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Preface

There are two basic methods of error control for communication, both in-

volving coding of the messages. The differences lay in the way the codes

are utilized. The codes used are block codes, which are the ones treated

in this book, or convolutional codes. Often the block codes used are linear

codes. With forward error correction, the codes are used to detect and cor-

rect errors. In a repeat request system, the codes are used to detect errors,

and, if there are errors, request a retransmission.

Usually it is a much more complex task to correct errors than merely

detect them. Detecting errors has the same complexity as encoding, which

is usually linear in the length of the codewords. Optimal error correcting

decoding is in general an NP-hard problem, and efficient decoding algo-

rithms are known only for some classes of codes. This has generated much

research into finding new classes of codes with efficient decoding as well as

new decoding algorithms for known classes of codes.

There are a number of books on error control, some are listed in the

bibliography at the end of this book. The main theme of almost all these

books is error correcting codes. Error detection tends to be looked upon

as trivial and is covered in a few pages at most. What is then the reason

behind the following book which is totally devoted to error detecting codes?

The reason is, on the one hand, that error detection combined with repeat

requests is a widely used method of error control, and on the other hand,

that the analysis of the reliability of the information transmission system

with error detection is usually quite complex. Moreover, the methods of

analysis are often not sufficiently known, and simple rules of the thumb are

used instead.

The main parameter of a code for error detection is its probability of

error detection, and this is the main theme of this book. There are many

vii
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papers devoted to the study of the probability of undetected error, both

for symmetric channels and other channels, with or without memory. They

are spread over many journals and conference proceedings. In Kløve and

Korzhik (1995), which was published twelve years ago, we collected the re-

sults then known, mainly for linear codes on the binary symmetric channel,

and presented them in a unified form. We also included a number of new

results. In the last twelve years a number of significant new results have

been published (in approximately one hundred new papers). In the present

book, we have included all the important new results, and we also include

some new unpublished results. As far as possible, the results are given

for both linear and non-linear codes, and for general alphabet size. Many

results previously published for binary codes or for linear codes (or both)

are generalized.

We have mainly restricted ourselves to channels without memory and to

codes for error detection only (not combined error correction and detection

since these results belong mainly with error correcting codes; the topic is

briefly mentioned, however).

Chapter 1 is a short introduction to coding theory, concentrating on

topics that are relevant for error detection. In particular, we give a more

detailed presentation of the distance distribution of codes than what is

common in books on error correction.

Chapter 2 is the largest chapter, and it contains a detailed account of the

known results on the probability of undetected error on the q-ary symmetric

channel. Combined detection and correction will be briefly mentioned from

the error detection point of view.

Chapter 3 presents results that are particular for the binary symmetric

channel.

Chapter 4 considers codes for some other channels.

Each chapter includes a list of comments and references.

Finally, we give a bibliography of papers on error detection and related

topics.

The required background for the reader of this book will be some ba-

sic knowledge of coding theory and some basic mathematical knowledge:

algebra (matrices, groups, finite fields, vector spaces, polynomials) and el-

ementary probability theory.

Bergen, January 2007

T. Kløve
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Chapter 1

Basics on error control

1.1 ABC on codes

1.1.1 Basic notations and terminology

The basic idea of coding is to introduce redundancy that can be utilized to

detect and, for some applications, correct errors that have occurred during

a transmission over a channel. Here ”transmission” is used in a wide sense,

including any process which may corrupt the data, e.g. transmission, stor-

age, etc. The symbols transmitted are from some finite alphabet F . If the

alphabet has size q we will sometimes denote it by Fq . We mainly consider

channels without memory, that is, a symbol a ∈ F is transformed to b ∈ F

with some probability π(a, b), independent of other symbols transmitted

(earlier or later). Since the channel is described by the transition prob-

abilities and a change of alphabet is just a renaming of the symbols, the

actual alphabet is not important. However, many code constructions utilize

a structure of the alphabet. We will usually assume that the alphabet of

size q is the set Zq of integers modulo q. When q is a prime power, we will

sometimes use the finite field GF (q) as alphabet. The main reason is that

vector spaces over finite fields are important codes; they are called linear

codes.

As usual, Fn denotes the set of n-tuples (a1, a2, · · · , an) where ai ∈ F .

The n-tuples will also be called vectors.

Suppose that we have a set M of M possible messages that may be sent.

An (n,M ; q) code is a subset of F n containing M vectors. An encoding is a

one-to-one function from M to the code. The vectors of the code are called

code words.

1
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1.1.2 Hamming weight and distance

The Hamming weight wH(x) of a vector x is the number of non-zero posi-

tions in x, that is

wH(x) = #{i | 1 ≤ i ≤ n and xi 6= 0}.
The Hamming distance dH(x,y) between two vectors x,y ∈ F n

q is the

number of positions where they differ, that is

dH(x,y) = #{i | 1 ≤ i ≤ n and xi 6= yi}.
If a vector x was transmitted and e errors occurred during transmission,

then the received vector y differs from x in e positions, that is dH(x,y) = e.

Clearly,

dH(x,y) = wH(x − y).

For an (n,M ; q) code C, define the minimum distance by

d = d(C) = min{dH(x,y) | x,y ∈ C, x 6= y},
and let

d(n,M ; q) = max{d(C) | C is an (n,M ; q) code}.
Sometimes we include d = d(C) in the notation for a code and write

(n,M, d; q) and [n, k, d; q]. The rate of a code C ⊂ F n
q is

R =
logq #C

n
.

Define

δ(n,R; q) =
d
(
n,
⌈
qRn

⌉
; q
)

n
,

and

δ(R; q) = lim sup
n→∞

δ(n,R; q).

1.1.3 Support of a set of vectors

For x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Fn, we define the support of

the pair (x,y) by

χ(x,y) = {i ∈ {1, 2, . . . , n} | xi 6= yi}.
Note that

#χ(x,y) = dH(x,y).

For a single vector x ∈ F n, the support is defined by χ(x) = χ(x,0).

For a set S ⊆ F n, we define its support by

χ(S) =
⋃

x,y∈S

χ(x,y).

In particular, χ(S) is the set of positions where not all vectors in S are

equal.
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1.1.4 Extending vectors

Let x = (x1, x2, · · · , xn) ∈ Fn, y = (y1, y2, · · · , ym) ∈ Fm and u ∈ F .

Then

ux = (ux1, ux2, · · · , uxn),

(x|u) = (x1, x2, · · · , xn, u),

(x|y) = (x1, x2, · · · , xn, y1, y2, · · · , ym).

The last two operations are called concatenation. For a subset S of F n,

uS = {ux | x ∈ S},

(S|u) = {(x|u) | x ∈ S}.

1.1.5 Ordering

Let some ordering ≤ of F be given. We extend this to a partial ordering of

Fn as follows:

(x1, x2, · · · , xn) ≤ (y1, y2, · · · , yn) if xi ≤ yi for 1 ≤ i ≤ n.

For Zq we use the natural ordering 0 < 1 < 2 · · · < q − 1.

1.1.6 Entropy

The base q (or q-ary) entropy function Hq(z) is defined by

Hq(z) = −z logq

( z

q − 1

)

− (1 − z) logq(1 − z)

for 0 ≤ z ≤ 1. Hq(z) is an increasing function on
[

0, q−1
q

]

, Hq(0) = 0, and

Hq

(
q−1

q

)

= 1. Define ρ(z) = ρq(z) on [0, 1] by ρb(z) ∈
[

0, q−1
q

]

and

Hb(ρb(z)) = 1 − z.

1.1.7 Systematic codes

An (n, qk; q) code C is called systematic if it has the form

C = {(x|f(x)) | x ∈ F k
q }

where f is a mapping from F k
q to Fn−k

q . Here (x|f(x)) denotes the con-

catenation of x and f(x).
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1.1.8 Equivalent codes

Two (n,M ; q) codes C1, C2 are equivalent if C2 can be obtained from C1

by permuting the positions of all code words by the same permutation.

We note that equivalent codes have the same distance distribution, and in

particular the same minimum distance.

1.1.9 New codes from old

There are a number of ways to construct new codes from one or more old

ones. We will describe some of these briefly. In a later section we will

discuss how the error detecting capability of the new codes are related to

the error detecting capability of the old ones.

Extending a code

Consider an (n,M ; q) code C. Let b = (b1, b2, · · · , bn) ∈ Fn
q . Let Cex be

the (n+ 1,M ; q) code

Cex =
{

(a1, a2, · · · , an,−
n∑

i=1

aibi)
∣
∣
∣ (a1, a2, · · · , an) ∈ C

}

.

Note that this construction depends on the algebraic structure of the al-

phabet Fp (addition and multiplication are used to define the last term).

For example, let n = 2, b = (1, 1), and a = (1, 1). If the alphabet is GF (4),

then a1b1 + a2b2 = 0, but if the alphabet is Z4, then a1b1 + a2b2 = 2 6= 0.

Puncturing a code

Consider an (n,M ; q) code. Puncturing is to remove the first position from

each code word (puncturing can also be done in any other position). This

produces a code Cp of length n − 1. If two code words in C are identical,

except in the first position, then the punctured code words are the same.

Hence the size of Cp may be less than M . On the other hand, any code

word c ∈ Cp is obtained from a vector (a|c) where a ∈ Fq . Hence, the

size of Cp is at least M/q. The minimum distance may decrease by one.

Clearly, the operation of puncturing may be repeated.
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Shortening a code

Consider an (n,M ; q) code C with the first position in its support. Short-

ening (by the first position) we obtain the (n− 1,M ′; q) code

Cs =
{

x ∈ Fn−1
∣
∣
∣ (0|x) ∈ C

}

,

that is, we take the set of all code words of C with 0 in the first position

and remove that position. More general, we can shorten by any position in

the support of the code.

We note that shortening will not decrease the minimum distance; how-

ever it may increase it. In the extreme case, when there are no code words

in C with 0 in the first position, Cs is empty.

Zero-sum subcodes of a code

Consider an (n,M ; q) code C. The zero-sum subcode Czs is the code

Czs =
{

(a1, a2, · · · , an) ∈ C
∣
∣
∣

n∑

i=1

ai = 0
}

.

Also this construction depends on the algebraic structure of the alphabet.

In the binary case,
∑n

i=1 ai = 0 if and only if wH(a) is even, and Czs is

then called the even-weight subcode.

1.1.10 Cyclic codes

A code C ⊆ F n is called cyclic if

(an−1, an−2, · · · , a0) ∈ C implies that (an−2, an−3, · · · , a0, an−1) ∈ C.

Our reason for the special way of indexing the elements is that we want to

associate a polynomial in the variable z with each n-tuple as follows:

a = (an−1, an−2, . . . , a0) ↔ a(z) = an−1z
n−1 + an−2z

n−2 · · · + a0.

This correspondence has the following property (it is an isomorphism): if

a,b ∈ Fn and c ∈ F , then

a + b ↔ a(z) + b(z),

ca ↔ ca(z).

In particular, any code may be represented as a set of polynomials. More-

over, the polynomial corresponding to (an−2, an−3, · · · , a0, an−1) is

an−1 +

n−2∑

i=0

aiz
i+1 = za(z) − an−1(z

n − 1) ≡ za(z) (mod zn − 1).
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1.2 Linear codes

An [n, k; q] linear code is a k-dimensional subspace of GF (q)n. This is in

particular an (n, qk; q) code. Vector spaces can be represented in various

ways and different representations are used in different situations.

1.2.1 Generator and check matrices for linear codes

Suppose that {g1,g2, · · · ,gk} is a basis for C. Then C is the set of all

possible linear combinations of these vectors. Let G be the k × n matrix

whose k rows are g1,g2, · · · ,gk. Then

C = {xG | x ∈ GF (q)k}.

We call G a generator matrix for C. A natural encoding GF (q)k → GF (q)n

is given by

x 7→ xG.

If T : GF (q)k → GF (q)k is a linear invertible transformation, then TG

is also a generator matrix. The effect is just a change of basis.

The inner product of two vectors x,y ∈ GF (q)n is defined by

x · y = xyt =

n∑

i=1

xiyi,

where yt is the transposed of y. For a linear [n, k; q], the dual code is the

[n, n− k; q] code

C⊥ = {x ∈ GF (q)n | xct = 0 for all c ∈ C}.

If H is a generator matrix for C⊥, then

C = {x ∈ GF (q)n | xHt = 0},

where Ht is the transposed of H . H is known as a (parity) check matrix

for C. Note that GHt = 0 and that any (n−k)×n matrix H of rank n−k
such that GHt = 0 is a check matrix.

1.2.2 The simplex codes and the Hamming codes

Before we go on, we define two classes of codes, partly because they are

important in their own right, partly because they are used in other con-

structions.
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Let Γk be a k × qk−1
q−1 matrix over GF (q) such that

(i) all columns of Γk are non-zero,

(ii) if x 6= y are columns, then x 6= jy for all j ∈ GF (q).

The matrix Γk generates a
[

qk−1
q−1 , k, q

k−1; q
]

code Sk whose non-zero

code words all have weight qk−1. It is known as the Simplex code. The

dual code is an
[

qk−1
q−1 ,

qk−1
q−1 − k, 3; q

]

code known as the Hamming code.

1.2.3 Equivalent and systematic linear codes

Let C1 be an [n, k; q] code and let

C2 = {xQΠ | x ∈ C1}

where Q is a non-singular diagonal n× n matrix and Π is an n× n permu-

tation matrix. If G is a generator matrix for C1, then GQΠ is a generator

matrix for C2.

Let G be a k × n generator matrix for some linear code C. By suitable

row operations this can be brought into reduced echelon form. This matrix

will generate the same code. A suitable permutation of the columns will

give a matrix of the form (Ik|P ) which generates a systematic code. Here

Ik is the identity matrix and P is some k× (n− k) matrix. Therefore, any

linear code is equivalent to a systematic linear code. Since

(Ik|P )(−P t|In−k)t = −P + P = 0,

H = (−P t|In−k) is a check matrix for C.

1.2.4 New linear codes from old

Extending a linear code

If C is a linear code, then Cex is also linear. Moreover, if H is a check

matrix for C, then a check matrix for Cex (where C is extended by b) is

(
H 0t

b 1

)

.

In particular, in the binary case, if b1 = b2 = · · · = bn = 1, we have

extended the code with a parity check. The code (GF (2)n)ex is known as

the single parity check code or just the parity check code.
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Shortening a linear code

Shortening a linear code gives a new linear code. If G = (Ik|P ) generates a

systematic linear code and the code is shortened by the first position, then

a generator matrix for the shortened code is obtained by removing the first

row and the first column of G.

Puncturing a linear code

Consider puncturing an [n, k, d; q] code C. If the position punctured is not

in the support of C, then Cp is an [n − 1, k, d; q] code. If the position

punctured is in the support of C, then Cp is an [n − 1, k − 1, d′; q] code.

If d > 1, then d′ = d or d′ = d − 1. If d = 1, then d′ can be arbitrary

large. For example, if C is the [n, 2, 1; 2] code generated by (1, 0, 0, . . . , 0)

and (1, 1, 1, . . . , 1), and we puncture the first position, the resulting code is

a [n− 1, 1, n− 1; 2] code.

The ∗-operation for linear codes

Let C be an [n, k; q] code over GF (q). Let C∗ denote the
[

n+ qk−1
q−1 , k; q

]

code obtained from C by extending each code word in C by a distinct

code word from the simplex code Sk. We remark that the construction is

not unique since there are many ways to choose the code words from Sk.

However, for error detection they are equally good (we will return to this

later).

We also consider iterations of the ∗-operation. We define Cr∗ by

C0∗ = C,

C(r+1)∗ = (Cr∗)∗ .

Product codes

Let C1 be an [n1, k1, d1; q] code and C2 an [n2, k2, d2; q] code. The product

code is the [n1n2, k1k2, d1d2; q] code C whose code words are usually written

as an n1 ×n2 array; C is the set of all such arrays where all rows belong to

C1 and all columns to C2.

Tensor product codes

Let C1 be an [n1, k1; q] code with parity check matrix

H1 = (h
[1]
ij )1≤i≤n1−k1,1≤j≤n1
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and C2 an [n2, k2; q] code with parity check matrix

H2 = (h
[2]
ij )1≤i≤n2−k2,1≤j≤n2 .

The tensor product code is the [n1n2, n1k2+n2k1−k1k2; q] code with parity

matrix H = (hij) which is the tensor product of H1 and H2, that is

hi1(n2−k2)+i2,j1n2+j2 = h
[1]
i1,j1

h
[2]
i2,j2

.

Repeated codes

Let C be an (n,M ; q) code and let r be a positive integer. The r times

repeated code, Cr is the code

Cr = {(c1|c2| · · · |cr) | c1, c2, . . . , cr ∈ C},

that is, the Cartesian product of r copies of C. This is an (rn,M r ; q) code

with the same minimum distance as C.

Concatenated codes

Codes can be concatenated in various ways. One such construction that

has been proposed for a combined error correction and detection is the

following.

Let C1 be an [N,K; q] code and C2 an [n, k; q] code, where N = mk for

some integer m. The encoding is done as follows: K information symbols

are encoded into N symbols using code C1. These N = mk are split into

m blocks with k symbols in each block. Then each block is encoded into n

symbols using code C2. The concatenated code is an [mn,K; q] code. If G1

and G2 are generator matrices for C1 and C2 respectively, then a generator

matrix for the combined code is the following.

G1








G2 0 · · · 0

0 G2 · · · 0
...

...
. . .

...

0 0 · · · G2







.

The construction above can be generalized in various ways. One gener-

alization that is used in several practical systems combines a convolutional

code for error correction and a block code (e.g. an CRC code) for error

detection.
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1.2.5 Cyclic linear and shortened cyclic linear codes

Many important codes are cyclic linear codes or shortened cyclic linear

codes. One reason that cyclic codes are used is that they have more alge-

braic structure than linear codes in general, and this structure can be used

both in the analysis of the codes and in the design of efficient encoders

and decoders for error correction. For example, the roots of the polyno-

mial g(z), given by the theorem below, give information on the minimum

distance of the code. Hamming codes is one class of cyclic codes and short-

ened Hamming codes and their cosets are used in several standards for data

transmission where error detection is important. This is our main reason

for introducing them in this text.

Theorem 1.1. Let C be a cyclic [n, k; q] code. Then there exists a monic

polynomial g(z) of degree n− k such that

C = {v(z)g(z) | deg(v(z)) < k}.

Proof. Let g(z) be the monic polynomial in C of smallest positive degree,

say degree m. Then zig(z) ∈ C for 0 ≤ i < n−m. Let a(z) be any non-zero

polynomial in C, of degree s, say; m ≤ s < n. Then there exist elements

cs−m, cs−m−1, · · · , c0 ∈ GF (q) such that

r(z) = a(z) −
s−m∑

i=0

ciz
ig(z)

has degree less than m (this can easily be shown by induction on s). Since

C is a linear code, r(z) ∈ C. Moreover, there exists a c ∈ GF (q) such that

cr(z) is monic, and the minimality of the degree of g(z) implies that r(z)

is identically zero. Hence a(z) = v(z)g(z) where v(z) =
∑s−m

i=0 ciz
i. In

particular, the set

{g(z), zg(z), · · · , zn−1−mg(z)}
of n−m polynomials is a basis for C and so n−m = k, that is

k = n−m.
�

The polynomial g(z) is called the generator polynomial of C.

If g(1) 6= 0, then the code generated by (z−1)g(z) is an [n+1, k; q] code.

It is the code Cex obtained from C extending using the vector 1 = (11 · · · 1),

that is
{

(a1, a2, · · · , an,−
n∑

i=1

ai)
∣
∣
∣ (a1, a2, · · · , an) ∈ C

}

.



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

Basics on error control 11

Encoding using a cyclic code is usually done in one of two ways. Let

v = (vk−1, vk−2, · · · , v0) ∈ GF (q)k be the information to be encoded. The

first, and direct way of encoding, is to encode into v(z)g(z). On the other

hand, the code is systematic, but this encoding is not. The other way of

encoding is to encode v into the polynomial in C ”closest” to zn−kv(z).

More precisely, there is a unique a(z) of degree less than k such that

−r(z) = zn−kv(z) − a(z)g(z)

has degree less than n− k, and we encode into

a(z)g(z) = zn−kv(z) + r(z).

The corresponding code word has the form (v|r), where r ∈ GF (q)n−k.

Theorem 1.2. Let C be a cyclic [n, k; q] code with generator polynomial

g(z). Then g(z) divides zn − 1, that is, there exists a monic polynomial

h(z) of degree k such that

g(z)h(z) = zn − 1.

Moreover, the polynomial

h̃(z) = −g(0)zkh

(
1

z

)

is the generator polynomial of C⊥.

Proof. There exist unique polynomials h(z) and r(z) such that

zn − 1 = g(z)h(z) + r(z)

and deg(r(z)) < n− k. In particular r(z) ≡ h(z)g(z) (mod zn − 1) and so

r(z) ∈ C. The minimality of the degree of g(z) implies that r(z) ≡ 0.

Let g(z) =
∑n−k

i=0 giz
i and h(z) =

∑k
i=0 hiz

i. Then

∑

i

gl−ihi =







−1 if l = 0,

0 if 0 < l < n,

1 if l = n.

Further, h̃(z) = −g0
∑k

i=0 hk−iz
i. Since −g0h0 = 1, h̃(z) is monic. Let

v = (0, 0, · · · , 0, gn−k, · · · , g0), u = (0, 0, · · · , 0, h0, · · · , hk),

and let vl,ul be the vectors l times cyclicly shifted, that is

ul = (hk−l+1, hk−l+2, · · · , hk, 0, · · · , 0, h0, h1, · · · , hk−l),
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and vl similarly. First, we see that

v · ul =

k∑

i=0

gk+l−ihi = 0

for −k < l < n− k. Hence,

vm · ul = v · ul−m = 0

for 0 ≤ m < k and 0 ≤ l < n − k; that is, each basis vector for C is

orthogonal to each basis vector in the code C̃ generated by h̃(z), and so

C̃ = C⊥. �

The polynomial g(z) of degree m is called primitive if the least posi-

tive n such that g(z) divides zn − 1 is n = (qm − 1)/(q − 1). The cyclic

code C generated by a primitive g(z) of degree m is a
[

qm−1
q−1 ,

qm−1
q−1 −m; q

]

Hamming code.

The code obtained by shortening the cyclic [n, k; q] code C m times is

the [n−m, k −m; q] code

{v(z)g(z) | deg(v(z)) < k′} (1.1)

where k′ = k − m. Note that (1.1) defines an [n − k + k′, k′; q] code for

all k′ > 0, not only for k′ ≤ k. These codes are also known as cyclic

redundancy-check (CRC) codes. The dual of an [n − k + k′, k′; q] code C

generated by g(z) =
∑n−k

i=0 giz
i where gn−k = 1 can be described as a

systematic code as follows: The information sequence (an−k−1, . . . , a0) is

encoded into the sequence (an−k−1+k′ , . . . , a0) where

aj = −
n−k−1∑

i=0

giaj−n+k+i.

This follows from the fact that

(an−k−1+k′ , an−k−2+k′ , . . . , a0) · (0, 0, . . . , 0, gn−k, . . . , g0,

i
︷ ︸︸ ︷

0, . . . , 0) = 0

for 0 ≤ i ≤ k′ by definition and that (0, 0, . . . , 0, gn−k, . . . , g0,

i
︷ ︸︸ ︷

0, . . . , 0)

where 0 ≤ i ≤ k′ is a basis for C.

A number of binary CRC codes have been selected as international

standards for error detection in various contexts. We will return to a more

detailed discussion of these and other binary CRC codes in Section 3.5.
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1.3 Distance distribution of codes

1.3.1 Definition of distance distribution

Let C be an (n,M ; q) code. Let

Ai = Ai(C) =
1

M
#{(x,y) | x,y ∈ C and dH(x,y) = i}.

The sequence A0, A1, · · · , An is known as the distance distribution of C and

AC(z) =
n∑

i=0

Aiz
i

is the distance distribution function of C.

We will give a couple of alternative expressions for the distance dis-

tribution function that will be useful in the study of the probability of

undetected error for error detecting codes.

1.3.2 The MacWilliams transform

Let C be an (n,M ; q) code. The MacWilliams transform of AC(z) is defined

by

A⊥
C(z) =

1

M
(1 + (q − 1)z)nAC

(
1 − z

1 + (q − 1)z

)

. (1.2)

Clearly, A⊥
C(z) is a polynomial in z and we denote the coefficients of A⊥

C(z)

by A⊥
i = A⊥

i (C), that is,

A⊥
C(z) =

n∑

i=0

A⊥
i z

i.

In particular, A⊥
0 = 1.

The reason we use the notation A⊥
C(z) is that if C is a linear code,

then A⊥
C(z) = AC⊥(z) as we will show below (Theorem 1.14). However,

A⊥
C(z) is sometimes useful even if C is not linear. The least i > 0 such that

A⊥
i (C) 6= 0 is known as the dual distance d⊥(C).

Substituting 1−z
1+(q−1)z for z in the definition of A⊥

C(z) we get the follow-

ing inverse relation.

Lemma 1.1.

AC(z) =
M

qn
(1 + (q − 1)z)nA⊥

C

(
1 − z

1 + (q − 1)z

)

. (1.3)
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Differentiating the polynomial (1.3) s times and putting z = 1 we get

the following relations which are known as the Pless identities .

Theorem 1.3. Let C be an (n,M ; q) code and s ≥ 0. Then

n∑

i=0

Ai

(
i

s

)

=
M

qs

s∑

j=0

A⊥
j (−1)j(q − 1)s−j

(
n− j

s− j

)

.

In particular, if s < d⊥, then

n∑

i=0

Ai

(
i

s

)

=
M(q − 1)s

qs

(
n

s

)

.

From (1.2) we similarly get the following relation.

Theorem 1.4. Let C be an (n,M ; q) code and s ≥ 0. Then

n∑

i=0

A⊥
i

(
i

s

)

=
qn−s

M

s∑

j=0

Aj(−1)j(q − 1)s−j

(
n− j

s− j

)

.

In particular, if s < d, then

n∑

i=0

A⊥
i

(
i

s

)

=
qn−s(q − 1)s

M

(
n

s

)

.

Two important relations are the following.

Theorem 1.5. Let C be an (n,M ; q) code over Zq and let ζ = e2π
√
−1/q.

Then

A⊥
i (C) =

1

M2

∑

u∈Zn
q

wH (u)=i

∣
∣
∣

∑

c∈C

ζu·c
∣
∣
∣

2

for 0 ≤ i ≤ n.

Note that ζq = 1, but ζj 6= 1 for 0 < j < q. Before we prove Theorem

1.5, we first give two lemmas.

Lemma 1.2. Let v ∈ Zq. Then

∑

u∈Zq

ζuvxwH(u) =

{
1 + (q − 1)x if v = 0,

1 − x if v 6= 0.
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Proof. We have

∑

u∈Zq

ζuvxwH (u) = 1 + x

q−1
∑

u=1

ζuv .

If v = 0, the sum is clearly 1 + x(q − 1). If v 6= 0, then

q−1
∑

u=1

ζuv = −1 +

q−1
∑

u=0

(ζv)u = −1 +
1 − ζvq

1 − ζv
= −1.

�

Lemma 1.3. Let v ∈ Zq. Then
∑

u∈Zn
q

ζu·vxwH (u) = (1 − x)wH (v)(1 + (q − 1)x)n−wH (v).

Proof. From the previous lemma we get
∑

u∈Zn
q

ζu·vxwH (u)

=
∑

u1∈Zq

ζu1v1xwH (u1)
∑

u2∈Zq

ζu2v2xwH (u2) · · ·
∑

un∈Zq

ζunvnxwH (u)

= (1 − x)wH (v)(1 + (q − 1)x)n−wH(v).
�

We can now prove Theorem 1.5.

Proof. Since dH(c, c′) = wH(c − c′), Lemma 1.3 gives

n∑

i=0

A⊥
i x

i =
1

M

n∑

i=0

Ai(1 − x)i(1 + (q − 1)x)n−i

=
1

M2

∑

c∈C

∑

c′∈C

(1 − x)dH (c,c′)(1 + (q − 1)x)n−dH(c,c′)

=
1

M2

∑

c∈C

∑

c′∈C

∑

u∈Zn
q

ζu·(c−c′)xwH (u)

=
1

M2

∑

u∈Zn
q

xwH (u)
∑

c∈C

ζu·c
∑

c′∈C

ζ−u·c′

.

Observing that

∑

c∈C

ζu·c
∑

c′∈C

ζ−u·c′

=
∣
∣
∣

∑

c∈C

ζu·c
∣
∣
∣

2

,

the theorem follows. �
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When the alphabet is GF (q), there is a similar expression for A⊥
i (C).

Let q = pr, where p is a prime. The trace function from GF (q) to GF (p)

is defined by

Tr(a) =

r−1∑

i=0

api

.

One can show that Tr(a) ∈ GF (p) for all a ∈ GF (q), and that Tr(a+ b) =

Tr(a) + Tr(b).

Theorem 1.6. Let q = pr where p is a prime. Let C be an (n,M ; q) code

over GF (q) and let ζ = e2π
√
−1/p. Then

A⊥
i (C) =

1

M2

∑

u∈GF (q)n

wH (u)=i

∣
∣
∣

∑

c∈C

ζTr(u·c)
∣
∣
∣

2

for 0 ≤ i ≤ n.

The proof is similar to the proof of Theorem 1.5.

Corollary 1.1. Let C be an (n,M ; q) code (over Zq or over GF (q)). Then

A⊥
i (C) ≥ 0 for 0 ≤ i ≤ n.

1.3.3 Binomial moment

We have
n∑

j=1

Ajx
j =

n∑

j=1

Ajx
j(x+ 1 − x)n−j

=
n∑

j=1

Ajx
j

n−j
∑

l=0

(
n− j

l

)

xl(1 − x)n−j−l

=

n∑

i=1

xi(1 − x)n−i
i∑

j=1

Aj

(
n− j

i− j

)

. (1.4)

The binomial moment is defined by

A�
i (C) =

i∑

j=1

Aj(C)

(
n− j

n− i

)

for 1 ≤ i ≤ n.

The relation (1.4) then can be expressed as follows:
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Theorem 1.7. Let C be an (n,M ; q) code. Then

AC(x) = 1 +

n∑

i=1

A�
i (C)xi(1 − x)n−i.

We note that the Ai can be expressed in terms of the A�
j .

Theorem 1.8.

Ai(C) =

i∑

j=1

(−1)j−iA�
j (C)

(
n− j

n− i

)

for 1 ≤ i ≤ n.

Proof.

i∑

j=1

(−1)j−iA�
j (C)

(
n− j

n− i

)

=
i∑

j=1

(−1)j−i

(
n− j

n− i

) j
∑

k=1

Ak(C)

(
n− k

n− j

)

=

i∑

k=1

Ak(C)

i∑

j=k

(−1)j−i

(
n− j

n− i

)(
n− k

n− j

)

=

i∑

k=1

Ak(C)

i∑

j=k

(−1)j−i

(
n− k

n− i

)(
i− k

i− j

)

=

i∑

k=1

Ak(C)

(
n− k

n− i

)

(−1)i−k
i∑

j=k

(−1)j−k

(
i− k

j − k

)

=
i∑

k=1

Ak(C)

(
n− k

n− i

)

(−1 + 1)i−k

= Ai(C).

�
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We can also express A�
i in terms of the A⊥

j . We have

AC(x) − 1 =
M

qn

n∑

j=0

A⊥
j (1 − x)j(1 + (q − 1)x)n−j − 1

=
M

qn

n∑

j=0

A⊥
j (1 − x)j(qx+ 1 − x)n−j − (x+ 1 − x)n

=
M

qn

n∑

j=0

A⊥
j (1 − x)j

n−j
∑

i=0

(
n− j

i

)

qixi(1 − x)n−j−i

−
n∑

i=0

(
n

i

)

xi(1 − x)n−i

=

n∑

i=0

xi(1 − x)n−i







M

qn
qi

n−i∑

j=0

(
n− j

i

)

A⊥
j −

(
n

i

)





.

Hence we get the following result.

Theorem 1.9. Let C be an (n,M ; q) code. Then, for 1 ≤ i ≤ n,

A�
i (C) = Mqi−n

n−i∑

j=0

(
n− j

i

)

A⊥
j −

(
n

i

)

=

(
n

i

)

(Mqi−n − 1) +Mqi−n
n−i∑

j=d⊥

(
n− j

i

)

A⊥
j .

From the definition and Theorem 1.9 we get the following corollary.

Corollary 1.2. Let C be an (n,M ; q) code with minimum distance d and

dual distance d⊥. Then

A�
i (C) = 0 for 1 ≤ i ≤ d− 1,

A�
i (C) ≥ max

{

0,

(
n

i

)

(Mqi−n − 1)
}

for d ≤ i ≤ n− d⊥,

and

A�
i (C) =

(
n

i

)

(Mqi−n − 1) for n− d⊥ < i ≤ n.

There is an alternative expression for A�
i (C) which is more complicated,

but quite useful.
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For each set E ⊂ {1, 2, . . . , n}, define an equivalence relation ∼E on C

by x ∼E y if and only if χ(x,y) ⊆ E (that is, xi = yi for all i 6∈ E). Let

the set of equivalence classes be denoted XE . If two vectors differ in at

least one position outside E, then they are not equivalent. Therefore, the

number of equivalence classes, that is, the size of XE , is qn−#E.

Theorem 1.10. Let C be an (n,M ; q) code. Then, for 1 ≤ i ≤ n,

A�
j (C) =

1

M

∑

E⊂{1,2,...,n}
#E=j

∑

U∈XE

#U(#U − 1).

Proof. We count the number of elements in the set

V = {(E,x,y) | E ⊂ {1, 2, . . . , n},#E = j,x,y ∈ C,x 6= y,x ∼E y}
in two ways. On one hand, for given E and an equivalence class U ∈ XE ,

the pair (x,y) can be chosen in #U(#U − 1) different ways. Hence, the

the number of elements of V is given by

#V =
∑

E⊂{1,2,...,n}
#E=j

∑

U∈XE

#U(#U − 1). (1.5)

On the other hand, for a given pair (x,y) of code words at distance i ≤ j,

E must contain the i elements in the support χ(x,y) and j − i of the n− i

elements outside the support. Hence, E can be chosen in
(
n−i
j−i

)
ways. Since

a pair (x,y) of code words at distance i can be chosen in MAi(C) ways,

we get

#V =

j
∑

i=1

MAi(C)

(
n− i

j − i

)

= MA�
j (C). (1.6)

Theorem 1.10 follows by combining (1.5) and (1.6). �

From Theorem 1.10 we can derive a lower bound on A�
j (C) which is

sharper than (or sometimes equal to) the bound in Corollary 1.2.

First we need a simple lemma.

Lemma 1.4. Let m1,m2, . . . ,mN be non-negative integers with sum M .

Then
N∑

i=1

m2
i ≥

(

2
⌊M

N

⌋

+ 1
)(

M −N
⌊M

N

⌋)

+N
⌊M

N

⌋2

(1.7)

= M +
(⌈M

N

⌉

− 1
)(

2M −N
⌈M

N

⌉)

, (1.8)

with equality if and only if
⌊M

N

⌋

≤ mi ≤
⌈M

N

⌉

for all i.
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Proof. Let x1, x2, . . . , xN be non-negative integers for which
∑N

i=1 x
2
i is

minimal. Without loss of generality, we may assume that x1 ≤ xi ≤ xN

for all i. Suppose xN ≥ x1 + 2. Let y1 = x1 + 1, yN = xN − 1, yi = xi

otherwise. Then, by the minimality of
∑
x2

i ,

0 ≤
N∑

i=1

y2
i −

N∑

i=1

x2
i = (x1 + 1)2 − x2

1 + (xN − 1)2 − x2
N = 2(x1 − xN + 1),

contradicting the assumption xN ≥ x1 + 2. Therefore, we must have

xN = x1 + 1 or xN = x1.

Let α = bM/Nc and M = Nα + β where 0 ≤ β < N . Then β of the xi

must have value α+ 1 and the remaining N − β have value α and so

N∑

i=1

x2
i = β(α + 1)2 + (N − β)α2 = (2α+ 1)β +Nα2.

This proves (1.7). We have

⌈M

N

⌉

= α if β = 0, and
⌈M

N

⌉

= α+ 1 if β > 0.

Hence (1.8) follows by rewriting (1.7). �

Using Lemma 1.4, with the lower bound in the version (1.8), we see that

the inner sum
∑

U∈XE
#U(#U − 1) in Theorem 1.7 is lower bounded by

∑

U∈XE

#U(#U − 1) ≥
(⌈ M

qn−j

⌉

− 1
)(

2M − qn−j
⌈ M

qn−j

⌉)

,

independent of E. For E there are
(
n
j

)
possible choices. Hence, we get the

following bound.

Theorem 1.11. Let C be an (n,M ; q) code. Then, for 1 ≤ j ≤ n,

A�
j (C) ≥

(
n

j

)(⌈ M

qn−j

⌉

− 1
)(

2 − qn−j

M

⌈ M

qn−j

⌉)

.

1.3.4 Distance distribution of complementary codes

There is a close connection between the distance distributions of a code

and its (set) complement. More general, there is a connection between

the distance distributions of two disjoint codes whose union is a distance

invariant code.
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An (n,M ; q) code is called distance invariant if
∑

y∈C

zdH(x,y) = AC(z)

for all x ∈ C. In particular, any linear code is distance invariant. However,

a code may be distance invariant without being linear.

Example 1.1. A simple example of a non-linear distance invariant code is

the code

{(1000), (0100), (0010), (0001)}.

Theorem 1.12. Let the (n,M1; q) code C1 and the (n,M2; q) code C2 be

disjoint codes such that C1 ∪ C2 is distance invariant. Then,

M1

{

AC1∪C2(z) −AC1(z)
}

= M2

{

AC1∪C2(z) −AC2(z)
}

.

Proof. Since C1 ∪ C2 is distance invariant, we have

M1AC1∪C2(z) =
∑

x∈C1

∑

y∈C1∪C2

zdH(x,y)

=
∑

x∈C1

∑

y∈C1

zdH(x,y) +
∑

x∈C1

∑

y∈C2

zdH(x,y)

= M1AC1(z) +
∑

x∈C1

∑

y∈C2

zdH(x,y),

and so

M1

{

AC1∪C2(z) −AC1(z)
}

=
∑

x∈C1

∑

y∈C2

zdH(x,y).

Similarly,

M2

{

AC1∪C2(z) −AC2(z)
}

=
∑

x∈C1

∑

y∈C2

zdH(x,y),

and the theorem follows. �

If C2 = C1, then the conditions of Theorem 1.12 are satisfied. Since

C1 ∪ C2 = Fn
q we have M2 = qn −M1 and AC1∪C2(z) = (1 + (q − 1)z)n.

Hence we get the following corollary.

Corollary 1.3. Let C be an (n,M ; q) code. Then

AC(z) =
M

qn −M
AC(z) +

qn − 2M

qn −M
(1 + (q − 1)z)n.
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From Corollary 1.3 we immediately get the following corollary.

Corollary 1.4. Let C be an (n,M ; q) code. Then, for 0 ≤ i ≤ n, we have

Ai(C) =
M

qn −M
Ai(C) +

qn − 2M

qn −M

(
n

i

)

(q − 1)i.

Using Corollary 1.4 we get the following.

Corollary 1.5. Let C be an (n,M ; q) code. Then, for 1 ≤ i ≤ n, we have

A�
i (C) =

M

qn −M
A�

i (C) +
qn − 2M

qn −M

(
n

i

)

(qi − 1).

Proof. We have

A�
i (C) =

i∑

j=1

Ai(C)

(
n− j

n− i

)

=
M

qn −M

i∑

j=1

Aj(C)

(
n− j

n− i

)

+
qn − 2M

qn −M

i∑

j=1

(
n− j

n− i

)(
n

j

)

(q − 1)j

=
M

qn −M
A�

i (C) +
qn − 2M

qn −M

i∑

j=1

(
n

i

)(
i

j

)

(q − 1)j

=
M

qn −M
A�

i (C) +
qn − 2M

qn −M

(
n

i

)

(qi − 1).
�

1.4 Weight distribution of linear codes

1.4.1 Weight distribution

Let

Aw
i = Aw

i (C) = #{x ∈ C | wH(x) = i}.
The sequence Aw

0 , A
w
1 , · · · , Aw

n is known as the weight distribution of C and

Aw
C(z) =

n∑

i=0

Aw
i z

i

is the weight distribution function of C.

We note that dH(x,y) = wH(x−y). If C is linear, then x−y ∈ C when

x,y ∈ C. Hence we get the following useful result.

Theorem 1.13. For a linear code C we have Ai(C) = Aw
i (C) for all i and

AC(z) = Aw
C(z).
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If C and C ′ are equivalent codes, then clearly Ai(C) = Ai(C
′). In

particular, for the study of the weight distribution of linear codes we may

therefore without loss of generality assume that the code is systematic if

we so wish.

1.4.2 Weight distribution of ∗-extended codes

The ∗-operation for linear codes was defined on page 8. The code Sk is a

constant weight code, that is, all non-zero code words have the same weight,

namely qk−1.

Therefore, AC∗(z) only depends on AC(z). In fact

AC∗(z) − 1 = zqk−1

(AC(z) − 1)

since each non-zero vector is extended by a part of weight qk−1.

1.4.3 MacWilliams’s theorem

The following theorem is known as MacWilliams’s theorem.

Theorem 1.14. Let C be a linear [n, k; q] code. Then

A⊥
i (C) = Ai(C

⊥).

Equivalently,

AC⊥(z) =
1

qk
(1 + (q − 1)z)nAC

(
1 − z

1 + (q − 1)z

)

.

Proof. We prove this for q a prime, using Theorem 1.5. The proof for

general prime power q is similar, using Theorem 1.6. First we show that
∑

c∈C

ζu·c =

{
M if u ∈ C⊥,
0 if u 6∈ C⊥.

(1.9)

If u ∈ C⊥, then u · c = 0 and ζu·c = 1 for all c ∈ C, and the result follows.

If u 6∈ C⊥, then there exists a code word c′ ∈ C such that u · c′ 6= 0 and

hence ζu·c
′ 6= 1. Because of the linearity, c + c′ runs through C when c

does. Hence
∑

c∈C

ζu·c =
∑

c∈C

ζu·(c+c′) = ζu·c
′ ∑

c∈C

ζu·c.

Hence
∑

c∈C ζ
u·c = 0. This proves (1.9). By Theorem 1.5,

A⊥
i (C) =

1

M2

∑

u∈Zn
q

wH (u)=i

∣
∣
∣

∑

c∈C

ζu·c
∣
∣
∣

2

=
1

M2

∑

u∈C⊥

wH (u)=i

M2 = Ai(C
⊥).

�
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Corollary 1.6. Let C be a linear [n, k; q] code. Then

d⊥(C) = d(C⊥).

1.4.4 A generalized weight distribution

Many generalizations of the weight distribution have been studied. One

that is particularly important for error detection is the following.

Let C be an [n, k] code and m a divisor of n. Let Ai1 ,i2,··· ,im(C) be the

number of vectors (x1|x2| · · · |xm) ∈ C such that each part xj ∈ GF (q)n/m

and wH(xj) = ij for j = 1, 2, · · · ,m. Further, let

AC(z1, z2, · · · , zm) =
∑

i1,i2,··· ,im

Ai1,i2,··· ,im(C)zi1
1 z

i2
2 · · · zim

m .

For m = 1 we get the usual weight distribution function. Theorem 1.14

generalizes as follows.

Theorem 1.15. Let C be a linear [n, k; q] code. Then

AC(z1, z2, · · · , zm) = qk−n







m∏

j=1

(1 + (q − 1)zj)







n
m

AC⊥(z′1, z
′
2, · · · z′m)

where

z′j =
1 − zj

1 + (q − 1)zj
.

1.4.5 Linear codes over larger fields

There is an alternative expression for the weight distribution function that

is useful for some applications. Let G be a k × n generator matrix over

GF (q). Let mG : GF (q)k → N = {0, 1, 2, . . .}, the column count function,

be defined such that G contains exactly m(x) = mG(x) columns equal to

x for all x ∈ GF (q)k . We use the following further notations:

[a]b =
∏b−1

i=0 (qa − qi),

s(U,m) =
∑

x∈U m(x) for all U ⊆ GF (q)k ,

Skl is the set of l dimensional subspaces of GF (q)k ,

σkl(m, z) =
∑

U∈Skl
zs(Ū,m), where Ū = GF (q)k \ U ,
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Û =
{
y ∈ GF (qr)k | y · x = 0 for x ∈ GF (q)k if and only if x ∈ U

}
,

Cr =
{
yG | y ∈ GF (qr)k

}
, the code generated by G over GF (qr),

C = C1.

Theorem 1.16. For r ≥ 1 we have

ACr(z) =

k∑

l=0

[r]k−lσkl(m, z).

Proof. First we note that if y ∈ Û , then

wH(yG) =
∑

x∈GF (q)k

m(x)wH(y · x) =
∑

x∈Ū

m(x) = s(Ū ,m).

Hence

ACr(z) =

k∑

l=0

∑

U∈Skl

∑

y∈Û

zwH(yG) =

k∑

l=0

∑

U∈Skl

zs(Ū,m)
∑

y∈Û

1.

Since
∑

y∈Û

1 = [r]k−l,

the theorem follows. �

For r = 1, we get the following alternative expression for the weight

distribution of C.

Corollary 1.7. We have

AC(z) = 1 +
∑

U∈Sk,k−1

zs(Ū,m).

1.4.6 Weight distribution of cosets

Theorem 1.17. Let C be an [n, k; q] code and S a proper coset of C. Let

D be the [n, k + 1; q] code containing C and S. Then

Aw
S (z) =

1

q − 1

{

AD(z) −AC(z)
}

.
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Proof. For each non-zero a ∈ GF (q), aS = {ax | x ∈ S} is also a proper

coset of C and Aw
aS(z) = Aw

S (z). Further D = C ∪⋃a6=0 aS (disjoint union)

and so

AD(z) = AC(z) + (q − 1)Aw
S (z), (1.10)

and the theorem follows. �

Using the MacWilliams identity we get the following alternative expres-

sion.

Corollary 1.8. Let C be an [n, k; q] code and S a proper coset of C. Let

D be the [n, k + 1; q] code containing C and S. Then

Aw
S (z) =

(

1 + (q − 1)z
)n

qn−k(q − 1)

{

qAD⊥

(
1 − z

1 + (q − 1)z

)

−AC⊥

(
1 − z

1 + (q − 1)z

)}

.

Theorem 1.18. Let C be an [n, k; q] code and S a proper coset of C. Then

Aw
S (z) ≥ zn−kAC(z) (1.11)

for all z ∈ [0, 1].

Proof. We may assume without loss of generality that the code C is

systematic. There exists a v ∈ S such that S = v + C and such that

v = (0|b) where b ∈ GF (q)n−k .

Let (x|x′) ∈ C where x ∈ GF (q)k and x′ ∈ GF (q)n−k . Then

wH((x|x′) + (0|b)) = wH(x) + wH(x′ + b)

≤ wH(x) + n− k

≤ wH((x|x′)) + n− k

and so

zwH((x|x′)+(0|b)) ≥ zn−kzwH((x|x′)).

Summing over all (x|x′) ∈ C, the theorem follows. �

Corollary 1.9. Let C be an [n, k; q] code and D an [n, k + 1; q] code con-

taining C. Then

AD(z) ≥
{

1 + (q − 1)zn−k
}

AC(z).

Proof. Let S ⊂ D be a proper coset of C. By (1.10) and Theorem 1.18

we have

AD(z) = AC(z) + (q − 1)Aw
S (z) ≥ AC(z) + (q − 1)zn−kAC(z).

�
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Theorem 1.19. Let C be an [n, k; q] code and S a proper coset of C. Then

Aw
S (z) ≤ 1 − yk+1

1 + (q − 1)yk+1
AC(z)

for all z ∈ [0, 1], where y = (1 − z)/(1 + (q − 1)z).

Theorem 1.20. Let C be an [n, k; q] code and D an [n, k+1; q] code which

contains C. Then

AC(z) ≥ 1 + (q − 1)yk+1

q
AD(z)

for all z ∈ [0, 1], where y = (1 − z)/(1 + (q − 1)z).

Proof. By Corollary 1.9 we get

AC(z) = qk−n
(

1 + (q − 1)z
)n

AC⊥(y)

≥ qk−n
(

1 + (q − 1)z
)n(

1 + (q − 1)yk+1
)

AD⊥(y)

= q−1
(

1 + (q − 1)yk+1
)

AD(z)

= q−1
(

1 + (q − 1)yk+1
)(

AC(z) + (q − 1)Aw
S (z)

)

and the theorems follow. �

Corollary 1.10. If C is an [n, k; q] code and k < n, then

AC(z) ≥ (1 + (q − 1)z)n

qn−k

n∏

j=k+1

(
1 + (q − 1)yj

)
,

for all z ∈ [0, 1], where y = (1 − z)/(1 + (q − 1)z).

Proof. The corollary follows from Theorem 1.20 by induction on k. �

1.4.7 Counting vectors in a sphere

The sphere St(x) of radius t around a vector x ∈ GF (q)n is the set of

vectors within Hamming distance t of x, that is

St(x) = {y ∈ GF (q)n | dH(x,y) ≤ t}.
Let Nt(i, j) be the number of vectors of weight j in a sphere of radius t

around a vector of weight i.
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Theorem 1.21. We have

Nt(i, j) =
t∑

e=|i−j|

min(b i+j−e
2 c,n−e)
∑

δ=max(i,j)−e

(
n− i

β

)
i!

γ!δ!ε!
(q − 1)β(q − 2)ε

where β = e− i+ δ, γ = e− j + δ, ε = i+ j − e− 2δ.

Proof. Let wH(x) = i and let y ∈ St(x) such that wH(y) = j. Let

α = #{l | xl = yl = 0},
β = #{l | xl = 0, yl 6= 0},
γ = #{l | xl 6= 0, yl = 0},
δ = #{l | xl = yl 6= 0},
ε = #{l | xl 6= 0, yl 6= 0, xl 6= yl}.

(1.12)

Then

i = wH(x) = γ + δ + ε,

j = wH(y) = β + δ + ε,

e = dH(x,y) = β + γ + ε,

n = α+ β + γ + δ + ε.

(1.13)

Hence

β = e− i+ δ,

γ = e− j + δ,

ε = i+ j − e− 2δ.

(1.14)

Further,

|i− j| ≤ e ≤ t,

δ = i− e+ β ≥ i− e,

δ = j − e+ γ ≥ j − e,

δ = n− e− α ≤ n− e,

2δ = i+ j − e− ε ≤ i+ j − e.

(1.15)

On the other hand, if e and δ are integers such that (1.15) is satisfied, then

there are
(
n− i

β

)
i!

γ!δ!ε!
(q − 1)β(q − 2)ε

ways to choose y such that (1.12)–(1.14) are satisfied. �

For q = 2, the terms in the sum for Nt(i, j) are 0 unless ε = 0. We get

the following simpler expression in this case:

Nt(i, j) =

b t+i−j
2 c
∑

γ=max(0,i−j)

(
n− i

γ + j − i

)(
i

γ

)

. (1.16)
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1.4.8 Bounds on the number of code words of a given weight

Some useful upper bounds on Ai for a linear code are given by the next

theorem.

Theorem 1.22. Let C be a linear [n, k, d = 2t+ 1; q] code. If Nt(i, j) > 0,

then

Ai ≤
(
n
j

)

Nt(i, j)
(q − 1)j .

In particular, for d ≤ i ≤
⌊

n
2

⌋
we have

Ai ≤
(

n
i

)

(
n−i+t

t

) (q − 1)i−t ≤
(
n
i

)

(dn
2 e+t

t

) (q − 1)i−t,

and, for
⌈

n
2

⌉
≤ i ≤ n− t,

Ai ≤
(
n
i

)

(
i+t
t

) (q − 1)i ≤
(
n
i

)

(dn
2 e+t

t

) (q − 1)i.

Proof. Counting all vectors of weight j and Hamming distance at most

t from a code word of weight i we get

AiNt(i, j) ≤
(
n

j

)

(q − 1)j .

In particular, Nt(i, i− t) =
(

i
t

)
> 0 for all i ≥ d, and so

Ai ≤
(

n
i−t

)

(
i
t

) (q − 1)i−t =

(
n
i

)

(
n−i+t

t

) (q − 1)i−t.

Similarly, Nt(i, i+ t) =
(
n−i

t

)
(q − 1)t > 0 for d ≤ i ≤ n− t and so

Ai ≤
(

n
i+t

)
(q − 1)i+t

(
n−i

t

)
(q − 1)t

=

(
n
i

)

(
i+t
t

) (q − 1)i.
�

Theorem 1.23. For an [n, k; q] code C we have An ≤ (q − 1)k.

Proof. Since equivalent codes have the same weight distribution, we may

assume without loss of generality that the code is systematic, that is, it is

generated by a matrix

G = (Ik |P ) =






g1

...

gk






where Ik is the k × k identity matrix, P is a k × (n − k) matrix, and

g1, . . . ,gk are the rows of G. If c =
∑k

i=1 aigi has weight n, then in

particular ai = ci 6= 0 for 1 ≤ i ≤ k. Hence there are at most (q − 1)k such

c. �
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There are many codes for which we have An = (q − 1)k. For example,

this is the case for any code that has a generator matrix where all the

columns have weight one.

1.5 The weight hierarchy

For a linear [n, k; q] code C and any r, where 1 ≤ r ≤ k, the r-th minimum

support weight is defined by

dr = dr(C) = min
{

#χ(D)
∣
∣
∣ D is an [n, r; q] subcode of C

}

.

In particular, the minimum distance of C is d1. The weight hierarchy of

C is the set {d1, d2, · · · , dk}. The weight hierarchy satisfies the following

inequality:

dr ≥ dr−1

(

1 +
q − 1

qr − q

)

. (1.17)

In particular, we have

dr ≥ dr−1 + 1. (1.18)

An upper bound that follows from (1.18) is the generalized Singleton bound

dr ≤ n− k + r. (1.19)

1.6 Principles of error detection

1.6.1 Pure detection

Consider what happens when a code word x from an (n,M) code C is

transmitted over a channel K and errors occur during transmission. If the

received vector y is not a code word we immediately realize that something

has gone wrong during transmission, we detect that errors have occurred.

However, it may happen that the combination of errors is such that the

received vector y is also a code word. In this case we have no way to tell

that the received code word is not the sent code word. Therefore, we have

an undetectable error. We let Pue = Pue(C,K) denote the probability that

this happens. It is called the probability of undetected error. If P (x) is the

probability that x was sent and P (y|x) is the probability that y is received,

given that x was sent, then

Pue(C,K) =
∑

x∈C

P (x)
∑

y∈C\{x}
P (y|x).
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In most cases we will assume that each code word is equally likely to be

sent, that is, P (x) = 1
M . Under this assumption we get

Pue(C,K) =
1

M

∑

x∈C

∑

y∈C\{x}
P (y|x).

The quantity Pue(C,K) is a main parameter for describing how well C

performs on the channel K, and it is the main subject of study in this

book. In Chapter 2, we study Pue(C,K) for the q-ary symmetric channel,

in Chapter 3 we describe results that are particular for the binary symmetric

channel, in Chapter 4 we study other channels.

Remark 1.1. It is easy to show that for any channel K with additive noise

and any coset S of a linear code C we have Pue(C,K) = Pue(S,K).

1.6.2 Combined correction and detection

In some applications we prefer to use some of the power of a code to correct

errors and the remaining power to detect errors. Suppose that C is an

(n,M ; q) code capable of correcting all error patterns with t0 or less errors

that can occur on the channel and suppose that we use the code to correct

all error patterns with t errors or less, where t ≤ t0. Let Mt(x) be the set

of all vectors y such that dH(x,y) ≤ t and such that y can be received

when x is sent over the channel. For two distinct x1,x2 ∈ C, the sets

Mt(x1), Mt(x2) are disjoint. If y ∈ Mt(x) is received, we decode into x. If

y 6∈Mt(x) for all x ∈ C, then we detect an error.

Suppose that x is sent and y is received. There are then three possibil-

ities:

(1) y ∈ Mt(x). We then decode, correctly, into x.

(2) y 6∈ Mt(x
′) for all x′ ∈ C. We then detect an error.

(3) y ∈ Mt(x
′) for some x′ ∈ C \{x}. We then decode erroneously into x′,

and we have an undetectable error.

Let P
(t)
ue = P

(t)
ue (C,K) denote the probability that we have an undetectable

error. As above we get

P (t)
ue (C,K) =

∑

x∈C

P (x)
∑

x′∈C\{x}

∑

y∈Mt(x′)

P (y|x).

Assuming that P (x) = 1
M for all x′ ∈ C, we get

P (t)
ue (C,K) =

1

M

∑

x∈C

∑

x′∈C\{x}

∑

y∈Mt(x′)

P (y|x).
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1.7 Comments and references

1.1 Most of this material can be found in most text books on error-

correcting codes, see the general bibliography. However, many of the

books restrict themselves to binary codes.

1.2 Again, this is mainly standard material.

1.3 Some of this material is standard. Most textbooks restrict their pre-

sentation to linear codes and, therefore, to the weight distribution.

Theorem 1.3 is due to Pless (1963).

Theorems 1.5 and 1.6 are due to Delsarte (1972).

Binomial moments seems to have been used for the first time by

MacWilliams (1963). Possibly the first application to error detection

is by Kløve (1984d). A survey on binomial moments was given by

Dodunekova (2003b).

Theorem 1.9 and Corollary 1.2 were given in Kløve and Korzhik (1995,

pp. 51–52) in the binary case. For general q, they were given by

Dodunekova (2003b).

Theorems 1.10 and 1.11 is due to AbdelGhaffar (1997).

Theorem 1.12 is essentially due to AbdelGhaffar (2004). Corollary 1.3

(for q = 2) was first given by Fu, Kløve, and Wei (2003), with a different

proof.

1.4 Theorem 1.14 is due to MacWilliams (1963). Theorem 1.15 (for q = 2)

was given by Kasami, Fujiwara, and Lin (1986).

Theorem 1.16 is from Kløve (1992).

Theorem 1.17 and Corollary 1.8 are due to Assmus and Mattson (1978).

Theorem 1.18 is essentially due to Ancheta (1981).

Theorem 1.19 with q = 2 is due to Sullivan (1967). An alternative proof

and generalization to general q was given by Redinbo (1973). Further

results are given in Kløve (1993), Kløve (1994b), Kløve (1996c).

We remark that the weight distribution of cosets can be useful in the

wire-tap channel area, see Wyner (1975) and Korzhik and Yakovlev

(1992).

Theorem 1.21 is essentially due to MacWilliams (1963). In the present

form it was given in Kløve (1984a).

Theorem 1.22 was given in Kløve and Korzhik (1995, Section 2.2).

Special cases were given implicitly in Korzhik and Fink (1975) and

Kasami, Kløve, and Lin (1983).

Theorem 1.23 is due to Kløve (1996a).

The weight hierarchy (under a different name) was first studied by
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Helleseth, Kløve, and Mykkeltveit (1977). The r-th minimum sup-

port weight is also known as r-th generalized Hamming weight, see Wei

(1991). The inequality (1.17) was shown by Helleseth, Kløve, and Ytre-

hus (1992) (for q = 2) and Helleseth, Kløve, and Ytrehus (1993) (for

general q).

1.6. A more detailed discussion of combined error detection and correction

is found for example in Kløve (1984a).
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Chapter 2

Error detecting codes for the q-ary

symmetric channel

The q-ary symmetric channel (qSC) is central in many applications and we

will therefore give a fairly complete account of the known results. Results

that are valid for all q are given in this chapter. A special, important case

is the binary case (q = 2). Results that are particular to the binary case

will be given in the next chapter.

2.1 Basic formulas and bounds

2.1.1 The q-ary symmetric channel

The q-ary symmetric channel (qSC) with error probability parameter p is

defined by the transition probabilities

P (b|a) =

{

1 − p if b = a,
p

q−1 if b 6= a.

The parameter p is known as the symbol error probability.

2.1.2 Probability of undetected error

Suppose x ∈ Fn
q is sent over the q-ary symmetric channel with symbol er-

ror probability p, that errors are independent, and that y received. Since

exactly dH(x,y) symbols have been changed during transmission, the re-

maining n− dH(x,y) symbols are unchanged, and we get

P (y|x) =
( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y).

Assume that C is a code over Fq of length n and that the code words are

equally likely to be chosen for transmission over qSC. For this situation,

35
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we will use the notation Pue(C, p) = Pue(C, qSC) for the probability of

undetected error. It is the main subject of study in this chapter.

If AC(z) denotes the distance distribution function of C, then

Pue(C, p) =
1

M

∑

x∈C

∑

y∈C\{x}

( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y)

=
n∑

i=1

Ai(C)
( p

q − 1

)i

(1 − p)n−i

= (1 − p)n
n∑

i=1

Ai(C)
( p

(q − 1)(1 − p)

)i

= (1 − p)n
{

AC

( p

(q − 1)(1 − p)

)

− 1
}

.

We state this basic result as a theorem.

Theorem 2.1. Let C be an (n,M ; q) code. Then

Pue(C, p) =
1

M

∑

x∈C

∑

y∈C\{x}

( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y)

=

n∑

i=1

Ai(C)
( p

q − 1

)i

(1 − p)n−i

= (1 − p)n
{

AC

( p

(q − 1)(1 − p)

)

− 1
}

.

An (n,M ; q) code C is called optimal (error detecting) for p if

Pue(C, p) ≤ Pue(C
′, p) for all (n,M ; q) codes C ′. Similarly, an [n, k; q]

code is called an optimal linear code for p if Pue(C, p) ≤ Pue(C
′, p) for all

[n, k; q] codes C ′. Note that a linear code may be an optimal linear without

being optimal over all codes. However, to simplify the language, we talk

about optimal codes, meaning optimal in the general sense if the code is

non-linear and optimal among linear codes if the code is linear.

When we want to find an (n,M ; q) or [n, k; q] code for error detection

in some application, the best choice is an optimal code for p. There are

two problems. First, we may not know p, and a code optimal for p′ 6= p

may not be optimal for p. Moreover, even if we know p, there is in general

no method to find an optimal code, except exhaustive search, and this is

in most cases not feasible. Therefore, it is useful to have some criterion by

which we can judge the usefulness of a given code for error detection.

We note that Pue

(

C, q−1
q

)

= M−1
qn . It used to be believed that since

p = q−1
q is the ”worst case”, it would be true that Pue(C, p) ≤ M−1

qn for all
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p ∈ [0, q−1
q ]. However, this is not the case as shown by the following simple

example.

Example 2.1. Let C = {(a, b, 0) | a, b ∈ Fq}. It is easy to see that for each

code word c ∈ C there are 2(q − 1) code words in C at distance one and

(q − 1)2 code words at distance 2. Hence

A0 = 1, A1 = 2(q − 1), A2 = (q − 1)2,

and

Pue(C, p) = 2(q−1)
p

q − 1
(1−p)2+(q−1)2

( p

q − 1

)2

(1−p) = 2p(1−p)2+p2(1−p).

This function takes it maximum in [0, q−1
q ] for p = 1 − 1√

3
. In particular,

Pue

(

C, 1 − 1√
3

)

=
2

3
√

3
≈ 0.3849 >

q2 − 1

q3
= Pue

(

C,
q − 1

q

)

for all q ≥ 2.

In fact, Pue(C, p) may have more than one local maximum in the interval

[0, (q − 1)/q].

Example 2.2.

Let C be the (13, 21; 2) code given in Table 2.1.

Table 2.1 Code in Example 2.2.

(1111111111110) (1111000000000) (1100110000000) (1100001100000)
(1100000011000) (1100000000110) (0011110000000) (0011001100000)

(0011000011000) (0011000000110) (0000111100000) (0000110011000)
(0000110000110) (0000001111000) (0000001100110)
(1010101011101) (0101011001000) (1010101010101)
(1010010110011) (1001100101011) (0101100110101)

The distance distribution of C is given in Table 2.2.

Table 2.2 Distance distribution for the code in Example 2.2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13

210Ai 1 0 0 52 10 9 68 67 1 2 0 0 0

The probability of undetected error for this code has three local maxima

in the interval [0, 1/2], namely for p = 0.0872, p = 0.383, and p = 0.407.
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An (n,M ; q) code C is called good (for error detection) if

Pue(C, p) ≤ Pue

(

C,
q − 1

q

)

=
M − 1

qn
(2.1)

for all p ∈ [0, q−1
q ]. Note that ”good” is a technical and relative term.

An extreme case is the code F n
q which cannot detect any errors. Since

Pue(F
n
q , p) = 0 for all p, the code is ”good” in the sense defined above even

if it cannot detect any errors!

An engineering rule of thumb is that if a code, with acceptable param-

eters (length and size), is good in the sense just defined, then it is good

enough for most practical applications. It has not been proved that there

exist good (n,M ; q) codes for all n and M ≤ qn, but numerical evidence

indicates that this may be the case.

We shall later show that a number of well known classes of codes are

good. On the other hand, many codes are not good. Therefore, it is

important to have methods to decide if a code is good or not.

A code which is not good is called bad , that is, a code C is bad

if Pue(C, p) > M−1
qn for some p ∈ [0, q−1

q ]. If C satisfy the condition

Pue(C, p) ≤ M
qn for all p ∈ [0, q−1

q ], we call it satisfactory . Clearly, ”satisfac-

tory” is a weaker condition than ”good”. A code that is not satisfactory is

called ugly , that is, a code C is ugly if Pue(C, p) >
M
qn for some p ∈ [0, q−1

q ].

Some authors use the term good for codes which are called satisfactory here.

The bound M
qn in the definition of a satisfactory code is to some extent

arbitrary. For most practical applications, any bound of the same order of

magnitude would do. Let C be an infinite class of codes. We say that C is

asymptotically good if there exists a constant c such that

Pue(C, p) ≤ cPue

(

C,
q − 1

q

)

for all C ∈ C and all p ∈
[

0, q−1
q

]

. Otherwise we say that C is asymptotically

bad.

A code C is called proper if Pue(C, p) is monotonously increasing on

[0, q−1
q ]. A proper code is clearly good, but a code may be good without

being proper.

A simple, but useful observation is the following lemma.

Lemma 2.1. For i ≤ j and p ∈
[

0, q−1
q

]

, we have

( p

q − 1

)i

(1 − p)n−i ≥
( p

q − 1

)j

(1 − p)n−j . (2.2)
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Proof. We note that (2.2) is equivalent to

( p

(q − 1)(1 − p)

)i

≥
( p

(q − 1)(1 − p)

)j

,

and this is satisfied since

p

(q − 1)(1 − p)
≤ 1.

�

When we want to compare the probability of undetected error for two

codes, the following lemma is sometimes useful.

Lemma 2.2. Let x1, x2, . . . xn and γ1, γ2, . . . , γn be real numbers such that

x1 ≥ x2 ≥ · · · ≥ xn ≥ 0

and

j
∑

i=1

γi ≥ 0 for j = 1, 2, . . . , n.

Then
n∑

i=1

γixi ≥ 0.

Proof. Let σj = γ1 + γ2 + · · ·+ γj . In particular, σ0 = 0 and by assump-

tion, σj ≥ 0 for all j. Then

n∑

i=1

γixi =

n∑

i=1

(σi − σi−1)xi =

n∑

i=1

σixi −
n−1∑

i=0

σixi+1

= σnxn +

n−1∑

i=1

σi(xi − xi+1) ≥ 0.

�

Corollary 2.1. If C and C ′ are (n,M ; q) codes such that

j
∑

i=1

Ai(C) ≤
j
∑

i=1

Ai(C
′)

for all j = 1, 2, . . . , n, then

Pue(C, p) ≤ Pue(C
′, p)

for all p ∈ [0, (q − 1)/q].
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Proof. The results follows from Lemma 2.2 choosing γi = Ai(C
′)−Ai(C)

and xi =
(

p
q−1

)i

(1 − p)n−i. Lemma 2.1 shows that the first condition in

Lemma 2.2 is satisfied; the second condition is satisfied by assumption. �

Example 2.3. We consider the possible distance distributions of (5, 4; 2)

codes. There are 38 different distance distributions of (5, 4; 2) codes; of

these 10 occur for linear codes. It turns out that 2Ai is always an integer.

Therefore, we list those values in two tables, Table 2.3 for weight distribu-

tions of linear codes (in some cases there exist non-linear codes also with

these distance distributions) and Tables 2.4 for distance distributions which

occur only for non-linear codes.

Table 2.3 Possible weight distributions for linear [5, 2; 2] codes.

2A1 2A2 2A3 2A4 2A5 typea no. of nonlinear no. of linear

0 0 4 2 0 P 0 3
0 2 0 4 0 P 0 2
0 2 2 0 2 P 0 2
0 2 4 0 0 P 12 6
0 4 0 2 0 P 24 3
0 6 0 0 0 S 4 2
2 0 0 2 2 G 0 1
2 0 2 2 0 G 0 4
2 2 2 0 0 S 24 6
4 2 0 0 0 U 0 2

aP: proper, G: good, but not proper, S: satisfactory, but bad, U: ugly.

We note that if C is a (5, 4; 2) code, and we define C ′ by taking the

cyclic shift of each code word, that is

C ′ = {(c5, c1, c2, c3, c4) | (c1, c2, c3, c4, c5) ∈ C},

then C ′ and C have the same distance distribution. Moreover, the five

codes obtained by repeating this cycling process are all distinct. Hence,

the codes appear in groups of five equivalent code. In the table, we have

listed the number of such groups of codes with a given weight distribution

(under the headings ”no. of nonlinear” and ”no. of linear”).

Using Corollary 2.1, it is easy to see that Pue(C, p) ≤ Pue(C
′, p) for

all (5, 4; 2) codes C and all p ∈ [0, 1/2], where C ′ is the linear [5, 2; 2]

code with weight distribution (1, 2, 1, 0, 0, 0). A slightly more complicated

argument shows that Pue(C, p) ≥ Pue(C
′′, p) for all (5, 4; 2) codes C and all
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Table 2.4 The other distance distributions for (5, 4; 2) codes.

2A1 2A2 2A3 2A4 2A5 typea no. of nonlinear

0 1 3 2 0 P 24
0 1 4 1 0 P 24
0 2 2 1 1 P 12
0 2 3 0 1 P 24
0 2 3 1 0 P 48
0 3 0 3 0 P 32
0 3 2 0 1 P 24
0 3 3 0 0 P 24
0 5 0 1 0 S 24
1 0 3 2 0 S 24
1 1 1 2 1 P 16
1 1 2 1 1 P 24
1 1 2 2 0 P 72
1 1 3 1 0 P 48
1 2 1 1 1 P 24
1 2 2 0 1 P 12
1 2 2 1 0 P 60
1 2 3 0 0 S 48
1 3 2 0 0 S 48
2 0 1 2 1 G 8
2 1 0 2 1 S 8
2 1 1 1 1 S 16
2 1 1 2 0 S 8
2 1 2 1 0 S 48
2 2 1 1 0 S 48
2 3 1 0 0 S 24
3 2 1 0 0 U 24

3 3 0 0 0 U 8

aP: proper, G: good, but not proper,
S: satisfactory, but bad, U: ugly.

p ∈ [0, 1/2], where C ′′ is the linear [5, 2; 2] code with weight distribution

(1, 0, 0, 2, 1, 0).

For a practical application we may know that p ≤ p0 for some fixed p0.

If we use an (n,M, d; q) code with d ≥ p0n, then the next theorem shows

that Pue(p) ≤ Pue(p0) for all p ≤ p0.

Theorem 2.2. Let C be an (n,M, d; q) code. Then Pue(C, p) is

monotonously increasing on
[

0, d
n

]

.

Proof. Since pi(1 − p)n−i is monotonously increasing on
[

0, i
n

]

, and in
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particular on
[

0, d
n

]

for all i ≥ d, the theorem follows. �

2.1.3 The threshold

Many codes are not good for error detection (in the technical sense). On

the other hand, p is usually small in most practical applications and (2.1)

may well be satisfied for the actual values of p. Therefore, we consider the

threshold of C, which is defined by

θ(C) = max

{

p′ ∈
[

0,
q − 1

q

] ∣
∣
∣ Pud(C, p) ≤ Pud

(

C,
q − 1

q

)

for all p ∈ [0, p′]

}

.

(2.3)

For p ≤ θ(C) the bound (2.1) is still valid. In particular, C is good for error

detection if and only if θ(C) = (q − 1)/q. Note that θ(C) is a root of the

equation Pud(C, p) = Pud(C, (q − 1)/q), and it is the smallest root in the

interval (0, (q − 1)/q], except in the rare cases when Pud(C, p) happens to

have a local maximum for this smallest root. To determine the threshold

exactly is difficult in most cases and therefore it is useful to have estimates.

Theorem 2.3. Let ψ(δ; q) be the least positive root of the equation

( ψ

q − 1

)δ

(1 − ψ)1−δ =
1

q
.

If C is an (n,M, d; q) code, then θ(C) > ψ(d/n; q).

Proof. For p ≤ ψ = ψ(d/n; q) we have, by Lemma 2.1,

Pud(C, p) =

n∑

i=d

Ai

( p

q − 1

)i

(1 − p)n−i

≤
( p

q − 1

)d

(1 − p)n−d
n∑

i=d

Ai

=
(( p

q − 1

)δ

(1 − p)1−δ
)n

(M − 1)

≤
(( ψ

q − 1

)δ

(1 − ψ)1−δ
)n

(M − 1)

=
1

qn
(M − 1) = Pud

(

C,
q − 1

q

)

.

Hence θ(C) > ψ. �
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Example 2.4. For m ≥ 1, let Cm be the binary code generated by the

matrix






m
︷ ︸︸ ︷

1 . . . 1

m
︷ ︸︸ ︷

0 . . . 0

m
︷ ︸︸ ︷

0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

0 . . . 0 0 . . . 0 1 . . . 1






.

Clearly, Cm is a [3m, 3,m; 2] code and

Pue(Cm, p) = 3pm(1 − p)2m + 3p2m(1 − p)m + p3m.

For m ≤ 3, Cm is proper. The code C4 is good, but not proper. For the

codes Cm, d/n = 1/3. For m ≥ 5, we have

Pue(Cm, 1/3)

Pue(Cm, 1/2)
≥ 3(4/27)m

7/8m
=

3

7

(32

27

)m

> 1,

and the code Cm is bad.

We have

ψ
(1

3
; 2
)(

1 − ψ
(1

3
; 2
))2

=
1

2

and so ψ(1/3; 2) ≈ 0.190983. Hence θ(Cm) > 0.190983. On the other hand,

if σm is the least positive root of 3σm(1 − σ)2m = 7 · 2−3m, that is

σ(1 − σ)2 =
(3

7

)1/m 1

2
,

then

Pue(C, σ) = 3σm(1− σ)2m + 3σ2m(1− σ)m + σ3m > 7 · 2−3m = Pue

(

C,
1

2

)

and so θ(Cm) < σm. Since (3/7)1/m → 1 when m → ∞, we see that

σm → ψ(1/3, 2). In Table 2.5 we give the numerical values in some cases.

The values illustrate that σm is a good approximation to θ(Cm).

Table 2.5 Selected values for Example 2.4.

m θ(Cm) σm

5 0.3092 0.3253
6 0.27011 0.27055

10 0.22869306 0.22869335
30 0.201829421660768430283 0.201829421660768430299
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2.1.4 Alternative expressions for the probability of unde-

tected error

There are several alternative expressions for Pue(C, p). Using Lemma 1.1,

we get

AC

( p

(q − 1)(1 − p)

)

=
M

qn
(1 − p)−nA⊥

C

(

1 − qp

q − 1

)

and so Theorem 2.1 implies the following result.

Theorem 2.4. Let C be an (n,M ; q) code. Then

Pue(C, p) =
M

qn
A⊥

C

(

1− qp

q − 1

)

− (1 − p)n.

In particular, if C is a linear [n, k; q] code, then

Pue(C, p) = qk−nAC⊥

(

1 − qp

q − 1

)

− (1 − p)n

= qk−n
n∑

i=0

Ai(C
⊥)
(

1 − qp

q − 1

)i

− (1 − p)n.

Example 2.5. As an illustration, we show that Hamming codes are proper.

The
[

n = qm−1
q−1 , k = qm−1

q−1 − m; q
]

Hamming code C is the dual of the
[

qm−1
q−1 ,m; q

]

Simplex code Sm. All the non-zero code words in Sm have

weight qm−1 = (n(q−1)+1)/q and qm−1 = n(q−1). Since qk−n = q−m =

1/(n(q − 1) + 1), we get

Pue(C, p) =
1

n(q − 1) + 1

(

1 + n(q − 1)
(

1 − q

q − 1
p
)n(q−1)+1

q
)

− (1 − p)n.

Hence for p ∈
(

0, q−1
q

]

we get

d

dp
Pue(C, p) = −n

(

1 − q

q − 1
p
)n(q−1)+1

q −1

+ n(1 − p)n−1

= n
{(

(1 − p)q/(q−1)
) (n−1)(q−1)

q −
(

1 − q

q − 1
p
) (n−1)(q−1)

q
}

> 0

since

(1 − p)q/(q−1) >
(

1 − q

q − 1
p
)

.

Therefore, C is proper.
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We go on to give one more useful expression for Pue(C, p).

Theorem 2.5. Let C be an (n,M ; q) code. Then

Pue(C, p) =

n∑

i=1

A�
i (C)

( p

q − 1

)i(

1 − q

q − 1
p
)n−i

.

Proof. Combining Theorems 1.7 and 2.1, we get

Pue(C, p) = (1 − p)n
{

AC

( p

(q − 1)(1 − p)

)

− 1
}

= (1 − p)n
n∑

i=1

A�
i (C)

( p

(q − 1)(1 − p)

)i(

1 − p

(q − 1)(1 − p)

)n−i

=
n∑

i=1

A�
i (C)

( p

q − 1

)i(

1− q

q − 1
p
)n−i

.
�

2.1.5 Relations to coset weight distributions

We here also mention another result that has some applications. The result

follows directly from Theorem 1.19.

Theorem 2.6. Let C be an [n, k; q] code and S a proper coset of C. Let 0

be sent over qSC, and let y be the received vector. Then

Pr(y ∈ S)

Pr(y ∈ C)
=

(1 − p)nAw
S

(
p

(q−1)(1−p)

)

(1 − p)nAC

(
p

(q−1)(1−p)

) ≤
1 −

(

1 − qp
q−1

)k+1

1 + (q − 1)
(

qp
q−1

)k+1
.

2.2 Pue for a code and its MacWilliams transform

Let C be an (n,M ; q) code. Define P⊥
ue(C, p) by

P⊥
ue(C, p) =

n∑

i=1

A⊥
i (C)

( p

q − 1

)i

(1 − p)n−i.

If C is linear, then Theorem 1.14 implies that P⊥
ue(C, p) = Pue(C

⊥, p).
Similarly to Theorem 2.4 we get

P⊥
ue(C, p) =

1

M
AC

(

1 − qp

q − 1

)

− (1 − p)n. (2.4)

Theorem 2.7. Let C be an (n,M ; q) code. Then

Pue(C, p) = M(1 − p)nP⊥
ue

(

C,
q − 1 − qp

q − qp

)

+
M

qn
− (1 − p)n
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and

P⊥
ue(C, p) =

qn

M
(1 − p)nPue

(

C,
q − 1 − qp

q − qp

)

+
1

M
− (1 − p)n.

Proof. From (2.4) we get

Pue(C, p) = (1 − p)n
{

AC

( p

(q − 1)(1 − p)

)

− 1
}

= (1 − p)n
{

AC

(

1 − q

q − 1
· q − 1 − qp

q − qp

)

− 1
}

= (1 − p)n
{

MP⊥
ue

(

C,
q − 1 − qp

q − qp

)

+M
(

1 − q − 1 − qp

q − qp

)n

− 1
}

= M(1 − p)nP⊥
ue

(

C,
q − 1 − qp

q − qp

)

+
M

qn
− (1 − p)n.

The proof of the other relation is similar. �

The dual of a proper linear code may not be proper, or even good, as

shown by the next example.

Example 2.6. Consider the code C5 defined in Example 2.4. It was shown

in that example that C5 is bad. On the other hand,

Pue(C
⊥
5 , p) =

1

8

{

1 + 3(1 − 2p)5 + 3(1 − 2p)10 + (1 − 2p)15
}

− (1 − p)15,

and this is increasing on [0, 1/2]. Hence C⊥
5 is proper, but the dual is bad.

There are a couple of similar conditions, however, such that if Pue(C, p)

satisfies the condition, then so does P⊥
ue(C, p).

Theorem 2.8. Let C be an (n,M ; q) code.

(1) Pue(C, p) ≤Mq−n for all p ∈
[

0, q−1
q

]

,

if and only if P⊥
ue(C, p) ≤ 1/M for all p ∈

[

0, q−1
q

]

.

(2) Pue(C, p) ≤Mq−n
{

1 − (1 − p)k
}

for all p ∈
[

0, q−1
q

]

,

if and only if P⊥
ue(C, p) ≤ 1/M

{

1 − (1 − p)n−k
}

for all p ∈
[

0, q−1
q

]

.

(3) Pue(C, p) ≤ M−1
qn−1

{

1 − (1 − p)n
}

for all p ∈
[

0, q−1
q

]

,

if and only if P⊥
ue(C, p) ≤ qn/M−1

qn−1

{

1 − (1 − p)n
}

for all p ∈
[

0, q−1
q

]

.
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Proof. Assume that Pue(C, p) ≤ Mq−n for all p ∈
[

0, q−1
q

]

. Using The-

orem 2.7 we see that if Pue(C, p) ≤Mq−n, then

P⊥
ue(C

⊥, p) =
qn

M
(1 − p)nPue

(

C,
q − 1 − qp

q − qp

)

+
1

M
− (1 − p)n

≤ qn

M
(1 − p)nM

qn
+

1

M
− (1 − p)n =

1

M
.

The proof of the other relations are similar. �

Note that for a linear code C, the relation (1) is equivalent to the state-

ment that C is satisfactory if and only if C⊥ is satisfactory.

2.3 Conditions for a code to be satisfactory, good, or proper

2.3.1 How to determine if a polynomial has a zero

In a number of cases we want to know if a polynomial has a zero in a given

interval. For example, if d
dpPue(C, p) > 0 for all p ∈

(

0, q−1
q

)

, then C is

proper. If Pue

(

C, q−1
q

)

− Pue(C, p) ≥ 0 then C is good (by definition). If

AC1(z) − AC2(z) > 0 for z ∈ (0, 1), then Pue(C1, p) > Pue(C2, p) for all

p ∈
(

0, q−1
q

)

, and so C2 is better for error detection than C1. The simplest

way is to use some mathematical software to draw the graph and inspect

it and/or calculate the roots. However, this may sometimes be misleading.

Therefore, we give a short description of the systematic method of Sturm

sequences.

Let f(z) be a polynomial and [a, b] an interval.

Define the sequence f0(z), f1(z), · · · , fm(z) by the Euclidean algorithm:

f0(z) = f(z),

f1(z) = f ′(z),
fi(z) ≡ −fi−2(z) (mod fi−1(z)), deg(fi(z)) < deg(fi−1(z)) for 2 ≤ i ≤ m,

fm(z) divides fm−1(z).

Define g0(z), g1(z), · · · , gm(z) by

gi(z) =
fi(z)

fm(z)
.

If g0(a) = 0 we divide all gi(z) with (z − a); and if g0(b) = 0 we divide all

gi(z) with (z − b).
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Lemma 2.3. The number of distinct zeros for f(z) in (a, b) is given by

#{i | gi−1(a)gi(a) < 0, 1 ≤ i ≤ m} − #{i | gi−1(b)gi(b) < 0, 1 ≤ i ≤ m}.

Another method which is not guaranteed to work, but is simpler when

it does, is to rewrite f(z) into the form

f(z) =

n∑

i=0

ai(z − a)i(b− z)n−i

where n = deg(f(z)). If ai ≥ 0 for all i, then clearly f(z) ≥ 0 for all

z ∈ [a, b]. For example, this is the method behind Theorem 2.5.

Example 2.7. As a further example, we show that the [2m, 2m −m− 1, 4]

extended Hamming code is proper. For convenience we write M = 2m−1.

Then

Pue(p) =
1

4M

{

1 + (4M − 2)(1 − 2p)M + (1 − 2p)2M
}

− (1 − p)2M ,

and so

d

dp
Pue(p) = 2M(1− p)2M−1 − (2M − 1)(1 − 2p)M−1 − (1 − 2p)2M−1

= 2M(p+ 1 − 2p)2M−1

−(2M − 1)(2p+ 1 − 2p)M (1 − 2p)M−1 − (1 − 2p)2M−1

= 2M

2M−1∑

i=0

(
2M − 1

i

)

pi(1 − 2p)2M−1−i

−(2M − 1)
M∑

i=0

(
M

i

)

2ipi(1 − 2p)2M−1−i − (1 − 2p)2M−1

=

2M−1∑

i=0

αi p
i(1 − 2p)2M−1−i,

where α0 = α1 = α2 = 0, and

i!αi = 2M(2M − 1)(2M − 2)
{ i∏

j=3

(2M − j) −
i∏

j=3

(2M − 2j + 2)
}

> 0

for 3 ≤ i ≤ 2M − 1. Hence d
dpPue(p) ≥ 0 for all p ∈

[

0, 1
2

]

; that is, C is

proper.
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2.3.2 Sufficient conditions for a code to be good

Theorem 2.5 may be useful to show that a code is good or proper. First,

Pue

(

C,
q − 1

q

)

=
M − 1

qn

(

q
p

q − 1
+ 1 − q

q − 1
p
)n

=
M − 1

qn

n∑

i=0

(
n

i

)

qi
( p

q − 1

)i(

1 − q

q − 1
p
)n−i

.

Therefore, if

A�
i ≤ qi(M − 1)

qn

(
n

i

)

(2.5)

for 1 ≤ i ≤ n, then C is good. We can now use the results in Corollary 1.7.

For 1 ≤ i < d we have A�
i = 0 and so (2.5) is satisfied. For 0 ≤ n− i < d⊥

we have A�
i = (Mqi−n − 1)

(
n
i

)
and so

qi(M − 1)

qn

(
n

i

)

−A�
i = (1 − qi−n)

(
n

i

)

≥ 0

and (2.5) is again satisfied. Therefore we get the following theorem.

Theorem 2.9. Let C be an (n,M, d; q) code with dual distance d⊥. If

A�
i ≤ (M − 1)

qn−i

(
n

i

)

for d ≤ i ≤ n− d⊥, then C is good.

2.3.3 Necessary conditions for a code to be good or satis-

factory

We will give some necessary conditions for a code to be good.

Theorem 2.10. Let C be a good (n,M ; q) code. Then, for all i, 0 < i < n

we have

Ai(C) ≤ M − 1

qn
· n

n(q − 1)i

ii(n− i)n−i
=

M − 1

qn(1+Hq(i/n))
.

Proof. Choosing p = i
n we get

M − 1

qn
≥ Pue

(

C,
i

n

)

=

n∑

j=1

Aj

( i

n(q − 1)

)j(n− i

n

)n−j

≥ Ai

( i

n(q − 1)

)i(n− i

n

)n−i

= Ai
ii(n− i)n−i

nn(q − 1)i
.



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

50 Codes for Error Detection

This proves the inequality. The equality follows directly from the definition

of the q-ary entropy function Hq(z) since

q−Hq(z) =
( z

q − 1

)z

(1 − z)1−z.
�

Theorem 2.11. Let C be a satisfactory (n,M ; q) code. Then, for all i,

0 < i < n we have

Ai(C) ≤ M

qn
· n

n(q − 1)i

ii(n− i)n−i
,

A⊥
i (C) ≤ 1

M
· n

n(q − 1)i

ii(n− i)n−i
.

Proof. The proof of the first inequality is similar to the proof of Theorem

2.10. For the second inequality, we first note that

Mq−n ≥ Pue(C, p)

= Mq−n +Mq−n
n∑

j=1

A⊥
j

(

1 − q

q − 1
p
)j

− (1 − p)n

≥ Mq−n +Mq−nA⊥
i

(

1 − q

q − 1
p
)i

− (1 − p)n

and so

A⊥
i

(

1 − q

q − 1
p
)i

≤ qn

M
(1 − p)n.

Choosing 1− q
q−1p = i

(n−i)(q−1) we get

A⊥
i

( i

(n− i)(q − 1)

)i

≤ 1

M

( n

n− i

)n

.
�

Theorem 2.12. Let C be a good (n,M ; q) code. Then

MA⊥
1 ≤ (q − 1)n.

Proof. From Pue(C, p) = Mq−n
∑n

i=0 A
⊥
i

(

1 − q
q−1p

)i

− (1 − p)n we get

d

dp
Pue(C, p) = n(1 − p)n−1 −Mq−n

n∑

i=1

qi

q − 1
A⊥

i

(

1 − q

q − 1
p
)i−1

.

Since Pue(C, p) cannot be decreasing at p = q−1
q for a good code, we get

0 ≤ d

dp
Pue(C, p)

∣
∣
∣
p= q−1

q

=
n

qn−1
− M

qn
· q

q − 1
A⊥

1

=
1

(q − 1)qn−1

{

(q − 1)n−MA⊥
1

}

.
�



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

Error detecting codes for the q-ary symmetric channel 51

A class of necessary conditions can be obtained by considering a

weighted average of Pue(C, p) over some interval. We first formulate this as

a general theorem, and thereafter we specialize it in two ways.

Theorem 2.13. Let C be a good (n,M ; q) code. Let

0 ≤ a < b ≤ (q − 1)/q,

and let f(p) be a continuous non-negative function on [a, b] such that
∫ b

a
f(p)dp = 1 (that is, a probability distribution). Then

∫ b

a

f(p)Pue(C, p)dp ≤ M − 1

qn
.

Proof. Since C is good, Pue(C, p) ≤ M−1
qn for all p ∈ [a, b], and so

∫ b

a

f(p)Pue(C, p)dp ≤
∫ b

a

f(p)
M − 1

qn
dp

=
M − 1

qn

∫ b

a

f(p)dp =
M − 1

qn
.

�

To compute the integral
∫ b

a
f(p)Pue(C, p)dp we use one of the explicit

expressions we have for Pue(C, p). Let us first consider a constant f(p),

that is f(p) = 1
b−a for all p. For this case, it is most convenient to use

Theorem 2.4, that is,

Pue(C, p) =
M

qn

n∑

i=0

A⊥
i (C)

(

1 − qp

q − 1

)i

− (1 − p)n.

This gives
∫ b

a

f(p)Pue(C, p)dp =
M

qn(b− a)

n∑

i=0

A⊥
i (C)

∫ b

a

(

1 − qp

q − 1

)i

dp

− 1

(b− a)

∫ b

a

(1 − p)ndp

=
M

qn(b− a)

n∑

i=0

A⊥
i (C)

q − 1

q(i+ 1)

·
{(

1 − qa

q − 1

)i+1

−
(

1 − qb

q − 1

)i+1}

− 1

(b− a)(n+ 1)

{

(1 − a)n+1 − (1 − b)n+1
}

.

This gives the following corollary.
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Corollary 2.2. Let C be a good (n,M ; q) code and let

0 ≤ a < b ≤ (q − 1)/q.

Then

M(q − 1)

qn+1(b− a)

n∑

i=0

A⊥
i (C)

i+ 1

{(

1 − qa

q − 1

)i+1

−
(

1 − qb

q − 1

)i+1}

− 1

(b− a)(n+ 1)

{

(1 − a)n+1 − (1 − b)n+1
}

≤ M − 1

qn
.

For the next special case, we let a = 0 and b = (q−1)/b and for f(p) we

use a so-called beta function. More precisely, let α and β be non-negative

integers. Then (see e.g. Dweight (1961))
∫ 1

0

xα(1 − x)β =
α!β!

(α + β)!
=

1
(
α+β

α

) .

Hence
∫ (q−1)/q

0

( p

q − 1

)α(

1− qp

q − 1

)β

dp =
q − 1

(α + β + 1)qα+1
(
α+β

α

) .

Therefore, a possible choice for f(p) is

f(p) =
(α+ β + 1)qα+1

(
α+β

α

)

q − 1

( p

q − 1

)α(

1 − qp

q − 1

)β

.

For the application of this weighting, the most useful form of Pue(C, p) is

the one given in Theorem 2.5:

Pue(C, p) =

n∑

i=1

A�
i (C)

( p

q − 1

)i(

1 − qp

q − 1

)n−i

.

This gives
∫ (q−1)/q

0

f(p)Pue(C, p)dp

=
(α+ β + 1)qα+1

(
α+β

α

)

q − 1

n∑

i=1

A�
i (C)

∫ (q−1)/q

0

( p

q − 1

)i+α(

1 − qp

q − 1

)n−i+β

dp

=
(α+ β + 1)qα+1

(
α+β

α

)

q − 1

n∑

i=1

A�
i (C)

q − 1

(n + α+ β + 1)qi+α+1
(
n+α+β

i+α

)

=
(α+ β + 1)

(n+ α+ β + 1)

n∑

i=1

A�
i (C)

qi

(
α+β

α

)

(
n+α+β

i+α

) .
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Since

(α + β + 1)
(
α+β

α

)

(n+ α+ β + 1)
(
n+α+β

i+α

) =

(
α+β+1

α+1

)

(
n+α+β+1

i+α+1

) ,

we get the following corollary.

Corollary 2.3. Let C be a good (n,M ; q) code and let α and β be non-

negative integers. Then

n∑

i=1

A�
i (C)

qi

(
α+β+1

α+1

)

(
n+α+β+1

i+α+1

) ≤ M − 1

qn
.

For a linear [n, k, d; q] code, a general lower bound on Ad is q−1, and for

a non-linear (n,M, d; q) code a general lower bound on Ad is 2/M . Now, let

A be some positive number. We will consider (n,M, d; q) codes for which

Ad ≥ A. In the rest of the subsection we also use the notations

Q =
q

q − 1
and κ = ln(M/A) = lnM − lnA.

By definition,

P⊥
ue(C, p) ≥

1

M
+
A

M
(1 −Qp)d − (1 − p)n.

Hence, if

A

M
(1 −Qp)d ≥ (1 − p)n, (2.6)

then P⊥
ue(C, p) ≥ 1

M . Taking logarithms in (2.6), we get the equivalent

condition

−κ+ d ln(1 −Qp) ≥ n ln(1 − p).

Combining this with Theorem 2.8, 1), we get the following lemma.

Lemma 2.4. If C is an (n,M, d)q code and

n ≥ h(p) =
d ln(1 −Qp) − κ

ln(1 − p)
,

then C is ugly.

Any choice of p, 0 < p < (q − 1)/q now gives a proof of the existence of

a µ(d, κ) such that if n ≥ µ(d, κ) and C is an (n,M, d) code with Ad ≥ A,

then C is ugly for error detection. The strongest result is obtained for the p

that minimizes h(p). We cannot find a closed formula for this, but consider

approximations.
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We will use the notations

f(p) =
ln(1 −Qp)

ln(1 − p)
, and g(p) =

−1

ln(1 − p)
.

Then

h(p) = d f(p) + κ g(p). (2.7)

The function f(p) is increasing on (0, (q−1)/q), it approaches the value

Q when p→ 0+, and it approaches infinity when p→ (q−1)/q−. Moreover,

f ′(p) =
−Q(1 − p) ln(1 − p) + (1 −Qp) ln(1 −Qp)

(1 − p)(1 −Qp) ln(1 − p)2
,

and

f ′′(p) =
f1(p)

−(1 − p)2(1 −Qp)2(ln(1 − p))3
,

where

f1(p) = Q2(1 − p)2(ln(1 − p))2 + 2Q(1 − p)(1 −Qp) ln(1 − p)

−2(1 −Qp)2 ln(1 −Qp) − (1 −Qp)2 ln(1 − p) ln(1 −Qp)

> 0

for all p ∈ (0, (q − 1)/q). Hence f is convex on (0, (q − 1)/q). Similarly,

the function g(p) is decreasing on (0, (q−1)/q), it approaches infinity when

p→ 0+, and it takes the value −1/ ln q for p = (q − 1)/q. Moreover,

g′(p) =
−1

(1 − p) ln(1 − p)2
=

−(1 −Qp)

(1 − p)(1 −Qp) ln(1 − p)2
,

g′′(p) =
−(2 + ln(1 − p))

(1 − p)2(ln(1 − p))3
> 0

for all p ∈ (0, (q − 1)/q), and so g(p) is also convex on (0, (q − 1)/q). This

implies that the combined function h(p) is also convex on (0, (q−1)/q) since

κ > 0, and it takes its minimum somewhere in (0, (q−1)/q). We denote the

value of p where minimum is obtained by pm and the minimum by µ(d, κ).

From Lemma 2.4 we get the following necessary condition for a code to

be good.

Corollary 2.4. If C is good for error detection, then n < µ(d, κ).
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One can find good approximations for µ(d, κ) when d � k or k � d. Here

we give some details for d ≥ k. Let κ = αd, where α is a parameter,

0 ≤ α ≤ 1. Then

h(p) = d
ln(1 −Qp) − α

ln(1 − p)

and

h′(p)

d
=

−Q(1 − p) ln(1 − p) + (1 −Qp) ln(1 −Qp)

(1 − p)(1 −Qp) ln(1 − p)2
− α

(1 − p) ln(1 − p)2
.

In particular h′(p) = 0 if (and only if)

α =
−Q(1 − p) ln(1 − p) + (1 −Qp) ln(1 −Qp)

1 −Qp
. (2.8)

We want to solve this for p in terms of α. There is no closed form of this

solution. However, we can find good approximations. For α → 0+, we see

that p → 0 and h(p) → Q. We will first describe this important case in

more detail. We note that α → 0+ implies that d → ∞. The parameter κ

may also grow, but then at a slower rate (since d/κ→ 0).

Theorem 2.14. Let

y =

√
α

2Q(Q− 1)
.

There exist numbers ai and bi for i = 1, 2, . . . such that, for any r ≥ 0,

pm =

r∑

i=1

aiy
i +O(yr+1),

and

µ(d, αd) = dQ

{

1 + 2(Q− 1)

r∑

i=1

biy
i +O(yr+1)

}

when y → 0 (that is α → 0). The first few ai and bi are given in Table 2.6.

Proof. First we note that α = 2Q(Q− 1)y2 and so

h(p) = d
ln(1 −Qp) − 2Q(Q− 1)y2

ln(1 − p)
,

and

h′(p) = d
H(p, y)

(1 − p)(1 −Qp)(ln(1 − p))2
,
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Table 2.6 ai and bi for Theorem 2.14

i ai bi

1 2 1
2 −(8Q + 2)/3 (2Q − 1)/3
3 (26Q2 + 22Q − 1)/9 (2Q2 − 2Q − 1)/18
4 −(368Q3 + 708Q2 − 12Q + 8)/135 −2(Q − 2)(2Q − 1)(Q + 1)/135

where

H(p, y) = −Q(1−p) ln(1−p)+(1−Qp) ln(1−Qp)−2Q(Q−1)y2(1−Qp).

Hence h′(p) = 0 if H(p, y) = 0. Taking the Taylor expansion of

H(
∑
aiy

i, y) we get

H
(∑

aiy
i, y
)

=
a2
1 − 4

4
y2 +

a1

6
(Qa2

1 + a2
1 + 6a2 + 12Q)y3 + · · ·

All coefficients for i ≤ r should be zero. In particular, the coefficient of y2

shows that a2
1 = 4. Since a1y

2 is the dominating term in the expression

for p when y is small and p > 0, we must have a1 > 0 and so a1 = 2.

Next the coefficient of y3 shows that a2 = −(16Q + 4)/6. In general, we

get equations in the ai which can be used to determine the ai recursively.

Substituting the expression for p into h(p) and taking Taylor expansion, we

get the expression for µ(d, κ). �

Assuming that κα → 0 and taking the first three terms of approxima-

tion, we get

µ(d, κ) ≈ dQ+
√

2dκQ(Q− 1) +
2Q− 1

3
κ,

(the other terms goes to zero with y).

By definition, h(p) is an upper approximation for any p. One way to

get a good upper approximation is to choose for p a good approximation

for pm. For example, taking the first term in the approximation for pm,

that is, p =
√

2α/(Q(Q− 1)), we get

µ(d, κ) ≤ h
(√

2α/(Q(Q− 1))
)

.

By similar analysis, one can determine approximations for µ(d, κ) when

κ is larger than d. The main term is

µ(d, κ) ≈ κ

ln q
.



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

Error detecting codes for the q-ary symmetric channel 57

2.3.4 Sufficient conditions for a code to be proper

An immediate consequence of Theorem 2.2 is the following theorem.

Theorem 2.15. If C is an (n,M, d; q) code and d ≥ q−1
q n, then C is

proper.

A related condition is the following.

Theorem 2.16. If C is an (n,M, d; q) code and d⊥ > q−1
q n, then C is

proper.

Proof. Any code of length one is proper, so we may assume that n ≥ 2.

Let

f(p) = Pue(C, p) =
M

qn
+
M

qn

n∑

i=d⊥

(

1 − qp

q − 1

)i

− (1 − p)n.

Then

f ′(p) = n(1 − p)n−1 − M

qn

n∑

i=d⊥

iA⊥
i

q

q − 1

(

1 − qp

q − 1

)i−1

.

Hence

f ′(p)

n(1 − p)n−1
= 1 − M

n(q − 1)qn−1

n∑

i=d⊥

iA⊥
i

(

1 − qp
q−1

)i−1

(1 − p)n−1
. (2.9)

We note that d⊥ > q−1
q n implies that

d⊥ − 1 ≥ (q − 1)n+ 1

q
− 1 =

q − 1

q
(n− 1).

Hence, for all i ≥ d⊥,
(

1− qp

q − 1

)i−1

≤
(

1 − qp

q − 1

)d⊥−1

≤
(

1 − qp

q − 1

)(n−1)(q−1)/q

and so
(

1 − qp
q−1

)i−1

(1 − p)n−1
≤
(

1 − q
q−1p

(1 − p)q/(q−1)

)(q−1)(n−1)/q

≤ 1.

Therefore, by (1.4)

f ′(p)

n(1 − p)n−1
≥ 1 − M

n(q − 1)qn−1

n∑

i=d⊥

iA⊥
i

= 1 − M

n(q − 1)qn−1
· q

n−1

M
{(q − 1)n−A1} ≥ 0.

Hence, f ′(p) ≥ 0 for all p ∈ [0, (q − 1)/q] and so C is proper. �
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Remark 2.1. The bound in the theorem cannot be improved in general,

in the sense that there exist bad (n,M, d; q) codes for which d⊥ = q−1
q n.

The idea of the proof of Theorem 2.16 can be carried further. Let

0 < α < (q − 1)/q. If h(p) =
(

1 − q
q−1p

)α

, then

h′(p) = −α q

q − 1

(

1 − q

q − 1
p
)α−1

< 0

and

h′′(p) = α(α− 1)
( q

q − 1

)2(

1 − q

q − 1
p
)α−2

< 0.

Hence, the equation
(

1 − q

q − 1
p
)α

= 1 − p

has a unique solution ρ(q, α) in the interval 0 < p < q−1
q . We observe that if

α < β, then
(

1− q
q−1p

)α

<
(

1− q
q−1p

)β

for all p. Hence, ρ(q, α) > ρ(q, β).

Theorem 2.17. If C is an (n,M, d; q) code and

d

n
≥ ρ
(

q,
d⊥ − 1

n− 1

)

,

then C is proper.

Proof. By (2.9),

f ′(p)

n(1 − p)n−1
≥ 1 −

(

1 − qp
q−1

)d⊥−1

(1 − p)n−1

M

n(q − 1)qn−1

n∑

i=d⊥

iA⊥
i

= 1 −

(

1 − qp
q−1

)d⊥−1

(1 − p)n−1

M

n(q − 1)qn−1
· q

n−1

M
{(q − 1)n−A1}

≥ 1 −







(

1 − qp
q−1

)(d⊥−1)/(n−1)

(1 − p)







n−1

≥ 0

for

ρ
(

q,
d⊥ − 1

n− 1

)

≤ p ≤ q − 1

q
.

Hence, f(p) is increasing in this interval. On the other hand, by Theorem

2.2, f(p) is increasing on [0, d/n]. Combining these two results, the theorem

follows. �
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Example 2.8. The equation for ρ(2, 1/3) is (1 − 2p)1/3 = 1 − p, that is,

1 − 2p = (1 − p)3 which has the solution ρ(2, 1/3) = (3 −
√

5)/2 ≈ 0.3819.

Hence, if C is an (n,M, d; 2) code such that (d⊥ − 1)/(n − 1) ≥ 1/3 and

d/n ≥ 0.3819, then C is proper.

Example 2.9. Consider a code C for which d ≥ 2 and d⊥ = q−1
q n. Let

α =
(

q−1
q n− 1

)

/(n− 1). If

(

1 − q

q − 1

2

n

)α

≤ 1− 2

n
, (2.10)

then ρ(q, α) ≤ 2/n and the code C is proper by Theorem 2.17. A careful

analysis shows that (2.10) is satisfied for n ≥ 5 when q = 2 and for n ≥ 3

when q ≥ 3.

To formulate the next sufficient condition for a code being proper, we

define the functions

Λi(p) =
n∑

j=i

(
n

j

)( qp

q − 1

)j(

1 − qp

q − 1

)n−j

.

Theorem 2.18. Let C be an (n,M ; q) code. Then

Pue(C, p) =
A�

1(C)
(
n
i

)
q

Λ1(p) +

n∑

i=2

{A�
i (C)
(

n
i

)
qi

− A�
i−1(C)

(
n

i−1

)
qi−1

}

Λi(p).

Proof. Since

Λi(p) − Λi+1(p) =

(
n

i

)

qi
( p

q − 1

)i(

1 − qp

q − 1

)n−i

,

Theorem 2.5 implies that

Pue(C, p) =

n∑

i=1

A�
i (C)

1
(
n
i

)
qi

(Λi(p) − Λi+1(p))

=
n∑

i=1

A�
i (C)
(
n
i

)
qi

Λi(p) −
n∑

i=2

A�
i−1(C)

(
n

i−1

)
qi−1

Λi(p)

=
A�

1(C)
(
n
i

)
q

Λ1(p) +

n∑

i=2

{A�
i (C)
(
n
i

)
qi

− A�
i−1(C)

(
n

i−1

)
qi−1

}

Λi(p).
�

The representation in Theorem 2.18 is useful because of the following

result.

Lemma 2.5. The functions Λi(p) are increasing on [0, q−1
q ] for all i ≥ 1.
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Proof. This is shown by straightforward calculus:

dΛi(p)

dp
=

n∑

j=i

(
n

j

){

j
( qp

q − 1

)j−1 q

q − 1

(

1 − qp

q − 1

)n−j

−(n− j)
( qp

q − 1

)j(

1 − qp

q − 1

)n−j−1 q

q − 1

}

=
q

q − 1

n∑

j=i−1

(
n

j + 1

)

(j + 1)
( qp

q − 1

)j(

1 − qp

q − 1

)n−j−1

− q

q − 1

n∑

j=i

(
n

j

)

(n− j)
( qp

q − 1

)j(

1 − qp

q − 1

)n−j−1

=
q

q − 1

(
n

i

)

i
( qp

q − 1

)i−1(

1 − qp

q − 1

)n−i

> 0

for all p ∈ (0, q−1
q ). �

Combining Theorem 2.18, Corollary 1.7, and Lemma 2.5, we get the

following result.

Theorem 2.19. Let C be an (n,M ; q) code. If

A�
i (C)
(
n
i

) ≥ q
A�

i−1(C)
(

n
i−1

) (2.11)

for d+ 1 ≤ i ≤ n− d⊥, then C is proper.

Remark 2.2. The condition (2.11) can be rewritten as

iA�
i (C) ≥ q(n− i+ 1)A�

i−1(C) (2.12)

and also

i∑

j=1

i(j)
n(j)

Aj(C) ≥ q
i−1∑

j=1

(i− 1)(j)
n(j)

Aj(C), (2.13)

where

m(j) = m(m− 1)...(m− j + 1).

2.3.5 Large codes are proper

The code F n
q is proper: Pue(F

n
q , p) = 1 − (1 − p)n and this is clearly

increasing with p. Hence, there exists a bound B(q, n) ≤ qn such that if
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M ≥ B(q, n), then any (n,M, q) code is proper. We will give estimates for

B(q, n). Let

β(q, n) =
−(qn− n+ q) + s

2(qn− n− q)
,

where

s =
√

(qn− n+ q)2 + 4n(q − 1)(qn− n− q)qn.

Lemma 2.6. If |C| ≤ β(q, n), then C is proper.

We note that if |C | ≥ qn − β(q, n), then

|C| ≤ β(q, n).

Hence from the lemma we get the following equivalent result.

Theorem 2.20. For q ≥ 2 and n ≥ 3 we have

B(q, n) ≤ qn − β(q, n);

that is, any q-ary code of size at least qn − β(q, n) is proper.

Proof. Combining Corollary 1.3 and Theorem 2.19 (with the condition

in the form (2.13)), a sufficient condition for C to be proper is

l∑

i=1

l(i)

n(i)
{MAi + (qn − 2M)

(
n

i

)

(q − 1)i}

≥ q

l−1∑

i=1

(l − 1)(i)

n(i)
{MAi + (qn − 2M)

(
n

i

)

(q − 1)i}.

We also note that
l∑

i=1

l(i)

n(i)

(
n

i

)

(q − 1)i =

l∑

i=1

(
l

i

)

(q − 1)i = ql − 1

for 2 ≤ l ≤ n. Hence, the sufficient condition for C to be proper can be

written

M
l∑

i=1

l(i)
n(i)

Ai + (qn − 2M)(ql − 1)

≥ qM
l−1∑

i=1

(l − 1)(i)

n(i)
Ai + (qn − 2M)q(ql−1 − 1) (2.14)

for 2 ≤ l ≤ n. Omitting the term for i = l in the sum on the left-hand

side and rearranging, we get the following stronger sufficient condition for
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C to be proper (stronger in the sense that if (2.15) is satisfied, then (2.14)

is also satisfied):

(qn − 2M)(q − 1) ≥M

l−1∑

i=1

(l − 1)(i)

n(i)

(

q − l

l − i

)

Ai (2.15)

for 2 ≤ l ≤ n. Since

(l − 1)(i)

n(i)

(

q − l

l− i

)

=
1

n

(l − 1)(i−1)

(n− 1)(i−1)
(ql − qi− l) ≤ 1

n
(ql − q − l),

we get

l−1∑

i=1

(l − 1)(i)

n(i)

(

q − l

l− i

)

Ai ≤
1

n
(ql− l− q)

l−1∑

i=1

Ai ≤
1

n
(ql− l− q)(M − 1).

(2.16)

Combining (2.16) with (2.15), we see that a yet stronger sufficient condition

for C to be proper is

(qn − 2M)(q − 1) ≥ 1

n
(ql − l − q)M(M − 1) (2.17)

for 2 ≤ l ≤ n. The strongest condition is imposed for l = n and this

condition is

(qn − 2M)(q − 1) ≥ 1

n
(qn− n− q)M(M − 1).

This is equivalent to

M ≤ β(q, n).

This completes the proof of Lemma 2.6 and Theorem 2.20. �

Using different estimates, we can obtain a stronger bound than Theorem

2.20; this bound is not explicit, however, but needs some computation. In

(2.15), the terms in the sum are non-positive for q − l/(l − i) < 0, that is

i > l(q − 1)/q. If we omit these terms, we get the stronger conditions

(qn − 2M)(q − 1) ≥M

bl(q−1)/qc
∑

i=1

(l − 1)(i)

n(i)

(

q − l

l − i

)

Ai (2.18)

for 2 ≤ l ≤ n. We note that the condition for l + 1 is stronger than the

condition for l since

(l)(i)

(

q − l+1
l+1−i

)

(l − 1)(i)

(

q − l
l−i

) =
l(ql+ q − qi− l − 1)

(l + 1 − i)(ql − qi− l)
≥ 1
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for i ≤ l(q−1)/q. Hence, the strongest condition is the condition for l = n,

namely

(qn − 2M)(q − 1) ≥M

bn(q−1)/qc
∑

i=1

1

n
(q(n− i) − n)Ai. (2.19)

We have Ai ≤
(
n
i

)
(q − 1)i. We can use this bound on Ai, but must take

into account that
∑n

i=1Ai = M − 1. Let

Mm =
m∑

i=1

(
n

i

)

(q − 1)i.

Assume that M >Mr−1 where r < bn(q − 1)/qc, and let

S =
r−1∑

i=1

(q(n− i) − n)

(
n

i

)

(q − 1)i + (q(n− r) − n)(M − 1 −Mr−1).

Then

S ≥
r−1∑

i=1

(q(n− i) − n)

(
n

i

)

(q − 1)i + (q(n− r) − n)

bn(q−1)/qc
∑

i=1

Ai

−(q(n− r) − n)
r−1∑

i=1

(
n

i

)

(q − 1)i

=

r−1∑

i=1

q(r − i)

(
n

i

)

(q − 1)i + (q(n− r) − n)

bn(q−1)/qc
∑

i=1

Ai

=

bn(q−1)/qc
∑

i=1

((q − i) − n)Ai +

r−1∑

i=1

q(r − i)
((n

i

)

(q − 1)i −Ai

)

+

bn(q−1)/qc
∑

i=r+1

q(i− r)Ai

≥
bn(q−1)/qc
∑

i=1

((q − i) − n)Ai.

Hence, by (2.19) we get the following stronger sufficient condition for C to

be proper:

(qn − 2M)(q − 1) ≥ M

n

r−1∑

i=1

(q(n− i) − n)

(
n

i

)

(q − 1)i

+
M

n
(q(n− r) − n)(M − 1 −Mr−1).
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Solving this inequality, we get a maximal value which we denote by βr(q, n).

Provided βr(q, n) > Mr−1 (this was a requirement for the derivation above)

we have

B(n, q) ≤ qn − βr(q, n).

In particular, β1(q, n) = β(q, n). The larger r is, the larger is the corre-

sponding βr(q, n). Therefore, we want to choose r as large as possible. We

know that we can use r determined by Mr−1 < β(q, n) ≤Mr. Usually, but

not always, this is maximal.

Example 2.10. We illustrate the procedure by a numerical example,

namely q = 3 and n = 21. The values of Mr and βr(3, 21) are given

in Table 2.7. Note that this is an example where r determined by

Mr−1 < β(q, n) ≤Mr is r = 4, whereas the maximal r that can be used is

larger, namely, r = 5.

Table 2.7 Table for Ex-
ample 2.10

r Mr−1 βr(3, 21)

1 0 106136.11
2 42 110468.15
3 882 115339.98
4 11522 120392.84
5 107282 121081.17
6 758450

A lower bound on B(q, n) is obtained by giving an explicit code which

is not proper. Let

γ(2, n) = 2b(n+3)/2c

γ(q, n) = qb(n+2)/2c for q ≥ 3.

Theorem 2.21. For q ≥ 2 and n ≥ 4 we have

B(q, n) > qn − γ(q, n).

Proof. Let C be the (n, qk; q) code

{(x|0) ∈ Fn
q | x ∈ F k

q }.
It is easy to see that

Ai =

(
k

i

)

(q − 1)i
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for all i. Hence,

Pue(C, p) =

k∑

i=1

(
k

i

)

pi(1 − p)k−i(1 − p)n−k = (1 − p)n−k − (1 − p)n.

Therefore, if f(p) = (qn − qk)Pue(C, p), Corollary 1.3 shows that

f(p) = qk((1 − p)n−k − (1 − p)n) + (qn − 2qk)(1 − (1 − p)n)

= qn − 2qk + qk(1 − p)n−k − (qn − qk)(1 − p)n.

Hence,

f ′(p) = −(n− k)qk(1 − p)n−k−1 + n(qn − qk)(1 − p)n−1,

and so

f ′
(q − 1

q

)

= −(n− k)q2k+1−n + n(qn − qk)q−n+1 < 0

if

−qk(n− k) + n(qn−k − 1) < 0. (2.20)

Let k = (n+ α)/2 (where α = 1, 2, 3). Then (2.20) is equivalent to

q(n−α)/2
(

n− qαn− α

2

)

− n < 0.

For α = 3 and q ≥ 2 we have

n− qαn− α

2
≤ n− 23n− 3

2
≤ 0 for n ≥ 4.

For α = 2 and q ≥ 2 we have

n− qαn− α

2
≤ n− 22n− 2

2
≤ 0 for n ≥ 4.

For α = 1 and q ≥ 3 we have

n− qα n− α

2
≤ n− 3

n− 1

2
≤ 0 for n ≥ 3.

Hence, f ′
(

q−1
q

)

< 0 for q = 2, k = b(n + 3)/2c, and n ≥ 4; and also for

q ≥ 3, k = b(n+ 2)/2c, and n ≥ 4. �



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

66 Codes for Error Detection

2.4 Results on the average probability

2.4.1 General results on the average

In this section we consider the average probability of undetected error for

the codes in some set C of codes of length n.

The common notations for the average and variance of a stochastic vari-

able X are E(X) and V ar(X) = E(X2)−E(X)2. Further σ =
√

V ar(X),

the standard deviation of X .

For our particular application use the notations

Pue(C, p) =
1

#C
∑

C∈C
Pue(C, p),

and

V ar(C, p) = V ar({Pue(C, p) | C ∈ C}).

For S ⊆ Fn
q , let

α(S) = αC(S) =
#{C ∈ C | S ⊆ C}

#C .

If S = {x1,x2, . . .xr}, we write for convenience α(S) = α(x1,x2, . . .xr).

From the definitions and Theorem 2.1 we get the following result.

Theorem 2.22. Let C be a set of codes of length n and size M . Then

Pue(C, p) =
1

M

∑

(x,y)∈(Zn
q )2

x6=y

α(x,y)
( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y).

Proof. We have

Pue(C, p) =
1

#C
∑

C∈C

1

M

∑

(x,y)∈C2

x6=y

( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y)

=
1

M

∑

(x,y)∈(Zn
q )2

x6=y

( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y) 1

#C
∑

C∈C
x,y∈C

1

=
1

M

∑

(x,y)∈(Zn
q )2

x6=y

α(x,y)
( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y).

�
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For linear codes we get a simpler expression, using Theorem 1.13.

Theorem 2.23. Let C be a set of linear codes of length n. Then

Pue(C, p) =
∑

x∈GF (q)n

x6=0

α(x)
( p

q − 1

)wH(x)

(1 − p)n−wH(x).

Let

Ai(C) =
1

#C
∑

C∈C
Ai(C).

Then clearly

Pue(C, p) =

n∑

i=1

Ai(C)
( p

q − 1

)i

(1 − p)n−i.

From Theorems 2.22 and 2.23 we get the following corollaries.

Corollary 2.5. Let C be a set of all codes of length n and size M . Then

Ai(C) =
1

M

∑

(x,y)∈(F n
q )2

dH(x,y)=i

α(x,y).

Corollary 2.6. Let C be a set of all linear codes of length n and dimension

k. Then

Ai(C) =
∑

x∈GF (q)n

wH(x)=i

α(x).

2.4.2 The variance

For the variance we get similar results.

Theorem 2.24. Let C be a set of codes of length n and size M . Then

V ar(C, p) = −Pue(C, p)2 +
1

M2

∑

(u,v),(x,y)∈(F n
q )2

u6=v,x6=y

α(u,v,x,y)

·
( p

q − 1

)dH(u,v)+dH(x,y)

(1 − p)2n−dH(u,v)−dH(x,y).
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Proof. We have

E(Pue(p)
2) =

1

#C
∑

C∈C
Pue(C, p)

2

=
1

#C
∑

C∈C

1

M

∑

(u,v)∈C2

u6=v

( p

q − 1

)dH(u,v)

(1 − p)n−dH(u,v)

· 1

M

∑

(x,y)∈C2

x6=y

( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y)

=
1

M2

∑

(u,v),(x,y)∈(F n
q )2

u6=v,x6=y

α(u,v,x,y)

·
( p

q − 1

)dH(u,v)+dH(x,y)

(1 − p)2n−dH(u,v)−dH(x,y).
�

Similarly, we get the following alternative expression for linear codes.

Theorem 2.25. Let C be a set of linear codes of length n and dimension

k. Then

V ar(C, p) =
∑

x,y∈GF (q)n\{0}
α(x,y)pwH (x)+wH(y)(1 − p)2n−wH(x)−wH(y) − Pue(C, p)2.

2.4.3 Average for special classes of codes

Next, we consider the average for some special sets of codes. First, for some

fixed (n,L; q) code K, let

C(M)(K) = {C | C ⊆ K and #C = M}

denote the set of (n,M ; q) subcodes of K.

Theorem 2.26. Let K be an (n,L; q) code and M ≤ L. Then

Pue(C(M)(K), p) =
M − 1

L− 1
Pue(K, p),

Proof. First,

#C(M)(K) =

(
L

M

)

.
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We see that if x 6∈ K or y 6∈ K, then α(x,y) = 0. On the other hand, if

x,y ∈ K and x 6= y, then

#{C ∈ C(M)(K) | x,y ∈ C} =

(
L− 2

M − 2

)

,

and so

α(x,y) =

(
L−2
M−2

)

(
L
M

) =
M(M − 1)

L(L− 1)
,

and

Ai(C(M)(K)) =
1

M

∑

(x,y)∈(Zn
q )2

dH(x,y)=i

α(x,y)

=
1

M

∑

(x,y)∈K2

dH(x,y)=i

M(M − 1)

L(L− 1)

=
M − 1

L− 1
· 1

L

∑

(x,y)∈K2

dH(x,y)=i

1

=
M − 1

L− 1
Ai(K). (2.21)

Hence,

Pue(C(M)(K), p) =
M − 1

L− 1
Pue(K, p).

�

Choosing K = GF (q)n we get the following corollary.

Corollary 2.7. We have

Pue(C(M)(GF (q)n), p) =
M − 1

qn − 1

{

1 − (1 − p)n
}

.

Remark 2.3. Corollary 2.7 implies in particular that for any given n, M ,

q, and p there exists an (n,M ; q) code C such that

Pue(C, p) ≤
M − 1

qn − 1

{

1 − (1 − p)n
}

. (2.22)

It is an open question if, for given n, M , q, there exists an (n,M ; q) code

C such that (2.22) is satisfied for all p ∈ [0, (q − 1)/q]. A code satisfying

(2.22) for all p ∈ [0, (q − 1)/q] is clearly good. However, it is even an open

question if there exist good (n,M ; q) codes for all q, n and M .
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A sufficient condition for the existence of codes satisfying (2.22) is the

following.

Theorem 2.27. Let C be an (n,M, d; q) code with d > q−1
q n. Then (2.22)

is satisfied for all p ∈ [0, (q − 1)/q].

Proof. First we note that

d ≥ δ =
(q − 1)n+ 1

q
.

By Theorem 2.49 (which is an immediate consequence of Lemma 2.1), we

have

Pue(C, p) ≤ (M − 1)
( p

q − 1

)δ

(1 − p)n−δ . (2.23)

Let

f(p) =
M − 1

qn − 1

{

1 − (1 − p)n
}

− (M − 1)
( p

q − 1

)δ

(1 − p)n−δ.

We see that if f(p) ≥ 0, then by (2.23), (2.22) is satisfied. We have

f ′(p) =
(M − 1)n

qn − 1
(1 − p)n−1 − M − 1

(q − 1)δ
pδ−1(1 − p)n−δ−1(δ − np)

= (M − 1)(1 − p)n−1
{ n

qn − 1
− 1

(q − 1)δ
g(p)

}

,

where

g(p) =
pδ−1(δ − np)

(1 − p)δ
.

We have

g′(p) =
δpδ−2

(1 − p)δ+1

(

δ− 1− (n− 1)p
)

=
δpδ−2

(1 − p)δ+1
(n− 1)

(q − 1

q
− p
)

≥ 0.

Hence, g(p) is increasing on [0, (q − 1)/q]. Since

f ′(0) =
(M − 1)n

qn − 1
> 0 and f ′

(q − 1

q

)

=
M − 1

qn−1

( n

qn − 1
− 1

q − 1

)

< 0,

this shows that f ′(p) is first positive, then negative and so f(p) is first

increasing, then decreasing on [0, (q− 1)/q]. Since f(0) = f((q− 1)/q) = 0,

we can conclude that f(p) ≥ 0 for all p ∈ [0, (q− 1)/q]. This completes the

proof. �
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Remark 2.4. By Theorem 2.15 we know that d > q−1
q n also implies that

C is proper. A simple example which shows that for d ≤ q−1
q n, C may be

proper without (2.22) being satisfied, is the proper (5, 4; 2) code

C = {(00000), (00001), (00110), (01111)}.
The distance distribution for this code is 1, 1/2, 1, 1, 1/2, 0 and it is easy to

show that

1

2
p(1 − p)4 + p2(1 − p)3 + p3(1 − p)2 +

1

2
p4(1 − p) >

3

31
(1 − (1 − p)3)

for all p ∈ (0, 1/2), that is, (2.22) is never satisfied for this code.

We get similar results for the average of linear codes. For some fixed

[n, κ; q] code K, let

C[k](K) = {C | C ⊆ K and dim(C) = k}
denote the set of [n, k; q] subcodes of K.

Theorem 2.28. Let K be an [n, κ; q] code and k ≤ κ. Then

Pue(C[k](K), p) =
qk − 1

qκ − 1
Pue(K, p).

Proof. First,

#C[k](K) =

[
κ

k

]

=

∏k−1
i=0 (qκ − qi)

∏k−1
i=0 (qk − qi)

,

the Gaussian binomial coefficient. We see that if x 6∈ K, then α(x) = 0.

On the other hand, if x ∈ K, then

#{C ∈ C[k](K) | x ∈ C} =

[
κ− 1

k − 1

]

,

and so

α(x) =

[
κ−1
k−1

]

[
κ
k

] =
qk − 1

qκ − 1
,

and

Ai(C[k](K)) =
qk − 1

qκ − 1
Ai(K). (2.24)

Hence,

Pue(C[k](K), p) =
qk − 1

qκ − 1
Pue(K, p).

�
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Choosing K = GF (q)n we get the following corollary.

Corollary 2.8. We have

Pue(C[k](GF (q)n), p) =
qk − 1

qn − 1

{

1 − (1 − p)n
}

.

Comparing Corollaries 2.7 and 2.8, we see that

Pue(C[k](GF (q)n), p) = Pue(C(qk)(GF (q)n), p). (2.25)

Even if the averages happen to be the same, there is no reason why, for

example, the variances should be the same. This is illustrated by the next

example where the variances are different.

Example 2.11. In Example 2.3 we gave a listing of the possible distance

distributions of (5, 4; 2) codes. From these we can compute the average and

variance. For the average we get

Pue(C(4)(GF (2)5), p) = Pue(C[2](GF (2)5), p) =
3

31

{

1− (1 − p)5
}

,

as we should by (2.25). For the variance we get

V ar(C(4)(GF (2)5), p) =
1

899

10∑

i=2

uip
i(1 − p)10−i,

V ar(C[2](GF (2)5), p) =
1

31

10∑

i=2

vip
i(1 − p)10−i,

where the ui and vi are given in Table 2.8. It turns out that

V ar(C(4)(GF (2)5), p) < V ar(C[2](GF (2)5), p) for all p ∈ (0, 1/2).

Table 2.8 The coefficients ui and vi in Example 2.11.

i 2 3 4 5 6 7 8 9 10

ui 369 720 1818 1800 1890 864 513 72 45
vi 19 20 68 50 70 24 23 2 3

2.4.4 Average for systematic codes

Next we will consider the average probability of undetected error for some

classes of systematic codes (the variance can be found in a similar way). Let

SYS(n, k) be the set of systematic (n, qk; q) codes, SYSL(n, k) be the set
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of systematic linear [n, k; q] codes and SYSL(n, k, d) the set of systematic

linear [n, k, d; q] codes. We consider first general systematic codes. Then

we give a more detailed analysis of some classes of systematic linear codes.

Theorem 2.29. For 1 ≤ k ≤ n, we have

Pue(SYS(n, k), p) = qk−n
{

1 − (1 − p)k
}

.

Proof. We can write the vectors in the form (u|v), where u ∈ F k
q and

v ∈ Fn−k
q . Let C be a systematic (n, qk; q) code. By definition, two distinct

code words of C must differ in some of the first k positions. Hence, for the

class SYS(n, k), we get α(x,y) = 0 if x and y are identical in the first k

positions. To get a systematic code, the last n− k positions can be chosen

arbitrarily. Hence #SYS(n, k) =
(

qn−k
)qk

. On the other hand, if x and y

differ in some of the first positions, then they are contained in
(

qn−k
)qk−2

codes. Hence

α(x,y) =

(

qn−k
)qk−2

(

qn−k
)qk = q2k−2n. (2.26)

From Theorem 2.22, we get

Pue(C, p) =
1

qk

∑

((u|v),(u′ |v′))∈(Zn
q )2

u6=u′

q2k−2n
( p

q − 1

)dH(u,u′)+dH(v,v′)

·(1 − p)n−dH(u,u′)−dH(v,v′)

= qk−2n
∑

(u,u′)∈(Zk
q )2

u6=u′

( p

q − 1

)dH(u,u′)

(1 − p)k−dH(u,u′)

·
∑

(v,v′)∈(Zn−k
q )2

( p

q − 1

)dH(v,v′)

(1 − p)n−k−dH(v,v′)

= qk−2n
∑

u∈Zk
q

{

1 − (1 − p)k
} ∑

v∈Zn−k
q

1

= qk−2n · qk
{

1 − (1 − p)k
}

· qn−k

= qk−n
{

1 − (1 − p)k
}

.
�
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Theorem 2.30. We have

Ai(SYSL(n, k, d)) = 0 for 1 ≤ i ≤ d− 1,

Ai(SYSL(n, k, d)) ≤ (q − 1)i

qn−k −
d−2∑

l=0

(
n−1

l

)
(q − 1)l

{(n

i

)

−
(
n− k

i

)}

,

with equality for d = 1.

Proof. Let i ≥ d. A vector of the form (0|v), where v ∈ GF (q)n−k \{0},
is not contained in any systematic code. Hence the number of vectors x of

weight i which can be contained in a systematic code is
(
n

i

)

(q − 1)i −
(
n− k

i

)

(q − 1)i.

Let x be such a vector. It remains to show that

α(x) ≤ 1

qn−k −
d−2∑

l=0

(
n−1

l

)
(q − 1)l

. (2.27)

The vector x contains at least one non-zero element in the first k positions.

Without loss of generality, we may assume that it is a 1 in the first position,

i.e. x = (1|z|v), where z ∈ GF (q)k−1. Let

( 1 z v

0t Ik−1 P

)

be a generator matrix for a code in SYSL(n, k, d) which contains x. Then

(Ik−1|P ) generates a code in SYSL(n− 1, k − 1, d). Hence

α(x) ≤ #SYSL(n− 1, k − 1, d)

#SYSL(n, k, d)
. (2.28)

On the other hand, if G = (Ik−1|P ) is the generator matrix for a code in

SYSL(n−1, k−1, d), then any non-zero linear combination of d−1 or less

columns in the corresponding check matrix (P t|In−k) has a non-zero sum.

Let y be a non-zero vector in GF (q)n−k different from all sums of d− 2 or

less of these columns; y can be chosen in at least

qn−k − 1 −
d−2∑

l=1

(
n− 1

l

)

(q − 1)l
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distinct ways. Each choice of y gives a check matrix (yt|P t|In−k) such that

any combination of d − 1 or less columns has a non-zero sum, that is, a

check matrix for a code in SYSL(n, k, d). Therefore,

#SYSL(n, k, d)

#SYSL(n− 1, k − 1, d)
≥ qn−k −

d−2∑

l=0

(
n− 1

l

)

(q − 1)l. (2.29)

Combining (2.28) and (2.29), we get (2.27). For d = 1 we get equality in

both (2.28) and (2.29). �

Theorem 2.31. Let C = SYSL(n, k, d), the set of all systematic [n, k, d; q]

codes. Then

Pue(C, p) ≤
1 − (1 − p)k −

d−1∑

i=1

{(
n
i

)
−
(
n−k

i

)}

pi(1 − p)n−i

qn−k −
d−2∑

l=0

(
n−1

l

)
(q − 1)l

with equality for d = 1.

Proof. Let

β =
1

qn−k −
d−2∑

l=0

(
n−1

l

)
(q − 1)l

.

By Theorem 2.30 we get

Pue(C, p) ≤ β
{ n∑

i=d

(
n

i

)

pi(1 − p)n−i −
n−k∑

i=d

(
n− k

i

)

pi(1 − p)n−i
}

= β
{

1 − (1 − p)k −
d−1∑

i=1

{(n

i

)

−
(
n− k

i

)}

pi(1 − p)n−i
}

.

�

From Theorems 2.29 and 2.31 we get

Pue(SYSL(n, k), p) = Pue(SYS(n, k), p),

that is, the average over all systematic linear codes is the same as the

average over all systematic codes (when q is a prime power). We had a

similar result for the set of all [n, k; q] codes and all (n, qk; q) codes. We

also note that on average, systematic codes are better than codes in general.

We state a somewhat stronger theorem.
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Theorem 2.32. Let 1 ≤ k < n and p ∈ (0, (q − 1)/q). The ratio

Pue(SYS(n, k), p)

Pue(C(qk)(Fn
q ), p)

=
qk−n

{

1 − (1 − p)k
}

qk−1
qn−1

{

1 − (1 − p)n
}

is increasing on (0, (q − 1)/q). For p → 0+ the ratio is k(1−q−n)
n(1−q−k) , and for

p = (q − 1)/q the ratio is 1.

Proof. Let

f(p) = Pue(SYS(n, k), p) = qk−n
{

1 − (1 − p)k
}

,

g(p) = Pue(C(qk)(F
n
q ), p) =

qk − 1

qn − 1

{

1 − (1 − p)n
}

h(p) = f(p)/g(p).

Then

g(p)2h′(p) = f(p)g′(p) − f ′(p)g(p)

= qk−n
{

1 − (1 − p)k
} qk − 1

qn − 1
n(1 − p)n−1

−qk−nk(1 − p)k−1 q
k − 1

qn − 1

{

1 − (1 − p)n
}

= qk−n q
k − 1

qn − 1
(1 − p)k−1F (p),

where

F (p) = n
{

1 − (1 − p)k
}

(1 − p)n−k − k
{

1 − (1 − p)n
}

= n(1 − p)n−k − k − (n− k)(1 − p)n.

We have F (0) = 0 and

F ′(p) = −n(n− k)(1 − p)n−k−1 + (n− k)n(1 − p)n−1

= n(n− k)(1 − p)n−k−1
{

1 − (1 − p)k
}

> 0

for all p ∈ (0, (q − 1)/q). Hence h′(p) > 0 for all p ∈ (0, (q − 1)/q). �

How good is the upper bound in Theorem 2.31? It is exact for d = 1.

We will next derive the exact value of Pue(SYSL(n, k, 2), p) and compare

this with the upper bound in Theorem 2.31.

Theorem 2.33. Let C = SYSL(n, k, 2). For 1 ≤ i ≤ n we have

Ai(C) =
(q − 1)i

qr

{(n

i

)

−
(
k

i

)

ζi−1 −
i−1∑

l=0

(
k

l

)(
r

i− l

)

ζl
}

,
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where r = n− k and ζ = −1/(qr − 1), and

Pue(C, p) =
1

qr

{

1 − δ(p)k − qr(1 − p)n + qr(1 − p)rδ(p)k
}

,

where

δ(p) = 1 − qrp

qr − 1
.

Proof. We see that (Ik|P ) is a generator matrix for a code in C if and

only if all the rows of P are non-zero. In particular, #C = (qr − 1)k.

For given non-zero elements α1, α2, . . . αi, consider representations of

v ∈ GF (q)r :

v = α1x1 + α2x2 + · · · + αixi (2.30)

where xj ∈ GF (q)r \ {0} for j = 1, 2, . . . , i. The number of such repre-

sentations depends on whether v is the all zero vector or not. Let β(i) be

the number of representations of 0 ∈ GF (q)r and γ(i) be the number of

representations of v ∈ GF (q)r \ {0}.
We note that (2.30) is equivalent to

v − αixi = α1x1 + α2x2 + · · · + αi−1xi−1. (2.31)

If v = 0, then the left-hand side of (2.31) is non-zero. Hence in this

case (x1,x2, . . . ,xi−1) can be chosen in γ(i− 1) ways for each of the qr − 1

choices of xi. Hence

β(i) = (qr − 1)γ(i− 1). (2.32)

Similarly, if v 6= 0, then the left-hand side of (2.31) is non-zero except when

αixi = v. Hence we get

β(i) = (qr − 2)γ(i− 1) + β(i− 1). (2.33)

The pair of equations (2.32) and (2.33) constitutes a simple linear recursion

that can be solved by standard methods. The start of the recursion is the

obvious values β(1) = 0 and γ(1) = 1. The result, that can easily be

verified, is

β(i) =
qr − 1

qr

{

(qr − 1)i−1 − (−1)i−1
}

,

γ(i) =
1

qr

{

(qr − 1)i − (−1)i
}

.

The number of codes in C containing a vector (u|0) where wH (u) = i

is β(i)(qr − 1)k−i and the number of such vectors is
(
k
i

)
(q − 1)i. For 0 <
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l < i, the number of codes containing a vector (u|v) where wH (u) = l

and wH(v) = i − l is γ(l)(qr − 1)k−l, and the number of such vectors is
(
k
l

)(
r

i−l

)
(q − 1)i. Hence

Ai(C) =

(
k

i

)
(q − 1)i

(qr − 1)i
· q

r − 1

qr

{

(qr − 1)i−1 − (−1)i−1
}

+

i−1∑

l=1

(
k

l

)(
r

i− l

)
(q − 1)i

(qr − 1)l
· 1

qr

{

(qr − 1)l − (−1)l
}

=
(q − 1)i

qr

{ i∑

l=1

(
k

l

)(
r

i− l

)

−
(
k

i

)

ζi−1 −
i−1∑

l=1

(
k

l

)(
r

i− l

)

ζl
}

.

Since
i∑

l=1

(
k

l

)(
r

i− l

)

=

(
n

i

)

−
(
r

i

)

we get the expression for Ai given in the theorem. Putting this into the

expression Pue(C, p) =
∑n

i=1 Ai(C)
(

p
q−1

)i

(1 − p)n−i and rearranging, we

get the expression for Pue(C, p) given in the theorem. �

The upper bound in Theorem 2.31 is exact for p = 0 and too large by the

quantity qk−k−1
(qr−1)qn for p = q−1

q . The difference between the upper bound

and the exact value appears to increase monotonously when p increases

from 0 to q−1
q . The exact value of Pue(SYSL(n, k, d), p) for general d is not

known, and it is probably quite complicated both to derive and express.

Our final example is systematic binary even weight codes.

Theorem 2.34. Let C be the set of all systematic even weight [n, k; 2] codes.

Then

Ai(C) = 0 for odd i,

Ai(C) =
1

2r−1

{(n

i

)

−
(
n− k

i

)}

for even i > 0,

and

Pue(C, p) =
1

2n−k

{

1 + (1 − 2p)n − (1 − p)k − (1 − 2p)n−k(1 − p)k
}

.

Proof. The proof is similar, and we only give a sketch. All the rows of P

have to have odd weight. For a vector x = (u|v), where u 6= 0 and wH(x)

is even, we have

α(x) = 2−(r−1),
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and for even i there are
(
n
i

)
−
(
n−k

i

)
such vectors of weight i. This proves

the expression for Ai(C). Further,

Pue(C, p) = 2−(r−1)

bn/2c
∑

i=1

{(n

2i

)

−
(
n− k

2i

)}

p2i(1 − p)n−2i

= 2−r
{

1 + (1 − 2p)n − (1 − p)k − (1 − 2p)r(1 − p)k
}

.
�

2.5 The worst-case error probability

In many applications we do not know the value of p, at least not exactly.

In other applications we may want to use one code for several different

values of p. Therefore, we will be interested in finding the worst-case error

probability

Pwc(C, a, b) = max
a≤p≤b

Pue(C, p)

for some interval [a, b] ⊆ [0, 1]. First we give an upper bound.

Theorem 2.35. Let C be an (n,M ; q) code. Then

Pwc(C, a, b) ≤
n∑

i=1

Aiµn,i(a, b) (2.34)

where A0, A1, . . . , An is the distance distribution of C and

µn,i(a, b) =







(
a

q−1

)i

(1 − a)n−i if i
n < a,

(
i

n(q−1)

)i(

1 − i
n

)n−i

if a ≤ i
n ≤ b,

(
b

q−1

)i

(1 − b)n−i if i
n > b.

If C is a constant distance code, we have equality in (2.34).

Proof. First we note that the function pi(1 − p)n−i is increasing on the

interval
[

0, i
n

]

and decreasing on the interval
[

i
n , 1
]

. Hence

max
a≤p≤b

{( p

q − 1

)i

(1 − p)n−i
}

= µn,i(a, b),
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and so

Pwc(C, a, b) = max
a≤p≤b

n∑

i=1

Ai

( p

q − 1

)i

(1 − p)n−i

≤
n∑

i=1

Ai max
a≤p≤b

( p

q − 1

)i

(1 − p)n−i

=

n∑

i=1

Aiµn,i(a, b).

If C is a constant distance code we get equality. �

The bound in Theorem 2.35 may be improved by subdividing the inter-

val [a, b]: let a = a0 < a1 < · · · < am = b. Then clearly

Pwc(C, a, b) = max
1≤j≤m

Pwc(C, aj−1, aj).

It is easy to see that if

F =

n∑

i=1

Ai max
a≤p≤b

∣
∣
∣
d

dp

(( p

q − 1

)i

(1 − p)n−i
)∣
∣
∣,

then

Pwc(C, aj−1, aj) ≤
n∑

i=1

Aiµn,i(aj−1, aj)

≤ Pue(C, aj−1) + (aj − aj−1)F

≤ Pwc(C, aj−1, aj) + (aj − aj−1)F.

Hence we can get as sharp a bound as we want by subdividing the interval

sufficiently.

Remark 2.5. It is possible to find an upper bound similar to the bound

in Theorem 2.35, but in terms of the dual distribution A⊥
0 , A

⊥
1 , . . . , A

⊥
n :

Pwc(C, a, b) ≤
1

qn−k

n∑

i=0

A⊥
i νn,i(a, b)

where νn,i(a, b) is the maximum of the function fn,i(p) =
(

1 − q
q−1p

)i

−
(1 − p)n on the interval [a, b]. As in the proof above, the maximum is

obtained in a, in b or in an inner point in (a, b). In most cases we cannot

find explicit expressions for the maxima of fn,i(p), but we can find as good

approximations as we like. If we only want to find the worst-case of one code

on one interval, it is probably a better idea to do this directly. However,
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once we have computed the maxima of fn,i for i = 0, 1, . . . , n, then it

is a simple task to compute νn,i(a, b) for any a and b, and since this is

independent of the code, we can compute the worst-case probability of any

code for which we know the dual distribution (of course, an alternative is

to compute the distance distribution of the code itself using MacWilliams’s

identity and then using Theorem 2.35. However, it may be simpler in some

cases to use the attack sketched above).

Next we consider a bound on the average value of Pwc(C, a, b) over some

class C. Let

Pwc(C, a, b) =
1

#C
∑

c∈C
Pwc(C, a, b).

From Theorem 2.35 we immediately get the following bound.

Theorem 2.36. Let C be a class of (n,M ; q) codes. Then

Pwc(C, a, b) ≤
n∑

i=1

Ai(C)µn,i(a, b).

We now consider the worst-case over [0, 1]. Since

µn,i(0, 1) =
( i

n(q − 1)

)i(

1 − i

n

)n−i

,

we get the following corollary to Theorem 2.36.

Corollary 2.9. For a set of (n,M ; q) codes C we have

Pwc(C, 0, 1) ≤
n∑

i=1

Ai(C)
( i

n(q − 1)

)i(

1 − i

n

)n−i

.

Some special cases of Corollary 2.9 are given in the following corollaries,

obtained using (2.21) and Theorem 2.30.

Corollary 2.10. We have

Pwc(C(M)(GF (q)n), 0, 1) ≤ M − 1

qn − 1
Sn,

where

Sn =

n∑

i=1

(
n

i

)( i

n

)i(

1 − i

n

)n−i

. (2.35)
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Corollary 2.11. We have

Pwc(SYSL(n, k), 0, 1) ≤ 1

qn−k
(Sn − Sn,k),

where

Sn,k =

n∑

i=1

(
n− k

i

)( i

n

)i(

1 − i

n

)n−i

. (2.36)

Note that Sn and Sn,k do not depend on q. Some relations for the sums Sn

and Sn,k are the following:
√
πn

2
− q − 1

q
< Sn <

√
πn

2
− 1

3
+

0.108918√
n

, (2.37)

Sn =

√
πn

2
− 1

3
+

√
2π

24
√
n

+O
( 1

n

)

when n→ ∞, (2.38)

Sn,k =
1

q2k

(
2k

k

)√
πn

2
− 2

3
+
( 1√

n

)

when n→ ∞, (2.39)

for k ≥ 1,

Sn,1 =
q − 1

q
Sn. (2.40)

For example,

Pwc(C[1](GF (q)n), 0, 1) =
1

qn − 1
Sn,

and

Pwc(SYSL(n, 1), 0, 1) =
1

qn
Sn.

For q = 2 and the worst-case over [0, 1/2] we get

µn,i

(

0,
1

2

)

=
( i

n

)i(

1 − i

n

)n−i

for i ≤ n

2
,

µn,i

(

0,
1

2

)

=
1

2n
for i ≥ n

2
.

Since
dn/2e
∑

i=1

( i

n

)i(

1− i

n

)n−i

+

n∑

dn/2e+1

1

2n
=

1

2
Sn

we get

Pwc

(

C[k](GF (q)n), 0,
1

2

)

≤ 2k − 1

2(2n − 1)
Sn. (2.41)
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In particular, for given n and k, there exists an [n, k; 2] code C such

that

Pwc

(

C, 0,
1

2

)

<
2k − 1

2(2n − 1)

(
√
πn

2
− 1

3
+

0.108918√
n

)

. (2.42)

The following improvements have been shown.

Theorem 2.37. There is a constant γ such that for given n and k, there

exists an [n, k; 2] code C such that

Pwc

(

C, 0,
1

2

)

≤ 2k−n(γ
√

lnn+ 1).

For sufficiently large n, the result is true for γ = 2/
√
n.

Theorem 2.38. There are constants ν and γ1 such that if k > ν(lnn)2,

there exists an [n, k; 2] code C such that

Pwc

(

C, 0,
1

2

)

≤ γ12
k−n.

Corollary 2.10 shows that an average code is not too bad. However,

some codes may be very bad as shown by the next theorem.

Theorem 2.39. For each γ > 0 and each ε ∈
(

0, q−1
2q

)

, for all

n ≥ max
(1

ε
, 1 +

γ

qε{1− qε/(q − 1)}
)

there exists a code C of length n such that

Pue(C, p) > γ · Pue

(

C,
q − 1

q

)

for all p ∈
[

ε, q−1
q − ε

]

.

Proof. Let Cn = {(a|0) ∈ F n
q | a ∈ Fq}. Then

Pue(Cn, p) = fn(p) = (q − 1)
p

q − 1
(1 − p)n−1 = p(1 − p)n−1,

and
d

dp
fn(p) = (1 − p)n−2(1 − np).

Hence, if n > 1
ε , then 1 − np < 0 for p ≥ ε, and so fn(p) is decreasing on

[ε, 1]. Further, if n ≥ 1 + γ
qε{1−qε/(q−1)} , then

fn

(
q−1

q − ε
)

fn

(
q−1

q

) =
(

1 − q

q − 1
ε
)

(1 + qε)n−1 ≥
(

1 − q

q − 1
ε
)

qε(n− 1) ≥ γ.

�

Example 2.12. For q = 2, N = 4 and ε = 0.1, we can choose any n ≥ 10.
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2.6 General bounds

Define

Pue(n,M, p; q) = min{Pue(C, p) | C is an (n,M ; q) code},
Pue[n, k, p; q] = min{Pue(C, p) | C is an [n, k; q] code}.

In many cases one is not able to find the weight distribution. There-

fore, we give a number of lower and upper bounds on Pue[n, k, p; q] and

Pue(n,M, p; q) which may be used to estimate Pue.

2.6.1 Lower bounds

We have Ad ≥ 2/M for an (n,M, d; q) code and Ad ≥ q−1 for an [n, k, d; q]

code. Hence we get the following two trivial lower bounds.

Theorem 2.40. For any (n,M, d; q) code C and any p ∈
[

0, q−1
q

]

we have

Pue(C, p) ≥
2

M

( p

q − 1

)d

(1 − p)n−d.

Theorem 2.41. For any [n, k, d; q] code C and any p ∈
[

0, q−1
q

]

we have

Pue(C, p) ≥ (q − 1)
( p

q − 1

)d

(1 − p)n−d.

There are a couple of bounds that follow from Lemma 2.1.

Theorem 2.42. For any n, k, and any p ∈
[

0, q−1
q

]

we have

Pue[n, k, p; q] ≥
(

qk − 1
)( p

q − 1

)nqk−1

qk−1
(1 − p)

n

(

qk−1−1

)

qk−1 .

Proof. Let C = {x0 = 0,x1, · · · ,xqk−1} be an [n, k; q] code and let its

support weight be m. Let ti = wH(xi), the Hamming weight of the xi.

Then

Pue(C, p) =

qk−1
∑

i=1

( p

q − 1

)ti

(1 − p)n−ti .

If j is in the support of C, then 1/q of the code words of C have a zero in

position j, the remaining have a non-zero element. Hence

qk−1
∑

i=1

ti = mqk−1.
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Let λi =
(

p
q−1

)ti

(1 − p)n−ti . Then Pue(C, p) =
∑qk−1

i=1 λi. Moreover

qk−1
∏

i=1

λi =
( p

q − 1

)∑qk−1
i=1 ti

(1 − p)(q
k−1)n−

∑qk−1
i=1 ti

=
( p

q − 1

)mqk−1

(1 − p)(q
k−1)n−mqk−1

.

If y1, y2, · · · , yN are real numbers such that
∏N

i=1 yi = c > 0, then it is

easily seen that
∑N

i=1 yi ≥ Nc
1
N , and the minimum is obtained when all

the yi are equal. In particular, we get

Pue(C, p) ≥ (qk − 1)
( p

q − 1

)m qk−1

qk−1
(1 − p)

n−m qk−1

qk−1

= (qk − 1)(1 − p)n
( p

(q − 1)(1 − p)

)m qk−1

qk−1

≥ (qk − 1)(1 − p)n
( p

(q − 1)(1 − p)

)n qk−1

qk−1

for all p ∈
[

0, q−1
q

]

. �

Theorem 2.43. For any n, M , and any p ∈
[

0, q−1
q

]

we have

Pue(n,M, p; q) ≥ M

qn
− (1 − p)n.

Proof. Let C be an (n,M ; q) code. Then

Pue(C, p) =
M

qn
A⊥

C

(

1 − q

q − 1
p
)

− (1 − p)n ≥ M

qn
− (1 − p)n.

�

Remark 2.6. The bound in Theorem 2.43 is negative and hence not in-

teresting for p < 1 − q−1
q M1/n. However, for p → q−1

q it is asymptotically

tight.

From Theorem 2.5 and Corollary 1.2 we get the following bound.

Theorem 2.44. For any n, M , and any p ∈
[

0, q−1
q

]

we have

Pue(n,M, p; q) ≥
n∑

i=n−blogq(M)c

(
n

i

)( M

qn−i
− 1
)( p

q − 1

)i(

1 − q

q − 1
p
)n−i

.
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Using Theorem 1.11 we get a slightly stronger bound.

Theorem 2.45. For any n, M , and any p ∈
[

0, q−1
q

]

we have

Pue(n,M, p; q) ≥
n∑

i=n−blogq(M)c
αi

( p

q − 1

)i(

1 − q

q − 1
p
)n−i

,

where

αi =

(
n

i

)(⌈ M

qn−i

⌉

− 1
)(

2− qn−i

M

⌈ M

qn−i

⌉)

.

For linear codes there is a bound of the same form as Theorem 2.43

which follows directly from Corollary 1.10.

Theorem 2.46. For any n, k, and any p ∈
[

0, q−1
q

]

we have

Pue[n, k, p; q] ≥
1

qn−k

n∏

j=k+1

(

1 + (q − 1)
(

1 − q

q − 1
p
)j)

− (1 − p)n.

Lemma 2.7. Let C be an (n,M ; q) code, 0 ≤ u ≤ 1, and p ∈
[

0, q−1
q

]

.

Then

Pue(C, p) ≥ (M − 1)1−
1
u

{

(q − 1)
( p

q − 1

)u

+ (1 − p)u
}n

u

·Pue

(

C,
(q − 1)pu

(q − 1)pu + (q − 1)u(1 − p)u

) 1
u

.

Proof. Let

pu =
(q − 1)pu

(q − 1)pu + (q − 1)u(1 − p)u
. (2.43)

Then

pu

(q − 1)(1 − pu)
=
( p

(q − 1)(1 − p)

)u

.
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Let
∑n

i=0 Aiz
i be the distance distribution function of C. Using the Hölder

inequality (see e.g. Rudin (1970, page 62)) we get

Pue(C, pu) = (1 − pu)n
n∑

i=1

Ai

( p

(q − 1)(1 − p)

)ui

=
(1 − p)un

{

(q − 1)
(

p
q−1

)u

+ (1 − p)u
}n

n∑

i=1

{

Ai

( p

(q − 1)(1 − p)

)i}u

A1−u
i

≤ (1 − p)un

{

(q − 1)
(

p
q−1

)u

+ (1 − p)u
}n

{ n∑

i=1

Ai

( p

(q − 1)(1 − p)

)i}u{ n∑

i=1

Ai

}1−u

=
1

{

(q − 1)
(

p
q−1

)u

+ (1 − p)u
}nPue(C, p)

u(M − 1)1−u.

Solving for Pue(C, p), the theorem follows. �

Theorem 2.47. Let M = dqRne and

α(n,R) = − R

logq(q
1−R+ 1

n logq(2) − 1) − logq(q − 1)
.

Then

Pue(n,M, p; q) ≥ (M − 1)
( p

q − 1

)nα(n,R)

(1 − p)n(1−α(n,R)).

Proof. From the definition of α = α(n,R) we get

q−R/α =
q1−R21/n − 1

q − 1

which in turn implies

qRn−n = 2
1

(q − 1)q−R/α + 1
. (2.44)

Let

u = − R

α logq(
p

(q−1)(1−p) )

and define pu by (2.43). Then

q−R/α =
( p

(q − 1)(1 − p)

)u

=
pu

(q − 1)(1 − pu)

and so

1 − pu =
1

(q − 1)q−Rα + 1
.
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By (2.44), this implies that

qRn−n = 2(1 − pu)n. (2.45)

We have M = dqRne ≥ qRn > M − 1 and so

1

M − 1
> q−Rn.

Combining all this with Lemma 2.7 and Theorem 2.43 we get

Pue(C, p) ≥ (M − 1)1−
1
u

{

(q − 1)
( p

q − 1

)u

+ (1 − p)u
}n

u

·
{M

qn
−
( (1 − p)u

(

(q − 1) p
q−1

)u

+ (1 − p)u

)n} 1
u

≥ (M − 1)(M − 1)−
1
u

{

(q − 1)
( p

q − 1

)u

+ (1 − p)u
}n

u

·
{

qRn−n − (1 − pu)n
} 1

u

≥ (M − 1)q−Rn/u
{

(q − 1)
( p

q − 1

)u

+ (1 − p)u
}n

u

(1 − pu)n/u

= (M − 1)
( p

(q − 1)(1 − p)

)nα

(1 − p)n.
�

Theorem 2.48. Let n, 2 ≤ K ≤ M and p ∈
[

0, q−1
q

]

be given. Then we

have

Pue(n,M, p; q) ≥ M −K + 1

K − 1

( p

q − 1

)d(n,K)

(1 − p)n−d(n,K).

Proof. Let C be an (n,M) code and let

E = {(x,y) ∈ C2 | 0 < dH(x,y) ≤ d(n,K)}.
We consider C the vertex set and E the edge set of a graph. Let F ⊆ C be

an independent set (no two vertices in F are connected by an edge). Then

dH(x,y) > d(n,K)

for all x,y ∈ F . By the definition of d(n,K), this implies that #F ≤ K−1.

A result by Turan (see: Ore (1962, Theorem 13.4.1)) implies that

#E ≥ (M −K + 1)M

K − 1
.

Hence

Pue(C, p) ≥
1

M

∑

(x,y)∈E

( p

q − 1

)dH(x,y)

(1 − p)n−dH(x,y)

≥ M −K + 1

K − 1

( p

q − 1

)d(n,K)

(1 − p)n−d(n,K).
�
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2.6.2 Upper bounds

We now turn to upper bounds. From Lemma 2.1 we immediately get the

next theorem.

Theorem 2.49. For any (n,M, d; q) code C and any p ∈
[

0, q−1
q

]

we have

Pue(C, p) ≤
(

M − 1
)( p

q − 1

)d

(1 − p)n−d.

The bound can be sharpened using upper bounds on Ai. The proof is

similar, using Lemma 2.2.

Theorem 2.50. Let C be an (n,M, d; q) code and p ∈
[

0, q−1
q

]

. Suppose

that Ai(C) ≤ αi for d ≤ i ≤ n. Let l be minimal such that

l∑

i=d

αi ≥M − 1.

Then

Pue(C, p) ≤
l−1∑

i=d

αi

( p

q − 1

)i

(1−p)n−i +
(

M−1−
l−1∑

i=d

αi

)( p

q − 1

)l

(1−p)n−l.

Example 2.13. Consider an [8, 4, 3; 2] code. By Theorem 2.49 we get

Pue(C, p) ≤ 15p3(1 − p)5.

Using the bounds on Ai given in Theorem 1.22 we get

A3 ≤
⌊28

3

⌋

= 9, A4 ≤ 14

and so

Pue(C, p) ≤ 9p3(1 − p)5 + 6p4(1 − p)4.

Theorem 2.51. Let C be an [n, k, d; q] code and p ∈
[

0, q−1
q

]

. Then

Pue(C, p) ≤
( p

q − 1

)d

(1 − p)n−d
d∑

i=1

(
k

i

)

(q − 1)i +

k∑

i=d+1

(
k

i

)

pi(1 − p)n−i.

In particular

Pue(C, p) ≤ (1 − p)n−k − (1 − p)n

for any [n, k; q] code C.
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Proof. Let G be a generator matrix for C. Since equivalent codes have

the same probability of undetected error, we may assume without loss of

generality that G =
(

Ik |Q
)

where Q is some k × (n− k) matrix. We have

wH(xG) = wH (x) + wH(xQ) ≥ wH(x).

Also wH (xG) ≥ d. Hence

Pue(C, p) =
∑

x∈GF (q)k\{0}

( p

q − 1

)wH(xG)

(1 − p)n−wH(xG)

≤
∑

x∈GF (q)k

1≤wH (x)≤d

( p

q − 1

)d

(1 − p)n−d

+
∑

x∈GF (q)k

d+1≤wH(x)≤k

( p

q − 1

)wH(x)

(1 − p)n−wH(x).

In particular

Pue(C, p) ≤ (1 − p)n−k
∑

x∈GF (q)k\{0}

( p

q − 1

)wH (x)

(1 − p)k−wH (x)

= (1 − p)n−k
(

1 − (1 − p)k
)

.

�

Remark 2.7. If C is the code generated by
(

Ik |0k×(n−k)

)

, where 0k×(n−k)

is the k × (n− k) matrix with all entries zero, then

Pue(C, p) = (1 − p)n−k − (1 − p)n.

Hence, Theorem 2.51 is best possible for [n, k, 1; q] codes.

Example 2.14. If we use Theorem 2.51 we get

Pue(C, p) ≤ 14p3(1 − p)5 + p4(1 − p)4

for an [8, 4, 3; 2] code, and this is weaker than the bound obtained from

Theorems 1.22 and 2.50. In other cases, Theorem 2.51 may give a better

bound. For example, for a [14, 5, 3; 2] code C, Theorem 2.51 gives

Pue(C, p) ≤ 25p3(1 − p)11 + 5p4(1 − p)10 + p5(1 − p)9,

whereas Theorems 1.22 and 2.50 give only

Pue(C, p) ≤ 30p3(1 − p)11 + p4(1 − p)10.
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In Example 2.3, we gave the distance distribution of all (5, 4; 2) codes.

As shown in that example, Pue(C, p) ≤ (1 − p)3 − (1 − p)5 for all these

codes, linear and non-linear. However, for non-linear (n, qk; q) codes C in

general, we may sometimes have Pue(C, p) > (1−p)n−k − (1−p)n. We will

illustrate this with an explicit set of codes.

Example 2.15. Let k ≥ 4 and n = (qk −1)/(q−1). Let C be the (n, qk; q)

code containing the zero vector and all vectors of weight one. Then it is

easy to see that

A1(C) = q(q − 1)n/qk,

A2(C) = (q − 1)2n(n− 1)/qk,

Ai(C) = 0 for i ≥ 3.

Therefore

f(p) = Pue(C, p) =
1

qk

{

q(q − 1)n
p

q − 1
(1 − p)n−1

+(q − 1)2n(n− 1)
( p

q − 1

)2

(1 − p)n−2
}

=
1

qk

{

qnp(1 − p)n−1 + n(n− 1)p2(1 − p)n−2
}

.

Computing the derivative and evaluating it for p = (q − 1)/q, we get

f ′
(q − 1

q

)

= − 1

qk+n−1(q − 1)
(qk − 1)(q2k − 2qk+1 − qk + q2).

Let g(p) = (1 − p)k−n − (1 − p)n. Then

g′
(q − 1

q

)

= − 1

qn−1(q − 1)
(q2k − (q − 1)kqk + (q − 1)2).

Hence

g′
(q − 1

q

)

− f ′
(q − 1

q

)

=
1

qk+n−1(q − 1)

(

(kq − k − 2q)q2k + q2(qk − 1) + 2qk+1
)

> 0

if kq − k − 2q ≥ 0. This is satisfied for k ≥ 4 and all q ≥ 2 (and also for

k = 3 when q ≥ 3). Hence

0 > g′
(q − 1

q

)

> f ′
(q − 1

q

)

for k ≥ 4. Since f
(

q−1
q

)

= g
(

q−1
q

)

, this implies that f(p) > g(p) when p

is close to (q − 1)/q, that is,

Pue(C, p) > (1 − p)k−n − (1 − p)n

when p ≥ pq,k for some pq,k. For example, p3,4 ≈ 0.1687502258. The first

few values of p2,k are given in Table 2.15.
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Table 2.9 The first few values of p2,k in Example 2.15.

k 4 5 6 7 8 9 10

p2,k 0.28262 0.15184 0.08380 0.04677 0.02618 0.01463 0.00814

It is an open question in general to determine

max{Pue(C, p) | C is a (n,M ; q) code}

for given n,M, q, p.

The average results clearly give upper bounds on Pue[n, k, p; q].

Theorem 2.52. If K is any [n, κ; q] code and 1 ≤ k ≤ κ, then

Pue[n, k, p; q] ≤
qk − 1

qκ − 1
Pue(K, p)

for all p ∈
[

0, q−1
q

]

. In particular, for all n ≥ κ ≥ k ≥ 1 we have

Pue[n, k, p; q] ≤
qk − 1

qκ − 1
Pue[n, κ, p; q].

Further, for all n ≥ k ≥ 1 we have

Pue[n, k, p; q] ≤
qk − 1

qn − 1

{

1 − (1 − p)n
}

,

and for all n > k ≥ 1 we have

Pue[n, k, p; q] ≤
qk − 1

qn − q

{

1 + (q − 1)
(

1 − q

q − 1
p
)n

− q(1 − p)n
}

.

Proof. The main result follows from Theorem 2.28, and the special cases

by choosing K = GF (q)n and K = {(x1, x2, . . . , xn) | ∑n
i=1 xi = 0},

respectively. �

There are sharper bounds in some cases.

Theorem 2.53. For any integers n ≥ k ≥ 1, any p ∈
[

0, q−1
q

]

, any u ∈
(0, 1], and any prime power q we have

Pue[n, k, p; q] ≤
(qk − 1

qn − 1

{(

(q − 1)
( p

q − 1

)u

+ (1 − p)u
)n

− (1 − p)un
}) 1

u

.
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Proof. Let C be an [n, k; q] code. Using the natural isomorphism between

GF (q)n and GF (qn) we may consider C as a subset of GF (qn). For any

non-zero g ∈ GF (qn), the set

gC = {gx | x ∈ C}
is again an [n, k; q] code. For convenience we write

J =
(qk − 1

qn − 1

{(

(q − 1)
( p

q − 1

)u

+ (1 − p)u
)n

− (1 − p)un
}) 1

u

,

the right-hand expression in the theorem. Define ζ(g) by

ζ(g) = 1 if Pue(gC, p) > J,

ζ(g) = 0 if Pue(gC, p) ≤ J.

Note that ζ(g) < Pue(gC,p)
J for all g. We will show that ζ(g) = 0 for at least

one g. First we show that

ζ(g) <
∑

x∈C\{0}

(

(
p

q−1

)wH (gx)

(1 − p)n−wH(gx)

J

)u

. (2.46)

If
(

p
q−1

)wH(gx)

(1 − p)n−wH (gx) > J for some x ∈ C \ {0}, then (2.46) is

clearly satisfied. On the other hand, if
(

p
q−1

)wH(gx)

(1 − p)n−wH(gx) ≤ J

for all x ∈ C \ {0}, then

ζ(g) <
Pue(gC, p)

J
=

∑

x∈C\{0}

(

(
p

q−1

)wH (gx)

(1 − p)n−wH (gx)

J

)

≤
∑

x∈C\{0}

(

(
p

q−1

)wH (gx)

(1 − p)n−wH (gx)

J

)u

,

and (2.46) is again satisfied.

If x ∈ C \ {0}, then gx runs through GF (qn) when g does. Hence
∑

g∈GF (qn)\{0}
ζ(g) <

∑

g 6=0

∑

x∈C\{0}

1

Ju

( p

q − 1

)uwH (gx)

(1 − p)u(n−wH (gx))

=
1

Ju

∑

x∈C\{0}

∑

g 6=0

( p

q − 1

)uwH (gx)

(1 − p)u(n−wH (gx))

=
1

Ju

∑

x∈C\{0}

{(

(q − 1)
( p

q − 1

)u

+ (1 − p)u
)n

− (1 − p)un
}

=
qk − 1

Ju

{(

(q − 1)
( p

q − 1

)u

+ (1 − p)u
)n

− (1 − p)un
}

= qn − 1.
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Therefore ζ(g) = 0 for at least one g 6= 0. �

Lemma 2.8. If R = k
n and

u =
logq

(q−1)(1−ρ(R))
ρ(R)

logq
(q−1)(1−p)

p

,

then
( qk − 1

qn − 1

{(

(q−1)
( p

q − 1

)u

+(1−p)u
)n

−(1−p)un
}) 1

u ≤
( p

q − 1

)nρ(R)

(1−p)n−nρ(R).

Proof. For this value of u we have

(q − 1)(1 − ρ(R))

ρ(R)
=
((q − 1)(1 − p)

p

)u

and so (q − 1)
(

p
q−1

)u

+ (1 − p)u =
(q−1)

(
p

q−1

)u

ρ(R) . Further,

qR−1 = q−Hq(ρ(R)) =
( ρ(R)

q − 1

)ρ(R)

(1 − ρ(R))1−ρ(R).

Hence

J ≤
{

qk−n
(

(q − 1)
( p

q − 1

)u

+ (1 − p)u
)n} 1

u

=
{

qR−1
(

(q − 1)
( p

q − 1

)u

+ (1 − p)u
)}n

u

=
{( ρ(R)

q − 1

)ρ(R)

(1 − ρ(R))1−ρ(R)
(q − 1)

(
p

q−1

)u

ρ(R)

}n
u

=
{( p

q − 1

)u((q − 1)(1 − ρ(R))

ρ(R)

)1−ρ(R)}n
u

=
{( p

q − 1

)u((q − 1)(1 − p)

p

)u(1−ρ(R)}n
u

=
{( p

q − 1

)ρ(R)

(1 − p)1−ρ(R)
}n

.
�

Combining Theorem 2.53 and Lemma 2.8 we get the following theorem.

Theorem 2.54. If p ∈
[

0, 1
q

]

and R = k
n ≤ C(p) = 1 − Hq(p) (that is,

ρ(R) ≥ p), then

Pue[n, k, p; q] ≤
(

p

q − 1

)nρ(R)

(1 − p)n−nρ(R).
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2.6.3 Asymptotic bounds

It turns out that Pue(n,M, p; q) decreases exponentially with n. Therefore,

define

πue(n,R, p; q) = − logq Pue(n,
⌈
qRn

⌉
, p; q)

n
,

πue(R, p; q) = lim sup
n→∞

πue(n,R, p; q),

πue(R, p; q) = lim inf
n→∞

πue(n,R, p; q),

and

πue(R, p; q) = lim
n→∞

πue(n,R, p; q)

when the limit exists. A lower (resp. upper) bound on Pue(n,M ; q) will

give an upper (resp. lower) bound on πue(n,R, p; q).

From Theorems 2.48 we get the following bound.

Theorem 2.55. For 0 ≤ R1 ≤ R2 ≤ 1 we have

πue(R2, p; q) ≤ −δ(R1) logq

( p

q − 1

)

− (1 − δ(R1)) logq(1 − p) +R1 −R2.

From Theorem 2.44 we can get upper bounds on πue(R, p; q). The sum

contains blogq(M)c + 1 terms. For the term for i = ωn we get

− 1

n
logq

(( n

ωn

)

(Mqωn−n − 1)
( p

q − 1

)ωn(

1 − qp

q − 1

)n−ωn)

∼ f(ω)

where

f(ω) = ω logq(ω) + (1 − ω) logq(1 − ω) − (R + ω − 1)

−ω logq

( p

q − 1

)

− (1 − ω) logq

( qp

q − 1

)

.

The function f(ω) takes its minimum for ω = qp
q−1 and the corresponding

minimum is 1−R. The smallest value for ω with i in the summation range

is ω = 1−R. Hence, if qp
q−1 < 1−R, then f(ω) ≥ f(1−R). This gives the

following theorem.

Theorem 2.56. (i) For 1 − qp
q−1 ≤ R ≤ 1 we have

πue(R, p; q) ≤ 1 −R.

(ii) For 0 ≤ R ≤ 1 − qp
q−1 we have

πue(R, p; q) ≤ R
{

logq(R) − logq

(

1 − qp

q − 1

)}

+(1 −R)
{

logq(1 −R) − logq

( qp

q − 1

)}

.
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Theorem 2.57. For 0 ≤ R ≤ C(p) we have

πue(R, p; q) ≥ −ρ(R) logq

( p

q − 1

)

− (1 − ρ(R)) logq(1 − p).

For 0 ≤ R ≤ 1 we have

πue(R, p; q) ≥ 1 −R.

Proof. The first bound follows directly from Theorem 2.54. From The-

orem 2.43 we get

Pue(n, q
k, p; q) ≤ Pue[n, k, p; q] ≤ qk−n

and so

logq Pue(n,
⌈
qRn

⌉
, p; q)

n
≤ R− 1

for 0 ≤ R ≤ 1. This proves the second bound. The two bounds coincide

when R = C(p); the first bound is stronger when R < C(p). �

Combining Theorems 2.56 and 2.57 we get the following theorem.

Theorem 2.58. For 1 − qp
q−1 ≤ R ≤ 1 we have

πue(R, p; q) = 1 −R.

Any upper bound on δ(R) will give an upper bound on πue(R, p). The

best upper bounds on δ(R) known is the LP-bound (see e.g. MacWilliams

and Sloane (1977, Chapter 17)). Using any upper bound on δ(R), the first

of the bounds of Theorem 2.55 is better for small values of p, the other for

larger values of p.

Results that are sometimes stronger than Theorem 2.56 are known.

They are given for the binary case and we list those here, but omit the

proofs. To formulate the results, some additional notation is needed. Let

δLP1(R) =
1

2
−
√

H−1
2 (R)(1 −H−1

2 (R)).

Theorem 2.59. For 0 ≤ R ≤ RLP1(p) we have

πue(R, p; 2) ≤ 1 −R−H2(δLP1(R)) + T (δLP1(R), p).

For 0 ≤ R ≤ RLP(p) we have

πue(R, p; 2) ≤ 1 −R−H2(δLP(R)) + T (δLP(R), p).

For min{RLP1(p), RLP(p)} < R ≤ 1 we have

πue(R, p; 2) = 1 −R.
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2.7 Optimal codes

2.7.1 The dual of an optimal code

Theorem 2.60. If C is an [n, k; q] code which is optimal for p, then C⊥

is optimal for q−1−qp
q−qp . Moreover,

Pue[n, k, p; q] = qk(1 − p)nPue

[

n, n− k,
q − 1 − qp

q − qp

]

+ qk−n − (1 − p)n.

Proof. Theorem 2.7 implies that if Pue(C1, p) ≤ Pue(C2, p), then

Pue

(

C⊥
1 ,

q − 1 − qp

q − qp

)

≤ Pue

(

C⊥
q ,

q − 1 − qp

q − qp

)

,

and the theorem follows. �

Since q−1−qp
q−qp runs through

[

0, q−1
q

]

when p does, we have the following

corollary.

Corollary 2.12. If C is a code which is optimal for all p ∈
[

0, q−1
q

]

, then

so is C⊥.

2.7.2 Copies of the simplex code

Let k and s by any positive integers. In Subsection 1.2.2, we described the

simplex codes and the corresponding generator matrices Γk. Let C be the[
s(qk−1)

q−1 , k; q
]

code generated by the matrix obtained by concatenating s

copies of Γk. This code has minimum distance d = sqk−1. From Theorems

2.42 and 2.49 we get

Pue(C, p) = (qk − 1)
( p

q − 1

)d

(1 − p)n−d = Pue

[s(qk − 1)

q − 1
, k, p; q

]

.

Hence the code C is optimal. In particular, for s = 1 we get the simplex

code whose dual is the Hamming code. Hence the Hamming codes are also

optimal.

In the next chapter (in Section 3.2) we describe the optimal binary codes

of dimension four or less.

2.8 New codes from old

As illustrated in the previous chapter, there are a number of ways to con-

struct new codes from one or two old ones. For many of these constructions,
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the new code may not be good even if the old is/are. We shall give a num-

ber of examples which illustrate this. The ∗-operation is atypical in this

respect. It gives a systematic way to make long good codes and we discuss

this construction first.

2.8.1 The ∗-operation

Theorem 2.61. Let C be linear [n, k; q] code.

(i) If C is good, then C∗ is good.

(ii) If C is proper, then C∗ is proper.

Proof. Since
(

p
q−1

)qk−1

(1 − p)
qk−1−1

q−1 is increasing on
[

0, q−1
q

]

and

Pue(C
∗, p) =

( p

q − 1

)qk−1

(1 − p)
qk−1−1

q−1 Pue(C, p),

(ii) follows. Further,

( p

q − 1

)qk−1

(1 − p)
qk−1−1

q−1 ≤
(1

q

) qk−1
q−1

,

and so (i) follows. �

Theorem 2.61 shows that we can make longer good codes from shorter

ones. However, there is a stronger result which shows that starting from

any code and using the ∗-operation repeatedly, we will eventually get a

good code, and even a proper code.

Theorem 2.62. If C is an [n, k, d; q] code and r ≥ max{0, (q − 1)n− qd},
then Cr∗ is proper.

Proof. If d ≥ q−1
q n, then C is proper by Theorem 2.15. Consider d <

q−1
q n. Then r > 0 and Cr∗ is an

[

n+ r qk−1
q−1 , k, d+ rqk−1; q

]

code. If

d+ rqk−1 ≥ q − 1

q

{

n+ r
qk − 1

q − 1

}

,

that is, r ≥ (q − 1)n− qd, then Cr∗ is proper by Theorem 2.15. �

If r ≥ max{0, (q − 1)n − q}, then the condition on r is satisfied for all

d ≥ 1. Hence we get the following corollary.

Corollary 2.13. If C is an [n, k; q] code and r ≥ (q− 1)n− q, then Cr∗ is

proper.
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We can get the weaker conclusion that Cr∗ is good under a condition

on r that is sometimes weaker.

Theorem 2.63. If C is an [n, k; q] code and r ≥ (q − 1)(n− k), then Cr∗

is good.

Proof. By Theorem 2.51, Pue(C, p) ≤ (1− p)n−k
{

1− (1− p)k
}

. Hence,

Pue(C
r∗, p) =

{( p

q − 1

)qk−1

(1 − p)
qk−1−1

q−1

}r

Pue(C, p)

≤
{( p

q − 1

)qk−1

(1 − p)
qk−1−1

q−1

}r

(1 − p)n−k
{

1 − (1 − p)k
}

=
( p

q − 1

)rqk−1

(1 − p)r qk−1−1
q−1 +(n−k)

{

1 − (1 − p)k
}

.

Clearly, 1− (1− p)k is increasing on [0, (q− 1)/q]. If r ≥ (q− 1)(n− k),

then

rqk−1 ≥ q − 1

q

{

rqk−1 + r
qk−1 − 1

q − 1
+ (n− k)

}

,

and prqk−1

(1 − p)r qk−1−1
q−1 +(n−k) is also increasing on [0, (q − 1)/q]. Hence

we get

Pue(C
r∗, p) ≤

(1

q

)rqk−1+r qk−1−1
q−1 +(n−k){

1 −
(1

q

)k}

=
qk − 1

qn+r qk−1
q−1

= Pue

(

Cr∗,
q − 1

q

)

.

�

In Remark 2.7 following Theorem 2.51 we gave an [n, k; q] code C for

which Pue(C, p) = (1 − p)n−k
{

1 − (1 − p)k
}

. It is easy to check that for

this code and r = (q − 1)(n− k) − 1 we get

dPue(C
r∗, p)

dp

∣
∣
∣
p=(q−1)/q

= q
−
(

r qk−1
q−1 +n

)
{

k − qk − 1

q − 1

}

< 0.

Hence, Cr∗ is bad. This shows that the bound on r in Theorem 2.63 cannot

be improved in general. It is an open question if the bound on r in Theorem

2.62 can be sharpened in general.

As a final remark, we note that if (q − 1)(n − k) > (q − 1)n − qd > 0,

that is,

q − 1

q
k < d <

q − 1

q
n,
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then Theorem 2.63 is weaker than Theorem 2.62.

From Corollary 2.13, we get the following theorem.

Theorem 2.64. For any q, k, and n ≥ (qk−1−q)(qk−1)
q−1 there exists a proper

[n, k; q] code.

Proof. Let n = r qk−1
q−1 + ν where 0 ≤ ν ≤ qk−1

q−1 − 1 and r ≥ qk − 1 − q.

First, consider ν ≥ k. Let C0 some [ν, k; q] code. Since

r ≥ qk − 1 − q = (q − 1)
(qk − 1

q − 1
− 1
)

− q ≥ (q − 1)ν − q,

Corollary 2.13 implies that Cr∗
0 is a proper code of length n.

Next consider ν < k. Let C1 be the qk−1
q−1 + ν code generated by the

matrix
(

Γk

∣
∣
∣
Iν
O

)

,

that is, Γk concatenated by ν distinct unit vectors. The weight distribution

of C1 is easily seen to be:

A0 = 1,

A(qk−1)/(q−1) = qk−ν − 1,

A(qk−1)/(q−1)+i =

(
ν

i

)

(q − 1)iqk−ν for 1 ≤ i ≤ ν.

Hence

Pue(C1, p) = (qk−ν − 1)
( p

q − 1

) qk−1
q−1

(1 − p)
qk−1−1

q−1 +ν

+qk−ν
ν∑

i=1

(
ν

i

)

(q − 1)i
( p

q − 1

) qk−1
q−1 +i

(1 − p)
qk−1−1

q−1 +ν−i

=
( p

q − 1

) qk−1
q−1

(1 − p)
qk−1−1

q−1

{

qk−ν − (1 − p)ν
}

.

Since both
(

p
q−1

) qk−1
q−1

(1 − p)
qk−1−1

q−1 and qk−ν − (1 − p)ν are increasing on

[0, (q − 1)/q], C1 is proper. Hence C
(r−1)∗
1 is a proper code of length n. �

We believe that proper (n,M ; q) codes exist for all q, n and M , but this

is an open question.
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2.8.2 Shortened codes

Consider a systematic [n, k; q] code C and let Cs be the shortened

[n− 1, k − 1] code:

Cs =
{

x ∈ GF (q)n−1
∣
∣
∣ (0|x) ∈ C

}

.

Again the shortened code may be good or bad, whether the original code

is good or not, as shown by the examples in Figure 2.1.

Cs proper Cs bad

C proper





100

010

001









1001

0100

0010





AC(z) : 1 + 3z + 3z2 + z3 1 + 2z + 2z2 + 2z3 + z4

ACs(z) : 1 + 2z + z2 1 + 2z + z2

∆C(z) : z −z2 + z3 + z4

C bad





1000000

0101011

0010111









100111

010000

001000





AC(z) : 1 + z + 3z4 + 3z5 1 + 2z + z2 + z4 + 2z5 + z6

ACs(z) : 1 + 3z4 1 + 2z + z2

∆C(z) : z −2z2 − z3 + 2z4 + 2z5

Fig. 2.1 Examples of some shortened binary codes.

We note that

Pue

(

Cs,
q − 1

q

)

=
qk−1 − 1

qn−1
<
qk − 1

qn
= Pue

(

C,
q − 1

q

)

.

It is natural to ask if Pue(C
s, p) ≤ Pue(C, p) for all p ∈

[

0, q−1
q

]

. In

terms of the weight distribution this can be written as

∆C(z)
def
=
{

AC(z) − 1
}

− (1 + z)
{

ACs(z) − 1
}

≥ 0

for all z ∈ [0, 1]. The examples in Figure 2.1 show that this may or may

not be true. For these examples, q = 2, the codes are linear and they
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are given by their generator matrices. Clearly z ≥ 0 for z ∈ [0, 1]. But,

−z2 + z3 + z4 < 0 for z ∈ [0,
√

5−1
2 ), and −2z2 − z3 + 2z4 + 2z5 < 0 for

z ∈ [0, 0.87555].

2.8.3 Product codes

Let C1 be an [n1, k1, d1; q] code and C2 an [n2, k2, d2; q] code. Let C be

the product code. This has length n = n1n2, dimension k = k1k2, and

minimum distance d = d1d2. There is in general no simple expression for

AC(z) in terms of AC1(z) and AC2(z).

Theorem 2.65. Let d1 and d2 be fixed. The product code C of an

[n1, k1, d1; q] code C1 and an [n2, k2, d2; q] code C2 where n1 > k1 and

n1 ≥ n2 > k2 is bad if n1 is sufficiently large.

Proof. First we note that

n− k = n1n2 − k1k2 ≥ n1n2 − (n1 − 1)(n2 − 1) = n1 + n2 − 1 ≥ n1.

Rough estimates give

Pue(C,
d
n )

Pue(C,
q−1

q )
≥ qn−k

( d

(q − 1)n

)d(

1 − d

n

)n−d

≥ qn1

( d

(q − 1)n

)d(

1 − d

n

)n

= qn1

( d

(q − 1)

)d 1

nd

{(

1 − d

n

)n/d}d

≥ qn1

( d

(q − 1)

)d 1

(n1n2)d

(1

4

)d

if n ≥ 2d. Since qn1 is exponential in n1 whereas (n1n2)
d is polynomial,

the theorem follows. �

2.8.4 Repeated codes

Let C be an (n,M, d; q) code and let r ≥ 1. From the definition of Cr, we

see that

ACr(z) =
{

AC(z)
}r

.

In particular,

Ad(C
r) = rAd(C).
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Theorem 2.66. If C is an (n,M, d; q) code where 1 < M < qn, and

0 < p ≤ 1 − M1/n

q , then

Pue(C
r, p)

Pue(Cr, (q − 1)/q)
→ ∞ when r → ∞.

Proof. The condition 0 < p ≤ 1 − M1/n

q is equivalent to (1 − p)n ≥ M
qn .

Hence

Pue(C
r, p) ≥ rAd(C)

( p

(q − 1)(1 − p)

)d

(1 − p)rn

> rAd(C)
( p

(q − 1)(1 − p)

)d

· M
rn − 1

qrn

= rAd(C)
( p

(q − 1)(1 − p)

)d

Pue

(

Cr,
q − 1

q

)

and so
Pue(C

r, p)

Pue(Cr , (q − 1)/q)
> rAd(C)

( p

(q − 1)(1 − p)

)d

→ ∞

when r → ∞. �

Corollary 2.14. If C is an (n,M, d; q) and r is sufficiently large, then Cr

is bad.

A careful analysis shows that Cr is bad for all r ≥ 5.

2.9 Probability of having received the correct code word

If C is an (n,M ; q) and a code word from C is transmitted over a symmetric

channel with symbol error probability p, then the probability that the code

word is received without errors is (1 − p)n. The probability that another

code word is received is, by definition, Pue(C, p). Hence the probability

that we receive some code word is

(1 − p)n + Pue(C, p),

and the probability that we have received the correct code word under the

condition that we have received some code word is

Pcorr(C, p) =
(1 − p)n

(1 − p)n + Pue(C, p)
.

Theorem 2.67. Let C be an (n,M ; q) code. The function Pcorr(C, p) is

strictly decreasing on [0, (q − 1)/q],

Pcorr(C, 0) = 1 and Pcorr(C, (q − 1)/q) = 1/M.
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Proof. We have

1

Pcorr(C, p)
= 1 +

Pue(C, p)

(1 − p)n

=

n∑

i=0

Ai(C)
( p

(q − 1)(1 − p)

)i

.

Since p
(q−1)(1−p) is strictly increasing on [0, (q−1)/q], 1/Pcorr(C, p) is strictly

increasing also, and so Pcorr(C, p) is strictly decreasing. �

Any lower (resp. upper) bound on Pue(C, p) gives an upper (resp. lower)

bound on Pcorr(C, p). For example, from Theorem 2.51 we get the following

result.

Theorem 2.68. Let C be an [n, k; q] code. Then Pcorr(C, p) ≥ (1 − p)k.

By Theorem 2.8, the average value of Pue(C, p) over all (n,M ; q) codes

is M−1
qn−1

{

1 − (1 − p)n
}

. Hence, we get the following result.

Theorem 2.69. The average value of 1/Pcorr(C, p) over all (n,M ; q) codes

is

qn −M

qn − 1
+
M − 1

qn − 1

1

(1 − p)n
.

From Theorem 2.69 we also get an asymptotic result.

Theorem 2.70. Let CR,n be an average (n, qRn; q) code of rate R. Then

lim
n→∞

Pcorr(CR,n, p) =

{
1 for p < 1 − qR−1,

0 for p > 1 − qR−1.

Proof. We see that

qn − qRn

qn − 1
∼ 1,

and

M − 1

qn − 1

1

(1 − p)n
∼
( qR−1

1 − p

)n

when n→ ∞. If qR−1 < 1−p, then 1/Pcorr(CR,n, p) → 1 by Theorem 2.69.

Similarly, 1/Pcorr(CR,n, p) → ∞ if qR−1 > 1 − p. �
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2.10 Combined correction and detection

2.10.1 Using a single code for correction and detection

Let C be an (n,M ; q) code. Let P
(t)
ue (C, p) be the probability of having an

undetected error after the correction of t or less errors (after transmission

over the q-ary symmetric channel). A more detailed discussion of P
(t)
ue (C, p)

is outside the scope of this book, but we briefly mention some basic results.

In 1.6.2 we showed that the probability of undetected error after using

the (n,M, d) code C to correct t or less errors, where 2t+ 1 ≤ d, is given

by

P (t)
ue (C, p) =

n∑

j=d−t

At,j

( p

q − 1

)j

(1 − p)n−j (2.47)

where

At,j =

j+t
∑

i=j−t

AiNt(i, j)

and Nt(i, j) is given by Theorem 1.21.

Any question considered for Pue(C, p) may be considered for P
(t)
ue (C, p)

for t > 0, e.g. bounds, means, etc. In particular, C is called t-proper if

P
(t)
ue (C, p) is monotonous and t-good if

P (t)
ue (C, p) ≤ P (t)

ue

(

C,
q − 1

q

)

(2.48)

for all p ∈
[

0, q−1
q

]

.

In Figure 2.2 we give examples of generator matrices of two [12, 4; 2]

codes which show that a code C may be proper without being 1-proper, or

good without being 1-good.

A simple upper bound

Let C be an [n, k, d; q] code where d ≥ 2t + 1. When 0 is sent and y is

received, then we have an undetected error, after correcting of t or less

errors, if and only of y ∈ ⋃x∈C\{0} St(x). By definition, the spheres St(x)

are disjoint and the union is a subset of GF (q)n. Hence At,j ≤
(
n
j

)
(q − 1)j

and we get the following upper bound.

Theorem 2.71. Let C be an [n, k, d; q] code with d ≥ 2t+ 1. Then

P (t)
ue (C, p) ≤

n∑

j=d−t

(
n

j

)

pj(1 − p)n−j .
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C

is proper

is not 1-proper







100011110000

010001101111

001000010001

000100010011







A
(0)
C (z) : 2z3 + z4 + z5 + 2z6 + 4z7 + 4z8 + z9

A
(1)
C (z) : 6z2 + 6z3 + 24z4 + 21z5 + 37z6

+48z7 + 33z8 + 17z9 + 3z10

C

is good

is not 1-good







100011100101

010000011001

001000011111

000100011011







A
(0)
C (z) : 2z3 + 2z4 + z5 + 2z6 + 2z7 + 3z8 + 3z9

A
(1)
C (z) : 6z2 + 10z3 + 25z4 + 29z5 + 23z6

+38z7 + 40z8 + 15z9 + 9z10

Fig. 2.2 Examples of two [12, 4; 2] codes, given by generator matrices.

The ratio P
(t)
ue (C, p)/Pue(C, p)

We now consider how the probability of undetected error increases when

some of the power of the code is used for error correction.

For p = q−1
q we have

P
(t)
ue

(

C, q−1
q

)

Pue

(

C, q−1
q

) =

t∑

j=0

(
n

j

)

(q − 1)j .

In general

(1 − p)−nPue(C, p) = Adz
d +Ad+1z

d+1 + · · ·
and

(1 − p)−nP (t)
ue (C, p) = At,d−tz

d−t +At,d−t+1z
d−t+1 + · · ·

where z = p/((q − 1)(1 − p)) and

At,d−t =

(
d

d− t

)

Ad

At,d−t+1 =

(
d

d− t+ 1

){

1 + (d− t+ 1)(q − 2)
}

Ad +

(
d+ 1

d− t+ 1

)

Ad+1.
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Hence,

P
(t)
ue (C, p)

Pue(C, p)
=

(
d

t

)

z−t
{

1 − t
(Ad+1/Ad + 1

d− t+ 1
+ (q − 2)

)

z + · · ·
}

.

More terms can be added, but they soon become quite complicated.

Average

One can find average results for P
(t)
ue (p) similar to those found for Pue(p) in

Section 2.4. The proof is also similar and we omit the details. The result

can be expressed in various ways, and we list some.

Theorem 2.72. Let C be a set of codes of length n and minimum distance

at least d = 2t+ 1. Then

P (t)
ue (C, p) =

∑

wH(x)≥2t+1

α(x)
∑

y∈St(x)

( p

q − 1

)wH(y)

(1 − p)n−wH (y)

=
n∑

i=2t+1

Ai(C)
i+t∑

j=i−t

Nt(i, j)
( p

q − 1

)j

(1 − p)n−j

=
∑

wH(y)≥t+1

( p

q − 1

)wH(y)

(1 − p)n−wH(y)
∑

x∈St(y)

α(x).

We consider one example.

Theorem 2.73. For the set C = SYSL(n, k, 2t+ 1) we have

P (t)
ue (C, p) ≤

∑t
i=0

(
n
i

)

qn−k −∑d−2
i=0

(
n−1

i

)

{

1 −
t∑

i=0

(
n

i

)( p

q − 1

)i

(1 − p)n−i
}

.

Proof. Let

β =
1

qn−k −∑d−2
i=0

(
n−1

i

)
(q − 1)i

.

By (2.27) we have α(x) ≤ β for all x of weight at least 2t+ 1. Hence

P (t)
ue (C, p) ≤ β

∑

wH(y)≥t+1

( p

q − 1

)wH (y)

(1 − p)n−wH(y)#St(y)

= β
{

1 −
t∑

i=0

(
n

i

)( p

q − 1

)i

(1 − p)n−i
} t∑

i=0

(
n

i

)

.

�
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2.10.2 Concatenated codes for error correction and detec-

tion

Two types of concatenated codes for combined error correction and detec-

tion have been studied.

m = 1

Let the outer code D be a [k, l; q] code and the inner code C an [n, k; q]

systematic code. Let u(x) ∈ GF (q)n−k be the check bits corresponding to

the information vector x ∈ GF (q)k , and let

E = {(x|u(x)) | x ∈ D}.
Then E is an [n, l; q] code. Suppose without loss of generality that the all-

zero code word is sent. At the receiving end we first use complete maximum

likelihood decoding for the code C, that is we decode into the closest code

word of (x|u(x)) ∈ C, and if there is more than one closest code word,

we choose one of these at random. If the corresponding x is a non-zero

code word in D, then we have an undetectable error after decoding. Let

Pue(D,C, p) be the probability that this happens. The question we must

ask, how does use of the code C affect the probability of undetected error,

that is, what is

R(D,C, p)
def
=

Pue(D,C, p)

Pue(D, p)
.

By a careful choice of codes it is possible to get R(D,C, p) → 0 when p→ 0.

In particular, this is the case if dmin(C) > 2dmin(D).

Remark 2.8. An alternative way of using the combined code is to correct

up to t errors using code C and the use the remaining power to detect

errors; this is a special case of the next method considered. In this case

an error is undetected if the received vector is within distance t of a code

word of the form (x|u(x)), where x ∈ D \ {0}, that is, within distance t

of a non-zero code word in E. Hence the probability of undetected error is

P
(t)
ue (E, p).

m ≥ 1

Let D be an [mk,K; q] code and C an [n, k; q] code which is able to correct

t errors. Let E denote the concatenated code. Suppose that the all zero

vector in GF (q)mn is transmitted. Let (y1,y2, · · · ,ym) be received. The
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probability that yl is within distance t of a fixed code word in C of weight

i is given by

p′(i) =

n∑

j=0

Nt(i, j)
( p

q − 1

)j

(1 − p)n−j .

If some yl is at distance more than t from all code words in C, then a

detectable error has occurred. Otherwise, each yl is decoded to the closest

code word ỹl ∈ GF (q)n.

Let the corresponding information vector be z̃l ∈ GF (q)k . If

(z̃1|z̃2| · · · |z̃m) is a non-zero code word in D, then we have an undetectable

error. The probability that this happens is then given by
∑

(i1,i2,··· ,im)6=(0,0,··· ,0)
Ai1,i2,··· ,im(C)p′(i1)p

′(i2) · · · p′(im).

2.10.3 Probability of having received the correct code word

after decoding

The results in Section 2.9 can be generalized to situation where we com-

bine correction of up to t errors and error detection. Assume that C is

an (n,M, d; q), that a code word from C is transmitted over a symmet-

ric channel with symbol error probability p, and that the received vector

is decoded to the closest code word if at most t ≤ (d − 1)/2 errors have

occurred. The received vector is decoded into the sent code word if it is

within Hamming distance of the sent code word. The probability for this to

happen is
∑t

j=0

(
n
j

)
pj(1 − p)n−j . The probability that another code word

is decoded to, by definition, P
(t)
ue (C, p). Hence the probability that we have

decoded to the correct code word under the condition that we have been

able to decode

P (t)
corr(C, p) =

∑t
j=0

(
n
j

)
pj(1 − p)n−j

∑t
j=0

(
n
j

)
pj(1 − p)n−j + Pue(t)(C, p)

.

It can be shown that P
(t)
corr(C, p) is strictly decreasing.

2.11 Complexity of computing Pue(C, p)

The following theorem shows that it is a hard problem to compute Pue(C, p)

in general. For a generator matrix G, let CG denote the code generated by

G.
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Theorem 2.74. The problem of computing Pue(CG, p), as a function of a

rational p and a generator matrix G, is an NP hard problem.

Proof. It is known Berlekamp, McEliece, and van Tilborg (1978) that
the following problem is NP complete:

Given a k × n (binary) generator matrix G and an integer w, decide if
the code CG contains a code word of weight w.

In particular, this implies that the problem of finding the weight distribu-

tion of CG is NP hard. We show that the problem of finding the weight

distribution of CG has the same complexity as the problem of evaluating

Pue(CG, p) in the sense that each has a polynomial time reduction to the

other.

First, computing Pue(CG, p), given a rational p and the weight distribu-

tion of CG, is a simple evaluation of a polynomial using Theorem 2.1, and

this can be done in polynomial time.

Next, if we know Pue(CG, pi) for n different values p1, p2, . . . , pn (all

different from 1), then the weight distribution can be determined in poly-

nomial time from the set of n linear equation:

z1A1 + z2
1A2 + · · · + zn

1An = (1 − p1)
−nPue(CG, p1),

z2A1 + z2
qA2 + · · · + zn

qAn = (1 − p2)
−nPue(CG, p2),

· · ·
znA1 + z2

nA2 + · · · + zn
nAn = (1 − pn)−nPue(CG, pn),

where zi = pi/((q−1)(1−pi)). Since the coefficient matrix of this system of

equations is a Vandermonde matrix, it has full rank and the set of equations

determine A1, A2, . . . An uniquely. �

2.12 Particular codes

In this section we list the weight distributions of some known classes of

codes. Results that apply only to binary codes are given in the next chapter

in Section 3.5.

2.12.1 Perfect codes

Repetition codes and their duals

Over GF (q) the (generalized) repetition codes are the [n, 1; q] codes whose

non-zero code words have Hamming weight n. The weight distribution
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function is

1 + (q − 1)zn.

Both the code and its dual are proper. In the binary case, the dual code is

known as the single parity check code.

Hamming and simplex codes

For givenm and q, the simplex code is the cyclic code overGF (q) generated

by a primitive polynomial of degree m. It has dimension m and length

n = qm−1
q−1 . All non-zero code words have weight qm−1, that is, its weight

distribution function is

1 +
(

qm − 1
)

zqm−1

.

The dual code is the
[

n, n − m; q
]

Hamming code. The weight distribu-

tion can be found from the weight distribution of the simplex code, using

MacWilliams’s identity:

Ai =

( qm−1
q−1

i

)
(q − 1)i

qm
+
qm − 1

qm

i∑

l=0

(
qm−1

l

)( qm−1−1
q−1

i− l

)

(−1)l(q − 1)i−l.

Both codes are proper. The extended Hamming code and its dual code are

also both proper.

Estimates of the minimum distances of shortened binary simplex codes

(the partial periods of binary m-sequences) were given by Kumar and Wei

(1992). Whether such shortened codes are good or not will depend on the

primitive polynomial used for generating the code and the shortening done.

Shortening of binary Hamming codes will be considered in more detail in

the next chapter (in Section 3.4).

Golay codes

The binary Golay code is the [23, 12, 7; 2] CRC code generated by the poly-

nomial

z11 + z10 + z6 + z5 + z4 + z2 + 1.

Its weight distribution is given in Table 2.10. Both the code and its dual

are proper.

The ternary Golay code is the [11, 6, 5; 3] CRC code generated by the

polynomial

z5 + z4 − z3 + z2 − 1.
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Table 2.10 Weight distribution of the [23, 12, 7; 2] Golay
code.

i : 0 7 8 11 12 15 16 23

Ai : 1 253 506 1288 1288 506 253 1

Table 2.11 Weight distribution of the
[11, 6, 5; 3] Golay code.

i : 0 5 6 8 9 11

Ai : 1 132 132 330 110 24

Its weight distribution is given in Table 2.11. Both the code and its dual

are proper.

References: MacWilliams and Sloane (1977, pp. 69, 482), Leung,

Barnes, and Friedman (1979), Mallow, Pless, and Sloane (1976).

2.12.2 MDS and related codes

MDS codes

The Singleton bound says that d ≤ n − k + 1 for an [n, k, d; q] code.

Maximum distance separable (MDS) codes are [n, k, d; q] codes where

d = n− k + 1. For these codes

Ai =

(
n

i

) i−n+k−1∑

j=0

(−1)j

(
i

j

)(

qi−j−n+k − 1
)

for n− k+ 1 ≤ i ≤ n, see Peterson and Weldon (1972, p. 72). Kasami and

Lin (1984) proved that P
(t)
ue (C, p) is monotonous on [0, q−1

q ] for all [n, k, d; q]

MDS codes C and all t < d
2 , that is, the codes are t-proper.

The defect and MMD codes

The defect s(C) of an [n, k, d; q] code is defined by

s = s(C) = n− k + 1 − d.

By the Singleton bound, s ≥ 0, and C is MDS if and only if s = 0. Similarly,

the dual defect s⊥(C) is the defect of the dual code, that is

s⊥ = s⊥(C) = k + 1 − d⊥.
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Faldum and Willems (1997) proved that

An−k+j =

(
n

k − j

) j−s⊥

∑

i=0

(−1)i

(
n− k + j

i

)

(qj−i − 1)

−(−1)j−s⊥
s+s⊥−1∑

i=1

(
k + s− i

k − j

)(
j − 1 + s− i

j − s⊥

)

An−k−s+i.

Let C be an [n, k, d; q] code with defect s. Olsson and Willems (1999)

proved that if m is a positive integer and k ≥ m+ 1, then

d ≤ qm(q − 1)

qm − 1
(s+m). (2.49)

They called a code with equality in (2.49) a maximum minimum distance

code. A complete characterization of MMD codes were done by Faldum and

Willems (1998) and Olsson and Willems (1999). Based on this character-

ization, Dodunekova and Dodunekov (2002) showed that all MMD codes

are proper, and Dodunekova (2003a) showed that the duals of all MMD

codes are proper.

The MMD codes with s ≥ 1 are the following codes (and any codes with

the same weight distribution).

• St∗
k for t ≥ 0, where Sk is the simplex code.

• The [qk−1, k, (q−1)qk−2; q] generalized Reed-Muller code of first order.

For q = 2, we must have k ≥ 4 (see e.g. Assmus and Key (1993)).

• The [12, 6, 6; 3] extended Golay code.

• The [11, 5, 6; 3] dual Golay code.

• The [q2, 4, q2− q; q] projective elliptic quadratic code for q > 2 (see e.g.

Dembowski, Finite Geometries, Springer, 1968).

• The [(2t − 1)2m + 2t, 3, (2t − 1)2m; 2m] Denniston code for 1 ≤ t ≤ m

(see Denniston (1969)).

Almost MDS codes

Codes with s = 1 are called almost MDS codes (AMDS). In particular, if

also d2(C) = n−k+2 (where d2(C) is the second minimum support weight

defined in Section 1.5), the codes are called near MDS (NMDS). They

have been discussed by de Boer (1996), Dodunekov and Landgev (1994),

Faldum and Willems (1997). The error detecting properties of almost MDS

codes were discussed Kløve (1995b) and Dodunekova, Dodunekov and Kløve
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(1997). Some of these codes are good, others are not. For example, if C is

an [n, k, n− k; q] AMDS and

An−k ≤ 1

q

(
n

k

){

1 + 2β + 2
√

β2 + β
}

,

where

β =
1

q
· k − 1

k
· n− k

n− k + 1
,

then C is proper.

Expanded MDS codes

A symbol in GF (qm) can be represented as an m-tuple with elements

in GF (q). Therefore, an [n, k; qm] code can also be considered as an

[nm, km; q] code. For some Reed-Solomon codes (as well as some generaliza-

tions), the weight distribution of the corresponding binary codes have been

studied by Imamura, Tokiwa, and Kasahara (1988), Kasami and Lin (1988),

Kolev and Manev (1990), Pradhan and Gupta (1991), Retter (1991), and

Retter (1992). In particular, Retter (1991) considered generalized Reed-

Solomon codes generated by matrices of the form










v1 v2 . . . vn

v1α1 v2α2 . . . vnαn

v1α
2
1 v2α

2
2 . . . vnα

2
n

...
...

. . .
...

v1α
k−1
1 v2α

k−1
2 . . . vnα

k−1
n










where α1, α2, . . . , αn are distinct non-zero elements of GF (q) and

v1, v2, . . . , vn are non-zero elements of GF (q). Retter (1991) determined

the average weight distribution for the class of codes where the αi are kept

fixed, but the vi is varied in all possible (q − 1)n ways. Nishijima (2002)

considered upper bounds on the average probability of undetected error for

this class of codes, and Nishijima (2006) gave upper and lower bounds on

the probability of undetected error for individual codes in the class.

2.12.3 Cyclic codes

Several of the codes presented under other headings are cyclic. Here we

will give some references to papers dealing with cyclic codes in general, and

more particular, irreducible cyclic codes.
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Barg and Dumer (1992) gave two algorithms for computing the weight

distribution of cyclic codes.

A cyclic code is called irreducible if the polynomial h(z) in Theorem 1.2

is irreducible. An irreducible cyclic [n, k; q] code C can be represented as

follows.
{(

Trk
1(x),Trk

1(xβ), . . . ,Trk
1(xβn−1)

) ∣
∣
∣ x ∈ GF (qk)

}

,

where Tr is the trace function and β is a root of h(z) = 0.

McEliece and Rumsey (1972) and Helleseth, Kløve, and Mykkeltveit

(1977) gave general methods for computing the weight distribution of ir-

reducible cyclic codes and also gave explicit expressions for several infinite

classes of such codes. Their papers also contain a number of further refer-

ences. Segal and Ward (1986) and Ward (1993) have computed the weight

distribution of a number of irreducible cyclic codes.

One drawback with the use of cyclic codes is that they are not good for

block synchronization. However, we can overcome this drawback by using

some proper coset S of the cyclic code C since Pue(C, p) = Pue(S, p).

2.12.4 Two weight irreducible cyclic codes

Baumert and McEliece (1972) and Wolfmann (1975) studied a class of q-

ary two weight linear irreducible cyclic codes. The class is parametrized by

three parameters, r ≥ 1, t ≥ 2, and s ≥ 2, where s divides qr + 1. The

dimension and length of the code are

k = 2rt, n =
qk − 1

s
.

The codes have the two weights and corresponding number of code words:

w1 = (q − 1) qk−1+(−1)t(s−1)qrt−1

s , Aw1 = n,

w2 = (q − 1) qk−1−(−1)tqrt−1

s , Aw2 = n(s− 1).

The error detecting properties for these codes were studied by Dodunekova,

Rabaste, Paez (2004) and Dodunekova and Dodunekov (2005a). They

showed that the codes and their duals are proper in the following cases:

q = 2, s ≥ 2, t even, r ≥ 1,

q = 2, s = 3, t odd, r ≥ 1,

q = 3, s = 2, t ≥ 2, r ≥ 1,

q = 3, s = 4, t = 2, r = 1.

In all other cases, both the codes and their duals are bad.
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2.12.5 The product of two single parity check codes

Leung (1983) determined AC(z) for the product of two binary single parity

check codes. If C1 and C2 are [l, l − 1] and [m,m − 1] parity check codes

respectively, then the weight distribution function of the product code is

1

ql+m−1

m−1∑

i=0

(
m− 1

i

)(

zi + zm−i
)l

.

The product code is proper for

(l,m) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4), (3, 5),

(4, 2), (4, 3), (4, 4), (5, 2), (5, 3)},

in all other cases the product code is bad.

2.13 How to find the code you need

There are two main classes of problems we may encounter when we want

to use an error detecting code on the q-SC:

• how to calculate Pue(C, p) or P
(t)
ue (C, p) for a given code,

• how to find an (n,M ; q) code or [n, k; q] code for which Pue(C, p) or

P
(t)
ue (C, p) is below some given value.

In general these are difficult problems and a solution may be infeasible.

However, in many cases of practical interest, solutions may be found using

the results and methods given in this and the next chapter. Since the results

are many and diverse, we give in this section a short ”handbook” on how

to attack these problems.

Given C and p, how to find or estimate Pue(C, p)

The first thing to do is to check in Sections 2.12 and 3.5 if your code is in the

lists of codes with known weight distribution. If not, the weight distribution

of the code or its dual may possibly be found by a complete listing of the

code words (if k or n− k are small). Having found the weight distribution,

Pue(C, p) can be computed from Theorem 2.1. If you have found the weight

distribution of the dual code, Pue(C, p) can be found combining Theorems

2.1 and 2.7. Likewise, P
(t)
ue (C, p) can be computed from (2.47) if the weight

distribution is known, and from Theorem 1.14 and (2.47) if the weight

distribution of the dual code is known.
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If the weight distribution is not possible to obtain, you have to be sat-

isfied with estimates for Pue(C, p). One upper bound is given in Theorem

2.51. Another is obtained by combining Theorems 1.22, 1.23 and 2.50. Any

partial information you may have about the weight distribution may help

to improve the bound thus obtained. If p ≤ d/n, Theorem 2.2 can be used.

Lower bounds may be found using Theorems 2.42–2.48. Upper bounds on

P
(t)
ue (C, p) is obtained by combining (2.47) and Theorems 1.22 and 1.23.

Given C, a, and b, how to find or estimate Pwc(C, a, b)

To determine Pwc(C, a, b) exactly is usually a harder problem than to de-

termine Pue(C, p) for a particular p. In the special cases when we can prove

that the code is proper, and b ≤ (q − 1)/q, then Pwc(C, a, b) = Pue(C, b).

Likewise, if b ≤ d/n, then Pwc(C, a, b) = Pue(C, b) by Theorem 2.2. If the

code is good, then by definition Pwc(C, 0, (q − 1)/q) = Pue(C, (q − 1)/q) =

(M − 1)/qn.

With known weight distribution of the code, the algorithm based on

Theorem 2.35 can be used to get as good an approximation to Pwc(C, a, b)

as we want. Otherwise, any upper bounds on the weight distribution (e.g.

from Theorems 1.22 and 1.23) can be combined with Theorem 2.35 to give

upper bounds on Pwc(C, a, b). The last resort is to hope that Pwc(C, a, b)

is about average and that the upper bound on the average (2.41) is also

an upper bound on Pwc(C, a, b) (this is not very satisfactory, cf. Theorem

2.39!).

Given p and a bound B, how to find an (n,M ; q) code C such that

Pue(C, p) ≤ B

It is possible that B is too small, that is, there are no (n,M ; q) codes C

with the required property. The first thing to do is therefore to compare

B with the lower bounds in Theorems 2.42–2.48. If B is not smaller than

any these lower bounds, the next thing to do is to look through the list of

codes in Sections 2.12 and 3.5 to see if any of those satisfy the requirement.

If not, possibly a code with the requirements can be obtained using the
∗-operation one or more times on any of these codes. If k or n − k is not

too large, the next possibility is to pick a number of (n,M ; q) or [n, k; q]

codes at random and check them.

The problem of finding the [n, k; q] code which minimizes Pue(C, p) is

usually harder, but the line of attack would be the same. The solution

for k ≤ 4 and for n − k ≤ 4 is given in Section 3.2. Further, if n =



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

118 Codes for Error Detection

s(qk − 1)/(q− 1), then the optimal code for all p is C(s−1)∗, where C is the

[(qk − 1)/(q − 1), k; q] simplex code. Further, the [(qm − 1)/(q − 1), (qm −
1)/(q − 1) −m; q] Hamming codes are also optimal for all p.

Given a, b and a bound B, how to find an (n,M ; q) code C such

that Pwe(C, a, b) ≤ B

This problem should be attacked in the same way as the previous problem,

the main difference is that now it is Pwe(C, a, b) which needs to be computed

or estimated. As for a lower bound, note that Pwe(C, a, b) ≥ (M − 1)/qn if

a ≤ (q − 1)/q ≤ b.

How to choose a code which can be used for different sizes of the

information, but with a fixed number of check bits

The problem can be stated as follows: find an [m + r, r; q] code such that

the shortened [k+ r, k; q] code is good for all k within some range, possibly

for 1 ≤ k ≤ m. The main choices of codes for this problem are CRC

codes. You should consult the sections on CRC codes and, if need be, the

references given there.

2.14 The local symmetric channel

A channel is called a local symmetric channel (LSC) if it behaves as a q-

ary symmetric channel for each transmitted symbol, but the channel error

probability may vary from symbol to symbol. We consider linear codes

over GF (q). Suppose that an [n, k; q] code C is used on a LSC where the

probability that symbol i is in error is given by pi. A similar argument

as for the q-ary symmetric channel gives the following expression for the

probability of undetected error.

Pue(C, p1, p2, · · · , pn)

=

n∏

i=1

(1 − pi)
{

AC

( p1

(q − 1)(1 − p1)
, · · · , pn

(q − 1)(1 − pn)

)

− 1
}

=
M

qn
AC⊥

(

1 − q

q − 1
p1, · · · , 1 − q

q − 1
pn

)

−
n∏

i=1

(1 − pi).

Example. Let C be the [n, n− 1; 2] even-weight code, that is, C⊥ = {0,1}.
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Then

AC⊥(z1, z2, · · · , zn) = 1 + z1z2 · · · zn,

and so

Pue(C, p1, p2, · · · , pn) =
1

2

{

1 +

n∏

i=1

(1 − 2pi)
}

−
n∏

i=1

(1 − pi).

In analogy to what we did for the q-SC, we define

Pwc(C, a, b) = max
{

Pue(p1, p2, . . . , pn)
∣
∣
∣ pi ∈ [a, b] for 1 ≤ i ≤ n

}

.

Theorem 2.75. Let C be an [n, k; q] code, and let 0 ≤ a ≤ b ≤ 1. For

X ⊆ {1, 2, . . . , n}, define z(X) = z by

zi =

{
b if i ∈ X,

a if i 6∈ X.

Then

Pwc(C, a, b) = max
{

Pue(C, z(X))
∣
∣
∣ X ⊆ {1, 2, . . . , n}

}

.

Proof. For convenience, we write

Q = {p | a ≤ pi ≤ b for 1 ≤ i ≤ n}.

We prove by induction on j that there exists a vector y ∈ Q such that

yi ∈ {a, b} for 1 ≤ i ≤ j, (2.50)

Pue(C,p) ≤ Pue(C,y) for all p ∈ Q. (2.51)

First, let j = 0. Since Q is a closed set and Pue(C,p) is a continuous

function of p on Q, it obtains its maximum on Q, that is, there exists a

y ∈ Q such that (2.51). Moreover, (2.50) is trivially true for j = 0. This

proves the induction basis.

For the induction step, let j > 0 and suppose that the statement is true

for j − 1; let y ∈ Q such that yi ∈ {a, b} for 1 ≤ i ≤ j − 1 and (2.51) is

satisfied. For a c ∈ C we have
n∏

i=1

( yi

q − 1

)wH(ci)

(1 − yi)
1−wH(ci)

=







yj

q−1

∏

i6=j

(
yi

q−1

)wH(ci)

(1 − yi)
1−wH(ci) if cj 6= 0,

(1 − yj)
∏

i6=j

(
yi

q−1

)wH(ci)

(1 − yi)
1−wH(ci) if cj = 0.
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Hence

Pue(C,y) = αjyj + βj

where

αj =
1

q − 1

∑

c∈C
cj 6=0

∏

i6=j

( yi

q − 1

)wH(ci)

(1 − yi)
1−wH(ci)

−
∑

c∈C\{0}
cj=0

∏

i6=j

( yi

q − 1

)wH(ci)

(1 − yi)
1−wH(ci)

βj =
∑

c∈C\{0}
cj=0

∏

i6=j

( yi

q − 1

)wH(ci)

(1 − yi)
1−wH(ci).

If αj > 0 we must have yj = b since y is a maximum point, and so (2.50)

is true. Similarly, if αj < 0 we must have yj = a and again (2.50) is

true. Finally, if αj = 0, then Pue(C,y) is independent of the value of yj .

Therefore, we may replace yj by any other value in [a, b], e.g. a which

makes (2.50) true also in this case. This proves the statement for j and the

induction is complete. For j = n we see that (2.50) and (2.51) implies that

there exists an X such that Pwc(C, a, b) = Pue

(

C, z(X)
)

. �

Lemma 2.9. If a = 0 and b = 1, then

Pue

(

C, z(X)
)

=
#{y ∈ C | χ(y) = X}

(q − 1)#X
.

Proof. In the case we consider, z(X) is given by

zi =

{
1 if i ∈ X,

0 if i 6∈ X

and so

( zi

q − 1

)wH(ci)

(1−zi)
1−wH(ci) =







1 if wH(ci) = zi = 0 and ci = c′i,
1/(q − 1) if wH(ci) = zi 6= 0 and ci 6= c′i,
0 otherwise.

Hence
n∏

i=1

( zi

q − 1

)wH(ci)

(1 − zi)
1−wH(ci) =

{
1/(q − 1)#X if χ(c) = X,

0 otherwise.

Summing over all c ∈ C \ {0}, the lemma follows. �
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Theorem 2.76. Let C be an [n, k, d; q] code. Then

Pwc(C, 0, 1) =
1

(q − 1)d−1
.

Proof. First, let c be a code word in C of minimum weight d, and let

X = χ(c). Then χ(ac) = X for all a 6= 0. Hence

Pwc(C, 0, 1) ≥ Pue

(

C, z(X)
)

≥ q − 1

(q − 1)d
=

1

(q − 1)d−1
. (2.52)

On the other hand, let X be the support of some non-zero code word. Let

BX = {cX | c ∈ C and χ(c) = X}
where cX denotes the vector of length #X obtained by puncturing all

positions of c not in X (the elements in the punctured positions are all

zero). Let UX be the vector space generated by BX . Let r be the dimension

and δ the minimum distance of UX . Clearly, d ≤ δ. By the Singleton bound

we have δ ≤ #X − r + 1. Hence r ≤ #X − (d − 1). By Theorem 1.23,

UX contains not more than (q − 1)#X−(d−1) code words of weight #X . In

particular, #BX ≤ (q − 1)#X−(d−1). By Lemma 2.9 we have

Pue

(

C, z(X)
)

=
#BX

(q − 1)#X
≤ (q − 1)#X−(d−1)

(q − 1)#X
=

1

(q − 1)d−1
.

By Theorem 2.75 we have

Pwc(C, 0, 1) = max
{

Pue

(

C, z(X)
) ∣
∣
∣ X ⊆ {1, 2, . . . , n}

}

≤ 1

(q − 1)d−1
.

This, together with (2.52), proves the theorem. �

Lemma 2.10. Consider the interval [0, (q − 1)/q]. We have

Pue

(

C, z(X)
)

=
#{y ∈ C \ {0} | χ(y) ⊆ X}

q#X
.

Proof. First we note that if i ∈ X , then zi = (q − 1)/q, and so
zi

q − 1
= 1 − zi =

1

q
.

Therefore
( zi

q − 1

)wH(ci)

(1 − zi)
1−wH(ci) =

1

q
for any value of ci. If i 6∈ X , then zi = 0 and so

( zi

q − 1

)wH(ci)

(1 − zi)
1−wH(ci) =

{
1 if ci = 0,

0 if ci 6= 0.

Hence
n∏

i=1

( zi

q − 1

)wH(ci)

(1 − zi)
1−wH(ci) =

{
q−#X if χ(y) ⊆ X,

0 if χ(y) 6⊆ X.

Summing over all non-zero y in C, the lemma follows. �
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For X ⊆ {1, 2, . . . , n}, let

VX = {c ∈ C | χ(c) ⊆ X}.

We note that VX is a vector space, i.e. VX is a subcode of C. If the

dimension of VX is r, then

#
{

y ∈ C \ {0} | χ(y) ⊆ X
}

= qr − 1

and

dr ≤ #χ(VX ) ≤ #X.

Hence

Pue

(

C, z(X)
)

≤ qr − 1

qdr
. (2.53)

Moreover, for each r, 1 ≤ r ≤ k, there exists a set X such that #X = dr

and dim(VX ) = r. Combining this with Theorem 2.75 and Lemma 2.10 we

get the following result.

Theorem 2.77. For an [n, k; q] code C we have

Pwc(C, 0, (q − 1)/q) = max
1≤r≤k

{qr − 1

qdr

}

.

Next, we state a lemma whose simple proof is omitted.

Lemma 2.11. Let l, m, and t be positive integers. Then

(i)
ql − 1

qm
<
ql+t − 1

qm+t
, (2.54)

(ii)
ql − 1

qm
>
ql+t − 1

qm+u
for u ≥ t+ 1. (2.55)

We can now restate Theorem 2.77.

Theorem 2.78. Let C be an [n, k, d; q] code. Let

s = max
{

r
∣
∣
∣ 1 ≤ r ≤ k and dr = d1 + (r − 1)

}

.

Then

Pwc(C, 0, (q − 1)/q) =
qs − 1

qd+s−1
.
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Proof. First, since ds − dr = s − r for 1 ≤ r ≤ s, we have, by Lemma

2.11 (i),

qr − 1

qdr
<
qs − 1

qds

for 1 ≤ r < s. For s < r ≤ k we have, by (1.18), that dr − ds ≥ r − s + 1,

and by Lemma 2.11 (ii) we get

qs − 1

qds
>
qr − 1

qdr
.

Hence, by Theorem 2.77, we get

Pwc

(

C,
q − 1

q

)

=
qs − 1

qds
=

qs − 1

qd+s−1
.

�

We give some corollaries of Theorem 2.78. Usually only part of the

weight hierarchy is needed to determine Pwc(C, 0, (q − 1)/q), sometimes

only d1. For instance, by (1.17) we have d2 > d1 + 1 if d1 ≥ q + 1. Hence

we have the following corollary.

Corollary 2.15. Let C be an [n, k, d; q] code with minimum distance d > q.

Then

Pwc

(

C, 0,
q − 1

q

)

=
q − 1

qd
.

From Theorem 2.77 we see that

Pwc

(

C, 0,
q − 1

q

)

≥ qk − 1

qdk
≥ qk − 1

qn
.

In particular, Pwc(C, (q − 1)/q) = (qk − 1)/qn if and only if n = dk =

d1 + k − 1, that is, if and only if the code is MDS.

Corollary 2.16. For an [n, k; q] code C we have

Pwc

(

C, 0,
q − 1

q

)

≥ qk − 1

qn

with equality if and only if C is an MDS code.

Remark 2.9. The average value of Pue(C, p1, p2, . . . , pn) over all [n, k; q]

codes can be shown to be

E
(

Pue(C, p1, p2, . . . , pn)
)

=
qk − 1

qn − 1

{

1 −
n∏

i=1

(1 − pi)
}

,

and so

max
{

E
(

Pue(C, p1, p2, . . . , pn)
) ∣
∣
∣ 0 ≤ pi ≤ (q − 1)/q

}

=
qk − 1

qn
.
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In analogy to what we did for the q-SC, we could call a code good if

Pwc(C, 0, (q − 1)/q) = (qk − 1)/qn. However, we note that this is a very

strong condition, which by Corollary 2.16 is satisfied only by MDS codes.

It is often difficult to determine the weight hierarchy. Therefore it is

useful to have good bounds. Corollary 2.16 gives such a lower bound.

Theorem 2.78 and Lemma 2.11 a) give the following general bounds.

Corollary 2.17. Let C be an [n, k, d; q] code. Then

q − 1

qd
≤ Pwc

(

C, 0,
q − 1

q

)

≤ qk − 1

qd+k−1
=
q − q−(k−1)

qd
.
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Chapter 3

Error detecting codes for the binary

symmetric channel

For q = 2, the q-ary symmetric channel is called the binary symmetric

channel (BSC). In this chapter we give some results that apply for the BSC,

but which does not generalize to general q or a possible generalization is

not known or has not been studied. Since q = 2 throughout the chapter,

we (usually) drop ”; 2” from the notations and write [n, k] for [n, k; 2], etc.

3.1 A condition that implies ”good”

For linear codes with code words of even weight only, the following theorem

is sometimes useful to show that

Pue(C, p) ≤ 2k−n {1 + (1 − 2p)n − 2(1 − p)n} . (3.1)

Since 1 + (1− 2p)n − 2(1− p)n is monotonically increasing on [0, 1/2], this

is a stronger condition than C being good.

Since all code words have even weight, the all-one vector 1 belongs to

C⊥. Therefore, for any code word x ∈ C⊥ of weight i, there is a code

word in C⊥ of weight n− i, namely x + 1. Hence we can write the weight

distribution function of C⊥ as follows:

AC⊥(z) =
ν∑

i=0

Bi(z
i + zn−i),

where ν =
⌊

n
2

⌋
.

Remark 3.1. If n is even, then Bν = 1
2Aν(C⊥). For i < n

2 we have

Bi = Ai(C
⊥).

129
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Theorem 3.1. Let C be an [n, k, d] code where n = 2ν + 1 is odd and all

code words have even weight. If

(2n−k − 2)

(
ν

j

)

≥ 22j+1
ν−1∑

i=j

(
i+ j

2j

)

Bν−i

for

d

2
≤ j <

(n− 2d⊥)2 + n

2n
,

then

Pue(C, p) ≤ 2k−n {1 + (1 − 2p)n − 2(1 − p)n}

for all p ∈
[
0, 1

2

]
.

Theorem 3.2. Let C be an [n, k, d] code where n = 2ν is even and all code

words have even weight. If

(2n−k − 2)

(
ν

j

)

≥ 22j
ν−1∑

i=j

{(
i+ j

2j

)

+

(
i+ j − 1

2j

)}

Bν−i

for

d

2
≤ j <

(n− 2d⊥)2 + n− 2

2n− 2
,

then

Pue(C, p) ≤ 2k−n {1 + (1 − 2p)n − 2(1 − p)n}

for all p ∈
[
0, 1

2

]
.

Proof. We sketch the proof of Theorem 3.1. By Theorem 2.4

Pue(C, p) = 2n−kAC⊥(1 − 2p) − (1 − p)n

= 2k−n {1 + (1 − 2p)n − 2(1 − p)n − F (p)}

where

F (p) = (2n−k − 2)(1 − p)n −
ν∑

i=1

Bi

{
(1 − 2p)i + (1 − 2p)n−i

}
.

We will show that F (p) ≥ 0 for all p. We see that

(1 − p)n = (1 − p)

ν∑

j=0

(
ν

i

)

p2j(1 − 2p)ν−j
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and

(1 − 2p)i + (1 − 2p)n−i = (1 − p)

i∑

j=0

22j+1

(
i+ j

2j

)

p2j(1 − 2p)ν−j .

Hence

F (p) = (1 − p)

ν∑

j=0

p2j(1 − 2p)ν−jFj ,

where

Fj = (2n−k − 2)

(
ν

j

)

−
ν−1∑

i=j

22j+1

(
i+ j

2j

)

Bν−i.

We will show that Fj ≥ 0 for all j. By assumption, this is true for d
2 ≤ j <

d0
def
=
⌈

(n−2d⊥)2+n
2n

⌉

. Consider j < d
2 . Then

ν−1∑

i=j

22j+1

(
i+ j

2j

)

Bν−i = 22j
n∑

i=0

Bi

(
i+ j + ν − n

2j

)

− 22j+1

(
j + ν

2j

)

= 22j

2j
∑

l=0

(
j + ν − n

2j − l

) n∑

i=0

Bi

(
i

l

)

− 22j+1

(
j + ν

2j

)

= 22j

2j
∑

l=0

(
j + ν − n

2j − l

)

2n−k−l

(
n

l

)

− 22j+1

(
j + ν

2j

)

= 2n−k

(
ν

j

)

− 22j+1

(
j + ν

2j

)

,

where the second to last equality follows from Theorem 1.3, and so

Fj = 22j+1

(
j + ν

2j

)

− 2

(
ν

j

)

≥ 0.

Finally, consider j ≥ d0. We prove that Fj ≥ 0 by induction on j. As basis

for the induction, we use that Fd0−1 ≥ 0. We observe that Bν−i = 0 for

n− d⊥ < i ≤ ν − 1. Further

22j+1
(
i+j
2j

)

(
ν
j

) =
2(i+ j)(i− j + 1)

(2j − 1)(ν − j + 1)

22(j−1)j+1
(i+(j−1)j

2(j−1)j

)

(
ν

j−1

)

≤
22(j−1)j+1

(i+(j−1)j
2(j−1)j

)

(
ν

j−1

)
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for j ≥ d0 and j ≤ i ≤ ν − d⊥. Hence

Fj
(
ν
j

) = (2n−k − 2) −
ν−d⊥
∑

i=j

Bν−i

22j+1
(
i+j
2j

)

(
ν
j

)

≥ (2n−k − 2) −
ν−d⊥
∑

i=j−1

Bν−i

22(j−1)j+1
(i+(j−1)j

2(j−1)j

)

(
ν

j−1

)

=
Fj−1
(

ν
j−1

) ≥ 0

by the induction hypothesis. �

Remark 3.2. If
⌈
d

2

⌉

≥ (n− 2d⊥)2 + n

2n
,

then there are no further values of j to check and similarly for n even.

Hence we get the following corollary.

Corollary 3.1. Let C be an [n, k, d] code where all code words have even

weight. If n is odd and
⌈
d

2

⌉

≥ (n− 2d⊥)2 + n

2n

or n is even and
⌈
d

2

⌉

≥ (n− 2d⊥)2 + n− 2

2n− 2

then

Pue(C, p) ≤ 2k−n {1 + (1 − 2p)n − 2(1 − p)n}

for all p ∈
[
0, 1

2

]
.

3.2 Binary optimal codes for small dimensions

It is an open question for which n and k there exist [n, k] codes which are

optimal for all p ∈
[
0, 1

2

]
. However, for k ≤ 4 such codes do exist for all

n; by Corollary 2.12 the same is true for k ≥ n − 4. Before we can prove

this, we must first show a couple of lemmas. The proof is quite long and

we divide it into some lemmas. The proof will be based on Corollary 1.7.
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Let C be an [n, k] code generated by G whose column count function is m.

Then

Pue(C, p) = (1 − p)n
∑

U∈Sk,k−1

(
p

1 − p

)s(Uc,m)

. (3.2)

Lemma 3.1. If C is optimal for p ∈
(
0, 1

2

)
, then m(0) = 0.

Proof. Suppose that m(0) > 0. Let y be an arbitrary non-zero vector in

GF (2)k. Define m′ by

m′(0) = 0,

m′(y) = m(y) +m(0),

m′(x) = m(x) for x ∈ GF (2)k \ {0,y},
and let C ′ be a corresponding code. Then

s(U c,m′) =

{
s(U c,m) +m(0)) if y ∈ U c,

s(U c,m) if y 6∈ U c.

Hence

Pue(C, p)−Pue(C
′, p) = (1−p)n

{

1 −
(

p

1 − p

)m(0)
}
∑

U

(
p

1 − p

)s(Uc,m)

> 0,

where the last sum is over all U such that y ∈ U ∈ Sk,k−1. �

Let T be an invertible linear transformation on GF (2)k, and let CT

be a code corresponding to m ◦ T , that is, if mT corresponds to CT , then

mT (x) = m(T (x)).

Lemma 3.2. We have Pue(CT , p) = Pue(C, p) for all p.

Proof. We have

s(U,mT ) =
∑

x∈U

m(T (x)) =
∑

T (x)∈TU

m(T (x)) = s(TU,m).

Since TU runs through Sk,k−1 when U does, we get

A(CT , z) = 1 +
∑

U∈Sk,k−1

zn−s(U,mT ) = 1 +
∑

U∈Sk,k−1

zn−s(U,m) = A(C, z).

�

Lemma 3.3. If C is an optimal [n, k] code for p ∈
(
0, 1

2

)
and k ≤ 4, then

|m(x) −m(y)| ≤ 1 for x,y ∈ GF (2)k \ {0}.
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Proof. We give the proof for k = 3. For k = 1, 2 the proof is simpler, for

k = 4 more complicated, but similar. For the details of the proof for k = 4

we refer to Kløve (1992).

To simplify the notation, we write

m1 = m(100),m2 = m(010), · · · ,m7 = m(111).

First we note that there exists a linear transformation on GF (2)3 such that

mT (100) ≤ mT (x) ≤ mT (010) for all x ∈ GF (2)3 \ {0},

and mT (101) ≤ mT (011).

Hence by Lemma 3.2, we may assume without loss of generality that

m1 ≤ mi ≤ m2 for 1 ≤ i ≤ 7,

m5 ≤ m6.

Note that this implies that m2 −m1 ≥ m6 −m5. By Corollary 1.7 we get

AC(z) = 1 + zm1+m2+m5+m6 + zm1+m2+m4+m7 + zm5+m6+m4+m7

+zm1+m5+m3+m7 + zm2+m6+m3+m7

+zm1+m6+m3+m4 + zm2+m5+m3+m4 .

Suppose that the lemma is not true, that is, C is optimal, but m2−m1 ≥ 2.

By Lemma 3.1, m0 = 0.

Case I, m2 −m1 = m6 −m5. Define m̃ by

m̃1 = m1 + 1, m̃2 = m2 − 1, m̃5 = m5 + 1, m̃6 = m6 − 1,

and m̃i = mi for i ∈ {0, 3, 4, 7}. Then m̃i ≥ 0 for all i. Let C̃ be a

corresponding code. Then

AC(z) −AC̃(z) = zm1+m3+m5+m7
(
1 − z2

) (
1 − zm2−m1+m6−m5−2

)
> 0

for z ∈ (0, 1). Hence Pue(C, p) > Pue(C̃, p), contradicting the optimality of

C.

Case II, m2 −m1 > m6 −m5. Define m̃ by

m̃1 = m1 + 1, m̃2 = m2 − 1,

and m̃i = mi for i ∈ {0, 3, 4, 5, 6, 7}. Again m̃i ≥ 0 for all i. Let C̃ be a

corresponding code. Then

AC(z) −AC̃(z) = zm1+m3+m5+m7 (1 − z)
(
1 − zm2−m1−1+m6−m5

)

+zm1+m3+m4+m6 (1 − z)
(

1 − z(m2−m1)−(m6−m5)−1
)

> 0
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for z ∈ (0, 1). Again Pue(C, p) > Pue(C̃, p), contradicting the optimality of

C.

For an [n, k] code C for which m(x) > 0 for all x 6= 0, define C− to be

an [n− (2k − 1), k] code corresponding to m− defined by

m−(0) = 0,

m−(x) = m(x) − 1 for x 6= 0.

Then (C−)∗ = C and

p2k−1

(1 − p)2
k−1−1Pue(C

−, p) = Pue(C, p).
�

Lemma 3.4. Let C be an optimal [n, k] code for p ∈
(
0, 1

2

)
where k ≤ 4.

Then

(i) C∗ is optimal for p,

(ii) if n ≥ 2k − 1 + k, then C− is defined and it is optimal for p.

Proof. Let C1 be an optimal [n + 2k − 1, k] code for p. By Lemma 3.3

C−
1 is defined. Hence

p2k−1

(1 − p)2
k−1−1Pue(C, p) = Pue(C

∗, p)

≥ Pue(C1, p) = p2k−1

(1 − p)2
k−1−1Pue(C

−
1 , p)

and so Pue(C
∗, p) = Pue(C1, p), that is, C∗ is optimal for p. This proves

(i), and (ii) is similar. �

By Lemma 3.4, for k ≤ 4 it is sufficient to determine the optimal [n, k]

codes for p ∈ (0, 1/2) where n < 2k−1+k. This can be done by a computer

search. The search gives the following result.

Theorem 3.3. If 1 ≤ k ≤ 4 and n ≥ k, then there exists an [n, k] code

which is optimal for all p ∈ [0, 1/2].

We write n = r(2k − 1) + n0 where 0 ≤ n0 ≤ 2k − 1. Then the column

count function for an optimal code is given by

mC(x) = r +m0(x)

and

AC(z) − 1 = zr2k−1{A0(z) − 1}
where m0 and A0 are given in Tables 3.1–3.3. Note that in the tables, x is

written as a column vector
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Table 3.1 m0(x) and
A0(z) for k = 2

n0 x A0(z)

101
011

0 000 4
1 100 2 + 2z
2 110 1 + 2z + z2

Table 3.2 m0(x) and A0(z) for k = 3

n0 x A0(z)

1010101
0110011
0001111

0 0000000 8
1 1000000 4 + 4z
2 1100000 2 + 4z + 2z2

3 1101000 1 + 3z + 3z2 + z3

4 1101001 1 + 6z2 + z4

5 1111100 1 + 2z2 + 4z3 + z4

6 1111110 1 + 4z3 + 3z4

3.3 Modified codes

3.3.1 Adding/removing a parity bit

Consider an [n, k] code C containing some code word of odd weight. Adding

a parity bit, that is extending each code word a to (a|∑n
i=1 ai) gives an

[n+ 1, k] code Cex where all the code words have even weight. The weight

distribution function of Cex is given by

ACex(z) =

bn+1
2 c
∑

i=0

(A2i−1 +A2i(C))z2i =
1

2
{AC(z) +AC(−z)}.

The code C may be good without Cex being good and vice versa. The

various combinations of possibilities are given in Figure 3.1 which gives a

generator matrix and the weight distribution function of the corresponding

codes.

Puncturing the last position of Cex we get C. From the examples above

we see that a code may be good without the punctured code being good

and vice versa.
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Table 3.3 m0(x) and A0(z) for k = 4

n0 x A0(z)

101010101010101
011001100110011
000111100001111
000000011111111

0 000000000000000 16
1 100000000000000 8 + 8z
2 110000000000000 4 + 8z + 4z2

3 110100000000000 2 + 6z + 6z2 + 2z3

4 110100010000000 1 + 4z + 6z2 + 4z3 + z4

5 110100010000001 1 + 10z2 + 5z4

6 110100110010000 1 + 3z2 + 8z3 + 3z4 + z6

7 110100110010100 1 + 7z3 + 7z4 + z7

8 110100110010110 1 + 14z4 + z8

9 111110011000011 1 + 6z4 + 8z5 + z8

10 111111011000011 1 + 2z4 + 8z5 + 4z6 + z8

11 111111011100110 1 + 6z5 + 6z6 + 2z7 + z8

12 111111011100111 1 + 12z6 + 3z8

13 111111111111100 1 + 4z6 + 8z7 + 3z8

14 111111111111110 1 + 8z7 + 7z8

3.3.2 Even-weight subcodes

Consider an [n, k] code C containing some code word of odd weight. The

even-weight [n, k − 1] subcode Ce is the set of code words in C of even

weight. The weight distribution function of Ce is given by

ACe(z) =

bn
2 c∑

i=0

A2i(C)z2i.

Figure 3.2 illustrates the various possibilities.

3.4 Binary cyclic redundancy check (CRC) codes

Consider a polynomial

g(z) = zm + gm−1z
m−1 + · · · + g1z + 1.

The [n = k+m, k] code Cg,n generated by g(z) is a cyclic redundancy check

(CRC) code. In general, the optimal choice of g(z) will depend on k and p.

We describe the case m = 16 in more detail since a number of such codes

are used in practice.
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Cex proper Cex bad

C proper

(
10

01

)




1000001

0100001

0011111





AC(z) : 1 + 2z + z2 1 + 3z2 + 3z5 + z7

ACex(z) : 1 + 3z2 1 + 3z2 + 3z6 + z8

C bad

(
100

010

) (
1000

0100

)

AC(z) : 1 + 2z + z2 1 + 2z + z2

ACex(z) : 1 + 3z2 1 + 3z2

Fig. 3.1 Codes and extended codes

Ce proper Ce bad

C proper





1000

0100

0011









11000

01100

00111





AC(z) : 1 + 2z + 2z2 + 2z3 + z4 1 + 3z2 + 3z3 + z5

ACe(z) : 1 + 2z2 + z4 1 + 3z2

C bad





1000

0100

0010









10000

01000

00100





AC(z) : 1 + 3z + 3z2 + z3 1 + 3z + 3z2 + z3

ACe(z) : 1 + 3z2 1 + 3z2

Fig. 3.2 Codes and even-weight subcodes

Examples of CRC codes used in standards are the codes generated by

the following polynomials of degree 16:
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IEC TC57 z16 + z14 + z12 + z11 + z9 + z8 + z7 + z4 + z + 1,

IEEE WG77.1 z16 + z14 + z13 + z11 + z10 + z9 + z8 + z6 + z5 + z + 1,

CCITT X.25 z16 + z12 + z5 + 1,

ANSI z16 + z15 + z2 + 1,

IBM-SDLC z16 + z15 + z13 + z7 + z4 + z2 + z + 1.

An example for m = 32 is the ISO 3309 with polynomial

z32 + z26 + z23 + z22 + z16 + z12 + z11 + z10 + z8 + z7 + z5 + z4 + z2 + z+1.

In practice, a chosen g(z) will be used for a range of k, and the best

choice will depend on the criteria we use.

Methods for efficient computation of the weight distribution of CRC

codes has been given by Fujiwara, Kasami, Kitai, and Lin (1985), Miller,

Wheal, Stevens, and Lin (1986), Castagnoli, Bräuer, and Herrmann (1993),

and Chun and Wolf (1994).

For p sufficiently small, a code with larger minimum distance is better

then one with smaller minimum distance. A candidate for an interesting

generator polynomial is therefore a polynomial such that the minimum

distance of the corresponding [k + 16, k] codes is large for a large range of

values of k. Castagnoli, Ganz, and Graber (1990) considered the choice

of g(z) from this point of view. For example, the polynomial z16 + z14 +

z12 + z11 + z9 + z8 + z7 + z4 + z + 1 (used in IEC TC57) generates codes

with minimum distance at least 6 for all lengths up to 151, and no other

polynomial has this property. In Figure 3.3 we list similar polynomials for

other values of dmin (we write only the coefficients in the polynomial).

Based on an exhaustive search of all polynomial with m = 16, Castag-

noli, Ganz, and Graber (1990) gave the optimal choices presented in Figure

3.4. In the table, nc is the largest length for which dmin(Cg,n) > 2. A sum-

mary of the main properties of the codes is also given. For more details,

we refer to Castagnoli, Ganz, and Graber (1990).

Miller, Wheal, Stevens, and Mezhvinsky (1985) and Miller, Wheal,

Stevens, and Lin (1986) considered the polynomials g(z) = (1 + z)p(z)

where p(z) is irreducible of degree 15. There are 896 such polynomials.

They used the criterion that a polynomial g(z) is better if the bound

Pue(Cg,n, p) ≤ 2−16
{

1 − 2(1− p)n + (1 − 2p)n
}

(3.3)

is satisfied over a larger range of values n. By this criterion the best poly-

nomial turned out to be a polynomial that was optimal also by the criterion

used by Castagnoli et al., namely the last polynomial in Figure 3.4. For

this polynomial, (3.3) is satisfied for all n ≤ nc.
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dmin ≥ coeff. of polynomial length ≤

17 11111111111111111 17

12 10101101111101101 18

10 11101001000101111 21

9 11000111101010111 22

8 10001111110110111 31

7 10010011010110101 35

6 10011110101100101 151

5 10101100100110101 257

4 11010001011101011 32767

Fig. 3.3 Generator polynomial which generate codes of a given minimum distance to a
given length.

Castagnoli, Bräuer, and Herrmann (1993) and Wolf and Blakeney (1988)

have done a similar analysis of polynomials g(z) of degrees 24 and 32.

Wolf and Chun (1994) considered an alternative model for channels

with single bursts and the use of CRC codes to detect such burst. In

Chun and Wolf (1994) they also describe special hardware to compute the

probability of undetected error of CRC codes. Using this hardware they

determined polynomials of the form (z + 1)p(z), where p(z) is irreducible,

such that the corresponding shortened code is good for a large number of

test lengths. They gave one polynomial for each degree from 8 through 39.

These polynomials are listed in Figures 3.5 and 3.6.

3.5 Particular codes

In this section we consider the error detection of some known classes of

binary codes.

3.5.1 Reed-Muller codes

The rth order (binary) Reed-Muller code of length 2m is a
[

2m,
∑r

i=0

(
m
i

)]

code. The first order Reed-Muller code is the dual of the extended Hamming

code and has weight distribution given in Table 3.4. The code is proper.
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coeff. of the polynomial g, nc

properties of the codes Cg,n

10011110101100101 151

dmin ≥ 6 for n ≤ nc, proper for n ≤ nc,

11111001010011111 258

dmin ≥ 6 for n ≤ 130, dmin ≥ 4 for n ≤ nc,

proper for n 6∈ {43, . . . , 48} ∪ {189, . . . , 258},
Pwc(Cg,n, 0, 0.5)/Pue(Cg,n, 0.5) ≤ 1.042 for n ≤ nc

10101100100110101 257

dmin ≥ 5 for n ≤ nc, proper for n ≤ nc,

10000000100011011 28658

dmin ≥ 6 for n ≤ 115, dmin ≥ 4 for n ≤ nc,

proper when n ≤ 1127 and n 6∈ {17, . . . , 28} ∪ {31, . . . , 58},
Pwc(Cg,n, 0, 0.5)/Pue(Cg,n, 0.5) ≤ 2.11 for n ≤ nc

11010001011101011 32767

dmin ≥ 4 for n ≤ nc, conjectured† to be proper for n ≤ nc,

(† Castagnoli et al. verified that Cg,n is proper for n ≤ 256

and a number of larger values of n.)

Fig. 3.4 Generator polynomials and properties of the best CRC codes for m = 16.

Table 3.4 Weight distribution of first
order Reed-Muller code.

i 0 2m−1 2m

Ai 1 2m − 2 1

The weight distribution of the second order Reed-Muller code was de-

termined by Sloane and Berlekamp, see MacWilliams and Sloane (1977, p.

443). It is given in Table 3.5. The code is proper for m ≤ 5, but it is bad

for m ≥ 6. The class of second order Reed-Muller codes is asymptotically
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m = degree of g(z) coeff. of the polynomial p(z)

8 10001001

9 101100011

10 1000101101

11 11100111001

13 1101110100111

14 10111010011001

15 110100001110111

16 1000011100101001

17 11000101110110111

18 100010010010111011

19 1011101000100010111

20 10010010111000010011

21 110101101110101100011

22 1000011100100110000101

23 10111101110110110100011

24 100010110000111010101011

Fig. 3.5 Generator polynomials g(z) = (z + 1)p(z) generating CRC which are good for
a range of shortened distances.

bad. In fact, any infinite subset of the set {R(r,m) | r ≥ 2, m ≥ r + 3} is

asymptotically bad, see Kløve (1996b).

Table 3.5 Weight distribution of second order Reed-Muller code.

i Ai

0, 2m 1

2m−1 ± 2m−1−h 2h(h+1)

∏m
i=m−2h+1

(

2i−1

)

∏
h
i=1

(

22i−1

) for 1 ≤ h ≤
⌊

m
2

⌋

2m−1 2(m2+m+2)/2 − 2 − 2
∑bm/2c

h=1 2h(h+1)

∏m
i=m−2h+1

(

2i−1

)

∏
h
i=1

(

22i−1

)

Kasami (1971) determined the weight distribution of several subcodes
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m = degree of g(z) coeff. of the polynomial p(z)

25 1011100100110001111110101

26 11100101101000010110110001

27 100010110010010101110110111

28 1001001010010010101001111001

29 10001011001101101110011101001

30 100110110000010010001000101001

31 1110101100110110111010011111101

32 10100010100010001100010101011001

33 110111011100110101011110100001001

34 1001100010111001001000010010010011

35 10111110010001101111101000010110001

36 110110010011100010101100101110110001

37 1001100001001000011100101110000101101

38 10010000110101010001110010111000000111

39 111011111010001100110101000111100111001

Fig. 3.6 Generator polynomials g(z) = (z + 1)p(z) generating CRC which are good for
a range of shortened distances.

of the second order Reed-Muller codes.

3.5.2 Binary BCH codes

The primitive BCH codes are defined as follows. Let α be a primitive

element of GF (2m). Let Mj(x) be the polynomial of lowest degree over

GF (2) having αj as a root (the minimal polynomial of αj). The t-error

correcting BCH code (for short: t-BCH code) is the CRC code generated

by the polynomial

lcm{M1(x),M2(x), . . . ,M2t(x)}.

The code has length n = 2m − 1, minimum distance at least 2t + 1 and

dimension at least n − tm. The 1-BCH code is the Hamming code. Note

that this definition generalizes immediately to q-ary BCH codes.

The weight distribution of the dual code of the binary 2-BCH is given

by Tables 3.6 and 3.7. See MacWilliams and Sloane (1977, p. 451f ) or Lin
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and Costello (2004, p. 177f ). Leung, Barnes, and Friedman (1979) proved

that the binary 2-BCH and the extended binary 2-BCH are both proper.

Table 3.6 Weight distribution of 2-BCH code for
m odd.

i Ai

0 1

2m−1 − 2(m−1)/2
(

2m − 1
)(

2m−2 + 2(m−3)/2
)

2m−1
(

2m − 1
)(

2m−1 + 1
)

2m−1 + 2(m−1)/2
(

2m − 1
)(

2m−2 − 2(m−3)/2
)

Table 3.7 Weight distribution of 2-BCH code for m
even.

i Ai

0 1

2m−1 − 2m/2 2(m−4)/2
(

2m − 1
)(

2(m−2)/2 + 1
)

/3

2m−1 − 2m/2−1 2m/2
(

2m − 1
)(

2m/2 + 1
)

/3

2m−1
(

2m − 1
)(

2m−2 + 1
)

2m−1 + 2m/2−1 1
3
2m/2

(

2m − 1
)(

2m/2 − 1
)

2m−1 + 2m/2 1
3
2(m−4)/2

(

2m − 1
)(

2(m−2)/2 − 1
)

The binary 3-BCH code is a [2m−1, 2m−1−3m] code whose dual code

has the weight distribution given by Tables 3.8 and 3.9, see MacWilliams

and Sloane (1977, p. 669) and Lin and Costello (2004, p. 178). Ong and

Leung (1991) proved that for m odd the 3-BCH and the corresponding

extended code are both proper. For m even, however, Perry (1991) showed

that neither the 3-BCH nor the extended 3-BCH are good for m ≥ 6.

However, these classes of codes are asymptotically good.

3.5.3 Z4-linear codes

Let, as usual, Z4 denote the integers modulo 4. A linear code over Z4 of

length n is a module, that is, a subset C of Zn
4 such that if u,v ∈ C, then

au + bv ∈ C for all a, b ∈ Z4 (the arithmetic is done modulo 4). The dual

code C⊥ is defined in the usual way via inner product (modulo 4). Let
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Table 3.8 Weight distribution of 3-BCH code for m odd, m ≥ 5.

i Ai

0 1

2m−1 − 2(m+1)/2 2(m−5)/2
(

2m − 1
)(

2m−1 − 1
)(

2(m−3)/2 + 1
)

/3

2m−1 − 2(m−1)/2 2(m−3)/2
(

2m − 1
)(

5 · 2m−1 − 1
)(

2(m−1)/2 + 1
)

/3

2m−1
(

2m − 1
)(

9 · 22m−4 + 3 · 2m−3 + 1
)

2m−1 + 2(m−1)/2 2(m−3)/2
(

2m − 1
)(

5 · 2m−1 − 1
)(

2(m−1)/2 − 1
)

/3

2m−1 + 2(m+1)/2 2(m−5)/2
(

2m − 1
)(

2m−1 − 1
)(

2(m−3)/2 − 1
)

/3

Table 3.9 Weight distribution of the 3-BCH code for m even, m ≥ 6.

i Ai

0 1

2m−1 − 2(m+2)/2
(

2m − 1
)(

2m − 4
)(

2m−1 + 2(m+2)/2
)

/960

2m−1 − 2m/2 7
(

2m − 1
)

2m
(

2m−1 + 2m/2
)

/48

2m−1 − 2(m−2)/2
(

2m − 1
)(

2m−1 + 2(m−2)/2
)(

6 · 2m + 16
)

/15

2m−1
(

2m − 1
)(

29 · 22m − 2m+2 + 64
)

/64

2m−1 + 2(m−2)/2
(

2m − 1
)(

2m−1 − 2(m−2)/2
)(

6 · 2m + 16
)

/15

2m−1 + 2m/2 7
(

2m − 1
)

2m
(

2m−1 − 2m/2
)

/48

2m−1 + 2(m+2)/2
(

2m − 1
)(

2m − 4
)(

2m−1 − 2(m+2)/2
)

/960

φ : Z4 → GF (2)2 be defined by

φ(0) = (00), φ(1) = (01), φ(2) = (11), φ(3) = (10),

and φ : Zn
4 → GF (2)2n by

φ(v1, v2, . . . , vn) = (φ(v1)|φ(v2)| . . . |φ(vn)).

Finally, for a linear code C over Z4 of length n we define the binary code

φ(C) of length 2n by

φ(C) = {φ(v) | v ∈ C}.

Note that φ(C) is not in general linear; such codes have been termed Z4-

linear. For a more detailed description of these concepts we refer to the

paper by Hammons, Kumar, et al. (1994). In particular they prove the

following two results which are important in our context:
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• A Z4-linear code is distance invariant, in particular,

Aφ(C)(z) = Aw
φ(C)(z),

• Aφ(C⊥)(z) = AMW
φ(C)(z).

Note that both φ(C) and φ(C⊥) may be non-linear and are not dual in the

usual sense.

One class of codes which can be obtained this way is the Kerdock codes

K(m) which are non-linear (2m, 22m) codes. The distance distribution is

given in Tables 3.10, see MacWilliams and Sloane (1977, p. 456) or Ham-

mons, Kumar, et al. (1994).

Table 3.10 Distance distribution, Kerdock codes.

i Ai for m even Ai for m odd

0, 2m 1 1

2m−1 ± 2(m−2)/2 2m
(

2m−1 − 1
)

-

2m−1 ± 2(m−1)/2 - 2m−1
(

2m−1 − 1
)

2m−1 2m+1 − 2 2m
(

2m−1 + 1
)

− 2

The Preparata codes are another class of binary Z4-linear (2m, 22m−2m)

codes. The distance distribution of the Preparata code is the MacWilliams

transform of the distance distribution of the corresponding Kerdock code.

Dodunekova, Dodunekov and Nikolova (2004a) showed that both the Ker-

dock codes and the Preparata codes are proper.

The Delsarte-Goethals DG(m, d) codes, where m ≥ 6 is even, are non-

linear (2m, 2(m−1)(bm/2c−d+1)+m+1) codes. In particular DG(m,m/2) =

K(m). The distance distribution of the DG(m,m/2 − 1) codes is given in

Table 3.11, (see MacWilliams and Sloane (1977, p. 477)).

Table 3.11 Distance distribution, DG(m, m/2 − 1)
codes.

i Ai

0,2m 1

2m−1 ± 2m/2 2m−2
(

2m−1 − 1
)(

2m − 1
)

/3

2m−1 ± 2m/2−1 2m
(

2m−1 − 1
)(

2m−1 + 4
)

/3

2m−1 2
(

2m − 1
)(

22m−3 − 2m−2 + 1
)
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3.5.4 Self-complementary codes

A binary linear code C is self-complementary if the complement of any code

word is again a code word, that is, if c ∈ C, then c + 1 ∈ C, where 1 is the

all-one vector. For example, the codes considered in Section 3.1 are duals

of self-complementary codes. For a self-complementary [n, k] code C, the

weight distribution is symmetric, that is, Ai(C) = An−i(C) for all i. For

the study of such codes, we start with a lemma.

Lemma 3.5. Let

n−√
n

2
≤ i <

1

2
.

Then the function

f(p) = pi(1 − p)n−i + pn−i(1 − p)i

is increasing on [0, 1/2].

Proof. We have

f ′(p) = ipi−1(1 − p)n−i − (n− i)pi(1 − p)n−i−1

+(n− i)pn−i−1(1 − p)i − ipn−i(1 − p)i−1

= pn−i−1(1 − p)i−1(n− i− np)g(p),

where

g(p) = 1 −
(1 − p

p

)n−2i np− i

n− i− np
.

Further

g′(p) =
(1 − p

p

)n−2i−1 1

p2

(n− 2i)

(n− i− np)2

{

np(1 − p) − (np− i)(n− i− np)
}

=
(1 − p

p

)n−2i−1 1

p2

(n− 2i)

(n− i− np)2

·
{

(n2 − n)
(

p− 1

2

)2

− n2 − n

4
+ i(n− i)

}

.

We see that g′(p) has its minimum for p = 1/2. Moreover, this minimum

is non-negative since

i(n− i) − n2 − n

4
≥ n−√

n

2

(

n− n−√
n

2

)

− n2 − n

4
= 0.

Hence f ′(p) ≥ 0 for all p ∈ [0, 1/2], that is, f(p) is increasing. �
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From the lemma we immediately get the following result.

Theorem 3.4. If C is an (n,M, d) code with symmetric distance distribu-

tion and d ≥ n−√
n

2 , then C is proper.

Remark 3.3. If C is a self-complementary code (n,M, d) and d > n−√
n

2 ,

that is, n− (n− 2d)2 > 0, then M ≤ 8d(n−d)
n−(n−2d)2 ; this is known as the Grey-

Rankin bound. Further, the condition of Corollary 3.1 is also satisfied and

so (3.1) is satisfied.

3.5.5 Self-dual codes

A linear code C is self-dual if C⊥ = C. For a self-dual code k = n − k,

that is n = 2k. The binary self-dual codes of dimension up to 16 has been

classified, for some larger values of k partial classification has been done.

The weight distribution has been determined for many self-dual codes. In

particular, the classification and weight distributions of all binary self-dual

[32, 16] codes was determined by Bilous and van Rees (2002). An excellent

overview of self-dual code is given by Rains and Sloane in Pless and Huffman

(1998) pp. 177–294.

We note that c · c = 0 if and only if c has even weight. Hence, all

the code words of a self-dual C code have even weight. In particular, this

implies that the all-one vector is contained in C⊥ = C, and so C is in

particular self-complementary and An−i(C) = Ai(C) for all i.

Example 3.1. Following Perry and Fossorier (2006b), we describe the error

detecting capability of the self-dual [32, 16] codes. From Theorem 2.10, we

see that a necessary condition for a self-dual [32, 16] code to be good is

A2 = 0 and A4 ≤ 2. From the tables in Bilous and van Rees (2002) we

see that there are exactly 29 possible weight distributions that satisfy these

conditions. These weight distributions fall into four classes given in Table

3.12.

The first class is proper for all b.

The second class is proper for b ≤ 7, bad for b = 8, 9.

The third class is good but not proper for b ≤ 3, bad for b ≥ 4.

The forth class is proper for all b.

For those codes that are proper, this can in all cases be shown using

the sufficient condition in Theorem 2.19. The code with b = 3 in the third

class is an interesting example of a good code with two local maxima in

the interval (0, 1/2), namely for p ≈ 0.1628 and p ≈ 0.4109. Also the (bad)
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Table 3.12 Classes of weight distributions for self-dual [32, 16] codes

Class: 1 2 3 4

A4 0 1 2 b
A6 4b 4b 4b 0
A8 364 − 8b 374 − 8b 384 − 8b 620 + 10b
A10 2048 − 12b 2048 − 12b 2048 − 12b 0
A12 6720 + 32b 6771 + 32b 6622 + 32b 13888 − 49b
A14 14336 + 8b 14336 + 8b 14336 + 8b 0
A16 18598 − 48b 18674 − 48b 18750 − 48b 36518 + 76b

range: b = 0 and 2 ≤ b ≤ 8 2 ≤ b ≤ 9 b = 0 and 2 ≤ b ≤ 10 b = 0, 1, 2

code with b = 4 in this class has two maxima.

3.6 Binary constant weight codes

For given n and m, let Ωm
n denote the set of all binary vectors of length n

and weight m. A (binary) constant weight code is some subset of Ωm
n . The

distance between two code words in a binary constant weight code is clearly

even. If the minimum distance is 2δ, we call the code an (n,M, 2δ,m) code.

Note that these codes are not linear (in particular, the zero vector is not a

code word).

In this section we will first give some results for the codes Ωm
n and next

results for constant weight codes in general, that is, subcodes of Ωm
n . The

code Ωn−m
n is essentially the same code as Ωm

n (we have only interchanged

the zeros and the ones). In particular, Pue(Ω
n−m
n , p) = Pue(Ω

m
n , p). There-

fore, we will assume that m ≤ n−m, that is m ≤ bn/2c. In this section we

mainly quote known results without proofs. However, we give references

for the results.

3.6.1 The codes Ωm

n

Theorem 3.5. Let 0 ≤ m ≤ bn/2c. For all i, 0 ≤ j ≤ m we have

A2j(Ω
m
n ) =

(
m

j

)(
n−m

j

)

.

For all other i we have Ai(Ω
m
n ) = 0.

Proof. For any code words in Ωm
n , we obtain a code word at distance 2j

exactly when j of the m ones are changed to zeros and j of the n−m zeros
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are changed to ones. The number of ways to choose the j ones is
(
m
j

)
and

the number of ways to choose the j zeros is
(
n−m

j

)
. �

Theorem 3.6. a) For n ≤ 4, all Ωm
n codes are proper.

b) For 5 ≤ n ≤ 8, the codes Ω
bn/2c
n are proper.

c) For all other n and m ≤ bn/2c, the codes Ωm
n are bad.

The threshold was defined in (2.3). In particular, θ(Ωm
n ) is the smallest

root in the interval (0, 1/2] of the equation Pud(Ω
m
n , p) = Pud(Ωm

n , 1/2). For

p ≤ θ(C), the bound Pud(Ωm
n , p) ≤ Pud(Ω

m
n , 1/2) is valid.

Theorem 3.7. Let

ψ = ψ(n,m) =
(

(
n
m

)
− 1

2nm(n−m)

)1/2

.

i) For all n and m such that 1 ≤ m < n we have

ψ(n,m) <
( 32

πn5

)1/4

.

ii) For all sufficiently large n and all m such that 1 ≤ m < n we have

ω(n,m) ≤ θ(Ωm
n ) ≤ ω(n,m) + n2ψ(n,m)3

where

ω(n,m) = ψ(n,m) +
(n− 2)

2
ψ(n,m)2.

Corollary 3.2. We have

lim
n→∞

2n/2 θ(Ω1
n) = 1.

Corollary 3.3. If 0 < λ ≤ 1/2, then

lim
n→∞

n5/42n
(
1−H2(λ)

)
/2 θ(Ωλn

n ) =
1

(
2πλ3(1 − λ)3

)1/4
,

where H2(λ) is the (binary) entropy function.

Corollary 3.4. We have

lim
n→∞

n5/4 θ(Ωn/2
n ) =

(32

π

)1/4

.

Let Pue(n,M,w, p) denote the minimum value of Pue(C, p) over all bi-

nary (n,M, 2, w) constant weight codes. A binary (n,M, 2, w) code C is

called optimal (error detecting) for p if Pue(C, p) = Pue(n,M,w, p).
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3.6.2 An upper bound

Let C(n,M,w) be the set consisting of all binary (n,M, 2, w) constant

weight codes. The mean probability of undetected error for the codes in

C(n,M,w) is given by

P̄ue(n,M,w, p) =
1

#C(n,M,w)

∑

C∈C(n,M,w)

Pue(C, p).

Theorem 3.8.

P̄ue(n,M,w, p) =
(M − 1)

(
n
w

)

[
(

n
w

)
−M + 1][

(
n
w

)
−M + 2]

w∑

i=1

(
w

i

)(
n− w

i

)

p2i(1−p)n−2i.

Corollary 3.5.

Pue(n,M,w, p) ≤ (M − 1)
(

n
w

)

[
(

n
w

)
−M + 1][

(
n
w

)
−M + 2]

·
w∑

i=1

(
w

i

)(
n− w

i

)

p2i(1−p)n−2i.

3.6.3 Lower bounds

Theorem 3.9. If C is a binary (n,M, 2, w) constant weight code, then

Pue(C, p) ≥ (M − 1)(1 − p)n
( p

1 − p

) 2w(n−w)M
n(M−1)

.

Theorem 3.10. Let C be a binary (n,M, 2, w) constant weight code, then

Pue(C, p) ≥
M
(

n
w

)

[ w∑

i=1

(
w

i

)(
n− w

i

)

p2i(1 − p)n−2i
]

−
[

1 − M
(

n
w

)

]

(1 − p)n.

There are a couple of lower bounds which are analogous to Theorem

2.44.

Theorem 3.11. Let C be a binary (n,M, 2, w) constant weight code. Then

Pue(C, p) ≥
n∑

l=1

max{0, Fl(n,M,w)}pl(1 − 2p)n−l

where

Fl(n,M,w) = M

min{w,n−l}
∑

t=max{0,w−l}

(
w
t

)2( n−w
n−l−t

)2

(
n−l

t

)(
n
l

) −
(
n

l

)

.
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Theorem 3.12. Let C be a binary (n,M, 2, w) constant weight code such

that (
n
w

)

(
n−t
w−t

) ≤M <

(
n
w

)

(
n−t−1
w−t−1

)

for some t, where 1 ≤ t < w. Then

Pue(C, p) ≥ (1 − p)n−2w
t∑

l=w−t

[

M
(
n−w+l

l

)

(
n
w

) − 1

](
w

l

)

p2l(1 − 2p)n−l.

If D is a t − (v, k, λ) block design, the rows of an incidence matrix for

D form a constant weight code CD of length v, size λ
(v

t)
(k

t)
, and weight k.

Theorem 3.13. Let CD be a binary (v,M, d, k) constant weight code ob-

tained from a t − (v, k, λ) block design such that λ < (n − t)/(w − t) and

d ≥ 2(w−t). Then CD is an optimal constant weight code for all p ∈ [0, 1/2]

and

Pue(C, p) = (1 − p)n−2w
t∑

l=w−t

[

λ
(
n−w+l

l

)

(
n−t
w−t

) − 1

](
w

l

)

p2l(1 − 2p)n−l.

3.7 Comments and references

3.1. Theorems 3.1 and 3.2 are from Kasami, Kløve, and Lin (1983).

3.2. The results are taken from Kløve (1992).

3.3. The results and examples are taken from Kløve and Korzhik (1995).

3.4. The referred standard CRC codes are mainly collected from the inter-

net.

3.5. Lemma 3.5 and Theorem 3.4 are due to Dodunekova, Dodunekov and

Nikolova (2004a) (actually, they gave a more general version of the

lemma).

3.6. Theorem 3.6 was shown by Wang, Yang, and Zhang, see Wang (1987),

Wang (1989), Wang (1992), Wang and Yang (1994), Wang and Zhang

(1995), Yang (1989). A simpler proof was given by Fu, Kløve, and Xia

(2000a).

Fu, Kløve, and Xia (2000a) proved Theorem 3.7 and its corollaries.

Theorems 3.9, 3.10, and 3.11 are due to Fu, Kløve, and Wei (2003).

Theorems 3.12 and 3.13 are due to Xia, Fu, and Ling (2006a).

In addition to the result listed, a number of asymptotic bounds were

given by Fu, Kløve, and Wei (2003) and Xia, Fu, and Ling (2006a).
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Chapter 4

Error detecting codes for asymmetric

and other channels

4.1 Asymmetric channels

Let the alphabet be Zq with the ordering 0 < 1 < 2 · · · < q − 1. A channel

is called asymmetric if any transmitted symbol a is received as b ≤ a. For

example, for q = 2, a 0 is always received correctly while a 1 may be received

as 0 or 1. The binary channel where

π(0|0) = 1, π(1|0) = 0, π(0|1) = p, π(1|1) = 1 − p

is known as the Z-channel.

An asymmetric channel is called complete if π(b|a) > 0 for all b ≤ a.

For general q, the two main complete channels considered are the one

where each error is equally probable and the one where the errors are given

weight proportional to a − b. For both channels π(b|a) = 0 if b > a and

π(0|0) = 1. For a > 0, the first channel is defined by

π(b|a) =

{
1 − p if b = a,

p/a if b < a.

and the second channel is defined by

π(b|a) =

{

1− p if b = a,
a−b

a(a−1)/2p if b < a.

We note that for q = 2, these two channels are the same, namely the

Z-channel. We first give some results for the Z-channel.

4.1.1 The Z-channel

Let x be sent and y. By definition, P (y|x) = 0 if y 6≤ x. If y ≤ x, then

P (y|x) = pdH(x,y)(1 − p)wH(x)−dH(x,y) = pwH(x)−wH(y)(1 − p)wH (y).

153
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Therefore

Pue(C,Zp) =
1

#C

∑

x∈C

∑

y∈C
y<x

pwH(x)−wH(y)(1 − p)wH(y). (4.1)

It is interesting to compare Pue(C,Zp) and Pue(C,BSCp) for some

codes. If y 6< x for all y,x ∈ C, then clearly Pue(C,Zp) = 0, whereas

Pue(C,BSCp) > 0 (if #C ≥ 2 and p ∈ (0, 1)). For other codes, the ratio

Pue(C,Zp)/Pue(C,BSCp) may be large or small, depending on the code

and p.

Example 4.1. As a simple example, consider the [2k − 1, k] simplex code

Sk. This is a linear code where all non-zero code words have Hamming

weight 2k−1. Hence y < x for y,x ∈ Sk if and only if y = 0 and x 6= 0.

Therefore

Pue(Sk, Zp) =
2k − 1

2k
p2k−1

and

Pue(Sk, BSCp) = (2k − 1)p2k−1

(1 − p)2
k−1−1.

Hence

Pue(Sk, Zp)

Pue(Sk, BSCp)
→ 1

2k
when p→ 0,

and

Pue(Sk, Zp)

Pue(Sk, BSCp)
→ ∞ when p→ 1.

Also, for any p < 1 we have

Pue(Sk , Zp)

Pue(Sk, BSCp)
→ ∞ when k → ∞.

A code C is called perfect for error detection on the Z-channel if

Pue(C,Zp) = 0 for all p. By (4.1), C is perfect if and only if y 6< x

for all y,x ∈ C, y 6= x. The largest perfect C of length n is obtained by

taking all vectors of weight
⌊

n
2

⌋
.

A perfect systematic
(
k + dlog2 ke, 2k

)
code can be constructed as fol-

lows:

Ck = {(x|r(x)) | x ∈ Zk
2 }
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where r(x) ∈ Z
dlog2 ke
2 is obtained by first taking the binary expansion of

wH(x) and then taking the binary complement (changing 0 to 1 and 1 to

0). E.g.

C3 = {00011, 00110, 01010, 01101, 10010, 10101, 11001, 11100}.
We note that Ck has 2k code words whereas the non-systematic perfect

code of the same length given above has
(
k + dlog2 ke⌊

k+log2 k
2

⌋

)

≈
√

2k

π
2k

code words.

One general construction of (non-perfect) error detecting codes for the

Z-channel is given in the next theorem.

Theorem 4.1. Let ai be integers for 1 ≤ i ≤ k such that

0 ≤ a1 < a2 < · · · < ak ≤ n.

Let

C = {x ∈ Zn
2 | wH(x) = ai for some i}.

Then

Pue(C,Zp) =
1

∑k
i=1

(
n
ai

)

k∑

i=2

i−1∑

j=1

(
n

ai

)(
ai

aj

)

pai−aj (1 − p)aj .

Proof. There are
(

n
ai

)
vectors x ∈ C of Hamming weight ai. For each of

these there are
(

ai

aj

)
vectors y ∈ C of Hamming weight aj such that y < x.

�

Example 4.2. Let ai = 2i− 1 for i = 1, 2, . . . , k where k = dn/2e, that is,

we take all vectors of odd weight. The corresponding code Co detects all

single asymmetric errors (and many others), and from Theorem 4.1 we get

after simplifications:

Pue(Co, Zp) =
1

2
+

1

2
(1 − p)n −

(

1 − p

2

)n

−
(

1

2
− 1

2n

)

pn.

Another possibility is to let ai = 2i for i = 0, 1, . . . , k where k = bn/2c,
that is, we take all vectors of even weight. For the corresponding code Ce

we get

Pue(Ce, Zp) =
1

2
+

1

2
(1 − p)n −

(

1 − p

2

)n

+

(
1

2
− 1

2n

)

pn.

In particular, #Co = #Ce and Pue(Co, Zp) < Pue(Ce, Zp) for all n > 1,

p 6= 0.
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4.1.2 Codes for the q-ary asymmetric channel

For x = (x0, x1, . . . , xk−1) ∈ Zk
q , let

wq(x) =

k−1∑

i=0

xi, the weight of x,

uq(x) =

k−1∑

i=0

(q − 1 − xi), the coweight of x.

Clearly, wq(x) + uq(x) = k(q − 1).

For non-negative integers a and s, where a < qs, let

〈a〉s = (a0, a1, . . . , as−1) ∈ Zs
q

where

a =

s−1∑

i=0

aiq
i, ai ∈ Zq .

Define

wq(a) = wq(〈a〉s) =

s−1∑

i=0

ai.

For example, if q = 5 and k = 6, then

w5((1, 3, 1, 0, 2, 4)) = 11 and u5((1, 3, 1, 0, 2, 4)) = 13.

Further, 〈33〉4 = (3, 1, 1, 0) since 33 = 3+1 ·5+1 ·52+0 ·53, and w4(33) = 5.

For integers a and n, let [a]n denote the (least non-negative) residue of

a modulo n.

For integers m ≥ 0 and n ≥ 0, let S(m,n) denote the number of arrays

in Zm
q of weight n.

Theorem 4.2. For a complete q-ary asymmetric channel, a maximal per-

fect code of length m is

{

x ∈ Zm
q

∣
∣
∣ wq(x) =

⌊m(q − 1)

2

⌋}

.

The size of this code is S
(

m,
⌊

m(q−1)
2

⌋)

.

Generalized Bose-Lin codes (GBL codes) is a class of systematic codes.

They are determined by four (integral) parameters, q ≥ 2 (symbol alphabet

size), k (number of information symbols), r (number of check symbols), and



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

Error detecting codes for asymmetric and other channels 157

ω where 0 ≤ ω ≤ r. We use the notations ρ = r−ω, σ = S(ω, bω(q−1)/2c),
θ = qρ, and µ = σθ. Finally, let

{bω,0,bω,1, . . . ,bω,σ−1},

the set of vectors in Zω
q of weight

⌊
ω(q−1)

2

⌋

.

A code word is a vector in Zk+r
q . It consists of an information part x

with k information symbols concatenated by a check part c(x) with r check

symbols. Let u = uq(x). The check part, which depends only on [u]µ, will

be determined as follows. Let α = b[u]µ/θc. Then 0 ≤ α < σ and

[u]µ = αθ + [u]θ.

The check part is defined by c(x) = (c1(x)|c2(x)), where

c1(x) = bω,α and c2(x) = 〈[u]θ〉ρ.
As usual, an undetectable error occurs if a code word is sent and the

received array is another code word. We characterize the undetectable er-

rors. Assume that (x|c1(x)|c2(x)) is the sent code word and (y|c1(y)|c2(y))

is the received code word, where y 6= x. This is possible if and only if

y ⊂ x, (4.2)

c1(y) = c1(x) (4.3)

since wq(c1(y)) = wq(c1(x)), and

c2(y) ⊆ c2(x). (4.4)

Suppose that (4.2)–(4.4) are satisfied, and let

u = uq(x) (4.5)

and

jµ− λ = uq(y) − uq(x), (4.6)

where j ≥ 1 and 0 ≤ λ < µ. Note that λ = [uq(x) − uq(y)]µ. Let

[u]µ = αθ + [u]θ and [u− λ]µ = βθ + [u− λ]θ.

Since [u− λ]µ = [u+ (jµ− λ)]µ, we get

c1(x) = bω,α c2(x) = 〈[u]θ〉ρ,
c1(y) = bω,β c2(y) = 〈[u− λ]θ〉ρ.

Hence, (4.3) is satisfied if and only if

β = α, (4.7)
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and (4.4) is satisfied if and only if

〈[u− λ]θ〉ρ ⊆ 〈[u]θ〉ρ. (4.8)

We observe that if λ ≥ θ, then α 6= β, and if [u]θ < λ < θ, then (4.8)

cannot be satisfied. On the other hand, if λ ≤ [u]θ, then (4.7) is satisfied;

further (4.8) is satisfied exactly when 〈λ〉ρ ⊆ 〈[u]θ〉ρ. We also note that

〈λ〉ρ ⊆ 〈[u]θ〉ρ implies that λ ≤ [u]θ. Hence, we have proved the following

result.

Theorem 4.3. The code word (x|c(x)) can be transformed to the code word

(y|c(y) 6= x|c(x)) by transmission over the q-ASC if and only if

y ⊂ x and 〈λ〉ρ ⊆ 〈[uq(x)]θ〉ρ,

where λ = [uq(x) − uq(y)]µ.

We now consider the minimal weight of an undetectable error. From

the proof of Theorem 4.3, we see that the weight of the undetectable error

considered is

wq(x|c(x)) − wq(y|c(y)) = wq(x) − wq(y) + wq(c2(x)) − wq(c2(y))

= wq(x) − wq(y) + wq(〈[u]θ〉ρ) − wq(〈[u− λ)]θ〉ρ)
= jµ− λ+ wq(〈λ〉ρ)

= jµ− λ+ wq(λ).

Suppose that

λ =

ρ−1
∑

i=0

aiq
i, and λ′ =

ρ−1
∑

i=0

a′iq
i,

where ai, a
′
i ∈ F and 〈λ〉ρ ⊆ 〈λ′〉ρ, that is, ai ≤ a′i for all i. Then

(λ′ − wq(λ
′)) − (λ− wq(λ)) =

ρ−1
∑

i=0

(a′i − ai)(q
i − 1) ≥ 0. (4.9)

We note that 〈θ−1〉ρ = (q−1, q−1, . . . , q−1). Hence wq(〈θ−1〉ρ) = (q−1)ρ

and 〈[u]θ〉ρ ⊆ 〈θ − 1〉ρ. By (4.9), if 〈λ〉ρ ⊆ 〈[u]θ〉ρ, then

λ− wq(λ) ≤ [u]θ − wq([u]θ) ≤ θ − 1 − (q − 1)ρ. (4.10)

Therefore, the weight of an uncorrectable error is lower bounded as follows:

jµ− (λ− wq(λ)) ≥ µ− θ + 1 + (q − 1)ρ.
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Consider the uncorrectable errors of minimal weight. We see that we get

equality in (4.9) if and only if a′i = ai for all i ≥ 1. Hence we have equality

in both places in (4.10) if and only if

λ = θ − ε and [u]θ = θ − δ,

where 0 ≤ δ ≤ ε ≤ q − 1. This proves the following theorem

Theorem 4.4. A GBL-code detects all errors of weight up to

(σ − 1)θ + (q − 1)ρ,

and there are undetectable errors of weight

(σ − 1)θ + (q − 1)ρ+ 1.

Undetectable errors of minimal weight occur exactly for code words of

coweight tθ − δ for t ≥ 1 and 0 ≤ δ ≤ q − 1. For such code words, an

error is undetectable if the weight of the error to the information part is

µ− θ − ε+ δ where δ ≤ ε ≤ q − 1 and the last ρ symbols of the check part,

namely (q−1, q−1, . . . , q−1, q−1−δ), are changed to (0, 0, . . . , 0, q−1−ε).

A natural question is: given q and r, which value of ω maximizes

A(q, r, ω) = (σ − 1)θ + (q − 1)ρ.

For q = 2 it was shown by a simple proof in Kløve, Oprisan, and Bose

(2005b) that the maximum is obtained for ω = 4 when r ≥ 5. For q ≥ 3

it seems to be much more complicated to answer the question. Numerical

computations reported in Gancheva and Kløve (2005b) indicate that for

q ≥ 3, the maximum is obtained for ω = 2. The computations show that

A(q, r, 2) > A(q, r, ω) for 3 ≤ q ≤ 7 and ω ≤ 100. One can also show the

following result.

Theorem 4.5. Let q ≥ 3. We have A(q, r, 2) > A(q, r, 1) for r ≥ 3. For

3 ≤ ω ≤ 6 we have A(q, r, ω − 1) > A(q, r, ω) for r ≥ ω.

This shows that for ω ≤ 6, the maximum is obtained for ω = 2 and that for

ω ≥ 2, the value of A(q, r, ω) decreases with ω. Whether this is true also

for ω > 6 is an open question.

4.1.3 Diversity combining on the Z-channel

For noisy asymmetric channels repeated retransmissions can increase the

reliability, at the cost of decreasing the throughput efficiency of the sys-

tem. One such method is called diversity combining. The scheme works
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as follows. Let a code word x = (x1, x2, . . . , xn) be transmitted re-

peatedly. Let the received word in the rth transmission be denoted by

xr = (xr,1, xr,2, . . . , xr,n). At the receiving end we store a vector z. We

denote the value of z after the rth transmission by zr = (zr,1, zr,2, . . . , zr,n).

It is computed by

z0,i = 0,

zr,i = max(zr−1,i, xr,i)

for 1 ≤ i ≤ n. We note that

zr−1,i ≤ zr,i ≤ xi.

When the combined word z becomes a code word, this is passed on, and

a new code word is transmitted. If the passed-on code word is different from

the one sent, then we have an undetected error. We will further assume

that there is a limit k on the number of transmissions of a code word, that

is, if the combined word is not a code word after k transmissions, it is

discarded. A special case of the protocol is a protocol without a limit on

the number of transmissions (that is, k = ∞).

The probability that the combined word is passed on with an undetected

error will depend on the channel, the code word transmitted x, the set

X = Xx of code words y such that y ⊂ x (that is, yi ≤ xi for all i and

x 6= y), and the maximum number of transmissions k. We will here discuss

in some detail the situation when the channel is the Z-channel (binary

asymmetric channel) with transition probability p, and we write Pk(x, X ; p)

for the probability of passing on a wrong code word (an undetected error).

We assume that x 6= 0. Note that

Pk(x, X ; 0) = 0,

Pk(x, X ; 1) = 0, if 0 ∈ X,

Pk(x, X ; 1) = 1, if 0 6∈ X.

Therefore, from now on we will assume that 0 < p < 1. If we introduce more

code words into X , Pk will increase, that is, if X ⊂ Y , then Pk(x, X ; p) <

Pk(x, Y ; p). One extreme case is when all y ⊂ x are code words. Then

P = 1−(1−p)wH(x). The other extreme is whenX is empty: Pk(x, ∅; p) = 0.

The case when X contains a single code word

We first consider the case when X contains exactly one code word, that

is, there is exactly one code word y such that y ⊂ x. Let w = wH(x),
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u = wH (y) and d = w − u. Since Pk(x, {y}; p) only depends on w, u, p,

and k, we write Pk(w, u; p).

Suppose that the combined word becomes y after exactly r transmis-

sions. The d positions not in the support of y must be in error for all r

transmissions and the probability of this happening is pdr. The u positions

in the support of y must become all 1 for the first time after exactly r

transmissions. Consider one position. The probability that the 1 in this

position is transformed to a zero in all the r transmissions is pr. Hence

the probability that the bit in this position in zr is a one is 1 − pr. Hence

the probability that all the u positions in the support of y are one after r

transmissions is (1 − pr)u. The probability that this happens for the first

time after exactly r transmissions is therefore (1−pr)u−(1−pr−1)u. Hence,

the probability that the zr = y after exactly r transmissions is

pdr[(1 − pr)u − (1 − pr−1)u]. (4.11)

Summing over all r we get

Pk(w, u; p) =

k∑

r=1

pdr[(1 − pr)u − (1 − pr−1)u].

In particular (if k ≥ d),

Pk(w, u; p) = pd(1 − p)u +O(p2d).

We can rewrite the expression for Pk(w, u; p):

Pk(w, u; p) =

k∑

r=1

pdr
[ u∑

j=0

(
u

j

)

(−1)jpjr −
u∑

j=0

(
u

j

)

(−1)jpj(r−1)
]

=

u∑

j=0

(
u

j

)

(−1)j−1(1 − pj)pd
k∑

r=1

p(d+j)(r−1)

=

u∑

j=0

(
u

j

)

(−1)j−1(1 − pj)pd 1 − pk(d+j)

1 − pd+j
.

The values of Pk(x, X ; p) when the code words in X are unordered

We say that the code words of X are unordered if y 6⊂ y′ and for all

y,y′ ∈ X , y 6= y′ ∈ X . We observe that the event that the combined word

becomes x after having been y and the event that it becomes x after having

been y′, where y 6= y′, are mutually exclusive. Hence

Pk(x, X ; p) =
∑

y∈X

Pk(x, {y}; p).
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In the special case where all the code words in X have the same weight,

u, (and x has weight w) we get

Pk(x, X ; p) = |X |
u∑

j=0

(
u

j

)

(−1)j−1(1 − pj)pd 1 − pk(d+j)

1 − pd+j
.

Bounds on Pk(x, X ; p) when some code words in X cover others

In the general case when the code words in X are not unordered, to de-

termine Pk(x, X ; p) becomes more complex and may even be unfeasible.

Therefore, it is useful to get some bounds. Let T be the smallest value of

wH(x) − wH(v) over all code words v and y such that v ⊂ y ⊂ x, (in

particular, T ≥ 2d where d is the minimum distance of the code). Define

the set Y by

Y = {y ∈ X | wH(y) > wH (x) − T}.
Then the code words of Y are independent. Hence Pk(x, Y ; p) can be

computed as explained above. Further, if pT is small, then Pk(x, Y ; p) is

a good approximation for Pk(x, X ; p). We will make this last claim more

precise. On the one hand we know that Pk(x, X ; p) ≥ Pk(x, Y ; p). On the

other hand, if the combined word becomes a code word not in Y , then after

the first transmission, the combined word must have weight w − T or less.

The probability that the combined word is some vector of weight w− T or

less (not necessary a code word) after the first transmission is

w−T∑

j=0

(
w

j

)

pw−j(1 − p)j ≤ pT (1 − p)w−T
w−T∑

j=0

(
w

j

)

< pT (1 − p)w−T 2w.

Therefore

Pk(x, Y ; p) ≤ Pk(x, X ; p) < Pk(x, Y ; p) + 2wpT (1 − p)w−T .

For the whole code C we get

Pk(C; p) =
1

|C|
∑

x∈C

Pk(x, Xx; p).

4.2 Coding for a symmetric channel with unknown charac-

teristic

If we have to transmit over a symmetric channel with unknown charac-

teristics, the best strategy is to do a coding which makes the number of
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undetectable errors as small as possible for all possible error patterns. To

be more precise, let us first consider a channel transmitting binary symbols.

Let C be an (n,M ; 2) code. If x ∈ C is transmitted and y ∈ C is received,

then e = y + x is the error pattern. The error is undetected if (and only

if) y = x + e ∈ C.

For each error pattern e ∈ F n
2 , let

Q(e) = #{x ∈ C | x + e ∈ C}, (4.12)

that is, Q(e) is the number of code words in C for which e will be an

undetectable error. The idea is to choose C such that

Q(C) = max{Q(e) | e ∈ F n
2 \ {0}}

is as small as possible.

For channels with q elements, where q is a prime power, we consider

the same approach. We assume that Fq = GF (q) and when x ∈ GF (q)n is

submitted and we have an error pattern e ∈ GF (q)n, then x + e ∈ GF (q)n

is received.

4.2.1 Bounds

For a code C ⊆ GF (q)n and an error pattern e ∈ GF (q)n, let

Q(e) = #{x ∈ C | x + e ∈ C}, (4.13)

and

Q(C) = max{Q(e) | e ∈ GF (q)n \ 0}. (4.14)

Theorem 4.6. If C is an (n,M ; q) code and M ≥ 2, then Q(C) ≥ 1.

Proof. By assumption, C has two distinct code words, x and y, say. Let

e = y − x. Then Q(e) ≥ 1. Hence Q(C) ≥ 1. �

Theorem 4.7. If C is an (n,M ; q) code, where q is even, and M ≥ 2, then

Q(C) ≥ 2.

Proof. By assumption, C has two distinct code words, x and y, say. Let

e = y − x. Then x − y = e. Hence Q(e) ≥ 2 and so Q(C) ≥ 2. �

Theorem 4.8. If C is an (n,M ; q) code, then M(M − 1) ≤ (qn − 1)Q(C).

Proof. The number of pairs (x,y) of distinct elements in C is M(M−1).

For each of the possible qn − 1 error patterns e ∈ GF (q)n \ {0}, there are

at most Q(C) pairs (x,y) ∈ C2 such that y − x = e. Hence M(M − 1) ≤
(qn − 1)Q(C). �
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We will first consider systematic codes C for which Q(C) = 1 and q is

odd. Since

q2k−1 < qk(qk − 1) < q2k − 1

we get the following corollary.

Corollary 4.1. If C is a systematic (n, qk; q) code and Q(C) = 1, then

n ≥ 2k.

4.2.2 Constructions

Construction for q odd

Let q be an odd prime power. There is a natural linear bijection F from

GF (q)k to GF (qk): let α ∈ GF (qk) be a primitive root (that is, αi 6= 1 for

1 ≤ i ≤ qk − 2 and αqk−1 = 1) and define F by

F : (x0, x1, . . . , xk−1) 7→ x = x0 + x1α+ x2α
2 + · · · + αk−1xk−1.

Note that F (x0, x1, . . . , xk−1) = 0 if and only if (x0, x1, . . . , xk−1) =

(0, 0, . . . , 0). Define the (2k, qk; q) code by

C = {(x0, x1, . . . , xk−1, y0, y1, . . . , yk−1) | (x0, x1, . . . , xk−1) ∈ GF (q)k}
where (y0, y1, . . . , yk−1) is defined by

F (y0, y1, . . . , yk−1) = F (x0, x1, . . . , xk−1)
2.

Mapping C into GF (qk)2 by F , let the image be Ĉ, that is

Ĉ = {(x, x2) | x ∈ GF (qk)}.
This is clearly a systematic (2, qk; qk) code over GF (qk). An error pattern

(e0, e1, . . . , ek−1, f0, f1, . . . , fk−1) maps into (e, f) ∈ GF (qk)2, where

e = F (e0, e1, . . . , ek−1) and f = F (f0, f1, . . . , fk−1),

and

(e0, e1, . . . , ek−1, f0, f1, . . . , fk−1) 6= (0, 0, . . . , 0)

if and only if (e, f) 6= (0, 0).

Let (e, f) 6= (0, 0) be an error pattern and suppose (x, x2) + (e, f) ∈ Ĉ,

that is

(x+ e)2 = x2 + f.

Since (x+ e)2 = x2 + 2xe+ e2, this implies that

2xe+ e2 = f. (4.15)

If e = 0, (4.15) implies that f = 0, that is (e, f) = (0, 0); however this is not

the case for an error pattern. Hence e 6= 0 and so x = (2e)−1(f − e2), that

is, x is uniquely determined and so Q((e, f)) = 1. Hence Q(C) = Q(Ĉ) = 1.
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Construction for q even

Construction 1 can be modified to give a systematic (2k, qk; q) code C with

Q(C) = 2. We give the details only for those parts at the construction and

proof that differs.

Let F be the linear bijection from GF (q)k to GF (qk) defined in Con-

struction 1. Define the (2k, qk; q) code C by

Ĉ = {(x, x3) | x ∈ GF (qk)}.
As for Construction 1, an error pattern (e0, e1, . . . , ek−1, f0, f1, . . . , fk−1)

maps into (e, f) where

(e0, e1, . . . , ek−1, f0, f1, . . . , fk−1) 6= (0, 0, . . . , 0)

if and only if (e, f) 6= (0, 0).

Let (e, f) 6= (0, 0) be an error pattern and suppose (x, x3) + (e, f) ∈ Ĉ,

that is

(x+ e)3 = x3 + f.

Since (x+ e)3 = x3 + x2e+ xe2 + e3, this implies that

x2e+ xe2 + e3 = f. (4.16)

If e = 0, (4.16) implies that f = 0, that is (e, f) = (0, 0); however this is not

the case for an error pattern. Hence e 6= 0. The equation (4.16) therefore

has at most two solutions for x. HenceQ((e, f)) ≤ 2 andQ(C) = Q(Ĉ) = 2.

4.3 Codes for detection of substitution errors and transpo-

sitions

A transposition occurs when two neighbouring elements change places. For

example, acb is obtained from abc by transposition of the two last elements.

Transpositions are a common type of error in data that is handled manually.

Therefore, there has been introduced many codes to detect substitution

errors and/or transpositions, in particular for digital (base 10) data.

4.3.1 ST codes

An ST (substitution - transposition) code is a code that can detect a single

substitution error or transposition error. We first give a simple upper bound

on the size of ST codes.

Theorem 4.9. If C is an (n,M ; q) ST code, then M ≤ qn−1.
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Proof. If two vectors of length n are identical, except in the last position,

then one is obtained from the other by a single substitution. Hence at most

one of them can belong to C. Therefore, the code words are determined by

the first n− 1 elements and therefore the code contains at most qn−1 code

words. �

It turns out that for all q > 2 and all n there exist (n, qn−1; q) ST codes.

We describe some constructions of ST codes for various types of q.

Construction of codes over GF (q) where q > 2

If q is a prime power, we can consider an [n, n− 1; q] code C. Let the dual

code be generated by (w1, w2, . . . , wn), that is

C =
{

(x1, x2, . . . xn) ∈ GF (q)n |
n−1∑

i=1

wixi = 0
}

. (4.17)

The code can detect single substitution errors if all

wi 6= 0 (4.18)

(that is, d(C) ≥ 2). We see that if xi is changed to x′i, then
∑n−1

i=1 wixi is

changed by

−wixi + wix
′
i = wi(xi − x′i) 6= 0.

Similarly, if xi and xi+1 are transposed, then the sum is changed by

−wixi − wi+1xi+1 + wixi+1 + wi+1xi = (wi − wi+1)(xi+1 − xi) 6= 0

if xi 6= xi+1 and

wi 6= wi+1. (4.19)

If q > 2, we can find wi that satisfy conditions (4.18) and (4.19), for example

wi = 1 for even i and wi = a for odd i, where a 6∈ {0, 1}.

Construction of codes over Zq where q is odd

If q is an odd integer, we can make a similar construction with elements

from Zp. We define

C =
{

(x1, x2, . . . xn) |
n∑

i=1

wixi ≡ 0 (mod q)
}

where now

gcd(wi, q) = 1 and gcd(wi+1 − wi, q) = 1

for all i. The proof that this gives an ST code is similar. A possible choice

for the wi is wi = 1 for even i and wi = 2 for odd i.
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Product construction

Let C1 be an (n, qn−1
1 ; q1) ST code over Fq1 and C2 an (n, qn−1

2 ; q2) ST code

over Fq2 . Let q = q1q2 and

Fq = Fq1 × Fq2 = {(a, b) | a ∈ Fq1 and b ∈ Fq2}.

Define

C = {((a1, b1), (a2, b2), . . . , (an, bn)) | a ∈ C1,b ∈ C2}.

Then C is an ST code over Fq . To check this, we first note that if (a′i, b
′
i) 6=

(ai, bi), then a′i 6= ai or b′i 6= bi (or both). Hence a single substitution will

change a code word to a non-code word. Similarly, if (ai, bi) 6= (ai+1, bi+1),

then ai 6= ai+1 or bi 6= bi+1 or both. Hence, a transposition will change a

code word to a non-code word.

Any integer q can be written as 2mr where r is odd. If m ≥ 2, Con-

struction 1 gives an (n, 2mn−1; 2m) ST code and Construction 2 gives an

(n, rn−1; r)ST code. Combining the two, using Construction 3, we get an

(n, qn−1; q) code. It remains to consider q of the form 2r, where r is odd.

This case is more complicated.

Construction of codes over Zq for q ≡ 2 (mod 4)

Let q = 2r, where r > 1 is odd. Let the alphabet be Zq . For x =

(x1, x2, . . . , xn) ∈ Zn
q , we define some auxiliary functions:

ne = ne(x) is the number of even elements in x,

no = no(x) is the number of odd elements in x,

Se(x) =
∑ne

i=1(−1)iei where e1, e2, . . . , ene are the even elements of x,

So(x) =
∑no

i=1(−1)ioi where o1, o2, . . . , ono are the odd elements of x,

Kn(x1, x2, . . . , xj) are the number of i ≤ j

such that xi is even and n− i is even,

S(x) = (−1)nSe(x) + So(x) + 2Kn(x).
In particular, we see that

Kn(x1, x2, . . . , xn−1) = Kn(x1, x2, . . . , xn). (4.20)

Let

C = {x ∈ Zn
q | S(x) ≡ 0 (mod q)}.

We will show that C is an ST code of size qn−1. We break the proof up

into a couple of lemmas.
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Lemma 4.1. For c = (c1, c2, . . . cn−1), define cn by

−cn ≡ (−1)nSe(c) + So(c) + 2Kn(c) (mod q).

Then

(c|cn) ∈ C.

Proof. Let x = (c|cn). First we note that Se(c) is even and So(c) ≡ no(c)

(mod 2). Hence cn ≡ no(c) (mod 2) and so no(x) is even. This also implies

that ne(x) ≡ n (mod 2). If no(c) is odd, then we get

So(x) = So(c) + (−1)no(x)cn = −(−1)nSe(c) − 2Kn(c),

Se(x) = Se(c).

Combining these and (4.20), we see that x ∈ C.

If no(c) is even, we similarly get

Se(x) = Se(c) + (−1)ne(x)cn = −So(c) − 2Kn(c),

So(x) = So(c),

and we can conclude that x ∈ C also in this case. �

Lemma 4.2. The code

C = {x ∈ Zn
q | S(x) ≡ 0 (mod q)}

is an ST code.

Proof. First we note that

no(x) ≡ So(x) ≡ 0 (mod 2)

for all code words. We consider the various types of single errors that can

occur.

• If a substitution error change the parity of a symbol, then no(c) is

changed by one and becomes odd.

• If a substitution error change an even element, say ej to another even

element e′j , then Se(x) is changed to Se(x)−(−1)j(ej−e′j) whereas So(x)

andKn(x) are unchanged. Hence S(x) is changed by (−1)j+1(ej−e′j) 6≡ 0

(mod q).

• If a substitution error change an odd element to another odd element,

the situation is similar.

• If two elements of opposite partity are transposed, then Kn(x) is changed

by one, whereas Se(x) and So(x) are unchanged. Hence S(x) is changed

by ±1 6≡ 0 (mod q).
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• If two even elements, ej and ej+1 are transposed, then Se(x) is changed

by

−(−1)j(ej − ej+1) + (−1)j(ej+1 − ej) = 2(−1)j(ej+1 − ej)

whereas So(x) and Kn(x) are unchanged. Hence S(x) is changed by

2(−1)j(ej+1 − ej). Since 0 < |ej+1 − ej | < q = 2r and ej+1 − ej is even,

we can conclude that ej+1−ej 6≡ 0 (mod r) and so 2(−1)j(ej+1−ej) 6≡ 0

(mod q).

• If two odd elements are transposed, the situation is similar.
�

Since C is an ST code, its size is at most qn−q by Theorem 4.9. By

Lemma 4.1, the size is exactly qn−1.

Verhoeff’s code

Another code construction for the case when q = 2r, r > 1 and odd, is

based on so-called dihedral groups Dr. This was first shown by Verhoeff

for q = 10. We describe this code, but omit the proof that it is an ST code.

One can map the elements of D5 onto Z10. The ”addition” table of i⊕j
is given in Table 4.1. An entry in the table gives i⊕ j where i is given in

the left column and j in the top row. In particular, i ⊕ 0 = 0 ⊕ i = i for

all i, that is, 0 is the unit element of the group. The operation ⊕ is not

commutative. For example 1⊕5 = 6 and 5⊕1 = 9. We see that if i⊕j = 0,

then j ⊕ i = 0, that is, j is the inverse of i in the group.

Table 4.1 Addition table for ⊕.

0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 6 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8
5 9 8 7 6 0 4 3 2 1
6 5 9 8 7 1 0 4 3 2
7 6 5 9 8 2 1 0 4 3
8 7 6 5 9 3 2 1 0 4
9 8 7 6 5 4 3 2 1 0

For the construction, we also do a substitution in each position using

Table 4.2 of functions fi : Z10 → Z10 where i are given in the left column

and x in the top row. For i ≥ 8, fi = fi−8. Hence, for example, f26 = f2.

The code is defined by
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Table 4.2 Functions fi for Verhoeff’s construc-
tion.

fi(x) 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 5 7 6 2 8 3 0 9 4
2 5 8 0 3 7 9 6 1 4 2
3 8 9 1 6 0 4 3 5 2 7
4 9 4 5 3 1 2 6 8 7 0
5 4 2 8 6 5 7 3 9 0 1
6 2 7 9 3 8 0 6 4 1 5
7 7 0 4 6 9 1 3 2 5 8

{(x1, x2, . . . , xn) | f1(x1) ⊕ f2(x2) ⊕ · · · ⊕ fn(xn) = 0}.
Analysis has shown that this code detects all single substitutions and all

single transpositions. Also more than 95% of the twin errors are detected.

Construction of a binary code

It turns out that the maximal size of a binary ST code of length n is
⌈

2n

3

⌉

.

We will not give the proof of this fact here, but give a code of this size. By

Construction 2, the ternary code

{

(x1, x2, . . . , xn) ∈ Zn
3 |

n∑

i=1

(−1)ixi ≡ 0 (mod 3)
}

is an ST code. A binary subcode is the code

{

(x1, x2, . . . , xn) ∈ Zn
2 |

n∑

i=1

(−1)ixi ≡ 0 (mod 3)
}

.

As a subcode, this is also an ST code, and it can be shown that it has

maximal size, that is
⌈

2n

3

⌉

.

4.3.2 ISBN

A number of modifications of the constructions given in the previous sec-

tion are used in practical systems. A typical example is the International

Standard Book Number - ISBN. The traditional ISBN code is a ten-digit

number. The first nine digits x1x2 . . . x9 codes information about the coun-

try, publisher and the individual book. The last digit x10 is a check digit

determined with check vector (10, 9, . . . , 1) modulo 11. This code can de-

tect any single substitution or transposition error. Note, however, that
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w5 + w6 = 6 + 5 ≡ 0 (mod 11). Hence twin errors in positions 5 and 6 are

never detected. A (digital) information vector (x1, x2, . . . , x9) ∈ Z9
10 deter-

mines a check symbol x10 ∈ Z11. If x10 = 10, the check symbol is written

X . Some countries have chosen to avoid the symbol X by not using the

information vectors that have X as check symbol.

From January 1, 2007, a new ISBN code with 13 digits has been in-

troduced. The first three digits y1y2y3 are 978 (later 979 will also be

used), the next nine digits y4y5 . . . y12 are now the information, and the

last digit y13 is the check digit. The code is determined by the check vector

(1, 3, 1, 3, . . . , 1, 3, 1) modulo 10. This choice of check digit is the same as

for the bar code EAN described below. In fact, most books published in

recent years contains both the ten digit ISBN number and a bar code with

the new 13 digit ISBN. If you look at one, you will notice that the check

digits are (usually) not the same. Since gcd(1, 10) = gcd(3, 10) = 1, this

code can detect all single substitution errors. However, transposition of xj

and xj+1 will not be detected if xj+1 ≡ xj + 5 (mod 10).

4.3.3 IBM code

The IBM code is also known as the Luhn code after its inventor. It is

usually presented as a code over Z10, but here we consider the more general

alphabet of size q = 2r where r > 1 is odd. We gave two constructions for

this alphabet size in the previous section. The IBM code is simpler, but it

cannot detect all transpositions.

For a sequence (x1, x2, . . . , xn−1) a check symbol xn is chosen such that
n∑

i=1

yi ≡ 0 (mod q)

where
yi = xi for i = n, n− 2, n− 4, . . . ,

yi = 2xi for i = n− 1, n− 3, n− 5, . . . and 0 ≤ xi ≤ r − 1,

yi = 2xi + 1 for i = n− 1, n− 3, n− 5, . . . and r ≤ xi ≥ q − 1.

Note that yi runs through Zq when xi does. Hence, any single substitution

error can be detected. Consider a transposition of xi and xi+1 where n− i

is even. Then the sum
∑n

i=1 yi is changed by

−(xi + 2xi+1) + (xi+1 + 2xi) = xi − xi+1 if xi < r and xi+1 < r,

−(xi + 2xi+1 + 1) + (xi+1 + 2xi) = xi − xi+1 − 1 if xi < r and xi+1 ≥ r,

−(xi + 2xi+1) + (xi+1 + 2xi + 1) = xi − xi+1 + 1 if xi ≥ r and xi+1 < r,

−(xi + 2xi+1 + 1) + (xi+1 + 2xi + 1) = xi − xi+1 if xi ≥ r and xi+1 ≥ r.
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We see that the change is not congruent zero modulo q, except in two cases,

namely (xi, xi+1) = (0, q − 1) and (xi, xi+1) = (q − 1, 0). Hence, the code

detects all transpositions, except transpositions of 0 and q − 1.

4.3.4 Digital codes with two check digits

In some applications there are other types of errors in addition to ST errors

that are relatively frequent and therefore we want codes to detect such

errors.

We give one example modeled the Norwegian personal number

codes. In Norway each person is assigned a unique 11 digit number

p1p2p3p4p5p6p7p8p9p10p11 where p1p2p3p4p5p6 is the date of birth in the

form ddmmyy, p7p8p9 is the persons serial number and p10p11 are check

digits. In addition to simple substitutions, twin errors, and transposi-

tions, common types of errors are interchanging date and month (i.e.

p1p2 ↔ p3p4) and interchanging date and year (p1p2 ↔ p5p6, that is,

ddmmyy ↔ yymmdd). Also, interchanging month and year happens. The

check digits are chosen using a weighted sum modulo 11, discarding serial

numbers which produce 10 as value for one or both of the check digits. How

may the weights be chosen? If we choose the weights
(

10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1

)

(4.21)

we know that all single substitutions, twin errors, and transpositions are

detected. However, if p1 + p2 ≡ p3 + p4 (mod 11) interchanging date and

month will not be detected. We modify (4.21) as follows: Suppose that we

multiply the first column of (4.21) by s and the third column by t to get
(

10s 9 8t 7 6 5 4 3 2 1 0

s 1 t 1 1 1 1 1 1 1 1

)

As long as both s and t are non-zero modulo 11, we can still detect all single

substitutions, twin errors, and transpositions (from one or the other of the

check digits). When p1p2 and p3p4 are interchanged, the sum defining the

first check digit is changed by

−(10sp1 + 9p2 + 8tp3 + 7p4) + (10sp3 + 9p4 + 8tp1 + 7p2)

= (10s− 8t)(p3 − p1) + 2(p4 − p2). (4.22)

Similarly, the sum defining the second check digit is changed by

= (s− t)(p3 − p1). (4.23)
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We want at least one of these to be non-zero (modulo 11) if p1p2 6= p3p4.

This is guaranteed to be the case if s 6≡ t (mod 11). In this case, the sum

defining the last check digit is non-zero unless p1 = p3. On the other hand,

if p1 = p3, then p2 6= p4 and the change in the first sum is non-zero.

Similarly, if t 6≡ 1 (mod 11) we are guaranteed to detect any transpo-

sition of month and year, and if s 6≡ 1 (mod 11) any transposition of date

and year. For example, s = 3 and t = 2 gives the check matrix

(
8 9 5 7 6 5 4 3 2 1 0

3 1 2 1 1 1 1 1 1 1 1

)

of a code which can detect all single substitution errors, twin errors, trans-

positions, or the interchange of any two of the date, month, or year.

The weights actually used in the Norwegian system are different, namely

(
3 7 6 1 8 9 4 5 2 1 0

5 4 3 2 7 6 5 4 3 2 1

)

4.3.5 Barcodes

There are a number of variants of barcodes. They usually have error detec-

tion on two levels, both in the coding of the number itself with a check digit

and in the coding of the individual digits as a sequence of bars. As an illus-

tration, we consider the important European Article Numbering EAN-13.

The check digits are the same as for the new ISBN, that is, the weights are

(1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1) modulo 10. We denote the 13 digits number

by (x1, x2, x3, . . . , x13).

Table 4.3 Symbol encoding for
barcodes

left A left B right

0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100
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Each digit, except the first x1, are encoded into seven bars (black or

white) of the same width. In this presentation, we represent the bars by

1 (black) and 0 (white). The total barcode starts with lead sequence 101,

then barcodes for the six digits x2, x3, x4, x5, x6, x7 in the left part (that is

42 bars) follows, then a separator 01010, then the barcodes for the six digits

x8, x9, x10, x11, x12, x13 in the right part, and finally a trailer sequence 101.

The bars for the lead, the separator, and the trailer are longer than the

others.

The seven bars encoding a digit contains two runs of zeros and two runs

of ones. The codes for the digits in the left part all starts with 0 and ends

with 1. For the digits in the right part, the codes starts with 1 and ends

with 0. The encoding is done using Table 4.3.

For the six digits in the right part, the codes are listed under the heading

”right”. For the six digits in the left part, the encoding is done either with

the code listed under ”left A” or the one listed under ”left B”. The choice

between the two is determined by x1, using Table 4.4.

Table 4.4 Choice of A or B.

x1 0 1 2 3 4 5 6 7 8 9

x2 A A A A A A A A A A
x3 A A A A B B B B B B
x4 A B B B A B B A A B
x5 A A B B A A B B B A
x6 A B A B B A A A B B
x7 A B B A B B A B A A

We illustrate with one example.

Example 4.3. Suppose that

x1x2 . . . x12 = 978981270586.

The check digit x13 is determined by

x13 ≡ −{9+3·7+8+3·9+8+3·1+2+3·7+0+3·5+8+3·6}= −140 ≡ 0 (mod 10).

The barcode for 9789812705860 is given in Table 4.5 over two lines and

where the encoding is marked with A, B, and R (right).
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Table 4.5 Barcode example.

7 (A) 8 (B) 9 (B) 8 (A) 1 (B) 2 (A)
101 0111011 0001001 0010111 0110111 0110011 0010011 01010

7 (R) 0 (R) 5 (R) 8 (R) 6 (R) 0 (R)
1000100 1110010 1001110 1001000 1010000 1110010 101

4.4 Error detection for runlength-limited codes

For this section we find it convenient to introduce a different notation for

binary sequences. First, 0a denotes a sequence of a zeros. Any binary

sequence of weight w, say, can then be represented as

0b010b110b11 · · · 0bw−110bw . (4.24)

The binary sequence (4.24) is said to be a (d, k) constrained sequence if

b0 ≥ 0, bw ≥ 0, and d ≤ bi ≤ k for 1 ≤ i ≤ w − 1

where 0 ≤ d ≤ k ≤ ∞ (k = ∞ means that bi may be arbitrarily large). For

example,

021021041071031 = 00100100001000000010001

is a (2, 7) constrained sequence. Let Rn,d,k denote the set of all (d, k)

constrained sequences of length n. A (d, k) run-length limited code of length

n is some subset of Rn,d,k. Both the set of even weight code words in Rn,d,k

and the set of odd weight code words in Rn,d,k are codes that clearly can

detect single bit errors, and the larger of the two has size at least 1
2#Rn,d,k.

Run-length limited codes have their main application in magnetic

recording. One type of errors occurring are substitution errors. Another

type of errors which is common in this context are shifts, that is, a one

is moved one place to the left or to the right. In the terminology of the

previous section, a shift is the same as a transposition.

Construction of a non-systematic code

The set Rn,d,k can be partitioned into three subcodes that can detect any

single bit-error or shift. Hence there exists such a code of size at least
1
3#Rn,d,k. The partition is as follows.

For a sequence c represented as (4.24), let βi be the parity of bi, that is

βi ≡ bi (mod 2) and βi ∈ {0, 1}. Further, define a sequence

s−1 = 0, s0, s1, . . . sw
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of numbers from {0, 1, 2} by

si ≡ ((2 − βi)si−1 + βi) (mod 3) for 0 ≤ i ≤ w. (4.25)

This is called the check sequence of c. Note that 2−βi 6≡ 0 (mod 3). Hence,

if s′i−1 6≡ si−1 (mod 3), and s′i ≡ ((2 − βi)si−1 + βi) (mod 3), then s′i 6≡ si

(mod 3). The error check value of the sequence is defined by s(c) = sw.

The couple of examples in Table 4.6 illustrate this. We see that s(c1) = 1

and s(c2) = 0.

Table 4.6 Examples of check values.

c1 = 0210103102 b0 = 2, b1 = 1, b2 = 3, b3 = 2,
β0 = 0, β1 = 1, β2 = 1, β3 = 0,
s0 = 0, s1 = 1, s2 = 2, s3 = 1,

c2 = 103101031 b0 = 0, b1 = 3, b2 = 1, b3 = 3, b4 = 0,
β0 = 0, β1 = 1, β2 = 1, β3 = 1, β4 = 0,
s0 = 0, s1 = 1, s2 = 2, s3 = 0, s4 = 0.

Now, suppose j ≥ 1. The jth run of zeros is preceded by a 1. Let

the sequence obtained by changing this 1 into 0, be denoted by c′. This

sequence has one run of zeros less than c since the (j − 1)th and jth runs

now have been combined into one, and its parity is γ ≡ (βj−1 + 1 + βj)

(mod 2). Let s′0, s
′
1, . . . , s

′
w−1 be the check of c′. Then

s′i = si for i ≤ j − 2,

s′j−1 ≡ ((2 − γ)sj−2 + γ) (mod 3),

s′i−1 ≡ ((2 − βi)s
′
i−2 + βi) (mod 3) for j ≤ i ≤ w.

By (4.25)

sj ≡ ((2 − βj)((2 − βj−1)sj−2 + βj−1) + βj) (mod 3).

The possible values of sj and s′j−1 are given in Table 4.7.

Table 4.7 Possible values of sj and s′j−1.

βj βj−1 γ sj ≡ s′j−1 ≡ (sj − s′j−1) (mod 3)

0 0 1 sj−2 sj−2 + 1 2
0 1 0 2sj−2 + 2 2sj−2 2
1 0 0 2sj−2 + 1 2sj−2 1
1 1 1 sj−2 + 2 sj−2 + 1 1
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From Table 4.7 we see that

sj − s′j−1 ≡ 2 − βj 6≡ 0 (mod 3). (4.26)

Since 2 − βi 6≡ 0 (mod 3) for all i, induction shows that si 6= s′i−1 for

i = j, j + 1, . . . , w. Hence, s(c) 6= s(c′).
Changing a 0 to a 1 is the opposite operation. Hence this will also

change the check value.

Finally, consider shifts. Let c′′ denote the sequence obtained by shifting

the 1 preceding the jth run of zeros one step to the right. Then b′′j−1 =

bj−1 + 1 and b′′j = bj − 1. In particular, β′′
j = 1 − βj . If we remove this 1

from c′′ we again obtain c′. Hence, by (4.26),

s′′j − s′j−1 ≡ 2 − (1 − βj) = βj + 1.

Combining this with (4.26), we get

s′′j − sj ≡ 1 − 2βj 6≡ 0 (mod 3).

Again, induction shows that s(c′′) 6= s(c).

This shows that the set of all (d, k) constrained sequences of length n

with a fixed check value is code that can detect any single bit-error or shift.

Since we have three possible check values, this defines a partition of Rn,d,k

into three such codes.

Construction of a systematic code

Let c be a (d, k) constrained sequence. We first split this into parts xi of

length n, say, that is

c = x1x2x3 · · · .

We want to find sequences yi for i = 1, 2, 3, . . . such that

• The concatenated sequence xiyi has check value zero for all i.

• The concatenated sequence x1y1x2y2x3y3 · · · is (d, k) constrained.

Consider xi. Let u the length of the last run of zeros in xi and v the

length of the first run of zeros in xi+1, that is

xi = · · · 10u and xi+1 = 0v1 · · · .

Then

u ≥ 0, v ≥ 0, d ≤ u+ v ≤ k.
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We first consider the simpler case k = ∞. It can be shown that yi has to

be of length at least d+2. We will describe how one can choose yi of length

d+ 2. If u ≤ d, we present three candidates for yi, namely

z1 = 0d−u10u+1, z2 = 0d−u+110u, z3 = 0d+2.

First we observe that all of them will make the concatenated sequence

satisfy the (d,∞) constraint. We further observe that z2 is obtained from

z1 by a right shift of the 1, and z3 is obtained from z1 by changing the 1

to 0. From the analysis of the non-systematic code above, this means that

the three sequences xiz1, xiz2, and xiz3 have distinct check values. Hence,

one of z1, z2, z3 can be chosen as yi to get the check value zero.

If u > d, we again have three candidates for yi, namely

10d+1, 010d, 0d+2.

The analysis is similar to the previous case.

For finite k ≥ 2d + 3, it can be shown that yi has to be of length at

least 2d+ 3. We will describe how one can choose yi of length 2d+ 3. The

description is now split into four cases which cover all possibilities for u and

v. The analysis is again similar and we just give the three candidates for

yi in each case in Table 4.8.

Table 4.8 Three candidates for yi.

range candidates

u ≤ d 0d−u10d+110u 0d−u+110d10u 02d−u+210u

v ≤ d < u 0v10d10d+1−v 0v10d+110d−v 0v102d+2−v

d < u ≤ bk/2c, v > d 10d+110d 010d10d 0d+210d

d < v < bk/2c < u 0d10d10 0d10d+11 0d10d+2

4.5 Comments and references

4.1. Theorem 4.2 is due to de Bruijn, van Ebbenhorst Tengbergen, and

Kruyswijk (1951).

The systematic perfect code given is due to Berger (1961). Freiman

(1962) proved that no perfect systematic code has less redundancy.

Theorem 4.1 is from Kløve and Korzhik (1995). Freiman suggested using

the code with {a1, a2, . . . ak} = {bn/2c± i(a+ 1) | 0 ≤ i ≤ n/(2(a+ 1))}
to detect up to a asymmetric errors. Note that Example 4.2 shows that
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this construction may not be optimal. Freiman also has a suggestion for

a systematic code to detect up to a asymmetric errors. A channel related

to the Z-channel is the unidirectional channel. For this channel, if there

are errors in a code word, they are all 0 → 1 errors or all 1 → 0 errors. A

number of codes have been constructed for correction or detecting of such

error-patterns. Also there are many constructions of codes correcting t

symmetric errors (where t usually is 1) and detecting all unidirectional

errors. For more information on such codes, we refer the reader to the

books by Rao and Fujiwara (1989) and Blaum (1993).

The Generalized Bose-Lin codes and their analysis were given by

Gancheva and Kløve (2005b) who proved Theorems 4.3 and 4.4. For

q = 2 (and ω even) we get the codes given by Bose and Lin (1985).

For ω = 0 (and general q) we get the codes given by Bose and Prad-

han (1982) (actually, Bose and Pradhan considered the codes with the

smallest possible value of r, namely r = dlogq((q − 1)k+ 1)e). For ω = 2

(and general q) we get the codes studied by Bose, Elmougy, and Tallini

(2005), El-Mougy (2005), El-Mougy and Gorshe (2005).

The presentation of diversity combining is based on the paper by Kløve,

Oprisan, and Bose (2005a). Their paper contains a number of additional

results not presented in this book.

4.2. The results are essentially due to Karpovsky and Taubin (2004) (with

a different notation). See also Karpovsky and Nagvajara (1989).

4.3. Theorem 4.9 and the various constructions in Section 4.3.1 are taken

from AbdelGhaffar (1998). This paper also contains a good bibliogra-

phy on ST codes. Another recommendable survey was given by Gallian

(1996).

Description of the various decimal codes and barcodes can be found many

places on the web. As URLs often become obsolete, I do not include any

here.

The Verhoeff code was given by Verhoeff (1969). The use of various

algebraic structures, e.g. quasigroups, for construction of single check

digits have been studied by a number of authors since. We refer to the

paper by Belyavskaya, Izbash, and Mullen (2005a) which contains a good

bibliography for such codes.

The Norwegian personal number codes were constructed by Selmer

(1967).

4.4. The non-systematic code was given by Perry (1995) and the systematic

code by Perry, Li, Lin, and Zhang (1998).
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Paris Ser. AB 281 (1975) 533–535.

A. Wyner, “The wire-tap channel”, Bell Syst. Tech. J. 54 (1975) 1355–1381.
S. T. Xia, F. W. Fu, Y. Jiang, and S. Ling, “The probability of undetected error

for binary constant-weight codes”, IEEE Trans. Inform. Theory 51 (2005)
3364–3373.

S. T. Xia, F. W. Fu, and S. Ling, “A lower bound on the probability of undetected
error for binary constant weight codes”, IEEE Trans. Inform. Theory 52
(2006) 4235–4243.

S. T. Xia, F. W. Fu, and S. Ling, “A lower bound on the probability of undetected
error for binary constant weight codes”, Proc. IEEE Int. Symposium on
Information Theory (2006) 302–306.

S. T. Xia and Y. Jiang, “Bounds of undetected error probability for binary con-
stant weight codes” (in Chinese), Acta Electronica Sinica 34, no. 5 (2006)
944–946.

D. Xu, “A dual theorem on error detection codes“ (in Chinese), Journal of Nan-
jing Aeronautical Inst. 24 No. 6 (1992) 730–735.

V. Yakovlev, V. Korjik, and A. Sinuk, “Key distribution protocol based on noisy
channel and error detecting codes”, Lecture Notes in Computer Science
2052 (2001) 242–250.

H. Yamamoto and K. Itoh, “Viterbi decoding algorithm for convolutional codes
with repeat request”, IEEE Trans. Inform. Theory 26 (1980) 540–547.

Y.X. Yang, “Proof of Wang’s conjecture”, Chinese Science Bulletin (in Chinese),
vol. 34, No. 1, pp. 78–80, 1989.

H. Zimmermann and S. Mason, Electronic Circuits, Signals and Systems, John
Wiley & Sons, Inc., New York, 1960.

V. V. Zyablov, “The performance of the error correcting capability of the iterative
and concatenated codes“ (in Russian), in Digital Information Transmission
over Channels with Memory, Nauka, Moscow 1970.



January 25, 2007 15:8 World Scientific Book - 9in x 6in CED-main

Index

Aw
C(z), 22

AC(z), 13

Ai1,i2,··· ,im(C), 24

Ai(C), 13

Aw
i (C), 22

α(x) = αC(S), 66

AMDS, almost MDS code, 113

ANSI code, 139

asymmetric Channel, 153

asymptotically bad class of code, 38

asymptotically good class of codes, 38

average, 66

bad code for error detection, 38

BCH code, 143

binary symmetric channel, BSC, 129

binomial moments, 16

block synchronization, 115

CC concatenated code, 9

CCITT X.25 code, 139

check matrix, 6

check sequence, 176

χ(S), support, 2

code, 1

code word, 1

combined correction and detection, 31

complementary codes, 20

concatenated code, 9

concatenation, 3

constant weight code, 149

CRC, cyclic redundancy-check code,
12, 137

cyclic code, 5, 114

cyclic linear codes, 10

cyclic redundancy-check code, 12

d, minimum distance, 2

d(C), minimum distance, 2

defect, 112

Delsarte-Goethals code, 146

dH, Hamming distance, 2

distance distribution, 13

distance distribution function, 13

distance invariant, 21

d(n, M ; q), 2

δ(n, R; q), 2

δ(R; q), 2

dual defect, 112

dual distance, 13

encoding, 1

entropy function, 3

equivalent code, 4

equivalent linear code, 7

error check value, 176

even-weight subcode, 5, 137

E(X), average, 66

extended code, 4, 136

extended Hamming code, 48

extended linear code, 7

extended vector, 3
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generalized Hamming weight, 33
generalized Singleton bound, 30
generalized weight distribution, 24
generator matrix, 6
generator polynomial, 10
Golay [11 6;3] code, 111
Golay [23 12;2] code, 111
good for error detection, 38

Hamming code, 7, 12, 44, 111
Hamming distance, 2
Hamming weight, 2
Hq(z), entropy function, 3

IBM-SDLC code, 139
IEC TC57 code, 139
IEEE WG77.1 code, 139
irreducible cyclic codes, 115
ISO 3309, 139

Kerdock code, 146

linear code, 6
local symmetric channel, LSC, 118

MacWilliams transform, 13
MacWilliams’s theorem, 23
MDS code, 112
minimal polynomial, 143
minimum distance, 2
minimum support weight, 30
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[n, k; q], linear code, 6
(n, M, d; q), code, 2
NMDS, near MDS code, 113
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optimal code, 36
optimal error detecting code, 36
optimal linear code, 36, 132
ordering vectors, 3

parity check matrix, 6
perfect code, 110
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πue(R, p), 95
πue(R, p), 95

πue(R, p), 95
Pless identities, 14

Preparata code, 146
primitive polynomial, 12

probability of undetected error, 30, 36
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Pue(C, K), 30

P
(t)
ue (C, K), 31

Pue(C, p), asymptotic bounds, 95
Pue(C, p), upper bounds, 89
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punctured code, 4, 136
punctured linear code, 8

puncturing, 4
pure detection, 30
Pwc(C, a, b), worst-case error
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q-ary symmetric channel, qSC, 35

qSC q-ary symmetric channel, 35

rate, 2
Reed-Muller code, 140
repeated code, 9, 102

repetition code, 110

satisfactory for error detection, 38
shortened code, 5, 101
shortened linear code, 8

shortening, 5
simplex code, 7, 111

single parity check code, 7, 111
sphere, 27

standard deviation σ, 66
star operation, 8, 98
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Sturm sequences, 47
St(x), sphere, 27
support, 2
symbol error probability, 35
SYSL(n, k), 72
SYSL(n, k, d), 73
SYS(n, k), 72
systematic code, 3

tensor product code, 8
threshold, 42
trace function, 16
transposition, 165

ugly for error detection, 38
undetectable error, 30

V ar(C, p), 66
variance, 66
V ar(X), 66
vector, 1

weight distribution, 22
weight distribution function, 22
weight distribution of cosets, 25
weight hierarchy, 30
wH, Hamming weight, 2
worst-case error probability, 79

Z-channel, 153
Z4-linear code, 144
zero-sum subcode, 5
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