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It is gratifying that this textbook is still sufficiently popular to warrant a third
edition. I have used the opportunity to improve and enlarge the book.

When the second edition was prepar ed, Oi‘u"y' WO pages on al g€ braic geometry
codes were added. These have now been removed and replaced by a relatively
long chapter on this subject. Although it is still only an introduction, the chapter
requires more mathematical background of the reader than the remainder of this
book.

One of the very interesting recent developments concerns binary codes defined
by using codes over the alphabet Z,. There is so much interest in this area that
a chapter on the essentials was added. Knowledge of this chapter will allow the
reader to study recent literature on Z,-codes.

Furthermore, some maierial has been added that appearf:u in my opﬂﬁger Lec-
ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized
Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section
on “Coding Gain” ( the engineer’s justification for using error-correcting codes)
was added.

For the author, preparing this third edition was a most welcome retum to
mathematics after seven years of administration. For valuable discussions on
the new material, [ thank C.P.J. M. Baggen, [. M. Duursma, H.D.L. Hollmann,
H.C. A.van Tilborg, andR. M. Wilson. A special word of thanks to R. A, Pellikaan

for his assistance with Chapter 10.

Eindhoven J.H. vaN LINT
November 1998
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The first edition of this book was conceived in 1981 as an alternative to
outdated, oversized, or overly specialized textbooks in this area of discrete

+ o A T
mathematics—a field that is still growing in importance as the need for

mathematicians and computer scientists in industry continues to grow.

The body of the book consists of two parts: a rigorous, mathematically
oriented first course in coding theory followed by introductions to special
topics. The second edition has been largely expanded and revised. The main
editions in the second edition are:

013
v
[4]
0

(1Y a

iy a

(2) a sect:on on Kerdock codes;

(3) a treatment of the Van Lint-Wilson bound for the minimum distance of
cyclic codes;

(4) a section on binary cyclic codes of even length;

{5) an introduction to algebraic geometry codes.

Eindhoven J.H. vaN LINT
November 1991
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Coding theory is still a young subject. One can safely say that it was born in
1948. It is not surprising that it has not yet become a fixed topic in the
curriculum of most universities. On the other hand, it is obvious that discrete
mathematics is rapidly growing in importance. The growing need for mathe-
maticians and computer scientists in industry will lead to an increase in
courses offered in the area of discrete mathematics. One of the most suitable
and fascinating is, indeed, coding theory. So, it is not surprising that one more
book on this subject now appears. However, a little more justification and a
little more history of the book are necessary. At a meeting on coding theory
in 1979 it was remarked that there was no book available that could be used
for an introductory course on coding theory (mainly for mathematicians but
aiso for students in engineering or computer science). The best known text-
books were either too old, too big, too technical, too much for specialists, etc.
The final remark was that my Springer Lecture Notes (# 201) were slightly
obsolete and out of print. Without realizing what I was getting into 1
announced that the statement was not true and proved this by showing
several participants the book Inleiding in de Coderingstheorie, a little book
based on the syliabus of a course given at the Mathematical Centre in
Amsterdam in 1975 (M.C. Syllabus 31). The course, which was a great success,
was given by M.R. Best, A.E. Brouwer, P. van Emde Boas, T.M.V. Janssen,
H.W. Lenstra Jr., A. Schrijver, H.C.A. van Tilborg and myself. Since then the
book has been used for a number of years at the Technological Universities
of Delft and Eindhoven.

The comments above explain why it seemed reasonable (to me) to translate
the Dutch book into English. In the name of Springer-Verlag I thank the
Mathematical Centre in Amsterdam for permission to do so. Of course it

turned out to be more than a translation. Much was rewritten or expanded

WOWw BIAW AW RiAfaid A A REITIEALINAAR, IVE RANSALL FRARD B W VT L AUALAAL WAL \.a r+ lluvu,



X Preface to the First Edition

several new proofs were mcluded Nevertheless the M C. Syllabus (and the
Springer Lecture Notes 201} are the basis of this book.

The book consists of three parts. Chapter 1 contains the prerequisite
mathematical knowledge. It i1s written in the style of a memory -refresher. The

E I ) S A - g thoae Lo A ~ - e 3
IeaaGel wno QISCOVErsS I.UPlbb Llld.l. ne aocs llUI. KNOW Wlll ECL SOTLIC lUUd dUUul

them but 1t 1s recommended that he also looks at standard textbooks on those

oo e | P

topics. Chapters 2 to 6 provide an introductory course in coding theory.
Finally, Chapters 7 to 11 are introductions to special topics and can be used

ac enimnlamontary randin Aar oo o mroanaratinn fnr ot ey tha litaratiira
&0 DUP]}IUIII\'IIIGIJ lbﬂullls i ac a lJl. Upalﬂl]ull L Dluu}llls MHIG LILGL aluu..

Despite the youth of the subject, which is demonstrated by the fact that the
papers mentioned in the references have 1974 as the average publication year,
I have not considered it necessary to give credit to every author of the
theorems, lemmas, etc. Some have simply become standard knowledge.

1t seems appropriate to mention a number of textbooks that T use regularly
and that [ would like to recommend to the student who would like to learn

more than this introduction can offer. First of all F.J. MacWilliams and
N.1.A. Sloane, The Theory of Error-Correcting Codes (reference [46]) which
contains a much more exiensive treatment of most of what is in this book
and has 1500 references! For the more technically oriented student with an
interest in decoding, complexity questions, etc. E.R. Berlekamp’s Algebraic
Coding Theory (reference [2]) 1s a must. For a very well-written mixture of
information theory and coding theory 1 recommend: R.J. McEliece, The
Theory of Information and Coding (reference [51]). In the present book very
little attention is paid to the relation between coding theory and combina-
torial mathematics. For this the reader should consuit P.J. Cameron and
J.H. van Lint, Designs, Graphs, Codes and their Links (reference [11]).

1 sincerely hope that the time spent writing this book (instead of doing
research) will be considered well invested.

Eindhoven JH. van LINT
July 1981

Second edition comments; Apparently the hope expressed in the final line of

the prﬂfnr*p of the firet aditinn came true a earand edition hac hecome necec.

Awralinsw Wl LEEW L2140k WLAMLAL/AL WiSIAEW L3 i A WAL AALE WREIELALFLL LAMRD AW WAALAL RAwwwLF

sary. Several misprints have been corrected and also some errors. In a few
places some extra material has been added.
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CHAPTER 1

Mathematical Background

In order to be able to read this book a fairly thorough mathematical back-
ground is necessary. In different chapters many different areas of mathematics
play a rble. The most important one is certainly algebra but the reader must
aiso know some facts from elementary number theory, probability theory and
a number of concepts from combinatorial theory such as designs and geo-
metries. In the following sections we shall give a brief survey of the prerequi-
site knowledge. Usually proofs will be omitted. For these we refer to standard
textbooks. In some of the chapters we need a large number of facts concerning
a not too weil-known class of orthogonal polynomaials, cailed Krawtchouk
polynomials. These properties are treated in Section 1.2. The notations that
we use are fairly standard. We mention a few that may not be generaily
known. If C is a finite set we denote the number of elements of C by |C|. If the
expression B is the definition of concept 4 then we write 4 := B. We use “iff”
for “if and only if”. An identity matrix is denoted by 7 and the matrix with
all entries equal to one is J. Similarly we abbreviate the vector with all
coordinates O (resp. 1} by 0 (resp. 1). Instead of using [x] we write [X] :=
max{n € Z|n < x} and we use the symbol [x] for rounding upwards.

c1 1 A 1 _
§1.1. Algebra

We need _nlv Very little from elementarv number theorv. We assume known

that in N every number can be written in exactly one way as a product of
prime numbers (if we ignore the order of the factors). If a divides b, then we

write a|b. If p is a prime number and p’|a but p"*' | a, then we write p"{la. If



2 1. Mathematical Background

k € N, k > 1, then a representation of n in the base k is a representation

0 <n < kfor0 < i<l The largest integer n such that n|a and n|b is called
e greatest common divisor of a and b and denoted hv g.c. d.(q, b) or mmnlv

ea
(a, b). If m|{(a - b) we write a = b (mod m).

(1.1.1) Theorem. If
ey ={{meN|l <m=<n,(mn)= 1}
then

() () =n],.(1 - 1/p)
i) Yan0(d) = n.

The function ¢ is called the Euler indicator.

(1.1.2) Theorem. If (a, m) = 1 then a®"™ = | (mod m).
Theorem 1.1.2 is called the Euler—Fermat theorem.

(1.1.3) Definition. The Mobius function w is defined by

1, ifn =1,
u(n) ;= < (—1), ifais the product of k distinct prime factors,
L0, otherwise.

(1.1.4) Theorem. If f and g are functions defined on N such that

then

OED) u(d)g(g).

din

Theorem 1.1.4 is known as the Mobius inversion formula.

Algebraic Structures

We assume that the reader is familiar with the basic ideas and theorems of
linear algebra although we do refresh his memory below. We shall first give
a sequence of definitions of algebraic structures with which the reader must
be familiar in order to appreciate algebraic coding theory.



§1.1. Algebra 3

(1.1.5) Definition. A group (G, )is a set G on which a product operation has

been defined satisfying

(l) EGVBE G[ab € G]a
(“) VaeGVbE GVCEG[(ab)C = a(bc)],
(i11) HGEGVaec[ae = ea = q],

{the element e is umque),

(iv) Vv, acG3veglab = ba = ¢],

(b is called the inverse of a and also denoted by a™?).
If furthermore
(V) YacGVpeclab = ba],
then the group is calied abelian or commutative.

If(G, )isa group and H c G such that (H, }is also a group, then (H, )
is called a subgroup of (G, ). Usually we write G instead of (G, ). The number

— ofelements of a finite group is calied the order of the group. If (G, )isagroup

and a € G, then the smallest positive integer n such that a” = e (if such ann
exists) is called the order of a. In this case the elements ¢. a. g2 a" ! form

= Ladoat LII0 CIGIHN y W@, 4, ..., [A0 1 441

a so-called cyclic subgroup with a as generator. If (G, ) is abelian and {H, )
15 a subgroup then the sets aH := {ah|h € H} are called cosets of H. Since two
cosets are obviously disjoint or identical, the cosets form a partition of G. An
element chosen from a coset is called a representative of the coset. It is not
difficult to show that the cosets again form a group if we define multiplication
of cosets by (aH)(bH):= abH. This group is called the factor group and
indicated by G/H. As a consequence note that if a ¢ G, then the order of @

divides the order of G (also if G is not abelian).
A fundamental theorem of group theory states that a finite abeli

oup theo 1at a finite abelian group is a
direct sum of cyclic groups.

(1.1.6) Definition. A set R with two operations, usually called addition and
multiplication, denoted by (R, +, ), is called a ring i if

T, hHilranvlida Jnly i1

(i) (R, +)is an abelian group,

(!ﬁ Vaeﬂvbs KVCGR[(ab}C == n{bc}}

(1) ¥, Ve rVeerla(b + ¢) = ab + ac A (a + b)c = ac + be].

The identity element of (R, +} is usually denoted by 0.
If the additional property

(IV] ERVbeR[ab ba]
holds, then the ring is called commuzative.

The integers Z are the best known example of a ring.

If (R, +, ) isacommutative ring, a nonzero element a € R is called a zero
divisor if there exists a nonzero element b € R such that ab = 0. If a nontrivial
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ring has no zero divisors, it is called an integral domain. In the same way that Z

is extended to @, an integral domain can be embedded in its field of fractions or
quotient field.

(1.1.7) Definition. If (R, +, )isaringand® # S < R, then S is called an ideal
if

uuuuuuu

(1)) V,.sVycrlabe S A baeS].

It 1s clear that if S is an ideal in R, then (S, +, ) is a subring, but require-
ment (ii) says more than that.

(1.1.8) Definition. A fieldis a ning (R, +, )for which (R\{0}, )is an abelian
group.

(1.1.9) Theorem. Every finite ring R with at least two elements such that

VaeRVbER[ab = 0=(a =0vb= 0)]
is a field.

(1.1.10) Definition. Let (V, +) be an abelian group, F a field and let a multipli-
cation F x ¥V — V¥ be defined satisfying
(i) Vaep[la =a],
Vae Fvﬁe FVIE V [a(ﬁa) = (aﬁ)a:}s
(il} Vv.'g ;vagyVchra(a + b) = qa + ab}e

SEF W

Vae Fvﬂs FVIEV[(C! + ﬁ)a = ga + Ba]

Then the triple (V, +, F) is called a vector space over the field F. The identity
element of (V, +) is denoted by 0.

We assume the reader to be familiar with the vector space R" consisting of
all n-tuples (a,, a,, ..., a,) with the obvious rules for addition and multiplica-
tion. We remind him of the fact that a k-dimensional subspace C of this
vector space is a vector space with a basis consisting of vectors a, :=
(ails Qygy ey aln]s a; = (azl’ A3y 00 az:l)a ceey By = (akh Y PR aku)’ Where’
the word basis means that every a € C can be written in a unique way as
®,a, + a,8, + - + o a,. The reader should also be familiar with the process
of going from one basis of C to another by taking combinations of basis
vectors, etc. We shalil usually write vectors as row vectors as we did above. The
inner product (a, b) of two vectors a and b is defined by

{a,b):=a,b, +ab, + -+ a,b,.

The elements of a basis are called linearly independent. In other words this
means that a linear combination of these vectors is 0 iff all the coefficients are
0.1fa,,..., a, are k linearly independent vectors, i.e. a basis of a k-dimensional
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subspace C, then the system of equations {a;,y) =0(i=1,2,..., k) has as

its solution all the vectors in a subspace of dimension n — k which we denote
by C*. So,

Chi={ye RV, [{x ¥) =01}

These ideas play a fundamental role later on, where R is replaced by a finite
field F. The theory reviewed above goes through in that case.

(1.1.11) Definition. Let (V, +) be a vector space over F and let a multiplica-
tion V x V — ¥ be defined that satisfies

{) (V, +, )isaring,
(i) YyeeVacvVuerv[(xa)b = a(ab)].

Then we say that the system is an algebra over F.

Suppose we have a finite group (G, ‘) and we consider the elements of G as
basis vectors for a vector space (V, +) over a licld F. Then the elements of V

are represented by linear combinations «, g, + a,9, + *** + a,g,, where
a; € F, gi€ G, (1<i<n=|G]).

We can define a multiplication = for these vectors tn the obvious way, namely

4 N/ N\
(g c‘iQ'i) * (g ﬁjgj) = Z ; (:8)(g: ;).

which can be written as Y, y,.g,, where , is the sum of the elements «;; over
all pairs (i, j) such that g;-g; = g,. This yiclds an algebra which is called the
group algebra of G over F and denoted by FG.

ExampLES. Let us consider a number of examples of the concepts defined
above.

If A:={a,, a,, ..., a,} is a finite set, we can consider all one-to-one map-
pings of S onto S. These are called permutations. If ¢, and o, are permutations
we define g, 0, by (6,6,)(a) := g,(c,(a)} for all a e A. It is easy to see that the
set S, of all permutations of 4 with this multiplication is a group, known as
the symmetric group of degree n. In this book we shall often be interested in
special permutation groups. These are subgroups of §,. We give one example.
Let C be a k-dimensional subspace of R". Consider all permutations ¢ of the
integers 1, 2,..., nsuch that for every vector¢ = (¢,, ¢3, ..., ¢,) € C the vector
(Co1)s Cor2)s - - - » Cam) 18 also in C. These clearly form a subgroup of §,. Of
course C will often be such that this subgroup of S consists of the identity only
but there are more interesting examples! Another example of a permutation
group which will turn up later is the affine permutation group defined as
follows. Let F be a (finite) field. The mapping f, ,, whenueF,veF, u # 0, is
defined on F by f, ,(x):= ux + v for all x € F. These mappings are permuta-
tions of F and clearly they form a group under composition of functions.
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; . ix Pisal(0, 1) " that | ] ¥ ;
and column. We say that P corresponds to the permutation g of {1, 2, ..., n}
if p;=1iff i=¢(j) (i=1,2,...,n). With this convention thc‘ product of
permutations corresponds to the product of their matrices. In this way one
obtains the so-called matrix representation of a group of permutations.

A group G of permutations acting on a set Q is called k-transitive on Q if

for every ordered k-tuple {a,, ..., a,) of distinct elements of Q and for every

k-tuple (b,, ..., b) of distinct elements of Q, there is an ¢lement ¢ € G such

that b, = o{a,) for 1 <i < k. If k = 1 we call the group transitive.

Let § be an ideal in the ring (R, 4, ). Since (§, +) is a subgroup of the

abehan group (R, +), we can form the factor group. The cosets are now called
residue classes mod S. For these classes we introduce a multiplication in the
obvious way: {(a + S)(b + S) := ab + S. The reader who is not familiar with
this concept shouid check that this definition makes sense (i.e. it does not
depend on the choice of representatives a resp. b). In this way we have
constructed a ring, called the residue class ring R mod § and denoted by R/S.
The following example will surely be familiar. Let R := Z and let p be a prime.
Let S be pZ, the set of all multiples of p, which is sometimes also denoted by
(p). Then R/S is the ring of integers mod p. The elements of R/S can be
represented by O, 1, ..., p —~ 1 and then addition and multiplication are the
usual operations in Z followed by a reduction mod p. For example, if we take
p=17,then4 + 5 = 2 because in Z we have 4 + 5 = 2 (mod 7). In the same
wayd4-5=6inZ/7Z = Z)(7). 1f Sis anidealin Z and S # {0}, then there is a
smallest positive integer £ in S. Let s € S. We can write s as ak + b, where
0 < b < k. By the definition of ideal we have ak € S and hence b =5 —ake S
and then the definition of k implies that b = 0. Therefore S = (k). An ideal
consisting of all multiples of a fixed element is called a principal ideal. If a ring
R has no other ideals than principal ideals, it is called a principal ideal ring.
Therefore Z is such a ring.

An ideal S is called a prime ideal if ab € S implies a € Sor b € S. Anideal
S in a ring R is called maximal if forevery ideal / with S C I C R, I = Sor
{ = R (§ # R). If aring has a unique maximal ideal, it is called a local ring.

(1.1.12) Theorem. If p is a prime then Z/pZ is a field.

This is an immediate consequence of Theorem 1.1.9 but also obvious
directly. A finite field with n elements is denoted by F, or GF(n)(Galois field).

Rings and Finite Fields

More about finite fields will follow below. First some more about rings and
ideals. Let F be a finite field. Consider the set F[x] consisting of all polyno-
miais a, + a;x + ‘- + a,x", where n can be any integer in N and 4; € F for
0 < i < n. With the usual definition of addition and multiplication of polyno-
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mials this yields a ring (F{x], +, ), which is usually just denoted by F[x].

The set of all polynomials that are multipies of a fixed polynomial g(x), i.e. all
polynomials of the form a{x)g(x) where a(x) e F[x], is an ideal in F[x].

As before, we denote this ideal by (g{x)). The following theorem states that
there are no other types.

(1.1.13) Theorem. F[x] is a principal ideal ring.

The residue class ring F[x]/(g{x)) can be represented by the polynomials
whose degree is less than the degree of g(x). In the same way as our exampie
Z/77 given above, we now multiply and add these representatives in the usual
way and then reduce mod g(x). For example, we take F =F, = {0, 1} and
gx)=x>+x+ 1. Then (x + )(x* + )= x* + x> + x + 1 = x%. This ex-
ample is a useful one to study carefully if one is not familiar with finite fields.
First observe that g(x) is irreducible, i.e., there do not exist polynomials a(x)
and b(x) € F[x], both of degree less than 3, such that g(x) = a(x)b(x). Next,

realize that this means that in F,{x]/(g(x)) the product of two elements a(x)
and b(x) is O iff a(x) =0 or b(x) =0. By Theorem 1.1.9 this means that

F Tyl aflviy e a Bald Qince tha ranracantativac of 'l'hir.' racidne clace ﬁnn atl
uZLAJf‘Hlﬁ;’ g G MiVwiNWhe, WFLAAWSAN. LLAN “Mk’l\iq\dlltull L AALV? LW Tdivd LAWY WALLIWDT A dRE 5 [+ ¥}

have degrees less than 3, there are exactly eight of them. So we have found a
field with eight elements, i.e. F,5. This is an example of the way in which finite
fields are constructed.

(1.1.14) Theorem. Let p be a prime and let g(x) be an irreducible polynomial of
degreer in the ring F,[ x]. Then the residue class ring F,[x]{(g(x)) is a field with
p’ elements.

PROOF. The proof is the same as the one given for the example p=2,r =3,
g(x) =x>+x+ 1. O

(1.1.15) Theorem. Let F be a field with n elements. Then n is a power of a prime.

ProoF. By definition there is an identity element for multiplication in F. We
denote this by 1. Of course ! + 1 € F and we denote this element by 2. We
continue in this way, t.e. 2 + 1 = 3, etc. After a finite number of steps we
encounter a field element that aiready has a name. Suppose, e.g. that the sum
of k terms 1 is equal to the sum of / terms 1 {k > !). Then the sum of (k — {)
terms 1 is O, i.e. the first time we encounter an element that aliready has a
name, this element is 0. Say 0 is the sum of &k terms 1. If k is composite, k = ab,
then the product of the elements which we have called a resp. b is 0, a
contradiction. So k is a prime and we have shown that F, is a subfield of F.
We define linear independence of a set of elements of F with respect to
(coeffictents from) F, in the obvious way. Among all linearly independent
subsets of F let {x,, x,, ..., x,} be one with the maximal number of elements.
If x is any element of F then the elements x, x,, x,, ..., x, are not linearly
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-+ + a,x, = 0 and hence x is a linear combination of x, to x,. Since there are
obviously p” distinct linear combinations of x, to x, the proof is complete. [

From the previous theorems we now know that a field with n elements

sts iff n is 2 prime power. providing we can show that for every r > 1 there
AI.OI.J AL FR 1 LK P’, IFyyLe) Pu "hl P‘u L) lu.lla Y W Wil ll 1 JLIALF ¥FY FALIGAL A% L W ¥ W J AANr L W

is an irreducible polynomial of degree r in F,[x]. We shall prove this by
calculating the number of such polynomials. Fix p and let I, denote the
number of irreducible polynomials of degree r that are monic, i.e. the coeffi-

cient nf x"ig 1. We claim that

Tl LAL FE W waikE

oo ]
(1.1.16) (t—p)t=T1(1 -2z
r=1
In order to see this, first observe that the coefficient of z” on the left-hand side
is p", which is the number of monic polynomials of degree n with coefficients
in F,. We know that each such polynomial can be factored uniquely into
irreducible factors and we must therefore convince ourselves that these prod-
ucts are counted on the right-hand side of (1.1.16). To show this we just
consider two irreducibie polynomials a,(x) of degree r and a,(x) of degree s.
There is a 1-1 correspondence between products (a, (x)*(a,(x)) and terms
z¥z% in the product of (1 + z§ +z3 +---) and (1 + z3 + z2* + ---). If we
identify z, and z, with z, then the exponent of z is the degree of (a, (x))*(a,(x)}.
Instead of two polynomials a,(x) and a,(x), we now consider all irreducible
polynomials and (1.1.16) follows.
In (1.1.16) we take logarithms on both sides, then differentiate, and finally

multiply by z to obtain

(1.1.17) 2

(1.1.18)
Now apply Theorem 1.1.4 to (1.1.18). We find

1 1
(1.1.19) I,=_Zp(d)prfd>;{pr__prﬁ —pB—}
¥ dir

>1/r r_,f_lf :‘\>1 r(l —rf2+1)>0
;kp l_):op) P P .

MNlmsnr tlan a 1. + Fe thenly orndas Al e rn th o nlniﬂnnﬂ +a Av!n‘-o LT
INOW l..l.ld'n. we l\uuw 1071 WILICH Vailues 01 a il ylu Wll.ll Il CIVIIILLILD LAIDLY, VY

to know more about these fields. The structure of ¥, will play a very impor-
tant role in many chapters of this book. As a preparation consider a finite field
F and a polynomial f(x)e F{x] such that f(a) = 0, where a € F. Then by
dividing we find that there is a g(x) € F[x] such that f(x)=(x — a)g(x).

w
-
7
-
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Continuing in this way we establish the trivial fact that a polynomial f(x) of

degree r in F[x] has at most r zeros in F.
If o is an element of order ¢ in the muitiplicative group (F,\ {0}, ), then«
is a zero of the polynomial x* — 1. In fact, we have

xe—1=(x—1Hx —a){x —a?) - (x —a"1).

It follows that the only elements of order e in the group are the powers o
W <i<ea I, e) = 1. There are ¢(e) such elements. Hence, v

e which divides p™ — 1 there are either 0 or ¢(e) elements of order e in the field.
By (1.1.1) the ngt:qh!l!rv 0 never occurs. As a consequence there are elements

of order p” — 1, in fact exactly ¢(p" — 1) such elements. We have proved the
following theorem.

(1.1.20) Theorem. In F, the multiplicative group (F\{0}, ) is a cyclic group.

This group is often denoted by FX.

(1.1.21) Definition. A generator of the multiplicative group of F, is called a

alio . 07 |
primitive element of the field.

Note that Theorem 1.1.20 states that the elements of F, are exactly the ¢
distinct zeros of the polynomial x? — x. An element # such that $* = 1 but
B! # 1 for 0 < 1 < kis called a primitive kth root of unity. Clearly a primitive
element a of F, is a primitive (g — 1)th root of unity. If e divides g — | then a®
is a primitive ((g — 1)/e)th root of unity. Furthermore a consequence of
Theorem 1.1.20 is that [, is a subfield of F, iff r divides 5. Actually this
statement could be slightly confusing to the reader. We have been suggesting
by our notation that {or a given g the field F, is unique. This 1s indeed true. In
fact this follows from (1.1.18). We have shown that for g = p” every element
of [, is a zero of some irreducible factor of x? — x and from the remark above
and Theorem 1.1.14 we see that this factor must have a degree r such that rin.
By (1.1.18) this means we have used all irreducible polynomiais of degree r
where r|n. In other words, the product of these polynomials is x? — x. This
establishes the fact that two fields F and F' of order g are mnmnrnhm 1.e. there

isa mapping ¢: F — F which is one-to-one and such that ¢ preserves addition
and multiptication.

The following theorem is used very often in this book.

(1.1.22) Theorem. Let g = p" and 0 # f(x) e F,[x].

(i) If x e Fuand f(a) = 0, then f(a?) = 0
(i) Conversely: Let g(x) be a polynomial with coefficients in an extension field
of F,. If g(a®) = 0 for every a for which g(a) = 0, then g(x) € £ [x].
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PROOF

A B

(i) By the binomial theorem we have (a + b)? = a? + b” because p divides
/ p\
U;) for 1 <k < p — 1.1t follows that (@ + by = a% + b7 If f(x) =) a;x’

then (f{x))* = Y af(x?).
Because g; € F, we have af = g;. Substituting x = a we find f(a%) =

FEF ALY |

(fla) =10

(i) We already know that in a suitable extension field of F, the polynomial
g(x) 1s a product of factors x — a; (all of degree 1, that is) and if x — «; is
one of these factors, then x — af is also one of them. If g(x)} = Y &_o @, x*
then g, is a symmetric function of the zeros «; and hence g, = af, ie.
a.€F,.

If x e, where g = p", then the minimal polynomial of a over F, is the
irreducible polynomial f(x}e F,[x] such that f(x) =0. If « has order e
H ! (x — a?'), where m is the smallest integer such that p™ = 1 (mod e).

Sometimes we shall consider a field F, with a fixed primitive element ¢. In
that case we use m; (x) to denote the minimal polynomial of ¢'. An irreducible
polynomial which is the minimal polynomial of a primitive element in the corre-
sponding field is called a primitive polynomial. Such polynomials are the most
convenient ones to use in the construction of Theorem 1.1.14. We give an example
in detail.

1.1.23

e Lo 1 3 m.l:‘:a oy
Y TA-I-IIQY LI1MILI Ve WUVl Uz-

f'\

Foe is represented by polynomlals of degree <4. The polynomial x is a
primitive element. Since we prefer to use the symbol x for other purposes, we
call this primitive element «. Note that a* + a + 1 = 0. Every element in F;.
is a linear combination of the elements 1, o, %, and o> We get the following
table for [,.. The reader should observe that this is the equivalent of a table
of logarithms for the case of the field R.

The representation on the right demonstrates again that F,. can be inter-
preted as the vector space (F,)*, where {1, a, %, a3} is the basis. The left-hand
column is easiest for multiplication (add exponents, mod 15) and the right-
hand column for addition (add vectors). It is now easy to check that

m,(x) = (x — a)(x — a®){x — a*)(x — a®) =x*+x+1,

my(x) = (x — ) (x — a®)(x — a*?)(x — &?) =x*+x3+ x4+ x+1,
ms(x) = (x — o) (x — «!?) =x?4x+1,
mq(x) = (x - a”)(x — a?*)(x — a3 x — !y =x*+x3+1,

JERSTRS [ IS, . . S U I . LS. 1 LR P a
dana ine accompositlon of x — X 1010 ITreaucibi€ 1actors 1s
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xlﬁ_x-_-—_x(x——l](x"+x+1)(x4+x+l)

X (x*+ x>+ Dx*+ x>+ x2+x+ 1).

NO[C that x* — x = x{(x — ){x* + x + | ;cerrespondmg to the elements 0, 1,
5, o!® which form the subfield F, = F,[x]/(x* + x + 1). The polynomial

m,,(_x) is irreducible but not primitive.

Table of F, .
0 = =(0 00 0
1 o=1 ~(1000)
a6 = e =0100
a = a? =0 010
o} = =000 1D
at = +a ={(1100
2 = a + ot =0110
af = t+=001 D
o =l+a  +ad=(1101)
o =1 + o? =(1010Q
a® = a +a?=(0101
' =1+a4at ={1 110
gl! = a+at+ad=0111
a?=l4+a+al+=(1 111
aP=1 +2+a®=(1011)
At = 1 +a>=(1001

The reader who is not familiar with finite fields should study {1.1.14) to
(1.1.23) thoroughly and construct several examples such as Fg, F,,, F, with
the orrespondmg minimal polynomials, subfields, etc. For tables of finite

a1 oo ol IO o1 FIAT
1ICIAS 5ee ICICICHLGS | 71 dilU | 2V .

Polynomials

We need a few more facts about polynomials. If f(x) € F,[x] we can define the
derivative f'(x) in a purely formal way by

" f H
(Z akx") =) kax*1.
=0 =1

The usual rules for differentiation of sums and products go through and
R r Fiman tampdesan mm P R 2 Y

one finds for instance that the derivative of (x — a}2f(x) is 2(x — a)f(x) +
{(x — 2)*f"(x). Therefore the following theorem is obvious.

(1.1.24) Theorem. If fix)e F [x] and a is a multiple zero of f(x} in some
extension field of [, then a is also a zero of the derivative f'(x).

Note however, that if g = 2", then the second derivative of any polynomial
in F [x] is identically 0. This tells us nothing about the multiplicity of zeros
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polynom:als over R we mtroduce “the so-called Hasse derwatwe of a polyno-
mial f(x) e F,[x] by

k 1 .
f[ I(x) := Efm(x),

_ " n a-k
k
The reader should have no difficulty proving that « is a zero of f(x) with
mu smlimaty L aff it ion garn Al FlE A FArae N o~ - b and TSP S ol 1.1 A
111 l)llbll)‘ no 111 ll. 13 @& Lvlv g f AJIUL W o 4 ™ A alild L1UL & Luwl W Ul LA)

Anothcr result to be used later is the fact that if f(x) = [ [
S(x) =Y fxM(x — o).

The followmg theorem is well known.

y (x = a;) then

(1.1.25) Theorem. If the polynomials a(x) and b(x) in F{x] have greatest
common divisor 1, then there are polynomials p(x) and q(x) in F[x] such that

a(x)p(x) + b{x)q(x) = 1.
ProoOF¥. This is an immediate consequence of Theorem 1.1.13. O

Although we know from (1.1.19) that irreducible polynomials of any degree
r exist, it sometimes takes a iot of work to find one. The proof of (1.1.19) shows
one way to do it. One starts with all possible polynomials of degree 1 and
forms all reducible polynomiais of degree 2. Any polynomial of degree 2 not
in the list is irreducible. Then one proceeds in the obvious way to produce

irreducible polynomials of degree 3, etc. In Section 9.2 we shall need irreduc-
ible polynomials over F, of arbitrarily high degree. The procedure sketched

above is not satlsfactory for that purpose. Instead, we proceed as follows.

(1.1.26) Lemma.
R + 1),
PrOOF.

{iy For § =0 and § = 1 the assertion is true.
(i) Suppose 3'|[(2%* + 1). Then from
¥+ D =02¥ 4+ D{R¥+ HR¥ -2+ 3)

it follows that if ¢ > 2, then 3**1 ) (2% + 1). m

(1.1.27) Lemma. If m is the order of 2 (mod 3'), then
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ProoF. If 2 = 1 (mod 3) then x is even. Therefore m = 2s. Hence 2° + 1 =

0 (mod 3'). The result follows from Theorem 1.1.2 and Lemma 1.1.26. O

(1.1.28) Theorem. Let m = 2-3~*. Then
x™ 4+ x™ 41

is irreducible over F,.

Proor. Consider F,... In this field let & be a primitive (3')th root of unity.
The minimal pglynnmial_ of £ then 1s, b}' Lemma 1.1.27

Aafw SamZamamisaina ALRsans ranwisa and Smssain &

JOx) = = &)x — &H)x ~ &*)---(x = &7,
a polynomial of degree m. Note that

1

= (1) + X+ X)L+ x4 x5 (1 + 137 X3,

a factorization which contains only one polynomial of degree m, so the last

factor must be f(x), r.e. it 1s irreducible. O

Quadratic Residues

A consequence of the existence of a primitive element in any field F, is that it
is easy to determine the squares in the field. If g is even then every element is
a square. If g is odd then F, consists of 0, (g — 1) nonzero squares and
}{g — 1) nonsquares. The integers k with 1 < k < p — 1 which are squares in
F, are usually called quadratic residues (mod p). By considering k€ F, as a
power of a primitive element of this field, we see that k is a quadratic residue
(mod p)iff k*~V2 = 1 (mod p). Forthe elementp — 1 = —iwefind: —1isa
square in [, iff p = 1 (mod 4). In Section 6.9 we need to know whether 2 is a
square in [,. To decide this question we consider the elements 1, 2, ...,
(p — 1)/2 and let a be their product. Multiply each of the elements by 2 to
obtain 2, 4, ..., p — 1. This sequence contains |[{p — 1)/4] factors which are
factors of a and for any other factor k of a we see that —k is one of the
even integers > (p — 1)/2. It follows that in F, we have 2072 g =

(— 1~ bR2-le=11 g and since a # 0 we see that 2 is a square iff
p—1 le- 1
2 4
is even, 1e. p = +1 (mod 8).

The Trace

Let g = p". We define a mapping Tr: F, — [F,, which is called the trace, as
follows.
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(1.1.29) Definition. If £ € F, then

Tr(Z):=& + &P + EP7 - 4 &7

(1.1.30) Theorem. The trace function has the following properties:

r every ¢ € F, the trace Tr(§) is in F;

L =gt [ 488

Y Fo
(ii) There are elements § € F, such that Tr() # G;
) It is a linear mapping.

PROOF.
(1} By definition (Tr(&))? = Tr(&).
(i} The equation x + x” + - + x” " = 0 cannot have g roots in F,,
(i} Since (£ + #)* = ¢ + n* and for every ae F, we have a” = g, this is
obvious. {1

Of course the theorem implies that the trace takes every value p~!g times

and we see that the polynomial x + x7 + -+ + x? ' is a product of minimal
polynomials {check this for Example 1.1.23).

Characters

Let (G, +) be a group and let (T, ) be the group of complex numbers with
absolute value 1 with multiplication as operation. A character is a homo-
morphism y: G - T, i.e.

(1.1.31) Y, e6VgeclX(g + g2) = x(g.)x(g92)]

From the definition it follows that x{0) = 1 for every character y. If x(g) = 1
for all g € G then y is called the principal character.

(IGL ‘er ES
Y x(g)=i

gcG 0, otherwise.

ProoF. Let h e G. Then
x(h) ZG 2(g) = ZG wh+g) =3 xk).

keG

If ¢ is not the principal character we can choose h such that y(h) # 1. !

§1.2. Krawtchouk Polynomials

In this section we introduce a sequence of polynomials which play an impor-
tant role in several parts of coding theory, the so-called Krawtchouk polyno-
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mials. These polynomials are an example of orthogonal polynomials and

most of the theorems that we mention are special cases of general theorems
that are valid for any sequence of orthogonal polynomials. The reader who
does not know this very elegant part of analysis is recommended to consult

one of the many textbooks about orthogonal polynomials (e.g. G. Szegd [67],
D. .!3Ck50}'} 181 F. GG. Tricomi r'?ﬂ-n In fact for some of the nrnnfc nf

LoV, 1 LLivATRIAL | P e ICANiby AWFL OV FRALW WS4 LEEW Srarasg

theorems that we mention below, we refer the reader to the hterature. Because

of the great importance of these polynomials in the sequel, we treat them
more extensively than most other subjects in this introduction.

' TO‘IG!I‘P "l\ﬂ V“ﬂ“l’ﬂhﬂl]l’ ﬂf\l‘l“hm;ﬂlﬂ ‘ll;!l Rt at-Ts 8 4 ;ﬂ (‘;"I!ﬂ";f\“l‘ 1 P“‘.ﬂ - [
wviddany ull AlawiCinlus pO:yLOMIAS Wia appdr I S1iUauons Willre tw

parameters n and g have already been fixed. These are usually omitted in the
notation for the polynomials.

(1.2.1) Definition. For k =0, 1, 2, ..., we define the Krawtchouk polynomial
K(x) by

/ hY

Ky(xi m, q) = Kalx) = 3 (-—WU A LR
where

(x\.zx(x— Der(x = j+ 1)
\Jj/ !

Observe that for the special case g = 2 we have

(1.2.3) i K(x)z"=(1+ (g — Dz *(1 — z)*.

It is clear from {1.2.1

Ll

that K,(x)is a nnlvnomlal of degree k in x with leading

eET T T T RT T T -

coefficient ( —g)*/k! The name orthogonal polynomial is connected with the
following “orthogonality relation”™:

hoin . . ) n n
(1.2.4) Zb (i)(q — IYK, () K, (i) = oy (k)(q — 1)*q".
The reader can easily prove this relation by muitiplying both sides by x*y’

and summing over k and { (0 to o0}, using (1.2.3). Since the two sums are equal,
the assertion is true. From (1.2.1) we find

(1.2.5) U 1)( )K,‘(:) = (g~ 1)*( )K (k)

which we substitute in {(1.2.4) to find a second kind of orthogonality relation:

\.
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A

HB)KAK) = 0u g
i=0

We list a few of the Krawtchouk polynomials (k < 2)

(1.27)  Kqn x) =1,
K,(n,x)=n(g — 1) — gx, (=n—-2xifqg=2),

K,(m x)=3{g’x* — q(2qn — g — 2n + 2)x + (@ — 1)*n(n — 1)},

In Chapter 7 we shall need the -ocfﬁcignts of x*, x*7!, x*72 and x° in the
expression of K,(x). If K,(x) = ) -, c;x', then for g = 2 we have:

(1.2.8) Cp = (—2)"/k!,
Cr—y = (=2""nf(k — 1)1,

ooy = H(—20"2{3n% — 3n + 2k — 4}/(k — 2)1.

For several purposes we need certain recurrence relations for the Krawt-
chouk polynomials. The most important one is

(k + K4y (x)
(129) =k +(q— D — k) — gx}K(x) — (g — ) ~ k + DK, (x).
This is easily proved by differentiating both sides of (1.2.3) with respect to z

arnd mnlhnhnnn tha vroonlt lhy (1 L rn — 1Y {1 _ =) anr\arlcnn nF r‘nﬂnn-=
Al JHUIPI Y Has vl AVodiL Uy (4T 1] 1 £} Ul palisUn Ur LU

cients yields the result. An even easier exercise is replacing x by x — 1 in(1.2.3)
to obtain

(1.2.10) K, i) = Ki(i — 1) = (g = DK, (i) = Ky, (i — 1),

which s an easy way to calculate the numbers K,(i) recursively.
If P(x} is any polynomial of degree [ then there is a unique expansion

I
(1.2.11) P(x) = k};ﬂ o, Ky (),

which is called the Krawtchouk expansion of P(x).
We mention without proof a few properties that we need later. They are
special cases of gcneral theorems on orthogonal polynomials. The first 1s the

Christoffel-Darboux formula
Ky {x) K (y) — Kk(x)Kk+l(y) 2 ( \ §~ Ki(x)K; (.V)
y—x k+1\k/lo (n)

i

(1.2.12)

The recurrence relation (1.2.9) and an induction argument show the very
important interlacing property of the zeros of K, (x):
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(1.2.13) K,(x) has k distinct real zeros on (0, n); if these are

v, <pv; < - <yp.and ifu; <u, < - <y, are the
zeros of K, _,, then
O<o, <y <0y < " <Yy <y <P <1

The following property once again follows from (1_2_'3\ (where we now take

| el e L5a0

¢ = 2) by multiplying two power series: If x =0, 1, 2, ..., n, then

(1.2.14) KK x) = ¥ 2K, (),

where

/ i — u
& 1= ((, +j— k)2 ) ((; —j+ k)/Z)

In Chapter 7 we shall need the relation

(1.2.15) i K.x)=K,(x—1;n— 1, g).

k=0

This is easily proved by substituting (1.2.1) on the left-hand side, changing the
. . -1 —1
order of summation and then using ( x) = ( x 1) + ( X ) )( j=1). We
\J/ NJi—1i/ N J /
shall denote K;,(x — 1; n — 1, q) by ¥,(x).

§1.3. Combinatorial Theory

In several chapters we shall make use of notions and resuits from combina-
torial theory. In this section we shall only recall a number of definitions and

one theorem. The reader who is not familiar with this area of mathematics is
referred to the book [93].

(1.3.1) Definition. Let S be a set with v elements and let & be a collection of
subsets of S (which we call blocks) such that:
(i) |B] = k for every Be 4,

{i1) for every T < S with |T| = ¢ there are exactly 4 blocks B such that
T < B.

Then the pair (S, @) is called a t-design (notation t — (v, k, 1)). The elements
of S are called the points of the design. If A = 1 the design is called a Steiner
system.

A t-design is often represented by its incidence matrix A which has | 2| rows

and |S| columns and which has the characteristic functions of the blocks as
its rows.
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(1.32) Definition. A block desi it o ko b, r, i)isa 2 — (o k
A) with |2| = b. For every point there are r blocks containing that point. If
b = v then the block design is called symmetric.

(1.3.3) Definition. A projective plane of order n is

In thic cace the hlocke are called the Iin of th

BAE LANES Wl LAl LAV WIS R Wwilllvad Ll xlllua

order n is denoted by PG(2, n).

(1.3.4) Definition. The affine geometry of dimension m over the field F, is the

vector space (F )™ (we use the notation AG(m, g) for the geometry } A k-

dimensional affine subspace or a k-flat is a coset of a k-dimensional linear
subspace {(considered as a subgroup). If k = m — 1 we call the flat a hyper-
plane. The group generated by the linear transformations of (F)" and the
translations of the vector space is called the group of affine transformations
and denoted by AGL(m, g). The affine permutation group defined in Section
1.1 is the example with m = L. The projective geometry of dimension m over
F, (notation PG{m, g)) consists of the linear subspaces of AG(m + 1, g). The
subspaces of dimension 1 are calied points, subspaces of dimension 2 are lines,

i

Cie.

We give one example. Consider AG(3, 3). There are 27 points, 427 - 1) =
13 lines through (0, 0, 0) and also 13 planes through (0, 0, 0). These 13 lines
are the “points” of PG(2, 3) and the 13 planes in AG(3, 3) are the “lines” of
the projective geometry. It is clear that thisis a 2 — (13, 4, 1). When speaking
of the coordinates of a point in PG(m, g) we mean the coordinates of any of
the corresponding points different from (0, 0, ..., 0} in AG(m + 1, g). So, in
the example of PG(2, 3) the triples (1, 2, 1} and (2, 1, 2) are coordinates for

| s Yl T

mc samec pOlﬂl m Flals, 5).

In Chapter 10 we shall consider n-dimensional projective space P over a
field k. A point will be denoted by (a; : @, : ... : a,), not all g; = 0, and
@:a:...:a) =(bg:b :...:b)ifthereisac € k, ¢ # 0, such that

b, =cag for0<i<n,

(1.3.5) Definition. A square matrix H of order n with elements +1 and —
such that HHT = nl, is called a Hadamard matrix.

|—s

(1.3.6) Definition. A square matrix C of order n with elements 0 on the
diagonal and +1 or —1 off the diagonal, such that CCT = (n — 1), is __ll-d
a conference marrix.

There are several well known ways of constructing Hadamard matrices.

One of these is based on the so-called Kronecker product of matrices which is
d fﬂﬂd ag fﬂ]l{\\l}'ﬁ

KRG AWS LIRS TR O
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1.3.7) Definition. If 4 i x_m matrix with entries a,; i X
matrix then the Kronecker product A ® B is the mn x mn matrix given by
[a,,B a,,B ... a;,B]
A®B = aB a,,B ... a,,B
l_amB a.,B ... a,,B
It 1s not difficult to show that the Kronecker product of Hadamard matri-
: Ny , e o 1 1
ces 18 again a Hadamard matrix. Starting from H, := k 1 1) we can find

the sequence HP", where H®* = H, ® H,, etc. These matrices appear in
several places in the book (sometimes in disguised form).

One of the best known construction methods is due to R.E. A. C. Paley (see
[93]). Let g be an odd prime power. We define the function x on |, by x(0) :=
0, x(x) := 1if x 1sanonzero square, x (x) = —1 otherwisc. Note that x restricted

to the multiplicative group of F, is a character. Number the elements of F, in any
way as dg, 4, . . ., 4,1, Where a; = 0.

(1.3.8) Theorem. The Paley matrix S of order q defined by S;; := x(a; — a;) has
the properties:

(i) S/ =JS =0,
(ii) SST =ql — J,
(iii) ST = (— 1)@ s,

I we take such a matrix § and form the matrix C of order ¢ + 1 as follows:

o —

o 11 ... 1
—1
C=| -1 S s

-1
then C is a conference matrix of order ¢ + 1. If ¢ = 3 {mod 4) we can then
consider H := I + C. Since CT = —C because —1 is not a square in F,, we
see that H is a Hadamard matrix of order g + 1.

§1.4. Probability Theory

Let x be a2 random variable which can take a finite number of values x,, x,,
.... As usual, we denote the probability that x equalis x;, i.e. P(x = x;), by p;.
The mean or expected value of x is y = &(X) ;=Y ; p;x;.

If ¢ is a function defined on the set of values of x then &(g(x)) = >, pig(x,).
We shall use a number of well known facts such as
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&ax -+ by) = a&(x) + b8(y)
The standard deviation ¢ and the variance ¢? are defined by: p = £(x),

6t =) pxi—pt=&x—p?  (0>0)

Wa alen masd o fas trihnitinne w.n necas tha
LA TS 1O Lt wi ) ~ MLAURRIAILLD, wal i

Q 1
notation p; .= P(X = x; A Y = y), p; '= P(X = x;) = ) ; p;; and for the condi-

tional probability P(x = x;|y-= y;) = p;/p ;. We say that x and y are indepen-
dent if p; = p; p ;for all i and j. In that case we have

S(xy) = Z;P.-;xiy; = 8(x)&(y).

mean u and variance o*. Then for any k > 0
P(ix — pu} = ko) < k2.
The probability distribution which will play the most important role 1n the
next chapter is the binomial distribution. Here, x takes the values 0, 1, ..., n

and P(x = i) = (’_‘)p‘q"“, where 0 < p < 1,4 := 1 — p. For this distribution
i

we have 4 = np and 62 = np(l — p). An important tool used when estimating
binomial coefficients is given in the following theorem

logn!=(n—4)logn—n+ jlog(2rn) + o(1), (n—> o)
=nlogn — n+ Ologn), (n — o).

Another useful lemma concerning binomial coefficients is Lemma 1.4.3.

(o)
= .
m m™(n — m)"™"

n"={m+(n-—-m}"= (;)m”(n —m)y"" O

We shall now introduce a function that is very important in information

IDCDl'y It 1s known as the omary emropy IUHCUUH and USU&HY aenott‘:a oy H.

In (5.1.5) we generalize this to other g than 2. In the following the logarithms
are to the base 2.
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(1.4.4) Definition. The binary entropy function H is defined by

H(0):= 0,

H{x):= —xlog x — (1 — x) log(l — x), 0<x<i)

1 4 =2

e
{1.4.0

A < . Then we have

N ML
) Theorem.
Y

/

2 I
er v

[
A

(l) ZUSI'SJ.H (F:) < 2J‘IH(1),
(ii) lim,_,n" log ¥ (") H(3)
n—+o0 O<i<in i = -
PROOF.
M )
1={A+(1-4}"= o ( )A‘(l At

ra Y 1

5 (o) - 2.()

(ii) Writem := |An|. Thenm = in + 0(1) for n — co. Therefore we find from
Theorem 1.4.2:

n H
1] >nllo ( )
" 0g0£izﬂln(i) " 5 m

=n""{nlogn—mlog m—(n—m)log(n - m) + o(n)}
= log n — A log(An) — (1 — A)log((1 — A)n) + o(1)

= H() +0o(1) forn— .

4848y T UALE) AWL A

The result then follows from part (). O

A probability distribution that plays an important role in information theory

-----

ol e Y Ascemila. s 1 {3 e | Anomvelna Al e
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kinds of “noise” on communication channels. We say that a continuous random
variable has Gaussian distribution with mean x and variance o2 if it has density

function
(x) 1= ! ex (_(i___“'Z)
Px) == V2mo? P 20? )




CHAPTER 2

Shannon’s Theorem

9,
L.k

o
b
o
3
*
o

This book will present an introduction to the mathematical aspects of the
theory of error-correcting codes. This theory is applied in many situations
which have as a common feature that information coming from some source
is transmitted over a noisy communication channel to a receiver. Examples
are telephone conversations, storage devices like magnetic tape units which
feed some stored information to the computer, telegraph, etc. The following
is a typical recent example. Many readers will have seen the excellent pictures
which were taken of Mars, Saturn and other planets by satellites such as the
Mariners, Voyagers, etc. In order to transmit these pictures to Earth a fine
grid is placed on the picture and for each square of the grid the degree of
blackness is measured, say in a scale of 0 to 63. These numbers are expressed
in the binary system, i.e. each square produces a string of six Os and is. The
Os and 1s are transmitted as two different signals to the receiver station on
Earth (the Jet Propulsion Laboratory of the California Institute of Tech-
nology in Pasadena). On arrival the signal is very weak and it must be
amplified. Due to the effect of thermal noise it happens occasionally that a
signal which was transmitted as a 0 is interpreted by the receiver as a 1, and
vice versa. If the 6-tuples of 0s and 1s that we mentioned abave were transmit-

ted as such, then the errors made by the receiver would have great effect on
the pictures. In order to prevent this, so-called redundancy is built into the
signal, L.e. the transmitted sequence consists of more than the necessary
information. We are all familiar with the principle of redundancy from every-

dav laneuage. The words of our language form a small nart of all nossible
J lu‘lb\‘“b 4 Rl FYWILWEI WL WML '“l‘.b““&u A% FL 1321 A J1iMLREL ul &t JL Cald PVI.,!—"U.U

strings of letters (symbols). Consequently a misprint in a long(!) word is
recogmzed because the word is changed into something that resembles the
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| han i bi | i l This is t}
essence of the theory to be treated in this book. In the previous example the
reader corrects the misprint. A more modest example of coding for noisy channels
is the system used for the serial interface between a terminal and a computer or
between a PC and the keyboard. In order to represent 128 distinct symbols, strings

of caven Nc and le (i 2. the inteoers N tn 127 in hl'nnnr\ are used. In nractice one
AL D Thwll LT LAl LW \l L i
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redundant bit (= binary digit) is added to the 7-tuple in such a way that the resulting
8-tuple (called a byfe) has an even number of 1s. This is done for example in the
ASCII character code. A failure in these interfaces occurs very rarely but it is

nnecihla that an accacional ineorrect hit acenre. This resnlts in incorrect nnnfv
HUBIJLUJ.H R CLAE W F 3 T s W i ARS -

S sl LR RSA L W Rladd Rwiatuea ARSI W pelieaty

of the 8-tuple (it will have an odd number of 1s). In this case, the 8-tuple is not
accepted. This is an example of what is called a single-error-detecting code.

We mentioned above that the 6-tuples of Os and 1s in picture transmission
(e.g. Mariner 1969) are replaced by longer strings (which we shall always call
words). In fact, in the case of Mariner 1969 the words consisted of 32 symbols
(see { 56]). At this point the reader should be satisfied with the knowledge that
some device had been designed which changes the 64 possible information
strings (6 tuples of 0s and ls) into 64 possible codewords (32-tuples of Os and
1s). This device is called the encoder. The codewords are transmitted. We
consider the random noise, i.e. the errors as something that is added to the
message (mod 2 addition).

At the receiving end, a device called the decoder changes a received 32-
tuple, if it is not one of the 64 allowable codewords, into the most likely
codeword and then determines the corresponding 6é-tuple (the blackness of
one square of the grid). The code which we have just described has the
property that if not more than 7 of the 32 symbols are incorrect, then the
decoder makes the right decision. Of course one should realize that we have
paid a toll for this possibility of error correction. namely that the time available
for the transmission of each bit is only 1/5 of what would be available with no
coding, leading to increased error probability! We shall treat this example in more
detail in §2.3.

In practice, the situation is more complicated because it is not the trans-
mission time that changes, but the available energy per transmitted bit.

The most spectacuiar application of the theory of error-correcting codes is
the Compact Disc Digital Audio system invented by Philips (Netherlands).
Its success depends {among other things) on the use of Reed Solomon codes.
These will be treated in Section 6.8. Figure 1 is a model of the situation
described above.

In this book our main interest will be in the construction and the analysts
of good codes. In a few cases we shall study the mathematical problems of
decoding without considering the actual implementation. Even for a fixed

code C there are many diflerent ways to design an algorithm for a decoder.
A complete decoding algorithm decodes every possible received word into

g LN L S PN L ] pProaaisav v AR Rs

some codeword. In some situations an mcomplete decoding algorithm could
be preferable, namely when a decoding error is very undesirable. In that case
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Figure 1

the algorithm will correct received messages that contain a few errors and for
the other possible received messages there will be a decoding failure. In the
latter case the receiver either ignores the message or, if possible, asks for a
retransmission. Another distinction which is made is the one between so-
called hard decisions and soft decisions. This regards the interpretation of
received symbols. Most of them will resemble the signal for 0 or for 1 so much
that the receiver has no doubt. In other cases however this will not be true

is 0 oritis 1. Thls 18 often referred to as an erasure. More compheated systems
attach a probapbility to the symbol.

In order to get a better idea about the origin of coding theory we consider the
following imaginary experiment.

- 3 -
w.ﬂ ars 1M A rAaOTm l!l’hﬂﬂ enmﬂ"\l‘\f“l 1e tne
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per minute. The room is connected with another room by a telegraph wire.
Let us assume that we can send two different symbols, which we call 0 and 1,
over this communication channel. The channel is noisy and the effect is that
there is a probability p that a transmitted O (resp. 1) is interpreted by the
receiver as a 1 (resp. 0). Such a channel is called a binary symmetric channel
(B.S.C.) Suppose furthermore that the channel can handle 2t symbols per
minute and that we can use the channel for T minutes if the coin tossing also
takes T minutes. Every time heads comes up we transmit a 0 and if tails comes
up we transmit a 1. At the end of the transmission the receiver will have a
fraction p of the received information which is incorrect. Now, if we did not
have the time limitation specificd above, we could achieve arbitrarily small
error probability at the receiver as follows. Let N be odd. Instead of 2 0 (reSp

anaard nf + tnecae
[RGB LW ]

1; we transmit N Os ll’t:bp 1::; The receiver considers a received N- u.ipie and
decodes it into the symbol that occurs most often. The code which we are now
using is called a repetition code of length N. It consists of two code-words,
namely 0=(0,0,...,0)and 1 =(1, 1, ..., 1). As an example let us take
p = 0.001. The probability that the decoder makes an error then is

(2.1.1) ) (N) g*p¥* < (0.07TY, (hereg:=1 — p),
osk<na \ k
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and this probability tends to 0 for N — oo (the proof of (2.1.1) is Exercise
24.1).

Due to our time limitation we have a serious problem! We can only transmit
two symbols for each toss of the coin. There is no point in sending each symbol
twice instead of once. A most remarkable theorem, due to C. E. Shannon (cf. [62]),
states that, in the situation described here, we can still achieve arbitrarily small
error probablhty at the receiver for large 7. Thc proof wﬂl be glven in the next

way. We transmit the result of two tosses of the coin as follows

heads, heads -0 0 0 0,
heads, tails -0 1 1 1,
tails,heads —»1 0 O 1,

tails, tails -1 1t 1 Q.

the final two symbols are redundant. The decoder uses the following complete
decoding algorithm. If a received 4-tuple is not one of the above, then assume
that the fourth symbol is correct and that one of the first three symbols is
incorrect. Any received 4-tuple can be uniquely decoded. The result is correct
if the above assumptions are true. Without coding, the probability that two
results are received correctly is g*> = 0.998. With the code described above,
this probability is g* + 3g°p = 0.999. The second term on the left is the
probability that the received word contains one error, but not in the fourth
position. We thus have a nice improvement, achieved in a very easy way. The
time requirement is fulfilled. We extend the idea used above by transmitting
the coin tossing results three at a time. The information which we wish to

transmit is then a 3-tuple of 0s and 1s, say (a,, a,, a,). Instead of this 3-tuple,
we transmit the 6-tuple a = (a,, ..., ag), where a, := a, + a,, a5 ;== a, + a,,
ae 1= a, + a, (the addition being addition mod 2), What we have done is to
construct a code consisting of eight words, each with length 6. As stated
before, we consider the noise as somcthing added to the message, i.e. the
received word b s a + e, where e = (e, e,, ..., ¢¢) is called the error pattern
(error vector). We have

ez+e3+e4=b2+b3+b4:=sl,
€1+€3+65=b1+b3+b52=82,
el+€2+€5=b1+bz+b63=s3.

Since the receiver knows b, he knows s, 5,, 55. Given s,, s,, 5; the decoder
must choose the most likely error pattern e which satisfies the three equations.
The most likely one is the one with the minimal number of symbols 1. One
easily sees that if (s, 5,5, 55} # (1, 1, 1) there 1s a unique choice for e. If

(51, 52, 53) = (1, 1, 1) the decoder must choose one of the three possibilities (1,
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w1th one error 18 decoded correctly and among all other error patterns there
is one with two errors that 1s decoded correctly. Hence, the probability that

all three symbols a,, a,, a, are interpreted correctly after the decoding proce-
dure, is

q® + 64°p + ¢*p* = 0.999986.

This is already a tremendous improvement.
Through this introduction the reader will already have some idea of the

(2.1.2) Definition. If a code C is used consisting of words of length n, then
R := n"!log|C]|

is called the information rate (or just the rate) of the code.

The conceptrate is connected with what was discussed above regarding the time
needed for the transmission of information. In our example of the PC-keyboard
interface, the rate is I. The Mariner 1969 use-d a code with rate . The example

32
given before the definition of rate had R = 1
We mentioned that the code used by Marmer 1969 had the property that

Aliill 12 -y

the receiver is able to correct up to seven errors in a received word. The reason
that this is possible is the fact that any two distinct codewords differ in at least
16 positions. Therefore a received word with less than eight errors resembles
the intended codeword more than it resembles any other codeword. This
leads to the following definition:

(2.1.3) Definition. If x and y are two n-tuples of 0s and 1s, then we shall say
that their Hamming-distance (usually just distance) is

d(x, y):= {ill <i<nx; #y}l
(Also see (3.1.1).)

HIIL WIS UL IVEIELIE VU VEILILLL WL Libdivia

property that any two distinct codewords have distance at least 3. That is why

any error-pattern with one error could be corrected. The code is a single-
error-correcting code.
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The code C with eight warde of leneth 6 which we treated abovs hag the
tis

nntions. First
AR t’t.u‘ Ag WFL

of all we assumed that during communication all codewords are equally
likely. Furthermore we used the fact that if n, > n, then an error pattern with
n, errors is less likely than one with n, errors.

This means that if y is received we try to find a codeword x such that d(x, y)

........-....‘.1 e o -4
11l
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is minimal. This principle is called maximum-likelihood-decoding.



§2.2. Shannon’s Theorem 27

§2.2. Shannon’s Theorem

We shall now state and prove Shannon’s theorem for the case of the example
given in Section 2.1. Let us state the problem. We have a binary symmetric
channel with probability p that a symbol is received in error (again we write
g:= 1 — p). Suppose we use a code C consisting of M words of length n, each

SFakeS RS Ty winwan

word occurring with equal probability. If x,, X,, ..., X,, are the codewords

and we use maximum-likelihood-decoding, let P; be the probability of making

an incorrect decision given that x; is transmitted. In that case the probability
of incorrect decoding of a ret‘etvrd word is

AaAlE L e A R e ra fm RNetwiwra ¥ e

(2.2.1) P.i=M™ _Z P.

Now consider all possible codes C with the given parameters and define:
(222) P*(M, n, p) := minimal value of P..

(2.2.3) Theorem (Shannon 1948). If 0<R <! +plogp+glogqg and
M, = 2% then P*(M_, n,p) =0 if n— .

(Here all logarithms have base 2.) We remark that in the exampie of the
previous section p = 0.001,1.e. 1 + plog p + g log ¢ is nearly 1. The require-
ment in the experiment was that the rate should be at least 2. We see that for
¢ > 0 and n sufficiently large there is a code C of length n, with rate nearly
| and such that Pr < e. (Of course long codes cannot be used if T is too
smail.)

Before giving the proof of Theorem 2.2.3 we treat some technical details to
be used later.

The probability of an error pattern with w errors is p*g” ™", i.e. it depends
on w only.
The number of errors in a received word is a random variable with ex-

pected value np and variance np(1 — p). If b := (np(1 — p)/(¢/2))'"%, then by
Chebyshev’s inequality (Theorem 1.4.1) we have

(2.2.4) P(w>np+b) < le

Since p < %, the number p := |np + b] is less than $n for sufficiently large n.
Let B,{x) be the set of words y with d(x, y) < p. Then

(2.2.5) |B,(x)] = s (M1 < t(my _t "
. :sp\/ 2 \p/ " 2 pPin— py'=*

(cf. Lemma 1.4.3). The set B,(x) is usually called the sphere with radius p and
center x (although ball would have been more appropriate).
We shall use the following estimates:

1 +b _
(2.2.6) % Iogg = Lnp + b lo:}gl‘—m‘l?-;ﬂ—i =plogp + O(n '),
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(1 — g) log(l - E) =g log g + O(n™*), (n— o).

Finally we introduce two functions which play a role in the proof. Let
ue {0, 1}", ve {0, 1}"

Then

0, ifd(u, v)> p,
2.2.7) fla,v) = {1, ” d:u’ v; g ‘;
Ifx;eCandye {0, 1}" then
(2.2.8) gy)=1-fly,x) + g S, x;).

=i

Note that if x; 1s the only codeword such that d(x;, y} < p, then g,(y) = 0 and
that otherwise g,(y) > 1.

PROOF OF THEOREM 2.2.3. In the proof of Shannon’s theorem we shall pick
the codewords x,, X,, ..., X, at random (independently). We decode as
follows. If y is received and if there is exactly one codeword x; such that
d(x;, ¥) < p, then decode y as x;. Otherwise we declare an error (or if we must

Aarnnda
qecioae, then we a"v""’}° deuude as Xl}

Let P, be as defined above. We have
P = P(yix;)g;
I, POl

-Z P(ybx) {1 = fiy, x)} + X ) Plylx)f(y, x;)-
y %
Here the first term on the right-hand side is the probability that the received
word y is not in B,(x;). By (2.2.4) this probability is at most 3e.
Hence we have

1 M
+ M™! Z Z Z P(yix;) Ay, X;)-
2 i=1 y j#i
The main principle of the proof is the fact that P*(M, n, p) is less than the

expected value of P- over all possible codes C picked at random. Therefore
we have

Fe <

1 . o
P*(M,npy< e+ M7 2 2 2, 6(PyIx)EUY, ;)
= Yy _;#s
1 M t
=56+ Y2 (P
i=l y j#i

=3¢+ (M — 1)27%|B,|.
We now take logarithms, apply (2.2.5) and (2.2.6), and then we divide by n.
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The result is

n~! log(P*(M, n, p) — 1¢)

<nllogM—(1 +plogp+

rlh
I—

0g g) + O(n™*?).

7

Substituting M = M, on the right-hand side we find, using the restriction on
R

Ay

-1 * I

for n > ngy, i.e. P*(M, n, p) < Le + 278",

Thig proves the theorem,

RN

B

§2.3. On Coding Gain

In many pracncal apphcauons one has to choose B and W where B equals the

channcl using a power of at most W Watt. A well known example is in moblle
telephony, where B determines the speech quality and W is related to the life
time of the batteries. Another example is in deep space transmission, where B
determines the number of pictures that can be transmitted in the fly by time, while

W e tha “nower that 1n auoﬂah] Frorm fkn anlar manala Tim all thaoa case Py T
YLD Wb Loy uian valiaoie ircm SUlal l.ul-l.l\.d..) A1l @bk IO m.‘.b, uic

transmitter has an average energy of E, = W /B Joule per user bit available to
generate signals to be sent to the receiver. Coding may influence the choices. The
effect of coding is often expressed as “coding gain” which we now introduce.

fnnfnilc fram alasteminal en ainaaring ara nnt traatad )
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If no coding is used, the energy E, is available to the transmitter for mapping a
user bit onto a signal with amplitude s := /E, ifa 1 is transmitted, and s = —/E,
for a 0. Often, the transmission channel is modeled as an Additive White Gaussian
Noise (AWGN) channel. This means that the received signal amplitude 7 equals
r = s + n, where the noise n is drawn from a Gaussian distribution having
zero mean and variance o2, A receiver, making hard decisions, compares each
received signal amplitude r with threshold 0 and decides fora 1 if » > 0, and for
a 0 otherwise. Such a receiver makes an error if the noise n results in r having the

g o PR . U N, L 1L s1s

wrong sign. Therefore, the erro bability (per bit) p, is
i 1 -y E,
ex dy = —
p.= [f s P ( ) y=0Q ( p

=75 [ () v=3e(35)
Q(x) = ﬁ [ €xp (T dy = Eerfc 7= 1
\ / \V&a/

W iV WX

The ratio E,/o? is called the Signal to Noise Ratio (SNR).
If we use a code C that maps k user bits onto n bits to be transmitted over the
channel (channe! bits), then we say that we are using a code with rate R := k/n

where
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(scc (3 14 3)) We have to send these channel bits 1/ R times as fast to keep to our

Watt, we now only have avaﬂable an energy of E’ = W/(B/ R) = R E,, Joule
per channel bit. Assuming a similar transmission scheme for the channel bits as
before, we obtain an error rate p, (per channel bit) equal to

So, coding results in p, > p. because of the reduced energy budget. The whole
idea of coding only makes sense if error correction more than makes up for this
loss of energy per bit.

Let us look at the Mariner "69 again in more detail. Instead of calling the
transmitted symbols 0 and 1, we denote them by 41 and —1. The 64 sequences of
length 32 that the Mariner used were the rows of the matrices H* and —H2® of
§1.3. For a received signal (with hard decisions), the received row of 32 symbols
+1 was taken and the inner product of this row and the 32 rows of H’

showmg that the received SIgnal was correct. In t.he case of one error, the inner
products were &2, with one exception, where it was +30, yielding the correct
signal. Note that, for up to seven errors, there is a unique inner product with
absolute value greater than 16, pointing out the correct signal.

T~ P . SRR . . L
l...rCI. us now I.WL d.l. LI].C- CLICLL UL t.ut.uug

(2.3.1) ExampLe. Consider the example of the Mariner code. Suppose that

for a useful picture, each 6-tuple may be wrong with a probability P; at most
1n_4 Tﬂ Cﬂﬂﬂ Af nn rndino wra masnd K f-z e 177 37 ta anhiaera 1

', hie Dim~a
4sC oI No Ccodmg, we NCCd £Z,/0° = l1l/.c<s W aciieve UlS, since
= Q0(v/17.22) = 107*/6,and P =1 — (1 — p,)* =~ 10~*.

Next, suppose that we use the [32,6] code, correcting at most seven errors, at
the same SNR of 17.22. Since R = 6/32, we obtain p/ ~ 0.036. (Note that this
error probability is 2000 times as large as before !) After decoding, we obtain
erroncous 6-tuples with probability

32 : :
P, = ; ( ; ) (Y (1 - py*  ~1.4.107,
which is almost an order of magnitude better than P;.

When using soft decisions, the received waveform is not translated into a row
of 1s and —Is, but correlated directly with the rows of H°, In that case, the
probability that the signal we choose as most likely is indeed correct, is even
larger.

We remark that if we had used soft deciston decoding in Example 2.3.1, the
error probability would have been reduced to 2 - 107",

There is another way of looking at this situation. We could use coding to need
less energy. We might choose to exploit C not for reducing the error rate, but for
reducing the required SNR in the presence of coding.

In the Mariner example, we were satisfied with a probability of 10~* of receiv-

ing an incorrect 6-tuple. To obtain P, = 107, an SNR of 14.83 would suffice
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(by a calculation similar to the one above). This means that application of coding

allows us to reduce the size of the solar panels by almost 15%. With soit decision
decoding, the reduction would be more than 50%; (we need an SNR of 7.24 in

that case)

Lol

(2.3.2) Definition. The ratio between SNR (uncoded) and SNR' (coded) for equal
error probability after decoding is called the coding gain.

The coding gain depends on the code, the decoding algorithm, the channel in
question, and the required error probability after decoding. It is often expressed
in “dB” (this is 10 times the logarithm to base 10 of the ratio in Definition 2.3.2).
In engineering literature, the result of Example 2.3.1 will be described as a coding

onim ~nFNAS AR Wa nn‘ﬂf ~nt that far a n“rnﬂ rnda ﬂ'lnm un" a]“ﬂ:“n:.l ]'u:l a r.l1n-r|nl
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to noise ratio at which the code becomes ineffective; it makes the situation worse
than not using it.
We have only con31dercd the energy aspect of transmlssmn One should realize

for t.hat too

§2.4. Comments

C. E. Shannon’s paper on the “Mathematical theory of communication”
(1948) {62] marks the beginning of coding theory. Since the theorem shows
that good codes exist, it was natural that one started to try to construct such
codes. Since these codes had to be used with the aid of often very smail
electronic apparatus one was especially interested 1n codes with a lot of
structure which would allow reiatively simpie decoding aigorithms. in the
following chapters we shall see that it is very difficult to obtain highly regular
codes without losing the property promised by Theorem 2.2.3. We remark
that one of the important areas where coding theory is applied is telephone
communication. Many of the names which the reader wili encounter in this
book are names of (former) members of the staff of Bell Telephone
Laboratories. Besides Shannon we mention Berlekamp, Gilbert, Hamming,
Lloyd, MacWiiliams, Siepian and Sloane. It is not surprising that much of the
early literature on coding theory can be found in the Bell System Technical
Journal. The author gratefully acknowledges that he acquired a large part of
his knowledge of coding theory during his many visits to Bell Laboratories.
The reader interested in more details about the code used in the Mariner 1969
is referred to {56]. For the coding in Compact Disc see [77], [78].

By consuiting the references the reader can see that for many years now

the most important resuits on coding theory have been published in /EEE
Transactions on Information Theory.
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§2.5. Problems

2.5.1. Prove (2.1.1).

2.5.2. Consider the code of length 6 which was described in the coin-tossing experi-
ment in Section 2.2. We showed that the probability that a received word is
decoded correctly is g% + 6¢°p + g*p*. Now suppose that after decoding we
retain only the first three symbois of every decoded word (i.e. the information
concerning the coin-tossing experiment). Determine the probability that a sym-

bolin this sequence is incorrect; (this is called the symbol error probability, which
without codino would he n)

AL MASUARILE VYA MANR R L.

2.5.3. Construct a code consisting of eight words of length 7 such that any two distinct
codewords have distance at least 4, For a B.S.C. with error probability p, determine

the probability that a received word is decoded correctly.

2.5.4. A binary channel has a probability g = 0.9 that a transmitted symbol is received
correctly and a probability p = 0.1 that an erasure occurs (i.e. we receive 7). On
bi . e wi I I bability of
interpretatton increase if we repeat each transmitted symbol ? Is it possible to
construct a code with eight words of length 6 such that two erasures can do no
harm? Compare the probabilities of correct interpretation for these two codes.
(Assume that the receiver does not change the erasures by guessing a symbol.)
2.5.5. Consider the Mariner 1969 example. Suppose a row of 32 symbols is received with
e, errors and e, erasures. Show that if 2¢; + ¢, < 16, the correct row can be retrieved.

2.5.6. Let C be a binary code of length 16 such that:
(i) Every codeword has weight 6;

(i} Anv two distinet codeaworde have distance 8

=y L=l TT U RAAL AL b R LAY T WAL LS LALE ¥ b RALI LAERAL L P,

Show that |C| < 16. Does such a code with |C| = 16 exist?

2.5.7. Let C be a binary single-error-comrecting code of even length n. Show that
ICl<2%/(n+2).
Hint: Count pairs (x, ¢), where x is a word of length n and ¢ € C, and x and ¢ differ
in two places.



CHAPTER 3

Linear Codes

§3.1. Block Codes

In this chapter we assume that information is coded using an alphabet Q with
g distinct symbols. A code is called a block code if the coded information can
be divided into blocks of #» symbols which can be decoded independently.
These blocks are the codewords and n is called the block length or word length
(or just length). The examples in Chapter 2 were all block codes. In Chapter
coding, where an infinite sequence of information symbols iy, i,, i,, . .. 15 coded
into an infinite sequence of message symbols. For example, for rate } one
could have iy, iy, iy, ... =iy, Ig, iy, i1, - .., where iy is a function of iy, i,, ..
i,. For block codes we generalize (2.1.3) to arbitrary alphabets.

'y

(3.1.1.) Definition. If x € @, y € Q", then the distance d(x,y) of x and y is
defined by

dix,y):=|{ill <i<n x; #y}l
The weight w(x) of x is defined by
w(x) ;= d(x, 0).
(We always denote (0,0,...,0) by and (1, 1,..., I) by 1.}
The distance defined in (3.1.1), again called Hamming-distance, is indeed a
metric on Q" If we are using a channel with the property that an error in
position i does not influence other positions and a symbol in error can be each

of the remaining g — 1 symbols with equal probability, then Hamming-dis-
tance is a good way to measure the error content of a received message. In
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Chapter 12 we shall see that in other situations a different distance function
is preferable.

In the following a code C is a nonempty proper subset of Q" If |{C] = 1 we
call the code trivial. If g = 2 the code is called a binary code, for g=3 a
ternary code, etc. The following concepts piay an essential role in this book
{cf. Chapter 2).

(3.1.2) Definition. The mini ” f vial code € i
min{d(x,y)|xe C,ye C, x # y}.
The minimum weight of C is
min{w(x) | xe C,x # 0}.

We also generalize the concept of rate.

(3.1.3) Definition. If |Q] = g and C = Q" then
R :=n"llog,|C|

is called the (information-) rate of C.

Sometimes we shall be interested in knowing how far a received word can
be from the ciosest codeword. For this purpose we introduce a counterpart
of minimum distance.

(3.1.4) Definition. If C < Q" then the covering radius p(C) of C is
max {min {d(x, c)lc e C}|x € Q"}.
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center x was defined to be the set {ye Q"ld(x,y) < p}. If p is the largest
integer such that the spheres B,(c) with ¢ € C are disjoint, then d 2p + tor
d = 2p + 2. The covering radius is the smallest p such that the spheres B,(c)

with ¢ 2 C cover tha set nﬂ If these ﬂl‘lm"\?fﬂ are equal. then the code (”, 18
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called perfect. This can be stated as follows.

(3.1.5) Definition. A code C = Q" with minimum distance 2e + 1 is called a
perfect code if every x € Q" has distance < e to exactly one codeword.

The fact that the minimum distance is 2¢ + ! means that the code ts
e-error-correcting. The following is obvious.

(3.1.6) Sphere-packing Condition
If C = Q" is a perfect e-error-correcting code, then

('?)(q —1f =g~
o\l

e

|C]
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Of course a trivial code 1s perfect even though one cannot speak of minimum
distance for such a code. A simple example of a perfect code was treated in
Chapter 2, namely the binary repetition code of odd length n consisting of the

twrm warde f and 3
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We now turn to the problem of constructing codes which have some algebraic
structure. The first idea is to take a group Q as alphabet and to take a
subgroup C of Q" as code. This is called a group code. In this section (in fact
in most of this book} we shall require (a lot} more structure. In the following
Q is the field F,, where g = p” (p prime). Then Q" is an n-dimensional vector
space, namely F} (sometimes denoted by #). In later chapters we sometimes
use the fact that Q" is isomorphic to the additive group of F,. (cf. Section 1.1).

(3.2.1) Definition. A g-ary linear code C is a linear subspace of [}. If C has
dimension k then C is called an [n, k] code.

From now on we shall use [n, k, d] code as the notation for a k-dimen-
sional linear code of length n with minimum distance d. An (n, M, d) code is
any code with word length n, M codewords, and minimum distance 4.

(3.2.2) Definition. A generator matrix G for a linear code C is a k by n matrix
for which the rows are a basis of C.

If G is a generator matrix for C, then C = {aG|a € Q*}. We shall say that
G is in standard form (often called reduced echelon form)if G = (I, P), where
I, is the k by k identity matrix. The (6, 8, 3) code which we used in the example
of Section 2.1 is a linear code with G =(I J — I). If G is in standard form,
then the first k symbols of a codeword are called information symbols. These
can be chosen arbitrarily and then the remaining symbols, which are called
parity check symbols, are determined.

The code used on the PC-keyboard interface mentioned in the Introduction has
one parity check bit (responsible for the name) and generator matrix

G=( 1").

As far as error-correcting capability is concerned, two codes C, and C, are
equally good if C, is obtained by applying a fixed permutation of the positions to
all the codewords of C,. We call such codes equivalent. Sometimes the definition
of equivalence is extended by also allowing a permutation of the symbols of Q
(for each position). It is well known from linear algebra that every linear code is
equivalent to a code with a generator matrix in standard form.
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In general a code C is cailed systematic on k positions (and the symbols in

these positions are calied information symbols) if |C} = g* and there is exactly
one codeword for every possible choice of coordinates in the k positions. So
we saw above that an {n, k] code is systematic on at least one k-tupie of
positions. Since one can separate information symbols and redundant sym-
bols, these codes are also called separable. By (3.1.3) an [n, k] code has rate
k/ n, in accordance with the fact that &k out of n symbols carry mformatlon Thc

four 3-tupies of posmons

The reader will have realized that if a code C has minimum distance
d = 2e + 1, then it corrects up to e errors in a received word. If d = 2e then
an error pattern of weight e is always detected. In general if C has M words

M . :
one must check ( 2 ) pairs of codewords to find d. For linear codes the work

1S easier.

(3.2.3) Theorem. For a linear code C the minimum distance is equal to the
minimum weight.

PROOF. d(x,y) =d(x —y,0)=w(x —y)and if xe C, ye C then x —ye C.
C

(3.2.4) Definition. If C is an [n, k] code we define the dual code C* by
Ct:={ye RV, [<{x, y) =0]}

The dual code C* is clearly a linear code, namely an [n, n — k] code. The
reader should be careful not to think of C* as an orthogonal complement in
the sense of vector spaces over R. In the case of a finite field @, the subspaces
C and C* can have an intersection larger than {0} and in fact they can even
be equal. If C = C* then C is called a self-dual code.

If G = (I, P) is a generator matrix in standard form of the code C, then

Ly T r €ne "L Thic fallawa fon tha fn tha
i1 = \'— 1 1,,...;‘; isa ECncr ator matrix for C-. This follows from the fact that

H has the right size and rank and that GH' = 0 implies that every codeword
aG has inner product O with every row of H. In other words we have

(3.2.5) xeCexH =0.

In (3.2.5) we have n — k linear equations which every codeword must satisfy.

If y € C* then the equation (x, y) = 0 which holds for every x € C, is called

a parity check (equation). H is called a parity check matrix of C. For the [6,

3] code used in Section 2.1 the equation a4 = a, + a5 is one of the parity
checks. (The code is not systematic on positions 2,3, and 4.)

(3.2.6) Definition. If C is a linear code with parity check matrix H then for
every x € Q" we call xH' the syndrome of x. Observe that the covering radius
p(C) of an [n, k] code (cf. (3.14)) is the smallest integer p such that any
{column-)vector in 0" ¥ can be written as the sum of at most g columns of H.
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In (3 2. 5) we saw that codcwords are charactenzed by syndromc 0 Thc

idea was introduced using the [6, 3] code in Section 2.1. Smce C is a subgroup
of 0" we can partition Q" into cosets of C. Two vectors x and y are in the same
coset iff they have the same syndrome (xH" = yH" <> x — y € C). Therefore if
a vector X is received for which the error pattern is e then x and e have the
same syndrome. It follows that for maximum likelihood decoding of x one
_ must choose a vector e of minimal weight in the coset which contains xand
then decode x as x — e. The vector e is called the coset leader. How this works
in practice was demonstrated in Section 2.1 for the [6, 3]-code. For seven of
the eight cosets there was a unique coset leader. Only for the syndrome (s,,
5,5, 53) = (1, I, 1) did we have to pick one out of three possible coset leaders.
Here we see the first great advantage of introducing algebraic structure.
For an [n, k] code over F, there are ¢* codewords and ¢ possible received
messages. Let us assume that the rate is reasonably high. The receiver needs

to know the g""* coset leaders correspondmg to ail p0551ble syndromes Now
n—k ;

possible recelved word X we would have to llSt the most lxkely transmltted
word.

It is clear that if C has minimum distance d = 2e¢ + 1, then every error
pattern of weight < e is the uniquc coset leader of some coset because two

g P e .
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cosets. If C is perfect then there are no other coset leaders. If a code C has
minimum distance 2e¢ + I and all coset leaders have weight < e + | then the
code is called quasi—perfecr The [6, 3] code of Section 2.1 is an example. The
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We give one other example of a very simple decoding procedure (cf. [3]).
Let C be a [2k, k] binary self-dual code with generator matrix G = (I, P).
The decoding algorithm works if C can correct 3 errors and if the probability
that more than 3 errors occur in a received vector is very small. We have the
parity check matrix H = (P" ) but G is also a parity check matrix because
Cisself-dual. Let y = ¢ 4 e be the received vector. We write e as (e, ; e,) where
e, corresponds to the first k places, e, to the last k places. We calculate the
two syndromes

sV:=yH =¢, P +e,,

s :=yG" =e, +e,P".

If the t+ < 3 errors all occur in the first or last half of v, ie. e, =0Qore, =0,

then one of the syndromes will have weight < 3 and we 1mmediately have e.
If this is not the case then the assumption t < 3 implies that e, or e, has
weight 1. We consider 2k vectors y* obtained by changing the ith coordinate

of y (1 <1i < 2k). For each of these vectors we calculate s, (for i < k) resp. s,

{ifi - IV If wa find a cundrama with weiaght < 2 wo ran ~cnrrant tha ramaining
PALE T Thp. B2 NV AN G SF LSBT ULIAL WILLL WRIERLIL T 4y TP wildd LVLILLL Lb LGl g

errors. If we find a syndrome with weight 3, we have detected four errors if C
1s a code with distance 8 and if C has distance > 10 we can correct this pattern
of four errors.
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It will of l ful lini bol
codeword of a code C according to some natural rule. The most common of
these 1s given in the following definition.

i ™
ai

then C has generator matrix G and parity check matrix H, where G is

obtained by adding a column to G in such a way that the sum of the columns
of G 1s 0 and where

0

If C is a binary code with an odd minimum distanEe d, then C has minimum
distance 4 + 1 since all weights and distances for C are even.

—

§3.3. Hamming Codes

Let G be the k by n generator mairix of an [, k] code C over F,. If any two
columns of G are linearly independent, i.e. the columns represent distinct
points of PG(k — 1, g), then C is called a projective code. The dual code C*
has G as parity check matrix. If ¢ € C* and if e is an error vector of weight 1,
PR Y T RN SUNEL U . .U [P0 [N Ity [P P o SR SRS ML
HNCLL HIC SYNUIOIIC (C 1+ €] 15 a {IUILIpIC Ul d LUIULLIL UL W, JlLILe LS
uniquely determines the column of G it follows that C* is a code which
corrects at least one error. We now look at the case in which n is maximal

(given k).

(3.3.1) Definition. Let n:= (g* — 1)/(g — 1). The [n, n — k] Hamming code
over F, is a code for which the parity check matrix has columns that are
pairwise linearly independent (over F), i.e. the columns are a maximal set of
pairwise linearly independent vectors.

Here we obviously do not distinguish between equivalent codes. Clearly
the minimum distance of a Hamming code is equal to 3.

(3.3.2) Theorem. Hamming codes are perfect codes.



§3.4. Majority Logic Decoding 39

Proof. Let C be the [n, n — k] Hamming code over F, where n = (g* — 1)/
(g—=1). lf xeCthen

|By(x) =1 + n(g — 1) = 4

Therefore the g"* disjoint spheres of radius 1 around the codewords of C

contain |C|-¢* = ¢q" words, i.e. all possible words. Hence C is perfect (cf. {3.1.5)
and (3.1.61)

s e R g

(3.3.3) EXAMPLE. T'he ]/, 4] binary Hamming code C has parity check matrix

[00 0 1 1 1 1]

H=|0 11 0 0 1 14.

[1 01 010 IJ
If we consider two columns of H and the sum of these two (e.g. the first
three columns of H), then there is a word of weight 3 in C with Is in the
positions corresponding to these coiumns {e.g. (1110000)). Therefore C has
is of weight 3 which. when listed A o PG(2

2). The words of even weight in C are a solution to Problem 2.4.3. By
inspection of H we see that the extended code C is self-dual.

(3.3.4) ExampLE. Suppose that we use an extended Hamming code of length
n = 2" on a B.S.C, with bit error probability p; (g := 1 — p). The expected
number of errors per block before decoding is np. If one error occurs, it is
corrected. If two errors occur, then we have error detection but no correction. So,
the two errors remain. Otherwise, it is possible that the decoder introduces an
extra error by changing a received word with > 3 errors into the closest codeword.
Therefore, the expected number of errors per block after decoding is at most

2( )p2 - 2+i(i+l)(?) rq
2 G+D) o s
= 2( )p[" "'Zl-:ru\() q }

q" ‘2-{-?"‘ ("—_2\ p“zq"‘*l
S\i—-2) J

= n{n-1p* < (np).

< 2(") p?
\2/

.—"-—\F-

If p is small enough, this is a considerable improvement. We shall use this estimate
in §4.4.

§3.4. Majority Logic Decoding

In this section we shalil briefly sketch a decoding method which is used with
many linear codes. Generalizations will occur in later chapters. The method
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is simple and it has the advantage that in some cases more errors are cor-
rected than one expects to be able to correct.

(3.4.1) Definition. A system of parity check equations (x, y7)> =0
(1 < v <r),is said to be orthogonal with respect to position i {for the code C;
yWe CHif

N y=10l<v<r),
(i) if j # i then y”’ # O for at most one value of v.

Now suppose x is a received word that contains ¢ errors, where ¢ <

r.

b

_ [<tvaluesofy, if x, is correct,
Ul . - "
12 r—(t — 1)valuesof v, if x; 1s incorrect.

<
—

Since r — (t — 1} > ¢, the majority of the values of {x, y"'> (i.e. 0, resp. not 0)
decides for us whether x; is correct or not. In the case of a binary code we can

PR (1 ' L) ] L) W [ 1AV [] LY BLEEE . )

every i, we can correct the different positions one by one.

As an example we consider the dual of the [7, 4] Hamming code (cf. (3.3.3)).
The parity check equations

x1+x5+x7=0,

are othogonal with respect to position 1. If x contains one error, then the

three equations yield 1, 1, 1 if x, is incorrect, respectively two Os and one 1 if
X, is correct. If two outcomes are 1. we see that more than one error has been

AL 2 L YR 2w €L 220N il S adte WALSSL LiUAT Wil

made (the code is two-error detecting).

Consider the [6, 3, 3] code with generator matrix G := (I J — I and adjoin
two symbols a; = a3 = a,. The reader should check that we still have d = 3 but
that the new parity check matrix has four rows that are orthogonal with respect to
position 1. So, even if two errors occur, position 1 is correct after decoding.

§3.5. Weight Enumerators

The minimum distance of a linear code tells us how many errors a recetved
word may contain and still be decoded correctly. Often it is necessary to have

uuuuuu

we introduce the so-called weight enumerator of the code.

(3.5.1) Definition. Let C be a linear code of length n and let 4, be the number
of codewords of weight i.
Then
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A2 =Y Az

1=

I
o

is called the weight enumerator of C. The sequence (4,);-, is called the weight
distribution of C.
If C is linear and ¢ € C, then the number of codewords at distance i from ¢

nqng'lc A.. For a nonlmear code thig is eenerallv not true. A code that doee have

lieiuy SEfae S iviiisisedan Wvew AL AV pWwRiwLiGliy LINSL LE e AACEL AAVSRLS AREE Y

this property (for all codewords and all {) is called distance invariant. (Also see

Definition 5.3.2.)

P 1e W
code of length n Cons1dcr i — 1 column
code. There are three possibilities:

(1) the sum of these columns is 0;
(1) the sum of these columns is one of the chosen columns;
(i) the sum of these columns is one of the remaining columns.

We can choose the i — 1 columns in ( " 1) ways. Possibility (i) occurs
I —

A;_, times, possibility (ii) occurs {n — (i — 2))A4;-, times, and possibility (iii)
occurs i4; times. Therefore
. F n LY .
lA" = (i 1) - Ai—l —_ (n — 1 + 2)145_2,
which is trivially correct if i > n + 1. If we multiply both sides by z'~! and

hen sum over i we find

F W REELWE

”

A2y =(1 + 2" — A(2) — nzA(z) + 22A'(2).
Since A(0) = I, this differential equation has the unique solution
1 n
2. Az =——(1 " (1 (R=1Y2() _ p\m+1)2
(3.5.2) (2} n+1( +z)+n+l( + z) (1 —z)

One of the most fundamental results in coding theory is a theorem due to
F. J. MacWilliams (1963) which gives a relation between the weight enumera-
tors of a linear code and its dual.

(3.5.3) Theorem. Let C be an [n, k] code over k, with weight enumerator A(z)
and let B(z) be the weight enumerator of Ct. Then

1 —
Bz) = (1 + (g — 1)2'A (______i_)

I+ (g — Dz,

PRrOOF. Let x be any nontrivial character of (F,, +). As usual let # = F7. We
define

gy = Y x(<u, vp)z*™,

ve ¥
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Then we have

ZC glu) = Y Z 2(a, v))ZM = Z ¥ 3 x(<u, v)).

wel ve X ausC
Here,if v e C* the inner sum is {C|. If v ¢ C* then in the inner sum (u, v) takes
every value in F, the same number of times, i.e. the inner sum is 0. Therefore

(3.5.4) zc g(u) = [C|- B(2).
Extend the weight function to F, by writing w(v) = 01if v =0 and w(v) =
otherwise. Then, writing ¢ = (u,, u,, ..., u,) and v = (v,, 05, ..., v,), we have
from the definition of g(u):
gy =} T + oo+ )
(T Uz, vLle R
= > ¥y 02y (uy05) - 2 g (u,0,)
(W 074...4 v,}e i

In the last expression the inner sumisequalto 1 + (g — 1)zify;, = O0and it is
equal to

1+z Y x@=1-—z  ify#0.

ae Fa\ {0}
Therefore
(3.53) gu) = (1 — (1 + (g — Dz
Since {C| = g* the theorem now follows by substituting (3.5.5)in (3.54). [

For a generalization we refer to Section 7.2.

Sometimes the weight enumerator of a code C 1s given in homogeneous form
as

Hame(x,y) := Y  x"""©y©

ecC

In this notation, the MacWilliams relation for a binary code C and its dual C* is
given by

1
Hamc.(x,y) = -I-é,-lHamc(x +y.x—y)

This follows directly from Theorem 3.5.3.

In many communication schemes 1

="

sed in practice, one can model the alphabet as

a set of points regularly spaced on a circle. Take a-s';xampl;;;al_p_habe_t_;f this
kind with seven symbols. We 1dcnt|fy these symbols (still on a circle) with the

elements of Z,. In these channels, the effect of additive Gaussian noise does not
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make all errors equally ]chly It is much more likely that a U'ansmltted symbol is

and an error occurs, it is more llkely that a 3 ora 5 is rccewed than a 2 ora 6 etc.
So, for these channels Hamming distance is not a natural metric for measuring
errors. Instead, one uses the so-called Lee weight and Lee distance.

we (i) ;= min{i, m — i}.
The Lee metric on Z7 is defined by
w,(a) = Zw.r.(ﬂs),

i=1

where the sum is defined in N,. We define Lee distance by

d (X, y) = w,(x—Y).

nnt Aiffienlt tn see that thic ic lhrl.m:rl a r‘tcfaﬂr-n Amastinn
AV WABALEANCLLLE WA LWy RALRLY SLALLF AL A AR LALFALL S

It is
In a later chapter, we shall be especially interested in the alphabet Z,. We
treat this in more detail now. In Z,, the Lee weights of 0,1, and 2 are 0,1, and 2
respectively, but the Lee weight of 3 is 1.

For a code C € Z; (see (8.1.1)), we define two weight enumerators, the
symmetrized weight enumerator and the Lee weight enumerator.

(3.6.2) Definition. The symmetrized weight enumerator of a code C C Z is
given by

nple) _ny {e)4-n3 3{g) _ naic)

swee(w, x,y) : _Z_wax Tyt
eeC

where #n;(c) denotes the number of coordinates of ¢ equal to .

o~

(3.6.3) Definition. The Lee weight enumerator of a code C € Z7 is defined by

LCCc(x, y) = sz"_wL(C)wa(c)-

celC

Note that
(3.6.4) Leec(x, y) = swec(x?, xy, y).

Let us see if a slight modification of the proof of Theorem 3.5.3 can yield a
generalization of the MacWilliams relation to codes over Z,. Wetake y tobe a

character on (Z,, +); below, we will take
x(a) :=i° where i’=—1inC.

We consider a function f defined on 9% := Z; and define
g := Y _ x({u, v)) £(¥).

yeESB
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—In the same way as for (3.5.4), we find

(3.6.5) > g =ICl)_f.

el ve(CL

In the next part of the proof, we choose

f(v) t== wﬁo(v)x”l (v)+”3(v)yn2(v) .

Continuing exactly as in the proof of (3.5.3), we find

g(u) _— I-[ Z x(u,-v)w""‘“’x""”’*”"”’y"z‘”’.

j=i vedy

To calculate the inner sum, we must distinguish between u; = 0, u; = 1 or 3, and
u; = 2. In the three cases, we find (w +2x + y), (w —~ y),and (w — 2x + y)
respectively. Hence

(3.66) gluy=w+2x+ y)"ﬁwﬂ“)mm) (w = 2x + y)y"=™,
Substituting (3.6.6) in (3.6.5) yields

1

(3.6.7) sweci(w,x,y) = stec(w +2x+y,w—-y w-—2x + y).

i~1

We find the following generalization of Theorem 3.5.3.

(3.6.8) Theorem. If C is a quaternary code and C* its dual, then

1
Leeci(x, y) = '—;,—iLeeC(x + ¥y, x — y).

~1

Proor. Apply (3.6.4) to (3.6.7). O

§3.7. Comments

The subject of linear codes was greatly influenced by papers by D. E. Slepian
and R. W. Hamming written in the 1950s. The reader interested in knowing
more about matgntv Inmp derndmo should consult the book hv J. L. Massey

[47]). There are several generalizations of MacWilliams’ theorem even to
nonlinear codes. An extensive treatment can be found in Chapter S of [46].
For an application of (3.5.2) see Chapter 2 of [42].
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—83.8. Problems —— — — — — — —

3.8.1. Let C be a binary perfect code of length » with minimum distance 7. Show that
n=7o0rn=23

3.8.2. Let C be an [n, k] code over F, which is systematic on any set of k positions.
Show that C has minimum distanced =n — k + 1.

et e a + 1, mary code such that C . Describe
3.8.4. Let & = F$ and let x € #. Determine |B,{x)|. Is it possible to find aset C =« &
with |[C| = 9such thatforalixe C,y e C, x # y the distance d(x, y) is at least
3?

3.8.5. Let C be an [n, k] code over F, with generator matrix G. If G does not have a

column of Os then the sum of the weights of the codewords of Cis n{g — 1)g*"".
Prove this.

3.8.6. Let C be a binary [n, &] code. If C has word of odd weight then the words of
even weight in € form an {n, k — 1] code. Prove this.

3.8.7. Let C be a binary code with generator matrix

|‘1 00010 1‘|

0100 1 01
001 001 1]
000 1 0 1t 1

Decode the following received words:

@y 1 61 0 1 1

MmO 1 1 0 1 1 Iy

cg@® 1 1 1 0 0 Q.

3.8.8. Let p be a prime. Is there an {8, 4] self-dual code over F,?
3.8.9. For g = 2 let R, denote the rate of the Hamming code defined in (3.3.1). Deter-

mina lim 2
ANE RN lllllt_..w ‘\k-

3.8.10. Let C be a binary code with weight enumerator A(z). What is the weight

enumerator nf f"’ What ic ﬂ'l.ﬂ waioht snumerator nf fh ri l nf f"n‘-b avtondad
ARd%Wil €A BLFIL ¥ LILALE 1D Lilw "UI ALE LR LEIBRMNE ERLLFL AL LI l.-l Litw Wik Wil AWl

binary Hamming code of length 2"?

3.8.11. Let C be a binary [n, k] code with weight enumerator A(z). We use C on a
binary symmctric channel with error probability p. Our purpose is error

I . S, PR Ty lamd mua 4o ard AeAd

detection umy What is the pluuauuuy that an incorrect word is received and
the error is not detected?

Tha it ove

. The n, by n; matrices ove nnn,.
Let C, be an [n;, k;] binary code wnh minimum distance d; (i = l 2) Let C be
the subset of & consisting of those matrices for which every column, respec-
tively row, is a codeword in C,, respectively C,. Show that Cisan [nyn,, k, &,
code with minimum distance d, d,. This code is called direct product of C, and
C,.

[ 78]
oo
p—
[
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—3.8.13. Let C be the binary [10, 5] code with generator matrix

1000000GO0 1 1
010000C 1100
G={0 010010100/
0001011000
00007111100

3.8.14.

Show that C is uniquely decodable in the following sense: For every received
word x there is a unique code word ¢ such that d{x, ¢) is minimal.

Let us define lexicographically least binary codes with distance d as follows. The
word length is not specified at first. Start with¢g=0andc, =(1,1,..., 1,0,
0,0,...,0) of weight d. if ¢y, ¢y, ..., ¢;—, have been chosen then ¢, is chosen as
the word which comes first in the lexicographic ordering {with 1s as far to the
left as possible) such that d(c;, ¢;) > d{0 < i <! — 1). After I steps the length of
the code is defined to be the length of the part where coordinates 1 occur.

3.8.15.

(i} Show that after 2* vectors have been chosen the lexicographically least
code is linear!

(i} For d = 3 the Hamming codes occur among the lexicographically least
codes. Prove this.

Show that a [15,8,5] code does not exist.
Hint: Show that such a code would have a generator matrix with a row of weight 5
and consider the subcode generated by the other rows.



CHAPTER 4

Some Good Codes

§4.1. Hadamard Codes and
Let H, be a Hadamard matrix of order n (see (1.3.5)). In H, and — H, we
replace — 1 by 0. In this way we find 2n rows which are words in F}. Since any
two rows of a Hadamard matrix differ in half of the positions we have
constructed an (n, 2n, }n) code. For n = 8 this is an extended Hamming code.
For n = 32 the code is the one used by Mariner 1969 which was mentioned
in Section 2.1. In general these codes are called Hadamard codes.

A similar construction starts from a Paley matrix § of order » (see (1.3.8)
We construct a code C with codewords 6, 1, the rows of }{(§ + I + J) an
H{—S + 1+ J). From Theorem 1.3.8 it follows that C is an (n, 2(n + 1), d)
code, where d = 4(n — 1) if n =1 (mod 4) and d = {(n — 3) if n = 3 (mod 4).
In the case n = 9 the code consists of the rows of the matrix

)

000 000 000
J P? P
P J pP?
P2 P J
4.1.1
(41.1) I J—P* J-—P
J—P ! J — p?
J—pP* J-P |
1 1 1 1 1 4% 1 ¥ 1
LJ,AJ i i L J.I.J.—

where I and J are 3 by 3 and



43 4. Some Good Codes

The most famous of all (binary) codes is the so-called binary Golay code 4,,.
There are very many constructions of this code, some of them quite elegant
and with short proofs of the properties of this code. We shall prove that 4, ,,
the extended binary Golay code, is unique and treat a few constructions.
From these it follows that the automorphism group of the extended code is
transitive and hence %, , is also unique.

We consider the incidence matrix N of a 2-(11, 6, 3) design. It is easy to
show (by hand) that this design is unique. We have NNT = 3 + 3J. Consider
N as a matrix with entries in F,. Then NNT = I + J. So N has rank 10 and
the only nonzero vector x with xN = 0 is 1. The design properties imply trivially
that the rows of N all have weight 6, and that the sum of any two distinct rows of
N also has weight 6. Furthermore, we know that the sum of three or four rows of

N isnot 0.
h atri v iy =
[0 1 - 1‘|
1
421 P= |
(4.2.1) : N
Ll J

Every row of G has a weight = 0 (mod 4). Any two rows of G have inner
product 0. This implies that the weight of any linear combination of the rows
of G is = 0(mod 4) (proof by induction). The observations made about N then
show that a linear combination of any number of rows of G has weight at least
8. Consider the binary code generated by G and call it %,,. Delete any

coordinate to find a binary [23, 127 code with minimum distance at least 7.
The distance cannot be larger, since (3.1.6) is satisfied with e = 3, which shows
that in fact this {23, 12, 7] code is a perfect code! We denote this code by %,;;

(as mentioned above, we shall prove its uniqueness, justifying the notation).

(4.2.2) Theorem. The codewords of weight 8 in 4,, form a 5-(24, 8, 1) design.

PRrOOF. By an easy counting argument, one can show that the weight enumer-
ator of a perfect code containing 0 is uniquely determined. In fact, we have
Ag=A,;3=1,A;=A4,,=253, 4, =A,;,=506,4,, = A,, = 1288.50,%,,
has 759 words of weight 8, no two overlapping in more than four positions.
Hence, these words together cover 759 () = (&%) fivetupies. ]

(4.2.3) Theorem. If C is a binary code of length 24, with |C| = 2'2, minimum
distance 8, and if 0 € C, then C is equivalent to 4, ,.

Proor. (1) The difficult part of the proof is to show that C must be a linear
code. To see this, observe that deleting any coordinate produces a code C’ of
length 23 and distance 7 with |C’| = 2!2. So, this code is perfect and its weight
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enumerator is as in the proof of the previous theorem. From the fact that this
g , hich of the 24 positions is deleted. it fofl \ "
codewords in C have weight 0, 8, 12, 16, or 24. Furthermore, a change of
origin, obtained by adding a fixed codeword of C to all the words of C, shows
that we can conclude that the distance of any two words of C1s also 0, §, 12,
16, or 24. Since all weights and all distances are = 0 (mod 4), any two code-
words have inner product 0. Therefore the codewords of C span a linear code
that is selforthogonal. This span clearly has dimension at most 12, i.e. at most
2'2 codewords. It follows that this span must be C itself. In other words, C is
a selfdual linear code!

(ii) We form a generator matrix G of C, taking as first row any word of weight
12. After a permutation of positions we have

wenght ;é 0. So B has rank Il Thls 1mp11es that the codc gcnerated by B 18
the [12, 11, 2] even weight code. We may therefore assume that B is the matrix
1,, bordered by a column of 1's. A second permutation of the columns of G

yields a generator matrix G’ of the form (f 12P] where P has the same form as

m (AT 1Y What Adn wa L anhatit tha nte ANian thic rnea? o
lll. \ sdomn l} ¥¥ lidL UU WC !\IIUW dUUuL lul"u uu:u.u.\ iY I.l.l LIILD Ao, \.,l.‘vﬂ&l-! Cl-ll.y LU\'\"

of N must have weight 6 (look at the first row of G'). In the same way we see
that the sum of any two rows of N has weight 6. This implies that N is the
incidence matrix of the (unique!) 2-(11, 6, 3} design. Hence C is equivalent

tr & ™
S 0/24- L

The following construction of %,, is due to R. J. Turyn. We consider the
[7, 4] Hamming code H 1n the following representation. Take 0 and the seven
cyclic shifts of (1 1 0 1 0 0 0); (note that these seven vectors form the inci-
dence matrix of PG(2, 2)). Then take the eight complements of these words.
Together these form H. Let H* be obtained by reversing the order of the
symbols in the words of H. By inspection we see that H and H* are - [8, 4]
codes with the property HnH* = {0, l} We know that both H and H* are

bClIUUdl LUUCb Wllﬂ mlmmum UIbld.IlLC 4.
We now form a code C with word length 24 by concatenating as follows:

C={a+xb+x,a+b+x)acHbeHxeH*}.

By letting a and b run through a basis of H and x run through a basis of H¥,
we see that the words (a, 0, a), (0, b, b), (x, x, x) form a basis for the code C.
Hemnce Cis a [24, 12] code. Any two (not necessarily distinct) basis vectors of
C are orthogonal, 1. e. C is seifdual. Since all the basis vectors have a weight
divisible by 4, this holds for every word in C. Can a word ¢ € C have weight
less than 87 Since the three componentsa + x, b + x,a + b + x all obviously
have even weight, one of them must be 0. Our observation on the intersection
of H and H* then leads to the conclusion that x = 0 or 1. Without loss of
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generality we assume that x = 0. Since the words of H have weight 0 4 or 8
it follows that ¢ = 0.

We have shown that Cis a [24, 12, 8] code; hence C = 4,,.

The next construction is due to J. H. Conway. Let F, = {0, 1, w, &}. Let C
be the [6, 3] code over F, with codewords (a, b, ¢, f(1), f(w), f(@)), where

fly) -— !]I'Y + bx + ¢. It is an easv exercise to show that € has minimum
J \J‘)‘ - J Tt B R L TEALEL e LAGAJ AALJARELAJLELLL

weight 4 and no words of weight 5. C is known as the hexacode.
Now, let & be a binary code of length 24 for which the words are represented
as 4 by 6 binary matrices A. Denote the four rows of such a matrix A by a,, a,, a,,

and a. A matrix A belongs to G iff the followine two conditione ara caticfiad

bt — T LA ANSRINSVY ARAS TPV NS LASLALILENSLID O DGLASLied

(1) Every column of A has the same parity as its first row a;
(2) a, + wa, + wage C.

These conditions obviously define a linear code.

If the first row of A has even parity and the codeword in (2) is not 0, then
A has at least four columns of weight > 2, i, e. weight > 8. If, on the other
hand, the codeword in (2) is 0, then either A4 is the zero word or A4 has at least
two columns of weight 4, again a total weight at least 8. If 4 has a first row
of odd parity, then all the columns of A have odd weight. These weights
cannot all be 1, because this would imply that the word of C in condition (2)
hag ndd u:mnhf We have chown that & hag minimum distance & We leave it
as an exercise for the reader to show that conditions (1) and (2) and the fact

that C has dimension 3 imply that G has dimension 12. Therefore, the matri-
ces A form 4,,.

In Section 6.9 we shall find vet another construction of %, ; as a cyclic code
i. e. a code with an automorphlsrn of order 23. All these coanstructions to-
gether show that the automorphism group of ¥,, is transitive (in fact 5-
transitive; it is the Mathieu group M, ). Therefore 4, , 15 also unique.

We mention that the construction of Exercise 3.8.14 withd = 8 and k = 12
also produces the extended binary Golay code 4,,.

The following decoding algorithm for %,, is a generalization of Section
3.4 based on Theorem 4.2.1. Let y; (1 <i < 253) be the 253 code words of
weight 8 of ¥, , with a 1 in a given position, say position 1. Consider the parity
charke v v N1 < § < D5 hera we nca tha fart that &4 |c self-dual. Sunnose

WIIMLLAD A\ Ay Fr AN = = LT i PP L LS L1 LGl LAl I Swill Tl wdil. had o A An]

x is received and contains t < 4 errors. Theorem 4.2.1 1mp11es that the number
of parity checks which fail is given by the following table.

x, correct X, incorrect
t=1 17 253
2 112 176
3 125 141
4 128 128
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So incaset < 3 wecan correct the symbol x,. The line corresponding to ¢ = 4

demonstrates that %,, is 4-error-detecting but not 4-error-correcting.
We remark that the procedure for self-dual codes that we described in

[ g, P

weLLivil -J 4, wucu d.ppucd to I.hc CthlldCd Ullldly GUlay LUUU, lllVUlVCb lllC
calculation of at most 26 x 12 = 312 parity checks and produces all the
coordinates of the error vector (if t < 3).

§4.3. The Ternary Golay Code

Let S5 be the Paley matrix of size 5 defined in (1.3.8), i.e.

0 + - - +]
+ 0 + - -
S5 =| - + O + -
- - + 0 +
|+ - — + 0|
Consider the [11, 6] ternary code C defined by the generator matrix
[ 1111 1]
G = 16 85

The code C is an [11, 6] code. From (1.3.8) it follows that C is self-dual.
Therefore all the words of C have weight divisible by 3. The generator G for

f‘ e nlmtninad oy ndding the ~alviemn § -1 -1 _1 1 AT 408 7 Boany
e I3 WV RALLIVGE U: auu1115 Ll WAJILLARILS 'lu, 1, l’ l, - l. - ].’ WL LF, LVGI.J

row of G has weight 6. A linear combination of two rows of G has weight at
least 2 + 2, hence it has weight 6. Therefore a linear combination of two rows
of & has exactly two zeros in the last six positions and this implies that a linear

ecoambanatinn Af theao rows nff' hnc \‘uninhf at Inacf 1 _L 1 3 e, uu.nn'\f at 'noof
LLLIasianioy U uu\-\.. Ly L] R I Lo ) 1y LG Wiipglll at ivasc

6. Therefore C has minimum distance 6. It follows that C is an (11, 3%, 5) code.

I {11\»\: -~ gL Iy

From | B,(x}| = ) - 0\ }z = 37 it then follows that C is a perfect code. This

code is known as the ternary Golay code. 1t has been shown that any (11, 3°,
5) code is equivalent to C (cf. [46]). A simple uniqueness proof such as we
gave for the binary Golay code has not been found yet.

s
®!
]
=
[ #s]
e
st
)
ing

3

Many good codes have been constructed by modifying (in various ways)
previously constructed codes. In this section we shall give several examples.
The first method was introduced in (3.2.7), namely extending a code by adding



52 4. Some Good Codes

an extra symbol called the overall parity check. The inverse process, which
we used in Section 4.2 to obtain the binary Golay code from its extension is
called puncturing a code. If we consider as another example the (9, 20, 4) code
of (4.1.1) and puncture it, i.e. delete the last symbol in every word, we obtain
an (8, 20, 3) code. In the next chapter we shall see that this is indeed a good
code. We remark that an equivalent code can also be obtained by -taking
all cyclic permutations ofthewords(1 1 0 t 0 ¢ 0 0,1 1 1t O
0t 0 Ojand(t O 1 0 1 0 1 OytogetherwithOandl.

A third procedure is shortening a code C. Here, one takes all codewords in
C that end in the same symbol and subsequently deletes this symbol. This
procedure decreases the length and the number of codewords but it does not
lower the minimum distance. Note that if the deleted symbol is not 0, this
procedure changes a linear code to a nonlinear code {generally).

Let us now look at a slightly more complicated method. From one of the
constructions of the extended binary Golay code %,, in Section 4.2 one
immediately sees that 4,, has a subcode consisting of 32 words with 0 in
the first eight positions. Similarly, if we take ¢4 = | and exactly one of the

symbols ¢, to ¢; equal to 1, then we find a subcode of 32 words (¢, ¢,, ...,
‘_24! y\ Dainoe thic in all naccihla ways, we havs a cnhcﬂf of 7868 warde nlf & ith

ASNALLE RS TRILG 111 QIR PRIIIELAIL YV O Y Oy VPR LIGR YR @ JWLOVEL W S FTRSANED WL T ks ’:tll

the property that any two of them dlffer in at most two positions among the
first eight. Now we delete the first eight symbols from these words. The result
is a binary (16, 256, 6) code which is nonlinear. This code is called the
Nordstrom-Robinson code. This code is the first one in an infinite sequence
that we discuss in Section 7.4. If we shorten this code twice and then puncture
once the result is a (13, 64, 5) code, which we denote by Y. This will be an
important example in the next chapter. It is known that Y is unique and that
if we shorten Y there are two ssnble results (J.-M. Goethals 1977, cf. [26]).

[P, P JRApEps U PR FgE § S L.

W Y JF SRRV RS TP JORUEY . 5 JOE T JEV
The two codes are: a code known as the Nadler code and the code of Problem

4.8.7.
A construction similar to our construction of the extended binary Golay
code is known as the (u, u + v)-construction. Let C, be an (n, M,, d;) binary
i:

code {i = 1. 2). Define
CoOUC i = 1, &), LACINC

(4.4.1) C={uwu+vueC,ve )}

Then C is a (2n, M, M,, 4) code, where d := min{2d,, d,}. To show this we
consider two codewords (u,,u; + v,)and (u;,u, + v,). If v, = v, and u; # u,,
their distance is at least 2d,. If v, # v, the distance 15 w{u, —wu,) +
w(u, —w, + v, — v,) which clearly exceeds w(v, — v,), i.e. it is at least d,. As
an example we take for C, the (8, 20, 3) code constructed above, and for C,
we take the [8, 7] even weight code. The construction yields a (16, 5-2°, 3)
code. There is no (16, M, 3) code known at present with M > 5-2°.

Many good codes were constructed using the following idea due to H. J.
Helgert and R. D. Stinaff (1973; cf. [34]). Let C be an [, k] binary code with
minimum distance d. We may assume that C has a generator matrix G with
a word of weight d as its first row, say



§4.4. Constructing Codes from Other Codes 53

G__rl 1 ... 1t {00 .. 0]

L & | 6 |
T at J" ha tha rrvssciersn Aictanna AfFtha M I L 17 nrda mn.—n—non.-l L., /M
LoAsL W LIIG llllllllllulll ulﬂ\.ail\i‘- L4 BN Y L= L(l dy B — l-j WA 50 Lo Uy Uz

which we call the residual code w.r.t. the first row of G. From G we see that to
each codeword of the residual code there correspond two codewords of C, at
least one of Wthh has welght < 4donthefi rst d posmons Hence d = id To

‘ LY L/ b o - - ) L]

the Nadler code does not exist. If there were such a code it would have a
generator matrix G as above where G, generates a [7, 4] code with distance
d' > 3. Therefore the residual code 1s a Hamming code. W.l.o.g. we can take
G, to have four rows of weight 3 and then G, must have (w.l.o.g.) four rows
of weight 2. There are only a few possibilities to try and these do not yield a
code with d = 5. Even for small parameter values it is often quite difficult to
find good codes. For example, a rather complicated construction (cf, [46],
Chapter 2, Section 7) produced a {10, M, 4) code with M = 38 and for a long
found a (10, 40, 4} code which we describe below. In the next chapter we shall
see that for n = 10, d = 4 this is indeed the Best code! Consider the {5, 3] code
10001

C, with generator [0 101 l-l. By doubling all the codewords we have a
l00110]

[10, 3] code C, with minimum distance d = 4. Now add (10000 00100) to
all the words of C,. The new code is no longer linear and does not contain 0.
Numbering the positions from 1 to 10 we subsequently permute the positions
of the codewords by elements of the subgroup of §,, generated by
(1 2 3 4 50 7 8 9 10). This yields 40 codewords which turn out
to have minimum distance 4.

In many technical applications (such as the compact disc) two codes are used.
These codes collaborate in some way. Sometimes the goal is to combat burst
errors. Quite often, more errors can be cormected than one would expect from the
minimum distance.

We saw an example of collaborating codes in Problem 3.7.12, namely a direct
product code. Let us have another look at such a code. Consider the product of an
[8,4,4] extended Hamming code with a [16,11,4] extended Hamming code. The
product can correct up to 7 errors. Now suppose a received word (i.€.a 16 by 8
matrix) has five rows with no errors, eight rows with one error, and three rows with
two errors. We have 14 errors, twice the number we expect to be able to handle.
However, when we decode the rows, thirteen are corrected and the three bad ones
are recognized. We now declare these rows to be erasures! When we decode
the columns, we will not encounter words with errors, but all of them have three
erasures. Since the column code has distance 4, we can handle these erasures. At

the end, all 14 errors have been corrected.

T owdirR G as AR WA L e

The codes used in practice apply variations of this idea. In the compact disc,
two codes, each with distance 5, collaborate. For one of them, the decoder only
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corrects if at most one error OCCurs; otherwise the word is declared an erasure. In

We extend the cxample u'eated above, to mtroduce a sequence ot' codes defined
by P. Elias in 1954. We start with an extended Hamming code C, oflengthn, = 2”.
Assume that the codes are to be used on a B.S. C. with bit error probability p,
where n,p < ;. For C; we take the extended Hamming code of length 2"+'.
Define V; := C, and define V, to be the direct product of C, and C,. We continue
in this way: if V; has been defined, then V., is the direct product of V; and the

extended Hamming code C,,, of length 2™+ Denote the length of V; by n; and

its dimension by k;. Finally, let E; be the expected number of errors per block in
words of V; after decoding.

From the definition, we have:
nigaa = B 2’"“,
ki = k- (2”'-H -m—i—-1),

codes have the property that E tends to zero as z — o0,
From the recurrence relations for n; and k;, we find

1. 1
p, = 2mHHED g r[ (I — M\ X
:..—a \ m+i ]

So, if R; denotes the rate of V;, then

fori — oo. So we have a sequence of codes for which the length tends to oc, the
rate does not tend to 0, and nevertheless the error probability tends to 0. This is
close to what Shannon’s theorem promises us. Note that these codes, called Elias

codes. have minimum distance /f — .d.' and hence /f )'n — Dasi — o0
hu“oq’ ALCL ¥ W

§4.5. Reed—Muller Codes

We shall now describe a class of binary codes connected with finite geo-
metries. The codes were first treated by D. E. Mulier (1954) and 1. S. Reed
(1954). The codes are not as good as some of the codes that will be treated in
later chapters but in practice they have the advantage that they are easy to

decode. The method is a generalization of majority logic decoding (see Sec-
tion 3.4).

There are several ways of representing the codewords of a Read-Muller

A A AL dii, T NS T BY WA R A AT E A i e - R R

code. We shall try to give a unified treatment which shows how the different

points of view are related. As preparation we need a theorem from number
theory that is a century old (Lucas (1878)).
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(4.5.1) Theorem. Let p be a prime and let

I t
= i;] npt and k= Z k;p'

i=0

be representations of n and k in base p (ie. 0 <n,<p—-1,0<k;<p— 1)
Then.

(k} (mod p).

PrOOF. We use the fact that (1 + x)P = 1 + x? (mod p). If 0 < r < p then
(1 + x)*7*" = (1 + x?)*(1 + xy (mod p).

Comparing coefficients of xP?*s (where 0 < s < p) on both sides yields

()= ()C) moen

The result now follows by induction. O

The foliowing theorem on weights of polynomials is also a preparation.
Let ¢ = 2". For a polynomial P(x) e F,[x] we define the Hamming weight

w{P(x)) to be the number of nonzero coetllclents in the expansion of P(x). Let
c € F,, ¢ # 0. The polynomials (x + cY, i > 0, are a basis of F,[x].

Proor. For | = 0 the assertion is obvious. We use induction. Assume the
theorem is true for f < 2". Now let 2" < | <« 2**!, Then we have

271

P(x)= Y bix+c)+ i b(x + ¢)
=0 =)

= P(x) + (x + c}*"P,(x) = (P, (x) + c*"P,(x)) + x*"P,(x),

where P,(x) and P,(x) are polynomials for which the theorem holds. We
distinguish two cases.

(i) If P,(x) = O then w(P(x)) = 2w(P,(x)) and since i, > 2"
W((x 4 C)':O) = W((xZ" + CZn)(x + C)io‘Z") — zw((x + c)io—z")’

from which the assertion follows.

(ii) If P,{x) # O then for every term in ¢2"P,(x) that cancels a term in P, (x) we
have a term in x*"P,(x) that does not cancel. Hence w(P(x)) = w(P,(x))
and the result follows {from the induction hypothesis. d
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The three rcpresentatlons of codewords in Reed—Muller codes whxch we

i u iy characteristic functions of subsets in m, 2); (i) co-

efficients of binary expansions of polynomials; and (iii) lists of values which
are taken by a Boolean function on F;'.

First some notations and definitions. We consider the points of AG(m, 2),
i.e. FJ' as column vectors and denote the standard basis by u,, u,, ..., u,,_;.
Let the binary representatlon of jbe j =)y &2 (O < j<2™).

We define x;:= ) "} Thi
points are obtained in this way. Let E be the matrix with columns x;
(0 <j<2™). Write n:= 2" The m by n matrix E is a list of the points of
AG(m, 2), written as column vectors.

4.5.3) Definitions

() A;:={x;€ AG(m, 2)|{; = 1},ie. A4,is an (m — 1)-dimensional affine sub-
space (a hyperplane), for 0 < i < m;
(1) v, := the ith row of E, i.e. the characteristic function of 4;. The vector v,

T

is a word in F}; as usual we write 1:=(1, 1, ..., 1) for the characteristic
function of AG(m, 2);

ﬁii\ ifa —={n a1 Yandh={h. h b Yare worde in ' we de-
\ll L &a \“u, ul, LECEE | un_l’ AR LA BF \ 0’ ul, LELECN ¥ u"_li ek A "v'.u\-' .l 2 vvv L L)
fine

ab = (anO’ albh seea Opmy bu—l);
(iv) fS<= {0, 1,..., m — 1} we define

C(S) :={'—MZ 2,‘,_,2‘]1¢S=>éu—-0(051<m)}

(4.5.4) Lemma. Let | = Y "3l &2 and let iy, ..., i; be the values of i for which
é_“ = 0. I_f

Vi Vip-- Y, = (81,00 Q1,15 -+ +» Bru—1)s
then

n—1

(JC + 1)‘ = Z a,_j-x”_l_j.
/=6

(Here, as usual, a product with no factors (s = 0} is defined to be 1.)

ProoOF. By Theorem 4.5.1 the binomial coefficient (n ; j) s 1iff & =1

for every i for which &, = 0. By (4.5.3) (i), (ii) and (iii) we also have g, ; = 1 iff
§i=tlori=1i,,...,i O

5*

_ s & ,,,4,4,44 PR T [ Gy, | [
he following shows how to interpret the products v; ...v; geometrically.

(4.5.5) Lemma. If i,,i,,..., i, are different then
(1) vi,¥%,...v; is the characteristic function of the (m — s)-flat

AitﬁAizﬁ“’ﬁAi‘,
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(ii) the weight w(v; ...v; ) of the vectorv; ...v; in F3 is 2",
(iti) the characteristic function of {x-}, i.e. the jth basis vector of F} is

I
S

P 4 1 . L

Vi U+ Cij)i},

(=l
=",

‘:

(iv) the products v, ...v; (0 < s < m)are a basis of F5.

I atd

PROOF.

(i) This is a consequence of (4.5.3)(i)—(iii).
(ii) By (i) the weight is the cardinality of an (m — s)-flat.
(iif} Consider the matrix E. For every i such that {; = 0 we replace the ith

rmwofFK 1e v, hu ite romnls nt 1 4 v Tf wa H-nan mn]hnlu fhn roOWS nl'
LS TY &OF) ‘—‘, T8 1Y ' J A% WwrWSLlA lvlllu“‘ a l ¥ W LANN Ll R1ANWA] I LA YYD

the new matnx, the product vector will have entry 1 only in position j,

since all possible columns occur only once. As an example consider {x,,}

in the following table. Since 14 = 0 + 2 + 2% + 2* wesee that 1 + &, =1
by if i = 0.( . — 14). So in the tabl I |

sponding to v, and then multiply to find (v, + 1) v, v, v; which is a row

vector which has a 1 only in the fourteenth position.

: m
(iv) There are ) T, ( s) = 2" = n products v; ...v; . The result follows from
(iii). Since the poiynomials (x + 1) are independent we could also have

used Lemma 4.5.4. M

The following table illustrates Lemmas 4.54 and 4.5.5. For example,
Vo Vv, corresponds to l=15-2°-22=10 and hence (x+ 1)!°=

Y VooV Coordinates = coefficients of (x + 1) l=n—1-3%2"
1 1ttt111e1t1 ettt 15=1111
Yo 0101010101 010101 14 = 1110
v 00110011001 100T11 13 =1101
¥, 0000111100001 111 11 = 1011
v, 000000001111 111 7 =0111
Vo Yy 0001000100010001 12 = 1100
Vg ¥, 0000010t900000101 10 = 1010
vzv, 00000000010101¢t01 6= 0110
vwv, 00000011000000T11 9 = 1001
v, ¥y 00000000C0DI1ITIC00T11 5 =0101
¥, ¥y 0000000000001 111 3 =0011
ovv, ©000000010000000]1 8 = 1000
Yo ¥, ¥y 0000000000010001 4 = 0100
Vo V3 ¥y 00000000000001901 2 = 0010
vyv,v, 0000000000000011 1 = 0001
YoV, ¥, ¥, 0000000000000001 0 = 0000
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(4.5.6) Definition. Let 0 < r < m. The linear code of length n = 2™ which has

the products v; ... v, with s < r factors as basis is calied the rth order binary
Reed—Muller code (RM code; notation &(r, m)).

The special case (0, m) is the repetition code. From Lemma 4.5.5(i) we see
that the Boolean function x; x; ...x; where x = (x,, ..., x,-;) runs through
¥ has value 1 iff x e A; n---n A; . Hence #(r, m) consists of the sequences

Qs 09 *m=1

(4.5.7) Theorem. Z(r, m) has minimum distance 2",

ProoF. By the definition and Lemma 4.5.5(ii) the minimum distance is at most
2™"" and by Lemma 4.5.4 and Theorem 4.5.2 it is at least 2™ . (Also see
Problem 4.7.9)) |

(4.5.8) Theorem. The dual of Z(r, m) is Hm —~r — 1, m).

PROOF.

(a) By the definition and the independence of the products v; ...v; the

dimension of %(r,m)} 15 1+ ( T) +- 4+ (m\ So dim Z(r, m) +
N/ \T/

dm Am —r — 1, m}=n.

(b) Letv, ...v, and v; ...v; be basis vectors of %&(r, m) and R(m —r — 1, m)
respectively. Then s 4+ t < m. Hence the product of these two basis vectors
Lnge tlia Frasen = - wrhama 10 o e Dy T g A € £00) thic mradisat haa
Lldd LG Il Vk| e "k“ WIEICLL M = T Dy Llllilic ‘T.J.J[ll,‘ LILLS IJI.ULIU'wIs Iy

even weight, i.e. the original two basis vectors are orthogonal. 'H

Corollary. &(m — 2, m) is the [n, n — m — 1] extended Hamming code.

We have chosen the characteristic functions of certain flats as basis for an
RM-code. We shali now show that for every flat of suitabie dimension the
characteristic function is in certain RM codes.

(4.59) Theorem. Let C = Z(m — |, m) and let A be an l-flat in AG(m, 2). Then
the characteristic function of A isin C.

PROOF. Let f =) 72} f;e; be the characteristic function of 4. By Definition

4.5.3(iv) and Lemma 4.5.5(1ii} we have
T N
e.f = L Ll vl'l vlz Iy
=0 (i! ..... l,}
jeCly, ..., i)

fzi 2 (jea; :,JJ})VE'M“"

s=0 (iy,....0,)
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Here the inner sum counts the number of points in the intersection of 4 and

the s-flat
L = {x;e AG(m, 2)|j € C(i;, ..., i;)}.

If s>m—1!then LN A is either empty or an affine subspace of positive
dimension. In both cases | L n A| is even, i.e. the inner sum is 0. O

sum of characteristic functions of affine subspaces of dimension > m — r. In
the terminology of Boolean functions %#(r, m) is the set of polynomials in x,,
Xpseeey Xm—y Of degree < r.

In Section 3.2 we defined the notion of equivalence of codes using permuta-
tions acting on the positions of the codewords. Let us now consider a code C
of length n and the permutations n € S, which map every word in C to a word
in C. These permutations form a group, called the automorphism group of C
(Notation: Aut(C)). For example, if C is the repetition code then Aut(C} =

(4.5.10) Theorem. AGL(m, 2) = Aut(%(r, m)).

ProoF. This is an immediate consequence of Theorem 4.5.9 and the fact that
AGL(m, 2) maps a k-flat onto a k-flat (for every k). O

Remark. The reader should realize that we consider AGL{m, 2) acting on

AG{m, 2) as a group of permutations of the n positions, which have been
numbered by the elements of AG(m, 2).

Without going into details we briefly describe a decoding procedure for
RM codes which is a generalization of majority decoding. Let C = 2(r, m).

Al wss a2 alyywaa S s e A AR [ L

By Theorems 4.5.8 and 4.5.9 the characteristic functlon of any (r + 1)-flat in
AG(m, 2) is a parity check vector for C. Given an r-flat A there are 2" — 1|
distinct (r + 1)-flats which contain 4. A point not in A4 is in exactly one of
these (r + 1)-flats. Each of these (r + 1)-flats contains the points of A and
exactly as many points not in A.

Now let us look at the result of the parity checks. Let a received word

contain less than 2! errors (see Theorem 4.5.7). Let t parity checks fail.
These are two possible explanations:

(i) This was caused by an odd number of errors in the positions of A4,
cnmnensate_:d 2" — 1 — ¢ times by an odd number of errors in the re-

maining positions of the check set.
{(11) The number of errors in the positions of 4 is even but in t of the parity

check equations there is an odd number of errors in the remaining
positions.

By maximum likelihood (ii) is more probable than (i) if t < 2" and
otherwise (1) is more probable. This means that it is possible to determine the
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_ parity of the number of errors in the positions of any r-flat. Then, usinga
similar procedure, the same thing is done {or (r — 1)-flats, etc. Afterr + 1 steps
the errors have been located. This procedure is called multistep majority
decoding.

—§4.6. Kerdock Codes

We shall briefly discuss a class of nonlinear codes known as Kerdock codes,
(cf. [75], [113). A Kerdock code is a subcode of a second order Reed-Muller
code consisting of a number of cosets of the corrcsponding first order Reed-
Muller code. Note that (2, m) is itself a union of cosets of 2(1, m), each coset
corresponding to some quadratic form

(4.6.1) OM = Y gy¥v

Qgi<j<m

Corresponding to Q, there is an alternating bilinear form B defined by
B(v,w) 1= Q(v + w) — Q(v) — O(w) = vBw',

where B is 2 symplectic matrix (zero on the diagonal and B = — B'). By an
easy induction proof one can show that, by a suitable affine transformation,
@ can be put into the form

-1
(4.6.2) ');o ¥2i¥ai41 + L(Y),

where L is linear and 2h is the rank of B. In fact, one can see to it that L(v) = 0,
1 or vy,

(4.6.3) Lemma. The number of points (xo, X, ..., Xop_1) € FZ* for which
Y s xgiXgiey = 0 s 22871 4 221,

Dornar T8 v o s e e e ae 0 Yy T, 41“...- PR 1 S TRy, SR, o
I KU, 11 LO -_ .&2 — -_— Azﬁ_z = U LEIG-EL [NE LT~ al FA bllUleb I
(X1, .., X251 ). Otherwise there are 2*~! choices. So, the number of zeros is
28 4 (20 - D20, O

From (4.6.2} and (4.6.3) we find the following lemma.

(4.6.4) Lemma. Let m be even. If Q(v) is a quadratic form corresponding to a
symplectic form of rank m, then the coset of #(1, m) determined by Q(v) has 2™
words of weight 2™~ — 2271 gnd 2™ words of weight 2™~ 4 2mi2-1

(Note that this implies that if @ has rank smaller than m, the corresponding
coset has smaller minimum weight).

Clearly, a union of cosets of #(1, m) will be a code with minimum distance
at most 2™~ — 2™2~! We wish to form a code C by taking the union of
cosets corresponding to certain quadratic forms Q,, ..., @, (with associated
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symplectic forms B, ..., B;). To find the minimum distance of this code, we

must consider codes corresponding to cosets defined by the forms Q; — Q;
(i # j) and find their minimum weight. The best that we can achieve is that
wlliwll MiblWwil wllbie zl‘ ZJ‘ Wit Lbayuuua Wr a DJIIIPIUUI-I.\' IWwliil Wl dlaAlllical Ladidib,
that is a nonsingular symplectic form. Since the symplectic forms correspond
to skew-symmetric matrices with zero diagonal and no two of these can have
the same [irst row, it follows that ! < 2™ ! if the minimum distance d of C is

to bB ~“m=1 “mi2—1
- F .

(4.6.5) Definition. Let m be even. A set of 2"~! symplectic matrices of size m
such that the difference of any two distinct elements is nonsingular, is called
a Kerdock set.

(4.6.6) Definition. Let mbeeven. Let! =2"'andlet Q,,..., Q, be a Kerdock
set. The nonlinear code X (m) of length n = 2™ consisting of cosets of %#(1, m),
corresponding to the forms Q; (1 < i < 1), 1s called a Kerdock code.

To show that such codes actually exist is a nontrivial problem related to
the geometry of 7" (cf. {[11]). We only give one example. Let m=4.1{Q1sa
quadratic form 3 >, g;;x;x;, we represent @ by a graph on the vertices x,, ..
x5 with an edge {x;, x;} if and only if ¢;; = 1.

If Q corresponds to a nonsingular sympletic form, then the graph must be
isomorphic to one of the following graphs:

RN
SR U N AN

*——

- |

i1y in £ 4\
\iy \&=) A7 A

Order the partitions (12)(34), (13)(24), and (14)(23) cyclically. Form six
graphs of type (2) by taking two sides from one pair of these partitions and
one from the following one. It is easily seen that these six graphs, the empty
graph and the graph of type (4) have the property that the sum (or difference)

of any two corresponds to a nonsingular symplectic form. In this way we find

thae 2.73 _ M8 (nnrde AfFa 146 I8 £y ~nda which ic i1 fart tha N ardctrnme
LN O o —_— e WLUILWY Ul a I(l.w, U} LA, WillLll 1D 1kl ddbl LW LYWERWISLLIVILIL™

Robinson code of §4.4.
In the general case X' (m)is a (2, 22™, 2™~1 — 2™271) code. So, the number

§4.7. Comments

For details about the application of Hadamard codes in the Mariner expedi-
tions we refer to reference {56].

The Golay codes were constructed by M. J. E. Golay in 1949 in a different



62

4. Some Good Codes

way [rom our treatment. For more about these codes and several connections

to combinatorial theory we refer to a book by P. J. Cameron and J. H. van
Lint {11] or to [46]; also see [ 19].

The reader who is interesied in more material related to Section 4.4 is
referred to references [64] and [65]. For more about encoding and decoding
of RM codes see [2] or [46].

§4.8.

4.8.1.

4.8.2.

Problems

Let n = 2™, Show that the Reed-Muller code 9(1, m) is a Hadamard code of

length n.

Show that the ternary Golay code has 132 words of weight 5. For each pair
{x, 2x} of codewords of weight 5 consider the subset of positions where x; # 0.
Show that these 66 sets form a 4 — (11, 5, 1) design.

4.8.3.

&
90
=
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oo

4.8.9.

Let S be the Paley matrix of order 11 and A = 4{S + I + J). Consider the rows

of A, all 55 sums of two distinct rows of A, and the complements of these
vectors. Show that this is an (11, 132, 3) code.

. Construct a (17, 36, 8) code.

. Consider Conway’s construction of %, . Then consider the subcode consisting

of the matrices A that have the form (B, B, B), where each B is a 4 by 2 matrix.
Show that the matrices B are the words of a code equivalent to the [8, 4]
extended Hamming code.

. Show that if there is a binary (n, M, d) code with d even then there exists an (n,

M, d) cede in which atl codewords have even weight.

. Consider [, J, and P of size 3 as in (4.1.1). Define

J—1 I 1 I J P I P?
I J-~1 1 I P J P 1
A'_= . B:= N
! I J-1 I I P 7 P
L 4 I I .I—-IJ _P2 1 P JJ
-I\AI\ a &4 4 4 4 lld_‘
111 Il 1!
111 000 111 111
=(J -1 J—~1 J=1 J=0D, D=

111 111 000 1it
111 111 111 000 |

Show that 0 and the rows of A, B, C and D are the words of a (12, 32, 5) code.

T e EF L. ale o DT e n _..-‘,._ [}y .....l ad A oa__ | B oY & | AL
LEL T DE UIE rnadainard mdainx le UI 'll. ) allg it A = ﬂ — I, .= \u fa Yo
Show that G is the generator matrix of a ternary {24, 12] code with minimum
distance 9.

Show that the (u, u + v}-construction of (4.4.1) with C, =#r + I, m), C, =

A(r, m) yields C = @(r + 1, m + 1). Use this to give a second proof of Theorem
4.5.7.
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4.8.10.

(i) Let n = 2™. For x € F} we define x* ¢ {1, —1}" as the vector obtained by

replacing the Os in x by — 1. In Probiem 4.7.1 we saw that this mapping applied
to (1, m) yields vectors +a,, +a,,..., +a, where the a; are the rows of a
Hadamard matrix. By using this show that if x € F7 then there exists a code-
word ¢ € 9(1, m) such that d(x,c) < (n — \/r_z)/2.

If m = 2k and x is the word € 92, m) corresponding to the Boolean function
XXy + X3X4 4 < + Xy, Xy, show that dix, ¢)={(n — \/!;t-);'Z for all ce
(1, m). (In other words: the covering radius of (1, 2k) is 22! — 2*~1)

48.11.

Let H be a parity check matrix for the [4, 2] ternary Hamming code and let [
and J be the 4 by 4 identity resp. alt one matrix. Show that

J+I1 I I
¢= [ 0 H —H]
generates a [12, 6] code C with d = 6, i.c. a code equivaient to the extended
ternary Golay code.
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In this chapter we shall be interested in codes that have as many codewords
as possible, given their length and minimum distance. We shalil not be inter-
ested in questions like usefulness in practice, encoding or decoding of such
codes. We again consider as alphabet a set Q of ¢ symbols and we define
# .= {g — 1)/q. Notation is as in Section 3.1. We assume g has been chosen
and then define an (n, »,d) code as a code with length #» and minimum
distance d. We are interested in the maximal number of codewords (i.€. the
largest M which can be put in place of the #). An (n, M, d) code which is not
contained in any {n, M + 1, d) code is called maximal.

(5.1.1) Definition. A(n, d) := max{M |an (n, M, d) code exists}. A code C such
that {C] = A(n, d) is called optimal.

Some authors use the term “optimal” for [n, k] codes withd =n — k + 1
(see Problem 3.8.2). Such codes are optimal in the sense of (5.1.1) (cf. (5.2.2)).
Usually [n, k, n — k + 1] codes are called maximum distance separable codes
(MDS codes).

The study of the numbers A{n, d) is considered to be the central problem
in combinatorial coding theory. In Chapter 2 we learned that good codes are
long, or more precisely, given a channel with a certain error probability p, we
can reduce the probability of error by looking at a sequence of codes with
increasing length n. Clearly the average number of errors in a received word
is np and hence 4 must grow at least as fast as 2np if we wish to correct these

AN R ¥9 iaw Awiadie A Adade daod dev 22 2% Wl a Wik saalwdte

errors. This explains the importance of the number a(d) which we define as
follows.
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(5.1.2) Definition.

a(8) := linsup n~* log, A(n, én).
In Chapter 2 we studied good codes with a given rate R. In that case we
should ask how large d/n is (as a function of n). By (5.1.2) this means that we

- - - - haaad
ara ntaractad in tha invarca functinan ~ (2)
Gl 1ZIL%Ad%W200%WA L0 LALA. EAEYAW-LOA LUEIEWLIVSEL WA ll\}v

The functions 4 and « are not known in general. We shall study upper and
lower bounds for both of them and special values of A(n, d). The techniques
of extending, shortening, or puncturing (see Section 4.4) will often come in

I-.-.—ml‘ Thacs srmvvadintale uiald ¢tha Fallawgineg thaneamm
.I.I.Ll.y 4 LIWD% lllllllDUlﬂ.LDl] JIDIU il IUIIUWIIIB vl wlld,

(5.1.3) Theorem. For binary codes we have
A, 20— )= A(n+ 1, 20).

We remind the reader of the definition of a sphere B.(x), given in Section
—3tandwedeftte — — — — — — — 00— 20— —

(5.1.4) Vyin, r):= |B,(x)} = ( )(q — 1y
(cf. (3.1.6)).

In order to study the function a, we need a generalization of the entropy
function defined in (1.4.4). We define the entropy function H, on {0, 8], where

={q~ /g, by
(5.1.9) H (0):=0,

H (x) = x log,{g — 1) — xlog, x — (1 — x}log,(1l — x)
forO<x <8

Note that H (x) increases from 0 to 1 as x runs from O to €.

(5.1.6) Lemma. Let 0 < 1< 8,9 = 2. Then
lim n7! log, V(n, [An]) = HA).

Lt #]

Proof. For r = | An] the last term of the sum of the right-hand side of (5.1.4)
is the largest. Hence

By taking logarithms, dividing by n, and then proceeding as in the proof of

o

Theorem 1.4.5 the result follows O

To finish this section we discuss a lower found for 4(n, 4) and the corre-
sponding bound for 2(3). Although the result is nearly trivial, it was thought
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for a long time that a(d) would be equal to this lower bound. In 1982,
Tsfasman, V1ddug, and Zink [81] improved the lower bound (for g > 49) using
methods from algebraic geometry.

(5.1.7) Theorem. For ne N,d e N, d < n, we have
A(n’ d) 2 qﬂ/V;(nv d— 1)

Proor. Let the (n, M, d) code C be maximal. This implies that there is no
word in Q" with distance d or more to all the words of C. In other words: the
spheres B,_,(c), with ¢ € C, cover Q". Therefore the sum of their “volumes”,
Le. {C] Vi(n, d — 1) exceeds ¢" = |Q|". O

The proof shows that a code which has at least ¢"/V (n, d ~ 1} codewords
can be constructed by simply starting with any word ¢, and then consecu-
tlvely addmg new words that have dlstance at least d to the words which have

Surpnsmgly enough, the requ1rement that C 1s lmear IS not an essentlal
restriction as the following theorem shows.

(5 1. 8) Theorem. Ifn € N,d € N,k € Nsatisfy V,(n,d — 1) < g***!, then an

L. T nnds savicte
ln, Ky ul COGC €A1,

Proo¥. For k =0 this is trivial. Let C,_, be an [n, k — 1, d] code. Since
|Ck 1| Vy{n, d — 1) < ¢", this code is not maximal. Hence there is a word x €
sitt rI ﬂﬂﬂﬂﬂﬂ ~ At all warde AF 7 Tat ™ hatha rada ecmannad hy

Z Wikl Ulal-ql.l.\.r‘- = M VJ all "UI.UD WAL p ] s Al ep U LUL LUUL OPFaLILILAL U Y Ap

and {x}. Let z=ax + y (where 0 #a€e Q, ye C,.,) be a codeword in C,.
Then

wz) = wla"'2) = wix +a'y) = d(x, —a"'y) 2 d. O
The codes of Problem 3.8.14 are an example of Theorem 5.1.8.

EXAMPLE. Let g = 2, n = 13,d = 5. Then from (5.1.4) we find V,(13, 4) = 1093
and hence A(13 5) > |_8192/ 1093] = 8. In fact Theorem 5.1.8 guarantees the
existence of a {13, 3, 5] code. Clearly this i1s not a very good code since by
Theorem 4.5.7 puncturing (1, 4) three times yields a [13, 5, 5] code and in
fact the code Y of Section 4.4 15 an ¢ven better nonlinear code, namely a
(13, 64, S) code. This example shows one way of fi nding bounds for A(n, d),

g y Al

namely by consiructing good codes. We know that A(13, 5) > 64.

The bound of Theorem 5.1.7 is known as the Gilbert bound (or Gilbert-
Varshamov bound). Let us now look at the corresponding bound for «.

(5.1.9) Theorem (Asymptotic Gilbert Bound). If 0 < 8 < 0 then
a(d) = 1 — H,(d).
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Proor. By {5.1.7) and (5.1.6) we have

«(d) = limsup n™* log, A(n, o) = lim {1 — n™" log, V,(n, on)}

n—og

=1 — H,(6). a

§5.2. Upper Bounds

In this section we treat a number of upper bounds for A(n, d) that are fairly
easy to derive. Inthe seventies more complicated methods produced better bounds,
which we shall discuss in Section 5.3.

By puncturing an (n, M, d)code d — 1 times we obtainan(n — d + I, M, 1)
code, ie. the M punctured words are different. Hence M < ¢" %!, We have
proved the following theorem, known as the Singleton bound.

(5.2.1) Theorem. For g,n,de N, g = 2 we have

A code achieving this bound is called an MDS code (see Problem 3.8.2).

EXAMPLE. Letg =2, n
c for

The asymptotic

(5.2.3) Theorem. For 0 <9 < 1 we have a(d) < 1 — 4.

Our next bound is obtained by calculating the maximal possible value of
the average distance between two distinct codewords. Suppose Cis an {n, M, d)
code. We make a list of words of C. Consider a column in this list. Let the jth
symbol of 0 (0 < j < q — 1) occur m; times in this column. The contribution

of this column to me sum of the distances DCIWCCH all ordered palrs of distinct

codewords is ) 925 m;(M — m;). Since } 924 m; = M we have from the Cauchy-
Schwarz inequallty

-1 - - 2
q‘—‘ P s Re2 41-11 2 < .-'s /f“ \ __n..;)_
2, MAM —my;) =M" ~— ) m = 2.. =
J‘=0 j:o =
Since our list has n columns and since there are M{M — 1) ordered pairs of

codewords, we find

We have proved the so-called Plotkin bound.
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A(n, d) <

if d > on.

— n
LE2 ) 3

EXAMPLES. (a) Let g =2, n=13,d = 5. Then 6 = }. In order to be able to
apply Theorem 5.2.4 we consider a (13, M, 5) code and shorten it four times
——to-obtain-a (9, M’ 5) code with M' > 2"*M. By the Plotkin bound M’ <
5/5 - 4%) = 10. So M < 160, i.e. A(13,5) < 160. A better bound can be
obtained by first applying Theorem 5.1.3 to get A(13, 5) = A(14, 6) and then

repeating the above argument to get A(14, 6) < 2-6/(6 — 51) = 96.

(b) Let g=3, n=13,d=9. Then § = % and the Plotkin bound ylelds
A(13, 5) < 27 for ternary codes. Consider the duai of the ternary Hamming
code (see (3.3.1)). This code has generator matrix

[0 6o 0011111111 f|

G=]/0 1 11 00011 1222
1012012012071 2|

Thic matriv hae tha mainte ~AFf DY D ne nnl--w\“n Tl\-\n aTa |- l\'\ﬂ u-l-u.o-a
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{a,, a,, a;)G has a zero correspond to the points of PG(2, 3) on the projective

line with equation @, x; + a,x, + a;x, = 0,i.e.if a 5 0 there are exactly four
such positions. Hence every codeword # 0 has weight 9 and hence any two
distinct codewords have distance 9. So this is a linear code satisfying Theorem
5.2.4 with equality.

From the proof of Theorem 5.2.4 we can see that equality is possible only
if all pairs of distinct codewords indeed have the same distance. Such a code
o rallad ne o R

ib caunca an thlﬂlbiuﬂll (.'Uutf

Again we derive an asymptotic result.

(5.2.5) Theorem (Asymptotic Plotkin Bound). We have
a(é) =0, f0<é<1i,
a(d) < 1 — 4/8, f0<dé<b.

Proor. The first assertion is a trivial consequence of Theorem 5.2.4. For
the second assertion we define n’:= |(d — 1)/0]. Then 1 <d —6n' <1 + 6.
Shorten an (n, M, d) code to an (n’, M, d) code. Then M’ = g™ ~"M and by
Theorem 5.2.4 we have M’ < d/(d — On’) < d. So M < dg"™™. From this and
n'fn—-456/0in— wandd=dnwefinda(d) <1~ §/6. J

The following bound, found by J. H. Griesmer (1960), is a bound {or linear
codes which is asymptotically equivalent to the Plotkin bound but in some

cases it is better. Even though the proof is elementary, it turns out that the
bound is sharp quite often. The proof is based on the same ideas as the
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method of Helgert and Stinall treated in Section 4.4. Let G be the generator

matrix of an {n, k, d] code. We may assume that the first row of G has weight
d, in fact we may assume w.l.o.g. that it is (111---10---0) with d ones. Every
other row has at least {d/g] coordinates in the first d positions that are
the same. Therefore the residual code with respect to the first row is an
[n—d, k—1,d"] code with d’' > [d/q]. Using induction we then find the
following theorem.

(5.2.6) Theorem (Griesmer Bound). For an [n, k, d] code over F, we have
k—1 i
n> .;) fd/q'1.

g S

13, k, 5] code must have k < 6. The code Y of Section 4.4 has 64 words but
it is not linear. In fact a [13, 6, 5] code cannot exist because it would imply
the existence of a [12, 5, 5] code contradicting the analysis given in Section

4.4.So in this case the Griesmer bound is not sharp.

(b) Let g =3, n=14, d=9. From ) 2,]9/3'1 = 14 it follows that a
[14, k, 9] ternary code has k < 4. A shortened version of such a code would
be like Example (b) following Theorem 5.2.4. Suppose such a code exists. As
before we can assume w.l.o.g. that (i!...100000) of weight 9 is the first row
of the generator matrix. Then, as in the proof of the Griesmer bound, the
residual code is a ['5, 3, 3] ternary code. W.l.o.g. the generator of such a code
would be

(1t 00 1 1]

G={0 1 0 a b}, where q, b, ¢, d are not 0.
0 0t ¢ d

Clearly a@ # b and ¢ # d and hence there is a combination of rows 2 and 3
with weight 2, a contradiction. Again the Griesmer bound is not sharp.

One of the easiest bounds to understand generalizes (3.1.6). It is known as
the Hamming bound or sphere packing bound.

(5.2.7) Theorem. If g, n,ec N,qg>2,d =2e + 1, then
Afn, d) < q4"/V(n, e).

Proor. The spheres B,(c), where ¢ runs through an (n, M, 2e + 1} code, are

disjoint. Therefore M-V (n, ¢) < g". O
Fvanantr Tat r —F sa — 17T 4 _ & Thaem fram 212 M 1 112 1 70 _ a7
Lo AANITLE. el (1 T oy FE— 1 Iy — J L 11%AL 1LWVELL rz\l.}, ‘} — 1 T 12 7T {0 — 74
we find A(13, 5) < [2'3/92) = 89

We have defined a perfect code to be a code that satisfies (5.2.7) with
equality. We return to this question in Chapter 7.
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__(5.2.8) Theorem (Asymptotic Hamming Bound). Wehave
(@) <1 — Hq[%b‘).
PROOF. A(n, [3n]) < A(n, 2[48n] — 1) < q"/V,(n, [+5n] — 1).

The result follows from Lemma 5.1.6. O

We now come to an upper bound which is somewhat more difficult to
prove. For a long time it was the best known upper bound. From the proof
of the Plotkin bound it should be clear that that bound cannot be good if the
distances between codewords are not all close to the average distance. The

following idea, due to P. Elias, gives a stronger result. Apply the method of
proof of the Plotkin bound to the set of codewords in a suitably chosen sphere
in Q". The following lemma shows how to choose the sphere. W.1. ».g we take

Q =Z/qZ.

(5.2.9) Lemma. If A and C are subsets of Q" then there is an x € Q" sucn that

o~ £ |41
O 14
=

—
-

q

Proor. Choose x, such that [(x, + A} n C| is maximal. Then

(X + A)NCl2 g™ Y [(x+ A)nC|
xe(r
=g" 3 T T iix+a)niell

xeQ" a6 Ad ceC

=q" 3. X 1=q"Al'|C| O

seAd ¢eC

Now let C be an (n, M, d) code and let A be B,(0). We may assume w.Lo.g.
that the point x, of the lemma is 0. Consider the code 4 ~ C. This is an
(n, K, d) code with K = MV,(n, r)/q". We list the words of this code as rows
of a K by n matrix. Let m; denote the number of occurrences of the symbol j
in the ith column of this matrix. We know

@) YIdm; =K
and
(i) Yymp =S=Kin—n

because every row of the matrix has weight at most r.
Therefore:

(i) YI5iml > (g — D' mp)? = (g — 1)K — my)?
and

(iv) Y reymbh = 0 (30 my)? = n7iS2
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We again calculate the sum of the distances of all ordered pairs of rows of the

matrix. We find from (i) to (iv):

n g-1 n { a—! \
A D YRYY 7 O S /o T Y L2, T 2
L‘l La m,-Ju\ mu-.j = nmn 2. \m,-o + Z_‘l mu)
i=]l j= i=] i=

<nK* —(g—1)7" } (gmp + K? — 2Kmy)

i=1

< nK? — (g — 1) ' (gn'S? + nK? — 2KS).

In this inequality, we substitute S > K{(n — r), where we now pick r < 8n, and
hence S > ¢ 'nK. We find )} 1., Y -3 m(K — m;;) < K*r(2 — (r/60n)). Since
the number of pairs of rows is K(K — 1}, we have

KK -1)d<K*r(2—-r6"'n"*).

Therefore we have proved the following lemma.

(5.2.10) Lemma. If the words of an (n, K, d) code all have weight <r < Un,
then

s8N 11y L AT e Thmsion At Fone o o 3 e Bl o~ ~ ™ O _ 14 -1 __ 1
(5.2.11) Theorem (Elhias Boung). Let g, n,d, reN, g=22, 0V=1—-—qg " and
assume that r < 6n and r* — 20nr + Ond > Q. Then

Ond q"

A("\) d) s r2 . 29nr + Bnd V;(ns r).

ProoF. From Lemma 5.2.9 we saw that an (n, M, d) code has a subcode with
K = MV,(n, r)/q" words which are ali in some B,(x). So we may apply Lemma
5.2.10. This yields

Ond

r2 —20nr + 6nd’ U

g "MV,nr)< K<

Note that r = 8n, d > 6n yields the Plotkin bound.

EXAMPLE. Let ¢ = 2, n = 13,d = 5. Then 0 = 4. The best result is obtained if
we estimate A(14, 6) in (5.2.11). The result is

42 2
PP 14r+42 (14
2

isr i

Af12
ALS

A

and then the best choice is r = 3 which yields A(13, 5) < 162.

The result in the example is not as good as earlier estimates. However,
asymptotically the Elias bound is the best result of this section.
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5.2.12) Theorem (Asymptotic Elias Bound). We have
a(d) < 1 — H,(8 — /68 — 9)), if0<d<6,

a(d) = 0, fo<oé<l.
Proor. The second part follows from Theorem 5.2.5.Solet 0 < § < 8. Choose
0<i<8—./6(6—0)and take r = [An]. Then 85 — 204 + 4% > 0. From
Theorem 5.2.11 we find, with d = [ 0n]
n
n"tine Ain. dnmt < n7 ! oo ( Ond q
Vg AU U = “‘b\

—20nr + 0nd V. (7))

1) 8o Y. ,)J
" 1°g"\,12 T20i+ 08) T " T MYy

~1—Hfd), (1o )

Therefore a(d) < 1 — H_(A). Since this is true for every 4 with 4 <8 —
/(6 — ) the resuit follows. O

The next bound is aiso based on the idea of {ooking at a subset of the
codewords. In this case we consider codewords with a fixed weight w.

We must first study certain numbers similar to A(n, d). We restrict our
selves to the case g = 2.

(5.2.13) Definition. We denote by A(n, d, w) the maximal number of code-
words in a binary code of length n and minimum distance > d for which all
codewords have weight w.

(5.2.14) Lemma. We have

n—1

An, 2k ~ 1, w) = A(n, 2k, w) <

[Y—

| » 1_‘-‘” -1 L k
PRroOF. Since words with the same weight have even distance A(n, 2k — 1, w)
= A(n, 2k, w). Suppose we have a code C with {C| = K satisfying our condi-
tions. Write the words of C as rows of a matrix. Every column of this matrix
has at most A(n — 1, 2k, w — 1) ones. Hence Kw < nd(n — 1, 2k, w — 1), ie.

| n |
Aln, 2k, w) < l--: An — 1,2k, w— I)J.
w

Fs - r 7 - - Iy

Since A(n, 2k, k — 1) = 1 the resuit follows by induction. 0

This lemma shows how to estimate the numbers A(n, d, w). The numbers

can be used to estimate A(n, d) as is done in the following generalization of
the Hamming bound, which is known as the Johnson bound.
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(5.2.15) Theorem. Let g =2,n,ec N,d = 2¢ + 1. Then

An, d) < l

{d\

g(,) ke 1) ke)A(Hdd)
)

PrOOF. The idea 1s the same as the proof of the Hamming bound. Let there
be N,,, words in {0, 1}* which have distance e + 1 to the (n, M, d) code C.
Then

i (T) + N, =20

i=0

ar
Fi/

In order to estimate N,,, we consider an arbitrary codeword ¢ which we can
take to be 0 (w.l.o.g.). Then the number of words in C with weight d is clearly

ALY

at most A(n, d, d). Each of these words has distance e to (‘:) words of weight

/o \
e + 1. Since there are ke N 1) words of weight e + 1 there must be at least

() _[d) A(n, d, d) among them that have distance e+ 1 to C. B
ke+1) ke} " -

u iLr ﬂr toarm l‘l')

nee g L tey tha ~ warde haam

varying ¢ we thus count M {( 1) ( A(n, d, d)} words in {0, 1}" that
h

ﬂ D 2 O a3 ach
= l. kLS \llh wi/idw. LAIWYY VLWl 1idTd Wwidly w i Ot FFLL WO Liwiwll

+
counted? Take one of them; again w.l.o.g. we call it 0. The codewords with
distance ¢ + 1 to 0 have mutual distances > 2¢ + 1 iff they have 1sn different

positions. Hence there are at most |n/(e + 1)} such codewords. This gives us
the desired estimate for N, . O

From Lemma 5.2.14 we find, takingk = e + |, w = 2e + 1

(d) A(n, d, d) < (")
e e

Substitution in Theorem 5.2.15 shows that a code C satisfies

5216  |C| [):/n\ (2) /n—e_‘ln——el\\l
o ]1=0k1)+ Ke+l Le-i—l_l)[

which is the original form of the Johnson bound.

n—e
e+ 1

EXAMPLE Let g=2, n=13, d=5 (ie. e=2). Then A(13, 5, 5 <
13142151 |] = 23 and the Johnson bound yields
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213
286 — 10-23
{ d

A(13,5) <

T+ 13+78 +
L

Forn = 13,9 = 2,d = 5 this is the best result up to now, Only the powerful

methods of the next section are enough to produce the true value of A{13, 5).

§5.3. The Linear Programming Bound

Many of the best known bounds for the numbers A(n, d) known at present
are based on a method which was developed by P. Delsarte (1973). The idea
is to derive inequalities that have a close connection to the MacWilliams
identity (Theorem 3.5.3) and then to use linear programming techniques to

analyze these inequalities. In this section we shall have to rely heavily on
properties of the so-called Krawtchouk polynomials.

In nrdartn gunir] cumhercame notation. we ascume tha
Ald WVLWAWL ML BT A% S W LALFLL/ %W W LLIW LAV TFLiaAL v‘l TP W I Lidliir LAR

chosen and are fixed. Then we define

u aan (“”"IQUP hppﬂ
b Canala Fs lade Vs ROwwas

7\ I — x\ _
Kilx):= 3 “”’K,)U ;a0

where

(x):=x(x——1)---(x-—j+l), (xeR)

J j!
For a discussion of these polynomials and the properties which we need, we
refer to Section 1.2.

In the following we assume that the alphabet Q is the ring Z/gZ (which we
may do w.l.o.g). Then {x, y) denotes the usual inner product Y 7_, x,y, for x,

ye @
{5.3.1) Lemma. Let w be a primitive qth root of unity in C and let x € Q" be a
fixed word of weight i. Then

Y @ = K.

PrROOF. We may assume that x = (x,, X;,..., X;,0,0,...,0) where the co-

ordinates x, to x; are not 0. Choose k posmons h, hz, .- h,‘ such that
(of u:;-na-hf k) th h h

Lemma 1.1.32

itinnie Then hy
R W LW I £ LAGW AR IIJ
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): ey = y y‘ P R L AR S
yeD ¥n, €OMO}  yu, €000}
. o) . .
=@g-D]] ¥ @™ = (=g -
I=1 ye Q{0

&ﬂ

or D the result follow O

FLY 5 1 L L8] a

Since ( \(u B l\ choice
TN \k-j)

In order to be able to treat arbitrary (i.e. not necessarily linear) codes we
generalize (3.5.1).

(5.3.2) Definition. Let C < Q" be a code with M words. We define

Ap=MT{x, YIxe C yeC, dx,y) =i}l

The sequence (A,)}-, is called the distance distribution or inner distribution of
C.

Note that if C is linear or distance invariant, the distance distribution is the
weight distribution.
The following lemma is the basis of the linear programming bound (Theorem

5.3.4).

(5.3.3) Lemma, Let (A;)]_, be the distance distribution of a code C < Q". Then

forke{0,1,...,n}.

PROOF. By Lemma 5.3.1 we have

M Z AK i) =i Y Y wre

i (x. Jr}eCz ze@n
dix, ¥y}=i wiz}=k

= | O F -
teQ" | xeC
wiz)=k

(5.3.4) Theorem. Let g, n,de N, g > 2. Then
A(n,d)gmax{z AJAg =1, A, =0fort <i<d,
Li=g

A =20, i AK () =0 forke{0,1,..., n}}
i=0

If q =2 and d is even we may take A, = 0 for i odd.
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the inequalities ) [_, 4; K, (i) 2 0. Clearly the A4, are nonnegative and 4, = 1,
A;=0for1 <i < d Furthermore by (5.3.2) we have ) .o 4; = M {C?| = M.
The final assertion is Problem 4.8.6. 0

R — A

EXAMPLE. As in scveral previous exampies we wish to estimate A(13,5) =
A(14, 6) for g = 2. For the distance distribution of a (14, M, 6) code we may
assume

Ag20,A320,4,020,4,,2>20,4,,=0.

For these we have the following inequalities from Lemma 5.3.3. (The values
of K, (i) are found by using (1.2.10).)

14+ 245 — 24g— 6A4,0— 104,,— 144,,=0,
91 = SA¢— SAg+ Ao+ 434+ A =0,

364 — 124 + 1245 + 44,, — 1004, — 3644,, = 0,

1001 + 9A¢ + 9Ag —394,0 + 1214,, + 10014,, > 0,

2002 + 304, — 304, + 384, — 224,, — 20024,, > 0,

3003 — 5A¢ ~ 5Ag + 274, — 1654,, + 30034,, = 0,

3432 — 40A, + 404 — T2A,0 + 2644, — 34324, > 0.

We must find an upper bound for M =1 + A4 + Ag + A, + Ay, + Ay,
This linear programming problem turns out to have a unique solution,
namely

Hence M < 64. In Section 4.4 we constructed a (13, 64, 5) code Y. Therefore
we have now proved that A(13, 5) = 64.

We shall now put Theorem 5.3.4 into another form which often has ad-
vantages over the original form. The reader familiar with linear programming
will realize that we are applying the duality theorem (cf. [327).

(5.3.5) Theorem. Let 8(x) = 1 + Y 7, B, K,(x) be any polynomial with B, > 0
{1 <k<njsuchthat B{ji<0for j=d,d + 1,...,n Then Ain, d) < (0).

5

K0 + g AKu()) 2 Ok =0, 1,...,n; 4, > Ofori =d,d + 1,...,n). Then
the condition on B yields Y 7, 4,8(}) < O i.e.

PROOF. Suppose A,, 4, ..., A, satisfy the conditions of Theorem 5.3.4, i.e.

n L

_Z A= ,‘Z B T AK) = — 3, AKi(0) = 1 - B(0)

i=d k=
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and hence

+ Z‘ A; < B(O) O

The advantage of Theorem 5.3.5 is that any polynomial 8 satisfying the

conditions of the theorem yields a bound for A(n, d) whereas in Theorem 5.3.4

AW E WEAL ANAck dR AR LEELNA ANra Jayr R B RS A SEAT L Wl

one has to find the optlmal solution to the system ol‘ inequalities.

ExaMpPLE. Letg=2,n=21+1,d =1 + 1. We try to find a bound for A(n, d)
by taking Blx)=1+ B K.(x)+ 8K (x)=1+B8,(n—-2x)+ R-(?rz-—’)ny

LAt L S L A Ve Liele

+ 4n(n — 1)). Choose 8, and ﬁz in such a way that B(d) = B(n) = 0 We find
B = (n + 1)/2n, B, = 1/n and hence the conditions of Theorem 5.3.5 are

satisfied. So we have AQI+ 1,1+ 1)<80)=1+fn+ 5, (;) =21+ 2.
This is the same as the Plotkin bound (5.2.4).

The best bound for «(8) that is known at present is due to R. J. McEliece,
E. R. Rodemich, H. C. Rumsey and L. R. Welch(l977 cf. [50]) We shall not

treat l.ﬂlb DCb[ DUUHU but we glVC a bllgl’l[ly WCdl(Cl' rCSLll'[ [aCIUdlly cqual [0r

& > 0.273), also due to these authors. It is based on an application of Theorem
5.3.5.

(5.3.6) Theorem. Let g = 2. Then
af{d) < Hy(3 — /o1 — 9)).

ProoF. We consider an integer ¢ with 1 <t < 3n and a real number g in the
interval [0, n]. Define the polynomial a(x) by

4(x) = (@ — XK @K,y (x) — Ko (@K ()}
By applying (1.2.12) we find

537 a9 = = () K@K 00 ~ Ko} § SO
t+ 1\t K=o ( \
\k/
Let a{x) = Y 755" «, K, (x) be the Krawtchouk expansion of a(x). We wish to
choose a and ¢ in such a way that B(x) := a(x)/a, satisfies the conditions of
Theorem 5.3.5. If we take a < 4 then the only thing we have to check is

whethera; = 0(i = |,...,n), ag > 0. If x! denotes the smallest zero of K, then
we know that 0 < x{*" < x{ (cf. (1.2.13)).

In order to simpilify the following caicuiations, we choose ¢ in such a way
that x{” < d and then choose a between x{*" and x{’ in such a way
that K.(a) = —K,,,{a) > 0. It follows that (5.3.7) expresses a(x) in the form
Y ¢ K (x}K(x), where all coefficients ¢,, are nonnegative. Then it follows

from (1.2.14) that ali «; are nonnegative. Furthermore, aq = —[2/(t + 1)] x
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/1
k:) K,(a@)K,,,(a) > 0. Hence we can indeed apply Theorem 5.3.5. We find

TN ¢ . 122 SN
v} \nt+ i) fn
5.3. A(n, d 0) = = .

To finish the proof we need to know more about the location of the zero x{.
1 (" 1

It follows that we can apply (5.3.8) to the situation n — oo, d/n — § with a
sequence of values of ¢ such that ¢/n -+ — . /8(1 — ). Taking logarithms in
(5.3.8) and dividing by n, the assertion of the theorem follows. {For a proof of

the statement about x‘” wc refer the reader to one of the references on

- ‘In-l'ﬂn'l\ M
11 L U Of L

nrthaoAanal na
Or wivEVlal o

§5.4. Comments

For a treatment of the codes defined using algebraic geometry, and for the
improvement of the Gilbert bound, we refer to [73]. For an example see §6.8.
In Figure 2 we compare the asymptotic bounds derived in this chapter. We

AN

" McEliece er al.

_Elias
_Hamming

Plotkm
_Singleton

[+~

Figure 2
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have not included bounds given by V. L. Levenshtein (1975; cf. [40]) and V.

M. Sidelnikov (1975; cf. [63]) because these are not as good as the results by
McEliece et al. [50] and rather difficult to derive. The best known bound
mentioned above is

(5.4.1) a(d) < min{l + g(u?) — g(u? + 20u + 20)|0 < u < 1 — 26},

where
1=/t —
g(x) == H, («—%—5)

For a proof we refer to [50] or [52]. For very small values of J, the Elas
bound is better than (5.3.6) but not as good as (5.4.1).

In a paper by M. R. Best et al. (1977; cf. [6]) (5.3.3) and (5.3.4) are general-
1zed:

(i) by observing that if |{C| is odd, then the inequalities of (5.3.3) are much

tranocer

ﬂﬂl“
slongoer, angd
(i) by adding inequalities (such as the obvious inequality 4,_, + 4, < 1) to
(5.3.4). This yields several very good bounds (see Problem 5.5.12).

§5.5. Problems

5.5.1. Use the fact that a linear code can be defined by its parity check matrix to
show that an [n, k, d] code over F, exists if V{n —1,d —2) <¢"™* Com-
pare this with Theorem 5.1.8.

Thadssernmzsnan AN YL - M
- LAGLILLHILG ALl J UL i = 4.

Ln
A
[

w
wh
L

. Let ¢ = 2. Show that if in Theorem 5.2.4 the right-hand side is an odd integer
I then A(n,d) <! — 1.

5.5.4. Determine bounds for A{17, 8)1l g = 2.

5.5.5. Consider a generator matrix for the [31, 5] dual binary Hamming code. Show
that it is possible to leave out a number of columns of this matrix in such a
way that the resulting code has d = 10 and meets the Griesmer bound.

5.5.6. Let C be a binary code of length n with minimum distance d = 2k and let
all cadewords of C have weight w. Suppose {C| = [n(n — 1)/w{w — 1)] x
A(n — 2, 2k, w — 2). Show that the words of C are the blocks of a 2-design.

o
ta
-

. Show that a shortened binary Hamming code is optimal.

W
EJ\
oo

. Letwe N, w> 4. Let C, be the binary code of iength n defined by

! |
Cri=4(Cor Chavrr Camy)| 2. i =w, Y ic; = [ (mod n) 3,
{ |i=0 i=0 ]

i’

where the summations are in Z. Show that
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w=—1

5.5.9.

5.5.10.

An, 4, w) ~ — (n — o).
w!

/n\
Let g = 2. Show that ( )A(n, 2k) < 2"A(n, 2k, w).
w

SJ'I\
Ln
i
Ja—

-1

{i) Show that A(n, 2k, w) < | ! —-;( 1~ w_v')) , if the right-hand side is
positive. ~ TN i

(1)) Using this and Problem 5.5.9 derive the Elias bound.

. Let C be a binary (n, M,d) code with n — \/; < 2d < n. Suppose C has the

property that if x € C then also x + 1 & C. Show that k = 2 in (5.3.3) yields the
bound

8d(n ~ d)
& ————
n —(n - 2d)?
(This 1s known as the Grey bound.)

5.5.12.

Show that the {8, 20, 3) code of Section 4.4 is optimal. (This is difficult. See
Section 5.4.)



CHAPTER 6

Cyclic Codes

In Section 4.5 we defined the automorphism group Aut(C) of a code C.
Corresponding to this group there is a group of permutation matrices. Some-
times the definition of Aut(C) is extended by replacing permutation matrices
by monomial matrices, i.e. matrices for which the nonzero entries correspond
to a permutation matrix. In both cases we are interested in the group of
permutations. In this chapter we shall study linear codes for which the auto-

morphism group contains the cyclic group of order n, where n is the word
length.

(6.1.1) Definition. A linear code C is called cyclic if

V(c._,.c,.....c,!-ljsc[(cn-h Cgs Croeees Cum2) € C1

This definition is extended by using monomial matrices instead of per-
mutations as follows. If for every codeword (cq, ¢;, ..., ¢,_;), the word
(ACa—1s Cgs €15 ---5 Cq—z) I8 also in C (here 4 is fixed), the code is called consta-
cyclic (and negacyclic if A = — 1), We shall present the theory for cyclic codes;
the generalization to constacyclic codes is an easy exercise for the reader.

The most important tool in our description of cyclic codes is the following
isomorphism between [ and a group of polynomials. The multiples of x" — 1
form a principal ideal in the polynomial ring F,{x]. The residue class ring
F,[x]J/(x" — 1) has the set of polynomials

{@o +ayx + - +a, x"a,eF,0<i<n}

as a system of representatives. Clearly T} is isomorphic to this ring {considered
only as an additive group). In the following we shall also use the multi-
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licati hic) I : {uced e ¢
polynomials mod(x" — 1). From now on we make the following identifica-
tion:

nd wa chall Aftarn ermanal AF a rndawnard & ac tha rndaward A 1101 &£ 1 I
I. A O¥FWw OLICLLE Vrilwll ap\.al\ VI A VUL VYL W S LI WAL YYILL G ‘ }, U-DIIIE U 1-4’-’-
Extending this, we interpret a linear code as a subset of F [x]/(x" — 1).

(6 1.3) Theorem. A linear code C in F is cyclic if and only if C is an ideal in

F[x]/ix" — 1).
PrOOF.

(i) If Cis an ideal in F [x]/(x" — 1) and c(x) = co + ¢;x + -+ + ¢, x" "' is
any codeword, then xc(x) is also a codeword, i.e.

(cn—19 Cos cl y vy Cn—?) € C'

{11} Conversely, if C is cyclic, then for every codeword ¢(x} the word xc{x) is
also in C. Therefore x’c(x) is in C for every i, and since C is linear a(x)c(x)
is in C for every polynomial a(x). Hence C is an ideal. O

(6.1.4) Convention. From now on we only consider cyclic codes of length
n over F, with (n, g) = 1. For some theory of binary cyclic codes with even
length see §6.10.

Since F,[x]/(x" — 1) is a principal ideal ring every cyclic code C consists of
the multiples of a polynomial g(x) which is the monic polynomial of lowest

Anmean o wawn ol iim tha 1danl {~Ff Qartinn 1 1)

LSS YR [l .. I.J.Ul. LI.I.C LV lJUlyl.l.Ullllﬂl) JRE R TP LTS At LT TR LSl 2LV 9 I A

This polynomial g(x) is called the generator polynomial of the cyclic code.
The generator polynomial is a divisor of x" — 1 (since otherwise the g.c.d. of
x" — 1 and g(x) would be a polynomial in C of degree lower than the degree

~F Al | A lhha tha Aa ™ A " 1 intn
Ul y[-&}} L‘Ct 4" 1 _JI‘.&}Jzkﬂ.} Jt[.&; U‘-l ‘ll\v u\ubuilll}val‘lul‘ Ul. J\ A FLLIMWAS

irreducible factors. Because of (6.1.4), these factors are different. We can now
find all cyclic codes of length n by picking (in all possible ways) one of the 2
factors of x" — 1 as generator polynomial g(x) and defining the corresponding
code to be the set of multiples of g(x} mod(x" — 1).

(6.1.5) ExampLE. Over [F, we have
—1=(x - 1)(x3+x+ D(x* + x* + 1.

There are altogether eight cyclic codes of length 7. One of these has 0 as the
only codeword and one contains all possible words. The code with generator

x ~ § containg all worde of even \l}PIﬂI"If The r7 l-l cvelic code has 0 and 1 as

AWASLALERAL LA EARE FRASIARD LI W ¥ WAL FY Wl a4 liw g Fwal WAl ks

codewords. The remaining four codes have dxmcnsmn 3, 3, 4, and 4 respec-
tively. For example, taking g(x) '= (x — J{(x* + x + D =x* + x* + x* + 1,
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we find a [7, 3] cyclic code. This code is an example of the irreducible cyclic

codes defined below.

(6.1.6) Definition. The cyclic code generated by f;(x)1s calied a maximai cyclic
code (since it is a maximal ideal) and denoted by M;". The code generated by
(x" — 1)/fAx) is called a minimal cyclic code and denoted by M. Minimal

cychc codes are also called irreducible cyclic codes.

Qur definition {6.1.1) guarantees that the automorphism group of a cyclic
code C contains the cyclic group generated by the permutation

i+ i+ 1 (modn).

However, since a(x?) = a(x)? is in the same cyclic codes as a{x), we see that
the permutation n_ defined by = (i) = gi (mod n} (i.e. x — x7) also maps a
cyclic code onto itself. If m is the order of g (mod »n) then the two permutations
i i+ 1and n, generate a group of order nm contained in Aut(C).

A W o

enerator Matrix and Check Polynomal

ooy
g\
!\)
Q

degree n —k, thcn the codewords g(x), xg(x), ...

for C,i.e. Cis an [n, k] code. Hence, if g(x) = gy + g, x + - + Gu_p X" then
(g6 9, .- g O 0O .. 0]
G = 0 go --- Gnok-t Gux 0 ... 0
0 0 ... ... 0
l_O 0 ... o Y1 --- gn—kJ

is a generator matrix for C. This means that we encode an information
sequence (a,, 4y, ..., 4,—,) as aG which is the polynomiai

(ag + ayx + -+ + a,_ x* T)g(x).

A more convenient form of the generator matrix is obtained by defining (for
i >n—k), x' = g(x)g{x) + ri(x), where r{x) is a polynomial of degree <
n — k. The polynomials x* — r,(x) are codewords of C and form a basis for
the code, which yields a generator matrix of C in standard form (with I,
in back). In this case (ay, a,,...,a,-,) is encoded as follows: divide
(@ag + a,x + - + a,_ x*1)x"* by g(x) and subtract the remainder from
(@g + a,x + - + a,_, x* )x"7*, thus obtaining a codeword.

lct.uui\.auy this is a VEry €asy way to encode information because the
division by a fixed polynomial can be realized by a simple shift register (for a
definition see Chapter 13).

Since g(x) 1s a divisor of x" — 1, there is a polynomial h{x) = hy + b, x +
- + hx* such that g(x)h(x) = x" — 1 (in F,[x]). In the ring F,[x]/(x" — 1) we
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[0 0 ... 0 h ... h byl
H:=‘0 0 he ... hy hy O
Lh,‘ ... hy hy 0 .. OJ

is a parity check matrix for the code C. We call h(x) the check polynomial of
C. The code C consists of all c(x) such that ¢(x)h(x) = 0. By comparing G and
H we see that the code with generator polynomial h(x) is equivalent to the
dual of C (obtained by reversing the order of the symbols). Very often this

{"ﬂl"ﬂ ;E Elmﬂlll ﬁﬁ]lﬂfl "Iﬂ AIIO! f\r F fu;k’r-"! {"OIICDE = | If\f f\r l"f\ﬂf‘lld“ﬂﬂ Elﬂl‘ﬂ "‘ lﬂ
wlFLiWw LD Jllllk} J’ widl il tll\' AL ¥¥ 1il% 12 L LD N AL WL WLLLWAOIV LA DLW ll. iz

not equal to C*). Notice that in thls sense, the “dual” of a maximal cyclic code
M. is the minimal cyclic code M;".

Consider the minimal cyclic code M;” with generator g(x) = (x" — 1)/fi(x)
wﬁ%%
a(x)b(x) = 0, then one of them must be divisible by f.(x } and it is therefore 0.
Since M. has no zero divisors, it is a field, ie. it is isomorphic to Ff. A
particularly interesting example is obtained if we take n = 2* — 1 and f{(x) a
primitive polynomial of degree k. In that case the n cyclic shifts of the
generator polynomial g(x) are apparently all the nonzero codewords of M| .
This means that the code is equidistant (cf. Section 5.2) and therefore this
distance is 2*~! (by (3.8.5)). As a consequence we see that for every primitive
divisor f(x) of x" — 1 (where n=2%— 1) the polynomial (x" — 1)/f( ) has

. & (41

..... el k=l L T b mmiinl b | A mva ..l,. el L i R ,..
€xXaclly & buculuclub cqua {0 1. AnCXampie wuu R = > Wds giv 0. 1.0}

§6.3. Zeros of a Cyclic Code

Let x" — 1 = f;(x)... f(x) and let §; be a zero of f/(x) in some extension feld
of F,. Then fi(x) is the minimal polynomial of §; and therefore the maximal
code M;" is nothing but the set of polynomials ¢(x) for which ¢(8;} = 0. So in
general a cyclic code can be specified by requiring that all codewords have
certain prescribed zeros. In fact, it is sufficient to take one zero f§; of each
irreducible factor f; of the generator polynomial g(x) and require that all
codewords have these points as zeros (all in a suitabie extension field of ). If
we start with any set a,, ®,, ..., ®, and define a code C by ¢(x) e Ciff ¢c(a;) = 0
fori=1,2,...,s then Cis cyclic and the generator polynomial of C is the
least common multiple of the minimal polynomials of a,, «,, ..., &,. Suppose
that all these zeros lie in F. (which we can represent as a vector space 7).
For every i we can consider the m by n matrix with the vector representations
of 1, a,, -: , . (. Y"1 as columns and put all these together to form the

LRI AT whasravmEiinaw fmiate Rt e LLiiwa RRS AL ars WALV

smbyn matnx H which has its entries in f,. Clearly ¢cH T=0, where ¢ =
(cg, Cys--.s Cuey), Means the same thing as c(a))=0fori=1,2,...,s The
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rows of H are not necessarily independent. We may obtain a parity check

matrix from H by deleting some of the rows. As an illustration of this way of
describing cyclic codes, we shall prove that binary (and many other) Ham-
ming codes (cf. (3.3.1)) are (equivalent to) cyclic codes.

{631
(6.3

LR

Y Theorem. Let n:={g™ —
7 b |

=RERE Aty

Wa —
unity in F ». Furthermore, let (m,q — 1)

is equivalent to the [n, n — m]
b | L'"? - |

ProOOF. Since
n=(@—-ND@" 2 +2¢" >+ +m—1)+m,

we have (n,g — 1) =(m, g — 1) = 1. Therefore B V%1 fori=1, 2, ...,
n—1ie B ¢F fori=1,2 .., n~ L It follows that the columns of the

matrix H, which are the representations of 1, 8, %, ..., B"™" as vectors in FJ",
are pairwise linearly independent over F,. So H is the parity check matrix of
all Lu, n— :u] qummg code. m

We 1llustrate what we have learned so far by constructing binary cyclic
codes of length 9.

(6.3.2) ExamMpLE. The smallest extension field of F, which contains a primitive
9th root of unity is F,s. If « is a primitive element of the field, then «®* = 1 and
B:=a’ is a primitive 9th root of unity. By Theorem 1.1.22, the minimal
polynomial ofﬁ has the zeros §, ﬁz B, ﬁ“ ﬁ16 = f7, B** = B°. This polyno-

LIS IR I SN "3 1 M0\ O .
IT1ldl IMusl D {X - 1mx - l] = X + JC + l Uul [1 L.L0)) DU

(x® = 1) = (x = Dx* + x + Dx® + x> + 1) = f1()f3(x)f3(x).

The code M3 has pairwise independent columns in H, i.e. minimum dis-

brionn w3 Q2 .Y 4 nla Al tha rndanranda
Lajve =<~ o, Since IV13 \chdlly bUIlblblb 01 UNe COACwordas

(cocicy €oeicy €€y Cy)

we immediately see that d = 3. The code M; has check polynomial x® +
x3 + 1,so0itis a [9, 6] code. Since x* — 1 is a codeword, the distance is 2. If
we construct F,s with x® + x + 1 and then form the 12 by 9 matrix H for My
in the way described before (6.3.1) it will have six rows of Os only, the all one
row, the row (110 110 110) and four rows (011 011 011). So from this
we find a 3 by 9 parity check matrix. Of course from x® + x* + 1 we find a
parity check matrix equivaient to (I 1 I). The reader can work out iess
trivial examples in a similar way.

(6.3.3) EXaMPLE. We consider x® — | over ;. If § is an 8th root of unity in
F,., then §° = B. Therefore x® — 1 must be the product of (x ~ 1),{x + 1), and
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x* + ax + b we see that the only 1rreducnble polynomials of degree 2 in F;[x]
are x2 + 1, x> + x + 2, and x* + 2x + 2. So we know the factorization of
x® — 1. The cyclic code with generator g(x) := (x* + 1)}(x* + x + 2) has mini-
mum distance < 4 since g{x) has weight 4. In §6.6 we demonstrate an easy way
to prove that 4 is the minimum distance of this code.

64 Thel

90.4. 1ne raempotent o
In many applications it turns out to be advantageous to replace the generator
polynomial of a cyclic code by a polynomial ¢(x) called the idempotent. The
definition is included in the following theorem.

which is an identity element for C.

Proor. Let g(x) be the generator polynomial of C and h(x) the check polyno-
mial, i.e. g(x)h(x) = x" — 1 in F,[x]. Since x" — 1 has no multiple zeros we
have {g(x), h(x)) = 1 and hence there exist polynomials a(x) and b(x) such that
a{x)g(x) + b{x)h(x) = L. Now define

c(x) .= a(x)g(x) = 1 — b(x)h(x).

Clearly c(x) is a codeword in C. Furthermore if p(x)g(x) 1s any codeword in
C, then

c(x)p(x)g(x) = p(x}g(x) — b(x)h(x)p(x}g(x)
= p(x)g(x)  (mod(x" — 1}.

So c(x} 1s an identity element for C, and hence it is unique. O

Since ¢%(x) = c(x), this codeword is called the idempotent. Of course, there

can be other elements in € that are ermal to their souares. bhut nhl\.r nne
Wil AL L AL ANL bt lliviiLg 114 L LALLA R t‘u

AR Lo = hluul‘wl-, LA S LAL AR
of these is an identity for the code. Since every codeword v(x} can be written
as v(x)c(x), i.e. as a muitiple of c(x), we see that c(x) generates the ideal C.

Let us consider the factonzation x" — | = f{x)... f,(x) once more. We now
ke q= 7 Fram Thaaram 1 1

7 we knnaw that theca fartare carreenand to
A% T dada A A WFLAL A ARV LSANELl Aol adde Y W INALAWI VY PAACEY LLLWOD W LHAWLALSL I Uul‘vh’yvllu ey

a

he decomposition of {0, 1, ..., n — 1} into so-called cyclotomic cosets: {0}, {1,
v 4,...,27}, ..., {a, 2a, ..., 2°a}, where s is the minimal exponent such that
a(2*"* — 1) = 0 (mod ). In Example 6.3.2 this decomposition was {0}, {1, 2,4,
8, 7, 5}, {3, 6} with n=9. On the other hand, it is obvious that if an
idempotent ¢(x) contains the term x’, it also contains the term x?'. Therefore
an idempotent must be a sum of idempotents of the form x* + x>+ --- +

x¥*% where {a, 2a, ..., 2°a} is one of the cyclotomic cosets. Since there are

b
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and hence generate all bmary CyCllC codes of a given length w1thout factoring
x" — 1 at all!
We extend the theory a little further. Again we make the restriction g = 2.
First observe that from the proof of Theorem 6.4.1 it follows that if c(x) is the
T [ — JEEg. [ Eppny 1

luculpuusut of the code \.., with geiicraior y\.&.} and CinccK pﬁl}ﬁﬁﬁ‘li&l n[x;,
then 1 + ¢(x) is the idempotent of the code with generator h(x). Therefore

1 + x"c(x!) is the idempotent of the dual code.

{6.4.2) Definition. The idempotent of an irreducible cyclic code M;™ is called
a primitive idempotent and denoted by 8,(x). For example in (6.1.5) the polyno-
mial (x? + 1)g(x) = x% + x® + x* + 1 is a primitive idempotent.

Let @ be a primitive nth root of unity in an extension field of F,. If the
polynomial c(x) is idempotent, then c(x’) = 0 or 1 for all values of i and the
i< clearly al If c(x)i imitive id | | i
irreducible factor f(x) of x® — 1 such that c(a) = 1 iff f(a’) =0, i.e. c(x') = 1
iff i belongs to one of the cyclotomic cosets {a, 2a, ...}. Such a primitive
idempotent is often denoted by 8,, i.e. in (6.4.2) the index i is chosen from the
representatives of different cyclotomic cosets. For example, consider n = 15

and lat ~ hn a 7ero nf 4 4+ x4 1 Than ‘I'hﬂ nﬂmthun tdﬂmnnfpnt helanoino
CLLANRE I%Wl LA A A Aiwyl] LR P BAIBRLARLE VW BN y A% leul‘bll‘&

to the minimal cyclic code with check polynomial x* + x + l is denoted by
8, and in this case _, corresponds to nonzeros a ™!, «™% a™* 78 ie. to the
check polynomial x* + x* + 1. In the foliowing, if no such « has been fixed,

we cimnly number the irreducible cvelic codes M M- M~

Frw Siliiipray LileRAdWL iR Avuuvlu;v ] LA WSS ‘lui Y 4-‘2 y rang ATVRE o

(6.4.3) Theorem. [f C, and C, are cyclic codes with idempotents c,(x) and c,(x),
then:

(i) C, n C, has idempotent c,(x)c4{x);
(ii) C, + C,, i.e. the set of all words a + b with a e C| and b e C,, has idem-
potent ¢;(x) + c,{x} + c(xjc,{x).

ProOF.

(1} is a trivial consequence of Theorem 6.4.1;

(i1) follows in the same way since c,(x} + c,(x) + c,{x)c,(x} is clearly in
C, + C, and is again easily seen to be an identity element for this code
because all codewords have the form a(x)c,(x) + b(x)c,(x). O
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PROOF.

(i} follows from Theorem 6.4.3(i) since M " M;” = {0};
(i) follows from Theorem 6.4.3(i1)) and Theorem 6.4.4(1)) because M; +
M; + --- 4+ M, is the set of all words of length n; and finally
(iii) is proved by observing that the check polynomial of M|, + --- + M| is
Ji,(x)... fi,(x). O

It is not too difficult to find the primitive idempotents, using these theo-
rems. One then has an easy way of finding the idempotent of a code if the
generator is given in the form f (x)... f; {x).

In several more advanced topics in coding theory, one finds proof tech-
niques involving idempotents. In this book we shall not reach that stage but
nevertheless we wish to show a little more about idempotents. The reader who
wishes to study the literature will find the following remarks useful.

Consider a cyclic code C of length n with generator g(x). Let x"— 1 =
g(x)h(x). We consider the formal derivatives of both sides (cf. Section 1.1). We

find

x"1 = g’(x)h(x) + g(x}h’'(x).

b A S A S T b

Here the degree of g(x)h’(x) is n — 1 iff the degree of h{x) is odd. Multiply
both sides hv x and reduce mod x" — 1. We find

b = xg"(x)h(x) + xg(x)h'(x) + (x" — 1),

where the final term cancels the term x" which occurs in one of the other two
polynomials. We see that the idempotent of C is xg{x)h'(x) + 8(x" — 1), where
d =1 if the degree of h(x) is odd, 0 otherwise. As an example consider
the minimal code of length 15 with check polynomial x* + x + 1. The idem-
potent 8, is xg(x) = x(x'> — V)/(x* + x + 1).

The following correspondence between idempotents is another useful exer-
cise. The example above can serve as an illustration. Let f(x) be a primitive
divisor of x* — 1, where n = 2* — 1. Let a be a primitive element of F,. for
which f(a) = 0. The primitive idempotents 8,, resp. §_, correspond to the
cyclotomic cosets {1,2,...,27 '} resp. {— 1, —2,..., —27' }. We claim that

6.,(x) = p(x) = }:Tr(a")x",
i=0

where Tr is the trace function (cf. (1.1.29)). In order to show this, we must
orl =01 n — 1. We have

ori=wv,1,..., Yy nav
k-1 n—

(p(al) — n;) (al)i ,_Zo (ai)zi Z Z !+ZJ

i=0i=
The inner sum is O unless &'+ = 1. Hence ¢(a') = 1 if I = —2/ for some value
of j and ¢{(o’) = 0 otherwise. This proves the assertion.
Idempotents are used in many places, e.g. to calculate weight enumerators.
We do not go into this subject but refer the reader to [42] and [46]. The
theory treated in this section, especially Theorem 6.4.4, is a special case of the



§6.5. Other Representations of Cyclic Codes 89

general theory of idempotents for semi-simple algebras. We refer the reader

to [16].

§6.5. Other Representations of Cyclic Codes

There are several other ways of representing cyclic codes than the standard

way which was treated in Section 6.1. Sometimes a proof is easier when one

of these other representations is used. The first one that we discuss makes use

Al tho ben e Frren tdnan F' 1 1 0
Ol U6€ (Tace 1uncilion b LL.E.&7 )0

(6.5.1) Theorem. Let k be the multiplicative order of p mod n, g = p*, and let
B be a primitive nth root of unity in k. Then the set

= {e(&) := (Tr(&), Tr(ZP), ..., Tr(EB"  WE € )

is an [n, k] irreducible cyclic code over F,.

ProoF. By Theorem 1.1.30, V is a linear code. Next, observe that ¢(é87 )is a
cyclic shift of ¢(). Hence V is a cyclic code. Since § is in no subfield of F, we
know that § is a zero of an irreducible polynomial h(x) = hy + h;x + -+ +
h,x* of degree k. If ¢{¢} = (cy, ¢, ..., C,-;) then

k

2. by = Tr(Eh(B)) = Tr(0) = 0,

i=0
ie. we have a parity check equation for the code V.

Since h(x) is irreducible, we see that x*h(x ') is the check polynomial for
¥ and V is therefore an irreducible cyclic [n, k] code. O

We shali now introduce a discrete analog of the Fourier transform, which
in coding theory is always referred to as the Mattson-Solomon polynomial.
Let B be a primitive nth root of unity in the extension field # of F,. Let T be

the set of polynomials over # of degree at most n — 1. We dFrnP O T->T

as follows. Let a(x) e T. Then A(X) = (®a)(X) is defined by
(6.5.2) AX) = i a(fH X"

Ifa ={ag,a,,...,a,_,), then the polynomial A(X) obtained from a, + a;x +
-+ + a,-,x""! is called the Mattson-Solomon polynomial of the vector a.

(6.5.3) Lemma. The inverse of ® is given by

a(x) = n"H{®A)(x™')  (mod x" — 1).
PROOF.
n—1

- 3T apip =Y a3 4 = na, 0

=1z
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° . . . . n

defined by
O ax)x () bx =3 ahbx’

Then it is easily seen that ® is an isomorphism of the ring (T, +, o) onto the
ring (T, +, *).

Now let us use these polynomials to study cyclic codes.

(6.54) Lemma. Let V be a cyclic code over F, generated by
g(x) = [] (x— B
kek

Suppose {1, 2, ...,d — 1} « K and a € V. Then the degree of the Mattson-
Solomon polynomial A of ais at most n — d.

ProoF. a(f’) = 0 for 1 < j < d — 1 since a(x) is divisible by g(x). The result
follows from (6.5.2) O

e

(6.5.5) Theorem. If there are r n-th roots of unity which are zeros of the

Mattson-Solomon polynomial A of a word a, then w(a) = n —r.

Donnre Thic ic an 1 nanra af I amma £§4 1 (!
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We can also make a link between cyclic codes and the theory of linear

recurring sequences for which there exists extensive literature {cf. e.g. [61]). A

Iinear recurrine seguence with elements in F is defined hu an 1initial sequence
& u\-\l“ujlwv L

FYLLAL Wwiwiilwiivs 185 » LSSV 3 LWL ) CRid ITELINETAL OGNl RaASsistens

ag, ay, ..., a;_, and a recursion
k

(6.5.6) a,+ Y ha,_;=0, (I = k).
i=1

The standard technique for finding a solution is to try ¢, = #. This is a
solution of (6.5.6) if B is a zero of h(x), where h(x) := x* + Y % bx*"" Let us
assume that the equation h(x) = 0 has k distinct roots f§,, f,, ..., B In some
extension field of F_. Then, if ¢,, c,, ..., ¢, are arbitrary, the sequence g, =

P nn]--fif\ﬁ ~AF A & £Y W a munet nhianca tha irm onirnh oA wway that
L" 1 L'IPI. l.a X dUVIULIVIL VI \U and s \J} Y l.uuat LS AW LN L' I'-Il\- l"'l il auwlil a wa-y l-ll-al. uo,

a,,..., a4, have the prescribed values. This amounts to solving a system of
k lincar equations for which the determinant of coefficients i1s the Vander-
monde determinant

1 1 1
B B - B |
(6.5.7) PoB . R [ =I6B-s =0

So we can indeed find the required sequence.
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Suppose h(x} is a divisor of x" — 1 (again {n, g) = 1). The

recurring sequence is periodic with period a divisor of n. Now consider all
partial sequences (a,, a,, ..., a,.,) where (a,, a,, ..., q,_,) runs through [F:.
We then have an [, k] cyclic code with x*A(x~*) as check polynomial. So

il Fal
1,(.2,.-.,!.»

k

‘eu"l
J qJ

1s another representation of a cyclic code.

§6.6. BCH Codes

An important class of cyclic codes, still used a lot in practice, was discovered
by R. C. Bose and D. K. Ray-Chaudhuri (1960) and independently by A.
Hocquenghem (1959). The codes are known as BCH codes.

(6.6.1) Definition. A cyclic code of length n over [, is called a BCH code of
designed distance & if its generator g(x) is the least common multiple of the
minimal polynomials of 8, 8+, ..., B'*%~2 for some I, where § is a primitive
nth root of unity. Usually we shali take / = 1 (sometimes cailed a narrow-sense
BCH code). If n = g™ — 1, i.e. § is a primitive element of F_., then the BCH

code is called primitive.

The terminology “designed distance” is explained by the following theo-

fcm.

(6.6.2) Theorem. The minimum distance of a BCH code with designed distance
d is at least d.

FiIrRsT PrROOF. In the same way as in Section 6.3 we form the m(d - 1) by n
matrix H:

A

i+1 2(I+1) {n—1){i+1)
g | LB B e

...........................................

l'l BH-d—Z BZ(H—d—.’Z} . B{n—l}(H-d—Z)

where each entry is interpreted as a column vector of length m over F,. A word
c isin the BCH code iff cHT = 0. The m(d — 1) rows of H are not necessarily
independent. Consider any 4 — 1 columns of H and let !, ..., -+ be the
top elements in these columns. The determinant of the submatrix of H ob-
tained in this way is again a Vandermonde determinant (cf, (6.5.7)) with value
Bt HaMTT (B — B} # 0, since B is a primitive nth root of unity.
Therefore any d — 1 columns of H are linearly independent and hence a
codeword ¢ # 0 has weight > d.
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Mattson-Solomon polynomial of a codeword c is at most n — d. Therefore in

Theorem 6.5.5 we haver < n —d,1e. w(c) > d. O
REMARK. Theorem 6.6.2 is usually called the BCH bound. From now on we
nnnnn ally cmrmoidar mareraig oamon ROLT andas T wa ctaet writh 7 — N inoctand ~AfF
uauau‘y LAMIZUILL RlaAdllWY atllal D\.vl.l LAHLLS. Ll WL LIl WILLY P — VU Lo nwaGW LVl

[ = 1 we find the even weight subcode of the narrow sense code.

ExampLe. Letn =31, m = 5,94 =2and d = 8. Let « be a primitive element of
TE Tl'lﬂ m1ﬂ;mo] ﬂf\l‘l“ﬂﬂQIﬁl !\F ~F I‘.‘
d 32- A El%w A1LAi1kB1CA1 i}vl LANVALLIIGRL WL A 1D

(x — a){x — a?}(x — a*}{x — aB){x — a’®),

In the same way we find the polynomial m;(x). But
ms(x) = (x — a®)(x — a*%)(x — a®)(x — &®)(x — '¥) = my(x).

It turns out that g{x) is the least common multiple of m, (x), m;(x), ms(x), m,(x)
and mg(x). Therefore the minimum distance of the primitive BCH code with
designed distance 8§ (which was obviously at least 9) is in fact at least (1.

Several generalizations of the BCH bound have been proved. We now
describe a method of estimating the minimum distance of a cyclic code. The
method is due to J. H. van Lint and R. M. Wilson [76]. Earlier improvements
of Theorem 6.6.2 are consequences of the method.

If 4= {a",...,a"} is a set of n-th roots of unity such that for a cyclic code
C of length n

(%) € l"f\__“l
clx)e ‘-**"V{eAL\ )=Vl

then we shall say that A is a defining set for C. If A is the maximal defining
set for C, then we shall call A4 complete.

(6.6.3) Definition. We denote by M(A4) or M(a't, ..., «”) the matrix of size /
by n that has 1, &', i, ..., «® % 35 its kth row; that is

1 it g2 ICES VI
1 it g a2
(i iy
VI, L, ET = .
[ 1 b o2 ... glth J

We refer to M(A) as the parity check matrix corresponding to 4. This is
the same notation as in Theorem 6.6.2. (Note that over [, the matrix M{A)
has rows that are not necessarily independent.)

(6.6.4) Definition. A set A = {a", ..., a”*} will be called a consecutive set of
t 1nm an j

leneth [ if there exists a primitive nt

lb-‘l * AL RARWA W WikidulkaF bk t—’ aL
that A = {f', g™, ..., Bt
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So, Theorem 6.6.2 states that if a defining set 4 for a cyclic code contains

a consecutive set of length d — 1, then the minimum distance is at least 4. A
consequence of our proof of Theorem 6.6.2 is the following lemma.

(6.6.5) Lemma. If A isaconsecutive set of length [, then the submatrix of M(A)
obtained by taking any I columns has rank 1.

We shall frequently use the following corollary of this lemma

{6.6.6) Corollary. If B is a primitive n-th root of unity and

h<i<'<i=i +t-1,

We now introduce the notation

AB ={tn|t e A,ne B}.

Subsequently, we consider a product operation for matrices that will be

applied in the special situation where the matrices are parity check matrices
of the form M(A) defined in (6.6.3).

(6.6.7) Definition. The matrix A=+ B is the matrix that has as its rows all
products ab, where a runs through the rows of A and b runs through the rows
of B.

The following (nearly trivial} lemma is the basis of the method to be
described. We consider matrices 4 and B with n columns.

(6.6.8) Lemma. If a linear combination of all the columns of A + B with non-
zero coefficients is 0, then

rank(A) + rank(B) < n.

Proor. If the coefficients in the linear combination are 4; (j = 1, ..., n) then
multiply column j of B by 4;(j = 1, ..., n). This yieids a matrix B’ with the
same rank as B. The condition of the lemma states that every row of A has

inner product 0 with every row of B’ Since this implies that rank(4) +
rank(B’) < n, we are done. O

Now we are in a position to state the theorem that will enable us to find
the minimum distance of a large number of cyclic codes. If ¢ is a codeword in
a cyclic code, then the support I of ¢ is the set of coordinate positions i such
that ¢; # 0. If 4 1s a matrix, then A, denotes the submatrix obtained by
deleting the positions not in I.
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(6.6.9) Theorem. Let A and B be matrices with entries from a field F. Let Ax B

be a parity check matrix for the code C over F. If I is the support of a codeword
in C, then

to say somethmg about the rank of suitable matnccs of type A I respectwely
B,. If the sum of these ranks is > |I| for every subset I of {{, 2, ..., n} of size
< 8, then the code has minimum distance at least §.

(6.6.10) ExampLE. We illustrate the method by proving the so-calied Roos
bound. This bound states that if 4 is a defining set for a cyclic code with
minimum distance d, and if B is a set of nth roots of unity such that the
shortest consecutive set that contains B has length < |B| + d; — 2, then the
C I i inimum di = =

To prove this, we first observe that we have
for|f| <d,

11,
rank(M(A4),) = {2 d,—1, for|l}>d,.

Then Corollary 6.6.6 provides us with information on the rank of submatrices

of M(B), namely
fi
rank(M(B),)__{l or|I| < d,

| —d,+2, ford, <|I'|<|B|+d,- 2.
We now apply Theorem 6.6.9. We find from the above that
rank(M(A),} + rank(M(B),) > |I|for I} < |B} +d, — 2,
and hence for these values of | [|, the set I cannot be the support of a codeword

of a code with defining set AB. (Here we use the fact that the rows of
M({A) = M(B) are the same as the rows of M{A4B).)

Remark. This bound is due to C. Roos [80]. The special case where B is a

consecutive set was proved by C. R. P. Hartmann and K. K. Tzeng in 1972;
cf. [33].

ExamrLE. Consider the cyclic code C of length 35 with generator

g(x} = m, ()ms(x)m,(x).

I‘Fa is 2 primitive 35th root nnitvy than tha rlnrrnnn set of C caontainge the
t’lllllll-l' -t L a4 W = Ak
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set {a’li = 7, 8,9, 10, 11, 20, 21, 22, 23}. This set can be written as 4B, where

= {a'|li = 7,8,9,10} and B = {fi”l_jr =0, 3,4} with § = «'2 (also a primitive
35th root of unity). The set A is the defining set for a cyclic code with
minimum distance d, = 5. The set B is contained in a consecutive set of length
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5. The condition on | B| of Example 6.6.10 is satisfied. It follows that C has
minimum distance at least 3 + 5 — I = 7. This is in fact the mimmum dis-

tance of this code. Note that the BCH bound only shows that the minimum
distance is at least 6.

Before giving one of the nicest examples of our method, we prove a special
case of a theorem due to R. J. McEliece.

(6.6.11) Lemma. Let C be a binary cyclic code of length n with complete
defining set R. Suppose that no two nth roots of unity that are not in R have
product 1. Then the weight of every codeword in C is divisible by 4.

D“mf_‘ F'Aﬂ"“l’ ‘ —~— D ﬂﬂl’l rﬂ' - ¥r-1 413] “'k rt\nf nr II";"‘I -1 1R hﬂll.ﬂ LY I i D ra't o
L BAAJK. \..u-cu.l.y 4 O Ivw aliud 1ui D"UI.J FERLL LWL Wl WilLlL 3 Y Ll YA Y L—3F L, . W) |
y ' e R. Let ¢{x) = x"* 4+ x'* + -+ + x'* be a codeword. Since 1 € R, k must

be even. Since c(x)c(x™!) is zero for every nth root of unity, it is the zero

polynomial. If x/™/ = x*"™ then x/' = x™7|, ie. in the product c(x)c(x™!)
k(k — 1) = 0 (mod 4), so 4lk. O

A consequence of Lemma 6.6.11 is that the dual C of the primitive BCH
code of length 127 and designed distance 11, has minimum distance divisible
by 4. By the BCH bound, C has minimum distance at least 16. By the Roos
bound the distance is at least 22, so in fact at least 24 from Lemma 6.6.11.
Since the code contains the shortened second order Reed-Muller code (2,
7), its mmimum distance is at most 32. We shall now show that the method

e

ExaMmpLE. Let R be the defining set of C. Note that R contains the sets
{of|81 < i <95}, {«'|98 < i < 111}, {e|113 < i < 127}, where ais a primitive
127th root of unity. Let

A={a"183<i<95}u {98 <i< 111}
B={pllj=-17,0,1}, B =S

Then R 2 AB. The set A contains 14 consecutive powers of «, and further-
more, it is a subset of a set of 29 consecutive powers of &, with the powers «*®
and «®” missing. So, from Lemma 6.6.5 and Corollary 6.6.6 we have

[II[, forl <iI| <14
el R AL AV & =~ 1A frmm 1A o~ Tl ~ 1&
- 1]\[1"1 \1‘11”} - l‘f, UL 1= = }l| - 1
[f| -2, forl7<|il<29
T sl o mmsmo e szrpm = PRI pulg.
111 LIIC SdIlC Wi‘.ly woe 1l
l’III, fort <|I|<2
rank(M(B};} = < 2, for2<(I|<8
13, for|I] =9
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By Theorem 6.6.9 a set I with || < 30 cannot be the support of a codeword
in C.

It was shown by Van Lint and Wiison [76] that the method described
above gives the exact minimum distance for all binary cyclic codes of
length < 63 with only two exceptions.

Finding the actual minimum distance of a BCH code is in general a hard
ourselves to binary primitive BCH codes. We first must prove a lemma.

Consider F,x as the space F; and let U be a subspace of dimension I. We define

ZI(U) = eruxi.
(6.6.12) Lemma. If i has less than | ones in its binary expansion then > . (U) = 0.
ProoF. We use induction. The case ! = | is trivial. Let the assertion be true

for some ! and let ¥V have dimension ! + 1and V = U u (U + b), where U has
dimension {. Then

i~1

SN =S+ T+ b= (o3,
xell v=0 \\’/

If the binary expansion of i has at most / ones, then by Theorem 4.5.1 the

binomial coefficient (I

v

less than [ ones, in which case ), (U) is 0 by the induction hypothesis. d

), where v < i, is 0 unless the binary expansion of v has

(6.6.13) Theorem. The primitive binary BCH code C of lengthn = 2™ — 1 and
designed distance 6 = 2' — | has minimum distance 4.

Proor. Let U be an I-dimensional subspace of F,». Consider a vector ¢ which
has its ones exactly in the positions corresponding to nonzero elements of U,

1e.
cfx)= > x\

Jafe {0}

Let 1 < i < 2'— 1. Then the binary expansion of i has less than [ ones.
Furthermore ¢(a’) = ) ;(U) and hence by Lemma 6.6.12 we have c(a') = 0 for
1 <i<2'—1,ie c(x)is a codeword in C. O

(6.6.14) Corollary. A primitive BCH code of designed distance  has distance
!such that 2" ' <5 <2' - 1.

Although it is not extremely difficult, it would take us too long to also give
reasonable estimates for the actual dimension of a BCH code. In the binary
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case we have the estimate 2" — | — mt if § = 2t + 1, which is clearly poor for

large t although it is accurate for small ¢ {compared to m). We refer the
interested reader to [46]. Combining the estimates one can easily show that

nrimitiva p(‘“ ondac are hnd |n fhp canoe .(\F Chantar & 18 iF ¢ 0 o
Sl Lo L) L scuapiicl Sy v M Ly 1o a

primitive [n,, k,, d,] BCH code for v=1, 2, ..., and n, - oo, then either
k,/n,~0ord,/n,—0.

In Section 6.1 we have already point.J out that the automorphism group

lano
I.Ul.lb Plllllll.l. Fhe BFN% A i Wwisullwd A% I AR

but also n,. For BCH codes we can prove much more. Constder a pnmltwc
BCH code C of length n = g™ — 1 over F, with designed distance d (i.e. a, 2,
.., 297! are the prescribed zeros of the _codewords, where x is a primitive
element of F..).

We denote the positions of the symbols in the codewords by X, (i =0, 1,

, n — 1), where X; = . We extend the code to C by adding an overall
parity check. We denote the additional position by oo and we make the
obvious conventions concerning arithmetic with the symbol co. We represent

—thecodeword(cg, ey ey by e +epx +—+ o x™ L+ xand make ——

the further conventions 1° := 1, («')® := 0 for i # 0 (mod n).

We shall now show that C is invariant under the permutations of the affine
permutation group AGL(1, ¢™) acting on the positions (¢f. Section 1.1). This
group consists of the permutations

[+

P, (X)y=uX +v, (u € Fym, v € Fpm, u # 0).

The group is 2-transitive. First observe that P, , is the cyclic shift on the
positions of C and that it leaves oo invanant. Let (cy, ¢y,...,c,—y, ¢, ) € Cand
let P, , yieid the permuted word (cq, ¢}, ..., ¢, ) ThenforO <k <d — 1 we
havc

2 C' ik _ z c,-(ua‘ + U]k — z ¢; Izzo (J)u aalvk -1

k

- Z (’:‘\ okt Z (@) =0

= \!/

because the inner sum is 0 for 0 </ <d — 1 since ce C. So we have the
following theorem,

(6.6.15) Theorem. Every extended primitive BCH code of lengthn+ 1 = g™
over [, has AGL(1, g™} as a group of automorphisms.

(6.6.16) Corollary. The minimum weight of a primitive binary BCH code is odd.

ProoF. Let C be such a code. We have shown that Aut(C) is transitive on the
positions. The same is true if we consider onty the words of minimum weight
in C. So C has words of minimum weight with a 1 in the final check position.

(I
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Once again consider a BCH code of length n over F, with designed distance
d =2t + 1 and let B be a primitive nth root of unity in F_.. We consider a
codeword C(x) and assume that the recetved word is

R(x) =Ry + Ryx + -+ R,_;x""1

Let E(x}:=R(x) — C(x)=Eq+ E,x+---+ E,_,x""! be the error vector.
We define:

M := {i|E; # 0}, the positions where an error occurs,

e .= | M|, the number of errors,
o(z) = H (t — B'2), which we call the error-locator polynomial,
ieM
o(z):=Y Epz [] (- p)
ieM je M\ (i}

It is clear that if we can find o(z) and w{(z), then the errors can be corrected.
In fact an error occurs in position i iff 6(f7°) = 0 and in that case the error is

E; = —w(B)f"¢'(f77). From now on we assume that e < ¢ (if e > ¢ we do
not expect to be able to correct the errors). Observe that

w(z) Efz 2

_— = i — = 'El ‘Z)l

a(z) ichl—f'z iezM 1; Y

o 3]
=Yz ¥ Epi=Y ZEB),
=1 ieM =1

where all caiculations are with formal power series over F,.. For 1 <1< 2t
we have E(') = R('), i.e. the receiver knows the first 2z coefficients on the
right-hand side. Therefore w(z)/a(z) is known mod z2*!. We claim that the
receiver must determine polynomials ¢(z) and w(z) such that degree w(z) <
degree a(z) and degree o{z) is as small as possible under the condition

o) _ &
U(x‘-’) - i=1

Let S,:= R{B'yforl=1,..., 2l and let 6(z) = J .o 0;z". Then

w(z) = (‘i S,z')(i a,.z") -y z*( v Sla,-) (mod z2*1),

i=0 k i+l=k

(6.7.1) Z'R(BY  (mod z>'*).

Because w(z) has degree < e we have

T

). S0,=0, fore+1 <k<2t
i+i=k
This is a system of 2t — e linear equations for the unknowns gy, ..., g, {we

know that o, = 1). Let d(z) = Y % 6:z' (Where 6, = 1) be the polynomial of
lowest degree found by solving these equations {we know there is at least the
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solution o(z)). Fore + 1 < k < 2t we have

0= ; Si-i6y = i;{; Eiﬂtk_m G = iz:u Eiﬁika(ﬂ_i)-

We can interpret the right-hand side as a system of linear equations for
E;G(B7%) with coefficients 8*. So the determinant of coefficients is again

Vandermonde, hence # 0. So E;¢{f ) =0forie M. Since E; # O forie M
we see that o(z) divides #(z), i.e. §(z) = o(z). So indeed, the solutlon g(2) of

iowest degree solves our problem and we have seen that finding it amounts
to solving a system of linear equations. The advantage of this approach is that
the decoder has an algorithm that does not depend on e. Of course, in
practice it is even more important to find a fast algorithm that actually does
what we have only considered from a theoretical point of view. Such an
algorithm (with implementation) was designed by E. R. Berlekamp (cf. [2],
[24]) and is often referred to as the Berlekamp-decoder.

If we call the (known) polynomial on the right hand side of (6.7.1) 5(z) and
define G(z) := z*'*!, then (6.7.1) reads

(6.7.1) S(z)a{z) = w(z) {mod G(z)).

We need to find a solution of this congruence with & of degree < t and w of
degree smaller than the degree of ¢. The (unique) solution makes the error

correction nossible. In 89.5 we encounter the same congruence
possible. In §7.03 we encounter the same congruence.

§6.8. Reed-Solomon Codes

One of the simplest examples of BCH codes, namely the case n = g — 1, turns
out to have many important applications.

(6.8.1) Definition. A Reed-Solomon code (RS code) is a primitive BCH code of
length n = ¢ — 1 over F,. The generator of such a code has the form g(x) =
[14! (x — «*) where « is primitive in F,.

Rv tha R
Ly L LW

ilw

CJ"

annd (6 6
wr

Ull\.l \V U

l"-.)
~—

mum distance of an RS code with this
generator g{x) is at least d By Section 6.2 this code has dimension &k =
n —d + 1. Therefore Corollary 5.2.2 implies that the minimum distance is d

and the RS code is a maximum distance separable code.
Suppose we need a code for a channel that does not have random errors

=3 9§ 8Lwsy L L - I L+ TP LULVSY S L,

(like the B.S.C.) but instead has errors occurring in bursts (i.e. several errors
close together). This happens quite often in practice (telecommunication,
magnetic tapes, compact disc). For such a channel, RS codes are often used.
We illustrate this brieﬂy Suppose binary information is taken in strings of m

. P ey P T el e e P

bymDUlh wnu.u dle ulu:lpu:u:u a5 CICINETiLS UI. Ll'znl .I.I. tficse aic CIILULI.CU ljbil.lg na
code, then a burst of several errors (in the Os and 1s) will influence only a few
consecutive symbols in a codeword of the RS code. Of course this idea can be

ia
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used for any code but smce the RS codes are MDS they are parﬁcularly useful

apphcatlon we mention the ongmal approach of Reed and Solomon Letn = g— 1
o a primitive element of [,. As usual, identify a = (ay, a,, ..., a;_;) € F* with
a+aix+...+a_ x*"=a(x). Then

=fl(n ol ”
1

Mo = gfa 3 o o= Tk
WO Vr-ery b= JIt; = WA = b fi,d T Irqj

=n= isobvious
cyclic. The definition of C and Lcmma 6.5.3 imply that a codeword ¢ has na(x)
as its Mattson-Solomon polynomial. Since the degree of a(x) is < k — 1 this
means that c(a’)=0fori= 1,2, ..., n—k Hence C is an RS code. This
representation gives a very efficient encoding procedure for RS codes even
though 1t 1s not systematic.

If we extend the words of C by adjoining a symbol ¢, = a(0), then ) f.o¢; =
a,q = 0. So, we indeed obtain C. If ¢, = Q, i.e. c(1) = 0, then the word has
weight > n — k + 2 and clearly this is also true if ¢, # 0. So, the code C is also

[T -

an MDS code.
The second representation of Reed-Solomon codes allows us to generalize the

idea, We now congider F - as alnhahet and choose n distinct elaments from the

s S q™ poLade i AviAn S e P RALLITAANLS L WALFIRAWIRRLS AANPAEL AAAN

field, say o, a;, ..., @,. Letv = (v, vy,...,v,) be a vector from [, with no
zero coordinates and write a ;= (o, @, . .., &,).

(6.8.2) Definition. The generalized Reed-Solomon code GRS, (a, v) has as code-

words all (v, f(a,), vo f(®s), ..., v, f(a,)), where f runs through the set of poly-
nomials of degree less than k in [ [x].

In the same way as above, we see that a generalized Reed-Solomon code and

]l muea RATHC e A

its dual are MDS codes.
Qur second description of RS codes also allows us to give a rough idea of the

codes that are defined using algebraic geometry. In (1.3.4) we saw that the
projective line of order q can be described by giving the points coordinates
(x, y), where (x, ) and (cx, cy) are the same point (¢ € F,). If a(x, y) and b(x, y)
are homogeneous polynomials of the same degree, then it makes sense to

studv the rational function afx. vW/b{(x. v on the nroiective line {since a change

Sy BrLinflaSs Sreiaiviitisal WY vy P L sy p g WAL v AV IVLRIT L L ol & waadiine

of coordinates does not change the value of the fraction). We pick the point
Q :=(1, 0) as a special point on the line. The remaining points have as
coordinates (0, 1) and (a, 1), (0 < i < g — 1), where a again denotes a primi-
tive element of [F We now consider those rational functions a(x, u\f’u’ for

which ! < k (and of course a(x, y) is homogeneous of degree /). This is a vector
space (say K) of dimension k and one immediately sees that the description
of RS codes given above amounts to numbering the points of the line in some
fixed order (say P,, Pl, ..., P,_,), and taking as codewords { f(P,), ..., f(F,_;),

whara £ raivic thrars lnn. crmnra B Tha finstiane hava haan chncan in cnch
o il e J l“lla i1l Uusll Lll‘t DP“W A% - R I JTLELIWLIV/ALLIY BICL Vi LALWARL LAJWroNnvdd L1 OSUEw 1

way that we can indeed calculate their values in all the points P;; this is not
so for Q. In terms of analysis, the point Q is a pole of order at most k — ! for

the functions in K.
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The simplest examples of algebraic geometry codes generalize this con-

struction by replacing the projective line by a projective curve in some projec-
tive space. We treat algebraic geometry codes in Chapter 10.

We now look at MDS codes in general. If C is an [n, k] code with minimum
distance d = n — k- 1, then C is systematic on any k positions (cf. Problem 3.8.2).

Proor. Let G = (I, P) be the generator matrix of C. Since C has mini-
mum weight d, every set of d — 1 = n — k columns of the parity check matrix
= (—PT7 I,_,)islinearly independent. Hence every square submatrix of H is

emoimmislan 3 rodasraed AF ﬂJ_ ‘\na - L = | AN FJ- L L 11
uuuaul.smcu, i1.¢€. I.I.U DWUWUL“ WL A 11Qd s — A LUIUB L)U L I.D arni Ll’l, i— Ay AT L}
code, i.e. MDS. |

Lethea[n k, d]codemthd—- n— k+1 Ifwecons1derasetofdpos1t10ns

has dnnensmn > k (n - d) = 1. Smce th13 subcode has minimum dlstance d
it must have dimension exactly 1. It follows that for n > d’ > d, specifying a set
of d’ positions and requiring the codewords to be zero in all other positions, will
define a subcode of C with dimension d' — d + 1. We formulate this result as a
lemma.

(6.8.4) Lemma. Forn > d > d = n —k + 1, the subcode of an MDS code with
pammeters nk,d, consisting of those codewords that have zeros outside a set of
a pﬂSlﬂUﬂS MJ mﬁ'iémwn u - a '1" 1

‘We shall use this lemma and an analog of the M&bius inversion formula (1.1.4)
to find the weight enumerator of an MDS code. We first prove an analog of the

Mabius inversion formula.

(6.8.5) Definition. If N is a finite setand § C T C N, then we define

M.(S, T):= (_I)ITI—ISI_

(6.8.6) Theorem. Let N be a finite set and let f be a function defined on the
subsets of N. If
g(5):=)_ f(R),
RCS

then
fT) =) u(S, THg(S).

ScT
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PRrOGF
D ou(STE(S) = Y ST fR)
SCT ScT RCS
= Y f(R) Y w(S.T),
RCT RCScT

and the result then follows from the equality

_ETI“IRi |T]_|R|) i _ iT1—-IRl _ {0, lfR#T
Z’"'(S’T)"'Z( j ,('1)_(1'1) |1, ifR=T.

RCSCT j=t ~ v
O
TV mman: mlhceee: slans dlace cusmcnles cmccca b ol o RATAD e I S Tt e S
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its parameters.

(6.8.7) Theorem. Let C be an [n, k] code with distanced = n — k + 1. If the

i—d
4 £ 1y \.t = i f=d FEI B T | Y
A-—ln\\q—uz (l l\q i=a,ada+1 n)
i = . == d, v anyg .
Proor. If R is asubsetof N := {0, 1,...,n — 1}, define f(R) to be the number

of codewords (¢, ¢, ..., ¢,) for which ¢; # 0 & i € R. If we define g as in
Theorem 6.8.6, then we have by Lemma 6.8.4

ot 4
(=N

-1
g(S) iq|5|—d+1 if n > |SI Z d.

By our definition of f, we have A; = 3y z; J(R) and therefore application
of Theorem 6.8.6 yields

A = ): D u(S, R)g(S)

- OE() ()]
- OB()erw-n

The result now follows if we replace j by i — j and then use (:) = (:—_11)_{_(::1)
£l

Theorem 6.8.7 gives the following restriction on the size of the alphabet of an
MDS code.

(6.8.8) Theorem. Ifthere exists an MDS code over I, with length n and dimension
k,theng>n—k+lork < 1.
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Proor. Letd = n — k + 1. By Theorem 6.8.7 we have ford < n,0 < A;,, =

() @—Dig—ad. O
Since the dual of an MDS code is also MDS (Theorem 6.8.3), we find the
following corollary

(6.8.9) Corollary. Ifthere exisisan MDS code over [, with length n and dimension
k,theng>k+lord=n—-k+1<2.

In this section we shall consider codes for which the word length n is an odd
prime. The alphabet F, must satisfy the condition: g is a quadratic residue
(mod n), i.e. g™ 12 = 1 (mod n). As usual a will denote a primitive nth root

of unity in an extension field of F,. Later it will turn out that we shall require
! 6 lition. We def

Ry = {i* (mod n)]ie F,, i # 0}, the quadratic residues in F,,

R, = F"\R,, i.e. the set of nonsquares in F,,

- £ TT .. P Y PR SR £ an P AN
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Since we have required that g (mod n) is in Ry, the polynomials gy(x) and g, (x)
both have coefficients in F, (cf. Theorem 1.1.22). Furthermore

x" ~ 1 = (x — D)go(x)g,(x).

&9 1%y DNoafinitin
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The cvelic cndes of lpncrfh n over [F with generators fv}
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resp. (x — 1)gq(x) are bo th called quadratic residue codes (QR codes).

We shall only consider extended QR codes in the binary case, where the
definition is as in (3.2.7). Such a code is obtained by adding an overall parity
check to the code with generator gq(x).

For other fields the definition of extended code is usually modified in such
a way that the extended code is self-dual if n = — 1 (mod 4), resp. dual to the
extension of the code with generator g,(x) if n = 1 {mod 4) (cf. [46]). In the
binary case the code with generator (x — 1)g,(x) is the even-weight subcode
of the other QR code. If G is a generator matrix for the first of these codes
then we obtain a generator matrix for the latter code by adding a row of 1s
to G. If we do the same thing after adding a column of Os to G we obtain a
generator matrix for the extended code.

In the binary case the condition that g is a quadratic
means that n = + 1 (mod 8) (cf. Section 1.1). The permutation =;: i — ij (mod
n) acting on the positions of the codewords maps the code with generator
go(x) into itself if j € R, resp. into the code with generator g,(x) if j € R,. So
the codes with generators gq(x) resp. g,(x) are equivalent. If n = — 1 (mod 4)
then — 1 € R, and in that case the transformation x — x™! maps a codeword
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of the code with generator g,(x) into a codeword of the code with generator

g1(x).

(6.9.2) Theorem. If ¢ = c¢(x) is a codeword in the QR code with generator go(x)
and if ¢(1) #0 and w(c) = d, then
(i) d* 2 n,
(i) f n= —1(mod 4) thend® ~d + 1 > n,
(i) if n = —1 (mod 8) and q = 2 then d = 3 (mod 4).
PROOF

(1) Since c(1) # 0 the polynomial ¢(x) is not divisible by (x — 1). By a suitable
permutation x; we can transform c(x) into a polynomial ¢&{(x) which is
divisible by g,(x} and of course again not divisible by (x — 1). This
implies that ¢(x)é(x) is a multiple of 1 + x + x®> + -+ + x""1_ Since the

polynomial c(x)é(x) has at most 42 nonzero coefficients we have proved
—the first assertion.

(i1) In the proof above we may take j = —1. In that case it is clear that
c(x)é(x) has at most d2 — d + 1 nonzero coefficients.

(i) Let c(x) =Y oy x ) =3 x Ml — =L~ Lthen , — I, =1, —
I,. Hence, if terms in the product c(x)é(x) cancel then they cancel four at
a time. 1ncrcwrcn-—a-—a+1—4a10rsomca>u U

The idempotent of a cyclic code, introduced in Section 6.4, will prove to be
a powerful tool in the analysis of QR codes.

(6.9.3) Theorem. For a suitable choice of the primitive n-th root of unity a, the

polynomial
8(x) = Z x"
re Ry
is the idempotent of the binary QR code with generator (x — 1)go(x) if n =1
{mod 8) resp. the QR code with generator g,(x) if n = — 1 {(mod 8).

PROOF. 8(x) is obviously an idempotent polynomial. Therefore {0(a)}? = 6(a),
i.. 8(«) = 0 or 1. By the same argument §(a') = 9(a) if i € R, and

@)+ () = 1

if i € R,. The “suitable choice” of x is such that f(a)} = 0. (The reader should
convince himself that it is impossible that all primitive clements of F, satisfy
6(x) = 1.} Our choice implies that 8(a') =0 ifie R, and 8(a’} =1 if ie R,.
Finaily we have 8(x®) = (n — 1)/2. This proves the assertion. O

With the aid of 8 we now make a (0 !}.

ane W LIAGARS O Uy

takmg the word 0 as the first row and all cycli
=(00...0)if n =1 (mod 8) and ¢:= (I1...1)1
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independent) generate the extended binary QR code of length n + 1. We now
number the coordinate places of codewords 1n this code with the points of the
prOJectwe line of order n, 1.e. 0,0, 1,...,n — 1. The overa.ll parlty check 18 1n

operations mvolvmg . The group PSL(2 n) consists of all transformatlons
x = {ax + b}/(cx + d)witha, b,c,d in F, and ad — bc = 1. It is not difficult to
check that this group is generated by the transformations S: x - x + 1 and
T: x = —x*. Clearly S is a cyclic shift on the positions different from <o and
it leaves o0 invariant. By the defimtion of a QR code, S leaves the extended
code invariant. To check the effect of T on the extended QR code it is
sufficient to analyse what T does to the rows of G. It is a simple (maybe
somewhat tedious) exercise to show that T maps a row of G into a linear

combination of at most three rows of G (the reader who does not succeed is
referred to {42]). Therefore both S and T leave the extended QR code in-
variant, proving the following theorem.

(6.9.4) Theorem. The automorphism group of the extended binary QR code of
length n + 1 contains PSL(2, n).

The modified definition of extended code which we mentioned eartier
ensures that Theorem 6.9.4 is also true for the nonbinary case (cf. [46]).

(6.9.5) Corollary. A word of minimum weight in a binary QR code satisfies the
conditions of Theorem 6.9.2,

Proor. The proof is the same as for Corollary 6.6.16. In this case we use the
fact that PSL(2, n} is transitive. Therefore the minimum weight is odd.  []

EXAMPLES. (a) Letg = 2, n = 7. We find

X7 w1l =(x = D>+ x+ D>+ x2+ 1)

We take g,(x) as generator. The choice of « specified in Theorem 6.9.3 implies
that x + x* + x* is also a generator. Hence go(x) = 1 + x + x>. Of course
this code is the (perfect) [7, 4] Hamming code (see Section 3.3 and Theorem

6.311 The cg[resnnnrl'lnn even weiocht cunhrode wag treated in 6 1 51
L ¥ JL YVI‘U AR W ¥ Wdl YT vlblll W LSRRy FY LR LA WwhRALWwWA LLL ‘U’*CJ}O
(b) Let g = 2, n = 23. We have
w23 _ 1 v — 1011 1 9 3 L7 4 w6 3 5 ¢ o 1)
A~ L A 1A T A T A T A T A T AT &)

x(xll+x10+x6+x5+x4+x2 1)
Again we take g,(x) to be the multiple of 8(x), which 1s

XM x2 x4+ x®+ X+ x4+ 1.
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(3.1.6) C is a perfect code. Since the binary Golay code of Section 4.2 is unique

Fa%s]

we have now shown that it is in fact a QR code.

We leave several other examples as exercises (Section 6.13).

§6.10. Binary Cyclic Codes of Length 27 (n odd)

Let n be odd and x" — 1 = f,(x)f5(x)... f;.(x) the factorization of x" — 1 into
irreducible factors in F, [x].

We define g,(x) := fi(x)... fi(x), g5(x) = fis;(x)... fi{x), where k <! < .

Let r, :=deg g,,r, := deg g,49,.

Let C, be the cyclic code of length n and dimension n — r, with generator
g.{x), and iet C, be the cyclic code of iength n and dimension n — r, with
generator ¢,(x)g,(x), and let d; be the minimum distance of C; (i = 1, 2).
Clearly d, > d,.

We shalil study the cyclic code C of length 2n and dimension 2n — r; —r,

with generator g(x) := g?(x)g,(x). We claim that this code has the following
structure:

Leta=(aq,ay,...,a,_,)e C,and ¢ ={cy,Cy, ..., Coy) € C;. Define b :=
a + ¢. Since n is odd, we can define words that belong to C by

w.= [am bh L PRER br.-ze n-1s be: UTERREP LS n—'.}

and in this way we find all words of C; (the final assertion follows from
dimension arguments). To demonstrate this, we proceed as follows. Write

a{x) = ag + ayx + - + @y X"
=@y + X%+ + @y X" )+ x(ay 0+ Ay x"7P)
= a,(%) + xa,(x?)
and analogously for ¢(x) and b{x). We then have the following two (equal)

representations for the polynomial w(x) corresponding to the codeword w:

{610 1Y)
(D.iv. iy

4

2y 4 htl
] T A a,

wixy = [ fy
LA el

h's
el

and
(6.10.2) w(x) = {a(x) + x(x" + Va,(x?)} + {b{x} + {x" + 1}b,{x*)}}.

Both terms in {6.10.2) are divisible by g,(x). From {6.10.1) we see that the first
term only contains even powers of x, the second one only odd powers of x.
Since g,(x) has no multiple factors, this implies that both terms are actually
divisible by g#(x).
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From (6.10.2) we find

w(x) = (x" + Da(x) + c(x) + (x" + De, (x?)

PSR

lIl WHILII Cvery 1rm lh UlVlblUlC Dy 9’2{X)

Since b = a + ¢, the word w is a permutation of the word laja + ¢/, (cf.
4.4.1). We have proved the following theorem.

rator g(x), and let C, be a binary cyclic code of length n with generator
g,(x)g,(x). Then the binary cyclic code C of length 2n with generator g#(x)g,(x)

is equivalent to the lulu + v| sum of C, and C,. Therefore C has minimum
distance min{2d,, d,}.

There are not many good binary cyclic codes of even length. However, the
following theorem shows the existence of a class of optimal examples.

code is cyclic for a su:table ordering of the symbols]

PROOF. It is not difficuit to see that it makes no difference on which position
the code is shortened (all resuiting codes are equivalent). Let n = 2° — 1. Let

m,{x) denote the minimal polynomial of a primitive element « of F,.. Then

1(Jc) 15 the generator polynomial of the {n, n — 5] binary Hamming code and
(x + 1)m,(x) is the generator polynomial of the corresponding even weight
subcode. In Theorem 6.10.3 we take g,(x) = (x + 1) and g,(x) = m,(x). We

then find a cyclic code C of length 2n, dimension 2n — s — 2, with minimum

distance 4. It follows from the |u|u + v| construction that all weights in C are
even. Therefore C has a parity check matrix with a top row of 1’s and all

columns distinct. Hence C 1s equivalent to the even weight subcode of a
shortened Hamming code. !

We observe that there is a different way of proving the previous theorem.

Wa chall niea tha Hacea Aarivativa (e thnfnr 1\ Tha ganaratar nf £ haoo |1
¥ w J1I1GLL WO Lllb llaaa\l‘ UWLIY QLD Y W \-)\.r\.r \-rlluy ) L 11% EHIIUIGLUI LAl N 11D A

as a zero with multiplicity 2 and « as a zero with multiplicity 1. This means
that if ¢(x) = } ¢;x" is a codeword, then

Ye=0 Yic=0, Y ca =0,

Le.
(111 ... 1 1 1 .. 1 t )
H=1{0110 .. 0 1 0 .. 0 l
1 o az an—l " a"“ tz2111—2 aZn—l

is a parity check matrix for C; here the second row is obtained by using the
property of the Hasse derivative and multiple zeros. Note that " = 1. Hence
the matrix H, consists of all possible columns with a 1 at the top, except for
(1000...0)" and (1100...0)", i.e. the code is indeed equivalent to the even
weight subcode of a shortened Hamming code.
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We shall define a class of (extended) cyclic codes over [, that are equivalent to
Reed-Muller codes in the case g = 2. First, we generalize the idea of Hamming
weight to integers written in the g-ary number system.

(6.11.1) Definition. If g is an integer > 2 and j = 37 ' £g', with0 < & < ¢

fori =0,1,...,m — 1, then we define w,(j) := ) | &.
Note that the sum is taken in Z. The new class of codes is defined as follows.

(6.11.2) Definition.The shortened rth order generalized Reed-Muller code (GRM

cvdv fleﬂorh n=nan"-1 over Ir: m the cyelic code with ganerator
L=ty A iy N F A AR RSN bl - it

{r)

gx) =[x -a),

where o is a primitive element in F_» and the upper index {r) indicates that the
product is over integers jwithO < j <g”" - land 0 S w, () < (g — 1)m —r.
The r-th order GRM code of lenoth qm hag a generator matrix G* obtained

from the generator matrix G of the shortened GRM code by adjoining a column
of Os and then a row of Ls.

Note that the set of exponents in this definition of shortened GRM codes is
indeed closed under multiplication by g. Let A(x) be the check polynomial of the
shortened r th order GRM code. Then the dual of this code has the polynomial
h*(x) as generator, where A*(x) is obtained from A(x) by reversing the order of
the powers of x. It is defined in the same way as g(x), now with the condition

(6.11.3) Theorem. The dual of the r-th order GRM code of length q™ is equivalent
to a GRM code of order (¢ — 1)m —r — 1.

Proor. We have seen above that (x — 1)h*(x) 1s the generator of the shortened
GRM code of order (g — 1)m — r — 1. If we now lengthen the cyclic codes to
GRM codes, we must show orthogonality of the rows of the generator matrices.
The only ones for which this is not a consequence of the duality of the shortened
codes are the all one rows. For these, the factor (x — 1) in the generators and the

fact that the length is g™ takes care of that. Since the dimensions of the two codes
add up to g™, we are done. 0.

To handle the binary case, we need a lemma.

(6.11.4) Lemma, Le: C ) and C, be cyclic codes of length n over F, with check

polynomials f,(x) := [].L,(x —a;), resp. ]_[_ (x —B;). Let C be the eyclic code
of the same length for whlch the check polynamtal has all the products a;B; as its
zeros. Then C contains all the words ab, wherea € C,, b € C,.
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Proor. We use the representation of cyclic codes by linear recurring sequences,

given at the end of §6 5. We know that the coordinates of a and b can be represented

assums g = YO o and b, = 11 i }ﬁ“' The result follows immediately

from this representation and the definition of ab. O
The following theorem justifies the terminology of this section.

(6.11.5) Theorem. The rth order binary GRM code of length 2™ is equivalent 10
—therthorder Reed-Mullercode of length2™>———

Proor. The proof is by induction. For r = 0, the codes defined by (4.5.6) and
(6.11.2) are both repetition codes. We know that the binary Hammmg code is
cyclic. So, for r = 1 we are done by the corollary to Theorem 4.5.8. Assume
that the assertion is true for some value of r. The check polynomial A*(x) of the
shortened GRM code has zeros a/, where w,(j) < r. The zeros of the check poly-
nomial of the shortened 1-st order RM code are the powers o/ with w,(j) = 1. The
theorem now follows from the induction hypothesis, Definition 4.5.6 and Lemma

6.11.4. L]
We end this section with a theorem on weights in RM codes. 1 othe
applicatio f Th m 6.8.5.

(6.11.6) Theorem. Let F = F(x;, X3, . .., Xn) be apolynomial of degreer defined
onFy. Wewrite G C F ifthe monomials of G form a subset of the set of monomials
of F. We define v(G) to be the number of variables not involved in G and we denote
the number of monomials in G by |\G|. If N(F) is the number of zeros of F in F7,
then

N(F)=2""4) (~1)92o@-t,

OrF
Ll

Proor. Forevery G C F, we define f(G) to be the number of points in 7 where
all the monomials of G have the value 0 and all the other monomials of F have
the value 1. Clearly we have

3 f(H) =20
HCG

(because this is the number of points in the affine subspace of F} defined by
x, =X, =...=x;, = |, where the x;, are the variables occurring in F - G). It
follows from Theorem 6.8.6 that

f(G) =) uH, G2,

HCG
Furthermore
N(F)= by F(G).
b s L‘ A ~

GCF, |F-G|=0 {mod 2}

Since } ;. f(G) = 2", we find
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N(F) = 2'+= Z( D% £(G)

GCF
= 2m l+ Z( l)lF G!Z“’(H G)zv(F m
GCF HCG
— 2m I+ ( I)IF lev(F H) 1
_ 2!11 1 ( I)IF H|2v(F HJZIF H|
= 2m~1 +_Z(_1)IG|2!¢(GJ+LGI_ 0
ZGCF
We now apply this to RM codes.

(6.11.7) Theorem. The weights of the codewords in F8(r, m) are divisible by

2[m/r'1-l.

Proor. The code FB(r, m) consists of the sequences of values taken by polynomials
of degree at most r in m binary variables. The codeword comresponding to a
polynomial F has weight 2" — N(F). If G C F and G has degree d, then
vwG)>m-—|G|-d,i.e. |G| > I'ﬂ:-“i‘—a—"l. Since

- (G
U(G)+r v( )]_r =1,

the result follows from Theorem 6.11.6 |

§6.12. Comments

The reader who is interested in seeing the trace function and idempotents
used heavily in proofs should read [46, Chapter 15].

~ . S Maimbns N T
A generalization of BCH codes will be treated in Chapter 8. There is

extensive literature on weights, dimension, covering radius, etc. of BCH
codes. We mention the Carlitz-Uchiyama bound which depends on a deep
theorem in number theory by A. Weil. For the bound we refer to [42]. For a

ganaralizatiaan af R, . PR, |

gCneraiiza tion of \{l:\ codes to word ll:l]g[[l na prlmc pPOWETr, in which case the
theory is similar to Section 6.9 we refer to a paper by J. H. van Lint and F. J.
MacWilliams (1978; [45]).
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—&86:13. Problems——— — —# — — — — — —

6.13.1. Show that the [4, 2] ternary Hamming code is a negacyclic code.

Ly
[
W
b2

. Determine the idempotent of the [ 15, 11] binary Hamming code.

x

N
-t
[¥4]
|72 ]

[ I al_ . ot a1 P— | — ™ __ 1 & 10 _ P W B ol v Y oo A = *
- oNOW 1hat inc rin order DmMmary nRecad-iviulicr Codc oI LCHNINnen 4.0.0 18

equivalent to an extended cyclic code.

[
by
Ly

. Construct a ternary BCH code with length 26 and designed distance 5.

h
;—n
(W%}
¥ ]

be a primitive element of F,, satisfying o® = 2% + 1. A narrow-sense

25 o4

Let o

BCH code of length 31 with designed distance 5 is being used. We receive
{1001 0110 111t 0000 1101 0101 OIt1 111

Decode this message using the method of Section 6.7.

6.13.6. Let m be odd. Let §§ be a primitive element of F,.. Constder a binary cyclic
code C of length n = 2™ — 1| with generator g(x) such that g(f} = ¢{(87'} =0
Show that the minimum distance d of C is at least 5.

6.13.7. Let Cbea [g + 1, 2,d] code over F (g odd). Show that d < g (t.e. Cis not an
MDS code, ¢f. (5.2.2)).

6.13.8. Show that the [11, 6] ternary QR code is perfect. (This code is equivalent to
the code of Section 4.3.)
6.13.9. Determine the minimum distance of the binary QR code with length 47.

6.13.10. Determine all perfect single error-correcting QR codes.

6.13.11. Generalize the ideas of Section 6.9 in the following sense. Let ¢ > 2, n a prime

such that e[(n —~ 1) and g a prime power such that g~ = 1 (mod n). Instead
of using the squares in F, use the eth powers Show that Theorem 6.9.2(i) can

L 15 ~ nd . RFEARTYY [Ei=u -} Was rdeyiy WERI3

be generalized to d® > n. Dctcrmmc the minimum distance of the binary cubic
restdue code of length 31.

6.13.12. Let mbe odd, n = 2™ — |, x a primitive element of F,... Let g{x) be a divisor

of x™ — 1 such that gl{x) = Al = 0 Prove that tha hinarv surls Ada wit
y‘\&} y\* J LV P § LARLAL U‘IV LA IJ Jvl‘ WAl FF LLLL

generator g(x) has minimum distance 4 > 4 in two ways:

fa)l by annlvine a theorem of this Phnnrpr

{a) by applving a fheorem of thig chaple . ‘

(b} by showing that | + & +np=0and 1 + &° + #°> =0 with & and n in F,m

1s impossible.
{c) Using the idea of (b), show that in fact d
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, whereas the BCH bound

!SO vialde 4 > 7.



CHAPTER 7

Perfect Codes and Uniformly
Packed Codes

§7.1. Lloyd’s Theorem

In this chapter we shall restrict ourselves to binary codes. To obtain insight
[V RN TR S TS Y JIP ISP P LAY TR NS . o
HIWW LhC IHICUIOUY dBG LICOLCIIS O6 Ul pPdll Ll COUITE UICOLY LIS DSULLIVCS.
Nearly everything can be done (with a little more work) for arbitrary fields F,.
In the course of time many ways of studying perfect codes and related
problems have been dechOpcd The algcbraic approach which will be dis-

cussed in the next section is pcumpa the most t‘:legaut one. We start with a
completely different method. We shall give an extremely elementary proof of
a strong necessary condition for the existence of a binary perfect e-error-
correcting code. The theorem was first proved by S. P. Lloyd (1957) (indeed
for ¢ = 2) using analytic methods. Since then it has been generalized by many
authors {cf. [44]) but it is still referred to as Lloyd’s theorem. The proof in
this section is due to D. M. Cvetkovi¢ and J. H. van Lint (1977; cf. [17]).

(7.1.1) Definition. The square matrix A, of size 2* is defined as follows.
Number the rows and columns in binary from 0 to 2* — 1. The entry A4,{, j)
is 1 if the representations of i and j have Hamming distance 1, otherwise
A, j)=0.

From (7.1.1) we immediately see
Akﬂ = {Ak ! \
\1 4/

_ rr} + ] F A 1 . MM o et a B iz
Lemma. The eigenvalues of Ay are —k +2j {0 < j<k

()
plicities
J

—
[
S’

l“\ "

\I

S
£
-
o=
3
=3
=

]
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PrOOF. The proof is by induction. For k =1 it is easily checked. Let the

column vector x be eigenvector of 4, belonging to the eigenvalue 1. Then by

(7.1.2) we have
Aus (’;) =@+ 1)(’;),

AH( N_a-nl *)
\—x/ \—x/

The proof now follows from well-known properties of binomial coefficients.

Q.),: = a, 0<i<e,

(Qe)i.i-!-l =b - is O0<i<e~ 1,

(n \ P j
elii—-1 4]

Furthermore, we define

T

P,:= PJa, b):=| Q,_(a,b)

—

[00 ... 0 e 1

The determinants of these matrices are denoted by J, resp. P,.

—

(7.1.5) Lemma. Let ¥, (x) be the Krawtchouk polynomial K,(x — 1;n— 1, 2)
defined in (1.2.1) and (1.2.15). Then

P2y —n,n)=(=1yre!¥.(»

Proor. By adding all columns to the last one and then developing by the last
row we find

Qe = (a + e)ée—l - e(a + b)pe-l'
Developing P, by the last row yields
Fe = Qe—l - epe-l'

Combining these relations yields the following recurrence relation for P,:

(7.1.6) P. =(@—1P —eb~eP,_,
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It heck that t} : f the | : fore < Lande—2.
From (1.2.9) and (7.1.6) it follows that the two polynomtials in the assertion
satisfy the same recurrence relation. This proves the lemma. O

We need one more easy lemma on eigenvalues.

(7.1.7) Lemma. Let A be a matrix of size m by m which has the form

......................

| Ay Az - An

where A; has sizem;bym; (i=1,2, ..., k; j=1,2,..., k). Suppose that for
each i and j the matrix A; has constant row sums b;. Let B be the matrix with
entries b;. Then each eigenvalue of B is also an eigenvalue of A.

ProoF. Let Bx = Ax, where x = (x,, X5, ..., X;)7. Define y by
N v v. x - v x )
.y . J\l,-’\-l,-.-,ﬁ-l’.&z,.’bz,...,Az,...,hk,Ak,...,J\.k)

where each x; is repeated m; times. By definition of B it is obvious that

A s 1=r ™
Ay = AY. L

We now come to the remarkable theorem which will have important
consequences.

(7.1.8) Theorem. If a binary perfect e-error-correcting code of length n exists,
then W, (x) has e distinct zeros among the integers 1,2, ..., n.

PrOOF. The fact that the zeros are distinct is a well-known property of
Krawtchouk polynomials (cf. (1.2.13)). To show that they are integers, we
assume that C is a code as in the theorem. Consider the matrix A4, (cf. {7.1.1)).
Reorder the rows and columns as follows. First take the rows and columns
with a number corresponding to a codeword. Then successively those with

niimhare rarreennnding ta warde 1 e Iv eFrl v 7)Y =— ;1 1 &= i & o
ALLARIJLAN-L D MUIKUDPUIIUIIIE LU WWAJLALS 1R \-fl' - \A =1 le‘ukﬂ, \..r’ — II, 4 = e K.

Since C is perfect, this yields a partitioning of 4, into blocks such as in
Lemma 7.1.7, where now

[0 n O 0 0 i
1 0 n—1 0 0

...........................

=~
It

........................................................

[0 0 0O e n—e
The substitution x = n — 2y in det(B — x[,,,) yields

.
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det(B — xI,,) = 2yP.2y — n, n).

The result now follows from Lemmas 7.1.3, 7.1.5 and 7.1.7. ]

The proof given in this section gives no insight into what is going on (e.g.
Do the zeros of ¥, have a combinatorial meaning?} but it has the advantage
of being completely elementary (except for the unavoidable knowledge of
properties of Krawtchouk polynomials). In Section 7.5 we shall use Theorem

7.1.8 to find all binary perfect codes.

§7.2. The Characteristic Polynomial of a Code

We consider a binary code C of length n. In (3.5.1) we defined the weight
distribution of a code and in (5.3.2) generalized this to distance distribution

distance enumerator

{7.2.1) Ac(2):= i Azt =|C|™! z Zdtu, v
=0 ueC
veC

To get even more information on distances we now define the outer distri-

bution to be a matrix B (rows indexed by elements of # = F}, columns indexed
0,1,..., n), where

£fTIN Biv 1} -1
L ke ef R, iF. i

e Cldiy
L = W | WA

ot
[

The row of B indexed by x is denoted by B(x). Observe that

(7.2.3) (Ao, Ag, .. A) = 1C|7H ZCB(X),
XE

and

{719 A) w7 e Riw n\zl

\fu&o'f} P \.r"""'"”\o’\, U} A a

(7.2.5) Definition. A code C is called a regular code if all rows of Bwitha 1
in position O are equal. The code is called completely regular if

Vxe vae Q[(p(x’ C) = P(y’ C)) = (B(X) = B(Y))],
where p(x, C) is the distance from x to the code C.
Observe that if a code C is regular and 0 € C, then the weight enumerator

of Cis equal to A.(z).
In order to study the matrix B, we first introduce some algebra {cf. (1.1.11}).

{7.2.6) Definition. If G is an additive group and F a field, then the group
algebra FG (or better (FG, @, *)) is the vector space over [ with elements of
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"'[5’1
n

(¢ Z B(hyh = Z( ; ac(g)ﬂ(h))k.

ke G

/

Some authors prcfcr introducing an extra symbol z and using formal
muitiplication as follows

2, gz?x ) Pz =

geG heG k G

alg )z"

AN

g+h=k

TLr . L 1Y e o P B oy a~ 1y A_ . . L
¥YY T 5lldll I.d.K.C & {o U’C .‘ﬂ = ll'z ana r = .. vwE QEnoiwc s dlgCDfd U'y J&’ lﬂ

order not to confuse addition in G with the addition of elements of & we write
the elements of the group algebraas ® , . ya(x)x. If § is a subset of & we shall
identify this subset with the element ¥, .sx in & (ie. we also denote this
clement by S). We introduce a notation for the sets of words of fixed weight
resp. the spheres around 0:

i

el 2

it

(7.2.8) S;:={x e Rlw(x) < j}.

If C is a code with outer distribution B, then the conventions made above
imply that

(7.2.9) ,*C= F Bx, i)x.

x& N

I
i [WiX

If D(x, j) denotes the number of codewords with distance at most j to x (i.e.
D(x, j) = Y ,.;B(x, i)), then we have

(7.2.10) S;*C= % Dix, j)x

xe 2
Let x be the character of F, with y(1} = — 1. For every u € Z we define a
mapping x,: # — C by
(7.2.11) Voe alxa(v} = 2(<u, ¥D) = (= 1)+,

1.e. u (v} = lifu L vand —1 otherwise.
We extend this mapping to a linear functional on the group algebra .o/ by

(7.2.12) 1a(E, 2(x)x) 1= 3 2(x)x(x).

The following two assertions follow immediately from our definition. We
ieave the proofs as easy exercises for the reader.

(7.2.13) Vue #V4e wVBe w[Xu(A * B) = xu(A)x.(B)],

(7.2.14) (ra(SY = 2 and V. [v.AS) = 0Ne= S = §

L aTy VA0, ~ R Ygx QLAwYS et ¥ b}

The result of Lemma 5.3.1 (where we now have g = 2) can be written as
{7.2.15) 2a(¥e) = K (w(w)).

From this it follows that if w(u) = x
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(CE. (1.2.15))

Let C be a code. We consider the numbers
G = iCl™ ZY xa(C)

We have seen these numbers before. If C is a linear code, then the proof of
Theorem 3.5.3 shows us that C; is the number of words of weight j in C*. If
C is not linear, we can still consider the numbers C; and continue the proof
of Theorem 3.5.3 to find that 2‘”|C|Zj-'=o Gl - z¥(1 + 2"~ is the weight
enumerator of C. This relation between the weight enumerator and the num-
bers C;, defined with the aid of y, is a nonlinear form of the MacWilliams
relation.

We now define a second sequence of numbers, again using the character y.

(7.2.17) Definition. The characteristic numbers B;(0 < j < n) of the code C are
defined hv

SARALINAE WY

B:=|CI"? ¥ (O

IEYJ

As before we see that B; is the number of words of weight j in the code C*
if C is a linear code. Let N(C) := {j[1 < j < n, B, # 0}. We define the charac-
teristic polynomial F, of the code C by

/! N\

(7.2.18) Fe(x):=271C1™t ] (1—§).

jeN(O) J

(7.2.19) Theorem. Let a,, x,, ..., a, be the coefficients in the Krawtchouk
expansion of F¢. Then in of we have

E & Yl * C = Sﬂ'
PROOF. Let u e X, w(u} = j. By (7.2.13} and (7.2.15) we have

2a(B 2, Y% C) = 1o B, o, Y)xu(O) = 2O Y. ;K j) = xuC)F())-

If u # 0 the right-hand side is 0 by definition of F.. If u = @ then the right-
hand side is 2". The assertion now follows from (7.2.14). |

(7.2.20) Corollary. If «y, a5, ..., a, are the coefficients in the Krawtchouk
expansion of F. and u € & then

Y ,Bu,i) = 1.
=0

PrOOF. Apply (7.2.9). O
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Note that if C 1s linear, then s is the number of nonzero weights occurring
in C*. The somewhat strange name is slightly justified by Corollary 7.2.20

whirnh chawe that tha Arpvaring radinge Al af a sada feas (T 14YY 1 at mnct
wililil S1UWS Lilal ot LOVONNE Tadils gy Ui a COUT (3L (3.5 15 au st
equal to s.

Yi.J LIV JUR*LW) QWIS S WL WL LW ]

In this section we consider codes which are generalizations of perfect codes
(cf. (5.1.5)). Note that if C i1s a perfect e-error-correcting code, then in &/
we have §,* C = §,. We now consider codes C withd > 2e + 1 and p(C) =
e+ 1. (If d = 2¢ + 3 then this means that C is perfect.) The spheres with
radius e — 1 around codewords are disjoint and each word not in one of these

spheres has distance e or e + 1 to at least one codeword.

(7.3.1) Definition. A code C with p(C)=e+ 1 and d > 2¢ + 1 is called
uniformly packed with parameter r if each word u with p(u, C) > e has dis-
tance e or ¢ + 1 to exactly r codewords.

Note that if r = 1, then C is a perfect (e + 1}-error-correcting code. Of
course a word u with p(u, C} = e has distance e to exactly one codeword. Let
p(u, C) =e + 1 and w.l.o.g. take u = 0. Then the codewords with distance
e + 1 to u have weight ¢ + 1. Since they must have mutual distances >
2e + 1, it follows that

H
7.3.2 < ;
( ) r_e+1

We now assume that e + | does not divide n + 1. A code for which r =
[nfle + 1)] is called nearly perfect. It is easy to check that this means that C
satisfies the Johnson bound (5.2.16) with equality. In a paper by J.-M. Goe-
thals and H. C. A. van Tilborg [25], (7.3.1) is generalized by replacing r by
two numbers depending on whether p(u, () =eore + L

(7.3.3) Theorem. A code C with p(C)=e+ 1 and d = 2e + | is uniformly
packed with parameter r iff in of we have

1
{Y(}@ V@Y., @;(n@ Ye+1)}*C=Sn'

ProoF. This follows from (7.2.2), (7.2.9) and (7.3.1}. O

(7.3.4) Theorem. A code C with p(C)=e + 1 and d > 2e + 1 is uniformly
packed with parameter r iff the characteristic polynomial has degree s = e + 1
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PRrOOF.

(i) The if part follows from Theorem 7.2.19 and Theorem 7.3.3.

(it) Let C be uniformly packed. We know that F. has degree s>e+ 1 Let

+
F(x):=) 2l aKilx) with g =0, = =a,_, =1, a, =a,,, = I/r. If
u%@ winy = 1220 and v+ (Y £ 0 l"‘\nf\ Fifve=>0 hy {72120 79 14y
Wil = J 70 and Yy vy v, ineh r'yjy VMY (Ll Vel dTg,

{7.2.15) and Theorem 7.3.3. Then by (7.2.18) it follows that F.{x) divides
F(x). Hence s = ¢ + 1 and F(x) = aF(x) for some a. Substituting x = 0
we find a = 1 (again using Theorem 7.3.3). ]

The following is a different formulation of Theorem 7.3.4.

(7.3.5) Theorem. If a uniformly packed code C with p{C)=e+ 1 and d >
2e + 1 exists, then the polynomial

e~1 1
F(x):= -Zb Ki(x} + : [K.(x) + K, 4;(x)]
has e + 1 distinct integral zeros in [ 1, n] and F(0) = 2"|C|™.

First observe that if C is a perfect code, i.e. d = 2e + 3, then r = 1 and

F(x)="¥,_,;(x) by (1.2.15) and Theorem 7.3.5 is Lloyd’s theorem (7.1.8).
Next we remark that the requirement about F(0) can be written as
I\ 1/na\)

o efg ()

which is (3.1.6) if r = 1, resp. (5.2.16) if r = | nf(e + 1}].

In fact (7.3.6) is true in general if we interpret r as the average number of
codewords with distance e or ¢ + I to a word u for which p(u, C} = e.

In general 1t is not easy to check if a given code is uniformly packed using
the definition.

We shall now consider a special case, namely a linear code C with e = 1.
In order for C to be uniformly packed, the characteristic poilynomial must
have degree 2 (by Theorem 7.3.4). We have already remarked that this means
that in C* only two nonzero weights w, and w, occur. Now suppose that C*
is such a two-weight code with weight enumerator

Ac(2) =1 + Nyz™ + Nyz™e,

Consider the MacWilliams relation {cf. Section 7.2} and substitute

i K, (x)z*
k=0
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Lt 74 Y

distance d > 3, we find three equations from the coefficients of z°, z!, z%,
namely

1+ N, + N, =2"|1C|™},
K. (0) + N K, (w,) + N, Ko wo) =0, (k=1,2)

By definition we have F-(w,)} = F(w,) = 0 and F-(0) = 2*{C{™*. For the coef-

ficients ag, a4, &, in the Krawtchouk expansion of F(x) we then find, using
(1.2.7)

A Y

Ao + o n + a, (;) = 2"|C|"t,

Ao + G(l(n - ZWI) + &y {2W§2 -_ 2nw,— + (2)} = 0, (i = l, 2)

We compare these equations with the equations for N; and N,. This shows
— thateg =t Wedefpe —— — —# —# —# 0/—7 7 — 00—

ri=2n+ Dw; — 2wi — in(n + 1).

It then follows that «, = a, = 1/r if w, + w, = n + 1. We have thus proved
the following characterization of 1-error-correcting uniformly packed codes.

(7.3.7) Theorem. A linear code C with p(C) = 2 and d = 3 is uniformly packed
iff C* is a two-weight code with weights w,, w, satisfying w, + w, = n + L

In [25] itis shown that if we adopt the more general definition of uniformiy
packed codes, we can drop the restriction w, + w, = n + 1. The theorem 1s
also true for e > 1 with e + 1 weights in C* instead of two.

§7.4. Examples of Uniformly Packed Codes

(7.4.1) A Hadamard code (cf. Section 4.1)

Consider the (12, 24, 6) Hadamard code. Puncture the code to obtain the (11,
24, 5) code C. It is obvious that any word z can have distance 2 or 3 to at most
four codewords and if this happens we have the following situation (after
changing back to + notation and suitable multiplications of columns by — 1}:

t=—— +4++ +++ +++,
x=++ +++ +++ +++,
X=—— ——— +++ +++,
Xy=——= +++ ———- +++,

Xe=—— +++ +++ ———,
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This would mean that the original Hadamard matrix of order 12 had the four

, 0) 1s a linear combination of these four rows and must therefore be
orthogonal to the remaining rows of the Hadamard matrix, which is clearly
impossible. It follows that a word z has distance 2 or 3 to at most three
codewords. From {7.3.6) it follows that the average number of codewords with
distance 2 or 3 to a word z with p(z, C) > 1 is three. Hence this number is
nonlinear.

Note that in this example, e 4+ 1 divides #n + 1. So (7.3.6) holds but is not equal
to (5.2.16). This is not a nearly perfect code.

(740 AP
{/.4.2) A run

Tada

Let V be the six-dimensional vector space over F,. Let W be the set of 35
points x in ¥\ {0} on the quadric with equation x, x, + X3X, + xsXxc = 0. We
take these vectors as columns of a 6 by 35 matrix G. As in Section 4.5 we see
that the ith row of G is the characteristic function of the intersection of W and
the hyperplane with equation x; = 1 (1 < i < 6). Hence the wetght of a linear

eamhination aT 3 fn c V) 15 the number of solutions of
wALSAALWS LAV VAN LY & L L= ’ A Ll ‘l“llluv‘ WA IR LIV ALY WL

[
X Xy + X3X, + Xsxg =0 and Y ax; = 1.
i=1

W.lo.g. we may take a, = 1 {unless a = 0). By substitution and the affine
transformation

¥ = Xy, Vs +

ST v 1 A
a2y Ya B

R v T _ W
*3 *d “3-~2,

Ys = X5 + agXy, Ys = Xg + Gs5X;

(which 1s invertible) we see that we must count the number of solutions of the
equation

(1 + a; + aza, + asag)y, + y3ya + Ysys = 0.

If the coeflicient of y, is 1 this number 1s 16, if it is O the number of solutions
is 20. Therefore the code C which has G as parity check matrix has a dual C*
which is a two-weight code with weights 16 and 20. The code C has d > 3
since it is projective. By the remark following (7.2.21) we have p(C) = 2. So
by Theorem 7.3.7, C is uniformiy packed with r = 10 (by (7.3.6)). The same
method works in higher dimensions.

(7.4.3) Preparata-codes

In 1968, F. P. Preparata [57] introduced a ciass of nonlinear double-error-
correcting codes which turned out to have many interesting properties. His
definition was based on a combination of Hammine codes and 2-error-

Niwisgasiairis Yriad wiadiwia Sria da wariiiwsisiiavaniaas Wi A adadanaszaas B wwiatro

correcting BCH codes. The analysis of the codes involves tedious calculation
(cf. [11]). The following description of the Preparata codes is due to R. D.
Baker, R. M. Wilson and the author (cf. [72]).
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In the following m is odd (m > 3), n = 2™ — 1. We shall define a code 2 of

length 2n + 2 = 2™*!. The words will be described by pairs (X, Y), where
X < F;= and Y < F,... As usual, we interpret the pair (X, Y) as the corre-
sponding characteristic function, which is a (0, 1)-vector of length 2™**,

(7.4.4) Definition. The extended Preparata code # of length 2™*! consists of
the codewords described by all pairs (X, Y) satisfying

(1) | X|iseven, |Y]1s even,
(") erxx = Eye Yy
1“) zxexx + (erxx ZJ’EYy

The code 2 is obtained by leaving out the coordinate corresponding to the
zero position in the first half.

We first show that 2 has 22"~ 2™ words. We can choose X, satisfying (i} in
2" ways. Next, we observe that since m is odd the minimal polynomial m,{x)

for F,.. has degree m. Therefore the BCH code of length n and designed
distance 5 has dimension n — 2m. This in turn implies that for a given X the
equations (ii) and (i) have 2"~ 2" solutions Y < ... We can add the zero
clement to this Y if necessary to satisfy (1). This proves our assertion.

The next claim is that # has minimum distance 6. From (7.4.4)(i} we see
that the minimum distance is even and also that if (X, Y) satisfies the condi-
tions, then so does (Y, X). Suppose we have two words (X, Y;)and (X, Y;)and
let Y:= Y, AY,;. Then from (7.4.4)(ii) and (i11) we find that

Yy=2y =0

re¥ re¥
ie. Y] > 5 by the BCH bound. So in this case the two words have distance
> 6. It remains to consider the possibility (X, 1)), (X;, Y>) with

X, AX,l =Y, A Y, =2

Let X,;,AX,={a, 8}, 4, ={y,8} and let s + « be the sum of the
elements in X,. Then (7.4.4)(ii) and (11i) imply

x4+ B=v+ 48
"'lr I.

sHa+ f)+ s+ B =y + 6.
From these we find (s + y)* + (s + 8)* = 0, 1.e. y = J, a contradiction. This

proves our claim. We have nrnvpd the fn“nwmn theorem.

(7.4.5) Theorem. The Preparata code ? of length 2"*' — { (m odd, m > 3) has
|| = 2% where k = 2™*' — 2m — 2, and minimum distance 5.

3 i | that thha e e nl afl » for tha pads B
) W 1ind that the avclasc vaiuge o1 7 wor the code #° is

(2m*t — 1)/3 and then (7.3.2) implies that r is constant and equal to
(2™ — 1)/3, ie. 2 is nearly perfect.

-
paviitl
!
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If we take m = 3 in (7.4.4) then we find the Nordstrom-Robinson code

Remark. The exponents 3 in (7.4.4)(iii) are not essential. We can replace 3 by
s:= 2"+ 1, where we require that x — x* and x — x*~% are 1-1 mappings of
Fx to itself. The first part of the argument concerning minimum distance is

i r

then repiaced by one involving Theorem 6.6.3. We leave this as an easy
exercise for the reader.

Opbserve that the code satisfying only (i) and (ii) in (7.4.4} is the extended
Hamming code of length 2™*!. From this and a counting argument it follows
that if we take 2 and adjoin to it all words at distance 3 to 2 we obtain the
Hamming code of length 27*+' — 1. In Theorem 7.4.6 we give a direct construction.

(7.4.6) Theorem. The union of the Preparata code <P of lengthn = 2"*' — 1 (m
odd) and the set of words with distance 3 to P is the Hamming code of length n.

rl-—!

words wtth dxstancc 3 to .?’ chcc the union C has 2""” -1 words wh1ch is thc
cardinality of the Hamming code of length n.

We now define C, := &7 and for a € [}, we define C, to be the code obtained
by addjng thc word corrcsponding to ({0 oz} {0 a}) to the words of Co. Clearly,

..............

a word correspondmg to X = {0, o}, Y ={0,a, 8, ¥}, cont:radlctmg (ii) in (7.4.4).
So, each C, has minimum weight 4. From the proof of Theorem 7.4.5, it follows
that the C, are pairwise disjoint (@ € F := F;.). We claim that H := U,C, is

linear. To show this, using (7.4.4) (1ii), comes down to sclving an equation of type

x* = a, which is possible since m is odd. From the parameters and the linearity
we conclude that H is the extended Hamming code of length n + 1. This proves
the assertion about C. 0O

Note that it follows from Theorem 7.4.6 that the linear span of the Preparata
code is contained in the Hamming code.

§7.5. Nonexistence Theorems

It was shown by A. Tietdviinen [68] and J. H. van Lint [41] that the Golay
codes are the only nontrivial e-error-correcting perfect codes with e > 1 over
any alphabet Q for which |Q| is a prime power. For e > 2 the restriction on
0 can be dropped as was shown by M. R. Best [7] and Y. Hong [74] but that
is much more difficuit to prove. For e = 1 we have seen the Hamming codes.
There are also examples of nonlinear perfect codes with e = 1 (cf. (7.7.4)).

In 1975 Van Tilborg [69] showed that e-error-correcting uniformly packed
codes with e > 3 do not exist and those with e < 3 are all known. In this
section we wish to give some idea of the methods which were used to establish
these results. It suffices to consider the binary case.
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75.1) Tl f Ci oct o i ina bi o wit] |
then C is a repetition code or the binary Golay code.

PROOF. By Lioyd’s theorem (7.1.8) the polynomial ¥, has zeros x, < x, <
< x, which are integers in [{, n]. By the definition of ¥, and (1.2.8), the
elementary symmetric functions of degree 1 and 2 of the zeros are known:

=S yiiid AR LAY 1114l =

LS 1
(7.5.2) )X = e(n+1)
i=1 2
747 Ny u:inrn_i\fq_z.a“.qn.ﬂl
‘f.J.J} L‘ Jb 6‘(‘: L}'l.Jl "‘l'in"‘I"LC‘I"bI.
<j 24
Observe that (7.5.2) also follows from (1.2.2) which also shows that
(7.5.4) xe_i+l =n + 1 - xl'.
From (7.5.2) and (7.5.3) we find
e e 1 { 8, 1)
(15.5) Y, ¥ b= x)t =5~ Din— =5
i=1 j=1 2 3

To find the product of the zeros, we calculate W,(0). From {1.2.1) we find
Y0 =%, ( \ Combining this with (3.1.6) and

{1.2.8), we find

23

“\J/

(7.5.6) [ x: = e'2', {for some integer ).

i=1

In a similar way we calculate ¥,(1) and ¥,(2), which leads to

£
(TSN FI v~ N80 _ 1 — N (n_ 2
‘f...).l’ l 1} = [ IJ\I'I 4-’--.‘!& ‘-—},

Y

(7.5.8) [[xi—2y=2"(n—1 - 2e)(n — 2)(n —3)...(n — e).
i=1
We now draw conclusions about x,, x,, ..., x, from these relations. Let
A(x) denote the largest odd divisor of x. Then (7.5.6) shows that

[T AGx) = A < el.

Thls 1mp11e that there must be two zeros x; and x; such that A(x;) = 4(x;)
and than (754 im e
LANS W \ - A%

eu& llll —r;;sa&p‘s

If we fix x; and x,, then the left-hand side of (7.5.5) is minimal if x, =
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which we combine with (7.5.9). The result is

(7.5.11) n+1<3ee—1).

e < 3{(n — 1). Let 2* be the highest power of 2 in any factor n — j on the
left-hand side of (7.5.12), including n — I — 2e. Then the highest power of 2
that divides the left-hand side of (7.5.12) is at most 23**2¢~3, which implies
that x > ie + 1.

-

Hence
(7.5.13) n > 21H(1Ae,

If e is large then (7.5.13) contradicts (7.5.11). Small values of e which by

i i : , 1 arc a little

more accurate in estimating n, there are only very few cases left to analyze. It
turns out that e = 3 is the only possibility. Actually e = 3 can be treated

completely without even using Lloyd’s theorem. This was shown in Problem
3.7.1. O

The reasoning used to show that all uniformly packed codes are known
(1.e. those satisfying (7.3.1)) follows the same lines but a few extra tricks are
necessary because of the occurrence of the parameter r.

(7.5.14) Theorem. Table 7.5.18 lists all uniformly packed codes.

PROOF. We start from the generalization of Lloyd's theorem, i.e. Theorem
7.3.5. In exactly the same way as we proved (7.5.10) resp. (7.5.13), we find

(o L 1\(n + 1\”2
(7.5.16) n> 247,

ey §

(7.5.15)

A

xe-i-l xl

The argument which led to (7.5.9) has to be modified. We number the zeros
in a different way as y,, ..., y,;,, where y; = A(y;)2% and a, <, <+ <
.+, - On the one hand we have (writing (g, b) for the g.c.d. of g and b):

1 Y = Yis] I s Yisr) _ 1 (Aly, A(.y:+1))2“‘

i=1 y!' i=1 v:' i y.'
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Here, the last equality follows from (7.3.6). On the other hand, we have

IEI {vi — il (xe+l xy)° < n(Xpry — X1 )

i=1 Yi Yi---Ye X1 Xz.oo Koty
e e+l
_ Xy — X4) 2 lCl
- Y I\l i 1. ]
rie + 1) 2

—Combining these two inequalities we fin
YW 141

.

I

(Xpw1 — X1)5 > (e+1? \\\\\ : . .2....
' A((e+1)} PARES nic

(e + 1) 1
> -
— A((e + D) 2¢M

_1_{.(n\ e+ 1 1(n\
nS\i/  A{le + 1)) 2 n\e/)’

and hence

13
e \t: T+ 1}
(7'517) (xe+1 xl) ZA((EJ{' 1)|) 2e+l (ﬂ

Din—2)..(n~e+ 1)

We now compare (7.5.15), (7.5.16) and (7.5.17). If ¢ > 3 only a finite number
of pairs (e, n) satisfy all three inequalities. The cases e = 1 and e = 2 can easily

be treated dh’.’ecﬂ“ with Theorem 7.3.5. As a result ﬁu:u—:y many cas¢s have

to be analyzed separately. We omit the details {(cf. {69]). As a result we find

the codes listed in the table below. O

(7.5.18) Table of all Perfect, Nearly Perfect, and Uniformly Packed Binary

codes

e i 1Tl Type Description

0 n 2" perfect {0, 1}"

1 2™ —1 2. perfect Hamming code (and others)

1 2" -2 DA nearly perfect shortened Hamming code
(cf. (7.7.1))

1 22t gt 2"~2  uniformly packed ¢f. (7.4.2)

2 2im _ 1 2n*i=4m  pearly perfect Preparata code

2 PR 2n=4m=2  uniformly packed BCH code (cf. (7.7.2))

2 11 24 uniformly packed cf (74.1)

3 23 212 perfect Golay code

e 2e + 1 2 perfect repetition code

e e i perfect {0}

(Here the entries “Hamming code” and “Preparata code” are to be interpreted
as all codes with the same parameters as these codes.}
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§7.6. Comments
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Perfect codes have been generalized in several directions (¢.g. other metrics
than Hamming distance, mixed alphabets). For a survey (including many
references) the reader should consult {44].

A modification of Tietdvidinen’s nonexistence proof can be found in {46],
also many references.

The most complete information on uniformly packe
in [69]. For connections to design theory we refer to {117 and [46].

The probiem of the possible existence of unknown 2-error-correcting codes
over alphabets ¢ with |Q| not a prime power seems to be very hard but
probably not impossible. The case e = 1 looks hopeless.

an be found

Man}r of the ideag and methods which were uged in thig Qhapter

e g
hods whict e.g.
Section 7.2) were introduced by P. Delsarte (cf. [18]).
§/.7. Problems
T T 1 Qlre: thne ¢l FIN % m . 47 chartansd hinarg Llamaesing Anda o sman =l
Fo P .l SUUW Lildl LI Lé T ey & - - LJ il vliva ial y llallllllllls WU LD LI I.IJ
perfect
? ? 2 Let o tha ‘\;nnr\r B ~rnda af lanat L -}2M+1 — 1 with rlﬂein-nnfl r“etan o
- - W LM LILW LrillQil : LA LA WAL VU I\.nl.lsl.ll L] e A4 F¥ LM M\ldlbll i WAL LCA LI
5. Show that C is uniformly packed with parameter r = 3(n — 1) by explicitly

~d
e |
tad

=1
=
£

1.1.5

7.7.6.

1.1.7.

7.7.8.

oL L. il
. onow ihai in

calculating the number of codewords with distance 3 to a word u with

pl{u, C) = 2.
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if ¢ 5 0. Let C be the code of length 15 wnth codewords

;
(x,x+c,£x,-+f(c]), wherece H, xe ;.

Show that C is perfect and C is not equivalent to a linear code.

. Show that a perfect binary 2-error-correcting code is trivial.
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Let C be a uniformly packed code of length n with e = 1 and r = 6. Show that

n = 27 and give a construction of C.

In (3.3.3) we saw that the lines of PG(2,2) generate the [7,4] Hamming code. The
extended code is an [8,4,4] code. One might hope that by using PG(2, ¢), one could
findacode C oflcngth g’ +q+2overF, withd = 4and |C| = ¢"*. This would in

fnnt lun ne awomwe o - N —n‘-"n‘ Ry P

PRI

lact o€ an wnuupm of a uniformly packed code in the moie gcucuu sense (as treated

in [25]). Consider the case g = 3, [C| = 3'°, Show that such a code does not exist.
Hint: Count in two ways the pairs (x, ¢) withx € F}*, ¢ € C, d(x, ¢) = 2. Calculate

As. Then calculate As.

Consider the alphabet Z,, (m odd) with Lee distance. Construct a perfect single-

error-correcting code of length n = 1(m? — 1).
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Codes over Z4
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In 1994 it was shown (see [88], which we use as guideline for this chapter) that
several well known good binary codes can be constructed by first constructing a
code over the alphabet Z, and then mapping the coordinates to Z2. We first study
codes over Z, in general.

(8.1.1) Definition. If C is an additive subgroup of Z2, then we shail cali C a linear
block code of lcngth nover Z,ora quarernary code.

nlﬁiﬁugu Cisa zr_4-uluuu1c and not a vector space, we foliow the termmou)gy
of coding theory and misuse the word “linear”.

The inner product {a, b) of two words in Z7 is defined in the usual way. We can
then define the dual code C* in the same way as in (3.2.4).

As usual, we call two codes i ivalent if one can be obtained from the other
by a permutation of coordinate positions. Sometimes this definition is extended by
aiso allowing a change of signs in some positions; (this interchanges the symbols 1
and 3).

In generalizing the concept of generator matrix, we have to be careful. We first
give an example.

(8.1.2) EXAMPLE. Consider the additive subgroup of Z: consisting of all the words
(x,x,x)and (y,y + 2,y +2), (x, y € Z;). We can consider this quaternary code
as the set of linear combinations a(1, 1, 1) + (0, 2, 2), wherea € Z, and b € Z,,
(addition mod 4).

In general, a quaternary code is a direct product of subcodes of order 4 or 2
(additive cyclic groups of order 4 or 2). This means that there is an equivalent code

with generator matrix of the form
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(8.1.3) G := ({f\l Ny 0&\

where the entries in A and C are 0 or 1, and those in B are in Z,. A codeword has
the form aG;, where a, to g, are in Z, and 4, to a;, ., are in Z,. The dual code
C* has a generator matrix of the form

_RT _ T AT T
(8.1.4) H = ( B c A C Iﬂ—ﬂ—k;\

\ 2AT 21, o J°

Following the treatment of linear codes in Chapter 3, we now should look at
weight enumerators. As a preparation for this chapter, these were treated in §3.6.
We introduced the symmetric weight enumerator of a code in Z7; and the Lee wei ght

TIIno

Tha that tha T A
SnuUMmeraton ine uuyu; tant result was the factt tiiat the Lee wcxgul. cnumerators UI a

code and its dual satisfy the MacWilliams relations.

There is a natural mapping ¢ from Z, 1o Z3, mapping Lee distance in Z, to Hamming
distance. Itis

$(0)=©0,0, ¢H=0OD, ¢D=011, ¢G) =0

We now extend this to codes in 7). To make future notation easy, we introduce three
functions from 7, to Z, as follows.

i€y a B y®

W = O
—_—0 = O
—_—— O
O == = O

Note thati written in the binary system with most significant digit first is (8(i), a(i)).
Furthermore y (i) = a(i) + B(i). The map ¢ defined above is generalized to 77 in
the obvious way.

(8.2.1) Definition
¢(c) ;= (B(c), y(c)), (ceZ}.

This map is called the Gray map and for a quaternary code C, the code C' := ¢(C)
is called the binary image of C. Such a binary code is called Z,-linear. In the
following, C’ will always denote the binary image of a quaternary code C.

(8.2.2) EXAMPLE. Consider the quaternary code C of
(02 2) (These are then th rows of G in (8. .
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(001110) and (110001). The second row only contributes (011011). Finally, we

have linear combinations of these. So in this case, the binary image C’ is a linear
code with generator

By comparing with this example, the reader can check that if C is a quaternary

code with generator as 1n (8.1.3), and if its binary image C’ is a binary linear code,
then C’ has generator matrix

I, A «B) I, A aB)
(8.2.3) G:=|l0 I, ¢ o0 I, C
“\o & BB) L, A yB/

In general, C’ will not be linear because ¢ is nor a linear map. The most important
fact for us is that the map ¢ preserves distance, i. e. the Lee distance of two codewords

in C equals the Hamming distance of their images.

One of the reasons for the interest in codes over Z, was the fact that they gave
the Pxn]nnmlnn for a remarkable “coincidence”. A Kerdock code and a Prs-nnram

code of the same length are both nonlinear. Thelr distance enumerators satlsfy
the MacWilliams relations. In other words : they are trying to be duals although
this concept does not make sense for nonlinear codes. We are on our way to the
explanation. Both these codes are binary images of quaternary codes that are indeed
each others dual . We therefore define 7 ,-duality as follows.

(8.2.4) Definition. If C is a quaternary code and C* is its dual code, then C’ = ¢(C)
and (Ct) := ¢(C™) are called Z ;-duals.

From the fact that C is linear, it follows that its binary image C’ is distance
invariant.

(8.2.5) Theorem. f(,‘ and CY are dual aunternary codes, then the weight distri-

2 S RefSLiL LSRLSLL T IALST Y O LUARLSSs

butions of their binary images C’' and (C*)Y satisfy the MacWilliams relations of
Theorem 3.5.3.

ProoF. We have observed that the Hamming weight of ¢ (¢) equals w, (¢). The code
C’ has length 2n if C has length n. So, from (3.6.3) and Theorem 3.6.8 we indeed
find
Hamqciy(x, y) = c lHamc X+ ¥, x—y) U

We shall now establish a necessary and sufficient condition for a binary code to
be the binary image ofa quatemary code. First, observe that ¢(—c) = (y(¢), B(¢c)).
lfllb lmpues Lﬂd[ a z?_4 llIlEdl" LO(]B lb IIXCU Dy UIE pEﬁﬂUldl.]Uﬂ ag glVCH Dy {l n "1— l}
(2, n+2)...(n, 2n). This permutation interchanges the left and right halves of each
codeword.
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(8.2.6) Lemma. For all a,b € Z} we have

¢(a+b) = ¢(a) +¢(b) + (9 (a) + o (¢p(@)))(¢(b) + (¢ (b))).

Proor. This follows from the following facts :

(1) aa) + Ba)+ y(a) =0;

(2) a(a)x(b) = 1iff a and b are odd;

(3) B(a+b) = B(a)+ B(b)+¢€,where e = 1iff a and b are both odd (0 otherwise),
and y satisfies the same relation.

]

[

(8.2.7) Theorem. A binary, not necessarily linear code of even length is Z,-linear
iff it is equivalent to a code C for which

abeC=a+b+@+o@)b+ad)eC.

Proor. This follows immediately from Lemma 8.2.6. O

(8.2.8) EXAMPLE. Consider the first order Reed-Muller code R(1, m) of length
2™. Every codeword has the form a = (x, X+ €), where ¢ = 0 or 1 (of length 2" !).
Ifb = (y,y + €') 1s a second codeword, then (a + o(a))(b + o(b))=0or 1 and
hence by Theorem 8.2.7, R(1, m) is Z,-linear. If we take the example m = 3, then
the corresponding quaternary code has generator

/1 1 1 1y
G = (0 2 0 2).
0 0 2 2
From G and (8.1.3), we find the standard basis vectors of R(1, 3).

We now consider binary linear codes that are images of quaternary codes. The
following statement is a direct consequence of Theorem 8.2.7.

(8.2.9) Corollary. The binary image ¢(C) of a quaternary code is linear iff

a,beC = 2(wa(a)ab)) € C.

Proor. By two applications of Lemma 8.2.6, we find
¢(a+ b+ 2a(@ad)) = ¢(a) + o(b). 1

This means that the word with 2s in the positions where both a and b have odd
entries, and Os elsewhere, is in the code.
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We shall now show that the extended Hamming code of length n = 27 is not

Z i-linear form > 5.

22 1M Thaonwanm Lo
ADeder AU} f

~
T LALE

Proor. Suppose C is a quaternary code of length 2"~ that has the extended binary
Hammmg code H, of 1ength n=2" asits bmary 1rnage Let G of (8 1 3) be the

We shall study the binary code H’' generated by G, . Note that 2G, and 2G,,
generate the subcode of C consisting of the words with even coordinates only.
Clearly k, + &k, < 2™ ! — 1. Since 2k, + k;, = 2™ — m — 1, we see that H' has
dimension at least 27! — m.

From Corollary 8.2.9 it follows that if A" has words of weight 2, then the supports

of these words are disjoint. We can take these words as basis vectors of the code
and we may assume that the other basis vectors have supports disjoint from those

. . . .
nf varnteare nf weaioht D facain hanasiica tha intarcantinn Af tha cnnnmnrte rannat ha Ano
WIE OV LAALLL O UL “\-IEAIL Eo \u&uu.l b G o W% JLI0AL % LALFLE UL LLdA D“PPUI B ACLILLIVIL LA LD AN

point). If there are g words of weight 2, we delete these from G, and puncture
by the positions of these words. We find the generator of a binary code of length
27-1 — 24 with dimension at least 2"~! — m — a and minimum distance 4. This
contradicts the Hamming bound unless a = 0. We have thus shown that H’ is itself
an extended Hamming code. Since Hamming codes are perfect, one easily sees that
the words of weight 4 in an extended Hamming code form a 3 — (27, 4, 1) design.
For m > 4, this design has blocks that meet in one point (an easy calculation). This
was excluded by Corollary 8.2.9, so we have a contradiction. This completes the

ot o M
Prool. —

§8.3. Galois Rings over Z4

We wish to generalize the concept of cyclic codes to codes over Z,. To do this, we
need some algebra. For cyclic codes of length n over [,, we needed an extension
field that contained an nth root of unity. The present situation is similar. We must
consider an extension of Z, by an nth root of unity. We call such an extension a
Galois Ring.

We need some preparation on irreducible polynomials in Z,[x]. Consider a
polynomial f(x) in Z,[x] and write this as f(x) = a(x?) — xb(x?) (where we use
the minus sign because we will shortly do calculations over Z,). Define the map ¢
oy

P ()(x) = F(x) := £(a(x)’ — xb(x)*) € Z4x],

where the blgﬂ in = is chosen 1n such a way that the coefficient of the mgneb[ pDWCl'
of x is 1. Note that ¢(x" — 1) = x" — 1 if n 1s odd. Clearly the inverse mapping is
f(x)=F(x) (moed?2).
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It is a trivial calculation to check that ¢ (fg) = ¢ (f)¢(g). Since both ¢ and its
—mverse donot change the degree of a polynomial nor the coefficient of the highest
power of x, irreducible polynomials correspond to irreducible polynomials. It fol-
lows that if x” — 1 (where n = 2" —1) can be written as a product f,(x) f,(x) ... fi(x)
of irreducible polynomials in Z,[x], then Fy(x)F2(x) ... Fy(x) , where F; := ¢ (f),
is the (unique) factorization of x™ — 1 in Z,[x]. An irreducible factor 2(x) of degree

m 1s called a basic primitive polynomial in Z ,[x].

This method of lifting an irreducible polynomial in Z,[x] to an irreducible poly-
nomial in Z,{x] (with the map ¢) is known as Graeffe’s method (see [100]). Itis a
special case of a result known as Hensel’s lemma (see [94)).

(8.3.1) EXAMPLE. Consider the primitive polynomial f(x) = x*+ x + 1, a factor

of x” — 1. With the notation used above, we have a(x) = 1 and b(x) = ~1 — x,
so F(x) =X+ 2x+x~1=x+x+1 (mod2). In this way we find the
factorization

X =1l=+22+x-DE -+ 2x - D(x = D),

where the first two factors are basic primitive polynomials in Z,[x].

(8.3.2) Definition. The Galois Ring GR(4, m) is defined to be Z,[£], where £ is a
zero of h(x) (so § is an nth root of unity; Z4[§] = Z[x]/(h(x)) ).

Note that we again have

hMx)=x>+2x+x—1=x—-86)(x —ED(x — &Y.

Just as in Example 1.1.23, one can represent elements of G R(4, m) as polyno-
mials of degree < m in &, with coefficients in Z,.

(8.3.3) EXAMPLE. For GR(4, 3), generated by x* + 2x2 + x — 1, we have the
following table for the set {0, 1, &, £2, ..., £%}. Here

c=) af, (& =1+35+2.

i=0
C g | &4 (75
¢6]1]0|0]|0
1 1 10| 0
E]10|1 |0
e2lo|o]1
11132
g1 21313
g3 3]1
11121

Such a table does not tell us how to express elements of GR(4, m) that are not in
the set
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={0,1,& &%, ...,&" '}

Observe that from the representation of £ as polynomial of degree < m in &, we
see that 2§’ = 2 implies that§' = 1,1i.e.£§ = 1. Hence if ¢ runs through 7, then the
elements 2¢ are all different.

Consider the 4™ sums of the form a + 2b, where a and b are in the set 7. If

AL af 4 AR than Ve . Vet om oo et oAt le £ 1T thos L 1
-+ <40 = a + 20, inen da = 24, S0 a = @', anda thefn it foliows that o = o'

Therefore the sums a + 2b are all different and hence represent all the elements of

GR(4, m). The set T is the set of squares of elements of GR(4, m).
To find the representation of a given element, we use the following lemma.

(8.3.4) Lemma.We have

k-1 —~tr—1
3 z&—t

(x + ¥ = 2% +2x% +y*  (mod 4).

Proor. For k = 1, this is trivial. Squaring both sides, the result follows by induc-

tiﬂ{l. D

So,ifc=a+2b,ae€7T,beT,then

C2 =a2 = .

Therefore, the map 7 : ¢ — a is given by
(8.3.5) (c) = " (c € GR(4,m),n=2"—1),

Once a 18 known, b follows from ¢ = a + 2b.
Clearly 7(cd) = 7(¢)T(d) and by Lemma 8.3.4 we have

t(c +d) = t(c) + 1(d) + 2(cd)™ .

We can now describe the structure of the ring R := GR(4,m). The unique
maximal ideal in R is the set 27 . The product of any two elements in this set is 0
(so in R there are zero divisors). The remaining set, R* := R\(27), consists of the
invertible elements. They form a multiplicative group of order (2" — 1)2”. This
group is a direct pi‘ﬁuuut of the Lyuuu group H of order n gerierateu oy g and the
group £ consisting of the elements of the form 1+ 2¢,¢ € T; (these are the principal
units of R),

To understand the structure of £, observe thatif ; and ¢f; are in 7, then 4, +¢; =
. L wunth =T h Fam q— Tharofara (1 L VAT L4y e 1.1 et a2 Tat

h
uu—rw wnuluu = 4 EVIJ o LANWlWwlWhw | LT &7\ 17T &b }' — 41T &l J. l.'ull-llellllure,

the additive representation of g;; (as in the table of Example 8.3.3) is congruent mod
2 to the sum of the representations of # and ¢,. Indeed, mod 2 the elements in the
table are the additive group of F,». So, £ is isomorphic to this group. Every element
of R*has a unique representation of the form & (1 +21),0<r <n,t €7. The
Clﬂfﬂefll.b Wll.ﬂ IIXCU r 10ffﬁ a rt:bluue Cl&SS Ul me flﬁg .K{LLK) = K/JKAJ. ) d.IlCI. LJ

1s the class corresponding to 0. Let 8 be a zero of 4,(x), i. €. a primitive element of

[F2». We have already observed that the table for the values of &', taken mod 2, is the
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addition table for I}:zm w1th generator a. It follows that thc map ,u that sends §” t0 6"

Below, we shall need this 1somorphlsm and the fact that 28" = 2.»;-' 1mphes that
r = 5. We shall need a number of results on dependencies among the powers &7,
We formulate these as a lemma.

I« B B .U 3 = ;A N 77 ro

(8.3.6) LLemma. Let m = 2. Consider GR{(4, m) = Z,[€] with
2" — 1). We have

=1,(n=

o
k]

(1) &/ + £ isinvertiblefor0 < j <k < n;

(2) &7 — E* £ L& for distinet j, k,1in[0,n — 1];

{1

\-/

P,
5

m>3andi F# j,k#I1i

F -

$i+§j+§*+$‘*=0:}f=‘j=k=l.

Proor. (1) If £/ £+ £* = 24 for some A € R, then squaring both sides of the
equation &/ = F&* + 2X yields j = k.

(2) An equation of this kind can be reduced to 1 + £° = £°. Raise both sides to
the power 2™ and apply Lemma 8.3.4. We find 284" = 0, a contradiction.

(3) An equation of this kind can be reduced to 1 + £* = & + &°. Applying
Lemma 8.3.4, we find 2(£4)¥""' = 2(£47)?"", so £% = £+, The equation becomes
(> — 1)(&° - 1) = 0 and we are done by (1).

(4) Here it is necessary to work in Fy». We use the isomorphism g. If four
powers of £ add up to O, there is a similar relation in which one of the powers is 1.
Furthermore, since £” = 1, we may assume that the other exponents are even. So
we have

,;_-Za +Eib — ___EZC ~1.

alammaR 14 wa
ls AW hlELILLL U.J.‘l’, e W

nd

ALAN

2(E2a +Ea+b + E!b) — 250

From this equation we cannot draw a conclusion in R but it does have an implication
for Fo». Apply the map p and write x := 6%,y ;= 8%, 7 := 6°. Fromthe last equation,
we conclude that x?+xy+y? = z. The original equation implies x>+ y*+z2+1 = 0,
and hence x -+ y = z -+ 1. From these two we find x> + y2 = (x + 1)(y + 1). We
must show that this implies x = y = z, because that shows thata = b =c¢c = 0.
Assume that x # 1. Write x = u + 1, y = ur + 1. We find the eguation
w2+t + 1) = 0. Since u # 0, we must have t? + ¢ + 1 = 0, which contradicts
the fact that m is odd. L
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88.4. Cyclic Codes over Z4

In the same way as we did for F,, we now study cyclic codes over Z,. Again, we

1A ankif a Il?ﬂ“f] - Vo) \ unfl\ ﬂwn ﬂn]!mnm al Ay v T VN L
auuuul..y un—-—-\\.u, '..I,..-,u,, uuuuqn v.,\.a,; —_ \,0 T :..14 T =T

¢,1x" ! in the ring R = Z,[x]/ (x - 1. Not everythmg generalizes! R is not
a unique factorization domain, i.e. some polynomials in R can be written as a
product of irreducible polynomials in more than one way. This will not influence
——Our arguments.
As usual, we define codes either by giving a generator matrix or a parity check
matrix. These have a more compact form than those in §8.1 (as always with cyclic
codes; now, elements of R are to be replaced by column vectors, corresponding
to their representation of the type of Example 8.3.3). If we are interested in the
extension of a code, we first add a column of 0’s to the parity check matrix and then
a row of 1’s. This increases the length of the Z,-code by one, but the binary image
becomes two symbols longer.

generator (2 2§ ... 2&”“) ThlS is a trmal code a blnary code in dlsgulse
All the codewords of the binary image have the form (e, ¢), where ¢ is in the dual of
the [2™ — 1,2™ — m — 1, 3] Hamming code.

Next, consider the Z,-code with generator matrix

1 i 1 e 1
G'z(o 2 % 25”—')'
Both C and C’ have 2™*2 codewords. The binary image has length 27*! and is clearly
the first order Reed-Muller code R(1, m -+ 1). We had already seen that this code is
Z i-linear in Example 8.2.8.
We now come to the codes that caused the sudden surge of interest in codes over
Z,. Consider an extended cyclic Z,-code C,, of length n + 1 = 2™ (m odd) with

parity check matrix

{1 1 1 1 )
H'—(o 1 & L)

= rd Vi

£ is a primitive nth root of unity in GR(4, m).
(8.4.2) Lemma. C,, has Lee distance d > 6.

Proor. The first row of H implies that every codeword in C,, has an even number
of odd entries. Therefore it has even Lee weight. So, d is even. In the four cases
below, we consider possible codewords with nonzero coordinates not in the mitial
position. For the corresponding situations, where there is a nonzero coordinate in
front, similar equations with one term iess have {o be considered and we icave that
to the reader.

P RS

(1) If a codeword in C,, had Lee weight 2, the two nonzero coordinates would be
1 and —1. Then the second row of H implies that there are i and j such that
&' = g/, which is false.
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(2) If a codeword in C,, had Lee weight 4 and the nonzero coordinates were 1,1,2
or 3,3,2), we would have & = or some i, j, k. By Lemma
(1), this is impossible.

(3) Ifacodewordin C,, had Lee weight 4 with two coordinates 1 and two coordinates
3, there would be indices i, j, k, I such that &' — §/ = £* — &'. By Lemma 8.3.6

(3), this i1s impossible.

contrad1ct Lemma 8. 3 6 (4).

The reader can now easily check the four other cases. This completes the
proof. |

From H and (8.1.4), we see that C,, has 4" "! codewords. We now look at

il 2L ey 118 e Rmte

the binary image of C,.. It is a binary code of length 2+, cardinality 2¢, where
k= 2! —2m — 2 and it has minimum distance at least 6. From §7.4 we see that
if we shorten this bmary code, we obtaln a code of lengr.b 2=+ . 1 with the same

the same welght enumerator as thc Preparata code of the same length The authors
of [88] called C’, a “Preparata” code because it is not equivalent to the code of §7.4.

Letus now consider the dual code C,, . Ithas H as generator matrix. By Theorem
8.2.5, the weight enumerators of the two binary images satisfy the MacWilliams
relations. It was known that the weight enumerators of the Kerdock code and the
extended Preparata code of the same length satisfy the MacWilliams relations; (this
was the “coincidence” that has puzzled coding theorists for years). (For a proof
see [46].) We now know that the binary code that is the image of the code over

Z 4 with generator H must have the same weight enumerator as a Kerdock code of

AL I £ LIILEoL 134N LW LN, T8 9L L w WommAiT Wollwiliwliios GO 4 AledfEUUh WA

that length. In [88] it is shown that the codes defined by Kerdock in [75] are in fact
binary images of the Z4-codes we have discussed here.

We give one example of a good binary code that is the binary image of a Z,-code
that is cyclic but not linear.

(8.4.3) EXAMPLE. Look at (11100) and its five cyclic shifts. When we compare
two of these, we find three possibilities : (1) three odd-odd pairs and two even-even
pairs , (2) four odd-even pairs and one odd-odd pair, (3) two odd-even pairs, two
odd-odd, and one even-even. We now take this vector and three others, obtained

by replacing 111 by 113 or some permutation, and 00 by 02, 20, or 22. We claim
that the choice (11120}, (31100), (13102}, (11322) has the property that these four
vectors, their negatives, and all the cyclic shifts form a Z-code with Lee distance 4.
When calculating Lee distance, an odd-even pair contributes 1, a pair with the same
parity contributes O or 2. Our substitution guarantees that if there are two even-even
combinations, then one contributes 2 to the distance or the other coordinates yield
distance 6. A 1-3 pair also contributes 2 to the Lee distance. How could there be

two codewords with Lee distance < 47 This can only happen if we have two words

! f f ! F :’
(01,01, 03, €1, &) and (&}, 03, 03, 0, €,) (0 1s 0dd, e is even), where 0, = @), 0; = 0],

e; = ¢,. From our choice, it is easy to see that only six pairs of words have to be
checked to show that this does not happen.
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Now consider the binary image of this code. It has 40 words, length 10, and

minimum distance 4. Since it is known that the Best code of §4.4 is unique, this code
must be equivalent to the Best code. This construction (cf. {83]) has the advantage
that very few pairs of codewords have to be checked by hand.

§8.5. Problems

8.5.1. Construct a selfdual quaternary code of length 6. Show that such a code must contain
the word (222222). Is the binary image of the code linear? Is it also selfdual?

8.5.2. Prove that the Reed-Muller code R(2, m) is Z4-linear.

; L
8.5.3. Letc = &' 4+ 287 be an element of G R(4, m). Determine its inverse.

8.5.4. Consider the weight enumerator of the Nordstrom-Robinson code. Show that it is
equal to its MacWilliams transform.

8.5.5. Consider the Preparata code P of Theorem 7.4.5. Determine the number of words of

weight 5, resp. 6. Use this to find the weight enumerator of the extended Preparata
code of length 16.

?C)
:Jl
o

. Show that the first order Reed-Muller code is a subcode of the binary image of the dual
of the code C,, of §8.4.

.Cﬂ
LA
-]

!
7. Show that the code C;, and the code of (7.4.5) are not e

nd th
f

show that the linear span of C;, has words of weight 2.)



CHAPTER 9

Goppa Codes

S§a1 N
5/-].
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Consider once again the parity check matnx of a (narrow sense) BCH code
as given in the proof of Theorem 6.6.2, i.e.

|’1 B ﬂz ﬁn—l"l
N

[1 ﬁd-—l Bz(;i-n ﬁ(d~f){n-11J
where f is a primitive nth root of unity in F,- and each entry is interpreted as
a column vector of length m over F,; existence of # implies that nj(g™ — ).
In Theorem 6.6.2 we proved that the minimum distance is at least d by
using the fact that any submatrix of H formed by taking d — | columns is a
Vandermonde matrix and therefore has determinant # (. Many authors have
noticed that the same argument works if we replace H by

[ hobe mB o heBe
A= Nt
hO g_l hl Bf“l e hn—l ::11

where h; &€ F}. and the B; are different elements of Ff. Ifh;e L0 < j<n — 1)
then the factors h; have no essential effect; the code is replaced by an equiva-
ient code. However, if the h; are elements of F ., then the terms #;§; considered
as column vectors over F, can be very different from the original entries.

We shall consider two ways of generalizing BCH codes in this manner.
That we really get something more interesting will follow from the fact that
the new classes of codes contain sequences meeting the Gilbert bound where-
as long BCH codes are known to be bad.
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© §9.2.GoppaCodes

et {cg, €y, ..., C,my) be a codeword in a BCH code with designed distance
word length n, § a primitive nth root of unity). Then, by definition
Y s c{B) = 0for I < j < d. We wish to write this condition in another way.

51.1-‘

Observe that

(9.2.1) z ﬂi,: i BTV = Z Bitk+1 gk
z - ﬂ k=0

It follows that

92.2) 5 ¢ _27'p(d)

Soz— 7 "1
for some polynomial p(z).
If g(z) is any polynomial and g(y) # 0, we define 1/(z — y) to be the unique
1 - — afn
023 _ =1 (99 -9\
=y gwir\ z-y /]

These observations serve as preparation for the following definition.

(9.2.4) Definition. Let g(z) be a (monic) polynomial of degree ¢t over F,n. Let
L= {6,715 Vue1} © Fpm,such that [Lj = nand g{) # Ofor0 < i<n - L.
We define the Goppa code T'(L, g) with Goppa polynomial g(z) to be the set of
codewords ¢ = (cq, ¢y, ..., C,-1 ) Over the alphabet F, for which

= 0 {mod g(2)).

=02 — Y

Observe that Goppa codes are linear.

(926\ ExaMPLE. From the ln» marke we cee that if we take the

[= 3 34 4

Goppa polynomial g(z) = z?* an = {B7l0<i<n—1}, where B is a
primitive ath root of unity in F.., the resuiting Goppa code I'(L, g} is the
narrow sense BCH code of designed distance d (cf. Problem 9.8.2).

In order to establish the connection with Section 9.1, we try to find a suitable
parity check matrix for I'(L, g). From (9.2.5) and (9.2.3), we see that

( 1 g(z) — gyo) 1 _g(z)—g(r..-l))

d¥e) (2 —7) ’.”’9('?5—1) (z = V1)

with each entry interpreted as a column vector, is, in a scnsc, a parity check
matrix. Let h; ;= g(3)"' and hence h; # 0. I g(z) = T:_Gg z', then in the same
way as (9.2, 1) we have

g(z) ~ g(x) -
L M o .o xdzt
7 — X i+j§f—1gl+"+1
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Leaving out the factors z‘, we find as parity check matrix for (L, g)

{ hogl - hl‘l—lgf 1
hﬁ(gi—i + gl}"‘} e hn—i{gt—i + gt},u—i}
Lho(gr + @2v0 + -+ a5 ") o ki@ + G2V + + g0a"t) |

By a linear transformation we find the matrix we want, namely

|’ho h,_1‘|
h‘\l- l‘l )

H_ *Or0 s Vim—1in—1
t—1 t~1
Lhe}’e b hﬁ=l?ﬁ:’i_j

{(here we have used the fact that g, # 0).

This does not have the full generality of the matrix & of Section 9.1, where
the h; were arbitrary, since we now have h; = g(y,)™".

(9.2.7) Theorem. The Goppa code T'(L, g) defined in (9.2.4) has dimension
> n — mt and minimum distance > r + 1.5.

ProoF. This follows from the parity check matrix H in exactly the same way
as for BCH codes. .

The example given in (9.2.6) shows that the BCH bound (for narrow-sense
BCH codes) is a special case of Theorem 9.2.7.

As a preparation for the generalization of these codes to codes on algebraic

curves (see Chapter 10}, we reformulate the definition of Goppa codes. Start with

the field F -. Consider the vector space of all rational functions f(z) with the
following properties :

(1) f(z) has zeros in all the points where g(z) has zeros, each with
same multiplicity as the zero of g(z),

(ii) f(z) has no poles, except possibly in some points ys, ¥4, ..., .1 and in that
case poles of order 1.

A code over F,» is defined by taking as codewords the n-tuples

where the residue of f(z) in a point y; is defined in the usual way. The Goppa
code I'(L, g) is the subfield subcode (over [F,) of this code.
Consider the parity check matrix H defined above. Compare the situation with

Definition 6.8.2, where wetakev := (ho, k|, ..., b, D anda ;= (35, ¥, - .., Vait)s
k = t. We see that H is the generator matrix of the code GRS, (a, v). So the Goppa

code (L, g)is asubfield subcode of the dual of a generalized Reed-Solomon code.



142 9. Goppa Codes

avals defined ne Bolvnom n [ afin 2%
- =1 2 LY ¥ ¥ | ] & - LI

6.8.2, and the codes that we have defined here, using residues in first order poles, are
dual codes. We shall encounter the same phenomenon in the chapter on algebraic
geometry codes.

LEILES

§9.3. The Minimum Distance of Goppa Codes

If we change our point of view a little, it is possible to obtain (9.2.7)in another
way and also some improvements. As before, let 2 denote (F,)” with Ham-
ming distance. Let L be as in (9.2.4). We define

. " n—1 bi i
= 2] = —_—
=% 2
and we define the distance of two rational functions £(z), 5(z) by

d(&(2), n(2)) := 115(2) — n(2)l,

where [[£(z)| denotes the degree of the denominator when &£(z) is written as
n(z)/d(z) with (n(z), d(z)) = 1. This is easily seen to be a distance function and
in fact the mapping (b, ..., b,—,) = > 124 b,/(z — ¥;) is an isometry from &
onto %£*. We shall use this terminology to study Goppa codes by considering
the left-hand side of (9.2.5) as an element of %#* (i.e. we do not apply (9.2.3)).
If £(z) = n(2)/d(2) corresponds to a nonzero codeword, then degree d(z) = deg
n(z) + 1. The requirement £(z) = 0 (mod g(z)) impiies that g(z) divides n(z), i.e.
degree d(z) = t + 1.So we have ||E(z)| = ¢ + 1, which 1s the result of Theorem
9.2.7.

If we write £(2) as n(z)/d(z), where now d(z) equals the product of all n
factors (z — ¥;), then we can improve our estimate for the minimum distance if the
degrees of n(2) and d(z) differ by more than 1. The coefficient of z*~! in n(z) is
S0, bi. It follows that if we add an extra parity check equation 37— b, = 0, the
estimate for the minimum distance will increase by 1 and the dimension of the code
will decrease by at most 1. We can use the same idea for other coefficients. The
coefficient of z"~*~ in the numerator n(z) is (=1 /0 B: >, . ¥i¥h --- Vi
(where Y indicates that j, # i forv = 1,2, ..., 5). This coefficient is a linear
combination of the sums 3 b;y” (0 < r < s). It follows that if we add s + 1
parity check equations, namely 3 ' b,y =0 (0 < r < s), we find a code with
dimension at least n — tm — (1 + sm) and minimum distance at least 7 + s + 2.
How does this compare to simply replacing g(z) by another Goppa polynomial
with degree ¢ + 5?7 The first method has the advantage that Y ", b.y, = O implies
that ") b,y¢ = 0. Hence, once in q times we are sure that the dimension does
not decrease.

(bs, bl,...,b,,_l)eﬁ}

(9.3.1) Theorem. Let g = 2 and let g(z) have no multiple zeros. Then T'(L, g)
has minimum distance at least 2t + 1 (where t = degree g(2)).
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PrROOF. Let (co.Cy,...,C,_y) be a codeword. Define f(z2) = []/25(z — »).

Then &(2) = Y 224 c:/(z — .} = f'(2)/f(2), where f(2) is the formal derivative.
In f'(z) only even powers of z occur, 1.e. f'(2) is a perfect square. Since we
require that g(z) divides f*(z) we must actually have g*(z) dividing f’(z). So
our previous argument yields d > 2t + 1. O

Of course one can combine Theorem 9.3.1 with the idea of intersecting with a

-y

BCH code.

§9.4. Asymptotic Behaviour of Goppa Codes

In Section 6.6 we pointed out that long primitive BCH codes are bad. This
fact is connected with Theorem 6.6.7. It was shown by T. Kasami (1969;
[39]) that a family of cyclic codes for which the extended codes are invariant

under the alline group is bad in the same sense: a subsequence of codes C,;
with length n;, dimension k; and distance d; must have lim inf(k;/n,}) = O or lim

inf(d, /n) = 0, Wea shall now show that the clasg of nnnnn 1S considerably

class ppa is considerabl
larger.

(9.4.1) Theorem. There exists a sequence of Goppa codes over F, which meets
the Gilbert bound.

Proor. We first pick parameters n = g™, t and d, choose L = [, and we try
to find an irreducible polynomial g(z) of degree ¢ over F such that I'(L, g)
has minimum distance at least d. Let ¢ = (cy, ¢, ..., C,—y) be any word of
weight j < d, i.e. a word we do not want in I'(L, g). Since Y 2§ ¢;/(z — y) has
numerator of degree at most j — 1, there are at most | (j — 1)/t] polynomials
g(z) for which I'(L, g) does contain ¢. This means that to ensure distance d,

we have to exclude at most Ef;‘ L(j — D/t)(g — 1Y (:) irreducible polyno-
mials of degree t. This number is less than (d/t)V (n, d — 1) (cf. (5.1.4)). By

(1.1.19) the number of irreducible polynomials of degree ¢ over F .. exceeds

RFL IR wRaiiuansiws 2ihag s SAwama W - e

(l / :)q”“(l g mrmy Sa a sufﬁment condition for the existence of the code
I"{L, g) that we are looking for is

~{1/2}mi+m
(9.4.2) SVnd -1 <-gm1—gq ).

[~
e

By Theorem 9.2.7, the code has at least g"™ words. On both sides of (9.4.2)
we take logarithms to base g and divide by n. Suppose n is variable, n — oo,
and d/n — 4. Using Lemma 5.1.6 we find

H,(6) + o(1) < "%‘ + ol).
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The information rate of the code T'(L, g) is > | — mt/n. It follows that we can

iind a sequence of polynomials g(z) such that the corresponding Goppa codes
have information rate tending to 1 — H_(d). This is the Gilbert bound (5.1.9).
™

LJ

§9.5. Decoding Goppa Codes

The Bcrlckamp decoder for BCH codes which was mentioned at the end of

Section 6.7 can also be used to decode Goppa codes. In order to show this
we shall proceed in the same way as in Section 6.7.

Let (Cy, C4, ..., C,_,) be a codeword in I'(L, g) as defined in (9.2.4) and
suppose we receive (R, Ry, ..., R,—{). We denote the error vector by (E,,
E.,....,E,_;)=R—C. Let M := {i|E, # 0}. We denote the degree of g(x) by
t and assume that |M] = e < 1t. Again using the convention (9.2.3) we define
a polynomial S(x), called the syndrome, by

>

n—1 E
(9.5.1) S(x)= Y —— (mod g(x)).

=0 X — %

Observe that S(x) can be calculated by the receiver using R and (9.2.5). We

now ueunc l.ll.c errur-w(.uwr pu:ynumml U‘dj' auu a bUlupleUIl pUIyuUmldl
w(z) in a manner similar to Section 6.7 (but this time using the locations
themselves instead of inverses).

(9.5.2) a(z) == [L(z v,
9.5.3) w(z) ;= z ; {z—7)

is A l s AL
= FE 3G

From the definitions it follows that ¢(z) and w(z) have no common factors,
g(z) has degree e, and w(z) has degree < e. The computation of w(z)/a(z) of
Section 6.7 is replaced by the following argument.

(9.5.4) S(2)o(z) = Z —— [l =17
i=0Z — YiieM
= w(z) (mod g(z)).

Now suppose we have an algonthm which finds the monic polynomial s,(z)
of lowest degree (g, (z) # O)and a polynomial o, (z) of lower degree, such that

9.5.5) S(z)oy(z) = w((2)  (mod g(2)).

,(2)o(2) — w(z)o(2) =0 (mod g(2)).

Since the degree of the left-hand side is less than the degree of g(z), we find
that the left-hand side is 0. Then (6(2), @(2)) = 1 implies that g(2) divides g, (2)
and therefore we must have ¢,(z) = o(z). Once we have found ¢(2) and w(z),
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it 1s clcar that we know E. The Berlckamp—algonthm is an cfﬁcwnt way of

us take another look at Goppa codes. We consider B OBS
where § is a primitive ath root of unity in F,., g(z) a suitable polynomial.
Let{as,0,,....a, ;)eT(L, g). Asin HS 5.2) we denote by A(X) the Mattson-

Solomon polynomlal ofdg +a;x + -+ +a,_ x".
Consider the polynomial

D b

(by Lemma 6.5.3). The left-hand side is a polynomial of degree < n — | which

takes on the value nf"A(f") for X = B*(0 < i < n — 1). We can replace n by
1 since we are working over F,. Therefore the left-hand side is the polynomial
X" 1lo A(X) {using the notation of Section 6.5) because this also has degree
< n — 1 and takes on the same values in the ath roots of unity. Hence we

have proved the following theorem.

(9.6.1) Theorem.If L = {1, 8,..., "'} where B is a primitive nth root of unity
in Fym and (g(2), 2" — 1) = 1, then the binary Goppa code I'(L, g) consists of the
words{ag, ay, ..., a,-1) such that the Mattson-Solomon polynomial A(X) of a(x)
satisfies

X" loA(X)=0  (mod g(X)).

In Theorem 6.6.2 we proved the BCH bound by applying Theorem 6.5.5
and by using the fact that the Mattson-Solomon polynomial of a codeword
has sufficiently small degree. For Goppa codes a similar argument works. The
polynomial g{X) has degree ¢t and (g(X), X" — 1) = 1. It then follows from
Theorem 9.6.1 that at most n — 1 — t nth roots of unity are zeros of A(X).
This means that a has weight at least ¢ + 1, yielding a second proof of

A MWWl Faoy F .

The argument above shows how to generalize these codes. The trick is to
ensure that the Mattson-Solomon polynomial of a codeword has few nth

roots of umity as zeros. This idea was used by R. T. Chien and D. M. Choy
{1975 N3t in the inllowine wav

\l/ -J, Ll -’J; ALL RLAN IUIIVWIIIE "'LI.J4

(9.6.2) Definition. Let (T, +, o) be as in Section 6.5 with # = F. and S =
F,[x] mod(x" — 1). Let P(X) and G(X) be two polynomials in T such that
(P(X), X" — 1) = (G (X) X"—hH=1 Thc generalized BCH code (= GBCH

o Ay PR _ I, [ : b il ol
codej of length n over F, with polynomial pair (P(X), G{X)) is defined as

{a(x) € SIP(X) o (@a)(X) =0 (mod G(X))}.
A GBCH code is obviously linear.
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. 6.3) Theorem.The minimum distance of the GBCH code of (8.6.2) is at least

1 a2 Yy

I 'l' ur:grf:z Uial.
ProOF. We apply Theorem 6.5.5. A common factor f(X) of ®aq and X" — 1 s

also a factor of P(X) o (@a)(X). But (G(X), f(X)) = 1. So the degree of f(X)
must be at most n — | — degree G(X). O

Notice that the special Goppa codes of Theorem 8.6.1 are examples of

GBCH codes. If we take P(X) = X*! and G(X) = X?~! we obtain a BCH
code.

. T

The GBCH codes have a parity check matrix like A of Section 8.1, In order
to show this, we consider the polynomiais p(x) = (&~ P)(x) = > 725 p;x’ and
g(x) = (@' G)(x) = Y 12§ g;x". By Lemma 6.5.3, all the coefficients of p(x) and
g(x) are nonzero since nth roots of unity are not zeros of P(X} or G(X). Let
a(x) be a codeword and A(X) = (®a}(X). By (9.6.2)there is a polynomial B(X)
of degree at most n — 1 — degree G(X) such that

P(XVe A(XY = B{X)G(Xy= B(X)o G(X).

Define b(x) := (@7 B)(x) = Y 5=} b,x". Then we have

p(x) * a(x) = b(x) * g{(x),
ie.
Z pid;x’ = Z bigx".
=0
So we have found that b, = p,g; 'a;(0 < i < n— 1). Let h; ;== p,g; ! and define

[ BB .. BB
ho MB? ... o D

H:=

ho B ... By BTV

Let 1 < j <t = degree G(X). Then B,_; = 0. By (6.5.2)

n—1 n—1
i — N b R
.é ’l P .

SoaHT = 0. Conversely, ifaHT = 0 we find that the degree of B(X) is at most
n— 1t Hence BOX)G(X) = B(X) o G(X) = P(X)o A(X), ie. a is in the

89.7. Comments

The codes described in Section 9.1 are called alternant codes. The codes
treated in this chapter are special cases depending on the choice of 4, and §;.
The first interesting subclass seems to be the class of Srivastava codes intro-
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duced by J. N. Srivastava in 1967 (unpubtished). E. R. Berlekamp [2] recog-
nized their possibilities and recommended further study of this area. The
alternant codes were introduced by H. J. Helgert (1974; [35]). The most
interesting turned out to be the Goppa codes introduced by V. D. Goppa [27]
in 1970 (cf. [4]).

BCH codes are the only cyclic Goppa codes (cf. Problem 9.8.2) but E. R.
Berlekamp and O. Moreno [5] showed that extended 2-error-correcting
proved a similar result for other Goppa codes and the same authors have
generalized the idea of Goppa codes.

§9.8. Problems

9.8.1. Let L consist of the primitive 15th roots of unity in F,. (take a* + 2 + 1 = Q).
Let g(z) ;= z? + 1. Analyze the binary Goppa code ['{L, g).

9.8.2. Let a be a primitive nth root of unity in Fymand let L= {1, a,a%,..., 2" ' }. Let

the binary Goppa code C = I'(L, g) be a cyclic code. Show that g(z) = z* for
some ¢, i.e. C 1s a BCH code.

9.83. Let n=q™ — 1, L = F,.\{0}. Let C, be the BCH code of length n over F,
obtained by taking { = 0 and 8 = d, in (6.6.1). Let C, be a Goppa code I'(L, g).
Show that C, n C, has minimum distance d > d, + d; — 1, where 4, =1 +
deg g.

9.8.4. Consider the GBCH code with polynomial pair (P{X), G(X)) where G(X) has

degree ¢. Show that there is a polynomial P(X) such that the pair (P(X), XY
defines the same code.

9.8.5. Let C be the binary cyclic code of length 15 with generator x2 + x + 1. Show
that C is a BCH code but not a Goppa code.
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g codes
the mtroducnon of methods from algebraic geometry to construct good codes The
ideas are based on generalizations of the Goppa codes of the previous chapter. The

algebraic geometry codes were also inspired by ideas of Goppa. In fact, the codes
of Chanter Q are now somehtmes called “classical™ Gnnna codes, and those of this

chapter “geometric” Goppa codes. We use the terminology “ algebraic geometry”
codes.

An intriguing development was a paper by Tsfasman, V]adug, and Zink {99].
By using codes from algebraic curves and deep results from algebraic geometry, a
sequence of error-correcting codes was constructed that led to a new lower bound
on the information rate of good codes. The bound improved the Gilbert-Varshamov
bound (5.1.9). This was the first improvement of that bound in thirty years.

This chapter is based on expository lectures given by the author in 1988 (see
[92]) and a course given by G. van der Geer and the author in 1987 (see [73]). We

shall only treat the necessary algebraic geometry superficially, often omitting proofs.
We point out that in a number of places, more algebraic background is necessary
than was treated in Chapter 1.

Much of the recent work on these codes concerns decoding methods. In this book,
we have not been concerned too much with decoding, so we do not go into these
methods. Actually, the only decoding method that is used extensively in practice
(for block codes) is the one of §6.7. It is not clear when algebraic geometry codes

will become of practical importance.

.
Wa naint At that mmanu Af tha racnlic ~
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without using the heavy machinery of algebraic geometry. Fo
approach we refer to [90].
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In §6.9, we saw that it was possible to define Reed-Solomon codes by considering
points with coordinates in ¢ projective line (possibly over the algebraic
closure of F,). Codewords were defined by considering rational functions with a
pole of restricted order at a specified point and taking the values of these functions
at the given points as coordinates. In §9.2, we defined Goppa codes by calculating
residues of certain functions at given points. The set of functions was restricted by
requirements on their zeros and poles. These two 1deas are what we shall generalize
in this chapter. We must study algebraic curves, find a way to describe the restrictions

on the set of functions that we use, and generalize the concept of residue. We describe
two classes of codes that are duals.

In the following, k is an algebraically closed field. In our applications, & will be
the a]gebralc closure of F,. (In this section, the reader may thmk of k as Cif that

dlfferent for the fields we consu‘ler) A" w111 denote n- d1mens1onal afﬁne space

(with coordinates x,, X3, ..., x,). Similarly, P" will be n-dimensionai projective
space (with homogeneous coordinates xg, xq, ..., x,). First, we discuss the affine
case. The situation for projective spaces is slightly more complicated.
T tha ormana M8 wa intradiisa o Alro tha _ allad Frsidald Al s T~
L1l LLl%W -31.}‘1\—!.« M, W LU LAGULGL O LUPUIUE), u.u..« BU \.auuu AL LIRL IU7LIUILLS -y- YL
closed sets are the sets of zeros of ideals a of k[x,, x1, ..., x,], i.€.

B=V(@a):={(x,x2,...,x) € A" | f(xi,x2,...,x,)=0forall fe a}.

We always assume that a is radical, i. e. a consists of all the polynomials that vanish
on B. (An ideal a is called radical if, foralln e N, f* € a = f € a.) A closed
subset B is called irreducible if B cannot be written as the union of two proper closed
subsets of B. The set V (a) is irreducible iff @ is a prime ideal. An open set is the

complement of a closed set.

(10.2.1) ExamMpLE. In the affine plane, consider the principal ideal generated by
x? — y*. The corresponding closed set is the union of two lines with equations

y = x, respectively y = —x. Each of these lines is an irreducible ciosed set in the
plane A?

!3

7N .

All the curves in affine or projective space in this paragraph are required to be
irreducibie.
Consider a prime i

is called an affine variety.

f zeros of

"

(10.2.2) ExameLE. In 3-dimensional space, we consider the unit sphere, i. e. the set
with equation x>+ y?+-z* = 1. Inour terminology, this is the affine variety consisting

of the zerns of the ideal p, oenerated hy the m]Uﬁnmnai ..L vilsZ_ 1 We are

AL i Ladiod Wi s v y PWAIvL QWA WY i ALY LalSiaaads X y T < L. ¥V O

just using algebraic termmology to describe geometric objects that are defined by
equations.
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Two polynomials that differ by an element of p will have the same value in each
point of A'. This is the reason for introducing the following ring.

The coordinate ring is an integral domain since p is a prime ideal. Therefore,

ke the follovine definition.

(10.2.4) Definition. The quotient field of the ring k[X’] is denoted by k(X). It is
called the function field of X. The dimension of the variety X is the transcendence
degree of k(X') over k. If this dimension is 1, & is called an algebraic curve.

(10.2.5) ExampLE. In the affine plane over the field k, we consider the parabola X’
with equation y? = x. In this example, the coordinate ring k[X] consists of all the
expressmns of the form A —|- B Y, where A and B are in k[x] and y satlsﬁes y: = X

of degree 2.

In projective space [P”, the situation is complicated by the fact that we must use
homogeneous coordinates. This means that it only makes sense to study rational
functions for which numerator and denominator are homogeneous polynomials of
the same degree. A projective variety X is the zero set in P" of a homogeneous
prime ideal p in k{xg, xi, ..., x,). Consider the subring R(Y) of k(x,, X1, ..., x,)
consisting of the fractions f/g, where f and g are homogeneous polynomials of the

T [P g | - [ [ | P, AL,

samce Ucpive auu 8 F p 1SN I\\(’L ) ila> a UHIYuS HIaAlllidl lLI.Cd.I. IYI k(l.} L«Ullbibl-lllg
of all those f/g with f € p. The function field k(X’) is by definition R(X)/ M (X).
Now, let X be an affine or a projective variety. Let P be a pointon X and let U be
anetghborhood of this point. Let f and g be polynomials, respectively homogeneous
polynomials of the same degree, and let g(P) # 0. Then the quotient ¢ = f/g,
defined on U, is called regular in the point P. The functions that are regular in every
point of the set I/ form a ring, denoted by k[U]. Since k is algebraically closed,
there are no regular functions on X except constant functions, if X is projective.

(10.2.6) Definition. The local ring Op (sometimes denoted by Op({X")) of the poin
P on the variety X is the set of rational functions on &’ that are regular in P .

The reader familiar with algebralc termmology will realize that this is indeed a

T —dom o ¥% #lhn almalisnin cmre o i thne o rrmmimizs mencime el ATl T bl o

OCal Iing in the argeoraic sense, 1. €. ithasa unique maxima ideal, nanmeiy ine set
» of functions in Op that are zero in P.

An affine variety can be embedded in a projective variety in the following way.
If f € k[x,, x5, ..., x,], then we associate with f the homogeneous polynomial

Pt d

. R . PR N
J X, Xy ey X)) = X fUXy X, o X/ X0)s

where [ is the degree of f.
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Let X be an affine variety in A" defined by the prime ideal p. Let p* be the

homogeneous prime ideal generated by the set {f*|f € p}. Then p* defines a
projective variety X* in P*. We define A7 = {(xo, x;,...,x,) € X*|x, # O}.

Then X 1s 1somorp}"c with AJ under the map (x, ..., x,) = (1 1 x; 1 ... 1 x,).
The points (xo : ... : x,) € A" with x, = 0 are called points at infinity of X.

Furthermore, the function fields k(X)) and k(A™) are isomorphic under the map
flgw— f*xg/g*, where m is deg(g) — deg( f).

(10.2.7) ExampLe. In P? with coordinates (x : y : z), consider the variety X defined
by xz~ y* = 0. (This is the parabola of (10.2.5), now with a point at infinity, namely
Q:=(1:0:0).) The function (2xz+2?)/(y*+2z*) isregularinthe point P = (0: 0: 1).
By replacing y* by xz, we see that the function is equal to (2x + 2)/(x + z) and

in £
therefore also regular in Q.

Note that the function (x* + y*)/z* which is 0 in P, can be written as the product
of y*/z* and (y° +2%) /23, where the second factor is regular andnot O in P. If k = C
with the usual topology, then for points near P, there is a one to one correspondence

called a local parameter below.

The examples at the end of this paragraph will clarify things, but we must first
introduce all the terminology that we need. From now on, we only consider curves.
Consider a curve in f"—“\\z defined u‘y‘ an equaticﬁ Fix, y) = 0.Let P = {a,b) be
a point on this curve. If at least one of the derivatives F, or F), is not zero in P, then
P is called a simple or nonsingular point of the curve. The curve then has a tangent

at P with equation F.(P)(x — a) + F,(P)(y — b) = 0. We now define
dpF := F.(a,b)(x —a) + F,(a,b)(y — b).

Then the tangent 7, at P is defined by d, F = 0. This is well known. If G € k[X],
it would not make sense to define 4, G in the same way because G is only defined
modulo multiples of . However, on T the linear function d,G := G,(a, b)(x —
a)+ G,(a, b)(y —b) is well defined. Given P, the map d, maps an element of k[X']
to a linear function defined on the tangent T, 1. e. an element of T;. We can extend
this mapping to Op. Since d; f = Qif f is constant, we can restrict ourselves to
rational functions f in mp. Then from the product rule for differentiation, we see
that m2 is in the kernel of this mapping. Without proof we state that it is in fact
the kernel. Therefore m,/m? is isomorphic to 7 and for a nonsingular point that

is a 1-dimensional space. This means that we can define a simple point of a curve

2222 hoo diramain 1 Tonmzaa oo
by requiring that the k-vector space mp/m? has dimension 1. From now on we

consider only nonsingular curves (also called smooth curves), i. e. curves for which
all the points are nonsingular. This restriction has the following consequence. Let
P be a point of X'. We remind the reader that the maximal ideal 7, of the local ring
Op consists of the “functions™ that are 0 in P. The other elements of O, are units.
Since mpf mP has dimension 1, there is a gcncratlflg element ¢ for this space. We
also use the symbol ¢ for a corresponding element in m . We can then write every

element z of Op 1n a unique way as z = ut™, where u is a unit and m € N,. The
q
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function ¢ is called a local parameter or uniformizing parameter in P. A function

f is a local parameter at P if dp f is not zero on Tp.

If m > 0O, then P is a zero of multiplicity m of z. (We saw an example with
m = 3 in Example 10.2.7.) We write m = ord,(z) = v»(z). (For readers familiar
with the terminology : Op is a discrete valuation ring and elements ¢ with v (1) = 1
are local parameters.) We extend the order function to k(X’) by defining v.(f/g) :=
vp(f) —vp(g). If vp(2) = —m < 0, then we say that z has a pole of order m in P.

i ith vp(2) =m, € rittz=a 7', where
a € k,a # 0, and ve(z') > m. In this way, one can show that z can be expanded as
a Laurent series. Later, we shall use this to define the “residue” of z.

(10.2.8) ExampLE. Let X be the circle in A? with equation x> 4+ y? = 1 and let
P =(1,0), (char(k) # 2). Letz = z(x, y}) = 1 — x. This function is O in P, soitis
in mp. We claim that z has order 2. To see this, observe that y is a local parameter
in P. Note that dpx = x — 1 which is 0 on T, so x 1s not a local parameter at P.
On X we have 1 — x = y?/(1 + x) and the funcion 1/(1 4 x) is a unitin Op. In

Example 10.2.7 we saw a similar situation for %

(10.2.9) ExamrLE. Consider once again the parabola of Example 10.2.7. Let Q be
the point at infinity, i.e. Q = (1 : 0: 0). The field k(X’) consists of the fractions
(A, + B\ y)/(Ci+ D,_,y), where the coefficients are homogeneous polynomials of
degree ! (resp.! — 1) in x and z, and y satisfies y* = xz. Such a function is regular in
Q if the coefficient of x’ in C; is not 0. It is easy to see that y/x is a local parameter

in Q. What can we say about the behavior of the function g := (Z° + xyz)/x’ in
Q? On X we have
Z+xyz (2)3 x*+yz
x3 X x? )

The second factor on the right is a unit in O, so g has a zero of multiplicity 3 in Q.
When we construct codes, we will be interested in points that have their coordi-
nates in our alphabet [F,. We give these a special name.

(10.2.10) Definition. If & is the algebraic closure of [, and X’ is a curve over &, then
points on A" with all their coordinates in [, are called rational points. (We shall only
use this terminology for curves over & with equations that have all coefficients in

F,.)
We give three more examples

(10.2.11) ExampLE. Let P be the projective line over k. A local parameter in the
point P = (1 : 0) is y/x. The rational function (x> — y*)/y* has a pole of order 2
in P. If k£ does not have characteristic 2, then (1 : 1) and (—1 : 1) are zeros with
multiplicity 1.

(10.2.12) ExampLE. The plane curve with equation x>y + y*z+z°x = Ois called the
Klein quartic. We consider the curve over the algebraic closure of ;. Look at a few
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of the subfields. Over [, the rational points are (1:0:0), (0:1:0), and (0:0:1). If we go

to [F,, there are two more rational points, namely (1 : ¢ : 1+ o) and (1 : 1 + « : @)
if F, = {0, 1, @, @}, where ¢ = 1 + «.

In later examples, this curve will be studied over F3. As usual, we define this
field as F,(§), where §° = § + 1. If a rational point has a coordinate 0, it must be
one of the points over ;. If xyz # 0, wecantakez = 1. If y=§" (0 <i < 6),
then write x = £%7. Substitution in the equation glves ”+n + 1 =0,1.e. nisone

2 4 (') X Nl a total o =_.g-= rﬂ:

(10.2.13) ExampLe. Let X be the plane curve with equation x* + y* 4+ 7> = 0 over
the closure of F; and look at the subfield F,. Since a third power of an element of F,
is O or 1, all the rational points have one coordinate Q. We can take one of the others

ha B A
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points. In O = (0 : 1: 1), we can take t = x/z as local parameter. We consider
a difficulty that w111 come up again. The expression f = x/(y + z) looks like a
perfectly reasonable function and in fact on most of X 1t is. However, in Q the

we have

x _xO00+y+d) L, y+yz+?
y+z y+ 2z ' z? ’
where the second factor on the rlght is regular and not O in Q. By our earlier con-
Tt e zra onzr thod £ oo n o] PR PEUEY, LA o TR S - DR, Fy o TRt u, ORI,
venlions, we say that f 1as a poie O aer - m {4. simuarly, y/{y + Z) nas a poi¢

of order 3 m Q.

As apreparation for §10.6, we now consider the intersections of plane curves. We

t 1 al ~AF A
assume that the reader is familiar with the fact that a polynomial of degree m in one

variable, with coefficients in a field has at most m zeros. If the field is algebraically
closed and if the zeros are counted with multiplicities, then the number of zeros is
equal to m. We shall now state a theorem, known as Bézout’s theorem, which is a
generalization of these facts to polynomials in several variables. We only consider
the case of two variables, 1. e. we consider plane curves. Again, we assume that the
reader knows how multiplicities are attached to points of intersection of two plane
curves. (If P is a nonsingular point of a curve with equation F(x, y) = 0 and the
curve with equation G(x, y) = O contains P, then the multiplicity of intersection is
Up \U} ) In the fuuGW'iug, we consider two affine pnane curves defined uy t:qu.iuunb
F(x,y) = 0and G(x, y) = 0 of degree / respectively m. We assume that F and
G do not have a nontrivial common factor, i. e. the curves do not have a component

in common. We consider the case where the coefficients are from an algebraically
closed feld k

e IO LWl P

(10.2.14) Theorem. Two plane curves of degree I and m that do not have a compo-
nent in common, intersect in exactly Im points (if counted with multiplicity and the
points at infinity are also considered).

If k 1s not algebraically closed, the curves intersect in at most /m points.
We do not prove this theorem.
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(10.2.15) ExamrrE. Clearly the affine plane curve over the closure of [, with equa-
tion x> + y* = 1 and the line with equation x = y do not meet. However, when
considered projectively, we have the curve X' of Example 10.2.13 and the rcader can
easily check that A" and the line with equation x+y = Ointersectin P ;= (1:1:0)

(at infinity) with multiplicity 3; (this is done in the same way as in Example
10.2.13).

AW, e. 107,

description). Let V, be the vector space of polynomials of degree at most / in two
variables x, y and coefficients in [,. Consider an irreducible element G of degree m
in F,[x, y]. Let Py, P,, ..., P, be points on the plane curve defined by the equation
Gx,y) =0,i.e.G(P;) =0for 1 <i < n. We define a code C by

C = {(F(P])s F(Pz),.-.,F(P,,))lF € |F.q'[x, y]s deg(F) El}

We shall use d for the minimum distance of this code and (as usual) call the dimension

(10.2.16) Theorem. Let im < n. For the minimum distance d and the dimension k
of C, we have
d>n—1Im,

(I+Z) I:fl<m
Im+1—(’” ‘) ifl > m.

ProoF. The monomials of the form x*y? with & + 8 < I form a basis of V,. Hence
V, has dimension (‘”’2)

T ot F = ‘f T'F {-: IQ' £ 'FD("*I'\I' ﬂ'F p f}'\nn the f‘ﬂl’].ﬂ“lfﬂl‘d ';“ P COArToo T,y
Ll £ = Fj. L1 AT [ R LSy L AL LW AL FYAIL LR RIL L WA I OPAILT

&
is zero. Conversely, if this codeword is zero, then the curves with equation F =
and G = 0 have degree I’ < [ and m respectively, and they have the n points

Py, Py, ..., P, in their intersection. Bézout’s theorem and the assumption im < n
1mn1v thnf F and ¢ have a common factor. Since G is |rrpdnmh]9 F must be

ARanedin A

divisible by G. Hence the functions F € V, that yield the zero codeword form the
subspace GV;_,,. This implies that if / < m, then k = ("'?), and if I > m, then

I+2 l—m4+2 m—1
k= =Im+1— .
2 2 2
The same argument with Bézout’s theorem shows that a nonzero codewo

Li
most Im coordinates equal to 0, 1. €. it has welghta tleastn —Im. Henced > n—Im.
O
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£10.3. Divisors

In the following, A is a smooth projective curve over k.

(10.3.1) Definition.

formalsum D =3},  npP,withn,
a finite number of points P;

(2) Div(X) is the additive group of divisors with formal addition (the free abelian

/S
&

. Fat
1) A andnp = 0

group on A&');
(3) A divisor D is called effective if all coefficients n, are non-negative (notation
D=0y,

(4) The degree deg(D) of the divisor D is }_ n,.

Let v, = ord, be the discrete valuation defined for functions on X in §10.2.

(10.3.2) Definition. If f is a rational function on X, not identically 0, we define
—thedivisorof ftobe — —# —7 0¥7Z 7 7 00—
(F)=D_vs(fIP.

PeX
So, in a sense, the divisor of f is a bookkeeping device that tells us where the zeros
and poles of f are and what their multiplicities and orders are. Since £ is a rational
function for which the numerator and denominator have the same degree, and since
k is algebraically closed, it is intuitively clear that f has the same number of zeros
as poles, if counted properly. We do not give a proof but state the consequence as a

theorem.

(10.3.3) Theorem. The degree of a divisor of a rational function is 0.
The divisor of a rational function is called a principal divisor.

(10.3.4) Definition. We shall call two divisors D and D’ linearly equivalent iff
D — D is a principal divisor ; notation D = D',

This 1s indeed an equivalence relation.

In §9.2, we gave a definition of Goppa codes, involving a vector space of fun~tions
with prescribed zeros and possible poles. We now have a mechanism available to
generalize this to curves.

(10.3.5) Definition. Let D be a divisor on a curve X'. We define a vector space
L(D) over k by

L(D) := {f € k(X)" : (f) + D=0} U {0).

r s
Note that if D = El lu‘R — Z; l'"’Jz..' with all H,m; > 0, then LP..{D)

consists of O and the functions in the function field that have zeros of multiplicity at
leastm; at Q; (1 < j < s) and that have no poles except possibly at the points P;,
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with order at most n; (1 < i < r). We shall show that this vector space has finite
dimension,.

First we note that if D = D’ and g is a rational function with (g) = D - D',
then the map f > fg shows that £(D) and L(D") are isomorphic.

(10.3.6) Theorem.
(1) L(D)=0 ifdeg(D) <

Proor. (1) If deg(D) < 0, then for any function f € k(X)*, we have deg(( )+ D) <
0,i.e. f¢& L(D).

(i) If fisnot0and f € L(D), then D' := D + (f) is an effective divisor for
which £(D') has the same dimension as £(D) by our observation above. Sow.1l.0.g.
D is effective, say D = 3., n; Pi, (n; = Ofor 1 <i < r). Again, assume that f is
not 0 and f € L£(D). In the point P,, we map f onto the corresponding element of
the n;-dimensional vector space (t; " Op )}/ Op, where 1; is a local parameter at P,

e thus obtain a mapping of f onto the direct sum of these vector spaces ; (map
the O-function onto 0). This is a linear mapping. Suppose that f is in the kernel.
This means that f does not have a pole in any of the points P;, i.e. f is a constant
function. It follows that dim, £(D) < 1+ )", n; = 1+ deg(D). O

(10.3.7) ExampLE. Look at the curve of Example 10.2.13. We sawthat f = x/(y+z)
has a pole of order 2 in Q = (0 : 1 : 1). The function has two zeros, each
with multiplicity 1, namely P, = (0 : ¢ : Dand P, = (0 : 1 +« : 1). From
the representation f = (y* + yz + z%)/x* we see that Q is the only pole. So
(f)= P+ P, —2Q and deg((f)) = 0 in accordance with Theorem 10.3.3. Itis not
trivial, but one can show that there cannot be a function in k(") that has a pole of
order 1 in Q and no other poles. So in this example, the space £(20Q) has dimension

it ik Bhabh Y aidnitandl S SeES AmASISTESNT

2 and f and the function that is identically 1 form a basis.

§10.4. Differentials on a Curve

Consider a smooth affine curve X in A? defined by the equation F(x, y) = 0, and
let P = (a, b) be a point on X'. The tangent 7p at P is defined by d,F = 0. In
Section 10.2 we defined the map dp that maps an element of £{A’] to a linear function
on Tp (i.e. an element of 7;). We now consider the set ®[X’] of all mappings that
associate with each point P of A’ an element of T7.

(10.4.1) Definition. Anelement ¢ € ®[X] is called a regular differential form (on
the curve &) if every point P of X has a neighborhood U such that in this neigh-
borhood, ¢ can be represented as ¢ = ) .. fidg;, where all the functions f; and g,
are regular in U.

The regular differential forms on A form a k[A']-module, which we denote
by Q[A]. This module is generated by elements df, where f € k[X’], with the
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relations d(f + g) = df +dgand d(fg) = fdg + gdf andda = 0fora € k. For

the extension to rational differerntial forms we must add the (well known) relation
d(f/g) = (gdf — fdg)/g*. We wish to define a rational differential form on

a smooth projective curve X'. To do this, consider pairs (U, w), where U 1s a
nonempty affine set in A’ and w has the form gdf on U. We call pairs (U, w) and
(V, n) equivalent if @ = 5 on the set U N V. An equivalence class for this relation
is called a rational differential form. From now on, we call the rational differential
forms on X differentials and denote the space of differentials by 2(X’). We state

without proof :

(10.4.2) Theorem. The space S2{(X) has dimension 1 over k(X); in a neighbor-
hood of a point P with local parameter t, a differential @ can be represented as
w = fdt, where f is a rational function. The reader might think this is unneces-
sarily complicated. Why not just use functions? The next example shows that on a
projective curve, one can have a nonzero rational differential form that is regular on
the whole curve, this in contrast to rational functions.

(10.4.3) ExampLE. We again look at the curve A in P? given by x> + y* + 22 =0
(char(k) # 3). We define theopensetU, byU, ;={(x:y:2) € X : y #£ 0,z # 0}
and similarly U, and U.. Then U,, U,, and U, cover & since there is no point on &’
where two coordinates are zero. It is easy to check that the three representations

o= (2 a () orv. n=(2)a(2) v, t=(2) a(2) v

define one differential on X. For instance, to show thatn and ¢ agree on U, NU/,, one
takes the equation (x/z)* + (¥/z)* + 1 = 0, differentiates, and applies the formula
d(f Y =~f2dftof =z /x A regular function on X is constant, so one cannot

J ' R [ RN, [N N S Y

ICPI esent t.[llb UlllClUlllld ad g uj Wll.ll J’ d..IlU 5 lcguml. TUnNCLIONS o1l c"lu

(@ =Y vp(fo)P
\Q); L"Jr LN
PeX
where @ = fr dt; is the local representation of @ and v is the valuation on O
(extended 10 £(AX)).

Of course, one must show that this does not depend on the choice of local
parameters and also that only finitely many coefficients are not (.

Let @ be a differential and W = (w). Then W is called a canonical divisor.
If @' is another nonzero differential, then ' = fw for some rational function f.
So () = W' = W and therefore the canonical divisors form one equivalence
class. This class is also denoted by W. Now consider the space £(W). This

space of rational functions (cf.(10.3.5)) can be mapped onto an isomorphic space of

S LA L davaifaides a2 waSs At Swisai SN 22 P rARLAS dAL1 ARSI pradite Jpeditee R

differential forms by f +— fw. By the deﬁmtlon of L(W), the image of f under
the mapping is a regular differential form, i.e. L{W) is isomorphic to Q[X].
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(10.4.5) Definition. Let /X' be a smooth projective curve over k. We define the

genus g of X by g 1= I(W).
MM e memsnzae md a mscrrre sxidl mlac: man fomcembn st semlo Ton . ) [P L
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For methods with which one can determine the genus of a curve, we must refer

to textbooks on algebraic geometry. We mention one formula without proof, the
so-called Pliicker formula.

g

(10.4.6) Theorem. If X is a nonsingular projective curve of degree d in P2, then

g=3s{d-1d-12.

S

So the curve of Example 10.4.3 has genus 1 and by the definition of genus,
L(W) = k, so regular differentials on A’ are scalar multiples of the differential & of
Example 10.4.3.

A a 3T

in accordance with our treatment of local behavior of a differential w. Let P be a
point on X, t a local parameter at P and w = f dt the local representation of w.
The function f can be written as ) . a;¢'. We define the residue Resz{w) of  in the
cnmaznd I dm bnn Fnm sseno 4 I avrammmda 2% FMhovn e sbecnezr e shln nlenleeens o A o o ul
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of the residue does not depend on the choice of the local parameter ¢.

One of the basic results in the theory of algebraic curves is known as the “residue
theorem”. We only state the theorem.

(10.4.7) Theorem. If w is a differential on a smooth projective curve X, then

Z Resp(w) = 0.

PeX

§10.5. The Riemann-Roch Theorem

The following famous theorem, known as the Riemann-Roch theorem is not only a
central result in algebraic geometry with applications in other areas, but it is also the
key to the new results in coding theory.

(10.5.1) Theorem. Let D be a divisor on a smooth projective curve of genus g.
Then, for any canonical divisor W

D) —I(W —D)=deg(D)—g+1.

We donot give the (quite complicated) proof. The theorem allows us to determine
the degree of canonical divisors.
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(10.5.2) Corollary. For a canonical divisor W, we have deg(W) = 2g — 2.

ProOF. Everywhere regular functions on a projective curve are constant, i.e.
L) = k, 30 1(0) = 1. Substimte D = W in Theorem 10.5.1 and the resnlt

g
=)
£
7]
g
=]
v
)
=h
=
=
o
=
5
=
Lh
EI .

(W - 2Q) = 0. By Theorem 10 5 1, we havel(ZQ) = 2
At first, Theorem 10.5.1 does not look too useful. However, Corollary 10.5.2
provides us with a means to use it successfully.

(D) = deg(D) — g + 1.

Proor. By Corollary 10.5.2, deg(W — D) < 0, so by Theorem 10.3.6(i),
IW—-D)=0. U
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xaMPLE. Consider the code of Theorem iv.£,10,. vyvo CINOCQ ui€ ainie

plane in a projective plane and consider the rational functions on the curve defined
by G. By Bézout’s theorem, this curve intersects the line at infinity, 1. e. the line
defined by z = 0, in m points. These are the possible poles of our rational functions,

each with order at most I, So, in the terminology of Definition 10.3.5, we have a
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space of rational functions, defined by a divisor D of degree Im. By the Pliicker
formula (10.4.6), the curve defined by G has genus equal to (”;1 ) Ifl >m—2we
may apply Carollary 10.5.3 and we find the same result as from Theorem 10.2.16.
The term /(W — D) in Theorem 10.5.1 can be interpreted in terms of differentials.
We introduce a generalization of Definition 10.3.5 for differentials.
(10.5.5) Definition, Let D be a divisor on a curve X', We define
QD) :={w e QX) : (w) — D>*=0}

and we denote dim,2(D) by §(D), called the index of speciality of D.
The connection with functions is established by the following theorem.
(10.5.6) Theorem. §(D) = (W — D).

Proor. If W = (w), we define alinearmap¢ : L(W —D) — Q(D)byo(f) = fo.
This is clearly an isomorphism. O

(10.5.7) ExampLe. If we take D = 0, then by Definition 10.4.5 there are exactly
g hinearly independent regular differentials on a curve X. So the differential of
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Example 10.4.2 is the only regular differential on X (up to a constant factor) as was

already observed after Theorem 10.4.6.

§10.6. Codes from Algebraic Curves

shall apply the theorems of the previous sections. A few adaptations are necessary,
since e. g. the space £(D) will not be considered over an algebraically closed field
but over F,. All that we need to know is that Theorem 10.5.1 remains true. In a
number of examples this wilt be obvious from the basis of £(D) (a basis over the
closure k, consisting of polynomials over F,).

Let X be a non-singular projective curve over F,. We shall define two kinds
of algebraic geometry codes from &'. The first kind generalizes Reed-Solomon
codes, the second kind generahzes Goppa codes In the followmg, Pl, Pz, R

18 some other divisor that has support disjoint from D. A]though it is not necessary
to do so, we shall make more restrictions on &, namely that the support of G also
consists of rational points and furthermore

(10.6.1) 2g — 2 < deg(G) < n.

(10.6.2) Definition. The linear code C(D, G) of length n over F, is the image of

the linear map « : £L(G) — [ defined by a{f) := (f(P)), f(Po), ..., F(Pn)).
Codes of this kind are called “geometric generalized RS codes”.

(10.6.3) Theorem. The code C{D, G) has dimension k = deg(G) — g+ 1 and
minimum distance d > n — deg(G).

Proor. (i) If f belongs to the kernel of «, then f € £(G — D) and by Theorem
10.3.6(3), this implies f = 0. The result follows from (10.6.1) and Corollary 10.5.3.

(i) If a( ) has weight 4, then there are n — d points P;, say P, Pu, Y
for which f(P;) = 0. Therefore f € L(G — E), where E = P, +...+ P, _,.
Hence deg(G) —n+d = 0. )

Note the analogy with the proof of Theorem 10.2.16.

(10.6.4) ExampLE. Let X be the projective line over F,. Take G := mQ where
Q is the point (1:0), n = g, P, = (; : 1), where F, = {o,, 3, ..., , ;1. Then, if
m =k — 1, we see that C(D, G) is the extended Recd Solomon code as described
in §6.8.

(10.6.5) ExampLE. Let X’ be the curve of Examples 10.2.13 and 10.3.7, G .= 20,
where Q@ :=(0:1:1). Wetake n = 8 (so D is the sum of the remaining rational
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points). The coordinates are given by

Q P P, P P, Ps P, P P
x 0 ¢ 0 1 o a 1 o «
y i o« @ 0 0 0 1 1 1
z 1 1 1 1 1 1 O 0O O

where @ = 1 + «. We saw in Example 10.3.7 that 1 and x/(y + z) are a basis of
L£(20) over k and hence also over [F,. This leads to the following generator matrix

for C(D, G):
(1 1 1 1\

o @ a «)
By Theorem 10.6.2, the minimum distance is at least 6 and of course, one immedi-
ately sees from the generator mairix thatd = 6.

We now come to the second class of algebraic geometry codes. We shall call
these codes “geometric Goppa codes”.

(10.6.6) Definition. The linear code C*(D, G) of length n over [, is the image of
the linear map o* : (G — D) — [} defined by

a*(n) := (Resp, (n), Resp, (), ..., Resp, (n)).

The parameters are given by the following theorem.

(10.6.7) Theorem. The code C*(D, G) has dimension k* = n — deg(G) +g — 1
and minimum distance d* > deg(G) — 2g + 2.

Proor. Just as in Theorem 10.6.3, these assertions are direct consequences of Theo-
rem 10.5.1 (Riemann-Roch), using Theorem 10.5.5 (making the connection between
the dimension of Q(G) and /(W — G)) and Corollary 10.5.2 (stating that the degree
of a canonical divisor 1s 2g — 2). L]
(10.6.8) Exampre. Consider the projective line over F . Let P; := (y; : 1), where
¥: (0 < i <n—1)are as in Definition 9.2.4. We define D := Py+ P+ ...+ P,
and G := (g) where g(x, y) is the homogeneous form of the Goppa polynomial g(z)
of (9.2.4). Then the Goppa code I'(L, g) of (9.2.4) 1s the subfield subcode (over
[F,) of the geometric Goppa code C*(D, G). We observed in §9.2 that this code is a
subcode of the dual of a generalized Reed-Solomon code. This is a special case of

the following theorem.
(10.6.9) Theorem The codes C(D, G) and C*(D, G) are dual codes.

Proor. From Theorem 10.6.3 and Theorem 10.6.7 we know that £k 4+ k&* = n. So
it suffices to take a word from each code and show that the inner product of the
two words is 0. Let f € L£(G), n € Q(G — D). By Definitions 10.6.2 and
10.6.6, the differential fn has no poles except possibly poles of order 1 in the points
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P, Py, ..., P, The residue of fn in P, is equal to f(P;)Ress (n). By Theorem

10.4.7, the sum of the residues of f7 over all the poles (i.e. over the points P;) is
equal to zero. Hence we have

0= Z F(P)Resp () = (@(f). a* (). O

Several authors prefer the codes C*(D, G) over geometric RS codes but the

nonexperts in algebraic geometry probably feel more at home with polynomials
than with differentials. In [73] it is shown that the codes C(D, G) suffice to get
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methods. These use parity checks, so one needs a generator matrix for the dual
code.

In the next paragraph, we treat several examples of geometric codes. Itis already
clear that we find some good codes. E.g. from Theorem 10.6.3 we see that such
codes over a curve of genus O (the projective line) are MDS codes (cf. §5.1). In fact,
Theorem 10.6.3 says thatd > n — k + 1 — g, so if g is small, we are close to the

Singleton bound (cf. (5.2.2)).

§10.7. Some Geometric Codes

We know that to find good codes, we must find long codes. To use the methods
from algebraic geometry, it is necessary to find rational points on a given curve. The
number of these is a bound on the length of the code. A central problem in algebraic
geometry is finding bounds for the number of rational points on a variety. In order
to appreciate some of the examples in this paragraph, we mention without proof the
Hasse-Weil bound.

(10.7.1) Theorem. Let X' be a curve of genus g over F,. If N,(X') denotes the
number of rational points on X, then

We first give an example that does not yield anything new.

(10.7.2) ExamrLe. Let X be the projective line over Fm. Letn 1= g™ — 1. We
define Py := (0 : 1), Py := (1 : 0) and we define the divisor D as Z" P;, where

D+ 82+ 1Y {1l = § =Y WadafineaT - =P LLED =0 anm
GO iy = R, WO OO AT T Ly T Vg e T, . \Ll»lupxa

a primitive nth root of unity.) By Theorem 10.5.1, £({G) has dimension a +b+1
and one immediately sces that the functions (x/y)’, —a < i < b form a basis of
L(G). Consider the code C(D, G). A generator matrix for this code has as rows
(B, B¥,..., B") with —a < i < b. One easily checks that (¢,,¢;,...,¢,) 1s a

™ T /nf\f

codeword in C{DD, G) iff Z_, . c;i(B) =0foraill witha <! < n — b. It follows
that C(D, G) is aReed- Solornon code. The subfield subcode with coordinates in [,
is a BCH code.
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(10.7.3) ExampLE. In this example we consider codes from Hermitian curves. Let

g = r* =2'. A Hermitian curve X in [P? over [, is defined by the equation

(10.7.4) X4yt 4 2 =0,

By Theorem 10.4.6, the genus g of X equals 7r(r — 1) = 3(g¢ — ,/q). We shall first
show that A has the maximal number of rational points, i.e. by Theorem 10.7.1
exactly 1 4 qf rational pomts If in (10 7. 4) one of the coordmates is 0, then

whlch has r+ 1 solutlons in [F Th1s shows that X has 3(r + 1) pomts w1th xyz = 0.
If xyz 0, we may take z = 1 and y any element in [} such that y'*' &£ 1. For
each choice of y, there are r 4 1 solutions x. This yields (r — 2)(r + 1)* pairs (x, y).
It follows that X has 3(r + 1) + (r — 2)(r + 1)* = 1 + g./q rational points. (We

. .
hao nra fAr Atha thanm 71
remark that this calculation could have been made for other pr imes than 2. N

We take G .= m(Q, where 0 := (0:1: 1)andg — /g <m < g./q. The
code C(D, G) over [, haslength n = ¢q. /g, dimension k = m — g+ 1, and distance
d>n—m. To see how good these codes are, we take as example q= 16 A basis

4i + 5j < m will do the job. First, observe that there arem —S5=m-~—g + 1 palrs
(#, j) satisfying these conditions. The functions x/(y + z) and y/(y + z) can be
treated in exactly the same way as in Example 10.2.13, showing that f; ; has a pole
of order 4i + 57 in Q. Hence, these functions are independent. Therefore, the code

ad Than~adie rthar oot 1 T oatiie teur 4ty gat gppea 1-3an ~F
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the quality of this code. Suppose that we intend to send a long message (say 10°
bits) over a channel with an error probability p, = 0.01 (quite a bad channel). We

compare coding using a rate % Reed-Solomon code over F ¢ with using C(D, G),

m ) 3 N Ai 7
j— A = +
where we take m = 37 to also have rate 5. In this case, C(D, G) has distance 27.

The RS code has word length 16 (so 64 bits) and distance 9. If a word is received
incorrectly, we assume that all the bits are wrong when we count the number of
errors. For the RS code, the error probability after decoding is roughly 3 - 107*
(indeed a nice improvement); however, for the code C(D, G), the error probability
after decoding is less than 2 - 1077, In this example, it is important to keep in mind
that we are fixing the alphabet (in this case [F¢). If we compare the code C(D, G),
for which the words are strings of 256 bits, with a rate % RS code over [F5s (words are

160 bits long), the latter will come close in performance (error probability 2 - 107%)

RPC Arada nvar [F frrnedoe nea TRA hite lamal arfo hattar frmarol.]
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1077),
One could also compare our code with a binary BCH code of length 255 and

rate about ‘ . The BCH code wins when we are concemed with random errors. If
we are ncn‘u‘r a burstv channel, then the code (D GY can handle burcte nf lenoth
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up to 46 bits (which influence at most 13 letters of a codeword) while the BCH code
would fail completely. Although one could argue about the question which of these
comparisons really says something, it was this example (used by the author) that
convinced several engineers, who believed ﬁrmly that RS codes were the only useful
codes for thlll, to look more elusely at codes from al algcm raic gEOI‘ﬂELi"y' This has led
to nice results on decoding, a problem we neglect in this book, but clearly central to

applications.

=
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(10.7.4) ExampLE. Let X be the Klein quartic over Fs of Example 10.2.12. By

Theorem 10.4.6, the genus is 3. By Theorem 10.7.1, X’ can have at most 25 rational
points and as we saw in Example 10.2.12, it has 24 rational points; (in fact, this

is optimal by an improvement of Theorem 10.7.1, due to J.-P.Serre [99]). Let

Q := (0:0: 1) and let D be the sum of the other 23 rational points, G := 10Q.
From Theorem 10.6.3, we find that C(D, () has dimension 10 — g+ 1 = R and
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minimum distance d > 23 — 10 = 13. We now concatenate thlS code w1th the
,3,21 si 1 s. ymbols in codewords o ,
are elements of [F; which we interpret as column vectors of length 3 over [, and then
we adjoin the parity check. The resulting code C is a binary [92, 24, 26] code. The
punctured code, a [91, 24, 25] code (constructed by A. M. Barg et al. [82] in 1987)
set a new world record for codes with n = 91, d = 25. Several other codes of this

kind are given in the same paper.

(10.7.5) ExampLE. We show how to construct a generator matrix for the code of the
previous example. We consider the functions y/z, z/x, and x/y. The points where

these functions can have zerosorpolesare P, ;= (1 : 0:0), P, == (0:1:0), and
Q = (0 : 0: 1). Since the line with equation y = 0 (in affine coordinates) is not a
tangent at O of the curve with affine equation x°’y + y* + x = 0, we see that y/z is

a local parameter in O (an idea that has been used in earlier examples). Similarly,
z/x is a local parameter in P, and x/y is a local parameter in P,. We analyze the

behavior of y/z in P, and P;. In P, we have

=) e
2 \x/ x3+y¥’
so y/z has a zero with multiplicity 2 in P,. Similarly in P, we have

y (N Y+

z k;} y?
so P, is a pole of order 3 for the function y/z. Therefore (2) = 2P, —3P,+ Q. Inthe
same way one calculates (£) = P, + 2P, — 30 and (;i) = =3P, + P, +20. From
these divisors, we can deduce that the functions (z/x) (y/x)’ with0 < 3i 42} < 10,
0 < j<2arein E(lOQ) We thus have eight functions in £(10Q) with poles
in 5_,; of order O J,J u,r,o 7, and 10 respé‘:Cuvr.'ly Hence un‘:y‘ aie muep€ﬁucnl and
since /(10Q) = 8, they are a basis of £(10Q). By substituting the coordinates of

the rational points of X in these functions, we find the 8 by 23 generator matrix of
the code.

(10.7.6) Exameie. Let F, = {0, 1, o, @}, where «* = o + 1 = @. Consider the
curve X over [, given by the equation x*y -+ @y*z -+ @z*x = 0. This is a nonsingular
curve with genus 1. Its nine rational points are given by

P P P P P P O O O
x 1 0 0 1 1 1 « 1 1
y 0 1 0 o a« 1 1 « 1
z 0 0 1 o o 1 1 1 o
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let D ;= PP+ P+ ...+ Ps, G := 2Q, + Q,. We claim that the functions
x/(x+y+&z), y/(x+y+&z),&z/(x 4+ y +&z) are a basis of L(G). To see this,
note that the numerators in these fractions are not 0 in Q, and Q, and that the line

— o A

with cquauuu Xry +oz = Omeets X in 0, and is tangent to X in Q.. Dy Theorem
10.6.2, the code C(D, G) of length 6 has minimum distance at least 3. However,
the code is in fact an MDS code, namely the hexacode of §4.2.

§10.8. Improvement of the Gilbert-Varshamov Bound

We fix the alphabet F,. We consider codes C(D, G) as defined in §10.6, with a

P D ral ‘II.. al- .
curve X that has n 4 1 rational puuub 2L, P, ..., P, 0. Wetadke G = m(Q with

2g — 2 < m < n. We define y(X) := g/n. It was shown by Tsfasman, Vlidut,
and Zink [99] that there exists a sequence of curves X such that the corresponding
geometric codes are a sequence of codes that yield an improvement of Theorem

(10.8.1) Theorem. Let g be a prime power and a square. There exists a sequence
of curves X; over F, (i € N) such that X; has n; 1 1 rational points, genus g;, where
n, —> ooasi —» oo, y(X&;) — (q‘i' - D l'=Yyfori - .

As we saw in Theorem 10.6.3, the corresponding codes C; := C(D, G) over X,
have rate R; = (m; — g; + 1)/n; and distance d; > n; — m;. So, with the notation
of §5.1, we have R, + 6, = 1 — y(A&.). From Theorem 10.8.1 we then find :

(10.8.2) Theorem. § +a(5) =1 7.

It is an elementary exercise in calculus to determine whether or not the straight
line 1n the (8, @) plane, defined by the equation § + @ = 1 — ¥, intersects the curve
of Theorem 5.1.9. For intersection, one finds ¢ > 43 and since ¢ must be a square,
we have an improvement of the Gilbert-Varshamov bound for ¢ > 49.

§10.9. Comments

The first interesting decoding methods were given in a paper by I. Justesen et al.
{91]. The ideas were generahzeu oy A.N. Snﬁi’ﬁuﬁgatuv and S.G. V}duui {9?]
Since then, the methods have been considerably improved (cf. [84]) and simplified
by G.-L. Feng et al. and several others. For these results we refer to the survey paper
[89].

As was mentioned in the introduction, many of the results presented in this
chapter can be explained, more or iess avoiding the deep theorems from algebraic
geometry. The ideas, due to G.-L. Feng et al. [85,86] were recast and can be found
in [90].
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that uses a purely algebralc approach by means of functlon ﬁelds

The improvement of the Gilbert-Varshamov bound ([81]) uses the theory of
modular curves. This 1s a central but very involved part of mathematics, much more
so than the Riemann-Roch theorem. It needs the theory of schemes, i. €. curves over

j - S, Ly
rings instead of fields, and the analytic and algebraic properties of curves.

The recent work of Garcia and Stichtenoth [87] gives an explicit description of

sequences of curves proving Theorem 10.8.1 by means of more moderate tools from
algebraic geometry.

§10.10. Problems

10.10.1. Consider the curve of Example 10.2.7. What is the behavior of the function x/z in
the point (1:0:0)?

10.10.2. Show that if the Klein quartic is singular ov

singular point.

10.10.3. Consider the parabola X' of Example 10.2.7 over F4. let g = (23 + xyz)/x%.
Determine the divisor of g.

10.10.4. Let & be the projective curve over the algebraic closure of F, defined by the equation
x*y + y*z + z*x = 0. Determine the divisor of f := x/z.

10.10.5. Show that the code of Example 10.7.6 is indeed equivalent to the hexacode.

10.10.6. Consider the curve of Example 10.7.4. What does the Riemann-Roch theorem say
about I(30)? Show that I(30Q) = 2.
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Asymptotically Good Algebraic Codes

§11.1. A Simple Nonconstructive Example
In the previous chapters we have described several constructions of codes. If
we considered these codes from the point of view of Chapter 5, we would be
in for a disappointment. The Hadamard codes of Section 4.1 have § = } and
if n — co their rate R tends to 0. For Hamming codes R tends to | but & tends
to 0. For BCH codes we also find é — 0 if we fix the rate. For all examples of
codes which we have treated, an explicitly defined sequence of these codes,
either has d 0 or R = 0.

As an introduction to the next section we shall now show that one can give
a simple algebraic definition which yields good codes. However, the definition
is not constructive and we are left at the point we reached with Theorem 2.2.3.
We shall describe binary codes with R = 1. Fix m and choose an element
2, € F,m. How this clement is to be chosen will be expiained below. We
interpret vectors a € 7' as elements of F,.. and define

C, = {(a, za){a e F'}.
Let 4 = 4, be given. If C, contains a nonzero word (a, aa) of weight < 2m4,
then this word uniquely determines « as the quotient (in F,..} of xa and a. It
- /2m\ . .
follows that at most ) ,,,, Ak ) ) choices of a will lead to a code C, which
I

has minimum distance < 2mi. Now we take i:= H™(} — (1/log m)). By
Theorem 1.4.5 the number of “bad” choices for a is 0(2™) (m — o). Therefore
for almost all choices of x we have

1 11
d > il .
2 2mi (2 logm)’
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o ng m—= nd taking
suitable choices for a,, we thus have a sequence of codes with rate 4 such that
the corresponding § satisfies

d=H"(3)+o(l)) (m- )

So this sequence meets the Gilbert bound (5.1.9). If we could give an explicit
way of choosing ., that would be a sensational result. For a long time there

was serious doubt whether it is at all possible to give an explicit algebraic
construction of a sequence of codes such that both the rate and d/n are
bounded away from zero. In 1972, J. Justesen [37] succeeded in doing this.
The essential idea is a variation of the construction described above. Instead
of one (difficuit to choose) value of «, all possible multipliers « occur within
one codeword. The average effect is nearly as good as one smart choice of a.

§11.2. Justesen Codes

The codes we shall describe are a generalization of concatenated codes which
were introduced by G. D. Forney [22] in 1966. The idea is to construct a code

n two steps by Qtﬂrtlng with a code C, and interpreting words of C, as

RiRL wARE ] o

symbols of a new alphabet with which C2 is constructed. We discuss this in
more detail. Let C, be a code over F;... The symbols c; of a codcword (€g, €15
» €4—1) Can be written as m-tuples over F;, i.e. ¢; = (¢;y, Cizy - .., i) (i = 0, 1,

, 1 — 1), where ¢; e F,. Such an m-tuple is the sequence nf in nrmqhnn
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symbols for a word in the so-called inner code C, . Let us consider the simplest
case where the rate is 1. Corresponding to ¢; = (¢;y, €;3, ..., ¢;,,) We have a
word of length 2m in the inner code.

The rate of the concatenated code is half of the rate of C,. Justesen’s idea
was to vary the inner code C,, i.e. to let the choice of C, depend on i. As in
the previous section, the inner codes are chosen in such a way that a word of

length 2m starts with the symbols of ¢;. For the outer code C, we take a

Reed-Solomon code.
The Aatnile Aftha ~Amaten
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Cl..

to infinity, we must have a mp]e constructlon for F,nm. We use T heorem
1.1.28. So take m = 2-3'"! and F,.. in the representation as F,[x] (mod g(x)),

where g(x) = x™ + x™? 4 1. The Reed-Solomon code C, which is our outer

rilawe (~Ff Qantinn A R trremia AF snfarmantian
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symbols (ig, i, ..., i,—;) 15 interpreted as the element iy + i, x + - +
im—1 X" ! € Fym. Take K successive m-tuples ag, 4,, ..., ag—, and form the
polynomial a{Z) i=ap + a,Z + --- + a_ IZ"'1 € F ...[Z] For j=1,2,.

2™ — 1 =: N, define j(x) by j{x) = Z,,O g;x'if Y ™t g2 is the binary rcprc-
sentation of j. Then j{x) runs through the nonzcro eiements of F,m. We
substitute these in a(Z) and thus obtain a sequence of N elements of F,... This

is a codeword in the linear code C,, which has rate K/N. Since a(Z) has
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degree < K — 1, it has at most K — 1 zeros, i.e. C, has minimum weight

D> N — K+ 1 (cf Section 6.8). This is a completely constructive way of
producing a sequence of Reed-Solomon codes. We proceed in a similar way
to form the inner codes. If ¢; is the jih symbol in a codeword of the outer code
(still in the representation as polynomial over F,;) we replace it by (c;, j(x)c;),
where multiplication is again to be taken mod g(x). Finally, we interpret this
as a 2m-tuple of elements of F,.

(11.2.1)Definition. Let m = 2- 3", N = 2™ — 1. K will be chosen in a suitable
way below; D = N + 1 — K. The binary code with word length n:=n,, =
2mN defined above will be denoted by €,,. It is called a Justesen code. The
dimension of %,, is k := mK and the rate is 1 K/N.

In our analysis of €, we use the same idea as in Section 11.1, namely the

fact that a nonzero 2m-tuple (c;, j(x)c;) occurring in a codeword of €, deter-
mines the value of j.

(11.2.2) Lemma. Let y € (0, 1), d € (0, 1). Let (M,), . n be a sequence of natural

numbers with the property M; 271 =y + o(1) (L - ). Let W be the sum of

F4 LR e f = O Liis 2%

the weights of M, distinct words in F¥. Then

W~ oT 29— (5 4 p(IV]
Tr iy l“ AV 1 V\‘.’J

H

Proor. For L sufficiently large we define

Hence

F

W {ML - ¥ (“)} AL > AL{M, — 2M-t/e )
= A2y + o(l)} = pL29{H™ () + o))}, (L-c). [

We choose arate R,0 < R < 1. The number X in (11.2.1) is taken to be the
minimal value for which R, := $K/N = R. This ensures that the sequence of
codes €,, obtained by taking / =1, 2, ...in (11.2.1)has rate R, -+ R ({ -» 0}
What about the minimum distance of €,,? A nonzero word in the outer code

haoo wataht at lancst AT _F Lt _ N

| ¥ e ) whlslll Al Ieedol IY 4% T 1 = irF.
Furthermore

11 7 2N AT £ | . L. %4 | A LY A Ny A

\l1l.4.2} N — AT 1 2~ — A= N — Lﬂm}

@™ — 1){1 = 2R + o(1)},  (m— ).
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(c; _}(X)C) in the corrCSpondmg codeword ¢ of €, and these must all be
different (by the remark following (11.2.1)). Apply Lemma 11.2.2 to estimate the
weight of ¢. Wetake L =2m, 8 = 5,y =1 —-2Rand M, = D. By (11.2.3) the
conditions of the lemma are satisfied. Hence

w(e) > (1 — 2R)-2m-2"{H(3) + o(1}}, (m— ).

Therefore

We have proved the following theorem.

(11.2.4)Theorem. Let 0 < R < 3. The Justesen codes €,, defined above have
word length n = 2m(2™ — 1), rate R,, and minimum distance d,,, where

() R, = R, (m—= 0},
(i) lim inf d,,/n > (1 — 2R)H™(1).
m—rao

Using the notation of Chapter 5, we now have § > (1 — 2R)H™(3) for
values of R less than 4. For the first time & does not tend to O for n — .

A slight modification of the previous construction is necessary to achieve
rates larger than 3, Let 0 < s < m (we shall choose s later). Consider %,
For every 2m-tuple (c;, j(x)c;) in a codeword ¢ we delete the last s symbols.
The resulting code 1s denoted by %, .. Let R be fixed, 0 < R < 1. Given
m and s, we choose for K the minimal integer such that R, = [m/
(2m — s)1(K/N) = R (this is possible if m{(2m — s) = R). In the proof of
Theorem 11.2.4 we used the fact that a codeword ¢ contained at least D distinct

nonzero 2m-tuples (c;, j(x)c;). By truncating, we have obtained (2m — s5)-tuples
which are no longer necessarily distinct but each possibie value will occur at most
2° times. So there are at least

MQ=IHN—JQ=2“N(1—2ﬁ;SRmJ

distinct {2m — s)-tuples in a codeword ¢ of 4, ,
Again we apply Lemma 11.2.2, this time with

Leom—s §=125 -, _2"=S
L. ’ m

Let d,, ; be the minimum distance of 4,, ,. We find

d, > (1 _2m- SR)(Zm —s)2"'"{H"(m = s) + o(l)}2’, (m = o).
m _ _ 2m —s _

Therefore




§11.2. Justesen Codes 171

_ s\ )
WWW’;__S)HU)J\, (m — w).

We must now find a choice of s which produces the best result. Let r be
fixed, re (3, 1). Take s:= |[m(2r — 1)/r] + 1. If r = R then we also have m/
(2m — s) > R. From (11.2.5) we find

(11.2.7) R =

t o v (1 Fre—y4 YN
I +log{l — H (1 —r)j

If the solution of (11.2.7) is less than %, we take r = % instead, The following
theorem summarizes this construction.

(11.2.8) Theorem. Let0 < R < 1 and let r be the maximum of 1 and the solution
of (11.2.7). Let s = \(m{(2r — 1)/r| + 1.

The Justesen codes €,, , have word length n, rate R,, ., and minimum distance
d, s, where

R
lim infd”'" > (1 — __) H=(1—-nr.
n r

In Figure 3 we compare the Justesen codes with the Gilbert bound. Forr > £,
the curve is the envelope of the lines given by (11.2.6).

1din

0.5 \
Wbm H (-8R

Theorem 11.2.4

H™ (0.5)
H (1 -7

Theorem 11.2.8

Figure 3
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§11.3. Comments

7

The extremely simple idea of Section 11.1 has received very little attention up to
now. A more serious attempt may lead to the discovery of explicit choices of a
which yield relatively good codes (but see Problem 11.4.1). The discovery of the

Justesen codes was one of the major developments in coding theory in the 1970s.

§11.4. Problems

11.4.1. Let F5s be represented as in Section 11.2. Show that there is no value of « for the
construction os Section ii.1 such that C, has distance greater than 3. Compare

with other known [12, k] codes with rate > 1.

11.4.2. Let a(x) be a polynomial of degree < k. A [2k, k] binary doubie circulant code
consists of all words of the form (a(x), @(x)a(x)), where multiplication is mod (x* —

. i ethe is invariant under a sim eous cyclicshifto VES
of the words. Construct a {12, 6] code of this type which has d = 4,
11.4.3. Use the truncation method of Section 11.2 to show that the idea of Section 11.1
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In this chapter we shall give a brief introduction to codes which are used to
check and correct arithmetic operations performed by a computer. Opera-
tions are now ordinary arithmetic and as a result the theory is quite different
from the preceding chapters. However, there is in several places a similarity
to the theory of cyclic codes. In some cases we shall leave the details of proofs
to the reader. For further information on this area see the references men-
tioned in Section 12.4.

The arithmetic operations in this chapter are carried out with numbers
represented in the number system with base r {r e N, r = 2). For practical
purposes the binary case (r = 2} and the decimal case {r = 10) are the most
important. The first thing we have to do is to find a suitable distance function.
In the previous chapters we have used Hamming distance but that is not a
suitable distance function for the present purposes. One error in an addition
can cause many incorrect digits in the answer because of carry. We need a

distance function that corresponds to arithmetical errors in the same way as
Hamming distance corresponds to misprints in words.

(12.1.1) Definition. The arithmetic weight w(x) of an integer x is the minimal
t > 0 such that thereis a rcprescntation

n(:l

x

n'[\4
!Z’l

with integers a;, n({) for which |q,| < r, n(z) =0(=12,...,t). The arithmetic
distance d(x, y) of two integers is defined by

d(x, y) := w{x — y).
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- v checked-that-this is indeed ) 2 ATitt - di .
translation mvariant, 1.e. d(x, y) = d{x + z, y 4+ z). This is not true for the
Hamming distance of two integers {in r-ary representation). Arithmetic dis-
tance is at most equal to the Hamming distance.

We shall consider codes C of the form

C:={ANINeZ,0< N < B},

where A and B are fixed positive integers. Such codes are called AN codes.
These codes are used in the following way. Suppose we wish to add two
integers N, and N, (both positive and small compared to B). These are
encoded as AN, and AN, and then these two integers are added. Let § be the
sum. If no errors have been made, then we find N, + N, by dividing by 4. If
S is not divisible by 4, i.e. errors have been made, we look for the code word
ANj, such that d(S, AN,) is minimal. The most likely value of N, + N, is N,.
In order to be able to correct all possible patterns of at most e errors it is again
{ suffici hat 1l e C 1 . i 5 L
before, that is equivalent to requiring that C has minimum weight at least
2e + 1. These properties of the code C are based on the resemblance of C to
the subgroup H := {AN|N € Z} of Z. It would not be a good idea to take H
as our code because H has minimum weight <2 (see Problem 12.5.1).

In order to avoid this difficulty we shall consider so-called modular AN
codes. Define m := AB. Now we can consider C as a subgroup of Z/mZ. This
makes it necessary to modify our distance function. Consider the elements of
Z/mZ as vertices of a graph T, and let x (mod m) and x’ (mod m) be joined by

an edea iff

fro o] v!.l Ill

x—x'=+c'r {(modm)

for some integers ¢, jwithO < c<r,j>0.

(12.1.2) Definition. The modular distance d,(x, y} of two integers x and y
(rnnmdered as elements of 7.-’1117\ is the distance of x and y in the o graph I

The modular weight w,(x) of x is d,,(x, 0). Note that

s 's Y] Fa

Wp{x) = min{w(y)jy € Z, y = x (mod m}}.
Although we now have achieved a strong resemblance to linear codes there

is another difficulty. Not every choice of m makes good sense. For example,

s taalra w . 3 A L R __7 — 28 tharm hu 127 1 Nwa hava 4 O AL —
11 V¥ LMW ‘_"J’J"l‘-‘J,U"'_ f,l\-! f"_JJ, bilAld Uy\lhlb}wblla'\ru Wy T —

1 because 4 = 3'° (mod 35). But it is not very realistic to consider errors in
the position corresponding to 3'° when adding integers less than 35. Re-
stricting j in the definition of edges of I, also has drawbacks. It turns out that
we get an acceptable theory if we take m =r" — 1 (ne Z, n > 2). In practice
this is also a good choice because many computers do arithmetic operations
mod 2" — 1.

Every integer x has a unique representation
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a—1 .
= i r—1)
i=0

with¢c;€{0,1,...,r— 1} (0 < i < n), not ail ¢, = 0. Hence Z/(r* — 1) can be
mterpreted as the set of nonzero words of length n over the alphabet {0,
1,...,r — 1}. Of course it would not have been necessary to exclude 0 if we
had taken m = r", which is again a practical choice because many computers
work mod 2". However, we cannot expect good codes forr =2, m = 2", We
would have to take A = 2* for some k and then the code C would consist of
the integers 3 723 ¢;2, ¢; € {0, 1}, for which ¢y = ¢, = *- = ¢,_; = 0. An inte-
ger x (mod B} would be encoded by adding & Os to its representation. This
would serve no purpose. For arbitrary r there are similar objections. The
reader should convince himself that in the case AR =m=r"— 1 modular

IRV AE L PSR4 0Y

distance is a natural function for arithmetic in Z/mZ and that C behaves as a
linear code. In fact we have an even stronger analogy with earlier chapters.

of Z/(r — 1) Such acodeisa prmCIpal 1deal in thls ring, i.e. there are mtegers
A and B such that AB=r" -1 and

C={AN|NeZ,0< N < B}.

As in Section 6.1, we call 4 the generator of C. Dy’ now it will not be

surprising to the reader that we are primarily interested in codes C with a
large rate (=(1/n) log, B) and a large minimum distance. The terminology of
(12.1.3) 1s in accordance with (6.1.1). If x € C then rX (mod r" — 1) is also a

sl o ae A lanaioa £ 0 a grae o fevren A ol stmdand o agalis ol fr A
COaCWOord oedause © is a group ana rx\moa r” — 1.; 1§ IIGECAa a uy\..u\.r Sniiv o1

x (both represented in base r). The integer B can be compared with the check
polynomial of a cyclic code.

The idea of negacyclic codes can be generalized in the same way by taking
m = r" + | and then considering subgroups of Z/mZ.

{12.1.4) ExampLE. Letr =2, n=11. Then m = " — | = 2047. We take 4 =
23, B = 89. We obtain the cyclic AN code consisting of 8% muitiples of 23 up
to 2047. There are 22 ways to make one error, corresponding to the integers

2J’ (0 < j < 11). These are exactly the integers mod 23 excent 0. Therefore

every integer in [1,2047] has modular distance O or ! to exactly one code-
word. This cyclic AN code is therefore perfect. It is a generalization of the

Hamming codes.

81272 The Arithm
NEAIEAT il

In order to be able to construct AN codes that correct more than one error we need
an easy way to calculate the arithmetic or modular weight of an integer.
By Definition 12.1.1, every integer x can be written as
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wix)

x= 3 anr"™
i=1
with integers a;, n(i), jaj <r,n{i) =0 (i =1, ..., w(x)). It is easy to find ex-
amples which show that this representation is not unique. We shall put
some more restrictions on the coeflicients which will make the representation
unique.

(12.2.1) Definition. Let be Z, ce Z, |b| < r, |c| < r. The pair (b, ¢) is called
admissible if one of the following holds

(111) bc <0 and lbl > |c|

Note that if r = 2 we must have possibility (i). Therefore a representation
x =Y 24¢;2" in which all pairs {¢;,,, ¢;) are admissible has no two adjacent

nonzero digits. This led to the name nonadjacent form (N AF) which we now
generalize.

(12.2.2) Definition. A representation

x= 3 ¢

¥

ir1s

]

with ¢; e Z, |¢;| < rfor all i and ¢; = 0 for all large i is called an NAF for x if
for every i > 0 the pair (¢;,,, ¢;) s admissible.

(12.2.3) Theorem. Every integer x has exactly one NAF. If this is

irs

18
Ty

X =

It
=]

then

wix) = |

iy

ili >0,

E

¢; =0}

PROOF.

(a) Suppose x is represented as Z?":Obirf, |b;| < r. Let i be the minimal value
such that the pair (b, b;) 1s not admissible. W.lo.g. b; > 0 (otherwise
consider —x). Replace b, by b/ := b, — r and replace b,,,; by b/,, =
b,y +1(f b, + 1 =r we carry forward). If b, +1 > 0 we either have
bi..,=0o0r bb,, < O and b/,, = b, + 1 >r~ b, =|b]| since (b;,,, b;)
was not admissible. If b;,, < Othen b/, = 0orb/b/,,>0and b/ + b/,,|=
r—b,—b,, — 1 <rbecause —b,,, < b, as(b,,, b)is not admissibie. So
(b{+,, b!) i1s admissible and one checks in the same way that (b/, b;_,} 1s

o iies s Mo sl Ll

admissible. In this way we can construct an NAF and in the proCess ine
weight of the representation does not increase.
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(b} It remains to show that the NAF 1S unique. Supposc some x has two

such representations x = Y 2qcr' = 2o¢ir’. Wlo.g we may assume
Co # Co» Co > 0. Therefore co = cq — r. It follows that ¢ie{c, + 1 —r,
ci+ e +i+rhiici=c +1—rthenc, >0 and hence ¢y + ¢, <
r — 1. Since cgc] > 0 we must have —cg — ¢y <rjier—co+r~c, —
! <r,s0c¢o + ¢; >r— 1, a contradiction. In the same way the assump-
tions ¢} =c¢, + 1 resp.c; = ¢, + 1 + rlead to a contradiction. Thercforc

— the NAF is unique. O

A direct way to find the NAF of an integer x is provided in the next
theorem.

(12.2.4) Theorem. Let x € Z, x > 0. Let the r-ary representations of (r + 1)x
and x be

a0 } oD .

r+x=Yar, x=3 br.
=0 j=0

with a;, bje {0,1,...,r — 1} for all j and a; = b; =0 for j sufficiently large.

Then the NAF for x is

Proor. We calculate the numbers a; by adding } 2, b7/ and ) 50 br/*'. Let
the carry sequence be ¢y, £,, ..., 50 £, = 0 and ¢; := |(¢;_ . + b,_, + b)jr) We

fiend tlnt ~ [ i T ;e Aasmmtn - I 'S O
111d Liialk “l = Gl -1 "I- Ul -1 "T' Ul - ﬁlf 11 WC QCliowc ul —_ U‘ Uy (.u I.I.I.Ul.l L[ —_— c'l -1 't"'
b;_; — ¢;r. We must now check whether (¢;,,,¢;) is an adm1551ble pair. That

lc;ivy + ;| < ris a trivial consequence of the definition of ¢;. Suppose ¢; > 0,
¢iv; < 0. Then ¢ = 0. We then have ¢; = ¢, + b, ¢;+y = b; — r and the
condition |c;,, | > ic;lis equivalent to g,y + b;—, + b; < r,1.e. 5; = 0. The final
case is similar. O

The NAF for x provides us with a simple estimate for x as shown by the
next theorem.

(12.2.5) Theorem. If we denote the maximal value of i for which ¢, #0 in an
NAF for x by i(x) and define i(0) := — 1 then

AL/ loarn

=1 + L .
FYUL iCayve L

P JE iy i [ Y A WYy T U
I CUILIPICGITLY TIVINCHLAL Y PIUUL L LG Jeaucl.

From Section 12.1, it will be clear that we must now generalize these ideas in
some way to modular representations. Wetakem =r" — 1, n > 2,
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(12:2.6) Definition. 4 .
n—1
x= Y ¢r' (modm),
=0
with ¢;€ Z, |c;| < r is called a CNAF (=cyclic NAF) for x if (¢;+;,¢) 15
admissible fori =0, 1,...,n — ; here ¢, :== ¢,.

The next two theorems of CNAF’s are straightforward generalizations of The-
orem 12.2.3 and can be obtained from this theorem or by using Theorem 12.2.4.
A littie care is necessary because of the exception, but the reader shouid have no
difficulty proving the theorems.

(12.2.7) Theorem. Every integer x has a CNAF mod m; this CNAF is unique
except if

r+1)x=0%x (modm)

in which case there are two CNAFs for x (mod m). If x = ) 725 ¢;r' (mod m) is
a CNAF for x then

wa(x) = [{il0 <i<n ¢ 0}

(12.2.8) Theorem. If {r + 1}x = 0 %= x(mod m)} then w,(x) = nexceptif n=0
(mod 2) and x = +[m/(r + 1)](mod m), in which case w_(x) = $n.

If we have an NAF for x for which ¢,_, = 0 then the additional require-

ment for this to be a CNAF is satisfied. Therefore Theorem 12.2.5 implies the
following theorem.

(12.2.9) Theorem. An integer x has a CNAF withc,_;, =0 iff thereisaye Z
with x = y (mod m), |y| < m/(r + 1).

integer.

(12.2.10) Theorem. For x € Z we have w,(x) = |{jl0 < j < n, thereisaye Z
with

mi(r + 1) <y <mr/(r + 1), y = rix (mod m)}.

Proor. Clearly a CNAF for rx is a cyclic shift of a CNAF for x, i.e. w,(rx) =

W(x). Suppose x = 3 723 ¢;r' (mod m)is a CNAF and ¢, ;_; = 0. Then r'x has
a CNAF with 0 as coefficient of r"~!. By Theorem 12.2.9 this is the case if
there is a y with y = r’x {(mod m) and [y] < m/(r + 1). Since the modular
welight is the number of nonzero coefficients, the assertion now foliows uniess
we are in one of the exceptional cases of Theorem 12.2.7, but then the result follows
from Theorem 12.2.8. O
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~§12.3.  Mandelbaum-Barrows Codes

We now introduce a class of cyclic multiple-error-correcting AN codes which
is a generalization of codes introduced by J. T. Barrows and D. Mandelbaum.
We first need a theorem on modular weights in cyclic AN codes.

(123.1) Ti Let C.o Zjir — 1) ¢ e AN code wit

and let

Then

.

cult. We leave it to the reader. We must determine the number of nonzero
coefficients ¢; ,, where 0 < i <n — 1 and x € C, which we consider as ele-
ments of a matrix. Since C is cyclic every column of this matrix has the

same number of zeros. So the number to be determined is equal to

wlf v A = N1! Rvu Thanram 17 70 wa havans -2 N tharaicn vw = 7
f‘llh : \J]bu 1 X r ot Uj’] JJJ A LATLWRIL L orvinel gy W lm'b‘lu 1 x r o Ulll LAG-L W i3 (4 y Ly 7 2

with y = x (mod " — 1), m/(r + 1) < y < mrf(r + 1). Since x has the form AN
(mod r" — 1) (0 < N < B), we must have B/(r + 1) < N < Br{(r + 1). 0

The expression in Theorem 12.3.1 is nearly equal to n|C{[(r — 1)/(r + 1)]
and hence the theorem resembles our earlier result

. wix) =

xeC

for a linear code C (cf. (3.7.5)).
The next theorem introduces the generalized Mandelbaum—Barrows codes
and shows that these codes are equidistant.

(12.3.2) Theorem. Let B be a prime number that does not divide r with the
property that (Z/BZ) is generated by the elements r and — 1. Let n be a posi-
tive integer with r" = 1 (mod B) and let A :={(r" — 1)/B. Then the code C
Z/(r" — 1) generated by A is an equidistant code with distance

(1))
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— n

Our assumptions imply that there is a j such that N = +r/(mod B). Therefore
Wnix) = w,(+r/A) = wo{A). This shows that C is equidistant and then the

constant weight follows from Theorem 12.3.1. O
Thsa Mandalloiiem nn rroins mevdan sarraceanAd ta s n.-n-'n -n.n] mrrmlin Andas
1 M IYAANIMVLIVOUL l.l. LAl LYWW Y L ULD DUI.I.\-B}JUIIU R/ Ll LiBlELIMLICEY 'u-y\.rllb WAL D
M; of Section 6.2. Notice that these codes have word length at least 1(B — 1

which is large with respect to the number of codewords which is B. So, for
practical purposes these codes do not seem to be important.

S127 4 CArr e
¥id.eq O

The reader interested in more information about arithmetic codes is referred
to W. W. PetersonandE. J. Weldon (53],7). L. Massey and O. N. Garcia [48],
- ve been
studled extcnswely We refer to M. Goto [28], M. Goto and T. Fukumara
[29], and V. M. Gritsenko [31]. A perfect single error-correcting cyclic AN
code with r = 10 or r = 2* (k > 1) does not exist.
For more details about the NAF and CNAF we refer to W. E. Clark and
J. J. Liang [14], [15]. References for binary Mandelbaum—-Barrows codes can
be found in [48]. There is a class of cyclic AN codes which has some resem-
blance to BCH codes. These can be found in C. L. Chen, R. T. Chien and
C. K. L [12].
For more information about perfect arithmetic codes we refer to a contri-

bution with that title by H. W, Lenstra in the Séminaire Delange—Pisot—
Poitou (Théorie des Nombres, 1977/78).

A s R AW mEwFLE 4

§12.5. Problems

12.5.1. Prove that min{w(AN)|N e Z, N # 0} < 2 forevery A e Z if w is as defined in

171 1Y)
\ia-1.1)-

12.5.2. Generalize (10.1.4). Find an example with r = 3.

12.5.3. Consider ternary representations mod 3° ~ 1. Find a CNAF for 455 using the
method of the proof of Theorem 12.2.3..

12.5.4. Determine the words of the Mandelbaum-~ Barrows code with B = 11, r = 3,
n=>3,
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Convolutional Codes
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he codes which we consider in this chapter are quite different from
previous chapters. They are not block codes, 1.e, the words do
constant length. Aithough there are analogies and connections to block codes,
there is one big difference, namely that the mathematical theory of convolu-
tional codes is not well developed. This is one of the reasons that mathemati-
cians find it difficult to become interested in these codes.

However, in our introduction we gave communication with satellites as
one of the most impressive examples of the use of coding theory and at present
one of the main tools used in this area is convolutional coding! Therefore a
short introduction to the subject seems appropriate. For a comparison of
block and convolutional codes we refer to [51, Section 11.4]. After the intro-
ductory sections we treat a few of the more mathematical aspects of the

subject. The main area of research of investigators of these codes is the
reduction of decodine rnmn]ﬂ-mtu We do not touch on these aspects and we

uction of decoding complex not touch on these aspects ar
must refer the interested reader to the literature.

In this chapter we assume that the alphabet is binary. The generalization
to F, is straightforward. Every introduction to convolutional coding seems to
use thE_! same example. Adding one more instance to the list might strengthen

the belief of some students that no other examples exist, but nevertheless we
shall use this canonical example.

In Figure 4 we demonstrate the encoding device for our code. The three
squares are storage elements (flip-flops) which can be in one of two possible

ctatac which wa dannta hu N and 1 The cvectam ic cavernad hy an avtarnal
DAL LW Y 1lA%Wrll ¥ w WAWELLS LW AT 7O AN} P A LI JJQ‘DA[I 103 EU'UL LA B UJ EAEL Sl L RINRS

clock which produces a sngnal every t, seconds (for the sake of simplicity we
choose our unit of time such that ¢, = 1). The effect of this signal is that the

::‘
t:l"
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Figure 4

contents of the ﬂ!n flons move in the direction of the arrows t
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element of this so-called shift register. The elements @ indicate mod 2 adders.
For every puise of the clock, we see that the contents of the first and third
flip-flop are added and then leave the encoder via the stream Tj,. The informa-
tion to be processed enters on the left as stream I,. Notice that the first
flip-flop is actually superfluous since it only serves to divide the input stream
into three directions. The second and third element of the shift register show
the essential difference with block coding. They are memory elements which
see to it that at time ¢ the input signals fort — 1 and ¢t — 2 are stili available.
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streams T, and T, are interlaced to produce one output stream. So, if we start
with{0 O 0)in the register and have a message stream consisting of 1 followed

by Os, we see that the register first changes to (1 0 0)and yields the output
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output (1 1)and then back to the original state and a stream of 0s.

An efficient way of describing the action of this encoder is given by the state
diagram of Figure 5. Here the contents of the second and third flip-flop are
called the state of the register. We connect two states by a solid edge if the
register goes from one to the other by an input 0. Similarly a dashed edge
corresponds to an input 1. Along these edges we indicate in brackets the two
outputs at Ty, T;. An input stream [, corresponds to a walk through the
graph of Figure 5.

A mathematical description of this encoding procedure can be given as
follows. Describe the input stream iy, iy, i,, ... by the formal power series
Io(x):=Ig + i;x + i,x* + --- with coefficients in F,. Similarly describe the

o
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outputs at T, and T, by power sertes Ty(x) resp. T, (x). We synchronize time
in such a way that first input corresponds to first output. Then it is clear that
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To(x) = (1 + x2)o(x),

To(0) = (1 + x + ) o(x).

and
[ S P LW

In our example we had input [,(x) = 1 and the output sequence
11 01 11 00 00 ..
which is

Gx)=1+x+x>+x*+ x5 =1+ (x4 x(1 +(x?) + (xH)?).
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(13.1.1) T(x) = G{x)I(x).

For obvious reasons we say that the rate of this convolutional code is 3. As

al tha ~nda e tha aat Al mAcoilhia gannamans T3 Th

usuau, tne ¢oace is tne set ol poOssioic uutput SeQUENCes 1 (X} 1d he po
G(x) 1s sometimes called the generator polynomial of this code.

In the description given above, the information symbol i, entering the shift
register influences six of the symbols of the transmitted sequence. This num-
ber is calied the constraint length of the code. The constraint length equals
1 + degree G{x). The reader is warned that there are at least two other
definitions of constraint length used by other authors (one of these is: the
length of the shift register, e.g. in Figure 4 this is 3). In our example we say
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encoder must remember two previous inputs to generate output when i, is
presented.

We know that one of the most important numbers connected to a block
code C is its minimum distance. For convolutional cedes there is a similar
concept which again plays a central réle in the study of decoding. This
number is called the free distance of the code and is defined to be the
minimum weight of all nonzero output sequences. In the example treated
above, this free distance is the weight of G(x), i.e. 5.

In a compietely analogous way, we now introduce rate 1/n convolutional

codes. We have one sequence of information symbols given by the series I,(x).

There are n sequences | |Pn\nn0 the shift rpmetpr To(x), Ti(x), ..., T 1(3.;\ where

each encoded sequence T(x) is obtained by multiplymg I4(x) by some polyno-
mial G,(x). The transmitted sequence T(x} is D '3 x' T;(x"). As before, we
define I(x) := I,(x") and G(x) := Z?;é x'G,(x"). Then T(x) = G(x}I(x).

determines whether the code is good or bad, whatever we decide this to mean.
Let us now describe a situation that is obviously bad. Suppose that the
input stream [,(x) contains an infinite number of 1s but that the correspond-
ing output stream T(x) has only finitely many Is. If the channel accidentally
makes errors in the position of these 1s the resulting all-zero output stream
will be interpreted by the recetver as coming from input [j(x) = 0. Therefore
a finite number of channel errors has then caused an infinite number of
decoding errors! Such a code is called a catastroph:c code. There 1S an easy

wav tn aymid that tha rata |/, mualiti
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requiring that

s
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BC.AUgiX), Uyix), ..., b, 41X)) = 1.

It is well known that this implies that there are polynomials a{x) (i = 0,
..., n — 1) such that Y 123 a,(x)G{(x) = 1. From this we find

n—1 n—1t
ZO a(x")T(x") = ), ai(x")G(x")(x") = I(x),
i= i=0
ie. the input can be determined from the output and furthermore a finite

number of errors in T(x) cannot cause an infinite number of decoding errors.
There are two ways of describing the generalization to rate k/n codes.
We now have k shift registers with input streams Io(x), veos B 1(x). There

arc n Ul.llpl.ll streams 1,[)5} [l = U, R (. lj, WIIEIC .II(JC) lb :Gfmeu lelﬂg d.l.l.
the shift registers. We first use the method which was used above. Therefore
we now need kn polynomials Gy(x) (=0, ..., k~1; j=0, ..., n— 1) to
describe the situation. We have

k-1
T{x) = ’Z) Gy{(x}1;(x).

It is no longer possible to describe the encoding with one generator polyno-
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mial. We prefer the following way of describing rate k/n convolutional codes

which makes them into block codes over a suitably chosen ficld.

Let # be the quotient field of F,{x], i.e. the field of all Laurent series of the
form

Lax, (reZaek)

We consider the k bits entering the different shift registers at time ¢ as a

vector in F5. This means that the input sequences are interpreted as a vec-
tor in &F* (like in Chapter 3 the vectors are row vectors). We now consider
the kn polynomials G;{(x} as the clements of a generator matrix G. Of course
the n output sequences can be seen as an element of #". This leads to the

following definition.

(13.1.2) Definition. A rate k/n binary convolutional code C is a k-dimensional
subspace of # " which has a basis of k vectors from F[x]". These basis vectors
are the rows of G.

Although this shows some analogy to block codes we are hiding the
difficuity by using % and furthermore the restriction on the elements of G is
quite severe. In practice all messages are finite and we can assume that there
is silence for ¢t < 0. This means that we do not really need # and can do every-
thing with F[x]. Since this is not a field, there will be other difficulties for that
approach.

When discussing block codes, we pointed out that for a given code there
are several choices of G, some of which may make it easier to analyze C. The
same situation occurs for convolutional codes. For such a treatment of gener-
ator matrices we refer the reader to [23]. This is one of the few examples
of a mathematical analysis of convolutional codes.

§13.2. Decoding of Convolutional Codes

There are several algorithms used in practice for decoding convolutional
codes. They are more or less similar and all mathematically not very deep.
[n fact they resemble the decoding of block codes by simply comparing a
received word with all codewords. Since the codewords of a convolutional
code are infinitely long this comparison has to be truncated, i.e, one only
considers the first ! symbols of the received message. After the comparison
one decides on say the first information symbol and then repeats the proce-

.............

uuu: J19)} buu:.cqucul. byll!bulb WC bl‘.t‘:lbll I..I.IC bU‘deCd V&lﬂrbt utyurur"l.m in
more detail using the example of Figures 4 and 5.

Suppose the received message is 10 00 0t 10 00.... The diagram of
Figure 6 shows the possible states at time ¢ = 0, 1, 2, 3, the arrows showing
the path through Figure 5. Four of the lines in Figure 6 are dashed and these
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will be omitted in the next figure. To see why, let us assume that at ¢t = 3
the register is in the state 00, One way to get in this state is the horizontal
path which would correspond to output 060 00 00... and hence this as-
sumption means that at ¢ = 3 two errors have already been made. If, on the
other hand the state 00 was reached via 10 and 01, there would have been
output 11 01 11 and so there are already three errors. We do not know
whether the register is in state 00 but if it is, then the horizontal path is the
more likely way of having gotten there. Furthermore this path involves two
errors. Let us extend Figure 6 to Figure 7 where t = 4 and t = 5 are included

and we also show the number of errors involved in reaching the different
stages.

Of course it can happen that there are two equally likely ways to reach a
certain state in which case one chooses one of them and discards the other.

Coarracnanding ta aach tims and ctatea Ana can lict tha mact lilkealy Aantnnte
ULLLOPAVIILLE LU LAl v dEMW Jldlv, ViR Lall L3av LV 3IUSL LAy Uulpius

corresponding to that assumption. In this way Figure 7 would lead to the
following list of cutputs.
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t=1 t=2 t=3 t =4 t=135
00 00 00 00 00 00 00 00 00 00 00 00 0C 00 00 00
state 01 — 11 1 00 11 01 11 10 01 10 00 00 11 10 10
10 it 00 11 00 00 11 00 00 00 11 1t 10 01 10 00
11 — i1 10 i1 10 Ot 00 00 11 10 00 00 t1 10 01

Clearly at t = 5 a maximum likelihood decision would be that the register
1s in state 10, that two errors have been made and that the output was 11 10
01 10 00. The corresponding input can be found from Figure 7. The easiest
way is to mark each edge with the input symbol corresponding to that edge.
We leave it to the reader to invent several ways of continuing after truncation.
It is clear that we have come upon problems of computing time and storage.
A mathematically more interesting question 1s to calculate the effect of an
incorrect decision on subsequent decoding decisions and also to find out what

is the influence of the free distance of the code on the decoding accuracy. For
a more detailed treatment of these questions we refer to [51].

§13.3. Ar
for Some Convolutional Codes

Analog of the Gilbert Bound

We consider a special class of rate k/n convolutional codes, namely those
defined as follows. Take the k input sequences I,ix}, ..., I,.,(x) and form

ﬂx) =

Tr

x I{x").

T

i}

This means that every n-tuple of information bits ends in n — k& zeros. Take
a generator polynomial G(x) and define output by Tix) = G(x)I(x). This
corresponds to a special choice of the polynomials Gy{x) in our earlier
description of rate k/n codes. As before, we define the constraint length to be
I+ 1=1 + degree G(x) and we consider only codes for which I + 1 < mn,
where m is fixed. We are interested in the free distance d, of such codes.
Clearly d, <1 + 1. By shifting the time scale, we see that in studying the
encoding procedure we may make the restriction that iy = t; = G(0) = 1.
For every initial mn-tuple 1 = 1, t,, ..., f.,—; Of an output sequence and
every initial mk-tuple | = ig, iy, ..., im-1, there is exactly one polynomial
G(x) of degree < mn such that these initial sequences are in accordance with

T{x) = G{x)I{x). We wish to exclude all initial segments of T{x) which have
- : mk—1 -z ( mm = 1
weight < 4. This means that we exclude at most 2™} ¢ : poly-
i

nomials with G(0) = 1 as generators. Hence there is a choice of G(x) yielding
at least the required free distance if
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d Lmn
Z k ) < 2mn

Taking 4 = Amn and writing R := k/n, we have from Theorem 1.4.5(i) by
taking logarithms -

1 d (mn‘) )
alogi;} i <HG)<1-R
if
i< H™(1-R).

Here 4 is the quotient of the free distance and the constraint length. This
bound should be compared with Theorem 5.1.9.

§13.4. Construction of Convolutional Codes
from Cyclic Block Codes

Since quite a lot is known about block codes, it is not surprising that several

anthAare hawva niead wAaad ilaasl Amrdac ta Annmote st Aannausalinntiannl aadac warth
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desirable properties. In this section we describe one of the methods which
were developed.

We use the notation of Section 4.5.

(13.4.1) Lemma. Let g = 2", P(x) e F,[x], ce F\{0},n >0, N > 0. Then

r—1
i - TR OUR Y. L Y s IRV Y RVIRn ¥, §
WL AN Ly )= /L WA NRA Ly}
i=0
n—1

w((x — )"} w(P(x) mod(x" — ¢)). Ol
REMARK. It is not difficult to prove Lemma 13.4.1 for an arbitrary field F,.

AARNIEEAP nf 1 f“\..?{‘]l./' Nelao n{' I an,‘l “ (ﬂdd\
Fonlruilr Uj @ Lyl Ll Ly o i ieis

over !F (g = 2") with minimum distance d, and let h(x) be the parity check
pol ynomlal and d, the minimum distance of the code with generator h(x). Then
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the convolutional code with rate 1/(2m) over the same field and with generator

f = g ~"Rs
PRrOOF.

(i) Write G(x) = Y 275" x/(G,(x™))2. If we consider the representation of the
convolutional codc with nolvnomials Golx), ..., sz (x) as in Section
13.1, then for any 1rreducnble common factor A(x) hese polynomials

isodd an
g(x) divides x" — 1. So the code is noncatastrophic.
(i) Consider an information sequence I,(x). We have T(x} = G(x)Iy(x2™) =

G(x){Io(x™))?, and therefore T(x) has the form

withi >0, j = 0, P(x) # 0, P(x) not divisible by g(x) or h(x). We consider
two cases:
(a) Leti > j. Then we find

T(x) = P(x)(g(x)P¢ P (x" — ¥
n Lemma 13.4.1 vields

and th
w(T(x)) = w((x — 1)¥) w(P(x}{g(x))*" """ mod(x" — 1)) > 4,

since the second factor concerns a codeword in the cyclic code gene-
rated by g(x).
(b} Leti < j. We then find

TixY = P{xMh(x}y2U—0=1g,nm _ 1y2itl
LAy A AIATRLAY S > 5

and then Lemma 13.4.1 yields w(T(x}} > 2d, because
w({x — D))= 2. O

Before looking at more examples of this argument, we discuss a bound for
the free distance. Consider a convolutional code with rate i/n over F, with
generator polynomial G(x} = > "] x'G,(x"). Let

L := n(l + max{degree G(x)|0 <i<n — 1}).

(Some authors call L the constraint length.) It is obvious that

k + 1 for block codes. We shall now describe a construction due to J.
Justesen [38] of convolutional codes which meet this bound. First we show
that this requirement yields a bound on L.

{13.4.3) Lemma. If a raie i/n convolutional code over F, has af = L then
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Proor. If d, = L then each of the polynomials G/(x)} has weight L/n. We

consider input sequences /y(x) = 1 + ax where a runs through F\ {0} and

determine the average weight w of the corresponding encoded sequences.
We find

YW 111iNS

Fo- 17 ¥ S WG + )

‘I

=@y ’qu—l)+(%—1)(q—2);

Since W = L, we must have L < ng.

]
=

casy exampie of a convolutional code with d, = L.

By using a method similar to the one of Theorem 13.4.2, we can give a

(13.4.4) EXaMPLE. Let @ be a primitive element of F,. Let g, (x) := x? + ax +
2 2 5 —_

dg,(x) are relatively prime. We consider a rate 1 convolutional code C over F,
with generator polynomial

G{x) = g,(x*) + xg,(x?).

The code is noncatastrophic. We write an information sequence as I(x) =
I(x){x* — 1)¥ where N is maximal. By Lemma 13.4.1 we have

w(T(x)}) = w(g,(x}o(x)) + w(g2(x)Lp(x))

= wi(x — M) {w(g,(x)ip(x) mod{x® — 1)}

+ w(g1(x)Io(x) mod(x® ~ 1)}}.

Now, if I{x) is not a multiple of (x — 1)g,(x) or (x — 1)g,(x), then the BCH
bound shows that both terms in the second factor on the right are > 3.
If on the other hand Ij{x) is a multiple of (x — 1}g,(x), then both terms on
the right in the top line are even (because of the factor x — 1) and both are
positive. If the second one is 2, then the first one is at least 4, again by the
BCH bound. Therefore C has free distance at least 6. Since L = 6, we have
dy = L.

g To generalize the idea behind Theorem 13.4.2 in order to construct rate 3
codes over F, we consider polynomials of the form

g:(x) = (x — a™)(x — ™). (x — a™HI72),

I LY

where a is a primitive element of F,. We choose ¢,(x) and g,{(x) in such a
way that they both have degree l lnl and that they have no zeros in common.

~F N L3y ] @iase LRy vas

Then Gix):=g,(x*) + xgz(xz) generates a noncatastrophic convolutional
code C over F,. The two cyclic codes with generators g,(x) and g,(x) both
have minimum distance > 1 + | 39| = d. Let these codes have check polyno-
mials A {x) and h,(x). An information sequence [,(x) for C is written as
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Io(x) = (x*71 — 1) (k, (x))(ha(x)) (),

where p(x) is not a multiple of A,(x) or h,(x} and s or ¢ is 0. First assume that
s = t = (0. By Lemma 13.4.1 we have

w(T(x)) = w(g, (x)Lp(x)} + w(g(x)I5(x))

2 w((x — 1)w(p(x)g(x) mod(x*™" — 1))

w(T(x)) = w{(x*™" — 1) (h;(x))g, (x)p(x)) + w((x*™" — 1) (h,(x))’g,(x)p(x))
> w({(x — I)")w(p(x)(h, ()" mod(x?™" — 1))
+ wilx — 1)) w(p(x)(h,(x))’g,(x) mod(x?~" — 1))

>2+(g~13q])=2+2|3q] =2d

From the construction we have L = 2(1 + | 3¢]), so d, = L. These examples
illustrate that this is a good way to construct convolutional codes. The
method generalizes to rate 1/n. For details we refer to [38].

§13.5. Automorphisms of Convolutional Codes

We have seen, e.g., in the chapter on cyclic codes, that the requirement that
a code is invariant under a certain group of permutations can lead to interest-
ing developments. A lot nfﬂloohm!r methods could be introduced and several

good codes were found in this way. Therefore it is not surprising that attempts
have been made to do something similar for convolutional codes. We shall
sketch some of these ideas and define cyclic convolutional codes. We shall
not give many details but hope that the treatment will be sufficient for the
reader to decide whether he wishes to become interested in this area in which
case he is referred to the work of Ph. Piret (see [54], [55]). This work was recast by
C. Roos (see [59]). The ideas have led to some good codes and they are certainly
worth further research.

We consider a convolutional code as defined in (13.1.2). If we call such
a code cyclic if a simultaneous cyclic shift of the coefficients a; of x!
(a; € F3) leaves the code invariant, we do not get anything interesting. In
fact the code 1s simply a block code. This shows that it is already difficult
to define automorphisms in a sensible way. We do this as foliows. Let K be
the group of permutations acting on F}. Consider KZ, i.e. the set of all map-
pings ¢: Z — K, which we make into a group by defining ¢, ¢,(n =
@,(n@,(n). We shall write ¢, instead of ¢(n). Note that ¢, K. We then
define an action of ¢ on elements of " by
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(135D (p(i a,.x") = i o (a)x".

i=r

(13.5.2) Definition. If C is a convolutional code, then the set of all elements
© € K% such that ¢(C) = C is called the automorphism group of C.

From the definition of convolutional codes, it is obvious that multiplica-

tion by x leaves a code C invariant. So, if ¢ is an automorphism of C, then
@* = x"'@x is also an automorphism. Furthermore it is clear that if we

R e [, PRI S ) [ P

consider only the action on a fixed position, say only ¢;, we obtain a permuta-
tion group on ] which is the projection of the automorphism group on the
ith coordinate. By our remark above and the fact that ¢*(a;} = ¢, (a;), we
see that all projections are the same group. So it seems natural to try to
find codes for which this projection is the cyclic group. We shali do this
using the same algebraic approach as we did for biock codes. We introduce a
variabie z and identify F§ with F,[z] mod(z® — 1). Let & be an integer such

that (n,n) = 1 and let o be the automorphism of Fj defined by o: f(z) —»
f(z™). The elements of #" can now be written as Y =, a;x’ where a; = a/(2)
is a polynomial of degree < n (i € Z). In #” we define addition in the obvious
way and a multiplication (denoted by #) by

-

.3) Y axix) bxi =3 ) al{a)hxiti,
i 7 ™7

wn

(13.

Suppose we take the factor on the left to be z (i.e. a5 = z, a; = 0 for i # 0).
Then from (11.5.3) we find

(13.5.4) zxy bxi =Y (z7b)x"
J j

This means that the coefficient b; of x/ is shifted cyclicaily over #’/ (mod n)
positions. The main point of the definition above is that (#", +, *) is an
algebra which we denote by &/ (n, 7).

(13.5.5) Definition. A cyclic convolutional code (notation CCC) is a left ideal
in the algebra &#(n, =) which has a basis consisting of polynomials.

Observe that by (13.5.4), we now indeed have a group of automorphisms of
the code. This group has the cyclic group as its projection on any coordinate. The
difference with the trivial situation is the fact that the cyclic shifts are not the same
for every position. We give one example to show that we have a class of nontrivial

objects worth studying. We define arate % binary convolutional code with memory
one by the matrix G given by

1 1 _l

x x

[ 1 1 | I 1

(13.5.6) G = 1+x 1 1 x 1 |
0 1 I+x 1 x I+x x
0 X +

X x 1
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We shall now identify elements of F; with polynomials in F,[z] mod(z” — 1).

Writingz' — 1 = (1 4+ 2)(1 + z + 2)(1 + 22 + 2%) = my{z)m,(z)m,(z) we can
then abbreviate G as follows:

— —

m;m, ‘

maom m m
(13.5.7) G=| "0 |+f -°)

zmom;, z mc,ml |

_72mﬁm3_ [ 1_1

We claim that G is the generator matrix fora CCC in (7, —1). Sincen = —1
we have from (13.5.4)
(13.5.8) zx) cxt =Y (27Xt

i i

To show that the code is a CCC 1t is sufficient to consider the words (1000)G,
(0100)G, (0010)G, (0001)G and muitiply these on the left by z and then show
that the product is in the code. For the first three this is obvious from the

- form of (13.5.7) and from (13.5.8). For example,
«(0100)G = z+(mgm; + m3m, x)
= zmymy + z 'mym, x = (0010)G
Furthermore
z#(0001)G = z % (z2mgmy + 2" mim, x)
= z2’mymy + 2 mim x
= (1 + z2ymgm; + {1 + z25ym3m, x
= (0110)G.

The main point of Piret’s theory is to show that a CCC always has a generator
matrix with a “simple” form similar to (13.5.7). This makes it possible to
construct examples in a relatively easy way and then study their properties,
such as their free distance.

—
"

§13.6. Comments

Convolutional codes were introduced by P. Elias in 1955 (cf. [20]). There
has been quite a lot of controversy about the question whether convolutional
codes are “better” than block codes or not. Despite the lack of a deep mathe-
matical theory, convolutional codes are used successfully in practice. Many of
these codes were simply randomly chosen. For one of the deep space satellite
missions ([1]) a scheme was proposed that combined block codes and convolutional
codes. The idea was to take an information stream, divide it into blocks of twelve
bits, and code these blocks with the [24, 12] extended Golay code. The resulting
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stream would be input for a convolutional encoder. This is the same idea as in the
concatenated codes of Section 9.2.

For a connection between quasi-cyclic block codes and convolutional
codes we refer to a paper by G. Solomon and H. C. A. van Tilborg [66]. They
show, e.g. that the Golay code can be encoded and decoded convolutionally.

estimating the error pattern does not depend on the transmitted word. The
very successfully for convolutional codes. For more about this idea we refer
to a paper by J. P. M. Schalkwijk, A. J. Vinck, and K. A. Post [60]. Some
results concerning the error probability after decoding convolutional codes
can be found in [51, Section 9.3].

The most complete treatment of convolutional codes can be found in a
recent book by Ph. Piret [79].

§13.7. Problems

13.7.1. Suppose that in Figure 4 we remove the connection of the third flip-flop with
the adder for T,. Show that the resulting code is catastrophic.

13.7.2. Let g(x) be the generator polynomial of a cyclic code with minimum distance d.
As in Section 13.1 we take two polynomials Gy(x) and G,(x) to generate a rate
1/2 convolutional code. If we take these such that g(x)} = G,(x?) + xG,(x?)
then by (13.1.1) all encoded sequences are multiples of g(x). Give an example
where nevertheless the free distance is less than d. Check the result by con-

structing the encoder as in Figure 4.

1371 tarrming tha as dictancs AF tha £ aivan hw (12 8 T
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Chapter 2
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2.5.1. ( )q"p””" < {pg)""? ( )
Osk-(N,-‘z k o;t«:m k

= 2" (pgh¥? < (0.07).

2.5.2. There are 64 possible error patterns. We know that 8 of these lead to
3 correct information symbols after decoding. To analyse the remainder one
should realize that there are only 4 essentially different 3-tuples (s,, s,, 53).
Consider one possibility, €.g. (s;, 55, 53) = (1, 1, 0). This can be caused by
the error patterns (101011), (011101), (110000), (010011), (100101), (000110),
(111110) and of course by (001000} which is the most iikely one. Qur decision
is to assume that e_,, I. So here we obtain two correct information symbols
with probability p*q* + 2p*4* and we have one correct information symbol
with probability 2p*¢® + p°q.

By analysing the other cases in a similar way one finds as symbol error
probability

H22p%q* + 36p3q° + 24p*q® + 12p°q + 2p°)
= 4(22p* — 52p> + 48p* — 16p°).
In our example this is 0.000007 compared to 0.001 without coding.
2.5.3. Take as codewords all possible 8-tuples of the form
(@, as,a,, a,+a,, a,+a,, a,+a,, a;+a,+ ay)

This code is obtained by taking the eight words of the code of the previous
problem and adding an extra symbol which is the sum of the first 6 symbols.
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This has the effect {1 fisti 1 i differ i |
of places, i.e. d(x, y} > 4 for any two distinct codewords x, y.
The analysis of the error patterns is similar to the one which was treated
in Section 2.2. For {e,, e,, ..., e,) we find

Y
T &

There are 16 possible outcomes (s, s,, 53, 54)- Eight of these can be explained

Py ey

b_y ail CITOT patiern with no errors or one error. Of the remainder there are
seven, each of which can be explained by three different error patterns with
two errors, e.g. (s;, S;, S5, 5¢) = (1, 1, 0, 0) corresponds to {e,, e,, ..., €;)
being (0010001), (1100000) or (0001100). The most likely explanation of

3 L) 3

decoding is

q’ +79°p + 72°p* + ¢*p*.

, 1..e. the code is not much better than the previous

2.5.4. For the code using repetition of symbols the probability of correct
reception of a repeated symbol is 1 — p2. Therefore the code of length 6 with
codewords (a,, a,, as, a,, a,, a;) has probability (1 — p?)® = 0.97 of correct
recepiion. The code of Probiem 2.5.2 has the property that any two code-
words differ in three places and therefore two erasures can do no harm. In fact
an analysis of all possible erasure patterns with three erasures shows that 16
of these do no harm either. This leads to a probability (1 — p}*(1 + 3p +
6p* + 6p*) = 0.996 of correct reception. This is a remarkable improvement
considering the fact that the two codes are very similar.

VN EE Traot tha araciiras o8 rasao Tha irvaan nwwadirnts ans shaoamoaad ey ot svvact
e wd 8 Ll LG Wl Ll o L LD, L AF JIFIF =} Pl. LI LD L= \.,ua.|.15cu [ L LLIVUDL
2e, + &
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Z.2.0. REpPLace a tinC uy —1,ad vy +1. The two conditions (1) and ul) ifﬂply
that the images of codewords are orthogonal vectors in R'S. Hence |C} < 16. To
construct such a code, we need a Hadamard matrix of order 16 with six —1s in
every row. There is a well known construction. It yields a binary code that is most

ﬂﬂb‘l“r Aﬂﬂﬂﬂl\ﬂl" l\lt lIl‘I‘l“Iﬂh hl\Aﬂ 3 B nvu-'o [ ¥ ) A ‘\‘! A ﬂﬂ‘“ﬂ.ﬂ E AW s Yhaaue T n‘a-] s nn1‘.-—-
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put 1s in this row and in this column, except where they meet. In this way, we find
16 words of weight 6 that indeed pairwise have distance 8.

2.5.7. For any x, there are at most n/2 codewords that differ from x in two places.
If there exists a codeword that differs from x in exactly one place, then there are
at most (n — 2)/2 other codewords that differ from x in two places (because n is
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even). For any codeword ¢, there are exactly n words that differ from ¢ in one
place and () words that differ in two places.
Counting pairs (X, ¢) in two ways, we find

c1-(5) <1ci-n

-—ICI-(n+1))-—;-,

Chapter 3

3.8.1. By (3.1.6) we have Y 2, (n) = 2! for some integer .. This equation

reduces to (n + 1)(n* —n + 6) = 32" ie.(n+ ){(n+ 1)> = 3(n + 1) + 8}
=32 It n is divisible by en the second factor on the left is

divisible by 8 but not by 16, ie. it is 8 or 24 which yields a contradiction.
Therefore n 4+ 1 is a divisor of 24 Since n > 7 we see that n =7, 11, or 23

A% 2w ASRAL NS [ 3 L VLT e Laiadan

but n = 11 does not satisfy the equation. For n = 7 the code M = {0, 1} is
an example. For n = 23 see Section 4.2.

3.8.2. Let ceC, w(c) < n— k. There is a set of k positions where ¢ has a
coordinate equal to 0. Since C is systematic on these k positions we have
¢ = 0. Hence d > n — k. Given k positions, there are codewords which have
d — | zeros on these positions, ie. d < n — k + 1. In accordance with the
definition of separable given in Section 3.1 an [n, k, n — k + 1] code is
called a maximum distance separable code (MDS code).

3.83. Since C = C* every ce C has the property (¢, ¢) =0, i.e. w(c) is
even and hence (¢, 1> = 0. However, {1, 1) = ! since the word length 1is
odd. Therefore C*\ C is obtained by adding 1 to all the words of C.

3.8.4. |B,(x}{ =1+ 6 =7. Since 7|C| = 63 < 2° one might think that such
a code C exists. However, if such a C exists then by the pigeon hole prin-
ciple some 3-tuple of words of C would have the same symbols in the last
two positions. Omitting these symbols yields a binary code C’ with three
words of length 4 and minimum distance 3. W.l.o.g. one of these words is
0 and then the other two would have weight > 3 and hence distance < 2, a
contradiction.

3.8.5. By clementary linear algebra, for every i it is possible to find a basis
for C such that k — 1 basis vectors have a 0 in position { and the remaining
one has a 1. Hence exactly g*~! code words have a 0 in position i.

3.8.6. The even weight subcode of C is determined by adding the row 1 to

tha cuneity ahanly cvntwiv AF ™ 'T"L. e Aanrancan tha Afmanmaoinn r'-l-\n RSy P .
the pai 1y ¢hneck matrix ol L. 1118 Gecreases tne uuucumuu Or € coac oy

3.8.7. From the generator matrix we find force C

p-s

Ci+Ca+Cs=Cy+ca+cg=¢Ci+C+¢c3+ca+c;=0.
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Hence the syndromes

(51,52, 83) =(e, +e, +es,e5+e,+eg, e +e,+ey+e,+e),

b

a code word; by maximum likelihood decoding (b) has an error in position 7;

{c) has an error in position 1 or an error in position 2, so here we have a
choice.

for the three received words are resp. (0, 0, 0), (0, 0, 1), (1, 0, 1). Hence (a) is
=AM Fr AV Wy L Ly W iy ALl Sy 03

- P
G = (1, ady) 1s the generator matrix of the required code,

(i) If p = 3 (mod 4} we use the fact that not all the elements of |, are
squares and hence there is an « which is a square, say « = 82,
such that a + 1 is not a square, ie. @« + 1 = —y% Hence % +
y? = — 1. Then

[1 000 B v O 01
C - 6t 00 -y g 0 O
6 ot 0o o 0 B8 vy
0001t 0 0 —y 8
does the job
(ii1) If p = 2, see (3.3.3)
n—k 2~1-—k
3.8.9. R, = = - 1, as k — oo.

n 2k -1

o ey A, Z,,H) be the weight distributior of

Then Ay_, =0 and A, = Ay, + Ay, Since Y A,z%
H{A@) + A(—2)} and Y Ay 237 = {A(z) — A(—2)}, we ﬁnd
A(z) = {1 + 24(2) + (1 — 2)A(—2}}.

(il From (i) and (3.5.2) we find the weight enumerator of the extended
Hamming code of length n + 1 = 2“ to be

L
{20
[y
o
-
-
ﬂ
"D
g
o
X |
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gm

¥4

1{(1 + 2" + (1 =z} n

= " 1___ 2 (n+1))‘2‘
21 n+1 j+n+!( )

Now apply Theorem 3.5.3. The weight enumerator of the dual
codeis 1 + 2nz™*12 4 z**1 je. all the words of this code, except
0 and 1, have weight 271,

3.8.11. The error pattern i1s a nonzero codeword ¢. If w(c) =i then the
probability of this error pattern is p’(1 — p)*~". Therefore the probability of
an undetected error is (1 — p)"{—1 + A(p/(1 — p))}

3.8.12. Let G;(i = 1, 2) be a generator matrix of C; in standard form. Define
Aye R (1 i<k, I £j<k,)asfollows. The first k; rows of A;;are 0 except
for row i which is equal to the ith row of G; and similarly for the first k,
columns except for column j which is the transpose of the jth row of G,. It is
easy to see that this uniquely determines an element A; in &. The 4;; are k; k,
linearly independent elements of £ which generate the code C. If A € & has
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a nonzero row then this row has weight > d,, 1.e. A has at least 4, columns

with weight > d,. So C has minimum distance > d,d,. Infact equality holds.

3.8.13. The subcode on positions 1, 9 and 10 is the repetition code which is
peTfECt and :uug,xc-cuux \..uuct...uug, The subcode on the remaining sCVen
positions is the [7, 4] Hamming code which is also perfect. So we have a
unique way of correcting at most one error on each of these two subsets of

positions. C has minimum distance 3 and covering radius 2.

3.8.14. (i) Consider the assertion A, := “after 2* choices we have a linear
code and for i < k the word length increases after 2' steps™. For
k = 1 the assertion is true. Suppose A, is true for some value of k.

A e vaisaa A La halea W JEp asd LA RS% AL 20235 VeIlRA%

Consider the codeword ¢;x. The list of chosen words looks like

Co =0 0 ... 00 .. ©
A

Cokoly =% * 1 0 0

{€pums =% x ... % {1 ...
B{}

L Cax—y =+ = .. x 11 ... 1

where the words in B are obtained by adding c,«-: to the word

f 4 TIf & hao tha 4
Ol A. il €, Nas e same length as the words of B, since it is

lexicographically larger, ¢;« must be of the form e¢,u-: + X
where x has Os in the last positions. However d < d{c i~ + X,
Cox-s +¢)= d(x ¢;), where 0 < i < 2*7! shows that we should
ﬂdVC L,noS(:ﬁ X lﬂb[Cd'u ()l sz 1, d LOIllI'dUICUOD DO tnc lengtn
of the code increases when we choose c,x. Now suppose that
we have shown that ¢yey; =c +¢; for 0 <i < j (it is true for
i = Q). We have d(c,x + ¢, €3¢ + ¢;) = d(e}, ¢;) =2 d, d{eu +¢;,¢) =
d(c,«, ¢; + ¢;) = d since by the assumption on linearity ¢; + ¢; =
¢, for some v. This proves that c,. + ¢; is a possible choice for the
codeword ¢,u.;. The difficult part is to show that it is the least
choice. On the contrary, suppose the choice should be ¢,. + x
where ¢, + x < €5« + ¢; (we use < for the lexicographic order-
ing). By the induction hypothesis x > ¢;. These inequalities imply
that ¢;, X, and ¢, look like

¢ =*» ... « 0 aa, ... a0 00 ... 00O
X =% ... « { aa ... aq 0 0 ... 0 O
Ca=#* ... * 1 =% . x1.

The assumption that c,« + x is an admissible choice implies (again
using linearity)

die + X, ¢,+¢)>d, for0<i<2b

l.e.
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dicn +x +¢,¢)>4d forQ < i < 2*

But ¢,. + X + ¢; < €, €. the choice for €,« was not the least, a
contradiction. This completes the proof by induction of assertion
A,.

(ii) Now consider the case d = 3. Let n, be the length of the code after
2% vectors have been chosen. So n, = 3. Let C, be the linear code
length n, which has distance > 2 to every word of C,. So (x, 1} is
a possible choice for e,.. This gives us n,,, = n, + 1. If, on the
other hand, C, is perfect it is clear that n,,, = n, + 2 and ¢,« =
(1,0,0,...,0, 1, 1). The assertion B, := “the length n, equals 2° + i
fork=2"—a—1+iand 1 <i< 2°" now follows by induction
from the observations above. In each of the sequences mentioned
in B, the final code is a Hamming code.

3.8.15. If C is a [15,8,5] code, then C must contain a word of weight 5 because
otherwise we could puncture to a [14,8,5] code which cannot exist because 2°
spheres of radius 2 contain too many points (see (5.2.7)). Take such a word as first

wrrzr nF 0 conarater matmy  Tin tha nacifinane whara thie raw hae rvarae tha nthar
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seven rows generate a [10,7] code which must have minimum distance 3. Again,
this violates the sphere-packing condition. (See the part on residual codes in §4.4.)

Chapter 4

48.1. By (4.5.6) Z(1, m) has dimension m + 1, i.e. it contains 2"** words
of length n = 2™. By Theorem 4.5.9 each of the 2(2™ — 1) hyperplanes of
AG(m, 2) yields a codeword of Z(1, m), i.e. except for 0 and 1 every codeword
is the characteristic function of a hyperplane. Take 0 and the codewords
corresponding to hyperplanes through the origin. Replace 0 by —1 in each
of these codewords. Since two hyperplanes intersect in 2™~! points the n
vectors are pairwise orthogonal.

4.83.2. Since the code is perfect every word of weight 3 in Fi! has distance
2 to a codeword of weight 5. Therefore A5 = 23(}})/(3) = 132. Denote the
5-set corresponding to x by B(x). Suppose x and y ¢ {x, 2x} are codewords of
weight 5 such that |B(x) » B(y)| > 3. Then w(x + y) + w(2x + y) < 8 which
is impossible because x + y and 2x + y are codewords. Therefore the 66 sets
B(x) cover 66-(3) = (%) 4-subsets, i.e. all 4-subsets.

4.8.3. By Theorem 1.3.8 any two rows of 4 have distance 6 and after a
permutation of symbols they are (111, 111, 000, 00) and (111, 000, 111, 00).
Any other row of A then must be of type (100, 110, 110, 10) or
{110, 100, 100, 11). Consider the 66 words x; resp. x; + x,. We have
d(x;, X; + X,) = w(x,) = 6, d(x,, X; + X} = w(x; + x; + x;,} = 4 or 8 by the
above standard representation. Finally, we have d{x; + x;, x, + x;) > 4 by

two applications of the above standard form (for any triple x;, X;, x;). Since



Hints and Sclutions to Problems 201

dix, 1 + y) =11 — d(x, v), adding the complements of the 66 words to the

set decreases the minimum distance to 3.

4.84. Apply the construction of Section 4.1 to the Paley matrix of order 17.
4.8.5. a) Show that the subcode corresponds to the subcode of the hexacode
generated by (1, w, 1, w, |, w).
b} As in the proof for 4,,, show that the subcode has dimension 4.
c} Show thatd = 4.

486. Let C be an (n, M, d) code, d even. Puncture C. The new code
is an (n — 1, M, d — 1) code (if we puncture in a suitable way). The code C is
an (n, M, d) code because all words in C’ have even weight.

4.8.7. If R and § are 3 by 3 matrices then write

R § § §
S R § S
= M(R, S).
S R S (R, S)
S s s R
The rows of 4, B, C, D have weight 5, 6, §, 9, respectively. For two words a,
b we have d(a, b) = w(a) + w(b) — 2<{a, b} wher (a, b) s calculated in Z.

By block multiplication we find
AAT = M@I + J,20), BBT = M(3I + 3J,3J - I),
= M(5J,3J) —2B7,  a matrix with entries 3 or 1.

It fg!lomc fhai two rows of A resn. B have dictance A or Q and that
AL LYYAS LWLS¥YY O W TR IUI’Y ¥ WALSLELLLIWYY W A LALINEG MW

A and a row of B have distance 5 or 9. In the same way the fact
remaining distances are at least 5 follows from

=(4J - 21,47 - 21,47 - 21,4J - 2I),
= (4J, 4J, 4J, 4J),

T 1T N npT 1
- L7 Ly 7

a row of
- V ra
t

hat

CCT =4J + 41, DDT

31 + 6J,DCT = 6J.

(This construction is due to J. H. van Lint, cf. [43].)

4.8.8. From Theorem 1.3.8 we have AT = -4 and AAT = 111 It follows
that over F; any two rows of G have inner product 0, ie. G generates a
[24, 12] self-dual code C. Therefore {4 I) is also a generator matrix for
C. So, when looking for words of minimum weight we may assume that the
first twelve positions contribute at most one half of the total weight. Since C
is self-dual all weights are divisible by 3. Every row of G has weight 1 + 11 =
12 and a linear combination of two rows has weight 2 + 7 = 9 (this follows
from AA” = 111). Therefore a linear combination of three rows has weight
at least 3 + (11 — 7) and hence at least 9. This shows that C has minimum
weight 9.
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codes Thesc codcs were mtroduced by V. Pless (1972} The words of ﬁxed
weight in such codes often yield t-designs (even with ¢ = 5) as in Problem
4.8.2. The interested reader is referred to [ 11].

489. Let 1, vy, ..., v, , be the basis vectors of (1, m). From (4.5.3)(i)
and (ii) we then see that 1 =(1, 1), wy = (vg, Vo) --s Woet = (Vurys Yemot b

— w_=1(0, 1) are the basis vectors (of length 27!} of (1, m + 1). There-
fore a basis vector of Z(r + 1, m + 1) of the form w; ... w; is of type (u, u) with
u a basis vector of Z(r + 1, m) if w,, does not occur in the product and it is of
type (0, v), where v is a basis vector of &(r, m) if w,, does occur in the product.
If d(r, m) 1s the minimum distance of Q(r, m) then from the (u u+ v) construc-

tion we know that d uu + 1, m+ 1) = uuuiz.uir + 1, m;, utr, m” and then

Theorem 4.5.7 follows by induction.

4.8.10. (1) We consider the vectors x* and ¢* = +a, as vectors in R”. Clearly
{x*, ¢*> =n — 2d(x, ¢). We may assume that the a, are chosen
in such a way that (x*, a,> is positive (I <i < n). The vectfors
x* and all a; have length \/~ Therefore Y 7., {(x*, a;)>? = n?,

hananices tha mazrarioa marthagamal Tt FAallawge tlant thaea 2o
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an i such that (x*, a,> is at least \/_

(i1) Now let m = 2k and ¢ € %(1, m). By definition ¢ is the list of values
of a linear function on FJ and d(x, ¢) is therefore the number of
points in ' where the sum of x,x;, + x3x, + -*- + X,,_; x5, and
this linear function takes the value 1. Observe that

X Xy + X3Xg ¥ Xgp g X + Xy

=X Xyt XaXg + 4 Xy Xy

where X, := x, + 1. Therefore a sequence of coordinate transfor-
mations X; := x; + 1 (for F5") changes the sum into an expression
equivalent to x;x, + - - + ka ,ka or to its complcmem (1f the
term 1 occurs in the linear function). We count the points x, for
which x,;x, + - + X5, X5, = 1. Call this number n,. Clearly
n, = 3n,_, +{22*7% —~ n,), from which we find n, = 2271 — 2*71,

This can also be calculated by considering the vector (x,, xa, ..

"3

X55—; ). If this is not 0 then 2*7! choices for (x,, x4, ..., x2) are
possible. Hence n, = (2% — 1)2*°1.
4811, Since the ternarv Hamming code is self-dual it follows that C is

vl R LA ‘H‘ll Ll ¥ RACRiiainisia & vvuv A aAkrsizns VY raii e N o=

self-dual; (J + I has rank 4 and hence C has dimension 6). Therefore the
minimum distance of C is either 3 or 6. Clearly a linear combination of the
first four rows of G has weight > 4. On the other hand a linear combination
of the last two rows has weight 6. Again since J + I has rank 4 a combination
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Chapter 5

5.5.1. We construct a suitable parity check matrix for the desired code C
by successively picking columns. Any nonzero column can be our first choice.
If m columns have been chosen we try to find a next column which is not a

linear combination of i previous columns for anvi < d — 2. This ensures that
: 25

ASAR SR P+ PV e g N S L T A W A waseluas W) mradkv

no {d — 1)-tuple of columns of the parity check matrix is linearly dependent,

1.e. the code has minimum distance at icast 4. The method works 1 the

number of linear combinations of at most d — 2 columns out of m chosen
columns is less than g”~ k (for every m < n — 1). So a sufficient condition is

R S rmailaWwilwial WA

("_l\q—l)‘q“

The left-hand side of the mcquallty in (5.1.8) 1s at least n(g — 1)/(d — 1) times
as large, the right-hand side only g times as large, 1.e. Problem 551 is a
stronger result in general.

5.5.2. By (5.1.3) we have A(10, 5) = A(11, 6). The best bound is obtained by
using (5.2.4) (also see the example following (5.3.5)). It is A(11, 6) < 12. From

(1.3.9) (also see the solution of Problem 4.8.3) we find an (11, 12, 6) code.
Hence A(10, 5) = 12.

5.5.3. Equality in (5.2.4) can hold only if this is also the case for the in-
equalities used in the proof and that is possible only if $ M? is an integer. So
M = lis impossible.

5.54. By Problem 4.8.4 we have A(17, 8) > 36, The best estimate from
Section 5.2 is obtained by using the Plotkin bound. We find 4(17, 8) <
4A(15, 8) < 64. A much better result is obtained by applying Theorem 5.3.4.

The reader can check that the resuit is A(17, 8} < 50. The best known bound,
obtained by refining the method of (5.3.4), is A(17, 8) < 37 (cf. [6]).

555. The columns of the generator matrix are the points
(xy, X3, X3, X4, X5) Of PG({4, 2). We know (cf. Problem 3.7.10) that all
the nonzero codewords of the [31, 5] code have weight 16. By the same
result the positions corresponding to x; = x, =0 yield a subcode of
length 7 with all nonzero weights equal to 4 and the positions with Xy =
x, = x5 = 0 give a subcode of length 3 with all nonzero wetghts equal to 2.
If we puncture by these ten positions the remaining {21, 5] code therefore
hasd =16 -4 -2 = 10. From(526)weﬁndn> 10+5+3+2+1=21,

o Tmmm s o U e e m e o m
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5.5.6. This is a direct consequence of the proof of Lemma 5.2.14 (the average
/w\ [/ n\

number of occurrences of a pair of ones is {C |-k 2) f kz) = A{n — 2, 2k,

w — 2) and no pair can occur more than this many times).

557. Let n=2*—2 By Lemma 5.2.14 we have A(n, 3, 3) < in(n - 2).
Hence Theorem 5.2.15 yields
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Hence the [n, n — k, 3] shortened Hamming code is optimal.

558. If two words c and ¢’ of weight w have distance 2, say ¢; = ¢; = 1,
¢;=c¢, =0, then Y [=dic; — Y 1ztic] = j — k (mod n). Tt foliows that each of
the codes C; (0 <! < n — 1) has minimum distance 4. Therefore A(n, 4, w)} >

i/n (:'V), since Y ;251G = (:) By Lemma 5.2.14 we have A(n, 4, w) <

n
" /(n — w + 1). Combining these inequalities the result follows. (For gener-
alizations of this idea cf. [30].)
5.59. Let C be a binary (n, M, 2k) code. Define
S:={(c,x)jce C, xe [}, dc, x) = w}.

Clearly |S| = (:) M. For a fixed x there are at most A(n, 2k, w) words ¢ in C

PN
n
such that d(c, x) = w. Thereforc( )M < 2"A(n, 2k, w).
W
The proof of this inequality is essentiaily the same as the proof of
Lemma 5.2.10. If a constant weight code has m; words with a | in
position i then, in our usual notation,

5.5.10. (i)
2k = 3 (M — = M? /MW\Z
\2} -éimil m;) w—nk ”)

£2y T o e TPL___ Al AL ,\
111} LCL K{n“’O as n— Q. L-CI. W,’ﬂ—i'wdb fn— 00, 11CT AR, K
is

bounded as n — oo and Problem 5.5.9 yields a(6) < 1 — Hz(w)

We must still satisfy the requirement 1 — (w/k)( — (w/n)) > 0.
So the best result is obtained if 1 — 2w/d)(1 —w) =0, ie. w=
1 1 /1 L IR T SN DU B g R
3 — 31— 20, wWnich 15 {J.2.12).

55.11. We have K,(i) = 2i* — 2ni + ( \and this is less than 2d? — 2nd +
\2/

(;) ford<i<n—d. Since 4, =A4, =1 (wlog)and A; = 0 for all other
values of i outside [d, n — d], we find from (5.3.3)

TG

This yields the required inequality.
5.5.12. Consider the problem of determining A(9, 4) with Theorem 5.3.4.

We find four mequahtlcs for A,, Ag, Ag. To this system we may add the
obvious inequality A3 < 1. A rather tedious calculation yields the optimal

solution A, + A¢ + Ag < 20%. So we have to consider the possibility of a
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9, 21, 4) code. Taki = —
inequalities

21iAK(i)>()
& ity

{9\

K) = kk)

21K,‘(O)+ Z A K, (i) = 0.

Since the code has 21 words, there are at most 10 pairs of codewords with
distance 8, i.e. Ay < %2. Therefore the numbers 254, must satisfy the same
inequalities which we solved to start with. This implies A, + Az + Ag <
29.81 < 20, a contradiction.

Chapter 6

6.13.1. We generalize Sections 6.1 and 6.2. Over F;, we have x* + 1 =
(x* + x + 2)(x* + 2x + 2). Hence x?> + x + 2 is the generator of a nega-
cyclic [4, 2] code which has generator matrix (2 3 1 9). By Definition
3.3.1 this is a {4, 2] Hamming code.

6.13.2. Since x* + x + 1 is primitive we can take it as generator for the
[15, 11] Hamming code. Now follow the procedure of the proof of Theorem

6.4.1 to find a(x)(x* + x + 1) which turns out to be 1 + (x + x? + x* + x5)
+ (x? + x® + x¥ + x'2), a sum of three idempotent corresponding to cyclo-
tomic cosets. The method described after Theorem 6.4.4 and the example
given there provide a second solution.

6.13.3. Consider the matrix E introduced in Section 4.5 and leave out the
initial column. We now have a list of the points # (0, 0, ..., 0) in AG(m, 2),
written as column vectors. We can also consider this as a list of elements of
F2.. This is a cyclic group generated by a primitive element ¢ of F,n. The
mapping A: F;.. — F,.. defined by A(x) := &x is clearly a nonsingular linear
transformation of AG(m, 2) into itself and as a permutation of the points of
AG(m, 2)\ {0} it has order 2™ — 1. The mapping 4 maps flats into flats. It
now follows from Lemma 4.5.5(1), (4.5.6) and Theorem 4.5.9 that the per-
mutation of coordinate places corresponding to A4 yields 2 cyclic represen-

tahnn nf thp chnrtnnpr‘ nndn
Wil Wil

6.13.4. Use x*+2x + 1 to generate F5. If § is a primitive element
x3 +2x + 1 is its minimal polynomial. Using a table of the field we
find the minimal polynomial of $? to be (x — B*}{(x — %) (x — %) =
x* + x? + x + 2 and the minimal polynomial of §* is (x® + x? + 2). The

product of these functions has g, B2, 8°, f* among its zeros. So it generates
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the required code. I'he generator polynomiatis 1 + x + 2XFF 2xTF 2+
x° +x% 4+ x7 + 2x® + x°. The dimension of the code is 17.

o 17 & vt el o a1 1 ' TR FL DL DI - B o IF U 41 [+ NP A
v.13.J. LISt INIdRC 4 WiIC O Fas. DY SULSLILULION we LNd S0 ) = a)
for i = 1, 2, 3, 4. These are respectively a2®, 23, 1, a'®. We must determine
o(z) = | + 6,z + 0,2° from the equations 1 + ,a?% + 6,a%% =

0,0 = 0. We find 0, = «?8, 0, = !9, ic.

=

o(z) = (1 — a'*2)(1 — o?72).
So the codeword was
(1001011011110010110101010110111),
The generator of the code is (I + x2 + x%){1 + x2 + x> + x* + x3),1e. g(x) =
1+ x>+ x5 + x® + x® + x® + x!° The codeword is

g(x)(1 + x*' 4+ x29).

6.13.6. Since the defining set of C contains {§'|j = —2, ~ 1, 1, 2}, it follows
from Example 6.6.10 (with d;, = 3 and | B| = 2) that d = 4. Consider the even
weight subcode C’ of C. The words of this code have 72, 871, 8°, B, §? as
zeros. Hence C' has minimum distance at least 6 by the BCH bound. It follows
that d > 5.

6.13.7. Consider any [¢ + 1, 2, q] code C'. This code is systematic on any
two positions (cf. (3.8.2)). For the coefficients of the weight enumerator this
implies

(@ + DAy + adqg=(q + 1)(q° — g).

Qince A .4+ 4 =g2 _t we findthat 4 .. =0 ig sverv nonzers code-
AL ) Aq+ 1 L] lq l1 3 Y e AEEANA RAjRaR g lq+ 1 Sy Aate W ¥ Wh J’ AISLALSAwE W WAL RRN
word has weight g. There is a unique codeword ¢ = (¢, ¢y, ..., ¢,) with
Co = C+1y2 = 1. Since exactly one coordinate of ¢ is 0, a cyclic shift of ¢

over 3(q + 1) positions does not yield the same word ¢. Hence ' is not cyclic.
6.13.8. Over F; we have
e == DX =3+ x2—x - D3+ x* = x3+x2 - 1),

where the factors are irreducible. So, as in (6.9.1), we can take go(x) =
(x> —x* + x2 — x — 1) as generator of the ternary [11, 6] QR code C.
Both the BCH bound and Theorem 6.9.2 yield d > 4; in the latter case there
is the restriction ¢(1) # 0. The code C* has generator (x — 1)go(x) (cf.
Section 6.2). Now consider the code C obtained by adding an overall parity
check in the usual way. If G is a generator matrix for C*, then a generator
matrix for C is obtained by adding the row 1 and a generator matrix for C is
given by
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weight divisible by 3. This proves d > 5. That C is perfect follows from the
definition by using 1 + (') 2 + (}!)-2% = 3%

6.13.9. By (6.9.5) 4 is odd. By Theorem 6.9.2(ii) and (iii) we have d*> — d
+1>47 (ie. d 2 8) and d = 3 (mod 4). Hence d = 11. By the Hamming
bound (Theorem 5.2.7) we have, with d = 2e + 1,

_i ( 4_.7) < 2*7/C).
=0\ 17/

Since C has dimension 24, we find e < 5. It follows that d = 11.
6.13.10. Inthe example of Section 6.9 and in Problem 6.12.8 we have aiready
found the [7, 4] Hamming code and the two Golay codes as examples of

others with e > 1 is a consequence of the results of Chapter 7. Suppose Cis a

QR code of length n over F, and C is a perfect code with d = 3. Then by
(3.1.6) we have

L+n(g—1)=g""2  (org" %)
The two cases are similar. In the first we have

n=1+q+ q2 N +q(n—3);'2.

If n > 5 then the right-hand side is at least

1+2+”—;5-4=zn—7,

ie.n="7and g = 2and Cis the [7, 4] Hamming code. It remains to try n = 3
and n = 5. We find

1+3g—=g resp. 1 + 5(g - 1) = ¢
So the only solutionisn = 5, g = 4.

6.13.11. Let B be a primitive clement of F,. Define R,:={f'eF,|i=
v{mod e)}, 0 < v < e. Let a be a primitive nth root of unity in an extension
field of F,. We define

g.):= ] x—a”)

r: L1 i
reR,

O<v<e

Since g € R, each of the g, has coeflicients in F,. Furthermore these poly-
nomials all have degree (n — 1)/e and
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X" = 1= (x — 1)go(x)g,(x).- . ges (x)-

The eth power residue code C has generator g,(x). The codes with generator
g,(x) are all equivalent. The proof of Theorem 6.9.2(i) can be copied to yield
d*>n Ifn=231,e=3, g =2 this yields d> > 31 so d > 4. Since 5° = —1
in F;; we see that go(a) = go(¢™') = 0. Hence by Problem 6.13.6 we have

tha LT 1 Iowrrwid Tem Fané ¢ I a
d > S, Furthermore, d <7 uj i uammmg COuna. i1n 1actl ne uamuung

bound even shows that the code consisting of the 22° words of C with odd
weight cannot have d = 7. Hence d = §.

6.13.12. (a) Since a, a2, a*, o are zeros of codewords d > 4 is a direct con-
sequence of Example (6.6.10).

(b) By the BCH bound we have d > 3. If d = 3 there would be a
codeword with coordinates 1 in positions 0, i, j. Let { = o,
n=ol! Then 1 +¢+19n=0, 1+ & +5°=0. We then find
L= +n)° =@ +17)+ & + 1), ie £ + 7> =0. This is
a contradiction because 2™ — 1 # 0 (mod 3), so x* = 1 has the

. uniquesolutionx =1, whereas ¢ £¢.

(c) If there is a word of weight 4, then by a cyclic shift, there is a word
of weight 4 with its nonzero coordinates in positions &, £ + 1, n, and
n+ 1. The sum of the fifth powers of these elements is 0. This yields
(§ +n) = 1,i.e.§ +n = 1, a contradiction.

6.13.13. Consider the representation of (6.13.8). Let « be a primitive element
of F35. Then «?2 is a primitive 11th root of unity, i.c. a zero of gg(x) or g,(x).
So the representations of 1, «?2, a**, ..., a22° as elements of (F,)° are the
columns of a parity check matrix of C. Multiply the columns corresponding
to o with i > 5 by —1 = «'?! and reorder to obtain I, ', «22, ..., 10
corresponding to a zero of x'' + 1. This code is equivalent to C which is
known to be unique and this representation is negacyclic.

6.13.14. The defining set of this code is

R={a'li=1,2,4,5738,910, 14, 16, 18, 19, 20, 25, 28}.

Show that the set R contains 4B, where A = {a'|i =8, 9, 10} and B =

{ﬁ"'U = 0,1, 3} B = «'°. This implies d = 6. For thccvcn weight subcode take
A={ai=4,7,8,9},B={B/1j=0,3,4}, B = «®. Apply Theorem 6.6.9 with

1| =6.

Chapter 7

7.7.1.  Let C be the code. Since the Hamming code of lengthn + 1 = 2™ — |
15 perfect with e =1, C has covering radius 2. Substitute n = 2™ — 2,
{IC|=2"" e=1in (5.2.16). We find equallty It follows that C is nearly
perfect.

7.7.2. Suppose p(u, C} = 2, i.e. u = ¢ + e, where ¢ € C and e has weight 2.
So c(a) = ¢(«®) = 0 and e(x) = x’ + x’ for some i and j. We calculate in how
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many ways we can change three positions, labelled x,, x,, x5, and thus find

a codeword. So we are calculating the number of solutions of
X, 4+ Xy +xy +at +af =0,
x?+x3+x3+a¥+a¥=0.
Substitute y; ;= x; + e(x). We find

i+ Yy, +y3 =0
H+yi+yi=s=a™a +a)
where s 5 0 and y, ¢ {a', a’}.

From the first equation we have y, = y, + y, which we substitute in the
second equation. The result is

Ny +y2)=s
Since s # O we have y, # 0. Define y := y,/y,. The equation is reduced to

y(1 +y) =s/y3.

3, =03 22m+t __ 1y = 1 it follows that for every val

nce {3, n) =03, 2 1) foll

0, y = 1, this equation has a unique solution y, (m iF22m4-|). Hence we
find n — 1 solutions {y,, y,} and then y; follows. Clearly, each triple is
found six times. Furthermore, we must reject the solution with y, = «/,
y» = o/ because these correspond to x, = af, x, = af, x; = 0 (or any permu-
tation). So p(u, C) = 2 implies that there are L{(n — 1) — | codewords with
distance 3 to u. In a similar way one can treat the case p(u, C) > 2.

7.7.3. The code C is the Preparata code of length 15. However, we do not
need to use this fact. Start with the (16, 256, 6) Nordstrom-Robinson code C
and puncture to obtain a (15, 256, 5) code C. These parameters satisfy (5.2.16)
with equality.

< W
H-

7.74. That C is not equivalent to a linear code is easily seen. If it were, then
C would in fact be a linear code since 0 € C. Then the sum of two words of C
would again be in C. This is obviously not true. To show that C is perfect
we must con31der two codewords a =(x, X + ¢, Zx + f(c)) and b=

(y, y + ¢, Ly, + f{¢')). If c=c¢" and x # y it is obvious that d(a, b) = 3.

He#c thend(a, )2 wx —y)+wx +¢c—y—¢)=wlc—c)>3. Since
|C| = 2'! and d = 3 we have equality in (3.1.6), i.e. C is perfect.

7.7.5. For the two zeros of ¥, we find from (7.5.2) and (7.5.6)
X, +x,=n+1 and  x;x, =2""L
Hence x, = 2% x, = 2° (@ < b). From (3.1.6) we find n* + n + 2 = 2° (where

c>3sincen = 2).
So

(294 2222 + 22— 1) + 2 =2
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by 4 Therefore a—O or a= 1 If a=10 we ﬁnd 2’(2"-1- 1)+2 %, e
b =1 and n =2 corresponding to the code C = {(00)}. If a =1 we find

220 1 3-2° 4+ 4 = 2°,ie. b = 2 and then n = 5 corresponding to the repetition
code C = {(00000), (11111)}.

7.7.6. First use Theorem 7.3.5 and (1.2.7). We find the equation

4 —4n+ Dx+(n* +n+ 12) =0,

with zeros x, ; = 3(n + 1 £ /n — 11).

It follows that n — 11 = m? for some integer m. From (7.3.6) we find
12:2"=|Cl"(n* +n+ 12)=|Clin+ 1+ m(n + 1 —m)

Son+!l+m=a2"" n4+1—m=5b-2"" with ab=1 or 3. First try
a=b=1Wefindn+1=2%4+2¢ m=2*—2%(a > B)and hence

20 + 20 — 12 = 2% — 20%6*1 4 9%,

1.e.
~12 =252 = 22" — 1)+ 27(2F - ),
an obvious contradiction.
Next, try b = 3. Thisleadston + 1 =a-2°+3-2> m=4a-2* - 3-2f and

=2 a¥at-]
EN L™ L LW

3-28(3:20 — 221 — 1) 4292 — 1) + 12 = 0.

If « > 2 then we must have § = 2 and it follows that « = 4. Since & < 2 doe
rlof ﬂIUA ] (!nl'l‘lflnﬂ ':Iﬂr‘ tha f' I o L T alen Anoe e ‘nnlr‘ anmuthing nua
L ai B SVIWLIVAIL LI LW llllﬂl WElONW LE o ERLIV AALAD I..I.U : [0} Cl.l.l i11lil 5

have proved that n + 1 = 2* + 3-2% ie. n = 27.

The construction of such a code is similar to {7.4.2). Replace the form used
in {7.4.2) by x,;X; + X3x4 + X5sXg + X5 + Xg = 0. The rest of the argument
is the same. We find a two-weight code of length 27 with weights 12 and 16
and then apply Theoremn 7.3.7.

FT7 (1Y T ar N r'lnnnf.n fl"n:l hnm}'\nr nf naire (v oY with v = Tﬁ‘ o= 7 Al A —
ffffff \l—} .—JVL 4 “AA.‘) \A ‘v} ¥ LLlL A L L L] - \f M\A ‘; —
2. By first choosing ¢, we find N = |C| - (%)) - 2°. For any x with

d(x, C) = 2, there are at most seven possible codewords with d(x, ¢) =
2. Hence

N <(3"*—|Clad+2-14)).

Comparing these results, we see that in the second one, equality must

hold. var}; X e Tﬁ‘” either hae distance at most one to C or distance ?2

RS RS iiALws el RAEVASL aae LV SRS ] Rt R S

to exactly seven codewords

(ii) There are ( 14) 2? words of weight 2 in F}*. Each has distance 2 to 0 and
hence distance 2 to six codewords of wei ght 4. Since each codeword of
weight 4 has distance 2 to six words of weight 2, we find A, = 364.

(iii) From (ii) we see that 4A, = 1456 words of weight 3 have distance 1
to C. We count pairs (x, ¢} with w(x) = 3,¢c € C,and d(x,¢) = 2.
Apparently there are (';) . 2% — 1456 choices for x. Starting with a
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codeword ¢ with weight 4, there are 12 choices for x. If w(¢) = 5,
there are 10 choices for x. So we find

12A, + 10A; = 7 - 1456,
i.e. As = 5822, which is absurd. C does not exist!

7.7.8. In the Lee metric, the volume of a sphere withradiusoneis V, = 1+2n =

take one as a column of a 2 by » parity check matrix H. Generalizing the idea of
Hamming codes, define a linear code C by:
ceC&cH =0

C is clearly 1-error-correcting and C is perfect because |C| - V|, = m".

— Chapter 8

8.5.1. First note that in a selfdual quaternary code of length 6, words with an
odd coordinate have four such coordinates. Since the code must have 4° words,
the generator matrix in the form (8.1.3) has 2k, + k, = 6. Clearly, k; = 3 is

For k, = O we find the trivial example F5. Its Lee weight enumerator (x2 + y?)$
is one of two independent solutions to the equation of Theorem 3.6.8 in the case
of selfduality. The other is x?y*(x* — y*)?. (These are easily found using the fact
that all weights are even.) All linear combinations with a term x'? also have a term
y'2, so the code contains (2, 2, 2, 2, 2, 2).

We now try k; = k; = 2. The rows of (A B) must each have three odd
entries. One easily finds an example, e. g.

11 1 0 11
A=(1 1)’ B*(z 1)’ C_(l 1)‘

The weight enumerator is the solution to the equation of Theorem 3.6.8 with no
term x'°y?, namely x'? + 15x%y* + 32x%y% + 15x*y® + y'2. The two rows of A
could cause nonlinearity because ¢ (1) + o (1) # ¢(2). The codeword (002200)
compensates for that. Note that the binary images of the first two basis vectors are
not orthogonal.

For k, = 1, k; = 4, we easily find a solution. Take A = (1100), B = (1),
C = (1100)". The binary image is linear and seifdual.

LeMARK, We observed above that £ = 3 is impossible. From (8.1.3) and (8.1.4)
it is immediately obvious that the quatemary code with generator (I; 2.J; — ;)
and its dual have the same weight enumerator (as above with 15 words of weight
4). The code is of course not selfdual. It is interesting that its binary image is a

selfdual code. It is equivalent to the code with generator (I Js — ).
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8.5.2. Let the vectors v; (0 < i < m — 2) be basis vectors of %1, m —1).

The codewords of .72(2, m) are linear combinations of wordsof type (3_ a;v;, 0),
0,3 8:v), Q. v, %iv;, Y vijviv;) and (€, €;), where e; = Oor 1.

By Theorem 8.2.7 (and the fact that %2(2, m) is linear), we only have to check
whether the coordinatewise product of words of type (3_8,v; + €, Y &v; +¢€) is

= ale o

in the code and clearly it is.

8.5.3. Try £* + 2£°. Oneeasily findsa=n—i,b=n—2i + j.

-
0.0.4

. By Lemma 4.6.4, the Nordstrom-Robinson code has weight enumerator
1+ 11275+ 302° + 1122'° + 72
Apply Theorem 3.5.3. Here, calculating with the homogeneous form is easier.

8.5.5. The number of pairs (x, ¢) with ¢ € &%, w(x) = 2, d(x, ¢) = 3 is 10A4;. By

(73.D)itisalsoequal to () * — 1) = (}) 252. Hence

_n(r—1D(n—-13)

R PRy . g o MNfthana 1NA hava Aictnman Y ton sl
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n

therefore distance 3 to 25 words of welght 6. The remaining (’;) — 1045 words
of weight 3 have dlstance 3tor — 1 = 222 words of weight 6. Since a word of
weight 6 has distance 3 to 20 words of welght 3, double counting yields

nin—1(n-3)n-5
18 )
For n = 15 we find A; = 40, Ag = 70. We know that the Nordstrom-Robonson

code is distance invariant. So the weight enumerator has A; = A,,_;,. We know
Ag = A = 112 and therefore Ag = 30.

6=

8.5.6. This follows from Example 8.4.1

8.5.7. From Theorem 7.4.6 it follows that the linear span of the extended Preparata
code is contained in the extended Hamming code and therefore has minimum
distance 4.

Consider GR(4™). We know that 1 + & can be written as &' + 2&/. Hence
C,, has a codeword a with coordinates 1,1,1,3,2 in the positions corresponding to
0,1, &, &, &/, By a cyclic shift, we find a similar codeword b with a 1 in position
0 and the other odd coordinates in positions differing from those where a has odd
coordinates. The linear span of C., contains the word ¢(a) + ¢(b) + ¢(a+b)
which has weight 2.

Note that this argument does not work for m = 3.
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Chapter 9

9.8.1. In Theorem 9.3.1 it was shown that if we replace g(2) by §{z) =z + |

L\a nﬂma mrrda QA TTf hn Airmancinn at lanct A O I Rt Ty
Wwe EDI. l.l. v oal COaE, OO 1 \].-, y} a8 GIMCENSIONn au }ast & anag mininum

distance 4 > 3. As was shown in the first part of Section 9.3, d might be
larger. We construct the parity check matrix H = (hyh, ...h;) where h; runs
through the values («/ 4+ 1)7! with (j, 15) = 1. We ﬁnd that H consists of

extended Hamming code.
9.8.2. 1let a be a word of even weight in C. By (6.5.

2
Mattson-Solomon polynomial 4(X)}) is divisible by X. By Theorem 9 6. 1 the
polynomial X" ! o A(X), i.e. X~ * A(X), is divisible by g(X). Since C is cyclic
we find from (6.5.2) that X 1 A(X) is also divisible by g(¢'X) for 0 <i <
n — 1. If g(X) had a zero different from O in any extension field of F, we would
have n — 1 distinct zeros of X' A(X), a contradiction since X! A(X) has

degree < n — 1. So g(z) = z' for some ¢ and C is a BCH code (cf. (9.2.6)).

9.8.3. Thisis exactly what was shown in the first part of Section 9.3. For any
codeword (by, b, ..., b,_;) we have 2-;5 by =0 for 0<r<d, -2,

where y; = «' (o primitive ¢lement). So the minimum distance is > {d, — 1)
Hd = +2=d +dy -1

e A T nf {-' i ¥V Aannta tha invarca Aaf CHYY in tha simg (T 1 a1 Tha
R & Miay \A} WLV Lllb [JFR ALY I VI W | U\A} il LilA lllls "l, T s "-'}- F L™

definition of GBCH code can be read as

P(X) (®a)(X) = Q(X)G(X) R{XHX" - 1),

(GTHX) o PX))(Pa)(X) = Q(X) + R¥(X)(X" — 1),

for a suitable R*(X). The same condition, including the requirement that
degree Q(X) < n — ¢, is obtained if we take the pair (P(X), X'), where

P(X) = X' o G}(X) o P(X).

Second solution: To ensure that we have the same code, we see to it that we
obtain t.he same parity check matrix as in §9 6. We have b, = p,g,“ , where
p(x) = z_lp, = (@7 'P){x) and g(x) = ¥_ g:x' = (®7'G)(x). We must find
p: such that 5,¢”' = pig.'. Since )_ g;x* = (&~ X")(x) is known, we also know
p(x). Then P(X) = ®p

!\ﬂ TR TT

9.8 In (6.6.1) take { = 5 and ¢ = 2. We find that C 1s a BCH code with
minimum distance d > 2. Since (x + J(x2 + x + 1) = x> + 1 € C we have
d = 2.1fin(9.2.4) we take g(x) of degree > 1 then by Theorem 9.2.7 the Goppa
code I'(L, g) has distance at least 3. If g(z) has degree 1 then Theorem 9.3.1
yields the same result. So C is not a Goppa code.
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10.10.1. To study X in (1:0:0), we take (y, z) as affine coordinates. The equation
becomes z == y°. So, we see that y is a local parameter (and z is not). So in (1;0:0)
we take y/x as local parameter. Since x/z = (x/y)?, we see that there is a pole

F I o T o )Y
of order 2 in (1:0:0).

10.10.2. If f and the three partial derivatives are zero inapoint (x : y: z),
then xyz #0 and we find three equations 2x* = y’z, etc. These three give us

mxyzr = (xyz)?, s0 p = 7. We may iake x = 1. The equaiions y’z = 2 and

y = 2z’ then give y = 2 and z = 4. So there is one singular point.

10.10.3. X has fivepoints: P =(0:0:1),Q2:=(1:0:0),and R; := (' :
%:1) (0 <i <2). Clearly, every point R; is a zero of multipiicity 1. In Q we
have y/x as a local parameter and

N X4y
g=(2) 252

X x3

so Q is a zero with multiplicity 3. In P, a local parameter is y/z and

so P is a pole of order 6. Hence (g) = —6P +3Q0 + R, + R, + R;.
10.10.4. We only have to look at the three points where two coordinates are 0,
=0:0:12,0=(1:0:0),and R = (0: 1: 0). The easiest is Q, where z/x

15 a local parameter. | 0 0 is apole of order 1. In P, we have the local parameter

y/z and
— (_y_)“__z___
z/ y+z¢
o

X

Z
where the second factor is a unit. S
parameter is x/y. From

P is a zero with multiplicity 4. In R, a local

x _ VvV yi+dx
z X yt
we see that R is a pole of order 3. We find

{IfAYN=A4P . ) _
\J = =

w4

[N

L% «

10.10.5. Just substitute the coordinates of the points P, to Py in the three basis
functions. By multiplication of certain rows and columns by suitable constants

armd a marmbitatia tha i oanmoratar matrmisrac ara chmuon tn halana ta aniyalamt
[-FNLV - § 1) lluumu\.’ll 4% LYYLS sbll\.fl. ALGL LILGLL I CLLL- LIV YYLL W U!.'I.UI.IE s \.A.il.u.vﬂ-l.&dll»

codes.
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10.10.6. Since g = 3, we find from Theorem 10.5.1 that /(3Q) > 1. From

Corollary 10.5.3 it follows that /(5Q) = 3. From Example 10.7.5 we see that the
functions 1 and z/x are in £(3Q) and also that they are a basis.

Chapter 11

11.4.1. The words of C, have the form (a(x), a(x)a(x)) where a(x) and a(x)
are polynomials mod x®* + x* + 1. To get d > 3 we must exclude those
a(x) for which a combination a(x) = x', a(x)a(x) = x/ + x* is possible and
also the inverses of these a(x). Since (1 + x)® =1 4+ x® = x 7 }{x + x%) = x!
(x + 1)itis easily seen that each nonzero element of F,¢ has a unique represen-
tation x‘(1 + x)’ where

ie{0, +1,+£2, +3,+4}, je{0, 1, +2, +4}.

So the requirement d > 2 excludes nine values of «(x} and d > 3 excludes
the remaining 54 values of a(x). This shows that for small n the construction
is not so good! By (3.8.14) there is a [12, 7] extended lexicographically least
code with d = 4. In (4.7.3) we saw that a nonlinear code withn =12, d =4
exists with even more words.
11.4.2. Let a(x) be a polynomial of weight 3. Then in (a{x), «(x)a(x)) the
weights of the two halves have the same parity. So d < 4 1s only possible if
there is a choice a(x) = x' + x/ such that a{x)a(x) = 0 mod(x® — 1). This is
so if a(x) is periodic, i.e. I + x2 + x* or x + x® + x°. For all other choices we
haved = 4.
11.4.3. Let the rate Rsatisfy 1/{Ii+ 1)< R </l {leN}) Let s b -
integer such that m/[(! + 1)m — s] > R. We construct a code C by picking
an I-tuple (a,, a5, ..., @) € (F,») and then forming (a, «,a, ..., «a) for all
a € FJ and finally deleting the last s symbols. The word lengthis n = ({ + 1)
m — s.

A nonzero word ce C corresponds to 2° possible values of the I
tuple (x,, ..., «,). To ensure a minimum distance > Ain we must exclude

[}
-
o
o
o
v
L]
=

n : - :
<2V ican ( ) values of (x,, ..., ;). We are satisfied if this leaves us a choice
i

for (x,, ..., a,), 1.e.of

From Theorem 1.4.5 we find

s+ nH{A) < ml,
Le.

H(A)<ml;3=1—§=1—ﬂ+o(1), (m = o).
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Chapter 12

12.5.1. Consider the sequence r, r?, r3, ... . There must be two elements in
the sequence which are congruent mod A, say r" — r™ = 0 (mod A)(n > m).

125.2. Letm =r" — 1 = AB, where A is a prime > r%. Suppose that r gene-
rates a subgroup H of F} with |H| = n which has {+clc=1,2,...,r—1}
as a complete set of coset representat:ves Con51der the cyclic AN code C

distance 0 or 1 to exactly one codeword. So C is a perfect code {Since
w,.(4) > 3 we must have A > r?.) A trivial example for r = 3 is the cyclic code
{13, 26}. Here we have taken m = 3° — 1 and 4 = 13.

The subgroup generated by 3 in F*; has index 4 and the coset represen-
tatives are +1 and +2.

12.5.3. We have 455 = Z _o b:3' where (b, by, ..., bs)=1(2, 1, 2, 1, 2, 1),
The algorithm described in (10.2.3) replaces the initial 2, 1 by —1, 2. In this
way we find the following sequence of representations:

{2-: ]-s 2) 15 2$ 1)—’(_192’25 1-:21 l)"—'(_la _"190;25' 2! l)

ey 1

;1 TN 1 AL n 1 n
==, —LVY —LYLg=V —41 Y —1,

—1).
So the representation in CNAF is
455 = -273 = —3 —3° - 35

12.5.4. We check the conditions of Theorem 10.3.2. In F} the clement 3
generates the subgroup {1,3,9,5, 4} multiplication by —1 yiclds the other

2 W K ] 4 "

five elements. r* =3° =243 = 1 + 11.22. So we have 4 =22, in ternary
representation 4 = 1 + 1.3 + 2.3%2. The CNAF of 22 is 1 —23 +0.3% +
1.33 4+ 0.3* (mod 242). The code consists of ten words namely the cyclic
shifts of (1, —2, 0, 1, 0) resp. (— 1, 2, 0, — 1, 0). All weights are 3.

Chapter 13

13.7.1. Using the notation of Section 11.1 we have
Gx)=(1 +(x)) + x(t +x¥) =1 +x + x> + x*.

The information stream 1 1 1 1 1...would give I1(x) =(1 + x)", and
hence

T(x) ={(1 + x®)71G(x) = 1 + x + x?,

le. the receiver wouldget1 1 1 0 0 0 0....

Three errors in the initial positions would produce the zero signal and lead
to infinitely many decoding errors.
13 7.2. In Theorem 13.4.2 it is shown how this situation can arise. Let h(x) =
x* + x + 1 and g{x)h(x) = — 1. We know that g(x) generates an irre-
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ducible cyclic code with minimum distance 8. Consider the information se-

quence 1 TOO T 000 0...,1e Ij(x) = h(x). Then we find

T(x) = h(x*)g(x} = (x'* — 1)h(x),

which has weight 6. By Theorem 13.4.2 this is the free distance. In this
example we have g(x) = x'' + x® + x7 + x° 4+ x> + x? + x + 1. Therefore
Gox) =1+ x4+ x*,G,(x) =1 4+ x + x? + x> + x5 The encoder is

/// .

Io - » - L.
A Tl
Figure 8
and
I,=11001000... yields as output

T=1100 1000 00 00 00 01 10 01 00 00...

13.7.3. Consider a finite nonzero output sequence. This will have the form
(a; + a,x + -~ + a,x")G, where the a, are row vectors in F#. We write G as
G, + xG, as 1n(13.5.7). Clearly the initial nonzero seventuple in the output is
a nonzero codeword in the code generated by m,; so it has weight > 3. If this
is also the final nonzero seventuple, then it is (11... 1) and the weight is 7. If
the final nonzero seventuple is a,G, then it is a nonzero codeword in the code
generated by mym,; and hence has weight at least 4. However, if a, = (1000),
then a8,G = 0 and the final nonzero seventuple is a nonzero codeword in the
code generated by m, and it has weight > 3. So the free distance is 6. This is
realized by the input (1100) » (1000)x.
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— nearly perfect, 118
— negacyclic, 81

— Nordstrom-Robinson,
- optimal, 64

— outer, 168

64, 197

52, 123, 127

— systematic, 35
— ternary, 34
— trivial, 34

- two-weight, 119
— uniformly packed, 118

- uniquely decodable, 46
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irreducible polynomial, 7

orthogonal parity checks, 40
outer distribution, 115

Liang, 180

linear

— programming bound, 74
- recurring sequence, 90
Lint, van, 62,92, 111,112, 123, 201

kg oAy i

Liu, 180
Lloyd, 31,112
— theoremm, 112, 119

focal ring 6, 150

MacWilliams, 31, 41, 110
Mandelbaum, 179
Mariner, 22

Massey, 44, 45, 55, 180
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