheless, even using Ethereum with

proof-of-work, the transaction write performance was acceptable for this use case.

Table 14.2 compares the read latency of the three configurations, in milliseconds.

The read latency of the blockchain is comparable to the read latency of a local

database, because reading a blockchain does not send transaction to the blockchain

network and so can be served immediately. In comparison to remote reading,

blockchain is indeed significantly faster.

14.4 Discussion

14.4.1 Architectural Design of Blockchain-Based Systems

Due to the unique properties of blockchain, there are design considerations that

are specific to blockchain-based applications. However, because smart contracts

are programs running on the blockchain, some of the usual architectural design

principles are applicable to smart contracts. The structural design of the smart

contracts has a large impact on cost if a public blockchain is used. The cost to

deploy a smart contract depends on its size because the code is stored on the

blockchain, which costs a data storage fee that is proportional to data size. Thus,

more lines of code cost more money. A consortium blockchain does not have to

use a token/currency; therefore per-transaction cost is not an issue for a consortium

blockchain. However, blockchain size is still a design concern because the size of the

ledger grows due to immutability and the full replication of the blockchain across

all participants. The constraints on the size of transactions and blocks also restrict

the complexity of smart contracts.

292 14 Case Study: originChain

14.4.2 On-Chain vs. Off-Chain

What functionality and data to handle on-chain and what off-chain is a critical

consideration when designing applications on blockchain. Performance and privacy

factors need to be considered. Performance highly depends on the deployment of

the blockchain. For example, a consortium blockchain can be configured to have

much better performance than a public blockchain. In the case of originChain, due

to the characteristics of the current systems (low write throughput because of the

coarse granularity of traceability information), limited throughput of the blockchain

is not the main concern. However, the data on blockchain is publicly accessible to

all the participants of the blockchain network. As such, private data (e.g. customers’

personal information) should not be stored on-chain. In the context of traceability,

large-sized sensitive raw data (e.g. traceability certificates and photos) are required

to be tamper-proof. Thus, only the hash of raw data is stored on-chain, while the

corresponding raw data is placed off-chain in a secure database.

14.4.3 Adaptability of Blockchain-Based Systems

Adaptability is a quality attribute required by many industrial projects that are

inherently dynamic. However, adaptability is rarely discussed in existing work

for blockchain-based systems. We view a blockchain as one component of a

larger distributed system. In originChain, we implement some of the business

logic on-chain as smart contracts. Thus, the structural design of smart contracts

also affects the upgradability of smart contracts and the adaptability of the whole

system. However, if the blockchain is used for data storage only, not much can

be done to affect adaptability of the whole system. Moving some logic to the

blockchain as done on originChain can leverage the trustworthiness of blockchain

as a computational platform.

14.5 Summary

Blockchain enables decentralization in new forms of distributed software archi-

tectures, where components can reach agreements on the historical system states

without trusting a central integration point. In this chapter, we described experiences

from designing, implementing, and testing originChain, a blockchain-based product

traceability system that restructures an existing system by replacing the central

database with a consortium blockchain. Our experience shows that the design of

smart contracts can improve the adaptability of the system. Our experiments demon-

strated that using blockchain only negatively affected write operations because of

14.5 Summary 293

the consensus process, while there was positive impact on read operations for remote

offices, because every participant hosts a local full copy of the blockchain data

structures.

This chapter is partly based on our earlier works (Lu and Xu 2017).

Epilogue

Our goal with this book is to help software architects and engineers (and students

and researchers in these fields) to understand the concepts and implications of using

blockchain in their applications. We hope you benefited from reading it.

Here we first summarize some of the main points in the book. First, blockchain is

just one of a number of elements in the architecture of an application—unless your

application is a blockchain platform, of course. Blockchain can be used as a data

store, a computing platform, a communication mechanism, and a vault for digital

assets—see Chapter 5. Other elements in a typical system include user interfaces,

cryptographic keys, software clients, enterprise systems and external services, and

auxiliary databases. Before starting to design and develop, you should ask yourself

if it is really necessary or advisable to use blockchain—see Chapter 6.

Blockchain has some rather unique properties, leading to specific trade-offs. The

most prevalent of the trade-offs is transparency vs. confidentiality—however, the

choices typically depend on the use case and the philosophy of the organization (or

group of open-source developers) that is building the application.

Other main trade-offs concern on-chain vs. off-chain: which data, computation,

and communication should be done through blockchain? These decisions can impact

most system properties, including transparency/confidentiality, cost, performance,

maintainability/upgradability, and availability.

Some trade-offs can be resolved by using clever design solutions, and we

discussed 15 reusable patterns for such solutions in Chapter 7. Given the specifics

of blockchain and smart contract development, it is also worth considering a model-

driven engineering methodology, like the ones we discussed in Chapter 8. Models

not only allow code generation but also cost estimation (Chapter 9) and performance

simulation (Chapter 10).

Blockchain poses a number of challenges for dependability—see Chapter 11.

For instance, the network could decide to lower its block gas limit to counter a

DDoS attack; but the lower limit might prevent applications and legitimate users

from deploying new smart contracts. Also, blockchains do not normally have built-

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3

295

https://doi.org/10.1007/978-3-030-03035-3

296 Epilogue

in support for transaction retry or abort, so you might want to implement those to

improve overall system dependability.

The case studies highlighted how blockchain can be used to reduce counterparty

risks in agri-supply chains, for voting, and for provenance tracking of food. One

big lesson is that the immutability of deployed smart contracts means that you need

to plan ahead if you want to be able to fix bugs, patch vulnerabilities, or add new

features in the evolution of your blockchain-based application.

The big question now is of course: what will the future hold for blockchain? It

is clear that blockchain technology will be transformative, but not exactly how. As

we argued in the introduction, blockchain has the potential to change the fabric that

connects people, companies, governments, and whole societies. To quote Amara’s

law:

‘We tend to overestimate the effect of a technology in the short run and

underestimate the effect in the long run.’

Blockchain networks can mirror complex networks, such as in supply chains, and

can dynamically adjust to accept new participants. Decentralization can facilitate

trade. For example, in decentralized energy networks, neighbours could trade locally

produced and stored electricity. There are some natural areas of application where

production use is already happening or will soon start. Many more applications

and industries will follow. Business models will be disrupted, and new ones will

be developed. However, many of the fundamental changes will only happen in the

invisible infrastructure at the backend of applications, and users will not directly see

how these technology changes lead to impact for them.

The current phase of blockchain technology development is characterized by

a broad front of innovation, leading to a lot of diversity. There are over 1300

cryptocurrencies at the time of writing, and many blockchain platforms exist.

Chapters 3, 5, and 6 can help readers navigate the space of technologies and facilitate

decision-making. Following this phase of increased diversity, there might be a phase

of consolidation, and a small number of heavily used platforms might emerge.

Even without the complexity of the diversity of platforms, many people are

struggling with the concepts and the implications of blockchain. For people starting

to work in the space, there is a steep learning curve, but because of the ongoing rapid

rate of innovation, you will find that a year later you will still learn something new

and important about blockchain every week. This can be daunting and requires good

information and education, and we hope to contribute with this book by sharing our

learnings and insights gained from working in the area for the past 3 years.

In the platform game, everybody wants to own the platform—every company

wants to build the next app store. In blockchain, nobody needs to ‘own’ the

technology platform; it can be democratized. However, second-level platforms can

Epilogue 297

be built on top of main chains, which in turn might be controlled or dominated by

one organization.

What is clear is that we live in interesting times. We hope you enjoyed the book

and are ready to be part of shaping the future of blockchain.

References

Alpern B, Schneider FB (1985) Defining liveness. Inf. Process. Lett. 21(4):181–185

Anderson R (2008) Security engineering, 2nd edn. Wiley, Hoboken
Anderson L, Holz R, Ponomarev A, Rimba P, Weber I (2016) New kids on the block: an analysis

of modern blockchains. CoRR abs/1606.06530. http://arxiv.org/abs/1606.06530
Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A, Enyeart D, Ferris C,

Laventman G, Manevich Y et al (2018) Hyperledger Fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of the thirteenth EuroSys conference. ACM, New
York, p 30

Antonopoulos AM (2015) Mastering Bitcoin: unlocking digital cryptocurrencies. O’Reilly,
Sebastopol

Asghar MR, Ion M, Russello G, Crispo B (2012) Securing data provenance in the cloud. In:
Proceedings of the 2011 IFIP WG 11.4 international conference on open problems in network
security, iNetSec’11. Springer, Berlin, pp 145–160. https://doi.org/10.1007/978-3-642-27585-
2_12

Avizienis A, Laprie JC, Randell B, Landwehr C (2014) Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1):11–13

Azaria A, Ekblaw A, Vieira T, Lippman A (2016) MedRec: using blockchain for medical data
access and permission management. In: 2016 2nd international conference on open and big
data (OBD2016), Vienna, pp 25–30. https://doi.org/10.1109/OBD.2016.11

Back A, Corallo M, Dashjr L, Friedenbach M, Maxwell G, Miller A, Poelstra A, Timón J, Wuille
P (2014) Enabling blockchain innovations with pegged sidechains. http://cs.umd.edu/projects/
coinscope/coinscope.pdf

Bartoletti M, Pompianu L (2017) An empirical analysis of smart contracts: platforms, applications,
and design patterns. ArXiv e-prints 1703.06322

Bashir I (2018) Mastering blockchain: distributed ledger technology, decentralization, and smart
contracts explained, 2nd edn. Packt Publishing Ltd., Birmingham

Bass L, Clements P, Kazman R (2012) Software architecture in practice, 3rd edn. Addison-Wesley
Professional, Boston

Beck K, Cunningham W (1987) Using pattern languages for object oriented programs. In:
Conference on object-oriented programming, systems, languages, and applications (OOPSLA).
ACM, Orlando

Becker S, Koziolek H, Reussner R (2009) The Palladio component model for model-driven
performance prediction. J. Syst. Softw. 82(1):3–22

Bolch G, Greiner S, de Meer H, Trivedi KS (2006) Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications. Wiley, Hoboken

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3

299

http://arxiv.org/abs/1606.06530
https://doi.org/10.1007/978-3-642-27585-2_12
https://doi.org/10.1007/978-3-642-27585-2_12
https://doi.org/10.1109/OBD.2016.11
http://cs.umd.edu/projects/coinscope/coinscope.pdf
http://cs.umd.edu/projects/coinscope/coinscope.pdf
1703.06322
https://doi.org/10.1007/978-3-030-03035-3

300 References

Bonneau J, Miller A, Clark J, Narayanan A, Kroll JA, Felten EW (2015) SoK: research perspectives
and challenges for Bitcoin and cryptocurrencies. In: The 36th IEEE symposium on security and
privacy (SP2015), pp 104–121

Brunnert A, van Hoorn A, Willnecker F, Danciu A, Hasselbring W, Heger C, Herbst N, Jamshidi
P, Jung R, von Kistowski J et al (2015) Performance-oriented devops: a research agenda. arXiv
preprint arXiv:150804752

Buterin V (2015) On public and private blockchains. https://blog.ethereum.org/2015/08/07/on-
public-and-private-blockchains/

Carminati B, Ferrari E, Tran NH (2014) Secure web service composition with untrusted broker. In:
2014 IEEE ICWS. IEEE, New York, pp 137–144

Castro M, Liskov B (1999) Practical byzantine fault tolerance. In: Proceedings of OSDI, pp 173–
186

Clack CD, Bakshi VA, Braine L (2016a) Smart Contract Templates: essential requirements and
design options. 1612.04496

Clack CD, Bakshi VA, Braine L (2016b) Smart Contract Templates: foundations, design landscape
and research directions. 1608.00771

Clark DD, Wilson DR (1987) A comparison of commercial and military computer security policies.
In: 1987 IEEE symposium on security and privacy, pp 184–194

Clements P, Bachman F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2003) Documenting
software architectures: views and beyond. Addison-Wesley, Boston

Crain T, Gramoli V, Larrea M, Raynal M (2017) (leader/randomization/signature)-free byzantine
consensus for consortium blockchains. arXiv abs/1702.03068. http://arxiv.org/abs/1702.03068

Danezis G, Meiklegohn S (2016) Centrally banked cryptocurrencies. In: 23rd annual network and

distributed system security symposium (NDSS2016), CA
De Gooijer T, Jansen A, Koziolek H, Koziolek A (2012) An industrial case study of performance

and cost design space exploration. In: Proceedings of the 3rd ACM/SPEC international
conference on performance engineering. ACM, New York, pp 205–216

Decker C, Wattenhofer R (2013) Information propagation in the Bitcoin network. In: Proceedings
of the IEEE conference Peer-to-Peer networks (P2P)

Decker G, Weske M (2011) Interaction-centric modeling of process choreographies. Inf. Syst.
36(2):292–312. https://doi.org/10.1016/j.is.2010.06.005

Dimitriou T, Karame G (2013) Privacy-friendly tasking and trading of energy in smart grids. In:
The 28th annual ACM symposium on applied computing (SAC), pp 652–659

Downey P (2016) The characteristics of a register. https://gds.blog.gov.uk/2015/10/13/the-
characteristics-of-a-register/

Eberhardt J, Tai S (2017) On or off the blockchain? Insights on off-chaining computation and data.
In: ESOCC 2017: European conference on service-oriented and cloud computing. Springer
International Publishing, Oslo, pp 3–15

Ether (2016) Ether stats. https://ethstats.net
Eyal I, Sirer EG (2018) Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM

61(7):95–102
Eyal I, Gencer AE, Sirer EG, van Renesse R (2016) Bitcoin-NG: a scalable blockchain protocol.

In: USENIX NSDI, Santa Clara, CA
Fdhila W, Rinderle-Ma S, Knuplesch D, Reichert M (2015) Change and compliance in collabora-

tive processes. In: IEEE international conference on services computing (SCC), pp 162–169.
https://doi.org/10.1109/SCC.2015.31

Flynn BB, Huo B, Zhao X (2010) The impact of supply chain integration on performance: a
contingency and configuration approach. J. Oper. Manage. 28(1):58–71

Fox A, Brewer EA (1999) Harvest, yield, and scalable tolerant systems. In: The 7th IEEE workshop
on hot topics on operating systems, pp 174–178

Franks G, Al-Omari T, Woodside M, Das O, Derisavi S (2009) Enhanced modeling and solution
of layered queueing networks. IEEE Trans. Softw. Eng. 35(2):148–161

Friedman M (1991) The island of stone money. Working papers in Economics, no. E-91-3, Hoover
Institution, Stanford University, CA

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
1612.04496
1608.00771
http://arxiv.org/abs/1702.03068
https://doi.org/10.1016/j.is.2010.06.005
https://gds.blog.gov.uk/2015/10/13/the-characteristics-of-a-register/
https://gds.blog.gov.uk/2015/10/13/the-characteristics-of-a-register/
https://ethstats.net
https://doi.org/10.1109/SCC.2015.31

References 301

García-Bañuelos L, Ponomarev A, Dumas M, Weber I (2017) Optimized execution of business pro-
cesses on blockchain. In: BPM’17: International conference on business process management,
Barcelona

Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Čapkun S (2016) On the security and
performance of proof of work blockchains. In: Conference on computer and communications
security, Vienna

Gifford DK (1979) Weighted voting for replicated data. In: Proceedings of the seventh ACM
symposium on operating systems principles. ACM Press, New York, pp 150–162

Gorton I, Klein J, Nurgaliev A (2015) Architecture knowledge for evaluating scalable databases.
In: Working IEEE/IFIP conference on software architecture (WICSA), Montréal

Grigg I (2004) The Ricardian contract. In: The 1st IEEE international workshop on electronic
contracting (WEC2004). IEEE, San Diego, pp 25–31

Hull R, Batra VS, Chen YM, Deutsch A, Heath III FFT, Vianu V (2016) Towards a shared ledger
business collaboration language based on data-aware processes. In: ICSOC, the international
conference on service-oriented computing. Springer, New York. https://doi.org/10.1007/978-
3-319-46295-0_2

IBM (2015) Device democracy – saving the future of the internet of things. https://www-935.ibm.
com/services/multimedia/GBE03620USEN.pdf

Idelberger F, Governatori G, Riveret R, Sartor G (2016) Evaluation of logic-based smart contracts
for blockchain systems. In: Rule technologies. Research, tools, and applications. Springer, New
York, pp 167–183

Ion I, Sachdeva N, Kumaraguru P, Čapkun S (2011) Home is safer than the cloud!: privacy concerns
for consumer cloud storage. In: Proceedings of the seventh symposium on usable privacy

and security, SOUPS ’11. ACM, New York, pp 13:1–13:20. https://doi.org/10.1145/2078827.
2078845

Iosup A, Yigitbasi N, Epema D (2011) On the performance variability of production cloud
services. In: Proceedings of the IEEE/ACM international symposium on cluster, cloud and
grid computing (CCGrid), pp 104–113. https://doi.org/10.1109/CCGrid.2011.22

Juskalian R (2018) Inside the Jordan refugee camp that runs on blockchain. MIT Technology
Reviews. https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-
runs-on-blockchain/

Kemme B, Alonso G (2010) Database replication: a tale of research across communities. In:
Proceedings of the VLDB endowment, vol 3(1–2), pp 5–12

Kounev S, Brosig F, Huber N (2014) The Descartes modeling language. Dept of Computer Science,
University of Wuerzburg, Tech Rep

Koziolek A, Koziolek H, Reussner R (2011) PerOpteryx: automated application of tactics in
multi-objective software architecture optimization. In: Proceedings of the joint ACM SIGSOFT
conference–QoSA and ISARCS, ACM, pp 33–42

Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
3(2):125–143. https://doi.org/10.1109/TSE.1977.229904

Lamport L (1998) The part-time parliament. ACM Trans. Comput. Syst. 16(2):133–169
Lamport L, Shostak R, Pease M (1982) The byzantine generals problem. ACM Trans. Program.

Lang. Syst. 4(3):382–401
Li G, Muthusamy V, Jacobsen HA (2010) A distributed service-oriented architecture for business

process execution. ACM Trans. Web 4(1):2
Lo SK, Xu X, Chiam YK, Lu Q (2017) Evaluating suitability of applying blockchain. In: The 22nd

international conference on engineering of complex computer systems (ICECCS), Fukuoka
López-Pintado O, García-Bañuelos L, Dumas M, Weber I (2017) Caterpillar: a blockchain-

based business process management system. In: BPM’17: international conference on business
process management, Demo track, Barcelona

Lu Q, Xu X (2017) Adaptable blockchain-based systems: a case study for product traceability.
IEEE Softw. 34(6):21–27

https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-319-46295-0_2
https://www-935.ibm.com/services/multimedia/GBE03620USEN.pdf
https://www-935.ibm.com/services/multimedia/GBE03620USEN.pdf
https://doi.org/10.1145/2078827.2078845
https://doi.org/10.1145/2078827.2078845
https://doi.org/10.1109/CCGrid.2011.22
https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-blockchain/
https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-blockchain/
https://doi.org/10.1109/TSE.1977.229904

302 References

Luu L, Narayanan V, Zheng C, KBaweja, Gilbert S, Saxena P (2016) A secure sharding protocol
for open blockchains. In: ACM SIGSAC conference on computer and communications security
(CCS), Vienna

Malkhi D, Reiter M (1997) Byzantine quorum systems. In: Proceedings of the twenty-ninth annual
ACM symposium on theory of computing, STOC ’97, pp 569–578. https://doi.org/10.1145/
258533.258650

Mehta NR, Medvidovic N, Phadke S (2000) Towards a taxonomy of software connectors. In: ICSE,
the international conference on software engineering, pp 178–187

Mendling J, Hafner M (2008) From WS-CDL choreography to BPEL process orchestration. J.
Enterp. Inf. Manage. 21(5):525–542

Meszaros G et al (1998) A pattern language for pattern writing. In: Pattern languages of program
design, vol 3, pp 529–574

Miller A, Juels A, Shi E, Parno B, Katz J (2014) Permacoin: repurposing Bitcoin work for data
preservation. In: IEEE symposium on security and privacy, San Jose

Molloy MK (1982) Performance analysis using stochastic Petri nets. IEEE Trans. Comput.
100(9):913–917

Mont MC, Tomasi L (2001) A distributed service, adaptive to trust assessment, based on peer-
to-peer e-records replication and storage. In: IEEE workshop on future trends of distributed
computing systems

Morisse M (2015) Cryptocurrencies and bitcoin: charting the research landscape. In: The 21st
Americas conference on information systems (AMCIS2015)

Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf
Narayanan S, Jayaraman V, Luo Y, Swaminathan JM (2011) The antecedents of process integration

in business process outsourcing and its effect on firm performance. J. Oper. Manage. 29(1):
3–16

Natoli C, Gramoli V (2016) The blockchain anomaly. In: IEEE international symposium on
network computing and applications (NCA). IEEE, New York

NI of Standards and Technology, UD of Commerce (2012) Secure Hash Standard - SHS: Federal
Information Processing Standards Publication 180-4. CreateSpace Independent Publishing
Platform. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Object Management Group (2010) BPMN 2.0 by Example. http://www.omg.org/spec/BPMN/.
v1.0. Accessed 10 Mar 2016

Omohundro S (2014) Cryptocurrencies, smart contracts, and artificial intelligence. AI Matters
1(2):19–21. https://doi.org/10.1145/2685328.2685334

Panayides PM, Lun YV (2009) The impact of trust on innovativeness and supply chain perfor-
mance. J. Prod. Econ. 122(1):35–46

Pérez JF, Casale G (2013) Assessing SLA compliance from Palladio component models. In: 2013
15th international symposium on symbolic and numeric algorithms for scientific computing
(SYNASC). IEEE, New York, pp 409–416

Poon J, Dryja T (2016) The bitcoin lightning network: scalable off-chain instant payments. https://
lightning.network/lightning-network-paper.pdf

Prisco G (2015) Bankymoon introduces Bitcoin payments to smart meters for power
grids. Bitcoin Magazine. https://bitcoinmagazine.com/20139/bankymoon-introduces-bitcoin-
payments-smart-meters-power-grids/

Prybila C, Schulte S, Hochreiner C, Weber I (2017) Runtime verification for business processes
utilizing the Bitcoin blockchain. Futur. Gener. Comput. Syst. (FGCS). https://doi.org/10.1016/
j.future.2017.08.024

Ratha D, Eigen-Zucchi C, Plaza S (2016) Migration and remittances factbook 2016, 3rd edn. Tech.
rep., World Bank Publications

Reijers HA, Mansar SL (2005) Best practices in business process redesign: an overview and
qualitative evaluation of successful redesign heuristics. Omega 33(4):283–306

Rimba P, Tran AB, Weber I, Staples M, Ponomarev A, Xu X (2017) Comparing blockchain and
cloud services for business process execution. In: ICSA’17: IEEE international conference on
software architecture, short paper, Gothenburg

https://doi.org/10.1145/258533.258650
https://doi.org/10.1145/258533.258650
http://bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.omg.org/spec/BPMN/
https://doi.org/10.1145/2685328.2685334
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://bitcoinmagazine.com/20139/bankymoon-introduces-bitcoin-payments-smart-meters-power-grids/
https://bitcoinmagazine.com/20139/bankymoon-introduces-bitcoin-payments-smart-meters-power-grids/
https://doi.org/10.1016/j.future.2017.08.024
https://doi.org/10.1016/j.future.2017.08.024

References 303

Rimba P, Tran AB, Weber I, Staples M, Ponomarev A, Xu X (2018) Quantifying the cost of
distrust: comparing blockchain and cloud services for business process execution. Inf. Syst.
Front. https://doi.org/10.1007/s10796-018-9876-1

Rosenfeld M (2014) Analysis of hashrate-based double spending. arXiv preprint. http://arxiv.org/
abs/1402.2009

Royal D, Rimba P, Staples M, Gilder S, Tran AB, Williams E, Ponomarev A, Weber I, Connor
C, Lim N (2018) Making money smart: empowering NDIS participants with blockchain
technology, CSIRO

Ryan PYA, Bismark D, Heather J, Schneider S, Xia Z (2009) Prêt à voter:a voter-verifiable voting
system. IEEE Trans. Inf. Forensics Secur. 4(4):662–673. https://doi.org/10.1109/TIFS.2009.
2033233

Schad J, Dittrich J, Quiané-Ruiz JA (2010) Runtime measurements in the cloud: observing,
analyzing, and reducing variance. Proc. VLDB Endow. 3(1–2):460–471. https://doi.org/10.
14778/1920841.1920902

Schmidt DC (2006) Guest editor’s introduction: model-driven engineering. IEEE Comput.
39(2):25–31. https://doi.org/10.1109/MC.2006.58

Schneider FB (1990) Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv. 22(4):299–319

Sompolinsky Y, Zohar A (2013) Accelerating Bitcoin’s transaction processing: fast money grows
on trees, not chains. https://eprint.iacr.org/2013/881

Squicciarini A, Paci F, Bertino E (2008) Trust establishment in the formation of virtual organiza-
tions. In: ICDE Workshops. IEEE Computer Society, New York

Staples M, Chen S, Falamaki S, Ponomarev A, Rimba P, Weber ABTI, Xu X, Zhu J (2017)

Risks and opportunities for systems using blockchain and smart contracts. Tech. rep., Data61
(CSIRO), Sydney

Swan M (2015) Blockchain: Blueprint for a new economy. O’Reilly, US
Swanson T (2015) Consensus-as-a-service: a brief report on the emergence of permissioned,

distributed ledger systems. https://allquantor.at/blockchainbib/pdf/swanson2015consensus.pdf
Szabo N (1997) Formalizing and securing relationships on public networks. First Monday 2(9).

https://doi.org/10.5210/fm.v2i9.548
The World Bank (2016) Remittance prices worldwide: making markets more transparent. https://

remittanceprices.worldbank.org/en/countrycorridors/
Tran AB, Xu X, Weber I, Staples M, Rimba P (2017) Regerator: a registry generator for blockchain.

In: CAiSE’17: international conference on advanced information systems engineering, forum
track, tool demonstration

Tran AB, Lu Q, Weber I (2018) Lorikeet: a model-driven engineering tool for blockchain-based
business process execution and asset management. In: BPM’18: international conference on
business process management, Demo track, Sydney, NSW, Australia

Tschorsch F, Scheuermann B (2016) Bitcoin and beyond: a technical survey on decentralized
digital currencies. IEEE Commun. Surv. Tutorials 18(3):464

Valenta L, Rowan B (2015) Blindcoin: Blinded, accountable mixes for Bitcoin. In: FC, San Juan,
Puerto Rico

van der Aalst WMP, Weske M (2001) The P2P approach to interorganizational workflows. In:
International conference on advanced information systems engineering, pp 140–156. https://
doi.org/10.1007/3-540-45341-5_10

van der Aalst W, ter Hofstede A, Kiepuszewski B, Barros A (2003) Workflow patterns. Distrib.
Parallel Databases 14(1):5–51. https://doi.org/10.1023/A:1022883727209

Viriyasitavat W, Martin A (2011) In the relation of workflow and trust characteristics, and
requirements in service workflows. In: Informatics engineering and information science.
Springer, New York, pp 492–506

Vukolić M (2015) The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In:
IFIP WG 11.4 international conference on open problems in network security, iNetSec, Zurich

Walport M (2016) Distributed ledger technology: beyond block chain. Tech. rep., UK Government
Chief Scientific Adviser

https://doi.org/10.1007/s10796-018-9876-1
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1402.2009
https://doi.org/10.1109/TIFS.2009.2033233
https://doi.org/10.1109/TIFS.2009.2033233
https://doi.org/10.14778/1920841.1920902
https://doi.org/10.14778/1920841.1920902
https://doi.org/10.1109/MC.2006.58
https://eprint.iacr.org/2013/881
https://allquantor.at/blockchainbib/pdf/swanson2015consensus.pdf
https://remittanceprices.worldbank.org/en/countrycorridors/
https://remittanceprices.worldbank.org/en/countrycorridors/
https://doi.org/10.1007/3-540-45341-5_10
https://doi.org/10.1007/3-540-45341-5_10
https://doi.org/10.1023/A:1022883727209

304 References

Weber I, Haller J, Mülle J (2008) Automated derivation of executable business processes from
choreographies in virtual organizations. Int. J. Bus. Process. Integr. Manage. 3(2):85–95.
https://doi.org/10.1504/IJBPIM.2008.020972

Weber I, Xu X, Riveret R, Governatori G, Ponomarev A, Mendling J (2016) Untrusted business
process monitoring and execution using blockchain. In: International conference on business
process management. Springer, Rio de Janeiro, pp 329–347

Weber I, Gramoli V, Staples M, Ponomarev A, Holz R, Tran A, Rimba P (2017) On availability for
blockchain-based systems. In: SRDS’17: IEEE international symposium on reliable distributed
systems. IEEE, Hong Kong, pp 64–73

Willnecker F, Brunnert A, Krcmar H (2014) Predicting energy consumption by extending
the Palladio component model. In: SOSP14 symposium on software performance: joint
descartes/kieker/palladio days 2014, p 177

Wood G (2015–2018) Ethereum: a secure decentralized generalised transaction ledger. All
revisions: https://github.com/ethereum/yellowpaper; latest revision: https://ethereum.github.io/
yellowpaper/paper.pdf

Xu J, Woodside M, Petriu D (2003) Performance analysis of a software design using the UML
profile for schedulability, performance, and time. In: International conference on modelling
techniques and tools for computer performance evaluation. Springer, New York, pp 291–307

Xu X, Pautasso C, Zhu L, Gramoli V, Ponomarev A, Tran AB, Chen S (2016) The blockchain
as a software connector. In: The 13th working IEEE/IFIP conference on software architecture
(WICSA), Venice

Xu X, Weber I, Staples M, Zhu L, Bosch J, Bass L, Pautasso C, Rimba P (2017) A taxonomy of
blockchain-based systems for architecture design. In: ICSA2017. IEEE, Gothenburg, pp 243–

252
Xu X, Pautasso C, Zhu L, Lu Q, Weber I (2018) A pattern language for blockchain-based

applications. In: EuroPLoP’18: European conference on pattern languages of programs, Kloster
Irsee

Yasaweerasinghelage R, Staples M, Weber I (2017a) Predicting latency of blockchain-based
systems using architectural modelling and simulation. In: IEEE international conference on
software architecture (ICSA). IEEE, New York

Yasaweerasinghelage R, Staples M, Weber I (2017b) Using architectural modelling and simulation
to predict latency of blockchain-based systems. Tech. Rep. 201704, School of Computer
Science & Engineering, University of New South Wales, Sydney. ftp://ftp.cse.unsw.edu.au/pub/
doc/papers/UNSW/201704.pdf

Yu X, Xu X, Liu B (2017) Ethdrive: a peer-to-peer data storage with provenance. In: CAiSE’17:
international conference on advanced information systems engineering, forum Track, tool
demonstration

Zhang P, White J, Schmidt DC, Lenz G (2017) Applying software patterns to address interoper-
ability in blockchain-based healthcare apps. arXiv e-prints. https://doi.org/1706.03700

https://doi.org/10.1504/IJBPIM.2008.020972
https://github.com/ethereum/yellowpaper
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201704.pdf
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201704.pdf
https://doi.org/1706.03700

Index

Account balances, 31, 32, 46, 57, 230
Addresses, 15, 28, 31, 35, 38, 44, 55–57, 67,

75, 78, 85, 97–99, 120, 131–133,
137–139, 142, 145, 156, 158, 161,
165, 166, 168, 169, 176, 180, 192,
193, 215, 218, 220, 233, 258, 260,
270, 272, 273, 276, 277, 284–287,
289

AgriDigital, 239
Applications of blockchain, 9

Bitcoin (blockchain), 6–9, 12, 16, 17, 20–22,
24, 27–35, 37, 44–46, 48, 50, 51, 53,
57, 74, 75, 78, 84, 85, 87, 88, 91, 97,
106–110, 117, 124–126, 128, 129,
132, 133, 135–137, 148, 162, 171,
176, 197, 213, 215–217, 219–227,
230, 234, 287

Bitcoin (cryptocurrency), 3, 6, 8, 12, 17, 27,
31, 32, 34, 35, 48, 52, 74, 78, 84, 91,
110, 124, 130, 135, 175, 230, 254

Block size, 53, 105, 107, 126, 129
Blockchain, 5

-based applications, 8
network, 6
platform, 7
as a service, 9
as a software component, 18
system, 6

BPMN, 64, 65, 151, 153, 157, 185, 280, 281
BTC, see Bitcoin (cryptocurrency)

CKAN, 69, 70, 168, 170

colored coins, 17, 91, 107
Confidentiality, 13, 20, 22, 23, 41, 62, 66–68,

72, 75, 98–100, 106, 110, 121, 122,
154, 192, 214, 234, 266

Confirmation blocks, 16, 20, 33, 37, 53, 75,
98, 106, 113, 135–137, 197–201,
207–209, 211, 215, 219, 223, 225,
267

Consensus mechanisms
Nakamoto consensus, 21, 22, 33, 44,

51–53, 59, 66, 97, 98, 106, 118, 135,
136, 197, 198, 207, 209, 219, 220,
291

Paxos, 85
PBFT, 22, 51, 52
Proof-of-authority, 22, 23
proof of stake, 16, 22, 52, 260
proof of work, 16, 22, 30, 33, 37, 44, 48,

51, 53, 54, 110, 202, 207, 213, 291
Corda, 22, 44, 50, 67, 99, 121, 215
Cost, 39, 49, 72, 75, 106, 107, 109, 114,

126–130, 152, 155, 157, 164,
166–171, 175–190, 192–195, 199,
226, 228, 253, 260, 261, 264, 266,
267, 269, 277, 278, 291

Cryptocurrency, 6, 8–10, 12, 15, 17, 24, 27, 34,
35, 55, 58, 84–86, 88, 91, 98, 124,
126, 129, 132, 135, 137, 152, 155,
158, 170, 190, 192, 214–217, 230,
247, 250, 254, 291

Dash, 58
Decentralized applications or dapps, 8, 39, 40,

133, 269, 274

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3

305

https://doi.org/10.1007/978-3-030-03035-3

306 Index

Design trade-offs, 20, 21, 49, 54, 66, 67, 83,
105, 113, 175, 176, 192, 193, 195,
200, 211, 219, 234, 254, 266, 272,
275

Digital assets, 6–8, 10, 11, 17, 18, 30, 67, 84,
88, 90, 91, 96, 97, 103, 109, 124,
125, 150, 162, 243, 244, 246, 247

Distributed ledger, 5
Distributed ledger technology, 5
Domain Name System (DNS), 67, 166

Escrow, 3, 18, 88, 133, 150, 151, 166, 192,
195, 252

Ether (Ethereum’s cryptocurrency), 6, 8, 9, 17,
32, 38, 39, 88, 124, 142, 169, 175,
178, 180, 186, 187, 189, 226, 230,
262, 266

Ethereum, 6–9, 15, 17, 18, 20, 22, 27, 32,
35–40, 44, 48, 50, 52–54, 56–58,
75, 84, 85, 88, 89, 91, 97, 106, 107,
109, 121, 123–126, 128, 131–133,
135–140, 142, 145, 147, 148,
150, 153, 163, 164, 167, 169, 170,
175–181, 184–187, 189, 192, 194,
195, 197, 200, 202, 203, 206, 207,
210, 213, 215–220, 223, 228–234,
245, 250, 258–261, 264, 266, 268,
269, 271, 275, 277, 285, 287, 290,
291

Ethereum Classic, 218, 264, 266
Ethereum Name Service, 139, 264, 271,

274–276
Ethereum Virtual Machine (EVM), 38, 176
Exchange rates, 71, 72, 74, 169, 175, 181, 187,

190, 192, 194, 254

Full node, 6, 15, 20, 30, 34, 46, 54, 56, 158,
164, 179, 181, 200, 202, 217, 219,
266, 267

Gas, 38, 39, 177–180, 217, 225, 228
cost, 39, 146, 155, 169, 171, 177, 178, 180,

189, 194, 195, 208, 228, 261, 264,
266, 267, 277

limit, 39, 53, 126, 129, 140, 178, 179, 194,
208, 219, 223, 226, 228, 229, 260

price, 39, 169, 175, 177, 178, 187, 189,
223, 225–228, 231–233, 277

Genesis block, 31
GHOST, 36, 37
Governance, 11, 69, 111, 218, 234, 258–260

Hashgraph, 50
Hyperledger Fabric, 22, 27, 40–44, 50, 51, 67,

99, 110, 117

Incentive mechanisms, 3, 4, 6, 11, 14, 15, 17,
28, 30, 35, 36, 46, 52, 58, 83, 84, 95,
114, 146, 147, 220, 251

Integrity, 3–6, 11, 15, 19, 20, 22, 43, 45, 46, 48,
51, 59, 62, 66, 68, 70, 76, 78, 85–87,
96–100, 103, 104, 106, 125–128,
157, 162, 163, 166, 181, 214–216,
220, 234, 244, 253, 261, 266, 267,
282, 290

Inter-block time, 35, 36, 44, 53, 54, 97, 110,
136, 197, 199–202, 208, 210, 211,
222, 224, 250

IOTA, 50
IPFS, 18, 40, 86, 109, 121, 178

Latency, 20, 52, 53, 62, 65, 68, 70–72, 74, 97,
102, 104, 128, 129, 136, 164, 175,
197–202, 206–211, 244, 250, 267,
290, 291

Legal smart contracts, see Smart contracts, in
law

Lightning network, 48, 59, 129, 130

Mining, 15, 27, 28, 30–37, 39, 44, 46, 51–54,
58, 83, 110, 111, 116, 117, 135, 176,
178, 198, 200, 202, 215, 216, 218,
220, 222–224, 228, 230, 233

difficulty, 36, 53, 110, 290
rewards, 28, 30, 32, 34, 36, 54, 58, 226

Mixing, 57
Monero, 44, 58

Nakamoto consensus, see Consensus
mechanisms, Nakamoto consensus

Non-functional properties, 19, 52, 64, 70, 74,
78, 175, 193, 195, 199

of blockchain, 19, 21, 163
Non-functional requirements, 19, 61, 62, 68,

72, 76, 244

On-chain vs. off-chain, 18, 83, 106, 109, 139,
157, 275, 292

computation, 48, 109, 128, 155
storage, 18, 24, 49, 66, 106, 107, 126, 161,

170, 175, 176, 252, 282

Index 307

Oracle, 14, 18, 30, 83, 88, 90, 95, 113,
115–117, 158, 286

OriginChain, 279

Paxos, see Consensus mechanisms, Paxos
PBFT, see Consensus mechanisms, PBFT
Peer-to-peer systems, 6, 10, 27, 79, 86–88,

106–108, 129, 171, 178, 258
Privacy, 11, 13, 18–20, 23, 41, 44, 49, 57, 68,

76, 78, 91, 99, 102, 103, 106, 110,

115, 122, 130, 156, 159–161, 244,
247, 250, 251, 292

Private blockchain, 9, 13, 16, 21–23, 49, 67,
68, 74, 85, 93, 98–100, 106, 110,
111, 165, 186, 189, 198, 201, 202,
208, 218, 245

Private key, see Public key cryptography
Probabilistic commit, 16, 33, 59, 86, 97, 118,

135–137, 219, 220, 224, 291
Proof of concept, 242, 245, 247
Proof of stake, see Consensus mechanisms,

proof of stake
Proof of work, see Consensus mechanisms,

proof of work
Pseudonymity, 12, 32, 75, 99, 110, 192, 214
Public blockchain, 6, 9, 12, 17, 20–22, 28, 33,

35, 41, 48, 49, 54–58, 65, 66, 68, 69,
75, 85–87, 93, 98, 99, 106, 107, 110,
115, 121–124, 126–130, 132, 137,
140–143, 145, 146, 157, 161, 170,
192, 194, 195, 197, 198, 202, 208,
216–219, 234, 291, 292

Public key, see Public key cryptography
Public key cryptography, 15, 29, 31, 34, 70, 71,

76, 78, 85, 87, 92, 97–99, 122, 124,
131, 132, 134, 135, 156, 158–160,
214, 258, 264, 286, 287

Qualities, see Non-functional properties
Quorum, 246, 248–251, 253

Raiden network, 48, 131, 135
Registries, 67–71, 99, 103, 104, 114, 137–139,

141, 145, 147, 150, 156, 158,
162–170, 215, 217, 264, 271, 284,
285

Ripple, 9, 17, 22, 44, 48, 49, 87

Script, 29, 109, 129, 176
SecureVote, 258
Sidechains, 56, 59, 135
Smart contracts, 7

in law, 7, 8, 38, 88, 91, 119–121, 125, 284,
287

Turing completeness, 7, 29, 35, 39, 88, 109,
179, 215

upgrading, 113, 137–141, 145, 262, 267,
268, 270, 272, 274, 275, 277

Solidity, 38, 107, 133, 143, 148, 153, 155, 161,
164, 177, 179, 185, 258, 261, 262,
268, 271, 272, 278

State channels, 97, 113, 128–131
Stellar, 52, 259
Supply chains, 9, 10, 40, 61–63, 66, 67, 94,

100, 150, 151, 171, 182, 214,
239–241, 243–255, 279

Throughput, 36, 39, 49, 53, 54, 62, 66, 97, 102,
104, 128, 129, 178, 184, 185, 194,
197–199, 207, 212, 220, 244, 250,
264, 267, 290, 292

Title of assets, 67, 91, 150, 162, 163, 170, 240,
244–248, 254

Tokens, 6, 8, 12, 13, 15, 17, 55, 56, 84, 88, 90,
91, 97, 113, 119, 124, 125, 135, 137,
141, 148, 150, 155, 162, 216, 248,
254, 258–260, 262, 266, 274, 291

Tokenvote, 258
Transactions

aborting, 213, 229–234
lifecycle, 15, 28, 36, 42, 43, 223, 224
validation, 6, 13, 14, 28, 43, 67, 71, 83, 90,

98, 115–117, 214, 215
Trust, 3, 4, 6, 7, 9, 15, 18, 20, 27, 28, 35, 39,

41, 46, 54, 63, 66, 79, 85, 86, 88, 90,
95, 96, 109, 111, 116, 117, 119, 124,
130, 150, 152, 154, 158, 160–162,
170, 171, 175, 192, 194, 198, 217,
240–242, 251, 253, 254, 282, 286,
287, 292

Trusted third-parties, 3, 4, 9, 11, 12, 20, 46, 56,
57, 90, 95–97, 107, 110, 116, 117,
161, 178, 192, 245, 247, 279, 282

Turing completeness, see Smart contracts,
Turing completeness

Unspent Transaction Output (UTXO), 32, 85

Voting on blockchain, 258

Zcash, 44, 57
Zero-knowledge proofs, 44, 57, 67, 214
zk-SNARKs, 214

	Foreword
	How to Read This Book
	Acknowledgements
	Legal Disclaimer for Code Samples
	Contents
	Part I Blockchain in Software Architecture
	1 Introduction
	1.1 What Is Blockchain and Why Should I Care?
	1.1.1 Defining Blockchain
	1.1.2 Smart Contracts and Decentralized Applications
	1.1.3 Cryptocurrencies and Tokens

	1.2 Blockchain-Based Applications
	1.2.1 Enterprise and Industry
	1.2.2 Financial Services
	1.2.3 Government Services

	1.3 Blockchain Functionality
	1.3.1 Blockchain as Data Storage
	Transactions
	Digital Assets

	1.3.2 Blockchain as a Computational Infrastructure

	1.4 Blockchain Non-functional Properties
	1.4.1 Non-functional Properties and Requirements
	1.4.2 Non-functional Properties of Blockchain

	1.5 Blockchain Architecture Design
	1.5.1 Software Architecture: Design and Analysis
	1.5.2 Designing Blockchain-Based Applications

	1.6 Summary
	1.7 Further Reading

	2 Existing Blockchain Platforms
	2.1 Bitcoin
	2.1.1 Bitcoin Transactions
	2.1.2 Script
	2.1.3 Mining
	2.1.4 Accounts and State
	2.1.5 Nakamoto Consensus
	2.1.6 Deflationary Cryptocurrency
	2.1.7 Wallets
	2.1.8 Exchanges

	2.2 Ethereum
	2.2.1 Ethereum Protocol
	2.2.2 Ethereum Transactions
	2.2.3 Smart Contract
	2.2.4 Paying Fees in `Gas'
	2.2.5 Decentralized Application (dapp)

	2.3 Hyperledger Fabric
	2.3.1 Permissioned Blockchain
	2.3.2 Chaincode as Smart Contract
	2.3.3 Nodes
	2.3.4 Transactions
	2.3.5 Consensus

	2.4 Other Representative Blockchain Platforms
	2.5 Further Reading

	3 Varieties of Blockchains
	3.1 Fundamental Properties of Blockchain
	3.2 Decentralization
	3.2.1 Permission
	3.2.2 Deployment

	3.3 Ledger Structure
	3.4 Consensus Protocol
	3.5 Block Configuration
	3.6 Auxiliary Blockchains
	3.7 Anonymity
	3.8 Incentives
	3.9 Summary
	3.10 Further Reading

	4 Example Use Cases
	4.1 Agricultural Supply Chains
	4.1.1 Key Non-functional Requirements
	4.1.2 Conventional Technology
	4.1.3 A Blockchain Solution
	4.1.4 Non-functional Property Discussion

	4.2 Open Data Registry
	4.2.1 Key Non-functional Requirements
	4.2.2 Conventional Technology
	4.2.3 A Blockchain Solution
	4.2.4 Non-functional Property Discussion

	4.3 International Money Transfers
	4.3.1 Key Non-functional Requirements
	4.3.2 Conventional Technologies
	4.3.3 A Blockchain Solution
	4.3.4 Non-functional Property Discussion

	4.4 Electricity Contract Selection and Continuous Reporting
	4.4.1 Key Non-functional Requirements
	4.4.2 Conventional Technologies
	4.4.3 A Blockchain Solution
	4.4.4 Non-functional Property Discussion

	4.5 Further Reading

	Part II Architecting Blockchain-Based Applications
	5 Blockchain in Software Architecture
	5.1 Blockchain as an Architectural Element
	5.2 Blockchain as Storage Element
	5.2.1 Comparison with Centralized Databases
	5.2.2 Comparison with Cloud Services
	5.2.3 Comparison with Peer-to-Peer Data Storage
	5.2.4 Comparison with Replicated State Machines

	5.3 Blockchain as Computational Element
	5.4 Blockchain as Communication Mechanism
	5.4.1 Data Communication
	5.4.2 Computation Communication

	5.5 Blockchain as an Asset Management and Control Mechanism
	5.6 Integrating Blockchain into a System as a Component
	5.7 Summary
	5.8 Further Reading

	6 Design Process for Applications on Blockchain
	6.1 Evaluation of Suitability
	6.1.1 Multiparty
	6.1.2 Trusted Authority
	6.1.3 Operation
	6.1.4 Data Immutability and Non-repudiation
	6.1.5 High Performance
	6.1.6 Transparency

	6.2 Example Use Cases for Suitability Evaluation
	6.2.1 Use Case 1: Supply Chain
	6.2.2 Use Case 2: Electronic Health Records (EHRs)
	6.2.3 Use Case 3: Identity Management
	6.2.4 Use Case 4: Stock Market

	6.3 Design Process for Blockchain-Based Systems
	6.3.1 Trade-Off Analysis
	6.3.2 Decentralization
	6.3.3 On-Chain vs. Off-Chain
	Data
	Computation
	Other Considerations

	6.3.4 Blockchain Selection and Configuration
	6.3.5 Deployment and Operation

	6.4 Summary
	6.5 Further Reading

	7 Blockchain Patterns
	7.1 Patterns on Interacting with the External World
	7.1.1 Pattern 1: Oracle
	7.1.2 Pattern 2: Reverse Oracle
	7.1.3 Pattern 3: Legal and Smart Contract Pair

	7.2 Data Management Patterns
	7.2.1 Pattern 4: Encrypting On-Chain Data
	7.2.2 Pattern 5: Tokenization
	7.2.3 Pattern 6: Off-Chain Data Storage
	7.2.4 Pattern 7: State Channel

	7.3 Security Patterns
	7.3.1 Pattern 8: Multiple Authorization
	7.3.2 Pattern 9: Off-Chain Secret Enabled Dynamic Authorization
	7.3.3 Pattern 10: X-Confirmation

	7.4 Contract Structural Patterns
	7.4.1 Pattern 11: Contract Registry
	7.4.2 Pattern 12: Data Contract
	7.4.3 Pattern 13: Embedded Permission
	7.4.4 Pattern 14: Factory Contract
	7.4.5 Pattern 15: Incentive Execution

	7.5 Summary
	7.6 Further Reading

	8 Model-Driven Engineering for Blockchain Applications
	8.1 Introduction
	8.2 Model-Driven Generation of Smart Contract Code for Collaborative Business Processes
	8.2.1 Motivation
	8.2.2 Challenges of Collaborative Business Process Execution
	8.2.3 Blockchain-Based Collaborative Process Execution
	Design Time: Translator
	Runtime Environment: Executing Processes as Smart Contracts

	8.2.4 Discussion
	8.2.5 Conclusion

	8.3 Model-Driven Registry Generation for Blockchain
	8.3.1 Registries on Blockchain
	8.3.2 A Tool for Registry Generation: Regerator
	Smart Contract Generator
	Registry of Registries on Blockchain
	Smart Contract Manager

	8.3.3 Exemplar Case Study: Open Data Registry
	CKAN
	Implementation
	Example Data
	Discussion

	8.3.4 Conclusion

	8.4 Summary
	8.5 Further Reading

	Part III Quality Impact of Using Blockchain
	9 Cost
	9.1 On-Chain Data Cost
	9.2 Smart Contract Cost
	9.3 Cost Models
	9.3.1 Ethereum Blockchain Cost Model
	9.3.2 Amazon SWF Cost Model

	9.4 Using and Evaluating the Cost Model
	9.4.1 Experiment Setup, Methodology, and Benchmarking
	Blockchain
	Amazon SWF
	VM Throughput Measurements

	9.4.2 Blockchain Results
	9.4.3 Amazon SWF Results
	9.4.4 Completeness, Correctness, and Comparative Analysis
	9.4.5 On the Volatility of Cryptocurrency to Fiat Currency Exchange Rate

	9.5 Discussion
	9.5.1 Cost of Distrust
	9.5.2 Cost vs. Maintainability
	9.5.3 Scaling Triggers for Blockchain and SWF
	9.5.4 Optimization and Throughput

	9.6 Summary
	9.7 Further Reading

	10 Performance
	10.1 Performance Characteristics of Blockchain
	10.2 Architectural Performance Modelling
	10.3 Predicting Latency for Blockchain-Based Systems
	10.3.1 Benchmarking Transaction Inclusion and Commit Times
	10.3.2 Blockchain-Based System Performance Modelling
	Component Repository Model
	Resource-Demanding Service Effect Specifications (RDSEFF)
	Usage Model

	10.3.3 Using Simulation for System-Level Latency Predictions
	Applying Simulation to Other Systems

	10.4 Architectural Decision-Making
	10.4.1 Choice of Inter-Block Time
	10.4.2 Choice of Number of Confirmation Blocks
	10.4.3 Process-Level Changes

	10.5 Summary
	10.6 Further Reading

	11 Dependability and Security
	11.1 Confidentiality
	11.2 Integrity
	11.3 Safety
	11.4 Maintainability
	11.5 Availability and Reliability
	11.6 Variation in Blockchain Transaction Inclusion
	11.6.1 Variation in Bitcoin Transaction Commit Time
	11.6.2 Variation in Ethereum Transaction Commit Time

	11.7 Aborting and Retrying Blockchain Transactions
	11.7.1 Aborting and Retrying Transactions in Ethereum
	11.7.2 Aborting and Retrying Transactions in Bitcoin
	11.7.3 Experiments for Aborting Transactions in Ethereum

	11.8 Summary
	11.9 Further Reading

	Part IV Case Studies
	12 Case Study: AgriDigital
	12.1 Agricultural Supply Chains
	12.1.1 Global Agricultural Supply Chains
	12.1.2 Blockchain and Agriculture

	12.2 The AgriDigital Vision
	12.2.1 Building Digital Trust
	12.2.2 AgriDigital's Blockchain Solution
	12.2.3 Architecturally Significant Non-functional Requirements
	12.2.4 Pilots and Proof-of-Concept Overview

	12.3 Designing for a Business Use Case
	12.3.1 Overview
	12.3.2 Pilot Scenarios
	12.3.3 Design Decisions

	12.4 Summary

	13 Case Study: SecureVote
	13.1 Introduction and Background
	13.2 The MVP Prototype
	13.3 Building Tokenvote
	13.3.1 Tokenvote Architecture Overview
	Planned Architecture
	Final Architecture
	Qualities and Trade-offs

	13.4 Details and Code Samples
	13.4.1 Indexing and Externally Accessing Data
	13.4.2 Splitting Up Contracts
	Augmenting Smart Contraction Functionality via Auxiliary Contracts
	Adding a Backend Smart Contract
	Using Libraries

	13.4.3 Upgrades and Trade-offs
	Replacing Smart Contracts
	SecureVote's First Upgrade
	Complex Upgrades
	Atomic Upgrades and Tokenvote

	13.4.4 Reducing Complexity and Cost

	13.5 Summary
	13.6 Further Reading

	14 Case Study: originChain
	14.1 Introduction and Background
	14.1.1 Traceability Process

	14.2 Architecture of originChain
	14.2.1 Users of originChain
	14.2.2 On-Chain vs. Off-Chain
	14.2.3 Design of Smart Contracts
	14.2.4 Dynamic Behaviour of Smart Contracts
	14.2.5 Permission Control and Blockchain Management

	14.3 Analysis
	14.3.1 Qualitative Analysis: Adaptability
	14.3.2 Quantitative Analysis: Latency of Writing and Reading

	14.4 Discussion
	14.4.1 Architectural Design of Blockchain-Based Systems
	14.4.2 On-Chain vs. Off-Chain
	14.4.3 Adaptability of Blockchain-Based Systems

	14.5 Summary

	Epilogue
	References
	Index

