

Table of Contents
Preface

1. Chapter 1 : Say Hello to blockchain

Introduction

Emergence of blockchain and cryptocurrency

From virtual to crypto currency

What is a Blockchain?

Blocks

Transactions

Smart contracts

Say "hello" to the Blockchain

Getting started

Run a bitcoin client for the first time

 Synchronizing the blockchain

Running Bitcoin core in pruned mode

Run Electrum client:

Method 1: Building raw transaction using bitcoin client

Funding our addresses

Unspent Transaction Output

Creating the transaction

Transaction structure

Signing the transaction

Sending the transaction

Retrieve your message online from the blockchain

Retrieve your message from the local blockchain

Method 2 : Build a raw bitcoin transactions in JavaScript .

Preparation

Let's code

Types of blockchains

Classification of blockchains

Summary

2. Chapter 2 : Building a Bitcoin payment system

Introduction

What is Bitcoin?

Why choose Bitcoin as platform?

Getting started with Bitcoin

 Setting up regtest environment

First commands

Transactions in Bitcoin

Mining

Bitcoin Scripting

Building p2pkh script using JavaScript

Building a custom script

Building a payment gateway

Project description

Bitcoin payment protocol overview

Prerequisites

Project setup

Certificate management

Merchant side

Building payment request URI

Routing

Checkout view

Proceeding with payment

Requesting payment details

Receiving and acknowledging payment

Invoicing

Client side

Preview your application

Payment protocol using BITCOINJ

Prerequisites

BitcoinJ installation

BitcoinJ client

Bitcoin wallet configuration

Requesting payment

Sending a payment

Testing code

Bitcoin smart contracts

What's Rootstock

Rootsock setup

Interactions with RSK

Accounts settings

Writing your first Bitcoin smart contract

Deploying the contract

Interacting with the contract

Summary

3. Chapter 3 : Building your own cryptocurrency

Introduction

Compiling Bitcoin from source

Preparing your build system

Installing dependencies

Bitcoin-qt: Qt5 GUI for Bitcoin

Cloning the Bitcoin source code

Building Bitcoin Core

Checking your build worked

New cryptocurrency: ReaderCoin

Cloning Bitcoin

Readercoin rebranding

Changing the ports

Changing pchMessageStart

Genesis block

New pszTimestamp

New nonce, epoch time, and nbits

New genesis hash

Editing the Merkle root

Removing the seed nodes

Checkpoints

ChainTxData

Rewarding

Halving

Total supply

POW parameters: target

New block time

Difficulty adjustment time interval

Difficulty adjustement rate

Time maturity

Block size

BIPs: Bitcoin Improvement Proposals

Compiling and testing

Design and graphics (Qt wallet)

Redesign of the Bitcoin-Qt wallet

Graphical interface addition

Building Readercoin network

Readercoin mining

Sending transactions

Building a transaction and block explorer

Iquidus setup requirements

Creating Iquidus' database

Installing Iquidus

Iquidus Configuration

Syncing databases with the blockchain

Wallet preparation

Starting the explorer

Building an exchange market

Summary

4. Chapter 4 : Peer to peer auction in Ethereum

5. Chapter 5 : Tontine game with Truffle and Drizzle

6. Chapter 6 : Blockchain-based Futures system

7. Chapter 7: Blockchains in business

8. Chapter 8: Creating an ICO

9. Chapter 9: Distributed Storage: IPFS and Swarm

10. Chapter 10 Supply chain on Hyperledger

11. Chapter 11 Letter of credit (LC) Hyperledger

Preface
Chapter 1, Say Hello to Blockchain, the purpose of this chapter is to
introduce several elementary notions and to give an outline of the
background information regarding the development of blockchain.
The reader will get its first experience with the blockchain by a
simple data exchange with the blockchain network.

Chapter 2, Building a Bitcoin Payment System, Bitcoin is the key
point in the blockchain space. In this chapter, the reader will get
started with the Bitcoin project by building a payment application
using Bitcoin as development platform.

Chapter 3, Building Your Own Cryptocurrency, the reader will
acquire solid knowledge about the Bitcoin code base and he will be
able to build its own currency.

Chapter 4, Peer to Peer Auction in Ethereum, Ethereum is the second
largest blockchain project after Bitcoin. This chapter will provide a
gentle introduction the Ethereum project and presents all its features
by building a peer to peer lending platform.

Chapter 5, Tontine Game with Truffle and Drizzle, we will cover in
this chapter advanced Ethereum features and solidity functionalities
by proposing to build a Tontine Bank.

Chapter 6, Blockchain-Based Futures System, this chapter focus on
the integration of the blockchain technologies with the existing
platforms and applications, it helps the reader to understand how he
can integrate the blockchain in his business and applications.

Chapter 7, Blockchains in Business, this chapter will teach the reader
how to use Ethereum as a private chain solution for internal business
or in B2B.

Chapter 8, Creating an ICO, via this chapter the readers will be
introduced to the ERC20 smart contract standard. It constitutes a
complete guide to setup an Ethereum Token based project.

Chapter 9, Distributed Storage: IPFS and Swarm, as the storage an
important layer for the applications, this chapter tends to present with
examples the most important storage and file system infrastructures
based on the blockchain.

Chapter 10, Supply Chain on Hyperledger, Hyperledger is one of the
biggest project in the blockchain industry. It is a global collaboration,
hosted by The Linux Foundation, including leaders in different
sectors. This chapter presents an introduction to on Hyperledger by
explaining how create a supply chain application.

Chapter 11, Letter of Credit (LC) Hyperledger, this chapter includes a
breakdown of the essential components of Hyperledger project. It
presents also to the reader the occasion to develop and manage
scalable, highly interoperable business solutions based on
Hyperledger.

Chapter 1 : Say Hello to
blockchain

Introduction
What is blockchain? Certainly, with the huge hype around, you must
have heard or come across this question - it might be even the reason
why you are reading this book. Let's discover in this first chapter
from a developer's standpoint, what's behind the Hype.

As you might know, the Blockchain is an emerging technology that
has the potential to dramatically revolutionize many different fields.
This potential is primarily based on its ability to offer people a
trustworthy channel to transfer value or real assets (Tokenization)
over internet. Moving us thus, from the Internet of Information to the
Internet of value and potentially causing breaking changes to the
existing financial systems.

Blockchain is for good reasons a revolution similar to internet, not a
passing trend as it presents a solution for an old unsolved financial
dilemma. Indeed, for first time in history we are able to establish the
trust within trust-less environment (such Internet) without relying on
a trusted authority. This ability earned blockchain the title of Trust
Machine.

The potential impact of the blockchain is huge, it goes far beyond the
mere decentralization of the financial sector. In fact, its ability to
short-circuit intermediaries opens the door to redefine almost every
field revolving around technology even internet pushing us toward a
peer to peer world.

Through this short introduction, I am trying to give you a foretasting
of the importance of our topic and to confirm your timely choice of
learning about such revolutionary technology. As the book's name

suggests, the approach we will be following throughout this book is
to build concrete blockchain projects instead of laying out abstract
concepts. Nonetheless, in spite of its less technical nature, the prime
objective of this introductory chapter is to provide you with the
needed background to build the various projects presented in this
book.

In this chapter we will cover the following topics :

What is Cryptocurrency?

What is blockchain?

How to send and receive Bitcoins?

How to store data into the Bitcoin's blockchain using
JavaScript?

Overview of Blockchain types

However, this chapter doesn't intend to cover:

Blockchain's underlying cryptography.

Cryptocurrency trading.

In this chapter, the first part will be dedicated to introduce basic
concepts, and the second part will be practical, hence we will
discover how to interact with the Bitcoin Blockchain by using the
famous “Hello World” example to get you started.

Emergence of blockchain
and cryptocurrency
Many find it hard to understand the logic and the concepts behind the
blockchain or why would they need it. This misunderstanding
happens primarily when we don't have an idea about what problem
it solves, or what advantages it promises. Therefore, I believe it
would be necessary to clarify at the first stage the problem solved by
the blockchain. This attempt will guide us to start by learning about
the cryptocurrency concept and history.

From virtual to crypto
currency
The blockchain didn't appear out of blue but it was the outcome
of the evolution of Fintech and virtual currencies that has taken place
over decades. At the end of the last century, the widespread use of the
internet favored the emergence of digital currencies as extension of
the electronic cash systems. Many projects were developed to create
new digital currencies, to name a few: E-cash, E-gold, Webmoney,
Liberty reserve, etc.

After a huge success in the 90s, these projects had ceased to exist by
the beginning of the new century whether by going bankrupt or
being stopped by authorities. A currency, which could disappear
overnight, is a real nightmare and with the digital currency, this
situation was inevitable due to the centralized nature of such systems.
There was always a need for a central authority to fight frauds and
manage trust within the system. To avoid this fatal feebleness, the
opposite decentralized model was presented as a solution, however it
was hard to establish the trust in such environments without any
central authority. This contrast makes creating a digital, unstoppable
and reliable currency a disentangled Gordian knot. Thankfully, the
progress of cryptography and the emergence of some clever solutions
like proof of work (Hashcash Project) gave hope to break the deadlock .

In fact, in 2008 a mysterious person called Satoshi Nakamoto,
responded to that challenge and unveiled a digital currency called
Bitcoin. This new currency effectively harnessed cryptography
techniques to manage ownership and to secure the system, hence the
name crypto-currency instead of virtual currency. Satoshi solved in a

http://hashcash.org/

clever way, the aforementioned problems by introducing what he
called initially "a chain of blocks". In his published white paper, he
presented his vision for a new Peer-to-Peer electronic cash system --
Bitcoin and defined in details the mechanics of its underlying
machinery--blockchain. Bitcoin, was the first reliable and distributed
electronic cash system that's fully peer-to-peer, underpinned by the
following basics:

Encryption to ensure ownership and identity.

Proof-of-work consensus mechanism for validating transactions
and securing the network against double spending.

Transparent and shared ledger (Blockchain).

Pseudonymity.

With the assumption that the network majority (>51%) is honest, the
bitcoin system operates autonomously following the rules defined by
the protocol(consensus rules) to validate a given transaction. By
using the shared blockchain, each player has the ability to check
individually the transactions log history and the sender's solvency,
then votes whether the proceeded transaction is valid or not. The
voting depends on the overall hash-power the player puts in service to
secure the network (initially 1 CPU is 1 vote).

Practically, to use a cryptocurrency users should install a specific
client which creates for them a wallet, generates cryptographic key
pairs (private/public keys), and sync the blockchain with the network.
The public key is used by the client(software) to generate valid
addresses and the funds sent to a given address are controlled by the
private key from which the address was calculated, thus we rely on
secure cryptographic principles to manage ownership.

https://bitcoin.org/bitcoin.pdf

The following illustration depicts how transactions are processed in
bitcoin's peer-to-peer network and added into the blockchain:

For bitcoin network where users don't know each other, the
blockchain is considered as the single source of truth to which they
refer to learn about the previous consensus outcomes. The blockchain
with the consensus protocol permitted that the network operates
without a single point of failure managing the transactions.

What is a Blockchain?
Often mistakenly confused with bitcoin, the blockchain is the
underlying technology used by bitcoin to operate. Concretely, it's an
append-only and chronologically (timestamped) growing database
which harnesses basic cryptographic measures to protect stored
transactions from tampering (data can't be deleted or altered).

This database or ledger collects and records monetary transactions
validated by the network in elementary units called Blocks. Once
validated by the network consensus mechanism, these blocks are
added to an existing sequential chain of cryptographic hash-linked
blocks to ensure the integrity of the data, hence the name blockchain.
Consequently, if a single bit changes in a block the hash-link
collapses and therefore the chain is broken and it will be rejected by
the network.

As presented in the previous figure, the blockchain is replicated, and
processed by the members of the network to ensure that everyone has
a consistent view of the transaction log and when a new block is
validated all nodes synchronize the same copy. It shows us also that
the blockchain implements a special data structure that consists of
linked blocks storing transactions and smart contracts. Let us take a
closer look at these key elements in detail.

Blocks
If we consider the blockchain as a ledger or a book, a block would be
perceived as a page or a table in which we record a collection of
confirmed transactions. Each block stored in the blockchain is
uniquely identified by a hash and composed of a header and a body.
The header encloses information about its creation (Timestamp,
Merkle root, Nonce, Difficulty Target, version) and a reference to a
previous block, whereas the body is a collection of the accepted
transactions. When a block is successfully validated (mined) it
becomes part of the official block chain and new bitcoins are
generated in the block (Coinbase transaction) and paid to the
validators (aka miners).

Transactions
Transactions are the most fundamental building blocks of the
blockchain system. They represent transfer of value (cryptocurrency)
within the blockchain network between two addresses. More tangibly,
they are represented by small data structures defined by the
blockchain protocol (e.g. Bitcoin, Ethereum, ...) which specifies their
attributes (Metadata, inputs, outputs, ...) and model.

Before broadcasting the transaction, the user sending the funds signs
it using his private key (managed by his wallet) and specifies the
destination address. Digital signatures and public key are used to
enable anyone to validate the transaction and to check if the sender
has the right to spend the bitcoins held by a specific address.

Smart contracts
Smart contracts are one of the most exciting concepts in the
blockchain. They represent self-executing scripts stored on the
blockchain. The smart contract takes the blockchain to the next stage
enabling it to translate business logic into inviolable contract terms,
which will be autonomously executed without relying on a broker,
lawyer or other intermediaries. The early form of smart contract was
defined in bitcoin using basic scripts (locking and unlocking scripts),
but the concept evolved with the emergence of other blockchains.

Smart contracts are one of the powerful disruptive forces of
the blockchain which is garnering more and more business attention
as witnessed by the Gartner report. They estimate that by 2022, smart
contracts will be in use by more than 25% of global organizations.
Aware of their importance, we will reserve an important part of this
book to introduce you to smart contracts in leading blockchain
platforms --Bitcoin, Ethereum and Hyperledger.

We are done with the concepts let's practice a little bit to understand
what was presented so far.

https://www.gartner.com/smarterwithgartner/why-blockchains-smart-contracts-arent-ready-for-the-business-world/

Say "hello" to the Blockchain
The blockchain as a technology evolves rapidly with emergence of
new techniques deriving from the proliferation of blockchain
projects. Hence the attempts to understand the present day
Blockchain machinery more closely leads to the discovery of Bitcoin.
Therefore, in this chapter we will adopt bitcoin as the main example.
This choice is supported by the fact that bitcoin is the genesis
blockchain implementation and almost all the other projects mimic its
design and mechanics.

In the following sections, we will connect to the bitcoin network and
store the classic "hello world" message into the blockchain. Bitcoin
transactions can be used to store small amounts of data in the
blockchain - allowing developers to build distributed systems on top
of Bitcoin, such as colored coin, Counterparty, Tieron, etc. By exploring
the Bitcoin blockchain, you would be surprised by the amount of
hidden messages stored in the bitcoin blockchain.

Getting started
In order to store our message into the blockchain, we will setup two
bitcoin clients (receiver and sender), then we will build a raw
transaction sending 1 Bitcoin along with our message.

Technically speaking, one of the best-known practices for storing data
in the bitcoin blockchain is to create a zero-value OP_RETURN output. As
defined in bitcoin's protocol, the OP_RETURN script opcode enables us to
store up to 80 bytes. You can check it out in bitcoin's code base (scrip
t/standard.h):

static const unsigned int MAX_OP_RETURN_RELAY = 83;

As commented in the header file standard.h, the 3 additional bytes are
for the needed opcodes and the remainder is for the extra message.

More importantly, OP_RETURN output can be pruned and helps to avoid
bloating the blockchain in the future. Don't worry if you feel lost, we
will dive deep into bitcoin's concepts such as outputs and scripting in
the next chapter.

To reach our goal, I am planning to use two different methods :

https://github.com/bitcoin/bitcoin/blob/0.15/src/script/standard.h

1. Create a raw transaction with an OP_RETURN output using RPC
commands and a bitcoin client.

2. Write a NodeJs program to create and send the raw transaction
using an online REST API.

The second step will require some familiarity with the JavaScript
programming language.

Run a bitcoin client for the
first time
A bitcoin client is the end-user software that facilitates to perform
bitcoin operations (sending transactions, receiving payments, etc.)
when you run one you become part of bitcoin network. Among many,
we choose for this guide two common clients: the Bitcoin Core client
and Electrum. In this scenario, the sender will use the Electrum client
whereas the receiver will be using the bitcoin core client (the most
popular bitcoin client). For the purpose of this manipulation, I will
demonstrate installing them on a single machine using Ubuntu 16.04.

You can install Bitcoin core client by following the commands below
(further instructions are available at https://bitcoin.org.) :

sudo add-apt-repository ppa:bitcoin/bitcoin

sudo apt-get update

sudo apt-get install bitcoind bitcoin-qt

Electrum is a lightweight wallet which means it doesn't require
downloading the whole Blockchain as we will see in the next section.
You can download and install the latest version of Electrum as
follows:

wget https://download.electrum.org/3.2.2/Electrum-3.2.2.tar.gz

sudo apt-get install python3-setuptools python3-pyqt5 python3-pip

sudo pip3 install Electrum-3.2.2.tar.gz

Once both clients are installed we need to synchronize them with the
network.

https://bitcoin.org/

 Synchronizing the
blockchain
We have learned earlier that the blockchain is a transaction database
duplicated by all computers on the network. Practically, to use bitcoin
properly we have to sync a voluminous amount (>200Go) of data to
enable sending or receiving bitcoins. However, there are two
workarounds to overcome this situation:

1. Enabling pruned mode for a full node client like bitcoin core.

2. Using a thin (SPV) client like Electrum which fetches
blockchain information from Electrum servers instead having a
local copy.

In this guide we will look at both solutions. Nonetheless, it's always
advisable to use your own Bitcoin full node to benefit from the power
of the blockchain.

Running Bitcoin core in
pruned mode
Depending on your OS you need to create the configuration
file bitcoin.conf in the default data directory located under the
following paths :

Windows: %APPDATA%\Bitcoin\

Mac: $HOME/Library/Application Support/Bitcoin/

Linux: $HOME/.bitcoin/

For Linux create a .bitcoin directory using mkdir ~/.bitcoin then create
bitcoin.conf file using : nano ~/.bitcoin/bitcoin.conf

Then add the following lines to your bitcoin.conf to define your client
configuration (The comments after '#' sign introduce each
parameter).

rpcuser=user_name #Username for JSON-RPC connections

rpcpassword=your_password #Password Username for JSON-RPC

connections

server=1 #Tells Bitcoin-Qt and bitcoind to accept

JSON-RPC commands

testnet=1 #Run on the test network instead of the

real bitcoin network.

prune=550 #Enables pruning mode

Once copied press CTRL+x , Y then Enter to save the file.

Now our first client is ready to run on the Testnet which is a bitcoin
network created for testing purpose that follows the same rules as
main network. It's a public network using worthless bitcoins,
therefore you can use this network to send for free your transactions
and test your applications.

At the time of writing, the volume of the entire blockchain exceeds 200 GB. Therefore, we activate
punning mode by setting the parameter prune=<n> in bitcoin.conf such that "n" indicates the space
you are willing to allocate to the blockchain in MiB with a minimum of 550 Mib. Note that the data
directory will exceed a few GB (2 GB in my case) because it contains more than just the blockchain. It
hosts additional index and log files along with the UTXO database . The prune size only defines how
many blocks to be downloaded.

It's now time for running the bitcoin client. Open a new CLI
(command-line user interface) window and run the following
command:

bitcoin-qt

As a result you will get bitcoin running with its standard GUI
interface and connected to the testnet network. For the first run, it
will ask you to set the data directory, which we should set to the
default. Afterwards, it will automatically create a wallet for you and
start syncing with the testnet network and download the blockchain.

Alternatively, you could run the bitcoin daemon in CLI mode by
running the following command:

bitcoind

It's up to you to choose which mode to continue using (bitcoind or
bitcoin-qt), the available RPC commands are the same. For my part,
I'll continue this guide using btcoin-qt.

As the Bitcoin core client starts, it creates many sub-directories and
files in the default Data Directory (.bitcoin) as shown in the
following picture:

The main sub directories are :

blocks : Stores actual Bitcoin blocks.

chainstate: Holds LevelDB database for available UTXOs (an
abbreviation of Unspent Transaction Output) or in other terms a
database storing how much money everyone has

wallet: Contains encrypted wallet.dat file which stores the
private keys.

Even if the network sync is not finished yet, you can open
the blockssub-directory to visualize the blockchain's blocks stored in
raw format. Practically, each blk00*.dat file is a collection of several
raw blocks. We will read later the content of one of these files.

More details about the content of .bitcoin directory can be found in the official documentation :
https://en.bitcoin.it/wiki/Data_directory

While the server (bitcoind or bitcoin-qt) is running, open another
terminal and let's generate a new address for our wallet by executing
the command bitcoin-cli getnewaddress, as in the following picture:

bitcoin-cli is a tool that enables us to issue RPC commands to
bitcoind or bitcoin-qt from the command line (bitcoin-qt users can
access the bitcoin RPC interface by using the Debug console, under
the Help menu).

Now we are done with bitcoin-core, let it sync the blockchain copy
and move on to configure Electrum.

Run Electrum client:
After you have downloaded and installed Electrum, open Electrum's
testnet mode by running : electrum --testnet . When you run Electrum
the first time it will display the new wallet creation wizard follow
then these steps:

Select in the first dialogue box “Auto Connect” and click
“Next”.

Select “Standard wallet” and click “Next”.

Keep pressing "Next" for the rest of the dialog boxes that appear
until you are requested to save the seed words. Copy them
somewhere, then in the next Dialogue Box write them
correctly in the given order .

In the last step it will ask you for a password, which you can
leave empty this time.

Once finished, Electrum will generate for you a new wallet with
plenty of new addresses. Quit the Electrum GUI and let's continue in
CLI mode. We run Electrum as a daemon process whereby we
execute the JSON/RPC commands as following :

electrum --testnet daemon

electrum --testnet daemon load_wallet

In a new terminal window run electrum --testnet listaddresses:

At this level we have the necessary playground to start transacting
with Bitcoin network.

Method 1: Building raw
transaction using bitcoin
client
For sake of brevity, we'll focus herein on the instructions needed to
create and send raw transactions in Bitcoin in detriment of extended
explanations. In spite of that, don't worry if you don't understand all
of what you read right away, in the next chapter we will present the
new concepts introduced in this section (inputs, outputs, scripts...).

Funding our addresses
First off, we need to fund our previously created address with some
bitcoins to make the first transaction. Thankfully, in the testnet we
can use a free funding source called a "bitcoin faucet" which provides
worthless bitcoins used to test applications. For this example, browse
to the online faucet website https://testnet.manu.backend.hamburg/faucet,
and get a few by providing the first address generated by Electrum
and the address created by bitcoin core as shown in the following
picture:

https://testnet.manu.backend.hamburg/faucet

Unspent Transaction Output
After sending the bitcoins from the faucet, let's check if the bitcoin
client can see the transaction. For that, we need to list the available
UTXO in both clients using the listunspent RPC command. Starting
with bitcoin core, in your terminal window run:

bitcoin-cli listunspent

Which results in :

[{ }]

listunpsnet returns an empty result because your bitcoin core client
hasn't finished syncing the blockchain, which takes time (a few
hours). For this reason we will go with Electrum over Bitcoin Core
for the remainder of this guide as it avoids us waiting hours to
visualize the received bitcoins (unspent outputs). However, we will
keep using bitcoin-core from time to time as it has a powerful
command line to deal with raw transactions. If we run the same
command :

electrum --testnet listunspent

we will get a list of available entries such as :

The previous command's output shows that we have a
single available transaction uniquely identified by its hash
(prevout_hash field) received from the faucet with 1.1 bitcoin. More
precisely, we have an available unspent transaction output from a
previous transaction, which can be used as inputs for the transaction
we are willing to build.

In bitcoin, transactions are special as they spend outputs from prior
transactions and generates new outputs that can be spent by
transactions in the future. In fact, users can move funds solely by
spending unspent transaction outputs which are usually referred to as
"UTXO"s.

The previous diagram shows the transaction we received from the
faucet consumes as input an output from an old transaction received
by one of its address and creates two outputs : one for us and the
other returns back the change. The reason for that is transaction
outputs must be fully spent.

Unlike what you might have expected, in Bitcoin transactions don't
update a global user balance (Account/Balance Model) but they move
bitcoins between one or more inputs and outputs (UTXO model).
The total balance is calculated by the bitcoin client as the sum of the
values transferred by the received unspent transactions.

Creating the transaction
At this level, it's time to create a transaction that spends the received
transaction. From the listunspent output we have the needed ingredients (prevout_hash
and prevout_n) to construct our raw transaction. Let's see how.

First, you need to convert the message "hello world" into hexadecimal, using an online
converter. The hexadecimal encoded form will be the value :
68656c6c6f20776f726c64.

Then we have to use createrawtransaction command which creates a transaction
spending the given inputs and creating new outputs. We have to pass as arguments
(from the previous output) an object with the following parameters :

https://codebeautify.org/string-hex-converter

1. "txid" of one of the available outputs

2. The index vout (prevout_n for electrum) of selected output.

3. The hexadecimal form of the message

4. The destination address (created earlier)

5. The total amount of satoshis (the smallest unit of the bitcoin currency) to send.
we send here 1 BTC, you can set it to 0.

bitcoin-cli createrawtransaction "

[{\"txid\":\"0791521362528725683caedf998006cf68b1cd817be1694ef0daca265d9b4252\",

\"vout\": 1}]" "

{\"data\":\"68656c6c6f20776f726c64\",\"2MsHsi4CHXsaNZSq5krnrpP4WShNgtuRa9U\":1.0000000}"

You'll get the following serialized long hex-encoded string representing our raw
transaction:

020000000152429b5d26cadaf04e69e17b81cdb168cf068099dfae3c6825875262135291070100000000ffffffff0200000000000000000d6a0b68656c6

To facilitate the usage of the previous CLI commands (avoid manipulating long hex strings) you can assign the
command createrawtransaction output to a terminal variable and use this later as argument for the other commands. For example
we can use RAW=$(bitcoin-cli createrawtransaction) then the resulting hexadecimal string will be stored in "RAW" variable and
accessible using $RAW.

Transaction structure
At first sight the previous resultant hexadecimal string seems
ambiguous and meaningless. The following table breaks down and
examines in depth our transaction byte per byte:

As you can see, our transaction has one input (the only unspent
transaction received from the faucet), with transaction id

"0791...252", and two outputs:

OP_RETURN output with an OP_RETURN script.

An output sending 1 BTC to the specified address.

The transaction structure can be visualized by decoding back the raw
transaction using the deserialize command. If you run electrum --testnet
deserialize <Raw transactions> , it will output a meaningful JSON
representation of our constructed transaction :

For the same result, you can decode the raw transaction using bitcoin-
cli decoderawtransaction or by using an online decoder such https://liv
e.blockcypher.com/btc-testnet/decodetx/

https://live.blockcypher.com/btc-testnet/decodetx/

Signing the transaction
At this point, the transaction is created but not yet transmitted to the network. To send
our transaction we need to sign it using the command bitcoin-cli signrawtransaction . We
sign the transaction using our private key (related to the receiving address) to prove to
the network our ownership of the output and therefore spend the held bitcoins.

The first step will be to extract the private key associated with the first address used
to receive the bitcoins form the faucet:

electrum --testnet listaddresses | electrum --testnet getprivatekeys -

Notice the presence of a dash at the end of the command. It will be replaced by the
values returned from the pipe. As a result, you'll get a list of private keys. Copy the
first one without the p2pkh prefix.

Beware, you should not share your private keys in real life. Doing so can lead to loss of money, as whoever has the private key can
spend the received bitcoins.

Next, we need to get the scriptpubkey from the output we are willing to spend. For that,
firstly we have to retrieve the transaction from the blockchain using :

electrum gettransaction --testnet

"0791521362528725683caedf998006cf68b1cd817be1694ef0daca265d9b4252"

Secondly, we use the resultant raw form to get the scriptpubkey using :

electrum deserialize --testnet

0200000001915bf222c2e4e6ff36760168904ae102a0e968d83b3c575077d5475aa94dd9bf010000006b483045022100b129bc0fb5631aa668c48bb7a8f

Unlike before, we are here loading and deserializing the received transaction from the
faucet. We will get the outputs created in this transaction :

The part surrounded in red is the ScriptPubKey of the unspent transaction output.

A scriptPubKey can be seen in the outputs; it represents the conditions that are set for
spending the outputs. The new owner can sign using the private key associated with
the address receiving the output to fulfil the conditions of scriptPubKey. The network
checks whether then if the digital signature is valid, and thus makes it an input for the
new transaction. The cryptographic parts - scriptSig and scriptPubKey - are
particularly complex and will be discussed in the next chapter.

Copy the ScriptPubKey from the output and pass it along the other options as
indicated below to the command signrawtransaction:

signrawtransaction "Raw hexstring" (

[{"txid":"id","vout":n,"scriptPubKey":"hex","redeemScript":"hex"},..] ["privatekey",..])

The second argument is a JSON array of previous transaction outputs we are
consuming, whereas the third argument is the private keys belonging to the address
that received the output. The result would be similar to the following output :

After succeeding in signing the raw transaction, it is time to send the signed
transaction to the testnet network.

Sending the transaction
To send the transaction into the blockchain we submit the signed
signature using broadcast command provided by Electrum as shown in
the following picture.

You'll get back the hex-encoded transaction's hash ID:

d3e300c2f2eedf673ab544f4c2b09063353e618ab8a0c9444e931d0145e43ded

Retrieve your message
online from the blockchain
If everything goes as planned, you should have successfully stored
the "hello world" message into the Bitcoin's testnet blockchain. The
following picture illustrates what we have done so far. We consumed
an input (from a previous transaction) then we have created a
transaction with two outputs, the first being an OP_RETURN transaction
carrying our message along, the other one transferring 1 bitcoin
(BTC).

Isn't it just fascinating? You can use a block explorer like https://live.
blockcypher.com/btc-testnet/tx/<txid> to inspect the transaction with the
printed transaction hash (txid) and to retrieve your stored message.

It would be more exciting if you retry the same operation using the
Mainnet (the original and main network for Bitcoin), but in this case
you will deal with real, expensive Bitcoins.

https://live.blockcypher.com/btc-testnet/tx/%3Ctxid%3E

Retrieve your message from
the local blockchain
If the bitcoin core client has finished syncing the blockchain you can
locally parse the blocks to locate our transaction and read the stored
message .

To open and parse the blockchain blocks we need to install
a graphical hex editor like bless

sudo apt-get install bless

Once installed you can run it and open one of the .blk files present in
the blocks directory.

As shown in the following picture, bless will display a pane divided
into three parts:

The left column is the offset column.

The center column displays the blocks hexadecimal content.

The right column is the same line of data as in the center with
recognized text characters displayed as text and binary values
are represented by period characters.

To locate our transaction you can search for it by pasting
the unsigned raw transaction string in the Search field. you can go
through a few blk**.dat files before you find your transaction. In my

case, I have found it in blk00100.dat file.

At first glance, it may not be very meaningful, but once you locate
your transaction you can easily locate the message you’ve stored in
the blockchain. The "hello world" will be visible in the ASCII section
on the right. Besides, you can locate the block which encompasses

the transaction by searching for the previous block delimiter called
magic bytes represented by 0b110907. Then you can by following the

structure of the block, determine the meaning of these long
hexadecimal strings. In the previous picture, I have delimited the
block with a yellow border and highlighted the field of the blocks
header with different colors and delimited our transaction and the
coinbase transaction in blue and gray respectively.

As you'll be running in the pruned mode you will not be able to see my transaction as you will have only
synced newer blocks. However you'll be able to see your transaction by following the same process.

To help you visualize the block content the following table presents
in order the meaning of the previous highlighted bytes:

And that's it! You can now send transactions with extra messages into
the blockchain, and retrieve the data online or locally. Although this
is not usually required, it may prove useful in the future. Let's go
ahead and send another RAW transaction with an OP_RETURN output by
writing few lines of code.

Method 2 : Build a raw
bitcoin transactions in
JavaScript .
At this level, I would guess that you want to write some code. Your
wish is my command.

In this section we will build a simple NodeJs script to perform what
we have performed manually before: to send a raw transaction over
the Testnet network. Henceforth, you can stop Electrum and bitcoin
core clients, as we will use an online REST API (chain.so/api) as a
middle tier to interact with Bitcoin's network.

By using an online API, we are losing the biggest advantage of blockchain; disintermediation. We have to
trust a middleman instead trusting our own blockchain copy. We will ask instead the third party to read
the data for us and send the transaction on our behalf. Think of it that the service provider might provide
us wrong or outdated data.

Preparation
Before you start building your program make sure you have NodeJs
and NPM (Node Package Manager) installed.

In order to create an OP_RETURN transactions we can use one of many
Bitcoin APIs, to name a few:

bitcore (https://bitcore.io/),

php-OP_RETURN (https://github.com/coinspark/php-OP_RETURN),

python-OP_RETURN (https://github.com/coinspark/python-OP_RETURN)

In our example we will use a JavaScript library called bitcoinjs-lib
written for NodeJs . We install the corresponding package as follows:

npm install bitcoinjs-lib --save

In the example code, we will submit requests using NodeJs and the
Request package to access the API. Therefore, we install the
following modules:

npm install request --save

npm install request-promise --save

Similarly to the first method, we will use the first address and its
corresponding private key generated by Electrum to send
programmatically a raw transaction carrying a "hello world"
message.

https://bitcore.io/
https://github.com/coinspark/php-OP_RETURN
https://github.com/coinspark/python-OP_RETURN

Let's code
Start by creating a hello.js file and importing the bitcoinjs-lib and
request-promise modules using the require directive as follows :

var bitcoin = require('bitcoinjs-lib');

var rp = require('request-promise');

Then we declare and define the needed variables:

var data = Buffer.from('Hello World', 'utf8');

var testnet = bitcoin.networks.testnet;

var privateKey =

'cQx4Ucd3uXEpa3bNnS1JJ84gWn5djChfChtfHSkRaDNZQYA1FYnr';

var SourceAddress = "n3CKupfRCJ6Bnmr78mw9eyeszUSkfyHcPy";

They represent respectively:

The message to embed in the transaction.

The used network: testnet.

The private key in WIF format (WIF is an abbreviation of Wallet
Import Format).

The source address from which we spend the UTXO.

Then we request the API to provide us with the available unspent
output belonging to a specific address. We read the response from the
API to define the available amount and the output txid. Besides this

we define the fee (5000 satoshis) to pay the network (miners) for
processing the transaction as follows:

var url =

"https://chain.so/api/v2/get_tx_unspent/BTCTEST/"+SourceAddress;

var DestionationAddress = '2MsHsi4CHXsaNZSq5krnrpP4WShNgtuRa9U';

var options = {

 uri: url,

 json: true

};

rp(options).then(function (response) {

 var index = response.data.txs.length - 1;

 console.log(response.data.txs[index]);

 var UtxoId = response.data.txs[index].txid;

 var vout = response.data.txs[index].output_no;

 var amount = Number(response.data.txs[index].value*100000000);

 var fee = 0.0005*100000000;

}).catch(function (err) { console.error(err);});

You can at any level use console.log() to print the received values in
the console.

Now it's time to create our transaction. Inside the previous GET
request add the following lines:

const RawTransaction = new bitcoin.TransactionBuilder(testnet);

RawTransaction.addInput(UtxoId, vout);

RawTransaction.addOutput(DestionationAddress, parseInt(amount-fee));

scrypt = bitcoin.script.compile([bitcoin.opcodes.OP_RETURN,data]);

RawTransaction.addOutput(scrypt, 0);

Here we are using bitcoinjs-lib’s TransactionBuilder to create our new
raw transaction, then we add the output we requested earlier from the
API as input to our transaction. We add two outputs, the first is an
OP_RETURN output with 0 bitcoin, and the second is the output
with 100000000 satoshis (1BTC) minus the fees.

Great! Everything is set! The only thing we have to do right now is to
sign the transaction with our private key and send it to the Bitcoin
blockchain :

var keyPair = bitcoin.ECPair.fromWIF(privateKeyWIF, testnet);

tx.sign(0, keyPair);

The second line - tx.sign(0, keyPair) - is because we are consuming a
P2PKH output. However, in bitcoin we have different types of
transaction and addresses. The addresses starting with "2" receives
Pay-to-Script-Hash (P2SH) transactions instead of the common Pay-
to-Public-Key-Hash (P2PKH) transactions received by addresses
starting with "m" or "n". This of course changes the way we spend
the output; therefore, we need to know the type of the output prior to
signing the new transaction. For P2SH transactions we need to use
instead the following code :

const p2wpkh = bitcoin.payments.p2wpkh({ pubkey: keyPair.publicKey,

network: bitcoin.networks.testnet });

const p2sh = bitcoin.payments.p2sh({ redeem: p2wpkh, network:

bitcoin.networks.testnet});

RawTransaction.sign(0, keyPair, p2sh.redeem.output, null,

parseInt(amount));

Lastly, we take the signed transaction in and send it to the specified
network using a POST request with the API. We provide in our
request a JSON object which contains a hex representation of the
signed transaction:

var Transaction=RawTransaction.build().toHex();

var Sendingoptions = { method: 'POST', url:

'https://chain.so/api/v2/send_tx/BTCTEST',

body: {tx_hex: Transaction}, json: true};

rp(Sendingoptions).then(function (response) {

 var Jresponse = JSON.stringify(response);

 console.log("Transaction ID:\n"+Jresponse);

}).catch(function (err) { console.error(err); });

Once you have saved the file, run it with the command node hello.js. If
the raw transaction is valid and delivered successfully to the network,
you we will receive back a message similar to the following:

We get the used output details along with the success message
returning the transaction ID. As we did before, we can check the
transaction processing using a Testnet explorer.

Congrats, you have successfully built your first NodeJs application to
send bitcoins and to store data into bitcoin's blockchain. Based on
that you can create advanced applications or develop your own
protocol on top of the Blockchain. As a bonus the full code is
available on the following Github repository: https://github.com/bellaj/
HelloWorld

https://github.com/bellaj/HelloWorld

Types of blockchains
The blockchain had started initially as the technology underpinning
bitcoin. However, its early success to prove itself as trust machine
and intermediaries' killer, has put pressure on a variety of industries
to both adapt and adopt this new technology. Consequently, many
variations of the original Satoshi's blockchain have been developed.
In this final section we will take a look at the major types blockchain
technologies.

Classification of blockchains
Currently, blockchain solutions could be classified into four basic
models with different paradigms. The distinction between them is
driven by two main criteria : the network type and the implemented
access control model. In other terms who is allowed to join the peer-
to-peer network (run a node) and access the blockchain records. The
following table gives an overview of the different types with a basic
description of each models :

You might be wondering which one amid these types of blockchain
would be appropriate for your project?

The answers depend on your project's requirements. Generally, in a
trustless environment we tend to use a public blockchain (remittance

systems, provenance, etc.), whilst the other models are fit for actors
who share a pre-existing trust and desire to build shared services.
Private blockchains are suitable for building faster local testing
environments or to avoid the cost of transacting, whereas the BaaS
model is a suitable solution for easy deployment and high scalability.

Summary
This first chapter is meant to acquaint you with key concepts behind
the blockchain that you'll need to build blockchain projects. We have
seen how you can manually and programmatically (using JavaScript)
interact with bitcoin's blockchain. This first achievement can help
you start building innovative solutions harnessing the blockchain as a
safe and trustworthy vault, such as: checking the authenticity of
documents, proving the provenance of products, asset digitization,
etc.

Understanding Bitcoin deeply will be the most important weapon in
your arsenal to decipher the Blockchain. Given that, in the next
chapter, we will continue learning about bitcoin and raise the bar
higher to build an advanced payment application.

Chapter 2 : Building a Bitcoin
payment system

Introduction
The previous chapter was an excellent starting point for
understanding the blockchain and learning about Bitcoin. In fact, we
covered many basic concepts and elementary operations such as
signing, sending raw transactions and storing data into the
blockchain. We'll herein, continue practically exploring the
blockchain, by first building a customer-friendly payment
system based on the Bitcoin payment protocol and secondly build our
first smart contract in the Bitcoin system.

The end goal of this chapter is to help you acquire the necessary
technical background for understanding Bitcoin's mechanics,
and build your first Bitcoin applications using very common
languages such as JavaScript and Java. If you're an experienced
programmer, most likely you are familiar with one of these
technologies, otherwise I would recommend you spending time
reading their official getting started documentation.

Throughout this chapter we will cover the following key points:

Introducing bitcoin.

Building BIP 70 payment system using Nodejs and bitcore-lib.

Building bitcoin client using BitcoinJ.

Writing and deploying Smart contract in bitcoin using Rootstock.

This is a fully hands-on coding chapter, I will insist that you code
each of the snippets presented herein to make sure you get the most

out of the chapter. Happy coding!.

What is Bitcoin?
As outlined in the previous chapter, Bitcoin is a peer-to-peer
electronic cash system based on blockchain techonology . Technically
speaking, Bitcoin is a protocol maintaining the blockchain data
structure and ensuring consensus between different network parties
(sender, recipient, miners, etc.). This protocol defines the ruleset for
validating the transactions, bitcoin minting, and to avoid
counterfeiting or double spending.

Bitcoin is referenced as a cryptocurrency because it uses
cryptography to control the creation and transfer of money.
Specifically, it uses digital signatures (based on ECDSA public key
encryption) to process and verify the transactions and cryptographic
hash functions (SHA-256) to secure the blockchain (integrity, mining
process, etc.).

This book's scope isn't about presenting the Bitcoin protocol in fine
detail but instead we will introduce the needed concepts for building
higher level services. If you are eager to learn deeply about bitcoin,
you can refer to the official documentation.

https://en.bitcoin.it/wiki/Protocol_documentation

Why choose Bitcoin as
platform?
Although using bitcoin directly to build blockchain applications
might seem to you somehow obscure, it still can be the best choice to
build powerful applications. Apart from the fact that blockchain and
Bitcoin are hot trends, several factors can motivate you to choose
bitcoin as a platform for your next project, including :

Bitcoin is an electronic payment pioneer and the most accessible
system for users worldwide.

Settlement processing is faster than many payment channels.

Transaction are without chargebacks.

Bitcoin is the most secure blockchain and more secure than the
common payment channels.

I am proposing in the following section you begin with a simple and
easy-to-follow practical introduction before we start developing our
first application.

Getting started with Bitcoin
To get started using Bitcoin there exist plenty of Bitcoin clients and
different implementations of the Bitcoin protocol. As we have seen in
the previous chapter, the very common used Bitcoin client is Bitcoin
Core which is maintained by the Bitcoin Core team representing the
C++ implementation of the Citcoin protocol and the continuity of the
Satoshi client. I'll assume that you have already installed this client
and have become familiar with it.

 Setting up regtest
environment
For learning or testing purposes, it’s safer and cheaper to use
Bitcoin’s test network --testnet or regression test mode --regtest. We
learned in the previous chapter how to use the testnet network but this
option still needs us to download the blockchain and wait for delayed
validation. However, there is a solution, and this time we are going
to use the Bitcoin client in regtest mode.

In this mode, we can setup a local testing network and a private
blockchain whereby we can instantly validate transactions
and locally create new bitcoins. Similar to running a web application
in localhost mode, you'll find the regtest option more suitable to
develop and test new applications.

You have to follow the same procedure as in the previous chapter and
add an extra step: change the bitcoin.conf, to select the regtest
network by defining the parameter regtest=1.

Your bitcoin.conf will look like:
rpcuser=<user>

rpcpassword=<password>

#testnet=1

#prune=550

regtest=1

server=1

We commented out testnet and prune parameters as they are no longer

needed for the regtest mode. In addition, make sure to replace RPC

https://bitcoin.org/en/glossary/testnet
https://bitcoin.org/en/glossary/regression-test-mode

credentials <user/password> and use them throughout this section
when they are needed.

If you want to build a network with multiple bitcoin instances instead of a single node on your machine,
you have to define different data directories with different bitcoin.conf files. In each you'll need to set
the new path and different communication ports using the parameters :
-datadir
-port (default: 8443)
-rpcport(default: 18442)

You can find more information about the bitcoin regtest mode in the
official documentation.

https://bitcoin.org/en/developer-examples#regtest-mode

First commands
For the sake of simplicity we will setup a private blockchain with a
single node. Start by opening two separates command line prompts.
In the first run bitcoind (bitcoin node server) while in the other run one
of the available RPC command using bitcoin-cli <command>. To get the
full list of RPC calls you can use the help option bitcoin-cli --help or
by visiting the official documentation: https://en.bitcoin.it/wiki/Origina
l_Bitcoin_client/API_Calls_list.

As a first command we will generate quickly 101 blocks by running:

bitcoin-cli generate 101

The expected output is a list of created blocks' IDs, similar to the
following:

https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_Calls_list

It is worth noting that in regtest mode, you have to generate 100
blocks (100 confirmations) to get the initial reward (50 bitcoins)
generated for the first block. We can check out how many bitcoins
we have with:

bitcoin-cli --regtest getbalance

50.00000000

Instead of interacting directly using bitcoin-cli you can run
commands via the HTTP JSON-RPC tools. If CURL isn't installed,
you can install it with sudo apt-get install curl. For example you can
request your balance by using CURL :

curl --user user:password --data-binary '{"jsonrpc": "1.0",

"id":"curltest", "method": "getbalance", "params": [] }' -H 'content-

type: text/plain;' http://127.0.0.1:18443

Notice the presence of the RPC username and password defined
earlier in bitcoin.conf, used with the option --user in the RPC call.

You can also use REST calls to communicate with your bitcoin node. However, in this case you'll need to
enable the REST API by adding the option rest=1 to your bitcoin.conf file. The available calls are
presented in the official documentation: https://github.com/bitcoin/bitcoin/blob/master/doc/REST-
interface.md

After successfully setting up the regtest environment, what follows is
a small introduction to transactions in bitcoin with some basic
knowledge required to build the project.

Transactions in Bitcoin
Without delving into the working internals of bitcoin in deep detail,
we need to learn more about the following key concepts :

Mining.

Scripts.

Let's take a look at each one in detail in the following sections.

Mining
When a transaction is sent to the bitcoin network it is not finalized
until it gets included in a "block" of transactions by a "Bitcoin
miner". Being a miner isn't a reserved role but an open position for
anyone able to provide enough computing power to validate the
transactions. All the time, the miners in the network are racing to be
the first one to validate a block of transactions by performing a
difficult computational operation to solve a function defined by the
protocol (Proof of Work). The first miner to succeed is rewarded with
a prize of newly generated Bitcoins along with "transaction fees"
payed for each transaction, as well as his blocks being included into
the blockchain.

However, it should be noted that these mechanisms are susceptible to
be reversed hence the need for waiting for a few confirmations (more
than 6 blocks) to consider the transaction as final.

Bitcoin Scripting
One of the amazing features in the Bitcoin system is the ability to set
a script defining the conditions that a recipient should validate to
spend the bitcoins later, making bitcoin a programmable currency.
Fundamentally, all bitcoin transactions have scripts, written in the
Bitcoin programming language, included in their inputs and outputs.
This language is a Forth-like language offering a set of opcodes or
instructions, evaluated from left to right using a stack to determine
the success or the failure of the script execution.

Normally, the transaction embeds into its inputs an unlocking script
commonly called ScriptSig and into the outputs a locking script
called ScriptPubkey. When a transaction is validated, the concatenation
of both scripts – Scriptpubkey, which protects the output, and the
Scriptsig provided by the recipient to prove ownership – must
execute successfully (evaluated to true). The following figure
illustrates the location of both scripts and how they are validated:

Bitcoin scripting using different combinations of opcodes enables us
to create a wide variety of transaction types. The following table
summarizes the standard transactions types :

Lastly, it's worth mentioning that users can define their own locking
Scripts but they should request miners to mine them.

If you're familiar with C++ you can understand how scripts works under the hood by looking at script
interpreter code: https://github.com/bitcoin/bitcoin/blob/master/src/script/interpreter.cpp.
Moreover, a transaction is considered as standard if it fulfils the requirement defined by Bitcoin Core’s Is
Standard() and IsStandardTx() functions.

We have now clarified the role of the scripts but they will make more
sense the more practice you get. Let’s take a look at an example of
how to build and send bitcoin transactions with custom scripts using
JavaScript.

https://github.com/bitcoin/bitcoin/blob/master/src/script/interpreter.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/policy/policy.cpp#L57
https://github.com/bitcoin/bitcoin/blob/master/src/policy/policy.cpp#L79

Building p2pkh script using
JavaScript
The first hands-on part of this chapter will be writing a JavaScript
snippet using the powerful Bitcoin library bitcore-libto build a
P2PKH script (used to pay to a bitcoin address). Throughout this
chapter, we will run our experiments on Ubuntu LTS 16.04.
Before you proceed with this section, make sure NodeJs (nodejs.org) is
installed with the latest version. Then create a directory in which we
install the bitcore package :

npm install bitcore-lib --save

Let's take a look at how to build very simple script:

var bitcore = require('bitcore-lib');

var Address = bitcore.Address;

var address = Address.fromString('n3CKupfRCJ6Bnmr78mw9eyeszUSkfyHcPy');

var script = bitcore.Script.buildPublicKeyHashOut(address);

console.log(script);

 The bitcore.Script object provides an interface to construct Bitcoin
scripts. It also gives simple interfaces to create the most common
script types such as buildPublicKeyHashOut(address) which creates a Pay-
to-Public-Key-Hash output for the given address.

Save the code in a JavaScript file script.js and run it using node
script.js. The output will show you the following
ScriptPubKey script (locking script) :

http://nodejs.org/

<Script: OP_DUP OP_HASH160 20

0xedcce89f510bf95606ec6a79cb28a745c039e220 OP_EQUALVERIFY OP_CHECKSIG>

The result is a common locking script requiring the receiver to have
the private key corresponding to the public key whose Hash160
(RIPEMD160(SHA256(publickey))) is
0xedcce89f510bf95606ec6a79cb28a745c039e220. This special hash
was extracted from the receiver's bitcoin address as:

Bitcoin address = [Version Byte (1 byte)]+[Hash 160 of public key]+[Checksum

(4 Bytes)]

This is then encoded in base 58. If the receiver provides the public
key, he has to prove also his ownership of the right private key by
signing the transaction to fulfill the OP_EQUALVERIFY OP_CHECKSIG part.

Building a custom script
As mentioned before, we can define our own scripts instead of using the standards. In
the following example, we will define a non-standard Bitcoin Script based on a
simple equation X+13=15. Therefore, to spend our transaction the recipient needs to
come up with a Scriptsig presenting the right solution which is obviously "2" to solve
the equation and spend the output.

If we translate this equation into bitcoin scripts we get :

Locking Script (ScriptPubKey):
"x+13=15" OP_X OP_13 OP_ADD OP_15 OP_EQUAL

Unlocking Script (ScriptSig): "2" OP_2

Bitcore enables us creating transactions with custom script. Hence, in the following
example we will create a non-standard transaction with the puzzle (Scriptpubkey)
described before.

Firstly, we need to select a UTXO from our Bitcoin wallet to construct a new
transaction. For that, make sure bitcoin core is still running in regtest mode and use
the command bitcoin-cli listunspent to get an available UTXO with its details : txid,
Scriptpubkey and receiving address. Then create a new destination address with :
bitcoin-cli getnewaddress.

On the other hand, the private key can be unveiled using bitcoin-cli dumpprivkey <utxo
address>. Once you have all these ingredients, edit the following code accordingly (full
code is available at https://github.com/bellaj/Bitcoin_payment/tree/master/custom%20scripts):

var pkey = 'cPJCt9r5eu9GJz1MxGBGgmZYTymZqpvVCZ6bBdqQYQQ5PeW4h74d'; //UTXO's private key

var Taddress = 'n1PoDECeUwbXgktfkNkBcmVXtD2CYUco2c'; //Destination address

var lockingscript = bitcore.Script('OP_13 OP_ADD OP_15 OP_EQUAL'); //PubKeyScript

var g_utxos=[{"address":"n1PoDECeUwbXgktfkNkBcmVXtD2CYUco2c",

"txid":"c6758cf22346d3d8b7b6042b7701a5f07d140732bf5b93e1fb92ed250e5b6d20","vout":0,"scriptPubKey":"210330b8e88054629399e6c9

 //UTXO details

var transaction = new bitcore.Transaction();

transaction = transaction.from(g_utxos);

transaction = transaction.to(Taddress, 4000000000); //Add a first output with the given

amount of satoshis

transaction = transaction.fee(0.0001*100000000);

transaction = transaction.addOutput(new bitcore.Transaction.Output({script:

lockingscript, satoshis: 1000000000,address:Taddress }));

transaction = transaction.sign(pkey); //Sign all inputs

console.log("Raw Transaction\n" + transaction);

https://github.com/bellaj/Bitcoin_payment/tree/master/custom%20scripts

The previous code is self-explanatory: we construct a transaction using
the Transaction() method, then we define two outputs – one sending 40 BTC to a
P2PKH address and the other sending 10 with a custom script.

Save this code in a file called custom_pubkeyscript.js and run it using node
custom_pubkeyscript.js. As a result, a raw transaction will be constructed. If you decode
the resulting transaction using bitcoin-cli decoderawtransaction <your tx> you'll be able to
see our custom ScriptPubkey :

Then send the raw transaction to the local network using bitcoin-cli sendrawtransaction
<your raw transaction> you'll get back the transaction ID. To get it validated we have
only to mine a block using bitcoin-cli generate 1

Now we have a non standard output carrying 10 bitcoins waiting to be spent. To
consume it, we need to construct a transaction with the correct Scriptsig op_2 as
follows:

var unlockingScript = bitcore.Script().add('OP_2');

var transaction = new bitcore.Transaction();

transaction.addInput(new

bitcore.Transaction.Input({prevTxId:'c6758cf22346d3d8b7b6042b7701a5f07d140732bf5b93e1fb92ed250e5b6d20',

 outputIndex: 1, script: unlockingScript }), unlockingScript, 10000);

transaction = transaction.to(Taddress, 90000000);

transaction = transaction.fee(0.0001*100000000);

console.log(transaction)

We define here an input pointing the previously created output with a custom
scriptSig. As you may notice, the output can be spent without providing a signature.
As we did for the previous transaction you can send the transaction and mine it.

When the Scriptsig and Scriptpubkey are executed, the opcode .add('OP_2') pushes
value 2 onto the stack, then the operands (13 and the 2 from ScriptSig) are added
using .add('OP_ADD') and the result is compared using .add('OP_EQUAL') to 15 therefore the
top on the stack will be true which means the full script (unlocking + locking) is
valid and the output is "unlocked" and can be spent.

To observe the execution of bitcoin script on the stack., there is an interesting open source IDE for Bitcoin transaction called hashmal
available on https://github.com/mazaclub/hashmal

If everything went correctly, you should be able to successfully spend the previous
output with the custom ScriptPubkey. Just a minor warning, in public networks non
standard transactions may not be validated by the network.

All set, we're done with non standard transactions and bitcoin scripting. Now on, you
have a basic understanding of bitcoin under your belt, you should be ready to tackle

https://github.com/mazaclub/hashmal

the rest of this chapter and build real world application.

Building a payment gateway
If you have never developed Bitcoin applications before, this section
is be the best place to start. We plan here to integrate Bitcoin payment
in an online Ecommerce website. The idea is to create a payment
option for the E-commerce customers to pay simply by clicking a
direct Bitcoin payment URL or scanning a QR code, which opens a
payment form with payment details in the wallet, making the
payment process very straightforward and easy. Moreover, such a
payment option avoids customers filling in any forms or providing
personal data.

Project description
This project generally represents how to implement the Bitcoin
payment protocol proposed in BIP70 in order to build an online
payment gateway. BIP 70 protocol enables direct Bitcoin payments
processing for e-commerce platforms by managing payment
transactions between a payment portal and the customer's Bitcoin
wallet.

BIP or Bitcoin Improvement Proposal, is a proposal for introducing features or changes to Bitcoin. You
can learn about all the BIPs in the official documentation : https://github.com/bitcoin/bips

The merchant's server application will generate a custom BIP 72
payment URL (and the corresponding QR code) to help customers
checkout easily using their Bitcoin wallet/client, whether by clicking
on the provided link or by scanning the QR code, as shown in the
following picture.

Basically, we'll follow three major steps to setup the project:

1. Building the Merchant server using NodeJs and the bitcore
library.

2. Building the Javascript front-end .

3. Building the Java client using BitcoinJ.

Bitcoin payment protocol
overview
The Bitcoin payment protocol specification is presented in BIP 70 (ht
tps://github.com/bitcoin/bips/blob/master/bip-

0070.mediawiki), 71, 72 and 73 documents. It was designed to introduce
additional features to Bitcoin by replacing the usage of Bitcoin
address with direct payment flow between the sender and recipient of
funds using graphical wallet to offer seamless checkout process. The
main goal of BIP 70 is to provide a Bitcoin payment solution
improving the customer experience and securing the online payments.

If you are familiar with C++ you can examine at
the paymentserver.cppand paymentrequestplus.cpp located in the bitcoin Github repository https://
github.com/bitcoin/bitcoin/blob/master/src/qt/.

The user does not have to deal with Bitcoin's underlying mechanisms,
he has only to simply open his wallet with a Payment Request and
proceed with the payment. The sequence diagram below shows how
the customer and merchant's wallets interact with each other and with
the Bitcoin network to process the payment operation using BIP 70
protocol.

https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://en.bitcoin.it/wiki/BIP_0071
https://en.bitcoin.it/wiki/BIP_0071
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bitcoin/blob/master/src/qt/paymentserver.cpp

When the customer initiates the checkout process, the merchant
launches a payment request to the user's wallet signed with its
certificate. Once received, the latter parses and validates the request
details then authorizes the payment by sending back the payment
transaction to the merchant or directly to the network. When the
payment is settled the merchant sends a payment acknowledgement
to the user with potential invoice details.

Prerequisites
Before proceeding with this project, a general knowledge of
programming concepts and JavaScript is highly recommended. To start
coding, we need to have the following elements installed:

 npm (The npm package gets installed along with NodeJs.)

bower

git

For this project, I suggest we switch bitcoin client to operate on the
testnet. In your bitcoin.conf file keep the same user, password and edit
the following values

regtest=0

testnet=1

prune=550

Afterwards, run bitcoin-qt and generate two addresses, one for the
merchant and the other for the customer, and then provision some
testnet Bitcoins to the customer's address from an online Bitcoin
faucet such as https://testnet.manu.backend.hamburg/faucet

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://testnet.manu.backend.hamburg/faucet

Project setup
After fulfilling the prerequisite steps, create a new directory
dedicated to your project, as follows:

mkdir Bitcoin_payment && cd Bitcoin_payment

In your workspace create two new subdirectories : 'keys/' for storing
your keys and certificate, and a 'views/' directory to store the web
pages and scripts.

To install all the needed dependencies, create a package.json file from
inside the 'Bitcoin_payment/' directory

{

 "scripts": {

 "start": "node server.js"

 },

 "dependencies": {

 "bitcore-lib": "^0.15.0",

 "bitcore-payment-protocol": "1.2.2",

 "body-parser": "^1.18.3",

 "express": "^4.16.3",

 "request": "^2.88.0",

 "underscore": "^1.9.1"

 }

}

Then run :

npm install

This will install all the Node packages you need for setting up and
running the project.

Certificate management
In order to build a secure payment system we need to use SSL
certificates either for enabling HTTPS or for BIP 70 payment request
verification to confirm that the payment request was genuinely
initiated by the merchant. Basically, the certificate has to be provided
by a third-party certificate authority (CA) to confirm the merchant
identity.

To obtain SSL certificates, you have the choice between using
Commercial or Private Certificate Authorities or the "Let's Encrypt"
project. For demonstration purposes, in this guide we will use a self-
signed certificate to avoid unnecessary details. To obtain such a
certificate, you need to use OpenSSL as follow:

openssl req -x509 -newkey rsa:4096 -keyout keys/key.pem -out

keys/cert.pem -days 365 -subj

"/C=MA/ST=ByExample/L=Testbip70.com/O=Chapter3/OU=Org/CN=Testbip70.com"

-nodes

openssl x509 -in keys/cert.pem -out keys/cert.der -outform DER

You will end up with three files: key.pem , cert.pemand cert.der in your
'keys/' directory.

https://letsencrypt.org/

Merchant side
To start off, we build a basic NodeJs server accepting HTTP and
HTTPS requests using our generated certificates. As this book is not
about neither NodeJs nor JavaScript, I'll put the main emphasis on
presenting the code related to Bitcoin and the bitcore library. For
now, let’s start building our web server.

'use strict';

var bitcore_lib = require('bitcore-lib');

var PaymentProtocol = require('bitcore-payment-protocol');

var express = require('express');

var bodyParser = require('body-parser');

var URI = require('bitcore-lib/lib/uri');

var request = require("request");

const https = require('https');

var fs = require("fs");

var dcert = fs.readFileSync('./keys/cert.der');

var mcert = fs.readFileSync('./keys/cert.pem'); // For HTTPS server

var mkey = fs.readFileSync('./keys/key.pem');

var credentials = {key: mkey, cert: mcert};

var app = express();

var os = require('os');

var interfaces = os.networkInterfaces();

var addresses = [];

for (var k in interfaces) {

 for (var k2 in interfaces[k]) {

 var address = interfaces[k][k2];

 if (address.family === 'IPv4' && !address.internal) {

 addresses.push(address.address);

 }

 }

}

var IP = addresses[0];

var port = 8883;

var http_port = 3000;

app.get("/", function(req, res) {

 res.send('Bitcoin Payment protocol');

});

app.listen(http_port, function() {

 console.log("-http Server listening on :"+IP+":"+ http_port);

});

https.createServer(credentials, app).listen(port, function() {

 console.log("-https Server listening on :"+IP+":"+ port);

});

This big chunk of code creates a simple nodejs server to serve the
HTTP requests. Save this code in a file named server.js and run it
with node server.js. Your server will start and listen on two different
ports: 3000 for HTTP and 8883 for HTTPS.

You might get the error : "Error: More than one instance of bitcore-lib found" in this case refer to
https://github.com/bellaj/Bitcoin_payment , I am proposing there a sketchy workaround.

Since the certificate is self-signed, if you open any browser to the
server's address with port 8883, it will yield a warning, and not allow
the communication to continue without an explicit exception. To
solve that you have to manually install the certificate (cert.der) into
your browser. Next, try to visit locally http://localhost:3000, the
browser window should display "Bitcoin Payment protocol" message.

Before we move on, stop the running server by pressing Ctrl+C in the
server's terminal window. Let’s expand our code to make use of the
bitcore library to create the payment request.

Building payment request
URI
First off, we define the Testnet as the default network for our
application and a merchant address. Simply put within the server's
code the following lines :

bitcore_lib.Networks.defaultNetwork = bitcore_lib.Networks.testnet; //

the project runs only on testnet

var Merchant_address = "mhc5YipxN6GhRRXtgakRBjrNUCbz6ypg66";

In this example we used a static Bitcoin address but in a real
implementation the merchant has to generate a unique payment
address associated with the customer's order. Alternatively you can
generate a random address using:

var privateKey = bitcore_lib.PrivateKey(merchant_pkey); // we pass a

specific private key as argument

var publicKey = bitcore_lib.PublicKey(privateKey);

bitcore_lib.Address(publicKey, bitcore_lib.Networks.defaultNetwork));

We define afterwards a simple function compose_uri() to build the
Bitcoin payment URI:

function compose_uri(amount_to_pay) {

 var pay_url = "http://"+IP+":"+http_port+"/request";

 var uriString = new URI({

 address: Merchant_address,

 amount : amount_to_pay, // amount in satoshis

 message: 'payment request'

 });

 var paymentUri = uriString+"&r="+pay_url;

 return paymentUri;

}

The compose_uri() function generates the request payment URI starting
with the prefix bitcoin: (defined in BIP-21) and containing the
destination and amount. The overall URI is a BIP-72-style with the
special query parameter r which specifies where the payment request
will be fetched from. Custom URIs are very helpful as browsers and
mobile apps use them to launch the registered protocol handler, in
this case a Bitcoin client.

So now that we have all that up and running, it’s time to actually
handle requests.

Routing
The actual application functionality is just a basic User model with a
few views and a controller without supporting registration and
logging in/out. Unsurprisingly, to handle the HTTP requests we are
using the expressJs framework which provides us with a middleware to
handle incoming HTTP requests and translate each into an action.

https://expressjs.com/

Checkout view
The initial endpoint will be /checkout, whereby the customer requests
to make a payment. We define the handler associated with a get
handler to /checkout as follows:

var path = require("path");

app.use(express.static(path.join(__dirname + '/views')));

app.get('/checkout', function(req, res) {

 res.sendFile(path.join(__dirname+'/views/index.html'));

});

If you're unfamiliar with Express, we defined here a callback function
that behaves like middleware to handle the /checkout route. We are
using sendFile to make the server send a static index.html file from the
'views/' directory to the browser, when user requests
the /checkout path .

https://expressjs.com/en/guide/using-middleware.html

Proceeding with payment
We define then the /ProcessingPayment route which will be requested
when the user clicks the "Pay with BTC" button to generate and
render the Bitcoin payment URL:

app.use(bodyParser.json());

app.post("/ProcessingPayment", function(req, res) {

 var amount_ = req.body.amount;

 var resp = compose_uri(amount_)+"?amount="+amount_;

 res.send(resp);

});

Requesting payment details
As defined by the protocol, when the customer clicks on the payment
link, its wallet (bitcoin client) will request the /request endpoint to get
the merchant's payment request with all the necessary data.

 var urlencodedParser = bodyParser.urlencoded({ extended: false });

 app.get("/request", urlencodedParser, function(req, res) {

 var amount = req.query.amount;

 amount = (amount === undefined) ? 0 : amount; // set amount to 0

if undefined

 var merchant_outputs = []; // Where payment should be sent

 var outputs = new PaymentProtocol().makeOutput();

 outputs.set('amount', amount);

 var script =

bitcore_lib.Script.buildPublicKeyHashOut(Merchant_address.toString());

 outputs.set('script', script.toBuffer());

 merchant_outputs.push(outputs.message);

});

Here the merchant's server constructs a P2PKH transaction with the
amount handed form the client side. Then within the same route we
wrap inside a PaymentRequest message with relevant details about the
payment as following:

var details = new PaymentProtocol().makePaymentDetails();

var now = Date.now() / 1000 | 0;

details.set('network', 'test');

details.set('outputs', merchant_outputs);

details.set('time', now); //Unix timestamp when the PaymentRequest was

created.

details.set('expires', now + 60 * 60 * 24); //timestamp after which the

PaymentRequest should be considered invalid.

details.set('memo', 'A payment request from the merchant.');

details.set('payment_url', "http://"+IP+":"+http_port+"/payment?

id=12345"); //location where a Payment message may be sent to obtain a

PaymentACK.

details.set('merchant_data', new Buffer("Transaction N 12345"));

//identify the payment request

For more information about these fields, you can visit the official BIP7
0 documentation. After defining the payment request details we form
the final request as following :

 var request = new PaymentProtocol().makePaymentRequest();

 request.set('payment_details_version', 1);

 var certificates = new PaymentProtocol().makeX509Certificates();

 certificates.set('certificate',dcert);

 request.set('pki_type', 'x509+sha256');

 request.set('pki_data', certificates.serialize());

 request.set('serialized_payment_details', details.serialize());

 request.sign(mkey);

 var rawbody = request.serialize(); // serialize the request

 res.set({

 'Content-Type': PaymentProtocol.PAYMENT_REQUEST_CONTENT_TYPE,

 'Content-Length': request.length,

 'Content-Transfer-Encoding': 'binary'

 });

A PaymentRequest is optionally tied to a merchant's identity using
public-key infrastructure (PKI) specified in pki_type. We sign it using
the private key that corresponds to the public key in pki_data before
forwarding it to the client side. The response format changes
depending on the requester whether a bitcoin client or a browser :

if (req.query.browser==1) {

 var buf = new Buffer(rawbody, 'binary').toString('base64');

 res.contentType(PaymentProtocol.PAYMENT_REQUEST_CONTENT_TYPE);

 res.send(buf);

} else {

 //response for bitcoin core client

 res.status(200).send(rawbody);

}

https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki#paymentdetailspaymentrequest

Receiving and
acknowledging payment
Once the customer verifies the payment request, he posts a payment
transaction to the merchant server (toward payment_url which points to
the payment/ route). Therefore, in this route we extract the payment
details (payment message) from the client's transaction as follows:

var rawBodyParser = bodyParser.raw({type:

PaymentProtocol.PAYMENT_CONTENT_TYPE});

app.post("/payment", rawBodyParser, function(req, res) {

 var body = PaymentProtocol.Payment.decode(req.body);

 var payment = new PaymentProtocol().makePayment(body);

 var refund_to = payment.get('refund_to'); //output where a refund

should be sent.

 var memo = payment.get('memo');

 var Rawtransaction = payment.get('transactions')

[0].toBuffer();/*One or more valid, signed Bitcoin transactions that

fully pay the PaymentRequest*/

 var TransactionToBrodcast = new

bitcore_lib.Transaction(Rawtransaction).toString('hex');

/* potentially broadcast the transaction as we did in the first chapter

using chain.so/api/ */

});

Depending on your design you can choose which side will broadcast
the payment to the bitcoin network, whether the server or the
customer's wallet. Still, in the second section (Bitcoinj) we will
instead request the customer's approval and then let the merchant
forward the transaction to the network using a web API (or by using
bitcore-p2p).

The final action in the payment process is sending to the client a
payment acknowledgement message with a receipt ID. It's possible

https://github.com/bitpay/bitcore-p2p

you can listen on the bitcoin network for whether the transaction took
place before sending such a message.

var ack = new PaymentProtocol().makePaymentACK();

ack.set('payment', payment.message);

ack.set('memo', 'Payment processed,Thank you ;) \n invoice ID

:'+req.query.id);

//store invoice details in database

var rawack = ack.serialize();

res.set({

 'Content-Type': PaymentProtocol.PAYMENT_ACK_CONTENT_TYPE,

 'Content-Length': rawack.length,

});

res.send(rawack);

Invoicing
Finally, the system would be complete if it enabled the merchant to
invoice the clients. For this purpose, you can add to your system a
database-based invoice system to store the purchase invoices for
future access. We can define an /invoice handler to provide the invoice
details to the requester:

app.get("/invoice", urlencodedParser, function(req, res) {

 var invoice_id = req.query.id;

 var detail="details about the invoice N:"+invoice_id;

 /*....invoice Database access..*/

 res.send(detail);

});

Now as the server is ready we need to proceed to build the front-end
part.

Client side
As for the backend, we'll use bitcore in the client-side, therefore we
need to install the front-end component. For that create a bower.json
file in views/ folder with the content :

{

 "dependencies": {

 "bitcore-lib": "^0.15.0",

 "bitcore-payment-protocol": "1.2.2"

 }

}

Then run (inside the views/ folder):

bower install

Next, we need to install a QR code library in the views/ directory:

git clone https://github.com/davidshimjs/qrcodejs

Then create two files: index.html and main.js files in the views/
directory. In the first of these files paste the following code:

<html>

<head>

 <script src="bower_components/bitcore-lib/bitcore-lib.js"></script>

 <script src="bower_components/bitcore-payment-protocol/bitcore-

payment-protocol.min.js"> </script>

 <script src="qrcodejs/qrcode.js"></script>

 <script

src="//ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"

type="text/javascript"></script>

 <link rel="stylesheet" type="text/css" href="style.css" />

</head>

<body>

 <div class="main_div">

 <form id="myForm">

 <h1>MVMT WATCH</h1>

 Item Details: WATER RESISTANT

 Price : 0.888888 BC.

 <input type="hidden" id="amount" value=888888>

 <input

 type="submit"

 value="Pay with BTC"

 id="submit"

 onclick="event.preventDefault();ProcessingPayment()" />

 </form>

 </div>

 <script src="./main.js"></script>

</body>

</html>

This code builds a demo webpage with a single product (a watch) and
a payment button. On the other hand, in main.js, we define the front
end functions to interact with the payment server.

First, we define the ProcessingPayment() function which initiates an Ajax
call to request the payment URI.

function ProcessingPayment() {

 var amount_ = $('#amount').val();

 $.ajax({

 method: 'POST',

 url: '/ProcessingPayment',

 data: JSON.stringify({'amount' : amount_}),

 contentType: 'application/json',

 processData: false,

 success: function(data) {

 pay(data);

 }

 });

}

The server will answer back with a payment link which will be
displayed as a URL and QR code using the method pay() :

function pay(pay_url) {

 document.write("<body><div class='pay_div'><h1>Quick Checkout</h1>

<div class='result' id='result' name='result'> <div class='overview'>

Payment URL : "+ pay_url +" </div>
 <div

id='qrcode'></div> <input type='hidden' id='amount' value='888888'>

 <input type='button' value='Transaction Details'

onclick='check_details()' id='check' class='check'><div

class='details'></div></div><script src='./main.js'></script> <link

rel='stylesheet' type='text/css' href='style.css' /></body>");

 var qrcode = new QRCode(document.getElementById("qrcode"), {

 text: pay_url.toString(),

 width: 128,

 height: 128,

 colorDark : "#000000",

 colorLight : "#ffffff",

 correctLevel : QRCode.CorrectLevel.H

 });

}

We define then a check_details() method to request from the server the
payment details when the customer presses the "transaction details"
button.

function check_details() {

 var amount_ = $('#amount').val();

 $.ajax({

 method: 'GET',

 url: '/request?amount='+amount_+'&browser=1',

 datatype:'binary',

 processData: false,

 success: function(data) {

 get_payment_details(data);

 }

 });

}

In the last step, once the payment request details are received they
will be unpacked and displayed using the following get_payment_details
method :

function get_payment_details(rawbody) {

 try {

 var body = PaymentProtocol.PaymentRequest.decode(rawbody);

 var request = (new PaymentProtocol()).makePaymentRequest(body);

 var version = request.get('payment_details_version');

 var pki_type = request.get('pki_type');

 var pki_data = request.get('pki_data');

 var serializedDetails =

request.get('serialized_payment_details');

 var signature = request.get('signature');

 var verified = request.verify();

 verified=(verified) ? "Valid" : verified;

 var decodedDetails =

PaymentProtocol.PaymentDetails.decode(serializedDetails);

 var details = new

PaymentProtocol().makePaymentDetails(decodedDetails);

 var network = details.get('network');

 var outputs = details.get('outputs');

 var time = details.get('time');

 var expires = details.get('expires');

 var memo = details.get('memo');

 var payment_url = details.get('payment_url');

 var merchant_data = details.get('merchant_data');

 $('.details').append('<h2>Invoice :</h2> Network :

'+network+'Transaction Timestamp : '+time+'Expiration

Date: '+expires+'Merchant data : '+merchant_data+'

Merchant Signature verification: '+verified+'Memo:

'+memo+' Total : 0.0088888');

 } catch (e) {

 console.log(('Could not parse payment protocol: ' + e));

 }

}

The displayed details are very important, especially the validation of
the merchant identity status using request.verify() which validates the
payment request signature against the merchant's identity.

Instead of building the front end from scratch we can use a scaffolding tool such Yoman generator to
help you generate new web project structure in a matter of seconds

http://yeoman.io/
http://yeoman.io/

Great, now the application is ready to be tested. Let's check it out.

Preview your application
It's time to try what we have built. We need first to start the merchant
server by running npm start from the project root ('bitcoin_payment/').
Then, open your browser to visit the URL :
http://<Machine_IP>:3000/checkout

If all went well, the server will serve you a store page with a single
item and "Pay with bitcoin" button as shown the following picture:

While I am testing on the same Linux machine, I have changed the domain name for localhost to
bip70.com by editing /etc/hosts file and adding 127.0.0.1 bip70.com

Once the client chooses to pay with Bitcoin, he will be redirected to a
new view with a custom payment URL :

The customer can check the transaction details before proceeding
with the payment by pressing the Transaction details button. After the
customer clicks on the payment link the browser will open the bitcoin
client after asking for the authorization.

Once loaded, the Bitcoin client connects to the payment server and
gets the payment details (amount, merchant address, etc...) and
prepares a payment transaction. We can see the memo sent from the
merchant server displayed in the client interface. After examining the
amount (which he can't edit), the client will approve the transaction
and send it directly to the Bitcoin network.

When the transaction is sent by the client, the Bitcoin client will
display the payment acknowledgement message sent from the server
confirming the payment as shown in the following image.

On the other hand the QR code helps users to pay using their
smartphone. To test this ability you can install a Bitcoin wallet from
Google Play store such as Testnet Wallet or copay and make sure you're
connected to the same network. When you scan the QR code, you'll
encounter an unavoidable error indicating that the certificate isn't
signed by a trusted authority. Thus, we will need to add the
merchant's certificate to the mobile OS. Once done, you can enjoy
trying the payment process using the Bitcoin mobile wallet as shown
below:

https://play.google.com/store/apps/details?id=de.schildbach.wallet_test&hl=en&rdid=de.schildbach.wallet_test
https://copay.io/

At this point we have successfully built an online web store which
accepts bitcoin payments. To complete the experience, let’s build a
light Java Bitcoin wallet to pay with instead of relying on the
installed Bitcoin clients.

Payment protocol using
BITCOINJ
If you're a Java Developer who would like to get started with building
bitcoin applications, this part will be your best starting point. We will
build a Java client that implements the payment protocol (BIP 70)
using BitcoinJ, and interact with our payment NodeJs server.

Prerequisites
The first thing you should do to follow this guide is to setup your
own Java development environment. This walkthrough assumes that
the latest version of following elements is installed and running on
your platform of choice

Java 8

Eclipse IDE from https://www.eclipse.org/downloads

You can refer to their official documentation to properly download
and install them.

https://www.eclipse.org/downloads

BitcoinJ installation
For this section we will use BitcoinJ which is a Java library designed
to interact with the Bitcoin network with support for BIP70. In order to
make things simpler we will install Maven's BitcoinJ plugin (version
0.14.17). If you're not a Java developer, Maven is a build automation
tool for Java projects, used to download the dependencies required
for a project.

Open Eclipse and create a new Maven project
via (File ▸ New ▸ Other… ▸ Maven ▸ Maven) and follow the
wizard instructions to finish the creation process. (Further
instructions about setting up a Maven project are presented in chapter
6.) Once the project is created, browse to the pom.xml file and add a
reference to a BitcoinJ and slf4j-api dependencies using the following
lines inside:

<dependency>

 <groupId>org.bitcoinj</groupId>

 <artifactId>bitcoinj-core</artifactId>

 <version>0.14.7</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 <version>1.7.21</version>

</dependency>

Slf4J is the logging framework used by BitcoinJ. It serves to handle
the logs and help us understanding via valuable logging messages
(network connection and transaction information), the behavior of the

https://bitcoinj.github.io/payment-protocol

BitcoinJ application and evaluate its execution. After that, right-click
the pom.xml file and select Run As ▸ Maven to build and run the empty

project.

Now we can finally start programming using BitcoinJ.

BitcoinJ client
First off, in your Maven project add a new class to your src/main/java
folder with the name Cbip70. This class should have a main method,
which will be used to communicate with the server.

Bitcoin wallet configuration
In the first line in our code we activate BitcoinJ's logging using a Java
logging formatter that writes more compact output than the default.

BriefLogFormatter.init();

Then we indicate which Bitcoin network we want to use. In this
scenario, we choose the testnet as our NodeJs server is already
running on testnet network by default :

final static NetworkParameters params = TestNet3Params.get();

The other available options are: MainNetParams and RegTestParams

Next, we start by initializing (inside the main function) a WalletAppKit
object, to create a lightweight SPV (Simplified Payment
Verification) BitcoinJ wallet. As mentioned in the BitcoinJ
documentation, the WalletAppKit class wraps the boilerplate (Peers,
BlockChain, BlockStorage, Wallet) needed to set up a new SPV
BitcoinJ app.

WalletAppKit kit = new WalletAppKit(params, new File("."),

"walletappkit");

As a result, two files are also created locally – .wallet (wallet) and
.spvchain (blockchain information) – with the specified prefix (the
third argument) and stored in the indicated directory (the project root
folder). Once created, we download the blockchain and wait until it's
done.

https://github.com/bitcoinj/bitcoinj/blob/master/examples/src/main/java/org/bitcoinj/examples/Kit.java
https://bitcoin.org/en/glossary/simplified-payment-verification

kit.startAsync();

kit.awaitRunning();

 In this case, the kit will behave as a bitcoin node connecting to other
nodes and syncing with them the blockchain (downloading only
headers).

You can use kit.connectToLocalHost(); in case you're using Regtest mode to connect the kit to your
local Bitcoin client. Have a look at the WalletAppKit class to learn about the available functions and
understand what's happening behind the scenes.

We generate then a Bitcoin address for the client and print it along
with its balance:

Address CustomerAddress=kit.wallet().currentReceiveAddress();

System.out.println("Customer's address : " + CustomerAddress);

System.out.println("Customer's Balance : "+kit.wallet().getBalance());

The wallet is now ready to run but we need to send a few Bitcoins
from a faucet source to the Bitcoin address returned by
the currentReceiveAddress function. If you run the current code you'll get
output similar to the following about blockchain's synchronization
and the account details in Eclipse's log Viewer :

https://github.com/bitcoinj/bitcoinj/blob/master/core/src/main/java/org/bitcoinj/kits/WalletAppKit.java

Requesting payment
Now that our wallet is loaded and synced with the network, we can
read the BIP70 URI provided by the merchant in order to make the
payment. You can write a few lines of code to directly parse the
Bitcoin payment URL and register your app as the Bitcoin URI
(:bitcoin) handler. But to keep it simple, we will manually copy the
payment link provided by NodeJs earlier and assign it to a local
variable (I've omitted irrelevant parameters):

String url ="bitcoin:mhc5YipxN6GhRRXtgakRBjrNUCbz6ypg66?

r=http://bip70.com:3000/request?amount=888888";

The important part in the URL is the "r" parameter which represents
the merchant server, so edit it to set your server's IP or domain name.

Prior to requesting payment details from merchant's server details we
can add a sanity check to evaluate if the address has enough Bitcoins:

if (Float.parseFloat(String.valueOf(kit.wallet().getBalance())) == 0.0)

{

 System.out.println("Please send some testnet Bitcoins to your

address "+kit.wallet().currentReceiveAddress());

} else {

 sendPaymentRequest(url, kit);

}

Then we define sendPaymentRequest() as following :

private static void sendPaymentRequest(String location, WalletAppKit k)

{

 try {

 if (location.startsWith("bitcoin")) {

 BitcoinURI paymentRequestURI = new BitcoinURI(location);

 ListenableFuture<PaymentSession> future =

PaymentSession.createFromBitcoinUri(paymentRequestURI,true);

 PaymentSession session = future.get();

 if (session.isExpired()) {

 log.warn("request expired!");

 } else { //payment requests persist only for a certain

duration.

 send(session, k);

 System.exit(1);

 }

 } else {

 log.info("Try to open the payment request as a file");

 }

 } catch (Exception e) {

 System.err.println(e.getMessage());

 }

}

This method is comprised of two steps – parsing the Bitcoin URI in
order to request payment details from the specified URL, and running
another function send() which proceeds with the payment.

The createFromBitcoinUri method initializes a PaymentSession using the
payment URI. If this function is called with a second parameter set to
true, the system trust store will be used to verify the signature
provided by the payment request and a CertPathValidatorException
exception is thrown in the failure case. future.get() parses the payment
request which is returned as a protocol buffer.

Once the payment session is established we call the send() method to
proceed with the payment. Note that you'll have to handle a few
different exceptions, but I've set here a global try/catch for all
expected exceptions to make the code cleaner for the reader.

Sending a payment
The next function is the one to pay the bill. Before sending the
Bitcoins, this function will check the payment request details
including the merchant's x509 certificate. We print out in the console
the payment request details to let the client know to whom he is going
to pay.

private static void send(PaymentSession session,WalletAppKit k) {

 log.info("Payment Request");

 log.info("Amount to Pay: " +

session.getValue().toFriendlyString());

 log.info("Date: " + session.getDate());

 // Probably indicates what your are paying for.

 log.info("Message from merchant : " + session.getMemo());

 PaymentProtocol.PkiVerificationData identity =

session.verifyPki();

 if (identity != null) {

 // Merchant identity from the certificate

 log.info("Payment requester: " + identity.displayName);

 // The issuing Certificate Authority

 log.info("Certificate authority: " +

identity.rootAuthorityName);

 }

}

The important point in this first part is to validate the merchant's
identity and signature using the PKI system. In fact, session.verifyPki()
checks if the merchant DER certificate containing the public key
corresponding to the private key used to sign the PaymentRequest, is
signed by a trusted root authority. We display to the customer the
merchant's identity and the certifying authority.

Then we call the getSendRequest method to get the needed information
about precisely how to send money to the merchant. Until now the
transaction in the request is incomplete, we need the client to confirm
the payment transaction using completeTx(req) which adds outputs and
signed inputs according to the instructions in the request. The client
indicates a refund address and a short memo to the intended
destination.

final SendRequest request = session.getSendRequest();

k.wallet().completeTx(request);

String customerMemo = "Nice Website";

Address refundAddress = new

Address(params,"mfcjN5E6vp2NWpMvH7TM2xvTywzRtNvZWR");

ListenableFuture<PaymentProtocol.Ack> future =

 session.sendPayment(ImmutableList.of(request.tx),refundAddress,

customerMemo);

if (future != null) {

 PaymentProtocol.Ack ack = future.get();

 ...

The client creates here a transaction that fully pays the
PaymentRequest using completeTx. Then we call the
method sendPayment which does not broadcast the transaction to the
Bitcoin network, but instead sends a Payment message after the customer
has authorized payment and indicated a refund address.

More specifically, if payment_url is specified in the merchant's
payment request, then the payment message is serialized and sent as
the body of the POST request to that URL. The server will forward
the payment transaction to the network.

Afterwards, the customer's wallet waits for an acknowledgement of
payment from the server :

 ...

 System.out.println("Memo from merchant :"+ack.getMemo());

 ...

Then we put the given transaction into the wallet's pending pool :

 ...

 kit.wallet().commitTx(request.tx);

 ...

At this level we have to edit the server's code (server.js file) to make
it able to broadcast the received transaction. For that within the route
/payment we have to add few lines broadcasting the raw transaction
using the chain.so API as we did in the first chapter.

...

 var Rawtransaction = payment.get('transactions')[0].toBuffer();

 var TransactionToBrodcast = new

bitcore_lib.Transaction(Rawtransaction).toString('hex');

 var ack = new PaymentProtocol().makePaymentACK();

 ack.set('payment', payment.message);

 console.log("the merchant brodcast")

 var Sendingoptions = {

 method: 'POST',

 url: 'https://chain.so/api/v2/send_tx/BTCTEST',

 body: { tx_hex: TransactionToBrodcast },

 json: true };

 rp(Sendingoptions).then(function (response) {

 var Jresponse= JSON.stringify(response);

 ack.set('memo', 'Payment processed,Thank you ;) \ninvoice ID

:'+req.query.id+"\nTransaction Details : "+Jresponse);

 var rawack = ack.serialize();

 res.set({

 'Content-Type': PaymentProtocol.PAYMENT_ACK_CONTENT_TYPE,

 'Content-Length': rawack.length,

 });

 res.send(rawack);

 });

 ...

http://chain.so/

The server should normally determine whether or not the transaction
satisfies the conditions of payment after broadcasting the transaction.
It should also wait for confirmations to make sure that the payment is
received before returning an acknowledgement message, as
a transaction could fail to confirm for many reasons.

However, if the Bitcoin URI returned by the payment request doesn't
contain a payment URL, we broadcast directly the signed transaction
from the client side :

...

} else {

 Wallet.SendResult sendResult = new Wallet.SendResult();

 sendResult.tx = request.tx;

 sendResult.broadcast =

k.peerGroup().broadcastTransaction(request.tx);

 sendResult.broadcastComplete = sendResult.broadcast.future();

}

And with this last function we have all set to try out our simple
BitcoinJ application. Make sure to properly shut down all the running
services when you want to stop the kit.

log.info("stopping..");

kit.stopAsync();

kit.awaitTerminated();

Congratulations. You have finished your first BitcoinJ program and
got it to run. The complete source code for this section is available is
available on github: https://github.com/bellaj/BitcoinJ_Bip70.

https://github.com/bellaj/BitcoinJ_Bip70

Testing code
It's testing time but before running the project we need to define a
trusted keystore for Java in order to validate the server's certificate,
and for that we use the Java keytool . (Further usage details
on keytool can be found on oracle's documentation.)

keytool -import -keystore clientkeystore -file /path_to/cert.der -alias

bip70.com -storepass changeit

Then import the resulting clientkeystore file into the Eclipse project.
Afterwards, click "Run as" then "Run Configurations" to define the
parameter -Djavax.net.ssl.trustStore=clientkeystore in the Arguments
tab in the VM Arguments box:

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

A good alternative way to use a custom trust store is to use createFromBitcoinUri(BitcoinURI uri,
boolean verifyPki, TrustStoreLoader trustStoreLoader) where the third argument is a TrustStoreLoader
which loads the local KeyStore. When it's not defined the system default trust store is used.

When you finish, compile and run your code. If everything runs
correctly you will be able to visualize in the Eclipse log viewer the
SVP wallet activity, the merchant's payment request details, and the
memo from the merchant when the payment is successfully
proceeded, along the invoice ID.

At this point, we have reached our goal of building a Java client to
send a payment over the testnet network using the BIP 70 protocol.
As you have witnessed, BitcoinJ is an easy-to-use and powerful
framework. I would definitely recommend you spending time reading
their official documentation and compiling the code samples provided
there.

Finally, I would note that for the sake of brevity, the overall server
and client code is intentionally unoptimized and lacks many features.
You could probably go back over the code and try to include new
improvements such as building a GUI. I'll be waiting for your pull
requests.

Bitcoin smart contracts
In the previous chapter we have briefly introduced the smart contract
concept as self-executing programs that define a set of clauses stored
on the blockchain. Although Bitcoin was the first blockchain to
propose a scripting language (limited for security reasons) to control
funds, the smart contract concept is usually associated with the Ethereu
m blockchain, which provides Turing-complete smart contract
languages. However, to redress the balance, many projects were
initiated such as Rootstock, Counterparty and Ivy to enable building
and running advanced smart contracts on Bitcoin. Welcome to
Bitcoin 2.0.

http://ethereum.org/

What's Rootstock
Rootstock is a project to bring smart contracts (Turing-complete
smart contracts) to the ecosystem of Bitcoin. Rootstock (www.rsk.co) is
a separate blockchain attached to the Bitcoin blockchain through the
use of a two-way peg. When you send a Bitcoin over to Rootstock
(via a special address where they will be locked and un-spendable) it
becomes a "Smart" Bitcoin living in Rootstock which can be sent
back to the Bitcoin chain. This concept is known as a sidechain.
Technically, Rootstock nodes are using a port of Ethereum (Java
source) harnessing the EVM and its Turing-complete language to
write and run smart contracts. Moreover, it promises faster payment
and scaling up to 100 transactions per second.

http://www.rsk.com/

Rootsock setup
To get started, we first need to install RskJ (a Java implementation of
the RSK protocol). The setup process is quite straightforward, and
uses the following commands:

sudo add-apt-repository ppa:rsksmart/rskj

sudo apt-get update

sudo apt-get install rskj

After the installation finishes, a configuration wizard will prompt you
to select your network. Let's choose testnet.

To reconfigure your node once installed, you need to change the
configuration files that are located in /etc/rsk/. Firstly, in node.conf you
have to enable account creation by adding enabled = true inside the
wallet configuration section :

wallet {

 accounts = []

 enabled = true

}

Secondly, to change the CORS parameter from cors = "localhost" to
cors = "*".

We also enable the prune service by setting the parameter enabled =
true in the prune section.

Interactions with RSK
After having configured the RSK node, we can then manage it as a
service which can be started with :

sudo service rsk start

As result RSK will run as a daemon in the background and download
the blockchain (a few Gbs) in the /var/lib/rsk/database/testnet
directory. Similarly, you can stop, restart or check the situation of the
service using:

sudo service rsk restart

sudo service rsk stop

service rsk status

For a detailed overview of an RSK node's behaviour, you can consult its logs using tail -f
/var/log/rsk/rsk.log

The RSK project provides a useful console that enables interacting
with an RSK node through RPC calls. We can install this utility using
npm:

git clone https://github.com/rsksmart/utilities.git

cd utilities/console && npm install

After the installation is complete, open a new CLI and run the
following command to access the console (by default RSK node runs
in port 4444):

node console.js -server localhost:4444

This will open for you an interactive console that allows you to send
commands to your RSK Smart node. You can find a list of available
RPC commands in the official documentation.

It worth mentioning that an RSK node behaves like an Ethereum
node by exposing the Web3 API over RPC, whereas the JavaScript
console is a wrapper for web3js API (part of Ethereum project) to execute
Web3 available calls in a Bitcoin-related environment. We will cover
in depth this API in chapter 4, 5 and 6.

To check if the blockchain is synced, we can use in the RSK console the command web3.eth.syncing
which should return false (which might also mean that the node isn't syncing) and the
web3.eth.blockNumber command should return the same block number as the latest block in RSK
explorer (explorer.testnet.rsk.co/blocks).

https://github.com/rsksmart/rskj/wiki/JSON-RPC-API-compatibility-matrix

Accounts settings
Whilst waiting for the blockchain to synchronize, let's create a new
account from RSK console :

web3.personal.newAccount('YourPassword')

web3.personal.unlockAccount(web3.eth.accounts[0], 'YourPassword', 0)

The result should look like :

Obviously the balance is null because the freshly created account
hasn't yet received any SBTCs. To change that we need load this
account with some free Smart Bitcoins (SBTC). For that, we can
request them from an online faucet provider such as http://faucet.testn
et.rsk.co.

You can check your new balance a few moments later using the
following command :

web3.eth.getBalance(web3.eth.accounts[0]).toNumber()

Where web3.eth.accounts[index] is an array of the created accounts.

Note that while the blockchain isn't synced you'll get also a null
balance. You can instead check the balance online using the Testnet

http://faucet.testnet.rsk.co/

RSK explorer : https://explorer.testnet.rsk.co/address/<your
addresss>

Note: If you want to use the sidechain aspect of rootstock (2-way peg mechanism) whereby each Bitcoin
can be converted into a Smart Bitcoin you should first whitelist your address (https://github.com/rsks
mart/rskj/wiki/Whitelisting-in-RSK) and send the Bitcoins to the TestNet Federation address :
2MyqxrSnE3GbPM6KweFnMUqtnrzkGkhT836. Then you'll need to convert your private key to an RSK
private key using https://utils.rsk.co and import it into RSK's node.conf

https://github.com/rsksmart/rskj/wiki/Whitelisting-in-RSK
https://utils.rsk.co/

Writing your first Bitcoin
smart contract
To write smart contracts in RSK we should use Solidity, which is an
Ethereum smart contract language. In this chapter we will not go into
detail about Solidity but rather we will limit the explanation to how to
deploy and interact with a Solidity smart contract in RSK. We will
delve into Solidity in the Ethereum chapters.

As a first smart contract we consider the code snippet:

pragma solidity ^0.4.21;

contract store {

 string public Message;

 function set (string NewMessage) public {

 Message = NewMessage;

 }

}

If you're unfamiliar with Solidity, know that this smart contract
defines a variable called Message and a setter method to edit its value.
In other terms we read and store a message into the blockchain.

Deploying the contract
If your RSK node is synchronized with the network, we can easily
deploy our contract using Remix. Remix is a browser-based IDE that
enables developers to compile and deploy Solidity smart contracts
into the blockchain. Further instructions and details about Remix will
be presented in the chapter 4 and 5.

We need to connect Remix to our running RSK node by following
these steps :

Open the Remix IDE by visiting: http://remix.ethereum.org

In the Run tab (right menu), select Environment -> Web3
provider.

In the pop up define http://localhost:4444 as your Web3 provider
endpoint.

Once connected, paste the contract code into Remix's code section
and in the right-hand panel press the Deploy button to send a
transaction that deploys the selected contract. RSK VM is based on
Ethereum VM, therefore the cost of deploying and interacting with
the smart contract is calculated in gas. Nevertheless the gas will be
paid in SBTC.

While transferring the contract to the RSK network, Remix will
display important information in the console located on the bottom of
the main section.

http://remix.ethereum.org/

Interacting with the contract
After we’ve deployed the contract, we can interact with the contract
instance in the Testnet network, using the same tool Remix we used in
the deployment. If the deployment succeeded, Remix will provide
you with a form in the right-hand pane to execute the contract's
methods. In our case we'll pass a new message as a string (with
quotes) "hello" to the method set() .

Then press the blue Message button to make Remix request the variable
value from the contract's storage. It will return the last stored
value,"hello", as expected.

Great, you've successfully built and deployed your first contract into
the RSK Testnet network. If you are tempted to deploy your contract
in the main network you have to whitelist your account by making a
request to the RSK team, as the network is closed to whitelisted
participants.

RSK isn't the only attempt to bring advanced smart contract
capabilities to Bitcoin. Other projects such as Counterparty aim to

https://github.com/CounterpartyXCP

provide a protocol based on Bitcoin to enable Ethereum-like smart
contracts and building DApps. On the other hand, unlike the former
which is based on Ethereum, Ivy is a new smart contract language
that compiles to Bitcoin Script. To play around with Ivy you can use
an online contracting tool https://ivy-lang.org/bitcoin.

https://ivy-lang.org/bitcoin

Summary
Congratulations! You are now qualified to write production
applications using the most popular blockchain – Bitcoin – whether
as a payment system or as a platform for running advanced smart
contracts.

In this walkthrough we have consolidated our understanding of
Bitcoin and dissected in depth its underlying scripting mechanism.
More importantly, you know now how to integrate Bitcoin payments
into applications and websites using the bitcore library. Lastly, we
discovered how to use an RSK network for deploying and interacting
with Solidity smart contracts in a Bitcoin environment.

Stay tuned for the next chapter, where we will learn something very
exciting. You will discover how to build your own cryptcurrency
using Bitcoin's codebase. For sure it will be a golden occasion for you
to deepen your understanding of Bitcoin's protocol and blockchain in
general.

Chapter 3 : Building your
own cryptocurrency

Introduction
In the previous chapter you learned about major concepts behind
Bitcoin by building a payment system based on the Bitcoin payment
protocol. Alongside this you took earlier advantage of projects like
Rootstock to enable advanced smart contract capabilities. However,
there is no better way to cement and deepen your understanding of
the blockchain than to build your own cryptocurrency. Although
building a currency from scratch is beyond the scope of this book,
you will examine instead how to build your own cryptocurrency
based on the existing Bitcoin codebase.

In this chapter we'll cover the basic concepts necessary to build an
alternative cryptocurrency (known as an altcoin) that offers almost all
the functionalities of Bitcoin, which we will call Readercoin. I don't
expect the reader to have strong programming skills, neither deep
knowledge of Bitcoin's details, consequently I present herein a
simplified guide to help anyone to customize Bitcoin and create a
new clone – a new cryptocurrency.

This chapter is broken into two main parts:

1. Compiling the Bitcoin code.

2. Designing and building Readercoin.

By the end of this this two-part guide you should be able, among
other things, to clone Bitcoin, and build and mine your new currency.

Compiling Bitcoin from
source
The Bitcoin project is open sourced under the MIT license. Therefore
it's possible for you to experiment with its source code and build your
own derivative cryptocurrency. As a first step toward creating your
own currency, it would be opportune to start by compiling the
original Bitcoin source code without modification to get accustomed
with the building process.

Preparing your build system
 To get the most out of this first section you'll need the following
elements :

Two or more computers or virtual machines – I will be using my
laptop and a ubuntu 16.04 VM. The guide should work on 14.04
and 17.04 as well

Text Editing Software – I'm using nano.

Time, Patience, and lots of Arabic coffee...

Preferably, you should have some basic knowledge of C++
programming, at least you should be able to understand the basic
compiling errors and how to fix them. Furthermore, this chapter
covers some technical topics about the Bitcoin protocol, which you
might want to read up on beforehand in the previous chapters along
with the official documentation.

https://bitcoin.org/en/developer-documentation

Installing dependencies
Before we advance further, I would like to note that we will be using
the Bitcoin core project as it's the most complete implementation of
the Bitcoin protocol. The project is based on many external libraries
such as :

libssl : the portion of OpenSSL which supports TLS.

Boost C++: a set of libraries that provide support for tasks and
structures such as multithreading, filesystem operations,
pseudorandom number generation, etc.

libevent: an event notification library.

Miniupnpc: UPnP IGD client (Firewall-jumping support).

libdb4.8 : library for the Berkeley database which is used for
wallet storage (wallet.dat file).

Qt : Qt SDK (only needed when GUI enabled)

Protobuf: Data interchange format used for payment protocol
(only needed when GUI enabled)

To install these dependencies, make sure you upgrade and update any
outdated packages:

sudo apt-get update

sudo apt-get upgrade

Instead of installing all dependencies in one shot, let's install by
grouping the packages:

sudo apt-get install build-essential libtool autotools-dev automake

pkg-config libssl-dev libevent-dev bsdmainutils python3 git

You need to carefully watch the output logs to detect if something
goes wrong. Next step will be to install only the necessary part of the
boost C++ library :

sudo apt-get install libboost-system-dev libboost-filesystem-dev

libboost-chrono-dev libboost-program-options-dev libboost-test-dev

libboost-thread-dev

If that doesn't work for any reason, you can install all the boost
development packages with:

sudo apt-get install libboost-all-dev

Afterwards, you'll need to install the Berkley database, which is what
the Bitcoin software uses for wallet storage, and to store necessary
functions that make the wallet work correctly (BerkleyDB for wallet
files, and LevelDB for blockchain indexes).

To Install Berkeley 4.8 libs on Ubuntu 16.04, run the following
commands:

 sudo apt-get install software-properties-common

 sudo add-apt-repository ppa:bitcoin/bitcoin

 sudo apt-get update

 sudo apt-get install libdb4.8-dev libdb4.8++-dev

Bitcoin-qt: Qt5 GUI for
Bitcoin
If you are interested in running the graphic interface GUI toolkit all
you need to do is install the following QT5 dependencies:

sudo apt-get install libqt5gui5 libqt5core5a libqt5dbus5 qttools5-dev

qttools5-dev-tools libprotobuf-dev protobuf-compiler qt5-default

Your build system is ready now, with all the packages installed we
can start building the Bitcoin source code.

Cloning the Bitcoin source
code
Prior to building the code, start by creating a source directory called
"workspace" where we clone the Bitcoin Core source repository:

mkdir workspace && cd

To download the Bitcoin Core source code, we'll use git to clone the
latest version of its repository into the current local directory :

git clone https://github.com/bitcoin/bitcoin.git && cd bitcoin

The download process will take a few minutes. At the end you'll get a
new directory called bitcoin/ with all the Bitcoin source code files.

https://git-scm.com/
https://github.com/bitcoin/bitcoin.git

Building Bitcoin Core
As the dependencies are installed we can build the code using
autotools by running in succession the commands below :

 ./autogen.sh

 ./configure --with-gui=qt5 --enable-debug

 sudo make

Pay attention to the space and double dash in front of both options
with-gui and enable-debug.

It's common to supply some options to the configure command to
change the final location of the executable program. You can explore
the different possible options in the official documentation https://gith
ub.com/bitcoin/bitcoin/blob/master/doc/build-unix.md

As you notice we passed the configure file two arguments: --with-
gui=qt5 to build the graphical interface and --enable-debug to produce
better debugging builds. If you want to build only a headless Bitcoin
client, use --without-gui.

In order to accelerate the building process you can skip running the tests by specifying the --disable-
tests argument.

After running the make command, the initial compile will take quite a
long time. Think about taking a coffee.

If all the dependencies have been installed correctly, a test
compilation should be achieved successfully at the end of
compilation process. If you got an error somewhere, have a look at
the compilation output to spot the error.

https://github.com/bitcoin/bitcoin/blob/master/doc/build-unix.md

Alternatively, you can run qmake, which is the qt make tool, before running make or you can install Qt
Creator and open the bitcoin-qt.pro file located under contrib folder.

Now that the software is built and ready to run you can optionally
install it by running the command below:

sudo make install

This will add the Bitcoin commands to your PATH so that you can
simply run bitcoin-qt or bitcoind to start the Bitcoin client without
specifying the binary location. Keep in mind that you have to re-run
make install each time you edit and compile your code to update your
client.

Congratulations you have compiled successfully Bitcoin from its
source code.

Checking your build worked
Here are a couple more commands to make sure that the build
worked, and to make sure the executable files it was supposed to
generate are actually there. From the bitcoin/ directory run :

ls src/bitcoind

ls src/bitcoin-cli

ls src/qt/bitcoin-qt

Running this command will show you the Bitcoin Core welcome
screen similar the following figure :

Excellent! If Bitcoin runs without error that means your build
environment has everything you need to create an altcoin. Let's start
making your altcoin.

New cryptocurrency:
ReaderCoin
Big time! Finally.

Although "Readercoin" will be a derivative coin from Bitcoin, we
will design it differently. We need to define, amongst other
characteristics, how the new altcoin is minted, money supply, altcoin
brand, etc...

The following table summarizes the important parameters we'll
define for Readercoin :

Cloning Bitcoin
Bitcoin is a highly active project frequently releasing new releases.
The current version at the time of writing is 0.15 – you can view a list
of project releases at https://bitcoin.org/en/version-history. From one
version to another a lot of features get added or removed, therefore
you must examine the changelog to see if there is any special feature
you are interested in. For example, internal mining got removed in
version 0.13.

To build ReaderCoin, I've opted for using the last major version, 0.15.
Create a directory called readercoin and clone Bitcoin 0.15 code as
follow:

git clone -b 0.15 https://github.com/bitcoin/bitcoin.git readercoin &&

cd readercoin

git gives us access to all past and future versions, hence you can
choose different branches using the -b option .

Now we have to remove Bitcoin's ties to the original Bitcoin
repository. This can be easily done with the command:

rm -rf .git

To enable git versioning, you can initialize a new git repository on
your newly created folder "Readercoin", add the existing files, and
commit them:

https://bitcoin.org/en/version-history

git init

git add -A

git commit -m "initial commit"

Besides being a good habit, maintaining a remote repository will help
us to compile our ReaderCoin client on different machines without
the need to copy the code each time.

Go to the GitHub website and create a new online repository, then
add your repository's git URL as the remote repository. Afterwards,
push your initial commit:

git remote add origin https://github.com/bellaj/Readercoin_.git(use

instead YOUR NEW GITHUB REPO's url)

git push -f origin master

Remember before you start editing the code, that you can at any level
of the following guide compile the code using make to check if the
addition process is successfully done or not. It's advised to commit
and push working changes to your remote repository as it will help
you to make rollbacks if there are any compilation issues, or if you
want to compile code on other machines.

Readercoin rebranding
We kick off by rebranding the Bitcoin project into ReaderCoin by
renaming the 'bitcoin' filenames to "readercoin" using the following
commands:

find . -exec rename 's/bitcoin/readercoin/' {} ";"

find . -exec rename 's/btc/rdc/' {} ";"

These Linux commands will rename every file that has 'bitcoin' or
'btc' in the name, recursing into subdirectories as needed.

As changing filenames will affect source files and make files,
breaking paths and include statements, we need to replace all the
occurrences of the old Bitcoin name and abbreviation of the BTC
with the new name ReaderCoin and acronym RDC recursively in the
code. To be sure of replacing all occurrences we use different
capitalizations:

find ./ -type f -readable -writable -exec sed -i

"s/bitcoin/readercoin/g" {} ";"

find ./ -type f -readable -writable -exec sed -i

"s/Bitcoin/Readercoin/g" {} ";"

find ./ -type f -readable -writable -exec sed -i

"s/BitCoin/ReaderCoin/g" {} ";"

find ./ -type f -readable -writable -exec sed -i

"s/BITCOIN/READERCOIN/g" {} ";"

find ./ -type f -readable -writable -exec sed -i

"s/bitcoind/readercoind/g" {} ";"

find ./ -type f -readable -writable -exec sed -i "s/BTC/RDC/g" {} ";"

find ./ -type f -readable -writable -exec sed -i "s/btc/rdc/g" {} ";"

Instead of running these commands separately, you can put them in a
single bash script. The command above will take a few minutes to
complete. To check if there are any remaining occurrences of the
Bitcoin string use: grep -ri "bitcoin"

Alternatively, you can use a text editor like gedit to find and replace all Bitcoin and BTC occurrences in
the project source files.

Changing the Bitcoin occurrences will also affect the git files. Hence,
If you want to keep using git you have to use the following
commands to avoid git's bad index file signature error:

rm -f .git/index

git reset

git add -A

git commit -m "rename bitcoin into readercoin occurrences"

git push origin master

To start code editing, change the working directory to "src" (cd src).

Changing the ports
To operate, Bitcoin uses two ports on which the client will listen to
establish connections, namely:

p2p port (by default 8333 in mainnet and 18333 in testnet)

RPC port (by default 8332 in mainnet and 18332 in testnet)

We will define different ports for both mainnet and testnet, to be able
to run your altcoin alongside a Bitcoin client without port overlap.
Remember, mainnet and testnet are acronyms for main and test public
networks.

Get your favorite text editor and open up chainparams.cpp located in
the src/ folder. Find the network parameters, including the ports, and
then change the following variables :

For mainnet (CMainParams class)

chainparams.cpp: nDefaultPort = 9333;

chainparams.cpp: nDefaultPort = 19333;

For testnet (CTestNetParams class):

chainparamsbase.cpp: nRPCPort = 9332;

chainparamsbase.cpp: nRPCPort = 19332;

To make modifications consistent with the whole code, change the
port occurrences in all files using Linux commands:

find ./ -type f -readable -writable -exec sed -i "s/8332/9332/g" {} ";"

find ./ -type f -readable -writable -exec sed -i "s/8333/9333/g" {} ";"

Feel free to choose any port you like but avoid the mainstream ones
(below 1000, like 80 for HTTP).

Great! Remember that you can always change either the Bitcoin port
or your altcoin's port just by providing the options -rpcport and -port in
the command line or in the file readercoin.conf without editing the
Bitcoin codebase.

Changing pchMessageStart
The Bitcoin node broadcasts in each P2P frame 4 bytes known as
magic values to ensure that only the client/peers belonging to the
same network can communicate. The magic bytes are represented in
the array pchMessageStart[] to identify the used network as described in
the table below.

To differentiate our ReaderCoin network we will change
pchMessageStart values by incrementing them by 2. Always in
chainparams.cpp, edit pchMessageStart in the CMainParams class using the
following values:

pchMessageStart[0] = 0xfd;

pchMessageStart[1] = 0xc0;

pchMessageStart[2] = 0xb6;

pchMessageStart[3] = 0xdb;

For CTestNetParams class:

pchMessageStart[0] = 0x0d;

pchMessageStart[1] = 0x13;

pchMessageStart[2] = 0x0b;

pchMessageStart[3] = 0x09;

For CRegTestParams (represents regression test network):

pchMessageStart[0] = 0xfc;

pchMessageStart[1] = 0xc1;

pchMessageStart[2] = 0xb7;

pchMessageStart[3] = 0xdc;

There is no special reason behind these specific values, you can use
any value between the hexadecimal values: 0 and 0xFF

Genesis block
Now we will deal with the crucial part: the genesis block.

A genesis block is the first block in a blockchain. When a node boots,
it initializes its copy of the blockchain alongside the genesis block
and then begins the synchronization process. To start a new chain for
our currency, we need to forge a new genesis block and override the
original one hardcoded in the Bitcoin code as it was set for older date
(January 2009).

Here's the source code of the function that generates the genesis
blocks defined in chainparams.cpp:

We can easily spot some pre-defined values such as the key for the
genesis coinbase transaction and a timestamp message, etc. Editing

the content of this block implies calculating a new genesis hash
required for other parameters within the chainparams.cpp code.

For creating the new genesis block we'll use a dedicated Python script
called GenesisH0.

For that, in a new terminal, clone the genesis generator script
(GenesisH0) from its GitHub repository:

git clone https://github.com/lhartikk/GenesisH0.git && cd GenesisH0

Then install the required package:

sudo pip install scrypt construct==2.5.2

To reproduce the original genesis block run the GenesisH0 with the
following arguments:

python genesis.py -z "The Times 03/Jan/2009 Chancellor on brink of

second bailout for banks" -n 2083236893 -t 1231006505 -v 5000000000

You need to understand what means each argument to replace with
appropriate value:

The -z option indicates an optional timestamp represented by an
arbitrary paraphrase with a date, usually a headline of a news
article can be chosen. The Bitcoin's genesis block famously
contains the dated title of an article in the Financial Times: "The

Times 03/Jan/2009 Chancellor on brink of second bailout for banks"

This is probably intended as proof that no premining has taken place
before 2009. You can put a recent news headline or any time-related

information. For example, I'll use the book's name with the
publication year "blockchain by example 2018".

For the nonce (-n) you can set any value to be used as a start
nonce.

For the epoch (-t) you can use the current time epoch. You can
get the current epoch time online from: www.epochconverter.com/ or
you can generate it from the command line of most *nix systems
with this code: date +%s

For -v you need to determine the coin reward value and multiply
it with * 100000000. For example, if you have a block reward of
50 it would be -v 5000000000. We will generate only 10
ReaderCoins for the genesis block.

-b represents the target in compact representation, associated to a
difficulty of 1. To get a block in 2.5 minutes we will use
0x1e0ffff0

We end up with the following command with different arguments to
generate the new genesis block:

python genesis.py -z "Blockchain by example 2018" -n 1 -t 1529321830 -v

1000000000 -b 0x1e0ffff0

After a short while you should see an output similar to the following:

http://www.epochconverter.com/

Bingo, you now have the genesis block information that you need to
use in your codebase.

Except the first line, which is the Scriptsig of the genesis transaction,
the rest of the output results are identified by an expressive keyword.

Let's edit the /src/chainparams.cpp file accordingly to integrate the new
generated genesis block. Specifically, our target will be the function
CreateGenesisBlock :

New pszTimestamp
Let's change the original value defined by Satoshi, located inside
the CreateGenesisBlock function to the new passphrase we used in
GenesisH0 script:

const char* pszTimestamp = "Blockchain by example 2018";

New nonce, epoch time, and
nbits
We have to locate the following line in chainparams.cpp in the three
classes CMainParams, CTestNetParams and CRegTestParams

genesis = CreateGenesisBlock(time, nonce, bits, 1, 10 * COIN);

In the order change the arguments of the CreateGenesisBlock function
using the values computed previously by GenesisH0 script as
following:

genesis = CreateGenesisBlock(1529321830, 490987, 0x1e0ffff0, 1, 10 *

COIN);

The last argument in the function is the initial reward (10
ReaderCoins) for generating the genesis block.

New genesis hash
While we have edited some values in the genesis block, the block's
hash provided by Satoshi is no longer valid. Therefore, we have to
replace it with the new one provided by GenesisH0 script.

Under the chainParams.cpp file you will find several occurrences of the
following assertion, which refers to the old hash value of the genesis
block.

assert (hashGenesisBlock == uint256 ("genesis block hash"));

These assertions verify if the genesis block hash is congruous,
otherwise code execution fails and halts further code execution. You
can either comment out all these assert methods or replace the hash
with the new value of your generated genesis block (by adding 0x as
prefix).

If you get any errors related to these assertions later when you run
your client, you can check if the hashes matched by printing out the
computed genesis hash:

printf ("Readercoin hashGenesisBlock: % s \ n",

consensus.hashGenesisBlock.ToString (). c_str ());

Editing the Merkle root
A Merkle tree is an important piece in Bitcoin's puzzle. It's a
fingerprint of the entire list of transactions, thereby enabling a user to
verify whether or not a transaction has been included in the block.

In testparams.cpp look for the following line:

assert(genesis.hashMerkleRoot == uint256s('merkle hash value');

Replace the Merkle hash with the hash calculated by GenesisH0. To
check the genesis block Merkle root you can print its hash root:

printf ("Readercoin hashMerkleRoot:% s \ n",

genesis.hashMerkleRoot.ToString (). c_str ());

All set. We have finished defining the new genesis block.

Removing the seed nodes
Next, we'll need to remove the DNS seeds from the code. Bitcoin
uses built-in DNS seeds which are a list of host names for DNS
server to discover other nodes. A Bitcoin client issues DNS requests
to learn about the addresses of other peer nodes, and in response the
DNS seeds return a list of IP addresses of full nodes on the Bitcoin
network to assist in peer discovery.

We'll need to remove or comment out the hardcoded seed nodes in the
chainparams.cpp file. In this file you'll find a vector of seed (vSeeds) to
which they append a list of DNS URLs:

vSeeds.emplace_back("seed.bitcoin.sipa.be", true);

We need to comment out all occurrences of vSeeds.push_back and
vSeeds.emplace_back in both CMainParams and CTestNetParams.

It's not over yet with seeds as we'll need to deal with fixed IP seeds
whether by commenting out the occurrences on the following line:

vFixedSeeds = std::vector<SeedSpec6>(pnSeed6_main, pnSeed6_main +

ARRAYLEN(pnSeed6_main));

Or by replacing this line with:

vFixedSeeds.clear();

vSeeds.clear();

Otherwise you can include your proper DNS seeds servers. In
chainparamseeds.h you'll find a list of IPs (wrapped inside IPv6
addresses) of nodes that can be connected to for mainnet and testnet
to retrieve more IP addresses of nodes that can be connected to.

To setup a seed node, you just need to run a normal node for
ReaderCoin and add its IP address to chainparamseeds.h or anticipate a
list of IPs that you'll use for your nodes later.

Under contrib/seeds there is a Python script generate-seeds which will
help you to generate the pnSeed6_main and pnSeed6_test arrays that are
compiled into the client.

In nodes_test.txt and nodes_main.txt remove the existing IPs, set all
your node IPs (one IP per line), then run:

~/workspace/readercoin/contrib/seeds$ python3 generate-seeds.py . >

../../src/chainparamseeds.h

Checkpoints
The Bitcoin Core client has hardcoded checkpoints checking that
certain specific blocks should be found at certain heights. They are
regularly added in new versions of the client to avoid accepting any
forks from the network prior to last checkpoint, making transactions
irreversible.

As our blockchain doesn't have previous blocks you have to disable
these checkpoints for ReaderCoin, otherwise your node will not be
able to construct additional blocks nor start mining as it will be
waiting for nonexistent blocks.

In the chainparams.cpp file, locate the checkpointData map:

The map stores a collection of pre-set checkpoints such that the first
element of each pair is the block height, and the second is the hash of
that block.

Remove all checkpoints pairs to end up with the following form:

checkpointData = (CCheckpointData) { { {}, } };

Make the same modification in the mainnet, testnet and regtest
classes. Alternatively, in validation.h you can set the following
constant to false : static const bool DEFAULT_CHECKPOINTS_ENABLED = true;

or in checkpoints.cpp you can hack the GetLastCheckpoint function by
making it return a null pointer as follows:

CBlockIndex* GetLastCheckpoint(const CCheckpointData& data) {

 const MapCheckpoints &checkpoints = data.mapCheckpoints;

 for (const MapCheckpoints::value_type& i :

reverse_iterate(checkpoints)) {

 const uint256 &hash = i.second;

 BlockMap::const_iterator t = mapBlockIndex.find(hash);

 if (t != mapBlockIndex.end()) {

 // return t->second;

 return null;

 }

 }

 return nullptr;

}

Now the checkpoints are disabled. Nonetheless, if you want to keep
them, you can pre-mine 50 blocks, and put their weights and hashes
in the checkpoints, and then re-enable the checkpoints. After all, they
are a powerful way for blockchain developers to protect against re-
mining the whole chain.

The message "readercoin is downloading blocks" will be displayed if the client hasn't yet downloaded all
the checkpoint blocks.

ChainTxData
The next manoeuvre is to change some parameters in the chaintxdata
structure, which represents the blockchain state at a specific
timestamp using data of a specific block. In the Bitcoin code you will
find recorded the blockchain snapshot's state at January 3, 2017
where the total number had reached 446482 mined blocks:

As our chain doesn't have any blocks yet we can use instead our
genesis block and edit the values accordingly. Thus, the first
argument 1483472411 should be changed to the timestamp used in
the creation of the genesis block. The second number, 184495391,
should be set to 1 because there is only the genesis transaction mined
at that time. Finally, change the third value to 1.

Rewarding
At this level, we are finally going to change the "monetary" variables
of our new Cryptocurrency, such as issuance rate and the total
amount of ReaderCoins circulating. As you might know, the Bitcoin
protocol rewards miners by giving them freshly minted coins for
doing their job. The reward is 50 new coins, which decreases
constantly with time.

In src/validation.cpp you'll find a parameter called nSubsidy in
the GetBlockSubsidy function which defines the initial value of the
reward. We will be less generous, we will set this value to 10 as
follows:

CAmount nSubsidy = 10 * COIN;

Remember we have set the same reward value when we have
generated our genesis block in the CreateGenesisBlock function in
chainparams.cpp to be consistent with the defined reward per block.

Halving
For Bitcoin the mining reward is cut in half every 210,000 blocks,
which will occur approximately every 4 years. In Bitcoin the reward,
initially set to 50 BTC, fell to 25 BTC in late 2012, to 12.5 BTC in
2016 and so forth until the reward tends to 0 at the 64th halving.

To change the halving rule, in chainparams.cpp you have to edit the
following parameter:

consensus.nSubsidyHalvingInterval = 210000;

Let's reschedule the halving interval in main and test at 100,000
blocks, equivalent to 174 days.

In src/validation.cpp, the halving mechanism formula is defined in
the GetBlockSubsidy function which determines the reward amount at a
specific height in the blockchain :

Such that:

nHeight is the number of blocks that have been found.

consensusParams.nSubsidyHalvingInterval specifies the halving's
interval block.

nSubsidy finally gives the number of satoshi that the coinbase may
create.

After another number of blocks equivalent to nSubsidyHalvingInterval
the reward halves again. Thus, the number of bitcoins in circulation
asymptotically approaches nSubsidy*nSubsidyHalvingInterval*2.

Total supply
Bitcoin is designed in a such manner so it has a total circulation of
approximately 21 million bitcoins (20,999,999.9769 bitcoins). In the
header file amount.h there is a total supply MAX_MONEY sanity check:

Such that COIN is equal to 10^8 Satoshi (the smallest Bitcoin unit). As
per our design we will set MAX_MONEY to 20,000,000 (rounded number).

Contrary to what one might think in the actual Bitcoin code, there is
actually no total supply parameter which defines how many
bitcoins will be generated. Nevertheless, there are rules put in place
that dictate how many bitcoins will be released depending on the
reward and halving rate. The following Python script simulates how
the total supply is deduced from the initial reward value and the
halving interval. It will print out a total of 1999999.987 units:

COIN = 100 * 1000 * 1000

Reward = 10

Halving = 100000

nSubsidy = Reward * COIN

nHeight = 0

total = 0

while nSubsidy != 0:

nSubsidy = Reward * COIN

nSubsidy >>= nHeight / Halving

nHeight += 1

total += nSubsidy

print "total supply is", total / float(COIN)

POW parameters: target
As you know, proof of work is the consensus mechanism used in
Bitcoin to validate (mine) the blocks. It's a repetitive brute force
process aiming at finding the hash which meets specific
requirements. Each hash basically gives a random number between 0
and the maximum value of a 256-bit number (which is huge). If the
miner's hash is below the given target (a special hash value) then he
wins. If not, he increments the nonce (completely changing the hash)
and tries again.

The target is a 256-bit number that represents a threshold. Actually, it
represents a threshold such that the SHA-256 hash of a candidate
block's header must be lower than or equal to in order to be accepted
as a valid and added into the blockchain.

In the chainparams.cpp file there is a powLimit parameter which describes
the absolute highest target which at the same time is the lowest
possible difficulty:

consensus.powLimit =

uint256S("00000000ff");

This limit represents by definition a difficulty of 1. In order to
produce blocks each 2.5 minutes, we use instead the following value:

consensus.powLimit =

uint256S("00000fff");

This target can also be represented in the code by nBits=0x1e0ffff0. In
fact, the variable genesis.nBits defined in chainparams.cpp represents the
compacted form of the target powLimit value.

In the same file, Bitcoin defines also the following parameter:

consensus.nMinimumChainWork =

uint256S("0x001b3fcc3e766e365e4b"

);

This specifies the minimum amount of chain work that a client must
have before it will consider itself synchronized. As we are running a
new chain, the minimum should be zero for both testnet and mainnet:

consensus.nMinimumChainWork = uint256S("0x00");

New block time
In Bitcoin blocks are created and transactions get confirmed every 10
minutes. Therefore, you might assume that Bitcoin is incredibly slow
network and you might want to reduce this delay in Readercoin. On
our side, we will produce ReaderCoin's blocks every 2.5 minutes (as
in Litecoin).

Before tinkering, let's understand the mechanic behind the minting
rule of "10 minutes".

In Bitcoin, there is no parameter directly defining the block time, but
actually it depends on the hashing power of the network and delay. 10
minutes was a choice made by Satoshi for stability and low latency
reasons. Initially he defined an initial hash target (powLimit) that needs
10 minutes to be calculated, then the protocol tries to keep this bock
time by adjusting the blockhash so it can be found within a specific
retargeting period.

Therefore the first related concept to introduce is the difficulty.

Difficulty adjustment time
interval
Difficulty is a concept used to express how difficult it is to reach the
current hash target in comparison to the initial hash target used to
mine the genesis block. The difficulty value is not used internally in
Bitcoin but it's a metric used to express a target's height change.

In Bitcoin after each 2016 blocks, each node looks at the time stamps
of the past 2015 blocks and adjusts the difficulty using the following
function defined in src/consensus/params.h :

int64_t DifficultyAdjustmentInterval() const {

 return nPowTargetTimespan / nPowTargetSpacing;

}

Both parameters nPowTargetTimespan and nPowTargetSpacing are defined in
chainparams.cpp where we will set the new following values to keep
block generation at 2.5 minutes:

consensus.nPowTargetTimespan = 24 * 60 * 60;

consensus.nPowTargetSpacing = 2.5 * 60;

The nPowTargetSpacing parameter indicates the average time (2.5
minutes) in which it should be possible to solve the computational
problem of a new transaction block, whereas the nPowTargetTimespan
parameter,adjusts the time interval (a day) during which the difficulty
of the proof-of-work problem should be recalculated and adjusted.
Therefore, difficulty is adjusted every 576 blocks (24 * 60 * 60 / 2.5
* 60).

If the coins were on average generated too quickly since the last
adjustment, the difficulty is increased. If they were generated too
slowly, it is decreased. We therefore have to change in the
chainparams.cpp file the value of the consensus.nMinerConfirmationWindow
parameter from 2016 to 576.

Difficulty adjustement rate
The GetNextWorkRequired function defined in src/pow.cpp is responsible for
redefining difficulty by defining the next hash target to keep block
production on the desired interval time:

Let's break down this function and jump directly to the important part
recalculating the new difficulty after the difficulty adjustement time
interval:

int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime;

This calculates the time between the current time and the time of
2016 blocks (576 for ReaderCoin) ago.

const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);

bnPowLimit is the absolute maximum target corresponding to the lowest
difficulty.

bnNew is the new target represented in compact form (current target)
using : bnNew.SetCompact(pindexPrev->nBits);

When we retarget we move the target value up or down by the ratio
(nActualTimespan/params.nPowTargetTimespan).

bnNew *= nActualTimespan;

bnNew /= params.nPowTargetTimespan;

We cap the difficulty at the powlimit value to avoid using a target
above the minimal target hash.

if (bnNew > bnPowLimit) bnNew = bnPowLimit;

Then the function returns the result as a 32-bit 'compact'
representation of the difficulty, as the nbits we used in chainparams.cpp
previously: return bnNew.GetCompact();

Thus, if for some reason 576 blocks is taking more or less than 24
hours by 20%, each node will lower or increase the difficulty (hash
target value) by 20% to bring block production back to the 2.5-minute
block target for a few iterations.

Time maturity
The coinbase maturity indicator indicates a time window of 100
blocks between the creating block and the spending block. For
ReaderCoin we decrease this limit from 100 to 50. In the
src/consensus/consensus.h file we edit the following line of code:

static const int COINBASE_MATURITY = 50;

The reason behind this measure is to make coinbase transactions with
less than COINBASE_MATURITY (50) confirmations unspendable to avoid
spending coins generated for orphaned blocks.

Block size
Welcome to the most controversial issue in Bitcoin!

Block size is simply the size, in bytes, of the serialized block. Initially
Bitcoin's block had a maximum size set to 1 MB. This limit was
introduced initially by Satoshi to protect the network against DOS
attacks, until it was recently raised after the introduction of Segwit.
Segwit, or Segregated Witness, is a technique enabling the production
of blocks with a size of up to 4 MB by putting their signatures (which
use roughly 60 percent of transaction space) in an extra space
enabling block capacity to be scaled while maintaining backward
compatibility. Segwit introduced the concept of weight instead of
size, enabling old nodes (which recognise only 1 MB blocks) to only
see placeholders, while nodes upgraded to Segwit are still able to see
the whole block and validate the signatures (4MB).

The calculation of the weight is a bit more complicated than the
simple "block size = 1 MB". The miners now need to build blocks
which do not violate the conditions determined by the CheckBlock()
function defined in validation.cpp:

The GetSerializeSize function just computes the size in bytes of a
serialized block for the network ignoring witnesses. Therefore we can
deduce that the weight is proportional to size by factor of
WITNESS_SCALE_FACTOR as follows: maximum size = Weight/ WITNESS_SCALE_FACTOR

Any block such that block.vtx.size() is larger than 1 megabyte will be
rejected as invalid.

You might find this weight concept a useless fancy hack but it isn't as
is solves the dilemma of scaling Bitcoin without breaking the Bitcoin
network consensus (backward compatibility). As we are starting a
new network we can directly increase block size or keep the Segwit
solution with a higher block weight. In this guide we'll opt for the
second approach.

Prior to Bitcoin 0.15 the limit was defined in the
src\consensus\consensus.h as follows:

static const unsigned int MAX_BLOCK_BASE_SIZE = 1000000;

This set the maximum limit of a Bitcoin block to 1 MB excluding
witness data.

After Segwit activation, the weight parameters have been defined in
consensus.h:

To double the weight we have to double the values of these four
parameters. This theoretically allows us to mine blocks up to 8 MB,
but a more realistic maximum block size will be an occasionally rare
7.7 MB (assuming near 100% Segwit transactions). By processing
big blocks, we have to make a trade-off between scalability and the
growth in the blockchain's size. As the blockchain is unalterable
database, reaching a big size implies higher centralisation as few
storage points will be able to store data.

Congratulations, you just replicated the schism of the Bitcoin
community that was proposal BIP141 (Segwit). But what are BIPs?

BIPs: Bitcoin Improvement
Proposals
In the previous chapter we introduced BIPs as a way to introduce new
features to the Bitcoin protocol. Each new improvement (BIP) is
activated at a future block height to give Bitcoin users time to update
their software. In chainparams.cpp you'll find some old important BIPs (
BIP34/65/66) defined as the following checkpoints:

For checkpoints we can use either a block height or hash.

As you are creating a new chain from scratch, you can just use the
genesis block height or hash to have these BIPs activated from the
start.

consensus.BIP34Height = 0;

consensus.BIP34Hash =

uint256S("000001a9bbae8bb141c6941838bdacdbcf474b6ed28a0b18b2120b60a68f00ee");

consensus.BIP65Height = 0;

consensus.BIP66Height = 0;

Alongside the BIP activation time, the next eleven lines describe the
activation rules (re-targeting period, needed activation threshold,
version bit, fork start and ending time) for deploying soft forks :

As we have earlier edited the consensus.nMinerConfirmationWindow = 576;
we can therefore deduce the nRuleChangeActivationThreshold value by
multiplying the confirmation window by 95% to get :

nRuleChangeActivationThreshold=574;

For the rest of the rules you can keep the bit element as it is and set
the nStartTime and ntimeout as following:

consensus.vDeployments[Consensus::DEPLOYMENT_CSV].nStartTime = 0;

consensus.vDeployments[Consensus::DEPLOYMENT_CSV].nTimeout = "your

genesis time stamp";

Just below you'll find the assumption:

consensus.defaultAssumeValid =

uint256S("0x0000000000000000003b9ce759c2a087d52abc4266f8f4ebd6d768b89defa50a"

);

This assumes that the signatures in the ancestors of this block are
valid. We'll need to set this hash to zero :

consensus.defaultAssumeValid = uint256S("0x00");

The modifications above should be performed for mainnet and testnet
as well.

All right. Now our ReaderCoin is ready to be compiled and tested.

Compiling and testing
Tada! The moment we have been waiting for has finally arrived.

As we have done in the beginning of this chapter to build Bitcoin, we
will reproduce the same steps. Thus, let's run the following
commands:

./autogen.sh

./configure --with-gui=qt5 --enable-debug --disable-tests

make && sudo make install

Successful compilation and installation should output as follows:

The expected end result would be to build the executable programs
readercoind and readercoin-qt. You can check by running:

ls ./src/readercoind ./src/qt/readercoin-qt

Awesome, start your client using readercoin-qt.

A graphical interface will show up asking to set the default directory,
but it will show you the Bitcoin logo and icon. Admittedly it's
inconvenient to keep these graphical fingerprints, so let's get rid of
them. Before going further, shut down the running ReaderCoin client.

Design and graphics (Qt
wallet)
The cherry on the cake will be defining a unique icon and image for
your new-born currency, differentiating it from Bitcoin and other
cryptocurrencies.

Under /src/qt/res directory you'll find all the other graphical resource
files that you need to edit including the logo and icon (the file with an
.ico extension) to personalise your graphical interface. Let's start by
changing the background image that shows up when the graphical
wallet is loaded. You can create a new image with a size of
1024*1024 pixels – let's say a big "R" in a circle with a transparent
background – using Photoshop or Gimp, and save it as readercoin.png
under the /src/qt/res directory. You also have to convert this
readercoin.png to "svg" format (readercoin.svg) using an online converter
and save the result in the /src/qt/res/src directory.

When Bitcoin is run in testnet mode, the GUI uses a green image. For
ReaderCoin's testnet let's choose a different colour for the

background – let's say red.

The splash picture can be also converted to an .ico file to serve as an
icon. You can use an online converter to get your icon file. For
Macintosh OSX you'll need to edit the Bitcoin file with the ICNS file
extension.

Once you finish editing the graphical elements, you have to build the
code again (by running make) to apply the graphical changes. Next
time you run your ReaderCoin client's GUI, you'll see your new
splash screen and icon as follows:

Redesign of the Bitcoin-Qt
wallet
Alongside editing graphical resources, you can customize the wallet
interfaces to define your own. Most of the dialogs in Bitcoin-Qt are
created based on the Qt framework using Qt designer. The resource
files corresponding to different dialogue forms are editable files
with .ui extensions and are located under src/qt/forms.

If you're not keen to use Qt, you can alternatively design and write
your own graphical wallet in other languages and tools such C#/WPF
,and communicate over RPC with ReaderCoin's RPC API.

Graphical interface addition
To start modifying the UI part, download and install the Qt dedicated
IDE – Qt Creator – which includes neat tools for UI design as follow:
sudo apt-get install qtcreator

Let's proceed with the import of the project as follows:

1. Run Qt Creator using: qtcreator

2. When the IDE shows up, in Qt Creator start a "New Project". A
new dialog form will show up as shown in the figure below.
Then choose"Import Project" as the template, then "Import
Existing Project".

3. Enter "readercoin-qt" as project name, then select the location of
src/qt in your ReaderCoin project (workspace/readercoin/src/qt).

4. A new interface will show up suggesting you choose files to
import. Leave the proposed file selection as it is. We then import
all the files located under the src/ folder.

5. A "summary page" dialogue will show up where you can
optionally indicate your git repository, before finally confirming
the project import.

When the project is successfully imported, Qt Creator creates the
project tree in the sidebar. After importing a generic project into Qt
Creator, you can open it next time by selecting ".creator" file created
in src/ folder.

In the "Project" section in the left column, select "Manage Kits..",
then in the section "Build & Run" select the build configuration, and
set your compiler and debugger if not auto-detected.

All set. You can start building the project with Qt Creator by pressing
the green triangle button. It will ask you to specify the executable
name and path, along with the arguments to use when running your
executable. Thus we specify src/qt/readercoin-qt or readercoind as
executable and -printtoconsole as argument.

During project build you should see the log printed in the Qt Creator
application output. If you edit any value using Qt Creator you'll have
to recompile the code to get your modification included in your
ReaderCoin client.

As you'll notice Qt Creator only gives you access to the client code.
In order to edit graphical forms, start qt-designer by double clicking
on the file with .ui extension located under qt/forms/.

Using both Qt Creator and Qt Designer, play around by removing or
adding graphical elements. If you want to add a new Qt features you
should have basic knowledge about Qt/C++. After each modification

compile the code by pressing the green triangle located in the bottom
left of qt-creator.

Building Readercoin network
As most of the work is done, let's put the results into practice.

At this level everything is ready to launch our ReaderCoin network.
We'll need to build a network of two connected machines, called node
A and node B. Before advancing further check that both machines
can ping each other. Let's say nodeA has the IP address 192.168.1.3 and
node B 192.168.1.8.

At this point, we have built ReaderCoin on a single machine (node
A), so we will need to build it on node B in the same manner we did
in node A. For that you can clone the code source from our remote
repository or just transfer the ReaderCoin folder using a USB
memory stick. If successfully built, you will be ready to connect the
P2P ReaderCoin nodes.

Once ReaderCoin is built successfully on both nodes, run the Qt
client or readercoin-qt -printtoconsole.

The option -printtoconsole prints out the client log:

Running the ReaderCoin client for the first time will create a
.readercoin directory in your home directory, along with some other

necessary files. Stop the client to create a configuration file named
readercoin.conf in ~/.readercoin and insert the following lines:

server=1

rpcuser=set a username

rpcpassword=set a password

addnode=the other node's IP

rpcallowip=192.168.0.0/16

Instead of using the addnode option in the configuration file you can
run the clients on both nodes and execut the addnode RPC call:

readercoin-cli addnode 192.168.1.3:9333 onetry (in nodeA)

readercoin-cli addnode 192.168.1.8:9333 onetry (in nodeB)

A log entry in both peers should appear confirming the pairing
similar to the following. If not, try it again or wait a bit.

You can check if both nodes are connected using : readercoin-cli
getpeerinfo

You'll need to see all the connected peer information as shown in
figure below:

It's worth noting that you can run RPC commands from the GUI
without using a terminal as follow:

1. Open the ReaderCoin Wallet

2. Choose "Help"

3. Select "Debug window"

4. Select "Console"

5. Execute your command line without using readercoin-cli

Our nodes are ready to start sending and receiving ReaderCoins but
as you notice we don't have any yet. Therefore, we need to start
mining, either on one of the nodes or both of them.

Readercoin mining
Bitcoin 0.15, which ReaderCoin is based on, doesn't have an internal
miner, so we will need to use a dedicated mining tool to mine our
blocks. Among many we will use cpuminer (minerd) which is pretty
simple to use and supports CPU mining for sha256 hashing.

To install it you can get the binary file from GitHub: https://github.co
m/pooler/cpuminer

Prior to running cpuminer we need to generate new addresses in both
instances using:

readercoin-cli getnewaddress

Then run the following command on one or both clients and provide
the generated address as value for coinbase-addr option.

./minerd -o http://127.0.0.1:9332 -u user -p password -a sha256d --no-

longpoll --no-getwork --no-stratum --coinbase-addr=your_address

Cpuminer will not start unless both nodes are connected and
communicating with each other. Once working you'll be able to see a
series of log entries along with notifications declaring the receipt of
new transactions (genesis transactions) each with 10 ReaderCoins.

https://github.com/pooler/cpuminer

If you're facing any mining problems while using cpuminer you can
use a more updated tool such as cgminer or ccminer. In parallel, in
another terminal you can get detailed information about the progress
of your blockchain using readercoin-cli Getinfowhich returns an object
containing various state information. A more specific RPC method is
getblockchaininfo which provides you with various state information
regarding blockchain processing, including the number of mined
blocks, the last block hash, the chainwork and the soft fork situation.

To get all the details about a specific block you need to run:
readercoin-cli getblock <block hash>

As we can see above, the genesis block has a '1' difficulty and
'1e00ffff0' bits. We explained earlier that Bitcoin bits represent the
'target' hash value in a special format.

Mining using a single node is called solo-mining which will be
impossible to perform if the difficulty reaches a high level. In that
situation it's appropriate instead to build mining pools formed by
multiple mining nodes, which share the work and reward.

Sending transactions
As we have set the coinbase maturity to 50 we will need to mine 50
blocks to be able to spend our mined ReaderCoins (reward set in the
genesis transaction).

On node A, we can use the address generated on node B to send 1
ReaderCoin using:

readercoin-cli sendtoaddress <node B readercoin's address> 1

Or alternatively via Qt wallet as in the figure below:

You can define as for Bitcoin the transaction fee to accelerate or not
your transaction's processing. You may notice the confirmation time
is expressed according to our block time.

You can now enjoy extending your network and mining new coins.
It's a great feeling to use your own, hand-crafted cryptocurrency to
boost your understanding of blockchain, isn't it?

As a bonus we will set up an explorer to give users more visibility
into the operation processing.

Building a transaction and
block explorer
Block explorers are helpful tools, providing all information about
transaction processing and block details. In general, they are web
applications communicating with blockchain nodes to display the
network situation, avoiding you the burden of repeatedly executing
RPC calls (readercoin-cli). There are multiple open-source Bitcoin
block explorers, and by searching around GitHub you'll find projects
such as Php-Bitcoin-explorer, BitcoinJS explorer, Bitcoin-ABE, etc.
In the following guide we will opt for Iquidus explorer.

Iquidus will read the ReaderCoin blocks, transform and load the data
into its database, and present the information via a web interface.

Iquidus setup requirements
To set up Iquidus we need to install the following tools:

NodeJs V6:

if you have newer version you can use nvm to manage
multiple node versions: nvm install V6

MonogoDB:

To install MongoDB run the following command line:

sudo apt-get install -y mongodb-org=3.6.5 mongodb-org-server=3.6.5

mongodb-org-shell=3.6.5 mongodb-org-mongos=3.6.5 mongodb-org-

tools=3.6.5

Then start MongoDB using: sudo service mongod start. Afterwards,
follow these steps to setup the explorer's database.

Creating Iquidus' database
Enter the MongoDB cli using the command mongo.

> use explorerdb

Create a user with read/write access:

> db.createUser({ user: "iquidus", pwd: "3xp!0reR", roles: ["readWrite"] }

)

Note: If you're using mongo shell 2.4.x, use the following to create
your user:

> db.addUser({ user: "username", pwd: "password", roles: ["readWrite"] })

Installing Iquidus
Open a new terminal and clone the project's repository:

git clone https://github.com/iquidus/explorer.git readercoin_explorer && cd

readercoin_explorer

Then install all dependencies using:

npm install --production

https://github.com/iquidus/explorer.git

Iquidus Configuration
To use the Iquidus explorer you have to edit settings.json with the
same settings parameters set in your readercoin.conf file. First, we
rename the settings file: cp settings.json.template settings.json

Then in your text editor, update the values of the following
parameters:

"coin": "readercoin",

"symbol": "RDC",

"wallet": {

 "host": "localhost",

 "port": 9332,

 "user": "user", //Readercoin's RPC user defined in readercoin.conf

 "pass": "password"

},

For the parameter "genesis_block" you set your genesis block's hash.

For genesis_tx you define the hash of the genesis transaction. This
value can be extracted from the "tx" field in the output provided by
readercoin-cli getblock your_genesis_block_hash.

Pick any block you have in your blockchain and put its details in the
following API section:

"api": {

 "blockindex": 0,

 "blockhash":

"000003758b8aa3b5066e2d5b2aa4f5c7516868f50d37bfdb55d52ff581425adc",

 "txhash":

"6bc2585d63185acf3868cc34e0b017b3fb41c00938eb09bc52a3cf73a31ec6a8",

 "address": "1Cccex1tMVTABi9gS2VzRvPA88H4p32Vvn"

},

Save and close your setting file.

Syncing databases with the
blockchain
To sync the explorer's local database with the blockchain information,
a dedicated script sync.js (located in scripts/) is available. This script
must be called from the explorer's root directory as follows:

node scripts/sync.js index [mode]

For the mode option you can choose one of the following modes:

update: Updates index from last sync to current block.

check : Checks index for (and adds) any missing
transactions/addresses.

reindex: Clears index then resyncs from genesis to current
block.

As indicated in the official documentation, it's recommended to have
this script launched via a cronjob at 2+ min intervals. For example, to
update the index every minute and market data every 2 minutes use:

*/1 * * * * cd /path/to/explorer && /usr/bin/nodejs scripts/sync.js index

update > /dev/null 2>&1

*/5 * * * * cd /path/to/explorer && /usr/bin/nodejs scripts/peers.js >

/dev/null 2>&1

Wallet preparation
Iquidus Explorer is ready now to connect to your node, but first we
will need to run the ReaderCoin node with the option -txindex or set -
txindex=1 in your readercoin.conf. This will enable getting transaction
data for any transaction in the blockchain and your client will
maintain an index of all transactions that have ever happened. If you
have been running your client for a while but haven't had txindex=1 set,
then it might take a few hours to re-build the index.

Starting the explorer
At this level everything is ready to start the block explorer. Open a
terminal window and run within the Iquidus root directory npm start and
make sure that mongod is already running.

 If we have no errors, you can open your block explorer
from http://ip.address.of.server:3331 to access the explorer web
interface.

Congratulations!!

Henceforth you can get all the blockchain information from your
explorer and fetch data for a specific block, transaction or address. I
hope that the steps in setting up your own altcoin explorer were easy
and straightforward.

Building an exchange market
You now have your ReaderCoin wallet, network and blockchain
explorer ready to be deployed widely, all you need is to find crypto-
lovers to join your project. At this level you might be thinking about
trading your new altcoin to make it more attractive. To achieve that
goal, you can ask well-known trading platforms to list your coin, or
more excitingly, you can build your own exchange market.

To avoid you reading a long chapter, I'll just introduce you to the
platform to adopt for the second option. Actually, to build your
cryptocurrency exchange there is an amazing open source project
called Peatio. This great platform is used in well-known trading
platforms such as: Yunbi Exchange, Binance, Cex.io, etc. Peatio's
code, as well as the installation procedure, are available in the official
GitHub repos: https://github.com/peatio/peatio/blob/master/doc/setup-local-
ubuntu.md.

Peatio is a complete solution, is easy to setup, and provides all the
basic exchange platform operations such as cryptocurrency or fiat
deposit and withdrawal, trading, KYC, and more.

https://github.com/peatio/peatio/blob/master/doc/setup-local-ubuntu.md

The starting point before creating a new coin would be answering:
what's the purpose of your new coin, do you have an original idea?

Do you solve any of Bitcoin's problems? Don't be lured into the
financial temptation. You should instead focus on improving
performance or implementing extended functionalities.

Summary
The main purpose of this chapter was to present the basic steps for
creating a cryptocurrency by shamelessly cloning Bitcoin. Although
it only scratches the surface of building cryptocurrencies, this chapter
was an opportunity to enrich your knowledge of the Bitcoin protocol
and also provided a short initiation to understanding Bitcoin's source
code.

This chapter concludes our short excursion into the land of Bitcoin, I
hope you enjoyed it. Again, here's the GitHub repository https://githu
b.com/bellaj/Readercoin_.git . You can catch up on any things you may
have missed, or just get a better look at the code. If you face any
issues you can make a pull request.

In the next chapter, we'll continue our learning journey with
blockchain technology by diving deep into the very promising project
– Ethereum, which is often referred to as Blockchain 2.0.

https://github.com/bellaj/Readercoin_.git

Chapter 4 : Peer to peer
auction in Ethereum

Coming soon...

Chapter 5 : Tontine game
with Truffle and Drizzle

Coming soon...

Chapter 6 : Blockchain-
based Futures system

Coming soon...

Chapter 7: Blockchains in
business

Coming soon...

Chapter 8: Creating an ICO
Coming soon...

Chapter 9: Distributed
Storage: IPFS and Swarm

Coming soon...

Chapter 10 Supply chain on
Hyperledger

Coming soon...

Chapter 11 Letter of credit
(LC) Hyperledger

Coming soon...

	Preface
	Chapter 1 : Say Hello to blockchain
	Introduction
	Emergence of blockchain and cryptocurrency
	From virtual to crypto currency
	What is a Blockchain?
	Blocks
	Transactions
	Smart contracts

	Say "hello" to the Blockchain
	Getting started
	Run a bitcoin client for the first time
	 Synchronizing the blockchain
	Running Bitcoin core in pruned mode
	Run Electrum client:

	Method 1: Building raw transaction using bitcoin client
	Funding our addresses
	Unspent Transaction Output
	Creating the transaction
	Transaction structure

	Signing the transaction
	Sending the transaction
	Retrieve your message online from the blockchain
	Retrieve your message from the local blockchain

	Method 2 : Build a raw bitcoin transactions in JavaScript .
	Preparation
	Let's code

	Types of blockchains
	Classification of blockchains

	Summary

	Chapter 2 : Building a Bitcoin payment system
	Introduction
	What is Bitcoin?
	Why choose Bitcoin as platform?

	Getting started with Bitcoin
	 Setting up regtest environment
	First commands

	Transactions in Bitcoin
	Mining
	Bitcoin Scripting
	Building p2pkh script using JavaScript
	Building a custom script

	Building a payment gateway
	Project description
	Bitcoin payment protocol overview

	Prerequisites
	Project setup
	Certificate management

	Merchant side
	Building payment request URI
	Routing
	Checkout view
	Proceeding with payment
	Requesting payment details
	Receiving and acknowledging payment
	Invoicing

	Client side
	Preview your application

	Payment protocol using BITCOINJ
	Prerequisites
	BitcoinJ installation

	BitcoinJ client
	Bitcoin wallet configuration
	Requesting payment
	Sending a payment
	Testing code

	Bitcoin smart contracts
	What's Rootstock
	Rootsock setup
	Interactions with RSK
	Accounts settings

	Writing your first Bitcoin smart contract
	Deploying the contract
	Interacting with the contract

	Summary

	Chapter 3 : Building your own cryptocurrency
	Introduction
	Compiling Bitcoin from source
	Preparing your build system
	Installing dependencies
	Bitcoin-qt: Qt5 GUI for Bitcoin

	Cloning the Bitcoin source code

	Building Bitcoin Core
	Checking your build worked

	New cryptocurrency: ReaderCoin
	Cloning Bitcoin
	Readercoin rebranding
	Changing the ports
	Changing pchMessageStart
	Genesis block
	New pszTimestamp
	New nonce, epoch time, and nbits
	New genesis hash
	Editing the Merkle root

	Removing the seed nodes
	Checkpoints
	ChainTxData
	Rewarding
	Halving
	Total supply
	POW parameters: target
	New block time
	Difficulty adjustment time interval
	Difficulty adjustement rate

	Time maturity
	Block size
	BIPs: Bitcoin Improvement Proposals
	Compiling and testing
	Design and graphics (Qt wallet)
	Redesign of the Bitcoin-Qt wallet
	Graphical interface addition

	Building Readercoin network
	Readercoin mining
	Sending transactions
	Building a transaction and block explorer
	Iquidus setup requirements
	Creating Iquidus' database
	Installing Iquidus
	Iquidus Configuration

	Syncing databases with the blockchain
	Wallet preparation
	Starting the explorer

	Building an exchange market

	Summary

	Chapter 4 : Peer to peer auction in Ethereum
	Chapter 5 : Tontine game with Truffle and Drizzle
	Chapter 6 : Blockchain-based Futures system
	Chapter 7: Blockchains in business
	Chapter 8: Creating an ICO
	Chapter 9: Distributed Storage: IPFS and Swarm
	Chapter 10 Supply chain on Hyperledger
	Chapter 11 Letter of credit (LC) Hyperledger

