

Introduction to Genetic Algorithms

S.N.Sivanandam · S.N.Deepa

Introduction to Genetic
Algorithms

With 193 Figures and 13 Tables

Authors

S.N.Sivanandam

Professor and Head

Dept. of Computer Science and Engineering

PSG College of Technology

Coimbatore - 641 004

TN, India

S.N.Deepa

Ph.D Scholar Dept. of Computer Science

and Engineering

PSG College of Technology

Coimbatore - 641 004

TN, India

Library of Congress Control Number: 2007930221

ISBN 978-3-540-73189-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting: Integra Software Services Pvt. Ltd., India

Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper SPIN: 12053230 89/3180/Integra 5 4 3 2 1 0

Preface

The origin of evolutionary algorithms was an attempt to mimic some of the processes

taking place in natural evolution. Although the details of biological evolution are

not completely understood (even nowadays), there exist some points supported by

strong experimental evidence:

• Evolution is a process operating over chromosomes rather than over organisms.

The former are organic tools encoding the structure of a living being, i.e., a crea-

ture is “built” decoding a set of chromosomes.

• Natural selection is the mechanism that relates chromosomes with the efficiency

of the entity they represent, thus allowing that efficient organism which is well-

adapted to the environment to reproduce more often than those which are not.

• The evolutionary process takes place during the reproduction stage. There exists

a large number of reproductive mechanisms in Nature. Most common ones are

mutation (that causes the chromosomes of offspring to be different to those of

the parents) and recombination (that combines the chromosomes of the parents

to produce the offspring).

Based upon the features above, the three mentioned models of evolutionary com-

puting were independently (and almost simultaneously) developed.

An Evolutionary Algorithm (EA) is an iterative and stochastic process that op-

erates on a set of individuals (population). Each individual represents a potential

solution to the problem being solved. This solution is obtained by means of a en-

coding/decoding mechanism. Initially, the population is randomly generated (per-

haps with the help of a construction heuristic). Every individual in the population

is assigned, by means of a fitness function, a measure of its goodness with respect

to the problem under consideration. This value is the quantitative information the

algorithm uses to guide the search.

Among the evolutionary techniques, the genetic algorithms (GAs) are the most

extended group of methods representing the application of evolutionary tools. They

rely on the use of a selection, crossover and mutation operators. Replacement is

usually by generations of new individuals.

Intuitively a GA proceeds by creating successive generations of better and better

individuals by applying very simple operations. The search is only guided by the

fitness value associated to every individual in the population. This value is used

to rank individuals depending on their relative suitability for the problem being

v

vi Preface

solved. The problem is the fitness function that for every individual is encharged

of assigning the fitness value.

The location of this kind of techniques with respect to other deterministic and

non-deterministic procedures is shown in the following tree. This figure below out-

lines the situation of natural techniques among other well-known search procedures.

Combinations of EAs with Hill-Climbing algorithms are very powerful. Ge-

netic algorithms intensively using such local search mechanism are termed Memetic

Algorithms. Also parallel models increase the extension and quality of the search.

The EAs exploration compares quite well against the rest of search techniques for

a similar search effort. Exploitation is a more difficult goal in EAs but nowadays

many solutions exist for EAs to refine solutions.

Genetic algorithms are currently the most prominent and widely used compu-

tational models of evolution in artificial-life systems. These decentralized models

provide a basis for understanding many other systems and phenomena in the world.

Researches on GAs in alife give illustrative examples in which the genetic algorithm

is used to study how learning and evolution interact, and to model ecosystems, im-

mune system, cognitive systems, and social systems.

About the Book

This book is meant for a wide range of readers, who wishes to learn the basic

concepts of Genetic Algorithms. It can also be meant for programmers, researchers

and management experts whose work is based on optimization techniques. The ba-

sic concepts of Genetic Algorithms are dealt in detail with the relevant information

and knowledge available for understanding the optimization process. The various

operators involved for Genetic Algorithm operation are explained with examples.

The advanced operators and the various classifications have been discussed in lucid

manner, so that a starter can understand the concepts with a minimal effort.

The solutions to specific problems are solved using MATLAB 7.0 and the solu-

tions are given. The MATLAB GA toolbox has also been included for easy reference

of the readers so that they can have hands on working with various GA functions.

Apart from MATLAB solutions, certain problems are also solved using C and C++

and the solutions are given.

The book is designed to give a broad in-depth knowledge on Genetic Algorithm.

This book can be used as a handbook and a guide for students of all engineering

disciplines, management sector, operational research area, computer applications,

and for various professionals who work in Optimization area.

Genetic Algorithms, at present, is a hot topic among academicians, researchers

and program developers. Due to which, this book is not only for students, but also

for a wide range of researchers and developers who work in this field. This book can

be used as a ready reference guide for Genetic Algorithm research scholars. Most

of the operators, classifications and applications for a wide variety of areas covered

here fulfills as an advanced academic textbook.

To conclude, we hope that the reader will find this book a helpful guide and a

valuable source of information about Genetic Algorithm concepts for their several

practical applications.

1 Organization of the Book

The book contains 11 chapters altogether. It starts with the introduction to Evolu-

tionary Computing. The various application case studies are also discussed.

The chapters are organized as follows:

vii

viii About the Book

• Chapter 1 gives an introduction to Evolutionary computing, its development and

its features.

• Chapter 2 enhances the growth of Genetic Algorithms and its comparison with

other conventional optimization techniques. Also the basic simple genetic algo-

rithm with its advantages and limitations are discussed.

• The various terminologies and the basic operators involved in genetic algorithm

are dealt in Chap. 3. Few example problems, enabling the readers to understand

the basic genetic algorithm operation are also included.

• Chapter 4 discusses the advanced operators and techniques involved in genetic

algorithm.

• The different classifications of genetic algorithm are provided in Chap. 5. Each

of the classifications is discussed with their operators and mode of operation to

achieve optimized solution.

• Chapter 6 gives a brief introduction to genetic programming. The steps involved

and characteristics of genetic programming with its applications are described

here.

• Chapter 7 discusses on various genetic algorithm optimization problems which

includes fuzzy optimization, multi objective optimization, combinatorial opti-

mization, scheduling problems and so on.

• The implementation of genetic algorithm using MATLAB is discussed in Chap. 8.

The toolbox functions and simulated results to specific problems are provided in

this chapter.

• Chapter 9 gives the implementation of genetic algorithm concept using C and

C++. The implementation is performed for few benchmark problems.

• The application of genetic algorithm in various emerging fields along with case

studies is given in Chapter 10.

• Chapter 11 gives a brief introduction to particle swarm optimization and ant

colony optimization.

The Bibliography is given at the end for the ready reference of readers.

2 Salient Features of the Book

The salient features of the book include:

• Detailed explanation of Genetic Algorithm concepts

• Numerous Genetic Algorithm Optimization Problems

• Study on various types of Genetic Algorithms

• Implementation of Optimization problem using C and C++

• Simulated solutions for Genetic Algorithm problems using MATLAB 7.0

• Brief description on the basics of Genetic Programming

• Application case studies on Genetic Algorithm on emerging fields

S.N. Sivanandam completed his B.E (Electrical and Electronics Engineering) in

1964 from Government College of Technology, Coimbatore and M.Sc (Engineering)

About the Book ix

in Power System in 1966 from PSG College of Technology, Coimbatore. He

acquired PhD in Control Systems in 1982 from Madras University. He has received

Best Teacher Award in the year 2001 and Dhakshina Murthy Award for Teaching

Excellence from PSG College of Technology. He received The CITATION for best

teaching and technical contribution in the Year 2002, Government College of Tech-

nology, Coimbatore. He has a total teaching experience (UG and PG) of 41 years.

The total number of undergraduate and postgraduate projects guided by him for both

Computer Science and Engineering and Electrical and Electronics Engineering is

around 600. He is currently working as a Professor and Head Computer Science

and Engineering Department, PSG College of Technology, Coimbatore [from June

2000]. He has been identified as an outstanding person in the field of Computer

Science and Engineering in MARQUIS “Who’s Who”, October 2003 issue, New

providence, New Jersey, USA. He has also been identified as an outstanding person

in the field of Computational Science and Engineering in “Who’s Who”, December

2005 issue, Saxe-Coburg Publications, United Kingdom. He has been placed as a

VIP member in the continental WHO’s WHO Registry of national Business Leaders,

Inc. 33 West Hawthorne Avenue Valley Stream, NY 11580, Aug 24, 2006.

S.N. Sivanandam has published 12 books. He has delivered around 150 special

lectures of different specialization in Summer/Winter school and also in various

Engineering colleges. He has guided and coguided 30 Ph.D research works and at

present 9 Ph.D research scholars are working under him. The total number of tech-

nical publications in International/National journals/Conferences is around 700. He

has also received Certificate of Merit 2005–2006 for his paper from The Institution

of Engineers (India). He has chaired 7 International conferences and 30 National

conferences. He is a member of various professional bodies like IE (India), ISTE,

CSI, ACS and SSI. He is a technical advisor for various reputed industries and En-

gineering Institutions. His research areas include Modeling and Simulation, Neural

networks , Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multi di-

mensional system analysis, Linear and Non linear control system, Signal and Image

processing, Control System, Power system, Numerical methods, Parallel Comput-

ing, Data Mining and Database Security.

S.N. Deepa has completed her B.E Degree from Government College of Technol-

ogy, Coimbatore, 1999 and M.E Degree from PSG College of Technology, Coim-

batore, 2004. She was a gold medalist in her B.E Degree Programme. She has

received G.D Memorial Award in the year 1997 and Best Outgoing Student Award

from PSG College of Technology, 2004. Her M.E Thesis won National Award from

the Indian Society of Technical Education and L&T, 2004. She has published 5

books and papers in International and National Journals. Her research areas include

Neural Network, Fuzzy Logic, Genetic Algorithm, Digital Control, Adaptive and

Non-linear Control.

Acknowledgement

The authors are always thankful to the Almighty for perseverance and achievements.

They wish to thank Shri G. Rangaswamy, Managing Trustee, PSG Institutions,

Shri C.R. Swaminathan, Chief Executive; and Dr. R. Rudramoorthy, Principal, PSG

College of Technology, Coimbatore, for their whole-hearted cooperation and great

encouragement given in this successful endeavor. They also wish to thank the staff

members of computer science and engineering for their cooperation. Deepa wishes

to thank her husband Anand, daughter Nivethitha and parents for their support.

xi

Contents

1 Evolutionary Computation . 1

1.1 Introduction . 1

1.2 The Historical Development of EC . 2

1.2.1 Genetic Algorithms . 2

1.2.2 Genetic Programming . 3

1.2.3 Evolutionary Strategies . 4

1.2.4 Evolutionary Programming . 5

1.3 Features of Evolutionary Computation . 5

1.3.1 Particulate Genes and Population Genetics 6

1.3.2 The Adaptive Code Book . 7

1.3.3 The Genotype/Phenotype Dichotomy . 8

1.4 Advantages of Evolutionary Computation . 9

1.4.1 Conceptual Simplicity . 10

1.4.2 Broad Applicability . 10

1.4.3 Hybridization with Other Methods . 11

1.4.4 Parallelism . 11

1.4.5 Robust to Dynamic Changes . 11

1.4.6 Solves Problems that have no Solutions . 12

1.5 Applications of Evolutionary Computation . 12

1.6 Summary . 13

2 Genetic Algorithms . 15

2.1 Introduction . 15

2.2 Biological Background . 16

2.2.1 The Cell . 16

2.2.2 Chromosomes . 16

2.2.3 Genetics . 17

2.2.4 Reproduction . 17

2.2.5 Natural Selection . 19

2.3 What is Genetic Algorithm? . 20

2.3.1 Search Space . 20

2.3.2 Genetic Algorithms World . 20

2.3.3 Evolution and Optimization . 22

2.3.4 Evolution and Genetic Algorithms . 23

xiv Contents

2.4 Conventional Optimization and Search Techniques 24

2.4.1 Gradient-Based Local Optimization Method 25

2.4.2 Random Search . 26

2.4.3 Stochastic Hill Climbing . 27

2.4.4 Simulated Annealing . 27

2.4.5 Symbolic Artificial Intelligence (AI) . 29

2.5 A Simple Genetic Algorithm . 29

2.6 Comparison of Genetic Algorithm with Other

Optimization Techniques . 33

2.7 Advantages and Limitations of Genetic Algorithm 34

2.8 Applications of Genetic Algorithm . 35

2.9 Summary . 36

3 Terminologies and Operators of GA . 39

3.1 Introduction . 39

3.2 Key Elements . 39

3.3 Individuals . 39

3.4 Genes . 40

3.5 Fitness . 41

3.6 Populations . 41

3.7 Data Structures . 42

3.8 Search Strategies . 43

3.9 Encoding . 43

3.9.1 Binary Encoding . 43

3.9.2 Octal Encoding . 44

3.9.3 Hexadecimal Encoding . 44

3.9.4 Permutation Encoding (Real Number Coding) 44

3.9.5 Value Encoding . 45

3.9.6 Tree Encoding . 45

3.10 Breeding . 46

3.10.1 Selection . 46

3.10.2 Crossover (Recombination) . 50

3.10.3 Mutation . 56

3.10.4 Replacement . 57

3.11 Search Termination (Convergence Criteria) . 59

3.11.1 Best Individual . 59

3.11.2 Worst individual . 60

3.11.3 Sum of Fitness . 60

3.11.4 Median Fitness . 60

3.12 Why do Genetic Algorithms Work? . 60

3.12.1 Building Block Hypothesis . 61

3.12.2 A Macro-Mutation Hypothesis . 62

3.12.3 An Adaptive Mutation Hypothesis . 62

3.12.4 The Schema Theorem . 63

3.12.5 Optimal Allocation of Trials . 65

Contents xv

3.12.6 Implicit Parallelism . 66

3.12.7 The No Free Lunch Theorem. 68

3.13 Solution Evaluation . 68

3.14 Search Refinement . 69

3.15 Constraints . 69

3.16 Fitness Scaling . 70

3.16.1 Linear Scaling . 70

3.16.2 Sigma Truncation . 71

3.16.3 Power Law Scaling . 72

3.17 Example Problems . 72

3.17.1 Maximizing a Function . 72

3.17.2 Traveling Salesman Problem . 76

3.18 Summary . 78

Exercise Problems . 81

4 Advanced Operators and Techniques in Genetic Algorithm 83

4.1 Introduction . 83

4.2 Diploidy, Dominance and Abeyance . 83

4.3 Multiploid . 85

4.4 Inversion and Reordering . 86

4.4.1 Partially Matched Crossover (PMX) . 88

4.4.2 Order Crossover (OX) . 88

4.4.3 Cycle Crossover (CX) . 89

4.5 Niche and Speciation . 89

4.5.1 Niche and Speciation in Multimodal Problems 90

4.5.2 Niche and Speciation in Unimodal Problems. 93

4.5.3 Restricted Mating . 96

4.6 Few Micro-operators . 97

4.6.1 Segregation and Translocation . 97

4.6.2 Duplication and Deletion . 97

4.6.3 Sexual Determination . 98

4.7 Non-binary Representation . 98

4.8 Multi-Objective Optimization . 99

4.9 Combinatorial Optimizations . 100

4.10 Knowledge Based Techniques . 100

4.11 Summary . 102

Exercise Problems . 103

5 Classification of Genetic Algorithm . 105

5.1 Introduction . 105

5.2 Simple Genetic Algorithm (SGA) . 105

5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA) 106

5.3.1 Master-Slave Parallelization . 109

5.3.2 Fine Grained Parallel GAs (Cellular GAs) 110

5.3.3 Multiple-Deme Parallel GAs (Distributed GAs or Coarse

Grained GAs) . 111

xvi Contents

5.3.4 Hierarchical Parallel Algorithms . 113

5.4 Hybrid Genetic Algorithm (HGA) . 115

5.4.1 Crossover . 116

5.4.2 Initialization Heuristics . 117

5.4.3 The RemoveSharp Algorithm . 117

5.4.4 The LocalOpt Algorithm . 119

5.5 Adaptive Genetic Algorithm (AGA) . 119

5.5.1 Initialization . 120

5.5.2 Evaluation Function . 120

5.5.3 Selection operator . 121

5.5.4 Crossover operator . 121

5.5.5 Mutation operator . 122

5.6 Fast Messy Genetic Algorithm (FmGA) . 122

5.6.1 Competitive Template (CT) Generation . 123

5.7 Independent Sampling Genetic Algorithm (ISGA) 124

5.7.1 Independent Sampling Phase . 125

5.7.2 Breeding Phase . 126

5.8 Summary . 127

Exercise Problems . 129

6 Genetic Programming . 131

6.1 Introduction . 131

6.2 Comparison of GP with Other Approaches . 131

6.3 Primitives of Genetic Programming . 135

6.3.1 Genetic Operators . 136

6.3.2 Generational Genetic Programming . 136

6.3.3 Tree Based Genetic Programming . 136

6.3.4 Representation of Genetic Programming . 137

6.4 Attributes in Genetic Programming . 141

6.5 Steps of Genetic Programming . 143

6.5.1 Preparatory Steps of Genetic Programming 143

6.5.2 Executional Steps of Genetic Programming 146

6.6 Characteristics of Genetic Programming . 149

6.6.1 What We Mean by “Human-Competitive” 149

6.6.2 What We Mean by “High-Return” . 152

6.6.3 What We Mean by “Routine” . 154

6.6.4 What We Mean by “Machine Intelligence” 154

6.7 Applications of Genetic Programming . 156

6.7.1 Applications of Genetic Programming

in Civil Engineering . 156

6.8 Haploid Genetic Programming with Dominance . 159

6.8.1 Single-Node Dominance Crossover . 161

6.8.2 Sub-Tree Dominance Crossover . 161

6.9 Summary . 161

Exercise Problems . 163

Contents xvii

7 Genetic Algorithm Optimization Problems . 165

7.1 Introduction . 165

7.2 Fuzzy Optimization Problems . 165

7.2.1 Fuzzy Multiobjective Optimization . 166

7.2.2 Interactive Fuzzy Optimization Method . 168

7.2.3 Genetic Fuzzy Systems . 168

7.3 Multiobjective Reliability Design Problem . 170

7.3.1 Network Reliability Design . 170

7.3.2 Bicriteria Reliability Design . 174

7.4 Combinatorial Optimization Problem . 176

7.4.1 Linear Integer Model . 178

7.4.2 Applications of Combinatorial Optimization 179

7.4.3 Methods . 182

7.5 Scheduling Problems . 187

7.5.1 Genetic Algorithm for Job Shop Scheduling Problems (JSSP) . . 187

7.6 Transportation Problems . 190

7.6.1 Genetic Algorithm in Solving Transportation

Location-Allocation Problems with Euclidean Distances 191

7.6.2 Real-Coded Genetic Algorithm (RCGA) for Integer Linear

Programming in Production-Transportation Problems

with Flexible Transportation Cost . 194

7.7 Network Design and Routing Problems . 199

7.7.1 Planning of Passive Optical Networks . 199

7.7.2 Planning of Packet Switched Networks . 202

7.7.3 Optimal Topological Design of All Terminal Networks 203

7.8 Summary . 208

Exercise Problems . 209

8 Genetic Algorithm Implementation Using Matlab 211

8.1 Introduction . 211

8.2 Data Structures . 211

8.2.1 Chromosomes . 212

8.2.2 Phenotypes . 212

8.2.3 Objective Function Values . 213

8.2.4 Fitness Values . 213

8.2.5 Multiple Subpopulations . 213

8.3 Toolbox Functions . 214

8.4 Genetic Algorithm Graphical User Interface Toolbox 219

8.5 Solved Problems using MATLAB . 224

8.6 Summary . 260

Review Questions . 261

Exercise Problems . 261

9 Genetic Algorithm Optimization in C/C++ . 263

9.1 Introduction . 263

9.2 Traveling Salesman Problem (TSP) . 263

xviii Contents

9.3 Word Matching Problem . 271

9.4 Prisoner’s Dilemma . 280

9.5 Maximize f(x) = x2 . 286

9.6 Minimization a Sine Function with Constraints . 292

9.6.1 Problem Description . 293

9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x) + 10 302

9.8 Quadratic Equation Solving . 310

9.9 Summary . 315

9.9.1 Projects . 315

10 Applications of Genetic Algorithms . 317

10.1 Introduction . 317

10.2 Mechanical Sector . 317

10.2.1 Optimizing Cyclic-Steam Oil Production

with Genetic Algorithms . 317

10.2.2 Genetic Programming and Genetic Algorithms

for Auto-tuning Mobile Robot Motion Control 320

10.3 Electrical Engineering . 324

10.3.1 Genetic Algorithms in Network Synthesis 324

10.3.2 Genetic Algorithm Tools for Control Systems Engineering 328

10.3.3 Genetic Algorithm Based Fuzzy Controller for Speed Control

of Brushless DC Motor . 334

10.4 Machine Learning . 341

10.4.1 Feature Selection in Machine learning using GA 341

10.5 Civil Engineering . 345

10.5.1 Genetic Algorithm as Automatic Structural Design Tool 345

10.5.2 Genetic Algorithm for Solving Site Layout Problem 350

10.6 Image Processing . 352

10.6.1 Designing Texture Filters with Genetic Algorithms 352

10.6.2 Genetic Algorithm Based Knowledge Acquisition

on Image Processing . 357

10.6.3 Object Localization in Images Using Genetic Algorithm 362

10.6.4 Problem Description . 363

10.6.5 Image Preprocessing . 364

10.6.6 The Proposed Genetic Algorithm Approach 365

10.7 Data Mining . 367

10.7.1 A Genetic Algorithm for Feature Selection in Data-Mining 367

10.7.2 Genetic Algorithm Based Fuzzy Data Mining

to Intrusion Detection . 370

10.7.3 Selection and Partitioning of Attributes in Large-Scale Data

Mining Problems Using Genetic Algorithm 379

10.8 Wireless Networks . 386

10.8.1 Genetic Algorithms for Topology Planning

in Wireless Networks . 386

10.8.2 Genetic Algorithm for Wireless ATM Network 387

10.9 Very Large Scale Integration (VLSI) . 395

Contents xix

10.9.1 Development of a Genetic Algorithm Technique

for VLSI Testing . 395

10.9.2 VLSI Macro Cell Layout Using Hybrid GA 397

10.9.3 Problem Description . 398

10.9.4 Genetic Layout Optimization . 399

10.10 Summary . 402

11 Introduction to Particle Swarm Optimization and Ant Colony

Optimization . 403

11.1 Introduction . 403

11.2 Particle Swarm Optimization . 403

11.2.1 Background of Particle Swarm Optimization 404

11.2.2 Operation of Particle Swarm Optimization 405

11.2.3 Basic Flow of Particle Swarm Optimization 407

11.2.4 Comparison Between PSO and GA . 408

11.2.5 Applications of PSO . 410

11.3 Ant Colony Optimization . 410

11.3.1 Biological Inspiration . 410

11.3.2 Similarities and Differences Between Real Ants

and Artificial Ants . 414

11.3.3 Characteristics of Ant Colony Optimization 415

11.3.4 Ant Colony Optimization Algorithms . 416

11.3.5 Applications of Ant Colony Optimization 422

11.4 Summary . 424

Exercise Problems . 424

Bibliography . 425

Chapter 1

Evolutionary Computation

1.1 Introduction

Charles Darwinian evolution in 1859 is intrinsically a so bust search and optimization

mechanism. Darwin’s principle “Survival of the fittest” captured the popular imag-

ination. This principle can be used as a starting point in introducing evolutionary

computation. Evolved biota demonstrates optimized complex behavior at each level:

the cell, the organ, the individual and the population. Biological species have solved

the problems of chaos, chance, nonlinear interactivities and temporality. These prob-

lems proved to be in equivalence with the classic methods of optimization. The

evolutionary concept can be applied to problems where heuristic solutions are not

present or which leads to unsatisfactory results. As a result, evolutionary algorithms

are of recent interest, particularly for practical problems solving.

The theory of natural selection proposes that the plants and animals that exist

today are the result of millions of years of adaptation to the demands of the environ-

ment. At any given time, a number of different organisms may co-exist and compete

for the same resources in an ecosystem. The organisms that are most capable of

acquiring resources and successfully procreating are the ones whose descendants

will tend to be numerous in the future. Organisms that are less capable, for whatever

reason, will tend to have few or no descendants in the future. The former are said

to be more fit than the latter, and the distinguishing characteristics that caused the

former to be fit are said to be selected for over the characteristics of the latter. Over

time, the entire population of the ecosystem is said to evolve to contain organisms

that, on average, are more fit than those of previous generations of the population

because they exhibit more of those characteristics that tend to promote survival.

Evolutionary computation (EC) techniques abstract these evolutionary principles

into algorithms that may be used to search for optimal solutions to a problem. In

a search algorithm, a number of possible solutions to a problem are available and

the task is to find the best solution possible in a fixed amount of time. For a search

space with only a small number of possible solutions, all the solutions can be ex-

amined in a reasonable amount of time and the optimal one found. This exhaustive

search, however, quickly becomes impractical as the search space grows in size.

Traditional search algorithms randomly sample (e.g., random walk) or heuristically

sample (e.g., gradient descent) the search space one solution at a time in the hopes

1

2 1 Evolutionary Computation

of finding the optimal solution. The key aspect distinguishing an evolutionary search

algorithm from such traditional algorithms is that it is population-based. Through

the adaptation of successive generations of a large number of individuals, an evolu-

tionary algorithm performs an efficient directed search. Evolutionary search is gen-

erally better than random search and is not susceptible to the hill-climbing behaviors

of gradient-based search.

Evolutionary computing began by lifting ideas from biological evolutionary the-

ory into computer science, and continues to look toward new biological research

findings for inspiration. However, an over enthusiastic “biology envy” can only be to

the detriment of both disciplines by masking the broader potential for two-way intel-

lectual traffic of shared insights and analogizing from one another. Three fundamen-

tal features of biological evolution illustrate the range of potential intellectual flow

between the two communities: particulate genes carry some subtle consequences

for biological evolution that have not yet translated mainstream EC; the adaptive

properties of the genetic code illustrate how both communities can contribute to a

common understanding of appropriate evolutionary abstractions; finally, EC explo-

ration of representational language seems pre-adapted to help biologists understand

why life evolved a dichotomy of genotype and phenotype.

1.2 The Historical Development of EC

In the case of evolutionary computation, there are four historical paradigms that

have served as the basis for much of the activity of the field: genetic algorithms

(Holland, 1975), genetic programming (Koza, 1992, 1994), evolutionary strategies

(Recheuberg, 1973), and evolutionary programming (Forgel et al., 1966). The basic

differences between the paradigms lie in the nature of the representation schemes,

the reproduction operators and selection methods.

1.2.1 Genetic Algorithms

The most popular technique in evolutionary computation research has been the ge-

netic algorithm. In the traditional genetic algorithm, the representation used is a

fixed-length bit string. Each position in the string is assumed to represent a particu-

lar feature of an individual, and the value stored in that position represents how that

feature is expressed in the solution. Usually, the string is “evaluated as a collection

of structural features of a solution that have little or no interactions”. The analogy

may be drawn directly to genes in biological organisms. Each gene represents an

entity that is structurally independent of other genes.

The main reproduction operator used is bit-string crossover, in which two strings

are used as parents and new individuals are formed by swapping a sub-sequence

between the two strings (see Fig. 1.1). Another popular operator is bit-flipping mu-

tation, in which a single bit in the string is flipped to form a new offspring string

1.2 The Historical Development of EC 3

Fig. 1.1 Bit-string crossover

of parents a & b to form

offspring c & d

(see Fig. 1.2). A variety of other operators have also been developed, but are used

less frequently (e.g., inversion, in which a subsequence in the bit string is reversed).

A primary distinction that may be made between the various operators is whether or

not they introduce any new information into the population. Crossover, for example,

does not while mutation does. All operators are also constrained to manipulate the

string in a manner consistent with the structural interpretation of genes. For exam-

ple, two genes at the same location on two strings may be swapped between parents,

but not combined based on their values. Traditionally, individuals are selected to be

parents probabilistically based upon their fitness values, and the offspring that are

created replace the parents. For example, if N parents are selected, then N offspring

are generated which replace the parents in the next generation.

1.2.2 Genetic Programming

An increasingly popular technique is that of genetic programming. In a standard

genetic program, the representation used is a variable-sized tree of functions and

values. Each leaf in the tree is a label from an available set of value labels. Each

internal node in the tree is label from an available set of function labels.

The entire tree corresponds to a single function that may be evaluated. Typically,

the tree is evaluated in a leftmost depth-first manner. A leaf is evaluated as the

corresponding value. A function is evaluated using arguments that is the result of the

evaluation of its children. Genetic algorithms and genetic programming are similar

in most other respects, except that the reproduction operators are tailored to a tree

representation. The most commonly used operator is subtree crossover, in which an

entire subtree is swapped between two parents (see Fig. 1.3). In a standard genetic

program, all values and functions are assumed to return the same type, although

functions may vary in the number of arguments they take. This closure principle

(Koza, 1994) allows any subtree to be considered structurally on par with any other

subtree, and ensures that operators such as sub-tree crossover will always produce

legal offspring.

Fig. 1.2 Bit-flipping mutation of parent a to form offspring b

4 1 Evolutionary Computation

Fig. 1.3 Subtree crossover of parents a & b to form offspring c & d

1.2.3 Evolutionary Strategies

In evolutionary strategies, the representation used is a fixed-length real-valued

vector. As with the bitstrings of genetic algorithms, each position in the vector

corresponds to a feature of the individual. However, the features are considered

to be behavioral rather than structural. “Consequently, arbitrary non-linear interac-

tions between features during evaluation are expected which forces a more holistic

approach to evolving solutions” (Angeline, 1996).

The main reproduction operator in evolutionary strategies is Gaussian mutation,

in which a random value from a Gaussian distribution is added to each element of an

individual’s vector to create a new offspring (see Fig. 1.4). Another operator that is

used is intermediate recombination, in which the vectors of two parents are averaged

together, element by element, to form a new offspring (see Fig. 1.5). The effects of

these operators reflect the behavioral as opposed to structural interpretation of the

representation since knowledge of the values of vector elements is used to derive

new vector elements.

The selection of parents to form offspring is less constrained than it is in genetic

algorithms and genetic programming. For instance, due to the nature of the repre-

sentation, it is easy to average vectors from many individuals to form a single off-

spring. In a typical evolutionary strategy, N parents are selected uniformly randomly

Fig. 1.4 Gaussian mutation of parent a to form offspring b

1.3 Features of Evolutionary Computation 5

Fig. 1.5 Intermediate

recombination of parents a &

b to form offspring c

(i.e., not based upon fitness), more than N offspring are generated through the use

of recombination, and then N survivors are selected deterministically. The survivors

are chosen either from the best N offspring (i.e., no parents survive) or from the best

N parents and offspring.

1.2.4 Evolutionary Programming

Evolutionary programming took the idea of representing individuals’ phenotypic

ally as finite state machines capable of responding to environmental stimuli and

developing operators for effecting structural and behavioral change over time. This

idea was applied to a wide range of problems including prediction problems, opti-

mization and machine learning.

The above characterizations, leads one to the following observations. GA practi-

tioners are seldom constrained to fixed-length binary implementations. GP enables

the use of variable sized tree of functions and values. ES practitioners have incor-

porated recombination operators into their systems. EP is used for the evolution of

finite state machines.

The representations used in evolutionary programming are typically tailored to

the problem domain. One representation commonly used is a fixed-length real-

valued vector. The primary difference between evolutionary programming and the

previous approaches is that no exchange of material between individuals in the

population is made. Thus, only mutation operators are used. For real-valued vector

representations, evolutionary programming is very similar to evolutionary strategies

without recombination.

A typical selection method is to select all the individuals in the population to

be the N parents, to mutate each parent to form N offspring, and to probabilistically

select, based upon fitness, N survivors from the total 2N individuals to form the next

generation.

1.3 Features of Evolutionary Computation

In an evolutionary algorithm, a representation scheme is chosen by the researcher

to define the set of solutions that form the search space for the algorithm. A num-

ber of individual solutions are created to form an initial population. The following

steps are then repeated iteratively until a solution has been found which satisfies

a pre-defined termination criterion. Each individual is evaluated using a fitness

function that is specific to the problem being solved. Based upon their fitness values,

6 1 Evolutionary Computation

a number of individuals are chosen to be parents. New individuals, or offspring, are

produced from those parents using reproduction operators. The fitness values of

those offspring are determined. Finally, survivors are selected from the old popula-

tion and the offspring to form the new population of the next generation.

The mechanisms determining which and how many parents to select, how many

offspring to create, and which individuals will survive into the next generation to-

gether represent a selection method. Many different selection methods have been

proposed in the literature, and they vary in complexity. Typically, though, most

selection methods ensure that the population of each generation is the same size.

EC techniques continue to grow in complexity and desirability, as biological re-

search continues to change our perception of the evolutionary process.

In this context, we introduce three fundamental features of biological evolution:

1. particulate genes and population genetics

2. the adaptive genetic code

3. the dichotomy of genotype and phenotype

Each phenomenon is chosen to represent a different point in the spectrum of

possible relationships between computing and biological evolutionary theory. The

first is chosen to ask whether current EC has fully transferred the basics of bio-

logical evolution. The second demonstrates how both biological and computational

evolutionary theorists can contribute to common understanding of evolutionary ab-

stractions. The third is chosen to illustrate a question of biological evolution that EC

seems better suited to tackle than biology.

1.3.1 Particulate Genes and Population Genetics

Mainstream thinking of the time viewed the genetic essence of phenotype as a liq-

uid that blended whenever male and female met to reproduce. It took the world’s

first professor of engineering, Fleming Jenkin (1867), to point out the mathematical

consequence of blending inheritance: a novel advantageous mutation arising in a

sexually reproducing organism would dilute itself out of existence during the early

stages of its spread through any population comprising more than a few individ-

uals. This is a simple consequence of biparental inheritance. Mendels’ theory of

particulate genes (Mendel, 1866) replaced this flawed, analogue concept of blend-

ing inheritance with a digital system in which the advantageous version (allele)

of a gene is either present or absent and biparental inheritance produces diploidy.

Thus natural selection merely alters the proportions of alleles in a population, and

an advantageous mutation can be selected into fixation (presence within 100% of

individuals) without any loss in its fitness. Though much has been written about

the Neo-Darwinian Synthesis that ensured from combining Mendelian genetics

with Darwinian theory, it largely amounts to biologists’ gradual acceptance that

the particulate nature of genes alone provided a solid foundation to build detailed,

quantitative predictions about evolution.

1.3 Features of Evolutionary Computation 7

Indeed, decision of mathematical models of genes in populations as “bean bag

genetics” overlooks the scope of logical deductions that follow from particulate

genetics. They extend far beyond testable explanations for adaptive phenomena

and into deeper, abstract concepts of biological evolution. For example, particu-

late genes introduce stochasticity into evolution. Because genes are either present

or absent from any given genome, the genetic makeup of each new individual in

a sexually reproducing population is a probabilistic outcome of which particular

alleles it inherits from each parent. Unless offspring are infinite in number, their

allele frequencies will not accurately mirror those of the parental generation, but

instead will show some sampling error (genetic drift).

The magnitude of this sampling error is inversely proportional to the size of

a population. Wright (1932) noted that because real populations fluctuate in size,

temporary reductions can briefly relax selection, potentially allowing gene pools to

diffuse far enough away from local optima to find new destinations when popula-

tion size recovers and selection reasserts itself. In effect, particulate genes in finite

populations improve the evolutionary heuristic from a simple hill climbing algo-

rithm to something closer to simulated annealing under a fluctuating temperature.

One final property of particulate genes operating in sexual populations is worthy of

mention. In the large populations where natural selection works most effectively,

any novel advantageous mutation that arises will only reach fixation over the course

of multiple generations. During this spread, recombination and diploidy together

ensure that the allele will temporarily find itself in many different genetic contexts.

Classical population genetics (e.g., Fisher, 1930) and experimental EC systems (e.g.,

O’Reilly, 1999) have focused on whether and how this context promotes selective

pressure for gene linkage into “co-adapted gene complexes”. A simpler observation

is that a novel, advantageous allele’s potential for negative epistatic effects is inte-

gral to its micro-evolutionary success. Probability will favor the fixation of alleles

that are good “team players” (i.e., reliably imbue their advantage regardless of ge-

netic background. Many mainstream EC methods simplify the population genetics

of new mutations (e.g., into tournaments), to expedite the adaptive process. This

preserves non-blending inheritance and even genetic drift, but it is not clear that it

incorporates population genetics’ implicit filter for “prima donna” alleles that only

offer their adaptive advantage when their genetic context is just so. Does this basic

difference between biology and EC contribute anything to our understanding of why

recombination seems to play such different roles in the two systems?

1.3.2 The Adaptive Code Book

Molecular biology’s Central Dogma connects genes to phenotype by stating that

DNA is transcribed into RNA, which is then translated into protein.

The terms transcription and translation are quite literal: RNA is a chemical

sister language to DNA. Both are polymers formed from an alphabet of four

chemical letters (nucleotides), and transcription is nothing more than a process

of complementing DNA, letter by letter, into RNA. It is the next step, translation

8 1 Evolutionary Computation

that profoundly influences biological evolution. Proteins are also linear polymers of

chemical letters, but they are drawn from a qualitatively different alphabet (amino

acids) comprising 20 elements. Clearly no one-to-one mapping could produce a

genetic code for translating nucleotides unambiguously into amino acids, and by

1966 it was known that the combinatorial set of possible nucleotide triplets forms

a dictionary of “codons” that each translate into a single amino acid meaning. The

initial surprise for evolutionary theory was to discover that something as fundamen-

tal as the code-book for life would exhibit a high degree of redundancy (an alphabet

of 4 RNA letters permits 4×4×4 = 64 possible codons that map to one of only 20

amino acid meanings). Early interpretation fuelled arguments for Non-Darwinian

evolution: genetic variations that make no difference to the protein they encode

must be invisible to selection and therefore governed solely by drift. More recently,

both computing and biological evolutionary theory have started to place this coding

neutrality in the bigger picture of the adaptive heuristic. Essentially, findings appear

to mirror Wright’s early arguments on the importance of genetic drift: redundancy

in the code adds selectively neutral dimensions to the fitness landscape that renders

adaptive algorithms more effective by increasing the connectedness of local optima.

At present, an analogous reinterpretation is underway for a different adaptive

feature of the genetic code: the observation that biochemically similar amino acids

are assigned to codons that differ by only a single nucleotide. Early speculations

that natural selection organized the genetic code so as to minimize the phenotypic

impact of mutations have gained considerable evidential support as computer simu-

lation enables exploration of theoretical codes that nature passed over. However, it

seems likely that once again this phenomenon has more subtle effects in the broader

context of the adaptive heuristic. An “error minimizing code” may in fact maximize

the probability that a random effects on both traits defines a circle of radius around

the organism.

The probability that this mutation will improve fitness (i.e., that the organism

will move within the white area) is inversely proportional to its magnitude, muta-

tion produces an increase in fitness according to Geometric Theory of gradualism

(Fig. 1.6). Preliminary tests for this phenomenon reveal an even simpler influence:

the error minimizing code smoothes the fitness landscape where a random genetic

code would render it rugged. By clustering biochemically similar amino acids within

mutational reach of one another it ensures that any selection towards a specific

amino acid property (e.g., hydrophobicity) will be towards an interconnected region

of the fitness landscape rather than to an isolated local optimum.

1.3.3 The Genotype/Phenotype Dichotomy

Implicit to the concept of an adaptive genetic code is a deeper question that remains

largely unanswered by biology: why does all known life use two qualitatively differ-

ent polymers, nucleic acids and proteins, with the associated need for translation?

Current theories for the origin of this dichotomy focus on the discovery that RNA

can act both as a genetic storage medium, and as a catalytic molecule. Within the

1.4 Advantages of Evolutionary Computation 9

Fig. 1.6 The fitness landscape for an organism of 2 phenotypic traits: (a) for any organism, we may

define an isocline that connects all trait combinations of equal fitness; (b) (the fitness landscape

from above): a random mutation of magnitude that has tradeoff

most highly conserved core of metabolism, all known organisms are found to use

RNA molecules in roles we normally attribute to proteins (White, 1976).

However, the answer to how the dichotomy evolved has largely eclipsed the

question of why RNA evolved a qualitatively different representation for pheno-

type. A typical biological answer would be that the larger alphabet size of amino

acids unleashed a greater catalytic diversity for the replicators, with an associated

increase in metabolic sophistication that optimized self-replication. Interestingly,

we know that nucleic acids are not limited to the 4 chemical letters we see today:

natural metabolically active RNA’s utilize a vast repertoire of posttranscriptional

modifications and synthetic chemistry has demonstrated that multiple additional

nucleotide letters can be added to the genetic alphabet even with today’s cellular

machinery. Furthermore, an increasing body of indirect evidence suggests that the

protein alphabet itself underwent exactly the sort of evolutionary expansion early in

life’s history.

Given the ubiquity of nucleic acid genotype and protein phenotype within life,

biology is hard-pressed to assess the significance of evolving this “representational

language”. The choice of phrase is deliberate: clearly the EC community is far ahead

of biology in formalizing the concept of representational language, and exploring

what it means. Biology will gain when evolutionary programmers place our system

within their findings, illustrating the potential for biological inspiration from EC.

1.4 Advantages of Evolutionary Computation

Evolutionary computation, describes the field of investigation that concerns all

evolutionary algorithms and offers practical advantages to several optimization

problems. The advantages include the simplicity of the approach, its robust response

to changing circumstances, and its flexibility and so on. This section briefs some of

10 1 Evolutionary Computation

these advantages and offers suggestions in designing evolutionary algorithms for

real-world problem solving.

1.4.1 Conceptual Simplicity

A key advantage of evolutionary computation is that it is conceptually simple.

Figure 1.7 shows a flowchart of an evolutionary algorithm applied for function op-

timization. The algorithm consists of initialization, iterative variation and selection

in light of a performance index. In particular, no gradient information needs to be

presented to the algorithm. Over iterations of random variation and selection, the

population can be made to converge to optimal solutions. The effectiveness of an

evolutionary algorithm depends on the variation and selection operators as applied

to a chosen representation and initialization.

1.4.2 Broad Applicability

Evolutionary algorithms can be applied to any problems that can be formulated as

function optimization problems. To solve these problems, it requires a data structure

to represent solutions, to evaluate solutions from old solutions. Representations can

be chosen by human designer based on his intuition. Representation should allow

for variation operators that maintain a behavioral link between parent and offspring.

Small changes in structure of parent will lead to small changes in offspring, and

similarly large changes in parent will lead to drastic alterations in offspring. In this

case, evolutionary algorithms are developed, so that they are tuned in self adaptive

Fig. 1.7 Flowchart of an

evolutionary algorithm

Randomly vary
individuals

Initialize
Population

Stop

Evaluate Fitness

Apply Selection

Start

1.4 Advantages of Evolutionary Computation 11

manner. This makes the evolutionary computation to be applied to broad areas which

includes, discrete combinatorial problems, mixed-integer problems and so on.

1.4.3 Hybridization with Other Methods

Evolutionary algorithms can be combined with more traditional optimization tech-

niques. This is as simple as the use of a conjugate-gradient minimization used after

primary search with an evolutionary algorithm. It may also involve simultaneous

application of algorithms like the use of evolutionary search for the structure of

a model coupled with gradient search for parameter values. Further, evolutionary

computation can be used to optimize the performance of neural networks, fuzzy

systems, production systems, wireless systems and other program structures.

1.4.4 Parallelism

Evolution is a highly parallel process. When distributed processing computers be-

come more popular are readily available, there will be increased potential for apply-

ing evolutionary computation to more complex problems. Generally the individual

solutions are evaluated independently of the evaluations assigned to competing so-

lutions. The evaluation of each solution can be handled in parallel and selection only

requires some serial operation. In effect, the running time required for an applica-

tion may be inversely proportional to the number of processors. Also, the current

computing machines provide sufficient computational speed to generate solutions

to difficult problems in reasonable time.

1.4.5 Robust to Dynamic Changes

Traditional methods of optimization are not robust to dynamic changes in the

environment and they require a complete restart for providing a solution. In contrary,

evolutionary computation can be used to adapt solutions to changing circumstances.

The generated population of evolved solutions provides a basis for further improve-

ment and in many cases, it is not necessary to reinitialize the population at random.

This method of adapting in the face of a dynamic environment is a key advantage.

For example, Wielaud (1990) applied genetic algorithm to evolve recurrent neural

networks to control a cart-pole system consisting of two poles as shown in Fig. 1.2.

In the above Fig. 1.8, the objective is to maintain the cart between the limits of

the track while not allowing either pole to exceed a specified maximum angle of

deflection. The control available here is the force, with which pull and push action

on the cart is performed. The difficulty here is the similarity in pole lengths. Few

researchers used evolutionary algorithms to optimize neural networks to control this

plant for different pole lengths.

12 1 Evolutionary Computation

Fig. 1.8 A cart with two

poles
θ2θ1

x

1.4.6 Solves Problems that have no Solutions

The advantage of evolutionary algorithms includes its ability to address problems

for which there is no human expertise. Even though human expertise should be

used when it is needed and available; it often proves less adequate for automated

problem-solving routines. Certain problems exist with expert system: the experts

may not agree, may not be qualified, may not be self-consistent or may simply cause

error. Artificial intelligence may be applied to several difficult problems requiring

high computational speed, but they cannot compete with the human intelligence,

Fogel (1995) declared artificial intelligence as “They solve problems, but they do not

solve the problem of how to solve problems.” In contrast, evolutionary computation

provides a method for solving the problem of how to solve problems.

1.5 Applications of Evolutionary Computation

Evolutionary computation techniques have drawn much attention as optimization

methods in the last two decades. From the optimization point of view, the main

advantage of evolutionary computation techniques is that they do not have much

mathematical requirements about the optimization problems. All they need is an

evaluation of the objective function. As a result, they are applied to non-linear

problems, defined on discrete, continuous or mixed search spaces, constrained or

unconstrained.

The applications of evolutionary computation include the following fields:

• Medicine (for example in breast cancer detection).

• Engineering application (including electrical, mechanical, civil, production, aero-

nautical and robotics).

• Traveling salesman problem.

• Machine intelligence.

• Expert system

1.6 Summary 13

• Network design and routing

• Wired and wireless communication networks and so on.

Many activities involve unstructured, real life problems that are difficult to

model, since they require several unusual factors. Certain engineering problems are

complex in nature: job shop scheduling problems, timetabling, traveling salesman

or facility layout problems. For all these applications, evolutionary computation

provides a near-optimal solution at the end of an optimization run. Evolutionary

algorithms are thus made efficient because they are flexible, and relatively easy to

hybridize with domain-dependent heuristics.

1.6 Summary

The basics of evolutionary computation with its historical development were dis-

cussed in this chapter. Although the history of evolutionary computation dates back

to the 1950s and 1960s, only within the last decade have evolutionary algorithms be-

came practicable for solving real-world problems on desktop computers. The three

basic features of the biological evolutionary algorithms were also discussed. For

practical genes, we ask whether Evolutionary computation can gain from biology by

considering the detailed dynamics by which an advantageous allele invades a wild-

type population. The adaptive genetic code illustrates how Evolutionary computa-

tion and biological evolutionary research can contribute to a common understanding

of general evolutionary dynamic. For the dichotomy of genotype and phenotype,

biology is hard-pressed to assess the significance of representational language. The

various advantages and applications of evolutionary computation are also discussed

in this chapter.

Review Questions

1. Define Evolutionary computation.

2. Briefly describe the historical developments of evolutionary computation.

3. State three fundamental features of biological evolutionary computation.

4. Draw a flowchart and explain an evolutionary algorithm.

5. Define genotype and phenotype.

6. Mention the various advantages of evolutionary computation.

7. List a few applications of evolutionary computation.

8. How are evolutionary computational methods hybridized with other methods?

9. Differentiate: Genetic algorithm and Genetic Programming.

10. Give a description of how evolutionary computation is applied to engineering

applications.

Chapter 2

Genetic Algorithms

2.1 Introduction

Charles Darwin stated the theory of natural evolution in the origin of species. Over

several generations, biological organisms evolve based on the principle of natural se-

lection “survival of the fittest” to reach certain remarkable tasks. The perfect shapes

of the albatross wring the efficiency and the similarity between sharks and dolphins

and so on, are best examples of achievement of random evolution over intelligence.

Thus, it works so well in nature, as a result it should be interesting to simulate natural

evolution and to develop a method, which solves concrete, and search optimization

problems.

In nature, an individual in population competes with each other for virtual re-

sources like food, shelter and so on. Also in the same species, individuals compete

to attract mates for reproduction. Due to this selection, poorly performing individ-

uals have less chance to survive, and the most adapted or “fit” individuals produce

a relatively large number of offspring’s. It can also be noted that during repro-

duction, a recombination of the good characteristics of each ancestor can produce

“best fit” offspring whose fitness is greater than that of a parent. After a few gen-

erations, species evolve spontaneously to become more and more adapted to their

environment.

In 1975, Holland developed this idea in his book “Adaptation in natural and ar-

tificial systems”. He described how to apply the principles of natural evolution to

optimization problems and built the first Genetic Algorithms. Holland’s theory has

been further developed and now Genetic Algorithms (GAs) stand up as a powerful

tool for solving search and optimization problems. Genetic algorithms are based on

the principle of genetics and evolution.

The power of mathematics lies in technology transfer: there exist certain models

and methods, which describe many different phenomena and solve wide variety of

problems. GAs are an example of mathematical technology transfer: by simulating

evolution one can solve optimization problems from a variety of sources. Today,

GAs are used to resolve complicated optimization problems, like, timetabling, job-

shop scheduling, games playing.

15

16 2 Genetic Algorithms

2.2 Biological Background

The science that deals with the mechanisms responsible for similarities and dif-

ferences in a species is called Genetics. The word “genetics” is derived from the

Greek word “genesis” meaning “to grow” or “to become”. The science of genetics

helps us to differentiate between heredity and variations and seeks to account for

the resemblances and differences due to the concepts of Genetic Algorithms and

directly derived from natural heredity, their source and development. The concepts

of Genetic Algorithms are directly derived from natural evolution. The main termi-

nologies involved in the biological background of species are as follows:

2.2.1 The Cell

Every animal/human cell is a complex of many “small” factories that work together.

The center of all this is the cell nucleus. The genetic information is contained in the

cell nucleus. Figure 2.1 shows anatomy of the animal cell and cell nucleus.

2.2.2 Chromosomes

All the genetic information gets stored in the chromosomes. Each chromosome is

build of Dioxy Ribo Nucleic Acid (DNA). In humans, a chromosome exists in the

form of pairs (23 pairs found). The chromosomes are divided into several parts

called genes. Genes code the properties of species i.e., the characteristics of an

individual. The possibilities of the genes for one property are called allele and a

gene can take different alleles. For example, there is a gene for eye color, and all the

different possible alleles are black, brown, blue and green (since no one has red or

violet eyes). The set of all possible alleles present in a particular population forms

a gene tool. This gene pool can determine all the different possible variations for

Fig. 2.1 Anatomy of animal cell, cell nucleus

2.2 Biological Background 17

Fig. 2.2 Model of

chromosome

the future generations. The size of the gene pool helps in determining the diversity

of the individuals in the population. The set of all the genes of a specific species is

called genome. Each and every gene has an unique position on the genome called

locus. In fact, most living organisms store their genome on several chromosomes,

but in the Genetic Algorithms (GAs), all the genes are usually stored on the same

chromosomes. Thus chromosomes and genomes are synonyms with one other in

GAs. Figure 2.2 shows a model of chromosome.

2.2.3 Genetics

For a particular individual, the entire combination of genes is called genotype. The

phenotype describes the physical aspect of decoding a genotype to produce the

phenotype. One interesting point of evolution is that selection is always done on

the phenotype whereas the reproduction recombines genotype. Thus morphogenesis

plays a key role between selection and reproduction. In higher life forms, chromo-

somes contain two sets of genes. This is known as diploids. In case of conflicts

between two values of the same pair of genes, the dominant one will determine the

phenotype whereas the other one, called recessive, will still be present and can be

passed on to the offspring. Diploidy allows a wider diversity of alleles. This provides

a useful memory mechanism in changing or noisy environment. However, most GA

concentrates on haploid chromosomes because they are much simple to construct.

In haploid representation, only one set of each gene is stored, thus the process of

determining which allele should be dominant and which one should be recessive is

avoided. Figure 2.3 shows development of genotype to phenotype.

2.2.4 Reproduction

Reproduction of species via genetic information is carried out by,

- Mitosis

- Meiosis

18 2 Genetic Algorithms

Fig. 2.3 Development of

genotype to phenotype

In Mitosis the same genetic information is copied to new offspring. There is no

exchange of information. This is a normal way of growing of multi cell structures,

like organs. Figure 2.4 shows mitosis form of reproduction.

Meiosis form basis of sexual reproduction. When meiotic division takes place

2 gametes appears in the process. When reproduction occurs, these two gametes

conjugate to a zygote which becomes the new individual. Thus in this case, the

Fig. 2.4 Mitosis form of

reproduction

2.2 Biological Background 19

Fig. 2.5 Meiosis form of

reproduction

genetic information is shared between the parents in order to create new offspring.

Figure 2.5 shows meiosis form of reproduction.

2.2.5 Natural Selection

The origin of species is based on “Preservation of favorable variations and rejec-

tion of unfavorable variations”. The variation refers to the differences shown by

the individual of a species and also by offspring’s of the same parents. There are

more individuals born than can survive, so there is a continuous struggle for life.

Individuals with an advantage have a greater chance for survive i.e., the survival

of the fittest. For example, Giraffe with long necks can have food from tall trees as

well from grounds, on the other hand goat, deer with small neck have food only from

grounds. As a result, natural selection plays a major role in this survival process.

Thus the various biological terminologies to be used in genetic algorithms were

discussed in this section.

The following Table 2.1 gives a list of different expressions, which are in com-

mon with natural evolution and genetic algorithm.

20 2 Genetic Algorithms

Table 2.1 Comparison of natural evolution and genetic algorithm terminology

Natural evolution Genetic algorithm

Chromosome String

Gene Feature or character

Allele Feature value

Locus String position

Genotype Structure or coded string

Phenotype Parameter set, a decoded structure

2.3 What is Genetic Algorithm?

Evolutionary computing was introduced in the 1960s by I. Rechenberg in the work

“Evolution strategies”. This idea was then developed by other researches. Genetic

Algorithms (GAs) was invented by John Holland and developed this idea in his book

“Adaptation in natural and artificial systems” in the year 1975. Holland proposed

GA as a heuristic method based on “Survival of the fittest”. GA was discovered as

a useful tool for search and optimization problems.

2.3.1 Search Space

Most often one is looking for the best solution in a specific set of solutions. The

space of all feasible solutions (the set of solutions among which the desired solu-

tion resides) is called search space (also state space). Each and every point in the

search space represents one possible solution. Therefore each possible solution can

be “marked” by its fitness value, depending on the problem definition. With Genetic

Algorithm one looks for the best solution among a number of possible solutions-

represented by one point in the search space i.e.; GAs are used to search the search

space for the best solution e.g., minimum. The difficulties in this ease are the local

minima and the starting point of the search (see Fig. 2.6).

2.3.2 Genetic Algorithms World

Genetic Algorithm raises a couple of important features. First it is a stochastic

algorithm; randomness as an essential role in genetic algorithms. Both selection

and reproduction needs random procedures. A second very important point is that

genetic algorithms always consider a population of solutions. Keeping in memory

more than a single solution at each iteration offers a lot of advantages. The algorithm

can recombine different solutions to get better ones and so, it can use the benefits of

assortment. A population base algorithm is also very amenable for parallelization.

The robustness of the algorithm should also be mentioned as something essential

for the algorithm success. Robustness refers to the ability to perform consistently

2.3 What is Genetic Algorithm? 21

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

Fig. 2.6 An example of search space

well on a broad range of problem types. There is no particular requirement on the

problem before using GAs, so it can be applied to resolve any problem. All those

features make GA a really powerful optimization tool.

With the success of Genetic Algorithms, other algorithms make in use of on the

same principle of natural evolution have also emerged. Evolution strategy, Genetic

programming are some of those similar of those similar algorithms. The classifi-

cation is not always clear between those different algorithms, thus to avoid any

confusion, they are all gathered in what is called Evolutionary Algorithms.

The analogy with nature gives to those algorithms something exciting and enjoy-

able, Their ability to deal successfully with a wide range of problem area, including

those which are difficult for other methods to solve make them quite powerful. But

today, GAs are suffering from too much trendiness. GAs are a new field, and parts

of the theory have still to be properly established. We can find almost as many

opinions on GAs as there are researchers in this field. Things evolve quickly in

genetic algorithms, and some comments might not be very accurate in few years.

It is also important to mention in this introduction GA limits. Like most stochas-

tic methods, GAs are not guaranteed to find the global optimum solution to a prob-

lem, they are satisfied with finding “acceptably good” solutions to the problem. GAs

are an extremely general too, and so specific techniques for solving particular prob-

lems are likely to out-perform GAs in both speed and accuracy of the final result.

22 2 Genetic Algorithms

GAs are something worth trying when everything else as failed or when we know

absolutely nothing of the search space. Nevertheless, even when such specialized

techniques exist, it often interesting to hybridise them with a GA in order to possibly

gain some improvements. It is important always to keep an objective point of view;

do not consider that GAs are a panacea for resolving all optimization problems.

This warning is for those who might have the temptation to resolve anything with

GA. The proverb says “If we have a hammer, all the problems looks like a nails”.

GAs do work and give excellent results if they are applied properly on appropriate

problems.

2.3.3 Evolution and Optimization

We are now 45 millions years ago examining a Basilosaurus :

The Basilosaurus was quite a prototype of a whale (Fig. 2.7). It was about 15

meters long for 5 tons. It still had a quasi-independent head and posterior paws. He

moved using undulatory movements and hunted small preys. Its anterior members

were reduced to small flippers with an elbow articulation. Movements in such a

viscous element (water) are very hard and require big efforts. People concerned

must have enough energy to move and control its trajectory. The anterior members

of basilosaurus were not really adapted to swimming. To adapt them, a double phe-

nomenon must occur: the shortening of the “arm” with the locking of the elbow

articulation and the extension of the fingers which will constitute the base structure

of the flipper (refer Fig. 2.8).

The image shows that two fingers of the common dolphin are hypertrophied to

the detriment of the rest of the member. The basilosaurus was a hunter, he had to

be fast and precise. Through time, subjects appeared with longer fingers and short

arms. They could move faster and more precisely than before, and therefore, live

longer and have many descendants.

Meanwhile, other improvements occurred concerning the general aerodynamic

like the integration of the head to the body, improvement of the profile, strength-

ening of the caudal fin . . . finally producing a subject perfectly adapted to the con-

straints of an aqueous environment. This process of adaptation, this morphological

optimization is so perfect that nowadays, the similarity between a shark, a dolphin

or a submarine is striking. But the first is a cartilaginous fish (Chondrichtyen) orig-

inating in the Devonian (–400 million years), long before the apparition of the first

mammal whose Cetacean descends

Fig. 2.7 Basilosaurus

2.3 What is Genetic Algorithm? 23

Fig. 2.8 Tursiops flipper

Darwinian mechanism hence generate an optimization process, Hydrodynamic

optimization for fishes and others marine animals, aerodynamic for pterodactyls,

birds or bats. This observation is the basis of genetic algorithms.

2.3.4 Evolution and Genetic Algorithms

John Holland, from the University of Michigan began his work on genetic algo-

rithms at the beginning of the 60s. A first achievement was the publication of

Adaptation in Natural and Artificial System in 1975. Holland had a double aim:

to improve the understanding of natural adaptation process, and to design artificial

systems having properties similar to natural systems.

The basic idea is as follows: the genetic pool of a given population potentially

contains the solution, or a better solution, to a given adaptive problem. This solution

is not “active” because the genetic combination on which it relies is split between

several subjects. Only the association of different genomes can lead to the solution.

Simply speaking, we could by example consider that the shortening of the paw

and the extension of the fingers of our basilosaurus are controlled by 2 “genes”.

No subject has such a genome, but during reproduction and crossover, new genetic

combination occur and, finally, a subject can inherit a “good gene” from both parents

: his paw is now a flipper.

Holland method is especially effective because he not only considered the role

of mutation (mutations improve very seldom the algorithms), but he also utilized

genetic recombination, (crossover) : these recombination, the crossover of partial

solutions greatly improve the capability of the algorithm to approach, and eventually

find, the optimum.

Recombination or sexual reproduction is a key operator for natural evolution.

Technically, it takes two genotypes and it produces a new genotype by mixing the

gene found in the originals. In biology, the most common form of recombination is

crossover, two chromosomes are cut at one point and the halves are spliced to create

new chromosomes. The effect of recombination is very important because it allows

characteristics from two different parents to be assorted. If the father and the mother

possess different good qualities, we would expect that all the good qualities will be

passed into the child. Thus the offspring, just by combining all the good features

from its parents, may surpass its ancestors. Many people believe that this mixing

of genetic material via sexual reproduction is one of the most powerful features of

Genetic Algorithms. As a quick parenthesis about sexual reproduction, Genetic Al-

gorithms representation usually does not differentiate male and female individuals

(without any perversity). As in many livings species (e.g., snails) any individual can

24 2 Genetic Algorithms

be either a male or a female. In fact, for almost all recombination operators, mother

and father are interchangeable.

Mutation is the other way to get new genomes. Mutation consists in changing

the value of genes. In natural evolution, mutation mostly engenders non-viable

genomes. Actually mutation is not a very frequent operator in natural evolution.

Nevertheless, is optimization, a few random changes can be a good way of exploring

the search space quickly.

Through those low-level notions of genetic, we have seen how living beings

store their characteristic information and how this information can be passed into

their offspring. It very basic but it is more than enough to understand the Genetic

Algorithm Theory.

Darwin was totally unaware of the biochemical basics of genetics. Now we know

how the genetic inheritable information is coded in DNA, RNA and proteins and that

the coding principles are actually digital much resembling the information storage in

computers. Information processing is in many ways totally different, however. The

magnificent phenomenon called the evolution of species can also give some insight

into information processing methods and optimization in particular. According to

Darwinism, inherited variation is characterized by the following properties:

1. Variation must be copying because selection does not create directly anything,

but presupposes a large population to work on.

2. Variation must be small-scaled in practice. Species do not appear suddenly.

3. Variation is undirected. This is also known as the blind watchmaker paradigm.

While the natural sciences approach to evolution has for over a century been to

analyze and study different aspects of evolution to find the underlying principles,

the engineering sciences are happy to apply evolutionary principles, that have been

heavily tested over billions of years, to attack the most complex technical problems,

including protein folding.

2.4 Conventional Optimization and Search Techniques

The basic principle of optimization is the efficient allocation of scarce resources.

Optimization can be applied to any scientific or engineering discipline. The aim

of optimization is to find an algorithm, which solves a given class of problems.

There exist no specific method, which solves all optimization problems. Consider a

function,

f(x):
[

xl, xu
]

→ [0, 1] : (2.1)

where,

f (x) =

{

1, i f ||x − a|| <∈, ∈> 0

−1, elsewhere

2.4 Conventional Optimization and Search Techniques 25

For the above function, f can be maintained by decreasing € or by making the inter-

val of [xl, xu] large. Thus a difficult task can be made easier. Therefore, one can

solve optimization problems by combining human creativity and the raw processing

power of the computers.

The various conventional optimization and search techniques available are dis-

cussed as follows:

2.4.1 Gradient-Based Local Optimization Method

When the objective function is smooth and one need efficient local optimization, it

is better to use gradient based or Hessian based optimization methods. The perfor-

mance and reliability of the different gradient methods varies considerably.

To discuss gradient-based local optimization, let us assume a smooth objective

function (i.e., continuous first and second derivatives). The objective function is

denoted by,

f(x): Rn → R (2.2)

The first derivatives are contained in the gradient vector ∇ f(x)

∇ f (x) =

⎡

⎢

⎣

∂ f (x)/∂x1

...

∂ f (x)/∂xn

⎤

⎥

⎦
(2.3)

The second derivatives of the objective function are contained in the Hessian matrix

H(x).

H(x) = ∇T ∇ f (x) =

⎛

⎜

⎜

⎜

⎝

∂2 f (x)

∂2x1
· · ·

∂2 f (x)
∂x1∂xn

...
...

∂2 f (x)
∂x1∂xn

· · ·
∂2 f (x)

∂2xn

⎞

⎟

⎟

⎟

⎠

(2.4)

Few methods need only the gradient vector, but in the Newton’s method we need

the Hessian matrix.

The general pseudo code used in gradient methods is as follows:

Select an initial guess value xl and set n=1.

repeat

Solve the search direction pn from (2.5) or (2.6) below.

Determine the next iteration point using (2.7) below:

Xn+1 = Xn + λnPn

Set n=n+1.

Until ||Xn − Xn−1|| <∈

26 2 Genetic Algorithms

These gradient methods search for minimum and not maximum. Several different

methods are obtained based on the details of the algorithm.

The search direction Pn in conjugate gradient method is found as follows:

Pn = −∇ f (Xn) + βn Pn−1 (2.5)

In secant method,

Bn Pn = −∇ f (xn) (2.6)

is used for finding search direction. The matrix Bn in (2.2) estimates the Hessian.

The matrix Bn is updated in each iteration. When Bn is defined as the identity matrix,

the steepest descent method occurs. When the matrix Bn is the Hessian H(xn), we

get the Newton’s method.

The length λn of the search step is computed using:

λn = arg min
λ>0

f (xn + λ Pn) (2.7)

The discussed is a one-dimensional optimization problem.

The steepest descent method provides poor performance. As a result, conjugate

gradient method can be used. If the second derivatives are easy to compute, then

Newton’s method may provide best results. The secant methods are faster than con-

jugate gradient methods, but there occurs memory problems.

Thus these local optimization methods can be combined with other methods to

get a good link between performance and reliability.

2.4.2 Random Search

Random search is an extremely basic method. It only explores the search space by

randomly selecting solutions and evaluates their fitness. This is quite an unintelligent

strategy, and is rarely used by itself. Nevertheless, this method sometimes worth

being tested. It doesn’t take much effort to implement it, and an important number

of evaluations can be done fairly quickly. For new unresolved problems, it can be

useful to compare the results of a more advanced algorithm to those obtained just

with a random search for the same number of evaluations. Nasty surprises might

well appear when comparing for example, genetic algorithms to random search. It’s

good to remember that the efficiency of GA is extremely dependant on consistent

coding and relevant reproduction operators. Building a genetic algorithm, which

performs no more than a random search happens more often than we can expect.

If the reproduction operators are just producing new random solutions without any

concrete links to the ones selected from the last generation, the genetic algorithm is

just doing nothing else that a random search.

2.4 Conventional Optimization and Search Techniques 27

Random search does have a few interesting qualities. However good the obtained

solution may be, if it’s not optimal one, it can be always improved by continuing the

run of the random search algorithm for long enough. A random search never gets

stuck in any point such as a local optimum. Furthermore, theoretically, if the search

space is finite, random search is guaranteed to reach the optimal solution. Unfortu-

nately, this result is completely useless. For most of problems we are interested in,

exploring the whole search space takes far too long an amount of time.

2.4.3 Stochastic Hill Climbing

Efficient methods exist for problems with well-behaved continuous fitness func-

tions. These methods use a kind of gradient to guide the direction of search. Stochas-

tic Hill Climbing is the simplest method of these kinds. Each iteration consists in

choosing randomly a solution in the neighborhood of the current solution and retains

this new solution only if it improves the fitness function. Stochastic Hill Climbing

converges towards the optimal solution if the fitness function of the problem is con-

tinuous and has only one peak (unimodal function).

On functions with many peaks (multimodal functions), the algorithm is likely to

stop on the first peak it finds even if it is not the highest one. Once a peak is reached,

hill climbing cannot progress anymore, and that is problematic when this point is a

local optimum. Stochastic hill climbing usually starts from a random select point.

A simple idea to avoid getting stuck on the first local optimal consists in repeating

several hill climbs each time starting from a different randomly chosen points. This

method is sometimes known as iterated hill climbing. By discovering different local

optimal points, it gives more chance to reach the global optimum. It works well if

there is not too many local optima in the search space. But if the fitness function is

very “noisy” with many small peaks, stochastic hill climbing is definitely not a good

method to use. Nevertheless such methods have the great advantage to be really easy

to implement and to give fairly good solutions very quickly.

2.4.4 Simulated Annealing

Simulated Annealing was originally inspired by formation of crystal in solids during

cooling i.e., the physical cooling phenomenon. As discovered a long time ago by

iron age blacksmiths, the slower the cooling, the more perfect is the crystal formed.

By cooling, complex physical systems naturally converge towards a state of mini-

mal energy. The system moves randomly, but the probability to stay in a particular

configuration depends directly on the energy of the system and on its temperature.

Gibbs law gives this probability formally:

p = e
E

kT (2.8)

28 2 Genetic Algorithms

Where E stands for the energy, k is the Boltzmann constant and T is the temperature.

In the mid 70s, Kirlpatrick by analogy of these physical phenomena laid out the first

description of simulated annealing.

As in the stochastic hill climbing, the iteration of the simulated annealing consists

of randomly choosing a new solution in the neighborhood of the actual solution. If

the fitness function of the new solution is better than the fitness function of the

current one, the new solution is accepted as the new current solution. If the fitness

function is not improved, the new solution is retained with a probability:

p = e
−(f (y)− f ((x)

kT (2.9)

Where f (y) − f (x) is the difference of the fitness function between the new and

the old solution.

The simulated annealing behaves like a hill climbing method but with the pos-

sibility of going downhill to avoid being trapped at local optima. When the tem-

perature is high, the probability of deteriorate the solution is quite important, and

then a lot of large moves are possible to explore the search space. The more the

temperature decreases, the more difficult it is to go downhill, the algorithm tries

to climb up from the current solution to reach a maximum. When temperature is

lower, there is an exploitation of the current solution. If the temperature is too low,

number deterioration is accepted, and the algorithm behaves just like a stochastic hill

climbing method. Usually, the simulated annealing starts from a high temperature,

which decreases exponentially. The slower the cooling, the better it is for finding

good solutions. It even has been demonstrated that with an infinitely slow cooling,

the algorithm is almost certain to find the global optimum. The only point is that

infinitely slow consists in finding the appropriate temperature decrease rate to obtain

a good behavior of the algorithm.

Simulated Annealing by mixing exploration features such as the random search

and exploitation features like hill climbing usually gives quite good results. Simu-

lated Annealing is a serious competitor to Genetic Algorithms. It is worth trying to

compare the results obtained by each. Both are derived from analogy with natural

system evolution and both deal with the same kind of optimization problem. GAs

differs by two main features, which should make them more efficient. First GAs

uses a population-based selection whereas SA only deals with one individual at

each iteration. Hence GAs are expected to cover a much larger landscape of the

search space at each iteration, but on the other hand SA iterations are much more

simple, and so, often much faster. The great advantage of GA is its exceptional

ability to be parallelized, whereas SA does not gain much of this. It is mainly due

to the population scheme use by GA. Secondly, GAs uses recombination operators,

able to mix good characteristics from different solutions. The exploitation made by

recombination operators is supposedly considered helpful to find optimal solutions

of the problem.

On the other hand, simulated annealing are still very simple to implement and

they give good results. They have proved their efficiency over a large spectrum of

difficult problems, like the optimal layout of printed circuit board, or the famous

2.5 A Simple Genetic Algorithm 29

traveling salesman problem. Genetic annealing is developing in the recent years,

which is an attempt to combine genetic algorithms and simulated annealing.

2.4.5 Symbolic Artificial Intelligence (AI)

Most symbolic AI systems are very static. Most of them can usually only solve

one given specific problem, since their architecture was designed for whatever that

specific problem was in the first place. Thus, if the given problem were somehow

to be changed, these systems could have a hard time adapting to them, since the

algorithm that would originally arrive to the solution may be either incorrect or less

efficient. Genetic algorithms (or GA) were created to combat these problems. They

are basically algorithms based on natural biological evolution. The architecture of

systems that implement genetic algorithms (or GA) is more able to adapt to a wide

range of problems.

2.5 A Simple Genetic Algorithm

An algorithm is a series of steps for solving a problem. A genetic algorithm is a

problem solving method that uses genetics as its model of problem solving. It’s a

search technique to find approximate solutions to optimization and search problems.

Basically, an optimization problem looks really simple. One knows the form of

all possible solutions corresponding to a specific question. The set of all the so-

lutions that meet this form constitute the search space. The problem consists in

finding out the solution that fits the best, i.e. the one with the most payoffs, from

all the possible solutions. If it’s possible to quickly enumerate all the solutions, the

problem does not raise much difficulty. But, when the search space becomes large,

enumeration is soon no longer feasible simply because it would take far too much

time. In this it’s needed to use a specific technique to find the optimal solution.

Genetic Algorithms provides one of these methods. Practically they all work in a

similar way, adapting the simple genetics to algorithmic mechanisms.

GA handles a population of possible solutions. Each solution is represented

through a chromosome, which is just an abstract representation. Coding all the

possible solutions into a chromosome is the first part, but certainly not the most

straightforward one of a Genetic Algorithm. A set of reproduction operators has

to be determined, too. Reproduction operators are applied directly on the chro-

mosomes, and are used to perform mutations and recombinations over solutions

of the problem. Appropriate representation and reproduction operators are really

something determinant, as the behavior of the GA is extremely dependant on it.

Frequently, it can be extremely difficult to find a representation, which respects the

structure of the search space and reproduction operators, which are coherent and

relevant according to the properties of the problems.

30 2 Genetic Algorithms

Selection is supposed to be able to compare each individual in the population.

Selection is done by using a fitness function. Each chromosome has an associated

value corresponding to the fitness of the solution it represents. The fitness should

correspond to an evaluation of how good the candidate solution is. The optimal

solution is the one, which maximizes the fitness function. Genetic Algorithms deal

with the problems that maximize the fitness function. But, if the problem consists

in minimizing a cost function, the adaptation is quite easy. Either the cost function

can be transformed into a fitness function, for example by inverting it; or the selec-

tion can be adapted in such way that they consider individuals with low evaluation

functions as better.

Once the reproduction and the fitness function have been properly defined, a

Genetic Algorithm is evolved according to the same basic structure. It starts by

generating an initial population of chromosomes. This first population must offer

a wide diversity of genetic materials. The gene pool should be as large as possible

so that any solution of the search space can be engendered. Generally, the initial

population is generated randomly.

Then, the genetic algorithm loops over an iteration process to make the popula-

tion evolve. Each iteration consists of the following steps:

• SELECTION: The first step consists in selecting individuals for reproduction.

This selection is done randomly with a probability depending on the relative

fitness of the individuals so that best ones are often chosen for reproduction than

poor ones.

• REPRODUCTION: In the second step, offspring are bred by the selected indi-

viduals. For generating new chromosomes, the algorithm can use both recombi-

nation and mutation.

• EVALUATION: Then the fitness of the new chromosomes is evaluated.

• REPLACEMENT: During the last step, individuals from the old population are

killed and replaced by the new ones.

The algorithm is stopped when the population converges toward the optimal solution.

The basic genetic algorithm is as follows:

• [start] Genetic random population of n chromosomes (suitable solutions for the

problem)

• [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

• New population] Create a new population by repeating following steps until the

New population is complete

- [selection] select two parent chromosomes from a population according to

their fitness (the better fitness, the bigger chance to get selected).

- [crossover] With a crossover probability, cross over the parents to form new

offspring (children). If no crossover was performed, offspring is the exact

copy of parents.

- [Mutation] With a mutation probability, mutate new offspring at each locus

(position in chromosome)

- [Accepting] Place new offspring in the new population.

2.5 A Simple Genetic Algorithm 31

• [Replace] Use new generated population for a further sum of the algorithm.

• [Test] If the end condition is satisfied, stop, and return the best solution in current

population.

• [Loop] Go to step2 for fitness evaluation.

The Genetic algorithm process is discussed through the GA cycle in Fig. 2.9

Reproduction is the process by which the genetic material in two or more parent

is combined to obtain one or more offspring. In fitness evaluation step, the indi-

vidual’s quality is assessed. Mutation is performed to one individual to produce a

new version of it where some of the original genetic material has been randomly

changed. Selection process helps to decide which individuals are to be used for

reproduction and mutation in order to produce new search points.

The flowchart showing the process of GA is as shown in Fig. 2.10.

Before implementing GAs it is important to understand few guidelines for de-

signing a general search algorithm i.e. a global optimization algorithm based on

the properties of the fitness landscape and the most common optimization method

types:

1. determinism: A purely deterministic search may have an extremely high variance

in solution quality because it may soon get stuck in worst case situations from

which it is incapable to escape because of its determinism. This can be avoided,

but it is a well-known fact that the observation of the worst-case situation is not

guaranteed to be possible in general.

2. nondeterminism: A stochastic search method usually does not suffer from the

above potential worst case ”wolf trap” phenomenon. It is therefore likely that a

search method should be stochastic, but it may well contain a substantial portion

of determinism, however. In principle it is enough to have as much nondetermin-

ism as to be able to avoid the worst-case wolf traps.

Calculation/
Manipulation

Parents

Decoded String

Reproduction Mate

Offspring

New
generation

Population
(Chromosomes)

Selection

Evaluation
(Fitness
function)

Generic
Operations

Fig. 2.9 Genetic algorithm cycle

32 2 Genetic Algorithms

Yes

Start

Create initial random population

Evaluate fitness for each

population

Store best individual

Creating mating pool

Create next generation by applying

crossover

Optimal or good

solution found?

Reproduce and ignore few

populations

Perform mutation

NoStop

Fig. 2.10 Flowchart of genetic algorithm

3. local determinism: A purely stochastic method is usually quite slow. It is there-

fore reasonable to do as much as possible efficient deterministic predictions of

the most promising directions of (local) proceedings. This is called local hill

climbing or greedy search according to the obvious strategies.

Based on the foregoing discussion, the important criteria for GA approach can be

formulated as given below:

- Completeness: Any solution should have its encoding

- Non redundancy: Codes and solutions should correspond one to one

- Soundness: Any code (produced by genetic operators) should have its corre-

sponding solution

- Characteristic perseverance: Offspring should inherit useful characteristics from

parents.

2.6 Comparison of Genetic Algorithm with OtherOptimization Techniques 33

In short, the basic four steps used in simple Genetic Algorithm to solve a problem

are,

1. The representation of the problem

2. The fitness calculation

3. Various variables and parameters involved in controlling the algorithm

4. The representation of result and the way of terminating the algorithm

2.6 Comparison of Genetic Algorithm with Other

Optimization Techniques

The principle of GAs is simple: imitate genetics and natural selection by a computer

program: The parameters of the problem are coded most naturally as a DNA-like

linear data structure, a vector or a string. Sometimes, when the problem is naturally

two or three-dimensional also corresponding array structures are used.

A set, called population, of these problem dependent parameter value vectors is

processed by GA. To start there is usually a totally random population, the values of

different parameters generated by a random number generator. Typical population

size is from few dozens to thousands. To do optimization we need a cost function or

fitness function as it is usually called when genetic algorithms are used. By a fitness

function we can select the best solution candidates from the population and delete

the not so good specimens.

The nice thing when comparing GAs to other optimization methods is that the

fitness function can be nearly anything that can be evaluated by a computer or even

something that cannot! In the latter case it might be a human judgement that cannot

be stated as a crisp program, like in the case of eyewitness, where a human being

selects among the alternatives generated by GA.

So, there are not any definite mathematical restrictions on the properties of the

fitness function. It may be discrete, multimodal etc.

The main criteria used to classify optimization algorithms are as follows: con-

tinuous / discrete, constrained / unconstrained and sequential / parallel. There is

a clear difference between discrete and continuous problems. Therefore it is in-

structive to notice that continuous methods are sometimes used to solve inherently

discrete problems and vice versa. Parallel algorithms are usually used to speed up

processing. There are, however, some cases in which it is more efficient to run

several processors in parallel rather than sequentially. These cases include among

others such, in which there is high probability of each individual search run to get

stuck into a local extreme.

Irrespective of the above classification, optimization methods can be further clas-

sified into deterministic and non-deterministic methods. In addition optimization

algorithms can be classified as local or global. In terms of energy and entropy local

search corresponds to entropy while global optimization depends essentially on the

fitness i.e. energy landscape.

34 2 Genetic Algorithms

Genetic algorithm differs from conventional optimization techniques in follow-

ing ways:

1. GAs operate with coded versions of the problem parameters rather than param-

eters themselves i.e., GA works with the coding of solution set and not with the

solution itself.

2. Almost all conventional optimization techniques search from a single point but

GAs always operate on a whole population of points(strings) i.e., GA uses popu-

lation of solutions rather than a single solution fro searching. This plays a major

role to the robustness of genetic algorithms. It improves the chance of reaching

the global optimum and also helps in avoiding local stationary point.

3. GA uses fitness function for evaluation rather than derivatives. As a result, they

can be applied to any kind of continuous or discrete optimization problem. The

key point to be performed here is to identify and specify a meaningful decoding

function.

4. GAs use probabilistic transition operates while conventional methods for contin-

uous optimization apply deterministic transition operates i.e., GAs does not use

deterministic rules.

These are the major differences that exist between Genetic Algorithm and conven-

tional optimization techniques.

2.7 Advantages and Limitations of Genetic Algorithm

The advantages of genetic algorithm includes,

1. Parallelism

2. Liability

3. Solution space is wider

4. The fitness landscape is complex

5. Easy to discover global optimum

6. The problem has multi objective function

7. Only uses function evaluations.

8. Easily modified for different problems.

9. Handles noisy functions well.

10. Handles large, poorly understood search spaces easily

11. Good for multi-modal problems Returns a suite of solutions.

12. Very robust to difficulties in the evaluation of the objective function.

13. They require no knowledge or gradient information about the response surface

14. Discontinuities present on the response surface have little effect on overall opti-

mization performance

15. They are resistant to becoming trapped in local optima

2.8 Applications of Genetic Algorithm 35

16. They perform very well for large-scale optimization problems

17. Can be employed for a wide variety of optimization problems

The limitation of genetic algorithm includes,

1. The problem of identifying fitness function

2. Definition of representation for the problem

3. Premature convergence occurs

4. The problem of choosing the various parameters like the size of the population,

mutation rate, cross over rate, the selection method and its strength.

5. Cannot use gradients.

6. Cannot easily incorporate problem specific information

7. Not good at identifying local optima

8. No effective terminator.

9. Not effective for smooth unimodal functions

10. Needs to be coupled with a local search technique.

11. Have trouble finding the exact global optimum

12. Require large number of response (fitness) function evaluations

13. Configuration is not straightforward

2.8 Applications of Genetic Algorithm

Genetic algorithms have been used for difficult problems (such as NP-hard prob-

lems), for machine learning and also for evolving simple programs. They have been

also used for some art, for evolving pictures and music. A few applications of GA

are as follows:

• Nonlinear dynamical systems–predicting, data analysis

• Robot trajectory planning

• Evolving LISP programs (genetic programming)

• Strategy planning

• Finding shape of protein molecules

• TSP and sequence scheduling

• Functions for creating images

• Control–gas pipeline, pole balancing, missile evasion, pursuit

• Design–semiconductor layout, aircraft design, keyboard configuration, commu-

nication networks

• Scheduling–manufacturing, facility scheduling, resource allocation

• Machine Learning–Designing neural networks, both architecture and weights,

improving classification algorithms, classifier systems

• Signal Processing–filter design

• Combinatorial Optimization–set covering, traveling salesman (TSP), Sequence

scheduling, routing, bin packing, graph coloring and partitioning

36 2 Genetic Algorithms

2.9 Summary

Genetic algorithms are original systems based on the supposed functioning of the

Living. The method is very different from classical optimization algorithms.

1. Use of the encoding of the parameters, not the parameters themselves.

2. Work on a population of points, not a unique one.

3. Use the only values of the function to optimize, not their derived function or

other auxiliary knowledge.

4. Use probabilistic transition function not determinist ones.

It’s important to understand that the functioning of such an algorithm does not guar-

antee success. The problem is in a stochastic system and a genetic pool may be too

far from the solution, or for example, a too fast convergence may halt the process

of evolution. These algorithms are nevertheless extremely efficient, and are used

in fields as diverse as stock exchange, production scheduling or programming of

assembly robots in the automotive industry.

GAs can even be faster in finding global maxima than conventional methods, in

particular when derivatives provide misleading information. It should be noted that

in most cases where conventional methods can be applied, GAs are much slower

because they do not take auxiliary information like derivatives into account. In these

optimization problems, there is no need to apply a GA, which gives less accurate

solutions after much longer computation time. The enormous potential of GAs lies

elsewhere—in optimization of non-differentiable or even discontinuous functions,

discrete optimization, and program induction.

It has been claimed that via the operations of selection, crossover, and mutation

the GA will converge over successive generations towards the global (or near global)

optimum. This simple operation should produces a fast, useful and robust technique

largely because of the fact that GAs combine direction and chance in the search in an

effective and efficient manner. Since population implicitly contain much more infor-

mation than simply the individual fitness scores, GAs combine the good information

hidden in a solution with good information from another solution to produce new

solutions with good information inherited from both parents, inevitably (hopefully)

leading towards optimality.

The ability of the algorithm to explore and exploit simultaneously, a growing

amount of theoretical justification, and successful application to real-world prob-

lems strengthens the conclusion that GAs are a powerful, robust optimization tech-

nique.

Review Questions

1. Brief the origin of Genetic Algorithm.

2. Give a suitable example for the Genetic Algorithm principle “Survival of the

fittest”.

2.9 Summary 37

3. Discuss in detail about the biological process of natural evolution.

4. Compare the terminologies of natural evolution and Genetic Algorithm.

5. Define: Search space.

6. Describe about various conventional optimization and search techniques.

7. Write short note on simple Genetic Algorithm.

8. Compare and contrast Genetic Algorithm with other optimization techniques.

9. State few advantages and disadvantages of Genetic Algorithm.

10. Mention certain applications of Genetic Algorithm.

Chapter 3

Terminologies and Operators of GA

3.1 Introduction

Genetic Algorithm uses a metaphor where an optimization problem takes the place
of an environment and feasible solutions are considered as individuals living in that
environment. In genetic algorithms, individuals are binary digits or of some other
set of symbols drawn from a finite set. As computer memory is made up of array of
bits, anything can be stored in a computer and can also be encoded by a bit string of
sufficient length. Each of the encoded individual in the population can be viewed as
a representation, according to an appropriate encoding of a particular solution to the
problem. For Genetic Algorithms to find a best optimum solution, it is necessary to
perform certain operations over these individuals. This chapter discusses the basic
terminologies and operators used in Genetic Algorithms to achieve a good enough
solution for possible terminating conditions.

3.2 Key Elements

The two distinct elements in the GA are individuals and populations. An individual
is a single solution while the population is the set of individuals currently involved
in the search process.

3.3 Individuals

An individual is a single solution. Individual groups together two forms of solutions
as given below:

1. The chromosome, which is the raw ‘genetic’ information (genotype) that the GA
deals.

2. The phenotype, which is the expressive of the chromosome in the terms of the
model.

39

40 3 Terminologies and Operators of GA

Solution set Phenotype

Factor 1 Factor 2 Factor 3 …………. Factor N

Gene 1 Gene 2 Gene 3 …………. Gene N

Chromosome Genotype

Fig. 3.1 Representation of Genotype and phenotype

Fig. 3.2 Representation of a
chromosome

1 0 1 0 1 0 1 1 1 0 1 0 1 1 0

A chromosome is subdivided into genes. A gene is the GA’s representation of a
single factor for a control factor. Each factor in the solution set corresponds to gene
in the chromosome. Figure 3.1 shows the representation of a genotype.

A chromosome should in some way contain information about solution that it
represents. The morphogenesis function associates each genotype with its pheno-
type. It simply means that each chromosome must define one unique solution, but
it does not mean that each solution encoded by exactly one chromosome. Indeed,
the morphogenesis function is not necessary bijective, and it is even sometimes
impossible (especially with binary representation). Nevertheless, the morphogen-
esis function should at least be subjective. Indeed; all the candidate solutions of
the problem must correspond to at least one possible chromosome, to be sure
that the whole search space can be explored. When the morphogenesis function
that associates each chromosome to one solution is not injective, i.e., different
chromosomes can encode the same solution, the representation is said to be de-
generated. A slight degeneracy is not so worrying, even if the space where the
algorithm is looking for the optimal solution is inevitably enlarged. But a too
important degeneracy could be a more serious problem. It can badly affect the
behavior of the GA, mostly because if several chromosomes can represent the
same phenotype, the meaning of each gene will obviously not correspond to a
specific characteristic of the solution. It may add some kind of confusion in the
search.

Chromosomes are encoded by bit strings are given below in Fig. 3.2,

3.4 Genes

Genes are the basic “instructions” for building a Generic Algorithms. A chromo-
some is a sequence of genes. Genes may describe a possible solution to a problem,
without actually being the solution. A gene is a bit string of arbitrary lengths. The
bit string is a binary representation of number of intervals from a lower bound. A
gene is the GA’s representation of a single factor value for a control factor, where
control factor must have an upper bound and lower bound. This range can be divided

3.6 Populations 41

Fig. 3.3 Representation
of a gene

1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1

Gene 1 Gene 2 Gene 3 Gene 4

into the number of intervals that can be expressed by the gene’s bit string. A bit
string of length ‘n’ can represent (2n-1) intervals. The size of the interval would be
(range)/(2n-1).

The structure of each gene is defined in a record of phenotyping parameters.
The phenotype parameters are instructions for mapping between genotype and phe-
notype. It can also be said as encoding a solution set into a chromosome and de-
coding a chromosome to a solution set. The mapping between genotype and phe-
notype is necessary to convert solution sets from the model into a form that the
GA can work with, and for converting new individuals from the GA into a form
that the model can evaluate. In a chromosome, the genes are represented as in
(Fig. 3.3):

3.5 Fitness

The fitness of an individual in a genetic algorithm is the value of an objective
function for its phenotype. For calculating fitness, the chromosome has to be first
decoded and the objective function has to be evaluated. The fitness not only indicates
how good the solution is, but also corresponds to how close the chromosome is to
the optimal one.

In the case of multicriterion optimization, the fitness function is definitely more
difficult to determine. In multicriterion optimization problems, there is often a
dilemma as how to determine if one solution is better than another. What should
be done if a solution is better for one criterion but worse for another? But here, the
trouble comes more from the definition of a ‘better’ solution rather than from how to
implement a GA to resolve it. If sometimes a fitness function obtained by a simple
combination of the different criteria can give good result, it suppose that criterions
can be combined in a consistent way. But, for more advanced problems, it may be
useful to consider something like Pareto optimally or others ideas from multicriteria
optimization theory.

3.6 Populations

A population is a collection of individuals. A population consists of a number of in-
dividuals being tested, the phenotype parameters defining the individuals and some
information about search space. The two important aspects of population used in
Genetic Algorithms are:

1. The initial population generation.
2. The population size.

42 3 Terminologies and Operators of GA

Fig. 3.4 Population Chromosome 1 1 1 1 0 0 0 1 0

Chromosome 2 0 1 1 1 1 0 1 1

Chromosome 3 1 0 1 0 1 0 1 0

Population

Chromosome 4 1 1 0 0 1 1 0 0

For each and every problem, the population size will depend on the complexity of
the problem. It is often a random initialization of population is carried. In the case of
a binary coded chromosome this means, that each bit is initialized to a random zero
or one. But there may be instances where the initialization of population is carried
out with some known good solutions.

Ideally, the first population should have a gene pool as large as possible in order
to be able to explore the whole search space. All the different possible alleles of
each should be present in the population. To achieve this, the initial population is,
in most of the cases, chosen randomly. Nevertheless, sometimes a kind of heuristic
can be used to seed the initial population. Thus, the mean fitness of the population is
already high and it may help the genetic algorithm to find good solutions faster. But
for doing this one should be sure that the gene pool is still large enough. Otherwise,
if the population badly lacks diversity, the algorithm will just explore a small part of
the search space and never find global optimal solutions.

The size of the population raises few problems too. The larger the population
is, the easier it is to explore the search space. But it has established that the time
required by a GA to converge is O (nlogn) function evaluations where n is the
population size. We say that the population has converged when all the individ-
uals are very much alike and further improvement may only be possibly by mu-
tation. Goldberg has also shown that GA efficiency to reach global optimum in-
stead of local ones is largely determined by the size of the population. To sum
up, a large population is quite useful. But it requires much more computational
cost, memory and time. Practically, a population size of around 100 individuals
is quite frequent, but anyway this size can be changed according to the time and
the memory disposed on the machine compared to the quality of the result to be
reached.

Population being combination of various chromosomes is represented as in
Fig. 3.4

Thus the above population consists of four chromosomes.

3.7 Data Structures

The main data structures in GA are chromosomes, phenotypes, objective func-
tion values and fitness values. This is particularly easy implemented when using
MATLAB package as a numerical tool. An entire chromosome population can be
stored in a single array given the number of individuals and the length of their
genotype representation. Similarly, the design variables, or phenotypes that are

3.9 Encoding 43

obtained by applying some mapping from the chromosome representation into the
design space can be stored in a single array. The actual mapping depends upon
the decoding scheme used. The objective function values can be scalar or vecto-
rial and are necessarily the same as the fitness values. Fitness values are derived
from the object function using scaling or ranking function and can be stored as
vectors.

3.8 Search Strategies

The search process consists of initializing the population and then breeding new
individuals until the termination condition is met. There can be several goals for the
search process, one of which is to find the global optima. This can never be assured
with the types of models that GAs work with. There is always a possibility that
the next iteration in the search would produce a better solution. In some cases, the
search process could run for years and does not produce any better solution than it
did in the first little iteration.

Another goal is faster convergence. When the objective function is expensive to
run, faster convergence is desirable, however, the chance of converging on local, and
possibly quite substandard optima is increased.

Apart from these, yet another goal is to produce a range of diverse, but still
good solutions. When the solution space contains several distinct optima, which
are similar in fitness, it is useful to be able to select between them, since some
combinations of factor values in the model may be more feasible than others. Also,
some solutions may be more robust than others.

3.9 Encoding

Encoding is a process of representing individual genes. The process can be per-
formed using bits, numbers, trees, arrays, lists or any other objects. The encoding
depends mainly on solving the problem. For example, one can encode directly real
or integer numbers.

3.9.1 Binary Encoding

The most common way of encoding is a binary string, which would be represented
as in Fig. 3.5

Each chromosome encodes a binary (bit) string. Each bit in the string can rep-
resent some characteristics of the solution. Every bit string therefore is a solution
but not necessarily the best solution. Another possibility is that the whole string

44 3 Terminologies and Operators of GA

Fig. 3.5 Binary encoding Chromosome 1 1 1 0 1 0 0 0 1 1 0 1 0

Chromosome 2 0 1 1 1 1 1 1 1 1 1 0 0

can represent a number. The way bit strings can code differs from problem to
problem.

Binary encoding gives many possible chromosomes with a smaller number of
alleles. On the other hand this encoding is not natural for many problems and some-
times corrections must be made after genetic operation is completed. Binary coded
strings with 1s and 0s are mostly used. The length of the string depends on the
accuracy.

In this,

• Integers are represented exactly
• Finite number of real numbers can be represented
• Number of real numbers represented increases with string length

3.9.2 Octal Encoding

This encoding uses string made up of octal numbers (0–7).

Chromosome 1 03467216

Chromosome 2 15723314

Fig. 3.6 Octal encoding

3.9.3 Hexadecimal Encoding

This encoding uses string made up of hexadecimal numbers (0–9, A–F).

Chromosome 1 9CE7

Chromosome 2 3DBA

Fig. 3.7 Hexadecimal encoding

3.9.4 Permutation Encoding (Real Number Coding)

Every chromosome is a string of numbers, which represents the number in sequence.
Sometimes corrections have to be done after genetic operation is completed. In

3.9 Encoding 45

permutation encoding, every chromosome is a string of integer/real values, which
represents number in a sequence.

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

Fig. 3.8 Permutation encoding

Permutation encoding is only useful for ordering problems. Even for this prob-
lems for some types of crossover and mutation corrections must be made to leave
the chromosome consistent (i.e., have real sequence in it).

3.9.5 Value Encoding

Every chromosome is a string of values and the values can be anything connected
to the problem. This encoding produces best results for some special problems. On
the other hand, it is often necessary to develop new genetic operator’s specific to the
problem. Direct value encoding can be used in problems, where some complicated
values, such as real numbers, are used. Use of binary encoding for this type of
problems would be very difficult.

In value encoding, every chromosome is a string of some values. Values can
be anything connected to problem, form numbers, real numbers or chars to some
complicated objects.

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

Fig. 3.9 Value encoding

Value encoding is very good for some special problems. On the other hand, for
this encoding is often necessary to develop some new crossover and mutation spe-
cific for the problem.

3.9.6 Tree Encoding

This encoding is mainly used for evolving program expressions for genetic program-
ming. Every chromosome is a tree of some objects such as functions and commands
of a programming language.

46 3 Terminologies and Operators of GA

3.10 Breeding

The breeding process is the heart of the genetic algorithm. It is in this process, the
search process creates new and hopefully fitter individuals.

The breeding cycle consists of three steps:

a. Selecting parents.

b. Crossing the parents to create new individuals (offspring or children).

c. Replacing old individuals in the population with the new ones.

3.10.1 Selection

Selection is the process of choosing two parents from the population for crossing.
After deciding on an encoding, the next step is to decide how to perform selection
i.e., how to choose individuals in the population that will create offspring for the
next generation and how many offspring each will create. The purpose of selection
is to emphasize fitter individuals in the population in hopes that their off springs have
higher fitness. Chromosomes are selected from the initial population to be parents
for reproduction. The problem is how to select these chromosomes. According to
Darwin’s theory of evolution the best ones survive to create new offspring.

The Fig. 3.10 shows the basic selection process.
Selection is a method that randomly picks chromosomes out of the population

according to their evaluation function. The higher the fitness function, the more
chance an individual has to be selected. The selection pressure is defined as the de-
gree to which the better individuals are favored. The higher the selection pressured,
the more the better individuals are favored. This selection pressure drives the GA to
improve the population fitness over the successive generations.

The convergence rate of GA is largely determined by the magnitude of the selec-
tion pressure, with higher selection pressures resulting in higher convergence rates.

Mating
Pool

The two best
individuals

New
Population

Fig. 3.10 Selection

3.10 Breeding 47

Genetic Algorithms should be able to identify optimal or nearly optimal solutions
under a wise range of selection scheme pressure. However, if the selection pressure
is too low, the convergence rate will be slow, and the GA will take unnecessarily
longer time to find the optimal solution. If the selection pressure is too high, there is
an increased change of the GA prematurely converging to an incorrect (sub-optimal)
solution. In addition to providing selection pressure, selection schemes should also
preserve population diversity, as this helps to avoid premature convergence.

Typically we can distinguish two types of selection scheme, proportionate selec-
tion and ordinal-based selection. Proportionate-based selection picks out individuals
based upon their fitness values relative to the fitness of the other individuals in the
population. Ordinal-based selection schemes selects individuals not upon their raw
fitness, but upon their rank within the population. This requires that the selection
pressure is independent of the fitness distribution of the population, and is solely
based upon the relative ordering (ranking) of the population.

It is also possible to use a scaling function to redistribute the fitness range of the
population in order to adapt the selection pressure. For example, if all the solutions
have their fitness in the range [999, 1000], the probability of selecting a better indi-
vidual than any other using a proportionate-based method will not be important. If
the fitness in every individual is brought to the range [0, 1] equitably, the probability
of selecting good individual instead of bad one will be important.

Selection has to be balanced with variation form crossover and mutation. Too
strong selection means sub optimal highly fit individuals will take over the popula-
tion, reducing the diversity needed for change and progress; too weak selection will
result in too slow evolution. The various selection methods are discussed as follows:

3.10.1.1 Roulette Wheel Selection

Roulette selection is one of the traditional GA selection techniques. The commonly
used reproduction operator is the proportionate reproductive operator where a string
is selected from the mating pool with a probability proportional to the fitness. The
principle of roulette selection is a linear search through a roulette wheel with the
slots in the wheel weighted in proportion to the individual’s fitness values. A target
value is set, which is a random proportion of the sum of the fit nesses in the popula-
tion. The population is stepped through until the target value is reached. This is only
a moderately strong selection technique, since fit individuals are not guaranteed to
be selected for, but somewhat have a greater chance. A fit individual will contribute
more to the target value, but if it does not exceed it, the next chromosome in line
has a chance, and it may be weak. It is essential that the population not be sorted by
fitness, since this would dramatically bias the selection.

The above described Roulette process can also be explained as follows: The ex-
pected value of an individual is that fitness divided by the actual fitness of the popu-
lation. Each individual is assigned a slice of the roulette wheel, the size of the slice
being proportional to the individual’s fitness. The wheel is spun N times, where N is
the number of individuals in the population. On each spin, the individual under the
wheel’s marker is selected to be in the pool of parents for the next generation.

48 3 Terminologies and Operators of GA

This method is implemented as follows:

1. Sum the total expected value of the individuals in the population. Let it be T.
2. Repeat N times:

i. Choose a random integer ‘r’ between o and T.
ii. Loop through the individuals in the population, summing the expected values,

until the sum is greater than or equal to ‘r’. The individual whose expected value
puts the sum over this limit is the one selected.

Roulette wheel selection is easier to implement but is noisy. The rate of evolution
depends on the variance of fitness’s in the population.

3.10.1.2 Random Selection

This technique randomly selects a parent from the population. In terms of disrup-
tion of genetic codes, random selection is a little more disruptive, on average, than
roulette wheel selection.

3.10.1.3 Rank Selection

The Roulette wheel will have a problem when the fitness values differ very much.
If the best chromosome fitness is 90%, its circumference occupies 90% of Roulette
wheel, and then other chromosomes have too few chances to be selected. Rank Se-
lection ranks the population and every chromosome receives fitness from the rank-
ing. The worst has fitness 1 and the best has fitness N. It results in slow convergence
but prevents too quick convergence. It also keeps up selection pressure when the
fitness variance is low. It preserves diversity and hence leads to a successful search.
In effect, potential parents are selected and a tournament is held to decide which of
the individuals will be the parent. There are many ways this can be achieved and
two suggestions are,

1. Select a pair of individuals at random. Generate a random number, R, between
0 and 1. If R < r use the first individual as a parent. If the R>=r then use the
second individual as the parent. This is repeated to select the second parent. The
value of r is a parameter to this method.

2. Select two individuals at random. The individual with the highest evaluation be-
comes the parent. Repeat to find a second parent.

3.10.1.4 Tournament Selection

An ideal selection strategy should be such that it is able to adjust its selective pres-
sure and population diversity so as to fine-tune GA search performance. Unlike,
the Roulette wheel selection, the tournament selection strategy provides selective
pressure by holding a tournament competition among Nu individuals.

3.10 Breeding 49

The best individual from the tournament is the one with the highest fitness, which
is the winner of Nu. Tournament competitions and the winner are then inserted into
the mating pool. The tournament competition is repeated until the mating pool for
generating new offspring is filled. The mating pool comprising of the tournament
winner has higher average population fitness. The fitness difference provides the
selection pressure, which drives GA to improve the fitness of the succeeding genes.
This method is more efficient and leads to an optimal solution.

3.10.1.5 Boltzmann Selection

Simulation annealing is a method of function minimization or maximization. This
method simulates the process of slow cooling of molten metal to achieve the mini-
mum function value in a minimization problem. Controlling a temperature like pa-
rameter introduced with the concept of Boltzmann probability distribution simulates
the cooling phenomenon.

In Boltzmann selection a continuously varying temperature controls the rate of
selection according to a preset schedule. The temperature starts out high, which
means the selection pressure is low. The temperature is gradually lowered, which
gradually increases the selection pressure, thereby allowing the GA to narrow in
more closely to the best part of the search space while maintaining the appropriate
degree of diversity.

A logarithmically decreasing temperature is found useful for convergence with-
out getting stuck to a local minima state. But to cool down the system to the equi-
librium state takes time.

Let fmax be the fitness of the currently available best string. If the next string has
fitness f(Xi) such that f(Xi)>fmax, then the new string is selected. Otherwise it is
selected with Boltz Mann probability,

P = exp[−(fmax-f(Xi))/T] (3.1)

Where T = To(1-α)k and k = (1 + 100∗g/G); g is the current generation number;
G, the maximum value of g. The value of α can be chosen from the range [0, 1] and
To from the range [5, 100]. The final state is reached when computation approaches
zero value of T, i.e., the global solution is achieved at this point.

The probability that the best string is selected and introduced into the mating
pool is very high. However, Elitism can be used to eliminate the chance of any
undesired loss of information during the mutation stage. Moreover, the execution
time is less.

Elitism

The first best chromosome or the few best chromosomes are copied to the new popu-
lation. The rest is done in a classical way. Such individuals can be lost if they are not
selected to reproduce or if crossover or mutation destroys them. This significantly
improves the GA’s performance.

50 3 Terminologies and Operators of GA

3.10.1.6 Stochastic Universal Sampling

Stochastic universal sampling provides zero bias and minimum spread. The indi-
viduals are mapped to contiguous segments of a line, such that each individual’s
segment is equal in size to its fitness exactly as in roulette-wheel selection. Here
equally spaced pointers are placed over the line, as many as there are individuals to
be selected. Consider NPointer the number of individuals to be selected, then the
distance between the pointers are 1/NPointer and the position of the first pointer is
given by a randomly generated number in the range [0, 1/NPointer].

For 6 individuals to be selected, the distance between the pointers is 1/6 = 0.167.
Figure 3.11 shows the selection for the above example.

Sample of 1 random number in the range [0, 0.167]: 0.1.
After selection the mating population consists of the individuals,

1, 2, 3, 4, 6, 8.

Stochastic universal sampling ensures a selection of offspring, which is closer to
what is deserved than roulette wheel selection.

3.10.2 Crossover (Recombination)

Crossover is the process of taking two parent solutions and producing from them
a child. After the selection (reproduction) process, the population is enriched with
better individuals. Reproduction makes clones of good strings but does not create
new ones. Crossover operator is applied to the mating pool with the hope that it
creates a better offspring.

Crossover is a recombination operator that proceeds in three steps:

i. The reproduction operator selects at random a pair of two individual strings for
the mating.

ii. A cross site is selected at random along the string length.
iii. Finally, the position values are swapped between the two strings following the

cross site.

Fig. 3.11 Stochastic universal sampling

3.10 Breeding 51

That is, the simplest way how to do that is to choose randomly some crossover point
and copy everything before this point from the first parent and then copy everything
after the crossover point from the other parent. The various crossover techniques are
discussed as follows:

3.10.2.1 Single Point Crossover

The traditional genetic algorithm uses single point crossover, where the two mating
chromosomes are cut once at corresponding points and the sections after the cuts ex-
changed. Here, a cross-site or crossover point is selected randomly along the length
of the mated strings and bits next to the cross-sites are exchanged. If appropriate site
is chosen, better children can be obtained by combining good parents else it severely
hampers string quality.

The above Fig. 3.12 illustrates single point crossover and it can be observed that
the bits next to the crossover point are exchanged to produce children. The crossover
point can be chosen randomly.

3.10.2.2 Two Point Crossover

Apart from single point crossover, many different crossover algorithms have been
devised, often involving more than one cut point. It should be noted that adding fur-
ther crossover points reduces the performance of the GA. The problem with adding
additional crossover points is that building blocks are more likely to be disrupted.
However, an advantage of having more crossover points is that the problem space
may be searched more thoroughly.

In two-point crossover, two crossover points are chosen and the contents between
these points are exchanged between two mated parents.

Fig. 3.12 Single point
crossover

Parent 1 1 0 1 1 0 0 1 0

Parent 2 1 0 1 0 1 1 1 1

Child 1 1 0 1 1 0 1 1 1

Child 2 1 0 1 0 1 0 1 0

52 3 Terminologies and Operators of GA

Fig. 3.13 Two-point
Crossover Parent 1 1 1 0 1 1 0 1 0

Parent 2 0 1 1 0 1 1 0 0

Child 1 1 1 0 0 1 1 1 0

Child 2 0 1 1 1 1 0 0 0

In the above Fig. 3.13 the dotted lines indicate the crossover points. Thus the
contents between these points are exchanged between the parents to produce new
children for mating in the next generation.

Originally, GAs were using one-point crossover which cuts two chromosomes
in one point and splices the two halves to create new ones. But with this one-point
crossover, the head and the tail of one chromosome cannot be passed together to
the offspring. If both the head and the tail of a chromosome contain good genetic
information, none of the offsprings obtained directly with one-point crossover will
share the two good features. Using a 2-point crossover avoids this drawback, and
then, is generally considered better than 1-point crossover. In fact this problem can
be generalized to each gene position in a chromosome. Genes that are close on
a chromosome have more chance to be passed together to the offspring obtained
through a N-points crossover. It leads to an unwanted correlation between genes
next to each other. Consequently, the efficiency of a N-point crossover will depend
on the position of the genes within the chromosome. In a genetic representation,
genes that encode dependant characteristics of the solution should be close together.
To avoid all the problem of genes locus, a good thing is to use a uniform crossover
as recombination operator.

3.10.2.3 Multi-Point Crossover (N-Point crossover)

There are two ways in this crossover. One is even number of cross-sites and the other
odd number of cross-sites. In the case of even number of cross-sites, cross-sites
are selected randomly around a circle and information is exchanged. In the case of
odd number of cross-sites, a different cross-point is always assumed at the string
beginning.

3.10.2.4 Uniform Crossover

Uniform crossover is quite different from the N-point crossover. Each gene in the
offspring is created by copying the corresponding gene from one or the other parent

3.10 Breeding 53

chosen according to a random generated binary crossover mask of the same length
as the chromosomes. Where there is a 1 in the crossover mask, the gene is copied
from the first parent, and where there is a 0 in the mask the gene is copied from
the second parent. A new crossover mask is randomly generated for each pair of
parents. Offsprings, therefore contain a mixture of genes from each parent. The
number of effective crossing point is not fixed, but will average L/2 (where L is the
chromosome length).

In Fig. 3.14, new children are produced using uniform crossover approach. It can
be noticed, that while producing child 1, when there is a 1 in the mask, the gene is
copied from the parent 1 else from the parent 2. On producing child 2, when there
is a 1 in the mask, the gene is copied from parent 2, when there is a 0 in the mask;
the gene is copied from the parent 1.

3.10.2.5 Three Parent Crossover

In this crossover technique, three parents are randomly chosen. Each bit of the first
parent is compared with the bit of the second parent. If both are the same, the bit
is taken for the offspring otherwise; the bit from the third parent is taken for the
offspring. This concept is illustrated in Fig. 3.15.

3.10.2.6 Crossover with Reduced Surrogate

The reduced surrogate operator constrains crossover to always produce new individ-
uals wherever possible. This is implemented by restricting the location of crossover
points such that crossover points only occur where gene values differ.

3.10.2.7 Shuffle Crossover

Shuffle crossover is related to uniform crossover. A single crossover position (as in
single-point crossover) is selected. But before the variables are exchanged, they
are randomly shuffled in both parents. After recombination, the variables in the
offspring are unshuffled. This removes positional bias as the variables are randomly
reassigned each time crossover is performed.

Fig. 3.14 Uniform crossover

Parent 1 1 0 1 1 0 0 1 1

Parent 2 0 0 0 1 1 0 1 0

Mask 1 1 0 1 0 1 1 0

Child 1 1 0 0 1 1 0 1 0

Child 2 0 0 1 1 0 0 1 1

54 3 Terminologies and Operators of GA

Fig. 3.15 Three parent
crossover

Parent 1 1 1 0 1 0 0 0 1

Parent 2 0 1 1 0 1 0 0 1

Parent 3 0 1 1 0 1 1 0 0

Child 0 1 1 0 1 0 0 1

3.10.2.8 Precedence Preservative Crossover (PPX)

PPX was independently developed for vehicle routing problems by Blanton and
Wainwright (1993) and for scheduling problems by Bierwirth et al. (1996). The
operator passes on precedence relations of operations given in two parental permu-
tations to one offspring at the same rate, while no new precedence relations are intro-
duced. PPX is illustrated in below, for a problem consisting of six operations A–F.

The operator works as follows:

• A vector of length Sigma, sub i=1to mi, representing the number of operations
involved in the problem, is randomly filled with elements of the set {1, 2}.

• This vector defines the order in which the operations are successively drawn from
parent 1 and parent 2.

• We can also consider the parent and offspring permutations as lists, for which the
operations ‘append’ and ‘delete’ are defined.

• First we start by initializing an empty offspring.
• The leftmost operation in one of the two parents is selected in accordance with

the order of parents given in the vector.
• After an operation is selected it is deleted in both parents.
• Finally the selected operation is appended to the offspring.
• This step is repeated until both parents are empty and the offspring contains all

operations involved.
• Note that PPX does not work in a uniform-crossover manner due to the ‘deletion-

append’ scheme used. Example is shown in Fig. 3.16.

3.10.2.9 Ordered Crossover

Ordered two-point crossover is used when the problem is of order based, for ex-
ample in U-shaped assembly line balancing etc. Given two parent chromosomes,
two random crossover points are selected partitioning them into a left, middle and
right portion. The ordered two-point crossover behaves in the following way: child 1
inherits its left and right section from parent 1, and its middle section is determined

Fig. 3.16 Precedence
Preservative Crossover (PPX)

Parent permutation 1 A B C D E F
Parent permutation 2 C A B F D E

Select parent no. (1/2) 1 2 1 1 2 2
Offspring permutation A C B D F E

3.10 Breeding 55

Fig. 3.17 Ordered crossover Parent 1 : 4 2 | 1 3 | 6 5 Child 1 : 4 2 | 3 1 | 6 5
Parent 2 : 2 3 | 1 4 | 5 6 Child 2 : 2 3 | 4 1 | 5 6

by the genes in the middle section of parent 1 in the order in which the values
appear in parent 2. A similar process is applied to determine child 2. This is shown
in Fig. 3.17

3.10.2.10 Partially Matched Crossover (PMX)

PMX can be applied usefully in the TSP. Indeed, TSP chromosomes are simply
sequences of integers, where each integer represents a different city and the order
represents the time at which a city is visited. Under this representation, known as
permutation encoding, we are only interested in labels and not alleles. It may be
viewed as a crossover of permutations that guarantees that all positions are found ex-
actly once in each offspring, i.e. both offspring receive a full complement of genes,
followed by the corresponding filling in of alleles from their parents.

PMX proceeds as follows:

1. The two chromosomes are aligned.
2. Two crossing sites are selected uniformly at random along the strings, defining a

matching section

• The matching section is used to effect a cross through position-by-position ex-
change operation

• Alleles are moved to their new positions in the offspring
• The following illustrates how PMX works.
• Consider the two strings shown in Fig. 3.18
• Where, the dots mark the selected cross points.
• The matching section defines the position-wise exchanges that must take place in

both parents to produce the offspring.
• The exchanges are read from the matching section of one chromosome to that of

the other.
• In the example, the numbers that exchange places are 5 and 2, 6 and 3, and 7

and 10.
• The resulting offspring are as shown in Fig. 3.19

PMX is dealt in detail in next chapter.

Fig. 3.18 Strings given
Name 9 8 4 . 5 6 7 . 1 3 2 1 0 Allele 1 0 1 . 0 0 1 . 1 1 0 0
Name 8 7 1 . 2 3 1 0 . 9 5 4 6 Allele 1 1 1 . 0 1 1 . 1 1 0 1

56 3 Terminologies and Operators of GA

Fig. 3.19 Partially matched
crossover

Name 9 8 4 . 2 3 1 0 . 1 6 5 7 Allele 1 0 1 . 0 1 0 . 1 0 0 1
Name 8 1 0 1 . 5 6 7 . 9 2 4 3 Allele 1 1 1 . 1 1 1 . 1 0 0 1

3.10.2.11 Crossover Probability

The basic parameter in crossover technique is the crossover probability (Pc).
Crossover probability is a parameter to describe how often crossover will be per-
formed. If there is no crossover, offspring are exact copies of parents. If there is
crossover, offspring are made from parts of both parent’s chromosome. If crossover
probability is 100%, then all offspring are made by crossover. If it is 0%, whole new
generation is made from exact copies of chromosomes from old population (but this
does not mean that the new generation is the same!). Crossover is made in hope
that new chromosomes will contain good parts of old chromosomes and therefore
the new chromosomes will be better. However, it is good to leave some part of old
population survive to next generation.

3.10.3 Mutation

After crossover, the strings are subjected to mutation. Mutation prevents the algo-
rithm to be trapped in a local minimum. Mutation plays the role of recovering the
lost genetic materials as well as for randomly disturbing genetic information. It
is an insurance policy against the irreversible loss of genetic material. Mutation
has traditionally considered as a simple search operator. If crossover is supposed to
exploit the current solution to find better ones, mutation is supposed to help for the
exploration of the whole search space. Mutation is viewed as a background operator
to maintain genetic diversity in the population. It introduces new genetic structures
in the population by randomly modifying some of its building blocks. Mutation
helps escape from local minima’s trap and maintains diversity in the population. It
also keeps the gene pool well stocked, and thus ensuring ergodicity. A search space
is said to be ergodic if there is a non-zero probability of generating any solution
from any population state.

There are many different forms of mutation for the different kinds of representa-
tion. For binary representation, a simple mutation can consist in inverting the value
of each gene with a small probability. The probability is usually taken about 1/L,
where L is the length of the chromosome. It is also possible to implement kind of
hill-climbing mutation operators that do mutation only if it improves the quality
of the solution. Such an operator can accelerate the search. But care should be
taken, because it might also reduce the diversity in the population and makes the
algorithm converge toward some local optima. Mutation of a bit involves flipping a
bit, changing 0 to 1 and vice-versa.

3.10 Breeding 57

3.10.3.1 Flipping

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation chromo-
some generated.

The Fig. 3.20 explains mutation-flipping concept. A parent is considered and a
mutation chromosome is randomly generated. For a 1 in mutation chromosome, the
corresponding bit in parent chromosome is flipped (0 to 1 and 1 to 0) and child
chromosome is produced. In the above case, there occurs 1 at 3 places of mutation
chromosome, the corresponding bits in parent chromosome are flipped and child is
generated.

3.10.3.2 Interchanging

Two random positions of the string are chosen and the bits corresponding to those
positions are interchanged. This is shown in Fig. 3.21.

3.10.3.3 Reversing

A random position is chosen and the bits next to that position are reversed and child
chromosome is produced. This is shown in Fig. 3.22.

3.10.3.4 Mutation Probability

The important parameter in the mutation technique is the mutation probability (Pm).
The mutation probability decides how often parts of chromosome will be mutated.
If there is no mutation, offspring are generated immediately after crossover (or di-
rectly copied) without any change. If mutation is performed, one or more parts of
a chromosome are changed. If mutation probability is 100%, whole chromosome is
changed, if it is 0%, nothing is changed. Mutation generally prevents the GA from
falling into local extremes. Mutation should not occur very often, because then GA
will in fact change to random search.

3.10.4 Replacement

Replacement is the last stage of any breeding cycle. Two parents are drawn from
a fixed size population, they breed two children, but not all four can return to the

Fig. 3.20 Mutation Flipping

Parent 1 0 1 1 0 1 0 1

Mutation chromosome 1 0 0 0 1 0 0 1

Child 0 0 1 1 1 1 0 0

58 3 Terminologies and Operators of GA

Fig. 3.21 Interchanging Parent 1 0 1 1 0 1 0 1

Child 1 1 1 1 0 0 0 1

population, so two must be replaced i.e., once off springs are produced, a method
must determine which of the current members of the population, if any, should be
replaced by the new solutions. The technique used to decide which individual stay
in a population and which are replaced in on a par with the selection in influencing
convergence. Basically, there are two kinds of methods for maintaining the popula-
tion; generational updates and steady state updates.

The basic generational update scheme consists in producing N children from a
population of size N to form the population at the next time step (generation), and
this new population of children completely replaces the parent selection. Clearly
this kind of update implies that an individual can only reproduce with individuals
from the same generation. Derived forms of generational update are also used like
(λ + µ)-update and (λ, µ)-update. This time from a parent population of size µ,
a little of children is produced of size λ ≥ µ. Then the µ best individuals from
either the offspring population or the combined parent and offspring populations
(for (λ, µ)- and (λ + µ)-update respectively), form the next generation.

In a steady state update, new individuals are inserted in the population as soon as
they are created, as opposed to the generational update where an entire new genera-
tion is produced at each time step. The insertion of a new individual usually neces-
sitates the replacement of another population member. The individual to be deleted
can be chosen as the worst member of the population. (it leads to a very strong
selection pressure), or as the oldest member of the population, but those method
are quite radical: Generally steady state updates use an ordinal based method for
both the selection and the replacement, usually a tournament method. Tournament
replacement is exactly analogous to tournament selection except the less good so-
lutions are picked more often than the good ones. A subtile alternative is to replace
the most similar member in the existing population.

3.10.4.1 Random Replacement

The children replace two randomly chosen individuals in the population. The par-
ents are also candidates for selection. This can be useful for continuing the search
in small populations, since weak individuals can be introduced into the population.

Fig. 3.22 Reversing
Parent 1 0 1 1 0 1 0 1

Child 1 0 1 1 0 1 1 0

3.11 Search Termination (Convergence Criteria) 59

3.10.4.2 Weak Parent Replacement

In weak parent replacement, a weaker parent is replaced by a strong child. With the
four individuals only the fittest two, parent or child, return to population. This pro-
cess improves the overall fitness of the population when paired with a selection tech-
nique that selects both fit and weak parents for crossing, but if weak individuals and
discriminated against in selection the opportunity will never raise to replace them.

3.10.4.3 Both Parents

Both parents replacement is simple. The child replaces the parent. In this case, each
individual only gets to breed once. As a result, the population and genetic material
moves around but leads to a problem when combined with a selection technique that
strongly favors fit parents: the fit breed and then are disposed of.

3.11 Search Termination (Convergence Criteria)

In short, the various stopping condition are listed as follows:

• Maximum generations–The genetic algorithm stops when the specified number
of generation’s have evolved.

• Elapsed time–The genetic process will end when a specified time has elapsed.
Note: If the maximum number of generation has been reached before the speci-
fied time has elapsed, the process will end.

• No change in fitness–The genetic process will end if there is no change to the
population’s best fitness for a specified number of generations.
Note: If the maximum number of generation has been reached before the speci-
fied number of generation with no changes has been reached, the process will end.

• Stall generations–The algorithm stops if there is no improvement in the objec-
tive function for a sequence of consecutive generations of length Stall genera-

tions.
• Stall time limit–The algorithm stops if there is no improvement in the objective

function during an interval of time in seconds equal to Stall time limit.

The termination or convergence criterion finally brings the search to a halt. The
following are the few methods of termination techniques.

3.11.1 Best Individual

A best individual convergence criterion stops the search once the minimum fitness
in the population drops below the convergence value. This brings the search to a
faster conclusion guaranteeing at least one good solution.

60 3 Terminologies and Operators of GA

3.11.2 Worst individual

Worst individual terminates the search when the least fit individuals in the pop-
ulation have fitness less than the convergence criteria. This guarantees the entire
population to be of minimum standard, although the best individual may not be
significantly better than the worst. In this case, a stringent convergence value may
never be met, in which case the search will terminate after the maximum has been
exceeded.

3.11.3 Sum of Fitness

In this termination scheme, the search is considered to have satisfaction converged
when the sum of the fitness in the entire population is less than or equal to the
convergence value in the population record. This guarantees that virtually all in-
dividuals in the population will be within a particular fitness range, although it is
better to pair this convergence criteria with weakest gene replacement, otherwise a
few unfit individuals in the population will blow out the fitness sum. The population
size has to be considered while setting the convergence value.

3.11.4 Median Fitness

Here at least half of the individuals will be better than or equal to the convergence
value, which should give a good range of solutions to choose from.

3.12 Why do Genetic Algorithms Work?

The search heuristics of GA are based upon Holland’s scheme theorem. A schema is
defined as templates for describing a subset of chromosomes with similar sections.
The schemata consist of bits 0, 1 and meta-character. The template is a suitable way
of describing similarities among Patterns in the chromosomes Holland derived an
expression that predicts the number of copies of a particular schema would have
in the next generation after undergoing exploitation, crossover and mutation. It
should be noted that particularly good schemata will propagate in future genera-
tions. Thus, schema that are low-order, well defined and have above average fitness
are preferred and are termed building blocks. This leads to a building block princi-
ple of GA: low order, well-defined, average fitness schemata will combine through
crossover to form high order, above average fitness schemata. Since GAs process
may schemata in a given generation they are said to have the property of implicit
parallelism.

3.12 Why do Genetic Algorithms Work? 61

3.12.1 Building Block Hypothesis

Schemata with high fitness values and small defining are called Building Blocks.
A genetic algorithm seeks near-optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called the building blocks.

The building block hypothesis is one of the most important criteria of “how a
genetic algorithm works”. The building block hypothesis is said by Goldberg’s book
as: “A genetic algorithm achieves high performance through the juxtaposition of
short, low order, highly fit schemata, or building blocks”.

The meaning of “highly fit schemata” is not completely clear. The most obvi-
ous interpretation is that a schema is highly fit if its average fitness considerably
higher than the average fitness of all strings in the search space. This version of the
building block hypothesis might be called the “static building block hypothesis”.
Under this interpretation, it is easy to give “counterexamples” to the building block
hypothesis.

For example, suppose that the string length is 100 and that the defining length
and the order of the schema is 10. Then the schema will contain 290 points. First,
suppose that every string in the schema except one has relatively low fitness. The
single point has very high fitness so that the average schema fitness relative to the
search space is high. Then any randomly chosen finite population is highly likely to
never see the high fitness point, and so the schema will be very likely to disappear
in a few generations. Similarly, one can choose most points to have high fitness,
with a few points having sufficiently low fitness that the schema fitness relative
to the whole population is low. Then of course, this low-fitness schema will prob-
ably grow and may lead to a good solution. It is easy to construct less extreme
examples.

Another interpretation is that a schema is highly fit if the average fitness of the
schema representatives in the populations of the GA run is higher than the average
fitness of all individuals in these populations. This might be called the “relative
building block hypothesis”.

The meaning of the building block hypothesis can be illustrated by considering
the “concatenated trap functions” fitness functions that Goldberg has used as test
problems.

For each trap function, the all-zeros string is a global optimum. The schemata
that correspond to these strings are the building blocks. For example, suppose that
we concatenate 5 trap functions where each trap function has string length 4 (so
that the total string length ‘ is 20). Then the building blocks are the schemata
000****************, ****0000************, etc. If the population size is suf-
ficiently large, then the initial population will contain strings that are in the building
block schemata, but it is unlikely for a string to be in very many building block
schemata. If the population size is large enough, the GA with one-point crossover
will be able to find the global optimum.

If the building block hypothesis is a good explanation of why a GA works on a
particular problem, then this suggests that crossover should be designed so that it
will not be too disruptive of building blocks, but it needs to be present in order to

62 3 Terminologies and Operators of GA

combine building blocks. Thus, knowledge of the configuration of potential building
blocks is important in the design of the appropriate crossover. If the building blocks
tend to be contiguous on the string, then one-point crossover is most appropriate.
If building blocks are distributed arbitrarily over the string, the GA will not be
successful unless the building blocks are identified, either before running the GA
or as part of running the GA.

3.12.2 A Macro-Mutation Hypothesis

This is an alternative hypothesis to explain how GAs work. Under this hypothesis,
the function of crossover is “macromutation”. Macromutation is mutation of many
bits rather than just 1 or 2 as is most likely under standard bitwise mutation. The
macrosmutation operator that would be similar to one-point or two-point crossover
would be to pick a contiguous sequence of positions and then to replace them with
a random string. For example, suppose that this kind of macromutation is applied to
string x. One choose a contiguous segment of x as shown in the example below. One
can choose a random string y of the length of that segment, and replace the segment
by the random string y. The result is z.

x : 01110101 1101010101 10100100111

y : 0111001110

z : 01110101 0111001110 10100100111

In this case it was found that on a limited number of problems without well-defined
building blocks, a macormutational hill-climber did as well as the corresponding
GA. The macro mutational hill-climber did not need to use a population.

3.12.3 An Adaptive Mutation Hypothesis

In fact, GA has been almost always developed with much regard for the result and
with little regard to elegance, proof, or other mathematical niceties. Nevertheless,
several hypotheses have been put forward to explain results obtained by GAs.

An adaptive mutation hypothesis is that where crossover in a GA serves as a
mutation mechanism that is automatically adapted to the stage of convergence of
the population. Crossover produces new individuals in the same region as the current
population. Thus, as the population “converges” into a smaller region of the search
space, crossover produces new individuals within this region. Thus, crossover can
be considered as an adaptive mutation method that reduces the strength of mutation
as the run progresses.

Unlike the above hypothesis explanation of how a GA works, this explanation
does make use of a population, but not through the building block hypothesis. If
this is the more correct explanation of why a GA works on some problem, then this

3.12 Why do Genetic Algorithms Work? 63

suggests that the GA designer does not need to be so concerned about designing
a crossover that will preserve building blocks. Thus, it would seem to suggest the
use of a fairly disruptive crossover such as uniform crossover along with a strong
selection method, such as a steady-state GA with both selection and worst-element
deletion.

There are two GA versions that more or less follow this outline. One is the
UMDA, or Uniform Marginal Distribution Algorithm. This algorithm does not do
conventional crossover. Instead, it does something called gene pool recombination,
which is a form of a multi-parent recombination. Given a population, it first does a
selection method on that population. It computes the order-1 schema proportions for
the population after selection. Then it selects individuals for the next generation pop-
ulation using only those schema averages. Each bit of each individual for the next
generation is selected independently using the schema proportions as probabilities.
For example, suppose that the schema proportions for the schema 1********** and
0********** are 7 = 10 and 3 = 10 respectively. (They must add to 2.) Then when
we select the leftmost bit of a new individual, the probability of a one bit is 7 = 10,
and the probability of a zero bit is 3 = 10. Each bit is selected independently of the
other bits using the corresponding schema proportions. The UMDA works well on
many problems, but it does not work well on the concatenated trap fitness functions.
It does not appear that the building block hypothesis is a good explanation for how
UMDA works.

Another is CHC, which uses HUX, which is like uniform crossover, except that
exactly half of the alleles where the parents differ come from each parent. It also
uses truncation selection on the union of the parent and child populations—a very
strong selection method. It has an incest-prevention method. When the population
“converges” or stagnates, a partial reinitialization is done as follows. The best indi-
vidual found so far is used as a template for new individuals. Each new individual
is created by flipping a fixed proportion (e.g., 35%) of the template’s bits. The best
individual is also copied into the new population. The CHC algorithm has performed
well in practice, and it seems unlikely that the building block hypothesis can be an
explanation for the success of CHC.

3.12.4 The Schema Theorem

A schema is a similarity template describing a subset of string displaying similarities
at certain string positions. It is formed by the ternary alphabet {0.1,∗ }, where ∗ is
simply a notation symbol, that allows the description of all possible similarities
among strings of a particular length and alphabet. In general, there are 21 different
strings or chromosome of length 1, but schemata display an order of 31. A par-
ticular string of length 1 inside a population of ‘n’ individuals into one of the 21

schemata can be obtained from this string. Thus, in the entire population the number
of schemata present in each generation is somewhere between 21 and n.21, depend-
ing upon the population diversity. J. Holland estimated that in a population of ‘n’

64 3 Terminologies and Operators of GA

chromosomes, the Gas process O(n3) schemata into each generation. This is called
as implicit parallel process.

A schema represents an affined variety of the search space: for example the
schema 01**11*0 is a sub-space of the space of codes of 8 bits length (∗ can be
0 or 1).

The GA modeled in schema theory is a canonical GA, which acts on binary
strings, and for which the creation of a new generation is based on three operators:

– A proportionate selection, where the fitness function steps in: the probability that
a solution of the current population is selected and is proportional to its fitness.

– The genetic operators: single point crossover and bit-flip mutation, randomly ap-
plied with probabilities pc and pm.

Schemata represent global information about the fitness function. A GA works
on a population of N codes, and implicitly uses information on a certain number of
schemata. The basic ‘schema theorem’ presented below is based on the observation
that the evaluation of a single code makes it possible to deduce some knowledge
about the schemata to which that code belongs.
Theorem :(Schema Theorem (Holland))

The Schema Theorem is called as “The Fundamental Theorem of Genetic
Algorithm”.

For a given schema H, let:

– m (H, t) be the relative frequency of the schema H in the population of the tth

generation.
– f(H) be the mean fitness of the elements of H.
– O(H) be the number of fixed bits in the schema H, called the order of the schema.
– δ(H) be distance between the first and the last fixed bit of the schema, called the

definition length of the schema.
– f̄ is the mean fitness of the current population.
– Pc is the crossover probability.
– Pm is the mutation probability.

Then,

E [m(H, t + 1)] ≥ m(H, t)
f(H)

f̄

[

1 − Pc
δ(H)

1-1
− O(H)Pm

]

(3.2)

Based on qualitative view, the above formula means that the “good” schemata,
having a short definition length and a low order, tend to grow very rapidly in the
population. These particular schemata are called building blocks.

The application of schema theorem is as follows:

i. It provides some tools to check whether a given representation is well-suited
to a GA.

3.12 Why do Genetic Algorithms Work? 65

ii. The analysis of nature of the “good” schemata gives few ideas on the efficiency
of genetic algorithm.

3.12.5 Optimal Allocation of Trials

The Schema Theorem has provided the insight that building blocks receive expo-
nentially increasing trials in future generations. This leads to an important and well-
analyzed problem from statistical decision theory—the two-armed bandit problem
and its generalization, the k-armed bandit problem.

Consider a gambling machine with two slots for coins and two arms. The gambler
can deposit the coin either into the left or the right slot. After pulling the correspond-
ing arm, either a reward is payed or the coin is lost. For mathematical simplicity,
working only with outcomes, i.e. the difference between the reward (which can be
zero) and the value of the coin. Let us assume that the left arm produces an outcome
with mean value µ1 and a variance σ2

1 while the right arm produces an outcome with

mean value µ2 and variance σ2
2. Without loss of generality, although the gambler

does not know this, assume that µ1 ≥ µ2.
The question arises which arm should be played. Since it is not known before-

hand which arm is associated with the higher outcome, one is we are faced with an
interesting dilemma. Not only one must make a sequence of decisions, which arm
to play, he have to collect, at the same time, information about which is the better
arm. This trade-off between exploration of knowledge and its exploitation is the key
issue in this problem and, as turns out later, in genetic algorithms, too.

A simple approach to this problem is to separate exploration from exploitation.
More specifically, it is possible to perform a single experiment at the beginning and
thereafter make an irreversible decision that depends on the results of the experi-
ment. Suppose we have N coins. If we first allocate an equal number n (where 2n ≤
N) of trials to both arms, we could allocate the remaining N–2n trials to the observed
better arm. Assuming we know all involved parameters, the expected loss is given as,

L(N, n) = (µ1 − µ2) · ((N − n)q(n) + n(1 − q(n))) (3.3)

where q(n) is the probability that the worst arm is the observed best arm after the 2n
experimental trials. The underlying idea is obvious: In case that we observe that the
worse arm is the best, which happens with probability q(n), the total number of trials
allocated to the right arm is N–n. The loss is, therefore, (µ1 − µ2) · (N − n). In the
reverse case that we actually observe that the best arm is the best, which happens
with probability 1-q(n), the loss is only what we get less because we played the
worse arm n times, i.e. (µ1 − µ2) · n. Taking the central limit theorem into account,
we can approximate q(n) with the tail of a normal distribution:

q(n) ≈
1

√
2π

·
c−e2/2

c
, where c =

µ1 − µ2
√

σ 2
1 + σ 2

2

·
√

n (3.4)

66 3 Terminologies and Operators of GA

p Now we have to specify a reasonable experiment size n. Obviously, if we choose
n = 1, the obtained information is potentially unreliable. If we choose, however, n
= N 2 there are no trials left to make use of the information gained through the
experimental phase. What we see is again the trade-off between exploitation with
almost no exploration (n = 1) and exploration without exploitation (n = N/2). It
does not take a Nobel price winner to see that the optimal way is somewhere in the
middle. Holland has studied this problem is very detail. He came to the conclusion
that the optimal strategy is given by the following equation:

n∗ ≈ b2 ln

(

N2

8πb4 ln N2

)

, where b =
σ1

µ1 − µ2
. (3.5)

Making a few transformations, we obtain that

N − n∗ ≈
√

8πb4 ln N2 · e<001>, (3.6)

That is the optimal strategy is to allocate slightly more than an exponentially in-
creasing number of trials to the observed best arm. Although no gambler is able to
apply this strategy in practice, because it requires knowledge of the mean values µ1
and µ2, we still have found an important bound of performance a decision strategy
should try to approach.

A genetic algorithm, although the direct connection is not yet fully clear, actu-
ally comes close to this ideal, giving at least an exponentially increasing number
trials to the observed best building blocks. However, one may still wonder how the
two-armed bandit problem and GAs are related. Let us consider an arbitrary string
position. Then there are two schemata of order one, which have their only specifica-
tion in this position. According to the Schema Theorem, the GA implicitly decides
between these two schemata, where only incomplete data are available (observed
average fitness values). In this sense, a GA solves a lot of two-armed problems in
parallel.

The Schema Theorem, however, is not restricted to schemata with an order of
2. Looking at competing schemata (different schemata which are specified in the
same positions), we observe that a GA is solving an enormous number of k-armed
bandit problems in parallel. The k-armed bandit problem, although much more com-
plicated, is solved in an analogous way—the observed better alternatives should
receive an exponentially increasing number of trials.

3.12.6 Implicit Parallelism

J. Holland analyzed that in a population of ‘n’ chromosomes, the Gas process O(n3)

schemata’s into each generation. He termed it as “Implicit parallel process” and is
as shown in Fig. 3.23.

Even though at each generation one performs a proportional computation to the
size of the population n, we obtain useful processing of n3 schemata’s in parallel

3.12 Why do Genetic Algorithms Work? 67

with memory other than the population itself. At present, the common interpreta-
tion is that a GA processes an enormous amount of schemata implicitly. This is
accomplished by exploiting the currently available, incomplete information about
these schemata continuously, while trying to explore more information about them
and other, possibly better schemata.

This remarkable property is commonly called the implicit parallelism of genetic
algorithms. A simple GA has only m structures in one time step, without any mem-
ory or bookkeeping about the previous generations. We will now try to get a feeling
how many schemata a GA actually processes.

Obviously, there are 3n schemata of length n. A single binary string ful-fills n

schema of order 1,

(

n

2

)

schemata of order 2, in general,

(

n

k

)

schemata of order k.

Hence, a string fulfills

n
∑

k=1

(

n

k

)

= 2n (3.7)

‘n’ initial

chromosomes

Processing

‘n’

chromosomes

‘n’ final

chromosomes

Real Process

‘n3’ initial

chromosomes

Processing

‘n3’

chromosomes

‘n3’ final

chromosomes

Implicit Parallel Process

Fig. 3.23 Implicit parallel process

68 3 Terminologies and Operators of GA

Theorem. Consider a randomly generated start population of a simple GA and let
ε ∈ (0, 1) be a fixed error bound. Then schemata of length

Is < ε.(n − 1) + 1 (3.8)

have a probability of at least 1 − ε to survive one-point crossover (compare with the
proof of the Schema Theorem). If the population size is chosen as m = 2l

s/2, the
number of schemata, which survive for the next generation, is of order O(m3).

3.12.7 The No Free Lunch Theorem

The No Free Lunch work is a framework that addresses the core aspects of search,
focusing on the connection between fitness functions and effective search algo-
rithms. The central importance of this connection is demonstrated by the No Free
Lunch theorem, which states that, averaged over all problems, all search algorithms
perform equally. This result implies that if we are comparing a genetic algorithm
to some other algorithm (e.g., simulated annealing, or even random search) and
the genetic algorithm to some other algorithm (e.g., simulated annealing, or even
random search) performs better for some class of problems, then the other algo-
rithm necessarily performs better on problems outside the class. Thus it is essential
to incorporate knowledge of the problem into the search algorithm. The No Free
Lunch framework also does the following:

• it provides a geometric interpretation of what it means for an algorithm to be well
matched to a problem;

• it brings insights provided by information theory into the search procedure;
• it investigates time-varying fitness functions;
• it proves that independent of the fitness function, one cannot (without prior do-

main knowledge) successfully choose between two algorithms based on their
previous behavior;

• it provides a number of formal measures of how well an algorithm performs; and
• it addresses the difficulty of optimization problems from a viewpoint outside of

traditional computational complexity.

3.13 Solution Evaluation

At the end of the search genetic algorithm displays the final population with their
fitnesses, from which it is possible to select a solution and write it back to the sys-
tem for further generations. In certain systems it is not always practical to declare
all the necessary parameters after the search, or perhaps some factors were simply
overlooked. Thus once if a solution is obtained, it has to be evaluated for all its
various parameters under consideration, which includes fitnesses, median fitness,
best individual, maximum fitness and so on.

3.15 Constraints 69

3.14 Search Refinement

Search parameters like selection, crossover and replacement, which are very effec-
tive in the early stages of a search, may not necessarily be the best toward the end of
the search. During early search it is desirable to get good spread of points through
the solution space in order to find at least the beginning of the various optima. Once
the population starts converging on optima it night be better to exercise more strin-
gent selection and replacement to completely cover that region of space.

Alternatively, refinement can also be made in the domain and resolution of the
individual genes. A large range and a coarse resolution early in the search will help
scatter the points. After certain time period, it may become apparent that few parts of
space yield very poor results. Then it would be appropriate to limit the gene ranges
and increase the resolution to finely search the better regions. It is possible for the
GA to monitor its performance and make alterations to the search parameters when
the rate of convergence of fitness values has slowed or after a preset number of gen-
erations. A poor looking region in the search space may also contain undiscovered
optima.

Sensitivity of solutions is also important in the case where it may not be possible
to implement a solution accurately. Two unique solutions may have comparable fit
nesses with no undesirable effects; however, one may reside on very steep optima
while the other may lie on a broad mound. It may be observed that the solution on
the broad mound will be less sensitive to errors in implementation than the one that
is steep sided, where even a small deviation results in varying fitness.

3.15 Constraints

If the genetic algorithm that is dealt consists of only objective function and no in-
formation about the specifications of variable, then it is called unconstrained opti-
mization problem. Consider, an unconstrained optimization problem of the form,

Minimize f(x) = x2 (3.9)

and there is no information about ‘x’ range. Genetic algorithm minimizes this func-
tion using its operators in random specifications.

In case of constrained optimization problems, the information’s are provided for
the variables under consideration. Constraints are classified as,

1. Equality relations.
2. Inequality relations.

A genetic algorithm generates a sequence of parameters to be tested using the sys-
tem under consideration, objective function (to be maximized or minimized) and
the constraints. On running the system, the objective function is evaluated and con-
straints are checked to see if there are any violations. If there are no violations, the
parameter set is assigned the fitness value corresponding to the objective function

70 3 Terminologies and Operators of GA

evaluation. When the constraints are violated, the solution is infeasible and thus has
no fitness. Many practical problems are constrained and it is very difficult to find
a feasible point that is best. As a result, one should get some information out of
infeasible solutions, irrespective of their fitness ranking in relation to the degree of
constraint violation. This is performed in penalty method.

Penalty method is that where a constrained optimization problem is transformed
to an unconstrained optimization problem by associating a penalty or cost with all
constraint violations. This penalty is included in the objective function evaluation.

Consider the original constrained problem in maximization form:

Maximize f(x) Subject to gi(x) ≥ 0 i = 1, 2, 3,n (3.10)

where x is a k vector.
Transforming this to unconstrained form:

Maximize f(x) + p.

n
∑

i=1

Φ
[

gi(x)
]

(3.11)

where Φ–penalty function
p–Penalty coefficient
There exist several alternatives for this penalty function. The penalty function

can be squared for all violated constraints. In certain situations, the unconstrained
solution converges to the constrained solution as the penalty coefficient p tends to
infinity.

3.16 Fitness Scaling

Fitness scaling is performed in order to avoid premature convergence and slow
finishing. The various types of fitness scaling are:

1. Linear scaling
2. σ–Truncation
3. Power law.

3.16.1 Linear Scaling

Consider,

f–Unscaled raw fitness
f’–Fitness after scaling

f’ = af + b (3.12)

3.16 Fitness Scaling 71

• In order that the average member gets selection the average of fitness after scaling
shall be equal to average of fitness before scaling.

fav’ = fav (3.13)

• Inorder not to allow dominance by super individuals the number of copies as-
signed to them is controlled by taking,

f’max = C ∗ fav’ (3.14)

C is the number of copies of highly fit individuals.
Case-1

Initially C is chosen any desired value,

If fmin >
(C f av − f max)

C − 1
, then

a =
f av(C − 1)

f max − f av

b =
f max −C f av) f av

f max − f av

else

a =
f av

f av − f min

b =
− f av f min

f av − f min
and

c =
f max − f min

f av − f min

Case-2

For the entire run, we take C = 2
If fmin > (2fav-fmin), then

a =
f av

f max − f av

b =
− f av f min

f max − f av

3.16.2 Sigma Truncation

Linear scaling give negative scaling fitness unless special steps are taken as ex-
plained above. Negative scaled fitness results at matured runs due to one or two
very weak members (low fitness values).

72 3 Terminologies and Operators of GA

“σ–Truncation” discards such off the average members. Linear scaling is then
applied to the remaining members.

f” = f − (fav-Cσ) if RHS > 0 = 0, otherwise. (3.15)

After this linear scaling is applied without the danger of negative fitness.

f’ = af” + b (3.16)

3.16.3 Power Law Scaling

In power law scaling, the scaled fitness is given by,

Scaled fitness f’ = fk(raw fitness f) (3.17)

K–problem dependent constant. 1.005
Roulette wheel method is adopted after then. The minimum raw fitness (objective

function) is subtracted from the raw fitness to obtain the reproductive new fitness
roulette wheel method is applied to the new fitness.

3.17 Example Problems

3.17.1 Maximizing a Function

Consider the problem of maximizing the function,

f(x) = x2 (3.18)

where x is permitted to vary between 0 to 31. The steps involved in solving this
problem are as follows:
Step 1: For using genetic algorithms approach, one must first code the decision
variable ‘x’ into a finite length string. Using a five bit (binary integer) unsigned
integer, numbers between 0(00000) and 31(11111) can be obtained.

The objective function here is f(x) = x2 which is to be maximized. A single gen-
eration of a genetic algorithm is performed here with encoding, selection, crossover
and mutation.

To start with, select initial population at random. Here initial population of size
4 is chosen, but any number of populations can be elected based on the requirement
and application. Table 3.1 shows an initial population randomly selected.
Step 2: Obtain the decoded x values for the initial population generated. Consider
string 1,

3.17 Example Problems 73

Table 3.1 Selection

String No.

Initial popu-
lation
(randomly
selected) x value

Fitness
value
f(x) = x2 Probi

Percentage
probability

Expected
count

Actual
count

1
2
3
4

01100
11001
00101
10011

12
25

5
19

144
625

25
361

0.1247
0.5411
0.0216
0.3126

12.47%
54.11%
2.16%
31.26%

0.4987
2.1645
0.0866
1.2502

1
2
0
1

Sum
average
maximum

1155
288.75
625

1.0000
0.2500
0.5411

100%
25%
54.11%

4.0000
1.0000
2.1645

4
1
2

01100 =0∗24 + 1∗23 + 1∗22 + 0∗21 + 0∗20

= 0 + 8 + 4 + 0 + 0

= 12

Thus for all the four strings the decoded values are obtained.
Step 3: Calculate the fitness or objective function. This is obtained by simply squar-
ing the ‘x’ value, since the given function is f(x) = x2.
When, x = 12, the fitness value is,

f(x) = x2 = (12)2 = 144

for x = 25, f(x) = x2 = (25)2 = 625
and so on, until the entire population is computed
Step 4: Compute the probability of selection,

Probi =
f(x)i

n
∑

i=1
f(x)i

(3.19)

where n- no of populations
f(x)- fitness value corresponding to a particular individual in the population
Σf(x)- Summation of all the fitness value of the entire population.
Considering string 1,

Fitness f(x) = 144

Σf(x) = 1155

The probability that string 1 occurs is given by,

P1 = 144/1155 = 0.1247

The percentage probability is obtained as,

74 3 Terminologies and Operators of GA

0.1247∗100 = 12.47%

The same operation is done for all the strings. It should be noted that, summation of
probability select is 1.
Step 5: The next step is to calculate the expected count, which is calculated as,

Expected count =
f(x)i

(Avgf(x))i
(3.20)

where (Avg f(x))i=

⎡

⎣

n
∑

i=1
f(x)i

n

⎤

⎦

For string 1,

Expected count = Fitness/Average = 144/288.75 = 0.4987

Computing the expected count for the entire population. The expected count gives
an idea of which population can be selected for further processing in the mating
pool.
Step 6: Now the actual count is to be obtained to select the individuals, which would
participate in the crossover cycle using Roulette wheel selection. The Roulette wheel
is formed as shown in Fig. 3.24.
Roulette wheel is of 100% and the probability of selection as calculated in step4 for
the entire populations are used as indicators to fit into the Roulette wheel. Now the
wheel may be spun and the no of occurrences of population is noted to get actual
count.

String 1 occupies 12.47%, so there is a chance for it to occur at least once. Hence
its actual count may be 1.

With string 2 occupying 54.11% of the Roulette wheel, it has a fair chance of
being selected twice. Thus its actual count can be considered as 2.

On the other hand, string 3 has the least probability percentage of 2.16%, so their
occurrence for next cycle is very poor. As a result, it actual count is 0.

String 4 with 31.26% has at least one chance for occurring while Roulette wheel
is spun, thus its actual count is 1.

The above values of actual count are tabulated as shown is Table 3.1

Fig. 3.24 Selection using
Roulette wheel

12.47%

1

2

3

4

54.11%

31.26%

2.16%

3.17 Example Problems 75

Table 3.2 Crossover

String No. Mating pool Crossover point

Offspring after

crossover x value

Fitness value

f(x) = x2

1

2

2

4

0 1 1 0 0

1 1 0 0 1

1 1 0 0 1

1 0 0 1 1

4

4

2

2

0 1 1 0 1

1 1 0 0 0

1 1 0 1 1

1 0 0 0 1

13

24

27

17

169

576

729

289

Sum

average

maximum

1763

440.75

729

Step 7: Now, writing the mating pool based upon the actual count as shown in
Table 3.2

The actual count of string no 1 is 1, hence it occurs once in the mating pool. The
actual count of string no 2 is 2, hence it occurs twice in the mating pool. Since the
actual count of string no 3 is 0, it does not occur in the mating pool. Similarly, the
actual count of string no 4 being 1, it occurs once in the mating pool. Based on this,
the mating pool is formed.
Step 8: Crossover operation is performed to produce new offspring (children).

The crossover point is specified and based on the crossover point, single point
crossover is performed and new offspring is produced. The parents are,

 Parent 1 0 1 1 0 0

 Parent 2 1 1 0 0 1

The offspring is produced as,

 Offspring 1 0 1 1 0 1

 Offspring 2 1 1 0 0 0

In a similar manner, crossover is performed for the next strings.
Step 9: After crossover operations, new off springs are produced and ‘x’ values are
decodes and fitness is calculated.
Step 10: In this step, mutation operation is performed to produce new off springs
after crossover operation. As discussed in Sect. 3.10.3.1 mutation-flipping operation
is performed and new off springs are produced. Table 3.3 shows the new offspring
after mutation.

Once the off springs are obtained after mutation, they are decoded to x value and
find fitness values are computed.

This completes one generation. The mutation is performed on a bit-bit by basis.
The crossover probability and mutation probability was assumed to 1.0 and 0.001
respectively. Once selection, crossover and mutation are performed, the new pop-
ulation is now ready to be tested. This is performed by decoding the new strings
created by the simple genetic algorithm after mutation and calculates the fitness

76 3 Terminologies and Operators of GA

Table 3.3 Mutation

String No.
Offspring after

crossover

Mutation
chromosomes

for flipping

Offspring
after
Mutation X value

Fitness value

F(x) = x2

1
2
2
4

0 1 1 0 1
1 1 0 0 0
1 1 0 1 1
1 0 0 0 1

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

1 1 1 0 1
1 1 0 0 0
1 1 0 1 1
1 0 1 0 0

29
24
27
20

841
576
729
400

Sum
average
maximum

2546
636.5
841

function values from the x values thus decoded. The results for successive cycles of
simulation are shown in Tables 3.1–3.3

From the tables, it can be observed how genetic algorithms combine high-
performance notions to achieve better performance. In the tables, it can be noted
how maximal and average performance has improved in the new population. The
population average fitness has improved from 288.75 to 636.5 in one generation.
The maximum fitness has increased from 625 to 841 during same period. Although
random processes make this best solution, its improvement can also be seen succes-
sively. The best string of the initial population (1 1 0 0 1) receives two chances for
its existence because of its high, above-average performance. When this combines
at random with the next highest string (1 0 0 1 1) and is crossed at crossover point
2 (as shown in Table 3.2), one of the resulting strings (1 1 0 1 1) proves to be a very
best solution indeed. Thus after mutation at random, a new offspring (1 1 1 0 1) is
produced which is an excellent choice.

This example has shown one generation of a simple genetic algorithm.

3.17.2 Traveling Salesman Problem

The Traveling Salesman Problem is a permutation problem in which the goal is to
find the shortest path between N different cities that the salesman takes is called a
tour. In other words, the problem deals with finding a route covering all the cities
so that the total distance traveled is minimal. The traveling salesman problem finds
application in a variety of situations. Suppose we have to route a postal van to pick
up mail from mailboxes located at n different cities. A (n + 1) vertex graph can be
used to represent the situations. The route taken by the postal van is a tour, and we
are interested in finding a tour of minimal length.

3.17.2.1 Encoding

All the cities are sequentially numbered starting from one. The route between the
cities is described with an array with each element of the array representing the num-
ber of the city. The array represents the sequence in which the cities are traversed to

3.17 Example Problems 77

Fig. 3.25 Chromosome
representing the tour 1 4 2 6 7 3 5

make up a tour. Each chromosome must contain each and every city exactly once.
For instance, for example shown in Fig. 3.25

This chromosome represents the tour starting from city 1 to city 4 and so on and
back to city 1.

3.17.2.2 Crossover

To solve the traveling salesman problem, a simple crossover reproduction scheme
does not work as it makes the chromosomes inconsistent i.e. some cities may be
repeated while others are missed out. The drawback of the simple crossover mech-
anism is illustrated in Fig. 3.26

As can be seen above, cities 6 and 7 are missing in Child1 while cities 2 and 4
are visited more than once. Child2 too suffers from similar drawbacks. Hence, the
need for partially matched crossover.

To avoid this partially matched crossover (PMX) mechanism is used as follows:
In this scheme two crossover points are randomly chosen and the region between
these is determined. This region is called the crossover region. Crossover is per-
formed in this crossover region to yield transition offspring. This method as applied
to the previous example is shown in Fig. 3.27

Consider the crossover points at 3 and 6 and the crossover region between these
points is interchanged between the two parents. In the offspring obtained the circled
cities are the holes, which are replicated in the crossing region. Cross-referencing
with the parent of the alternate chromosome fills these holes. Hence the following
two offspring are obtained, which are consistent with our requirements (Fig. 3.28).

3.17.2.3 Mutation

Mutation has a high probability of resulting in a non-viable city order. However,
mutation is still applied by accounting for the non-viable city orders in the evalua-
tion function. For this problem, mutation refers to a randomized exchange of cities
in the chromosomes. For instance, for example shown in Fig. 3.29.

Here cities 2 and 5 are interchanged because of an inversion operation.

Fig. 3.26 Crossover

 Parent 1 1 2 3 4 5 6 7

 Parent 2 3 7 6 1 5 2 4

 Offspring 1 1 2 3 4 5 2 4

 Offspring 2 3 7 6 1 5 6 7

78 3 Terminologies and Operators of GA

Fig. 3.27 Partially matched crossover

3.17.2.4 Fitness Measure

The fitness function takes a trial solution and returns a fitness value. The shorter
the route the higher the fitness value. By using the partially matched crossover and
inversion mechanisms non-viable routes are eliminated. Hence the need to punish
the low-fitness chromosomes does not arise.

3.17.2.5 Selection Method

Using steady state selection mechanism, two chromosomes from a population are
selected for the crossover and mutation operations. The offspring so obtained re-
place the least fit chromosomes in the existing population. The population size used
for this example is 10.

3.17.2.6 Results

Figures 3.30 and 3.31 shows the performance GA applied for 10 and 20 cities case
respectively. As can be seen in Table 3.4, the complexity of Genetic Algorithm
approach increases nominally with the number of cities.

3.18 Summary

This chapter has laid the basic foundation for understanding genetic algorithms,
their terminologies and their operators. The chapter has presented the detailed op-
eration of a simple genetic algorithm. Genetic algorithms operate on populations of
strings, with the string coded to represent the underlying parameter set. Selection

Fig. 3.28 Offspring produced after PMX

3.18 Summary 79

Fig. 3.29 Mutation

(reproduction), crossover and mutation are applied to string populations to create
new string population. A simulation of one generation of the simple genetic algo-
rithm has helped to illustrate the power of the method. Thus the various terminolo-
gies and operators used in genetic algorithm are discussed in detail in this chapter.

The working of genetic algorithm has been dealt through the concept of schemata.
A schema is a string over an extended alphabet, {0,1,*} where the 0 an the 1 retain
the original meaning and the * is a don’t care or wild card symbol. The schemata ap-
proach simplifies the analysis of the genetic algorithm method because it explicitly
recognizes all the possible similarities in a population of strings. The discussion also
has been made on building block hypothesis, macro mutation hypothesis, optimal
allocation of trials and implicit parallelism.

Fig. 3.30 Solution for the traveling salesman problem with 10 cities

80 3 Terminologies and Operators of GA

Fig. 3.31 Solution for the traveling salesman problem with 20 cities

Table 3.4 Genetic algorithm approach

Number of cities Genetic algorithm

5 250
8 500
10 600
12 1100
15 1500
18 2800
20 10000
25 30000
30 100000

Review Questions

1. Mention the key elements of genetic algorithm.
2. Define an individual.
3. Differentiate between phenotype and genotype.
4. What does a gene mean?
5. Define population and fitness.
6. List a few search strategies.

Exercise Problems 81

7. Write note on the types of encoding techniques.
8. State the importance of breeding cycle.
9. Discuss in detail about the selection process of genetic algorithm.

10. How is crossover operation performed?
11. Give examples to illustrate various crossover techniques.
12. Mention the different types of mutation process.
13. Write short note on replacement cycle of breeding process.
14. How do genetic algorithms work? Explain the building block hypothesis and

schema theorem.
15. State the importance of No Free Lunch theorem.
16. Compare and contrast: constrained and unconstrained optimization problem.
17. What is penalty method of transforming constrained optimization problems to

unconstrained optimization problems?
18. Define schemata.
19. Differentiate between Roulette wheel selection and tournament selection.
20. List few termination search condition of genetic algorithm.

Exercise Problems

1. Simulate a Genetic Algorithm to minimize a function,

F(x) = x2 + y2 (3.21)

where 1 ≤ x ≤ 15 and y ≥ 3 with x + y = 7
2. Five strings have the following fitness values: 3,6,9,12,15. Under Roulette wheel

selection, compute the expected number of copies of each string in the mating
pool if a constant population size, n=5, is maintained.

3. Find the safe light combinations for 8 traffic lights, four of which are vehicle
lights having four possible colors (red, yellow/red, yellow and green) and the
other four pedestrian lights having only two colors (red and green).

4. Use genetic algorithm to color the nodes of a graph using these colors in such a
way that no two nodes connected by an edge are colored using the same color
(Fig. 3.32).

5. Consider the strings and schemata of length 11. For the following schemata,
calculate the probability of surviving mutation if the probability of mutation
is 0.001 at a single bit position: **100****10, 0*********1, 11***00***1,
*1111*0000*. Recalculate the survival probabilities for a mutation probability
Pm = 0.1.

Fig. 3.32 Graph 3 coloring

Chapter 4

Advanced Operators and Techniques in Genetic

Algorithm

4.1 Introduction

In the previous chapter we have dealt with simple genetic operators: reproduction,

cross over and mutation. In this chapter we consider natural operators and phenom-

ena to improve the robustness of simple genetic algorithms. The low-level operators

like dominance, inversion, recording, deletion, segregation and diploidy are dis-

cussed here. Also, the higher-level operators like niche and speciation are induced.

Multi-objective optimization and knowledge-based techniques are also considered

for discussion in this chapter.

4.2 Diploidy, Dominance and Abeyance

Till now, we have considered only the simplest genotype existing in the nature,

the haploid or single chromosome. A haploid chromosome contains only one set

of genes i.e., one allele to occupy each locus. Nature consists of many haploid

organisms, but most of them tend to uncomplicated life form. When nature wants

to construct a more complex or animal life to rely upon, a more complex underly-

ing chromosome structure is needed and this is achieved by the diploid or double-

stranded chromosomes. In the diploid form, a genotype carries one or more pairs

of chromosomes, each containing information for the same function. Consider a

diploid chromosome structure where different letters represent different alleles (dif-

ferent gene function values):

P q r s t

P Q R S t

Allele represents the property of a particular gene. Each locus of a letter repre-

sents one allele. The uppercase and the lowercase letters mentioned above represent

the alternative alleles at that position. Originally, in nature each allele may represent

different phenotypic properties. For example Q may represent gray haired gene and

q may be black haired gene. This approach even though is not much varied from

83

84 4 Advanced Operators and Techniques in Genetic Algorithm

haploid scheme, one difference is vivid. At present, a pair of genes exists describing

each function; there should be some aspect to decide which of the two values to

choose because, for example, the phenotype may not have both gray haired and

black haired at the same time.

The basic approach for eliminating this conflict of redundancy is through a ge-

netic called dominance. At a locus, it has been noted that one allele (called the

dominant allele) will take the precedence over the other alternative allele (called the

recessive allele). It can be said, as an allele is dominant if it is expressed when paired

with some other allele. Expressing means its occurrence in the phenotype.

In the above example, if it is assumed that all uppercase letters are dominant

and all lowercase letters are recessive, the phenotype expressed by the example

chromosome is written as,

P q r S t

→ P Q R S t

p Q R S t

The dominant gene is always expressed at each locus and the recessive gene is only

expressed when it is present in accordance with another recessive. The dominant

gene is expressed when heterozygote (mixed, Pp→P) or homozygote (SS→S) and

the recessive genes expressed only when homozygote (tt→ t).

After dominance cross over, the chromosome becomes PQRSt. Thus dominance

is genetic operator used to compute phenotype of the allele values possible at a

gene position, one is dominant and the others recessive provides a mechanism to

remember previously useful genetic material and to protect it from disappearing it

is held in abeyance (suspended) has not been found particularly useful in genetic

algorithms speculation. It may help if the environment changes over time i.e., the

fitness changes or the constraint change.

Dominance and diploidy can be simply implemented in the genetic algorithm.

Assume 3 alleles,

* 0: encodes for gene 0

* 1: recessively encodes for gene 1

* 2: dominantly encodes for gene 1.

The above give the following dominance map (Fig. 4.1).

The phenotypic ratio for dominants of 3 to 1 is achieved for allele pairing of 0

with 1, and 0 with 2. Dominance can evolve through allele substitution of 1 for 2

and vice versa.

Fig. 4.1 Dominance map

0 1 2

0 0 0 1

1 0 1 1

2 1 1 1

4.3 Multiploid 85

Diploid chromosomes lend advantages to individuals where the environment may

change over a period of time. Having two genes allows two different solutions to be

remembered, and passed on to offspring. One of these will be dominant (i.e., it will

be expressed in the phenotype), while the other will be recessive. If environmental

conditions change, the dominance can shift, so that the other gene is dominant. This

shift can take place much more quickly than would be possible if evolutionary mech-

anisms had to alter the gene. This mechanism is ideal if the environment regularly

switches between two states (e.g., ice-age, non ice-age). The primary advantage

of diploidy is that it allows a wider diversity of alleles to be kept in the population,

compared with haploidy. Currently harmful, but potentially useful alleles can still be

maintained, but in a recessive position. Other genetic mechanisms could achieve the

same effect. For example, a chromosome might contain several variants of a gene.

Epistasis (in the sense of masking) could be used to ensure that only one of the

variants was expressed in any particular individual. A situation like this occurs with

haemoglobin production. Different genes code for its production during different

stages of development. During the foetal stage, one gene is switched on to produce

haemoglobin, whilst later on a different gene is activated. There are a variety of

biological metaphors we can use to inspire our development of GAs.

In a GA, diploidy might be useful in an on-line application where the system

could switch between different states. Diploidy involves a significant overhead in a

GA. As well as carrying twice as much genetic information, the chromosome must

also carry dominance information.

4.3 Multiploid

A multiploid genetic algorithm incorporates several candidates for each gene within

a single genotype, and uses some form of dominance mechanism to decide which

choice of each gene is active in the phenotype. In nature we find that many organ-

isms have poly-ploid genotypes, which consist of multiple sets of chromosomes

with some mechanism for determining which gene is expressed i.e., is dominant at

each locus. This mechanism seems to confer a number of advantages on a system,

mainly by enhancing population diversity; currently unused genes remains in a mul-

tiplied genotype, unexpressed, but shielded from extinction until they may become

useful later.

A multiploid genotype, shown in Fig. 4.2, contains p chromosomes, each of

length L, and a mask which specifies which of the p chromosomes has the dominant

gene at a particular position in the chromosome. This information is decoded to

yield the phenotype as follows:

Fig. 4.2 Multiploid Type 1

Mask 0 0 0 1 1 1 2 2 2

Chromosome [0]: a a a a A a a a a

Chromosome [1]: b b b b B b b b b

Chromosome [2]: c c c c C c c c c

Phenotype: a a a b B b c c c

86 4 Advanced Operators and Techniques in Genetic Algorithm

Fig. 4.3 Multiploid Type 2 Mask 0 1 2

Chromosome [0]: a a a a a a a a a

Chromosome [1]: b b b b b b b b b

Chromosome [2]: c c c c c c c c c

Phenotype: a a a b b b c c c

An allele value of a at locus i in the mask denotes that the ith gene in the chro-

mosome with index a becomes the ith gene of the phenotype. The mask length can

be shorter than the length of the chromosomes, as in Fig. 4.3.

In Fig. 4.3, if the mask length is m and the chromosome length L, then a gene at

locus ‘i’ in the mask with the value of ‘a’ indicates that the i-th set of L/m consecu-

tives genes in the a-th chromosome are dominant.

4.4 Inversion and Reordering

Inversion is a unary, reordering genetic operator. Simple genetic algorithms use

stochastic selection, 1-point cross over, and mutation to increase the number of

building blocks in the population and to recombine them for even better build-

ing blocks. The building blocks being highly fit, low order, short defining length

schemes, the encoding scheme chosen must be compatible with this. Can we search

for better encoding schemes while searching for building blocks? To answer this

question, inversion operator was created.

Inversion operator is a primary natural mechanism to recode a problem. In in-

version operator, two points are selected along the length of the chromosome, the

chromosome is cut at those points and the end points of the section cut, gets re-

versed (switched, swapped). To make it clear, consider a chromosome of length 8

where two inverse points are selected random (the points are 2 and 6 denoted by ˆ

character):

1 1 ∧ 0 1 1 1 ∧ 0 1

On using inversion operator, the string becomes,

1 1 1 1 1 0 0 1

Thus within the specified inversion points, the switching between the chromo-

somes takes place.

The inversion operator can also be used for extended representation as given by,

1 2 3 4 5 6 7 8

1 1 ∧ 0 1 1 1 ∧ 0 1

Inversion points are chosen at random (indicated by operator) and the chromo-

some now becomes,

4.4 Inversion and Reordering 87

1 2 6 5 4 3 7 8

1 1 1 1 1 0 0 1

Original position numbers are retained in the chromosomes because the fitness func-

tion is computed using the position numbers, i.e., we are moving the relative position

of the genes to examine different potential building blocks but the gene is to be used

in the fitness function the same as before inversion and it remains same as after

inversion operation also.

The hope is that inversion will reduce the defining length of highly fit schemas so

they survive crossover more. Inversion is found to greatly expand the search space.

Inversion has not appeared useful in practice, perhaps due to the test cases not being

hard enough (conventional GA without inversion worked well).

Inversion was the solution of Holland, intended to bring co-adapted alleles at

distant loci closer together on the chromosome. The biological interpretation of the

inversion operator is that it maintains linkage disequilibria due to selection in the

face of disruption by crossover. Two loci in a population are in linkage equilibrium

if the frequency distribution of alleles at one locus is independent of the frequency

distribution of alleles at the other locus.

The basic algorithm for inversion can be given as follows:

Data: l- length of chromosome

i1 ← random integer between 0 and l inclusive;

i2 ← random integer �= i1 between 0 and ; inclusive;

if i1 > i2 then

swap i1 and i2;

end

for I=i1 to [(i1+i2-1)/2] do

swap allele and index at locus I with allele and index at locus.

i1+i2-1-I;

end

Thus an index is needed for each locus to preserve the meaning of the locus inde-

pendent of its position on the chromosome. Inversion is redundant with operators

such as UX (Uniform Crossover), which do not have any positional bias.

There are several other reordering operators, which being variations on inversion.

They are:

1. Linear inversion.

2. Liner + end inversion.

3. Continuous inversion.

4. Mass inversion.

Linear inversion is the inversion, which has been discussed earlier. Linear + end

inversion is a linear inversion with a specified probability of (0.75). When linear

inversion is not performed, end inversion would be done with equal probability

88 4 Advanced Operators and Techniques in Genetic Algorithm

(0.125) at either the left or right end of the string. Linear + end inversion minimizes

the property of linear inversion to disrupt the alleles present near the center of the

string disproportionately to those of alleles present near the ends. In continuous

inversion mode, inversion was applied with a specified inversion probability, Pi, to

each new individual as and when it is created. In mass inversion mode no inversion

took place until a new population was created, thereafter, one-half of the population

is found to undergo identical inversion.

The features of inversion and crossover are combined together to produce a single

operator, which lead to the development of other reordering operators. On combin-

ing inversion and crossover, the reordering operators formulated are:

1. Partially Matched Crossover (PMX).

2. Order Crossover (OX).

3. Cycle Crossover (CX).

4.4.1 Partially Matched Crossover (PMX)

In Partially Matched Crossover, two strings are aligned, and two crossover points

are selected uniformly at random along the length of the strings. The two crossover

points give a matching selection, which is used to affect a cross through position-

by-position exchange operations.

Consider two strings:

Parent A 4 8 7 3 6 5 1 10 9 2

Parent B 3 1 4 2 7 9 10 8 6 5

Two crossover points were selected at random, and PMX proceeds by position wise

exchanges. In-between the crossover points the genes get exchanged i.e., the 3 and

the 2, the 6 and the 7, the 5 and the 9 exchange places. This is by mapping parent B

to parent A. Now mapping parent A to parent B, the 7 and the 6, the 9 and the 5, the

2 and the 3 exchange places. Thus after PMX, the offspring produced as follows:

Child A 4 8 6 2 7 9 1 10 5 3

Child B 2 1 4 3 6 5 10 8 7 9

where each offspring contains ordering information partially determined by each of

its parents. PMX can be applied to problems with permutation representation.

4.4.2 Order Crossover (OX)

The order crossover begins in a manner similar to PMX. But instead of using point-

by-point exchanges as PMX does, order crossover applies sliding motion to fill the

left out holes by transferring the mapped positions.

4.5 Niche and Speciation 89

Consider the parent chromosomes,

Parent A 4 8 7 3 6 5 1 10 9 2

Parent B 3 1 4 2 7 9 10 8 6 5

On mapping parent B with parent A, the places 3,6 and 5 are left with holes.

Child B H 1 4 2 7 9 10 8 H H

These holes are now filled with a sliding motion that starts with the second

crossover point.

Child B 2 7 9 H H H 10 8 1 4

The holes are then filled with the matching section taken from the parent A. Thus

performing this operation, the offspring produced using order crossover is as given

below.

Child A 3 6 5 2 7 9 1 10 4 8

Child B 2 7 9 3 6 5 10 8 1 4

From the examples, it can be noted that PMX tends to respect absolute positions

while OX tends to respect relative positions.

4.4.3 Cycle Crossover (CX)

Cycle Crossover is different from PMX and OX. Cycle performs recombination

under the constraint that each gene comes from the parent or the other.

4.5 Niche and Speciation

The perennial problem with Genetic Algorithm is that of premature convergence,

that is, a non-optimal genotype taking over a population resulting in every individual

being either identical or extremely alike, the consequences of which is a population

which does not contain sufficient genetic diversity to evolve further.

Simply increasing the population size may not be enough to avoid the problem,

while any increase in population size will incur the twofold cost of both extra com-

putation time and more generations to converge on an optimal solution.

Genetic Algorithm then, faces a difficult problem. How can a population be en-

couraged to converge on a solution while still maintaining diversity? Clearly, those

operators, which cause convergence, i.e. crossover and reproduction, must be altered

somehow.

90 4 Advanced Operators and Techniques in Genetic Algorithm

Another problem often used as a criticism against Genetic Algorithm is the time

involved in deriving a solution. Unlike more deterministic methods such as Neural

Networks, hill climbing, rules-based methods etc., Genetic Algorithms contain a

large degree of randomness and no guarantee to converge on a solution within a

fixed time. It is not unusual for a large proportion of runs not to find an optimal

solution.

Fortunately, due to their very nature, Genetic Algorithms are inherently parallel,

i.e. individuals can be evaluated in parallel as their performance rarely, if ever, af-

fects that of other individuals. The reproduction phase, however, which commonly

involves a sexual free-for-all, during which the individuals of a population dart about

in a crazed frenzy vying with one another in attempts to mate as often as possi-

ble, represents a serious bottleneck in traditional Genetic Algorithms. The fitness

of every individual must be known, and, despite the overwhelming and no doubt

impatient ardour present in the population, only one reproduction/crossover may

take place at a time. A method that could avoid this sort of bottleneck would lend

itself very well to implementation on parallel machines, and hence speed up the

whole process.

It is shown in this section how niches are used to solve multimodal and unimodal

problems.

Generally speaking the methods adopted to solve the above-discussed problems

permit the evolution of individuals, which fill differing environmental niches, with

similar individuals congregating together. The correct biological name for such

groups in an ecotype, but they tend to be referred to as different species in Genetic

Algorithms. The use of the word “species” is not strictly correct, as individuals of

each species may freely mate with each other. However, for the sake of consistency,

the word species will be used with the meaning usually attributed to it in Genetic

Algorithms. In this field, a niche usually refers to that which makes a particular

group unique, e.g. having a common fitness rate, genotype etc., while species refers

to the individuals in that group.

4.5.1 Niche and Speciation in Multimodal Problems

Suppose a fitness function is multimodal i.e. several peaks a GA will tend to con-

verge to one of the peaks, particularly if one of the peaks is more fit than the others.

Perhaps, one likes to identify the peaks convergence to several peaks simultane-

ously. A ‘niche’ can be thought of as one of the peaks and a ‘species’ is a collection

of population members well suited for a particular niche.

We might want a GA to create stable subpopulations (species) that are well suited

to the niches. Consider an example of two-armed slot machine, if one person plays

a two-armed slot machine, he will try each arm for a while to see which has a bigger

payoff, and then play that arm for the rest of time. In this case, it is possible to derive

a formula for how many to play on each arm before choosing which arm to play the

rest of the time for the optimal overall payoff.

Now suppose that a group of people are all playing the same two-armed slot

4.5 Niche and Speciation 91

machine and that the group playing arm, one has to share their winnings and likewise

for arm too. The players are allowed to switch groups to increase their share. If M

people are playing totally,

M=M1+M2

fi=arm i payoff

and

Then the people forming groups in each arm is given by,

f1/M1=f2/M2

Something similar to this can be implemented in GA during ‘crowding’ and ‘shar-

ing’ technique as discussed below.

Genetic Algorithms using panmictic applied to multimodal functions face two

main problems, the first being that of distributing individuals evenly across all peaks

in the solution as in Fig. 4.4.

Each peak in the solution landscape can be viewed as a separate environmental

niche. A successful application of a genetic algorithm to a problem like this would

have to result in several individuals spread across each of the environmental niches.

What better way to do this than to permit the evolution of several species within the

environment, each specializing in its own particular niche?

Using niches and species in applications such as these can lend a more biological

meaning to the word species. A second problem now arises as parents of differ-

ing species, i.e. from different environmental niches tend to produce unviable chil-

dren and so, parents occupying different niches must be discouraged from mating.

Figure 4.5 below illustrates the problem.

Fig. 4.4 A multimodal function solution landscape

92 4 Advanced Operators and Techniques in Genetic Algorithm

x
y

Fig. 4.5 A possible result of mating parents from different peaks is this case, where the resulting

offspring appears in a trough between its parents

4.5.1.1 Crowding

The first problem was addressed by [DeJong 75] to prevent a single genotype from

dominating a population. By ensuring that a newborn individual will replace one

that it is genotypic ally similar to it, Crowding tries to maintain a balanced popula-

tion. The mechanism for this replacement is quite simple: one randomly selects CF

individuals and, through calculation of hamming distances, decides on a suitable

victim.

An advantage of Crowding is how few individuals must be examined when

choosing a victim, for CF is usually 2 or 3. This replacement of similar individuals’

acts to prevent one genotype from taking over a population completely, allowing

other, possibly less fit niches to form within the main population.

Crowding does not explicitly create niches, nor does it make any concentrated

effort to encourage them, rather it allows them to form.

4.5.1.2 Sharing

A somewhat different approach was adopted in the Sharing scheme, in that indi-

viduals in a population which uses Sharing face limited resources as they strive for

fitness. To make life more difficult for them, individuals of the same environmental

niche, in this case genotypic ally similar, are more inclined to search the same places

for resources, so have a more difficult time than unique individuals.

In a similar manner to Crowding, domination of the population by a single geno-

type is discouraged by the punishing of individuals who are too similar to a large

portion of the population.

Sharing, however, is not as simple to calculate as Crowding, and is a very

problem-specific as one must know in advance how many peaks there are in the

solution landscape. Sharing does encourage the formation of niches and, to prevent

the unsavoury prospect of individuals from different niches, mating as in Fig. 4.5

above, uses a form of restricted mating.

4.5 Niche and Speciation 93

Defining a sharing function based on similarity,

Share (similarity)

Similarity (x,x)=l chrom,

Similarity (x,∼x) = 0

(or) base similarity on phenotype (coded value) rather than genotype.

Share (similarity (x,x))=1.0,

Share (similarity (x,y))=0.0

∀x,y, with similarity (x,y) ⇐cut off value.

The more similar two chromosomes are, the more they have to share their fitness

value. Each chromosome x has a share factor calculated for it,

Share factor (x) = Sum over y in population share (similarity (x,y))

The fitness of a chromosome is recalculated by dividing its original fitness by its

share factor,

New fitness (x) = fitness (x)/share factor (x)

In a sense, similar chromosomes are playing the same arm of the k-armed slot

machine so we force them to share the payoff and other subpopulations (species)

can develop around other peaks (niches).

Although Crowding is far simpler than Sharing, both in its calculation and exe-

cution, the latter has been shown to be far more effective in the area of multimodal

functions as the rather gentle powers of persuasion used by Crowding cannot prevent

most individuals from ending up on only one or two peaks due to the few individuals

that are examined each time. Sharing, on the other hand, aggressively encourages

the development of new niches and consequently distributes individuals across all

peaks in the landscape. The payoff is a simple one; Crowding is cheap and simple,

while Sharing is relatively expensive yet successful.

4.5.2 Niche and Speciation in Unimodal Problems

The use of niches in multimodal problems is a very simple mapping, with the evo-

lution of a different species for each peak in the solution landscape. The mapping is

not quite so easy in unimodal problems which usually contain only one peak, or at

the very least contain one peak higher than the others.

All approaches to unimodal problems, involving niching, attempt to maintain

a balanced population, either through restricted mating to prevent inappropriate

94 4 Advanced Operators and Techniques in Genetic Algorithm

parents mating, or through replacement methods which hinder the taking over of

a population by a single genotype.

Several methods, which do not strictly use niches, but which do imitate their

operation to some degree, exist. There are replacement methods, which ensure that

newly born individuals are sufficiently different from the rest of the population be-

fore allowing them entry, e.g. Clone Prevention, Steady State Genetic Algorithms

(SSGA). There is also special selection schemes, which operate in a similar manner

to the restricted mating, described above, in that prospective parents are allowed to

fulfill their conjugal rites only if they fulfill certain criteria. Restricted mating does

permit the evolution of different niches, but typically forces parents to come from

differing niches, thus allowing each niche to exert some influence on evolution.

Clone prevention and SSGA operate in a similar manner to Crowding in that

before an individual is permitted entry to the population, it is compared to others to

verify its uniqueness. While Crowding examines only a few individuals each time,

these other methods guarantee uniqueness by comparing a new individual to every

other individual in the population. Like Crowding, they do not attempt to explicitly

create niches or species, but attempt to prevent the domination of the population by

a single species.

Unfortunately, both methods incur high overheads, as the comparing of individu-

als is a costly affair. It is also fair to say that clones, the presence of which can retard

evolution, do not always cause disaster, and in face can sometimes even help direct

evolution.

4.5.2.1 Incest Prevention

Eshelman took a similar view, when he suggested the use of Incest Prevention,

which only discouraged clones, still permitting them to enter the population. Incest

prevention attempts to “matchmake” parents with the intention of their offspring

taking the best genes from their parents. It is by mating differing parents that diver-

sity is kept in the population and thus further evolution permitted.

As a population evolves, its individuals become more and more similar, thus it

becomes more difficult to find suitable parents. To avoid a situation where there are

no such parents in a population, there is a difference threshold set, which can be

relaxed if there is some difficulty in selecting parents. It is assumed that difficulty

will arise if there is no change in the parent population, and, as incest prevention

is used with elitism, i.e. a list of parents is maintained which individuals can only

enter if their fitness is sufficiently high, it is a trivial matter to track any changes.

Again, differing species are not explicitly created, nor are guaranteed to appear,

but if they do, Incest prevention encourages inter-species mating, as the fitness land-

scape in unimodal functions tends to be like that of Fig. 4.4.

SET THRESHOLD

REPEAT

FOR EACH INDIVIDUAL DO

TEST INDIVIDUAL

ENTER PARENT POPULATION

4.5 Niche and Speciation 95

IF NO-NEW-PARENTS THEN LOWER THRESHOLD

FOR EACH INDIVIDUAL DO

REPEAT

SELECT PARENTS

UNTIL DIFFERENT ()

UNTIL END-CRITERION REACHED OR THRESHOLD=0

As soon as an individual is tested it attempts to enter the parent population, as de-

scribed above, this step is only successful if the individual is fitter than the least fit

member of the parent population. After all the new individuals have been tested, one

checks to see if the parent population has been changed. An unaltered population

will lead to the difference threshold being reduced.

The DIFFERENT () test simply calculates the hamming distance between par-

ents and ensures that, if they are to breed, the difference will be above the threshold.

As can be seen from the last step in the algorithm, it is possible for a run to end

for reasons other than the reaching of some end criterion. In this case it is com-

mon to “reinitialize” the population by mutation of the best performing individuals

encountered so far.

4.5.2.2 The Pygmy Algorithm

Although incest prevention avoids the cost of clone prevention, there is still the cost

of finding a satisfactory couple each time mating is to be performed. To reduce the

cost as much as possible another method, the Pygmy Algorithm has been suggested,

which does not explicitly measure differences between parents, but merely suggests

that the parents it selects are different.

The Pygmy Algorithm is typically used on problems with two or more require-

ments, e.g. the evolution of solutions which need to be both efficient and short.

Niches are used by having two separate fitness functions, thus creating two species.

Individuals from each species are then looked upon as being of distinct genders, and

when parents are being chosen for the creation of a new individual, one is drawn

from each species with the intention of each parent exerting pressure from its fitness

function.

Typically, there is one main fitness function, say efficiency, and a secondary re-

quirement such as shortness. Highly efficient individuals would then enter the first

niche, while individuals who are not suited to this niche undergo a second fitness

test, which is simply their original fitness function modified to include the secondary

requirement. These individuals then attempt to join the second niche, and failure to

accomplish this result in a premature death for the individual concerned.

The use of two niches maintains a balanced population and ensures that individ-

uals who are fit in both requirements are produced. Below is the pseudo code for the

Pygmy Algorithm.

REPEAT

FOR EACH INDIVIDUAL DO

TEST INDIVIDUAL WITH MAIN FITNESS FUNCTION

96 4 Advanced Operators and Techniques in Genetic Algorithm

ENTER PARENT POPULATION #1

IF UNSUCCESSFUL

TEST INDIVIDUAL WITH SECONDARY FITNESS FUNCTION

ENTER PARENT POPULATION #2

FOR EACH INDIVIDUAL DO

SELECT PARENT FROM POPULATION #1

SELECT PARENT FROM POPULATION #2

CREATE NEW INDIVIDUAL

UNTIL END-CRITERION REACHED

Each niche is implemented as a separate, elitist group, because of the elitist na-

ture of each niche, which maintains individuals on a solution landscape similar

to Fig. 4.4, there is much pressure on newly born individuals to appear between

its parents, and thus outperform them. It is also possible, of course, that a child

may be endowed with the worst characteristics of its parent. A child like this

will be cast aside by the Pygmy Algorithm but its parents, because they have

the potential to produce good children are maintained, outliving their luckless

offspring.

As Genetic Algorithms stem directly from natural methods, it is perhaps un-

surprising that there are so many benefits to be derived from copying nature once

more. Differing niches and species can be evolved and maintained in a number of

ways, ranging from decentralized models as close as possible to nature, to highly

controlled methods.

Most importantly, once subpopulations have established their environmental

niches, they can be put to many uses. Several solutions can be maintained in the

population at a time, a diverse array of individuals and, indeed species can easily be

persuaded to coexist with one another, thus easing the pressure toward premature

convergence.

4.5.3 Restricted Mating

The purpose of restricted mating is to encourage speciation, and reduce the produc-

tion of lethals. A lethal is a child of parents from two different niches. Although

each parent may be highly fit, the combination of their chromosomes may be highly

unfit if it falls in the valley between the two maxima. Nature avoids the forma-

tion of lethals by preventing mating between different species, using a variety of

techniques. (In fact, this is the primary biological definition of a species–a set of

individuals that may breed together to produce viable offspring.)

The general philosophy of restricted mating makes the assumption that if two

similar parents (i.e., from the same niche) are mated, then the offspring will be

similar. However, this will very much depend on the coding scheme-in particular

the existence of building blocks, and low epistasis. Under conventional crossover

and mutation operators, two parents with similar genotypes will always produce

offspring with similar genotypes. But in a highly epistatic chromosome, there is no

4.6 Few Micro-operators 97

guarantee that these offspring will not be of low fitness, i.e. lethals. Similarity of

genotype does not guarantee similarity of phenotype. These effects limit the use of

restricted mating.

4.6 Few Micro-operators

Several other low level micro operators have been proposed for use in genetic algo-

rithm search. The few micro operators to be discussed in this section are as follows:

1. Segregation.

2. Translocation.

3. Duplication.

4. Deletion.

5. Sexual differentiation.

4.6.1 Segregation and Translocation

Consider a process of gamete formation when there is more than one chromosome

pair in the genotype. Crossover takes place as dealt in previous chapter and when it is

to form a gamete, we randomly select one of each of the haploid chromosomes. This

random selection process is called as segregation that disrupts any linking, which

might exist between genes on different chromosomes. It is found that segregation

exploits the proper organization of the chromosome and it is important to note that

how does the chromosome become organized in an appropriate manner. For this

purpose, translocation operator is used. Translocation operator can be considered

as an interchromosomal crossover operator. This operator can be implemented by

connecting alleles with their gene names, so that one can identify their intended

meaning when they get shuffled from chromosome to chromosome by the translo-

cation operator.

4.6.2 Duplication and Deletion

There are also a pair of low-level operators for performing genetic algorithm search.

Intrachromosomal duplication performs by duplicating a particular gene and placing

it along with its ancestor on the chromosome. Deletion performs by removing a

duplicate gene from chromosome. The mutation rate can effectively controlled by

these operators. When the mutation rate remains constant and intrachromosomal

duplication causes ‘k’ copies of a particular gene, then the effective mutation prob-

ability for this gene is multiplied by ‘k’. On the other hand, when deletion occurs,

the effective mutation rate gets decreased.

98 4 Advanced Operators and Techniques in Genetic Algorithm

4.6.3 Sexual Determination

Originally in mating schemes, we have permitted any individual to mate with any

other, and the resulting genetic products are divided so that they have ensured a

viable genotype. The sex determination is handled differently in different species,

but the human example is sufficient to understand sexual determination. Sex is de-

termined in human by one of the 23 pairs of human chromosomes. Females have

two same X and X chromosomes and males have two different X and Y chro-

mosomes. During gametogenesis process, males form sperm (which carry either

X or Y chromosomes) and female possess eggs (which carry only X chromosomes).

On fertilization, X-chromosome produced by female combined with either X or

Y-chromosome produced by females. Thus the method of sex determination in hu-

man is simple. Applying the same strategy for sex determination in GA search.

The establishment of sex difference effectively divides a species into two or more

groups. This allows males and females to specialize, thereby enclosing the range

of behaviors necessary for survival more broadly than would be with a single com-

peting population. The research under sex determination and difference to artificial

genetic algorithm search is still ongoing.

4.7 Non-binary Representation

A chromosome is a sequence of symbols, and, traditionally, these symbols have been

binary digits, so that each symbol has a cardinality of 2. Higher cardinality alphabets

have been used in some research, and some believe them to have advantages. Gold-

berg argues that theoretically, a binary representation gives the largest number of

schemata, and so provides the highest degree of implicit parallelism. But Antonisse

interprets schemata differently, and concludes that, on the contrary, high-cardinality

alphabets contain more schemata than binary ones.

Goldberg has now developed a theory, which explains why high-cardinality rep-

resentations can perform well. His theory of virtual alphabets says that each symbol

converges within the first few generations, leaving only a small number of possible

values. In this way, each symbol effectively has only a low cardinality. Empirical

studies of high-cardinality alphabets have typically used chromosomes where each

symbol represents an integer, or a floating-point number. As Davis points out, prob-

lem parameters are often numeric, so representing them directly as numbers, rather

than bit-strings, seems obvious, and may have advantages. One advantage is that we

can more easily define meaningful, problem-specific crossover and mutation opera-

tors. A variety of real-number operators can easily be envisaged, for example:

1. Combination operators

• Average–take the arithmetic average of the two parent genes.

• Geometric mean-take the square root of the product of the two values.

4.8 Multi-Objective Optimization 99

• Extension-take the difference between the two values, and add it to the higher,

or subtract it from the lower.

2. Mutation operators

• Random replacement-replace the value with a random one

• Creep-add or subtract a small, randomly generated amount.

• Geometric creep-multiply by a random amount close to one.

For both creep operators, the randomly generated number may have a variety of

distributions; uniform within a given range, exponential, Gaussian, binomial, etc.

Janikow & Michalewicz made a direct comparison between binary and floating-

point representations, and found that the floating-point version gave faster, more

consistent, and more accurate results.

4.8 Multi-Objective Optimization

Multi-objective optimization problems have received interest form researches since

early 1960s. In a multi-objective optimization problem, multiple objective functions

need to be optimized simultaneously. In the case of multiple objectives, there does

not necessarily exist a solution that is best with respect to all objectives because of

differentiation between objectives. A solution may be best in one objective but worst

in another. Therefore, there usually exist a set of solutions for the multiple-objective

case, which cannot simply be compared with each other. For such solutions, called

Pareto optimal solutions or non-dominated solutions, no improvement is possible

in any objective function without sacrificing at least one of the other objective

functions.

Thus by using the concept of Pareto-optimality we can find a set of solutions that

are all optimal compromises between the conflicting objectives. Pareto-optimality

is a concept used economics, game theory, etc. A Pareto-optimal solution is one that

is not dominated by any other solution i.e. it is one in which no objective can be

improved without a deterioration in one or more of the other objectives.

In the past few years, there has been a wide development in applying genetic al-

gorithms to solve the multi-objective optimization problem, known as evolutionary

multi-objective optimization or genetic multi-objective optimization. The basic fea-

tures of genetic algorithms are the multiple directional and global searches, in which

a population of potential solutions is maintained from generation to generation. The

population-to-population approach is beneficial in the exploration of Pareto-optimal

solutions. The main issue in solving multi-objective optimization problems by use

of genetic algorithms is how to determine the fitness value of individuals according

to multiple objectives.

100 4 Advanced Operators and Techniques in Genetic Algorithm

4.9 Combinatorial Optimizations

Combinatorial optimizations contain a huge body of problems with different fea-

tures and properties. Although these problems are quite different from each other,

the problems can be characterized as one of the following types:

• To determine a permutation of some items associated with the problem.

• To determine a combination of some items.

• To determine both permutation and combination of some items.

• Any one of the above subject to constraints.

The essence of resource-constrained project scheduling problems and vehicle rout-

ing and scheduling problems is to determine a permutation of some items subject to

some constraints. The essence of the parallel machine-scheduling problem is to de-

termine both a permutation and a combination of items subject to certain constraints.

A common feature of the problems is that if the permutation and/or combination can

be determined, a solution can then easily be derived with a problem-specific proce-

dure. So the general approach for applying genetic algorithms to these problems is

as follows:

• Use genetic algorithms to evolve an appropriate permutation and/or combination

of items under consideration.

• Then use a heuristic approach to construct a solution according to the permutation

and combination.

4.10 Knowledge Based Techniques

While most research has gone into GAs using the traditional crossover and muta-

tion operators, some have advocated designing new operators for each task, using

domain knowledge. This makes each GA more task specific (less robust), but may

improve performance significantly. Where a GA is being designed to tackle a real-

world problem, and has to compete with other search and optimization techniques,

the incorporation of domain knowledge often makes sense. Few researchers argue

that problem-specific knowledge can usefully be incorporated into the crossover op-

eration. Domain knowledge may be used to prevent obviously unfit chromosomes,

or those, which would violate problem constraints, from being produced in the first

place. This avoids wasting time evaluating such individuals, and avoids introducing

poor performers into the population.

For example, a researcher designed analogous crossover for his task in robotic

trajectory generation. This used local information in the chromosome (i.e., the val-

ues of just a few genes) to decide which crossover sites would be certain to yield

unfit offspring. Domain knowledge can also be used to design local improvement

operators, which allow more efficient exploration of the search space around good

4.10 Knowledge Based Techniques 101

points. It can also be used to perform heuristic initialization of the population, so that

search begins with some reasonably good points, rather than a random set. Goldberg

describes techniques for adding knowledge-directed crossover and mutation. He

also discusses the hybridization of GAs with other search techniques. Pure genetic

algorithms use only the encoding and objective function. This may help to use in

problem specific information. The various methods for combining problem specific

information with genetic algorithm are as follows:

- Hybrid schemes

- Knowledge directed operators

- Parallel computers.

In hybrid schemes GAs are used to get close to optimum value, then conventional

optimization schemes like greedy search, gradient search or stochastic hill climb-

ing may be used to become closer to optimum value. The genetic algorithm may

also develop species to each of which conventional optimization can be applied. In

gradient like bitwise (G-bit) improvement for one or more highly fit chromosomes,

change each bit one at a time to see if the fitness improves, if so, replace the original

with the altered chromosome. Also changing pairs or triplets of bits can be tried but

in combinatorial explosion. The hybrid scheme can be represented using scheme as

shown in Fig. 4.6.

Thus from Fig. 4.6, it can be noted that the genetic algorithm sorts out peak and

the local search techniques are used for hill climbing. Considering greedy heuristic

crossover for Traveling salesman problem, if chromosomes are permutations of city

numbers, then normal crossover may produce infeasible chromosomes. This is done

by,

Start at a random city X and go to the closest city to X using the parent’s tours;

repeat.

Thus the genetic algorithm is now definitely not blind as it was using PMX de-

scribed easier. The knowledge directed operations were found to use,

- generating Steiner systems

- count preserving mutation and crossover

- goal directed mutation

Using parallel computers in Genetic Algorithms, master/slave operation is per-

formed. Master does selection and mating and slaves evaluated fitness of new chro-

mosomes. Master waits for all the slaves to finish or master can hand out new work

as each slave finishes. Thus on a parallel machine the conventional optimization can

be done on each species on its own CPU. This is shown in Fig. 4.7.

These knowledge based techniques flourishes with the development of hardware

and software.

102 4 Advanced Operators and Techniques in Genetic Algorithm

Fig. 4.6 Genetic Algorithm

hybrid scheme

4.11 Summary

In this chapter we have discussed certain advanced operators and techniques avail-

able for improving the performance of genetic algorithms. The various genetic op-

erators operating at chromosomal level has been discussed. Diploidy, dominance

and abeyance have been dealt as a method involved with long-term population

memory. The implementation of different reordering operators has been included

in the chapter. Other micro-level operators like segregation and translocation has

been discussed in brief. Niche and speciation as applied to multimodal and uni-

modal problems has been examined through operators acting at population level.

In niching, the crowding and sharing techniques has been viewed and the pygmy

algorithm for speciation. Multiobjective optimization technique has also been ex-

plored in brief. The knowledge-based technique was discussed which is useful for

exploiting many search and optimization problems. Thus these advanced operators

and techniques leads to the further improvements in the efficiency and competence

of genetic algorithms.

Exercise Problems 103

Fig. 4.7 Genetic algorithm hybrid using parallel machine

Review Questions

1. State the importance of advanced operators.

2. Define Diploidy

3. Differentiate between haploid and diploid

4. What is a dominance operator?

5. Under what situation is abeyance operator used?

6. Write a note on multiploid.

7. Discuss in detail about various reordering operators.

8. Explain how niche and speciation are used in multimodal and unimodal prob-

lems.

9. Mention the operations of micro operators

10. Compare and contrast: Multiobjective optimization and combinatorial optimiza-

tion.

11. Give the importance of non-binary representation

12. Describe the various knowledge-based techniques that improve the efficiency of

simple genetic algorithm.

Exercise Problems

1. A given chromosome is (1 3 5 2 4 6 8 7 9 0). Perform inversion at points 3 and 5.

2. Consider two parents given by,

Parent1 2 4 7 1 3 6 8 9 5

104 4 Advanced Operators and Techniques in Genetic Algorithm

Parent2 5 9 8 6 2 4 1 3 7

Choose random points of your own and perform partially matched cross over

operation.

3. Implement Traveling Salesman Problem using advanced operators and tech-

niques.

4. Program and implement an inversion operator that treats permutation as a circular

string.

5. Implement the order cross over operator for a permutation coding.

Chapter 5

Classification of Genetic Algorithm

5.1 Introduction

Genetic algorithms are search algorithms based on the mechanics of natural selection

and natural genetics. Algorithms are nothing but step-by-step procedure to find the

solution to the problems. Genetic algorithms also give the step-by-step procedure

to solve the problem but they are based on the genetic models. Genetic algorithms

are theoretically and empirically proven to provide robust search in complex phases

with the above said features. Genetic algorithms are capable of giving rose to ef-

ficient and effective search in the problem domain and hence they are now finding

more wide spread application in business, scientific and engineering. These algo-

rithms are computationally less complex but more powerful in their search for im-

provement. These features have enabled the researchers to form different approaches

of genetic algorithm. This chapter discusses the various classifications of genetic

algorithms like parallel GA, Messy GA, distributed GA and so on.

5.2 Simple Genetic Algorithm (SGA)

Many search techniques required auxiliary information in order to work properly.

For e.g. Gradient techniques need derivative in order to chain the current peak and

other procedures like greedy technique requires access to most tabular parameters

whereas genetic algorithms do not require all these auxiliary information. GA is

blind to perform an effective search for better and better structures they only require

objective function values associated with the individual strings. This characteristic

makes GA a more suitable method than many search schemes. GA uses probabilistic

transition rules to guide their search towards regions of search space with likely

improvement. Because of these four important characteristics possessed by the GA

it is more robust than other commonly used techniques.

The mechanics of simple genetic algorithms (SGA) are surprisingly simple in-

volving nothing more complex than copying strings and swapping partial strings.

A simple genetic algorithm that yields good results in many practical problems is

composed of three operations. They are

105

106 5 Classification of Genetic Algorithm

1) Reproduction

2) Cross over and

3) Mutation

The reproduction is a process in which individual string are copied according to

their objective function values, f. One can consider the function f as some measure

of profit, utility or goodness that we want to maximize. Copying strings according

to their fitness will result higher probability of contributing one of more off string

in the next generation. This reproduction operator can be implemented in an algo-

rithmic form in a number of ways. The simplest possible way of implementing the

reproduction operator is using a biased Roulette Wheel. In this Roulette Wheel each

current string in the population has a slot sized in proportional to its fitness. The

more-or-less standard procedure for running the simple genetic algorithm is:

randomly generate population

select parents (using fitness function)

selection methods:

roulette wheel

tournament

demetic

crossover parent chromosomes

mutate offspring chromosomes

add offspring back into pool

elitism

(select parents)

SGAs are useful and efficient when,

• The search space is large, complex or poorly understood.

• Domain knowledge is scarce or expert knowledge is difficult to encode to narrow

the search space.

• No mathematical analysis is available.

• Traditional search methods fail.

The advantage of the SGA approach is the ease with which it can handle arbitrary

kinds of constraints and objectives; all such things can be handled as weighted com-

ponents of the fitness function, making it easy to adapt the SGA scheduler to the

particular requirements of a very wide range of possible overall objectives.

5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA)

Parallel execution of various SGAs is called PGA (Parallel Genetic Algorithm). It

is used to solve Job shop scheduling problem by making use of various precedence

constraints to achieve high optimization. Parallel Genetic Algorithms (PGAs) have

been developed to reduce the large execution times that are associated with simple

5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA) 107

genetic algorithms for finding near-optimal solutions in large search spaces. They

have also been used to solve larger problems and to find better solutions. PGAs

have considerable gains in terms of performance and scalability. PGAs can easily be

implemented on networks of heterogeneous computers or on parallel mainframes.

The way in which GAs can be parallelized depends upon the following elements:

• How fitness is evaluated and mutation is applied

• How selection is applied locally or globally

• If single or multiple subpopulations are used

• If multiple populations are used how individuals are exchanged

The simplest way of parallelizing a GA is to execute multiple copies of the same

SGA, one on each Processing Element (PE). Each of the PEs starts with a different

initial subpopulation, evolves and stops independently. The complete PGA halts

when all PE stop. There are no inter-PE communications. The various methods of

PGA are:

• Independent PGA

• Migration PGA

• Partition PGA

• Segmentation PGA

• Segmentation–Migration PGA

The advantage of independent PGA approach is that each PE starts with an indepen-

dent subpopulation. Such subpopulation diversity reduces the chance that all PEs

prematurely converge to the same poor quality solution. This approach is equivalent

to simply taking the best solution after multiple executions of the SGA on different

initial populations.

The second PGA approach is the migration PGA, augments the independent ap-

proach with periodic chromosome migrations among the PEs to prevent premature

convergence and share high quality solutions. Chromosome migrations occur after

certain iterations, with each PE sending a copy of its locally best chromosome to

PE P1 modulo N at the first migration step, then PE P2 modulo N at the second

migration step and so on. The chromosome received replaces the locally worst chro-

mosome unless an identical chromosome already exists in the local population.

Partition PGA is to partition the search space into disjoint subspaces and to force

PEs to search in different subspaces. The segmentation PGA starts by segmenting

tours into sub tours. Then after sub tour improvements, they are recombined into

longer sub tours. The combination of segmentation and migration is the segmenta-

tion –migration approach. Recombination occurs at the end of each phase, sub tours

are contained by a group of PEs numbered in ascending order.

PGAs are implemented using the standard parallel approach and the decompo-

sition approach. In the first approach, the sequential GA model is implemented

on a parallel computer by dividing the task of implementation among the pro-

cessors. In decomposition approach, the full population exists in distributed form.

Either multiple independent or interacting subpopulation exists (coarse grained or

distributed GA) or there is only one population with each population member inter-

108 5 Classification of Genetic Algorithm

acting only with limited set of members (fine grained GA). The interactions between

the populations or the members of the population, takes place with respect to a

spatial structure of a problem. These models maintain more diverse subpopulations

mitigating the problem of premature convergence. They also fit in the evolution

model, with a large degree of independence in the subpopulation.

Standard parallel approach is also referred as global parallelization or distributed

fitness evaluation. This approach uses a single population and the evaluations of

the individuals are done in parallel. The selection and mating is done manually

with any other. The most common parallelized operation is the evaluation of the

fitness function as it requires only the knowledge of the individual being evalu-

ated, hence no communications is needed. It is implemented using the master slave

model (Fig. 5.1). The master stores the population and does the selection. The slaves

evaluate the fitness and apply the genetic operators like crossover and mutation.

Communication occurs only when slaves return the values to the master. It has

two modes namely synchronous mode and asynchronous mode. In the synchronous

mode, the master waits till it receives the fitness value for the entire population,

before preceding to the next generation. On the contrary the master does not stop

for any slow processors in the asynchronous. In a distributed memory computer, the

master sends the individuals to the slave processors for fitness evaluation gather the

results and apply the genetic operators to produce the new generation. The number

of individuals assigned to any processor can be static or dynamic.

In decomposition approach, the population is divided into a number of subpop-

ulations called demes. Demes are separated from one another and individuals com-

pete only within a deme. An additional operator called migration is used to move

the individuals from one deme to another. If the individuals can migrate to any other

deme, the model is called island model. Migration can be controlled by various

parameters like migration rate, topology, migration scheme like best/worst/random

individuals to migrate and the frequency of migrations.

The other approaches are coarse grained and fine-grained parallel genetic al-

gorithms. Coarse-grained PGA model refers to relatively small number of demes

with many individuals. These models are characterized by the relatively long time

required for processing a generation within each deme and by their occasional

communication for exchanging individual. It is called as distributed GAs as it is usu-

ally implemented in distributed memory computers. In case of fine-grained parallel

genetic approach, large numbers of processors are required because the population

is divided into number of demes. Inter-deme communication is realized either by

migration operator or by overlapping demes.

Fig. 5.1 A schematic of a

master-slave parallel GA. The

master stores the population,

executes GA operations, and

distributes individuals to the

slaves. The slaves only

evaluate the fitness of the

individuals

5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA) 109

It is important to emphasize that while the master-slave parallelization method

does not affect the behavior of the algorithm, the fine and coarse-grained meth-

ods change the way the GA works. For example, in master-slave parallel GAs,

selection takes into account all the population, but in the fine and coarse-grained

parallel GAs, selection only considers a subset of individuals. Also, in the master-

slave any two individuals in the population can mate (i.e., there is random mat-

ing), but in fine and coarse-grained methods mating is restricted to a subset of

individuals.

5.3.1 Master-Slave Parallelization

This section reviews the master-slave (or global) parallelization method. The al-

gorithm uses a single population and the evaluation of the individuals and/or the

application of genetic operators are done in parallel. As in the serial GA, each

individual may compete and mate with any other (thus selection and mating are

global). Global parallel GAs are usually implemented as master-slave (Fig. 5.1)

programs, where the master stores the population and the slaves evaluate the fitness.

The most common operation that is parallelized is the evaluation of the individuals,

because the fitness of an individual is independent from the rest of the population,

and there is no need to communicate during this phase. The evaluation of individuals

is parallelized by assigning a fraction of the population to each of the processors

available. Communication occurs only as each slave receives its subset of individu-

als to evaluate and when the slaves return the fitness values. If the algorithm stops

and waits to receive the fitness values for all the population before proceeding into

the next generation, then the algorithm is synchronous. A synchronous master-slave

GA has exactly the same properties as a simple GA, with speed being the only

difference. However, it is also possible to implement an asynchronous master-slave

GA where the algorithm does not stop to wait for any slow processors, but it does

not work exactly like a simple GA. Most global parallel GA implementations are

synchronous.

The global parallelization model does not assume anything about the underlying

computer architecture, and it can be implemented efficiently on shared-memory and

distributed-memory computers. On a shared-memory multiprocessor, the popula-

tion could be stored in shared memory and each processor can read the individu-

als assigned to it and write the evaluation results back without any conflicts. On a

distributed-memory computer, the population can be stored in one processor. This

“master” processor would be responsible for explicitly sending the individuals to the

other processors (the “slaves”) for evaluation, collecting the results, and applying

the genetic operators to produce the next generation. The number of individuals

assigned to any processor may be constant, but in some cases (like in a multiuser

environment where the utilization of processors is variable) it may be necessary to

balance the computational load among the processors by using a dynamic schedul-

ing algorithm (e.g., guided self-scheduling). The following is an informal descrip-

tion of the algorithm:

110 5 Classification of Genetic Algorithm

produce an initial population of individuals

for all individuals do in parallel

evaluate the individual’s fitness

end parallel for

while not termination condition do

select fitter individuals for reproduction

produce new individuals

mutate some individuals

for all individuals do in parallel

evaluate the individual’s fitness

end parallel for

generate a new population by inserting some new good individuals

and by discarding some old bad individuals

end while

Master-slave parallel GAs are easy to implement and it can be a very efficient

method of parallelization when the evaluation needs considerable computations.

Besides, the method has the advantage of not altering the search behavior of the

GA, so we can apply directly all the theory available for simple GAs.

5.3.2 Fine Grained Parallel GAs (Cellular GAs)

In the grid or fine-grained model individuals are placed on a large toroidal (the

ends wrap around) one or two-dimensional grid, one individual per grid location.

The model is also called cellular because of its similarity with cellular automata

with stochastic transition rules. Fitness evaluation is done simultaneously for all

individuals and selection, reproduction and mating takes place locally within a

small neighborhood. In time, semi-isolated niches of genetically homogenous in-

dividuals emerge across the grid as a result of slow individual diffusion. This phe-

nomenon is called isolation by distance and is due to the fact that the probabil-

ity of interaction of two individuals is a fast decaying function of their distance

(Fig. 5.2).

The following is the algorithmic description of the process:

for each cell j in the grid do in parallel

generate a random individual j

end parallel for

while not termination condition do

for each cell j do in parallel

evaluate individual j

select a neighboring individual k

produce offspring from j and k

assign one of the offspring to j

5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA) 111

mutate j with probability pmut

end parallel for

end while

In the 1-D case a small number of cells on either side of the central one is taken

into account. The selection of the individual in the neighborhood for mating with

the central individual can be done in various ways. Tournament selection is com-

monly used since it matches nicely the spatial nature of the system. The tournament

may be probabilistic as well, in which case the probability for an individual to

win is generally proportional to its fitness. This makes use of the fully available

parallelism and is probably more appropriate if the biological metaphor is to be

followed.

5.3.3 Multiple-Deme Parallel GAs (Distributed GAs or Coarse

Grained GAs)

Multiple-population (or multiple-deme) GAs are more sophisticated, as they consist

on several subpopulations which exchange individuals occasionally (Fig. 5.3). This

exchange of individuals is called migration, as discussed above; it is controlled by

several parameters. Multiple-deme GAs is very popular, but also are the class of par-

allel GAs, which is most difficult to understand, because the effects of migration are

not fully understood. Multiple-deme parallel GAs introduces fundamental changes

in the operation of the GA and has a different behavior than simple GAs.

Multiple-deme parallel GAs is known with different names. Sometimes they

are known as “distributed” GAs (DGA), because they are usually implemented on

distributed memory MIMD (Multiple input Multiple Data) computers. Since the

computation to communication ratio is usually high, they are occasionally called

coarse-grained GAs. Finally, multiple-deme GAs resemble the “island model” in

Population Genetics which considers relatively isolated demes, so the parallel GAs

Fig. 5.2 A schematic of a

fine-grained parallel GA.

This class of parallel GAs has

one spatially-distributed

population, and it can be

implemented very efficiently

on massively parallel

computers

112 5 Classification of Genetic Algorithm

Fig. 5.3 A schematic of a

multiple-population parallel

GA. Each process is a simple

GA, and there is (infrequent)

communication between the

populations

are also known as “island” parallel GAs. Since the size of the demes is smaller than

the population used by a serial GA, we would expect that the parallel GA converge

faster.

The important characteristics of multiple-deme parallel GAs are the use of a

few relatively large subpopulations and migration. The island model features geo-

graphically separated subpopulations of relatively large size. Subpopulations may

exchange information from time to time by allowing some individuals to migrate

from one subpopulation to another according to various patterns. The main rea-

son for this approach is to periodically reinject diversity into otherwise converging

subpopulations. It is considered to some extent, different subpopulations will tend

to explore different portions of the search space. When the migration takes place

between nearest neighbor subpopulations the model is called stepping stone. Within

each subpopulation a standard sequential genetic algorithm is executed between

migration phases. Several migration topologies have been used: the ring structure,

2-d and 3-d meshes, hyper cubes and random graphs being the most common. The

following is a algorithmic description of the process:

initialize P subpopulations of size N each

generation number = 1

while not termination condition do

for each subpopulation do in parallel

evaluate and select individuals by fitness

if generation number mod frequency = 0 then

send K<N best individuals to

a neighboring subpopulation

receive K individuals from a

neighboring population

replace K individuals in the subpopulation

endif

produce new individuals

mutate individuals

end parallel for

generation number = generation number +1

end while

5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA) 113

In the above algorithm frequency is the number of generations before an exchange

takes place.

5.3.4 Hierarchical Parallel Algorithms

The final method to parallelize GAs combines multiple demes with master-slave or

fine-grained GAs. We call this class of algorithms hierarchical parallel GAs, because

at a higher level they are multiple-deme algorithms with single-population parallel

GAs (either master-slave or fine-grained) at the lower level. A hierarchical parallel

GAs combines the benefits of its components, and it promises better performance

than any of them alone.

A few researchers have tried to combine two of the methods to parallelize GAs,

producing hierarchical parallel GAs. Some of these new hybrid algorithms add a

new degree of complexity to the already complicated scene of parallel GAs, but

other hybrids manage to keep the same complexity as one of their components.

When two methods of parallelizing GAs are combined they form a hierarchy. At

the upper level most of the hybrid parallel GAs are multiple-population algorithms.

Some hybrids have a fine-grained GA at the lower level (Fig. 5.4).

Another type of hierarchical parallel GA uses a master-slave on each of the demes

of a multi-population GA (Fig. 5.5). Migration occurs between demes, and the

evaluation of the individuals is handled in parallel. This approach does not introduce

new analytic problems, and it can be useful when working with complex applica-

tions with objective functions that need a considerable amount of computation time.

Bianchini and Brown presented an example of this method of hybridizing parallel

GAs, and showed that it can find a solution of the same quality of a master-slave

parallel GA or a multi-deme GA in less time.

A third method of hybridizing parallel GAs is to use multi-deme GAs at both

the upper and the lower levels (Fig. 5.6). The idea is to force panmictic mixing

at the lower level by using a high migration rate and a dense topology, while a

low migration rate is used at the high level. The complexity of this hybrid would

Fig. 5.4 This hierarchical

GA combines a multi-deme

GA (at the upper level) and a

fine-grained GA (at the lower

level)

114 5 Classification of Genetic Algorithm

Fig. 5.5 A schematic of a

hierarchical parallel GA. At

the upper level this hybrid is

a multi-deme parallel GA

where each node is a

master-slave GA

be equivalent to a multiple-population GA if we consider the groups of panmictic

subpopulations as a single deme. This method has not been implemented yet. Hi-

erarchical implementations can reduce the execution time more than any of their

components alone (Table 5.1).

Thus multiple-deme algorithms dominate the research on parallel GAs. This class

of parallel GAs is very complex, and its behavior is affected by many parameters.

It seems that the only way to achieve a greater understanding of parallel GAs is

to study individual facets independently, and we have seen that some of the most

parallel GAs concentrates on migration rates, topology, or deme size. As GAs are

applied to larger and more difficult search problems, it becomes necessary to de-

sign faster algorithms that retain the capability of finding acceptable solutions. This

section presented numerous parallel GAs that are capable of combining speed and

efficacy.

Fig. 5.6 This hybrid uses

multi-deme GAs at both the

upper and the lower levels. At

the lower level the migration

rate is faster and the

communications topology is

much denser than at the upper

level

5.4 Hybrid Genetic Algorithm (HGA) 115

Table 5.1 The main parallel genetic algorithm classes according to their space and time dimen-

sions

Coarse-grained Fine grained

Population Individual Fitness

Synchronous Island Cellular Master Slave

GA GA GA

Synchronous

Stochastic Cellular

Automata

Asynchronous Island Asynchronous Master Slave

GA Stochastic GA

Cellular Automata

5.4 Hybrid Genetic Algorithm (HGA)

A Hybrid Genetic Algorithm has been designed by combining a variant of an al-

ready existing crossover operator with these heuristics. One of the heuristics is for

generating initial population; other two are applied to the offspring either obtained

by crossover or by shuffling. The last two heuristics applied to offspring are greedy

in nature, hence to prevent getting struck up at local optimum one has to include

proper amount of randomness by using the shuffling operator.

The Hybrid Genetic Algorithm in this section is designed to use heuristics for

Initialization of population and improvement of offspring produced by crossover

for a Traveling Salesman Problem (TSP). The initializationHeuristics algorithm is

used to initialize a part of the population; remaining part of the population will be

initialized randomly. The offspring is obtained by crossover between two parents

selected randomly. The tour improvement heuristics: RemoveSharp and LocalOpt

are used to bring the offspring to a local minimum. If cost of the tour of the offspring

thus obtained is less than the cost of the tour of any one of the parents then the parent

with higher cost is removed from the population and the offspring is added to the

population. If the cost of the tour of the offspring is greater than that of both of

its parent then it is discarded. For shuffling, a random number is generated within

one and if it is less than the specified probability of the shuffling operator, a tour is

randomly selected and is removed from the population. Its sequence is randomized

and then added to the population.

The algorithm works as below:

Step 1:

• Initialize a part of population using InitializationHeuristics algorithm

• Initialize remaining part of population randomly

Step 2:

• Apply RemoveSharp algorithm to all tours in the initial population

• Apply LocalOpt algorithm to all tours in the initial population

116 5 Classification of Genetic Algorithm

Step 3:

• Select two parents randomly

• Apply Crossover between parents and generate an offspring

• Apply RemoveSharp algorithm to offspring

• Apply LocalOpt algorithm to offspring

• If TourCost(offspring) < TourCost(any one of the parents) then replace

the weaker parent by the offspring

Step 4:

Shuffle any one randomly selected tour from population

Step 5:

Repeat steps 3 and 4 until end of specified number of iterations.

5.4.1 Crossover

The crossover operator that is used here is a slight variant of the crossover operator

devised by Darrell Whitley. The crossover operator uses an “edge map” to construct

an offspring which inherits as much information as possible from the parent struc-

tures. This edge map stores information about all the connections that lead into and

out of a city. Since the distance is same between any two cities, each city will have

at least two and atmost four edge associations (two from each parent). The crossover

algorithm is as follows:

Step 1:

Choose the initial city from one of the two parent tours. (It can be chosen ran-

domly or according to criteria outlined in step 4). This is the “current city”.

Step 2:

Remove all occurrences of the “current city ” from the left-hand side of the edge

map.

Step 3:

If the “current city” has entries in its edgelist go to step 4; otherwise, go to step 5.

Step 4:

Determine which city in the edgelist of the “current city”, has shortest edge with

the “current city”. The city with the shortest edge is included in the tour. This city

becomes the “current city”. Ties are broken randomly. Go to step 2.

Step 5:

If there are no remaining unvisited cities, then STOP. Otherwise, randomly

choose an unvisited city and go to step 2.

The difference between the Crossover algorithm of Darrell Whitley and this is

only in the fourth step of the algorithm. He selected the city with least entries in its

edgelist as the next city, while we choose the city nearest to the current city. This

introduces greedy heuristic in the crossover operator too.

5.4 Hybrid Genetic Algorithm (HGA) 117

5.4.2 Initialization Heuristics

The InitializationHeuristics (IH) algorithm can be applied only to TSP. It initializes

the population depending upon a greedy algorithm. The greedy algorithm arranges

the cities depending on their x and y coordinates. The tours are represented in linked-

lists. First an initial list is obtained in the input order (Input List). The linked-list that

is obtained after applying the initialization heuristics is the “Output List”. During

the process of applying the initialization heuristics all the cities in the “Input List”

will be moved one by one to the “Output List”.

The initialization heuristics algorithm for a TSP is as follows:

Step 1:

Select four cities, first one with largest x-coordinate value, second one with least

x-coordinate value, third one with largest y-coordinate and fourth one with least

y-coordinate value. Move them from the “Input List” to the “Output List”.

Step 2:

From among the possible sequences of the four cities find the sequence of min-

imum cost and change the sequence of four cities in the “Output List” to the mini-

mum sequence.

Step 3:

Randomize the elements in the “Input List”.

Step 4:

Remove the head element of the “Input List” and insert it into the “Output List”

at the position where the increase in the cost of the tour is minimum. Suppose M is

the cost of the tour before insertion and N be the cost of the tour after insertion. The

position of insertion is selected such that N-M is minimum.

Step 5:

Repeat Step 4 until all elements in the “Input List” are moved to the “Output

List”.

Depending on the sorting criteria in Step 3 of the above algorithm various results

will be obtained.

RemoveSharp and LocalOpt heuristics are applied to the offspring obtained by this

method and added to the initial population.

5.4.3 The RemoveSharp Algorithm

The RemoveSharp algorithm removes sharp increase in the tour cost due to a city,

which is badly positioned. The algorithm works as below:

Step 1: A list (NEARLIST) containing the nearest mcities to a selected city is created.

Step 2: RemoveSharp removes the selected city from the tour and forms a tour with

N − 1cities.

Step 3: Now the selected city is reinserted in the tour either before or after any one

of the cities in NEARLIST and the cost of the new tour length is calculated for each

case.

118 5 Classification of Genetic Algorithm

Step 4: The sequence, which produces the least cost, is selected.

Step 5: The above steps are repeated for each city in the tour.

5.4.3.1 Time Complexity of RemoveSharp

As discussed in Step 2 of the algorithm, when a city is removed during RemoveSharp

there will be a decrease in the tour cost. Suppose the sequence of the cities be

- - -P - C - N- - - - - - - - AP - A - AN - - -

C is the city to be removed to perform RemoveSharp. Let Pbe the city previous

to the city C and N the city next to it. RemoveSharp will move the city C to a new

position, if the increase in the tour length after moving it to the new position is less

than the decrease in cost caused due to removing it from the position between Pand

N . If city A is in the near list then RemoveSharp will check possibility of moving to

the locations before A i.e. AP and after A i.e. AN.

The decrease in tour length will be:

DECREASE = Dist(P,C) + Dist(C,N) - Dist(P,N)

If C is moved to the location previous to A i.e. AP , increase in tour cost will be:

INCREASEP = Dist(AP,C) + Dist(C,A) - Dist(AP,A)

If C is moved the location next to A i.e. AN increase in tour cost will be:

INCREASEN = Dist(A,C) + Dist(C,AN) - Dist(A,AN)

When RemoveSharp is applied, DECREASE is calculated once, while INCREASEN

and INCREASEP are calculated for every city in the NEARLIST. Time complexi-

ties for DECREASE, INCREASEN and INCREASEP are same and let it be x . IN-

CREASEN and INCREASEP should be compared with DECREASE for each city

in

the NEARLIST. Let y be the time taken for one comparison. All these calculations

need to be done for every city in the tour.

Time Complexity for RemoveSharp = n * (x + 2m * x + 2m * y)

Here, m the size of NERALIST, x the time taken by for DECREASE, INCREASEN

and INCREASEP and y the time taken for comparison are constants. Therefore,

Time Complexity for RemoveSharp ∼= O(n)

5.5 Adaptive Genetic Algorithm (AGA) 119

5.4.4 The LocalOpt Algorithm

The LocalOpt algorithm will select q consecutive cities (Sp+0 , Sp+1 , ,

Sp+q-1) from the tour and it arranges cities Sp+1 , Sp+2 , , Sp+q-2 in such a

way that the distance is minimum between the cities Sp+0 and Sp+q-1 by searching

all possible arrangements. The value of p varies from 0 to n-q, where n is the number

of cities.

5.4.4.1 Time complexity of LocalOpt

The time complexity of LocalOpt varies with value of q , the number of consecutive
cities taken for LocalOpt at a time. When q cities in a sequence are considered then
all possible combinations of q −2 cities need to be calculated. There will be (q −2)!
combinations, in each case q − 1 additions need to be done to evaluate the cost of
the sequence and one comparison to check whether the sequence is minimum or not.
These need to be done for n consecutive sequence of q cities starting from each city
in the tour. Therefore,

Time Complexity of LocalOpt = n * (((q-2)!* (q-1)) additions + (q-2)! comparisons)

As n alone is a variable,

Time Complexity ∼ = O(n) (provided q is small (<=6))

Thus the discussed HGA can be extended to various application like VLSI design

layout, contour planning and so on. For example in case of VLSI design layout

macro cells will be a considering factor for design instead of cities in the above TSP

hybrid genetic algorithm.

5.5 Adaptive Genetic Algorithm (AGA)

Adaptive genetic algorithms (AGA) are GAs whose parameters, such as the popula-

tion size, the crossing over probability, or the mutation probability are varied while

the GA is running. A simple variant could be the following: The mutation rate is

changed according to changes in the population; the longer the population does not

improve, the higher the mutation rate is chosen. Vice versa, it is decreased again

as soon as an improvement of the population occurs. The overall Adaptive Genetic

Algorithm procedure is as follows:

Step 1: Initial population

We use the population obtained by random number generation

Step 2: Genetic operators

Selection: elitist strategy in enlarged sampling space

Crossover: order-based crossover operator for activity priority

Mutation: local search-based mutation operator for activity mode

120 5 Classification of Genetic Algorithm

Step 3: Apply the local search using iterative hill-climbing method in GA loop

Step 4: Apply the heuristic for adaptively regulating GA parameters (i.e., the rates

of crossover and the mutation operators).

Step 5: Stop condition

If a pre-defined maximum generation number is reached or an optimal solution

is located during genetic search process, then stop; otherwise, go to Step 2.

For a multimode function, if it is needed to keep the global search ability it must

have balanced search ability. Crossover probability pc and mutation probability pm

are the main factors in affecting balanced search ability (global search ability and

local search ability). While we strengthen one ability by increasing or decreasing pc,

pm, we may weaken other abilities. Both pc and pm in the simple genetic algorithm

(SGA) are invariant, so for the complex optimal problem the GA’s efficiency is not

high. In addition, immature convergence may be caused. Therefore, the goals with

adaptive probabilities of crossover and mutation are to maintain the genetic diversity

in the population and prevent the genetic algorithms to converge prematurely to local

minima. As a result adaptive genetic algorithm was developed, and its basic idea is

to adjust pc and pm according to the individual fitness. This algorithm can better

solve the problem of adjusting pc and pm dynamically and also fits to all kinds of

optimal problem. Based on these facts, we adopt the adaptive genetic algorithm to

obtain the optimal solution is as follows:

5.5.1 Initialization

Define integer H is the initial random population of chromosomes, and we adopt

real code. Every chromosome include n gene bit. Considering the following set:

Ω = {(x1,Λ, xx)|u1 ≤ x1 ≤ w1,Λ, ux ≤ xx ≤ wx }

It produces random number from Ω and tests its feasibility. If it is feasible then it

is a member of the initial population, otherwise, we go on produce random number

from Ω until obtain feasible solution. After finite sample there are H initial feasible

chromosomes H, V1 ΛVH .

5.5.2 Evaluation Function

Through evaluation function eval(V) we set probability for every chromosome V , so

the selection probability is proportion to their fitness. That is, by roulette wheel se-

lection, chromosomes with a high fitness value have a great chance of being selected

to generate children for the next generation, and then the sequence number instead

of target value reallocates the chromosome, and chromosome is arrayed from good

5.5 Adaptive Genetic Algorithm (AGA) 121

to bad. That is say, a chromosome is better sequence number is lower. So we set

α ∈(0,1) and define evaluating function based on the sequence number,

eval(V f) = α(1 − α) f −1, j = 1, 2,Λ, H.

5.5.3 Selection operator

Step 1: According to the rule that the selection operator chooses individuals with a

probability that corresponds to the relative fitness. Chromosomes with a high fitness

value have a great chance of being selected to generate children for the next genera-

tion., two chosen individuals, called the parents. We define reproduction probability

for v j (k).

p j (k) =
F(v j (k))

f (v1(k)) + F(v2(k)) + Λ + F(vu(k))
.

j=1 means the chromosome is the best chromosome and j=H means the chromosome

is the worst chromosome.

Step 2: For v j (k), j = 1, 2ΛH calculate cumulative probability qj :

⎧

⎨

⎩

qo = 0 ,

q j =
j

∑

i=1

pi(k), j = 1, 2,Λ, H.

Step 3: Produce random number r (0, qH). If q j−1 < r < q j , then we select the

chromosome v j (k), j=1,2,Λ,H.

Step 4: Repeating step 2 and step 3 H times, we can obtain H copied chromosomes,

defined by

v’(k) = (v1’(k), v2’(k),Λ, vH ’(k))

5.5.4 Crossover operator

Instead of using fixed pc , we adjust it adaptively based on the following formula:

pc =

⎧

⎨

⎩

pc1 =
(pc1 − pc2)(f ’ − favg)

fmax − favg

pc1

f ’ ≥ favg,

f ’ < favg,
.

where f max is the highest fitness value in the population; favg is the average fitness

value in every population; f ′ is higher fitness value between two individuals; in

addition we set, Pc1=0.9, Pc2=0.6.

122 5 Classification of Genetic Algorithm

5.5.5 Mutation operator

Instead of using fixed pm , we adjust it adaptively based on the following formula:

pm =

⎧

⎨

⎩

pm1 =
(pm1 − pm2)(f − favg)

fmax − favg

pm1

f ≥ favg

f < favg

where f max is the highest fitness value in the population; favg is the average fitness

value in every population; f ′ is higher mutation fitness value; in addition we set,

Pm1=0.1, Pm2=0.001.

Based on the above operators perform the adaptive genetic algorithm operations

until the convergence condition is reached.

In the adaptive GA, low values of pc and pm are assigned high fitness solutions,

while low fitness solutions have very high values of pc and pm. The best solution

of every population is ‘protected’ i.e. it is not subjected to crossover, and receives

only a minimal amount of mutation. On the other hand, all solution with a fitness

value less than the average fitness value of the population have pm= 0.5. This means

that all sub average solutions are completely disrupted and totally new solutions are

created. The GA can thus rarely get stuck at a local optimum.

5.6 Fast Messy Genetic Algorithm (FmGA)

The fmGA is a binary, stochastic, variable string length, population based approach

to solving optimization problems. The fmGA was developed by Goldberg, Deb

and Kargupta and later applied to the PSP problem by Merkle, Gates, Lamont and

Pachter. The main difference between the fmGA and other genetic approaches is

the ability of the fmGA to explicitly manipulate building blocks (BBs) of genetic

material in order to obtain good solutions and potentially the global optimum. The

fmGA contains three phases of operation:

• the initialization phase

• the building block filtering (BBF) phase

• the juxtapositional phase, which includes various parameters.

In the initialization phase of the fmGA, a population sizing equation is used to derive

a population large enough to overcome the noise present in the BBF process. Once

the population size is determined, initial population members are randomly gener-

ated and their corresponding fitness values are calculated through the application

chosen. These population members are referred to as fully specified since all of the

associated genes of the population member contain allelic values. The fully specified

population members from the initialization phase are then systematically reduced in

length to the user specified BB size through the use of a BBF schedule.

5.6 Fast Messy Genetic Algorithm (FmGA) 123

The BBF process randomly deletes a certain number of bits from each population

member over a number of generations specified in the schedule. This deletion of bits

is alternated with tournament selection so that only the best partial strings are kept

for processing in the subsequent generations. A CT is used at this stage to evaluate

the under specified population members. At the end of the BBF process, the entire

population consists of under specified strings of the user specified BB length.

The juxtapositional phase takes the good BBs found from the BBF process and

combines them together through a cut-and-splice operator. This operator randomly

chooses two strings and based on the probabilities of cut and splice, cuts the strings

and splices them together accomplishing the goal of crossing over information be-

tween the strings. This process is also alternated with tournament selection so that

only the best strings are kept from generation to generation. At the conclusion of

this phase, fully specified strings exist in the population and the next BB size is

evaluated via an outer loop over these three phases.

5.6.1 Competitive Template (CT) Generation

Competitive templates are an extremely important part of the fmGA. Population

members containing very few specified bits (under specified members) with respect

to the overall string length, as is the case at the end of the BBF process, are highly

dependent on the CT. The reverse holds for strings that have the majority of their

bits specified, as they only need to take a few bits from the CT. This illustrates

the importance of the CT in the overall execution of the fmGA, especially at the

start of the juxtapositional phase in generation fitness values. To evaluate an under

specified population member, the CT is copied into a temporary location and the

bits that are specified in the population member replace the bits of the CT within this

temporary location. Once this is accomplished, the temporary string is evaluated and

the resulting fitness is associated with the under specified population member. In the

case of an over specified population member, which may occur when the cut-and-

splice procedure causes a member to have multiple occurrences of a particular loci,

a left-to-right method is employed. In this method, the first allelic value encountered

for particular loci is recorded as the value present for evaluation purposes.

A random CT is a natural starting point since the goal of the fmGA work is to

generate a robust algorithm that obtains solutions for various optimization problems.

In order to increase the effectiveness of the algorithm over this approach, the next

step is to incorporate problem domain knowledge into the fmGA or increase the

number of CTs utilized. The four CT methods suggested are:

• Randomly generate a CT, and then conduct a localized search on this CT. This

memetic approach involves conducting a local search of the competitive template

before each template update at the end of the juxtapositional phase.

• The use of a fully specified population member containing specific structures as

the CTs. Each seeded CT is hard coded into the fmGA using known alpha helix

and beta-sheet dihedral angles. The algorithm is expected to achieve better fitness

124 5 Classification of Genetic Algorithm

values at a faster rate for proteins having either of these secondary structures

through this method.

• Utilizing a panmetic CT. The process generates an odd number of CTs and

merges these into one template called a panmetic CT in this method. The merge

is anticipated to take the best components of each of the CTs and combine them

together. The CTs can be all random or a combination of random and those con-

taining a structure.

• Using more than a single CT developed via the aforementioned methods. This

approach allows for more exploration since each population member is evaluated

using multiple templates and therefore has the potential to find a better solution

by searching different areas of the landscape.

5.7 Independent Sampling Genetic Algorithm (ISGA)

One major source of the power of GAs is derived from so called implicit paral-

lelism i.e., the simultaneous allocation of search effort to many regions of the search

space. A perfect implementation of implicit parallelism implies that a large number

of different short, low order schemata of high fitness are sampled in parallel, thus

conferring enough diversity of fundamental building blocks for crossover operators

to combine them to form more highly fit, complicated building blocks. However,

traditional GAs suffers from premature convergence where considerable fixation

occurs at certain schemata of sub optimal regions before attaining more advance-

ment. Among examples of premature convergence, hitchhiking has been identified

as a major hindrance, which limits implicit parallelism by reducing the sampling

frequency of various beneficial building blocks.

In short, non-relevant alleles hitchhiking on certain schemata could propagate to

the next generation and drown out other potentially favorable building blocks, thus

preventing independent sampling of building blocks. Consequently, the efficacy of

crossover in combining building blocks is restricted by the resulting loss of desired

population diversity. As a result researchers considered a so called Idealized Genetic

Algorithm (IGA) that allows each individual to evolve completely independently;

thus new samples are given independently to each schema region and hitchhiking

is suppressed. Then under the assumption that the IGA has the knowledge of the

desired schemata in advance, they derived a lower bound for the number of function

evaluations that the IGA will need to find the optimum of Royal Road function..

However, the IGA is impractical because it requires the exact knowledge of desired

schemata ahead of time.

Partially motivated by the idea of the IGA, a more robust GA is proposed that

proceeds in two phases:

• the independent sampling phase

• the breeding phase.

5.7 Independent Sampling Genetic Algorithm (ISGA) 125

In the independent sampling phase, a core scheme, called Building Block De-

tecting Strategy (BBDS), to extract relevant building block information of a fitness

landscape is designed. In this way, an individual is able to sequentially construct

more highly fit partial solutions. For Royal Road Function, the global optimum

can be attained easily. For other more complicated fitness landscapes, we allow a

number of individuals to adopt the BBDS and independently evolve in parallel so

that each schema region can be given samples independently. During this phase,

the population is expected to be seeded with promising genetic material. Then fol-

lows the breeding phase, in which individuals are paired for breeding based on two

mate selection schemes: individuals being assigned mates by natural selection only

and individuals being allowed to actively choose their mates. In the latter case,

individuals are able to distinguish candidate mates that have the same fitness yet

have different string structures, which may lead to quite different performance after

crossover. This is not achievable by natural selection alone since it assigns individu-

als of the same fitness the same probability for being mates, without explicitly taking

into account string structures. In short, in the breeding phase individuals manage to

construct even more promising schemata through the recombination of highly fit

building blocks found in the first phase. Due to the characteristic of independent

sampling of building blocks that distinguishes the proposed GAs from conventional

GAs, it is called as independent sampling genetic algorithms (ISGAs).

5.7.1 Independent Sampling Phase

To implement independent sampling of various building blocks, a number of strings

are allowed to evolve in parallel and each individual searches for a possible evolu-

tionary path entirely independent of others.

In this section a new searching strategy called Building Block Detecting Strat-

egy (BBDS) is developed, for each individual to evolve based on the accumulated

knowledge for potentially useful building blocks. The idea is to allow each individ-

ual to probe valuable information concerning beneficial schemata through testing its

fitness increase since each time a fitness increase of a string could come from the

presence of useful building blocks on it. In short, by systematically testing each bit

to examine whether this bit is associated with the fitness increase during each cycle,

a cluster of bits constituting potentially beneficial schemata will be uncovered. Iter-

ating this process guarantees the formation of longer and longer candidate building

blocks.

The operation of BBDS on a string can be described as follows.

1. Generate an empty set for collecting genes of candidate schemata and create

an initial string with uniform probability for each bit until its fitness exceeds 0.

(Record the current fitness as Fit.)

2. Except the genes of candidate schemata collected, from left to right, succes-

sively ◦ip all the other bits, one at a time, and evaluate the resulting string. If the

126 5 Classification of Genetic Algorithm

resulting fitness is less than Fit, record this bit’s position and original value as a

gene of candidate schemata.

3. Except the genes recorded, randomly generate all the other bits of the string until

the resulting string’s fitness exceeds Fit. Replace Fit by the new fitness.

4. Go to steps 2 and 3 until some end criterion. The idea of this strategy is that the

cooperation of certain genes (bits) makes for good fitness.

Once these genes come in sight simultaneously, they contribute a fitness increase to

the string containing them; thus any loss of one of these genes leads to the fitness

decrease of the string. This is essentially what step 2 does and after this step we

should be able to collect a set of genes of candidate schemata. Then at step 3,

we keep the collected genes of candidate schemata fixed and randomly generate

other bits, awaiting other building blocks to appear and bring forth another fitness

in crease.

However, the step 2 in this strategy only emphasizes the fitness drop due to a

bitŁ ip. It ignores the possibility that the same bitŁ ip leads to a new fitness rise

because many loci could interact in an extremely non linear fashion. To take this

into account, the second version of BBDS is introduced through the change of step

2 as follows.

Step 2. Except the genes of candidate schemata collected, from left to right, suc-

cessively Ł ip all the other bits, one at a time, and evaluate the resulting string. If

the resulting fitness is less than Fit, record this bit’s position and original value as a

gene of candidate schemata. If the resulting fitness exceeds Fit, substitute this bit’s

new value for the old value, replace Fit by this new fitness, record this bit’s position

and new value as a gene of candidate schemata, and reexecute this step.

Because this version of BBDS takes into consideration the fitness increase re-

sulted from bitŁ ips, it is expected to take less time for detecting. Other versions of

BBDS are of course possible. For ex ample, in step 2, if a bitŁ ip results in a fitness

increase, it can be recorded as a gene of candidate schemata, and the procedure

continues to test the residual bits yet without completely traveling back to the first

bit to reexamine each bit. However, the empirical results obtained thus far indicate

that the performance of this alternative is quite similar to that of the second version.

More experimental results are needed to distinguish the difference between them.

The overall implementation of the independent sampling phase of ISGAs is

through the proposed BBDS to get autonomous evolution of each string until all

individuals in the population have reached some end criterion.

5.7.2 Breeding Phase

After the independent sampling phase, individuals independently build up their own

evolutionary avenues by various building blocks. Hence the population is expected

to contain diverse beneficial schemata and premature convergence is alleviated

to some degree. However, factors such as deception and incompatible schemata

5.8 Summary 127

(i.e., two schemata have different bit values at common defining positions) still

could lead individuals to arrive at sub optimal regions of a fitness landscape. Since

building blocks for some strings to leave sub optimal regions may be embedded in

other strings, the search for proper mating partners and then exploiting the building

blocks on them are critical for overwhelming the difficulty of strings being trapped

in undesired regions. The researchers have investigated the importance of mate se-

lection and the results showed that the GAs is able to improve their performance

when the individuals are allowed to select mates to a larger degree.

In this section, we adopt two mate selection schemes to breed the population:

individuals being assigned mates by natural selection only and individuals being

allowed to actively choose their mates. Since natural selection assigns strings of the

same fitness the same probability for being parents, individuals of identical fitness

yet distinct string structures are treated equally. This may result in significant loss

of performance improvement after crossover.

We adopt the tournament selection scheme as the role of natural selection and

the mechanism for choosing mates in the breeding phase is as follows:

During each mating event, a binary tournament selection with probability 1.0 the

fitter of the two randomly sampled individuals is chosen is run to pick out the first

individual, then choosing the mate according to the following two different schemes:

• Run the binary tournament selection again to choose the partner.

• Run another two times of the binary tournament selection to choose two highly fit

candidate partners; then the one more dissimilar to the first individual is selected

for mating.

The implementation of the breeding phase is through iterating each breeding cycle

that consists of (1) Two parents are obtained based on the mate selection schemes

above. (2) Two-point crossover operator (crossover rate 1.0) is applied to these par-

ents. (3) Both parents are replaced with both offspring if any of the two offspring

is better than them. Then steps 1, 2, and 3 are repeated until the population size

is reached and this is a breeding cycle. Thus the Independent Sampling Genetic

Algorithm with its two phases is efficient than the conventional GAs.

5.8 Summary

In this chapter we have discussed on the various types of existing genetic algo-

rithms. Multiple-deme algorithms dominating the research on parallel GAs has

been discussed in detail. This class of parallel GAs is very complex, and its be-

havior is affected by many parameters. It seems that the only way to achieve a

greater understanding of parallel GAs is to study individual facets independently,

and we have seen that some of the most influential publications in parallel GAs

concentrate on only one aspect (migration rates, communication topology, or deme

size) either ignoring or making simplifying assumptions on the others. The chapter

128 5 Classification of Genetic Algorithm

also dealt on master-slave and fine-grained parallel GAs and realized that the

combination of different parallelization strategies can result in faster algorithms.

It is particularly important to consider the hybridization of parallel techniques in

the light of recent results, which predict the existence of an optimal number of

demes.

Also the hybrid GA, Adaptive GA and Messy GA has been included with the nec-

essary information’s. In this chapter we presented an exploratory method (BBDS) to

show how the searching speed of individuals can be improved. Through explicitly

acquiring relevant knowledge of candidate building blocks, BBDS outperformed

several representative hill-climbing algorithms on non-deceptive Royal Road func-

tions. Then a new class of GAs based on BBDS, i.e., ISGAs, is proposed. In the first

phase of ISGAs, implicit parallelism is nicely realized by allowing each individual

to accomplish independent building block sampling to suppress hitchhiking; thus

the population is expected to carry diverse promising schemata. Afterwards, with

one mate selection scheme that allows individuals to actively choose their mating

partners, the efficacy of crossover is enhanced and the ISGAs have been shown

to outperform several different GAs on a benchmark test function that is full of

deception.

Review Questions

1. List the various classifications of Genetic Algorithm

2. State the algorithm of Simple Genetic Algorithm

3. Define deme.

4. What is the necessity of Parallel Genetic Algorithms?

5. With neat figure, explain the concept involved in Master–Slave Parallelization.

6. Discuss in detail on the coarse grained and fine-grained genetic algorithms.

7. Why coarse-grained genetic algorithm is called as distributed genetic algorithm?

8. Differentiate between parallel genetic algorithm and distributed genetic algo-

rithm.

9. How are hierarchical genetic algorithms formed using the parallel GAs?

10. Write the basic Hybrid Genetic Algorithm.

11. State the various algorithmic procedures involved in Hybrid Genetic Algorithm.

12. Mention the formulas involved for crossover rate and mutation rate in adaptive

genetic algorithm.

13. What are the advantages of fast messy genetic algorithm compared to conven-

tional genetic algorithm?

14. Discuss the operations involved in the Fast messy Genetic Algorithm.

15. Explain in brief on the competitive template generation of FmGA.

16. Write short note on Independent Sampling Genetic Algorithm.

17. Compare and contrast Parallel GA and Hybrid GA

18. State few application areas of Parallel GAs.

19. How are Hybrid GAs used in planning of a VLSI Design Layout.

20. List some application areas of independent sampling genetic algorithms.

Exercise Problems 129

Exercise Problems

1. Implement a parallel genetic algorithm for traveling salesman problem.

2. Develop a computer program for Hybrid GA applied to for network design and

routing problems.

3. Write a MATLAB program for Fast messy Genetic Algorithm to a Protein struc-

ture prediction.

4. Implement adaptive GA for a portfolio selection problem.

5. Build a C program to implement simple genetic algorithm for a multi objective

optimization problem.

Chapter 6

Genetic Programming

6.1 Introduction

One of the central challenges of computer science is to get a computer to do what

needs to be done, without telling it how to do it. Genetic Programming (GP) ad-

dresses this challenge by providing a method for automatically creating a working

computer program from a high-level problem statement of the problem. Genetic

Programming achieves this goal of automatic programming (also sometimes called

program synthesis or program induction) by genetically breeding a population of

computer programs using the principles of Darwinian natural selection and bio-

logically inspired operations. The operations include reproduction, crossover (sex-

ual recombination), mutation, and architecture-altering operations patterned after

gene duplication and gene deletion in nature. For example, an element of a pop-

ulation might correspond to an arbitrary placement of eight queens on a chess-

board, and the fitness function might count the number of queens that are not

attacked by any other queens. Given an appropriate set of genetic operators by

which an initial population of queen placements can spawn new collections of

queen placements, a suitably designed system could solve the classic eight-queens

problem.

GP’s uniqueness comes from the fact that it manipulates populations of structured

programs—in contrast to much of the work in evolutionary computation in which

population elements are represented using flat strings over some alphabet. In this

chapter, the basic concepts, working, representations and applications of genetic

programming have been dealt in detail.

6.2 Comparison of GP with Other Approaches

Genetic programming (GP) is a domain independent, problem-solving approach in

which computer programs are evolved to find solutions to problems. The solution

technique is based on the Darwinian principle of “survival of the fittest” and is

closely related to the field of genetic algorithms (GA).

131

132 6 Genetic Programming

However three important differences exist between GAs and GP:

• Structure: GP usually evolves tree structures while GA’s evolve binary or real

number strings.

• Active Vs Passive: Because GP usually evolves computer programs, the solu-

tions can be executed without post processing i.e. active structures, while GA’s

typically operate on coded binary strings i.e. passive structures, which require

post-processing.

• Variable Vs fixed length: In traditional GAs, the length of the binary string is

fixed before the solution procedure begins. However a GP parse tree can vary in

length throughout the run. Although it is recognized that in more advanced GA

work, variable length strings are used.

The ability to search the solution space and locate regions that potentially contain

optimal solutions for a given problem is one of the fundamental components of

most artificial intelligence (AI) systems. There are three primary types of search;

the blind search, hill climbing and beam search. GP is classified as a beam search

because it maintains a population of solutions that is smaller than all of the avail-

able solutions. GP is also usually implemented as a weak search algorithm as it

contains no problem specific knowledge, although some research has been directed

towards “strongly typed genetic programming”. However while GP can find regions

containing optimal solutions, an additional local search algorithm is normally re-

quired to locate the optima. Memetic algorithms can fulfill this role, by combining

an evolutionary algorithm with problem specific search algorithm to locate optimal

solutions.

Genetic programming also differs from all other approaches to artificial intelli-

gence, machine learning, neural networks, adaptive systems, reinforcement learn-

ing, or automated logic in all (or most) of the following seven ways:

(1) Representation: Genetic programming overtly conducts it search for a solution

to the given problem in program space.

(2) Role of point-to-point transformations in the search: Genetic programming

does not conduct its search by transforming a single point in the search space

into another single point, but instead transforms a set of points into another set

of points.

(3) Role of hill climbing in the search: Genetic programming does not rely ex-

clusively on greedy hill climbing to conduct its search, but instead allocates a

certain number of trials, in a principled way, to choices that are known to be

inferior.

(4) Role of determinism in the search: Genetic programming conducts its search

probabilistically.

(5) Role of an explicit knowledge base: None.

(6) Role of formal logic in the search: None.

(7) Underpinnings of the technique: Biologically inspired.

First, consider the issue of representation. Most techniques of artificial intelligence,

machine learning, neural networks, adaptive systems, reinforcement learning, or

6.2 Comparison of GP with Other Approaches 133

automated logic employ specialized structures in lieu of ordinary computer programs.

These surrogate structures include if-then production rules, Horn clauses, decision

trees, Bayesian networks, propositional logic, formal grammars, binary decision

diagrams, frames, conceptual clusters, concept sets, numerical weight vectors (for

neural nets), vectors of numerical coefficients for polynomials or other fixed expres-

sions (for adaptive systems), genetic classifier system rules, fixed tables of values

(as in reinforcement learning), or linear chromosome strings (as in the conventional

genetic algorithm).

Tellingly, except in unusual situations, the world’s several million-computer pro-

grammers do not use any of these surrogate structures for writing computer pro-

grams. Instead, for five decades, human programmers have persisted in writing

computer programs that intermix a multiplicity of types of computations (e.g.,

arithmetic and logical) operating on a multiplicity of types of variables (e.g., in-

teger, floating-point, and Boolean). Programmers have persisted in using inter-

nal memory to store the results of intermediate calculations in order to avoid re-

peating the calculation on each occasion when the result is needed. Moreover,

they have persisted in passing parameters to subroutines so that they can reuse

their subroutines with different instantiations of values. And they have persisted

in organizing their subroutines into hierarchies. All of the above tools of ordinary

computer programming have been in use since the beginning of the era of elec-

tronic computers in the l940s. Significantly, none has fallen into disuse by human

programmers.

Yet, in spite of the manifest utility of these everyday tools of computer program-

ming, these tools are largely absent from existing techniques of automated machine

learning, neural networks, artificial intelligence, adaptive systems, reinforcement

learning, and automated logic. We believe that the search for a solution to the chal-

lenge of getting computers to solve problems without explicitly programming them

should be conducted in the space of computer programs. Of course, once you re-

alize that the search should be conducted in program space, you are immediately

faced with the task of finding the desired program in the enormous space of possi-

ble programs. As will be seen, genetic programming performs this task of program

discovery. It provides a problem-independent way to productively search the space

of possible computer programs to find a program that satisfactorily solves the given

problem.

Second, another difference between genetic programming and almost every au-

tomated technique concerns the nature of the search conducted in the technique’s

chosen search space. Almost all of these non-genetic methods employ a point-to-

point strategy that transforms a single point in the search space into another single

point. Genetic programming is different in that it operates by explicitly cultivating a

diverse population of often-inconsistent and often-contradictory approaches to solv-

ing the problem. Genetic programming performs a beam search in program space

by iteratively transforming one population of candidate computer programs into a

new population of programs.

Third, consider the role of hill climbing. When the trajectory through the search

space is from one single point to another single point, there is a nearly irresistible

temptation to extend the search only by moving to a point that is known to be

134 6 Genetic Programming

superior to the current point. Consequently, almost all automated techniques rely

exclusively on greedy hill climbing to make the transformation from the current

point in the search space to the next point. The temptation to rely on hill climbing

is reinforced because many of the toy problems in the literature of the fields of ma-

chine learning and artificial intelligence are so simple that hill climbing can in fact,

solve them. However, popularity cannot cure the innate tendency of hill climbing

to become trapped on a local optimum that is not a global optimum. Interesting

and nontrivial problems generally have high-payoff points that are inaccessible to

greedy hill climbing. In fact, the existence of points in the search space that are not

accessible to hill climbing is a good working definition of non-triviality. The fact

that genetic programming does not rely on a point-to-point search strategy helps to

liberate it from the myopia of hill climbing. Genetic programming is free to allocate

a certain measured number of trials to points that are known to be inferior. This

allocation of trials to known-inferior individuals is not motivated by charity, but

in the expectation that it will often unearth an unobvious trajectory through the

search space leading to points with an ultimately higher payoff. The fact that ge-

netic programming operates from a population enables it to make a small number of

adventurous moves while simultaneously pursuing the more immediately gratifying

avenues of advance through the search space.

Fourth, another difference between genetic programming and almost every other

technique of artificial intelligence and machine learning is that genetic programming

conducts a probabilistic search. Again, genetic programming is not unique in this

respect. For example, simulated annealing and genetic algorithms are also proba-

bilistic. However, most existing automated techniques are deterministic.

Fifth, consider the role of a knowledge base in the pursuit of the goal of auto-

matically creating computer programs. Many computer scientists unquestioningly

assume that formal logic must play a preeminent role in any system for automat-

ically creating computer programs. Similarly, the vast majority of contemporary

researchers in artificial intelligence believe that a system for automatically creating

computer programs must employ an explicit knowledge base. Indeed, over the past

four decades, the field of artificial intelligence has been dominated by the strongly

asserted belief that the goal of getting a computer to solve problems automatically

can be achieved only by means of formal logic inference methods and knowledge.

This approach typically entails the selection of a knowledge representation, the ac-

quisition of the knowledge, the codification of the knowledge into a knowledge base,

the depositing of the knowledge base into a computer, and the manipulation of the

knowledge in the computer using the inference methods of formal logic. Conspicu-

ously, genetic programming does not rely on an explicit knowledge base to achieve

the goal of automatically creating computer programs. While there are numerous

optional ways to incorporate domain knowledge into a run of genetic programming,

genetic programming does not require (or usually use) an explicit knowledge base

to guide its search.

Sixth, consider the role of the inference methods of formal logic. Many computer

scientists unquestioningly assume that every problem-solving technique must be

logically sound, deterministic, logically consistent, and parsimonious. Accordingly,

most conventional methods of artificial intelligence and machine learning possess

6.3 Primitives of Genetic Programming 135

these characteristics. However, logic does not govern two of the most important

types of complex problem-solving processes, namely, the invention process per-

formed by creative humans and the evolutionary process occurring in nature. A new

idea that can be logically deduced from facts that are known in a field, using

transformations that are known in a field, is not considered to be an invention. There

must be what the patent law refers to as an “illogical step” (i.e., an unjustified step)

to distinguish a putative invention from that which is readily deducible from that

which is already known.

The design of complex entities by the evolutionary process in nature is another

important type of problem solving that is not governed by logic. In nature, solutions

to design problems are discovered by the probabilistic process of evolution and nat-

ural selection. This is not a logical process. Indeed, inconsistent and contradictory

alternatives abound. In fact, such genetic diversity is necessary for the evolutionary

process to succeed. Significantly, the solutions created by evolution and natural se-

lection almost always differ from those created by conventional methods of artificial

intelligence and machine learning in one very important respect. Evolved solutions

are not brittle; they are usually able to grapple with the perpetual novelty of real

environments.

Similarly, genetic programming is not guided by the inference methods of for-

mal logic in its search for a computer program to solve a given problem. When

the goal is the automatic creation of computer programs, all of our experience has

led us to conclude that the non-logical approaches used in the invention process

and in natural evolution are far more fruitful than the logic-driven and knowledge-

based principles of conventional artificial intelligence. In short, “logic considered

harmful.”

Seventh, the biological metaphor underlying genetic programming is very differ-

ent from the underpinnings of all other techniques that have previously been tried

in pursuit of the goal of automatically creating computer programs. Many computer

scientists and mathematicians are baffled by the suggestion that biology might be

relevant to their fields. In contrast, we do not view biology as an unlikely well from

which to draw a solution to the challenge of getting a computer to solve a problem

without explicitly programming it. Genetic programming work confirms Turing’s

view that there is indeed a “connection” between machine intelligence and evolu-

tion by describing our implementation of Turing’s third way to achieve machine

intelligence.

6.3 Primitives of Genetic Programming

Every solution evolved by GP is assembled from two sets of primitive’s nodes;

terminals and functions. The terminal set contains nodes that provide an input to the

GP system while the function set contains nodes that process values already in the

system. Constants can be used in GP by including them in the terminal set. Once the

evolutionary process is started, the GP system randomly selects nodes from either

set or thus may not utilize all of the available nodes. However increasing the size of

136 6 Genetic Programming

each node set enlarges the search space. Therefore only a relatively simple node set

is initially provided and nodes are usually added only if required.

6.3.1 Genetic Operators

There are three major evolutionary operators within a GP system:

• Reproduction: selects an individual from within the current population to be

copied exactly into the next generation. There are several ways of selecting which

individual is to be copied including “fitness proportionate” selection, “rank” se-

lection and “tournament” selection.

• Crossover: mimics sexual recombination in nature, where two parent solutions

are chosen and parts of their subtree are swapped and because each function

exhibits the property “closure” (each tree member is able to process all possible

argument values), every crossover operation should result in the formation of a

legal structure.

• Mutation: causes random changes in an individual before it is introduced into

the subsequent population. Unlike crossover, mutation is asexual and thus only

operates on one individual. During mutation either all functions or terminals are

removed beneath an arbitrarily determined node and a new branch is randomly

created, or a single node is swapped for another.

6.3.2 Generational Genetic Programming

GP has developed two main approaches to dealing with the issue of its generations;

generational and steady state. In generational GP, there exists well-defined and dis-

tinct generations, with each generation being represented by a complete population

of individuals. Therefore each new population is created from the older population,

which it then replaces. Steady-state GP does not maintain these discrete genera-

tions but continuously evolves the current generation using any available genetic

operators.

6.3.3 Tree Based Genetic Programming

The primitives of GP, the function and terminal nodes, must be assembled into a

structure before they may be executed. Three main types of structure exist: tree,

linear and graph. Within this work, the input (the structure to be optimized or de-

signed) actually forms a graph network. However by the duplication of joint data

i.e. the same “joint node” can exist in the same tree on more than one occasion, this

graph network is converted into a tree structure.

6.3 Primitives of Genetic Programming 137

6.3.4 Representation of Genetic Programming

The need for a good representation in evolutionary computation, and in artificial

intelligence more generally, is called the representation problem. Genetic program-

ming has two forms of representation; the variational and the generative. The

variational representation is a static description of a program and is subject to

evolutionary variation. The main requirement for a variational representation is

evolvability: the evolution of programs of increasing fitness on a generational basis

when subjected to genetic variation. The generative representation is a product of

the variational representation, and describes the dynamic form of a program. Its

main requirement is that it can be executed. Yet, despite the different requirements

of variational and generative representations, most GP systems do not distinguish

between the two.

6.3.4.1 Biological Representations

Biology does distinguish between variational and generative representations. They

are called, respectively, the genetic and the phenotypic. The genetic representation,

from a reductionist viewpoint, is a linear, spatially distributed, sequence of heritable

attributes. Each heritable attribute describes the amino acid sequence of a protein.

Development interprets these descriptions and generates proteins; the fundamental

components of the phenotypic representation.

A group of proteins working upon a common task is called a biochemical path-

way. The tasks carried out by biochemical pathways fall into three broad classes:

metabolic, signaling and gene expression. Of these, metabolic pathways are con-

sidered the most fundamental for they implement the processing behaviors of the

cell, whilst signaling and gene expression pathways take on a configurational role.

Biochemical processing amounts to the manipulation of a cell’s chemical state

through systems of chemical reactions. Metabolic pathways are composed of en-

zymes, a group of proteins that carry out catalytic behaviors; enabling reactions that

would otherwise not be possible in the relatively low cellular temperatures. Enzymes

achieve their catalytic behavior by binding to specific chemicals, the enzyme’s sub-

strates, and guiding their reaction. Cooperation within metabolic pathways emerges

from product-substrate sharing between enzymes, where the product of one enzyme

becomes the substrate of another.

6.3.4.2 Biomimetic Representations

Biological representations possess a number of qualities conceivably useful to,

but not usually found, in genetic programming representations. These, include:

the specialisation of evolutionary and executable forms; evolvable representations,

“designed” for evolution; neutrality, increasing genetic diversity and adaptabil-

ity; less constrained behaviour, giving more freedom to evolution; and positional

138 6 Genetic Programming

independence, not limiting gene function to gene position. An umber of GP sys-

tems mimic the genetic representation of biology. Many of these have introduced

a developmental stage, allowing the genetic representation to be independent of

the executable representation. This has been shown to increase genetic diversity

and encourage neutrality. A number of these approaches also allow positionally-

independent genic units within the genome.

The mimicry of phenotypic representations is less common. However, compu-

tational idioms have been used to describe the action of enzymes and biochemical

pathways. Analogues of enzyme activity have been used for computational purposes

in the artificial domain. Evolutionary models of pathway development have also

been attempted

6.3.4.3 Enzyme Genetic Programming Representation

Enzyme genetic programming is a system that mimics biology in both genetic and

phenotypic representations. Phenotypic representation is based upon an abstraction

of metabolic pathways. The aim of the system is to evolve analogues of metabolic

pathways within combinational logic circuits.

Figure 6.1 shows the relationship between the representations of enzyme GP.

During evolution, circuits are encoded as linear sequences of “genes”; where each

gene describes the input preferences, the specificities, of a particular logic gate or

output terminal. A specificity is a floating point value between zero and one which

indicates relative preference for inputs (substrates). Each input-consuming activity

has a specificity defined for the products of every output activity.

The phenotypic representation generated by a genotype is visualised in the cen-

ter of Fig. 6.1. Line weights indicate relative specificities. In practice, the network

should be fully connected. However, for clarity only the dominant and a few of

the recessive specificities are shown. When the circuit is realised, the dominant

speci.cities should map to circuit connections. However, combinational circuits

must be non-recurrent and consequently it will not always be possible to express

a circuit element’s most preferred connections. This approach is taken rather than

allowing invalid circuits or constraining the genetic representation.

Without any doubt, programs can be considered as strings. There are, however,

two important limitations which make it impossible to use the representations and

operations from our simple GA:

Fig. 6.1 Circuit representations

6.3 Primitives of Genetic Programming 139

1. It is mostly inappropriate to assume a fixed length of programs.

2. The probability to obtain syntactically correct programs when applying our sim-

ple initialization, crossover, and mutation procedures is hopelessly low.

It is, therefore, indispensable to modify the data representation and the operations

such that syntactical correctness is easier to guarantee. The common approach to

represent programs in genetic programming is to consider programs as trees. By do-

ing so, initialization can be done recursively, crossover can be done by exchanging

subtrees, and random replacement of subtrees can serve as mutation operation.

Since the constructs are nested lists, programs in LISP-like languages already

have a kind of tree-like structure. Figure 6.2 shows an example how the function

3x + sin(x + 1) can be implemented in a LISP like language and how such a LISP-

like function can be split up into a tree. Obviously, the tree representation directly

corresponds to the nested lists the program consists of; atomic expressions, like

variables and constants, are leaves while functions correspond to non-leave nodes.

There is one important disadvantage of the LISP approach—it is difficult to intro-

duce type checking. In case of a purely numeric function like in the above example,

there is no problem at all. However, it can be desirable to process numeric data,

strings, and logical expressions simultaneously. This is difficult to handle if we use

a tree representation like in Fig. 6.2.

A. Geyer-Schulz has proposed a very general approach, which overcomes this

problem allowing maximum flexibility. He suggested representing programs by

their syntactical derivation trees with respect to a recursive definition of underlying

language in Backus-Naur Form (BNF). This works for any context-free language. It

is far beyond the scope of this lecture to go into much detail about formal languages.

We will explain the basics with the help of a simple example. Consider the following

language, which is suitable for implementing binary logical expressions:

The BNF description consists of so-called syntactical rules. Symbols in angular

brackets <>are called non-terminal symbols, i.e. symbols which have to be ex-

panded. Symbols between quotation marks are called terminal symbols, i.e. they

cannot be expanded any further. The first rule S: = < exp >; defines the starting

symbol. A BNF rule of the general shape,

〈non-terminal〉 : = 〈deriv1〉|〈deriv2〉| . . . |〈derivn〉;

Fig. 6.2 The tree

representation of (+ (* 3 X)

(SIN (+ X 1)))

140 6 Genetic Programming

defines how a non-terminal symbol may be expanded, where the different variants

are separated by vertical bars.

In order to get a feeling how to work with the BNF grammar description, we

will now show step by step how the expression (NOT (x OR y)) can be derivated

from the above language. For simplicity, we omit quotation marks for the terminal

symbols:

1. We have to begin with the start symbol:<exp>

2. We replace < exp > with the second possible derivation:

< exp > → (<neg>< exp >)

3. The symbol <neg> may only be expanded with the terminal symbol NOT:

(<neg>< exp >) → (NOT < exp >)

4. Next, we replace <exp> with the third possible derivation:

(NOT < exp >) → (NOT (< exp ><bin>< exp >))

5. We expand the second possible derivation for <bin>:

(NOT (< exp ><bin>< exp >)) → (NOT (< exp > OR < exp >))

Fig. 6.3 The derivation tree of (NOT (x OR y))

6.4 Attributes in Genetic Programming 141

6. The first occurrence of < exp > is expanded with the first derivation:

(NOT (< exp > OR < exp >)) → (NOT (<var> OR < exp >))

7. The second occurrence of hexpi is expanded with the first derivation, too:

(NOT (<var> OR < exp >)) → (NOT (<var> OR <var>))

8. Now we replace the first hvari with the corresponding first alternative:

(NOT (< var > OR <var>)) → (NOT (x OR <var>))

9. Finally, the last non-terminal symbol is expanded with the second alternative:

(NOT (x OR <var>)) → (NOT (x OR y))

Such a recursive derivation has an inherent tree structure. For the above example,

this derivation tree has been visualized in Fig. 6.3.

6.4 Attributes in Genetic Programming

Genetic programming has 16 attributes of what is sometimes called automatic pro-

gramming or program synthesis or program induction).

One of the central challenges of computer science is to get a computer to solve

a problem without explicitly programming it. In particular, it would be desirable

to have a problem-independent system whose input is a high-level statement of

a problem’s requirements and whose output is a working computer program that

solves the given problem. When we talk about a computer program, we mean an

entity that receives inputs, performs computations, and produces outputs. Computer

programs perform basic arithmetic and conditional computations on variables of

various types (including integer, floating-point, and Boolean variables), perform it-

erations and recursions, store intermediate results in memory, organize groups of

operations into reusable subroutines, pass information to subroutines in the form

of dummy variables (formal parameters), receive information from subroutines in

the form of return values, and organize subroutines and a main program into a

hierarchy.

We think that a system for automatically creating computer programs should

create entities that possess most or all of the above essential features of computer

programs (or reasonable equivalents thereof). A non-definitional list of attributes for

a system for automatically creating computer programs would include the following

16 items:

• Attribute No. 1 (Starts with “What needs to be done”): It starts from a high-

level statement specifying the requirements of the problem.

142 6 Genetic Programming

• Attribute No. 2 (Tells us “How to do it”): It produces a result in the form of a

sequence of steps that can be executed on a computer.

• Attribute No. 3 (Produces a computer program): It produces an entity that can

run on a computer.

• Attribute No. 4 (Automatic determination of program size): It has the ability

to automatically determine the exact number of steps that must be performed and

thus does not require the user to prespecify the size of the solution.

• Attribute No. 5 (Code reuse): It has the ability to automatically organize useful

groups of steps so that they can be reused.

• Attribute No. 6 (Parameterized reuse): It has the ability to reuse groups of steps

with different instantiations of values (formal parameters or dummy variables).

• Attribute No. 7 (Internal storage): It has the ability to use internal storage in the

form of single variables, vectors, matrices, arrays, stacks, queues, lists, relational

memory, and other data structures.

• Attribute No. 8 (Iterations, loops, and recursions): It has the ability to imple-

ment iterations, loops, and recursions.

• Attribute No. 9 (Self-organization of hierarchies): It has the ability to auto-

matically organize groups of steps into a hierarchy.

• Attribute No. 10 (Automatic determination of program architecture): It has

the ability to automatically determine whether to employ subroutines, iterations,

loops, recursions, and internal storage, and the number of arguments possessed

by each subroutine, iteration, loop, recursion.

• Attribute No. 11 (Wide range of programming constructs): It has the abil-

ity to implement analogs of the programming constructs that human computer

programmers find useful, including macros, libraries, typing, pointers, condi-

tional operations, logical functions, integer functions, floating-point functions,

complex-valued functions, multiple inputs, multiple outputs, and machine code

instructions.

• Attribute No. 12 (Well-defined): It operates in a well-defined way. It unmis-

takably distinguishes between what the user must provide and what the system

delivers.

• Attribute No. 13 (Problem-independent): It is problem-independent in the

sense that the user does not have to modify the system’s executable steps for

each new problem.

• Attribute No. 14 (Wide applicability): It produces a satisfactory solution to a

wide variety of problems from many different fields.

• Attribute No. 15 (Scalability): It scales well to larger versions of the same

problem.

• Attribute No. 16 (Competitive with human-produced results): It produces re-

sults that are competitive with those produced by human programmers, engineers,

mathematicians, and designers.

Attribute No. 16 is especially important because it reminds us that the ultimate

goal of a system for automatically creating computer programs is to produce useful

programs—not merely programs that solve “toy” or “proof of principle” problems.

6.5 Steps of Genetic Programming 143

6.5 Steps of Genetic Programming

The steps of genetic programming are:

• Preparatory steps

• Executional steps

6.5.1 Preparatory Steps of Genetic Programming

The human user communicates the high-level statement of the problem to the ge-

netic programming system by performing certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic programming

require the human user to specify

(1) the set of terminals (e.g., the independent variables of the problem, zero-

argument functions, and random constants) for each branch of the to-be-evolved

program,

(2) the set of primitive functions for each branch of the to-be-evolved program,

(3) the fitness measure (for explicitly or implicitly measuring the fitness of individ-

uals in the population),

(4) certain parameters for controlling the run, and

(5) the termination criterion and method for designating the result of the run.

The preparatory steps are the problem-specific and domain-specific steps that are

performed by the human user prior to launching a run of the problem-solving

method.

Figure 6.4 shows the five major preparatory steps for the basic version of genetic

programming. The preparatory steps (shown at the top of the figure) are the input

to the genetic programming system. A computer program (shown at the bottom) is

the output of the genetic programming system. The program that is automatically

created by genetic programming may solve, or approximately solve, the user’s prob-

lem. Genetic programming requires a set of primitive ingredients to get started.

The first two preparatory steps specify the primitive ingredients that are to be

used to create the to-be-evolved programs. The universe of allowable compositions

of these ingredients defines the search space for a run of genetic programming. The

Fig. 6.4 Preparatory steps of genetic programming

144 6 Genetic Programming

identification of the function set and terminal set for a particular problem (or cate-

gory of problems) is often a mundane and straightforward process that requires only

de minimus knowledge and platitudinous information about the problem domain.

For example, if the goal is to get genetic programming to automatically program

a robot to mop the entire floor of an obstacle-laden room, the human user must

tell genetic programming that the robot is capable of executing functions such as

moving, turning, and swishing the mop.

The human user must supply this information prior to a run because the genetic

programming system does not have any built-in knowledge telling it that the robot

can perform these particular functions. Of course, the necessity of specifying a prob-

lem’s primitive ingredients is not a unique requirement of genetic programming.

It would be necessary to impart this same basic information to a neural network

learning algorithm, a reinforcement-learning algorithm, a decision tree, a classifier

system, an automated logic algorithm, or virtually any other automated technique

that is likely to be used to solve this problem.

Similarly, if genetic programming is to automatically synthesize an analog elec-

trical circuit, the human user must supply basic information about the ingredients

that are appropriate for solving a problem in the domain of analog circuit synthesis.

In particular, the human user must inform genetic programming that the components

of the to-be-created circuit may include transistors, capacitors, and resistors (as op-

posed to, say, neon bulbs, relays, and doorbells). Although this information may be

second nature to anyone working with electrical circuits, genetic programming does

not have any built-in knowledge concerning the fact that transistors, capacitors, and

resistors are the workhorse components for nearly all present-day electrical circuits.

Once the human user has identified the primitive ingredients, the same function set

can be used to automatically synthesize amplifiers, computational circuits, active

filters, voltage reference circuits, and any other circuit composed of these basic

ingredients.

Likewise, genetic programming does not know that the inputs to a controller

include the reference signal and plant output and that controllers are composed of

integrators, differentiators, leads, lags, gains, adders, subtractors, and the like. Thus,

if genetic programming is to automatically synthesize a controller, the human user

must give genetic programming this basic information about the field of control.

The third preparatory step concerns the fitness measure for the problem. The

fitness measure specifies what needs to be done. The result that is produced by

genetic programming specifies “how to do it.” The fitness measure is the primary

mechanism for communicating the high-level statement of the problem’s require-

ments to the genetic programming system. If one views the first two preparatory

steps as defining the search space for the problem, one can then view the third

preparatory step (the fitness measure) as specifying the search’s desired direction.

The fitness measure is the means of ascertaining that one candidate individual is

better than another. That is, the fitness measure is used to establish a partial order

among candidate individuals.

The partial order is used during the executional steps of genetic program-

ming to select individuals to participate in the various genetic operations (i.e.,

crossover, reproduction, mutation, and the architecture-altering operations). The

6.5 Steps of Genetic Programming 145

fitness measure is derived from the high-level statement of the problem. Indeed,

for many problems, the fitness measure may be almost identical to the high level

statement of the problem. The fitness measure typically assigns a single numeric

value reflecting the extent to which a candidate individual satisfies the problem’s

high-level requirements. For example:

• If an electrical engineer needs a circuit that amplifies an incoming signal by a fac-

tor of 1,000, the fitness measure might assign fitness to a candidate circuit based

on how closely the circuit’s output comes to a target signal whose amplitude is

1,000 times that of the incoming signal. In comparing two candidate circuits,

amplification of 990-to-1 would be considered better than 980-to-1.

• If a control engineer wants to design a controller for the cruise control device in

a car, the fitness measure might be based on the time required to bring the car’s

speed up from 55 to 65 miles per hour. When candidate controllers are compared,

a rise time of 10.1 seconds would be considered better than 10.2 seconds.

• If a robot is expected to mop a room, the fitness measure might be based on the

percentage of the area of the floor that is cleaned within a reasonable amount of

time.

• If a classifier is needed for protein sequences (or any other objects), the fitness

measure might be based on the correlation between the category to which the

classifier assigns each protein sequence and the correct category.

• If a biochemist wants to find a network of chemical reactions or a metabolic

pathway that matches observed data, the fitness measure might assign fitness

to a candidate network based on how closely the network’s output matches the

data.

The fitness measure for a real-world problem is typically multiobjective. That is,

there may be more than one element that is considered in ascertaining fitness. For

example, the engineer may want an amplifier with 1,000-to-1 gain, but may also

want low distortion, low bias, and a low parts count. In practice, the elements of

a multiobjective fitness measure usually conflict with one another. Thus, a multi-

objective fitness measure must prioritize the different elements so as to reflect the

tradeoffs that the engineer is willing to accept. For example, the engineer may be

willing to tolerate an additional 1% of distortion in exchange for the elimination of

one part from the circuit. One approach is to blend the distinct elements of a fitness

measure into a single numerical value (often merely by weighting them and adding

them together).

The fourth and fifth preparatory steps are administrative.

The fourth preparatory step entails specifying the control parameters for the run.

The major control parameters are the population size and the number of genera-

tions to be run. Some analytic methods are available for suggesting optimal pop-

ulation sizes for runs of the genetic algorithm on particular problems. However,

the practical reality is that we generally do not use any such analytic method to

choose the population size. Instead, we determine the population size such that ge-

netic programming can execute a reasonably large number of generations within

the amount of computer time we are willing to devote to the problem. As for

146 6 Genetic Programming

other control parameters, we have, broadly speaking, used the same (undoubtedly

non-optimal) set of minor control parameters from problem to problem over a period

of years.

The fifth preparatory step consists of specifying the termination criterion and the

method of designating the result of the run.

6.5.2 Executional Steps of Genetic Programming

Genetic programming typically starts with a population of randomly generated

computer programs composed of the available programmatic ingredients. Genetic

programming iteratively transforms a population of computer programs into a new

generation of the population by applying analogs of naturally occurring genetic

operations. These operations are applied to individual(s) selected from the popu-

lation. The individuals are probabilistically selected to participate in the genetic

operations based on their fitness (as measured by the fitness measure provided

by the human user in the third preparatory step). The iterative transformation of

the population is executed inside the main generational loop of the run of genetic

programming.

The executional steps of genetic programming (that is, the flowchart of genetic

programming) are as follows:

(1) Randomly create an initial population (generation 0) of individual computer pro-

grams composed of the available functions and terminals.

(2) Iteratively perform the following sub-steps (called a generation) on the popula-

tion until the termination criterion is satisfied:

(a) Execute each program in the population and ascertain its fitness (explicitly or

implicitly) using the problem’s fitness measure.

(b) Select one or two individual program(s) from the population with a proba-

bility based on fitness (with reselection allowed) to participate in the genetic

operations in (c).

(c) Create new individual program(s) for the population by applying the follow-

ing genetic operations with specified probabilities:

(i) Reproduction: Copy the selected individual program to the new popula-

tion.

(ii) Crossover: Create new offspring program(s) for the new population by

recombining randomly chosen parts from two selected programs.

(iii) Mutation: Create one new offspring program for the new population by

randomly mutating a randomly chosen part of one selected program.

(iv) Architecture-altering operations: Choose an architecture-altering oper-

ation from the available repertoire of such operations and create one

new offspring program for the new population by applying the chosen

architecture-altering operation to one selected program.

6.5 Steps of Genetic Programming 147

(3) After the termination criterion is satisfied, the single best program in the pop-

ulation produced during the run (the best-so-far individual) is harvested and

designated as the result of the run. If the run is successful, the result may be

a solution (or approximate solution) to the problem.

The Fig. 6.5 below is a flowchart showing the executional steps of a run of genetic

programming. The flowchart shows the genetic operations of crossover, reproduc-

tion, and mutation as well as the architecture-altering operations. This flowchart

shows a two-offspring version of the crossover operation.

6.5.2.1 Creation of Initial Population of Computer Programs

Genetic programming starts with a primordial ooze of thousands of randomly-

generated computer programs. The set of functions that may appear at the internal

Fig. 6.5 Executional step (flowchart) of genetic programming

148 6 Genetic Programming

points of a program tree may include ordinary arithmetic functions and conditional

operators. The set of terminals appearing at the external points typically include

the program’s external inputs (such as the independent variables X and Y) and ran-

dom constants (such as 3.2 and 0.4). The randomly created programs typically have

different sizes and shapes.

6.5.2.2 Fitness Function

The most difficult and most important concept of genetic programming is the fitness

function. The fitness function determines how well a program is able to solve the

problem. It varies greatly from one type of program to the next. For example, if one

were to create a genetic program to set the time of a clock, the fitness function would

simply be the amount of time that the clock is wrong. Unfortunately, few problems

have such an easy fitness function; most cases require a slight modification of the

problem in order to find the fitness.

6.5.2.3 Functions and Terminals

The terminal and function sets are also important components of genetic program-

ming. The terminal and function sets are the alphabet of the programs to be made.

The terminal set consists of the variables and constants of the programs. In the maze

example, the terminal set would contain three commands: forward, right and left.

The function set consists of the functions of the program. In the maze example the

function set would contain: If “dot” then do x else do y. The functions are several

mathematical functions, such as addition, subtraction, division, multiplication and

other more complex functions.

6.5.2.4 Crossover Operation

Two primary operations exist for modifying structures in genetic programming. The

most important one is the crossover operation. In the crossover operation, two solu-

tions are sexually combined to form two new solutions or offspring. The parents are

chosen from the population by a function of the fitness of the solutions. Three meth-

ods exist for selecting the solutions for the crossover operation. The first method

uses probability based on the fitness of the solution. If f (si(t)) is the fitness of the

solution Si and

M∑

j=1

f (sj(t))

is the total sum of all the members of the population, then the probability that the

solution Si will be copied to the next generation is:

6.6 Characteristics of Genetic Programming 149

f (si(t))

M∑
j=1

f (sj(t))

Another method for selecting the solution to be copied is tournament selection.

Typically the genetic program chooses two solutions random. The solution with

the higher fitness will win. This method simulates biological mating patterns in

which, two members of the same sex compete to mate with a third one of a different

sex. Finally, the third method is done by rank. In rank selection, selection is based

on the rank, (not the numerical value) of the fitness values of the solutions of the

population. The creation of the offspring from the crossover operation is accom-

plished by deleting the crossover fragment of the first parent and then inserting the

crossover fragment of the second parent. The second offspring is produced in a

symmetric manner. For example consider the two S-expressions in Fig. 6.6, written

in a modified scheme programming language and represented in a tree.

An important improvement that genetic programming displays over genetic al-

gorithms is its ability to create two new solutions from the same solution. In the

Fig. 6.7 the same parent is used twice to create two new children.

6.5.2.5 Mutation

Mutation is another important feature of genetic programming. Two types of mu-

tations are possible. In the first kind a function can only replace a function or a

terminal can only replace a terminal. In the second kind an entire subtree can replace

another subtree. Figure 6.8 explains the concept of mutation.

6.6 Characteristics of Genetic Programming

Genetic programming now delivers High-Return Human-Competitive Machine In-

telligence. Based on this sentence, it can be noted that the four main characteristics

of genetic programming are:

• human-competitive

• high-return

• routine

• machine intelligence.

6.6.1 What We Mean by “Human-Competitive”

In attempting to evaluate an automated problem-solving method, the question arises

as to whether there is any real substance to the demonstrative problems that are

150 6 Genetic Programming

Fig. 6.6 Crossover operation for genetic programming. The bold selections on both parents are

swapped to create the offspring or children. (The child on the right is the parse tree representation

for the quadratic equation.)

published in connection with the method. Demonstrative problems in the fields of

artificial intelligence and machine learning are often contrived toy problems that

circulate exclusively inside academic groups that study a particular methodology.

These problems typically have little relevance to any issues pursued by any scientist

or engineer outside the fields of artificial intelligence and machine learning.

In his 1983 talk entitled “AI: Where It Has Been and Where It Is Going,” machine

learning pioneer Arthur Samuel said:

The aim is. . .to get machines to exhibit behavior, which if done by humans, would be as-

sumed to involve the use of intelligence.

6.6 Characteristics of Genetic Programming 151

Fig. 6.7 This figure illustrates one of the main advantages of genetic programming over genetic

algorithms. In genetic programming identical parents can yield different offspring, while in ge-

netic algorithms identical parents would yield identical offspring. The bold selections indicate the

subtrees to be swapped

Samuel’s statement reflects the common goal articulated by the pioneers of the

1950s in the fields of artificial intelligence and machine learning. Indeed, getting

machines to produce human-like results is the reason for the existence of the fields

of artificial intelligence and machine learning. To make this goal more concrete,

we say that a result is “human-competitive” if it satisfies one or more of the eight

criteria in Table 6.1.

The eight criteria in Table 6.1 have the desirable attribute of being at arms-length

from the fields of artificial intelligence, machine learning, and genetic programming.

That is, a result cannot acquire the rating of “human-competitive” merely because it

is endorsed by researchers inside the specialized fields that are attempting to create

machine intelligence. Instead, a result produced by an automated method must earn

the rating of “human-competitive” independent of the fact that it was generated by

an automated method.

152 6 Genetic Programming

Fig. 6.8 Two different types of mutations. The top parse tree is the original agent. The bottom

left parse tree illustrates a mutation of a single terminal (2) for another single terminal (a). It also

illustrates a mutation of a single function (−) for another single function (+). The parse tree on the

bottom right illustrates a the replacement of a subtree by another subtree

6.6.2 What We Mean by “High-Return”

What is delivered by the actual automated operation of an artificial method in com-

parison to the amount of knowledge, information, analysis, and intelligence that is

pre-supplied by the human employing the method?

We define the AI ratio (the “artificial-to-intelligence” ratio) of a problem-solving

method as the ratio of that which is delivered by the automated operation of the ar-

tificial method to the amount of intelligence that is supplied by the human applying

the method to a particular problem.

The AI ratio is especially pertinent to methods for getting computers to au-

tomatically solve problems because it measures the value added by the artificial

6.6 Characteristics of Genetic Programming 153

Table 6.1 Eight criteria for saying that an automatically created result is human-competitive

Criterion

A The result was patented as an invention in the past, is an improvement over a patented

invention, or would qualify today as a patentable new invention.

B The result is equal to or better than a result that was accepted as a new scientific result at the

time when it was published in a peer-reviewed scientific journal.

C The result is equal to or better than a result that was placed into a database or archive of

results maintained by an internationally recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific result—independent of the fact

that the result was mechanically created.

E The result is equal to or better than the most recent human-created solution to a

long-standing problem for which there has been a succession of increasingly better

human-created solutions.

F The result is equal to or better than a result that was considered an achievement in its field

at the time it was first discovered.

G The result solves a problem of indisputable difficulty in its field.

H The result holds its own or wins a regulated competition involving human contestants (in

the form of either live human players or human-written computer programs).

problem solving method. Manifestly, the aim of the fields of artificial intelligence

and machine learning is to generate human-competitive results with a high AI

ratio.

The Chinook checker-playing computer program is an impressive human com-

petitive result. Jonathan Schaeffer recounts the development of Chinook by his

eight-member team at the University of Alberta between 1989 and 1996 in his book

One Jump Ahead: Challenging Human Supremacy in Checkers (Schaeffer, 1997).

Schaeffer’s team began with analysis. They recognized that the problem could be

profitably decomposed into three distinct sub problems. First, an opening book

controls the play at the beginning of each game. Second, an evaluation function

controls the play during the middle of the game. Finally, when only a small number

of pieces are left on the board, an endgame database takes over and dictates the best

line of play. Perfecting the opening book entailed an iterative process of identifying

“positions where Chinook had problems finding the right move” and looking for

“the elusive cooks” (Schaeffer, 1997).

By the time the project ended, the opening book had over 40,000 entries. In

a chapter entitled “A Wake-Up Call,” Schaeffer refers to the repeated difficul-

ties surrounding the evaluation function by saying “the thought of rewriting the

evaluation routine. . .and tuning it seemed like my worst nightmare come true.”

Meanwhile, the endgame database was painstakingly extended from five, to six, to

seven, and eventually eight pieces using a variety of clever techniques. As Schaef-

fer observes, “The significant improvements to Chinook came from the knowledge

added to the program: endgame databases (computer generated), opening book (hu-

man generated but computer refined), and the evaluation function (human gener-

ated and tuned). We, too, painfully suffered from the knowledge-acquisition bot-

tleneck of artificial intelligence. Regrettably, our project offered no new insights

into this difficult problem, other than to reemphasize how serious a problem it

really is.”

154 6 Genetic Programming

Chinook defeated world champion Marion Tinsley. However, because of the

enormous amount of human “I” invested in the project, Chinook has a low return

when measured in terms of the A-to-I ratio.

The aim of the fields of artificial intelligence and machine learning is to get com-

puters to automatically generate human-competitive results with a high AI ratio—

not to have humans generate human-competitive results themselves.

6.6.3 What We Mean by “Routine”

Generality is a precondition to what we mean when we say that an automated

problem-solving method is “routine.” Once the generality of a method is established,

“routine ness” means that relatively little human effort is required to get the method

to successfully handle new problems within a particular domain and to successfully

handle new problems from a different domain. The ease of making the transition to

new problems lies at the heart of what we mean by “routine.” What fraction of Chi-

nook’s highly specialized software, hardware, databases, and evaluation techniques

can be brought to bear on different games? For example, can Chinook’s three-way

decomposition be gainfully applied to a game, such as Go, with a significantly larger

number of possible alternative moves at each point in the game? What fraction of

these systems can be applied to a game of incomplete information, such as bridge?

What more broadly applicable principles are embodied in these two systems? For

example, what fraction of these methodologies can be applied to the problem of

getting a robot to mop the floor of an obstacle-laden room? Correctly recognizing

images or patterns? Devising an algorithm to solve a mathematical problem? Auto-

matically synthesizing a complex structure?

A problem-solving method cannot be considered routine if its executional steps

must be substantially augmented, deleted, rearranged, reworked, or customized by

the human user for each new problem.

6.6.4 What We Mean by “Machine Intelligence”

We use the term “machine intelligence” to refer to the broad vision articulated in

Alan Turing’s 1948 paper entitled “Intelligent Machinery” and his 1950 paper enti-

tled “Computing Machinery and Intelligence.”

In the 1950s, the terms “machine intelligence,” “artificial intelligence,” and “ma-

chine learning” all referred to the goal of getting “machines to exhibit behavior,

which if done by humans, would be assumed to involve the use of intelligence” (to

again quote Arthur Samuel).

However, in the intervening five decades, the terms “artificial intelligence” and

“machine learning” progressively diverged from their original goal-oriented mean-

ing. These terms are now primarily associated with particular methodologies for

attempting to achieve the goal of getting computers to automatically solve problems.

6.6 Characteristics of Genetic Programming 155

Thus, the term “artificial intelligence” is today primarily associated with attempts

to get computers to solve problems using methods that rely on knowledge, logic,

and various analytical and mathematical methods. The term “machine learning” is

today primarily associated with attempts to get computers to solve problems that

use a particular small and somewhat arbitrarily chosen set of methodologies (many

of which are statistical in nature). The narrowing of these terms is in marked con-

trast to the broad field envisioned by Samuel at the time when he coined the term

“machine learning” in the 1950s, the charter of the original founders of the field of

artificial intelligence, and the broad vision encompassed by Turing’s term “machine

intelligence.”

Turing’s term “machine intelligence” did not undergo this arteriosclerosis be-

cause, by accident of history, it was never appropriated or monopolized by any group

of academic researchers whose primary dedication is to a particular methodological

approach. Thus, Turing’s term remains catholic today. We prefer to use Turing’s

term because it still communicates the broad goal of getting computers to automat-

ically solve problems in a human-like way.

In his 1948 paper, Turing identified three broad approaches by which human

competitive machine intelligence might be achieved.

The first approach was a logic-driven search. Turing’s interest in this approach is

not surprising in light of Turing’s own pioneering work in the 1930s on the logical

foundations of computing.

The second approach for achieving machine intelligence was what he called a

“cultural search” in which previously acquired knowledge is accumulated, stored in

libraries, and brought to bear in solving a problem—the approach taken by modern

knowledge-based expert systems.

Turing’s first two approaches have been pursued over the past 50 years by the vast

majority of researchers using the methodologies that are today primarily associated

with the term “artificial intelligence.”

Turing also identified a third approach to machine intelligence in his 1948 paper

entitled “Intelligent Machinery”, saying:

“There is the genetical or evolutionary search by which a combination of genes is looked

for, the criterion being the survival value.”

Thus, Turing correctly perceived in 1948 and 1950 that machine intelligence might

be achieved by an evolutionary process in which a description of a computer pro-

gram (the hereditary material) undergoes progressive modification (mutation) under

the guidance of natural selection (i.e., selective pressure in the form of what is now

usually called “fitness” by practitioners of genetic and evolutionary computation).

Of course, the measurement of fitness in modern genetic and evolutionary compu-

tation is usually performed by automated means (as opposed to a human passing

judgment on each candidate individual, as suggested by Turing). In addition, mod-

ern work generally employs a population (i.e., not just a point-to-point evolutionary

progression) and sexual recombination—two key aspects of John Holland’s work

on genetic algorithms, Adaptation in Natural and Artificial Systems.

156 6 Genetic Programming

6.7 Applications of Genetic Programming

The main application areas of Genetic Programming are:

• Computer Science

• Science

• Engineering

• Art and Entertainment.

In Computer Science, the development of algorithms has been a focus of attention.

By being able to manipulate symbolic structures, Genetic Programming is one of

the few heuristic search methods for algorithms. Sorting algorithms, caching algo-

rithms, random number generators and algorithms for automatic parallelization of

code, to name a few, have been studied using Genetic Programming. The spectrum

of applications in Computer Science spans from the generation of proofs for predi-

cate calculus to the evolution of machine code for accelerating function evaluation.

The general tendency is to try to automate the design process for algorithms of

different kinds.

Typical applications in Science are of modeling and pattern recognition type.

Modeling of certain processes in Physics and Chemistry with the unconventional

help of evolutionary creativity supports research and understanding of the systems

under study. Pattern recognition is a key ability in molecular biology and other

branches of biology, as well as in Science in general. Here, Genetic Programming

has delivered first results that are competitive if not better than human-generated

results.

In Engineering, Genetic Programming is used in competition or cooperation with

other heuristic methods such as Neural Networks or Fuzzy Systems. The general

goal is again to model processes such as production plants, or to classify results

of production. Control of man-made apparatus is another area where Genetic Pro-

gramming has been used successfully. Process control and robot control are primary

applications.

In Art and Entertainment has Genetic Programming been used to evolve realistic

animation scenes and appealing visual graphics. It also has been used “to extract

structural information from musical composition in order to model the process to

the extent that automatic composition of music pieces becomes possible.”

In this section lets discuss in detail the application of genetic programming to

civil engineering.

6.7.1 Applications of Genetic Programming in Civil Engineering

The various application areas of GP in civil engineering are as follows:

• Shear strength prediction of deep RC beams

• Modelling of wastewater treatment plants–Use of genetic programming to model

the dynamic performance of municipal activated sludge wastewater treatment

plants.

6.7 Applications of Genetic Programming 157

• Detection of traffic accidents–Detection of accidents on motorways in low flow,

high-speed conditions i.e. late at night based on three years of traffic data whilst

producing a near zero false alarm rate.

• Flow through a urban basin–Construction of sewage network model in order to

calculate the risk posed by rain to the basin and thus provide prior warning of

flooding or subsidence.

• Prediction of journey times–Investigation of GP to forecast the motorway journey

times.

• Estimation of design intent–Using GP to automatically estimate design intent

based on operational and product-specific information monitored throughout the

design process.

• Modelling of water supply assets–In order to determine the risk of a pipe burst,

a GP is evolved to “data mine” a database containing information about historic

pipe bursts.

• Identification of crack profiles–Detection of cracks inside hundreds of heat ex-

changer tubes in a nuclear power plant’s steam generator via analysis of data

measured via quantitative non-destructive testing.

• Modelling rainfall runoff–Discovery of rainfall-runoff relationships in two vastly

different catchments.

• Prediction of long-term electric power demand

• Evolution of traffic light control laws–Evolution of a new type of adaptive control

system for a network of traffic signals depending on variations in traffic flow.

• Identification of crack profiles–Agent generation to detect and track dark regions

that could be cracks in grayscale images of textured surfaces.

6.7.1.1 Application of Genetic Programming in Structural Engineering

This section describes how GP can be applied to structural optimization problems

by using the tree structure of GP, to represent a building or structure. Earlier an

approach (Soh and Yang, 2000) was designed that solved the key issue of how

to represent the “node element diagram” of structural analysis as a “point-labeled

tree” (as used in GP). However because the structure (the phenotype) is now dif-

ferent from the GP tree (the genotype), an additional decoding step must be in-

cluded in the solution procedure before any fitness evaluation can occur (Fig. 6.9).

This step was not previously required when evolving regression functions, as these

solutions could be applied directly to the problem. Although this is a departure

from traditional GP, by utilizing this representation Soh and Yang demonstrated

a system that produced better results when attempting to simultaneously optimize

the geometry, sizing and topology of a truss than work using other evolution-

ary search techniques. It is also important to note that this tree will not degen-

erate into a linear search, as its corresponding structure would be a mechanism.

A mechanism is not a viable structure in engineering and thus will be heavily

penalized by the fitness function and therefore should not be sustained within the

population.

158 6 Genetic Programming

Fig. 6.9 The solution procedure

Structural Encoding

In this case, the GP tree should compose two types of nodes: inner nodes, which

are GP functions representing the cross-sectional areas of the members Ap (p =

i, j, k, l, m, n) and outer nodes which are GP terminals representing various node

points Ni(i = 1,2,3,4) (Fig. 6.10). To create a GP parse tree, one member must be

selected from the structure to be the root node. This member then has its’ corre-

sponding start and end joints represented by children nodes to its left and right. Then

from left to right the members associated with each joint node are removed from the

structure and used to replace the relevant joint nodes in the GP tree (Fig. 6.10). This

procedure continues until every structural member is represented in the GP tree.

However it is important that the left-right relationship of child and parent node is

maintained as the GP tree is constructed. Therefore each members’ start and end

joints are represented by the far left and far right children. For example function Aj

connects nodes N1 and N2 (Fig. 6.10). This approach to structural encoding appears

very simple when compared to the complex binary string used by a GA to represent

member properties. The results for the evolution of a truss were capable of carrying

6.8 Haploid Genetic Programming with Dominance 159

Fig. 6.10 GP tree encoding for structural analysis

six specified loads. To achieve this, a GP tree containing 29 nodes (16 joint nodes

and 15 member nodes) was required where as the GA representation required a

chromosome of 25,200 bits.

6.8 Haploid Genetic Programming with Dominance

Dominance crossover is similar to the use of dominance in nature. In nature, domi-

nance is used as a genotype to phenotype mapping when an organism carries pairs

(or more than one) chromosome, but here we use dominance on a haploid structure.

The haploid form contains all the information relevant to the problem, and is the

structure that is widely used in evolutionary algorithms. Dominance crossover is

used as a way of retaining and promoting successful genes (those which increased

the individual’s fitness in the current generation) into the next generation. Current

crossover operators fail to exploit knowledge acquired in previous generations and

rely highly on selection pressures. Dominance crossover in theory allows this ex-

ploitation to occur during crossover but we highlight a problem with the application

of dominance crossover with genetic programming.

Genetic programming traditionally uses a haploid chromosome: the haploid form

contains all the information relevant to the problem and the genes do not have as-

sociated dominance values. With dominance crossover the parse tree contains the

normal defined function and terminal sets. Each use of a function or terminal will

have an associated dominance value. This dominance value will reflect how good

each one is with respect to the fitness of the entire program. These dominance values

are real numbers in the range [0,1] on initialization but can be increased. During

crossover two parent trees are selected and the position for crossover is selected at

random. Once the subtrees are chosen, the nodes from each subtree are compared,

breadth first. The node with greater dominance is used to create a new subtree.

This is a recursive process. In the case where one tree is greater than the other the

remaining component in the larger tree is simply copied to the new subtree. This

new subtree is then attached to the trees of the parent where crossover occurred.

Figure 6.11 shows an example of dominance crossover. In dominance crossover a

160 6 Genetic Programming

(c) and (y) are chosen for crossover

(y) has a greater dominance value than (c)

(d) has a greater dominance than (w)

(e) has a greater dominance than (v)

(s), (r) are dominant over (f), (g)

Fig. 6.11 Crossover using dominance

single subtree is created from the parents and is attached to the original parents at

the point chosen for crossover, hence creating two children.

The dominance characteristics of each gene in the tree evolve in each gener-

ation. Before “parents” undergo crossover their fitness values are recorded along

with those genes that have been changed. After the new children are evaluated

their fitness is compared with that of their parents. If the child has a higher fit-

ness than that of at least one of its parents the dominance values of the changed

genes are increased. The increase is the difference between the parent fitness and

the child fitness. This dominance increase introduces a bias to those genes, which

are deemed better for the individual, thus increasing the genes likelihood of being

passed to the next generation. Unfortunately dominance crossover was inappropriate

for current tree structures in GP. Since functions take different number of argu-

ments they distort the shape of the trees thus the breadth first technique employed

by dominance crossover failed to find appropriate points of crossover where the

integrity was respected. This led to empirical studies of two alternative methods of

crossover “Single-Node Dominance Crossover”(SNDC) and “Sub-Tree Dominance

Fig. 6.12 Single-node

dominance crossover

(c) and (y) are chosen for crossover

(y) has a greater dominance value than (c)

6.9 Summary 161

Fig. 6.13 Sub-tree

dominance crossover

(c) and (y) are chosen for crossover

(y) has a greater dominance value than (c)

Crossover”(STDC). Like dominance crossover each use of a function or terminal

has associated with it a dominance value.

6.8.1 Single-Node Dominance Crossover

In single-node dominance crossover two parents create a single child. A crossover

point is chosen randomly as normal. In the subtrees chosen for crossover the domi-

nance values of the top nodes are compared. The node that has a higher dominance

value replaces the other. This is illustrated in Fig. 6.12.

6.8.2 Sub-Tree Dominance Crossover

Sub-tree dominance crossover is very much like SNDC. The difference being that

in STDC the top node with the higher dominance value replaces the other tree as

depicted in Fig. 6.13.

Dominance crossover is not an appropriate crossover operator to use with cur-

rent GP structures. Since functions take different number of arguments they dis-

tort the shape of the GP trees thus the breadth first technique employed by dom-

inance crossover failed to find appropriate points of crossover where the integrity

was respected. Alternative ways of promotion were used in single-node dominance

crossover and sub-tree dominance crossover but both operators failed to increase

GP performance. The first did not allow tress to grow thus reducing exploration and

the second exploited trees rather than genes, thus leading to excessive growth.

6.9 Summary

Genetic programming is much more powerful than genetic algorithms. The output

of the genetic algorithm is a quantity, while the output of the genetic programming

is another computer program. In essence, this is the beginning of computer pro-

grams that program themselves. Genetic programming works best for several types

162 6 Genetic Programming

of problems. The first type is where there is no ideal solution, (for example, a pro-

gram that drives a car). There is no one solution to driving a car. Some solutions

drive safely at the expense of time, while others drive fast at a high safety risk.

Therefore, driving a car consists of making compromises of speed versus safety, as

well as many other variables. In this case genetic programming will find a solution

that attempts to compromise and be the most efficient solution from a large list of

variables. Furthermore, genetic programming is useful in finding solutions where

the variables are constantly changing. In the previous car example, the program will

find one solution for a smooth concrete highway, while it will find a totally different

solution for a rough unpaved road.

Neutrality, dominance hierarchies and multiplicity are all facets of natural evolu-

tion and its products. To this extent enzyme genetic programming succeeds at its aim

of biomimicry. The use of an enzyme-like representation for circuit elements, and

consequently a pathway-like representation for circuits, illustrates that biological

phenotypic representations can be annealed to the artificial domain. Performance-

wise, the method is competitive with existing methods, though it has yet to demon-

strate a provable performance advantage. Partly this is due to limitations of the

results, though it may also be due to deleterious simplifications found within the

initial system.

Genetic Programming has been used to model and control a multitude of pro-

cesses and to govern their behavior according to fitness-based automatically gener-

ated algorithms. Most of these applications are characterized by one of the following

features:

• Analytical solutions do not exist or cannot be derived

• Relevant variables are poorly understood

• Complexity of solutions is unknown

• Approximate solutions are all that can be expected

• Large amounts of data are available for mining

• Large marginal benefits exist for small improvements in control or modeling and

prediction

Theory of Genetic Programming is presently greatly underdeveloped and will

need to progress quickly in order to catch up with other evolutionary algorithm

paradigms. Most of the obstacles stem from the fact of variable complexity of so-

lutions evolved in Genetic Programming. Implementation of Genetic Programming

will benefit in the coming years from new approaches, which include research from

developmental biology. Also, it will be necessary to learn to handle the redundancy

forming pressures in the evolution of code. Application of Genetic Programming

will continue to broaden. Many applications focus on controlling behavior of real or

virtual agents. In this role, Genetic Programming may contribute considerably to the

growing field of social and behavioral simulations. Genetic Algorithms have already

been found beneficial in optimizing strategies of social agents. With its ability to

adjust the complexity of a strategy to the environment and to allow competition

between agents Genetic Programming is well positioned to play an important role

in the study and simulation of societies and their evolution.

Exercise Problems 163

Review Questions

1. What is Genetic Programming?

2. Differentiate between Genetic Algorithm and Genetic Programming.

3. Compare and Contrast: Genetic Programming with other traditional approaches.

4. List the genetic operators used in genetic programming.

5. Write short note on Tree based genetic programming.

6. Mention in detail about the various representations used in genetic program-

ming.

7. What are the five preparatory steps involved in genetic programming?

8. With a new flowchart, explain the executional step of genetic programming.

9. Discuss the crossover and mutation operation of GP.

10. Explain with suitable examples, the characteristics of GP.

11. What is dominance crossover in GP?

12. Give few applications of Genetic Programming.

Exercise Problems

1. Implement a Genetic Programming for a Network Design Problem

2. For a traveling Salesman problem, compare the performance of GA and GP.

3. Write a computer program to implement GP for a function optimization problem.

4. Implement Genetic Program approach to obtain solution to a XOR problem.

5. With a computer program, explain the approach of genetic programming to

scheduling problems.

Chapter 7

Genetic Algorithm Optimization Problems

7.1 Introduction

Optimization deals with problems of minimizing or maximizing a function with
several variables usually subject to equality and/or inequality constraints. It plays
a central role in operations research, management science and engineering design.
Many industrial engineering design problems are very complex and difficult to solve
using conventional optimization techniques. In recent years, genetic algorithms have
received considerable attention regarding their potential as a novel optimization
technique. Based on their simplicity, ease of operation, minimal requirements and
parallel and global perspective, genetic algorithms have been widely applied in a
variety of problems. A brief introduction to genetic optimization techniques and
their application is described in this section, including major fields of optimization,
such as fuzzy, combinatorial and multi objective optimizations.

7.2 Fuzzy Optimization Problems

Fuzzy optimization describes an optimization problem with fuzzy objective function
and fuzzy constraints. The results obtained from classical methods of optimization
involving deterministic variables exhibit various shortcomings. In particular, the ef-
fects of the uncertainty attached to input information is often ignored altogether or
only taken into account to a limited degree. The classical deterministic optimization
problem according to

find xOPT ∈ X with z(x, e) → min

X =
{

x|gi(x, e), hj(x, e)
}

gi(x, e) ≤ ri i = 1 . . . n

and hj(x, e) = 0 j = 1 . . . m (7.1)

is considered under the aspect of uncertainty, and extended. For the objective func-
tion z(x, e) the optimum solution xOPT from the set of design variables X (design
space) is determined under compliance with the equality constraints hj(x, e) and

165

166 7 Genetic Algorithm Optimization Problems

the inequality constraints gi(x, e). Input parameters such as geometrical parameters,
material parameters, external load parameters, reliability parameters and economic
parameters are lumped together in the vector e.

Considering the uncertain parameters to be fuzzy variables, the deterministic op-
timization problem is extended to a fuzzy optimization problem

find xOPT ∈ X with z̃(x, ẽ) → min

X =
{

x|g̃i(x, ẽ), h̃j(x, ẽ)
}

g̃i(x, ẽ) ≤̃ r̃i i = 1 . . . n

and h̃j(x, ẽ) = 0 j = 1 . . . m (7.2)

The numerical solution of the fuzzy optimization problem is based on α-level
optimization.

7.2.1 Fuzzy Multiobjective Optimization

Suppose we are given a multiobjective mathematical programming problem in
which the functional relationship between the decision variables and the objective
functions is not completely known. Our knowledge base consists of a block of fuzzy
if-then rules, where the antecedent part of the rules contains some linguistic values
of the decision variables, and the consequence part consists of a linguistic value of
the objective functions. We suggest the use of Tsukamoto’s fuzzy reasoning method
to determine the crisp functional relationship between the decision variables and
objective functions. We model the anding of the objective functions by a t-norm and
solve the resulting (usually nonlinear) programming problem to find a fair optimal
solution to the original fuzzy multiobjective problem.

Fuzzy multiobjective optimization problems can be stated and solved in many
different ways. Consider optimization problems of the form,

max/min{G1(x), . . . , GK (x)}; subject to x ∈ X, (7.3)

where Gk, k = 1, . . . , K, or/and X are defined by fuzzy terms. Then they are search-
ing for a crisp x∗, which (in certain) sense maximizes the Gk’s under the (fuzzy)
constraints X. For example, multiobjective fuzzy linear programming (FMLP) prob-
lems can be stated as,

max/min{c̃1x, . . . , c̃K x}; subject to Ãx ≤ b̃, (7.4)

where x ∈ IRn is the vector of crisp decision variables, Ã = (ã i j), b̃ = (b̃i) and c̃ j

= (c̃i j) are fuzzy quantities, the inequality relation ≤ is given by a certain fuzzy
relation and the (implicit) X is a fuzzy set describing the concept “x satisfies
ÃX ≤ b̃”.

In many important cases (e.g., in strategy formation processes) the values of the
objective functions are not known for all x ∈ IRn, and we are able to describe the

7.2 Fuzzy Optimization Problems 167

causal link between x and the Gk’s linguistically using fuzzy if-then rules. Here we
consider a new statement of multiobjective fuzzy optimization problems (FMOP),
namely,

max/min X {G1, . . . , GK }; subject to {ℜ1, . . . ,ℜm},

where x1, . . . , xn are linguistic variables, and

ℜi : if x1 is Ai1 and . . . and xn is Ain then G1 is Ci1 and . . . and GK is Ci K ,

constitutes the only knowledge available about the values of G, and Aij and Cik are
fuzzy numbers.

Originally FMLP (Fuzzy Mulitobjective Linear Programming) problems (7.3)
are interpreted with fuzzy coefficients and fuzzy inequality relations as multiple
fuzzy reasoning schemes, where the antecedents of the scheme correspond to the
constraints of the MFLP (Multiobjective Fuzzy Linear Programming) problem and
the facts of the scheme are the objectives of the MFLP problem. Generalizing the
fuzzy reasoning approach, we determine the crisp value of the Gj’s at y ∈ X by
Tsukamoto’s fuzzy reasoning method, and obtain an optimal solution to (7.4) by
solving the resulting (usually nonlinear) optimization problem,

max/min t-norm(G1(y), . . . , GK (y)); subject to y ∈ X. (7.5)

7.2.1.1 Multiobjective Optimization Under Fuzzy If-then Rules

Consider the FMOP problem (7.4) with continuous Aij representing the linguistic
values of xi, and with strictly monotone and continuous Cik, i = 1, . . . , m repre-
senting the linguistic values of Gk, k = 1, . . . , K. To find a fair solution to the fuzzy
optimization problem (7.4) we first determine the crisp value of the k-th objective
function Gk at y ∈ ℜn from the fuzzy rule-base ℜ using Tsukamoto’s fuzzy reason-
ing method as,

Gk(y) : =
α1C−1

1k (α1) + . . . + αmC−1
mk (αm)

α1 + . . . + αm

where

αi = t-norm(Ai1(y1), . . . , Ain(yn)) (7.6)

denotes the firing level of the i-th rule, ℜi. To determine the firing level of the rules,
we suggest the use of the product t-norm (to have a smooth output function). In
this manner the constrained optimization problem (7.4) turns into the crisp (usually
nonlinear) mathematical programming problem (7.5). The same principle is applied
to constrained maximization problems.

168 7 Genetic Algorithm Optimization Problems

7.2.2 Interactive Fuzzy Optimization Method

An interactive fuzzy optimization method was incorporated into the genetic algo-
rithm to give decision makers a chance to readjust membership functions according
to information provided by current genetic search.

Step 1: Set initial reference membership levels (if it difficult to determine these
values, set them to 1.0)

Step 2: Generate the initial population involving N individuals of double-string
type at random.

Step 3: Calculate the fitness for each individual and apply the reproduction
operator based on the fitness.

Step 4: Insert into the current population the corresponding individual with the
optimal solution for each objective function.

Step 5: Apply a crossover operator according to the probability of crossover Pc.
Step 6: Apply mutation operator according to the probability of mutation Pm.
Step 7: Repeat steps 3 to 6 until the termination condition is satisfied. If it is

satisfied, regard the individual with maximal fitness as the optimal individual
and go to step 8.

Step 8: If the decision maker is satisfied with the current values of member
ship functions and objective functions given by the current optimal individ-
ual, stop. Otherwise, ask the decision maker to update reference membership
levels by taking account of the current values of membership functions and
objective functions and return to step 2.

Thus by the above algorithm, the fuzzy membership functions can be readjusted.

7.2.3 Genetic Fuzzy Systems

In a very broad sense, a Fuzzy System (FS) is any fuzzy logic-based system where
fuzzy logic can be used either as the basis for the representation of different forms of
system knowledge or to model the interactions and relationships among the system
variables. FSs have proven to be an important tool for modeling complex systems
in which, due to complexity or imprecision, classical tools are unsuccessful.

Genetic algorithms GAs are search algorithms that use operations found in nat-
ural genetics to guide the trek through a search space. GAs are theoretically and
empirically proven to provide robust search capabilities in complex spaces, offering
a valid approach to problems requiring efficient and effective searching.

Recently, numerous papers and applications combining fuzzy concepts and GAs
have appeared, and there is increasing concern about the integration of these two
topics. In particular, a great number of publications explore the use of GAs for de-
signing fuzzy systems. These approaches have been given the general name genetic
fuzzy systems GFSs.

7.2 Fuzzy Optimization Problems 169

The automatic design of FSs can be considered in many cases as an optimization
or search process on the space of potential solutions FSs. GAs are the best known
and most widely used global search technique with an ability to explore and exploit a
given operating space using available performance measures. A priori knowledge in
the form of linguistic variables, fuzzy membership function parameters, fuzzy rules,
number of rules, etc., may be incorporated easily into the genetic design process.
The generic code structure and independent performance features of GAs make
them suitable candidates for incorporating a priori knowledge. Over the last few
years, these advantages have extended the use of GAs in the development of a wide
range of approaches for designing fuzzy systems. As in the general case of FSs,
the main application area of GFSs is system modeling /control. Regardless of the
kind of optimization problem, i.e., given a system to be modeled or controlled, the
involved design /tuning /learning process will be based on evolution. Three points
are the keys to a genetic process:

• the population of potential solutions
• the pair evolution operators/code, and
• the performance index.

7.2.3.1 The Population of Potential Solutions

The learning search process works on a population of potential solutions to the
problem. The individuals of the population are called chromosomes. Different ap-
proaches have been considered, but the most widely used is the so-called Pittsburgh
approach. In this case, each chromosome represents a complete potential solution,
an FS. From this point of view, the learning process will work on a population of
FSs. FSs are knowledge-based systems with a processing structure and a knowl-
edge base, and considering that all the systems use an identical processing struc-
ture, the individuals in the population will be reduced to rule bases, knowledge
bases, etc. In some cases, the process starts off with an initial population obtained
from available knowledge, while in other cases the initial population is randomly
generated.

7.2.3.2 The Evolution Operators /Code

The second question is the definition of a set of evolution operators that search for
new and /or better potential solutions. The search reveals two different aspects: the
exploitation of the best solution and the exploration of the search space. The suc-
cess of evolutionary learning is specifically related to obtaining an adequate balance
between exploration and exploitation that finally depends on the selected set of evo-
lution operators. The new potential solutions are obtained by applying the evolution
operators to the members of the population; each one of these members is referred
to as an individual in the population. Basically, there are three evolution operators
that work with a code (chromosome) representing the FS: selection, crossover, and

170 7 Genetic Algorithm Optimization Problems

mutation. Since these evolution operators work in a coded representation of the FSs,
certain compatibility between the operators and the structure of the chromosomes is
required. This compatibility is stated in two different ways: work with chromosomes
coded as binary strings (adapting the problem solutions to binary code) using a set
of classical (defined for binary-coded chromosomes) genetic operators or adapt the
operators to obtain compatible evolution operators using chromosomes with a non-
binary code. Consequently, the question of defining a set of evolution operators in-
volves defining a compatible couple of evolution operators and chromosome coding.

7.2.3.3 The Performance Index

Finally, the third question is that of designing an evaluation system capable of gener-
ating an appropriate performance index related to each individual in the population
and in such a way that a better solution will obtain a higher performance index. This
performance index will drive the search /optimization process.

In summary, the points that characterize a specific design/tuning/learning pro-
cess are: the initial population of solutions obtained randomly or from some initial
knowledge, the coding scheme for FSs chromosomes representing the structure ac-
cording to the design process, as rule bases, membership functions clustering centers
for genetic fuzzy clustering, etc., the set of evolution operators, and the evaluation
function. In addition to these four points, each evolutionary learning process is char-
acterized by a set of parameters such as the dimension of the population fixed or
variable, the parameters regulating the activity of the operators or even their effect,
and the parameters or conditions defining the end of the process or the time when a
qualitative change in the process occurs.

7.3 Multiobjective Reliability Design Problem

Reliability optimization was generally applied to communication and transportation
problems. The system reliability is defined as the probability that the system has
operated to its best over a specified interval of time under given conditions. The
reliability design problems include reliability analysis, reliability testing, reliability
data analysis, reliability growth and so on. During 1993, Gen and Ida first proposed
a simple genetic algorithm to handle reliability design problem, after then many re-
searchers developed various reliability design problems based on genetic algorithms.
In this section, lets discuss algorithms developed to solve reliability design problems.

7.3.1 Network Reliability Design

Network reliability designs are based on sharing expensive hardware and software
resources and provide access to the main server system from distant locations. The

7.3 Multiobjective Reliability Design Problem 171

important step of network design process is to find the best layout of components
to optimize certain performance criteria like cost, reliability, transmission delay or
throughput. The network design reliabilities are as follows:

• All terminal network reliability–probability that every node in the network is
connected to each other

• Source Sink Network Reliability–probability that the source is connected with
the sink, so the source node in the network can communicate with the sink node
over a specified mission time.

Genetic algorithm provides solution approaches for the optimal network design con-
sidering the above reliabilities into consideration.

7.3.1.1 Problem Description

A computer communication network can be represented by an undirected graph
G = (N, E) in which nodes N and edges E represents computer sites and communi-
cation cables. A graph G is connected if there is at least one path between every pair
of nodes i and j, which minimally requires a spanning tree with (n-1) edges. The
number of possible edges is n(n-1)/2. The optimal design of all terminal network
reliability is defined as follows:

n is the number of nodes
xij ∈ {0, 1} is a decision variable representing edges between nodes i and j
x = {x12, x13, . . . , xn-1, n} is a topology architecture of network design
x∗ is the best solution find so far
p is the edge reliability for all edges
q is edge unreliability for all edges (p+q = 1)
R(x) is the all terminal reliability of network design x
Rmin is a network reliability requirement
Ru(x) is the upper bound of reliability of the candidate network
cij is the cost of the edge between nodes i and j
cmax is the maximum value of cij

δ has a value of 1 if R(x) < Rmin, else, has a value of 0
E’ is a set of operational edges (E’ ⊆ E)
Ω is all operational states.

Assume that the location of each node is given and nodes are perfectly reliable, each
cij and p are fixed and known, each edge is bi-directional, there are no redundant
edges in the network, edges are either operational or non-operational, the edge fail-
ures are mutually independent and there is no repair.

The optimal design of the network is represented as follows:

min Z(x) =

n−1
∑

i=1

n
∑

j = i+1

ci j xi j wi th R(x) ≥ Rmin (7.7)

172 7 Genetic Algorithm Optimization Problems

At a particular time, only few edges of G might be operational. An operational
state of G is a sub-graph G’ = (V, E’). The network reliability of state E’ ⊆ E is as
follows:

∑

�

(

∏

e∈E ′

pe

)

⎛

⎝

∏

e∈E |E ′

qe

⎞

⎠ (7.8)

7.3.1.2 Genetic Algorithm Approach

This section proposes a genetic algorithm for the design of networks when consider-
ing all terminal reliability. The assumption made here is that reliability of all edges in
the network are identical, whereas cost depends on which two nodes are connected.
It should be noted that only one reliability and cost alternative is available for each
pair of nodes. This approach allows edges to be chosen from different components
with different costs and reliabilities. The following notations are used to describe
the optimal design of the network, allowing edges to be chosen from different edge
options:

k is the number of options for the edge connection
t is the option between nodes
xij is an edge option for the edge between nodes i and j
p(xij) is the reliability design option and
c(xij) is a unit cost of the edge option

Representation: As each network design x is easily formed into an integer vector,
it can be used as a chromosome for the genetic algorithm. Each element of the
chromosome represents a possible edge in the network design problem, so there
are n × (n−1)/2 vector components in each candidate architecture x. The value of
each element tells what type of connection the specific edge has with the pair of
nodes it connects. The only possible values allowed in each position of the chro-
mosome are 0, 1, . . . , k−1. The solution space of possible network architectures is
k(n×(n−1))/2.

Fitness: The fitness function is to find the minimum-cost network architecture
that meets or exceeds prespecified network reliability, Rmin. Construction of fitness
function is that it may consider infeasible network architectures, because infea-
sible solutions may contain beneficial information. Also, breeding two infeasible
solutions or an infeasible solution with a feasible solution can yield a good fea-
sible solution. The optimal design will lie on the boundary between feasible and
infeasible designs, since only one constraint will be active or nearly active for a
minimum cost network. Thus the fitness function for this problem is defined as
follows:

Z p(x) = Z(x) + Z(x∗)[1 + Rmin − R(x)]rp+(popsize∗ gen)/50 (7.9)

7.3 Multiobjective Reliability Design Problem 173

where,

Zp(x)–penalized cot
Z(x)–Unpenalized cost
Z(x∗)–cost of the best feasible solution in the population
rp–penalty rate
popsize–population size
gen–number of generations

Algorithm: The overall algorithm for the minimization of the cost of the network is
as follows:

Step 1: Set the parameters, population size (popsize), population percentage
mutated (pm1), mutation rate (pm2), penalty rate (rp), the maximum genera-
tion (maxgen) and initialize number of generations gen = 0.

Step 2: Initialize a) Randomly generate the initial population

b) Send the initial population for reliability calculation
c) Send the initial population to the cost calculation function (fitness). If

infeasible chromosome exist, they are penalized.
d) Test for the best initial solution. If no chromosome is feasible, the best

infeasible chromosome is recorded.

Step 3: Selection a) Insert the best chromosome into the new population

b) Select two distinct candidate chromosomes from the current population
by the rank-based selection process.

Step 4: Perform Crossover. Uniform crossover is performed.
Step 5: Perform Mutation. After crossover once a child is created, then mu-

tate it.
Step 6: Check the number of children. If n <popsize-1, goto step 3; else goto

step 6, where n represents the number of new children.
Step 7: Form the new population. Replace the parents with children that are

created.
Step 8: Evaluate a) Send the new population to the reliability calculation

function

b) Calculate fitness function for each chromosome in the new population. If
infeasible chromosome exist, they are penalized

Step 9: Check for the best new chromosome. Save the best new chromosome;
if no chromosome is feasible, then the best infeasible chromosome is noted.

Step 10: Check the terminating condition. If gen<maxgen, gen=gen+1, and
goto step 3 for the next generation. If gen = maxgen, then terminate.

174 7 Genetic Algorithm Optimization Problems

The steps involved for reliability calculation is as follows:
Reliability Calculation: A back tracking algorithm is used to calculate the ex-

act unreliability of the system, 1-R(x), for problems due to their computationally
tractable size. The below given back tracking algorithm is used where the proba-
bility of all edges within a stack is the product of the failure probabilities of all
inoperative edges times the product of 1 minus the failure probabilities of all opera-
tive edges.

Step 1: Initialize all edges as free and create a stack S that is empty initialize.
Step 2: Generate a modified cutest

a) Find a set of free edges that together with all inoperative edges will form
a network cut.

b) Mark all the edges found in the above step inoperative and add them to
the stack.

c) Now the stack represents a modified cut-set; add its probability to a cu-
mulative sum.

Step 3: Backtrack process.

a) If the stack is empty, move to step 4, else, goto step 3- (b) below.

b) Take the edge off the top of the stack.

c) If the edge is inoperative and if when making it operative, a spanning tree
of operative edges exists, mark it free and goto step 3-(a).

d) If the edge is inoperative and the condition tested in step 3-(c) does not
hold, mark it operative, put it back on the stack, and go to step 2.

e) If the edge is operative, mark it free and go to step 3-(a).

Step 4: Return the network unreliability and end the procedure.

Thus the network reliability design problem can be efficiently solved using
Genetic algorithm approach.

7.3.2 Bicriteria Reliability Design

The bicriteria design problem here maximizes the reliability of a series system and
simultaneously minimizes the total cost of the system. The problem is a variation of
the optimal reliability allocation problem, which is formulated as anon-linear mixed
integer programming as follows:

7.3 Multiobjective Reliability Design Problem 175

max f1(m, x) =
n
∏

i=1
[1 − (1 − xi)mi]

min f2(m, x) =
n
∑

i=1
C(xi)

[

mi + ex p
(mi

4

)]

such that G1(m) =
n
∑

i=1
wi mi ex p

(mi

4

)

≤ Ws

G2(m) =
n
∑

i=1
vi (mi)

2 ≤ Vs

1 ≤ mi ≤ 10, 0.5 ≤ xi ≤ 1 − 10−6 i = 1, . . . , 4

(7.10)

where,

mi–number of redundant components in subsystem i
xi–level of component reliability for the ith subsystem
f1(m,x)–reliability of the system with redundant components m and component

reliabilities x
f2(m,x)–total cost of the system with component allocation m and component

reliability x
vi–product of weight and volume per element in subsystem i
wi–weight of each components in subsystem i

and C(xi)–cost of each component with reliability xi at subsystem i is obtained as
follows:

C(xi) = αi

(

−OT

ln(xi)

)β

i = 1, . . . , 4 (7.11)

where, αi and βi are constants representing the physical characteristics of each com-
ponent in subsystem i, and OT is the operating time during which the component
must not fail.

7.3.2.1 Genetic Algorithm Approach

The above problem is solved using the GA approach as follows:
Let vk denote the kth chromosome in a population as follows:

vk = [(mk1, xk1)(mk2, xk2)(mk3, xk3)(mk4, xk4)] k = 1, 2, . . . popsize
(7.12)

The initial population is produced such that each gene in a chromosome is generated
randomly within its domain. The fitness of chromosomes is calculated by ranking
method as follows:

176 7 Genetic Algorithm Optimization Problems

Fitness Evaluation

Step 1: Calculate each objective value for each chromosome
Step 2: Chromosomes are ranked based on their objective function values and

obtaining the order ri(vk).ri(vk) is the rank value of the ith objective value of
chromosome vk and is obtained by setting a value of 1 on the best objective
function value and popsize on the worst objective function of the present
population.

If objective function is to be maximized, then,

ri(vk)–set as 1 on the largest objective value
popsize–on smallest objective function value

If objective function is to be minimized, then,

ri(vk)–set as 1 on the smallest objective value
popsize–on largest objective function value

Step 3: Compute the fitness value using the following equation:

eval(vk) =

Q
∑

i=1

ri (vk)

where, Q is the number of objective functions.

Calculate the evaluation function eval(vk), and select chromosomes among the par-
ents and offspring that are superior to the others. The number to be selected is
popsize.

Crossover

An arithmetic crossover operator is used, which is a linear combination of two
chromosomes.

Mutation

Uniform mutation is performed here. This operator ensures that the GA can search
the solution space freely.

Thus, these network design problems that consider a system reliability constraint
or objective have many applications in telecommunications, computer networking
and in domains like electric, gas and sewer networks.

7.4 Combinatorial Optimization Problem

Combinatorial optimization is a branch of optimization in applied mathematics and
computer science, related to operations research, algorithm theory and computa-
tional complexity theory that sits at the intersection of several fields, including

7.4 Combinatorial Optimization Problem 177

artificial intelligence, mathematics and software engineering. Combinatorial opti-
mization algorithms solve instances of problems that are believed to be hard in gen-
eral, by exploring the usually-large solution space of these instances. Combinatorial
optimization algorithms achieve this by reducing the effective size of the space, and
by exploring the space efficiently.

Combinatorial optimization problems are concerned with the efficient allocation
of limited resources to meet desired objectives when the values of some or all of the
variables are restricted to be integral. Constraints on basic resources, such as labor,
supplies, or capital restrict the possible alternatives that are considered feasible.
Still, in most such problems, there are many possible alternatives to consider and
one overall goal determines which of these alternatives is best. For example, most
airlines need to determine crew schedules which minimize the total operating cost;
automotive manufacturers may want to determine the design of a fleet of cars which
will maximize their share of the market; a flexible manufacturing facility needs to
schedule the production for a plant without having much advance notice as to what
parts will need to be produced that day. In today’s changing and competitive in-
dustrial environment the difference between using a quickly derived “solution” and
using sophisticated mathematical models to find an optimal solution can determine
whether or not a company survives.

The versatility of the combinatorial optimization model stems from the fact that
in many practical problems, activities and resources, such as machines, airplanes
and people, are indivisible. Also, many problems have only a finite number of alter-
native choices and consequently can appropriately be formulated as combinatorial
optimization problems—the word combinatorial referring to the fact that only a
finite number of alternative feasible solutions exists. Combinatorial optimization
models are often referred to as integer programming models where programming
refers to “planning” so that these are models used in planning where some or all of
the decisions can take on only a finite number of alternative possibilities.

Combinatorial optimization is the process of finding one or more best (optimal)
solutions in a well defined discrete problem space. Such problems occur in almost
all fields of management (e.g., finance, marketing, production, scheduling, inventory
control, facility location and layout, data-base management), as well as in many en-
gineering disciplines (e.g., optimal design of waterways or bridges, VLSI-circuitry
design and testing, the layout of circuits to minimize the area dedicated to wires,
design and analysis of data networks, solid-waste management, determination of
ground states of spin-glasses, determination of minimum energy states for alloy
construction, energy resource-planning models, logistics of electrical power gener-
ation and transport, the scheduling of lines in flexible manufacturing facilities, and
problems in crystallography).

Combinatorial optimization algorithms are often implemented in an efficient
imperative programming language, in an expressive declarative programming lan-
guage such as Prolog, or some compromise, perhaps a functional programming lan-
guage such as Haskell, or a multi-paradigm language such as LISP.

A study of computational complexity theory helps to motivate combinatorial
optimization. Combinatorial optimization algorithms are typically concerned with
problems that are NP-hard. Such problems are not believed to be efficiently solvable

178 7 Genetic Algorithm Optimization Problems

in general. However, the various approximations of complexity theory suggest that
some instances (e.g., “small” instances) of these problems could be efficiently
solved. This is indeed the case, and such instances often have important practical
ramifications.

Informal definition: The domain of combinatorial optimization is optimization
problems where the set of feasible solutions is discrete or can be reduced to a dis-
crete one, and the goal is to find the best possible solution.

Formal definition: An instance of a combinatorial optimization problem can be
described in a formal way as a tuple (X,P,Y,f,extr) where

• X is the solution space (on which f and P are defined)
• P is the feasibility predicate.
• Y is the set of feasible solutions.
• f is the objective function.
• extr is the extreme (usually min or max).

7.4.1 Linear Integer Model

We assume throughout this discussion that both the function to be optimized and
the functional form of the constraints restricting the possible solutions are linear
functions. Although some research has centered on approaches to problems where
some or all of the functions are nonlinear, most of the research to date covers only
the linear case. The general linear integer model is

max
∑

j eB

c j x j +
∑

j eI

c j x j +
∑

j eC

c j x j

subject to:

∑

j eB

ai j x j +
∑

j eI

ai j x j +
∑

j eC

ai j x j ∼ bi (i = 1, . . . , m)

l j ≤ x j ≤ u j (j ∈ I ∪ c)

xi ∈ {0, 1} (j ∈ B)

x j ∈ integers (j ∈ I)

x j ∈ reals (j ∈ C) (7.13)

where B is the set of zero-one variables, I is the set of integer variables, C is the set
of continuous variables, and the ∼ symbol in the first set of constraints denotes the
fact that the constraints i = 1, . . . , m can be either approximate, or =. The data l j

and u j are the lower and upper bound values, respectively, for variable xj. As we are
discussing the integer case, there must be some variable in B È I. If C = I = f, then

7.4 Combinatorial Optimization Problem 179

the problem is referred to as a pure 0-1 linear-programming problem; if C = f, the
problem is called a pure integer (linear) programming problem. Otherwise, the prob-
lem is a mixed integer (linear) programming problem. Here, we call the set of points
satisfying all constraints S, and the set of points satisfying all but the integrality
restrictions P.

7.4.2 Applications of Combinatorial Optimization

We describe some classical combinatorial optimization models to provide both an
overview of the diversity and versatility of this field and to show that the solution
of large real-world instances of such problems requires the solution method exploit
the specialized mathematical structure of the specific application.

7.4.2.1 Knapsack Problems

Suppose one wants to fill a knapsack that can hold a total weight of W with some
combination of items from a list of n possible items each with weight wi and value vi

so that the value of the items packed into the knapsack is maximized. This problem
has a single linear constraint (that the weight of the items in the knapsack not exceed
W), a linear objective function which sums the values of the items in the knapsack,
and the added restriction that each item either be in the knapsack or not—a fractional
amount of the item is not possible.

Although this problem might seem almost too simple to have much applicabil-
ity, the knapsack problem is important to cryptographers and to those interested in
protecting computer files, electronic transfers of funds and electronic mail. These
applications use a “key” to allow entry into secure information. Often the keys are
designed based on linear combinations of some collection of data items, which must
equal a certain value. This problem is also structurally important in that most inte-
ger programming problems are generalizations of this problem (i.e., there are many
knapsack constraints which together compose the problem). Approaches for the so-
lution of multiple knapsack problems are often based on examining each constraint
separately.

An important example of a multiple knapsack problem is the capital budgeting
problem. This problem is one of finding a subset of the thousands of capital projects
under consideration that yields the greatest return on investment, while satisfying
specified financial, regulatory and project relationship requirements.

7.4.2.2 Network and Graph Problems

Many optimization problems can be represented by a network where a network
(or graph) is defined by nodes and by arcs connecting those nodes. Many practical
problems arise around physical networks such as city streets, highways, rail systems,

180 7 Genetic Algorithm Optimization Problems

communication networks, and integrated circuits. In addition, there are many prob-
lems which can be modeled as networks even when there is no underlying physical
network. For example, one can think of the assignment problem where one wishes
to assign a set of persons to some set of jobs in a way that minimizes the cost of the
assignment. Here one set of nodes represents the people to be assigned, another set
of nodes represents the possible jobs, and there is an arc connecting a person to a
job if that person is capable of performing that job.

7.4.2.3 Space-Time Networks are Often Used in Scheduling Applications

Here one wishes to meet specific demands at different points in time. To model
this problem, different nodes represent the same entity at different points in time.
An example of the many scheduling problems that can be represented as a space-
time network is the airline fleet assignment problem, which requires that one assign
specific planes to pre-scheduled flights at minimum cost. Each flight must have one
and only one plane assigned to it, and a plane can be assigned to a flight only if it is
large enough to service that flight and only if it is on the ground at the appropriate
airport, serviced and ready to depart when the flight is scheduled to take off. The
nodes represent specific airports at various points in time and the arcs represent
the flows of airplanes of a variety of types into and out of each airport. There are
layover arcs that permit a plane to stay on the ground from one time period to the
next, service arcs which force a plane to be out of duty for a specified amount of
time, and connecting arcs which allow a plane to fly from one airport to another
without passengers.

In addition, there are many graph-theoretic problems which examine the proper-
ties of the underlying graph or network. Such problems include the Chinese postman
problem where one wishes to find a path (a connected sequence of edges) through
the graph that starts and ends at the same node, that covers every edge of the graph
at least once, and that has the shortest length possible. If one adds the restriction
that each node must be visited exactly one time and drops the requirement that each
edge be traversed, the problem becomes the notoriously difficult traveling salesman
problem. Other graph problems include the vertex coloring problem, the object of
which is to determine the minimum number of colors needed to color each vertex
of the graph in order that no pair of adjacent nodes (nodes connected by an edge)
share the same color; the edge coloring problem, whose object is to find a minimum
total weight collection of edges such that each node is incident to at least one edge;
the maximum clique problem, whose object is to find the largest subgraph of the
original graph such that every node is connected to every other node in the subgraph;
and the minimum cut problem, whose object is to find a minimum weight collec-
tion of edges which (if removed) would disconnect a set of nodes s from a set of
nodes t.

Although these combinatorial optimization problems on graphs might appear,
at first glance, to be interesting mathematically but have little application to the
decision making in management or engineering, their domain of applicability is ex-
traordinarily broad. The traveling salesman problem has applications in routing and

7.4 Combinatorial Optimization Problem 181

scheduling, in large-scale circuitry design and in strategic defense. The four-color
problem (Can a map be colored in four colors or less?) is a special case of the
vertex-coloring problem. Both the clique problem and the minimum cut problem
have important implications for the reliability of large systems.

7.4.2.4 Scheduling Problems, Which are Rule-based

There are many problems where it is impossible to write down all of the restrictions
in a mathematically “clean” way. Such problems often arise in scheduling where
there are a myriad of labor restrictions, corporate scheduling preferences and other
rules related to what constitutes a “feasible schedule.” Such problems can be solved
by generating all, or some reasonable large subset of the feasible schedules for each
worker. One associates a matrix with such problems whose rows correspond to the
tasks considered and whose columns correspond to individual workers, teams or
crews. A column of the matrix has an entry of one in those rows that correspond
to tasks that the worker will be assigned and a zero otherwise. Each “feasible”
schedule defines one column of the constraint matrix and associated with each such
schedule is a value. Thus the matrix of constraints consists of all zeroes and ones
and the sense of the inequality indicates whether that job must be covered by ex-
actly a specified number of people (called set partitioning), that it must be covered
by at least a specific number (called set covering) or that it must be covered by
not more that a specified number (called set packing). The optimization problem
is then the problem of finding the best collection of columns, which satisfy these
restrictions.

Apart from the above discussed, it can also be used to solve:

• Traveling salesman problem
• Minimum spanning tree problem
• Linear programming
• Eight queens puzzle

7.4.2.5 Solution Techniques for Integer Programming

Solving combinatorial optimization problems, i.e. finding an optimal solution to
such problems, can be a difficult task. The difficulty arises from the fact that
unlike linear programming, for example, whose feasible region is a convex set,
in combinatorial problems, one must search a lattice of feasible points or, in the
mixed-integer case, a set of disjoint half-lines or line segments to find an optimal
solution. Thus, unlike linear programming where, due to the convexity of the prob-
lem, we can exploit the fact that any local solution is a global optimum, integer
programming problems have many local optima and finding a global optimum to
the problem requires one to prove that a particular solution dominates all feasible
points by arguments other than the calculus-based derivative approaches of convex
programming.

182 7 Genetic Algorithm Optimization Problems

7.4.3 Methods

Heuristic search methods (metaheuristic algorithms) as those listed below have been
used to solve combinatorial optimization problems.

• Local search
• Simulated annealing
• Quantum annealing
• GRASP
• Swarm intelligence
• Tabu search
• Genetic algorithms
• Quantum Based Genetic Algorithm
• Ant colony optimization , Reactive search

7.4.3.1 Quantum Based Genetic Algorithm to Solve N-Queens Problem

Genetic algorithms (GAs) are an approximated approach that has proved its effi-
ciency for solving combinatorial optimization problems. Genetic algorithms use the
biological Darwinian principal to optimize the solution obtained or measured. These
algorithms work on a set of structures called chromosomes representing the solution
to be optimized.

Another research field called Quantum Computing (QC) has appeared and in-
duced intense researches in the last decade. This evolution that takes its origins from
the quantum physics principles reduces remarkably the complexity. This is offered
by the possibility of parallel computing. Such possibility of parallel computing can
be exploited to solve combinatorial optimization problems, which use a great set
of data. So quantum computing allows the possibility of designing very powerful
algorithms. However, these algorithms may not be well exploited before developing
powerful quantum machines. Awaiting the construction of such machines, the idea
of simulating quantum algorithms on classical computers or to combine them to
other conventional methods has appeared. At this prospect, lets study the genetic
quantum hybridization and its contribution in solving combinatorial problems.

N-Queens Problem

The N-Queens problem is a classical artificial intelligence problem. It is a general
case of the 8-Queens problem. This combinatorial optimization problem has been
studied for more than a century. A chess player, Max Bezzel, first introduced the
8-Queens problem in 1848. The N-Queens problem, as generalization of the 8-
Queens problem, was first proposed in 1867. Since 1850, the problem has attracted
the attention of several famous mathematicians including Gauss, Polya, and Lucas.

The N-Queens problem can be defined as follows: place N queens on an NxN
chessboard, one queen on each square, so that no queen captures any of the
others, that is, a configuration in which there exists at most one queen on the

7.4 Combinatorial Optimization Problem 183

Fig. 7.1 Representation of
the N-Queens problem where
N = 8

same row, column or diagonal. A representation of N-Queens problem is given on a
chessboard in Fig. 7.1.

During the last three decades, the problem has been discussed in the context
of computer science and used as an example of backtrack algorithms, permuta-
tion generation, divide and conquer paradigm, program development methodology,
constraint satisfaction problems, integer programming, specification and neural net-
works.

A common way to solve this problem consists in trying to put the queens on the
board squares one after the other. If one queen threatens the newly introduced queen,
we withdraw the queen and search for another position. If we cannot find a solution,
we choose to remove a queen already positioned, assign it another position that has
not yet been used, and start the search again. This last operation is called a back-
track, and the whole strategy is called a trial-and-error algorithm. It is known that
for n=8, there are exactly 92 solutions, or less if we consider symmetric solutions
as equal.

The number of solutions for n = 1, 2 . . . 15, is 1, 0, 0, 2, 10, 4, 40, 92, 352, 724,
2680, 14200, 73712, 365596, 2279184.

Quantum Computing

In early 80s, Richard Feynman’s observed that certain quantum mechanical effects
cannot be simulated efficiently on a classical computer. His observation led to specu-
lation that computation in general could be done more efficiently if it used this quan-
tum effects. This speculation proved justified in 1994 when Peter Shor described a
polynomial time quantum algorithm for factoring numbers. In quantum systems,
the computational space increases exponentially with the size of the system, which
enables exponential parallelism. This parallelism could lead to exponentially faster
quantum algorithms than possible classically.

N-Queens Problem Solving

Conventional GAs operate on a set of individuals (chromosomes) forming a pop-
ulation. To be more representative this population must contains a fit number of
chromosomes. This makes the solution space very large. So, the classical GAs
are usually very costly. For reducing the number of chromosomes and conse-

184 7 Genetic Algorithm Optimization Problems

quently reducing the heaver computation time, we propose here an algorithm called
Quantum Genetic Algorithm (QGA).

A QGA is a GA with quantum coding solutions. This representation will reduce
the computation time by of increasing the number of chromosomes. Moreover we
believe that it will give a better global solution. As in genetic algorithms, initial
solutions are encoded in N chromosomes representing the initial population. The
difference in a QGA is that each chromosome does not encode only one solution
but all the possible solutions by putting them within a superposition

The Solution Modeling

Every queen on a checker square can reach the other squares that are located on the
same horizontal, vertical, and diagonal line. So there can be at most one queen at
each horizontal line, at most one queen at each vertical line, and at most one queen
at each of the 4n-2 diagonal lines. Furthermore, since we want to place as many
queens as possible, namely exactly n queens, there must be exactly one queen at
each horizontal line and at each vertical line.
For a 1 × 1 board, there is one trivial solution:

For 2 × 2 and 3 × 3 boards, there are no solutions. For a 4 × 4 board, there are two:

These are considered distinct solutions, even though the solutions are mirror images
of each other. There is no quick and easy way to calculate the total number of NQP
solutions for an NxN board. We can represent the NQP solution by an NxN matrix
A containing only N ones and satisfying the constraint that only one 1 can be in a
raw, in a column or in a diagonal.

For example the matrix below in in Fig. 7.2 represents a solution of the 4-Queens
problem:

Fitness function

The penalty of one queen is equal to the number of queens she can check. The fitness
of the configuration is equal the sum of all the queens penalties divided by two
(deleting redundancy counting). For example the fitness of the solution presented in
Fig. 7.2 is 0 and the fitness of the matrix solution in Fig. 7.3 is 8.

7.4 Combinatorial Optimization Problem 185

Fig. 7.2 A solution matrix of
the 4-Queens problem

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

Fig. 7.3 A bad solution
matrix of the 4-Queens
problem

1 1 1 1

0 0 0 0

0 0 0 1

0 0 0 0

Quantum Representation

The solution representation given above can make the search space representation
in a genetic algorithm very large. Because of this, we propose another represen-
tation of the solution (the chromosome). A quantum encoding offers a powerful
mean to represent the solution space and reduces by the way the required number of
chromosomes.

We have represented the solution by a quantum matrix which is equivalent to a
chromosome in a conventional GA. For example the following matrix is a quantum
matrix representing a 4∗4 qubits, Such as every qubit represents a superposition of
1 and 0 states. So this matrix represents a superposition of all solutions including
incorrect solutions.

The quantum solution matrix is a (2∗N)∗N matrix which represents the superpo-
sition of all possible matrix (Fig. 7.4).

Quantum Genetic Algorithm for NQP solving

During the whole process we keep in memory the global best solution. The algo-
rithm consists on applying cyclically the following quantum genetic operations:

The first operation is a quantum interference, which allows a shift of each qubit in
all the direction of the corresponding bit value in the best solution. That is performed
by applying a unitary quantum operator, which achieves a rotation whose angle is
function of ái, âi and the value of the corresponding bit in the best solution (Fig. 7.5).
The second operation is a cross-over performed between each pair of chromosomes
at a random position. Here is an example of a cross-over between two chromosomes
(Fig. 7.6).

Fig. 7.4 A quantum solution
matrix

186 7 Genetic Algorithm Optimization Problems

Fig. 7.5 Quantum
interference

The third operation consists of a quantum mutation which will perform for some
qubits, according to a probability, a permutation between their values ái and âi.
That will invert the probabilities of having the values 0 and 1 by a measurement. An
example is given in Fig. 7.7:

Finally, we perform a selection of m chromosomes among the n existing in the
current generation. For this, we apply first a measurement on each chromosome to
have from it one solution among all those present in superposition. But unlike pure
quantum systems, the measurement here does not destroy the states’ superposition.
Since our algorithm operates on conventional computer and does not require the
presence of a quantum machine, it is possible and in our interest to keep all the
possible solutions in the superposition for the next iterations. For each measurement
result, we extract a distribution of N-Queens. To evaluate the quality of a solution,
we compute its fitness. The best solution is that having the minimal fitness (0 in the
optimum).

Parents

Children

Fig. 7.6 Quantum cross-over

Fig. 7.7 Quantum mutation

7.5 Scheduling Problems 187

7.5 Scheduling Problems

In today’s complex manufacturing setting, with multiple lines of products, each re-
quiring many different steps and machines for completion, the decision maker for
the manufacturing plant must find a way to successfully manage resources in order
to produce products in the most efficient way possible. The decision maker needs
to design a production schedule that promotes on-time delivery, and minimizes ob-
jectives such as the flow time of a product. Out of these concerns grew an area of
studies known as the scheduling problems.

Scheduling problems involve solving for the optimal schedule under various ob-
jectives, different machine environments and characteristics of the jobs. Some of
the objectives of the scheduling problems include minimizing the makespan, or the
last completion time of a job, minimizing the total completion time of all jobs, and
minimizing the total “lateness” of jobs. The user can select any number of jobs and
any number of parallel machines. Scheduling problems occurs almost everywhere in
real-world scenario, especially in the industrial engineering world. Many schedul-
ing problems from manufacturing process are quite complex in nature and very
difficult to solve by conventional optimization techniques. They belong to NP-hard
problems. This has paved way for the use of genetic algorithms to these types of
problems. The various scheduling problems include:

- Job shop scheduling
- Multiprocessor scheduling
- Multitask scheduling
- Parallel Machine scheduling
- Group Job scheduling
- Resource constrained project scheduling
- Dynamic task scheduling and so on.

In the forthcoming section lets discuss the application of genetic algorithm to job
shop scheduling problem.

7.5.1 Genetic Algorithm for Job Shop Scheduling Problems (JSSP)

Scheduling, especially job shop scheduling, has been studying for a long time. Be-
cause of its NP-Hard nature, there has not been found a global problem solver for
this kind of problems. Recently, some meta-heuristics like Simulated Annealing
(SA), Taboo Search (TS), and Genetic Algorithms (GA) have been implemented as
pure methods and hybrid of different method, where the hybrid methods are supe-
rior over pure ones. The main problem is how to cope with local minima within a
reasonable time. Among them, GA has been studied and implemented to like the
other problems with success.

The JSSP consists of a number of machines, M, and a number of jobs, J. Each
job consists of M tasks, each of fixed duration. Each task must be processed on a

188 7 Genetic Algorithm Optimization Problems

single specified machine, and each job visits each machine exactly once. There is
a predefined ordering of the tasks within a job. A machine can process only one
task at a time. There are no set-up times, no release dates and no due dates. The
makespan is the time from the beginning of the first task to start to the end of the
last task to finish. The aim is to find start times for each task such that the makespan
is minimized. As a constraint problem, there are M∗J variables, each taking positive
integer values. The start time of tth task of the jth job will be denoted by xjt, and
the duration of that task by djt. Each job introduces a set of precedence constraints
on the tasks within that job: xjt + djt _ xj(t+1) for t = 1 to M − 1. Each machine
imposes a set of resource constraints on the tasks processed by that machine: xjt +

djt _ xpq or xpq + dpq _ xjt. The aim is to find values for the variables such that
no constraint is violated. By defining an objective function on assignments (which
simply takes the maximum of xjt + djt), and attempting to minimize the objective,
we get a constraint optimization problem.

7.5.1.1 Types of Schedules

Schedules can be classified into one of following three types of schedules:

• Semi-active schedule: These feasible schedules are obtained by sequencing oper-
ations as early as possible. In a semi-active schedule, no operation can be started
earlier without altering the processing sequences.

• Active schedule: These feasible schedules are schedules in which no operation
could be started earlier without delaying some other operation or breaking a
precedence constraint. Active schedules are also semi-active schedules. An opti-
mal schedule is always active, so the search space can be safely limited to the set
of all active schedules.

• Non-delay schedule: These feasible schedules are schedules in which no machine
is kept idle when it could start processing some operation. Non-delay schedules
are necessarily active and hence also necessarily semi-active.

7.5.1.2 The Genetic Algorithm Approach

The genetic algorithms (GA) mimic the evolution and improvement of life through
reproduction, where each individual contributes with its own genetic information to
build up new ones adapted to the environment with higher chances of survival. This
is one of the main ideas behind genetic algorithms and genetic programming. Spe-
cialized Markov Chains underline the theoretical basis of GA in terms of change of
states and search procedures. Each ‘individual’ of a generation represents a feasible
solution as coded in a chromosome with distinct algorithms /parameters to be eval-
uated by a fitness function. GA operators are mutation (the change of a randomly
chosen bit of the chromosome) and crossover (the exchange of randomly chosen
slices of chromosome).

Figure 7.8 shows a generic cycle of GA where the best individuals are continu-
ously being selected and operated by crossover and mutation. Following a number
of generations, the population converges to the solution that performs better.

7.5 Scheduling Problems 189

Fig. 7.8 Genetic algorithm: the sequence of operators and evaluation of each individual

GA applications for JSSP have special chromosome representation as well as
genetic operators to be applied to feasible schedules. In our case, the chromosomes
are coded as a list of sets of numerical values for each particular schedule.

7.5.1.3 Genetic Algorithms in JSSP

Schedules are generated in a particular way in which the chromosome will be fea-
sible after performing genetic operators. The decision management in JSSP dis-
tributes the jobs for each machine, selecting sometimes one task among the other
alternatives so as to have a better fitness. Chromosome is coded with M∗J values
between 0 and 1, one for each decision, which points for the job in the requesting
jobs list that win the right to use the machine. Figure 7.9 shows an example of
chromosome coding based in decision process. This approach allows using the same
traditional GA operators to solve the problem because the chromosome contains a
sequence of numbers, all representing feasible schedules. Two fitness functions can
be applied to evaluate a solution: the makespan and the total idle time. The main
problems with this approach are as follows:-

• the disruptive effect of crossover operator,
• the precocious convergence to some local minima that blinds the system to find

the global one,
• eventually raising the inability of genetic operators to permute the solutions in a

reasonable time,
• the lack of hill climbing in GA.

Fig. 7.9 Decisions sequence in JSSP

190 7 Genetic Algorithm Optimization Problems

Table 7.1 Results obtained from genetic algorithms

Dec. Opt. GA makespan GA Idle time

Time % Time %

ABZ5 100 1234 1313 6.4 1314 6.4
ABZ6 100 943 994 5.4 982 4.1
LA18 100 848 940 10.8 897 5.7
LA17 100 784 872 11.2 854 8.9
LA20 100 902 979 8.5 1006 11.5
LA16 100 945 1031 9.1 1036 9.6
LA19 100 842 945 12.2 965 14.6
ORB01 100 1059 1230 16.1 1229 16.0
LA25 150 977 1129 15.5 1207 23.5
FT10 100 930 1032 10.9 1010 8.6
LA24 150 935 1091 16.6 1083 15.8
LA21 150 1046 1222 16.8 1260 20.4
LA27 200 1235 1507 22.0 1538 24.5
ABZ7 300 655 779 18.9 787 20.1
LA38 225 1196 1476 23.4 1485 24.1
LA40 225 1222 1569 28.3 1540 26.0
LA29 200 1130 1422 25.8 1501 32.8
ABZ9 300 656 795 21.1 843 28.5
ABZ8 300 638 823 28.9 827 29.6

The total size of the population is 100 individuals and the number of generations is
number machines∗number job ∗10, the crossover probability is 80% and mutation
probability is 25%, and each decision is coded as 8 bits. The increase of population
size does not change the results too much, but increase the processing time. For
example, in LA20 problem using makespan fitness, the final result was 959 time
units after 35 generations of 900 individuals (no better solution was founded until
149,500 generations) and 979 time units with 100 individuals. Table 7.1 shows the
results for both fitness functions at columns “GA makespan” and “GA Idle time”.
Table 7.1 shows the results of several problems of Operations Research literature
available in Internet. The columns “Time” contains the makespan and “%” contains
the percentage of the optimal value (column “Opt.”).

Thus, Genetic Algorithms can be applied to a wide range of scheduling problems
of all kind.

7.6 Transportation Problems

The transportation problems include the determination of optimum transportation
patterns, analysis of production scheduling problems including inventory control,
transshipment problems and several other assignment problems. In this section lets
discuss how genetic algorithm is applied to solve transportation problems.

7.6 Transportation Problems 191

7.6.1 Genetic Algorithm in Solving Transportation

Location-Allocation Problems with Euclidean Distances

A transportation location-allocation problem is a problem in which both optimal
source locations and the optimal amounts of shipments from sources to destinations
are to be found.

7.6.1.1 Problem Description

Although the general transportation-location problem refers simply to “sources”
and “destinations,” for clarity, the algorithm will solve a particular example of a
transportation-location problem, namely, identifying the optimal location of new
powerplants to supply the new (or future) energy demands of a number of cities.
The objective of this problem is to minimize the total power distribution cost. The
power distribution cost is the sum of the products of the power distribution cost (per
unit amount, per unit distance), the distance between the plant and the city, and the
amount of power supplied from the plant to the city, for all plants and all cities. For
each city, the total amount of energy supplied by all plants is made equal to the total
demand of that city. And for each plant, the total amount of energy supplied by the
plant is to be less than or equal to the total capacity of the plant.

The mathematical form of the problem can be written as,

Min, Cost (C) =

n
∑

i=1

m
∑

j=1

φ.δi j .Ni j

subject to :
P
∑

i=1

vi j = d j f or j = 1, m

C
∑

j=1

vi j ≤ ci f or i = 1, n

Where

φ = transportation cost per unit amount per unit distance

δi j = distance from source i to destination j

vi j = amount supplied from source i to destination j

n = number of plants

m = number of cities

xi , yi = X & Y coordinates of the source i

x j , y j = X & Y coordinates of the destination j

d j = demand of the destination

ci = source capacity

(7.14)

192 7 Genetic Algorithm Optimization Problems

It is noticed that the Euclidean distance term δi j , can be calculated using the equation
given below.

δi j =

√

(xi − x j)2 + (yi − y j)2 (7.15)

7.6.1.2 Genetic Algorithm Approach

A Two-Phase method is implemented to the solve location—allocation problem.
Phase 1 involves the Genetic Algorithm technique, which is used to minimize the
transportation cost by varying the source locations. Phase 2 includes a Linear Pro-
gramming technique to allocate the power from the sources to the destinations in
accordance with the constraints.

Phase 1

Step 1 : The locations and demands for each city; the lower and upper limits for
the plant locations; the plant capacities; the population; and the number of
generations are specified. The upper and lower limits are used to create the
initial random population of the source locations.

Step 2: The objective function (7.15) is evaluated for the random population of
plant locations by calling the phase 2 subroutine, which optimally allocates
power from the plants to the demand points, and insures that the constraints
are satisfied.

Step 3: The X and Y locations of all of the plants of the initial population are
converted to base 10 integers and converted to their binary forms. From the
objective function values, the probabilities and the cumulative probabilities
for each individual in the population are calculated.

Step 4: Parent selection is made on the basis of fitness function. Individuals
having higher fitness values are chosen more often. The greater the fitness
value of an individual the more likely that the individual will be selected
for recombination. The selection of mating parents is done by roulette wheel
selection, in which a probability to each individual, i,

Pi = fi/f1 + f2 + f3 where Pi = Probability of individual,

fi = fitness values (7.16)

is computed. A parent is then randomly selected, based on this probability.
Step 5: The parents thus selected are made to mate using a single-point crossover

method. The offspring thus obtained form a new population of plant lo-
cations. The binary version of the new population is converted to base-10
integers and then to real values.

Step 6: Steps 2–5 are repeated until the desired numbers of iterations have been
performed.

Step 7: In order to maintain diversity in the population two operators, viz., mu-
tation and elitism are included. Mutation is the random change of a gene from

7.6 Transportation Problems 193

0 to 1 (or 1 to 0). Elitism is the procedure by which the weakest individual
of the current population is replaced by the fittest individual of the imme-
diately preceding population. The mutation, and elitism operators offer the
opportunity for new genetic material to be introduced into the population.

Step 8: The final cost and final (X and Y) location of the plants are reported.

Phase 2

In Phase 2 the random locations of the plants are received from Phase 1 and are
solved as a linear transportation problem using the simplex algorithm. The Simplex
Algorithm optimizes the cost for allocation of power from the plants to the cities,
to a minimum. The optimal cost value, which is the objective function value in the
Genetic Algorithm, is passed back to Phase 1.

A sample of 20 problems is solved using the above Genetic Algorithm and the
results are displayed and analyzed. The method described above was applied to the
sample problems given in Cooper (1972), and the efficiency of the Genetic Algo-
rithm was observed.

In the case of quality of solution, it can be seen from Table 7.2, Genetic Algo-
rithm converged to within 10% of the exact solutions. But for the large problems
(19 & 20), the convergence is not more appropriate; as a result parallel genetic
algorithms can be applied to improve the performance.

Table 7.2 Results obtained using GA approach

Problem
No.

Source X
destination

Exact solution GA solution Computation
Cycles

1 2 × 7 50.450 50.465 15000
2 2 × 7 72.000 72.033 9000
3 2 × 7 38.323 38.334 12500
4 2 × 7 48.850 48.850 8000
5 2 × 7 38.033 38.398 8000
6 2 × 7 44.565 44.565 6500
7 2 × 7 59.716 59.921 15000
8 2 × 7 62.204 62.380 9000
9 2 × 4 54.14246 54.16013 12500
10 2 × 5 65.78167 66.83248 15000
11 2 × 6 68.28538 68.78933 12500
12 2 × 7 44.14334 44.17555 25000
13 2 × 8 93.65978 95.48586 20000
14 3 × 3 40.00267 40.28115 15000
15 3 × 4 40.00020 40.50941 10000
16 3 × 5 60.00000 60.74852 10000
17 3 × 6 54.14263 54.47150 15000
18 4 × 4 10.00000 11.06346 15000
19 8 × 16 216.549 502.9196 25000
20 12 × 16 160.000 444.1291 25000

194 7 Genetic Algorithm Optimization Problems

7.6.2 Real-Coded Genetic Algorithm (RCGA) for Integer Linear

Programming in Production-Transportation Problems

with Flexible Transportation Cost

Among the various forms of linear programming problem, a popular and important
type is the traditional transportation problem, in which the objective is to minimize
the cost of transportation of various amounts of a single homogeneous commodity
from different sources to different destinations. Generally, the traditional transporta-
tion problem (TP) is a minimization problem in which the total transportation cost
for transporting the goods from source to the destination is minimized. However,
due to the fierce competition resulting out of rapid changes of the Global economy
and to maintain the quality of the item as well as the goodwill of the company, some
manufacturing companies are forced to keep the following activities simultaneously
under their own control:

1. Manufacturing and Marketing of the commodity.
2. Selling at different showrooms situated at different important markets / locations.
3. Transportation of commodities from different factories to different showrooms.

As a result, the overall objective of that manufacturing company is to maximize the
profit of the system according to the prescribed demands of different markets as well
as the capacity of different factories.

In the traditional transportation problem, it is assumed that the transportation
cost (per unit) for transferring the commodities from a particular source to a par-
ticular destination is fixed. However, under real life situation when the number
of transported units is above a certain limit, then one or more transport vehicle
is generally hired to transport those units from a particular source to a particular
destination, and this normally results in the lowering down of effective cost per
unit. Also, the factors like road conditions, weather, etc can affect the unit trans
portation cost.

A genetic algorithm (GA) is a computerized stochastic search and optimization
method which works by mimicking the evolutionary principles and chromosomal
processing in natural genetics. It is based on Darwin’s principles of “survival of the
fittest”. It is executed iteratively on the set of real / binary coded solution called
population. Every solution is assigned a fitness, which is directly related to the ob-
jective function of the search and optimization problem. There after, applying three
operators similar to natural genetic operators—selection / representation, crossover,
and mutation, the population of solutions is modified to a new population. GA works
iteratively by successively applying these three operators in each generation till a
termination criterion is satisfied.

In this case, a realistic production-transportation model is developed under the
assumption that a company is undergoing the following activities:

(i) Producing a single homogeneous product in different factories (situated in dif-
ferent places with different raw material cost, production cost and marketing
cost per unit).

7.6 Transportation Problems 195

(ii) Transporting the product to different show-rooms (with different selling prices
per unit). The unit transportation cost from a particular source to a particular
destination is not fixed, but flexible. Generally, when the number of transported
units is above a certain limit, then the transportation cost for full load of vehicle
will be charged, otherwise transportation cost is charged per unit.

(iii) Selling the product in different markets provided that objective of the company
is to maximize the total profit.

In order to solve the problem for discrete values of decision variables, a real coded
genetic algorithm is developed for discrete values of decision variables with rank
based selection, crossover and mutation.

7.6.2.1 Assumptions and Notations

The following assumptions and notations are used in developing the proposed
model.

(i) A company has m factories Fi (producing a homogeneous product) with ca-
pacity ai (i=1, 2, . . . , m) and there are n showrooms in markets M j with
demand(requirement) bj (j = 1, 2, . . . , n).

(ii) The transportation cost is constant for a transport vehicle of a given capacity
(even if the quantity shipped is less than the full load capacity of that transport
vehicle by some quantity).

(iii) The capacity of a transport vehicle is K units.
(iv) xij represents the unknown quantity to be transported from the factory Fi to

the market Mj.
(v) Cij be the transportation cost for a full load of transport vehicle and C’ij be

the transportation cost per unit item from Fi to M j .
(vi) Uij be the upper break point, some units less than K but more than Uij, the

transportation cost for the whole quantity is Cij.
Hence Uij =

[

Ci j/C ′i j
]

< K where
[

Ci j/C ′i j
]

is the greatest integer value
which is less than or equal to Cij / C’ij.

(vii) Cri and Cpi be the respective raw material and production costs per unit in
the factory Fi (i = 1, 2,, m) of the company.

(viii) p j be the selling price per unit in the market (1, 2, . . . ,) M j (j = 1, 2, . . . n).

7.6.2.2 Model Formulation of the Problem

The Total Revenue TR of the company is given by,

T R =

n
∑

j=1

m
∑

i=1

p j xi j (7.17)

196 7 Genetic Algorithm Optimization Problems

and the total production cost including the raw material cost is,

m
∑

i=1

n
∑

j=1

(Cn + Cpi)xi j =

m
∑

i=1

n
∑

j=1

cuxi j where Cu = Cn + Cpi (7.18)

Transportation Cost

When the transported quantity from the i th factory to the j th show-room is
greater than one integral transport vehicle load, the transported quantity xi j can be
expressed as:

xi j = ni j K +ki qi j where ni j = 0 or any finite integer, ki = 0 or 1 and qi j < K .

(7.19)
In this case, two situations may arise.

(i) ni j K < xi j ≤ ni j K + Ui j (i i) ni j K + Ui j < xi j ≤ mi j + 1)K (7.20)

Hence the transportation cost of xij units from the i th factory to the j th show-room
is given by

T Ci j = ni j Ci j + (xi j − ni j K).C l
i j where ni j K < xi j ≤ ni j + Ui j

= (ni j + 1)Ci j where ni j K + Ui j < xi j ≤ (ni j + 1)K (7.21)

Now, the total profit of the company is given by

Z =<total revenue>-<production cost>-<row material cost>

-<transportation cost> (7.22)

Again, the supply and demand constraints are as follows:

n
∑

j=1

xi j = ai , i = 1, 2, . . . , m (7.23)

m
∑

i=1

xi j = b j , j = 1, 2, . . . , n (7.24)

Hence the problem of the company is,

Max Z =

n
∑

j=1

m
∑

i=1

xi j p j −

m
∑

i=1

n
∑

j=1

Cu xi j −

m
∑

i=1

n
∑

j=1

T Ci j (7.25)

7.6 Transportation Problems 197

subject to the constraints

n
∑

j=1

xi j = ai , i = 1, 2, . . . , m

m
∑

i=1

xi j = b j , j = 1, 2, . . . , n (7.26)

xi j ≥ 0 and integers
In this situation, three cases may arise:

Case-I :
m
∑

i=1

ai =

n
∑

j=1

b j :

Case-II :
m
∑

i=1

ai >

n
∑

j=1

b j :

Case-III :
m
∑

i=1

ai <

n
∑

j=1

b j : (7.27)

In Case-I, the above problem is a balanced problem, whereas in Case-II & Case-III,
it is unbalanced. In Case-II, the total capacity of the source is greater than the total
demand of the destination. Where as in Case-III, the total capacity is less than the
total demand.

7.6.2.3 Implementation of GA

Now, we shall develop a GA with real value coding for solving the above constrained
maximization problem involving m×n integer variables. The general working prin-
ciple of GA is as follows:

Step-1: Initialize the parameters of Genetic Algorithm and different parameters
of the transportation problem.

Step-2: t = 0 [t represents the number of current generation.]
Step-3: Initialize P(t) [P(t) represents the population at t-th generation]
Step-4: Evaluate P(t).
Step-5: Find best result from P(t).
Step-6: t = t + 1.
Step-7: If (t > maximum generation number) go to step-14
Step-8: Select P(t) from P(t − 1) by any selection process like roulette wheel

selection, tournament selection, ranking selection etc.
Step-9: Alter P(t) by crossover and mutation operation.

198 7 Genetic Algorithm Optimization Problems

Step-10: Evaluate P(t).
Step-11: Find best result from P(t).
Step-12: Compare best results of P(t) and P(t−1) and store the better one.
Step-13: Go to step-6.
Step-14: Print final best result.
Step-15: Stop.

7.6.2.4 Representation of Chromosomes

For proper application of GA, the designing of an appropriate chromosome rep-
resentation of solutions of the problem is an important task. In many situations
including optimization problem with larger decision variables the classical binary
coding is not well adopted. In this case, a chromosome is coded in the form of a
matrix of real numbers, every component of chromosomes represents a variable of
the function.

7.6.2.5 Evaluation Function

After getting a population of potential solutions, we need to see how good they are.
Therefore, we have to calculate the fitness for each chromosome. In this problem,
the value of the profit function for chromosome Vj(j = 1, 2 . . . P O PSI Z E) is
taken as the fitness of V j and it is denoted by eval(V j).

Consider an example, to solve the balanced production—transportation problem
with the following values of different parameters:

m = 3, n = 4,
[

p j

]

= [50.00, 40.0, 45.0, 35.00], [Cu] = [15.0, 22.00, 16.0] ,

[

Ci j

]

=

⎡

⎣

60 90 105 75
120 48 130 150
110 65 80 100

⎤

⎦ and
[

C ′
ij

]

=

⎡

⎣

2.5 3.5 4.0 3.0
4.5 2.0 5.0 5.5
4.2 2.8 3.2 3.3

⎤

⎦

[ai] = [60, 20, 25] ,
[

b j

]

= [25, 30, 20, 30] (7.28)

For different values of K , we have solved the balanced production—transportation
problem by RCGA for discrete variables. The results are displayed in Table 7.3.

In this section, we have formulated and solved a production-transportation prob-
lem with the flexible transportation cost for transferring commodities from a

Table 7.3 Results of example

K Values of decision variables Profit of the company (Z)

20 x11 = 25, x12 = 5, x14 = 30, x22 = 19, x23 = 1, x32 = 6, $ 2344.40
x33 = 19, all other decision variables are zero

25 x11 = 25, x12 = 5, x14 = 30, x22 = 20, x32 = 5, x33 = 20, $2374.50
all other decision variables are zero

30 x11 = 25, x12 = 5, x14 = 30, x22 = 20, x32 = 5, x33 = 20, $ 2389.50
all other decision variables are zero

7.7 Network Design and Routing Problems 199

particular factory to a particular show room. For this purpose, a real coded GA
(RCGA) for discrete variables with rank based selection, whole crossover (applied
for all genes of a chromosome) and a new type of mutation has been developed.

In real-life situation, transportation costs of goods are fixed for a finite capacity
of a transport mode such as a truck, matador, etc. A fixed cost is charged against
a certain amount of quantities (upper ceiling) or more when a truck is deployed
whether it is utilized fully or partially. For the quantities less than that upper ceiling,
a uniform rate per unit is charged. In this paper, we have considered the transporta-
tion cost explicitly considering the realistic situation.

The proposed production inventory problem is a constrained linear integer prob-
lem. To solve this problem, a real-coded GA for integer variables has been devel-
oped. However, in GA, there may arise a difficulty regarding the boundaries of the
decision variables. In application problems, the selection of boundaries of the deci-
sion variables is a formidable task. We have overcome these difficulties by selecting
the decision variables randomly and taking the minimum value of the corresponding
capacity and requirement of the source and destination respectively. In this process,
all constraints are satisfied automatically.

7.7 Network Design and Routing Problems

The great diversity of questions and problems that originate from today’s network
planning and design tasks requires a large number of algorithms, each of which
specializes in a specific problem with specific constraints. Almost all of the opti-
mization problems relevant in network design are NP-complete. For most problems,
there is no known algorithm that could guarantee to find the global optimum in
a polynomial amount of time. In many cases, sophisticated heuristics have to be
developed to achieve satisfying results.

7.7.1 Planning of Passive Optical Networks

7.7.1.1 Problem Description

Passive Optical Networks (PON) provide a way to gradually introduce fiber optic
technology into access networks while still deploying parts of the traditional copper
line or coax-cable systems. PONs can be implemented in several topologies. One
configuration of choice is a tree structure where the Optical Line Termination (OLT)
in the central office can be seen as the root and the Optical Network Units (ONU)
as the leaves of the tree. In the field between the OLT and the ONUs only passive
elements—the fibers and optical splitters—are deployed. Customer access points
are connected to the ONUs via traditional technologies like copper or coax lines.
Figure 7.10 illustrates the PON tree structure.

When installing a new network in the access area, the majority of money has to be
spent on digging the cable ducts. Thus, minimizing the total cost is mainly a matter

200 7 Genetic Algorithm Optimization Problems

OLT

ONU

ONU

ONU

ONU

ONU

ONU

•

•

•

Fiber

Optical Splitter

Network

termination

Copper / Coax

Fig. 7.10 Structure of passive optical networks

of finding the shortest street paths, which interconnect all ONUs with the OLT. A
city map can be represented by a graph where the streets are the links, and the street
junctions together with the ONUs and the OLT make up the nodes. The weights of
the links are set to be proportional to the length of the respective streets. In some
cases, for example, if some fiber lines exist or if some streets are preferred to be used
as duct lines, special weight values can be assigned to theses edges. With this map
representation, the optimization problem turns into the classical minimum Steiner
tree problem. This means that we want to find a tree within a given graph, which
spans a designated subset of nodes in such a way, that the sum of the costs of the
selected edges becomes minimal. There already exist a number of algorithms that
solve this problem exactly. Since the minimum Steiner tree problem is NP-complete,
these algorithms have an exponential worst-case running time. Therefore, they are
not applicable in the field of network planning where it is quite common to have a
great number of nodes and edges.

7.7.1.2 Genetic Algorithm Approach

A simple genetic algorithm is applied to the design of passive optical networks.
The genetic coding of a specific alternative of a Steiner tree consists of a string of
integer values with one specific gene for every link in the graph. The integer value is
assigned to the respective link as a pseudo link weight, which is not correlated to the
real cost value of this edge. The pseudo link weights are only auxiliary parameters.
Given a genetic string with a pseudo link weight for every edge in the graph, a
minimum spanning tree is built over all nodes in this graph. From this minimum
spanning tree all nodes and links are cut off which are not essential to connect

7.7 Network Design and Routing Problems 201

Steiner TreeOLT / ONUs

a

b

c

d
e

f

g

h

i
j

k

Spanning Tree

3

1

9

2
2

7

1

5

4
2

3

Fig. 7.11 Computation of a specific Steiner tree

the Steiner vertices with each other. The remaining tree is a specific Steiner tree
solution that connects only the set of ONU and OLT nodes. Figure 7.11 illustrates
the use of two simple heuristics to find a Steiner tree. In this example, the genetic
string is 3-1-9-2-2-7-1-5-4-2-3 with the integers assigned to the edges a through k,
respectively.

This type of genetic coding guarantees that a genetic string can represent all
possible solution alternatives. To obtain one specific Steiner tree, one has to set the
pseudo link weights of the Steiner edges smaller than the ones of the remaining
edges. It is another advantage of this coding that the crossover and the mutation
operators applied to genetic strings produce again valid strings.

The diagram in Fig. 7.12 shows the evolution of the costs for a typical run of
the genetic algorithm for a network with 463 nodes, including 44 ONUs, and 709
edges. For every generation the maximum and the minimum cost values are shown.
Starting from a random first generation with usually high cost values, it can be
observed that the costs decrease gradually. This is true for the minimum as well as
for the maximum values. It indicates that the principle of “survival of the fittest” also
works in the area of network planning, and that a crossover of two good solutions
has a high probability of creating another good or even better solution.

The running time of the genetic algorithm depends on the size of the network, the
number of genetic strings per generation, and the total number of evolution cycles.

Fig. 7.12 Genetic algorithm cost evolution

202 7 Genetic Algorithm Optimization Problems

A large portion of the time is spent within the method which maps a genetic string
to a specific Steiner tree solution and calculates its costs. For our sample network,
the evaluation of one string takes approximately 0.4 to 0.5 seconds on a SPARC
workstation. With a generation size of 600 strings and a total of 110 evolution cycles,
the test run of Fig. 7.12 required about 9 hours.

7.7.2 Planning of Packet Switched Networks

7.7.2.1 Problem Description

The design of packet switched networks requires the solution of different types of
problems, e.g. node placement and link dimensioning, routing optimization, server
specification, or address assignment. In our paper we consider only the link topology
and routing optimization aspects. Our design problem can be formulated as follows:
Given a set of node locations and a requirement matrix with traffic values for all
node-to-node pairs, the link topology and the routing paths are optimized according
to the costs, so the average end-to-end packet delay does not exceed a specified
value. The packet arrival process is assumed to be a Poisson process, and the routers
are modeled as independent M/M/1 waiting queues.

Since the three design aspects—link topology, capacity assignment, and routing
optimization—are interdependent, they cannot be considered in isolation. Conven-
tional planning algorithms usually handle this problem by repeatedly applying a
sequence of methods to the different sub-problems as shown in Fig. 7.13. For a
fixed topology and a certain routing scheme, the capacities of the links are opti-
mized. Afterwards, the capacity values are kept constant while the routing strategy
is improved. This is repeated until the results converge. If all constraints are met, the
solution is returned and the algorithm exits. If one is not satisfied with this result,
a different link topology is chosen, and the optimization procedure is started anew.
Unlike this traditional approach, our genetic algorithm looks at the whole picture of
a specific network solution and evaluates it.

7.7.2.2 Genetic Algorithm Approach

A genetic string represents a specific network alternative by assigning pseudo link
weights to the edges of a fully meshed graph. From this graph, simple heuristics

Fig. 7.13 Conventional optimization procedure

7.7 Network Design and Routing Problems 203

Fig. 7.14 Computation of a specific network topology

create a valid network with a certain link topology, capacity assignment, and routing
specification.

Figure 7.14 shows how a genetic string is converted to a specific network solu-
tion. Starting from the fully meshed graph with directed links, the shortest path for
every node-to-node pair is determined according to the pseudo link weights, and
the selected links are marked. Edges, which are not selected at all, are discarded.
The shortest paths correspond to the packet routes between two end systems. Based
on this routing pattern and on the given requirement matrix, it is now possible to
compute the traffic load on every link and, furthermore, calculate the optimal capac-
ities. In the case of discrete capacities, the continuous values are rounded up. Since
current routing protocols like RIP and OSPF require bi-directional connectivity be-
tween neighbor gateways, an opposite edge is inserted for every link in the network
if it does not already exist. The smallest possible capacity is assigned to these new
edges, since only router messages will be transmitted over them. At the end, the
costs for this specific network scenario are calculated and returned to the genetic
framework.

The cost evolution resulting from the genetic algorithm for packet switched net-
work planning looks similar to the one given in Fig. 7.15. Again, the minimum
and maximum values decrease gradually until a convergence point is reached. This
indicates that genetic algorithms can be used in the field of packet network planning.
A sample network topology, which was computed by the genetic algorithm, is shown
in Fig. 7.15. The structure strongly depends on the composition of the capacity costs.
For high basic costs, which are only proportional to the length of a link, the network
mesh degree will be low. For decreasing fixed link capacity costs, the number of
links in the network increases.

Thus, the genetic algorithm is applied to the topology and routing optimization
of packet switched networks.

7.7.3 Optimal Topological Design of All Terminal Networks

An important part of network design is to find the best way to layout the components
(nodes and arcs) to minimize cost while meeting a performance criterion such as
transmission delay, throughput or reliability. This design stage is called “Network

204 7 Genetic Algorithm Optimization Problems

Fig. 7.15 Sample network
topology

Topological Optimization”. In a topological network design problem, a main con-
cern is to design networks, which operate effectively and without interruption in
the presence of component failures. Reliability is concerned with the ability of a
network to carry out desired network operations.

Generally, a large-scale network has a multilevel, hierarchical structure consist-
ing of a backbone network and several local access networks. Therefore, designing
the topology of a large-scale network can be divided into two problems, the back-
bone network design and the local network design. This section is mainly interested
in large-scale backbone network design. For backbone network design, an impor-
tant connectivity measure is reliability. In a communication network, all terminal

network reliability can be defined as the probability that every pair of nodes can
communicate with each other.

Many studies have considered topological optimization with a network reliabil-
ity criterion. For example, few researchers used a decomposition method based on
branch and bound to minimize total network cost under a system reliability con-
straint. Their method can only solve small networks because as the number of arcs

7.7 Network Design and Routing Problems 205

increases, the number of possible layouts grows faster than exponentially. Because
of this complexity, other existing methods are not computationally feasible for de-
signing large-scale network topologies with very confining assumptions. Therefore,
a heuristic search algorithm based on Genetic Algorithms (GAs) is developed to
find a network topology, which has minimum cost, subject to a system reliability
constraint.

A computer communication network can be modeled by a probabilistic graph
G = (N, L, p), in which N and L are the set of nodes and arcs that corresponds to the
computer sites and communication links, respectively. The networks considered in
this section are assumed to have bi-directional links and therefore are modeled by
graphs with non-oriented edges. We further assume that the graph under discussion
has no redundant arcs. Any graph G = (N, L) is said to be connected if there is at
least one path between every pair of nodes. A sub-graph G1 of G is a graph, of
which all nodes and arcs are contained in G. i.e., G1 = (N1, L1) where N1 ⊆ N and
L1 ⊆ L. If N1 = N, the sub-graph G1 is called a “spanning sub-graph”. In a con-
nected graph G of arcs and n nodes, a tree T is a spanning tree consisting of n-1 arcs.
The deletion of any edge from a tree results in a disconnected graph. Therefore a
connected graph should be at least a spanning tree with n-1 edges. A communication
network topology should be at least a spanning tree and communication network
reliability must be greater than the required system reliability value, p0.

In addition to a simple network connectivity check (i.e., does a minimum span-
ning tree exist in the network), other researchers proposed a “2- connectivity” mea-
sure in the design of communication network topologies. “2- connectivity” means
that there are at least two paths between each pair of nodes, rather than one. Orig-
inally, many studies considered this measure to be a reasonable constraint of relia-
bility in the design of network topology. In this case, it is used to establish the initial
population and to constrain subsequent populations. Therefore, the final network
design will meet the system reliability constraint and contain at least two different
paths between all pairs of nodes.

7.7.3.1 Problem Description

Under the following assumptions:

(1) the location of each network node is fixed and given,
(2) each cij and the p are fixed and known, where cij is the cost of link in the network

between nodes i and j, and p, q are link reliability and unreliability (p + q = 1),
(3) each link is bi-directional,
(4) there are no redundant links in the network,
(5) the probability of failure of a link is independent of the states of the other links,

the main problem can be stated mathematically as follows:

Minimize: z =
∑

cij xij

Subject to: f(x) ≥ p0 (7.29)

206 7 Genetic Algorithm Optimization Problems

xij ∈ {0, 1} are the decision variables and f(x) is the network reliability. The all-
terminal system reliability of a network is defined to be the probability that every
pair of nodes can communicate with each other. At any instant of time, only some
arcs of G may be operational. A state of G is a sub-graph (N, L′) with L′ ∈ L, where
L′ is the set of operational arcs. An operational state is generally called a pathset, and
a minimal operational state is a min-path. A failed state L′ is called L \ L′ (cutset)
and when L′ is a maximal failed state, L \ L′ is a min-cut. The reliability of G,
RelK(G), is the k-terminal reliability: If K = N, this is the all terminal reliability,
Rel(G). It is easy to formulate a network in state L′ ⊆ L, with reliability as follows:

∏

pe

∏

qe where L′ is the set of operational arcs.

e ∈ L′ e ∈ (L\L′) (7.30)

Summing this state occurrence probability over all operational states gives the net-
work system reliability. There are basically two approaches to network system relia-
bility calculation; simulation and analytic. All known analytic methods have worst-
case computation times, which grow exponentially with the size of the network.
Monte Carlo simulation methods, for which computation time grows only slightly
faster than linear with network size, have been the method of choice for more than
trivial sized networks. In this section, Monte Carlo simulation technique is used
to predict the network reliability, which substantially reduces the variance of the
estimator when compared to “crude” Monte Carlo. This reduced variance Monte
Carlo is based on a two-tiered hierarchical approach to sampling, which makes use
of how many arcs fail during a given simulation.

7.7.3.2 Genetic Algorithm Approach

A GA is developed as a solution methodology for network topological optimization
with a reliability constraint. In GA, the search space is composed of possible solu-
tions to the problem; each represented as some convenient data structure, referred to
as the chromosome. Each chromosome has an associated objective function value,
called the fitness value. A good chromosome is the one that has a high fitness value.
A set of chromosomes together with their associated fitness values is called the
population. This population, at a given stage of the GA, is referred to as a generation.

In a conventional GA, candidate solutions are represented by strings of numbers
using a binary or non-binary alphabet. The present algorithm uses a binary coding
structure for representing candidate solutions. A binary set is used to represent arcs,
where the maximum number of non-redundant, undirected arcs for a network of
n nodes is given by (n-1)n/2. For example, a simple network whose base graph
consists of 5 nodes and 10 possible links can be represented by:

[1 1 0 1 1 0 1 1 0 1]

[x12, x13, x14, x15, x23, x24, x25, x34, x35, x45]

7.7 Network Design and Routing Problems 207

where, xij represents a link connecting two nodes i and j. If xij is equal to 1, there is a
connection between these two nodes. If xij is equal to 0, then there is no connection.
The initial population, which consists of a set of feasible solutions (2- connected
networks) is generated in a random fashion. For determining this initial population,
a number of experiments were carried out. A candidate network consists of some
randomly selected arcs between nodes. The selection of the probability values,
which are used in deciding whether an arc exists or not was an important step to
generate the initial population. In an experimental design with 10, 20 and 30 nodes,
the following characteristics were systematically controlled.

• Arc probabilities between [0, 1], which determines the existence of an arc
between nodes, are selected.

• The system reliability value of each connected network is estimated using Monte
Carlo simulation.

• The probability values of the existence of arcs and the corresponding network
reliability values are compiled.

The aim was to determine the intervals of the probability values, which result highly
reliable networks. Any initial population can then be generated by using probabili-
ties within these intervals. Table 7.4 shows the resulting probability intervals from
the experiments described above which were used for the initial populations.

The choice of parameters for GAs can have a significant effect on performance
of the algorithm. Parameter values were investigated by running the GA with dif-
ferent population sizes (10, 20, 30), crossover rates (0.55, 0.65, 0.75, 0.85, 0.95)
and mutation rates (0.01, 0.05, 0.09, 0.10). It was found that the best results were:
population size = 20, crossover rate = 0.95 and mutation rate = 0.05.

The objective function is the sum of the total cost for all arcs in the network plus a
quadratic penalty function, which is applied when the network reliability prediction
does not meet the network reliability requirement (i.e., infeasible). The objective of
the penalty function is to lead the optimization algorithm to feasible solutions. It
was important to allow infeasible solutions into the population because good solu-
tions are often the result of breeding between feasible and infeasible solution. The
objective function is,

Z =
∑

i

∑

j

cijXij + δ(ε(Rel(G)-p0))2 , i = 1, . . . , n-1; j = i + 1, . . . , n

(7.31)
where cij, xij and p0 were previously defined, Rel(G) equals f(x) (network reliabil-

ity), ε is the maximum value of cij and δ = 0 if Rel (G) is ≥ p0 and δ = 1 if Rel(G)
< p0. The fitness is chosen to be (Zmax–Z) where Zmax is a constant, which is

Table 7.4 Probability values used to generate the initial population

Number of nodes (n) Probability of an arc

10 (0.15–0.60)
20 (0.15–0.50)
30 (0.10–0.30)

208 7 Genetic Algorithm Optimization Problems

the largest penalized cost of all networks in the current population. This subtraction
translates the minimization problem to a maximization problem.

The reduced variance Monte Carlo estimation of system reliability is used to
minimize computational effort. To further speed up the search, Jan’s upper bound
formulation (Jan, 1993) of network reliability is used. If this upper bound reliability
value exceeds the required system reliability value, then the Monte Carlo simulation
is used as a subroutine. Otherwise, the candidate network is considered to be infea-
sible. While it is possible that some networks, which are truly feasible, are discarded
at this point, the probability of this occurring is very small. Use of the upper bound
considerably reduces the number of network requiring simulation. Roulette wheel
selection is used for each generation of our algorithm. In this mechanism, a candi-
date network is selected with probability equal to its relative fitness with respect to
the whole population.

Classic crossover and mutation operators (Goldberg, 1989) are used to obtain
the new candidate networks for the next population. After crossover and mutation,
new candidate networks are checked for connectivity using the “Set Merging Al-
gorithm”. Then all new candidate networks replace their parents. Additionally, an
elitist strategy appends the best performing candidate network of the previous gen-
eration to the current population. This strategy ensures that the candidate network
with the best objective function value always survives to the next generation. A
GA continues until a pre-determined stopping criterion has been met. The criterion
is often based on the total number of generations. Our termination generation is
determined according to the size of the network under study.

Thus, a heuristic search algorithm based on GAs was developed to solve network
topology design with minimum cost subject to a reliability constraint. This can be
applied to complex design problems.

7.8 Summary

Genetic algorithms (GAs) are a Meta heuristic searching techniques, which mimics
the principles of evolution and natural genetics. These are a guided random search,
which scans through the entire sample space, and therefore provide reasonable solu-
tions in all situations like operations research, management science and engineering
design. In recent years, genetic algorithms have received considerable attention re-
garding their potential as a novel optimization technique. Based on their simplicity,
minimal requirements genetic algorithms have been widely applied in a variety of
problems. This chapter provided a brief introduction to genetic optimization tech-
niques and their applications.

Review Questions

1. Mention some of the areas where genetic algorithms can be applied.
2. How is fuzzy optimization performed?

Exercise Problems 209

3. In what way if-then rules are used for multiobjective optimization?
4. Write short note on Genetic Fuzzy Systems.
5. Explain in detail about Multiobjective reliability design problem.
6. Define Combinatorial Optimization
7. State how GA is applied to solve N-Queens Problem.
8. List some of scheduling problems where genetic algorithms can be applied.
9. Describe the application of Genetic Algorithm to Job Shop Scheduling Problem.

10. Give a short description on GA based transportation problems.
11. How is genetic algorithm concept applied to network planning and routing

concept?
12. State the various advantages of Genetic Algorithm towards scheduling problems.

Exercise Problems

1. Write a MATLAB program to implement N-Queens problem.
2. Implement a parallel genetic algorithm to solve a network routing problem.
3. Develop a combinatorial optimization process for a bin-packing problem.
4. Make a study on constrained spanning tree problems with genetic algorithms
5. Develop a project for allocation and scheduling on multi-computers using genetic

algorithms.
6. Apply Genetic Algorithm for VLSI Layout design.
7. Implement multiprocessor scheduling using Genetic Algorithm.
8. Implement vehicle routing problem using Genetic Algorithm.
9. Develop a C++ program for implementing multitask scheduling using GA

approach
10. Implement multiobjective optimization for a reservoir management system.

Chapter 8

Genetic Algorithm Implementation

Using Matlab

8.1 Introduction

MATLAB (Matrix Laboratory), a product of Mathworks, is a scientific software

package designed to provide integrated numeric computation and graphics visu-

alization in high-level programming language. Dr Cleve Moler, Chief scientist at

MathWorks, Inc., originally wrote MATLAB, to provide easy access to matrix soft-

ware developed in the LINPACK and EISPACK projects. The very first version was

written in the late 1970s for use in courses in matrix theory, linear algebra, and

numerical analysis. MATLAB is therefore built upon a foundation of sophisticated

matrix software, in which the basic data element is a matrix that does not require

predimensioning.

MATLAB has a wide variety of functions useful to the genetic algorithm practi-

tioner and those wishing to experiment with the genetic algorithm for the first time.

Given the versatility of MATLAB’s high-level language, problems can be coded

in m-files in a fraction of the time that it would take to create C or Fortran pro-

grams for the same purpose. Couple this with MATLAB’s advanced data analysis,

visualisation tools and special purpose application domain toolboxes and the user is

presented with a uniform environment with which to explore the potential of genetic

algorithms.

The Genetic Algorithm Toolbox uses MATLAB matrix functions to build a set

of versatile tools for implementing a wide range of genetic algorithm methods. The

Genetic Algorithm Toolbox is a collection of routines, written mostly in m-files,

which implement the most important functions in genetic algorithms.

8.2 Data Structures

MATLAB essentially supports only one data type, a rectangular matrix of real or

complex numeric elements. The main data structures in the Genetic Algorithm

toolbox are:

• chromosomes

• objective function values

• fitness values

211

212 Genetic Algorithm Implementation Using Matlab

These data structures are discussed in the following subsections.

8.2.1 Chromosomes

The chromosome data structure stores an entire population in a single matrix of size

Nind × Lind, where Nind is the number of individuals in the population and Lind

is the length of the genotypic representation of those individuals. Each row corre-

sponds to an individual’s genotype, consisting of base-n, typically binary, values.

Chrom =













g1,1 g1,2 g1,3 · · · g1, Lind

g2,1 g2,2 g2,3 · · · g2, Lind

g3,1 g3,2 g3,3 · · · g3, Lind

· · · · · · ·

gNind,1 gNind,2 gNind,3 · · · gNind,Lind













individual 1

individual 2

individual 3

·

individual Nind

This data representation does not force a structure on the chromosome structure,

only requiring that all chromosomes are of equal length. Thus, structured popula-

tions or populations with varying genotypic bases may be used in the Genetic Algo-

rithm Toolbox provided that a suitable decoding function, mapping chromosomes

onto phenotypes, is employed.

8.2.2 Phenotypes

The decision variables, or phenotypes, in the genetic algorithm are obtained by ap-

plying some mapping from the chromosome representation into the decision vari-

able space. Here, each string contained in the chromosome structure decodes to a

row vector of order Nvar, according to the number of dimensions in the search space

and corresponding to the decision variable vector value. The decision variables are

stored in a numerical matrix of size Nind×Nvar. Again, each row corresponds to

a particular individual’s phenotype. An example of the phenotype data structure is

given below, where bin2real is used to represent an arbitrary function, possibly from

the GA Toolbox, mapping the genotypes onto the phenotypes.

Phen = bin2real(Chrom) % map genotype to phenotype

=













x1,1 x1,2 x1,3 · · · x1, Nvar

x2,1 x2,2 x2,3 · · · x2, Nvar

x3,1 x3,2 x3,3 · · · x3, Nvar

· · · · · · ·

xNind,1 xNind,2 xNind,3 · · · xNind,Nvar













individual 1

individual 2

individual 3

·

individual Nind

The actual mapping between the chromosome representation and their phenotypic

values depends upon the bin2real function used. It is perfectly feasible using this

8.2 Data Structures 213

representation to have vectors of decision variables of different types. For example,

it is possible to mix integer, real-valued, and binary decision variables in the same

Phen data structure.

8.2.3 Objective Function Values

An objective function is used to evaluate the performance of the phenotypes in the

problem domain. Objective function values can be scalar or, in the case of multiob-

jective problems, vectorial. Note that objective function values are not necessarily

the same as the fitness values. Objective function values are stored in a numerical

matrix of size Nind × Nobj, where Nobj is the number of objectives. Each row

corresponds to a particular individual’s objective vector.

Objv = OBJFUN(Phen)% Objective Function

=













y1,1 y1,2 y1,3 · · · y1,Nvar

y2,1 y2,2 y2,3 · · · y2,Nvar

y3,1 y3,2 y3,3 · · · y3,Nvar

· · · · · · ·

yNind,1 yNind,2 yNind,3 · · · yNind,Nvar













individual 1

individual 2

individual 3

·

individual Nind

8.2.4 Fitness Values

Fitness values are derived from objective function values through a scaling or rank-

ing function. Fitnesses are non-negative scalars and are stored in column vectors of

length Nind, an example of which is shown below. Again, Ranking is an arbitrary

fitness function.

Fitn = ranking(ObjV)% fitness function

Fitn = f1 individual 1

f2 individual 2

f3 individual 3

. . .

fNind individual Nind

8.2.5 Multiple Subpopulations

This toolbox supports the use of a single population divided into a number of sub-

populations or demes by modifying the use of data structures so that subpopulations

214 Genetic Algorithm Implementation Using Matlab

are stored in contiguous blocks within a single matrix. For example, the chromosome

data structure, Chrom, composed of Subpop subpopulations, each of length N in-

dividuals Ind, is stored as:

Chrom = . . .

Ind1 Subpop1

Ind2 Subpop1

. . .

IndN Subpop1

Ind1 Subpop2

Ind2 Subpop2

. . .

IndN Subpop2

. . .

Ind1 Subpopsubpop

Ind2 Subpopsubpop

. . .

IndN Subpopsubpop

This is known as the regional model, also called migration or island model.

8.3 Toolbox Functions

The Genetic Algorithm and Direct Search Toolbox is a collection of functions that

extend the capabilities of the Optimization Toolbox and the MATLAB numeric com-

puting environment. The Genetic Algorithm and Direct Search Toolbox includes

routines for solving optimization problems using

• Genetic algorithm

• Direct search

These algorithms enable you to solve a variety of optimization problems that lie

outside the scope of the Optimization Toolbox.

The genetic algorithm uses three main types of rules at each step to create the

next generation from the current population:

• Selection rules select the individuals, called parents, that contribute to the popu-

lation at the next generation.

• Crossover rules combine two parents to form children for the next generation.

• Mutation rules apply random changes to individual parents to form children.

8.3 Toolbox Functions 215

The genetic algorithm at the command line, call the genetic algorithm function ga

with the syntax

[x fval] = ga(@fitnessfun, nvars, options)

where

• @fitnessfun is a handle to the fitness function.

• nvars is the number of independent variables for the fitness function.

• options is a structure containing options for the genetic algorithm. If you do not

pass in this argument, ‘ga’ uses its default options.

The results are given by

• x — Point at which the final value is attained

• fval — Final value of the fitness function

Toolboxes are set of standard library functions, which consists of predefined algo-

rithms. The genetic algorithm and direct search toolbox of MATLAB consists of the

following functions:

Solvers

ga - Genetic algorithm solver.

gatool - Genetic algorithm GUI.

patternsearch - Pattern search solver.

psearchtool - Pattern search GUI

Accessing options

gaoptimset - Create/modify a genetic algorithm options structure.

gaoptimget - Get options for genetic algorithm.

psoptimset - Create/modify a pattern search options structure.

psoptimget - Get options for pattern search.

Fitness scaling for genetic algorithm

fitscalingshiftlinear - Offset and scale fitness to desired range.

fitscalingprop - Proportional fitness scaling.

fitscalingrank - Rank based fitness scaling.

fitscalingtop - Top individuals reproduce equally.

Selection for genetic algorithm

selectionremainder - Remainder stochastic sampling without replacement.

selectionroulette - Choose parents using roulette wheel.

selectionstochunif - Choose parents using stochastic universal sampling (SUS).

selectiontournament - Each parent is the best of a random set.

selectionuniform - Choose parents at random.

Crossover (recombination) functions for genetic algorithm.

crossoverheuristic - Move from worst parent to slightly past best parent.

crossoverintermediate - Weighted average of the parents.

216 Genetic Algorithm Implementation Using Matlab

crossoverscattered - Position independent crossover function.

crossoversinglepoint - Single point crossover.

crossovertwopoint - Two point crossover.

Mutation functions for genetic algorithm

mutationgaussian - Gaussian mutation.

mutationuniform - Uniform multi-point mutation.

Plot Functions for genetic algorithm

gaplotbestf - Plots the best score and the mean score.

gaplotbestindiv - Plots the best individual in every generation as a bar plot.

gaplotdistance - Averages several samples of distances between individuals.

gaplotexpectation - Plots raw scores vs the expected number of offspring.

gaplotgenealogy - Plot the ancestors of every individual.

gaplotrange - Plots the min, mean, and max of the scores.

gaplotscordiversity - Plots a histogram of this generations scores.

gaplotscores - Plots the scores of every member of the population.

gaplotselection - A histogram of parents.

gaplotstopping - Display stopping criteria levels.

Output Functions for genetic algorithm

gaoutputgen - Displays generation number and best function value in a

separate window.

gaoutputoptions - Prints all of the non-default options settings.

Custom search functions for pattern search

searchlhs - Implements latin hypercube sampling as a search method.

searchneldermead - Implements nelder-mead simplex method (FMINSEARCH) to

use as a search method.

searchga - Implements genetic algorithm (GA) to use as a search method.

searchfcntemplate - Template file for a custom search method.

Plot Functions for pattern search

psplotbestf - Plots best function value.

psplotbestx - Plots current point in every iteration as a bar plot.

psplotfuncount - Plots the number of function evaluation in every iteration.

psplotmeshsize - Plots mesh size used in every iteration.

Output functions for pattern search

psoutputhistory - Displays iteration number, number of function evaluations,

function value, mesh size and method used in every iteration

in a separate window.

psoutputfcntemplate - Template file for a custom output function.

Utility functions

allfeasible - Filter infeasible points.

gacreationuniform - Create the initial population for genetic algorithm.

gray2int - Convert a gray code array to an integer.

lhspoint - Generates latin hypercube design point.

nextpoint - Return the best iterate assuming feasibility.

Help files for genetic algorithm

fitnessfunction - Help on fitness functions.

fitnessscaling - Help on fitness scaling

8.3 Toolbox Functions 217

These are the toolbox functions present in the MATLAB. There also exist Genetic

and Evolutionary Algorithm Toolbox for use with MATLAB that contains a broad

range of tools for solving real-world optimization problems. They not only cover

pure optimization, but also the preparation of the problem to be solved, the visu-

alization of the optimization process, the reporting and saving of results, and as

well as some other special tools. The list of various functions using Genetic and

Evolutionary Algorithm Toolbox for use with MATLAB is as follows:

Objective functions

initdopi - INITialization function for DOuble Integrator objdopi

initfun1 - INITialization function for de jong’s FUNction 1

mopfonseca1 - MultiObjective Problem: FONSECA’s function 1

mopfonseca2 - MultiObjective Problem: FONSECA’s function 1

moptest - MultiObjective function TESTing

obj4wings - OBJective function FOUR-WINGS.

objbran - OBJective function for BRANin rcos function

objdopi - OBJective function for DOuble Integrator

objeaso - OBJective function for EASom function

objfletwell - OBJective function after FLETcher and PoWELL

objfractal - OBJective function Fractal Mandelbrot

objfun1 - OBJective function for de jong’s FUNction 1

objfun10 - OBJective function for ackley‘s path FUNction 10

objfun11 - OBJective function for langermann’s function 11

objfun12 - OBJective function for michalewicz’s function 12

objfun1a - OBJective function for axis parallel hyper-ellipsoid

objfun1b - OBJective function for rotated hyper-ellipsoid

objfun1c - OBJective function for moved axis parallel hyper ellipsoid 1c

objfun2 - OBJective function for rosenbrock’s FUNction

objfun6 - OBJective function for rastrigins FUNction 6

objfun7 - OBJective function for schwefel’s FUNction

objfun8 - OBJective function for griewangk’s FUNction

objfun9 - OBJective function for sum of different power FUNction 9

objgold - OBJective function for GOLDstein-price function

objharv - OBJective function for HARVest problem

objint1 - OBJective function for INT function 1

objint2 - OBJective function for INT function 1

objint3 - OBJective function for INT function 3

objint4 - OBJective function for INT function 4

objlinq - OBJective function for discrete LINear Quadratic problem

objlinq2 - OBJective function for LINear Quadratic problem 2

objone1 - OBJective function for ONEmax function 1

objpush - OBJective function for PUSH-cart problem

objridge - OBJective function RIDGE

objsixh - OBJective function for SIX Hump camelback function

objsoland - OBJective function for SOLAND function

objtsp1 - OBJective function for the traveling salesman example

objtsplib - OBJective function for the traveling salesman library

plotdopi - PLOTing of DO(Ppel)uble Integration results

plottsplib - PLOTing of results of TSP optimization (TSPLIB examples)

simdopi1 - M-file description of the SIMULINK system named SIMDOPI1

simdopiv - SIMulation Modell of DOPpelIntegrator, s-function, Vectorized

218 Genetic Algorithm Implementation Using Matlab

simlinq1 - M-file description of the SIMULINK system named SIMLINQ1

simlinq2 - Modell of Linear Quadratic Problem, s-function

tsp_readlib - TSP utility function, reads TSPLIB data files

tsp_uscity - TSP utility function, reads US City definitions

Conversion functions

bin2int - BINary string to INTeger string conversion

bin2real - BINary string to REAL vector conversion

bindecod - BINary DECODing to binary, integer or real numbers

Initialization functions

initbp - CReaTe an initial Binary Population

initip - CReaTe an initial (Integer value) Population

initpop - INITialization of POPulation (including innoculation)

initpp - Create an INITial Permutation Population

initrp - INITialize an Real value Population

Selection functions

selection - high level SELECTion function

sellocal - SELection in a LOCAL neighbourhood

selrws - SELection by Roulette Wheel Selection

selsus - SELection by Stochastic Universal Sampling

seltour - SELection by TOURnament

seltrunc - SELection by TRUNCation

rankgoal - perform goal preference calculation between multiple objective values

ranking - RANK-based fitness assignment, single and multi objective, linear

and nonlinear

rankplt - RANK two multi objective values Partially Less Than

rankshare - SHARing between individuals

Crossover functions

recdis - RECombination DIScrete

recdp - RECombination Double Point

recdprs - RECombination Double Point with Reduced Surrogate

recgp - RECombination Generalized Position

recint - RECombination extended INTermediate

reclin - RECombination extended LINe

reclinex - EXtended LINe RECombination

recmp - RECombination Multi-Point, low level function

recombin - high level RECOMBINation function

recpm - RECombination Partial Matching

recsh - RECombination SHuffle

recshrs - RECombination SHuffle with Reduced Surrogate

recsp - RECombination Single Point

recsprs - RECombination Single Point with Reduced Surrogate

reins - high-level RE-INSertion function

reinsloc - RE-INSertion of offspring in population replacing parents LOCal

reinsreg - REINSertion of offspring in REGional population model replac

Mutation functions

mutate - high level MUTATion function

mutbin - MUTation for BINary representation

mutbmd - real value Mutation like Discrete Breeder genetic algorithm

mutcomb - MUTation for combinatorial problems

mutes1 - MUTation by Evolutionary Strategies 1, derandomized Self Adaption

mutes2 - MUTation by Evolutionary Strategies 2, derandomized self adaption

mutexch - MUTation by eXCHange

8.4 Genetic Algorithm Graphical User Interface Toolbox 219

mutint - MUTation for INTeger representation

mutinvert - MUTation by INVERTing variables

mutmove - MUTation by MOVEing variables

mutrand - MUTation RANDom

mutrandbin - MUTation RANDom of binary variables

mutrandint - MUTation RANDom of integer variables

mutrandperm - MUTation RANDom of binary variables

mutrandreal - MUTation RANDom of real variables

mutreal - real value Mutation like Discrete Breeder genetic algorithm

mutswap - MUTation by SWAPping variables

mutswaptyp - MUTation by SWAPping variables of identical typ

Other functions

compdiv - COMPute DIVerse things of GEA Toolbox

compdiv2 - COMPute DIVerse things of GEA Toolbox

compete - COMPETition between subpopulations

comploc - COMPute LOCal model things of toolbox

compplot - COMPute PLOT things of GEA Toolbox

geamain2 - MAIN function for Genetic and Evolutionary Algorithm toolbox

for matlab

Plot Functions

fitdistc - FITness DISTance Correlation computation

meshvar - create grafics of objective functions with plotmesh.

plotmesh - PLOT of objective functions as MESH Plot

plotmop - PLOT properties of MultiObjective functions

reslook - LOOK at saved RESults

resplot - RESult PLOTing of GEA Toolbox optimization

samdata - sammon mapping: data examples

samgrad - Sammon mapping gradient calculation

sammon - Multidimensional scaling (SAMMON mapping)

samobj - Sammon mapping objective function

samplot - Plot function for Multidimensional scaling (SAMMON mapping)

8.4 Genetic Algorithm Graphical User Interface Toolbox

The Genetic Algorithm Tool is a graphical user interface that enables you to use

the genetic algorithm without working at the command line. To open the Genetic

Algorithm Tool, enter

gatool

at the MATLAB command prompt.

This opens the tool as shown in the following Fig. 8.1

To use the Genetic Algorithm Tool, you must first enter the following information:

Fitness function – The objective function you want to minimize. Enter the fitness

function in the form @fitnessfun, where fitnessfun.m is an M-file that computes the

fitness function.

Number of Variables – The number of variables in the given fitness function

should be given.

220 Genetic Algorithm Implementation Using Matlab

Fig. 8.1 Genetic Algorithm Tool

The plot options

1. Best fitness

2. Best individual

3. Distance

4. Expectation

5. Genealogy

6. Range

7. Score Diversity

8. Scores

9. Selection

10. Stopping

Based upon ones problem, custom function my also be built.

The various parameters essential for running Genetic algorithm tool should be

specified appropriately. The parameters appear on the right hand side of the GA

tool. The description is as follows:

1. Population

In this case population type, population size and creation function may be se-

lected. The initial population and initial score may be specified, if not, the “Ga

tool” creates them. The initial range should be given.

2. Fitness Scaling

The fitness scaling should be any of the following

8.4 Genetic Algorithm Graphical User Interface Toolbox 221

a. Rank

b. Proportional

c. Top

d. Shift Linear

e. Custom

3. Selection

The selection is made on any one of the following mentioned methods

Fig. 8.2 Selection

4. Reproduction

In reproduction the elite count and cross over fraction should be given. If elite

count not specified, it is taken as 2.

Fig. 8.3 Reproduction

5. Mutation

Generally Gaussian or Uniform Mutation is carried out. The user may define

own customized mutation operation.

Fig. 8.4 Mutation

222 Genetic Algorithm Implementation Using Matlab

6. Crossover

The various crossover techniques are as follows:

Fig. 8.5 Crossover

7. Migration

The parameter for migration should be defined as follows:

Fig. 8.6 Migration

8. Hybrid Function

Any one of the following hybrid functions may be selected,

Fig. 8.7 Hybrid function

9. Stopping Criteria

The stopping criteria plays a major role in simulation. They are:

8.4 Genetic Algorithm Graphical User Interface Toolbox 223

Fig. 8.8 Stopping criteria

The other parameters Output Function, Display to command window and

Vectorize may be suitably defined by the user.

10. Running and Simulation

The menu shown below helps the user for running the GA tool.

Fig. 8.9 Run solver

224 Genetic Algorithm Implementation Using Matlab

The running process may be temporarily stopped using “Pause” option and

permanently stopped using “Stop” option. The “current generation” will be dis-

played during the iteration. Once the iterations are completed, the status and re-

sults will be displayed. Also the “final point” for the fitness function will be

displayed.

8.5 Solved Problems using MATLAB

Problem 1

Write a MATLAB program for maximizing f(x) = x2 using genetic algorithm,

where x ranges from 0 to 31. Perform 4 iterations.

Note

In MATLAB % indicates comment statement.

Source Code

%program for Genetic algorithm to maximize the function f(x) =xsquare

clear all;

clc;

%x ranges from 0 to 31 2power5 = 32

%five bits are enough to represent x in binary representation

n=input(‘Enter no. of population in each iteration’);

nit=input(‘Enter no. of iterations’);

%Generate the initial population

[oldchrom]=initbp(n,5)

%The population in binary is converted to integer

FieldD=[5;0;31;0;0;1;1]

for i=1:nit

phen=bindecod(oldchrom,FieldD,3); % phen gives the integer value of the

binary population %obtain fitness value

sqx=phen. ∧2;

sumsqx=sum(sqx);

avsqx=sumsqx/n;

hsqx=max(sqx);

pselect=sqx./sumsqx;

sumpselect=sum(pselect);

avpselect=sumpselect/n;

hpselect=max(pselect);

%apply roulette wheel selection

8.5 Solved Problems using MATLAB 225

FitnV=sqx;

Nsel=4;

newchrix=selrws(FitnV, Nsel);

newchrom=oldchrom(newchrix,:);

%Perform Crossover

crossoverrate=1;

newchromc=recsp(newchrom,crossoverrate); %new population after crossover

%Perform mutation

vlub=0:31;

mutationrate=0.001;

newchromm=mutrandbin(newchromc,vlub,mutationrate); %new population after

mutation disp(‘For iteration’);

i

disp(‘Population’);

oldchrom

disp(‘X’);

phen

disp(‘f(X)’);

sqx

oldchrom=newchromm;

end

Output

Enter no. of population in each iteration4

Enter no. of iterations4

oldchrom =

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

1 1 1 1 0

FieldD =

5

0

31

0

0

1

1

For iteration

i =

1

Population

oldchrom =

226 Genetic Algorithm Implementation Using Matlab

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

1 1 1 1 0

X

phen =

18

10

6

30

f(X)

sqx =

324

100

36

900

For iteration

i =

2

Population

oldchrom =

1 1 1 0 0

0 1 1 0 1

0 0 1 1 0

1 0 1 0 1

X

phen =

28

13

6

21

f(X)

sqx =

784

169

36

441

For iteration

i =

3

Population

oldchrom =

0 0 0 0 1

0 0 1 1 1

0 0 0 0 1

1 0 1 0 0

8.5 Solved Problems using MATLAB 227

X

phen =

1

7

1

20

f(X)

sqx =

1

49

1

400

For iteration

i =

4

Population

oldchrom =

1 0 0 0 0

1 1 0 1 1

1 0 0 1 1

0 1 1 1 1

X

phen =

16

27

19

15

f(X)

sqx =

256

729

361

225

Problem 2

Find a minimum of a non-smooth objective function using the Genetic Algorithm

(GA) function in the Genetic Algorithm and Direct Search Toolbox.

Description

Traditional derivative-based optimization methods, like those found in the Opti-

mization Toolbox, are fast and accurate for many types of optimization problems.

228 Genetic Algorithm Implementation Using Matlab

These methods are designed to solve “smooth”, i.e., continuous and differentiable,

minimization problems, as they use derivatives to determine the direction of de-

scent. While using derivatives makes these methods fast and accurate, they often

are not effective when problems lack smoothness, e.g., problems with discontinu-

ous, non-differentiable, or stochastic objective functions. When faced with solving

such non-smooth problems, methods like the genetic algorithm or the more recently

developed pattern search methods, both found in the Genetic Algorithm and Direct

Search Toolbox, are effective alternatives.

Source Code

clear all; close all;format compact

Objfcn = @nonSmoothFcn; %Handle to the objective function

X0 = [2 -2]; % Starting point

range = [-6 6;-6 6]; %Range used to plot the objective function

rand(‘state’,0); %Reset the state of random number generators

randn(‘state’,0);

type nonSmoothFcn.m % Non-smooth Objective Function

showNonSmoothFcn(Objfcn,range);

set(gca,‘CameraPosition’,[-36.9991 62.6267 207.3622]);

set(gca,‘CameraTarget’,[0.1059 -1.8145 22.3668])

set(gca,‘CameraViewAngle’,6.0924)

%Plot of the starting point (used by the PATTERNSEARCH solver)

plot3(X0(1),X0(2),feval(Objfcn,X0),‘or’,‘MarkerSize’,10,‘MarkerFaceColor’,‘r’);

fig = gcf;

% Minimization Using The Genetic Algorithm

FitnessFcn = @nonSmoothFcn;

numberOfVariables = 2;

optionsGA = gaoptimset(’PlotFcns’,@gaplotbestfun,‘PlotInterval’,5, ...

‘PopInitRange’,[-5;5]);

% We run GA with the options ‘optionsGA’ as the third argument.

[Xga,Fga] = ga(FitnessFcn,numberOfVariables,optionsGA)

% Plot the final solution

figure(fig)

hold on;

plot3(Xga(1),Xga(2),Fga,‘vm’,‘MarkerSize’,10,‘MarkerFaceColor’,‘m’);

hold off;

fig = gcf;

% The optimum is at x* = (−4.7124, 0.0). GA found the point % (−4.7775,0.0481)

near the optimum, but could not get closer with the default stopping criteria. By

changing the stopping criteria, we might find a more accurate solution, but it may

take many more function evaluations to reach x* = (−4.7124, 0.0). Instead, we can

use a more efficient local search that starts where GA left off. The hybrid function

field in GA provides this feature automatically.

8.5 Solved Problems using MATLAB 229

% Minimization Using A Hybrid Function

% Our choices are FMINSEARCH, PATTERNSEARCH, or FMINUNC. Since this

optimization example is smooth near the optimizer, we can use the FMINUNC func-

tion from the Optimization toolbox as our hybrid function as this is likely to be the

most efficient. Since FMINUNC has its own options structure, we provide it as an

additional argument when specifying the hybrid function.

% Run GA-FMINUNC Hybrid

optHybrid = gaoptimset(optionsGA,‘Generations’,15, ‘PlotInterval’,1,. . .

‘HybridFcn’,{@fminunc,optimset(‘OutputFcn’,@fminuncOut)});

[Xhybrid,Fhybrid] = ga(Objfcn,2,optHybrid);

% Plot the final solution

figure(fig);

hold on;

plot3(Xhybrid(1),Xhybrid(2),Fhybrid+1,‘ ∧ c’,‘MarkerSize’,10,

‘MarkerFaceColor’,’c’);

hold off;

disp([‘The norm of |Xga - Xhb| is ’, num2str(norm(Xga-Xhybrid))]);

disp([‘The difference in function values Fga and Fhb is ’,

num2str(Fga - Fhybrid)]);

%% Minimization Using The Pattern Search Algorithm

% To minimize our objective function using the PATTERNSEARCH function, we

need to pass in a function handle to the objective function as well as specifying a

start point as the second argument.

ObjectiveFunction = @nonSmoothFcn;

X0 = [2 -2]; % Starting point

% Some plot functions are selected to monitor the performance of the solver.

optionsPS = psoptimset(’PlotFcns’,@psplotbestf);

% Run pattern search solver

[Xps,Fps] = patternsearch(Objfcn,X0,[],[],[],[],[],[],optionsPS)

% Plot the final solution

figure(fig)

hold on;

plot3(Xps(1),Xps(2),Fps+1,‘*y’,‘MarkerSize’,14,‘MarkerFaceColor’,‘y’);

hold off;

The various functions used in optimization of non-smooth function are a follows:

function [f, g] = nonSmoothFcn(x)

%NONSMOOTHFCN is a non-smooth objective function

230 Genetic Algorithm Implementation Using Matlab

for i = 1:size(x,1)

if x(i,1) < -7

f(i) = (x(i,1))∧2 + (x(i,2))∧2 ;

elseif x(i,1) < -3

f(i) = -2*sin(x(i,1)) - (x(i,1)*x(i,2)∧2)/10 + 15 ;

elseif x(i,1) < 0

f(i) = 0.5*x(i,1)∧2 + 20 + abs(x(i,2))+ patho(x(i,:));

elseif x(i,1) >= 0

f(i) = .3*sqrt(x(i,1)) + 25 +abs(x(i,2)) + patho(x(i,:));

end

end

%Calculate gradient

g = NaN;

if x(i,1) < -7

g = 2*[x(i,1); x(i,2)];

elseif x(i,1) < -3

g = [-2*cos(x(i,1))-(x(i,2)∧2)/10; -x(i,1)*x(i,2)/5];

elseif x(i,1) < 0

[fp,gp] = patho(x(i,:));

if x(i,2) > 0

g = [x(i,1)+gp(1); 1+gp(2)];

elseif x(i,2) < 0

g = [x(i,1)+gp(1); -1+gp(2)];

end

elseif x(i,1) >0

[fp,gp] = patho(x(i,:));

if x(i,2) > 0

g = [.15/sqrt(x(i,1))+gp(1); 1+ gp(2)];

elseif x(i,2) < 0

g = [.15/sqrt(x(i,1))+gp(1); -1+ gp(2)];

end

end

function [f,g] = patho(x)

Max = 500;

f = zeros(size(x,1),1);

g = zeros(size(x));

for k = 1:Max %k

arg = sin(pi*k∧2*x)/(pi*k∧2);

f = f + sum(arg,2);

g = g + cos(pi*k∧2*x);

end

function showNonSmoothFcn(fcn,range)

if(nargin == 0)

fcn = @rastriginsfcn;

range = [-5,5;-5,5];

8.5 Solved Problems using MATLAB 231

end

pts = 25;

span = diff(range’)/(pts - 1);

x = range(1,1): span(1) : range(1,2);

y = range(2,1): span(2) : range(2,2);

pop = zeros(pts * pts,2);

k = 1;

for i = 1:pts

for j = 1:pts

pop(k,:) = [x(i),y(j)];

k = k + 1;

end

end

values = feval(fcn,pop);

values = reshape(values,pts,pts);

surf(x,y,values)

shading interp

light

lighting phong

hold on

contour(x,y,values)

rotate3d

view(37,60)

%Annotations

figure1 = gcf;

% Create arrow

annotation1 = annotation(figure1,’arrow’,[0.5946 0.4196],[0.9024 0.6738]);

% Create textbox

annotation2 = annotation(. . .

figure1,‘textbox’,. . .

‘Position’,[0.575 0.9071 0.1571 0.07402],. . .

‘FitHeightToText’,’off’,. . .

‘FontWeight’,’bold’,. . .

‘String’,{’Start point’});

% Create textarrow

annotation3 = annotation(. . .

figure1,‘textarrow’,. . .

[0.3679 0.4661],[0.1476 0.3214],. . .

‘String’,{‘Non-differentiable regions’},. . .

‘FontWeight’,‘bold’);

% Create arrow

annotation4 = annotation(figure1,‘arrow’,[0.1196 0.04107],[0.1381 0.5429]);

% Create textarrow

annotation5 = annotation(. . .

figure1,‘textarrow’,. . .

[0.7411 0.5321],[0.05476 0.1381],. . .

232 Genetic Algorithm Implementation Using Matlab

‘LineWidth’,2,. . .

‘Color’,[1 0 0],. . .

‘String’,{’Smooth region’},. . .

‘FontWeight’,’bold’,. . .

‘TextLineWidth’,2,. . .

‘TextEdgeColor’,[1 0 0]);

% Create arrow

annotation6 = annotation(. . .

figure1,‘arrow’,. . .

[0.8946 0.9179],[0.05714 0.531],. . .

‘Color’,[1 0 0]);

function stop = fminuncOut(x,optimvalues, state)

persistent fig gaIter

stop = false;

switch state

case ‘init’

fig = findobj(0,‘type’,‘figure’,‘name’,‘Genetic Algorithm’);

limits = get(gca,‘XLim’);

gaIter = limits(2);

hold on;

case ‘iter’

set(gca,‘Xlim’, [1 optimvalues.iteration + gaIter]);

fval = optimvalues.fval;

iter = gaIter + optimvalues.iteration;

plot(iter,fval,’dr’)

title([‘Best function value: ’,num2str(fval)],‘interp’,‘none’)

case ‘done’

fval = optimvalues.fval;

iter = gaIter + optimvalues.iteration;

title([‘Best function value: ’,num2str(fval)],‘interp’,‘none’)

% Create textarrow

annotation1 = annotation(. . .

gcf,‘textarrow’,. . .

[0.6643 0.7286],[0.3833 0.119],. . .

‘String’,{‘Algorithm switch to FMINUNC’},. . .

‘FontWeight’,‘bold’);

hold off

end

Output

Optimization terminated: maximum number of generations exceeded.

Xga =

-4.7775 0.0481

8.5 Solved Problems using MATLAB 233

Fga =

13.0053

Optimization terminated: maximum number of generations exceeded.

Switching to the hybrid optimization algorithm (FMINUNC).

In fminunc at 241

In ga at 268

In nonSmoothOpt at 101

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

The norm of |Xga - Xhb| is 0.08092

The difference in function values Fga and Fhb is 0.0053385

Optimization terminated: current mesh size 9.5367e-007 is less than ’TolMesh’.

Xps =

-4.7124 0

Fps =

13.0000

Fig. 8.10 Optimization of objective function using GA

234 Genetic Algorithm Implementation Using Matlab

Fig. 8.11 Optimization using hybrid GA – FMINUNC

Fig. 8.12 Optimization using pattern search

8.5 Solved Problems using MATLAB 235

Problem 3

Find a minimum of a stochastic objective function using PATTERNSEARCH func-

tion in the Genetic Algorithm and Direct Search Toolbox.

Source Code

% Pattern search optimization solver

format compact

X0 = [2.5 -2.5]; %Starting point.

LB = [-5 -5]; %Lower bound

UB = [5 5]; %Upper bound

range = [LB(1) UB(1); LB(2) UB(2)];

Objfcn = @smoothFcn; %Handle to the objective function.

% Plot the smooth objective function

clf;showSmoothFcn(Objfcn,range); hold on;

title(‘Smooth objective function’)

plot3(X0(1),X0(2),feval(Objfcn,X0)+30,‘om’,‘MarkerSize’,12, ...

‘MarkerFaceColor’,‘r’); hold off;

set(gca,‘CameraPosition’,[-31.0391 -85.2792 -281.4265]);

set(gca,‘CameraTarget’,[0 0 -50])

set(gca,‘CameraViewAngle’,6.7937)

fig = gcf;

%% Run FMINCON on smooth objective function

% The objective function is smooth (twice continuously differentiable). Solving the

optimization problem using FMINCON function from the Optimization Toolbox.

FMINCON finds a constrained minimum of a function of several variables. This

function has a unique minimum at the point x∗ = (−5.0,−5) where it has a function

value f(x∗) = −250.

% Set options to display iterative results.

options = optimset(‘Display’,‘iter’,‘OutputFcn’,@fminuncOut1);

[Xop,Fop] = fmincon(Objfcn,X0,[],[],[],[],LB,UB,[],options)

figure(fig);

hold on;

%Plot the final point

plot3(Xop(1),Xop(2),Fop,‘dm’,‘MarkerSize’,12,‘MarkerFaceColor’,‘m’);

hold off;

% Stochastic objective function The objective function is same as the previous

function and some noise

236 Genetic Algorithm Implementation Using Matlab

% added to it.

%Reset the state of random number generators

randn(‘state’,0);

noise = 8.5;

Objfcn = @(x) smoothFcn(x,noise); %Handle to the objective function.

%Plot the objective function (non-smooth)

figure;

for i = 1:6

showSmoothFcn(Objfcn,range);

title(‘Stochastic objective function’)

set(gca,‘CameraPosition’,[-31.0391 -85.2792 -281.4265]);

set(gca,‘CameraTarget’,[0 0 -50])

set(gca,‘CameraViewAngle’,6.7937)

drawnow; pause(0.2)

end

fig = gcf;

%% Run FMINCON on stochastic objective function

options = optimset(‘Display’,‘iter’);

[Xop,Fop] = fmincon(Objfcn,X0,[],[],[],[],LB,UB,[],options)

figure(fig);

hold on;

plot3(X0(1),X0(2),feval(Objfcn,X0)+30,‘om’,‘MarkerSize’,16,

‘MarkerFaceColor’,‘r’);

plot3(Xop(1),Xop(2),Fop,‘dm’,‘MarkerSize’,12,‘MarkerFaceColor’,‘m’);

%% Run PATTERNSEARCH. A pattern search algorithm does not require any

derivative information of the objective function to find an optimal point.

PSoptions = psoptimset(‘Display’,‘iter’,‘OutputFcn’,@psOut);

[Xps,Fps] = patternsearch(Objfcn,X0,[],[],[],[],LB,UB,PSoptions)

figure(fig);

hold on;

plot3(Xps(1),Xps(2),Fps,‘pr’,‘MarkerSize’,18,‘MarkerFaceColor’,‘r’);

hold off

The various functions used in the above program are as follows:

function y = smoothFcn(z,noise)

% Objective function

if nargin < 2

noise = 0;

end

LB = [-5 -5]; %Lower bound

UB = [5 5]; %Upper bound

y = zeros(1,size(z,1));

for i = 1:size(z,1)

8.5 Solved Problems using MATLAB 237

x = z(i,:);

if any(x<LB) || any(x>UB)

y(i) = Inf;

else

y(i) = x(1)∧3 - x(2)∧2 + . . .

100*x(2)/(10+x(1)) + noise*randn;

end

end

function showSmoothFcn(fcn,range)

pts = 100;

span = diff(range’)/(pts - 1);

x = range(1,1): span(1) : range(1,2);

y = range(2,1): span(2) : range(2,2);

pop = zeros(pts * pts,2);

k = 1;

for i = 1:pts

for j = 1:pts

pop(k,:) = [x(i),y(j)];

k = k + 1;

end

end

values = feval(fcn,pop);

values = reshape(values,pts,pts);

clf;

surf(x,y,values)

shading interp

light

lighting phong

hold on

rotate3d

view(37,60)

set(gcf,‘Renderer’,‘opengl’);

set(gca,‘ZLimMode’,‘manual’);

function stop = fminuncOut1(X, optimvalues, state)

stop = false;

figure1 = gcf;

if strcmpi(state,‘done’)

annotation1 = annotation(figure1,‘arrow’,[0.7506 0.7014],[0.3797 0.625]);

% Create textbox

annotation2 = annotation(. . .

figure1,‘textbox’,. . .

‘Position’,[0.6857 0.2968 0.1482 0.0746],. . .

‘FontWeight’,‘bold’,. . .

238 Genetic Algorithm Implementation Using Matlab

‘String’,{‘start point’},. . .

‘FitHeightToText’,‘on’);

% Create arrow

annotation3 = annotation(figure1,‘arrow’,[0.4738 0.3489],[0.1774 0.2358]);

% Create textbox

annotation4 = annotation(. . .

figure1,‘textbox’,. . .

‘Position’,[0.4732 0.1444 0.2411 0.06032],. . .

‘FitHeightToText’,‘off’,. . .

‘FontWeight’,‘bold’,. . .

‘String’,{‘FMINCON solution’});

end

function [stop options changed] = psOut(optimvalues,options,flag)

stop = false;

changed = false;

figure1 = gcf;

if strcmpi(flag,‘done’)

% Create textbox

annotation1 = annotation(. . .

figure1,‘textbox’,. . .

‘Position’,[0.4679 0.1357 0.3321 0.06667],. . .

‘FitHeightToText’,‘off’,. . .

‘FontWeight’,‘bold’,. . .

‘String’,{‘Pattern Search solution’});

% Create textbox

annotation2 = annotation(. . .

figure1,‘textbox’,. . .

‘Position’,[0.5625 0.2786 0.2321 0.06667],. . .

‘FitHeightToText’,‘off’,. . .

‘FontWeight’,‘bold’,. . .

‘String’,{‘FMINCON solution’});

% Create textbox

annotation3 = annotation(. . .

figure1,‘textbox’,. . .

‘Position’,[0.3714 0.6905 0.1571 0.06449],. . .

‘FitHeightToText’,‘off’,. . .

‘FontWeight’,‘bold’,. . .

‘String’,{‘Start point’});

% Create arrow

annotation4 = annotation(figure1,‘arrow’,[0.7161 0.6768],[0.3452 0.4732]);

% Create arrow

annotation5 = annotation(figure1,‘arrow’,[0.4697 0.35],[0.1673 0.2119]);

% Create arrow

8.5 Solved Problems using MATLAB 239

annotation6 = annotation(figure1,‘arrow’,[0.4523 0.6893],[0.6929 0.6]);

end

Output

In fmincon at 260

In PS at 33

Xop =

-5 -5

Fop =

-250

In fmincon at 260

In PS at 70

Xop =

1.2861 -4.8242

Fop =

-86.0221

Xps =

-5 -5

Fps =

-247.3159

Fig. 8.13 Smooth objective function

240 Genetic Algorithm Implementation Using Matlab

Fig. 8.14 Stochastic objective function

Pattern search algorithm is not affected by random noise in the objective func-

tions. Pattern search requires only function value and not the derivatives, hence a

noise (of some uniform kind) may not affect it.

Pattern search requires a lot more function evaluation to find the minima, a cost for

not using the derivatives.

Problem 4

Write a Program to maximize sin(x) within the range 0<x<3.14

Source Code

%program for Genetic algorithm to maximize the function f(x) =sin(x)

clear all;

clc;

%x ranges from 0 to 3.14

%five bits are enough to represent x in binary representation

n=input(‘Enter no. of population in each iteration’);

nit=input(‘Enter no. of iterations’);

%Generate the initial population

[oldchrom]=initbp(n,5)

%The population in binary is converted to integer

FieldD=[5;0;3.14;0;0;1;1]

8.5 Solved Problems using MATLAB 241

for i=1:nit

phen=bindecod(oldchrom,FieldD,3); % phen gives the integer value of the

%binary population

%obtain fitness value

FitnV=sin(phen);

%apply roulette wheel selection

Nsel=4;

newchrix=selrws(FitnV, Nsel);

newchrom=oldchrom(newchrix,:);

%Perform Crossover

crossoverrate=1;

newchromc=recsp(newchrom,crossoverrate); %new population after crossover

%Perform mutation

vlub=0:31;

mutationrate=0.001;

newchromm=mutrandbin(newchromc,vlub,mutationrate); %new population

%after mutation

disp(‘For iteration’);

i

disp(‘Population’);

oldchrom

disp(‘X’);

phen

disp(‘f(X)’);

FitnV

oldchrom=newchromm;

end

Output

Enter no. of population in each iteration5

Enter no. of iterations5

oldchrom =

0 1 0 0 0

0 1 0 0 1

1 0 1 0 1

1 0 0 1 1

0 0 0 1 0

FieldD =

5.0000

0

3.1400

0

0

242 Genetic Algorithm Implementation Using Matlab

1.0000

1.0000

For iteration

i =

1

Population

oldchrom =

0 1 0 0 0

0 1 0 0 1

1 0 1 0 1

1 0 0 1 1

0 0 0 1 0

X

phen =

1

1

2

2

0

f(X)

FitnV =

0.8415

0.8415

0.9093

0.9093

0

For iteration

i =

2

Population

oldchrom =

0 0 1 0 1

1 0 1 1 0

0 0 0 0 0

1 0 0 0 1

X

phen =

1

2

0

2

f(X)

FitnV =

0.8415

0.9093

0

8.5 Solved Problems using MATLAB 243

0.9093

For iteration

i =

3

Population

oldchrom =

0 0 0 0 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

X

phen =

0

1

1

2

f(X)

FitnV =

0

0.8415

0.8415

0.9093

For iteration

i =

4

Population

oldchrm =

1 1 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 1 1

X

phen =

3

0

1

1

f(X)

FitnV =

0.1411

0

0.8415

0.8415

For iteration

i =

5

244 Genetic Algorithm Implementation Using Matlab

Population

oldchrom =

0 1 1 0 0

1 0 0 0 1

0 0 0 0 0

1 0 0 1 1

X

phen =

1

2

0

2

f(X)

FitnV =

0.8415

0.9093

0

0.9093

Problem 5

Find the minimum of the quadratic equation f(x)=x2+5x+2

Source Code

The minimizes of the given quadratic equation is done within a single command line

function. The function used is “ga”

1. Define the given function f(x) = x2+5x+2 in a separate m-file as shown below.

Fig. 8.15 Declaration of the quadratic function

2. Then use the command “ga” to obtained the minimized value of f(x). The format

of command “ga” is,

8.5 Solved Problems using MATLAB 245

X = GA(FITNESSFCN,NVARS) finds the minimum of FITNESSFCN
using GA. NVARS is the dimension (number of design variables) of the
FITNESSFCN.

3. Thus the command for the given problem is given by,

x=ga(@quadratic,1)

On running the above command, the output is obtained as given below.

Output

Optimization terminated: maximum number of generations exceeded.

x =

-2.5002

In this case, all the operations are performed with the default setting of the com-

mand “ga”.

In the above case, if the command is specified as,

[x, fval, reason, output, population, scores] = ga(@quadratic,1)

then the output obtained is,

Optimization terminated: maximum number of generations exceeded.

x =

-2.5002

fval =

-4.2500

reason =

Optimization terminated: maximum number of generations exceeded.

output =

randstate: [35x1 double]

randnstate: [2x1 double]

generations: 100

funccount: 2000

message: ‘Optimization terminated: maximum number of generations

exceeded.’

population =

-2.5002

-2.5002

-2.5002

-2.4933

-2.5002

-2.5002

-2.5002

246 Genetic Algorithm Implementation Using Matlab

-2.5002

-2.5002

-2.5002

-2.5002

-2.5097

-2.5002

-2.5002

-2.5173

-2.5002

-2.5002

-2.5002

-2.4855

-2.5002

scores =

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2500

-4.2499

-4.2500

-4.2500

-4.2497

-4.2500

-4.2500

-4.2500

-4.2498

-4.2500

Problem 6

Write a program to minimize Rastrigin’s function. Also plot the best fitness value.

Description

For two independent variables, Rastrigin’s function is defined as,

R(x) = 20 + x2
1 + x2

2 − 10(cos 2πx1 + cos 2πx2).

8.5 Solved Problems using MATLAB 247

The MATLABtoolbox contains an M-file, rastriginsfcn.m, that computes the values

of Rastrigin’s function.

Source Code

The function is defined as follows:

function Rasfun = rastriginsfcn(pop) %RASTRIGINSFCN Compute the

%“Rastrigin” function.

Rasfun = 10.0 * size(pop,2) + sum(pop .∧2 - 10.0 * cos(2 * pi .* pop),2);

The program for minimizing this function is given as,

%Program to minimize Rastrigins Function

%Depending upon user’s need Options can be specified using the command

‘gaoptimset’. %If

%Options not specified default options are chosen.

options=gaoptimset(‘CrossoverFcn’,@crossoversinglepoint,. . .
‘MutationFcn’,@mutationuniform,‘Plotfcns’,@gaplotbestf)

%Generating the genetic algorithm for 10 variables with the options specified

%above

[x,fval,reason] = ga(@rastriginsFcn,10,options)

Output

options =

PopulationType: ‘doubleVector’

PopInitRange: [2x1 double]

PopulationSize: 20

EliteCount: 2

CrossoverFraction: 0.8000

MigrationDirection: ‘forward’

MigrationInterval: 20

MigrationFraction: 0.2000

Generations: 100

TimeLimit: Inf

FitnessLimit: -Inf

StallGenLimit: 50

StallTimeLimit: 20

InitialPopulation: []

InitialScores: []

PlotInterval: 1

CreationFcn: @gacreationuniform

FitnessScalingFcn: @fitscalingrank

248 Genetic Algorithm Implementation Using Matlab

SelectionFcn: @selectionstochunif

CrossoverFcn: @crossoversinglepoint

MutationFcn: @mutationuniform

HybridFcn: []

Display: ‘final’

PlotFcns: @gaplotbestf

OutputFcns: []

Vectorized: ‘off’

Optimization terminated: maximum number of generations exceeded.

x =

Columns 1 through 9

0.9840 0.8061 0.9698 0.0493 0.0070 0.0408 0.0671 0.0970 0.9412

Column 10

0.9848

fval =

15.4207

reason =

Optimization terminated: maximum number of generations exceeded.

Fig. 8.16 Best fitness plot for minimization of Rastrigins function

8.5 Solved Problems using MATLAB 249

Problem 7

Write a program to optimize a function f(x1,x2)=3x1+9x2. Set suitable plot

options.

Source Code

The function is defined as follows:

%function to be optimized
function z=twofunc(x)
z=(3*x(1)+9*x(2));

The program code for optimization process is as follows:

%Program to optimize a function with two variables
%Options are set using the command ’gaoptimset’.
clc;
clear all;
options = gaoptimset(’PlotFcns’,. . .

{@gaplotbestf,@gaplotbestindiv,@gaplotexpectation,
@gaplotstopping});

%Generating the genetic algorithm for 2 variables
[x,fval,reason] = ga(@twofunc,2,options)

Output

x =

-14.2395 -24.4720

fval =

-262.9662

reason =

Optimization terminated: maximum number of generations exceeded.

250 Genetic Algorithm Implementation Using Matlab

Fig. 8.17 Different Plots during optimization of the function f(x)=3x1+9x2

Problem 8

Obtain the best fitness value when the given linear function f(x1,x2,x3)=−(3x1+7x2+

6x3) is minimized.

Source Code

The function is defined as follows:

Fig. 8.18 Definition of the linear function

8.5 Solved Problems using MATLAB 251

The program code is given by,

%Program to optimize the linear function with 3 variables
clc;
clear all;
%Setting the required options
options = gaoptimset(‘PlotFcns’,. . .

{@gaplotbestf,@gaplotbestindiv});
%Generating the genetic algorithm
[x,fval]=ga(@linearfunc,3,options)

Output

Optimization terminated: maximum number of generations exceeded.

x =

12.3074 23.0895 19.5800

fval =

-316.0282

Fig. 8.19 Plot of the best fitness and best individual of the given linear function

252 Genetic Algorithm Implementation Using Matlab

Problem 9

Use Gatool and maximize the quadratic equation f(x) = x2+3x+2 within the range

−6 ≤x≤0.

Function Definition

Define the given function f(x) = x2+3x+2 in a separate m-file as shown in Fig 8.20

Fig. 8.20 M-file showing defined quadratic function

Fig. 8.21 Genetic algorithm tool for quadratic equation

8.5 Solved Problems using MATLAB 253

Creation of Gatool

On typing “gatool” in the command prompt, the GA tool box opens. In tool, for

fitness value type @qudratic and mention the number of variables defined in the

function. Select best fitness in plot and specify the other parameters as shown in

Fig. 8.21

Output

The output showing the best fitness for 50 generations is shown in Fig, 8.22

Fig. 8.22 Output response (Best fitness) for the function f(x) = x2+3x+2

The status and results for this functions for 50 generations is as shown in Fig. 8.23

Problem 10

Create a Gatool to maximize the function f(x1,x2)=4x1+5x2 within the range 1

to 1.1

254 Genetic Algorithm Implementation Using Matlab

Fig. 8.23 Status and results for the function f(x) = x2+3x+2

Function Definition

Define the given function f(x1,x2)=4x1+5x2 in a separate m-file as shown in

Fig. 8.24

Fig. 8.24 M-file showing defined function

Creation of Gatool

On typing “gatool” in the command prompt, the GA toolbox opens. In tool, for

fitness value type @twofunc and mention the number of variables defined in the

8.5 Solved Problems using MATLAB 255

function. Select best fitness and best individual in plot and specify the other

parameters as shown in Fig. 8.25

Fig. 8.25 Genetic algorithm tool for given function

Output

The output for 50 generations is as shown in Fig. 8.26 The output also shows the

best inidvidual.

The status and results for this function is as shown in Fig. 8.27

Problem 11

Use Gatool and maximize the function

f(x1, x2, x3) = −5 sin(x1) sin(x2) sin(x3) + - sin(5x1) sin(5x2) sin(x3)

where 0 <= xi <= pi, for 1 <= i <= 3.

256 Genetic Algorithm Implementation Using Matlab

Fig. 8.26 Output response (Best fitness and best individual)

Fig. 8.27 Status and results for the function f(x1,x2)=4x1+5x2

8.5 Solved Problems using MATLAB 257

Function Definition

Define the given function

f(x1, x2, x3) = -5 sin(x1) sin(x2) sin(x3) + - sin(5x1) sin(5x2) sin(x3)

in a separate m-file as shown in Fig. 8.28

Fig. 8.28 M-file showing defined sine function

Fig. 8.29 Genetic algorithm tool for sine equation

258 Genetic Algorithm Implementation Using Matlab

Creation of Gatool

On typing “gatool” in the command prompt, the GA tool box opens. In tool, for

fitness value type @sinefn and mention the number of variables defined in the

function. Select best fitness in plot and specify the other parameters as shown in

Fig. 8.29

Output

The output for 100 generations is as shown in Fig. 8.30.

The status and results for this function is as shown in Fig. 8.31

Problem 12

Create a “gatool” to minimize the function f(x) = cosx within the range 0≤x≤3.14

Function Definition

Define the given function f(x) = cosx in a separate m-file as shown below:

Fig. 8.30 Output response (Best fitness) for the function f(x1, x2, x3) = -5sin(x1)sin(x2)sin(x3)+–

sin(5x1)sin(5x2)sin(x3)

8.5 Solved Problems using MATLAB 259

Fig. 8.31 Status and results for the function f(x1,x2,x3) = -5sin(x1)sin(x2)sin(x3)+-sin(5x1)

sin(5x2)sin(x3)

Fig. 8.32 Genetic algorithm tool for cosine function

260 Genetic Algorithm Implementation Using Matlab

Fig. 8.33 Output response (Best fitness) for the function f(x) = cosx

%Function to minimize cosine function
function z=cosfun(x)
z=1/cos(x);

Creation of Gatool

On typing “gatool” in the command prompt, the GA toolbox opens. In tool, for fit-

ness value type @cosfn and mention the number of variables defined in the function.

Select best fitness in plot and specify the other parameters as shown in Fig. 8.32

Output

The output for 62 generations is as shown in Fig. 8.33

The status and results for this function is shown in Fig. 8.34

Review Questions 261

Fig. 8.34 Status and results for the function f(x) = cosx

8.6 Summary

In this chapter, the implementation of genetic algorithm using MATLAB software

has been dealt. The various functions, which includes objective functions, crossover

operations, mutation operations, plot functions, insertion operators, fitness scaling,

utility functions and so on are listed for implementing the optimization process.

One of the best tool of MATLAB is its Graphical user Interface (GUI) toolbox. The

Genetic Algorithm GUI Toolbox plays a major role for obtaining an optimized so-

lution and to find the best fitness value. This GUI tool gives us different plot related

to best individual, best scores, distance, range, scorediversity, genealogy, stopping

condition, best fitness value and generations. Few examples have been dealt using

the MATLAB functions that are simulated and the outputs for easy reference.

Review Questions

1. Write note on the importance of MATLAB Software.

2. List the various functions used in MATLAB for performing crossover nd muta-

tion operations.

3. Mention the different objective functions present in MATLAB Toolbox.

4. State the advantages of Graphicl User Interface toolbox.

262 Genetic Algorithm Implementation Using Matlab

5. Differentiate between forward and backward migration. What is migration rate?

6. Discuss in detail on the various plot functions.

7. What are the major data structures used in genetic algorithm MATLAB toolbox?

8. How is pattern search carried out using the toolboxes?

9. Mention few stopping criterias used in genetic algorithm optimization process.

10. What are conversion functions neccessary in genetic algorithm simulation pro-

cess?

Exercise Problems

1. Implement a travelling saleman problem covering about 20 cities using MAT-

LAB.

2. Write a MATLAB program to maximize the function f(x)=4x4+3x3+ 2x2+x+1

3. Consider a binomial function of your own. Optimize the function to obtain a

minimized solution.

4. Minimize the function f(x,y,z)=x2+y2+z2, where x,y, and z are permitted to vary

between –512 and +512. Use suitable coding for each substring.

5. Implement a MATLAB routine to perform mutation using an exponential distri-

bution

6. Consider a Dejong’s function, using MATLAB tool compare and contrast the

alternative selection methods

7. Choose an application of your own, compare and contrast the output perfor-

mance obtained using various crossover and mutation schemes

8. Create a “gatool” to minimize the function f(x) = secx within the range 0≤x≤3.14

9. Maximize the function f (x1, x2, x3) = -10sin(x1)sin(x2)sin(x3)+20sin(5x1)

sin(5x2)sin(x3) where 0 <= xi <= pi, for 1 <= i <= 3.

10. Obtain the best fitness value when the given linear function f(x1,x2,x3)=-(9x1+7x2

+6x3) is minimized

Chapter 9

Genetic Algorithm Optimization in C/C++

9.1 Introduction

C is a general-purpose structured programming language that is powerful, efficient,

and compact. C combines the features of a high level language with the elements

of the assembler and thus is, close to man and machine. Programs written in C are

very efficient and fast. C++ is an object-oriented language that a C programmer

can appreciate, especially who is an early age assembly language programmer. C++

orients towards execution performance and then towards flexibility. The name C++

signifies the evolutionary nature of the changes from C. Thus genetic algorithm

being an approach based on natural evolution can be implemented using the struc-

tured programming and object programming languages. This chapter discusses few

problems solved using genetic algorithm in C/C++.

9.2 Traveling Salesman Problem (TSP)

In traveling salesman problem, salesman travels n cities and returns to the starting

city with the minimal cost, he is not allowed to cross the city more than once. In

this problem we are taking the assumption that all the n cities are inter connected.

The cost indicates the distance between two cities. To solve this problem we make

use of genetic algorithm because the cities are randomly. Initial population for this

problem is randomly selected cities. Fitness function is nothing but the minimum

cost. Initially the fitness function is set to the maximum value and for each travel,

the cost is calculated and compared with the fitness function. The new fitness value

is assigned to the minimum cost. Initial population is randomly chosen and taken as

the parent. For the next generation, the cyclic crossover is applied over the parent.

Cyclic Crossover

Let P1 and P2 are two parents

P1 : 2 8 0 1 3 4 5 7 9 6

P2 : 1 0 5 4 6 8 9 7 2 3

263

264 9 Genetic Algorithm Optimization in C/C++

Select the first city of P1 make it as the first city of offspring1(01)

O1: 2 - - - - - - - - -

To find the next city of offspring O1 search current city, which is selected from

P1 in P2. Find the location of city in P2 and select the city which is in the same

location in P1.

O1: 2 - - - - - - - 9 -

Continue the same procedure, we will get O1 as

O1: 2 8 0 1 - 4 5 - 9 -

In the next step we will get the city 2 which is already present in O1 and then

stop the procedure. Copy the cities from parent P2 in the corresponding locations

O1: 2 8 0 1 6 4 5 7 9 3

For the generation offspring O2 the initial selection is from the parent P2, and

repeat the procedure with P1

O2: 1 5 4 3 8 9 7 2 6

If the initial population contain N parents it will generate N(N-1)/2 offsprings.

The next generation the offsprings are considered as parent. The procedure is con-

tinued for N number of generation to find the minimum cost.

Source Code

#include<stdio.h>

#include<conio.h>

int tsp[10][10]={{999,10,3,2,5,6,7,2,5,4},

{20,999,3,5,10,2,8,1,15,6},

{10,5,999,7,8,3,11,12,3,2},

{3,4,5,999,6,4,10,6,1,8},

{1,2,3,4,999,5,10,20,11,2},

{8,5,3,10,2,999,6,9,20,1},

{3,8,5,2,20,21,999,3,5,6},

{5,2,1,25,15,10,6,999,8,1},

{10,11,6,8,3,4,2,15,999,1},

{5,10,6,4,15,1,3,5,2,999}

};

int pa[1000][10]= {{0,1,2,3,4,5,6,7,8,9},

{9,8,6,3,2,1,0,4,5,7},

9.2 Traveling Salesman Problem (TSP) 265

{2,3,5,0,1,4,9,8,6,7},

{4,8,9,0,1,3,2,5,6,7}

};

int i,j,k,l,m,y,loc,flag,row,col,it,x=3,y=3;

int count,row=0,res[1][10],row1,col1,z;

int numoff=4;

int offspring[1000][10];

int mincost=9999,mc;

main()

{

int gen;

clrscr();

printf("Number of Generation : ");

scanf("%d",&gen);

offcal1(pa);

offcal2(pa);

printf(" \n\t\t First Generation\n");

for(i=0;i<count;i++)

{

for(j=0;j<10;j++)

printf("%d ",offspring[i][j]);

printf("\n");

}

for(y=1;y<=gen-1;y++)

{

getch();

clrscr();

for(i=0;i<count;i++)

for(j=0;j<10;j++)

pa[i][j]=offspring[i][j];

numoff=count;

offcal1(pa);

offcal2(pa);

printf(" \n\t\t %d Generation\n",y+1);

for(i=0;i<count;i++)

{

for(j=0;j<10;j++)

printf("%d ",offspring[i][j]);

printf("\n");

}

getch();

clrscr();

}

printf("\n\nMinimum Cost Path\n");

266 9 Genetic Algorithm Optimization in C/C++

for(z=0;z<10;z++)

printf("%d ",res[0][z]);

printf("\nMinimum Cost %d \n",mincost);

}

/* finding the offspring using cyclic crossover */

offcal1(pa)

int pa[1000][10];

{

count=0;

for(i=0;i<1000;i++)

for(j=0;j<10;j++)

offspring[i][j]=-1;

for(k=0;k<numoff;k++)

{

for(l=k+1;l<numoff;l++)

{

offspring[row][0]=pa[k][0];

loc=pa[l][0];

flag=1;

while(flag != 0)

{

for(j=0;j<10;j++)

{

if(pa[k][j] == loc)

{

if (offspring[row][j]==-1)

{

offspring[row][j]=loc;

loc=pa[l][j];

}

else

flag=0;

}

}

}/* end while*/

for(m=0;m<10;m++)

{

if(offspring[row][m] == -1)

offspring[row][m]=pa[l][m];

}

for(z=0;z<10;z++)

{

if(z<9)

{

row1=offspring[row][z];

9.2 Traveling Salesman Problem (TSP) 267

col1=offspring[row][z+1];

mc=mc+tsp[row1][col1];

}

else

{

row1=offspring[row][z];

col1=offspring[row][0];

mc=mc+tsp[row1][col1];

}

}

if(mc < mincost)

{

for(z=0;z<10;z++)

res[0][z]=offspring[row][z];

mincost=mc;

}

count++;

row++;

}/* end l*/

}

}

offcal2(pa)

int pa[1000][10];

{

for(k=0;k<numoff;k++)

{

for(l=k+1;l<numoff;l++)

{

offspring[row][0]=pa[l][0];

loc=pa[k][0];

flag=1;

while(flag != 0)

{

for(j=0;j<10;j++)

{

if(pa[l][j] == loc)

{

if (offspring[row][j]==-1)

{

offspring[row][j]=loc;

loc=pa[k][j];

}

else

flag=0;

}

}

268 9 Genetic Algorithm Optimization in C/C++

}/* end while*/

for(m=0;m<10;m++)

{

if(offspring[row][m] == -1)

offspring[row][m]=pa[k][m];

}

for(z=0;z<10;z++)

{

if(z<9)

{

row1=offspring[row][z];

col1=offspring[row][z+1];

mc=mc+tsp[row1][col1];

}

else

{

row1=offspring[row][z];

col1=offspring[row][0];

mc=mc+tsp[row1][col1];

}

}

row++;

if(mc < mincost)

{

for(z=0;z<10;z++)

res[0][z]=offspring[row][z];

mincost=mc;

}

count++;

}/* end l*/

}

}

Output

Number of Generation : 2

First Generation
0 8 2 3 4 1 6 7 5 9

0 1 2 3 4 5 9 8 6 7

0 1 2 3 4 5 6 7 8 9

9 8 5 3 2 1 0 4 6 7

9 8 6 0 1 3 2 4 5 7

2 3 5 0 1 4 9 8 6 7

9 1 6 3 2 5 0 4 8 7

9.2 Traveling Salesman Problem (TSP) 269

2 3 5 0 1 4 6 7 8 9

4 8 9 0 1 3 2 5 6 7

2 3 6 0 1 4 9 8 5 7

4 8 9 3 2 1 0 5 6 7

4 8 9 0 1 3 2 5 6 7

2 Generation

0 1 2 3 4 5 9 8 6 7

0 1 2 3 4 5 6 7 8 9

0 8 2 3 4 1 6 7 5 9

0 8 6 3 4 1 2 7 5 9

0 8 2 3 1 4 6 7 5 9

0 1 2 3 4 5 6 7 8 9

0 8 2 3 1 4 6 7 5 9

0 8 9 3 4 1 2 5 6 7

0 8 2 3 1 4 6 7 5 9

0 8 2 3 4 1 6 7 5 9

0 8 9 3 4 1 2 5 6 7

0 1 2 3 4 5 6 7 8 9

0 8 5 3 2 1 9 4 6 7

0 8 2 3 1 5 9 4 6 7

0 1 2 3 4 5 9 8 6 7

0 1 6 3 2 5 9 4 8 7

0 1 2 3 4 5 6 7 8 9

0 1 9 3 4 5 2 8 6 7

0 1 2 3 4 5 9 8 6 7

0 8 2 3 4 1 9 5 6 7

0 1 9 3 4 5 2 8 6 7

0 1 2 3 4 5 6 7 8 9

0 1 6 3 4 5 2 7 8 9

0 1 2 3 4 5 9 8 6 7

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

9 8 6 0 1 3 2 4 5 7

9 8 5 3 2 1 0 4 6 7

9 1 6 3 2 5 0 4 8 7

9 3 5 0 2 1 6 4 8 7

9 8 5 0 1 3 2 4 6 7

9 8 6 3 2 1 0 4 5 7

9 8 5 3 2 1 0 4 6 7

9 8 5 0 1 3 2 4 6 7

9 3 5 0 1 4 2 8 6 7

9 1 6 3 2 5 0 4 8 7

270 9 Genetic Algorithm Optimization in C/C++

9 8 6 0 1 3 2 4 5 7

9 8 6 0 1 3 2 4 5 7

9 3 6 0 1 4 2 8 5 7

9 8 6 3 2 1 0 4 5 7

9 8 6 0 1 3 2 4 5 7

2 3 6 0 1 5 9 4 8 7

2 3 5 0 1 4 6 7 8 9

2 3 5 0 1 4 9 8 6 7

2 3 6 0 1 4 9 8 5 7

2 8 9 3 1 4 0 5 6 7

2 3 5 0 1 4 9 8 6 7

9 1 6 3 2 5 0 4 8 7

9 1 6 3 2 5 0 4 8 7

9 1 6 3 2 4 0 8 5 7

9 1 6 3 2 5 0 4 8 7

9 1 6 3 2 5 0 4 8 7

2 3 9 0 1 4 6 5 8 7

2 3 6 0 1 4 9 8 5 7

2 8 9 3 1 4 0 5 6 7

2 3 9 0 1 4 6 5 8 7

4 8 9 0 1 3 2 5 6 7

4 8 9 3 2 1 0 5 6 7

4 8 9 0 1 3 2 5 6 7

2 8 9 3 1 4 0 5 6 7

2 3 6 0 1 4 9 8 5 7

4 8 9 0 1 3 2 5 6 7

0 8 2 3 4 1 6 7 5 9

0 8 2 3 4 1 6 7 5 9

9 8 5 3 2 1 0 4 6 7

9 8 2 0 1 3 6 4 5 7

2 3 5 0 4 1 9 8 6 7

9 8 6 3 2 1 0 4 5 7

2 3 5 0 4 1 6 7 8 9

4 8 2 0 1 3 6 7 5 9

2 3 6 0 4 1 9 8 5 7

4 8 9 3 2 1 0 5 6 7

4 8 2 0 1 3 6 7 5 9

0 1 2 3 4 5 9 8 6 7

9 1 2 3 4 5 0 8 6 7

9 1 6 0 4 3 2 8 5 7

2 3 5 0 1 4 9 8 6 7

9 1 2 3 4 5 0 8 6 7

2 3 5 0 1 4 9 8 6 7

4 8 2 0 1 3 9 5 6 7

2 3 6 0 1 4 9 8 5 7

4 1 9 3 2 5 0 8 6 7

9.3 Word Matching Problem 271

4 8 2 0 1 3 9 5 6 7

9 8 5 3 2 1 0 4 6 7

9 8 2 0 1 3 6 4 5 7

2 3 5 0 1 4 6 7 8 9

9 1 6 3 2 5 0 4 8 7

2 3 5 0 1 4 6 7 8 9

4 8 9 0 1 3 2 5 6 7

2 3 6 0 1 4 9 8 5 7

4 8 9 3 2 1 0 5 6 7

4 8 9 0 1 3 2 5 6 7

9 8 5 3 2 1 0 4 6 7

2 3 5 0 1 4 9 8 6 7

9 8 5 3 2 1 0 4 6 7

2 8 5 3 1 4 0 7 6 9

4 8 9 3 2 1 0 5 6 7

2 3 5 0 1 4 9 8 6 7

4 8 9 3 2 1 0 5 6 7

4 8 9 3 2 1 0 5 6 7

2 8 6 0 1 3 9 4 5 7

9 8 6 0 1 3 2 4 5 7

2 3 5 0 1 4 6 7 8 9

4 8 9 0 1 3 2 5 6 7

2 8 6 0 1 3 9 4 5 7

4 8 9 0 1 3 2 5 6 7

4 8 9 0 1 3 2 5 6 7

9 1 5 3 2 4 0 8 6 7

2 3 5 0 1 4 9 8 6 7

4 8 9 0 1 3 2 5 6 7

2 3 5 0 1 4 9 8 6 7

4 3 5 0 2 1 9 8 6 7

4 8 9 0 1 3 2 5 6 7

2 3 5 0 1 4 6 7 8 9

4 8 9 0 1 3 2 5 6 7

2 3 6 0 1 5 9 4 8 7

Minimum Cost Path

0 8 2 3 4 1 6 7 5 9

Minimum Cost 53

9.3 Word Matching Problem

Freeman stated this problem in his work Simulating Neural Networks with Mathe-

matics. It is a nice example to show the power of genetic algorithms. The word-

matching problem tries to evolve an expression of “to be or not to be” from

the randomly generated lists of letters with genetic algorithm. Since there are 26

272 9 Genetic Algorithm Optimization in C/C++

possible letters for each of 13 locations in the list, the probability that we get the

correct phrase in a pure random way is (1/26)13 = 4.03038∗10−19, which is about

two chances out of a billion.

We use a list of ASCII integers to encode the string of letters. The lower case

letters in ASCII are represented by numbers in the range [97,122] in the decimal

number system. For example, the string of letters tobeornottobe is converted into

the following chromosome represented with ASCII integers:

[116,111,98,101,111,114,110,111,116,116,111,98,101]

Initial population is generated randomly. Fitness is calculated as the number of

matched letters. Genetic operators are used to obtain the output. This problem is

implemented in C and the output is obtained.

Source Code

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include<dos.h>

char input[15],parent[50][15],child[50][15],mating_pool[105]

[15], mutant[05][15];

int pfit[50],cfit[50],fit[105],mfit[05],gen=0;

void get_input()

{

int i;

clrscr();

printf("\n\n\n\t\tWORD MATCHING PROBLEM");

printf("\n\t **************************************");

printf("\n\n\n\n\t\tENTER THE WORD TO BE MATCHED : ");

scanf("%s",input);

printf("\n\n\n\t THE ASCII EQUIVALENT OF THE LETTERS IN

THE ENTERED WORD");

printf("\n\t- ");

printf("\n\n LETTERS :");

for(i=0;i<strlen(input);i++)

{

printf(" %c ",input[i]);

}

printf("\n ASCII :");

for(i=0;i<strlen(input);i++)

{

printf(" %3d",input[i]);

}

9.3 Word Matching Problem 273

getch();

}

void initial_pop()

{

int i,j;

randomize();

for(i=0;i<50;i++)

{

for(j=0;j<strlen(input);j++)

{

parent[i][j]=random(26)+97;

if(parent[i][j]==input[j])

{

pfit[i]++;

}
}

}
}

void display()

{

int i,j,nexti;

clrscr();

printf("\n\n\t\t THE CHROMOSOMES OF PARENTS

AND CHILDREN");

printf("\n\t - - - - - - - - - - - - - - - - - - -\n");

printf("\n\t\t PREVIOUS GENERATION CHILDREN

CHROMOSOMES\n\n");

for(i=0;i<50;i++)

{

if(((i)%4)==0) printf("\n");

for(j=0;j<strlen(input);j++)

{

printf("%c",child[i][j]);

}

printf("% 2d ",cfit[i]);

}

printf("\n\t\t\tMUTANTS OF THIS GENERATION\n");

for(i=0;i<05;i++)

{

if (i==3) printf("\n");

for(j=0;j<strlen(input);j++)

{

printf("%c",mutant[i][j]);

}

printf("% 2d ",mfit[i]);

}

274 9 Genetic Algorithm Optimization in C/C++

getch();

clrscr();

printf("\n\n\t\t THE CHROMOSOMES OF PARENTS AND

CHILDREN");

printf("\n\t - - - - - - - - - - - - - - - -\n");

printf("\n\t\t NEXT GENERATION PARENTS

CHROMOSOMES\n\n");

for(i=0;i<50;i++)

{

if(((i)%4)==0) printf("\n");

for(j=0;j<strlen(input);j++)

{

printf("%c",parent[i][j]);

}

printf("% 2d ",pfit[i]);

}

getch();

}

void reproduction() //sorting_based_on_fitness()

{

char tempc;

int temp;

int i,j,k;

for(i=0;i<50;i++)

{

for(j=0;j<strlen(input);j++)

{

mating_pool[i][j]=parent[i][j];

fit[i]=pfit[i];

}

}

for(i=50;i<100;i++)

{

for(j=0;j<strlen(input);j++)

{

mating_pool[i][j]=child[i-50][j];

fit[i]=cfit[i-50];

}

}

for(i=100;i<105;i++)

{

for(j=0;j<strlen(input);j++)

{

mating_pool[i][j]=mutant[i-100][j];

fit[i]=mfit[i-100];

}

9.3 Word Matching Problem 275

}

//sorting

for(i=0;i<105;i++)

{

for(j=i+1;j<105;j++)

{

if(fit[i]<fit[j])

{

for(k=0;k<strlen(input);k++)

{

tempc=mating_pool[i][k];

mating_pool[i][k]=

mating_pool[j][k];

mating_pool[j][k]=tempc;

temp=fit[i];

fit[i]=fit[j];

fit[j]=temp;

}

}

}

}

for(i=0;i<50;i++)

{

for(j=0;j<strlen(input);j++)

{

parent[i][j]=mating_pool[i][j];

pfit[i]=fit[i];

}

}

for(i=50;i<100;i++)

{

for(j=0;j<strlen(input);j++)

{

child[i-50][j]=mating_pool[i][j];

cfit[i-50]=fit[i];

}

}

}

void crossover()

{

int xover_pt;

int i,j,k;

for(i=0;i<50;i++)

{

xover_pt=random(strlen(input));

276 9 Genetic Algorithm Optimization in C/C++

cfit[i]=0;

cfit[i+1]=0;

for(j=0;j<xover_pt;j++)

{

child[i][j]=parent[i][j];

if (input[j]==child[i][j])

cfit[i]++;

child[i+1][j]=parent[i+1][j];

if(input[j]==child[i+1][j])

cfit[i+1]++;

}

for(j=xover_pt;j<strlen(input);j++)

{

child[i][j]=parent[i+1][j];

if(input[j]==child[i][j])

cfit[i]++;

child[i+1][j]=parent[i][j];

if(input[j]==child[i+1][j])

cfit[i+1]++;

}

i++;

}

}

void mutation()

{

int i,mut_pt,j;

char mut_val;

randomize();

for(i=0;i<05;i++)

{

mut_pt=random(strlen(input));

mut_val=random(26)+97;

mfit[i]=0;

for(j=0;j<mut_pt;j++)

{

mutant[i][j]=parent[1][j];

if (mutant[i][j]==input[j])

{

mfit[i]++;

}

}

mutant[i][mut_pt]=mut_val;

if (mutant[i][j]==input[j])

{

mfit[i]++;

9.3 Word Matching Problem 277

}

for(j=mut_pt+1;j<strlen(input);j++)

{

mutant[i][j]=parent[1][j];

if (mutant[i][j]==input[j])

{

mfit[i]++;

}

}

}

}

void results()

{

int i;

clrscr();

printf("\n\n\n\t\tWORD MATCHING PROBLEM ");

printf("\n\t **");

printf("\n\n\n\t\t THE MATCHING WORD FOR THE

GIEN INPUT WORD");

printf("\n\n\t\t OBTAINED USING GENETIC ALGORITHM");

printf("\n\n\t\t\t ");

for(i=0;i<strlen(input);i++)

{

printf("%c",parent[0][i]);

}

printf("\n\t\t\t –");

for(i=0;i<strlen(input);i++)

{

printf("-");

}

printf("–\n\n\n\t\t USER INPUT : %s",input);

printf("\n\n\n\t THE FITNESS OF THE GA GENERATED WORD

AND THE USER’S INPUT");

printf("\n\n\t\t\t\t %2d/%d",pfit[0],strlen(input));

printf("\n\n\n\t\t\t GENERATIONS COUNT : %d",gen);

}

int input_choice()

{

int choice,i;

clrscr();

printf("\n\n\n\n\t\t\t GENEREATION NUMBER : %d",gen);

printf("\n\t\t –––––––––––––––");

printf("\n\n\n\t\tTHE FITTEST INDIVIDUAL TILL THE PREVIOUS

GENERATION\n\n\n\t\t\t\t");

for(i=0;i<strlen(input);i++)

278 9 Genetic Algorithm Optimization in C/C++

{

printf("%c",parent[0][i]);

}

printf(" / ");

for(i=0;i<strlen(input);i++)

{

printf("%c",input[i]);

}

printf("\n\n\n\t\t\t WITH A FITNESS OF %d/%d",pfit[0],

strlen(input));

printf("\n\n\n\n\t\tENTER YOUR CHOICE (TO CONTINUE 1 TO

EXIT 0) : ");

scanf("%d",&choice);

return choice;
}

void main()

{

int i,choice;

clrscr();

get_input();

initial_pop();

//display();

reproduction(); //sorting_based_on_fitness();

display();

printf("\nENTER YOUR CHOICE (TO CONTINUE 1 TO

EXIT 0) : ");

scanf("%d",&choice);

while((choice==1)&&(pfit[0]!=strlen(input)))

{

crossover();

gen++;

mutation();

reproduction(); //sorting_based_on_fitness();

display();

choice=input_choice();

}

sound(1000);

delay(200);

nosound();

delay(200);

results();

getch();

sound(1000);

delay(200);

nosound();

}

9.3 Word Matching Problem 279

Sample input and output

WORD MATCHING PROBLEM

ENTER THE WORD TO BE MATCHED : tobeornottobe

THE ASCII EQUIVALENT OF THE LETTERS IN THE ENTERED WORD

–––-

LETTERS : t o b e o r n o t t o b e

ASCII : 116 111 98 101 111 114 110 111 116 116 111 98 101

THE CHROMOSOMES OF PARENTS AND CHILDREN

––––––––––––––––––––––––––––––––––––

PREVIOUS GENERATION CHILDREN CHROMOSOMES

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

MUTANTS OF THIS GENERATION

0 0 0

0 0

THE CHROMOSOMES OF PARENTS AND CHILDREN

–––––––––––––––––––––––––––––––––––––––

NEXT GENERATION PARENTS CHROMOSOMES

tsltzcmzthxsl 2 tcowkezlitact 2 xsbdunrdshtae 2 slfmkkbomaelg 1

cdxtuhfmwyoyt 1 fngzovwqvolka 1 yqejrravxxqof 1 gdpdjfqoqzznk 1

uopvjzpkbddjn 1 ptcvwpouxtuts 1 jkolwpdlokupe 1 gayzwkmolrsgl 1

kluooeczryszy 1 kybhhqrczprmy 1 sgztvrynbuipg 1 knvgfcngzkvhv 1

tpummmrcmyfzr 1 ifthifkdltxgi 1 kpgnnitdaxoxt 1 wfuxvgsomepei 1

ujhibkmyceqvx 0 xmpjpmmblqpxj 0 vxcukefnzkhlw 0 ymcpxaompgfwg 0

hbcljezgischs 0 pkjfmulmyruay 0 jjyypxbtembqn 0 aqmgdwujrffsy 0

zmfutbqamdhft 0 uupbgudnszamz 0 sbojtvrvbzkca 0 vsodsjigqmdaa 0

wliomvmcmrhom 0 adwmduybimmhq 0 qevisjzvslsio 0 lywbccjywshtl 0

mjsxyzajcdnof 0 hdldclhcuxcmu 0 sztgsxivreiso 0 dmnzunxrcngpa 0

giuaadyylobdf 0 wkhsygjervjkj 0 djipdxywsykcn 0 acpsqjinomujh 0

ienwboqpvmdmr 0 unnsbufppoqfq 0 amswufzjmkspz 0 dblbjpflwyepr 0

jfazusrxmxlnj 0 nlthcxxremeri 0

ENTER YOUR CHOICE (TO CONTINUE 1 TO EXIT 0) : 1

280 9 Genetic Algorithm Optimization in C/C++

THE CHROMOSOMES OF PARENTS AND CHILDREN
–––––––––––––––––––––––––––––––––––––––-
PREVIOUS GENERATION CHILDREN CHROMOSOMES

ujhibkmyceqvx 0 xmpjpmmblqpxj 0 vxcukefnzkhlw 0 ymcpxaompgfwg 0

cdxtuhwqvolka 0 hbcljezgischs 0 pkjfmulmyruay 0 jjyypxbtembqn 0

aqmgdwujrffsy 0 ptcvjzpkbddjn 0 zmfutbqamdhft 0 uupbgudnszamz 0

sbojtvrvbzkca 0 vsodsjigqmdaa 0 wliomvmcmrhom 0 adwmduybimmhq 0

qevisjzvslsio 0 ifthifkdmyfzr 0 lywbccjywshtl 0 mjsxyzajcdnof 0

ujhipmmblqpxj 0 xmpjbkmyceqvx 0 vxcpxaompgfwg 0 ymcukefnzkhlw 0

hbjfmulmyruay 0 pkcljezgischs 0 jjyypxujrffsy 0 aqmgdwbtembqn 0

zmfbgudnszamz 0 uuputbqamdhft 0 sbojsjigqmdaa 0 vsodtvrvbzkca 0

wliomvmcmrhoq 0 adwmduybimmhm 0 qywbccjywshtl 0 levisjzvslsio 0

mjsxyzajcdnou 0 hdldclhcuxcmf 0 sztgsxxrcngpa 0 dmnzunivreiso 0

giuaadyylobdj 0 wkhsygjervjkf 0 djipdxinomujh 0 acpsqjywsykcn 0

iensbufppoqfq 0 unnwboqpvmdmr 0 dblbjpflwyepr 0 amswufzjmkspz 0

jfazusxremeri 0 nlthcxrxmxlnj 0

MUTANTS OF THIS GENERATION
tcowkezlitace 3 tcowkenlitact 3 tcbwkezlitact 3

tcowkezoitact 3 tcoekezlitact 3

THE CHROMOSOMES OF PARENTS AND CHILDREN
–––––––––––––––––––––––––––––––––––––––
NEXT GENERATION PARENTS CHROMOSOMES

tcowkezlitace 3 tcowkenlitact 3 tcbwkezlitact 3 tcowkezoitact 3

tcoekezlitact 3 slfmkkboshtae 2 fngzovfmwyoyt 2 uopvwpouxtuts 2

tpummmrcltxgi 2 tsltzcmzthxsl 2 tcowkezlitact 2 xsbdunrdshtae 2

tsltzcmzthxst 2 tcowkezlitacl 2 sgztvrynbuipg 1 knvgfcngzkvhv 1

tpummmrcmyfzr 1 ifthifkdltxgi 1 kpgnnitdaxoxt 1 wfuxvgsomepei 1

slfmkkbomaelg 1 cdxtuhfmwyoyt 1 xsbdunrdmaelg 1 fngzovwqvolka 1

yqejrravxxqof 1 yqejjfqoqzznk 1 gdpdrravxxqof 1 gdpdjfqoqzznk 1

jkolwpdolrsgl 1 gayzwkmlokupe 1 kybhhqrczprmy 1 kluooeczryszy 1

sgztvrynzkvhv 1 knvgfcngbuipg 1 uopvjzpkbddjn 1 kpgnvgsomepei 1

wfuxnitdaxoxt 1 ptcvwpouxtuts 1 jkolwpdlokupe 1 gayzwkmolrsgl 1

kluooeczryszy 1 kybhhqrczprmy 1 djipdxywsykcn 0 acpsqjinomujh 0

ienwboqpvmdmr 0 unnsbufppoqfq 0 amswufzjmkspz 0 dblbjpflwyepr 0

jfazusrxmxlnj 0 nlthcxxremeri 0

GENEREATION NUMBER : 2
–––-
THE FITTEST INDIVIDUAL TILL THE PREVIOUS GENERATION

tcowkenlitace / tobeornottobe

WITH A FITNESS OF 4/13
ENTER YOUR CHOICE (TO CONTINUE 1 TO EXIT 0): 0

9.4 Prisoner’s Dilemma

Cooperation is usually analyzed in game theory by means of a non-zero-sum game

called the “Prisoner’s Dilemma”. The two players in the game can choose between

two moves, either “cooperate” or “defect”. The idea is that each player gains when

both cooperate, but if only one of them cooperates, the other one, who defects, will

gain more. If both defect, both lose (or gain very little) but not as much as the

9.4 Prisoner’s Dilemma 281

“cheated” cooperator whose cooperation is not returned. The whole game situation

and its different outcomes can be summarized by table below, where hypothetical

“points” are given as an example of how the differences in result might be quantified.

Action of A / Action B Cooperate Defect

Cooperate Fairly good [+5] Bad [-10]

Defect Good [+10] Mediocre [0]

The type of crossover that is performed is a “single point crossover” where the point

of crossover is randomly selected. The mutation is expected to happen every two

thousand generation. It is easy to change the mutation as it is implemented as a

separate function.

Source Code

#include<stdlib.h>

#include<stdio.h>

#include<conio.h>

int calculate(int*);

int* select(int *);

void crossover(int*,int*);

void sort_select(void);

//THESE ARE SOME GLOBAL VARIABLE USED

int best_score[20];

int score[9];

int index[6];

void main()

{

int a[10][70],select_string[5][70];

int best_string[20][70],max,ind=0;

int p,counter=1;

int i,n,j,temp[10];

randomize();

clrscr();

for(j=0;j<10;j++)

for(i=0;i<70;i++)

a[j][i]=random(2);

//THE NUMBER OF GENERATION TO BE SCANED IN

printf(" Enter the no of generation ");

scanf("%d",&n);

for(i=0;i<10;i++)

282 9 Genetic Algorithm Optimization in C/C++

score[i]=calculate(&a[i][0]);

//function for sorting the score array and finding the index

of best score

sort_select();

for(i=0;i<7;i++)

{

p=index[i]; //THE ORDER OF BEST SCORE STORED IN

INDEX.

for(j=0;j<70;j++)

select_string[i][j]=a[p][j];

}

best_score[0]=score[0];

for(i=0;i<70;i++)

best_string[0][i]=select_string[0][i];

while(counter < n)

{

for(i=0;i<7;i=i+2)

crossover(&a[i][0],&a[i+1][0]);

for(i=0;i<9;i++)

score[i]=0;

for(i=0;i<7;i++)

score[i]=calculate(&a[i][0]);

//CALCULATE FUNCTION RETURNS SCORE OF EACH STRING

sort_select();

best_score[counter]=score[0];

p=index[0];

for(j=0;j<70;j++)

best_string[counter][j]=a[p][j];

counter++;

}

//OUTPUT THE BEST SCORES.

for(p=0;p<n;p++)

{

printf("The best score in the generation

%d :",p+1);

printf(" %d \n", best_score[p]);

}

//OUTPUT THE BEST STRINGS.

for(i=0;i<n;i++)

{

printf("\n\nTHE BEST STRNG IN GENERATION %d

:\n\n", i+1);

for(j=0;j<70;j++)

{

9.4 Prisoner’s Dilemma 283

if(j%2==0&&j!=0)

printf(" ");

if(best_string[i][j] ==1)

printf("d");

//COVERTING 1’S AND 0’S TO d AND c

else

printf("c");

}

}

//CALCULATING THE BEST OF THE BEST

for(i=0;i<n;i++)

temp[i]=best_score[i];

max=temp[0];

for(i=1;i<n;i++)

{

if(max<temp[i])

{

max=temp[i];

ind=i;

}

}

//CALCULATING THE BEST FROM THE SELECTED.

printf("\n\n");

printf("\nTHE BEST STRING IN ALL GENERATION IS \n\n");

for(i=0;i<70;i++)

{

if(i%2==0&&i!=0)

printf(" ");

if(best_string[ind][i]==1)

printf("d");

else

printf("c");

}

printf("\n\nTHE CORRESPONDING BEST SCORE IS: %d ",best

_score[ind]);

getch();

}

int calculate(int* ptr)

{

int *a;

int p1,p2,i;

a=ptr;

p1=0; p2=0;

284 9 Genetic Algorithm Optimization in C/C++

for(i=0;i<70;i=i+2) //calculating the values according

to truth table.

{

if(a[i]==1 && a[i+1]==1)

{

p1=p1+3; p2=p2+3;

}

if(a[i]==1 && a[i+1]==0)

{

p1=p1+5; p2=p2+0;

}

if(a[i]==0 && a[i+1]==1)

{

p1=p1+0; p2=p2+5;

}

if(a[i]==0 && a[i+1]==0)

{

p1=p1+1; p2=p2+1;

}

}

return(p1+p2); //RETRUN THE TOTAL SCORE OF THE STRING.

}

void sort_select() //ORDINARY SORTING PROCEDURE

{

int temp[9],i,j,t;

for(i=0;i<10;i++)

temp[i]=score[i];

for(i=0;i<10;i++)

for(j=9;j>=i;j–)

{

if(temp[i]<temp[j]) //USUSAL SWAPPING

PROCEDURE.

{

t=temp[j];

temp[j]=temp[i];

temp[i]=t;

}

}

for(i=0;i<7;i++)

for(j=0;j<10;j++)

if(temp[i]==score[j])

index[i]=j;

score[0]=temp[0];

9.4 Prisoner’s Dilemma 285

}

void crossover(int *ptr1,int *ptr2)

{

int temp,i,j;

int ind=random(60); //RANDOM POINT OF CROSSOVER

for(i=ind;i<70;i++)

{

temp=ptr1[i];

ptr1[i]=ptr2[i];

ptr2[i]=temp;

}

}

Output

Enter the no of generation 5

The best score in the generation 1: 171

The best score in the generation 2: 160

The best score in the generation 3: 170

The best score in the generation 4: 166

The best score in the generation 5: 169

The best string in generation 1:

dd dc cd dc dc cd cd dd cc dc dc dc dd dc dd cd dc cd

cd cc dc cd cc cd dd cd cd dd cd dc cc cd dc dd dd

The best string in generation 2:

cd cc cd cc cd cd dd dc cd cc dc cc dd cd dd dd cc cc dc dd

dc cd cd dd dc dd dd cc cd dd dc dc cd dc cc

The best string in generation 3:

cd cc cd cc cd cd dc dd cd dc dd cc cd cd cc dd cd dd dc cd

dc dc dd cd dc dc dc cd cd cd dc dc dd dc dd

The best string in generation 4:

cd cc cd cc cd cd dc dd cd dc dd cc cd cd cc dd cd dd dc cd

dc dc dd dd dc dd dd cc cd dd dc dc cd dc cc

The best string in generation 5:

Cd dd cc cd dd dc cd cc dd cd dd dd dc cd cd cc dc cd cd dc

cc dd dd dc dc dc dd dc dc cd dc cc dc cd dd

286 9 Genetic Algorithm Optimization in C/C++

The best string in all generation is

dd dc cd dc dc cd cd dd cc dc dc dc dd dc dd cd dc

cd cd cc dc cd cc cd dd cd cd dd cd dc cc cd dc dd dd

The corresponding best score is : 171

9.5 Maximize f(x) = x2

A C++ Program for maximizing f(x) = x2 using genetic algorithm, where x is

ranges from 0 to 31.

1. Generate Initial four populations of binary string with 5 bits length.

2. Calculate corresponding x and fitness value f(x) = x2.

3. Use the tournament selection method to generate new four populations.

4. Apply cross-over operator to the new four populations and generate new popula-

tions.

5. Apply mutation operator for each population.

6. Repeat the step 2 to 5 for some 20 iterations.

7. Finally print the result.

Source Code

#include<stdio.h>

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

#include<math.h>

#include<time.h>

int pop[10][10],npop[10][10],tpop[10][10],x[10],fx[10],m_max=1,

ico=0,ico1,it=0;

void iter(int [10][10],int,int);

int u_rand(int);

void tour_sel(int,int);

void cross_ov(int,int);

void mutat(int,int);

void main()

{

int k,m,j,i,p[10],n=0,a[10],nit;

//time_t t;

clrscr();

//srand((unsigned) time(&t));

9.5 Maximize f(x) = x2 287

randomize();

/*while (n<4)

{

k=0;

p[n]=u_rand(32);

a[n]=p[n];

for(i=0;i<=n;i++)

{

if (p[n]==p[i] && n!=i)

k++;

}

if (k==0)

{

n++;

}

} */

cout<<"Enter the number of Population in each iteration is : ";

cin>>n;

cout<<"Enter the number of iteration is : ";

cin>>nit;

m=5;

for(i=0;i<n;i++)

{

for(j=m-1;j>=0;j–)

{

/*if (a[i]==0)

pop[i][j]=0;

else

{*/

pop[i][j]=u_rand(2);

// a[i]=a[i]/2;

// }

}

}

cout<<"\nIteration "<<it<<" is :\n";

iter(pop,n,m);

it++;

getch();

do

{

it++;

cout<<"\nIteration "<<it<<" is :\n";

tour_sel(n,m);

iter(pop,n,m);

getch();

288 9 Genetic Algorithm Optimization in C/C++

}while(it<nit);

cout<<"\n\nAfter the "<<ico1<<" Iteration, the Maximum Value

is : "<<(int)

sqrt(m_max);

getch();

}

void iter(int pp[10][10],int o, int p)

{

int i,j,sum,avg,max=1;

for(i=0;i<o;i++)

{

x[i]=0;

for(j=0;j<p;j++)

{

x[i]=x[i]+(pp[i][j]*pow(2,p-1-j));

}

fx[i]=x[i]*x[i];

sum=sum+fx[i];

if (max<=fx[i])

max=fx[i];

}

avg=sum/o;

cout<<"\n\nS.No.\tPopulation\tX\tf(X)\n\n";

for(i=0;i<o;i++)

{

cout<<ico<<"\t";

ico++;

for(j=0;j<p;j++)

cout<<pp[i][j];

cout<<"\t\t"<<x[i]<<"\t"<<fx[i]<<"\n";

}

cout<<"\n\t Sum : "<<sum<<"\tAverage : "<<avg<<"\tMaximum :

"<<max<<"\n";

if (m_max<max)

{

m_max=max;

ico1=it;

}

}

int u_rand(int x)

{

int y;

y=rand()%x;

return(y);

}

9.5 Maximize f(x) = x2 289

void tour_sel(int np,int mb)

{

int i,j,k,l,co=0,cc;

//time_t t;

//srand((unsigned) time(&t));

do

{

k=u_rand(np);

do

{

cc=0;

l=u_rand(np);

if (k==l)

cc++;

}while(cc!=0);

if (fx[k]>fx[l])

{

for(j=0;j<mb;j++)

npop[co][j]=pop[k][j];

}

else if (fx[k]<fx[l])

{

for(j=0;j<mb;j++)

npop[co][j]=pop[l][j];

}

co++;

}while(co<np);

getch();

cross_ov(np,mb);

getch();

}

void cross_ov(int np1,int mb1)

{

int i,j,k,l,co,temp;

//time_t t;

//srand((unsigned) time(&t));

i=0;

do

{

k=rand()%2;

do

{

290 9 Genetic Algorithm Optimization in C/C++

co=0;

l=u_rand(mb1);

if (((k==0) && (l==0)) || ((k==1) && (l==mb1)))

co++;

}while(co!=0);

if ((k==0) && (l!=0))

{

for(j=0;j<l;j++)

{

temp=npop[i][j];

npop[i][j]=npop[i+1][j];

npop[i+1][j]=temp;

}

}

else if ((k==1) && (l!=mb1))

{

for(j=l;j<mb1;j++)

{

temp=npop[i][j];

npop[i][j]=npop[i+1][j];

npop[i+1][j]=temp;

}

}

i=i+2;

}while(i<np1);

for(i=0;i<np1;i++)

{

for(j=0;j<mb1;j++)

{

tpop[i][j]=npop[i][j];

//pop[i][j]=tpop[i][j];

}

}

mutat(np1,mb1);

}

void mutat(int np2,int mb2)

{

int i,j,r,temp,k,z;

i=0;

do

{

for(k=0;k<np2;k++)

9.5 Maximize f(x) = x2 291

{

r=0;

if (i!=k)

{

for(j=0;j<mb2;j++)

{

if (tpop[i][j]==tpop[k][j])

r++;

}

if (r!=mb2-1)

{

z=u_rand(mb2);

if (tpop[i][z]==0)

tpop[i][z]=1;

else

tpop[i][z]=0;

if (npop[k][u_rand(mb2)]==0)

npop[k][u_rand(mb2)]=1;

else

npop[k][u_rand(mb2)]=0;

mutat(k,mb2);

}

}

}

i++;

}while(i<np2);

for(i=0;i<np2;i++)

{

for(j=0;j<mb2;j++)

{

pop[i][j]=tpop[i][j];

}

}

}

Output

Enter the number of Population in each iteration is : 4

Enter the number of iteration is : 5

Iteration 0 is :
S.No. Population X f(X)

0 01001 9 81

1 01110 14 196

2 11101 29 841

3 01111 15 225
Sum : 1620 Average : 405 Maximum : 841

292 9 Genetic Algorithm Optimization in C/C++

Iteration 1 is :
S.No. Population X f(X)

4 00000 0 0

5 11001 25 625

6 00001 1 1

7 11011 27 729

Sum : 1358 Average : 339 Maximum : 729

Iteration 2 is :
S.No. Population X f(X)

8 10010 18 324

9 00010 2 4

10 11000 24 576

11 11001 25 625

Sum : 1531 Average : 382 Maximum : 625

Iteration 3 is :
S.No. Population X f(X)

12 11110 30 900

13 11010 26 676

14 11110 30 900

15 11101 29 841
Sum : 3320 Average : 830 Maximum : 900

Iteration 4 is :
S.No. Population X f(X)

16 11111 31 961

17 11101 29 841

18 01011 11 121

19 11000 24 576
Sum : 2501 Average : 625 Maximum : 961

Iteration 5 is :
S.No. Population X f(X)

20 11110 30 900

21 01010 10 100

22 11010 26 676

23 11011 27 729

Sum : 2408 Average : 602 Maximum : 900

After the 5 Iteration, the Maximum Value is : 30

9.6 Minimization a Sine Function with Constraints

Many practical problems contain one or more constraints that must be satisfied. Here

we consider incorporation of constraints into genetic algorithm search.

Constraints are usually classified as equality or inequality relations. Since equal-

ity constraints may be subsumed into a system model, we are only concerned with

inequality constraints. A genetic algorithm generates a sequence of parameters to

9.6 Minimization a Sine Function with Constraints 293

be tested using the system model, objective function and the constraints. We run

the model, evaluate the objective function, and check to see if any constraints are

violated. If not, the parameters set is assigned the fitness value corresponding to

the objective function evaluation. If the constraints are violated, the solution is in-

feasible and thus has no fitness. We usually want to get some information out of

infeasible solutions, by degrading their fitness ranking in relation to the degree of

constraint violation. This method is called as the penalty method.

In this method, a constrained problem in optimization is transformed to an un-

constrained problem by associating the cost or penalty with all constraint violations.

The cost is included in the objective function evaluation.

9.6.1 Problem Description

Minimize f (x1, x2, x3, x4, x5) = -5 sin(x1) sin(x2) sin(x3) sin(x4) sin(x5)+

- sin(5x1) sin(5x2) sin(x3) sin(5x4) sin(5x5),

where 0 <= xi <= pi, for 1 <= i <= 5.

For the above mentioned problem, the known global solution is

(x1, x2, x3, x4, x5) = (Π/2, Π/2, Π/2, Π/2, Π/2) and f(Π/2,Π/2,Π/2,Π/2,

Π/2) = −6

To solve this problem we have chosen the heuristic crossover technique. This

operator is a unique cross over for the following reasons :

1. It uses values of the objective function in determining the direction of the search.

2. It produces only one offspring and

3. It may produce no offspring at all.

The operator generates a single offspring x3 from two parents x1 and x2 accord-

ing to the following rule:

X3 = r.(x2 − x1) + x2,

where r is a random number between 0 and 1, and the parent x2 is not worst than

x2. i.e. f(x2) <= f(x1)2 for minimization problems.

It is possible for this operator to generate an offspring vector which is not fea-

sible. In such a case another random value r is generated and another offspring

created. If after w attempts no new solution meeting the constraints is found, the

operator gives up and produces no offsprings.

The heuristic crossover contributes to the precision of the solution found; its

major responsibilities are: fine tuning and search in the most promising direction.

After the experiment, it is found that the average value of the best point run was,

-5.986343 after 50 generations.

294 9 Genetic Algorithm Optimization in C/C++

Source Code

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<stdlib.h>

#define POPPA 20

#define POPCH 10

#define VAR 5

void main()

{

int par[POPPA][VAR];

float chrom[POPPA][VAR];

float newchrom[POPCH][VAR];

float temp[1][5];

float fit[POPPA],pi,fitch[POPCH],fitemp[1],fitchtemp[1];

int gen=0;

int i,j,k;

int ri1,ri2,rj1,rj2;

FILE *fp1;

clrscr();

fp1=fopen("inp.dat","rt");

// Reading the initial population

for(i=0;i<POPPA;i++)

{

for(j=0;j<VAR;j++)

{

fscanf(fp1,"%d",&par[i][j]);

if(par[i][j]<=180 && par[i][j]>=0)

{

printf("%d ",par[i][j]);

}

else

{

printf("\nCONSTRAINT VIOLATED!\n 0<=xi<=180");

exit(1);

}

}

printf("\n");

}

fclose(fp1);

// Parent Displaying

for(i=0;i<POPPA;i++)

{

for(j=0;j<VAR;j++)

9.6 Minimization a Sine Function with Constraints 295

{

chrom[i][j]=(float)par[i][j];

printf("%f ",chrom[i][j]);

}

printf("\n");

}

pi = 4.0*atan(1.0);

clrscr();

while(gen!=50)

{

printf("Next Generation: %d\n",gen);

for(i=0;i<POPPA;i++)

{

fit[i]=-

5*(sin(pi*chrom[i][0]/180))*sin(pi*chrom[i][1]/180)

*sin(pi*chrom[i][2]/180)

*sin(pi*chrom[i][3]/180)*sin(pi*chrom[i][4]/180)-

sin(5*pi*chrom[i][0]/180)*sin(5*pi*chrom[i][1]/180)

*sin(5*pi*chrom[i][2]/180)

*sin(5*pi*chrom[i][3]/180)*sin(5*pi*

chrom[i][4]/180);

printf("%f %f %f %f %f %f\n",chrom[i][0],chrom[i][1],

chrom[i][2],chrom[i][3],chrom[i][4],fit[i]);

}

printf("\n");

//Crossover

for(i=0,k=10;i<POPCH;i++,k++)

{

for(j=0;j<VAR;j++)

{

if(chrom[i][j]<=chrom[k][j])

newchrom[i][j]=((random(10)/10)*(chrom[k][j]-chrom[i][j]))

+chrom[k][j];

else

newchrom[i][j]=((random(10)/10)*(chrom[i][j]-chrom[k][j]))

+chrom[i][j];

}

}

//calculate fitness for children

printf("child fitness:\n");

for(i=0;i<POPCH;i++)

{

fitch[i]=-

5*(sin(pi*newchrom[i][0]/180))*sin(pi*newchrom[i][1]/180)

*sin(pi*newchrom[i][2]/180)*sin(pi*newchrom[i][3]/180)

296 9 Genetic Algorithm Optimization in C/C++

*sin(pi*newchrom[i][4]/180)-

sin(5*pi*newchrom[i][0]/180)*sin(5*pi*newchrom[i][1]/180)

*sin(5*pi*newchrom[i][2]/180)*sin(5*pi*newchrom[i][3]/180)

*sin(5*pi*newchrom[i][4]/180);

printf("%f\n",fitch[i]);

}

printf("\n\n\n");

//sort based on fittness

//parent

for(i=0;i<POPPA;i++)

{

for(j=i+1;j<POPPA;j++)

{

if(fit[i]>fit[j])

{

for(k=0;k<VAR;k++)

{

temp[0][k]=chrom[j][k];

fitemp[0]=fit[j];

}

for(k=0;k<VAR;k++)

{

chrom[j][k]=chrom[i][k];

fit[j]=fit[i];

}

for(k=0;k<VAR;k++)

{

chrom[i][k]=temp[0][k];

fit[i]=fitemp[0];

}

}

}

}

//child

for(i=0;i<POPCH;i++)

{

for(j=i+1;j<POPCH;j++)

{

if(fitch[i]>fitch[j])

{

for(k=0;k<VAR;k++)

{

temp[0][k]=newchrom[j][k];

fitchtemp[0]=fitch[j];

}

for(k=0;k<VAR;k++)

9.6 Minimization a Sine Function with Constraints 297

{

newchrom[j][k]=newchrom[i][k];

fitch[j]=fitch[i];

}

for(k=0;k<VAR;k++)

{

newchrom[i][k]=temp[0][k];

fitch[i]=fitchtemp[0];

}

}

}

}

//testing

printf("\n");

for(i=0;i<POPCH;i++)

{

printf("%f\n",fitch[i]);

}

printf("\n\n");

//Selecting fittest parent

for(i=10,k=0;i<POPPA;i++,k++)

{

for(j=0;j<VAR;j++)

{

chrom[i][j]=newchrom[k][j];

}

}

//Mutation

if(gen%10==0)

{

randomize();

i=random(4);

j=random(4);

randomize();

ri1=random(4);

rj1=random(4);

randomize();

ri2=random(4);

rj2=random(4);

chrom[i][j]=(chrom[ri1][rj1]+chrom[ri2][rj2])/2;

}

gen++;

}//end of while

clrscr();

printf("***\n");

printf("\n\t\t\t OPTIMIZATION\n\n");

298 9 Genetic Algorithm Optimization in C/C++

printf("***\n");

printf("\n\nMinimize f(x1,x2,x3,x4,x5)=-5*sinx1*sinx2*sinx3

*sinx4*sinx5

+(-Sin(5x1)*sin(5x2)*sin(5x3)*sin(5x4)*sin(5x5))\n\n\n\n");

// Displaying the last generation

//Fitness

for(i=0;i<POPCH;i++)

{

fitch[i]=-

5*(sin(pi*chrom[i][0]/180))*sin(pi*chrom[i][1]/180)

*sin(pi*chrom[i][2]/180)*sin(pi*chrom[i][3]/180)*sin(pi*

chrom[i][4]/180)-

sin(5*pi*chrom[i][0]/180)*sin(5*pi*chrom[i][1]/180)

*sin(5*pi*chrom[i][2]/180)*sin(5*pi*chrom[i][3]/180)*si

n(5*pi*chrom[i][4]/180);

printf("%f\n",fitch[i]);

}

printf("The Last Generation:\n");

for(i=0;i<POPCH;i++)

{

printf("%f %f %f%f%f%f\n",chrom[i][0],chrom[i][1],

chrom[i][2],chrom[i][3],chrom[i][4],fitch[i]);

}

printf("\n");

printf("The Solution is : %f",fitch[0]);

getch();

}

// end of main

Output

Next Generation: 0

56.000000 89.000000 65.000000 90.000000 45.000000 -2.258168

23.000000 55.000000 120.000000 56.000000 89.000000 -0.381728

32.000000 56.000000 78.000000 51.000000 62.000000 -1.349719

98.000000 5.000000 63.000000 60.000000 90.000000 -3.193594

90.000000 80.000000 70.000000 40.000000 30.000000 -1.506204

32.000000 65.000000 98.000000 45.000000 12.000000 -0.441627

56.000000 90.000000 98.000000 23.000000 150.000000 -0.460083

100.000000 110.000000 90.000000 60.000000 51.000000 -3.020786

23.000000 45.000000 90.000000 67.000000 12.000000 -0.498938

89.000000 85.000000 90.000000 45.000000 62.000000 -3.598395

45.000000 45.000000 62.000000 21.000000 89.000000 -0.422367

12.000000 20.000000 60.000000 50.000000 40.000000 0.085765

78.000000 56.000000 89.000000 23.000000 12.000000 0.055674

9.6 Minimization a Sine Function with Constraints 299

45.000000 78.000000 65.000000 30.000000 20.000000 -0.635845

10.000000 20.000000 12.000000 32.000000 52.000000 0.194277

10.000000 52.000000 80.000000 89.000000 74.000000 -0.563703

45.000000 78.000000 60.000000 32.000000 21.000000 -0.669913

54.000000 98.000000 65.000000 32.000000 65.000000 -1.657383

78.000000 54.000000 65.000000 20.000000 32.000000 -0.746531

90.000000 25.000000 32.000000 54.000000 65.000000 -0.981731

child fitness:

-4.316244

-0.381728

-2.418798

-3.991571

-2.306131

-2.259517

-0.958608

-3.576286

-2.002319

-4.171978

-4.316244

-4.171978

-3.991571

-3.576286

-2.418798

-2.306131

-2.259517

-2.002319

-0.958608

-0.381728

Next Generation: 1

89.000000 85.000000 90.000000 45.000000 62.000000 -3.598395

98.000000 65.000000 63.000000 60.000000 90.000000 -3.193594

100.000000 110.000000 90.000000 60.000000 51.000000 -3.020786

56.000000 89.000000 65.000000 90.000000 45.000000 -2.258168

54.000000 98.000000 65.000000 32.000000 65.000000 -1.657383

90.000000 80.000000 70.000000 40.000000 30.000000 -1.506204

32.000000 56.000000 78.000000 51.000000 62.000000 -1.349719

90.000000 25.000000 32.000000 54.000000 65.000000 -0.981731

78.000000 54.000000 65.000000 20.000000 32.000000 -0.746531

45.000000 78.000000 60.000000 32.000000 21.000000 -0.669913

56.000000 89.000000 65.000000 90.000000 89.000000 -4.316244

90.000000 85.000000 90.000000 54.000000 65.000000 -4.171978

98.000000 78.000000 65.000000 60.000000 90.000000 -3.991571

300 9 Genetic Algorithm Optimization in C/C++

100.000000 110.000000 90.000000 60.000000 65.000000 -3.576286

78.000000 56.000000 89.000000 51.000000 62.000000 -2.418798

90.000000 80.000000 70.000000 40.000000 52.000000 -2.306131

32.000000 65.000000 98.000000 89.000000 74.000000 -2.259517

78.000000 54.000000 90.000000 67.000000 32.000000 -2.002319

56.000000 90.000000 98.000000 32.000000 150.000000 -0.958608

23.000000 55.000000 120.000000 56.000000 89.000000 -0.381728

child fitness:

-5.986343

-3.670412

-4.103836

-4.257583

-3.622066

-2.306131

-2.259517

-3.132252

-1.348738

-2.182163

-5.986343

-4.257583

-4.103836

-3.670412

-3.622066

-3.132252

-2.306131

-2.259517

-2.182163

-1.348738

.....................{convergence..........}

Next Generation: 49

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

98.000000 89.000000 90.000000 90.000000 90.000000 -5.713716

98.000000 89.000000 98.000000 90.000000 90.000000 -5.486998

98.000000 89.000000 98.000000 90.000000 90.000000 -5.486998

100.000000 110.000000 90.000000 90.000000 90.000000 -4.515464

9.6 Minimization a Sine Function with Constraints 301

100.000000 110.000000 90.000000 90.000000 90.000000 -4.515464

100.000000 110.000000 98.000000 90.000000 90.000000 -4.496547

100.000000 110.000000 98.000000 90.000000 90.000000 -4.496547

100.000000 110.000000 120.000000 90.000000 90.000000 -4.103836

100.000000 110.000000 98.000000 90.000000 150.000000 -2.248273

child fitness:

-5.986343

-5.713716

-5.486998

-5.486998

-4.515464

-4.515464

-4.496547

-4.496547

-4.103836

-2.248273

-5.986343

-5.713716

-5.486998

-5.486998

-4.515464

-4.515464

-4.496547

-4.496547

-4.103836

-2.248273

**

OPTIMIZATION

Minimize f(x1,x2,x3,x4,x5)=-5*sinx1*sinx2*sinx3*sinx4*sinx5

+(-Sin(5x1)*sin(5x2)

*sin(5x3)*sin(5x4)*sin(5x5))

-5.986343

-5.986343

-5.986343

-5.986343

-5.986343

-5.986343

-5.986343

-5.986343

302 9 Genetic Algorithm Optimization in C/C++

-5.986343

-5.986343

The Last Generation:

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

89.000000 89.000000 90.000000 90.000000 89.000000 -5.986343

The Solution is: -5.986343

9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x) + 10

To find the solution of the function Max F(x) = x∗ sin(10∗Π∗x) + 10 with the con-

straint −1 < x < 2 by using genetic algorithm.

Steps involved

Step1 : Generate the random number as n

Step2 : Initialize i, j to n and m respectively

Step3 : Max ← 1, x[i] ← 0, sum ← 0, m_max ← 1

Step4 : Compute x[i] ← x[i]+(pp[i][j]/pow(10,j-1)) and

fx[i]=x[i]*sin(10*�*x[i])+10

sum=sum+fx[i];

Step5 : if (max>=fx[i])

Step6 : max ← fx[i];

Step7 : until m_max>max

Step8 : Compute Maximum value

Source Code

#include<stdio.h>

#include<iostream.h>

#include<conio.h>

9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x) + 10 303

#include<stdlib.h>

#include<math.h>

#include<time.h>

int ico=0,ico1,it=0;

long int pop[10][10],npop[10][10],tpop[10][10];

float x[10],fx[10],m_max=1.0;

void iter(long int [10][10],int,int);

int u_rand(int);

void tour_sel(int,int);

void cross_ov(int,int);

void mutat(int,int);

void main()

{

int k,m,j,i,p[10],n=0,a[10],nit;

//time_t t;

clrscr();

//srand((unsigned) time(&t));

randomize();

/*while (n<4)

{

k=0;

p[n]=u_rand(32);

a[n]=p[n];

for(i=0;i<=n;i++)

{

if (p[n]==p[i] && n!=i)

k++;

}

if (k==0)

{

n++;

}

} */

cout<<"Enter the number of Population in each iteration is : ";

cin>>n;

cout<<"Enter the number of iteration is : ";

cin>>nit;

m=7;

for(i=0;i<n;i++)

{

for(j=0;j<m;j++)

{

304 9 Genetic Algorithm Optimization in C/C++

/*if (a[i]==0)

pop[i][j]=0;

else

{*/

if ((j==0) || (j==1))

pop[i][j]=u_rand(2);

if (j>1)

pop[i][j]=u_rand(10);

// a[i]=a[i]/2;

// }

}

}

cout<<"\nIteration "<<it<<" is :\n";

iter(pop,n,m);

it++;

getch();

do

{

it++;

cout<<"\nIteration "<<it<<" is :\n";

tour_sel(n,m);

iter(pop,n,m);

getch();

}while(it<nit);

cout<<"\n\nAfter the "<<ico1<<" Iteration, the Maximum Value

is :

"<<m_max;

getch();

}

void iter(long int pp[10][10],int o, int p)

{

int i,j;

float sum,avg,max=1.0;

for(i=0;i<o;i++)

{

x[i]=0;

for(j=1;j<p;j++)

{

if (j==1)

x[i]=x[i]+pp[i][j];

if (j>1)

x[i]=x[i]+(pp[i][j]/pow(10,j-1));

}

j=0;

if (pp[i][j]==0)

9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x) + 10 305

x[i]=-x[i];

fx[i]=x[i]*sin(10*3.14*x[i])+10;

sum=sum+fx[i];

if (max<=fx[i])

max=fx[i];

}

avg=sum/o;

cout<<"\n\nS.No.\tPopulation\tX\t\tf(X)\n\n";

for(i=0;i<o;i++)

{

cout<<ico<<"\t";

ico++;

for(j=0;j<p;j++)

cout<<pp[i][j];

cout<<"\t\t"<<x[i]<<"\t\t"<<fx[i]<<"\n";

}

cout<<"\n\t Sum : "<<sum<<"\tAverage : "<<avg<<"\tMaximum :

"<<max<<"\n";

if (m_max<max)

{

m_max=max;

ico1=it;

}

}

int u_rand(int x)

{

int y;

y=rand()%x;

return(y);

}

void tour_sel(int np,int mb)

{

int i,j,k,l,co=0,cc;

//time_t t;

//srand((unsigned) time(&t));

do

{

k=u_rand(np);

do

{

cc=0;

306 9 Genetic Algorithm Optimization in C/C++

l=u_rand(np);

if (k==l)

cc++;

}while(cc!=0);

if (fx[k]>fx[l])

{

for(j=0;j<mb;j++)

npop[co][j]=pop[k][j];

}

else if (fx[k]<fx[l])

{

for(j=0;j<mb;j++)

npop[co][j]=pop[l][j];

}

co++;

}while(co<np);

getch();

cross_ov(np,mb);

getch();

}

void cross_ov(int np1,int mb1)

{

int i,j,k,l,co,temp;

//time_t t;

//srand((unsigned) time(&t));

i=0;

do

{

k=rand()%2;

do

{

co=0;

l=u_rand(mb1);

if (((k==0) && (l==0)) || ((k==1) && (l==mb1)))

co++;

}while(co!=0);

if ((k==0) && (l!=0))

{

for(j=0;j<l;j++)

{

9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x) + 10 307

temp=npop[i][j];

npop[i][j]=npop[i+1][j];

npop[i+1][j]=temp;

}

}

else if ((k==1) && (l!=mb1))

{

for(j=l;j<mb1;j++)

{

temp=npop[i][j];

npop[i][j]=npop[i+1][j];

npop[i+1][j]=temp;

}

}

i=i+2;

}while(i<np1);

for(i=0;i<np1;i++)

{

for(j=0;j<mb1;j++)

{

tpop[i][j]=npop[i][j];

//pop[i][j]=tpop[i][j];

}

}

mutat(np1,mb1);

}

void mutat(int np2,int mb2)

{

int i,j,r,temp,k,z;

i=0;

do

{

for(k=0;k<np2;k++)

{

r=0;

if (i!=k)

{

for(j=0;j<mb2;j++)

{

if (tpop[i][j]==tpop[k][j])

r++;

}

308 9 Genetic Algorithm Optimization in C/C++

if (r!=mb2-1)

{

z=u_rand(mb2);

if ((tpop[i][z]==0) && ((z==0) || (z==1)))

tpop[i][z]=u_rand(2);

else if ((tpop[i][z]!=0) && ((z==0) || (z==1)))

tpop[i][z]=u_rand(2);

else

tpop[i][z]=u_rand(10);

if ((npop[k][u_rand(mb2)]==0) && ((z==0) ||

(z==1)))

npop[k][u_rand(mb2)]=u_rand(2);

else if ((npop[k][u_rand(mb2)]!=0) && ((z==0) ||

(z==1)))

npop[k][u_rand(mb2)]=u_rand(2);

else

npop[k][u_rand(mb2)]=u_rand(10);

mutat(k,mb2);

}

}

}

i++;

}while(i<np2);

for(i=0;i<np2;i++)

{

for(j=0;j<mb2;j++)

{

pop[i][j]=tpop[i][j];

}

}

}

Output

Enter the number of Population in each iteration is : 5

Enter the number of iteration is : 5

Iteration 1 is :

9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x) + 10 309

S.No. Population X f(X)

0 0040269 -0.40269 10.031417

1 1182511 1.82511 11.257072

2 1103802 1.03802 10.958928

3 1025375 0.25375 10.25211

4 1038920 0.3892 9.868195

Sum : 52.367722 Average : 10.473544 Maximum : 11.257072

Iteration 2 is :
S.No. Population X f(X)

5 1153524 1.53524 8.644072

6 0031433 -0.31433 9.864642

7 0137630 -1.3763 9.045399

8 0008313 -0.08313 10.042119

9 1074001 0.74001 9.298878

Sum : 46.895107 Average : 9.379022 Maximum : 10.042119

Iteration 3 is :
S.No. Population X f(X)

10 1186753 1.86753 11.619774

11 0080292 -0.80292 10.063322

12 0158525 -1.58525 9.255855

13 0091516 -0.91516 9.592331

14 0103803 -1.03803 10.959062

Sum : 51.490341 Average : 10.298068 Maximum : 11.619774

Iteration 4 is :
S.No. Population X f(X)

15 1173828 1.73828 8.396161

16 0064429 -0.64429 10.632739

17 1099734 0.99734 9.900976

18 0130327 -1.30327 9.893287

19 1088392 0.88392 10.438623

Sum : 49.261787 Average : 9.852358 Maximum : 10.632739

Iteration 5 is :
S.No. Population X f(X)

20 1149948 1.49948 10.060295

21 0010010 -0.1001 9.999846

22 0130283 -1.30283 9.911272

23 0088675 -0.88675 10.36997

24 0017727 -0.17727 9.883524

Sum : 50.224907 Average : 10.044981 Maximum : 10.36997

After the 5 Iterations, the Maximum Value is: 11.619774

310 9 Genetic Algorithm Optimization in C/C++

9.8 Quadratic Equation Solving

To find the roots of the quadratic equation using genetic algorithm. To solve the

above problem for the quadratic equation- x∗x+5∗x+6 using following procedure.

It could be used for solving any quadratic equation by changing fitness function-

f(x) and changing length of chromosome.

Steps involved

Step1: Initial population size is 10 and chromosome length is set to 5. Selecting

initial population. i.e. random approximate solution to the problem, which

are ten different 5-bit binary strings. Here initial population consists of ten

chromosomes. Chromosomes are generated by using random number gener-

ator.

Step 2: Converting the chromosome’s genotypes to its phenotype (i.e.) Binary

string into decimal value. In the binary string the most significant bit is sign

bit. It’s weight is −2∗(n − 1) and other bits are magnitude bits their weights

are 2∗(n − 1).

Step 3: Evaluate the objective function f(x) = x∗x + 5∗x + 6. For each chro-

mosome

1) Convert the value of the objective function into fitness. Here for this prob-

lem fitness is simply equal to the value of the objective function.

2) If f(x) = = 0 for a particular chromosome, that chromosome is required

accurate solution , now display the value of chromosome and stop. Other-

wise perform next generation by continuing following steps.

Step 4: Implementation of selection operation. For this problem the tournament

selection is adopted.

The tournament selection is implemented as follows: Take any two chromo-

somes randomly and select one with min. Fitness for next generation. This

process has to be repeated till we get ten chromosomes.

Step 5:Implementation of crossover operation on new population.

Take chromosome - 1 &2 randomly fix the cut-point position and randomly

decide left or right crossover and interchange the bits and the resulting chro-

mosomes are used in the next generation.

Repeat the above process for chromosome pair (3,4), pair (5,6), Pair (7,8)

and pair (9,10).

This crossover operation generates ten new chromosomes for the next gener-

ation.

Step 6: Jump to step-2. (i.e.) Perform next generation.

Source Code

#include <stdio.h>

#include <conio.h>

9.8 Quadratic Equation Solving 311

#include <dos.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

int f(int);

void main()

{

struct c{

int chromosome[5];

int decimal_val;

int fittness;

};

struct c ipop[10], newpop[10];

int i,j,cut,gen,t,flag,num,s1,s2;

clrscr();

/* generating Initial population */

randomize();

for(i=0;i<10; ++i)

for(j=0; j<5; ++j)

ipop[i].chromosome[j] = rand()%2;

/* start of the next generation */

gen=1;

while(1)

{

/* Converting a binary string into decimal value */

for(i=0;i<10; ++i)

{

num=0;

for(j=0;j<4;++j)

num = num+ (ipop[i].chromosome[j] * pow(2,j));

num = num-(ipop[i].chromosome[4]*pow(2,4));

ipop[i].decimal_val = num;

}

/* Calculating fittness value */

for(i=0;i<10;++i)

ipop[i].fittness = f(ipop[i].decimal_val);

printf("Generation- %1d\n", gen);

printf("Initial population- output\n");

for(i=0;i<10;++i)

{

for(j=4; j>=0; –j)

printf("%1d", ipop[i].chromosome[j]);

312 9 Genetic Algorithm Optimization in C/C++

printf(" %d", ipop[i].decimal_val);

printf(" %d", ipop[i].fittness);

printf("\n");

}

for(i=0;i<10; ++i)

{

if(ipop[i].fittness ==0)

{

printf("stop generations\n");

printf("result = %d\n", ipop[i].decimal_val);

goto l1;

}

}

/* tournament selection */

printf("tournament selection\n ");

i=0;

while(i<=9)

{

s1 = rand()%10;

s2 = rand()%10;

printf("%d %d %d %d\n", s1,s2,ipop[s1].fittness, ipop[s2].

fittness);

getche();

if(ipop[s1].fittness < ipop[s2].fittness)

{

for(j=0;j<5;++j)

newpop[i].chromosome[j] = ipop[s1].chromosome[j];

}

else

{

for(j=0;j<5;++j)

newpop[i].chromosome[j] = ipop[s2].chromosome[j];

}

i++;

}

getche();

printf("new population -output\n");

for(i=0;i<10;++i)

{

for(j=4; j>=0; –j)

printf("%1d", newpop[i].chromosome[j]);

printf("\n");

}

getche();

9.8 Quadratic Equation Solving 313

/*crossover operation */

printf("crossover operation\n");

printf("left/right cut-point position\n");

for(i=0;i<=4;++i)

{

flag= rand()%2;

cut= rand()%5;

printf("%1d %1d\n", flag, cut);

if(flag==0) /* crossover to left of cutpoint position*/

for(j=0;j<=cut-1;++j)

{

t=newpop[2*i].chromosome[j];

newpop[2*i].chromosome[j]= newpop[(2*i+1)].

chromosome[j];

newpop[(2*i+1)].chromosome[j]= t;

}

else /* crossover to the right of cutpoint position*/

for(j=cut+1;j<=4;++j)

{

t=newpop[2*i].chromosome[j];

newpop[2*i].chromosome[j]= newpop[(2*i+1)].

chromosome[j];

newpop[(2*i+1)].chromosome[j]= t;

}

for(j=4; j>=0; –j)

printf("%1d", newpop[2*i].chromosome[j]);

printf("\n");

for(j=4; j>=0; –j)

printf("%1d", newpop[2*i+1].chromosome[j]);

printf("\n");

}

/* copy newpopulation to initial population*/

for(i=0; i<10; ++i)

{

for(j=0; j<5;++j)

ipop[i].chromosome[j] = newpop[i].chromosome[j];
}

gen=gen+1;

}

l1:

printf("end\n");

}

int f(int x)

{

return (x*x + 5*x + 6);

}

314 9 Genetic Algorithm Optimization in C/C++

Output

Generation- 1
Chromosome decimalvalue Fittnessvalue

11010 -6 12

00100 4 42

01010 10 156

01000 8 110

00110 6 72

00001 1 12

10001 -15 156

00101 5 56

11100 -4 2

00100 4 42

Generation- 2
Chromosome decimalvalue Fittnessvalue

11100 -4 2

00100 4 42

00001 1 12

11100 -4 2

00101 5 56

00100 4 42

00101 5 56

00000 0 6

00110 6 72

11001 -7 20

Generation- 3
Chromosome decimalvalue Fittnessvalue

00000 0 6

11100 -4 2

11100 -4 2

11100 -4 2

00100 4 42

11001 -7 20

00001 1 12

00110 6 72

00100 4 42

00001 1 12

Generation- 4
Chromosome decimalvalue Fittnessvalue

11100 -4 2

11100 -4 2

00001 1 12

11001 -7 20

00001 1 12

9.9 Summary 315

00000 0 6

11000 -8 30

00001 1 12

00100 4 42

00001 1 12

Generation- 5
Chromosome decimalvalue Fittnessvalue

00001 1 12

11100 -4 2

11100 -4 2

00000 0 6

00001 1 12

00001 1 12

10001 -15 156

01100 12 210

11101 -3 0

00000 0 6

stop generations

result = -3

9.9 Summary

Thus in this chapter the implementation of genetic algorithm concept using C/C++

has been dealt. The various problems of maximizing and minimizing the func-

tions, finding the roots of a quadratic equation, traveling salesman problem, word-

matching problem has been included. C being a universal language helps in evolving

the genetic process and since it is portable, GA programs written in C for one com-

puter can be run on another with little or no modification. With the availability of

large number of functions, the programming task becomes simple. C++, an evolu-

tion of C, has helped genetic algorithm to run in an object oriented programming

environment. As a result, this can further be extended to implement parallel genetic

algorithms using C/C++.

9.9.1 Projects

1.Implement the optimization of Ackley’s function using a C program

2.Maximize Rosenbrock’s function using a C++ program

3.Minimize Rastrigin’s function using structure oriented programming language

4.Choose a vectorized objective function of your own and try to find a solution to

the function using object oriented programming language

5.Given a polynomial equation of the form f(x) = x4 + x3 + x2 + x + 1. Find the

roots of this polynomial using GA approach

316 9 Genetic Algorithm Optimization in C/C++

6.Consider a hyperbolic sine function. Maximize it within the range 0<x<22/7

using a C program. Apply two-point crossover and tournament selection process.

7.Implement a Hybrid Genetic Algorithm for an application of your own using

C++ approach

8.For the Traveling sales man problem in Sect. 9.2, use two-point crossover and

obtain optimized solution.

9.Find the roots of the quadratic equation using genetic algorithm The quadratic

equation is f(x) = x2 + 3x + 2.

10.Find the solution of the function f(x) = sin(3πx) + 10 with the constraint −3 <

x < 3 by using genetic algorithm.

Chapter 10

Applications of Genetic Algorithms

10.1 Introduction

Genetic algorithms have been applied in science, engineering, business and social

sciences. Number of scientists has already solved many engineering problems using

genetic algorithms. GA concepts can be applied to the engineering problem such

as optimization of gas pipeline systems. Another important current area is structure

optimization. The main objective in this problem is to minimize the weight of the

structure subjected to maximum and minimum stress constrains on each member.

GA is also used in medical imaging system. The GA is used to perform image

registration as a part of larger digital subtraction angiographies. It can be found that

Genetic Algorithm can be used over a wide range of applications. In this chapter

a few topics of its application are being covered. This includes the application of

Genetic Algorithm in to main engineering applications, data mining and in various

other image processing applications. Hope the chapter would give the reader a brief

idea of how the genetic algorithm can be applied to any practical problems.

10.2 Mechanical Sector

10.2.1 Optimizing Cyclic-Steam Oil Production

with Genetic Algorithms

The Antelope reservoir in the Cymric field, in the San Joaquin Valley, is a siliceous

shale reservoir containing 12 to 13◦API heavy oil. The reservoir consists primarily

of diatomite, characterized by its high porosity, high oil saturation, and very low

permeability. Approximately 430 wells are producing from this reservoir, with an

average daily production of 23,000 bbl. The oil from the field is recovered using

a Chevron-patented cyclic-steam process. A fixed amount of saturated steam is

injected into the reservoir during a 3- to 4-day period. The high-pressure steam

fractures the rock, and the heat from the steam reduces oil viscosity. The well is

317

318 10 Applications of Genetic Algorithms

shut in during the next couple of days, known as the soak period. Condensed steam

is absorbed by the diatomite, and oil is displaced into the fractures and wellbore.

After the soak period, the well is returned to production. The flashing of hot

water into steam at the prevailing pressure provides the energy to lift the fluids to

the surface. The well flows for approximately 20 to 25 days. After the well dies, the

same cycle is repeated. Cycle length is 26 to 30 days.

Because there is no oil production during the steaming and soaking period, there

is an incentive to minimize the steaming frequency and increase the length of the

cycle. But because well production is highest immediately after returning to produc-

tion and declines quickly thereafter, a case can be made for increasing the steaming

frequency and reducing the length of the cycle. This suggests that there is an op-

timum cycle length for every well that results in maximum productivity during the

cycle. Because there are more than 400 wells in the field, and there are constraints of

steam availability and distribution system, as well as facility constraints, the result

is a formidable scheduling problem.

10.2.1.1 Genetic Algorithms

Genetic algorithms (GAs) are global optimization techniques developed by John

Holland in 1975. They are one of several techniques in the family of evolution-

ary algorithms—algorithms that search for solutions to optimization problems by

“evolving” better and better solutions. A genetic algorithm begins with a “popula-

tion” of solutions and then chooses “parents” to reproduce. During reproduction,

each parent is copied, and then parents may combine in an analog to natural cross-

breeding, or the copies may be modified, in an analog to genetic mutation. The new

solutions are evaluated and added to the population, and low-quality solutions are

deleted from the population to make room for new solutions. As this process of

parent selection, copying, crossbreeding, and mutation is repeated, the members of

the population tend to get better. When the algorithm is halted, the best member

of the current population is taken as the solution to the problem posed.

One critical feature of a GA is its procedure for selecting population members to

reproduce. Selection is a random process, but a solution member’s quality biases its

probability of being chosen. Because GAs promote the reproduction of high-quality

solutions, they explore neighboring solutions in high-quality parts of the solution

search space. Because the process is randomized, a GA also explores parts of the

search space that may be far from the best individuals currently in the population. In

the last 20 years, GAs have been used to solve a wide range of optimization prob-

lems. There are many examples of optimization problems in the petroleum industry

for which GAs are well suited. At ChevronTexaco, in addition to the cyclicalsteam

scheduling problem, well placement, rig scheduling, portfolio optimization, and fa-

cilities design have been addressed with GAs. At NuTech Solutions, GAs have been

used in planning rig workover projects so that overall workover time is reduced,

planning production across multiple plants to reduce costs, planning distribution

from multiple plants to a large number of customers to reduce costs, and controlling

pipeline operations to reduce costs while satisfying pipeline constraints.

10.2 Mechanical Sector 319

10.2.1.2 Problem Formulation

The cyclic-steam scheduling problem is formulated as a GA optimization problem

in which the objective is to maximize cumulative production over a 2-month period.

The fitness function is calculated as the cumulative production minus the penalties

for violating the soft constraints. The problem has many constraints. The field-level

constraints include steam availability and the maximum number of wells steam-

ing. Gauge-station constraints include minimum amount of steam used and max-

imum number of wells on production. The header-level constraints include maxi-

mum number of wells steaming, and the individual- well constraints include maxi-

mum/minimum number of production days.

Additionally, there are operational constraints such as communication where

multiple wells must be steamed together and wells blocked because of rig activities.

Although all of the field constraints could have been incorporated in the problem

formulation as hard constraints, constraints that absolutely cannot be violated, the

decision was made to make many of the constraints soft constraints, constraints that

can be violated but with an associated penalty.

An example of a hard constraint is the total steam available on a given day for the

whole field, whereas some soft constraints are maximum amount of steam used by

a well group and minimum number of wells steaming in a header. The optimization

is stopped when one of the following criteria is satisfied.

• A specified number of generations have been created.

• A specified amount of time has elapsed.

• The fitness function has not improved over a specified number of generations.

The GA used multiple heuristics to enhance its performance and speed up its search

for high-quality solutions. To begin with, when it created the initial population of

solutions, “the seed,” it used heuristics based on those that the well operators and

steam operators used at the oil field. It also used some heuristics developed for the

project to find good initial schedules. An example of such a heuristic is “attempt

to steam high-production wells at their optimal cycle length—the length of time

between steaming at which a well’s average daily production is maximized.” The

constraints of the problem made it impossible to steam all wells at their optimal

cycle length, but inserting schedules based on this as a goal into the initial population

gave the algorithm some high-quality solutions that could be mutated and crossbred

with other types of solutions to find even better solutions.

The technique used for representing solutions was not the approach commonly

found in GA textbooks. An indirect encoding approach was used in which each solu-

tion was a permutation list of wells, with multiple entries allowed for the same well.

Then a decoding procedure was used that simulated the effects of various schedules

to translate the permutation list into an actual schedule. The schedule builder looks

at the first well on the list and simulates steaming it on Day 1. If this process violates

no hard constraints, then the well is scheduled for steaming on Day 1. The schedule

builder then looks at the second well on the list. It simulates the effects of steaming

that well together with the first well on Day 1. If no hard constraints are violated,

this well is added to the schedule for Day 1. If hard constraints are violated, the

320 10 Applications of Genetic Algorithms

well is not added to the schedule. The process continues, considering each well

for steaming on Day 1, and adding each well, in order, that can be steamed without

violating a hard constraint. Then the process continues with Day 2, considering each

well, in order, that was not already steamed on Day 1. The process is repeated for

Days 3 and 4. The critical point is that the schedule-building process will not build

a schedule that violates a hard constraint. Also, this schedule-building process uses

some clever heuristics and a simulator to transform a list of wells into a feasible

steaming schedule. Once a schedule is built, it can be evaluated, and its “score” is

returned to the GA as the evaluation of the original solution, the list of wells.

The optimization process uses heuristics to initialize the population, as well as

randomly generated solutions to fill out the initial population. The process includes

intelligent heuristics in the procedures used to modify new solutions. Also used are

crossbreeding procedures appropriate to combining different permutations to com-

bine two parents to produce a child. The process includes a good deal of domain

knowledge in the schedule builder to produce feasible schedules. A post-processor

is included that checks to find simple changes that could be made to the best solution

found to improve its quality. The interface to the optimizer gives the well operators

and steam operators at the field a great deal of power and flexibility in their in-

teractions with the system. The operators can edit the well data that are entered

into the optimizer. They can select optimization heuristics and procedures used in

a run. They can parameterize the objective function that specifies the goals of the

run. They can activate, deactivate, and parameterize the hard and soft constraints.

They also can edit the solutions found by the optimizer in cases in which there is a

constraint known to the operators that is not reflected in the databases available to

the optimizer.

10.2.2 Genetic Programming and Genetic Algorithms

for Auto-tuning Mobile Robot Motion Control

Robotic soccer is an entertaining but very complex problem domain. A subsection of

which is path planning and motion control, itself a complex and challenging field.

An alternate technique to hand-coding control strategies is highly desirable. Both

genetic programming (GP) and genetic algorithms (GA) are such techniques; they

have the potential to remove the burden of programming from humans. This section

will compare the two techniques and discuss their use.

Mobile robot path planning and motion control has tended to be treated indepen-

dently in the literature. Path planning is often a slow process that assumes that the

current state of the world is static and that the time taken to create the plan will not

have significant effects on the performance of the robot. Motion control, in contrast,

assumes that a path plan exists and that the motion controller has to follow the plan

as closely as possible. This is, however, difficult to implement in a real system, as

combining path planning with motion control in a fast dynamic environment tends

to be unsuccessful, as the path planned does not reflect the current state of the world.

10.2 Mechanical Sector 321

Once a new path planning and motion control technique is developed it is applied

to a real robot system. However, tuning the system tends to be a tedious process.

Auto-tuning techniques are essential for quick development and deployment. GP

and GAs have been applied to various robotic control applications.

10.2.2.1 Genetic Programming

Two independently driven wheels control the robot design that was simulated. Thus:

if the two wheels are made to go at the same speed the robot will move straight

ahead; if the wheel speeds are slightly different, the robot will turn in an arc to

the side of the slower moving wheel, eventually coming around full circle; and if

the wheel speeds are the same but their direction different, the robot will pivot on

the spot. Equation 10.1 describes the robot behaviour formally.

⎡

⎣

1 0 0

0 1 0

0 0 d
2π

⎤

⎦

⎡

⎢

⎢

⎣

dx
dt
dy
dt
dθ
dt

⎤

⎥

⎥

⎦

=

⎡

⎢

⎣

1
2

cos θ 1
2

cos θ

1
2

sin θ 1
2

sin θ
−1
2

1
2

⎤

⎥

⎦

[

VL

VR

]

(10.1)

A natural design for a low-level control strategy is to produce velocity setpoints for

each wheel. Genetic programming allows for such a design. Canonical GP evolves

individuals that are a single program tree, but if each individual was made up of

two trees (where each tree produced a wheel setpoint) it would naturally produce

robot-controlling code.

The genetic operators can be easily extended. The crossover operation requires

two subtrees from two individuals. After normal selection of the individuals, one of

the two trees is randomly selected from each of the two individuals. Normal selec-

tion of subtrees occurs from the selected trees. The mutation operation requires just

one individual’s tree. Having selected the individual, the tree-to-mutate is randomly

chosen from the two available trees. Other operations can be extended similarly.

With the appropriate structure in place, the focus now moves to gene selection. It

was desired that the least amount of human assistance be given and in this vain, only

very basic genes were chosen:

• the coordinates of the robot (robot x and robot y),

• the coordinates of the ball (ball x and ball y),

• a number of random constants from < 001 >1 to 1,

• arithmetic operations (add, subtract, etc.),

• trigonometric operations (sine, cosine), and

• an error-protected logarithmic function (log).

The control-strategy problem, based on a robot soccer simulator, was to learn to

follow a ball. The success of an individual was initially measured by allowing the

simulator to run for a short amount of time and taking the distance from the final

ball position to the final robot position. The smaller the distance the greater the

performance on behalf of the robot. The genetic programming kernel was left to

322 10 Applications of Genetic Algorithms

work through the generations, and when finished we studied the best individual of

each generation. This process generated individuals that clearly improved their ball-

following ability, however their performance was unimpressive. In light of Koza’s

work and to improve performance, two more functions were added to the gene pool:

• the difference between the ball’s and robot’s x-coordinates (delta x), and

• the difference between the ball’s and robot’s y-coordinates (delta y).

Along with the addition of the new genes, the fitness test was altered. Rather than

a single-time distance measurement (i.e. at the end of the simulation the distance

between the ball and the robot was measured) we introduced a multi-time mea-

surement. For each frame of the simulation (which ran at 33 frames a second) the

distance from ball to robot was measured; these distances were summed to give a

final fitness scored. Again, the smaller the value the better the performance, however

it was impossible to achieve a zero-value fitness score. These changes had a positive

effect on the individuals’ ball-following ability. Figure 10.1 shows an example of

the best-of-run individual executing its evolved code to follow the ball. (The run

went to 50 generations with a population of 500.) Although it is far from an efficient

ball-follower, it does demonstrate an interesting trait: when it comes very close to

the ball it describes very tight circles—a behavior that optimizes the performance

measure.

10.2.2.2 Genetic Algorithms

Genetic algorithms are quite different to genetic programming. The use of the pro-

cess was not as intuitive as GP because rather than immediately producing velocity

setpoints, the GA needed an extra layer of human intervention, a gain-scheduled

controller. The GA system produced individuals that generated the required velocity

set-points via the control formulae given in (10.2).

Fig. 10.1 The best-of-run

individual found using

genetic programming

10.2 Mechanical Sector 323

VL = Kd × distance +
K A

100
× angleError

VR = Kd × distance −
K A

100
× angleError (10.2)

Where distance is the distance of the robot to the target, while angleError is the

angular difference between the direction from the robot to the target and the heading

of the robot. These formulae represent considerable domain knowledge given to the

GA system in comparison to that given to GP. For the genetic algorithm system

the problem environment was made simpler. From an arbitrary position, the robot

was given a target (the origin) and a small amount of time with which to reach it.

The success of the robot was measured by the robot’s final distance from the target

position. Note that this is a significantly easier problem and that is effectively the

same as that posed for the GP system, except that the ball is “frozen”, unable to be

knocked away by the robot.

The population size used was 40 while the number of generations was 20. Each

individual consisted of 11 K A gains and 7 Kd gains, (18 in total). Each gain was

coded as a 20 bit precision gene. Each individual was evaluated from 20 random

positions around the goal position. The sum of the distances from the target position

was used as the fitness function. There was rapid convergence within 10 generations

to an almost perfect solution. Figure 10.2 shows the performance of the best of run

Fig. 10.2 A plot of performance of the best-of-run individual found using genetic algorithms

324 10 Applications of Genetic Algorithms

individual after the 20 generations of learning. The performance is good; the robot

reaches the target position within the simulation time, however it is not optimal.

10.2.2.3 Comparison

The results of the GP and GA evaluations showed that both techniques have merits in

developing and auto-tuning mobile robot controllers. Superficially, the GA solution

seems to be better than the GP solution, but this is due to the different problem

scenarios and evaluation functions used. The GA is evaluated on the distance to the

target position at the end of the simulation time, while the GP is evaluated on the

total distance from the ball. The target position is fixed while the ball can be hit

away, so the GP solution is trying to get near the ball while actually avoiding hitting

it further away.

It can be seen that the two approaches vary fundamentally in the amount and

type of information required to setup the infrastructure for applying the techniques.

The GP technique required only the information that two output values need to be

provided (the wheel velocity set-points) and the processing that follows is automatic.

Beyond ensuring there are suitable atoms available (such as delta x and delta y),

the GP technique naturally searches the space of possible solutions. If the search

space is too large (for instance, neglecting to provide the atoms delta x and delta

y but rather only the absolute robot and target positions) the increase in problem

complexity means that finding the solution can become intractable.

The GA technique on the other hand requires a transformation from the genetic

representation to a computational execution system. The gain-scheduled controller

that was used contains a controller that can solve the problem if a correct set of

gains is given. The complexity of the search space is much smaller than that of the

GP problem.

The evaluations presented in this section show that GAs are a more natural tech-

nique for including knowledge that already exist in a domain as this can be directly

coded in the transformation of the genetic code to the implementation. With GP, the

only natural position for including prior knowledge is in the atoms that are available;

while it is difficult to force the GP to progress in a direction that is better structured

even when more domain knowledge exists.

10.3 Electrical Engineering

10.3.1 Genetic Algorithms in Network Synthesis

Digital network synthesis has been developed to a point where most designs can

be generated automatically on a computer. A specification written in a hardware

description language such as VHDL or Verilog can be compiled into a form suitable

10.3 Electrical Engineering 325

for programming a FPGA or fabricating a full custom integrated circuit, with little

or no human intervention.

The situation is very different for analogue network synthesis, however. With

the exception of the limited number of problems for which formal design solutions

exist, there are no automatic design tools available for analogue networks. As a

consequence most analogue network design is still performed manually by skilled

engineers. Although the analogue part of most electronic systems is often a small

part of the overall system, it is usually the most expensive part in terms of design

effort. Recently there have been attempts to automate the analogue network de-

sign process by the use of Genetic Algorithms (GAs) in conjunction with high-level

statements of the desired response.

There is no reason in principle why the network topology and the component

values should not be chosen using entirely different methods. Clearly there is a

natural hierarchy: the network topology must be determined before the compo-

nent values can be selected. Nevertheless, these two operations can be performed

separately, and different optimization techniques can be used. Specifically, the net-

work topology can be optimized using GAs; for each network topology generated

the component values can then be determined by numerical optimization. The per-

formance of the numerically optimized network is returned as the fitness function to

the GA.

For optimization problems involving well-behaved objective functions dependent

on the values of fixed number of variables, it is well established that numerical

optimization methods converge much faster and involve fewer objective function

evaluations than GAs. It seems likely (although it cannot be guaranteed) that a

hybrid approach will be more efficient than a GA generating both structure and

values.

Of course no optimization method guarantees to find the global optimum, but if

this hybrid approach is to be successful the numerical optimization of the component

values should achieve a high proportion of results close to the global optimum. This

section aims to show that, at least for one network topology, this is in fact the case.

The performance of the hybrid GA will be illustrated by applying it to a filter design

problem applying it to an established filter design problem.

10.3.1.1 Component Value Selection by Numerical Optimization

The problem of designing a normalised sharp cut-off lowpass filter with the follow-

ing specification will be considered:

Pass-band edge: 1.0 rad/s

Stop-band edge: 1.5 rad/s

Maximum pass-band gain: -6 dB

Minimum pass-band gain: -7 dB

Maximum stop-band gain: -52 dB

326 10 Applications of Genetic Algorithms

Fig. 10.3 Equally terminated

ladder filter

A formal design procedure exists for this problem: a 5th order normalized low-pass

elliptic transfer function is implemented as an equally terminated ladder filter as

shown in Fig. 10.3. Figure 10.4 shows the corresponding frequency response.

The network topology shown in Fig. 10.3 can be used to test the effectiveness

of numerically optimizing the component values. First one component (Ra) is se-

lected and given a value of 1.0, and the other components are assigned random

values in the range 0.0 to 1.0. Then the component values (except Ra) are optimized

numerically against an objective function incorporating the specification using a

quasi-Newton optimization algorithm based on the Davidon-Fletcher-Powell (DFP)

method. In 1000 trials with random initial sets of component values the results were

fully compliant with the specification in 84% of cases.

DFP therefore failed to produce fully compliant designs in only a small fraction

of attempts for this network topology. Using instead a GA to select the component

values could not achieve a much higher success rate, and would probably be much

less efficient in terms of computational effort. Of course, setting the pass-band edge

to 1.0 rad/s and choosing Ra = 1.0 leads to the component values clustering around

1.0, and this makes it more likely that the numerical optimization will succeed.

Fig. 10.4 Frequency response corresponding to equally terminated ladder filter

10.3 Electrical Engineering 327

Fortunately any frequency domain design problem can be transformed to a response

centered 1.0 rad/s, and impedance levels can be scaled appropriately.

10.3.1.2 Network Synthesis Using the Hybrid Genetic Algorithm

It has been established, at least for a simple filter synthesis, that only a small propor-

tion of potentially successful network topologies are likely to be rejected because of

the failure of numerical optimization to find a near-global minimum. Consequently a

network synthesis method based on the use of a GA to select topologies, followed by

numerical optimization to determine component values, appears to be an attractive

option.

To test the effectiveness of the hybrid GA network synthesis program, it was

used to design a passive LCR filter to the specification given above. The basic

network synthesis program incorporates no design rules and simply works towards

satisfying the specified design goals; it is therefore the complete antithesis of an

“expert system”. Applied to this filter design problem it automatically generates a

fully-compliant LCR network, but one which may be sub-optimal with respect to

performance factors (such as component value sensitivity) that are not included in

the design goals. Of course the design goals can be modified to include these factors,

but this would result in a significantly increased computational effort.

In the case of frequency-domain filters it is well known that an equally terminated

network provides low component value sensitivity. The synthesis program was

therefore constrained to generate only LC networks between equal value termination

resistances. A population size of 80 networks was used, and the program was run for

100 generations. This took around 4 hours on a PC (300 MHz Pentium II) and the

synthesized network is shown in Fig. 10.5. The corresponding frequency response

is shown in Fig. 10.6.

Significantly the synthesized network is fully compliant with the specification,

while using fewer components than the filter resulting from the traditional formal

design process based on an elliptic response. The synthesized filter has a 5th-order

response with one pair of imaginary zeros; by contrast the elliptic filter has a 5th-

order response, but two pairs of imaginary zeros. The number of imaginary zeros in

an elliptic response is determined by the filter order, but in networks synthesized us-

Fig. 10.5 Synthesized network

328 10 Applications of Genetic Algorithms

Fig. 10.6 Frequency response corresponding to synthesized network

ing GAs there is no such constraint. It is this flexibility which allows the component

count to be reduced below that obtained using the traditional design process. Nu-

merical optimization can be used to determine the component values for a network

configuration created by a GA. This hybrid GA approach to network synthesis has

successfully been applied to an existing filter design problem and has been shown

to have significant advantages over a pure GA approach. Networks synthesized for

this design problem are more economical than a filter designed by hand.

In principle the hybrid GA approach can be applied to any network design prob-

lem for which a means of evaluating potential networks against the design goals is

available. Computational effort is the only limiting factor.

10.3.2 Genetic Algorithm Tools for Control Systems Engineering

There has been widespread interest from the control community in applying the

Genetic Algorithm (GA) to problems in control systems engineering. Compared to

traditional search and optimization procedures, such as calculus-based and enumer-

ative strategies, the GA is robust, global and generally more straightforward to apply

in situations where there is little or no a priori knowledge about the process to be

controlled. As the GA does not require derivative information or a formal initial

estimate of the solution region and because of the stochastic nature of the search

mechanism, the GA is capable of searching the entire solution space with more

likelihood of finding the global optimum.

GAs have been shown to be an effective strategy in the offline design of control

systems by a number of practitioners. MATLAB has become a de-facto standard

10.3 Electrical Engineering 329

in Computer Aided Control System Design (CACSD) for the control engineer. The

complete design cycle from modeling and simulation through controller design is

addressed with a wide range of toolboxes, notably the Control System and Opti-

mization Toolboxes, and the SIMULINK nonlinear simulation package along with

extensive visualization and analysis tools. In addition, MATLAB has an open and

extensible architecture allowing individual users to develop further routines for their

own applications. These qualities provide a uniform and familiar environment on

which to build genetic algorithm tools for the control engineer. This section de-

scribes the development and implementation of a Genetic Algorithm Toolbox for

the MATLAB package and provides examples of a number of application areas in

control systems engineering.

Whilst there exist many good public-domain genetic algorithm packages, such as

GENESYS and GENITOR, none of these provide an environment that is immedi-

ately compatible with existing tools in the control domain. The MATLAB Genetic

Algorithm Toolbox aims to make GAs accessible to the control engineer within the

framework of an existing CACSD package. This allows the retention of existing

modelling and simulation tools for building objective functions and allows the user

to make direct comparisons between genetic methods and traditional procedures.

10.3.2.1 Data Structures

MATLAB essentially supports only one data type, a rectangular matrix of real or

complex numeric elements. The main data structures in the GA Toolbox are chromo-

somes, phenotypes, objective function values and fitness values. The chromosome

structure stores an entire population in a single matrix of size Nind × Lind, where

Nind is the number of individuals and Lind is the length of the chromosome struc-

ture. Phenotypes are stored in a matrix of dimensions Nind × Nvar where Nvar is the

number of decision variables. An Nind × Nobj matrix stores the objective function

values, where Nobj is the number of objectives. Finally, the fitness values are stored

in a vector of length Nind. In all of these data structures, each row corresponds to a

particular individual.

10.3.2.2 Toolbox Structure

The GA Toolbox uses MATLAB matrix functions to build a set of versatile routines

for implementing a wide range of genetic algorithm methods. In this section we

outline the major procedures of the GA Toolbox.

Population Representation and Initialisation: crtbase, crtbp, crtrp

The GA Toolbox supports binary, integer and floatingpoint chromosome representa-

tions. Binary and integer populations may be initialised using the Toolbox function

to create binary populations, crtbp. An additional function, crtbase, is provided that

330 10 Applications of Genetic Algorithms

builds a vector describing the integer representation used. Real-valued populations

may be initialised using crtrp. Conversion between binary and real-values is pro-

vided by the routine bs2rv that also supports the use of Gray codes and logarithmic

scaling.

Fitness Assignment: ranking, scaling

The fitness function transforms the raw objective function values into non-negative

figures of merit for each individual. The Toolbox supports the offsetting and scal-

ing method of Goldberg and the linear-ranking algorithm. In addition, non-linear

ranking is also supported in the routine ranking.

Selection Functions: reins, rws, select, sus

These functions select a given number of individuals from the current population,

according to their fitness, and return a column vector to their indices. Currently

available routines are roulette wheel selection, rws, and stochastic universal sam-

pling, sus. A high-level entry function, select, is also provided as a convenient in-

terface to the selection routines, particularly where multiple populations are used.

In cases where a generation gap is required, i.e. where the entire population is not

reproduced in each generation, reins can be used to effect uniform random or fitness-

based reinsertion.

Crossover Operators: recdis, recint, reclin, recmut, recombin, xovdp, xovdprs,

xovmp, xovsh, xovshrs, xovsp, xovsprs

The crossover routines recombine pairs of individuals with given probability to

produce offspring. Single-point, double-point and shuffle crossover are implemented

in the routines xovsp, xovdp and xovsh respectively. Reduced surrogate crossover

is supported with both single-, xovsprs, and double-point, xovdprs, crossover and

with shuffle, xovshrs. A general multi-point crossover routine, xovmp, that supports

uniform crossover is also provided. To support real-valued chromosome represen-

tations, discrete, intermediate and line recombination are supplied in the routines,

recdis, recint and reclin respectively. The routine recmut performs line recombina-

tion with mutation features. A high-level entry function to all the crossover operators

supporting multiple subpopulations is provided by the function recombin.

Mutation Operators: mut, mutate, mutbga

Binary and integer mutation are performed by the routine mut. Real-value mutation

is available using the breeder GA mutation function, mutbga. Again, a high-level

entry function, mutate, to the mutation operators is provided.

10.3 Electrical Engineering 331

In the forth coming section, an example is used to illustrate a number of features

of the GA that make it potentially attractive to the control engineer. The example

deals with the design of an aerospace control system demonstrates how GAs can

be used to search a range of controller structures to satisfy a number of competing

design criteria.

MIMO Controller Design

This design example demonstrates how GAs may be used to select the controller

structure and suitable parameter sets for a multivariable system. The system is

a propulsion unit for an Advanced Short Take-Off, Vertical Landing (ASTOVL)

aero-engine, shown in Fig. 10.7. It is required that the pilot have control of the

fore-aft differential thrust (XDIFF) and the total engine thrust (XTOT). The inputs

to the system are XTOTD and XDIFFD. The design problem is to find a set of

pre-compensators that satisfy a number of time response specifications whilst mini-

mizing the interaction between the loops.

The time domain performance requirements, in response to a step in demand at

one of the inputs, are

i. Maximum overshoot ≤ 10%

ii. 70% rise time ≤ 0.35 seconds

iii. 10% settling time ≤ 0.5 seconds at the associated output.

The amount of interaction, or cross-coupling, between modes is measured as

∞
∫

0

(XT OT)2dt (10.3)

when exited by a step input to XDIFFD, and vice-versa, and should be less than 0.05

for this design example. Thus, a total of eight design objectives must be satisfied.

The ASTOVL propulsion unit is modelled directly in the SIMULINK package

as shown in Fig. 10.7. To simplify the problem, pre-compensators are selected to

be either first or second order or simple gains and pre-compensator parameters are

represented using real values. Using a structured chromosome representation, it is

possible to allow the free parameters for each possible recompensator to reside in all

individuals, although only certain parameter sets are active in any given individual

at any time. The active parts of a chromosome are controlled by high-level genes in

an individuals representation. Thus, an individual may contain a number of possibly

good representations at any time.

In order to solve this problem using a simple GA, the design objectives are refor-

mulated as a single minimax function thus:

f = max
i

(

Fi − Goali

Goali

)

(10.4)

332 10 Applications of Genetic Algorithms

F
ig

.
1
0
.7

S
IM

U
L

IN
K

m
o
d
el

o
f

th
e

A
S

T
O

V
L

p
ro

p
u
ls

io
n

u
n
it

10.3 Electrical Engineering 333

Fig. 10.8 Response of best ASTOVL controller found

where Goali are the design goals and Fi are the individual objective functions asso-

ciated with each design criteria.

Using a population size of 40, the GA was run for 100 generations. A list of

the best 50 individuals was continually maintained during the execution of the GA

allowing the final selection of controller to be made from the best structures found

by the GA over all generations.

Figure 10.8 shows the response of the best controller found by the GA. In this

case, all of the pre-compensator structures were of first order complexity and the

design objectives where over obtained by a factor of 38.18%.

The GA approach has the clear advantage over conventional optimization ap-

proaches in that it allows a number of controller structures to be examined in a

single design cycle. The final choice of controller being made from a selection of

different structures and parametric values. A minimax approach to this multiobjec-

tive problem has been described here that is simple to formulate and requires no

special fitness assignment or selection methods.

334 10 Applications of Genetic Algorithms

10.3.3 Genetic Algorithm Based Fuzzy Controller for Speed

Control of Brushless DC Motor

Brushless DC motors are reliable, easy control, and inexpensive. Due to their

favorable electrical and mechanical properties, high starting torque and high effi-

ciency, the BLDCM are widely used in most servo applications such as actuation,

robotics, machine tools, and so on. The design of the BLDCM servo system usually

requires time consuming trial and error process, and fail to optimize the perfor-

mance. In practice, the design of the BLDCM drive involves a complex process such

as model, devise of control scheme, simulation and parameters tuning. Usually, the

parameters tuning for a servo system involves a sophisticated and tedious process

and requires an experienced engineer in doing so. Application of intelligent opti-

mization technique in tuning critical servo parameters remains an interesting and

important issue to be further studied. Many sections have presented different design

approaches and control structures in designing the digital servo controller. The PI

controller can be suitable for the linear motor control. However, in practice, many

non-linear factors are imposed by the driver and load, the PI controller cannot be

suitable for non-linear system. Fuzzy control is a versatile and effective approach to

deal with the non-linear and uncertain system. Even if a fuzzy controller (FLC) can

produce arbitrary non-linear control law, the lack of systematic procedure for the

configuration of its parameters remains the main obstacle in practical applications.

In FLC for BLDCM, the parameters of the FLC cannot be auto-tuning and not be

suitable for difference conditions.

Recently, the design of FLC has also been tackled with genetic algorithm (GA).

These are optimization algorithm performing a stochastic search by iteratively pro-

cessing “populations” of solutions according to fitness. In control applications, the

fitness is usually related to performance measures as integral error, setting time, etc.

GA based FLC have been used in induction motor control system design successful,

but the application in BLDCM servo system is few. The GA based FLC has been

applied to the control system of BLDCM by using digital signal processor (DSP)

TMS320LF2407A and controller improves the performance and the robustness of

the BLDCM servo system.

10.3.3.1 BLDCM Servo System

Figure 10.9 shows the block diagram of the configuration of fuzzy model control

system for BLDCM. The inner loop of Fig. 10.9 limits the ultimate current and

ensures the stability of the servo system. The outer loop is designed to improve the

static and dynamic characteristics of the BLDCM servo system. In this section, a

fuzzy control is used to make the outer loop more stable. To make the fuzzy con-

troller more robust, this section presents the genetic algorithm to optimize the fuzzy

rules, and auto-tuning the coefficient of the controller. Figure 10.10 is the control

configuration of the BLDCM servo system. The TMS320LF2407A DSP is used to

generate the PWM and an IR2130 is used to drive the MOSFET. The A/D Unit is

10.3 Electrical Engineering 335

used to sample the current of the motor. The position signal of the rotor is gained

by the Capture Unit of the DSP, and the speed value is calculated from the position

information.

Fuzzy Control

Fuzzy logic provides an approximate effective mean of describing the behavior of

some complex system. Unlike traditional logic type, fuzzy logic aims to model the

imprecise modes of human reasoning and decision making, which are essential to

our ability to make rational decisions in situations of uncertainty and imprecision.

Figure 10.9 shows the block diagram of speed control system using a fuzzy logic

controller.

The most significant variables entering the fuzzy logic speed controller have been

selected as the speed error and its time derivative. The output this controller is U.

The two input variables e (speed error) and ec (change in error) are calculated at

each sampling time as

e(k) = n∗(k) − n(k)

ec(k) = e(k) − e(k − 1) (10.5)

where n∗(k) is the reference speed that time, and n(k) is the actual rotor speed at

that sampling.

The FLC consists of three stages: fuzzy, rule execution and de-fuzzy operations.

Fuzzy Operation

In this stage, the crisp variables are converted into fuzzy variables as

Fig. 10.9 Configuration of fuzzy model control system for BLDCM

336 10 Applications of Genetic Algorithms

Fig. 10.10 Control configuration of the BLDCM

E = Kee

EC = Kecec

U = u/Ku (10.6)

In (10.6), Ke and Kec are the proportion coefficients. They transform the inputs to

universe of fuzzy sets. And use Ku to transform the output of the fuzzy control to

actual control value. These transformations are closely according to the prescribed

membership functions associate with the control variables, the membership func-

tions have been chosen with triangular shapes as shown in Fig. 10.11.

The universe of discourse of input variables and ec and output U are divided from

−6 to +6. Each universe of discourse is divided into seven fuzzy sets: NB, NM, NS,

Z, PS, PM and PB. Each fuzzy variable is a member of the subsets with a degree of

between 0 (non member) and 1 (full member) as

µA(x) =
{

1 i f µA ∈ A

0 i f µA �∈ A
(10.7)

Fig. 10.11 The shape of

membership function for

fuzzy logic

10.3 Electrical Engineering 337

Rule Execution

The fuzzy rules are actually experience rules based on expertise or operators’ long-

time experiences. Table 10.1 shows the fuzzy rules. The variables are processed by

an inference engine executes 49 rules (7∗7). Each rule is expressed in the form as,

If e is NB and ec is PM then U is PM

If e is PM and ec is NB then U is PS and so on.

Table 10.1 The fuzzy linguistic rule table

De-fuzzy Operation

In this stage, a crisp value of the output variable U is obtained by using the de-fuzzy

method, in which the centroid of each output membership function for each rule is

first evaluated. The final output is then calculated as the average of the individual

Centroid.

10.3.3.2 Genetic Algorithms

GA is a stochastic optimization algorithm is originally motivated by the mecha-

nisms of natural selection and evolutionary genetics. The GA serves as a computing

mechanism to solve the constrained optimization problem resulting from the motor

control design where the genetic structure encodes some sort of automation. The

basic element processed by a GA is a string formed by concatenating sub-strings,

each of which is a binary coding (if binary GA was adopted) of a parameter. Each

string represents a point in the search space. The Selection, Crossover and Mutation

are the main operations of GA. Selection direct the search of Gas toward the best

individual. In the process, strings with high fitness receive multiple copies in the

338 10 Applications of Genetic Algorithms

Fig. 10.12 Coding method for GA

next generation while strings with low fitness receive fewer copies or even none

at all.

Crossover can cause to exchange the property of any two chromosomes via ran-

dom decision in the mating pool and provide a mechanism to product and match the

desirable qualities through the crossover.

Although selection and crossover provide the most of the power skills, but the

area of the solution will be limited. Mutation is a random alternation of a bit in the

string assists in keeping delivery in the population.

The optimization step of GA is follow:

A. Code the parameter

B. The initialization of the population

C. Evaluate the fitness of each member

D. Selection

E. Crossover

F. Mutation

G. Go to step B until find the optimum solution.

GA based Fuzzy Controller

Since the fuzzy inference is time-consuming, and the DSP used in motor control is

speed-limited, so real-time inference method cannot be chosen. Here by using the

synthetic fuzzy inference algorithm, the computer makes a query table off-line in

advance and stores it in the memory of DSP. In a practical control, the control value

can be obtained according to the query table, and tuning the Ke, Kec and KU on-line.

The design of the fuzzy controller is base on the genetic algorithm. Figure 10.12

shows the coding formulation when using GA to optimize the fuzzy controller. Here

using 10 bits binary code to denote one fuzzy inference rule. The first binary code is

the flag whether the rule is used. The 2∼4, 5∼7 and 8∼10 refer to the error, change

in error and the output variable. And001,010,011,100,101,110 and 111 refer to NB,

NM, NS, ZE, PS, PM and PB respectively.

For example, the first rule of Fig. 10.12 shows that if e is PB and ec is NB then

Table 10.2 The parameters of genetic algorithm

10.3 Electrical Engineering 339

U is PM, and the first bit binary code “0” indicate that this rule will be eliminated

through optimization. In order to improve the speed of the optimization, this sec-

tion chooses 30 candidates as the initialization population, and these candidates are

proved to be able to make the motor run steadily. Table 10.2 shows the parame-

ter of GA used in this section, and Table 10.3 shows the fuzzy rules intimidated

through GA method. Through the optimization, 6 rules are eliminated and 4 rules

are optimized.

On-Line Tuning

In order to improve the dynamic performance of the BLDCM servo system, the

elements of the query table need to be adjusted according to the input variables. To

do this, this section adjusts the coefficients (Ke, Kec and KU) to tuning the control

system on-line. The basic principle is the “rough adjustment” and “accurate adjust-

ment”, namely, constantly adjusting the coefficients according to actual e, ec. If the

e and ec are large, Ke and Kec should be reduced while KU should be increased

because the main objective is diminishing the errors. When e and ec are small,

because the main aim is to diminish the overshoot and steady-state error, Ke and

Kec should be increased to increase the resolution of eand ec while KU should be

reduced to obtain small control value to reduce the overshoot and steady-state error.

The adjust function as follow

Ke =

⎧

⎨

⎩

Ke0 + K1 × e, |e| ≤ emax

2

Ke0 + K1 × emax

2
, |e| >

emax

2

Kec =

⎧

⎨

⎩

Kec0 + K1 × e, |e| ≤ emax

2

Kec0 + K1 × emax

2
, |e| >

emax

2

Ku =

⎧

⎨

⎩

Ku0 + K1 × e, |e| ≤ emax

2

Ku0 + K1 × emax

2
, |e| >

emax

2

(10.8)

In order to verify the validity of the proposed controller, conventional fuzzy controller

is compared with GA based fuzzy controller. In the case of changing motor, all

the system parameters are varied. Thus, GA fuzzy controller will be adaptable to

uncertain control parameters.

A simulation program is designed to compare the stable and dynamic perfor-

mances. Figure 10.13 shows the speed curve when the motor speed is 2100r/m for

GA based fuzzy controller.

Figure 10.13 shows that GA based fuzzy controller has less overshoot and more

stable performance.

This section simulates the situation when the load is change, Fig. 10.14 shows

the simulation result when using GA based fuzzy controller. GA based fuzzy

controller when the load change shows that fuzzy controller has good dynamic

performance.

340 10 Applications of Genetic Algorithms

Table 10.3 The linguistic rule table after optimization

Fig. 10.13 Rotate speed simulation curve when adopting fuzzy controller based on GA

This section uses the GA based fuzzy controller as the speed controller of the

BLDCM servo system. This method is more robust and can improve dynamic

performance of the system. The off-line adjust optimize the fuzzy rules, and the

on-line tuning of the parameters of the fuzzy controller make the controller has good

dynamic and robust performance. Table 10.4 gives the specifications of BLDCM.

10.4 Machine Learning 341

Fig. 10.14 Rotate speed simulation result using Fuzzy controller based on GA when the load

10.4 Machine Learning

10.4.1 Feature Selection in Machine learning using GA

In recent years there has been a significant increase in research on automatic image

recognition in more realistic contexts involving noise, changing lighting conditions,

and shifting viewpoints. The corresponding increase in difficulty in designing effec-

tive classification procedures for the important components of these more complex

recognition problems has led to an interest in machine techniques as a possible strat-

egy for automatically producing classification rules. This section describes part of

a larger effort to apply machine learning techniques to such problems in an attempt

to generate and improve the classification rules required for various recognition

tasks.

The immediate problem attacked is that of texture recognition in the context of

noise and changing lighting conditions. In this context standard rule induction sys-

tems like AQ15 produce sets of classification rules which are sub-optimal in two

respects. First, there is a need to minimize the number of features actually used for

classification, since each feature used adds to the design and manufacturing costs as

well as the running time of a recognition system. At the same time there is a need

Table 10.4 Parameters of motor

342 10 Applications of Genetic Algorithms

to achieve high recognition rates in the presence of noise and changing environ-

mental conditions. This section describes an approach being explored to improve

the usefulness of machine learning techniques for such problems. The approach

described here involves the use of genetic algorithms as a “front end” to traditional

rule induction systems in order to identify and select the best subset of features to

be used by the rule induction system. The results presented suggest that genetic

algorithms are a useful tool for solving difficult feature selection problems in which

both the size of the feature set and the performance of the underlying system are

important design considerations.

10.4.1.1 Feature Selection

Since each feature used as part of a classification procedure can increase the cost and

running time of a recognition system, there is strong motivation within the image

processing community to design and implement systems with small feature sets.

At the same time there is a potentially opposing need to include a sufficient set of

features to achieve high recognition rates under difficult conditions. This has led to

the development of a variety of techniques within the image processing community

for finding an “optimal” subset of features from a larger set of possible features.

These feature selection strategies fall into two main categories.

The first approach selects features independent of their effect on classification

performance. The difficulty here is in identifying an appropriate set of transforma-

tions so that the smaller set of features preserves most of the information provided

by the original data and are more reliable because of the removal of redundant and

noisy features. The second approach directly selects a subset “d” of the available

“m” features in such a way as to not significantly degrading the performance of the

classifier system. The main issue for this approach is how to account for dependen-

cies between features when ordering them initially and selecting an effective subset

in a later step. The machine learning community has only attacked the problem of

“optimal” feature selection indirectly in that the traditional biases for simple classi-

fication rules (trees) leads to efficient induction procedures for producing individual

rules (trees) containing only a few features to be evaluated. However, each rule

(tree) can and frequently does use a different set of features, resulting in much

larger cumulative features sets than those typically acceptable for image classifi-

cation problems. This problem is magnified by the tendency of traditional machine

learning algorithms to overfit the training data, particularly in the context of noisy

data, resulting in the need for a variety of ad hoc truncating (pruning) procedures

for simplifying the induced rules (trees).

The conclusion of these observations is that there is a significant opportu-

nity for improving the usefulness of traditional machine learning techniques for

automatically

10.4 Machine Learning 343

10.4.1.2 Feature Selection Using GAs

Genetic algorithms (GAs) are best known for their ability to efficiently search large

spaces about which little is known a priori. Since genetic algorithms are relatively

insensitive to noise, they seem to be an excellent choice for the basis of a more robust

feature selection strategy for improving the performance of our texture classification

system.

10.4.1.3 Genetic Algorithms

Genetic algorithms (GAs), a form of inductive learning strategy, are adaptive search

techniques which have demonstrated substantial improvement over a variety of

random and local search methods. This is accomplished by their ability to exploit

accumulating information about an initially unknown search space in order to bias

subsequent search into promising subspaces. Since GAs are basically a domain inde-

pendent search technique, they are ideal for applications where domain knowledge

and theory is difficult or impossible to provide.

The main issues in applying GAs to any problem are selecting an appropriate rep-

resentation and an adequate evaluation function. In the feature selection problem the

main interest is in representing the space of all possible subsets of the given feature

set. Then, the simplest form of representation is binary representation where, each

feature in the candidate feature set is considered as a binary gene and each individual

consists of fixed-length binary string representing some subset of the given feature

set. An individual of length l corresponds to a l-dimensional binary feature vector

X, where each bit represents the elimination or inclusion of the associated feature.

Then, xi = 0 represents elimination and xi = 1 indicates inclusion of the i th feature.

10.4.1.4 Evaluation function

Choosing an appropriate evaluation function is an essential step for successful ap-

plication of GAs to any problem domain. The process of evaluation is similar to the

regular process. The only variation was to implement a more performance-oriented

fitness function that is better suited for genetic algorithms. In order to use genetic

algorithms as the search procedure, it is necessary to define a fitness function which

properly assesses the decision rules generated by the AQ algorithm. Each testing

example is classified using the AQ generated rules as described before. If this is the

appropriate classification, then the testing example has been recognized correctly.

After all the testing examples have been classified, the overall fitness function will

be evaluated by adding the weighted sum of the match score of all of the correct

recognitions and subtracting the weighted sum of the match score of all of the in-

correct recognitions, i.e.

344 10 Applications of Genetic Algorithms

Fig. 10.15 The improvement

in feature set fitness over time

F =
n

∑

i=1

Si
∗ Wi −

m
∑

j=n+1

S j
∗ W j (10.9)

The range of the value of F is dependent on the number of testing events and their

weights. In order to normalize and scale the fitness function F to a value acceptable

for GAs, the following operations were performed:

Fitness = 100 − [(F/TW)∗100] (10.10)

where:

TW = total weighted testing examples =
m

∑

i=1

Wi

As indicated in the above equations, after the value of F was normalized to the

range [-100, 100], the subtraction ensures that the final evaluation is always positive

(the most convenient form of fitness for GAs), with lower values representing better

classification performance.

10.4.1.5 Performance Evaluation

In performing the evaluations reported here, the same AQ15 system was used for

rule induction. In addition, GENESIS, a general purpose genetic algorithm program,

was used as the search procedure (replacing Sequential Backward Selection (SBS)).

In the GA-based approach presented here, equal recognition weights (i.e., W=1)

were assigned to all the classes in order to perform a fair comparison between the

two presented approaches. The evaluations were performed on the texture images.

The results are summarized in Figs. 10.15 and 10.16 and provide encouraging sup-

port for the presented GA approach.

Figure 10.15 shows the steady improvement in the fitness of the feature sub-

sets being evaluated as a function of the number of trails of the genetic algo-

rithm. This indicates very clearly that the performance of rule induction systems

(as measured by recognition rates) can be improved in these domains by appropri-

ate feature subset selection. Figure 10.16 shows that the number of features in the

best feature set decreased for both approaches. However, the feature subset found

10.5 Civil Engineering 345

Fig. 10.16 The number of

features used by the best

individual

by statistical measures was substantially smaller than that found by the GA-based

system. Figure 10.15 indicates that this was achieved at the cost of poorer perfor-

mance. The advantage of the GA approach is to simultaneously improve both figures

of merit.

10.5 Civil Engineering

10.5.1 Genetic Algorithm as Automatic Structural Design Tool

The simple GA while powerful, is perhaps too general to be efficient and robust

for structural design problems. First, function (or, fitness) evaluations are compu-

tationally expensive since they typically involve finite element analysis. Second,

the (feasible) design space is at times disjointed with multiple local minima. Third,

the design space can be a function of boolean, discrete and continuous design vari-

ables. The use of GA to find the optimal solution(s) of engineering design problems

is still an open research area. Experience with GA has indicated that more often

than not, tuning the GA strategy and parameters can lead to more efficient solution

process for a class of problems. Researchers have proposed modifications, such as

parameters-pace size adjustment and adaptive mutation for continuous problems,

which focus on refining the searching space adaptively, niching genetic algorithms

that emphasizing on repeating the fitter individuals and special modification for

construction time-cost optimization problems. Research has also made it possible to

combine genetic algorithms and gradient-based techniques for handling constraints

for aerodynamic shape optimization problems. In this section, let’s discuss how GA

has been used as an automatic structural design tool.

10.5.1.1 Formulation of the Design Problem

The design of three-dimensional frames can be stated as follows.

346 10 Applications of Genetic Algorithms

Find x = ⌊bx1, . . . ,
b xnb,

1 x1, . . . ,
1 xnd ,2 x1, . . . ,

3 xni⌋
to minimize f (x)

subject to gi(x) ≤ 0 i = 1, . . . , ni

h j (x) = 0 j = 1, . . . , ne
bx p ∈ {0, 1} p = 1, . . . , nb
1xq ∈ {x1

q , x2
q ,, x

nq
q } q = 1, . . . , nd

2x l
r ≤′ xr ≤2 xU

r r = 1, . . . , ns

(10.11)

where x is the design variable vector, f (x) is the objective function, ni is the number

of inequality constraints, ne is the number of inequality constraints, nb is the number

of Boolean design variables, nd is the number of discrete design variables selected

from a list of nq values, and ns is the number of continuous design variables. All

structural design problems do not lend themselves to a simultaneous consideration

of all of the above-mentioned constraints and design variables. Design problems are

usually categorized as sizing, shape or topology design problems or combinations

thereof.

This section deals with the solution to the above-mentioned problem.

10.5.1.2 Genetic Algorithm as a Design Automation Tool

GAs were developed to solve unconstrained optimization problems. However, engi-

neering design problems are usually constrained. They are solved by transforming

the problem to an unconstrained problem. The transformation is not unique and one

possibility is to use the following strategy.

find : x = ⌊bx1, . . . ,
b xN B DV ; i x1, . . . ,

i xN I DV ; s x1, . . . ,
s xN S DV ⌋

minimize : f (x) +
∑

i

ci · max(0, gi) +
∑

j

c j |h j | (10.12)

where ci and c j are penalty parameters used with inequality and equality constraints.

Determining the appropriate penalty weights ci and c j is always problematic. We

propose an algorithm here where the penalty weight is computed automatically and

adjusted in an adaptive manner. First the objective function is modified as

f (x) + ca

⎛

⎝

∑

i

max(0, gi) +
∑

j

|h j |

⎞

⎠ (10.13)

The following rules are used to select ca .

(1) If there are feasible designs in the current generation, ca is set as the minimum f

among all feasible designs in the current generation. The rationale is that for the

design with minor violations and smaller objective value, the probability of sur-

vival is not eliminated. If, on the other hand, the maximum f among all feasible

10.5 Civil Engineering 347

designs is used, infeasible designs will have a smaller probability to survive even

if the constraint violations are small.

(2) If there is no feasible design, ca is set as the f that has the least constraint viola-

tion. The motivation idea has the effect of both pushing the design into feasible

domain as well as preserving the design with the smallest fitness.

In this case, the one-point crossover is preferred for continuous domains, and

the uniform crossover for discrete domains. However, schema representation still

plays a pivotal role in the efficiency of the GA. If one uses a one-point crossover

then it is obvious that the ordering of the design variables is an important

issue.

The selection schemes (for generating the mating pool) together with the penalty

function dictate the probability of survival of each string. While it is very impor-

tant to preserve the diversity in each generation, researchers have also found that

sometimes it may be profitable to bias certain schema. However, results from most

of the selection rules, like roulette wheel; depend heavily on the mapping of fitness

function. Here the tournament selection is used. There are at least two reasons for

this choice. First, tournament selection increases the probability of survival of better

strings. Second, only the relative fitness values are relevant when comparing two

strings. In other words, the selection depends on individual fitness rather than ratio

of fitness values.

It is found that, during the evolutionary process, the same chromosomes at times

are repeatedly generated. Since the fitness evaluation in structural design involves

finite element analysis, a computationally expensive step, all generated chromosome

and the associated fitness information are saved in memory. In this way, if a chro-

mosome is repeated, a finite element analysis is not necessary. Saved chromosomes

may also be helpful for further processing.

The initial population should contain uniformly distributed alleles. By this, it is

meant that no chromosome pattern should be missed. Each chromosome is repre-

sented by nbits with each bit being either 1 or 0. If the distribution of 1’s in each bit

location is to be uniform, the initial population size should be at least n. During the

evolution, it is expected that that the chromosome converges to some special pattern

with the (0–1) choice decided for n locations.

Assume that the choice of each bit is independent of all the other bits. Since the

population size is n in each generation, after every generation from the statistical

viewpoint we can expect to learn about at least one bit. Ideally then after n genera-

tions, one can expect to learn about all the n bits forming the chromosome. However,

since each bit is not independent of the others, more than n generations are perhaps

necessary to obtain a good solution. This suggests that the population size and the

number of generations should be at least n.

10.5.1.3 The Improved GA Optimizer

As mentioned before selective improvement can be made to obtain a more robust

solution methodology for a class of problems. The primary focus in this research

348 10 Applications of Genetic Algorithms

is to make the GA a powerful and reliable optimizer for structural optimization.

Table 10.5 shows the proposed improvements.

10.5.1.4 Sizing, Shape and Topology Optimization of Space Frames

The structural optimization problem involving sizing, topology and shape parame-

ters has always been a difficult problem to handle. Some of the design variables are

discrete, the design space is disjoint and traditional gradient-based methods cannot

be employed. The design problem of a three-dimensional frame can be stated as

shown in (10.11).

Researchers working in this area have divided the existing algorithms for discrete

variables into three types—branch and bound, approximation, and ad-hoc methods.

The solution techniques such as approximation methods, branch and bound meth-

ods, and ad hoc strategies of adapting continuous design variables in NLP tech-

niques suffer from several drawbacks. These methods either are inefficient, or do

not really converge to the optimal solution or can be used under very restrictive

conditions. For example, the approximation method allows the candidate solution

to be discrete, but still require the whole design domain to be differentiable and

continuous.

In the case of topology optimization, approximation methods and branch and

bound techniques cannot be applied since the methods cannot handle the presence

or absence of members as design variables. The design problem can be solved more

easily using GAs since they can be adapted to work with discrete and boolean design

variables.

10.5.1.5 Design Variable Linking

As shown in Table (10.6), GAs essentially can handle three types of design variables—

discrete or integer, real, and boolean. These design variables capture all the possible

structural design parameters. The sizing design variables considered may be either

cross-sectional dimensions or available cross-section. The former can be described

using continuous design variables since these dimensions can vary continuously.

The latter is described in terms of integers (an integer index that points to a row

Table 10.5 Differences between traditional and proposed GA

10.5 Civil Engineering 349

in a table of available cross-sections). The table search is carried out by using a

table of ordered available cross-sections with the lower and upper bound candidate

cross-sections specified by the user. The shape design variables are the nodal loca-

tions. These are real design variables. The topology (boolean) design variables can

be structural parameters such as the presence or absence of members, and presence

or absence of fixity conditions at supports or connections.

10.5.1.6 Special Considerations

When topology design is considered, several problems should be handled very

carefully.

(i) There may be elements not connected to the structure during design, if topol-

ogy design is performed. This can be detected by examining the singularity of

the stiffness matrix.

(ii) There may be “null” nodes during the design. A null node is one to which no

element is attached. Such nodes need to be suppressed (from the finite element

analysis) in order to find the response of the remaining structure.

(iii) Sometimes, crisscrossing members are not allowed in frame structures. This

situation is detected by testing the possible intersection of a member with all

other members. It should be noted that handling such a constraint by traditional

(gradient-based) optimization approach can be very challenging.

Thus the above discussed GA based concept can be applied to Roof frame design,

Ten story frames and so on.

Table 10.6 Linking of design variables and the physical meaning

350 10 Applications of Genetic Algorithms

10.5.2 Genetic Algorithm for Solving Site Layout Problem

Construction site layout involves coordinating the use of limited site space to ac-

commodate temporary facilities (such as fabrication shops, trailers, materials, or

equipment) so that they can function efficiently on site. The layout problem is gen-

erally defined as the problem of

(1) identifying the shape and size of the facilities to be laid out;

(2) identifying constraints between facilities; and

(3) determining the relative positions of these facilities that satisfy the constraints

between them and allow them to function efficiently.

There are different classes of layout problems. The variations stem from the as-

sumptions made on the shape and size of facilities and on the constraints between

them. Facilities may have a defined shape and size or a loose shape, in which case

they will assume the shape of the site to which they have been assigned (f or exam-

ple, bulk construction material). The constraints can vary from simple non-overlap

constraints to other geometric constraints that describe orientation or distance con-

straints between facilities. In the layout problem addressed here, the shape and size

of facilities are fixed. Facilities can have 2D geometric constraints on their relative

positions along with proximity weights describing the level of interaction or flow

between them.

The layout problem is an NP-complete combinatorial optimization problem, that

is, optimal solutions can be computed only for small or greatly restricted problems.

Hence, layout planners often resort to using heuristics to reduce their search for

acceptable solutions.

The application of genetic algorithms to solving layout problems is relatively

recent. GAs work with a family of solutions, known as the “current population,”

from which we obtain the “next generation” of solutions. When the algorithm is

designed properly, we obtain progressively better solutions from one generation to

the next. The main advantage of using GAs is in the fact that it only needs an objec-

tive function with no specific knowledge about the problem space. The challenge,

however, remains in finding an appropriate problem representation that result in an

efficient and successful implementation of the algorithm

10.5.2.1 Constrained Site Layout Problem

The layout problem as modeled in this section is characterized by rectangular layout

objects with fixed dimensions representing the facilities to be positioned on site. Fa-

cilities can be positioned in one of two orientations only: a 0 or 90◦ orientation. In

addition, facilities can have 2D constraints on their relative positions: namely, min-

imum and maximum distance, orientation, and nonoverlap constraints. Minimum

and maximum distance constraints limit the distance between the facing sides of two

facilities in the x- or y-direction to be greater than or less than a predefined value,

respectively. Distance constraints can be used to model equipment reach or general

10.5 Civil Engineering 351

clearance requirements. Orientation constraints limit a facility’s position to be to

the north, south, east, or west of another reference facility. These constraints can

be used to locate access roads or gates with respect to the main facility. Nonoverlap

constraints are default constraints that restrict the positions of any two facilities from

overlapping. The geometric constraints are considered hard constraints that should

be satisfied for the layout to be feasible.

The objective is to find a feasible arrangement for all layout objects within the

site space that minimizes the sum of the weighted distances separating the layout

objects (Z):

Z = ΣΣ j<i (wi j × di j) (10.14)

where wi j is the affinity weight between objects i and j that could be used to repre-

sent the flow or the unit transportation cost between i and j , and di j is the rectilinear

distance separating objects i and j . A feasible arrangement is obtained by finding

positions for all layout objects that satisfy the 2D constraints between them.

10.5.2.2 Genetic Algorithm approach

The basic notion of evolutionary computation is to mimic some principles of natural

evolution in order to solve optimization problems of high complexity. A group of

randomly initialized points of the search space (individuals) is used to search the

problem space. Each individual encodes all necessary problem parameters (genes)

as bit strings, vectors, or graphs. The iterative process of selection and combination

of “good” individuals should yield even better ones, until a solution is found or a

certain stop criterion is met.

A population is a collection of chromosomes where each chromosome represents

a layout solution. Every chromosome is coded as a vector whose length is equal to

the number of facilities that exist on site n. Each facility i is represented by the

coordinates of its position on site: Xi, Yi, by its dimensions: Li, Wi; and by a series

of pointers pointing at the facilities that surround it in the four directions: north,

south, east, and west. These pointers will be used to facilitate the check for overlap.

The fitness function used is Z .

A number of genetic operators are used to evolve an initial population to the

optimal solution. The flowchart for the proposed GA approach is as follows:

Following the generation of the initial population, the genetic operators are ap-

plied to evolve the initial population into better ones as depicted in the flow chart

of Fig. 10.17. Thus the proposed GA approach can be applied to the following

cases and tested: equal size with equal weight objects, unequal size with unequal

weight objects, unequal size with unequal weight objects, and 2D constraints be-

tween objects.

352 10 Applications of Genetic Algorithms

10.6 Image Processing

10.6.1 Designing Texture Filters with Genetic Algorithms

Several techniques have been employed for texture based segmentation. Most of

them derive categories of texture descriptors and then, during a training phase,

cluster these descriptors to achieve discrimination. Traditional methods of texture

feature extraction are based either on statistical or structural models. In the statisti-

cal model texture is defined by a characteristic set of relationships between image

Fig. 10.17 Flow chart of

proposed genetic algorithm

10.6 Image Processing 353

Fig. 10.18 Correlation process

elements, and for most practical purposes these are determined from tonal values.

We will be using one or more of these as comparators, namely

• Grey level spatial dependency (GLSD) matrices, or co-occurrence matrices and

the simplified approach from user based on sum and difference histograms.

• Texture energy in the spatial domain derived by convolution as described by Laws

• Methods based on the use of fractals

10.6.1.1 Texture Discrimination Using Genetic Algorithms

In this section, it is to design a mask which, when correlated with the Fourier spec-

trum of each of the given patterns, will produce a response such that the inter-class

difference will be maximized and the intra-class differences will be minimized. Now

let’s use GA to solve the optimization over all possible masks, by minimizing (or

maximizing) an objective function based on the correlation.

Correlation Based Optimization

The steps of the algorithm (Fig. 10.18) can be summarised as:

1. Rectangular patches are selected from a given image as members (training tem-

plates) representing each class of texture to be detected.

2. A Fourier Transform (FT) is performed on each of the patches and the resulting

spectra are logarithmically transformed to reduce the range of the values appear-

ing in the patch spectra, simplifying the encoding into binary needed by the GAs.

3. An objective function involving the responses of the correlation of the mask with

the results of step 2 is evaluated over the set of all possible masks.

4. An optimisation algorithm (in this case a Genetic Algorithm) is applied to the

objective function over the set of all possible masks.

354 10 Applications of Genetic Algorithms

Choices for Correlation

The application of the Fourier transform to a texture image leads to a choice of

whether to examine the magnitude or phase components of the transform. Although

a mathematical background to the spectral properties of texture has suggested the

use of transform magnitude, phase is an important feature of signals and in compu-

tation involving 2D transforms is often overlooked.

To discover which spectral quantity carries most textural information for our

medical images, we applied a forward 2D FFT on a 128×128 pixel central section

of the image and formed a reconstruction with an inverse FFT after encoding the

magnitude at different resolutions (from 2 to 8 bits), whilst keeping the phase com-

ponent unchanged and vice-versa.Table 10.7 shows the Mean Average Error (MAE)

between the original and reconstructed image. Altering the encoding resolution for

the magnitude results in slower rate of increase in MAE than for phase. MAE is

therefore more sensitive to phase encoding resolution, justifying use of the magni-

tude of the spectrum for texture matching at a given resolution.

10.6.1.2 The Objective Function

The aim is to design a filter which when correlated with all the members of class A

will produce a high response and when correlated with the members of class B will

produce a low response. As a starting point the objective function should incorporate

the terms:

F1 =
(na + nb)

2

1

na

∑

i

ca
i (10.15)

where 0 < i < na, nb and na and nb are the number of members in class A and

class B respectively. ca
i denotes the correlation coefficient of (10.15), between the

designed mask and the logarithm of the spectrum of the i th member of class A,

Table 10.7 Relative importance of magnitude and phase

10.6 Image Processing 355

arranged such that 0 ca
i 1. This function maximises the responses with all members

of class A. Similarly:

F2 =
(na + nb)

2

1

nb

∑

i

(1 − cb
i) (10.16)

minimizes the responses with all members of class B, and:

F3 =

na
∑

i=1

∑

j>i

|ca
i − ca

j |

na(na − 1)
+

nb
∑

i=1

∑

j>i

|cb
i − cb

j |

nb(nb − 1)
(10.17)

will minimize all the intra-class distances, achieving uniformity of the response of

the correlation within each of the classes. Since discrimination consists of three

components: acceptance, rejection and uniformity of response, the objective func-

tion adopted is the sum of the three terms. The weighting factor (na + nb)/2 is

applied to the first two terms so that their contribution balances that of the final term.

10.6.1.3 Filter Realisation Using Genetic Algorithms

For a GA to be used the problem has to be encoded for genetic search, i.e. the

parameters have to be mapped to a finite length symbol string, using an appropriate

conversion alphabet.

The Chromosome

The main new element in the design of the chromosome is that it is two-dimensional.

This gives it physical significance and makes the implementation of the genetic op-

erators more meaningful. Being the output of a 2D FFT, the chromosome is a two di-

mensional matrix with n rows and n columns. Since Fourier spectra normally exhibit

a considerable dynamic range in amplitude between basic and higher harmonics the

most convenient way to proceed is via a logarithmic transform, quantized to an

minimal number of bits. Each gene, representing logarithmic spectral magnitude is

encoded in binary.

A significant factor affecting the GA’s performance is the number of harmonics

used to evaluate the correlation coefficient. Too few result in non-robust filters whilst

too many produce over-sensitive filters with a sharp response to a specific image

feature rather than mean regional texture. Eight harmonics were used in this work.

The Genetic Operators

Selection is performed in the usual way enhanced by pre-computing for each gener-

ation the number of offspring each chromosome is allowed to have according to its

fitness. The nature of the problem and the design of the chromosome encouraged the

356 10 Applications of Genetic Algorithms

implementation of crossover by exchanging rectangular segments of chromosome,

with the breakpoints aligned on gene boundaries. Each bit of each segment is copied

perfectly otherwise a mutation occurs which acts as a logical NOT on the value of

the bit.

Choice of GA Parameters

The GA population was limited to 100 and 100 generations of evolution allowed.

Crossover probability was typically 0.8 and 2 breakpoints allowed in each dimen-

sion. Bit mutation was 0.5%. The quantities correlated were the logarithm of the real

part of the spectral magnitude, encoded to 8 bits. Experimental variation of the ge-

netic parameters usually failed to alter the final convergence, although varying the

crossover strategy from 1-breakpoint to n-breakpoints resulted in a halving of the

number of generations needed to achieve a given convergence.

Implementation of the System

• The starting point is an image with regions classified into two different classes.

One or more training patches (32 32 pixels) are selected as members of each

class.

• The first generation of the GAs is initialized with random values. The design of

a discriminating filter now proceeds by GA optimization

• This filter can be used either to find additional regions of these classes in the same

or different image.

Post-Processing the Results of Texture-Based Segmentation

The result of the application of the GA-designed filter to an image is likely to

be an incompletely segmented image, where regions containing texture which be-

longs to class A have high values and regions similar to members of class B have

low values. To improve the segmentation and apply the method to more than two

textures, a maximum likelihood decision rule that minimizes the probability of

false classification was used and a 5×5 median filter applied to the segmented

image.

Derivation of an Enclosing Contour

The candidate boundary that has been obtained so far may not accurately enclose

the region of contrasting texture because of the filter’s inherent spatial resolution,

but it is likely that it will follow its boundary and have a similar shape. It can be

further refined if there is strong edge information to be exploited.

10.6 Image Processing 357

Output

The output of the GA-based texture classification is given here. Figure 10.19 shows

the result of the GA based texture filter, using 32 × 32 pixel training segments.

A system for texture discrimination, based on the spectral frequency properties

is described and results produced using images containing standard textures has

been dealt in this section. The system exploits well-established Fourier spectral

properties.

10.6.2 Genetic Algorithm Based Knowledge Acquisition

on Image Processing

Easy and immediate acquisition of large numbers of digital color images, for ex-

ample, of the daily growth of plants in remote fields, has been made possible via

the Internet nowadays. From such images, we can expect that detailed information

concerning the shape, growth rate and leaf colors of plants will be obtained. Vast

quantities of image data, however, increase the time spent extracting such infor-

mation from the data. This is because the extraction procedure needs human aid—

empirical knowledge of image processing and the features of target objects. Thus,

image analysis, segmenting images of objects and deriving their outlines or areas,

commonly invokes procedures based not only on routine, but also on trial and error

performed by hand.

Automated image processing systems, such as expert systems, have been studied

in various areas of engineering. In this section, certain procedures are discussed for

selecting filtering algorithms and for adjusting their parameters to segment target

components in images. Genetic algorithms (GAs) are suitable for this purpose be-

cause the algorithms involve optimization and automation by trial and error. For

instance, researchers have applied GAs for obtaining optimal image processing

transformations mapping the original image into the target. From the viewpoint of

segmenting images of plants, we present application software based on GAs, not

only for segmenting images, but also for acquiring knowledge on the operations.

Fig. 10.19 GA Texture

Analysis

358 10 Applications of Genetic Algorithms

10.6.2.1 Image Segmentation Strategy

Many kinds of efficient filtering algorithms for image segmentation, such as noise

elimination and edge enhancement, have been contrived. Implementing all of them

into our algorithms, however, is unrealistic because the increase in operations in-

vokes a proportional increase in processing time. Based on our empirical knowledge

of the segmentation of plant images, several filtering algorithms commonly used

are selected and implemented in the developed algorithm as shown in Table 10.8.

The thresholding and reversion algorithms are performed on a focused pixel of the

image processed in serial order, and others have spatial mask operators. Figure 10.20

shows the common procedures to segment targets in color images. The procedures

are explained as follows:

1) Color of component areas in the images is averaged using smoothing (SM).

2) Target components are enhanced using thresholding on hue (TH) and, simulta-

neously, the image is entirely converted to a monochrome image.

3) Differentiation (EE) is used when target features outline components.

4) Binarization (TB) is performed for the entire monochrome image.

5) Reversion (RV) on binarized pixels is occasionally effective to enhance the com-

ponents.

6) Fusion operations, expansion (EF) and contraction (CF), allow a reduction in

noise, and occasionally, is performed repeatedly.

After these procedures are carried out, the image processed has been converted

to a binarized image with target components defined. In the algorithm, we have

adopted not the RGB color model, but the HSI model, because the latter is efficient

for the segmentation of plants in fields. All operations are performed after each

pixel value is converted from RGB to HSI. The smoothing algorithm is a median

operator with a 3∗3 mask of pixels, and it is applied only for the hue of the pixels.

The thresholding has two different operators; one operates upon the hue and another

upon the brightness of pixels. These operations substitute null for all bits of a pixel

when the pixel value occurs within a range defined by minimum and maximum

values. When the value is out of the range, they substitute unity for all bits of the

pixel. For edge enhancement of components in images, a Sobel operator with a

Table 10.8 Filtering algorithms used as phenotypes

10.6 Image Processing 359

Fig. 10.20 Flow chart of a

typical procedure for

enhancing targets

components

Fig. 10.21 Locus of genes

defined on a chromosome TH (minimum) TH (range) TB (minimum) TB (range) Toggle of TH Toggle of SM

Toggle of CF Toggle of CF Toggle of EF Toggle of EF Toggle of EE Toggle of RV

0 - 5 6 - 9 10 - 15 16 - 19 20 - 22 23 - 25

26 - 28 29 - 31 32 - 34 35 - 37 38 - 40 41 - 43

3∗3 mask of pixels is used. The operator applied to the brightness value substitutes

null for the saturation of pixels to convert the images to monochrome ones. Fusion

operators search the four neighboring pixels. The contraction replaces a given pixel

with a black one if the neighbors contain more than one black pixel. The expansion,

on the other hand, replaces the given pixel with a white one if the neighbors contain

more than one white pixel. Before the genetic operations are performed, an objective

image, compared with processed images for fitness evaluation, must be provided as

a binary drawing image. Target components in the image are represented with white

pixels and the remainders are with black ones.

10.6.2.2 Genetic Algorithms

Chromosomes of the current GA consist of 44 binary strings, assigned to 12 geno-

types as shown in Fig. 10.21. Phenotypes corresponding to the genotypes consist of

on off states of the operations mentioned above and parameters for the operations

concerning thresholding levels. The minimum thresholding levels on the hue and

the brightness coordinates, ranging from 0.0 to 1.0, are encoded with 6 bits. Range

of their minimum thresholding levels to the maximum ones is encoded with 4 bits in

the same manner. Genotypes of the on-off states are encoded with 3 bits; a decimal

value from 0 to 3 is defined as an “off” state of the operation and a value of more

than 4 as a state of “on”. Such redundant encoding allows sharp changes, caused by

one bit reversion, to be avoided.

Figure 10.22 shows the flow diagram to search for appropriate procedures of

the segmentation based on GAs. Conventional genetic operations called “simple

GA” are used; crossover at the same points of two neighbor chromosomes, ran-

dom mutation, and ranking depending on fitness evaluation and selection. At the

360 10 Applications of Genetic Algorithms

beginning of the GA operation, chromosomes of a certain population size are gen-

erated, initialized with random strings. The crossover occurs at the points of cer-

tain string length determined at random, and then, each chromosome is mutated

with a certain probability per a string. The each chromosome is interpreted as a

sequence of filtering operations and their parameters. Subsequently, a clone of the

original image is processed using the each sequence. After the fitness between

the objective image and the processed ones is evaluated, the chromosomes are

ranked and selected dependent on the degree of the fitness. The procedure from the

crossover to the ranking is performed iteratively until appropriate procedures are

obtained.

Comparison

Processed images

Original Image

CF: OFF

EF: ON

TH / 0.4 – 0.5

CF: ON

EF: ON

TH / 0.1 – 4.2

CF: OFF

EF: OFF

TH / 0.6 – 0.8

Binarization

……

……

Objective image

Fitness Evaluation

Ranking

Selection

Crossover

Mutation

Fig. 10.22 Schematic of the knowledge acquisition system, combining GAs and operations for

image

10.6 Image Processing 361

Fig. 10.23 Schematics of the knowledge base for image processing based on three-tiered database

Evaluation and selection play important roles in GAs because they determine the

GA’s performance of searching for solutions. The function for fitness evaluation is

defined by the rate of correspondence between a processed image and an objective

one, given as a successfully processed one. In detail, equivalence of each pixel,

located in the same coordinate of both images, is verified as shown in the following

formula:

f = P f it /(P f it + Pun f it) (10.18)

where P f it is the number of pixels equivalent between images and Pun f it is the

number in disagreement. After chromosomes are ranked according to their fitness,

chromosomes of the population size, with high fitness in the rank, are selected as

parents of the next generation.

10.6.2.3 Database Configuration

The knowledge base consists of three-tiered database architecture as shown in

Fig. 10.23. The database can be developed using any database server and a mid-

dleware is required for controlling connection from client PCs to the database via

the Internet. Since the connection is managed using a user ID and a password em-

bedded in the software, the database is secured from illegal accesses. A table of the

database consists of URL of images, description on features of targets segmented,

and procedures obtained for acceptable segmentation.

In conventional image processing systems based on knowledge base, all the data

for image processing is gotten ready beforehand. On the other hand, our knowledge

base has been made without data at the beginning, and is increasing its knowledge

as the software is used for processing various images. Figure 10.24 illustrates com-

362 10 Applications of Genetic Algorithms

bination in processing by GA search, represented as the block arrows, with that by

the knowledge base, represented as the normal ones.

Thus, this proposed approach can be applied to any color images and this archi-

tecture has an advantage over conventional expert system approaches, implementing

all the knowledge for image processing in the system ahead.

10.6.3 Object Localization in Images Using Genetic Algorithm

In this section, we present a genetic algorithm application to the problem of object

registration (i.e., object detection, localization and recognition) in a class of medi-

cal images containing various types of blood cells. The genetic algorithm approach

taken here is seen to be most appropriate for this type of image, due to the charac-

teristics of the objects.

One of the most frequently arising problems in the processing of (still) images

is that of object registration. It arises in images containing objects, possibly over-

lapping, against a more-or-less uniform background. Objects may belong to one

or more types or classes. Class identifying differences typically refer to the object

morphology or shape, dimensions, color, opaqueness, surface texture and location /

direction characteristics. The aims of digital processing of an object image are

numerous: Object detection, localization, recognition and classification constitute

major goals. Furthermore, more detailed object characterization in terms of size,

color, direction, scaling, shift or rotation might be of interest for specific appli-

cations. Finally, search of an image for the existence or not of a specific object

prototype (under a given degree of flexibility as to the similarity level required

in the match) is often of importance. Common in all the problems mentioned

above is the processing of the images digitally, through an appropriate software

package, either general-purpose or custom developed for the application at hand.

Fig. 10.24 Flow diagram of image processing by two different algorithms

10.6 Image Processing 363

Digital image processing is a mature field that offers to the researcher a vari-

ety of approaches. Given a field application, however, choice of the most suit-

able method or approach has not yet been fully automated. In this section, we

present an application of the genetic algorithms approach to the problem of local-

ization of objects in medical images of blood cells, taken via a microscope. The

problem arises invariably in all blood or serum analysis medical contexts, and as

such it has early received an intense research interest. Although there certainly

exist automated solutions, the issue of quality along with the critical nature of

the results, often necessitate manual / visual treatment by the human expert on a

microscope.

The genetic algorithms approach is proposed here, because, as it will become

clear through the results obtained, it was seen to be well suited to the morphology

of the objects in the images treated.

A genetic algorithm is a non-linear optimization method that seeks the optimal

solution of a problem via a non-exhaustive search among randomly generated so-

lutions. Randomness is controlled through a set of parameters, thus turning genetic

algorithms into exceptionally flexible and robust alternatives to conventional op-

timization methods. Genetic algorithms suffer a few disadvantages: they are not

suitable for real time applications and take long to converge to the optimal solu-

tion. Convergence time cannot be predicted either. Nevertheless, they have become

a strong optimization tool, while current research focuses on their combination with

fuzzy logic and neural network techniques.

Genetic algorithms imitate natural evolutionary procedures for the production of

successive generations of a population. In its simplest form, a genetic algorithm

consists of three (3) mechanisms:

(i) parent selection

(ii) genetic operation for the production of descendants (offspring), and

(iii) replacement of parents by their descendants.

Parent selection process follows one of the selection processes of roulette, clas-

sification, constant situation, proportional forms or elitist choice. The genetic op-

erations of (i) crossover and (ii) mutation combine parents to produce offspring

of improved characteristics (getting higher grade by the evaluation function). Par-

ent replacement strategies include (i) generational replacement and (ii) steady state

reproduction.

10.6.4 Problem Description

Blood cell microscope images, such as the sample shown in Fig. 10.25, show cells

of two different classes (possibly overlapping) against a uniform background. Class

A is represented by bigger and usually more deformed cells whereas class B is

represented by cells looking generally more normal and more uniform in shape and

size. Cell color or grayscale can also be exploited; yet it is unreliable by itself, due

364 10 Applications of Genetic Algorithms

to the various cell coloring techniques usually applied on the sample before it is

placed in the microscope. In the present context, we will not go into the medical

interpretation of the image, i.e. the diagnosis of certain pathologies connected to the

presence or count or percentage of class A or class B cells, as this does not affect

the technical problem addressed—although it renders the obtained results critical.

Referring to Fig. 10.25, this section aims to address the following problems:

1) Detection of class A cells,

2) Percentage of the class A cells surface in the image, and

3) Registration of class A cells (coordinates and size).

Although this could be considered as an image segmentation problem, it is claimed

that the genetic algorithms approach taken here is far more efficient in terms of

processing time, while it yields high correct recognition scores.

10.6.5 Image Preprocessing

The histogram of the grayscale scale image is employed in order to obtain a

grayscale threshold value Th, below which fall class A cells only. The sample

histogram is shown in Fig. 10.26 (a), exhibits three major areas of grayscales,

corresponding—from darker to lighter scale—to: (i) class A cell pixels, (ii) class

B cell pixels and (iii) background pixels. Threshold value Th is set to the local mini-

mum of the histogram curve, lying between the first two peaks mentioned above.

The image is threshold by Th, thus producing a binary (black and the first two

problems (detection of class A cells and calculation of their % area in the image)

are straightforward if we use the binary image.

Fig. 10.25 Sample blood cell

microscope image showing

two classes of cells in a

uniform background

10.6 Image Processing 365

Fig. 10.26 (a) Histogram of the grayscale image in Fig. (10.25), (b) Binary version of Fig. (10.25)

with threshold Th = 110

10.6.6 The Proposed Genetic Algorithm Approach

The genetic algorithm is repeatedly applied to the image as many times as the

number of class A objects (bigger than a threshold area of TB pixels) it contains.

Of course, an appropriate stopping rule is necessary, because the number of class A

objects is originally unknown. Within each of the above repetitions, the genetic algo-

rithm generates a succession of T generations, each consisting of N chromosomes.

Each chromosome contains three (3) genes, namely, the 2-D plane coordinates of

the center of an object (circle) and the radius of it. The first generation is generated

randomly, whereas every next one is based on the following choices:

(i) Chromosomes are binary encoded, with 9, 10 and 4 bits for the 1st, 2nd and

3rd gene, respectively.

(ii) Parent pairs are selected by the roulette rule.

(iii) The genetic operations include 3-point crossover for the 1st and 2nd gene and

1-point crossover for the 3rd gene, with crossover probability Pc and arithmetic

(bit) mutation, uniform across genes, with mutation probability Pm.

(iv) Generalized replacement is employed, combined with an elite strategy using a

number of Pe elite chromosomes directly copied to the next generation.

(v) No schema theory is employed.

Once a new generation is produced, its N binary chromosomes are decoded and

evaluated by the fitness function. This function assigns a numerical “grade” to each

chromosome, which is used for the parent selection and genetic operations of the

next generation. When the T -th generation is reached, iteration stops and the chro-

mosome of the T -th generation with the highest grade is considered as a solution

(localized circular object).

Repetition stops when the area of the image designated by such a solution is

found to contain less than 40% of class A pixels—meaning that essentially there

remain no more significant class A objects.

Critical for the success of the genetic algorithm is the choice of the evaluation

(fitness) function. Indeed this is the only means of communication between the ge-

netic evolutionary process and its environment (i.e., the problem it seeks to solve).

When chromosomes of the current generation are graded by the fitness function, the

366 10 Applications of Genetic Algorithms

Table 10.9 Genetic algorithm parameters variation

genetic algorithm gains feedback from the environment so as to adjust its evolution

towards an improved next generation. For the problem at hand, we have employed

the straight-forward option of a fitness function which counts the class A pixels

contained in the area of the original image designated by the (center, radius) pair of

a given chromosome. In that sense, chromosomes (circular objects) highly overlap-

ping with class A objects in the image get a higher grade.

To implement this approach the parameters like Th, TB, T, N, Pm, Pc, Pe, etc

should be initialized. These should be adjusted using prior information about the

specific family of images, for optimal performance. These parameters can be varied

as shown in Table 10.9.

A sample blood cell image with superimposed results is shown in Fig. 10.27. Cir-

cular objects localized by the genetic algorithm are marked with a white circle. This

is a particularly successful experiment, as 20 out of 20 (100%) class A objects are

localized. Major parameter choices are N = 50 chromosomes, T = 50 generations,

Pc = 80%, Pm = 8% and number of elite chromosomes Pe = 5.

However, not all parameter choices yield analogous results. Therefore the set of

parameters can be varied according to Table 10.9, and the results can be examined

for different images belonging to the same family. Thus, in this section we have

dealt with a genetic algorithm approach to the problem of localization of objects

belonging to a certain class, in blood cell microscope images.

Fig. 10.27 Original image

with superimposed genetic

algorithm results marked with

a white circle. 20 out of 20

(100%) of class A objects are

localized correctly

10.7 Data Mining 367

10.7 Data Mining

10.7.1 A Genetic Algorithm for Feature Selection in Data-Mining

In this section, we look into discovering certain features and factors that are involved

in large database. To exploit this data, data mining tools are required and a 2-phase

approach using a specific genetic algorithm is employed.

This heuristic approach has been chosen as the number of features to consider

is large. Consider a data which indicates for pairs of affected individuals of a same

family their similarity at given points (locus) of their chromosomes. This is rep-

resented in a matrix where each locus is represented by a column and each pairs

of individuals considered by a row. The objective is first to isolate the most rele-

vant associations of features, and then to class individuals that have the considered

similarities according to these associations.

For the first phase, the feature selection problem, we use a genetic algorithm

(GA). To deal with this very specific problem, some advanced mechanisms have

been introduced in the genetic algorithm such as sharing, random immigrant, ded-

icated genetic operators and a particular distance operator has been defined. Then,

the second phase, a clustering based on the features selected during the previ-

ous phase, will use the clustering algorithm K -means, which is very popular in

clustering.

10.7.1.1 GA for Feature Selection

The first phase of this algorithm deals with isolating the very few relevant fea-

tures from the large set. This is not exactly the classical feature selection prob-

lem known in Data mining. Here, we have the idea that less than 5% of the fea-

tures have to be selected. But this problem is close from the classical feature se-

lection problem, and we will use a genetic algorithm as we saw they are well

adapted for problems with a large number of features. Genetic algorithm consid-

ered here has different phases. It proceeds for a fixed number of generations. A

chromosome, here, is a string of bits whose size corresponds to the number of

features. A 0 or 1, at position i , indicates whether the feature i is selected (1) or

not (0).

The Genetic Operators

These operators allow GAs to explore the search space. However, operators typi-

cally have destructive as well as constructive effects. They must be adapted to the

problem.

We use a Subset Size-Oriented Common Feature Crossover Operator (SSOCF),

which keeps useful informative blocks and produces offsprings which have the same

distribution than the parents. Off- springs are kept, only if they fit better than the

368 10 Applications of Genetic Algorithms

least good individual of the population. Features shared by the 2 parents are kept by

offsprings and the non shared features are inherited by offsprings corresponding to

the ith parent with the probability (ni - nc/nu) where ni is the number of selected

features of the ith parent, nc is the number of commonly selected features across

both mating partners and nu is the number of non-shared selected features (see

Fig. 10.28).

The mutation is an operator which allows diversity. During the mutation stage,

a chromosome has a probability pmut to mutate. If a chromosome is selected to

mutate, we choose randomly a number nof bits to be flipped then n bits are chosen

randomly and flipped.

A probabilistic binary tournament selection is taken. Tournament selection holds

n tournaments to choose n individuals. Each tournament consists of sampling 2

elements of the population and choosing the best one with a probability p ∈ [0.5, 1].

The Chromosomal Distance

Create a specific distance which is a kind of bit to bit distance where not a single

bit i is considered but the whole window (i−σ , i+σ) of the two individuals are

compared. If one and only one individual has a selected feature in this window, the

distance is increased by one.

The Fitness Function

The fitness function developed refers to the support notion, for an association,

which, in data mining, denotes the number of times an association is met over the

number of times at least one of the members of the association is met.

The function is composed of two parts. The first one favors for a small support a

small number of selected features because biologists have in mind that associations

will be composed of few features and if an association has a bad support, it is better

to consider less features (to have opportunity to increase the support). The second

part, the most important (multiplied by 2), favours for a large support a large number

of features because if an association has a good support, it is generally composed

of few features and then we must try to add other features in order to have a more

complete association. What is expected is to favor good associations (in term of

Fig. 10.28 The SSOCF crossover Operator

10.7 Data Mining 369

support) with as much as features as possible. This expression may be simplified,

but we let it in this form in order to identify the two terms.

F =

(

(1 − S) ×
T
10

− 10 × SF

T

)

+ 2 ×

(

S ×
T
10

+ 10 × SF

T

)

Where :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Support : S = |A∩B∩C ...|
|A∪B∪C ...| where A, B, C . . . are the selected features,

T = Total Number of features.

SF = Number of selected significant features (selected features

that are not too close in term of the chromosomal distance).

(10.19)

Sharing

To avoid premature convergence and to discover different good solutions (different

relevant associations of features), we use a niching mechanism. Both crowding and

sharing give good results and we choose to implement the fitness sharing. The objec-

tive is to boost the selection chance of individuals that lie in less crowded area of the

search space. We use a niche count that measures of how crowded the neighborhood

of a solution is. The distance D is the chromosomal distance adapted to our problem

presented before. The fitness of individuals situating in high concentrated search

space regions is degraded and a new fitness value is calculated and used, in place of

the initial value of the fitness, for the selection.

The sharing fitness fsh(i) of an individual i , where n is the size of the population,

αsh = 1 and σsh = 3), is:

fsh(i) =
F(i)

∑n
j=1 Sh(D(Ii , I j))

where : Sh(D(Ii , I j))

=

{

1 −
(

D(Ii ,I j)

σ sh

)αsh

if D(Ii , I j) < σsh

0 else
(10.20)

Random Immigrant

Random Immigrant is a method that helps to maintain diversity in the population.

It should also help to avoid premature convergence. Random immigrant is used as

follows: if the best individual is the same during N generations, each individual of

the population, whose fitness is under the mean, is replaced by a new randomly

generated individual.

10.7.1.2 The Clustering Phase: Use of K-Means Algorithm

The k-means algorithm is an iterative procedure for clustering which requires an

initial classification of the data. The k-means algorithm proceeds as follows: it com-

370 10 Applications of Genetic Algorithms

putes the center of each cluster, then computes new partitions by assigning every

object to the cluster whose center is the closest (in term of the Hamming distance)

to that object. This cycle is repeated during a given number of iterations or until the

assignment has not changed during one iteration. Since the number of features is

now very small, we implement a classical k-means algorithm widely used in clus-

tering, and to initialize the procedure we randomly select initial centers (Fig. 10.29).

Thus the approach proposed in the above section can be tested by employing it

to any large databases based upon user’s application.

10.7.2 Genetic Algorithm Based Fuzzy Data Mining

to Intrusion Detection

The wide spread use of computer networks in today’s society, especially the sudden

surge in importance of e-commerce to the world economy, has made computer net-

work security an international priority. Since it is not technically feasible to build a

system with no vulnerabilities, intrusion detection has become an important area of

research.

Intrusion detection approaches are commonly divided into two categories: mis-

use detection and anomaly detection. The misuse detection approach attempts to

recognize attacks that follow intrusion patterns that have been recognized and re-

ported by experts. Misuse detection systems are vulnerable to intruders who use

new patterns of behavior or who mask their illegal behavior to deceive the detec-

tion system. Anomaly detection methods were developed to counter this problem.

With the anomaly detection approach, one represents patterns of normal behavior,

with the assumption that an intrusion can be identified based on some deviation

from this normal behavior. When such a deviation is observed, an intrusion alarm is

produced. Artificial intelligence (AI) techniques have been applied to both misuse

detection and anomaly detection. Rule based expert systems have served as the ba-

sis for several systems including SRI’s Intrusion Detection Expert System (IDES).

These systems encode an expert’s knowledge of known patterns of attack and sys-

tem vulnerabilities as if-then rules. The acquisition of these rules is a tedious and

error-prone process; this problem (known as the knowledge acquisition bottleneck

Fig. 10.29 The k-means algorithm: The states

10.7 Data Mining 371

in expert system literature) has generated a great deal of interest in the application

of machine learning techniques to automate the process of learning the patterns.

Examples include the Time-based Inductive Machine (TIM) for intrusion detection

that learns sequential patterns and neural network-based intrusion detection systems.

More recently, techniques from the data mining area (mining of association rules

and frequency episodes) have been used to mine normal patterns from audit data.

Problems are encountered, however, if one derives rules that are directly depen-

dent on audit data. An intrusion that deviates only slightly from a pattern derived

from the audit data may not be detected or a small change in normal behavior may

cause a false alarm. We have addressed this problem by integrating fuzzy logic

with data mining methods for intrusion detection. Fuzzy logic is appropriate for the

intrusion detection problem for two major reasons. First, many quantitative features

are involved in intrusion detection. SRI’s Nextgeneration Intrusion Detection Ex-

pert System (NIDES) categorizes security-related statistical measurements into four

types: ordinal, categorical, binary categorical and linear categorical. Both ordinal

and linear categorical measurements are quantitative features that can potentially

be viewed as fuzzy variables. Two examples of ordinal measurements are the CPU

usage time and the connection duration. An example of a linear categorical mea-

surement is the number of different TCP/UDP services initiated by the same source

host. The second motivation for using fuzzy logic to address the intrusion detection

problem is that security itself includes fuzziness. Given a quantitative measurement,

an interval can be used to denote a normal value. Then, any values falling outside the

interval will be considered anomalous to the same degree regardless of their distance

to the interval. The same applies to values inside the interval, i.e., all will be viewed

as normal to the same degree. The use of fuzziness in representing these quantitative

features helps to smooth the abrupt separation of normality and abnormality and pro-

vides a measure of the degree of normality or abnormality of a particular measure.

We describe a prototype intelligent intrusion detection system (IIDS) that is being

developed to demonstrate the effectiveness of data mining techniques that utilize

fuzzy logic. This system combines two distinct intrusion detection approaches: (1)

anomaly based intrusion detection using fuzzy data mining techniques, and (2) mis-

use detection using traditional rule-based expert system techniques. The anomaly-

based components look for deviations from stored patterns of normal behavior. The

misuse detection components look for previously described patterns of behavior

that are likely to indicate an intrusion. Both network traffic and system audit data

are used as inputs. We are also using genetic algorithms to (1) tune the fuzzy mem-

bership functions to improve performance, and (2) select the set of features available

from the audit data that provide the most information to the data mining component.

10.7.2.1 System Goals and Preliminary Architecture

Our long term goal is to design and build an intelligent intrusion detection sys-

tem that is accurate (low false negative and false positive rates), flexible, not easily

fooled by small variations in intrusion patterns, adaptive in new environments, mod-

372 10 Applications of Genetic Algorithms

ular with both misuse and anomaly detection components, distributed, and real-time.

The architecture shown in Fig. 10.30 has been developed with these goals in mind.

The Machine Learning Component integrates fuzzy logic with association rules

and frequency episodes to “learn” normal patterns of system behavior. This normal

behavior is stored as sets of fuzzy association rules and fuzzy frequency episodes.

The Anomaly Intrusion Detection Module extracts patterns for an observed audit

trail and compares these new patterns with the “normal” patterns. If the similarity

of the sets of patterns is below a specified threshold, the system alarms an intrusion.

Misuse Intrusion Detection Modules use rules written in FuzzyCLIPS to match pat-

terns of known attacks or patterns that are commonly associated with suspicious

behavior to identify attacks. The use of fuzzy logic in both of these modules makes

the rules of the system more flexible and less brittle. The machine learning compo-

nent allows the system to adapt to new environments. The detection methods will be

implemented as a set of intrusion detection modules. An intrusion detection module

may address only one or even a dozen types of intrusions. Several intrusion de-

tection modules may also cooperate to detect an intrusion in a loosely coupled way

since these detection modules are relatively independent. Different modules may use

different methods. For instance, one module can be implemented as a rule-based

expert system and another module can be constructed as a neural network classi-

Fig. 10.30 Architecture of IIDS

10.7 Data Mining 373

fier. On the whole, this modular structure will ease future system expansion The

Decision-Making Module will both decide whether or not to activate an intrusion

detection module (misuse or anomaly) and integrate evaluation results provided by

the intrusion detection modules. The Communication Module is the bridge between

the intrusion detection sentries and the decision-making module. Intrusion detec-

tion sentries pre-process audit data and send results to the communication module.

Feedback is returned to the sentries.

10.7.2.2 Anomaly Detection via Fuzzy Data Mining

We are combining techniques from fuzzy logic and data mining for our anomaly de-

tection system. The advantage of using fuzzy logic is that it allows one to represent

concepts that could be considered to be in more than one category (or from another

point of view—it allows representation of overlapping categories). In standard set

theory, each element is either completely a member of a category or not a member at

all. In contrast, fuzzy set theory allows partial membership in sets or categories. The

second technique, data mining, is used to automatically learn patterns from large

quantities of data. The integration of fuzzy logic with data mining methods helps to

create more abstract and flexible patterns for intrusion detection.

Fuzzy Logic

In the intrusion detection domain, we may want to reason about a quantity such as

the number of different destination IP addresses in the last 2 seconds. Suppose one

wants to write a rule such as

“If the number different destination addresses during the last 2 seconds was high Then an

unusual situation exists”.

Using traditional logic, one would need to decide which values for the number of

destination addresses fall into the category high. As shown in Fig. 10.31 a, one

would typically divide the range of possible values into discrete buckets, each rep-

resenting a different set. The y-axis shows the degree of membership of each value

in each set. The value 10, for example is a member of the set low to the degree 1

and a member of the other two sets, medium and high, to the degree 0. In fuzzy

logic, a particular value can have a degree of membership between 0 and 1 and can

be a member of more than one fuzzy set. In Fig. 10.31b, for example, the value

10 is a member of the set low to the degree 0.4 and a member of the set medium

to the degree 0.75. In this example, the membership functions for the fuzzy sets are

piecewise linear functions. Using fuzzy logic terminology, the number of destination

ports is a fuzzy variable (also called a linguistic variable), while the possible values

of the fuzzy variable are the fuzzy sets low, medium, and high. In general, fuzzy

variables correspond to nouns and fuzzy sets correspond to adjectives.

In this section, FuzzyCLIPS are used to represent patterns using a rule-based

system. FuzzyCLIPS, developed by the National Research Council of Canada, is

a fuzzy extension of the popular CLIPS expert system shell developed by NASA.

374 10 Applications of Genetic Algorithms

Fig. 10.31 Non-fuzzy and fuzzy representations of sets for quantitative variables. The x-axis is the

value of a quantitative variable. The y-axis is the degree of membership in the sets low, medium,

and high

FuzzyCLIPS provides several methods for defining fuzzy sets; we are using the

three standard S, PI, and Z functions described by Zadeh. The graphical shapes

and formal definitions of these functions are shown in Fig. 10.32. Each function is

defined by exactly two parameters.

Using fuzzy logic, a rule like the one shown above could be written as If the

DP = high Then an unusual situation exists where DP is a fuzzy variable and high

is a fuzzy set. The degree of membership of the number of destination ports in the

fuzzy set high determines whether or not the rule is activated.

Data Mining Methods

Data mining methods are used to automatically discover new patterns from a large

amount of data. Two data mining methods, association rules and frequency episodes,

have been used to mine audit data to find normal patterns for anomaly intrusion

detection.

Association Rules

Association rules were first developed to find correlations in transactions using retail

data. For example, if a customer who buys a soft drink (A) usually also buys potato

chips (B), then potato chips are associated with soft drinks using the rule A → B .

Suppose that 25% of all customers buy both soft drinks and potato chips and that

50% of the customers who buy soft drinks also buy potato chips. Then the degree of

support for the rule is s = 0.25 and the degree of confidence in the rule is c = 0.50.

Agrawal and Srikant developed the fast Apriori algorithm for mining association

rules. The Apriori algorithm requires two thresholds of minconfidence (representing

10.7 Data Mining 375

Fig. 10.32 Standard function representation of fuzzy sets

minimum confidence) and minsupport (representing minimum support). These two

thresholds determine the degree of association that must hold before the rule will

be mined.

Fuzzy Association Rules

In order to use the Apriori algorithm of Agrawal and Srikant for mining association

rules, one must partition quantitative variables into discrete categories. This gives

rise to the “sharp boundary problem” in which a very small change in value causes

an abrupt change in category. Kuok, Fu, and Wong developed the concept of fuzzy

association rules to address this problem. Their method allows a value to contribute

to the support of more than one fuzzy set. We have modified the algorithm of Kuok,

Fu, and Wong, by introducing a normalization factor to ensure that every transaction

is counted only one time. An example of a fuzzy association rule mined by our

system from one set of audit data is:

376 10 Applications of Genetic Algorithms

{SN = L OW, FN = L OW } → {RN = L OW }, c = 0.924, s = 0.49

(10.21)

where SN is the number of SYN flags, FN is the number of FIN flags and RN is the

number of RST flags in a 2 second period.

When presented with a set of audit data, our system will mine a set of fuzzy as-

sociation rules from the data. These rules will be considered a high level description

of patterns of behavior found in the data. For anomaly detection, we mine a set of

rules from a data set with no intrusions (termed a reference data set) and use this as

a description of normal behavior. When considering a new set of audit data, a set

of association rules is mined from the new data and the similarity of this new rule

set and the reference set is computed. If the similarity is low, then the new data will

cause an alarm. Figure. 10.33 shows results from one experiment comparing the

similarities with the reference set of rules mined from data without intrusions and

with intrusions. It is apparent that the set of rules mined from data with no intrusions

(baseline) is more similar to the reference rule set than the sets of rules mined from

data containing intrusions.

Misuse Detection Components

The misuse detection components are small rule-based expert systems that look

for known patterns of intrusive behavior. The FuzzyCLIPS system allows us to

implement both fuzzy and non-fuzzy rules. A simple example of a rule from the

misuse detection component is given below: IF the number of consecutive logins by

a user is greater than 3 THEN the behavior is suspicious Information from a number

of misuse detection components will be combined by the decision component to

determine if an alarm should be result.

Fig. 10.33 Comparison of Similarities Between Training Data Set and Different Test Data Sets

for Fuzzy Association Rules (minconfidence=0.6; minsupport=0.1 Training Data Set: reference

(representing normal behavior) Test Data Sets: baseline (representing normal behavior), network1

(including simulated IP spoofing intrusions), and network3 (including simulated port scanning

intrusions)

10.7 Data Mining 377

Genetic Algorithms

Genetic algorithms are search procedures often used for optimization problems.

When using fuzzy logic, it is often difficult for an expert to provide “good” def-

initions for the membership functions for the fuzzy variables. We have found that

genetic algorithms can be successfully used to tune the membership functions of the

fuzzy sets used by our intrusion detection system. Each fuzzy membership function

can be defined using two parameters as shown in Fig. 10.34. Each chromosome for

the GA consists of a sequence of these parameters (two per membership function).

An initial population of chromosomes is generated randomly where each chromo-

some represents a possible solution to the problem (an set of parameters). The goal

is to increase the similarity of rules mined from data without intrusions and the ref-

erence rule set while decreasing the similarity of rules mined from intrusion data and

the reference rule set. A fitness function is defined for the GA which rewards a high

similarity of normal data and reference data while penalizing a high similarity of in-

trusion data and reference data. The genetic algorithm works by slowly “evolving” a

population of chromosomes that represent better and better solutions to the problem.

Fitness Percentage

Figure 10.34 shows how the value of the fitness function changes as the GA pro-

gresses. The top line represents the fitness (or quality of solution) of the best

individual in the population. We always retain the best individual from one gen-

eration to the next, so the fitness value of the best individual in the population never

decreases. The middle line, showing the average fitness of the population, demon-

strates that the overall fitness of the population continues to increase until it reaches

Fig. 10.34 The evolution process of the fitness of the population, including the fitness of the most

fit individual, the fitness of the least fit individual and the average fitness of the whole population

378 10 Applications of Genetic Algorithms

a plateau. The lower line, the fitness of the least fit individual, demonstrates that we

continue to introduce variation into the population using the genetic operators of

mutation and crossover. Figure 10.35 demonstrates the evolution of the population

of solutions in terms of the two components of the fitness function (similarity of

mined ruled to the “normal” rules and similarity of the mined rules to the “abnor-

mal” rules). This graph also demonstrates that the quality of the solution increases

as the evolution process proceeds.

It is often difficult to know which items from an audit trail will provide the most

useful information for detecting intrusions. The process of determining which items

are most useful is called feature selection in the machine learning literature. We have

conducted a set of experiments in which we are using genetic algorithms both to

select the measurements from the audit trail that are the best indicators for different

classes of intrusions and to “tune” the membership functions for the fuzzy vari-

ables. Figure 10.36 compares results when rules are mined (1) when there was no

optimization and no feature selection, (2) when there was only optimization, and (3)

when there was both optimization and feature selection. These results demonstrate

that the GA can effectively select a set of features for intrusion detection while

it tunes the membership functions. We have also found that the GA can identify

different sets of features for different types of intrusions.

To conclude, we have integrated data mining techniques with fuzzy logic to pro-

vide new techniques for intrusion detection. Our system architecture allows us to

support both anomaly detection and misuse detection components at both the indi-

vidual workstation level and at the network level. Both fuzzy and non-fuzzy rules

are supported within the system. We have also used genetic algorithms to tune the

membership functions for the fuzzy variables used by our system to and select the

most effective set of features for particular types of intrusions.

Fig. 10.35 The evolution process for tuning fuzzy membership functions in terms of similarity of

data sets containing intrusions (mscan1) and not containing intrusions (normal1) with the reference

rule set

10.7 Data Mining 379

Fig. 10.36 Comparison of

the similarity results using (1)

features and fuzzy

membership functions

selected by the expert, (2)

features selected by the

expert and membership

functions optimized by a GA,

and (3) features selected by

the GA and membership

functions optimized by the

GA

10.7.3 Selection and Partitioning of Attributes in Large-Scale Data

Mining Problems Using Genetic Algorithm

This section presents the problems of reducing and decomposing large-scale concept

learning problems in knowledge discovery in databases (KDD). The approach de-

scribed here adapts the methodology of wrappers for performance enhancement and

attribute subset selection to a genetic optimization problem. The fitness functions

for this problem are defined in terms of classification accuracy given a particular

supervised learning technique (or inducer). More precisely, the quality of a sub-

set of attributes is measured in terms of empirical generalization quality (accuracy

on cross validation data, or a continuation of the data in the case of time series

prediction).

10.7.3.1 Attribute Selection, Partitioning, and Synthesis

The synthesis of a new group of attributes (also known as the feature construction

problem) in inductive concept learning is an optimization problem. Its control pa-

rameters include the attributes used (i.e., which of the original inputs are relevant

to distinguishing a particular target concept), how they are grouped (with respect to

multiple targets), and how new attributes are defined in terms of ground (original)

attributes. This synthesis and selection problem is a key initial step in constructive

induction—the reformulation of a learning problem in terms of its inputs (attributes)

and outputs (concept class descriptors).

Figure 10.37 illustrates the role of attribute selection (reduction of inputs) and

partitioning (subdivision of inputs) in constructive induction (the “unsupervised”

component of this generic KDD process). In this framework, the input consists of

heterogeneous data (that originating from multiple sources). The performance ele-

380 10 Applications of Genetic Algorithms

Fig. 10.37 Attribute-based

transformations in KDD

ment includes time series classification and other forms of pattern recognition that

are important for decision support.

10.7.3.2 Attribute Partitioning in Constructive Induction

Attribute subset selection is the task of focusing a learning algorithm’s attention

on some subset of the given input attributes, while ignoring the rest. Here, subset

selection is adapted to the systematic decomposition of concept learning problems

in heterogeneous KDD. Instead of focusing a single algorithm on a single subset,

the set of all input attributes is partitioned, and a specialized algorithm is focused on

each subset. While subset selection is used to refinement of attribute sets in single-

model learning, attribute partitioning is designed for multiple-model learning.

This approach adopts the role of feature construction in constructive induction: to

formulate a new input specification from the original one. It uses subset partitioning

to decompose a learning task into parts that are individually useful, rather than to

reduce attributes to a single useful group. This permits new intermediate concepts

to be formed by unsupervised learning (e.g., conceptual clustering or cluster forma-

tion using self-organizing algorithms). The newly defined problem or problems can

then be mapped to one or more appropriate hypothesis languages (model specifi-

cations) as illustrated in Fig. 10.37. In the new system, the subproblem definitions

obtained by partitioning of attributes also specify a mixture estimation problem. A

10.7 Data Mining 381

Fig. 10.38 The attribute partitioning approach

data fusion step, shown in Fig. 10.38, occurs after training of the models for all

subproblems.

Together with attribute subset selection, attribute partitioning permits a concept

learning problem to be refined for both increased classification accuracy and com-

prehensibility. The latter increases the utility of the model in systems that combine

multiple models, such as hierarchical data fusion systems and large-scale multi-

strategy data mining systems. Note that these systems may incorporate different

type of concept learning algorithms, such as artificial neural networks. In our appli-

cation, the multistrategy (hybrid) learning system is a GA wrapper that selects and

configures probabilistic networks (especially temporal ANNs) and decision trees for

KDD applications.

10.7.3.3 The Constructive Induction Problem and Supervised

Concept Learning

In current practice, optimization problems in constructive induction are treated as

a state space search. The primary difficulty encountered in applying search-based

algorithms to synthesize attributes, select subsets of relevant attributes, or parti-

tion attributes into useful categories is the combinatorial complexity of uninformed

search. The ability to constrain and control the search for useful attributes (or groups

of them) is critical to making constructive induction viable. Toward this end, both

domain knowledge and evaluation metrics have been applied in informed search

algorithms (gradient and A∗) for attribute subset selection and partitioning.

The definition of a concept learning problem consists of input attributes and

concept classes. Each attribute is a function that maps an example, x, into a value.

Conversely, a classified example can be defined as an object (a tuple of attribute

382 10 Applications of Genetic Algorithms

values) whose type is the range of all combinations of these attributes together with

a concept class, y. The task of an inductive concept learning algorithm is to produce

a concept description, y = g(x), that maps a newly observed example x to its class

y. In inductive concept learning, therefore, the input (a training data set) consists of

classified examples, and the output is a concept descriptor (a representation of the

concept description such as a decision tree, classification rule base, linear separator,

or classifier system). This classifier can then be applied to each new (unclassified)

example to obtain a prediction (hypothesis) of its class.

Constructive induction is the problem of producing new descriptors of training

examples (instances) and target classes in concept learning. It can be regarded as an

unsupervised learning process that refines, or filters, the attributes (also referred to

as features or instance variables) of some concept learning problem. The objective

function of this process, called an attribute filter in the attribute subset selection

and extraction problem, is the expected performance of a given supervised learning

algorithm on the data set, restricted to the selected attributes. This expected per-

formance measure can be based on any quantitative or qualitative analysis of the

data set (including heuristic figures of merit), but the common trait of all attribute

filters is that they operate independently of the induction algorithm (i.e., they ignore

credit assignment based on actual supervised learning quality). The filter method

can be used not only to select attributes, but to compose them using operators, such

as the arithmetic operators {+, -, ∗, /}. The objective criterion is still based strictly

on factors other than direct observation of supervised learning quality.

A more sophisticated variant, suitable for attribute selection, partitioning, or

synthesis, casts the selection problem (for 0-1 subset membership, i.e., inclusion-

exclusion; for subset membership; or for operator application order) as a multi-

criterion optimization function. This function is defined subject to constraints of

supervised learning performance: cross-validated classification accuracy and con-

vergence time are most prevalent. This type of optimization is based on multiple

runs of the supervised learning algorithm (concurrent across any population of

candidate configurations, i.e., subsets, partitions, or synthetic attribute sets; serial

among generations of candidates).

Because it takes the supervised learning algorithm into account and invokes it

as a subroutine, this approach is referred to as the wrapper methodology. Wrappers

can be used for both attribute reformulation (part of constructive induction) and

other forms of parameter tuning in inductive learning. It is important to note that

to date, attribute selection, partitioning, and synthesis wrappers have not been stud-

ied as genetic algorithms, although stochastic and heuristic search and optimization

methods have been applied.

Composition of new attributes by such methods has been shown to increase ac-

curacy of the classifiers produced by applying supervised learning algorithms to

the reformulated data. The rationale is that concept learnability can be improved

relative to given supervised learning algorithm through alternative representation.

The step of transforming low-level attributes into useful attributes for supervised

learning is known as attribute synthesis or, as is more common in the computational

intelligence literature, feature construction. The complementary step to feature con-

10.7 Data Mining 383

struction is cluster definition, the transformation of a given class definition into a

more useful one.

10.7.3.4 Attribute Partitioning as Search

Both filters and wrappers for attribute selection and partitioning can be purely

search-based or can incorporate constraint knowledge about operators, especially

which groups of attributes are coupled (i.e., should be taken together for purposes

of computing joint relevance measures discuss the use of such constraint knowledge

in constructive induction. For example, in the automobile insurance KDD problem

surveyed below, formulae are computed for loss ratio in automobile insurance cus-

tomer evaluation. Only the number of exposures (units of customer membership)

should be allowed as a denominator. Only certain attributes denoting loss paid (on

accidents, for example) should be permitted as numerators, and these should always

be summed. Similarly, duration attributes are a type of attribute that is always pro-

duced by taking the difference of two dates. This type of domain knowledge guided

constructive induction drastically reduces the search space of candidate attributes

from which the filter or wrapper algorithm must select.

The objective criterion for reformulation of a large-scale inductive learning prob-

lem in KDD is defined in terms of classification accuracy, and this leads naturally

to the family of fitness functions and the scalability issues described below.

In search-based algorithms for attribute synthesis, constraint knowledge about

operators has been shown to reduce the number of fitness evaluations for candidate

attributes. This section shows how constraint knowledge about operators can be

encoded in a fitness function. The purpose of this approach is to improve upon the

non-genetic, search-based algorithm in terms of training sample efficiency. Several

GA implementations of alternative (search-based and knowledge-based) attribute

synthesis algorithms are surveyed, and their application to large-scale concept learn-

ing problems is addressed.

10.7.3.5 Methodology of Applying GAs to Constructive Induction Extending

the Traditional Algorithm

This section briefly describes an encoding for attribute synthesis specifications for a

simple GA with single-point crossover and a family of fitness functions that captures

the objective criteria for wrapper systems.

Raymer et al use a masking GA, containing indicator bits for attributes to si-

multaneously extract and select attributes for a k-nearest neighbor (knn) super-

vised learning component. This masking GA is very similar to the state space en-

coding used by Kohavi et al for attribute subset selection, and is quite standard

(e.g., forward selection and backward elimination algorithms in linear regression

are described in similar fashion). Furthermore, the bit mask (inclusion-exclusion)

encoding has an analogue in attribute partitioning that can be applied to encode

384 10 Applications of Genetic Algorithms

pairwise sequential operations on attributes. Some related work on genetic search

for feature selection permits replication of attributes by using a membership coding.

The bit-mask coding is natural for attribute selection, but must be adapted for at-

tribute partitioning. In the genetic wrapper for partitioning, two codings can be

used. The first is a sparse n-by-n bit matrix encoding, where 1 in column j of row i

denotes membership of the i th attribute in subset j . Empty subsets are permitted, but

there can be no more than n. Also, in this design, membership is mutually exclusive

(in a true partition, there is no overlap among subsets). The second coding uses

numeric membership as in the state space representation, and is shown in Fig. 10.39;

this is a more compact encoding but requires specialized crossover operators (cor-

responding to subset exchange) as well as mutation operators (corresponding to

abstraction and refinement).

For an attribute selection, partitioning, or synthesis wrapper, the fitness function

must always reflect the figure(s) of merit specified for the performance element of

the KDD system. If this is a basic supervised concept learner that generates pre-

dictions, the fitness function should be based upon classification error (0-1, mean-

squared error, or whatever loss function is actually used to evaluate the learner).

This is not necessarily the same loss function as is used in the supervised learning

algorithm (which may, for example, be based on gradient descent), but it frequently

is. If the performance element is a classifier system, the fitness function for this

wrapper should express the same criteria. Finally (and most important), the con-

straint knowledge for operator preference can be encoded as a penalty function and

summed with the performance measure (or applied as a quick-rejection criterion).

That is, if some operator is not permitted or not preferred, a penalty can be assessed

that is either continuous or 0-1 loss.

10.7.3.6 Functional (Task-Level) Parallelism in Change

of- Representation Search

As do simple GAs for most concept learning problems (supervised and unsuper-

vised), genetic wrappers exhibit a high degree of functional (task-level) parallelism,

as opposed to data parallelism (aka array or vector parallelism). This is doubly true

for genetic attribute synthesis wrappers. With replication of the data across clus-

Fig. 10.39 A numeric encoding of individuals for attribute partitioning

10.7 Data Mining 385

ter nodes, the inter-task communication is limited to a specification string and the

fitness value, with all of the computation for one run of the supervised learning algo-

rithm being performed on a separate processor. The evaluation of each component

of the specification (i.e., each synthetic attribute) can be also be functionally de-

composed and parallelized. This approach, however, has a high internal data access

overhead. Possible solutions include use of distributed shared memory and parallel

I/O. Nevertheless, the break-even point for communications overhead is favorable,

because the fitness function computations (for applications surveyed below) range

from 5 minutes (for data sets on the order of 100 attributes and 25,000 exemplars)

to 75 minutes (for data sets on the order of 400 attributes and 100,000 exemplars).

10.7.3.7 Applications of Genetic Constructive Induction

in Large-Scale Data Mining

Record and Document Clustering (Information Retrieval)

The simple GA for attribute partitioning can be applied to knowledge discovery in

very large databases. The purpose of constructive induction in these problems is

to perform change of representation for supervised learning, thereby reducing the

computational complexity of the learning problem given the transformed problem.

For example self-organizing maps can be used to produce multiple, intermediate

training targets (new, constructed attributes) that are used to define a new supervised

learning problem. This technique has been used at NCSA (using manual and non-

genetic methods such as Kohonen’s self-organizing maps, or SOM) to cluster sales

transaction records, insurance policy records, and claims data, as well as technical

natural language reports (repair documents, warranty documents, and patent litera-

ture). In current research, the simple GA and more sophisticated genetic methods for

attribute synthesis in record clustering (especially for repair documents and patent

literature) are being evaluated in a Java-based infrastructure for large-scale KDD.

Supervised Learning for Insurance Policy Classification

Finally, another real-world application is multi-attribute risk assessment (prediction

of expected financial loss) using insurance policy data. The input data is parti-

tioned using a state space search over subdivisions of attributes (this approach is

an extension of existing work on attribute subset selection The supervised learn-

ing task is represented as a discrete classification (concept learning) problem over

continuous-valued input. It can be systematically decomposed by partitioning the

input attributes (or fields) based on prior information such as typing of attributes

(e.g., geographical, automobile specific demographics, driver-specific demograph-

ics, etc.). Preliminary experiments indicate that synthesis of intra-type attributes

(such as paid loss, the sum of losses from different subcategories, and duration

or membership, the difference between termination date and effective date of an

insurance policy) and inter-type attributes (such as loss ratio) can be highly useful

386 10 Applications of Genetic Algorithms

in supervised learning. This includes definition of new input attributes as well as

intermediate target concepts.

10.8 Wireless Networks

10.8.1 Genetic Algorithms for Topology Planning

in Wireless Networks

A wireless mesh network (WMN) is an attractive networking technology, providing

with convenient access to the Internet as well as the spontaneous connection of

mobile devices to each other. In WMNs, a number of studies have focused on the

channel allocation problem because it is not easy to utilize the multi-channel and

multi-radio characteristics of WMNs. Since the channel allocation in multi-channel

multi-radio WMNs is an NP-Hard problem, most approaches design the network

with a mathematical model and solve it with linear programming and some approx-

imation algorithms.

On the other hand, where to deploy mesh routers is also a crucial matter in WMNs

since it is directly related to the efficiency and deployment costs. This problem might

also be solved by linear programming, however when the size of the target area

becomes large, the linear programming method cannot handle this matter in a finite

time. Therefore, in most cases, it is not an appropriate approach.

Genetic algorithm (GA)is introduced in deployment of mesh routers, in order

to find a feasible solution to this matter in a finite and reasonable time. The target

area is regarded with n × n grid and the mesh routers can be placed at the center

of each rectangle, where n can be set as a larger number when more precision is

needed. Each rectangle is assigned a sequence number where the top-left rectangle

has the smallest number and the bottom-right the largest. And a binary-string is used

in encoding scheme, in which i -th bit represents whether the rectangle with the se-

quence number i has a mesh router or not. Steady-state GA is used with tournament

selection and toggling mutation with 0.0015 probability. In terms of the crossover

operator, two-dimensional locus-based crossover is employed, where the schema (a

series of dominant genes) of the parents is more likely to be passed down to the

offspring. In terms of the fitness function, both the number of covered subscribers

and the number of mesh routers are considered; the more the covered subscribers

and the less the number of mesh routers, the better the fitness. Here, the strength of

GA is that one can easily reflect restrictions such as obstacles or preference of the

service providers by adjusting the fitness function; whereas in linear programming,

it is usually quite hard to put such constraints into the mathematical model. Also, in

this case a heuristic local optimization scheme is adopted, which is based on random

toggling, to complement the slow convergence of genetic algorithms.

The performance of genetic algorithm can be implemented in planning mesh

router deployment. The size of the target area is set 10,000 m × 10,000 m, and it

is divided into 100 × 100 grids. And the transmission range of each mesh router is

10.8 Wireless Networks 387

configured as 400 m. The location of the gateway to the Internet, and the expected

subscriber vector can be arbitrarily configured, where the location of each expected

subscriber is listed; insert 50 random entries there. The simulation result after 600

generations shows 250 mesh routers are sufficient for the given area; whereas a brief

mathematical analysis shows 180 is the optimum.

Thus, genetic algorithm almost always found the solution close to the optimal

topology within one hour, while linear programming required four to seven days to

find the optimal topology for the much smaller (1/50 times) problem space. When

the size of the target region grows, genetic algorithm will show much better per-

formance over linear programming. This approach is also applicable to the channel

allocation issue in WMNs.

10.8.2 Genetic Algorithm for Wireless ATM Network

Consider the example shown in Fig. 10.40, where cells A and B are connected to

switch s1, and cells C and D are connected to switch s2. If the subscriber moves

from cell B to cell A, switch s1 will perform a handoff for this call. This handoff

is relatively simple and does not involve any location update in the databases that

record the position of the subscriber. The handoff also does not involve any network

entity other than switch s1. Now imagine that the subscriber moves from cell B to

cell C . Then the handoff involves the execution of a fairly complicated protocol be-

tween switches s1 and s2. In addition, the location of the subscriber in the databases

has to be updated. There is actually one more fact that makes this type of handoff

difficult. If switch s1 is responsible for keeping the billing information about the

call, then switch s1 cannot simply remove itself from the connection as a result of

the handoff. In fact, the call continues to be routed through switch s1 (for billing

purposes). The connection, in this case, is from cell C to switch s2, then to switch

s1 and finally to the telephone network.

In this section, consider a group of cells and a group of switches in an ATM

network (whose locations are fixed and known). The problem is to assign cells to

switches in the ATM network in an optimum manner. We consider the topological

design of a two-level hierarchical network. The upper-level network is a connected

ATM network, and the lower-level network is a PCS network which is configured

as an H-mesh (Fig. 10.40). The assumptions of the problem are stated as follows:

(1) The structures and positions of the ATM network and cell network are known.

(2) We assume that the cost of handoffs involving only one switch is negligible.

(3) Each cell in the cell network will be directly assigned and connected to only one

switch in the ATM network.

(4) We assume that the number of calls that can be handled by each cell per unit

time is equal to 1.

(5) The capacity of a switch, the number of cells that it can be assigned, is limited

to a constant called Cap.

388 10 Applications of Genetic Algorithms

Fig. 10.40 Two-level

hierarchical network. The

handoff from B to C is more

expensive than that from B

to A

(6) The cost has two components. One is the cost of handoffs that involve two

switches, and the other is the cost of cabling (or trucking).

(7) Minimal switches assumption: the number of switches assigned is assumed to

be minimized.

(8) Load balance assumption: The load of assigned switches is assumed to be bal-

anced. If this load balance assumption is satisfied, m’ = [n/Cap] switches need to

be assigned, and the number of cells assigned to switches is ⌊n/m′
.⌉or ✷n/m′⌋.

It is easy to see that finding an optimal solution to this problem is NP-complete,

and that an exact search for optimal solutions is impractical due to exponential

growth in execution time. Moreover, traditional heuristic methods and greedy ap-

proaches should trap in local optima. Genetic algorithms (GA) have been touted as

a class of general-purpose search strategies that strike a reasonable balance between

exploration and exploitation.

GA have been constructed as robust stochastic search algorithms for various

optimization problems. GA searches by exploiting information sampled from dif-

ferent regions of the solution space. The combination of crossover and mutations

helps GA escape from local optima. These properties of GA provide a good global

search methodology for the two-level wireless ATM network design problem. In this

section, we propose simple GA for optimal design for the two-level wireless ATM

network problem.

10.8.2.1 Problem Description

The various notations used here are:

n total number of cells in the cell network

m total number of switches in the ATM network

10.8 Wireless Networks 389

G(S, E) ATM network, where S is the set of switches and

E ⊆ S × S

CG(C,L) cell network, where C is the set of cells and L ⊆
C × C

(sk, si) edge between switches sk and sl in S

(ci , c j) edge between cell ci and c j in C

(Xsk , Ysk) coordinate of switch sk ∈ G, k = 1, 2, . . ., m

(Xci , Yc j) coordinate of cell ci ∈ S, i = 1, 2, . . ., n

dki minimal cost between switches sk and si in G

fi j cost per unit time of the handoffs that occur be-

tween cell ci and c j in CG, i , j = 1, . . ., n

lik cost of cabling per unit time and between cell ci ∈
CG and switch sk ∈ G, i = 1, . . ., n; k = 1, . . ., m

and assume lik =
√

(Xci − Xsk)
2 + (Yci − Ysk)

2

wi j weight of edge (ci , c j) ∈ CG, where wi j =
fi j + f j i , wi j = w j i , and wii = 0; i , j = 1, . . . , n

Cap cell handling capacity of the switch

m′ = ⌈n/Cap⌉ number of switches that need to be assigned

α ratio of the cost of cabling to that of handoff

10.8.2.2 Decision Variables

xik =
{

1 if cell ci is assigned to switch sk

0 otherwise

zi j k = xik x j k, for i, j = 1, . . . , n and k = 1, . . . , m

i.e.,

zi j k =

⎧

⎪

⎨

⎪

⎩

1 if both cells ci and c j are connected to

a common switch sk

0 otherwise

yi j =
m

∑

k=1

zi j k , for i, j = 1, . . . , n

i.e.,

yi j =

⎧

⎪

⎨

⎪

⎩

1 if both cells ci and c j are connected to

a common switch

0 otherwise

390 10 Applications of Genetic Algorithms

Find variables xik which minimize,

n
∑

i=1

m
∑

k=1

lik xik + α

n
∑

i=1

n
∑

j=1

m
∑

k=1

m
∑

l=1

wi j (1 − yi j)xik y j ldlk (10.22)

subject to,

n
∑

i=1

xik ≤ Cap, k = 1, . . . , m; (10.23)

m
∑

k=1

xik = 1, for i = 1, . . . , n; (10.24)

⌊ n

m′

⌋

≤
n

∑

i=1

xik ≤
⌈ n

m′

⌉

, k = 1, . . . , m; (10.25)

xik ∈ {0, 1), for i = 1, . . . , n and k = 1, . . . , m. (10.26)

If cells ci and c j are assigned to different switches, then a cost is incurred. If fi j is

the cost per unit time of handoffs that occurs between cells ci and c j , (i , j = l, . . .,

n), then fi j is proportional to the frequency of handoffs that occur between these

cells which we assume is fixed and known.

The objective is to assign each cell to a switch so as to minimize (total cost)

the sum of the cabling costs and handoff costs per unit time. The objective func-

tion (10.22) minimizes the total cost which is the sum of the cabling costs and

handoffs costs per unit time. In (10.22), the first part is the total cabling costs be-

tween cells and switches; the second part is the cost of handoffs per unit time, and

α is the ratio of the cost of cabling to that of and handoff costs. Constraint (10.23)

ensures that the call handling capacity is limited to Cap. Constraint (10.24) ensures

that each cell is assigned to exactly one switch. Constraint (10.25) ensures that the

minimal switches assumption and load balance assumption can be satisfied. Con-

straint (10.26) is a binary and nonnegative constraint.

Consider the graph shown in Fig. 10.41 There are 10 cells in CG which should

be assigned to 4 switches in S.

Fig. 10.41 An example of PCS and ATM networks: (a) Cell graph CG of PCS network, (b) ATM

network

10.8 Wireless Networks 391

The weight of an edge between two cells is the cost per unit time of the handoffs

that occur between them. Four switches are positioned at the center of the cell: c1,

c5, c7, and c9. Assume the matrix CS of the distance between a cell and a switch is

as follows:

C S = {lik}10×4 =

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1
√

7 2

1 1
√

3
√

3

2
√

3 1 2

1 1 3
√

3

1 0 2 1√
3 1 1 1√
7 2 0

√
3√

3 1
√

7 1

2 1
√

3 0√
7

√
3 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10.27)

An initial assignment of example is shown in Fig. 10.42. Cells c1, c1, c4, c5 and

c8 are connected to switch s2, and the others are connected to switch s4.

In this section, we discuss the details of GA developed to solve the problem of

optimum assignment of cells in PCSs to switches in the ATM network. The devel-

opment of GA requires:

(1) a chromosomal coding scheme,

(2) genetic crossover operators,

(3) mutation operators,

(4) a fitness function definition,

(5) a replacement strategy,

(6) termination rules.

Fig. 10.42 An initial

assignment for example.

Simple Genetic Algorithm

(SGA) for Wireless ATM

Network Design

392 10 Applications of Genetic Algorithms

Chromosomal Coding

Since our problem involves representing of connections between cells and switches,

we employ a coding scheme that uses positive integer numbers. Cells are labeled

from one to n (the total number of cells); and switches are labeled from one to

m (the total number of switches). The cell-oriented representation of the chro-

mosome structure is shown in Fig. 10.43(a), where the i th cell belongs to the vith

switch. For example, the chromosome of the example shown in Fig. 10.42 is shown

in Fig. 10.37(b).

Genetic Crossover Operator

Two types of genetic operators were used to develop this algorithm:

(1) simple single point crossover;

(2) the random cell swap operator (RCSO).

The simple single point crossover is the traditional one. In RCSO, by randomly se-

lecting two chromosomes (say P1 and P2) for crossover from previous generations

and then using a random number generator, an integer value i is generated in the

range (1, n). This number is used as the crossover site. Let vi1 and vi2 be the value

of the i th cell in P1 and P2, respectively. To create new offspring, RCSO employs

two steps: first, all the characters between i and n of two parents are swapped and

temporal chromosomes C1 and C2 are generated. Then, in all the characters in C1

and C2; the value vi1 (vi2) is change to vi2 (vi1). The following example provides a

detailed description of the crossover operation (assume crossover site i = 6):

Parent P1

1 1 2 4 3 | 1 1 2 4 3;

Parent P2

3 1 4 2 3 | 3 1 2 3 2.

First, two substrings between 6 and 10 are swapped, and we have:

Temporal chromosome C1

1 1 2 4 3 | 3 1 2 3 2;

Fig. 10.43 (a) Cell-oriented

representation of the

chromosome structure, (b)

Cell-oriented representation

of Example

10.8 Wireless Networks 393

Temporal chromosome C2

3 1 4 2 3 | 1 1 2 4 3.

Then, every 1 is changed to 3, and every 3 is changed to 1 in both temporal chro-

mosomes C1 and C2, and we have:

Offspring O1 3 3 2 4 1 | 1 3 2 1 2;

Offspring O2 1 3 4 2 1 | 3 3 2 4 1.

Mutation

Two types of mutations were used to develop this algorithm:

(1)The traditional mutation operation: by randomly selecting a cell of a vector,

the traditional mutation operation changes the value of the cell to a random

number which is between 1 to m.

(2)Multiple cell mutation: by randomly selecting two random numbers k, l between

1 and m, multiple cell mutation change the value of each cell from

k to l.

The following example provides a detailed description of multiple cells mutation

(assume random numbers k = 3 and l = 4):

Before mutation 1 1 2 4 3 1 1 2 4 3;

After mutation 1 1 2 4 4 1 1 2 4 4.

Fitness Function Definition

Generally, GA use fitness functions to map objectives to costs to achieve the goal

of an optimally designed two-level wireless ATM network. If cell ci is assigned to

switch sk, then vi in the chromosome is set to be k. Let d(vi , v j) be the minimal

communication cost between switches sk and sl in G. An objective function value

is associated with each chromosome, which is the same as the fitness measure men-

tioned above.

We use the following objective function:

minimize

n
∑

i=l

livi + α

n
∑

i=l

n
∑

j=l

wi j d(vi ,v j). (10.28)

While breeding chromosomes, GA does not require the chromosome to reflect a

feasible solution. Thus, we need to attach a penalty to the fitness function in the

event the solution is infeasible. Let nk be the number of cells assigned to switch sk,

and assume that n is a multiple of Cap. Sort switches in decreasing order according

394 10 Applications of Genetic Algorithms

to the number of cells to be assigned. We rewrite the formulation above in an

unconstrained form:

minimize cost =
n

∑

i=l

livi + α

n
∑

i=l

n
∑

j=l

wi j d(vi ,v j) + Π,

where

Π = β(

m′
∑

k=1

|nk − Cap| +
m

∑

k=m′+1

|nk |). (10.29)

∏

is the penalty measure associated with a chromosome, and β is the penalty

weight.

Since the best-fit chromosomes should have a probability of being selected as

parents that is proportional to their fitness, they need to be expressed in a maxi-

mization form. This is done by subtracting the objective from a large number Cmax.

Hence, the fitness function becomes:

maximize Cmax − [

n
∑

i=l

livi + α

n
∑

i=l

n
∑

j=l

wi j d(vi ,v j)

+ β(

m′
∑

k=1

|nk − Cap| +
m

∑

k=m′+1

|nk |)],

(10.30)

where Cmax denotes the maximum value observed, so far, of the cost function in the

population. Let cost be the value of the cost function for the chromosome; Cmax can

be calculated by the following iterative equation:

Cmax = max {Cmax, cost}, (10.31)

where Cmax is initialized to zero.

Replacement Strategy

This subsection discusses a method used to create a new generation after crossover

and mutation is carried out on the chromosomes of the previous generation. The

most common strategies probabilistically replace the poorest performing chromo-

somes in the previous generation. The elitist strategy appends the best performing

chromosome of a previous generation to the current population and thereby ensures

that the chromosome with the best objective function value always survives to the

next generation. The algorithm developed here combines both the concepts main-

tained above.

10.9 Very Large Scale Integration (VLSI) 395

Each offspring generated after crossover is added to the new generation if it has

a better objective function value than do both of its parents. If the objective function

value of an offspring is better than that of only one of the parents, then we select a

chromosome randomly from the better parent and the offspring. If the offspring is

worse than both parents, then either of the parents is selected at random for the next

generation. This ensures that the best chromosome is carried to the next generation

while the worst is not carried to the succeeding generations.

Termination Rules

Execution of GA can be terminated using any one of the following rules:

R1: when the average and maximum fitness values exceed a predetermined

threshold;

R2: when the average and maximum fitness values of strings in a generation

become the same; or

R3: when the number of generations exceeds an upper bound specified by the

user.

The best value for a given problem can be obtained from a GA when the algorithm

is terminated using R2.

In this section, we have investigated the problem of obtaining the optimum de-

sign of the two-level wireless ATM network. Given cells and switches on an ATM

network (whose locations are fixed and known), the problem is to assign cells to

switches in an optimum manner. This problem has been modeled as a complex

integer programming problem, and the optimal solution of this problem has been

found to be NPcomplete. A stochastic search methods (SGA) based on a genetic

approach have been proposed to solve this problem. Simulation can be performed

considering a hexagonal system or any other system and the results can be observed

indicating the robustness of Genetic Algorithm.

10.9 Very Large Scale Integration (VLSI)

10.9.1 Development of a Genetic Algorithm Technique

for VLSI Testing

The objective of VLSI testing is to generate compact set of test vectors that has high

coverage of manufacturing defects.

• Stuck at fault modeling is the widely used fault modeling method in VLSI Test-

ing.

• Here nodes are assumed to be stuck at either “0” or “1”, for the purpose fault

modeling.

• Testing methodology for a digital circuit is shown in Fig. 10.44.

396 10 Applications of Genetic Algorithms

Digital Circuit

Comparator

Input Test Patterns

Stored Correct response

Fig. 10.44 Digital circuit

• Test vectors are encoded as Binary bit stream.

• Fitness function gives the number of faults covered by each test vector.

Consider the XOR circuit shown in the Fig. 10.45 below.

The description of given XOR Circuit is as follows:

• Number of primary inputs is “2” and primary output is “1”.

• Each parent width is 2 bits.

• In this example, XOR circuit has 12 fault sites and 24 stuck at faults.

• For a fault free circuit, the output is “1” for a input vector [1,0].

• If the circuit has a stuck at “0” at “a”, the output response is “0”. So input vector

[1,0] detects stuck at 0 [SA0] fault at “a”.

• Like wise [1,0] can also detect SA0 fault at [a, c, d, g, h, z] and SA1 at [b, e, j].

• Thus [1,0] can detect 9 out of a total of 24 faults and it’s fitness is 0.375

[i.e. 9/24].

The experimental circuit is as given below in Fig. 10.46. Table 10.10 shows the

fault coverage of different test vectors.

The advantages of GA in VLSI Testing is as follows:

• Concept is easy to understand and separate from the application.

• Easy to exploit previous or alternate solutions.

• They are adaptive and learn from experience.

• They are efficient for complex programs.

• They are easy to parallelize as they have intrinsic parallelism.

• As they are inherently parallel, the computation can be easily distributed.

a h j
g

i

k

b

1

0 z

Fig. 10.45 XOR circuit

10.9 Very Large Scale Integration (VLSI) 397

Fig. 10.46 Experimental circuit

10.9.2 VLSI Macro Cell Layout Using Hybrid GA

Genetic algorithms have proven to be a well-suited technique for solving selected

combinatorial optimization problems. The blindness of the algorithm during the

search in the space of encoding must be abandoned, because this space is discrete

and the search has to reach feasible points after the application of the genetic op-

erators. This can be achieved by the use of a problem specific genotype encoding,

and hybrid, knowledge based techniques, which support the algorithm during the

creation of the initial individuals and the following optimization process. In this

section a novel hybrid genetic algorithm, which is used to solve macrocell placement

problem is presented.

The design of VLSI (very large scale integrated) microchips is a process of many

consecutive steps including specification, functional design, circuit design, physical

design, and fabrication. Macro-cell layout generation is a task in the physical design

cycle. The circuit is partitioned and the components are grouped in functional units,

Table 10.10 Fault coverage of different test vectors

Test Vector

a b c d e f g h I

Stuck at 0 faults

detected

Stuck at 1 faults

detected

Fitness Value Cumulative sum

of fault coverage

%

1 1 0 1 0 0 1 0 1 a, b, g, I, 3, 4 e, f, 1, 5, 6, 7, 8, 9 0.40 40

1 0 1 1 1 0 0 1 1 e, 7, 8, 9 3 0.14 54

1 0 1 1 0 1 0 1 1 f, c, d, h [I] 2 [3, 5, 6, 7, 8, 9] 0.34 68

1 0 1 0 0 0 1 1 1 1, 2, 6 [8] b, d 0.17 82

1 1 0 1 0 0 0 0 1 [7, 8, 9] g, h, 4 0.17 90

1 1 0 1 0 0 1 1 0 5 [9] I 0.08 95

0 1 0 1 0 0 1 1 1 [1, 2, 6, 8, 9] a, c 0.20 100

398 10 Applications of Genetic Algorithms

the macro-cells. These cells can be described as rectangular blocks with terminals

(pins) along their borders. These terminals have to be connected by signal nets,

along which power or signals (e.g., clock ticks) are transmitted between the various

units of the chip. A net can connect two or more terminals, and some nets must be

routed to pads at the outer border of the layout, since they are involved in the I/O of

the chip. The layout defines the positions of the cells (Fig. 10.47).

The major objectives are chip area minimization and interconnection wire length

minimization. Since the number of possible placements increases explosively with

the number of blocks, even subsets of the problem have been shown to be NP-

complete or NP-hard. In this section, a hybrid genetic algorithm with a genotype

representation based on binary trees and the genetic operators that work directly on

this tree structure is used.

10.9.3 Problem Description

Inputs of the placement problem are

• a set of blocks with fixed geometries and fixed pin positions

• a set of nets specifying the interconnections between pins of blocks

• a set of pads (external pins) with fixed positions

• a set of user constraints, e.g., block positions/orientations, critical nets, if any

Given the inputs, the objective of the problem is to find the positions and orienta-

tions of each block, so that the chip area and interconnection wire length between

blocks are minimized while satisfying all the given constraints. We take wire length

into account simultaneously in the optimization process. Since it is impossible to

calculate the exact wire length at this stage where detailed routing has not yet been

carried out, we estimate the length of each net as one-half of the perimeter of the

bounding box of the net.

Fig. 10.47 The schematic

representation of a VLSI

macro-cell layout, which

shows the position of eight

cells, the routes for the signal

nets, and the I/O pads

10.9 Very Large Scale Integration (VLSI) 399

The objective function, which measures the quality of the resulting placement,

can be expressed as follows,

E = 1/(C1 ChipArea + C2WireLength) (10.32)

where C1, C2 are the corresponding weights.

10.9.4 Genetic Layout Optimization

10.9.4.1 The Hybrid Genetic Algorithm

A Hybrid Genetic Algorithm is designed to use heuristics for improvement of off-

spring produced by crossover. Initial population is randomly generated. The off-

spring is obtained by crossover between two parents selected randomly. The layout

improvement heuristics RemoveSharp and LocalOpt are used to ring the offspring

to a local maximum. If fitness of the layout of the offspring thus obtained is greater

than the fitness of the layout of any one of the parents then the parent with lower

fitness is removed from the population and the offspring is added to the population.

If the fitness of the layout of the offspring is lesser than that of both of its parent

then it is discarded. For mutation a random number is generated within one and if it

is less than the specified probability of the mutation operator a layout is randomly

selected and removed from the population. Its layout is randomized and then added

to the population. The algorithm works as below:

Step 1 : Initialize population randomly

Step 2 : Apply RemoveSharp algorithm to all layouts in the initial population

Apply LocalOpt algorithm to all layouts in the initial population

Step 3 : Select two parents randomly

Apply Crossover between parents and generate an offspring

Apply RemoveSharp algorithm to offspring

Apply LocalOpt algorithm to offspring

If Fitness(offspring) > Fitness (any one of the parents) then replace the

weaker parent by the offspring

Step 4 : Mutate any one randomly selected layout from population

Step 5 : Repeat steps 3 and 4 until end of specified number of iterations.

10.9.4.2 Genotype Representation

The phenotypic representation for the placement problems is basically the pattern

that describes the position of the blocks. Binary slicing trees are well suited to rep-

resent placement patterns and have already been used in genetic algorithms. During

recombination, partial arrangements of blocks are transmitted from parents to off-

spring. The corresponding operation is the inheritance of subtrees from the parents.

Encoding the tree in a string complicates this operation, since the string needs to

400 10 Applications of Genetic Algorithms

be decoded into the slicing tree to execute the recombination, then recoded into an

offspring chromosome afterwards. There is no reason for using a string encoding ex-

cept for the analogy to the natural evolution process, where the genetic information

is encoded in a DNA string.

When directly using the slicing tree as the genotype representation, further de-

coding or encoding the tree when applying genetic operators is avoided. The geno-

type is encoded as a binary slicing tree, which defines the relative placement of

the cells (Fig. 10.48). It is composed in a bottom-up fashion. In each inner node

two blocks (in the lowest level these are single cells) are joined to a meta-block

(partial placement). In each meta-block the orientations of the combined blocks

are fixed (Fig. 10.49). Therefore every tree describes several possible shapes for

the corresponding layout, which enormously improves the performance of the GA.

Blocks or sub-patterns in a tree defining a layout, is always stacked vertically upon

each other. The pattern characterized by the right successor of an inner tree node

is always positioned on top of the pattern characterized by its left successor when

combining both parts into a pattern or meta-block.

10.9.4.3 Genetic Operators

During the optimization process the placement of the blocks has to be changed. The

genetic operators directly work on the tree-structure by combining subtrees of par-

ents (crossover) and modifying the tree of an individual (mutation). The crossover

operator takes two individuals (parent) out of which one offspring is composed by

combining two subtrees, one from each parents. Unfortunately, these parts usually

do not add up to a complete layout. After the combination of the two subtrees

the redundant blocks are deleted and the missing blocks have to be added at ran-

dom positions to the tree to ensure that the offspring finally represents a correct

layout. Mutation operator modifies either by exchanging simple blocks or a block

(leaf) with a meta-block (subtree) or by exchanging two meta-blocks. These cases

Fig. 10.48 The genotype

10.9 Very Large Scale Integration (VLSI) 401

Fig. 10.49 The composition

of a meta-block

represent the exchange of two cells, a cell with a partial layout, and the exchange of

two partial layouts on the layout surface.

10.9.4.4 Simulation

The hybrid genetic algorithm for the layout generation problem was tested on real

life circuits chosen from a benchmark suite that was released for design workshops

in the early 90s and is often referenced in the literature as the MCNC benchmarks.

They were originally maintained by North Carolina’s Microelectronics, Comput-

ing and Networking Center, but are now located at the CAD Benchmarking Lab-

oratory (CBL) at North Carolina State University. These benchmarks are standard

problems in macro-cell layout, and the characteristics of the circuits are shown in

Table 10.11.

Using the following parameters, the heuristics developed are analyzed; the best

performance of HGA is found when the values of the parameters are set as below:

RemoveSharp (m) : 5

LocalOpt(q) : 6

Probability of Population size : 50

Mutation operator : 0.02

Number of Iterations : 10000

Table 10.11 The benchmark circuits for the macro-cell layout generation problem

402 10 Applications of Genetic Algorithms

Table 10.12 Results of HGA

The classical layout problem discussed in problem description; in which wirelength

is also a factor in fitness value is analyzed. But due to technological progress, tech-

nologies like Over-The-Cell routing are now used so there is no need to determine

wirelength and to add routing space (through which wires are routed) to the layout.

Therefore in the fitness function introduced in problem description, C1 is assigned

one, and C2 is assigned zero.

The result of using hybrid GA is shown in Table 10.12.

In this section an approach has been presented to incorporate domain knowledge

into a genetic algorithm, which is supposed to compute near-optimal solutions to

VLSI Placement problem. The feasibility of the approach has been demonstrated

by presenting performance results for benchmark instances. It can be found that the

implementation of the two newly introduced heuristics result in near optimal solu-

tions in all cases. These heuristics are simple, straightforward and easy to implement

when compared to other algorithms. This approach promises to be a useful tool in

VLSI Design Automation.

10.10 Summary

GAs can even be faster in finding global maxima than conventional methods, in

particular when derivatives provide misleading information. We should not forget,

however, that, in most cases where conventional methods can be applied, GAs are

much slower because they do not take auxiliary information like derivatives into

account. In these optimization problems, there is no need to apply a GA which gives

less accurate solutions after much longer computation time. The enormous potential

of GAs lies elsewhere—in optimization of non-differentiable or even discontinuous

functions, discrete optimization, and program induction. Thus due to these reasons

genetic algorithm is found to be used in a variety of applications as discussed in this

chapter. Apart from these applications dealt in this chapter, GAs can be applied to

production planning, air traffic problems, automobile, signal processing, communi-

cation networks, environmental engineering and so on.

Chapter 11

Introduction to Particle Swarm Optimization

and Ant Colony Optimization

11.1 Introduction

In this chapter, a brief introduction is given to Particle Swarm Optimization (PSO)

and Ant Colony Optimization (ACO). Optimization is the process to find a best opti-

mal solution for the problem under consideration. Particle Swarm Optimization and

Ant Colony Optimization achieve finding an optimal solution for the search prob-

lems using the social behavior of the living organisms. Particle swarm optimization

is a form of swarm intelligence and Ant colony optimization is a population-based

metaheuristic that can be used to find approximate solutions to difficult optimization

problems. The chapter gives an overview of basic concepts and fucntional operation

of Particle Swarm Optimization and Ant Colony Optimization.

11.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization

technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social

behavior of bird flocking or fish schooling. PSO shares many similarities with evo-

lutionary computation techniques such as Genetic Algorithms (GA). The system is

initialized with a population of random solutions and searches for optima by up-

dating generations. However, unlike GA, PSO has no evolution operators such as

crossover and mutation. In PSO, the potential solutions, called particles, fly through

the problem space by following the current optimum particles.

In past several years, PSO has been successfully applied in many research and

application areas. It is demonstrated that PSO gets better results in a faster, cheaper

way compared with other methods. Another reason that PSO is attractive is that

there are few parameters to adjust. One version, with slight variations, works well

in a wide variety of applications. Particle swarm optimization has been used for

approaches that can be used across a wide range of applications, as well as for

specific applications focused on a specific requirement.

403

404 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

11.2.1 Background of Particle Swarm Optimization

Particle swarm optimization (PSO) is a form of swarm intelligence and is inspired

by bird flocks, fish schooling and swarm of insects. The flock of birds, fish schooling

and swarm of insects is as shown in Fig. 11.1.

Consider Fig. 11.1 and imagine a swarm of insects or a school of fish. If one

sees a desirable path to go (e.g., for food, protection, etc.) the rest of the swarm

will be able to follow quickly even if they are on the opposite side of the swarm.

On the other hand, in order to facilitate felicitous exploration of the search space,

typically one wants each particle to have a certain level of “craziness” or randomness

in their movement, so that the movement of the swarm has a certain explorative

capability: the swarm should be influenced by the rest of the swarm but also should

independently explore to a certain extent.

This is performed by particles in multidimensional space that have a position

and a velocity. These particles are flying through hyperspace (i.e., ℜn) and have

two essential reasoning capabilities: their memory of their own best position and

knowledge of the swarm’s best, “best” simply meaning the position with the smallest

objective value. Members of a swarm communicate good positions to each other and

Fig. 11.1 Social behavior

11.2 Particle Swarm Optimization 405

adjust their own position and velocity based on these good positions. There are two

main ways this is done:

• a global best that is known to all and immediately updated when a new best

position is found by any particle in the swarm

• “neighborhood” bests where each particle only immediately communicates with

a subset of the swarm about best positions

Each particle keeps track of its coordinates in the problem space which are asso-

ciated with the best solution (fitness) it has achieved so far. (The fitness value is

also stored.) This value is called pbest. Another “best” value that is tracked by the

particle swarm optimizer is the best value, obtained so far by any particle in the

neighbors of the particle. This location is called lbest. when a particle takes all the

population as its topological neighbors, the best value is a global best and is called

gbest.

The particle swarm optimization concept consists of, at each time step, changing

the velocity of (accelerating) each particle toward its pbest and lbest locations (local

version of PSO). Acceleration is weighted by a random term, with separate random

numbers being generated for acceleration toward pbest and lbest locations.

11.2.2 Operation of Particle Swarm Optimization

Consider Swarm of particles is flying through the parameter space and searching for

optimum. Each particle is characterized by,

Position vector xi (t)

Velocity vector vi (t)

as shown in Fig. 11.2.

During the process, each particle will have its individual knowledge pbest, i.e.,

its own best-so-far in the position and social knowledge gbest i.e., pbest of its best

neighbor as shown in Fig. 11.3.

Performing the velocity update, using the formula given below,

vi (t + 1) = α vi + c1 × rand × (pbest (t)-xi (t)) + c2 × rand × (gbest (t)-xi (t))

(11.1)

Fig. 11.2 A particle with

position vector and velocity

vector

406 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

Fig. 11.3 Particle with pbest

and gbest

where α is the inertia weight that controls the exploration and exploitation of the

search space. c1 and c2, the cognition and social components respectively are the

acceleration constants which changes the velocity of a particle towards the pbest

and gbest. rand is a random number between 0 and 1. Usually c1 and c2 values are

set to 2. The velocity update is based on the parameters as shown in Fig. 11.4.

Now, performing the position update,

Xi (t + 1) = Xi (t) + Vi (t + 1) (11.2)

The position update process is as shown in Fig. 11.5

The above process discussed is repeated for each and evry particle considered in

the computation and the best optimal solution is obtained.

PSO utilizes several searching points like genetic algorithm (GA) and the search-

ing points gradually get close to the optimal point using their pbests and the gbest.

The first term of RHS of (11.1) is corresponding to diversification in the search

procedure. The second and third terms of that are corresponding to intensification in

the search procedure. Namely, the method has a well balanced mechanism to utilize

diversification and intensification in the search procedure efficiently. The original

PSO can be applied to the only continuous problem. However, the method can be

expanded to the discrete problem using discrete number position and its velocity

easily.

The above feature can be explained as follows. The RHS of (11.1) consists of

three terms. The first term is the previous velocity of the agent. The second and third

Fig. 11.4 Parameters for

velocity update

11.2 Particle Swarm Optimization 407

Fig. 11.5 Position update

using xi(t) and vi(t + 1)

terms are utilized to change the velocity of the agent. Without the second and third

terms, the agent will keep on “flying” in the same direction until it hits the boundary.

Namely, it tries to explore new areas and, therefore, the first term is corresponding

to diversification in the search procedure. On the other hand, without the first term,

the velocity of the “flying” agent is only determined by using its current position

and its best positions in history. Namely, the agents will try to converge to the their

pbests and/or gbest and, therefore, the terms are corresponding to intensification in

the search procedure.

11.2.3 Basic Flow of Particle Swarm Optimization

The basic operation of PSO is given by,

Step 1: Initialize the swarm from the solution space

Step 2: Evaluate fitness of individual particles

Step 3: Modify gbest, pbest and velocity

Step 4: Move each particle to a new position

Step 5: Goto step 2, and repeat until convergence or stopping condition is

satisfied

The pseudo code of the procedure is as follows

For each particle

Initialize particle

END

Do

For each particle

Calculate fitness value

408 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

If the fitness value is better than the best fitness value

(pbest) in history set current value as the new pbest

End

Choose the particle with the best fitness value of all the

particles as the gbest

For each particle

Calculate particle velocity according equation (11.1)

Update particle position according equation (11.2)

End

While maximum iterations or minimum error criteria is not attained

Particles’ velocities on each dimension are clamped to a maximum velocity

Vmax. If the sum of accelerations would cause the velocity on that dimension to

exceed Vmax, which is a parameter specified by the user. Then the velocity on that

dimension is limited to Vmax.

The basic flowchart of Particle Swarm optimization is as shown in Fig. 11.6. In

that Repository refers to the memory location of each particle.

11.2.4 Comparison Between PSO and GA

The strength of GAs is in the parallel nature of their search. A GA implements

a powerful form of hill climbing that preserves multiple solutions, eradicates un-

promising solutions, and provides reasonable solutions. Through genetic operators,

even weak solutions may continue to be part of the makeup of future candidate so-

lutions. The genetic operators used are central to the success of the search. All GAs

require some form of recombination, as this allows the creation of new solutions

that have, by virtue of their parent’s success, a higher probability of exhibiting a

good performance. In practice, crossover is the principal genetic operator, whereas

Fig. 11.6 Basic flowchart

of PSO

11.2 Particle Swarm Optimization 409

mutation is used much less frequently. Crossover attempts to preserve the beneficial

aspects of candidate solutions and to eliminate undesirable components, while the

random nature of mutation is probably more likely to degrade a strong candidate

solution than to improve it. Another source of the algorithm’s power is the implicit

parallelism inherent in the evolutionary metaphor. By restricting the reproduction of

weak candidates, GAs eliminate not only that solution but also all of its descendants.

This tends to make the algorithm likely to converge towards high quality solutions

within a few generations.

Most of evolutionary techniques have the following procedure:

1. Random generation of an initial population

2. Reckoning of a fitness value for each subject. It will directly depend on the dis-

tance to the optimum.

3. Reproduction of the population based on fitness values.

4. If requirements are met, then stop. Otherwise go back to 2.

From the procedure, one can learn that PSO shares many common points with GA.

Both algorithms start with a group of a randomly generated population; both have

fitness values to evaluate the population. Both update the population and search

for the optimum with random techniques. Both systems do not guarantee success.

However, PSO does not have genetic operators like crossover and mutation. Parti-

cles update themselves with the internal velocity. They also have memory, which

is important to the algorithm. Compared with genetic algorithms (GAs), the infor-

mation sharing mechanism in PSO is significantly different. In GAs, chromosomes

share information with each other. So the whole population moves like a one group

towards an optimal area. In PSO, only gbest (or lbest) gives out the information to

others. It is a one -way information sharing mechanism. The evolution only looks

for the best solution. Compared with GA, all the particles tend to converge to the

best solution quickly even in the local version in most cases.

Particle Swarm Optimization shares many similarities with evolutionary compu-

tation (EC) techniques in general and GAs in particular. All three techniques begin

with a group of a randomly generated population, all utilize a fitness value to evalu-

ate the population. They all update the population and search for the optimum with

random techniques. A large inertia weight facilitates global exploration (search in

new areas), while a small one tends to assist local exploration. The main difference

between the PSO approach compared to EC and GA, is that PSO does not have

genetic operators such as crossover and mutation. Particles update themselves with

the internal velocity; they also have a memory that is important to the algorithm.

Compared with EC algorithms (such as evolutionary programming, evolutionary

strategy and genetic programming), the information sharing mechanism in PSO is

significantly different. In EC approaches, chromosomes share information with each

other, thus the whole population moves like one group towards an optimal area. In

PSO, only the “best” particle gives out the information to others. It is a one-way

information sharing mechanism; the evolution only looks for the best solution. Com-

pared with ECs, all the particles tend to converge to the best solution quickly even

in the local version in most cases. Compared to GAs, the advantages of PSO are that

PSO is easy to implement and there are few parameters to adjust.

410 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

11.2.5 Applications of PSO

PSO has been successfully applied in many areas: function optimization, artificial

neural network training, fuzzy system control, and other areas where GA can be

applied. The various application areas of Particle Swarm Optimization include:

• Power Systems operations and control

• NP-Hard combinatorial problems

• Job Scheduling problems

• Vehicle Routing Problems

• Mobile Networking

• Modeling optimized parameters

• Batch process scheduling

• Multi-objective optimization problems

• Image processing and Pattern recognition problems

and so on. Currently, several researchers are being carried out in the area of particle

swarm optimization and hence the application area also increases tremendously.

11.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a population-based, general search technique for

the solution of difficult combinatorial problems, which is inspired by the pheromone

trail laying behavior of real ant colonies. In ACO, a set of software agents called

artificial ants search for good solutions to a given optimization problem. To apply

ACO, the optimization problem is transformed into the problem of finding the best

path on a weighted graph. The artificial ants (hereafter ants) incrementally build

solutions by moving on the graph. The solution construction process is stochastic

and is biased by a pheromone model, that is, a set of parameters associated with

graph components (either nodes or edges) whose values are modified at runtime by

the ants.

The first member of ACO class of algorithms, called Ant System, was initially

proposed by Colorni, Dorigo and Maniezzo. The main underlying idea, loosely in-

spired by the behavior of real ants, is that of a parallel search over several construc-

tive computational threads based on local problem data and on a dynamic memory

structure containing information on the quality of previously obtained result. The

collective behavior emerging from the interaction of the different search threads has

proved effective in solving combinatorial optimization (CO) problems.

11.3.1 Biological Inspiration

In the 40s and 50s of the 20th century, the French entomologist Pierre-Paul Grass

observed that some species of termites react to what he called “significant stimuli”.

11.3 Ant Colony Optimization 411

He observed that the effects of these reactions can act as new significant stimuli for

both the insect that produced them and for the other insects in the colony. Grass

used the term stigmergy to describe this particular type of communication in which

the “workers are stimulated by the performance they have achieved”.

The two main characteristics of stigmergy that differentiate it from other forms

of communication are the following.

• Stigmergy is an indirect, non-symbolic form of communication mediated by the

environment: insects exchange information by modifying their environment; and

• Stigmergic information is local: it can only be accessed by those insects that visit

the locus in which it was released (or its immediate neighborhood).

Stigmergy is an indirect and asynchronous form of communication in which the

insects manipulate the environment to transport information to the other insects,

which then respond to the change. The insects therefore do not have to be at the

same place at the same time as the others to communicate with them. In many ant

species colonies, stigmergy refers to the deposition of pheromone by ants while they

are moving. Other ants can then smell the deposited pheromone and have a natural

tendency to follow the laid trail. This constitutes an asynchronous and indirect com-

munication scheme, where one ant communicates with other ants wherever they are,

and it is how positive feedback is created. A little pheromone on a path might lead

other ants to follow the same path, depositing even more pheromone, which can

lead to a positive feedback effect, if the selected path is good (leading to food) thus

recruiting even more ants to follow the path.

The main elements of a biological stigmergic system are shown in Fig. 11.7:

• The insect as the acting individual.

• The pheromone as an information carrier, used to create a dissipation field.

• The environment as a display and distribution mechanism for information.

Examples of stigmergy can be observed in colonies of ants. In many ant species,

ants walking to and from a food source deposit on the ground a substance called

pheromone. Other ants perceive the presence of pheromone and tend to follow paths

where pheromone concentration is higher. Through this mechanism, ants are able to

transport food to their nest in a remarkably effective way. The basic behavior of the

ants is discussed as follows:

Real ants are capable of finding shortest path from a food source to the nest

without using visual cues. Also, they are capable of adapting to changes in the en-

vironment, for example finding a new shortest path once the old one is no longer

Fig. 11.7 Elements of a

stigmeric system

412 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

Fig. 11.8 Movement of ant in

a straight line

feasible due to a new obstacle. Consider the following Fig. 11.8 in which ants are

moving on a straight line, which connects a food source to the nest:

It is well known that the main means used by ants to form and maintain the line

is a pheromone trail. Ants deposit a certain amount of pheromone while walking,

and each ant probabilistically prefers to follow a direction rich in pheromone rather

than a poorer one. This elementary behavior of real ants can be used to explain

how they can find the shortest path, which reconnects a broken line after the sudden

appearance of an unexpected obstacle, has interrupted the initial path (Fig. 11.9).

In fact, once the obstacle has appeared, those ants, which are just in front of the

obstacle, cannot continue to follow the pheromone trail and therefore they have to

choose between turning right or left. In this situation we can expect half the ants to

choose to turn right and the other half to turn left. The very same situation can be

found on the other side of the obstacle (Fig. 11.10).

It is interesting to note that those ants which choose, by chance, the shorter path

around the obstacle will more rapidly reconstitute the interrupted pheromone trail

compared to those which choose the longer path. Hence, the shorter path will receive

a higher amount of pheromone in the time unit and this will in turn cause a higher

number of ants to choose the shorter path. Due to this positive feedback (autocat-

alytic) process, very soon all the ants will choose the shorter path (Fig. 11.11).

The most interesting aspect of this autocatalytic process is that finding the short-

est path around the obstacle seems to be an emergent property of the interaction

between the obstacle shape and ants distributed behavior: Although all ants move at

approximately the same speed and deposit a pheromone trail at approximately the

same rate, it is a fact that it takes longer to contour obstacles on their longer side

than on their shorter side which makes the pheromone trail accumulate quicker on

the shorter side. It is the ants’ preference for higher pheromone trail levels, which

makes this accumulation still quicker on the shorter path.

Deneubourg et al. thoroughly investigated the pheromone laying and following

behavior of ants. In an experiment known as the “double bridge experiment”, the

nest of a colony of Argentine ants was connected to a food source by two bridges

Fig. 11.9 Obstacle on ant

paths

11.3 Ant Colony Optimization 413

Fig. 11.10 Behavior of ants

to obstacle

of equal lengths, as shown in Fig. 11.12. In such a setting, ants start to explore

the surroundings of the nest and eventually reach the food source. Along their path

between food source and nest, Argentine ants deposit pheromone. Initially, each

ant randomly chooses one of the two bridges. However, due to random fluctuations,

after some time one of the two bridges presents a higher concentration of pheromone

than the other and, therefore, attracts more ants. This brings a further amount of

pheromone on that bridge making it more attractive with the result that after some

time the whole colony converges toward the use of the same bridge.

This colony-level behavior, based on autocatalysis, that is, on the exploitation of

positive feedback, can be used by ants to find the shortest path between a food source

and their nest. Goss et al. considered a variant of the double bridge experiment in

which one bridge is significantly longer than the other, as shown in Fig. 11.13.

In this case, the stochastic fluctuations in the initial choice of a bridge are much

reduced and a second mechanism plays an important role: the ants choosing by

chance the short bridge are the first to reach the nest. The short bridge receives,

therefore, pheromone earlier than the long one and this fact increases the probability

that further ants select it rather than the long one. Goss et al. developed a model of

the observed behavior: assuming that at a given moment in time m1 ants have used

the first bridge and m2 the second one, the probability p1 for an ant to choose the

first bridge is:

p1 =
(m1 + k)h

(m1 + k)h + (m2 + k)h

where parameters k and h are to be fitted to the experimental data—obviously

p2 = 1-p1.

Fig. 11.11 Ants choosing

shorter path

414 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

Fig. 11.12 Double bridge

experiment—Bridges of

equal length

11.3.2 Similarities and Differences Between Real Ants

and Artificial Ants

Most of the ideas of ACO stem from real ants. In particular, the use of a colony

cooperating individuals, an artificial pheromone trail for local stigmergetic commu-

nication a sequence of local moves to find shortest paths and a stochastic decision

policy using local information. Researchers have used the most ideas from real ants

behavior in order to build Ant System (AS). There exist some differences and simi-

larities between real and artificial ants which could be stated as follows:

11.3.2.1 Similarities

• Colony of cooperating individuals–Both real ant colonies and ant algorithms are

composed of a population, or colony of independent individual agents. They

globally cooperate in order to find a good solution to the task under consideration.

Although the complexity of each artificial ant is such that it can build a feasible

solution (as a real ant can find somehow a path between the nest and the food),

high quality solutions are the result of the cooperation among the individuals of

the whole colony.

• Pheromone trail and stigmergy–Like real ants, artificial ants change some aspects

of their environment while walking. Real ants deposit a chemical substance called

pheromone on the visited state. Artificial ants will change some numerical infor-

mation of the problem state, locally stored, when that state is visited. Based on

analogy, these information and changes could be called an artificial pheromone

trail. Ant system algorithms assume that a local pheromone trail is the single

Fig. 11.13 Double bridge

experiment—Bridges of

varying length

11.3 Ant Colony Optimization 415

way of communication among artificial ants. AS algorithms include artificial

pheromone evaporation in form of reduction in the artificial pheromone trail

over time as in nature. Pheromone evaporation in nature and in AS algorithms

are important because it will allow ant colony to slowly forget the history and

direct the searching process in new directions. Artificial pheromone evaporation

could be helpful to move the searching process toward new regions and to avoid

stacking in local extremes.

• Local moves and the shortest path searching–Despite real ants are walking

through adjacent states and artificial ants are jumping from one to another ad-

jacent state of the considered problem, both walking and jumping have the same

purpose, which is finding the shortest path between the origin and the destination.

• Transition policy–Both real ants and artificial ones will build solutions by ap-

plying decision making procedures to move through adjacent states. Decision

making procedures could be based on some probabilistic rules or probabilities

could be calculated based on approximate reasoning rules. In both cases, the tran-

sition policy will use local information that should be local in the space and time

sense. The transition policy is a function of local state information represented

by problem specifications (this could be equivalent to the terrain’s structure that

surrounds the real ants) and the local modification of the environment (existing

pheromone trails) introduced by ants that have visited the same location.

• Deposited amount of pheromone–Amount of pheromone that an artificial ant will

deposit is mostly a function of the quality of the discovered solution. In nature,

some ants behave in a similar way, the deposited amount of pheromone is highly

dependent on the quality of the discovered food source.

11.3.2.2 Differences

The differences are as follows:

• Artificial ants live in a discrete world. All their moves are jumps from one discrete

state to another adjacent one.

• Artificial ants have memory, they could remember states that have been visited

already (tabu lists in the model).

• Pheromone deposit methodology is significantly different between real and arti-

ficial ants. Timing in pheromone laying is problem dependent and often does not

have similarities with the real ants pheromone deposit methodology.

• To improve overall performance, AS algorithms could be enriched with some

additional capabilities that cannot be found in real ant colonies. Most AS contains

some local optimization techniques to improve solutions developed by ants.

11.3.3 Characteristics of Ant Colony Optimization

The characteristics of ant colony optimization are as follows:

• Natural algorithm since it is based on the behavior of real ants in establishing

paths from their colony to source of food and back.

416 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

• Parallel and distributed since it concerns a population of agents moving simul-

taneously, independently and without a supervisor.

• Cooperative since each agent chooses a path on the basis of the information,

pheromone trails laid by the other agents, which have previously selected the

same path. This cooperative behavior is also autocatalytic, i.e., it provides a posi-

tive feedback, since the probability of choosing a path increases with the number

of agents that previously chose that path.

• Versatile that it can be applied to similar versions of the same problem; for ex-

ample, there is a straightforward extension from the traveling salesman problem

(TSP) to the asymmetric traveling salesman problem (ATSP).

• Robust that it can be applied with minimal changes to other combinatorial op-

timization problems such as quadratic assignment problem (QAP) and the job-

shop scheduling problem (JSP).

11.3.4 Ant Colony Optimization Algorithms

The model proposed by Deneubourg and co-workers for explaining the foraging be-

havior of ants was the main source of inspiration for the development of ant colony

optimization. In ACO, a number of artificial ants build solutions to the considered

optimization problem at hand and exchange information on the quality of these so-

lutions via a communication scheme that is reminiscent of the one adopted by real

ants.

Different ant colony optimization algorithms have been proposed. The original

ant colony optimization algorithm is known as Ant System and was proposed in

the early 90s. Since then, a number of other ACO algorithms were introduced.

Table 11.1 gives a list of successful variants of Ant Colony Optimization Al-

gorithms. Figure 11.14 gives a narrow overview on Ant Colony Optimization

Algorithms.

ACO is a class of algorithms, whose first member, called Ant System, was

initially proposed by Colorni, Dorigo and Maniezzo. The main underlying idea,

loosely inspired by the behavior of real ants, is that of a parallel search over several

Table 11.1 Development of various Ant Colony Optimization Algorithms

ACO algorithm Authors Year

Ant System Dorigo, Maniezzo & Colomi 1991

Elitist AS Dorigo 1992

Ant-Q Gambardella & Dorigo 1995

Ant Colony System Dorigo & Gambardella 1996

MMAS Stützle & Hoos 1996

Rank-based AS Bullnheimer, Hartl & Strauss 1997

ANTS Maniezzo 1998

Best-Worst AS Cordón, et al. 2000

Hyper-cube ACO Blum, Roli, Dorigo 2001

11.3 Ant Colony Optimization 417

Fig. 11.14 Overview of ACO algorithms

constructive computational threads based on local problem data and on a dynamic

memory structure containing information on the quality of previously obtained re-

sult. The collective behavior emerging from the interaction of the different search

threads has proved effective in solving combinatorial optimization (CO) problems.

The notation is used as follows: A combinatorial optimization problem is a prob-

lem defined over a set C = c1, . . . , cn of basic components. A subset S of compo-

nents represents a solution of the problem; F ⊆ 2C is the subset of feasible solutions,

thus a solution S is feasible if and only if S Œ F. A cost function z is defined over the

solution domain, z : 2C → R, the objective being to find a minimum cost feasible

solution S∗, i.e., to find S∗ : S∗ ∈ F and z(S∗) ≤ z(S),∀S ∈ F.

Given this, the functioning of an ACO algorithm can be summarized as follows.

A set of computational concurrent and asynchronous agents (a colony of ants) moves

through states of the problem corresponding to partial solutions of the problem

to solve. They move by applying a stochastic local decision policy based on two

parameters, called trails and attractiveness. By moving, each ant incrementally con-

structs a solution to the problem. When an ant completes a solution, or during the

construction phase, the ant evaluates the solution and modifies the trail value on the

components used in its solution. This pheromone information will direct the search

of the future ants.

Furthermore, an ACO algorithm includes two more mechanisms: trail evapo-

ration and, optionally, daemon actions. Trail evaporation decreases all trail values

over time, in order to avoid unlimited accumulation of trails over some component.

Daemon actions can be used to implement centralized actions which cannot be per-

formed by single ants, such as the invocation of a local optimization procedure, or

the update of global information to be used to decide whether to bias the search

process from a non-local perspective.

More specifically, an ant is a simple computational agent, which iteratively con-

structs a solution for the instance to solve. Partial problem solutions are seen as

418 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

states. At the core of the ACO algorithm lies a loop, where at each iteration, each

ant moves (performs a step) from a state ι to another one ψ, corresponding to a more

complete partial solution. That is, at each step σ, each ant k computes a set Ak
σ(t)

of feasible expansions to its current state, and moves to one of these in probability.

The probability distribution is specified as follows. For ant k, the probability pτψ
k

of moving from state ι to state ψ depends on the combination of two values:

• the attractiveness nιψ of the move, as computed by some heuristic indicating the

a priori desirability of that move;

• the trail level τιψ of the move, indicating how proficient it has been in the past to

make that particular move: it represents therefore an a posteriori indication of the

desirability of that move.

Trails are updated usually when all ants have completed their solution, increasing

or decreasing the level of trails corresponding to moves that were part of “good”

or “bad” solutions, respectively. The general framework just presented has been

specified in different ways by the authors working on the ACO approach. A brief

introduction is given for Ant System (AS) and Ant Colony System (ACS) to travel-

ing salesman problem.

11.3.4.1 Ant System

Ant System is the first ACO algorithm proposed in the literature. Ant System applied

to traveling Sales Man problem is discussed here. Its main characteristic is that, at

each iteration, the pheromone values are updated by all the m ants that have built a

solution in the iteration itself. The pheromone τij associated with the edge joining

cities i and j, is updated as follows:

τi j ← (1 − ρ) · τi j +

m
∑

k=1

∆τ k
i j , (11.3)

where ρ is the evaporation rate, m is the number of ants, and ∆τk
i j is the quantity of

pheromone laid on edge (i, j) by ant k:

∆τ k
i j =

{

Q/Lk if ant k used edge (i, j) in its tour,

0 otherwise,
(11.4)

Where Q is a constant, and Lk is the length of the tour constructed by ant k.

In the construction of a solution, ants select the following city to be visited

through a stochastic mechanism. When ant k is in city i and has so far constructed

the partial solution s p probability of going to city j is given by:

11.3 Ant Colony Optimization 419

pk
i j =

⎧

⎪

⎨

⎪

⎩

τα
i j ·η

β

i j
∑

ci j ∈N(s p) τα
i j ·η

β

i j

if ci j ∈ N(s p),

0 otherwise,

(11.5)

where N(s p) is the set of feasible components; that is, edges (i, l) where l is the city

not yet visited by the ant k. The parameters α and β control the relative importance

of the pheromone versus the heuristic information ηij, which is given by,

ηi j =
1

di j

, (11.6)

where dij is the distance between cities i and j.

11.3.4.2 Ant Colony System

The most interesting contribution of ACS is the introduction of a local pheromone

update in addition to the pheromone update performed at the end of the construc-

tion process (called offline pheromone update). The local pheromone update is per-

formed by all the ants after each construction step. Each ant applies it only to the

last edge traversed:

τi j = (1 − ϕ) · τi j + ϕ · τ0, (11.7)

where ϕ ∈ (0, 1) is the pheromone decay coefficient, and τ0 is the initial value of

the pheromone.

The main goal of the local update is to diversify the search performed by sub-

sequent ants during an iteration: by decreasing the pheromone concentration on the

traversed edges, ants encourage subsequent ants to choose other edges and, hence,

to produce different solutions. This makes it less likely that several ants produce

identical solutions during one iteration. The offline pheromone update is applied at

the end of each iteration by only one ant, which can be either the iteration-best or

the best-so-far. However, the update formula is:

τi j ←

{

(1 − ρ) · τi j + ρ · ∆τi j if (i, j) belongs to best tour,

τi j otherwise.
(11.8)

where ∆τi j = 1/Lbest, where Lbest can be either Lib or Lbs. Lbest is the length of the

tour of the best ant. This may be (subject to the algorithm designer decision) either

the best tour found in the current iteration—iteration-best, Lib—or the best solution

found since the start of the algorithm—best-so-far, Lbs—or a combination of both.

Another important difference between ACS and AS is in the decision rule used

by the ants during the construction process. In ACS, the so-called pseudorandom

proportional rule is used: the probability for an ant to move from city i to city j

420 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

depends on a random variable q uniformly distributed over [0, 1], and a parameter

q0; if q ≤ q0, then j = arg maxci j ∈N(s p){τilη
β

il } otherwise (11.5) is used.

11.3.4.3 Basic Flow of ACO

The basic operational flow in Ant Colony Optimization is as follows:

Step 1: Represent the solution space by a construction graph

Step 2: Initialize ACO parameters

Step 3: Generate random solutions from each ant’s random walk

Step 4: Update pheromone intensities

Step 5: Goto Step 3, and repeat until convergence or a stopping condition is satisfied.

The generic ant algorithm is given as shown in Fig. 11.15,

The generalized flowchart for Ant Colony Optimization algorithm is as shown in

Fig. 11.16.

The step by step procedure to solve combinatorial optimization problems using

ACO in a nutshell is:

• Represent the problem in the form of sets of components and transitions or by

means of a weighted graph that is travelled by the ants to build solutions.

• Appropriately define the meaning of the pheromone trails, i.e., the type of deci-

sion they bias. This is a crucial step in the implementation of an ACO algorithm.

A good definition of the pheromone trails is not a trivial task and it typically

requires insight into the problem being solved.

• Appropriately define the heuristic preference to each decision that an ant has to

take while constructing a solution, i.e., define the heuristic information associ-

ated to each component or transition. Notice that heuristic information is crucial

for good performance if local search algorithms are not available or can not be

applied.

• If possible, implement an efficient local search algorithm for the problem un-

der consideration, because the results of many ACO applications to NP-hard

Step 1: Initilization

– Initialize the pheromone trail

Step 2: Iteration

– For each Ant Repeat

– Solution construction using the current pheromone trail

– Evaluate the solution constructed

– Update the pheromone trail

– Until stopping criteria

Fig. 11.15 A generic ant algorithm

11.3 Ant Colony Optimization 421

Fig. 11.16 Basic flowchart of Ant Colony Optimization Algorithm

422 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

combinatorial optimization problems show that the best performance is achieved

when coupling ACO with local optimizers.

• Choose a specific ACO algorithm and apply it to the problem being solved, taking

the previous aspects into consideration.

• Tune the parameters of the ACO algorithm. A good starting point for parameter

tuning is to use parameter settings that were found to be good when applying the

ACO algorithm to similar problems or to a variety of other problems.

It should be clear that the above steps can only give a very rough guide to the imple-

mentation of ACO algorithms. In addition, the implementation is often an iterative

process, where with some further insight into the problem and the behavior of the

algorithm; some initially taken choices need to be revised. Finally, we want to insist

on the fact that probably the most important of these steps are the first four, be-

cause a poor choice at this stage typically can not be made up with pure parameter

fine-tuning.

An ACO algorithm iteratively performs a loop containing two basic procedures,

namely:

• A procedure specifying how the ants construct/modify solutions of the problem

to be solved;

• A procedure to update the pheromone trails.

The construction/modification of a solution is performed in a probabilistic way. The

probability of adding a new item to the current partial solution is given by a function

that depends on a problem-dependent heuristic and on the amount of pheromone

deposited by ants on the trail in the past. The updates in the pheromone trail are

implemented as a function that depends on the rate of pheromone evaporation and

on the quality of the produced solution.

11.3.5 Applications of Ant Colony Optimization

There are numerous successful implementations of the ACO meta-heuristic applied

to a number of different combinatorial optimization problems. The applications

include:

• Traveling Salesman Problem, where a salesman must find the shortest route by

which he can visit a given number of cities, each city exactly once.

• Quadratic Assignment Problem, the problem of assigning n facilities to n loca-

tions so that the costs of the assignment are minimized.

• Job-Shop Scheduling Problem, where a given set of machines and set of job

operations must be assigned to time intervals in such a way that no two jobs

are processed at the same time on the same machine and the maximum time of

completion of all operations is minimized.

11.3 Ant Colony Optimization 423

• Vehicle Routing Problem, the objective is to find minimum cost vehicle routes

such that:

(a) Every customer is visited exactly once by exactly one vehicle;

(b) For every vehicle the total demand does not exceed the vehicle capacity;

(c) The total tour length of each vehicle does not exceed a given limit;

(d) Every vehicle starts and ends its tour at the same position.

• Shortest Common Super sequence Problem, where—given a set of strings over

an alphabet—a string of minimal length that is a super sequence of each string

of the given set has to be found (a super sequence S of string A can be obtained

from A by inserting zero or more characters in A).

• Graph-Coloring Problem, which is the problem of finding a coloring of a graph

so that the number of colors used is minimal.

• Sequential Ordering Problem, which consists of finding a minimum weight

Hamiltonian path 2 on a directed graph with weights on the arcs and on the nodes,

subject to precedent constraints among the nodes.

• Connection-Oriented Network Routing, where all packets of the same session

follow the same path selected by a preliminary setup phase.

• Connectionless Network Routing where data packets of the same session can

follow different paths (Internet-type networks).

Table 11.2 gives an overall view for the application areas of ant colony optimization

and researchers who performed it.

Table 11.2 Applications of ACO algorithms

424 11 Introduction to Particle Swarm Optimization and Ant Colony Optimization

11.4 Summary

In this chapter, the basic concepts of Particle Swarm Optimization and Ant Colony

Optimization are discussed. PSO and ACO algorithms operate on the social be-

havior of the living organisms. PSO system combines local search methods with

global search methods, attempting to balance exploration and exploitation. Thus,

PSO is an extremely simple algorithm that seems to be effective for optimizing a

wide range of functions. Also, PSO is attractive is that there are only few parameters

to adjust. Particle swarm optimization has been used for approaches that can be used

across a wide range of applications, as well as for specific applications focused on

a specific requirement. Ant Colony Optimization has been and continues to be a

fruitful paradigm for designing effective combinatorial optimization solution algo-

rithms. After more than ten years of studies, both its application effectiveness and

its theoretical groundings have been demonstrated, making ACO one of the most

successful paradigms in the metaheuristic area.

Review Questions

1. Give the history of the development of swarm intelligence.

2. Define: particles and ants.

3. How are social behaviors of living organisms helpful in developing optimization

techniques?

4. Explain in detail on the operation of Particle Swarm Optimization.

5. Mention the advantages and applications of Particle Swarm optimization.

6. Discuss the behavior of real ants and compare it with artificial ants.

7. List the various types of ant colony optimization algorithms.

8. With a neat flowchart, explain the algorithm of Ant Colony Optimization

9. State the various applications of ACO.

10. Compare and Contrast—Genetic Algorithm, Particle Swarm Optimization and

Ant Colony Optimization.

Exercise Problems

1. Write a MATLAB program to implement particle swarm optimization and ant

colony optimization for traveling salesman problem.

2. Implement a vehicle routing problem using the concept of particle swarm

optimization.

3. Write a computer program to perform ant colony optimization for a Graph

Coloring Problem.

4. Ant colony optimization algorithm is best suited for protein-folding problems—

Justify

5. Develop a C program for performing image segmentation using particle swarm

optimization.

Bibliography

1. Dawkins, R. (1989). The Selfish Gene - New Ed. Oxford University Press, Great Britain.

2. Fraser, A. P. (1994). Genetic Programming in C++. Technical report 040, University of

Salford.

3. Goldberg, D. E. & Smith, R. E. (1987) Nonstationary Function Optimization using Genetic

Algorithms with Diploidy and Dominance. In J.J Grefenstette, editor, Proceedings of the Sec-

ond International Conference on Genetic Algorithms, 59–68. Lawrence Erlbaum Associates.

4. Hadad B. S. & Eick C. F. (1997) Supporting Polyploidy in Genetic Algorithms Using Domi-

nance Vectors. In P.J. Angeline et al. (eds.), Proceedings of the Sixth International Conference

on Evolutionary Programming, 223–234. Berlin: Springer-Verlag.

5. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA:MIT Press.

6. Merrell, D. J. (1994) The Adaptive Seascape: The Mechanism for Evolution. University of

Minnesota Press, Minneapolis.

7. Vekaria K. & Clack C. (1997) Genetic Programming with Gene Dominance. In J. Koza

(editor). Late Breaking Papers at the Genetic Programming 1997 Conference, 300. Stanford

CA:Stanford University Bookstore.

8. Emma Collingwood, David Corne and Peter Ross, “Useful Diversity via Multiploidy,” IEEE

International Conference on Evolutionary Computing, Nagoya, Japan, 1996.

9. Richard Dawkins, The Extended Phenotype, Oxford University Press, 1982.

10. Tomofumi Hikage, Hitoshi Hemmii, and Katsunori Shimohara, “Diploid Chromosome and

Progressive Evolution Model for Real-Time hardware Evolution,” Fourth European Confer-

ence on Artificial Life, 1997.

11. Daniel Hillis, “Co-evolving parasites improve simulated evolution as an optimization proce-

dure,” Artificial Life II, Addison Wesley, 1992.

12. Young-il Kim, et. al., “Winner take all strategy for a Diploid Genetic Algorithm.”, The first

Asian Conference on simulated Evolution and Learning, 1996.

13. Orazio Miglino, Stefano Nolfi, and Domenico Parisi. “Discontinuity in evolution: how dif-

ferent levels of organization imply pre-adaptation.”Technical Report, Institute of Psychology,

National Research Council of Italy. 1993.

14. Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.

15. P. Osmera, V. Kvasnicka, J. Pospichal, “Genetic Algorithms with Diploid Chromosomes,”

Mendel ’97, PC-DIR Brno, 1997, ISBN 80-214-0884-7, pp. 111–116.

16. Smith, R.E., & Goldberg, D.E. (1992). Diploidy and dominance in artificial genetic search.

Complex Systems, 6(3). 251–285.

17. Deborah Stacey, “Diploidy and Dominance,” online course notes for “Topics in Arti-

ficial Intelligence.” University of Guelph, Ontario, Canada: http://hebb.cis.uoguelph.ca/

∼deb/27662/Lectures/diploidy.html

18. J.D. Bagley. The Beh.aviour of Adaptive Systems Which Employ Genetic and Correlation

Algorithms. PhD thesis, University of Michigan, 1967.

19. Dipankar Dasgupta and Douglas R. McGregor. Using structured genetic algorithms for solv-

ing deceptive problems. Technical re- port, University of Strathclyde Department of Com-

puter Science, 1993.

426 Bibliography

20. Darrell Whitley. The GENITOR algorithm and selection pressure. In J . D. Schaffer, editor,

Proceedings of the Third International Conference on Genetic Algorithms, pages 161–121.

San Mateo: Morgan Kaufmann,1989.

21. Yukiko Yoshida and Nobue Adachi. A diploid genetic algorithm for preserving population

diversity - pseudo-meiosis ga. In Manner Davidor, Schwefel, editor, Parallel Problem Solving

from Nature: PPSN 111, pages 36–45. Springer-Verlag, 1994.

22. Beasley, D., Bull, D. R., and Martin, R. R. (1993). A sequential technique for multimodal

function optimization, Evolutionary Computation, volume 1, number 1, MIT Press, MA.

23. Cavicchio, D. J. (1970). Adaptive search using simulated evolution. Ph.D. thesis, University

of Michigan, Ann Arbor, MI.

24. Cedeño, W. (1995). The multi-niche crowding genetic algorithm: analysis and applications.

UMI Dissertation Services, 9617947.

25. Cedeño, W. and Vemuri, V. (1996). Database design with genetic algorithms. D. Dasgupta

and Z. Michalewicz (eds), Evolutionary Algorithms in Engineering Applications, Springer

Verlag, 3/97.

26. Cedeño, W., Vemuri, V., and Slezak, T. (1995). Multi-Niche crowding in genetic algorithms

and its application to the assembly of DNA restriction-fragments. Evolutionary Computation,

2:4, 321–345.

27. Cedeño, W. and Vemuri, V. (1992). Dynamic multimodal function optimization using genetic

algorithms. In Proceedings of the XVIII Latin-American Informatics Conference, Las Palmas

de Gran Canaria, Spain: University of Las Palmas, 292–301.

28. Cobb, H. J. and Grefenstette, J. J. (1993). Genetic algorithms for tracking changing envi-

ronments. In S. Forrest (ed.) Proceedings of the Fifth International Conference on Genetic

Algorithms. Morgan Kaufmann Publishers San Mateo, California, 523–530.

29. Dasgupta, D. & McGregor, D. R. (1992). Non-stationary function optimization using the

structured genetic algorithm. In R. Manner and B. Manderick (eds.), Parallel Problem Solv-

ing from Nature, 2. Amsterdam: North Holland, 145–154.

30. De Jong, K. A. (1975). An analysis of the behaviour of a class of genetic adaptive systems.

Doctoral dissertation, University of Michigan. Dissertation Abstracts International 36(0),

5140B. (University Microfilms No. 76–9381).

31. Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation in

genetic function optimization, In J. D. Schaffer (Ed.), Proceedings of the Third International

Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 42–50.

32. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning.

Reading MA: Addison-Wesley.

33. Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal

function optimization. In J. J. Grefenstette (Ed.), Proceedings of the Second International

Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates, 41–49.

34. Goldberg D. E. & Smith R. E. (1987). Non-stationary function optimization using genetic al-

gorithms with dominance and diploidy. In J. J. Grefenstette (Ed.), Proceedings of the Second

International Conference on Genetic Algorithms. Hillsdale, NJ

35. Grefenstette, J.J. (1992). Genetic algorithms for changing environments. In R. Manner and

B. Manderick (eds.), Parallel Problem Solving form Nature, 2. Amsterdam: North Holland,

137–144.

36. Harik, G. R. (1995). Finding multimodal solutions using restricted tournament selection. In

L. J. Eshelman (ed.), Proceedings of the Sixth International Conference on Genetic Algo-

rithms. San Mateo, CA:Morgan Kaufmann Publishers, 24–31.

37. Holland, J. H. (1975). Adaptation in natural and artificial systems, Ann Arbor MI: The Uni-

versity of Michigan Press.

38. Mahfoud, S. W. (1992). Crowding and preselection revisited. In R. Männer & B. Manderick

(Eds.), Proceedings of Parallel Problem Solving from Nature 2. New York, NY: Elsevier

Science B. V., 27–36.

39. Maresky, J., Davidor, Y., Gitler, D., Aharoni, G., and Barak, A. (1995). Selectivelydestructive

restart. In L. J. Eshelman (ed.), Proceedings of the Sixth International Conference on Genetic

Algorithms. San Mateo, CA:Morgan Kaufmann Publishers.

Bibliography 427

40. Ng, K. P. & Wong, K. C. (1995). A new diploid scheme and dominance change mecha-

nism for non-stationary function optimization. In L. J. Eshelman (ed.), Proceedings of the

Sixth International Conference on Genetic Algorithms. San Mateo, CA:Morgan Kaufmann

Publishers.

41. Nix, A. & Vose, M. D. (1992). Modeling genetic algorithms with Markov chains, Annals of

Mathematics and Artificial Intelligence 5, 79–88.

42. Spears, W. M. (1994). Simple subpopulation schemes, in Proceedings of the 94 Evolutionary

Programming Conference, San Diego, CA.

43. Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J. D. Schaffer (Ed.), Pro-

ceedings of the Third International Conference on Genetic Algorithms. San Mateo, CA:

Morgan Kaufmann, 2–9.

44. Whitley, D. (1988). GENITOR: a different genetic algorithm. In Proceedings of the Rocky

Mountain Conference on Artificial Intelligence. Denver Colorado, 118–130.

45. KwanWoo Kim, Mitsuo Gen, MyoungHun Kim, “Adaptive Genetic Algorithms for Multi-

Resource Constrained Project Scheduling Problem with Multiple Modes”, International Jour-

nal of Innovative Computing, Information and Control ICIC pp.1349–4198,Volume 2, Num-

ber 1, February 2006

46. Gen, M. and R. Cheng, Genetic Algorithm and Engineering Optimization, John Wily and

Sons, New York, 2000.

47. Bouleimen, K. and H. Lecocq, A new e.cient simulated annealing algorithm for the resource

constrained project scheduling problem and its multiple mode version, European Journal of

Operational Research, vol.144, pp.268–281, 2003.

48. Heilmann, R., A branch-and-bound procedure for the multi-mode resource-constrained

project scheduling problem with minimum and maximum time lags, European Journal of

Operational Research, vol.144, pp.348–365, 2003.

49. Mak, K. L., Y. S. Wong and X. X. Wang, An adaptive genetic algorithm for manufactur-

ing cell formation, International Journal of Manufacturing Technology, vol.16, pp.491–497,

2000.

50. Michalewicz, Z., Genetic Algorithm + Data Structure = Evolution Programs, Third Edition,

Springer-Verlag, New York, 1996.

51. Ozdamar, L., A genetic algorithm approach to a general category project scheduling problem,

IEEE Transactions on Systems, Man, and Cybernetics -Part C: Applications and Reviews,

vol.29, no.1, pp.44–59, 1999.

52. Reyck, B. D. and W. Herroelen, The multi-mode resource-constrained project scheduling

problem with generalized precedence relations, European Journal of Operational Research,

vol.119, pp.538–556, 1999.

53. im, K., Y. Yun, J. Yoon, M. Gen and G. Yamazaki, Hybrid genetic algorithm with adaptive

abilities for resource-constrained multiple project scheduling, Computer in Industry, vol.56,

pp.143–160, 2004.

54. Wei-Guo Zhang, Wei CHEN, and Ying-Luo Wang, “The Adaptive Genetic Algorithms for

Portfolio Selection Problem”, IJCSNS International Journal of Computer Science and Net-

work Security, Vol.6 No.1, January 2006.

55. J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press.

Ann Arbor, 1975.

56. W. E. Hart, The role of development in genetic algorithms. In D. Whitley and M. Vose (Eds.),

Foundations of Genetic Algorithms 3. Morgan Kaufmann. 1994.

57. David B.Fogel. “An Introduction to Simulated Evolutionary Optimization”. IEEE Trans Neu-

ral Networks, 1994, Jan.5(1).

58. Yusen Xia, Baoding Liu, Shouyang Wang, K.K Lai.A new model for portfolio selection with

order of expected returns. Computers and Operations Research 2000, 27:409–22.

59. Yusen Xia, Shouyang Wang, Xiaotie Deng. A compromise solution to mutual funds port-

folio selection with transaction costs. European Journal of Operations Research, 2001,134:

564–581.

60. Strinivas M , Patnaik L M . Adaptive Probabilities of Crossover and Mutation In Genetic

Algorithms. IEEE Trans.Syst. Man and Cybernetics , 1994,24(4):656–667.

428 Bibliography

61. H. Markowitz, Analysis in portfolio choice and capital markets, Oxford, Basil Blackwell,

1987.

62. Marco Dorigo and Maria Gambardella - “Ant Colony System: A Cooperative Learning Ap-

proach To Traveling Salesman Problem” – 1997

63. Darrell Whitley, Timothy Startweather and D’Ann Fuquay - “Scheduling Problems And

Traveling Salesman: The Genetic Edge Recombination Operator” – 1989

64. M K Pakhira, A Hybrid Genetic Algorithm using Probabilistic Selection,IE(I) Journal - CP,

Vol 84, May 2003,pp. 23–30

65. Lienig J. (1997) A Parallel Genetic Algorithm for Performance Driven VLSI Routing. IEEE

Transactions on Evolutionary Computation Vol. I. No.1 :29–39

66. Mazumder P., Rudnick E. (1999) Genetic Algorithm for VLSI Design, Layout and Automa-

tion. Addison-Wesley Longman Singapore Pte. Ltd., Singapore.

67. Schnecke V., Vornberger O (1996) A Genetic Algorithm for VLSI Physical Design Automa-

tion :In Proceedings of Second Int. Conf. on Adaptive Computing in Engineering Design and

Control, ACEDC ’96 26–28 Mar 1996, University of Plymouth, U.K., pp 53–58

68. Schnecke V., Vornberger O (1996) An Adaptive Parallel Genetic Algorithm for VLSILayout

Optimization :In Proceedings of 4th Int. Conf. on Parallel Problem Solving from Nature

(PPSN IV) 22–27 Sep 1996, Springer LNCS 1141, pp 859–868

69. Schnecke V., Vornberger O (1997) Hybrid Genetic Algorithms for Constrained Placement

Problems. IEEE Transactions on Evolutionary Computation. Vol. I. No.4. :266- 277

70. Laurence D. Merkle, George H. Gates, Jr., Gary B. Lamont, and Ruth Pachter. Application

of the parallel fast messy genetic algorithm to the protein structure prediction problem. Pro-

ceedings of the Intel Supercomputer Users’ Group Users Conference, pages 189–195, 1994.

71. Kenneth M. Merz and Scott M. Le Grand, editors. The Protein Folding Problem and Tertiary

Structure Prediction. Springer, New York, 1994.

72. Steven R. Michaud. Solving the Protein Structure Prediction Problem with Parallel Messy

Genetic Algorithms. Master’s thesis, Air Force Institute of Technology, Wright Patterson

AFB, March 2001.

73. Steven R. Michaud, Jesse B. Zydallis, Gary Lamont, and Ruth Pachter, Scaling a genetic

algorithm to medium sized peptides by detecting secondary structures with an analysis of

building blocks. In Matthew Laudon and Bart Romanowicz, editors, Proceedings of the First

International Conference on Computational Nanoscience, pages 29–32, Hilton Head, SC,

March 2001.

74. Steven R. Michaud, Jesse B. Zydallis, David M. Strong, and Gary Lamont. Load balancing

search algorithms on a heterogeneous cluster of pcs. In Proceedings of the Tenth SIAM

Conference on Parallel Processing for Scientific Computing (PP01), Portsmouth, VA, March

2001.

75. Amer DRAA, Hichem TALBI, Mohamed BATOUCHE, A Quantum-Inspired Genetic Algo-

rithm for Solving the Nqueens Problem”, 7th ISPS’Algiers May 2005,pp.145–152.

76. Erbas, Cengiz., Sarkeshik, Sayed and Tanik, Murat M. (1992) “Different Perspectives of the

N-Queens Problem,” In Proceedings of ACM 1992 Computer Science Conference, Kansas

City, MO, March 3–5.

77. Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton:

Princeton University Press. ISBN 0-691-11503-6.

78. K. Han and J. Kim, “Quantum-inspired evolutionary algorithm for a class of combinatorial

optimization”. IEEE transactions on evolutionary computation, vol. 6, no. 6, December 2002.

79. P. W. Shor, “Quantum Computing,” Documenta Mathematica, vol. Extra Volume ICM,

pp. 467- 486, 1998.

80. H.Talbi, A.Draa And M.Batouche, “A Quantum-Inspired Genetic Algorithm for Multi-

Source Affine Image Registration”, In the proceedings of the International Conference on

Image Analysis and Recognition (ICIAR’04), Porto, September 2004, Springer-Verlag Press,

LNCS 3211 pp. 147–154.

81. K.-H. Han and J.-H. Kim, “Genetic Quantum Algorithm and its Application to Combinatorial

Optimization Problem,” in Proceedings of the 2000 Congress on Evolutionary Computation,

IEEE Press, pp.1354–1360, July 2000.

Bibliography 429

82. Möller, B, Graf, W, and Stransky, W (2004) Fuzzy-Optimization of Structures, In: Proceed-

ings of ICCES04, edited by S.N. Atluri and S.J.N. Tadeu. Tech Science Press, Madeira, pages

1765–1770.

83. Möller, B, Beer, M, Graf, W, and Stransky, W (2000) Dynamic Structural Analysis Consid-

ering Fuzziness, In: 4th Euromech Solid Mechanics Conference, edited by M. Potier-Ferry

and L. S. Toth. Euromech, Metz, pages 616.

84. Thomas Bernard, Markoto Sajidman, and Helge-Björn Kuntze,” A New Fuzzy-Based Multi-

objective Optimization Concept for Process Control Systems”, Fuzzy Days 2001, LNCS

2206, pp. 653–670, 2001.

85. Ackermann, J.: Robuste Regelung. Springer, Heidelberg 1993

86. Fonseca, C.M.; Fleming, P.J.: Multiobjective optimization and multiple constraint handling

with evolutionary algorithms - part I: a unified formulation. IEEE Trans. Syst. Man & Cy-

bernetics A, 28 (1), pp. 26–37, 1998

87. Ng, W.Y: Interactive Multi-Objective Programming as a Framework for Computer-Aided

Control System Design, volume 132 of Lect. Notes Control & Inf. Sci. Springer-Verlag,

Berlin, 1989

88. Zakian, V.; Al-Naib, U.: Design of dynamical and control systems by the method of inequal-

ities. Proc. IEE, 120(11), pp. 1421–1427, 1973

89. Bellman, R.E.; Zadeh, L.A.: Decision Making In A Fuzzy Environment, Management Sci-

ence, 17 (1970), S. 141–163

90. Rommelfanger, H.: Fuzzy Decision Support Systeme, Springer, Heidelberg 1994

91. Sajidman, M.; Kuntze, H.-B.: Integration of Fuzzy Control and Model Based Concepts for

Disturbed Industrial Plants with Large Dead-Times. Proc. 6th IEEE Int. Conf. on Fuzzy Sys-

tems (FUZZ IEEE’97), Barcelona (Spain), July 1–5, 1997.

92. C.Carlsson and R.Fuller, Interdependence in fuzzy multiple objective programming, Fuzzy

Sets and Systems, 65(1994) 19–29.

93. C.Carlsson and R.Fuller, Fuzzy if-then rules for modeling interdependencies in FMOP prob-

lems, in: Proceedings of EUFIT’94 Conference, September 20–23, 1994 Aachen, Germany,

Verlag der Augustinus Buchhandlung, Aachen, 1994 1504–1508.

94. C.Carlsson and R.Full’er, Fuzzy reasoning for solving fuzzy multiple objective linear pro-

grams, in: R.Trappl ed., Cybernetics and Systems ’94, Proceedings of the Twelfth European

Meeting on Cybernetics and Systems Research, World Scientific Publisher, London, 1994,

vol.1, 295–301.

95. C.Carlsson and R.Full’er, Multiple Criteria Decision Making: The Case for Interdependence,

Computers & Operations Research, 22(1995) 251–260.

96. C.Carlsson and R.Full’er, Fuzzy multiple criteria decision making: Recent developments,

Fuzzy Sets and Systems, 78(1996) 139–153.

97. C.Carlsson and R.Full’er, Optimization with linguistic values, TUCS Technical Reports,

Turku Centre for Computer Science, No. 157/1998.

98. R.Felix, Relationships between goals in multiple attribute decision-making, Fuzzy Sets and

Systems, 67(1994) 47–52.

99. M.Inuiguchi, H.Ichihashi and H. Tanaka, Fuzzy Programming: A Survey of Recent Develop-

ments, in: Slowinski and Teghem eds., Stochastic versus Fuzzy Approaches to Multiobjec-

tive Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht

1990, pp 45–68

100. A. Kusiak and J.Wang, Dependency analysis in constraint negotiation, IEEE Transactions on

Systems, Man, and Cybernetics, 25(1995) 1301- 1313.

101. Y.-J.Lai and C.-L.Hwang, Fuzzy Multiple Objective Decision Making: Methods and Appli-

cations, Lecture Notes in Economics and Mathematical Systems, Vol. 404 (Springer-Verlag,

New York, 1994).

102. M.K. Luhandjula, Fuzzy optimization: an appraisal, Fuzzy Sets and Systems,30(1989)

257–282.

103. Y. Tsukamoto, An approach to fuzzy reasoning method, in: M.M. Gupta, R.K. Ragade and

R.R. Yager eds., Advances in Fuzzy Set Theory and Applications (North-Holland, New-York,

1979).

430 Bibliography

104. R.R. Yager, Constrained OWA aggregation, Fuzzy Sets and Systems, 81(1996) 89–101.

105. H.-J.Zimmermann, Methods and applications of fuzzy mathematical programming, in:

R.R.Yager and L.A.Zadeh eds., An Introduction to Fuzzy Logic Applications in Intelligent

Systems, Kluwer Academic Publisher, Boston, 1992 97–120.

106. D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of possibility theory. Inform.

Sci. 30, (1983) 183 - 224.

107. D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of

Uncertainty. Plenum Press, New York - London, 1988.

108. M. Inuiguchi, H. Ichihashi and Y. Kume, Some properties of extended fuzzy preference rela-

tions using modalities. Inform. Sci. 61, (1992) 187 - 209.

109. M. Inuiguchi and M. Sakawa, Possible and necessary optimality tests in possibilistic linear

programming problems, Fuzzy Sets and Systems 67 (1994), 29–46.

110. M. Inuiguchi, J. Ramik, T. Tanino and M. Vlach, Satisficing solutions and duality in interval

and fuzzy linear programming. Fuzzy Sets and Systems 135 (2003), 151–177.

111. M. Inuiguchi, Enumeration of all possibly optimal vertices with possible optimality degreesin

linear programming problems with a possibilistic objective function, Fuzzy Optimization and

Decision Making, 3, (2004), 311–326.

112. J. Ramik and M. Vlach, Generalized Concavity in Fuzzy Optimization and Decision Analy-

sis. Kluwer Acad. Publ., Dordrecht - Boston - London, 2002.

113. J. Ramik, Duality in Fuzzy Linear Programming: Some New Concepts and Results. Fuzzy

Optimization and Decision Making, Vol.4, (2005), 25–39.

114. Francisco Herrera, Luis Magdalena, Introduction: Genetic Fuzzy Systems, International

Journal Of Intelligent Systems, Vol. 13, 887–890 1998.

115. David Shaw, John Miles and Alex Gray, Genetic Programming within Civil Engineering,

Organisation of the Adaptive Computing in Design and Manufacture 2004 Conference. April

20–22, 2004, Engineers House, Clifton, Bristol, UK., pp.

116. Koza J.R.,Genetic Programming: On the programming of computers by means of natural

selection, Cambridge MA: MIT Press, ISBN 0-262-11170-5, 1992.

117. Banzhaf W et al, Genetic Programming- An introduction (On the automatic evolution of

computer programs and its applications), Morgan Kaufmann Publishers, ISBN 1-55860-510-

X, 1998.

118. Montana D.J, “Strongly typed genetic programming”, Evolutionary computation, 3(2), 1995,

pp199–230.

119. Radcliffe N.J and Surry P.D, “Formal memetic algorithms”, Lecutre Notes in Computer Sci-

ence 865, 1994.

120. Ashour A.F et al, “Empirical modelling of shear strength of RC deep beams by genetic

programming”, Computers and Structures, Pergamon, 81 (2003), pp331–338.

121. Hong YS and Bhamidimarri R, “Evolutionary self-organising modelling of a municipal

wastewater treatment plant”, Water Research, 37(2003), pp1199–1212.

122. Roberts S.C. and Howard D, “Detection of incidents on motorways in low flow high speed

conditions by genetic programming”, Cagnoni S et al (eds): EvoWorkshops 2002, LNCS

2279, Springer-Verlag, 2002, pp245–254.

123. Dorado J et al, “Prediction and modelling of the flow of a typical urban basin through genetic

programming”, Cagnoni S et al (eds): EvoWorkshops 2002, LNCS 2279, Springer-Verlag,

2002, pp190–201.

124. Howard D and Roberts SC, “The prediction of journey times on motorways using genetic

programming”, Cagnoni S et al (eds): EvoWorkshops 2002, LNCS 2279, Springer-Verlag,

2002, pp210–221.

125. Ishino Y and Jin Y, “Estimate design intent: a multiple genetic programming and multivariate

analysis based approach”, Advanced Engineering Infomatics, 16(2002), pp107–125.

126. Babovic V et al, “A data mining approach to modelling of water supply assets”, Urban Water,

4(2002), pp401–414.

127. Kojima F. et al, “Identification of crack profiles using genetic programming and

fuzzy inference”, Journal of Materials Processing Technology, Elsevier, 108 (2001),

pp263–267.

Bibliography 431

128. Whigham P.A. and Crapper P.F, “Modelling rainfall-runoff using genetic programming”,

Mathematical and Computer Modelling, 33(2001), pp707–721.

129. Lee D.G et al, “Genetic programming model for long-term forecasting of electric power

demand”, Electric power systems research, Elsevier, 40, 1997, pp17–22.

130. Montana D.J. and Czerwinski S, “Evolving control laws for a network of traffic signals”, Pro-

ceedings of the First Annual Conference: Genetic Programming, July 28–3, 1996. Stanford

University, pp333–338.

131. Köppen M and Nickolay B, “Design of image exploring agent using genetic programming”,

Proceedings of IIZUKA’96 Japan, 1996, pp549–552.

132. Yang Y. and Soh C.K, “Automated optimum design of structures using genetic program-

ming”, Computers and Structures, Pergamon, 80 (2002), pp1537–1546.

133. Yang J and Soh C.K, “Structural optimization by genetic algorithms with tournament selec-

tion”, Journal of Computing in Civil Engineering, July 1997, pp195–200.

134. Diada J.M et al, “Visualizing tree structures in genetic programming”, Lecture Notes in Com-

puter Science 2724, 2003, pp1652–1664.

135. Wernert E.A and Hanson A.J, “Tethering and reattachment in collaborative virtual environ-

ments”, Proceedings of IEEE Virtual Reality 2000, IEEE Computer Society Press, 2000,

pp292.

136. Bulfin, R. & Liu, C. (1985). Optimal allocation of redundant components for large systems.

IEEE Trans on Reliability, 34, 241–247.

137. Campbell, J. & Painton, L. (1996). Optimization of reliability allocation strategies through

use of genetic algorithms. Proceedings of 6th Symposium on Multidisciplinary Design and

Optimization, (pp. 1233–1242).

138. Chern, M. (1992). On the computational complexity of reliability redundancy allocation in a

series system. Operations Research Letters, 11, 309–315.

139. Coit, D. & Smith, A. (1998). Redundancy allocation to maximize a lower percentile of the

system time-to-failure distribution. IEEE Trans on Reliability, 47(1), 79–87.

140. Coit, D. & A. Smith (1996): Solving the redundancy allocation problem using a combined

neural network/GA approach; Computers & Operations Research, 23.

141. Fyffe, D. E., Hines, W. W. & Lee, N. K. (1968). System reliability allocation and a computa-

tional algorithm. IEEE Trans on Reliability, 17, 64–69.

142. Gen, M., Ida, K. & Lee, J. U. (1990). A computational algorithm for solving 0-1 goal

programming with GUB structures and its application for optimization problems in system

reliability. Electronics and Communications in Japan, Part 3, 73, 88–96.

143. Ida, K., Gen M. & Yokota, T. (1994). System reliability optimization with several failure

modes by genetic algorithm. In: Proceedings of 16th International Conference on Computers

and Industrial Engineering, (pp 349–352).

144. Kulturel-Konak, S., A. Smith, & B. Norman (2004): Multi-Objective Tabu Search Using a

Multinomial Probability Mass Function, European Journal of Operational Research.

145. MacQueen J. (1967): Some methods for classification and analysis of multivariate observa-

tions. In L. M. LeCam and J. Neyman, editors, Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, volume 1, 281–297.

146. Nakagawa, Y. & Miyazaki, S. (1981). Surrogate constraints algorithm for reliability opti-

mization problems with two constraints. IEEE Trans on Reliability, R-30, 175- 180.

147. Painton, L. & Campbell, J. (1995). Genetic algorithms in optimization of system reliability.

IEEE Trans on Reliability, 44(2), 172–178.

148. Rousseeuw Peter J. (1987): Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20, 53–65.

149. Rousseeuw P., Trauwaert E. and Kaufman L. (1989): Some silhouette-based graphics for

clustering interpretation. Belgian Journal of Operations Research, Statistics and Computer

Science, 29, No. 3.

150. Srinivas, N. and K. Deb: Multi-objective Optimization Using Nondominated Sorting in Ge-

netic Algorithms. Journal of Evolutionary Computation, 2(3).

151. S. Chopra, E.R. Gorres, M.R. Rao, Solving the Steiner tree problem on a graph using branch

and cut, Oper. Res. Soc. Am. J. Comput. 4 (3), pp. 320–335, 1992

432 Bibliography

152. R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Compu-

tations, Plenum Press, New York, 1976

153. M. Gerla, L.Kleinrock, On the Topological Design of Distributed Computer Networks, IEEE

Trans.Commun., 25 (1), Jan 1977

154. Grover, W.D., Venables, B.D., Sandham, J., and Milne, Performance of the Self-Healing

Network Protocol with Random Individual Link Failure Time, in Proceedings of ICC 1991,

vol. pp. 660–666, 1991.

155. Sakauchi, H., Nishimura, Y., and Hasegawa, S., A Self-Healing Network with an Economical

Spare-Channel Assignment, in Proceedings of IEEE Globecom ‘90, pp. 438- 443, Dec., 1990.

156. Wu, T., and Lau, C., A Class of Self-Healing Ring Architectures for SONET

Network Applications, in Proceedings of IEEE Globecom ‘90, pp. 444–452,

Dec., 1990.

157. Wu, T., Kolar, D. J., and Cardwell, R.H., Survivable Network Architectures for Broadband

Fiber Optic Networks: Models and Performance Comparisons, in IEEE Journal of Lightwave

Technology, vol. 6, no. 11, pp. 1698–1709, Nov. 1988.

158. Nathan, Sri, Multi-Ring Topology Based Network Planning, Nortel Internal Document.

159. Frank, H., Frisch, I.T. and Chou, W., Topological Considerations in the design of theARPA

computer network. in Conf. Rec., 1970 Spring Joint Computer Conference, AFIPS Confer-

ence Proceedings, vol. 36. Montvale, NJ: AFIPS Press, 1970.

160. Steiglitz, K., Weiner, P., and Kleitman, D. J., The design of minimum cost survivable net-

works. IEEE Transactions on Circuit Theory, pp. 455–460, Nov. 1969.

161. Frank, H., Frisch, I.T., Chou, W. and Van Slyke, R., Optimal design of centralized computer

networks, Networks vol. 1, pp. 43–57, 1971.

162. Gerla, M. and Kleinrock, L. On the Topological Design of Distributed Computer Networks.

IEEE Transactions on Communications, vol. 25, no. 1, January, 1977.

163. Gendreau, M., Labbe, M. and Laporte, G., Efficient heuristics for the design of ring networks,

in Telecommunication Systems, vol. 4, pp 177–188, 1995.

164. Davis, L., Cox, A., and Qiu, Y., A Genetic Algorithm for Survivable Network Design in

Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kauffman,

1993, pp 408–415.

165. Davis, L., and Coombs, S., Genetic Algorithms and Communication Link Speed Design:

Theoretical Considerations in Proceedings of the Second International Conference on Ge-

netic Algorithms, Lawrence Erlbaum, 1987, pp 252–256.

166. Coombs, S., and Davis, L., Genetic Algorithms and Communication Link Speed Design:

Constraints and Operators in Proceedings of the Second International Conference on Genetic

Algorithms, Lawrence Erlbaum, 1987, pp 257–260.

167. Cormen, T.H., Leiserson, C.E. and Rivest, R.L., Introduction to Algorithms. McGraw Hill,

1990.

168. Starkweather, T., McDaniel, S., Mathias, K., Whitley, D. and Whitley, C., A Comparison

of Genetic Sequencing Operators, in Proceedings of the Fourth International Conference on

Genetic Algorithms, Morgan Kauffman, 1991, pp. 69–76.

169. Orvosh, D., and Davis, L., Shall We Repair? Genetic Algorithms, Combinatorial Optimiza-

tion and Feasibility Constraints in Proceedings of the Fifth International Conference on Ge-

netic Algorithms, Morgan Kauffman, 1993, pp. 650.

170. Mann, J., Kapsalis, A. and Smith, G.D., The GAmeter Toolkit in Applications of Modern

Heuristic Methods, Rayward-Smith, V. J. (ed.), Alfred Walker, pp. 195–209, 1995.

171. Wasem, O. J., An Algorithm for Designing Rings for Survivable Fiber Networks, IEEE

Transactions on Reliability, Vol. 40, No. 4, pp. 428–439, Oct. 1991.

172. Wasem, O. J., Optimal Topologies for Survivable Fiber Optic Networks Using SONET Self-

Healing Rings, Proceedings of IEEE Globecom ‘91, pp. 2032–2038, Nov. 1991.

173. Slevinsky, J. B., Grover, W. D. and MacGregor, M. H., An Algorithm for Survivable Net-

work Design Employing Multiple Self-healing Rings, Proceedings of IEEE Globecom ‘93,

pp. 1586–1573, Nov. 1993.

174. Wasem, O. J., Wu, T. H. and Cardwell, R. H., Survivable SONET Networks – Design

Methodology, IEEE JSAC, Vol. 12, pp. 205–212, Jan. 1994.

Bibliography 433

175. Gardner, L. M., Haydari, M., Shah, J., Sudborough, I. H. and Xia, C., Techniques for Finding

Ring Covers in Survivable Networks, Proceedings of IEEE Globecom ‘94, pp. 1862- 1866,

Nov. 1994.

176. Boot, J., Wever, H. W. and Zwinkels, A. M. E., Planning an SDH Network, Proceedings of

the Sixth International Network Planning Symposium, pp. 143–148, Sep. 1994.

177. Poppe, F. and Demeester, P., An Integrated Approach to the Capacitated Network Design

Problem, Proceedings of the Fourth International Conference on Telecommunication Sys-

tems, pp. 391–397, Mar. 1996.

178. Baldwin, J. M., A new factor in evolution, American Naturalist, vol. 30, pp. 441–451, 1896.

179. Whitley, D., Gordon, S. and Mathias, K., Lamarckian evolution, the Baldwin effect and func-

tion optimization. In Parallel Problem Solving from Nature - PPSN III. In Y. Davidor, H.P.

Schwefel, and R. Manner, editors, pp. 6–15. berlin: Springer-Verlag, 1994.

180. Belew, R.K., McInerney, J. and Schraudolph, N.N., Evolving networks: Using the Genetic

Algorithm with connectionist learning. In Proceedings of the Second Artificial Life Confer-

ence, pp. 511–547, Addison-Wesley, 1991.

181. P. K. Nanda, P. Kanungo, D. P. Muni,” Parallel Genetic Algorithm Based Crowding Scheme

Using Neighbouring Net Topology,”Proc. Of 6th International conference on Information

technology, dec 2003, Bhubaneswae, pp 583–585.

182. T. Back, D. B. Fogel and T. Michalewicz, (Ed.):Evolutionary Computation _; Basic Algo-

rithms and operators, Institute of Physics publishing, Bristol and Philadelphia; 2000.

183. Samir W. Mahfoud, Simple Analytical Models of Genetic Algorithms for Multi modal Func-

tion Optimization, Proceedings of the Fifth International Conference on genetic Algorithms,

1993.

184. P. Kanungo, Parallel Genetic Algorithm Based Crowding Scheme for Cluster Analysis, M.E.

thesis, Department of Electrical Engineering, R. E. C. Rourkela, Jan.,2001.

185. E. Cantu-Paz, A survey of Parallel Genetic Algorithms, Calculateurs Paralleles, Vol. 10,

No. 2, 1998, pp.141–171.

186. Cantu-Paz,E.: Migration policies and takeover times in parallel Genetic Algo-

rithms,Proceedings of the International Conference on Genetic and Evolutionary Compu-

tation, San Francisco, CA, 1999, pp.775–779.

187. P. K. Nanda, Bikash Ghose and T. N. Swain, Parallel genetic algorithm based unsupervised

scheme for extraction of power frequency signals in the steel industry, IEE Proceedings on

vision,Image and Signal Processing, UK, Vol.149, No. 4,2002, pp.204–210.

188. E. Cantu-Paz: Designing Efficient and Accurate Parallel Genetic Algorithms, parallel Genetic

Algorithms, Ph.D. dissertation, Illinois Genetic Algorithm Laboratory, UIUC, USA; 1999.

189. Aggarwal, K. K., Rai, S., (1981). Reliability evaluation in computer communication net-

works, IEEE Transactions on Reliability, R-30 (1).

190. Aggarwal, K. K., Chopra, Y. C., Bajwa, J. S., (1982). Reliability evaluation by network de-

composition, IEEE Transactions on Reliability, R-31 (4), 355–358.

191. Biegel, J. E., Davern, J. J., (1990). Genetic algorithms and job shop scheduling, Computers

and Industrial Engineering, 19 (1–4), 81–91.

192. Boorstyn, R. R., Plank, H., (1977). Large scale network topological optimization, IEEE

Transactions on Communications, Com-25 (1), 29–37.

193. Cavers, J. K., (1975). Cutset manipulations for communication network reliability estimation,

IEEE Transactions on Communications, Com-23 (6).

194. Coit, D. W., Smith, A. E., (1994). Use of genetic algorithm to optimize a combi-

natorial reliability design problem, Proceeding of the Third IIE Research Conference,

467–472.

195. Colbourn, C. J., (1987). The Combinatorics of Network Reliability, Oxford University Press.

196. Cohoon, J., Hedge, S. U., Martin, W. N., Richards, D. S., (1991). Distributed genetic algo-

rithms for the floorplan design problem, IEEE Transactions on Computer Aided Design, 10

(4), 483–492.

197. Goldberg, D. E., (1989). Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley.

198. Hopcroft, J., Ullman, J., (1973). Set merging algorithms, SIAM Journal of Computers, 2,

296–303.

434 Bibliography

199. Jan, R. H., (1993). Design of reliable networks, Computers and Operations Research, 20,

25–34.

200. Jan, R. H., Hwang, F. J., Cheng, S. T., (1993). Topological optimization of a communication

network subject to a reliability constraint, IEEE Transactions on Reliability, 42 (1), 63–70.

201. Muhlenbein, H., Schleuter, M. G., Kramer, O., (1988). Evolution algorithms in combinatorial

optimization, Parallel Computing, 7, 65–85.

202. Nakawaza, H., (1981). Decomposition method for computing the reliability of complex net-

works, IEEE Transactions on Reliability, R-30 (3).

203. Rai, S., (1982). A cutset approach to reliability evaluation in communication networks, IEEE

Transactions on Reliability, R-31 (5).

204. Roberts, L. G., Wessler, B. D., (1970). Computer network development to achieve resource

sharing, AFIPS Conference Proceedings, 36. Montvale, NJ: AFIPS Press, 543–599.

205. Smith, A. E., Tate, D. M., (1993). Genetic optimization using a penalty function, Proceedings

of the Fifth International Conference on Genetic Algorithms, 499–505.

206. Yeh, M. S., Lin, J. S., Yeh, W. C., (1994). A new Monte Carlo method for estimating net-

work reliability, Proc 16th International Conference on Computers & Industrial Engineering,

723–726.

207. James C. Werner,Mehmet E. Aydin,Terence C. Fogarty,” Evolving genetic algorithm for Job

Shop Scheduling problems,” Proceedings of ACDM 2000 PEDC, Unviersity of Plymouth,

UK

208. Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K. and Ulder, N.L.J., (1994). A computa-

tional study of local search algorithms for job shop scheduling, ORSA Journal on Computing

6, pp. 118–125.

209. Aiex, R.M., Binato S. and Resende, M.G.C. (2001). Parallel GRASP with Path-Relinking for

Job Shop Scheduling, AT&T Labs Research Technical Report, USA. To appear in Parallel

Computing.

210. Adams, J., Balas, E. and Zawack., D. (1988). The shifting bottleneck procedure for job shop

scheduling, Management Science, Vol. 34, pp. 391–401.

211. Applegate, D. and Cook, W., (1991). A computational study of the job-shop scheduling prob-

lem. ORSA Journal on Computing, Vol. 3, pp. 149–156.

212. Baker, K.R., (1974). Introduction to Sequencing and Scheduling, John Wiley, New York.

213. Bean, J.C., (1994). Genetics and Random Keys for Sequencing and Optimization, ORSA

Journal on Computing, Vol. 6, pp. 154–160.

214. Beasley, D., Bull, D.R. and Martin, R.R. (1993). An Overview of Genetic Algorithms: Part 1,

Fundamentals, University Computing, Vol. 15, No.2, pp. 58–69, Department of Computing

Mathematics, University of Cardiff, UK.

215. Binato, S., Hery, W.J., Loewenstern, D.M. and Resende, M.G.C., (2002). A GRASP for Job

Shop Scheduling. In: Essays and Surveys in Metaheuristics, Ribeiro, Celso C., Hansen, Pierre

(Eds.), Kluwer Academic Publishers.

216. Brucker, P., Jurisch, B. and Sievers, B., (1994). A Branch and Bound Algorithm for Job-Shop

Scheduling Problem, Discrete Applied Mathematics, Vol 49, pp. 105–127.

217. Carlier, J. and Pinson, E., (1989). An Algorithm for Solving the Job Shop Problem. Manage-

ment Science, Feb, 35(29; pp.164–176.

218. Carlier, J. and Pinson, E., (1990). A practical use of Jackson’s preemptive schedule for solv-

ing the jobshop problem. Annals of Operations Research, Vol. 26, pp. 269–287.

219. Cheng, R., Gen, M. and Tsujimura, Y. (1999). A tutorial survey of job-shop scheduling

problems using genetic algorithms, part II: hybrid genetic search strategies, Computers &

Industrial Engineering, Vol. 36, pp. 343–364.

220. Croce, F., Menga, G., Tadei, R., Cavalotto, M. and Petri, L., (1993). Cellular Con-

trol of Manufacturing Systems, European Journal of Operations Research, Vol. 69,

pp. 498–509.

221. Croce, F., Tadei, R. and Volta, G., (1995). A Genetic Algorithm for the Job Shop Problem,

Computers and Operations Research, Vol. 22(1), pp. 15–24.

222. Davis, L., (1985). Job shop scheduling with genetic algorithms. In Proceedings of the First In-

ternational Conference on Genetic Algorithms and their Applications, pp. 136–140. Morgan

Kaufmann.

Bibliography 435

223. Dorndorf, U. and Pesch, E., (1995). Evolution Based Learning in a Job Shop Environment,

Computers and Operations Research, Vol. 22, pp. 25–40.

224. Fisher, H. and Thompson, G.L., (1963). Probabilistic Learning Combinations of Local Job-

Shop Scheduling Rules, in: Industrial Scheduling, J.F. Muth and G.L. Thompson (eds.),

Prentice-Hall, Englewood Cliffs, NJ, pp. 225–251.

225. French, S., (1982). Sequencing and Scheduling - An Introduction to the Mathematics of the

Job-Shop, Ellis Horwood, John-Wiley & Sons, New York.

226. Garey, M.R. and Johnson, D.S., (1979). Computers and Intractability, W. H. Freeman and

Co., San Francisco.

227. Giffler, B. and Thompson, G.L., (1960). Algorithms for Solving Production Scheduling Prob-

lems,Operations Research, Vol. 8(4), pp. 487–503.

228. Gray, C. and Hoesada, M. (1991). Matching Heuristic Scheduling Rules for Job Shops to the

Business Sales Level, Production and Inventory Management Journal, Vol. 4, pp. 12–17.

229. Jackson, J.R., (1955). Scheduling a Production Line to Minimize Maximum Tardiness, Re-

search Report 43, Management Science Research Projects, University of California, Los

Angeles, USA.

230. Jain, A.S. and Meeran, S. (1999). A State-of-the-Art Review of Job-Shop Scheduling Tech-

niques. European Journal of Operations Research, Vol. 113, pp. 390–434.

231. Jain, A. S., Rangaswamy, B. and Meeran, S. (1998). New and Stronger Job-Shop Neighbor-

hoods: A Focus on the Method of Nowicki and Smutnicki (1996), Department of Applied

Physics, Electronic and Mechanical Engineering, University of Dundee, Dundee, Scotland.

232. Johnson, S.M., (1954). Optimal Two and Three-Stage Production Schedules with Set-Up

Times Included, Naval Research Logistics Quarterly, Vol. 1, pp. 61–68.

233. Laarhoven, P.J.M.V., Aarts, E.H.L. and Lenstra, J.K. (1992). Job shop scheduling by simu-

lated annealing. Operations Research, Vol. 40, pp. 113–125.

234. Lawrence, S., (1984). Resource Constrained Project Scheduling: An Experimental Investiga-

tion of Heuristic Scheduling Techniques, GSIA, Carnegie Mellon University, Pittsburgh, PA.

235. Lenstra, J.K. and Rinnoy Kan, A.H.G., (1979). Computational complexity of discrete opti-

mization problems. Annals of Discrete Mathematics, Vol. 4, pp. 121–140.

236. Lourenço, H.R. (1995). Local optimization and the job-shop scheduling problem. European

Journal of Operational Research, Vol. 83, pp. 347–364.

237. Lourenço, H.R. and Zwijnenburg, M. (1996). Combining the large-step optimization with

tabu-search: Application to the job-shop scheduling problem. In I.H. Osman and J.P. Kelly,

editors, Metaheuristics: Theory and Apllications, pp. 219–236, Kluwer Academic Publishers.

238. Nowicki, E. and Smutnicki, C. (1996). A Fast Taboo Search Algorithm for the Job-Shop

Problem, Management Science, Vol. 42, No. 6, pp. 797–813.

239. Perregaad, M. and Clausen, J., (1995). Parallel Branch-and-Bound Methods for the

Job_shop Scheduling Problem, Working Paper, University of Copenhagen, Copenhagen,

Denmark.

240. Resende, M.G.C., (1997). A GRASP for Job Shop Scheduling, INFORMS Spring Meeting,

San Diego, California, USA.

241. Roy, B. and Sussmann, (1964). Les Problèmes d’ ordonnancement avec contraintes dijonc-

tives, Note DS 9 bis, SEMA, Montrouge.

242. Sabuncuoglu, I., Bayiz, M., (1997). A Beam Search Based Algorithm for the Job Shop

Scheduling Problem, Research Report: IEOR-9705, Department of Industrial Engineering,

Faculty of Engineering, Bilkent University, Ancara, Turkey.

243. Spears, W.M. and Dejong, K.A., (1991). On the Virtues of Parameterized Uniform Crossover,

in Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236.

244. Storer, R.H., Wu, S.D. and Park, I., (1992). Genetic Algorithms in Problem Space for Se-

quencing Problems, Proceedings of a Joint US-German Conference on Operations Research

in Production Planning and Control, pp. 584–597.

245. Storer, R.H., Wu, S.D., Vaccari, R., (1995). Problem and Heuristic Space Search Strategies

for Job Shop Scheduling, ORSA Journal on Computing, 7(4), Fall, pp. 453–467.

436 Bibliography

246. Taillard, Eric D. (1994). Parallel Taboo Search Techniques for the Job Shop Scheduling Prob-

lem, ORSA Journal on Computing, Vol. 6, No. 2, pp. 108–117.

247. Vaessens, R.J.M., Aarts, E.H.L. and Lenstra, J.K., (1996). Job Shop Scheduling by local

search. INFORMS Journal.

248. Wang, L. and Zheng, D. (2001). An effective hybrid optimisation strategy for job-shop

scheduling problems, Computers & Operations Research, Vol. 28, pp. 585–596.

249. Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K., Sev-

ast’janov, S. V. and Shmoys, D. B. (1997) Short Shop Schedules, Operations Research, March

- April, 45(2), pp. 288- 294.

250. Udhaya B. Nallamottu, Terrence L. Chambers, William E. Simon,” Comparison of the Ge-

netic Algorithm to Simulated Annealing Algorithm in Solving Transportation Location-

allocation Problems With Euclidean Distances “,Proceedings of the 2002 ASEE Gulf-

Southwest Annual Conference, The University of Louisiana at Lafayette, March 20 – 22,

2002.

251. Cooper, L. L., (1964), Heuristic Methods For Location-Allocation Problems, Siam Rev., 6,

37–53.

252. Cooper, L. L., (1972), The Transportation-Location Problems, Oper..Res., 20, 94–108.

Gonzalez-Monroy, L. I., Cordoba, A., (2000), Optimization of Energy Supply Systems: Sim-

ulated Annealing Versus Genetic Algorithm, International Journal of Modern Physics C, 11

(4), 675 – 690.

253. Liu C.M., Kao, R. L., Wang, A.H., (1994), Solving Location-Allocation Problems with Rec-

tilinear Distances by Simulated Annealing, Journal of The Operational Research Society, 45,

1304–1315.

254. Chowdury, H. I., Chambers, T. L., Zaloom, V., 2001, “The Use of Simulated Annealing

to Solve Large Transportation-Location Problems With Euclidean Distances,” Proceedings

of the International Conference on Computers and Industrial Engineering (29th ICC&IE),

Montreal, Canada, October 31 - November 3, 2001.

255. K. Guptaa, A. K. Bhuniab, “An Application of real-coded Genetic Algorithm (RCGA) for in-

teger linear programming in Production-Transportation Problems with flexible transportation

cost”, AMO-Advanced Modeling and Optimization, Volume 8, Number 1, 2006,pp.73–98.

256. Arsham, H., (1992) Post optimality analysis of the transportaton problem. Journal of the

Operational Research Society , vol.43, pp. 121 – 139.

257. Arshmam H, Khen AB.(1989) A simplex type algorithm for general transportation prob-

lems : an alternative to stepping-stone. Journal of the Operational Research Society; vol.40,

pp.581–590.

258. Charness A, Copper WW.(1954) The steping stone method for explaining linear Program-

ming calculation in transportation problem. Management Science; vol. 1 pp. 49 - 69.

259. Dantzig, GB.(1963) Linear programming and extentions. Princeton , NJ; Prinston University

Press.

260. Davis L.(1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, Newyork.

261. Deb K. (1995) Optimization for Engineering Design-Algorithms and Examples. Prentice

Hall of India,New Delhi .

262. Forest S. (1993). Proceedings of 5-th international conference on Genetic Algorithms. Mar-

gen Kaufmann, California. Goldberg DE (1989) Genetic Algorithms: Search, Optimization

and Machine Learning. Addison Wesley.

263. Hitchock FL.(1941) The distribution of a product from several sources to numerous locations.

Journal of Mathematical Physics,vol 20, pp. 224–30.

264. Liu S T.(2003) The total cost bounds of the transportation problem with varying demand and

supply. Omega , vol. 31, pp. 247 – 51.

265. Michalawicz Z. (1996) Genetic Algorithms + Data structure= Evaluation Programs. Springer

Verlog, Berlin.

266. Sakawa M. (2002) Genetic Algorithms and fuzzy multiobjective optimisation. Kluwer Aca-

demicPublishers,

Bibliography 437

267. P. P. Zouein, A.M.Asce; H. Harmanani; and A. Hajar, Genetic Algorithm for Solving Site

Layout Problem with Unequal-Size and Constrained Facilities, Journal Of Computing In

Civil Engineering / April 2002,pp.143–151.

268. Aleksandra B Djurisic, (1998) Elite Genetic Algorithms with Adaptive Mutations for Solving

Continuous Optimization Problems – Application to Modeling of the Optical Constants of

Solids, Optics Communications, Vol. 151, pp.147–159.

269. B. Sareni, L. Krahenbuhl and A. Nicolas (1998), Niching Genetic Algorithms for Optimiza-

tion in Electronmagnetics, IEEE Transcations on Magnetics, Vol. 34, No. 5, pp.2984–2987.

270. Heng Li and Peter Love (1997), Using Improved Genetic Algorithms to Facilitate Time-

Cost Optimization, Journal of Construction Engineering and Management, Vol. 123, No. 3,

pp.233–237.

271. Norman F. Foster and George S. Dulikravich, Three-Dimensional Aerodynamic Shape Opti-

mization Using Genetic and Gradient Search Algorithms, Journal of Spacecraft and Rockets,

Vol. 34, No. 1, pp.36–42.

272. S-Y. Chen, J. Situ, B. Mobasher and S. D. Rajan (1996), Use of Genetic Algorithms for the

Automated Design of Residential Steel Roof Trusses, Advances in Structural Optimization-

Proceedings of the First U.S.-Japan Joint Seminar on Structural Optimization, ASCE,

New York.

273. S-Y. Chen (1997), Using Genetic Algorithms for the Optimal Design of Structural Sys-

tems, Dissertation for Doctor of Philosophy, Department of Civil Engineering, Arizona State

University.

274. K. F. Pal (1995), Genetic Algorithm with Local Search, Biological Cybernetics, Vol. 73,

pp.335- 341.

275. S. D. Rajan (1995), Sizing, Shape, and Topology Design Optimization of Trusses Using

Genetic Algorithm, Journal of Structural Engineering, ASCE, Vol.121, No. 10, pp.1480–

1487.

276. G. Olsen and G. N. Vanderplaats (1989), A Method for Nonlinear Optimization with Discrete

Variables, AIAA Journal, Vol. 27, No. 11, pp.1584–1589.

277. D. E. Grierson and W. H. Lee (1984), Optimal Synthesis of Frameworks Using Standard

Sections, Journal of Structural Mechanics, Vol. 12, No. 3, pp.335–370.

278. D. E. Grierson and G. E. Cameron (1984), Computer Automated Synthesis of Building

Frameworks, Canadian Journal of Civil Engineering, Vol. 11, No. 4, pp.863–874.

279. M. P. Bendsoe and G. Strang (1988), Generating Optimal Topologies in Structural Design

Using a Homogenization Method, Computer Methods in Applied Mechanics and Engineer-

ing, Vol. 71, pp.197–224.

280. Katsuyuki Suzuki and Noboru Kikuchi (1991), A Homogenization Method for Shape and

Topology Optimization, Computer Methods in Applied Mechanics and Engineering, Vol. 93,

pp.291–318.

281. S. Sankaranarayanan, R. T. Haftka and R. K. Kapania (1994), Truss Topology Optimization

with Simultaneous Analysis and Design, AIAA Journal, Vol. 32, No. 2, pp.410–424.

282. Laetitia Jourdan. Clarisse Dhaenens. El-Ghazali Talbi, A Genetic Algorithm for Feature Se-

lection in Data-Mining for Genetics, MIC’2001 - 4th Metaheuristics International Confer-

ence, Porto, Portugal, July 16–20, 2001,pp.29–33

283. C. Bates Congdon. A comparison of genetic algorithm and other machine learning systems

on a complex classification task from common disease research. PhD thesis, University of

Michigan, 1995.

284. C. Emmanouilidis, A. Hunter, and J. MacIntyre. A multiobjective evolutionary setting for

feature selection and a commonality-based crossover operator. In Congress on Evolutionary

Computing 2000, volume 2, pages 309–316. CEC, 2000.

285. J. Horn, D.E. Goldberg, and K. Deb. Implicit niching in a learning classi.er system : Nature’s

way. Evolutionary Computation, 2(1):37–66, 1994.

286. N. Monmarch’e, M. Slimane, and G. Venturini. Antclass : discovery of cluster in nu-

meric data by an hybridization of an ant colony with the kmeans algorithm. Technical Re-

port 213, Ecole d’Ing’enieurs en Informatique pour l’Industrie (E3i), Universit’e de Tours,

Jan. 1999.

438 Bibliography

287. M. Pei, E.D. Goodman, and W.F. Punch. Feature extraction using genetic algorithms. Tech-

nical report, Michigan State University : GARAGe, June 1997.

288. M. Pei, E.D. Goodman, W.F. Punch, and Y. Ding. Genetic algorithms for classi.cation and

feature extraction. In Annual Meeting : Classi.cation Society of North America, June 1995.

289. M. Pei, M. Goodman, and W.F. Punch. Pattern discovery from data using genetic algorithm.

In Proc of the .rst Paci.c-Asia Conference on Knowledge Discovery and Data Mining, Feb.

1997.

290. Grimbleby, J.B.: “Automatic Analogue Network Synthesis using Genetic Algorithms”,

IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innova-

tions and Applications (GALESIA ’95), Sheffield, 12–14 September 1995, IEE Conference

Publication No.414, pp. 53–58.

291. Grimbleby, J.B.: “Automatic Synthesis of Active Electronic Networks using Genetic Algo-

rithms”, IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications (GALESIA ’97), Strathclyde, 2–4 September 1997, IEE Con-

ference Publication No. 446, pp. 103–107.

292. Koza, J.R., Bennett, F.H., Andre, D. and Keane, M.A.: “Automated WYWIWYG Design for

Both Topology and Component Values of Electrical Circuits using Genetic Programming”,

Genetic Programming 1996: Proceedings of the First Annual Conference, 28–31 July 1996,

MIT Press, pp. 123–131.

293. Koza, J.R., Bennett F.H., Andre, D. and Keane, M.A.: “Evolutionary Design of Analog Elec-

trical Circuits using Genetic Programming”, Proceedings of Adaptive Computing in Design

and Manufacture Conference, Plymouth, April 21–23 1998.

294. Nielsen, I.R.: “A C-T Filter Compiler – From Specification to Layout”, Analog Integrated

Circuits and Signal Processing, 1995, vol. 7, pp. 21–33.

295. M. Sonka, V. Hlavac and R. Boyle, Image processing, analysis and machine vision , Chapman

and Hall, 1993.

296. R.M. Haralick, “Statistical and structural approaches to texture”, Proc. IEEE, 67, 1979, pp.

786 - 804.

297. K. Delibasis and P.E. Undrill, “Anatomical object recognition using deformable geometric

models”, Image and Vision Computing, 12, 1994, pp. 423–433.

298. K. Delibasis Undrill P.E. and G.G. Cameron, “Genetic Algorithms applied to fourier descrip-

tor based geometric models for anatomical object recognition in medical images”, Comp.

Vis. and Image Underst., 66 ,3, 1997, pp 286–300.

299. K. Delibasis and P.E. Undrill. Genetic algorithm implementation of stack filter de-

sign for image restoration, IEE Proc. Vision, Image and Signal Processing, 143, 1996,

pp. 177 - 183.

300. M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active contour models”, Intl. J. Comp.

Vis., Vol. 1,No. 4, 1988, pp. 321–331.

301. Delibassis K, Undrill PE and Cameron GG, (1997) Designing Texture Filters with Genetic

Algorithms : an application to Medical Images, Signal Processing, 57, 1, 19–33.

302. Y.S. Choi, R. Krishnapuram. A Robust Approach to Image Enhancement Based on Fuzzy

Logic. IEEE Transactions on Image Processing, 6(6), 1997.

303. M-P. Dubuisson, A.K. Jain. A modified Hausdorff distance for object matching. In: Proceed-

ings of the 12th IAPR Int. Conf. on Pattern Recognition, 1: 566–568, 1994.

304. J.C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact

wellseparated clusters. Journal of Cybernetics, 3: 32–57, 1973.

305. J.C. Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4:

95– 104, 1974.

306. P.D. Gader. Fuzzy Spatial Relations Based on Fuzzy Morphology. IEEE, 1997.

307. R.C. Gonzalez, R.E. Woods. Digital Image Processing. Second edition. Prentice-Hall, New

Jersey, 2002.

308. K-P. Han, K-W. Song, E-Y. Chung, S-J. Cho, Y-H. Ha. Stereo matching using genetic algo-

rithm with adaptive chromosomes. Pattern Recognition, 34: 1729–1740, 2001.

309. J. Liu, Y-H. Yang. Multiresolution Color Image Segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(7), 1994.

Bibliography 439

310. K.M. Passino, S. Yurkovich. Fuzzy Control, Addison-Wesley, California, 1998.

311. M.R. Rezaee, P.M.J. van der Zwet, B.P.F. Lelieveldt, R.J. van der Geest, J.H.C. Reiber.

A Multiresolution Image Segmentation Technique Based on Pyramidal Segmentation and

Fuzzy Clustering. IEEE Transactions on Image Processing, 9(7), 2000.

312. W. Rucklidge. Efficient visual recognition using the Hausdorff distance. In: Lecture Notes in

Computer Science, 1173, 1996.

313. D.B. Russakoff, T. Rohlfing, C.R. Maurer Jr. Fuzzy segmentation of X-ray fluoroscopy im-

age. Medical Imaging 2002: Image Processing. Proceedings of SPIE 2684, 2002.

314. F. Russo. Edge Detection in Noisy Images Using Fuzzy Reasoning. IEEE Transactions on

Instrumentation and Measurement, 47(5), 1998.

315. R. Schallkoff. Pattern Recognition – Statistical, structural and neural approaches, John Wiley

& Sons, Inc., New York, 1992.

316. M. Sonka, V. Hlavac, R. Boyle. Image Processing, Analysis, and Machine Vision. Second

edition. Brooks/Cole Publishing Company, USA, 1999.

317. W-B. Tao, J-W. Tian, J. Liu. Image segmentation by three-level thresholding based on max-

imum fuzzy entropy and genetic algorithm. Pattern Recognition Letters, 24: 3069–3078,

2003.

318. Y.A. Tolias, S.M. Panas. Image Segmentation by a Fuzzy Clustering Algorithm Using Adap-

tive Spatially Constrained Membership Functions. IEEE Transactions on Systems, Man, and

Cybernetics–Part A: Systems and Humans, 28(3), 1998.

319. Y. Yokoo, M. Hagiwara. Human Faces Detection Method using Genetic Algorithm. In: Pro-

ceeding of IEEE Int. Conf. on Evolutionary Computation, 113–118, 1996.

320. H. Wu, Q. Chen, M. Yachida. Face Detection From Color Images Using a Fuzzy Pattern

Matching Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(6),

1999.

321. L.A. Zadeh. Fuzzy Logic. IEEE Computer, 21(4): 83–93, 1988.

322. Kazunori Otobe, Kei Tanaka And Masayuki Hirafuji,” Knowledge Acquisition on Image Pro-

cessing based On Genetic Algorithms,” Proceeding of the IASTED International Conference

Signal and Image Processing October 28–31, 1998, Las Vegas, Nevada – USA,pp.

323. George Karkavitsas and Maria Rangoussi,” Object localization in medical images using ge-

netic algorithms,” Transactions on Engineering, Computing And Technology V2 December

2004 ISSN1305-5313

324. Brodatz, P. “A Photographic Album for Arts and Design,” Dover Publishing Co., Toronto,

Canada, 1966.

325. De Jong, K. “Learning with Genetic Algorithms : An overview,” Machine Learning Vol. 3,

Kluwer Academic publishers, 1988.

326. Devijver, P., and Kittler, J. “Pattern Recognition: A Statistical Approach,” Prentice Hall,

1982.

327. Grefenstette, John J. Technical Report CS-83-11, Computer Science Dept., Vanderbilt Univ.,

1984.

328. Ichino, M., and Sklansky, J.. “Optimum Feature selection by zero-one Integer Programming,”

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 14, No. 5, 1984.

329. Michalski, R.S., Mozetic, I., Hong, J.R., and Lavrac, N.. “The Multi-purpose Incremental

Learning System AQ15 and its Testing Application to Three Medical Domains, AAAI, 1986.

330. Vafaie, H., and De Jong, K.A., “Improving the performance of a Rule Induction System Us-

ing Genetic Algorithms,” Proceedings of the First International Workshop on Multistrategy

Learning, Harpers Ferry, W. Virginia, USA, 1991.

331. Qiang Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, “Planning

walking patterns for a biped robot,” IEEE Transactions on Robotics and Automation, vol. 17,

no. 3, pp. 280–289, June 2001.

332. Jacky Baltes and Yuming Lin, “Path-tracking control of non-holonomic car-like robots us-

ing reinforcement learning,” in RoboCup-99: Robot Soccer World Cup III, Manuela Veloso,

Enrico Pagello, and Hiroaki Kitano, Eds., New York, 2000, pp. 162–173, Springer.

333. E. Uchibe, N. Nakamura, and M. Asada, “Cooperative behaviour acquisisition in a multiple

mobile robot environment by co-evolution,” in RoboCup-98: Robot Soccer World Cup II,

Minoru Asada and Hiroaki Kitano, Eds. 1998, pp. 273–285, Springer Verlag.

440 Bibliography

334. T. C. Chin and X. M. Qi, “Integrated genetic algorithms based optimal fuzzy logic controller

design,” in Proceedings of the Fourth International Conference on Control, Automation,

Robotics and Vision, 1996, pp. 563–567.

335. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, The MIT Press, 1992.

336. A. Patel, D. Davis, C.Guthrie, D. Tukand Tai Nguyen and J. Williams, Optimizing Cyclic-

Steam Oil Production With Genetic Algorithms, SPE Western Regional Meeting, Irvine,

California, 30 March–1 April, 2005.

337. M. Naghshineh and M. Schwartz, “Distributed call admission control in mobile/wireless net-

works” in Proc. PIMRC’95, Toronto, Canada, Sept. 1995

338. Der-Rong Din And Shian-Shyong Tseng,” Genetic Algorithms for Optimal Design of the

Two-Level Wireless ATM Network,” Proc. Natl. Sci. Counc. ROC(A) Vol. 25, No. 3, 2001.

pp. 151–162

339. Mitsuo Gen, Runwei Cheng, Genetic Algorithms and Engineering Optimization, John Wiley

and Sons, Inc, New York, 1999.

340. K.Miettinen, P.Neittanmaki, M.M.Makela, J.Periaux, Evolutionary Algorithms in Engineer-

ing and Computer Science, John Wiley and Sons, Ltd, New York, 1999.

341. Practical Handbook of Genetic Algorithms- Applications Volume I, Edited by Lance Cham-

bers, CRC Press, Inc. New York, 1995.

342. S.N.Sivanandam, S.Sumathi, S.N.Deepa, Introduction to Fuzzy Logic using MATLAB,

Springer-Verlag Berlin Heidelberg, 2007.

343. S.N.Sivanandam, S.Sumathi, S.N.Deepa, Introduction to Neural Networks using MATLAB

6.0, Tata Mc-Graw Hill Publishing Company Ltd, NewDelhi, 2006.

344. Marco Dorigo, Mauro Birattari, Thomas Stutzle, “Ant Colony Optimization – Artificial Ants

as a Computational Intelligence Technique”, IRIDIA – technical report series, Technical Re-

port No: TR/IRIDIA/2006-023, September 2006.

345. Marco Dorigo, Mauro Birattari, Thomas Stutzle, “Ant Colony Optimization – Artificial Ants

as a Computational Intelligence Technique”, IEEE Computational Intelligence Magazine,

November 2006.

346. Venu G.Gudise, Ganesh. K. Venayagamoorthy, “FPGA Placement and Routing Using Parti-

cle Swarm Optimization”, Proceedings of the IEEE Computer Society Annual Symposium

on VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04), 2004.

347. J.Kennedy, R.Eberhart, “Particle Swarm Optimization”, From Proc. IEEE Int’l. Conf. on

Neural Networks (Perth,Australia), IEEE Service Center, Piscataway, NJ, IV:1942–1948,

1995.

Web Bibliography

348. http://website.lineone.net/∼kanta/publications/haploidGP.ps.

349. http://www.soe.rutgers.edu/ie/research/working_paper/paper%2005-011.pdf

350. http://www.rci.rutgers.edu/∼coit/RESS_2007.pdf

351. http://iris.gmu.edu/∼khoffman/papers/newcomb1.html

352. http://www.isps2005.dz/proceedings/papers/7-202.pdf

353. http://riot.ieor.berkeley.edu/∼vinhun/index.html

354. http://garage.cse.msu.edu/papers/GARAGe97-04-01.pdf

355. http://www.genetic-programming.org/hc2005/JPT_cyclic_steam_with_genetic_

algorithms.pdf

356. http://www.kecl.ntt.co.jp/as/members/yamada/unicom.pdf

357. http://www.geocities.com/jamwer2002/rep1.pdf

358. http://ipdps.cc.gatech.edu/2000/biosp3/18000605.pdf

359. http://www.sas.el.utwente.nl/home/gerez/cgi-bin/sabih/bonsma-msc.pdf?sendfile=bonsma-

msc.pdf

Bibliography 441

360. http://ww1.ucmss.com/books/LFS/CSREA2006/GCA4489.pdf

361. http://www.ici.ro/camo/journal/vol8/v8a7.pdf

362. http://www-rcf.usc.edu/∼maged/publications/GAinventoryrouting.pdf

363. http://vishnu.bbn.com/papers/conus.pdf

364. http://engr.louisiana.edu/asee/proceedings/VC4.pdf

365. http://osiris.tuwien.ac.at/∼wgarn/VehicleRouting/Braysy.pdf

366. http://www.iasi.rm.cnr.it/ewgt/16conference/ID89.pdf

367. http://www.heinz.cmu.edu/wpapers/retrievePDF?id=2005-15

368. http://www.elec.reading.ac.uk/people/J.Grimbleby/PDF/cec99.pdf

369. http://www.pcs.cnu.edu/∼riedl/research/publications/papers/Eunice1998.pdf

370. http://www.ucalgary.ca/∼blais/Sahabi2006.pdf

371. http://www.smeal.psu.edu/ebrc/publications/res_papers/1999_09.pdf

372. http://www.enformatika.org/ijci/v2/v2-4-36.pdf

373. http://wifo1.bwl.uni-mannheim.de/fileadmin/files/publications/working_paper_1999_6.pdf

374. http://www.eng.auburn.edu/users/aesmith/postscript/berna.pdf

375. http://nr.stpi.org.tw/ejournal/ProceedingA/v25n3/151-162.pdf

376. http://courses.civil.ualberta.ca/cive605/GetPDFServlet_filetypepdfidJCEMD4000128000005

000418000001idtypecvips.pdf

377. http://www.csc.byblos.lau.edu.lb/research/papers/jcce2002.pdf

378. http://www.ip-cc.org.uk/did/articles/miles-paper5.pdf

379. http://www.ias.ac.in/sadhana/Pdf2004Dec/Pe1229.pdf

380. http://ci.uofl.edu/rork/knowledge/publications/min_iri01.pdf

381. http://www2.lifl.fr/OPAC/Publications/Download/2001/2001_MIC_JourdanDhaenensTalbi_

GeneticAlgorithm.pdf

382. http://www.cse.msstate.edu/∼bridges/papers/annie2001.pdf

383. http://www-staff.it.uts.edu.au/∼lbcao/publication/DM2004.pdf

384. http://www.kddresearch.org/Publications/Conference/HWWY1.pdf

385. http://arxiv.org/ftp/cs/papers/0412/0412087.pdf

386. http://www.enformatika.org/data/v2/v2-4.pdf

387. http://www.model.job.affrc.go.jp/Papers/Otobe/281077.pdf

388. http://www-cs.ccny.cuny.edu/∼gertner/Students/Master/Maslov/orlando_paper_2001.PDF

389. http://www.biomed.abdn.ac.uk/Abstracts/A00033/

390. http://web.cecs.pdx.edu/∼payel/fp100-ghosh.pdf

391. http://cs.gmu.edu/∼eclab/papers/TAI92.pdf

392. http://eldar.mathstat.uoguelph.ca/dashlock/eprints/classify.pdf

393. http://www.recherche.enac.fr/opti/papers/articles/ieee.pdf

394. http://www.massey.ac.nz/∼mgwalker/publications/walker02comparison.pdf

395. http://www.sunist.org

396. http://www.doc.ic.ac.uk/∼nd/surprise_96/journal/vol4/tcw2/report.html#Introduction

397. http://dspace.nitrkl.ac.in/dspace/bitstream/2080/372/1/Nandapk-CIT-2003.pdf

398. http://tracer.lcc.uma.es/tws/cEA/documents/cant98.pdf

399. http://www.cad.zju.edu.cn/home/yqz/projects/gagpu/icnc05.pdf

400. http://www.cimms.ou.edu/∼lakshman/Papers/ga/node8.html

401. http://www.itu.dk/∼sathi/papers/IJCES.pdf

402. http://www.itu.dk/∼sathi/papers/WSC6.pdf

403. http://www.ieindia.org/publish/cp/0503/may03cp5.pdf

404. http://www.ijicic.org/fic04-14.pdf

405. http://www.ijcsns.org/04_journal/200601/200601A28.pdf

406. http://www.nsti.org/publ/ICCN2002/272.pdf

407. http://neo.lcc.uma.es/cEA-web/documents/vrp.pdf

408. http://www.lania.mx/∼ccoello/EMOO/nebro06.pdf.gz

409. http://ls11-www.cs.uni-dortmund.de/people/rudolph/publications/papers/gal95.pdf

410. http://www.genetic-programming.org/gp4chapter1.pdf

411. http://www.genetic-programming.com/gpanimatedtutorial.html

412. http://www.mathworks.com

442 Bibliography

413. http://www.paper.edu.cn

414. http://iridia.ulb.ac.be/∼mdorigo/ACO/RealAnts.html

415. www.swarmintelligence.org

416. http://en.wikipedia.org/wiki/Swarm_intelligence

417. http://www.engr.iupui.edu/∼shi/Coference/psopap4.html

	Cover
	Contents
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	Chapter5.pdf
	Chapter6.pdf
	Chapter7.pdf
	Chapter8.pdf
	Chapter9.pdf
	Chapter10.pdf
	Chapter11.pdf
	back-matter.pdf

