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Preface

The Bellagio International Conference on Mathematical Modeling,
Simulation, Visualization and e-Learning was held from November 20 to
November 26, 2006, with primary financial support from the Rockefeller Foun-
dation. It also benefited from the financial and material support of Virginia
Tech and Winston-Salem State University.

Taken together mathematical modeling, simulation, and visualization have
become a major tool in scientific investigation. They are also a growing inter-
disciplinary subject in collegiate curricula, and are expected to attract more
students from underserved communities to science and technology because of
their universality and because they provide a visual aspect to what is taught
and learned, even in environments where physical implementation and exper-
imentation may not be possible.

The Bellagio Initiative, which was the underlying idea behind the Bellagio
International Conference, consists in creating a forum where excellent mathe-
maticians from underserved countries and communities and the world’s lead-
ing scientists can meet, work together and build networks in order to share
scientific knowledge. This requires that all contributions presented in such a
forum have a high scientific level and a self-contained style. The objective of
this forum is that skilled scientists from all groups and countries be incorpo-
rated within the mainstream of scientific discovery.

It is our goal that scientists from all around the world be welcomed to
aid in investigating the great challenges our world is facing. These challenges
include, among others, the spread of infectious diseases, the management of
water resources, and efforts to reduce air and water pollution. Mathematical
modeling and simulation is among the paths which may lead to a better un-
derstanding of complex phenomena like those known but not fully understood
in biological and chemical processes.

In this volume the reader will find excellent contributions from some very
well known and other less known scientists. We have made a conscious decision
not to focus on one specific area but to open the forum to a wider set of
problems. This provides an opportunity for more scientists to come in and
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be part of the network. An important condition we have imposed on all the
contributions to this volume is that each presents a collection of open questions
which can fuel undergraduate or graduate research activities, even in smaller
or more isolated scientific communities.

This volume is divided into four main sections devoted to:

– numerical methods and problem solving;
– modeling and control of phenomena;
– simulation and visualization of processes and phenomena;
– e-learning.

The dispersion of the different contributions between these four sections is
purely arbitrary. The strong link between these four sections is the power
they can, together, provide to scientific investigation.

We are very grateful to Springer-Verlag, which has agreed to partner with
the Bellagio Initiative to publish the current book and be part of this im-
portant effort. This book is sold at a special discounted price which does not
include any remuneration for authors or institutions. This supports our ob-
jective, which is to allow scientists from all countries to have better access
to scientific knowledge and actively contribute to scientific discovery. This is
why I am honored and proud to introduce to you the present volume which
I hope, as the first of a series of publications to come, belongs on scientists,
applied mathematicians, and engineers’ bookshelves.

Editing a book written by many authors on different continents is a dif-
ficult task. So in closing, I would like to thank everyone who has supported
me while I was coordinating the work of publishing this volume. I would also
like to apologize to my wife and my children for the time I should have spent
and missed spending with them.

Blacksburg, August 2007 Dialla Konaté
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Quasi-Analytical Computation of Energy
Levels and Wave Functions in a Class
of Chaotic Cavities with Inserted Objects

F. Seydou, O.M. Ramahi, and T. Seppänen

Summary. A simple multipole expansion method for analytically calculating the
energy levels and the corresponding wave functions in a class of chaotic cavities is
presented in this work. We will present results for the case when objects, which
might be perfect electric conductors and/or dielectrics, are located inside the cavity.
This example is demonstrative of typical experiments used in chaotic cavities to
study the probabilistic eigenvalue distribution when objects are inserted into the
cavity.

1 Introduction

In the relatively new field of quantum chaos [11], billiards have been of great
interest. The simplest billiard prototype is defined as a perfectly conducting
enclosure filled with a homogeneous medium. It is known that integrable sys-
tems (which have the same number of constants of motion as their dimension),
such as billiards with regular shape, are non-chaotic, whereas non-integrable
systems (with fewer constants of motion than their dimensionality), such as
generic billiards, are chaotic [1, 18]. Examples of regular billiards include rec-
tangular, circular, and elliptical geometries. Generic billiards are one of the
simplest examples of conservative dynamical systems with chaotic classical
trajectories. Examples of chaotic billiards include the stadium billiard, the
D-shape truncated circle, the Sinai billiard and the bowtie shape billiard.
There are also examples of geometries that are neither chaotic nor integrable.
For more details about all these geometries we refer to [7] and the references
therein.

In general, billiard systems of many kinds have proven to be fruitful in
modeling systems in the field of quantum physics and electronics. Indeed,
quantum billiards, coupled with advances in crystal growth and lithographic
techniques have made it possible to produce very small and clean devices,
known as nanodevices [3], which at sufficiently low temperatures, could be
regarded as an experimental realization of a quantum billiard.
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Since some nanodevices are governed by single-particle physics, it can be
described by solving the time-independent Schrödinger equation, subject to
some properly chosen boundary conditions, the simplest example of which
is the problem of a particle in an infinite potential well. This amounts to
solving an eigenvalue problem. These eigenfunctions (the wave functions) are
important for understanding the behavior of mesoscopic structures, and will
be crucial for the design of the nanoscale electronic devices. In addition, a
great deal of interesting physics can be explored by means of an understanding
of the behavior of the wave functions (stationary states) in irregular shaped
devices, including wave localization and wave function fluctuations.

Since the Schrödinger equation for a free particle assumes the form of the
well-known Helmholtz equation the problem of determining the stationary
states of the particle in the infinite well amounts to the calculation of the
Helmholtz eigenvalues and eigenfunctions for Dirichlet boundary conditions
along the boundary of the well. This analogy between the Schrödinger and
Helmholtz equations also allows to compare the obtained numerical results
with the experimentally determined eigenmodes of a vibrating membrane, or
the resonant modes of the oscillating electromagnetic field in a resonant cavity,
of the same shape as the billiard.

The degree of difficulty in solving the Helmholtz eigenvalue problem de-
pends on the actual shape of the infinite well (the quantum billiard system).
When the shape of the billiard is highly regular, such as square, rectangular,
or circular, then the problem can be solved by means of separation of variables
[18]. The problem of determining the stationary states of a quantum billiard,
with arbitrary shape, cannot be solved analytically. Instead, a tedious and
costly numerical calculation is typically expected.

The matrix diagonalization method [12, 13] is a typical method for finding
the stationary states. But, this strategy is inherently limited, and cannot
be used for the purpose of finding high-lying eigenstates [6]. Moreover, the
method requires a heavy numerical task due to 2D grid calculations.

One of the most popular strategies for numerical solution of the quantum
billiard problem is the plane-wave decomposition method (PWDM), [14, 24].
The scaling method based on the PWDM [20–22] has also been efficiently used
for convex billiards. While the PWDM technique is found to be extremely
efficient in practice, for non-convex billiards, in general, it is not efficient [10].

The main useful numerical strategies that have been suggested in the liter-
ature in order to find the eigenstates of the Helmholtz equation, for arbitrary
billiards, are based on boundary integral approach and often referred to as
boundary integral method (BIM) [23]. Several versions of the BIM exist de-
pending on the choice of basis functions [6, 19]. While the BIM equation is
exact, its convergence is, in general, very slow for non-smooth boundaries.
Moreover a meshing of the boundary is required and singularities have to be
dealt with appropriately.

Most of the techniques considered in the literature are based on billiards
filled with homogeneous medium whereas much less is reported when objects
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are included in the billiard, which is demonstrative of typical experiments
used in chaotic cavities to study the probabilistic eigenvalue distribution [26].

The aim of this paper is to present a quasi-analytical method for calculat-
ing the stationary states in a large and important class of quantum billiards
described by closed cavities (containing non-intersecting microcavities) formed
by cylinders that are tangent to each other. A generic description of such cav-
ities is shown in Fig. 1, where we show a cavity described by five circular
cylinders of varying radii. Notice that the cylinders in Fig. 1 are touching but
not intersecting. A familiar chaotic cavity that falls under this category is
the so-called bowtie cavity, shown in Fig. 2, which is formed by four circular
cylinders of equal or varying radii.

The paper is organized as follows. We start with the problem formulation.
We then describe the method in the subsequent sections. Finally we present
the numerical results and summarize our findings.

Cavity

Fig. 1. A cavity made of five touching circles

D0

Γ

Microcavities

Fig. 2. Geometry of the bowtie shaped cavity containing microcavities
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2 Theory

2.1 Formulation of the Problem

We consider a two-dimensional cavity D0 with boundary Γ and a constant
refractive index n0 =

√
ε0µ0, where µ0 is the permittivity and ε0 is the per-

meability. We denote the wave number by k0 = ωn0 , where ω is the frequency.
Furthermore we assume that the cavity contains M parallel microcavities Dj ,
which might be perfect electric conductors (PEC) and/or dielectrics of con-
stant wave numbers kj , j = 1, . . . ,M . See Fig. 2.

The solution of Maxwell’s equations for the vortices of the electromagnetic
field is given in [4], and leads to an equation for the electric (magnetic) field
that is similar to the conventional Schrödinger equation. The vector character
of the fields implies, however, that one has to distinguish two possible polar-
ization directions with differing boundary conditions. The situation where the
electric (magnetic) field is parallel to the cylinder (z) axis is called TM (TE)
polarization, with the magnetic (electric) field being thus transverse. The to-
tal field can be characterized by a single scalar function u, which represents
either the Ez (Hz) component for the case of TM (TE) polarization.

We then have M + 1 homogeneous regions Dj , and in each region the
function u is written as follows:

u = ξju0 + uj ,

where u0 either represents the field generated by sources or should be assumed
zero if eigenfrequencies are being sought, ξj is equal to unity if the source is
located in Dj and zero otherwise. Assuming a TM polarization with perfectly
conducting walls and a non-magnetic medium, eikzz dependence leads to the
Helmholtz equation (

∇2 + k2 + k2z
)
u = 0

with a vanishing u on Γ. On the boundaries of Dj , j = 1, . . . ,M , we have
a continuity of u and its normal derivative for the case of dielectrics and a
homogeneous Dirichlet boundary condition, i.e., u = 0 for the case of PEC.
Here kz is the propagation constant along the z-direction and k represents kj
in Dj , j = 0, 1, . . . ,M . In the following we will set kz to zero corresponding
to a wave in the x− y plane.

The quantum analogue of the Helmholtz equation is given by time-
independent Schrödinger equation for two-dimensional systems [8], i.e.,(

∇2 + 2m
εn − V
h2

)
Ψn = 0,

which describes the nth excited eigenfunction Ψn of a particle of mass m in a
potential V , where εn is the energy of the nth excited state, and h is Planck’s
constant divided by 2π. The probability density |Ψn|2 in the Schrödinger equa-
tion for the quantum mechanical problem is analogous to |u|2 in the Helmholtz
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equation for the electromagnetic problem, as long as the 2m(εn − V )/h2 and
k2 terms in these equations are constant. The solutions to the Helmholtz
equation with perfectly conducting walls are equivalent to the solutions of the
two-dimensional Schrödinger equation with hard wall boundaries (Ψn = 0 at
the boundary Γ) of the same geometry.

Now, assume the cavity of interest is has a shape such as the geometry
given in Fig. 1 (with inclusions of microcavities) or Fig. 2, and denoted by D0,
we would like to find:
1. The values of |u0| inside the cavity;
2. Non-trivial eigenvalues kn and eigenfunctions u0,n that satisfy the two-
dimensional Helmholtz equation with homogeneous Dirichlet boundary con-
dition, as formulated above.

2.2 Cavities Formed by Touching Multiple Cylinders

The quasi-analytical approach (QAA) method introduced here, for calculat-
ing the energy spectrum of billiards, is simple and allow us determine both
the energy levels and the corresponding wave functions for quantum billiards
formed by touching circular cylinders.

To tackle the problem, we take as center points Oj , and circumscribe
them by circles Γj (describing the cross-sections of the cylinders) of radii
Rj , j = 1, 2, . . . , J , where J denotes the number of circles, and separated by a
variable a, as shown in Fig. 3. Next, we assume a scattering of electromagnetic
waves by J infinitely long circular cylinders centered at Oj with radius Rj .
Then, in the outer region Da, we have the Helmholtz equation(

∇2 + k2
)
ua = 0,

where ua satisfies the Dirichlet boundary condition on each of the boundaries.
When we take the limit as a goes to zero we obtain a cavity formed by touching

aa

a a

cavity

Fig. 3. Four circles separated by a variable a. The bowtie shape cavity is obtained
when we let a tend to zero
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circles (see Fig. 3). Our goal is to find the solution in the cavity, denoted by
D0, as an approximation of the solution in Da when a goes to zero. The
electromagnetic problem we have to solve is thus to find the solution ua of the
Helmholtz equation in Da with Dirichlet boundary conditions on the circles.
Then, when a goes to zero, we find the solution in the cavity.

Assuming that ua satisfies the Sommerfeld radiation condition, and using
the Green’s representation theorem [5], we have

ua(x) = −
∫
∪J

j=1Γj

(
Φ(x,y)

∂ua(y)
∂ν

− ua(y)
∂Φ(x,y)
∂ν

)
ds(y),

with
Φ(x,y) =

i

4
H

(1)
0 (k|x− y|),

where ν is the unit outward normal and H(1)
0 is the Hankel function of the

first kind and order zero.
We will use the addition theorem for Hankel function (cf. [4], p. 591)

H(1)
m (k|x− y|)eimθ′′(x) =

∞∑
n=−∞

einθ(x)JBn [kr(x)]H(1)
n−m[kr(y)]ei(m−n)θ(y),

when r(y) ≥ r(x), and

H(1)
m (k|x− y|)eimθ′′(x) =

∞∑
n=−∞

einθ(x)H(1)
n [kr(x)]JBn−m[kr(y)]ei(m−n)θ(y),

when r(y) < r(x), where r(x) and θ(x) are the polar coordinates of x, θ′′ is
the polar angle of Rxy = x− y, H(1)

m is the Hankel function of the first kind
and order m, and JBp is the Bessel function of order p. Hence, for a point
x ∈ Da, ua(x) can be written in the form

ua(x) =
J∑
j=1

∞∑
n=−∞

b jnH
(1)
n [krj(x)]einθj(x)

with

bjn =
−
∫
Γj

∂
∂ν(y){JBn [krj(y)]e−inθj(y)}ua(y) ds(y)

−
∫
Γj
JBn [krj(y)]e−inθj(y) ∂

∂ν(y)ua(y),

where rj(x) and θj(x) are the polar coordinates of a point x ∈ Da in the
coordinate system XjOjYj , and the constants bjn, j = 1, . . . , J and −∞ ≤
n ≤ ∞, are the unknown coefficients to be found by the boundary conditions.

WhenM circular objects Dj of radii rj , j = J+1, . . . , J+M , are inserted
inside the cavity formed by the touching circles it is clear that in the sum
above we have to replace J by J +M . Let us define k in Dj by kj whereas in
the rest of the cavity k is taken to be k0.
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Using again the addition theorem above and the boundary conditions we
obtain an infinite system of equations. This system must be truncated, at a
number N , to obtain a finite system of equations in the form

Sb = 0.

The vector b contains the variables b jn, j = 1, . . . , J, J + 1, . . . , J +M and
−N ≤ n ≤ N , and the matrix S is given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

s1 T1,2 . . . T1,J T1,J+1 . . . T1,J+M

T2,1 s2 . . . T2,J T2,J+1 . . . T2,J+M

. . . . . . . . . . . . . . . . . . . . .
TJ,1 TJ,2 . . . sJ TJ,J+1 . . . TJ,J+M

. . . . . . . . . . . . . . . . . . . . .
TJ+M,1 TJ+M,2 . . . TJ+M,J TJ+M,J+1 . . . sJ+M

⎞
⎟⎟⎟⎟⎟⎟⎠ .

In the above matrix, for j, l = 1, . . . , J +M and −N ≤ n,m ≤ N , Tl,j is
a square matrix of the (m,n)th element Tl,j,m,n given by

Tl,j,m,n = ei(n−m)θj
lH

(1)
m−n(k0r

j
l ),

with rjl being the distance between Ol and Oj , and θjl is the angle between
OlOj and the x-axis. On the other hand sj is the column matrix of the mth
element sj,m whose expression depends on the type of object inserted into the
cavity. In particular, let us assume that we have K1 PECs and K2 dielectrics,
where K1 +K2 ≤M , Then for the PEC case sj,m is given by

sj,m =
H

(1)
m (k0rj)
Jm(k0rj)

, j = 1, . . . , J +K1 and −N ≤ m ≤ N,

whereas for dielectric insertions the values of sj,m differ from the PEC case
for j > J in which case it is given by

sj,m = − k0J
′
m(k0rj)Jm(kjrj)− kjJ ′m(kjrj)Jm(k0rj)

k0H
(1)′
m (k0rj)Jm(kjrj)− kjJ ′m(kjrj)H

(1)
m (k0rj)

.

By solving the system of equations, for j, l = 1, . . . , J +M and −N ≤
n,m ≤ N , we obtain an approximation of the coefficients bjn. Then the field
ua can be recovered from the above sum.

This method is a semi-analytical technique. In some sense it is analytical
since it is based on solutions in the form of infinite series. At the same time the
method is numerical, since it requires inversion of a matrix for determining
coefficients in the series.

To validate our method, we develop a numerical solution using the BIM
[5]. Using the BIM, we seek solutions of the Helmholtz equation in the cavity
as a combination of layer potentials and Green’s identity. Then a Nyström dis-
cretization of the integral with singularity extraction [5] is used. More details
of this method will be published elsewhere in a near future.



10 F. Seydou et al.

2.3 Eigenvalues

Eigenvalues play a critical role in the analysis of chaotic cavities. Determining
whether a cavity is chaotic or not is made possible by analyzing the statistical
distribution of the eigenvalues. Determining the eigenvalues reduces to finding
the minima of either the tension, the smallest singular value of S, or the
determinant of S, det(S) [18]. In this paper we consider only the case of det(S).
Strictly speaking, to find the eigenvalues in a cavity, we need to look for wave
numbers k such that det(S) = 0. We note that the function D̂(k) = det(S) is
complex-valued and, therefore, its real roots kn (the sought eigenvalues) must
be simultaneously zeros both real and imaginary parts. On the other hand we
expect the numerical solutions of the equation D̂ = 0 to be complex with a
small imaginary part.

To find the eigenvalues, i.e., the roots of D̂ = 0 we may use an iterative
computational technique. We may use a Newton Raphson iterative solver. The
eigenvalues can be computed using the following iteration:
1. Pick an initial value k(0)n

2. Iterate

k(m+1)
n = k(m)

n − 1

tr
(
S−1(k(m)

n )S′(k(m)
n )

) m = 0, 1, 2, . . . ,

where tr is the trace of a matrix and the derivative is taken with respect to
k

(m)
n .

Once the eigenfrequency is determined, we may get the eigenfunctions ua,n
by the inverse power method, i.e., suppose k(m0)

n is a good approximation, but
S(k(m0)

n ) is still invertible we iterate by

S(k(m0)
n )u(m+1)

a,n = u(m)
a,n m = 0, 1, 2, . . . .

In our numerical results below we look for the eigenvalues over a segment
of wave number. Theoretically, if the wave number is an eigenvalue, then the
minima of |D̂| should be zero. Eigenvalues are seen as peaks in the figures
where we plot |D̂| against the wave number.

3 The Numerical Results of the Classical Bowtie Cavity
Containing Circular Objects

The bowtie cavity (Fig. 2) is well known in the chaos literature [8]. It is real-
ized by forming four circular cylinders of equal radius r0 (generalized bowtie
cavities can also be formed by cylinders with different radii).

In the numerical results presented here, we first excite the cavity by a
complex-source-point (CSP) given by

Φs(x,xs) = H(1)
0 (k|x− xs|)
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located at a point xs inside the cavity. The CSP is useful in the spectra study
of cavities [2]. We then compare the QAA and the BIM methods.

Taking a = 10−6, for a given point source located in the cavity above the
x-axis we plot |u0| against the x-axis inside the cavity using the BIM and the
QAA methods, for different wave numbers k0 when k1 = 2k0 and k2 = k0/2.
The results are reported in Figs. 4 and 5 for the cases when the bowtie cavity
contains two PECs and two dielectrics, respectively. We see a very good match
for the two methods.
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Fig. 4. Given a source inside the cavity placed at (0, 0.6) and two circular PECs
with radius 0.1 centered at (0, 0.3) and (0.1,−0.2) we plot the field |u0| on the line
y = 0 using the BIM (solid line) and the QAA (dots) techniques for different wave
numbers k0 = 2 (first from the top), k0 = 4 (second from the top) and k0 = 4
(bottom). In all the figures k1 = 2k0 and k2 = k0/2. An excellent match is observed
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Fig. 5. Given a source inside the cavity placed at (0, 0.6), one dielectric and one
PECs with radius 0.1 centered at (0, 0.3) and (0.1,−0.2) we plot the field |u0| on the
line y = 0 using the BIM (solid line) and the QAA (dots) techniques for different
wave numbers k0 = 2 (first from the top), k0 = 4 (second from the top) and k0 = 4
(bottom). In all the figures k1 = 2k0 and k2 = k0/2. An excellent match is observed
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To see the location of the eigenvalues, in Figs. 6–10, we plot log(|D̂|)
against the frequency using the QAA and the BIM methods. First we see that
the determinant is very small in both cases. On the other hand, although the
determinant does not have the same values for the two methods we see that
the minima have the same locations. We would therefore expect to have very
similar eigenvalues for the two approaches.

Let us consider the case when one circular object, that might be either a
PEC or a dielectric with refractive index n is located inside the cavity. We
shall look for two cases: when the object is located at the center of the cavity
and when it is off the center at the point (0, 0.6).
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Fig. 6. Here the logarithm of the absolute value of the determinant is plotted against
the wave number k0 for the case when a perfect electric conducting circular cylinder
is placed at the center of the bowtie shaped cavity, using the QAA (top) and the
BIM (bottom) techniques
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Fig. 7. Here the logarithm of the absolute value of the determinant is plotted against
the wave number k0 for the case when a perfect electric conducting circular cylinder
is placed off the center of the bowtie shaped cavity, using the QAA (top) and the
BIM (bottom) techniques
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Fig. 8. Here the logarithm of the absolute value of the determinant is plotted against
the wave number k0 for the case when a dielectric circular cylinder, with refractive
index n = 4, is placed at the center of the bowtie shaped cavity, using the QAA
(top) and the BIM (bottom) techniques
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Fig. 9. Here the logarithm of the absolute value of the determinant is plotted against
the wave number k0 for the case when a dielectric circular cylinder, with refractive
index n = 4, is placed off the center of the bowtie shaped cavity, using the QAA
(top) and the BIM (bottom) techniques

First, for the case of PEC (Figs. 6 and 7) we observe that the number of
eigenvalues is reduced when the object is moved from the center compared to
when it is placed at the center. Turning to the case when the object inside
the cavity is a dielectric (Figs. 8 and 9) we assume that the refractive index
is taken as n = 4. We see that there are more eigenvalues when the dielectric
cylinder is moved off the center compared to when it is placed at the center.
Finally for the case of two dielectrics the number of eigenvalues is different
than previous cases (Fig. 10).
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Fig. 10. Here the logarithm of the absolute value of the determinant is plotted
against the wave number k0 for the case when two dielectric circular cylinders, with
refractive indices n1 = 2k0 and n2 = k0/2, are placed off the center of in the bowtie
shaped cavity, using the QAA (top) and the BIM (bottom) techniques

4 Conclusion

In this paper we have implemented a quasi-analytical method to compute sta-
tionary states and wave functions for an important class of chaotic cavities
containing dielectrics and/or PECs. The method is based on the use of multi-
pole expansion for solving the Helmholtz equation. Our results, for a bowtie
shaped cavity, were compared to a BIM approach and very similar results were
obtained. The main advantage of our method is the closed form nature of the
matrix in the resulted linear system, and its derivatives can be computed ex-
actly. Our results show that the location and the number of the eigenvalues
depend greatly on the location, the number and the type of objects inserted
into the cavity.
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Existence Results and Open Problems
in the Kinetic Theory of Dense Gases

W. Greenberg

Summary. Although the Boltzmann equation is the earliest and best known of the
classic equations in kinetic theory, its weakness in modeling non-dilute gases has long
been recognized. Some 85 years ago, Enskog proposed modifications for dense gases
which generated more accurate transport coefficients than the Boltzmann equation.
However, the Enskog equation does not model intermolecular potentials. We wish
to outline some recent advances in improving the Enskog equation, and to highlight
a number of problems which remain open.

1 Introduction

Although there is an extensive literature on discrete velocity Boltzmann equa-
tions [1], and a smaller literature on discrete velocity Enskog equations [2], the
study of kinetic equations on spatially discrete domains is extremely limited.
Here we would like to present models of the Enskog equation on a three-
dimensional spatial lattice both with the full velocity dependent Enskog col-
lision operator and also with a discrete velocity set. The first type of model
is referred to as a semi-discrete model, since only the spatial variable is dis-
cretized, while the second is referred to as a fully discrete model. Moreover, we
will extend the behavior of the Enskog collision operator (which describes only
hard sphere collisions) to include next-nearest neighbor interactions, thereby
modeling a square well interaction potential, or, more generally, a piecewise
linear local interaction potential.

The Boltzmann equation, first posed in 1876, is the best known equation
in the kinetic theory of gases [3]. However, this equation, which describes
molecules as point particles and yields transport equations only of an ideal
gas, is an accurate portrayal of a dilute gas. In order to have a more accurate
description of moderately dense gases, Enskog in 1921 proposed the equation
subsequently bearing his name [4]. The Enkog equation, revised in the 1960s
to represent exact hydrodynamics, takes into account the non-zero diameter of
real molecules, and has turned out to be an accurate description of dense gases
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up to 10% of close packing. Because the Enskog equation models only hard
sphere collisions without intermolecular potential, Greenberg et al. have con-
sidered an Enkog type collision operator with square well, and, more generally,
local piecewise constant, potential [5, 6]. Although discrete velociy models of
the Boltzmann equation have an extensive literature going back more than 40
years, the spatially discrete Boltzmann equation was introduced more recently
by Greenberg and coworkers [7, 8]. In these models the spatial variable was
replaced by a finite periodic lattice.

In this article we will present a lattice version of the Enskog equation,
studied in a Banach space of absolutely integrable functions of the velocity
variables, i.e., only the spatial variable will be discretized. We will discuss
both the analog of a hard sphere collision model and an Enskog model with
local (next-nearest neighbor) interaction.

Throughout, we will point to some open problems in the kinetic theory of
dense gases.

2 Kinetic Equations and Streaming Operator

For perspective, let us write the Enskog equation in a three-dimensional spatial
domain: [ ∂

∂t
+ �v · ∇�r

]
f(�r,�v, t) = CE(f(�r,�v, t), f(�r,�v, t)) (1)

for the distribution function f : R3
�r×R3

�v×R+ → R+ representing the differen-
tial density of particles at position �r at time t with velocity �v. Here, CE(f, f)
is the Enskog collision operator

CE(f, f)(�r,�v, t) =
∫∫

R2×S2
+

[Y (�r, �r − a�ε)f(�r,�v′, t)f(�r − a�ε,�v′1, t) (2)

− Y (�r, �r + a�ε)f(�r,�v, t)f(�r + a�ε,�v1, t)] < �ε,�v − �v1 > d�ε d�v1,
�v′ = �v−�ε < �ε,�v − �v1 >, �v′1 = �v1 + �ε < �ε,�v − �v1 > (3)

for a gas of molecules of diameter a, with �ε-integration over {�ε ∈ R3 : ||�ε|| =
1,�ε · (�v − �v1) > 0}.

In this section we consider both semi-discrete and fully discrete Enskog
equations on a lattice. The free streaming operator, corresponding to the
continuum operator �v · ∇�r, is constructed in the same fashion for both types
of models.

The semi-discrete equation for the distribution function fi(�v, t) is written:

∂fi
∂t

(�v, t) + (Af)i(�v, t) = J(f, f)i. (4)

The index i is the spatial index denoting the ith lattice point in the periodic
three-dimensional cubic lattice Λ3, and �v is the (dimensionless) velocity vector.
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The operators A and J will be defined below. We seek solutions in the Banach
space C([0, T ],X ) where X = L1(Λ3×S) with norm ||f || = ∑

i ||fi(�v)||1. The
sum is over N3 lattice sites, S = R3 in the case of the semi-discrete model
and S is a finite set in the case of the fully discrete model. We denote with
T+ the cone of positive functions in X , and by G(T+) the cone of measurable
functions f(·) : R+ → T+.

The operator A is the finite difference approximation to the gradient term.
To give A specifically, let π be an identification between the lattice Λ3 and
Z3. Then A is an N3 ×N3 matrix:

Aij =
∑
û

(�v · û)∆û
ij(�v), (5)

where

∆û
ij(�v) = δij − δi,π(π−1(j)+û), �v · û > 0, ∆û(−�v) = ∆û(�v)∗ (6)

and the sum is over the three orthogonal coordinate vectors û. We have,
for convenience, taken the lattice spacing to be of unit length. The periodic
boundary conditions are imposed by viewing the lattice as a three-dimensional
torus, and thus π−1(j) + û ∈ Λ3 for every j.

A representation of A may be written as follows. If vx, vy, vz ≥ 0 and the
n× n matrix E is defined by

Eij =

{
δn,j , i = 1
δi,j+1, i > 1

(7)

then

A = (vx+vy+vz)I⊗I⊗I−vx(E⊗I⊗I)−vy(I⊗E⊗I)−vz(i⊗I⊗E). (8)

Note En = I and that the representation of A if vi < 0 can be obtained from
(6).

Let us consider first the semi-discrete Enskog collision operator:

J(f, f)i(�v, t)=G0(f, f)i(�v, t)− fi(�v, t)L0(f)i(�v, t) = (9)

=
∑
ε̂∈Γ

∫
R3
d�v1

[
Yi,i−ε fi(�v′, t)fi−ε(�v′1, t)− Yi,i+ε fi(�v, t)fi+ε(�v1, t)

]
·

· < ε̂,�v − �v1 > θ(ε̂ · (�v − �v1)),

where θ is the Heaviside function and �v′, �v′1 are given in (2). The geometric fac-
tor Y is a functional of f , Yi,j = Y (ni(t), nj(t)), where ni(t) =

∫
R3 d�v fi(�v, t),

and is assumed positive, jointly continuous, bounded and symmetric in its
arguments. The set Γ ⊂ S2 is the set of unit vectors in R3 pointing in the
direction of nearest neighbors, taken periodically, e.g., the unit coordinate vec-
tors in a rectangular lattice. Indices such as Yi,i+ε are written in shorthand
for Yi,π(π−1(i)+ε̂).
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Equations (4)–(9) are the discrete version of the (revised) Enskog equation
(1a), which models hard sphere collisions. The square well Enskog equation,
derived by Davis et al. [9] and Greenberg et al. [5], models, in the continuum
case, an intermolecular potential of the form

φ(||�r1 − �r2||) =

⎧⎪⎨
⎪⎩
∞, 0 < ||�r1 − �r2|| < a
−q, a < ||�r1 − �r2|| < R
0, ||�r1 − �r2|| ≥ R

(10)

for a single square well of depth q and width R, and a sequence of such wells
for a piecewise constant local potential. The resultant kinetic equation has a
collision term containing precisely the Enskog collision operator, on account
of the hard sphere collision, and, in the case of a single square well, three very
similar collision terms representing the molecule at ||�r1−�r2|| = R (i) entering
the well, (ii) exiting the well, and (iii) reflecting off the well if energy is not
sufficient for an escape (or a penetration for a repulsive well). The last cannot
take place, of course, for an attractive well unless an intermediate collision has
occurred while the particle is in the well. In the case that the well consists ofm
piecewise constant steps, the collision operator will contain 3m+1 Enskog-like
collision terms.

As we are interested in lattice models, we will defer writing out the con-
tinuum equation for square well potentials, recommending the reader to the
quoted literature, and restrict ourselves to writing the lattice equation. In the
case of a single well, which translates into a strictly next-nearest neighbor
interaction, the semi-discrete lattice collision operator is:

J(f, f)i(�v, t) =
∑
ε̂∈Γ0

∫
R3
d�v1

[
Yi,i+ε fi(�v′, t)fi+ε(�v′1, t)−Yi,i−ε fi(�v, t)fi−ε(�v1, t)

]
·

·ε̂ · (�v − �v1)θ(ε̂ · (�v − �v1))+ (11)

+γ
∑
ε̂∈Γ1

∫
R3
d�v1

[
Yi,i+ε fi(�v′′, t)fi+ε(�v′′1 , t)− Yi,i−ε fi(�v, t)fi−ε(�v1, t)

]
·

·ε̂ · (�v − �v1)θ(ε̂ · (�v − �v1))+

+γ
∑
ε̂∈Γ1

∫
R3
d�v1

[
Yi,i−ε fi(�v′′′, t)fi−ε(�v′′′1 , t)− Yi,i+ε fi(�v, t)fi+ε(�v1, t)

]
·

·ε̂ · (�v − �v1)θ(ε̂ · (�v − �v1)−
√

4q)+

+γ
∑
ε̂∈Γ1

∫
R3
d�v1

[
Yi,i−ε fi(�v′, t)fi−ε(�v′1, t)− Yi,i+ε fi(�v, t)fi+ε(�v1, t)

]
·

·θ(
√

4q − ε̂ · (�v − �v1))ε̂ · (�v − �v1)θ(ε̂ · (�v − �v1)) =

=
3∑

k=0

[Gk(f, f)i − fiLk(f)i] = G(f, f)i − fiL(f)i,
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where Γ0 is related to the set of nearest neighbor vectors, Γ1 to the set of
next-nearest neighbor vectors, and γ > 0. Here, the double and triple primed
velocities are derived by conservation of momentum and energy, just as were
the velocity transformations in (1b). For example,

�v′′ = �v − 1
2
�ε{< �ε,�v − �v1 > −[< �ε,�v − �v1 >2 +4q]

1
2 }, (12)

�v′′1 = �v1 +
1
2
�ε{< �ε,�v − �v1 > −[< �ε,�v − �v1 >2 +4q]

1
2 }, (13)

with a similar transformation for �v′′′, �v′′′1 [3]. It is not difficult to show the
conservation (of mass) property∫

R3
d�v {G(f, f)i − fiL(f)i} = 0, f ∈ X . (14)

In the case of nexti-nearest neighbor interactions for i = 1, . . . ,m, there
will be 3m additional collision terms with corresponding transformations of
(primed) outgoing velocities, obtained by the conservation laws and taking
into account the energy levels qi. In this case, there will be summations over
nexti-nearest neighbor vectors Γi and J(f, f) =

∑3m
k=0[Gk(f, f) − fLk(f)].

As the functional analysis to be considered in what follows carries over in a
transparent way to these additional collision terms, we will, for convenience,
pose the lemmas for the case of nearest neighbor interaction only, i.e., the
Enskog lattice collision operator (9), commenting only on any points for which
the lattice model with interaction potential might differ.

Next, let us consider (4) for the fully discrete lattice model. In this case,
the variable �v belongs to a set S of finite cardinality. We shall label such
velocities �vj for j = 1, . . . , card(S). If the probability of the collision of two
particles of velocities �vi and �vj producing velocities �vk and �vl at transfer angle
(vector) ε̂ is given by P klij , then for a nearest neighbor interaction model P
must satisfy:

0 ≤ P klij (ε̂) ≤ 1, (15)

P klij (ε̂) 
= 0 if and only if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< �vi − �vj , ε̂ > ≥ 0

< �vk − �vl, ε̂ > ≤ 0

�vi + �vj = �vk + �vl

v2i + v2j = v2k + v2l

(16)

∑
kl

P klij (ε̂) =
∑
ij

P klij (ε̂) = 1, (17)

P klij (ε̂) = P lkji (−ε̂). (18)
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The distribution function f now should be written as fm,i, where the first
index refers is the spatial variable and the second is the velocity variable.
Then the fully discrete kinetic equation is written

∂fm,i
∂t

(t) + (Af)m,i(t) = J(f(t), f(t))m,i, (19)

where

J(f, f)m,i = G(f, f)m,i − fm,iL(f)m,i = (20)∑
j,k,l

∑
ε̂

Y +
m,m−εP

ij
kl (ε̂)m, kfm−ε,l < ε̂,�vl − �vk > −Ym,m+εP

kl
ij (ε̂)fm,ifm+ε,j ·

< ε̂,�vi − �vj >

The sum over ε̂ is a sum over nearest neighbors as discussed in the semi-
discrete model. The streaming operator A is defined again by (5), however
with the velocities �v confined to the set S. The geometric factor Ym1,m2 is a
function of

∑
i fm1,i,

∑
i fm2,i and is assumed positive and symmetric in its

arguments.
An example of such a nearest neighbor model for a cubic lattice is a gen-

eralization of the Carleman model for the Boltzmann equation [10]. In this
case, the discrete velocity set is

S = {x̂,−x̂, ŷ,−ŷ, ẑ,−ẑ}, (21)

where the velocities in S are vectors parallel to the coordinate axes, normal-
ized for the sake of convenience. A more complicated mode, related to the
Broadwell model [10], is

S = (22)
{±x̂,±ŷ,±ẑ,±(x̂− ŷ),±(x̂− ẑ),±(ŷ − ẑ),±(x̂+ ŷ),±(x̂+ ẑ),±(ŷ + ẑ), 0},

The analog of the square well or local piecewise linear interaction in the
continuum model will here be a nexti-nearest neighbor interaction model,
as for the semi-discrete model. However, in this case the transition matrix
P klij and the velocity set under consideration must be modified. In particular,
for a finite set of velocities S generating a nearest neighbor model, the re-
lationships such as (13) describing outgoing velocities generated by the well
or piecewise linear potential will create an enhanced set, still called S, and
the last case in (16) will require energy conservation with respect to the local
potential. (Note momentum conservation is maintained.) The collision oper-
ator J(f, f) will, of course, require a sum over the enhanced velocity set. In
what follows, we will refer to the nearest neighbor model, which corresponds
to strictly hard sphere collisions. The results, in general, properly altered to
deal with bounded, rather than conserved, energy, do carry over to (next)i-
nearest neighbor interaction models; we will indicate when validity is only for
the simpler model.
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For the Boltzmann equation there is an extensive and rich literature on
discrete velocity models. For the Enskog equation, only a minimal number of
discrete velocity models exist [13–15]. This is a wide open field of research.

In the next three sections, we will confine ourselves to the semi-discrete
model, although the results in Sects. 3 and 4 almost entirely carry over to
the fully discrete model, with the appropriate change in notation to the finite
velocity set. In Sect. 6 we will return to the fully discrete model.

3 Semi-Group and Iterations

We discuss here the semi-discrete equation (4). Throughout this and the fol-
lowing section, we will consider only the velocity cutoff model of the semi-
discrete equation, which includes in the collision kernel the additional factor
θ(p− ||�v−�v1||) for some fixed p > 0. Then G and L are bounded functionals:
||G(f, f)|| ≤ k1||f ||2 and ||L(f)|| ≤ k2||f || for constants k1, k2 depending on p.

Throughout, we will suppress the position variable (index) when the mean-
ing remains clear.

It is easy to see that A generates a c0-semi-group UA(t) and A + L(f)
a two-parameter evolution operator Tf , i.e., Tf (t, s)ξ0 is a solution of the
homogeneous equation

dg

dt
+Ag + L(f)g = 0, g(s) = ξ0. (23)

The most relevant properties these operators can be summarized in the fol-
lowing lemma.

Lemma 3.1. (a)UA(t) and Tf (t2, t1) are invariant on the cone of positive
functions T+ ⊂ X for t and t2 − t1 positive, and f ∈ G(T+).

(b) U(t) is a contraction semi-group and continues analytically to a bounded
holomorphic semi-group U(z).

(c) Tf (t2, t1) is a contraction mapping on X for t2−t1 positive and f ∈ G(T+).
(d) For all f ∈ X ,

N3∑
i=1

(U(t)f)i =
N3∑
i=1

fi. (24)

Proof. First one shows that every element of e−tA is a power series in t|�v · û|
with positive coefficient to lowest order. Hence, for t|�v · û| sufficiently small,
(e−tAf)i ≥ 0 for f ∈ T+ ∩MN , where MN denotes the union of subspaces of
functions in T+ with support in the hypercube about the origin with sides of
length 2N . Then, by exponential addition, this extends to arbitrary t.

On MN , A(t) = −A−L(f(t)) is a bounded operator, and Tf (s, t) is given
explicitly by

Tf (t, s) = s. lim
m→∞

exp
∫ tm

tm−1

A(t′)dt′ . . . exp
∫ t1

t0

A(t′)dt′ (25)
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with the limit taken over n-partitions t = tm > tm−1 > · · · > t1 > t0 = s.
Using the Lie product formula and the uniform boundedness of each of the
exponentials, one can represent Tf (t, s) as the double limit

Tf (t, s) = s. lim
m→∞

lim
n→∞

{[
UA

(
tm − tm−1

n

)
exp

−
∫ tm
tm−1

L(f(s))ds

n

]n

× · · ·×
[
UA

(
t1 − t0
n

)
exp

−
∫ t1
t0
L(f(s))ds

n

]n}
. (26)

But L is diagonal and positive on T+, and therefore so are the exponentials
in (26). Thus Tf (t, s)T+ ⊂ T+, completing the proof of (a).

To prove (b), one employs the important identity

N3∑
i=1

(Am)ij = 0, ∀m ∈ Z+ (27)

and the expansion

es(−I+E) =
1
n

n−1∑
α=0

n∑
i=1

es(wi−1)w−αiEα. (28)

where E0 = I, E1 = E, Eα = Eα−1E and wα are the primitive nth roots of
unity. From the first, one may see that UA(t) is isometric on T+, and therefore,
by invariance, on X . Writing UA(s) = Ux(s)⊗ Uy(s)⊗ Uz(s), to show UA(s)
is a bounded holomorphic semi-group, it is sufficient to show that Ux(s) and
sAUx(s) are bounded uniformly in a sector Sθ ⊂ C,

Sθ = {z ∈ C| | arg z| < θ < π
2
}. (29)

The uniform boundedness of UA(t) follows from the expansion (28) and some
straightforward complex analysis. The uniform boundedness of sAU(s) is an
immediate consequence of the boundedness of g(ξ) = ξe−ξ, Re ξ ≥ 0. This
proves (b).

Since L is positive, exp{−
∫
dsL(f(s))} is contractive, and by the repre-

sentation (26), part (c) is proved, and (d) is an easy consequence of (27) and
part (a). �

Let us consider the integral equation

f(t) = UA(t)f0 +
∫ t

0

dsUA(t− s){G(f(s), f(s))− f(s)L(f(s)} (30)

as well as the integral equation

f(t) = Tf (t, 0)f0 +
∫ t

0

ds Tf (t, s)G(f(s), f(s)). (31)
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Note that for next-nearest neighbor interactions, the integral in (31) will be

∫ t

0

ds Tf (t, s)
3m∑
k=0

G0(f(s), f(s)). (32)

Equation (30) is convenient for iterating a solution of the kinetic equation,
and (31) is useful for establishing positivity.

We wish to solve both equations by iteration. Define

f (0)(�v, t) = f0(�v) (33)

f (n)(�v, t) = UA(t)f0(�v) +
∫ t

0

dsUA(t− s)J(f (n−1)(s), f (n−1)(s)) (34)

and

g(0)(�v, t) = f0(�v) (35)

g(n+1)(�v, t) = Tg(n)(t, 0)f0(�v) +
∫ t

0

ds Tg(n)(t, s)G(g(n)(s), g(n)(s)) (36)

Lemma 3.2. The iterative schemes converge in X to solutions f(t) of (30)
and g(t) of (31) for t sufficiently small, and g(t) ∈ T+. The solutions are
continuous functions of the initial datum f0.

Proof. As a result of the boundedness of the collision operator, for t sufficiently
small, ||f (n)|| ≤M , independent of t and n, and

||f (n+1) − f (n)|| ≤ t||J(f (n), f (n))− J(f (n−1), f (n−1))||

≤ 2tM ||J ||||f (n) − f (n−1)||. (37)

Consequently, the iterative scheme (34) converges to a solution f(t) of (30)
for

t < min{ 1
4||J ||||f0||

,
1

2||J ||M } (38)

and f(t) is a continuous function of f0.
To see the sequence {g(n)(t)} is Cauchy, define

g(n+ 1
2 )(�v, t) = Tg(n−1)(t, 0)f0(�v) +

∫ t

0

ds Tg(n−1)(t, s)G(g(n)(s), g(n)(s)) (39)

and write Sts for sup0≤s≤t. Then we have easily from Lemma 3.1,

||g(n+ 1
2 )(t)− g(n)(t)|| ≤ 2t||G||M1S

t
s||g(n)(s)− g(n−1)(s)|| (40)
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and
||g(n+1)(t)− g(n+ 1

2 )(t)|| ≤ ||Tg(n)(t, 0)− Tg(n−1)(t, 0)||||f0||+

+tSts||Tg(n)(t, s)− Tg(n−1)(t, s)||||G||||g(n)(s)||2. (41)

for t sufficiently small. Define χ(t) = (Tg(n)(t, s) − Tg(n−1)(t, s))ξ0 for fixed s.
Then χ is the solution of the coupled system

dg

dt
+ [A+ L(g(n)(t))]g = 0, g(s) = ξ0 (42)

dχ

dt
+ [A+ L(g(n−1)(t))]χ = L(g(n−1)(t)− g(n)(t))g(t), χ(s) = 0. (43)

Then from

χ(t) =
∫ t

0

ds Tg(n)(t, s)L(g(n−1)(s)− g(n)(s))g(s) (44)

we have

||g(n+1)(t)− g(n+ 1
2 )(t)|| ≤ (45)

≤ ||L||(t||f0||+ t2||G||M2
1 )Sts||g(n)(s)− g(n−1)(s)||

Collecting these results, it is sufficient to assume 0 ≤ t ≤ T0 for T−1
0 =

8||G||M1 + 8M1 + 5||L||||f0|| to obtain

||g(n+ 1
2 )(t)− g(n)(t)|| ≤ 1

4
Sts||g(n)(s)− g(n−1)(s)|| (46)

||g(n+1)(t)− g(n+ 1
2 )(t)|| ≤ 1

4
Sts||g(n)(s)− g(n−1)(s)||. (47)

From these estimates it is evident that the sequence {g(n)} is Cauchy. The
remainder of the lemma is clear. �

4 Global Solutions

We continue our discussion of the semi-discrete equation (4) with velocity
cutoff. We will extend the mild local solutions of Sect. 3 to global-in-time
solutions, and then prove they are classical solutions.

Lemma 4.1. Let g1, g2 be solutions of (30),(31), respectively, satisfying
g1(0) = g2(0) = f0. Then g1 = g2.
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Proof. One can compute from (31)

g2(t+ s) = Tg2(t+ s, t)
[
Tg2(t, 0)f0 +

∫ t

0

dt′ Tg2(t, t
′)G(g2(t′))

]
+ (48)

+
∫ t+s

t

dt′ Tg2(t+ s, t
′)G(g2(t′)) =

= Tg2(t+ s, t)[g2(t) + sG(g2(t)) +O(s)].

Define η(s) = [Tg2(t+ s, t)− U(s)]ξ0. From

∂η

∂s
= −[A+ L(g2(t+ s))]η(s)− L(g2(t+ s))UA(s)ξ0 (49)

and η(0) = 0, we have

η(s) = −
∫ s

0

dt′ Tg2(t+ s, t+ t
′)L(g2(t+ t′))UA(t′)ξ0. (50)

Combining this with (48), we may write

g2(t+ s) = UA(s)[g2(t) + sG(g2))− sL(g2(t))g2(t)] +O(s). (51)

On the other hand,

g1(t+ s) = UA(s)UA(t)f0 +
∫ t

0

dt′ UA(s)U(t− t′)J(g1(t′), g1(t′))+

+
∫ t+s

t

UA(t+ s− t′)J(g1(t′), g1(t′)) (52)

= UA(s)[g1(t) + sJ(g1(t), g1(t))] +O(s)

Writing α(t) = ||g2(t)− g1(t)||, we have

α(t+ s)− α(t) ≤ s||J ||(||g2(t)||+ ||g1(t)||)||g2(t)− g1(t)|| (53)

or
D+α(t) ≤ 2||J ||α(t) sup

i,0≤t≤T0

||gi(t)||. (54)

The Gronwall Lemma completes the proof. �

We wish to show that the solution of (30) is differentiable in t, and thus
a solution of (4). Since UA(t) is a holomorphic semi-group, it is sufficient,
by Kato’s theorem, to show that J(f(t), f(t)) is Hölder continuous [11, pp.
487–491]. This will follow from the Hölder continuity of f(t).

Lemma 4.2. For f0 ∈ T+, the functions {f (n)(t)} given by the itera-
tive scheme (34) are differentiable on some interval [0, T0], are uniformly
Lipschitz, and the derivatives {f (n)′(t)} are uniformly bounded in t and n.
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Proof. From the estimate

f (n)(t+ h)− f (n)(t) = (55)

= (UA(h)− I)
{
UA(t)f0 +

∫ t

0

dt′ UA(t− t′)[J(f (n−1)(t′), f (n−1)(t′))

−J(f (n−1)(t), f (n−1)(t))] +
∫ t

0

dt′ UA(t− t′)J(f (n−1)(t), f (n−1)(t))
}

+

+hUA(h)J(f (n−1)(t), f (n−1)(t)) +O(h)

the right derivative is

D+f (n)(t) = AUA(t)f0 +A[
∫ t

0

UA(t− t′)J(f (n−1)(t′), f (n−1)(t′))]+

+UA(t)J(f (n−1)(t), f (n−1)(t)). (56)

Then a bound on D+f (n)(t) is obtained by the estimate ||AUA(t)|| ≤ K/t for
some constant K (by analyticity). In particular, for n ≥ 2,

||D+f (n)(t)|| ≤ ||Af0||+ tK||J ||2m
||f (n−1)(t′)− f (n−1)(t)||

t′ − t + ||J ||m2 (57)

and a uniform bound is obtained inductively by estimating Lipschitz constants
Kn for each f (n). Indeed, D+f (1)(t) = UA(t)Af0 + UA(t)J(f0, f0) and f (1) is
Lipschitz with constant K1 = ||Af0|| + ||J ||||f0||2 and for n ≥ 2 from the
estimate above we have

||f (n)(t)− f (n)(s)|| ≤ (||Af0||+ ||J ||m2 + 2tKm||J ||Kn−1)|t− s|, (58)

so that
Kn = α+ tβKn−1 (59)

with α = ||Af0||+ ||J ||m2 and β = 2Km||J ||, which is uniformly bounded for
t < 1/(2Km||J ||). This completes the proof. �

Theorem 4.3. Suppose f0 ∈ T+. Then there exists a unique positive solution
f(t) of the integral equation (30), or equivalently (31), for all t ≥ 0, and f(t)
is a continuously differentiable solution of the Enskog lattice equation (4) for
the velocity cutoff model. Further, f(t) ∈ T+ and f depends continuously upon
the initial datum f0.

Proof. It remains only to note that ||f(t)|| = ||f0|| for t sufficiently small. For,
integrating (30) over �v and summing over i, recalling UA(t) is an isometry on
T+, we have (for t sufficiently small)

||f || = ||f0||+
∑
û∈Γ

∫
R3
d�v

∫ t

0

ds
N3∑
i=1

[UA(s)J(f(s), f(s))]i. (60)
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Using Lemma 3.1, this becomes

||f || = ||f0||+
∫ t

0

ds

N3∑
i=1

∑
ε̂∈Γ

∫
R3
d�v [J(f(s), f(s))]i. (61)

But 1 is a collision invariant. Hence the integral term vanishes, and ||f || =
||f0||. Now, the procedure can be repeated, and the theorem follows. �

Note that the theorem is valid both for the lattice system with (cutoff)
Enskog collision operator and with nextm-nearest neighbor interaction.

5 Removal of the Cutoff

Finally, let us consider the semi-discrete lattice model (4) with nexti-nearest
neighbor interaction (without cutoff). We continue to suppress the spatial
index i when possible. We assume given an initial distribution on the lattice
f0(�v)i ∈ T+ with finite mass, energy and entropy:∑

i

∫
R3
d�v f0(�v)i{1 + v2 + | log f0(�v)i|} <∞. (62)

By the results of Sect. 4, for each positive integer p, the cutoff lattice
equation (4) has a classical solution f (p)(�v, t)i satisfying f (p)(�v, 0)i = f0(�v)i.
Fix a time interval [0, T ]. Then, for these solutions, the equality∑

i

∫
R3
d�v f (p)(�v, t)i =

∑
i

∫
d�v f (p)(�v, 0)i (63)

and estimate∑
i

∫
R3
d�v v2f (p)(�v, t)i ≤ k1

∑
i

∫
R3
d�vv2f (p)(�v, 0)i + k2 (64)

for t ∈ [0, T ] and constants k1, k2 depending on T are a result of the symmetry
of the collision kernel [6].

Lemma 5.1. Let H(f) =
∑

i

∫
R3 d�v f(�v)i log f(�v)i. Then H(f (p)(�v, t)) ≤

H(f (p)(�v, 0)) + k3, where k3 is a function of T and f0(�v).

Proof. Since UA(t)ij ≥ 0 and
∑

i UA(t)ij = 1 by the proof of Lemma 3.1,
then for fixed velocity �v, UA(t) is the transition matrix for a discrete Markov
system. Since any space-independent distribution is a fixed point of UA(t),
standard arguments [11] prove that H(UA(t)f0(�v)i) is nonincreasing. Now the
lemma follows from estimates in [6]. �

Theorem 5.2. Suppose
∑

i

∫
R3 d�v f0(�v)i{1+v2+| log f0(�v)i|} <∞, f (p)(�v, t)i

is a solution of the lattice equation with cutoff p, and f (p)(�v, 0)i = f0(�v)i.
Then {f (p)} contains a subsequence which converges weakly in X . The limit
function f(�v, t)i is continuous in t and satisfies the integral equation (30) with
unbounded collision kernel.
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Proof. The Dunford–Pettis property of L1 and the mass, energy, entropy
bounds previously demonstrated prove the existence of a subsequence (as
p → ∞) converging weakly in X to a function f(t) for a denumerable dense
set of t. Extension to all t follows from the equicontinuity of the family {f (p)}.
Indeed, let Xv = {f ∈ X : (1 + v2)

1
2 f((�v) ∈ X}. Since f (p) is a solution of

(4), ||f (p)′(t)|| ≤ ||Af (p)(t)|| +K||f (p)||2v, with K independent of p. Further,
||Af (p)|| ≤ 6||f (p)||v. Then using ||f (p)||v ≤ ||f0||v, equicontinuity of the se-
quence follows.

Since Xv also satisfies the Dunford–Pettis property, and J : Xv ×Xv → X
is weakly continuous, J(f (p)(t)) converges weakly to J(f(t)) pointwise in t.
Then, using the integral equation for f (p)(t), the dominated convergence
theorem, and the continuity of J , one can see that the limit function f(t)
satisfies (30). �

Again, the result is equally valid for the Enskog lattice equation and for the
lattice equation with nexti-nearest neighbor interaction. The cost of treating
the equation without velocity cutoff is the weakness of the solution and the
loss of a uniqueness proof.

Another continuous model extending the Enskog equation for which ex-
istence theorems are known is the Vlasov–Enskog system [16]. This system
models a weak long-range Coulomb intermolecular potential. There are no re-
sults in the literature concerning any semi-discrete models of a Vlasov–Enskog
system.

6 Discrete Velocity Model

Let us return to the fully discrete lattice model for both nearest neighbor and
(next)i-nearest neighbor interactions. We consider the kinetic equation (19)
with initial condition

fm,i(0) = (f0)m,i. (65)

As in Sect. 3, the streaming operator A generates a (matrix-valued) semi-
group UA(t) on X = L1(Λ3 × S) and an evolution operator Tψ which satisfy
the properties of Lemma 3.1.

Let ψm,i be any function on Λ3 × S and I =
∑

m,i ψm,iJ(f, f)m,i. Then a
sequence of rearrangements, utilizing the properties of the transition matrix
P klij as given in (16), leads to

I =
∑
ijkl

∑
m

∑
ε̂

[ψm,k+ψm+ε,l − ψm,i − ψm+ε,j ]Ym,m+ε·

P klij (ε̂) < ε̂,�vi − �vj > (66)
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Since for ψm,i = 1, �vi, v2i one has I = 0, any solutions of the Enskog lat-
tice equation with nearest neighbor interaction only will satisfy conservation
of mass, momentum and energy. In the case of nexti-nearest neighbor in-
teractions, conservation of mass and momentum can still be demonstrated.
In particular, for both nearest neighbor and (next)i-nearest neighbor interac-
tion, 1 is a collision invariant, and the collision operator is, of course bounded:
||J(f, f)|| ≤ ||J || ||f ||2.

Now consider the integral equation (30) and iterative scheme (34). Then

||f (n)|| ≤ ||U(t)f0||+ t||U(t− s)J(f (n−1), f (n−1))|| (67)

≤ ||f0||+ t||J || ||f (n−1)||2. (68)

Consequently, for t||f0|| < 1/(4||J ||), ||f (n)|| < 2||f0|| and the iterative scheme
is Cauchy. Thus for t in the indicated interval, the limit function f satisfies
(30). Summing over position and using Lemma 3.1(d),

∑
m

fm,i(t) =
∑
m

(f0)m,i +
∫ t

0

ds
∑
m

J(f(s), f(s))m,i. (69)

Then, summing over velocity,

||f(t)|| = ||f0||+
∫ t

0

ds
∑
i

∑
m

J(f(s), f(s))m,i. (70)

but the integrand vanishes by (14) for any of the lattice models. Thus

||f(t)|| = ||f0|| (71)

and the local solution extends to a global solution. The differentiability of f(t)
is immediate and positivity may be demonstrated as in Sect. 3. We have

Theorem 6.1. For any initial condition f0 ∈ X , f0 ≥ 0, the initial value
problem (19)–(65) for the fully discrete kinetic equation has a unique solution
f ∈ C([0,∞),X ), and f(t) ≥ 0. The result is valid for both nearest neighbor
and (next)i-nearest neighbor interactions.

Here is a rich source of open problems. Fully discrete models are systems
of first order ordinary differential equations. This presents the possibility of
numerical computation using elementary codes. Almost nothing is known in
this venue. How do the discrete models compare? What are the effects of
the square well potential? Does a deep well lead to clustering? What are the
possibilities of non-periodic boundary conditions? What would a fully discrete
Vlasov–Enskog system look like? The author encourages further speculation
and research.
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The High Performance Asymptotic Method
in Numerical Simulation

D. Konaté

Summary. Numerical simulation of complex phenomena involving large or multi-
ples scales requires the use of methods that are highly precise and fast. Classical
numerical methods consist in replacing a given problem, thanks to discretization,
with a chain of algebraic equations to be solved.

In the current paper we come up with the idea to rather introduce, some “local”
equations of the same type as the given one. Then using the strategy of asymptotic
expansion as in singular perturbation, (cf. [1, 2, 3]) we replace each local equation
with a chain of simpler equations to be solved. The solution is obtained in the form
of a local analytical solution. We use previous known analytical solutions (cf. [4, 5]).

1 The Riemann Integration and the Hp-Asymptotic
Method

We start with the classical problem of computing the Riemann integral of a
regular function f. The interest here is to consider it over a large interval
]0, T [. Consider a regular function f a real constant T (which can be large)
and a problem of finding an unknown function u such that

u(x) =
∫ x

0

f(t)dt+ α; x ∈ Ω =]0, T [. (1)

Of course (1) is equivalent to the following problem of finding a function u
such that {

u′(x) = f(x); x ∈ Ω =]0, T [
u(0) = α0

(2)

Our starting point is the following question: “ Is it possible to compute u at
any arbitrary and prescribed order, say hq; for q ∈N; h∈R; 0<h< 1 at -
an acceptable - numerical cost?” The answer is given in the following theorem
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Theorem 1.1 Consider a regular given function f defined over an interval
Ω=[0, T ]. For any real constant h; 0 < h < 1 and any subinterval Ωi =
]xi, xi + h[⊂ Ω there exists at least a list of q + 1 homogeneous functions

v0(x) , v1(x) , · · · , vi(x) , · · · , vq(x)

such that

ui(x) =
q∑
j=0

(x− xi)j
j!

v(j)(x) + αi

is for any prescribed and arbitrary q a hq order approximation to

u(x) =
∫ x

xi

f(t)dt+ αi; x ∈ Ωi.

More precisely, we have

|u(x)− ui(x)| ≤ C.hq+2 (3)

for x ∈ Ωi and C is a constant independent of h.

Proof of Theorem 1.1. In first place, we discretize the interval of reference
Ω =]0, T [ to get some N sub-intervals Ωi =]xi, xi+1[ such that x0 = 0;
xi+1 = xi +h; h = T/N ; xN = T. Then we consider the resulting N “local”
problems such that⎧⎪⎨

⎪⎩
u′(x) = f(x); x ∈ Ωi =]xi, xi+1[
u(xi) = αi
1 ≤ i ≤ N.

(4)

To solve each local problem, to function f we substitute its q-th order Taylor
expansion f which is

f(x) =
q∑
j=0

(x− xi)j
j!

f (j)(xi) (5)

and we look for an approximation to u over Ωi say ui such as

ui = αi +
q∑

j=0

(x− xi)j
j!

vj(x) (6)

where the q+ 1 coefficient functions vj are to be identified. We take ui and
f into (4) and equate the coefficients of the q + 1 monomials (x−xi)

j

j! ; 0 ≤
j ≤ q to get ⎧⎪⎨

⎪⎩
v′k(x) + vk+1(x) = f (k)(xi)
0 ≤ k ≤ q − 1
v′q(x) = f (q)(xi).

(7)
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We supplement (7) with

vk(xi) = 0; 0 ≤ k ≤ q. (8)

Equality (8) provides the boundary condition to the differential problem (4)
which is compatible with ui(xi) = αi. Putting together (7) and (8) allows a
backward determination of the q + 1 unknown functions vj which are easily
computed to be

vj(x) =
q−j+1∑
k=1

(−1)k+1 (x− xi)k
k!

f (j+k−1)(xi); 0 ≤ j ≤ q. (9)

For x ∈ Ωi, we use the definition of u and ui , and we recall that f(x) −
f(x) = (x− xi)q+1g(x) where g is a regular function to reach

u(x)− ui(x) =
∫ x

0

f(t)dt−
∫ x

0

f(t)dt =
∫ x

0

(t− xi)q+1g(t)

|u(x)− ui(x)| ≤ g
(x− xi)q+2

(q + 2)!
≤ g h

q+2

(q + 2)!
.

Within this last chain of inequations, set C = g
(q+2)! where g = Max

x∈Ω1

|g(x)|
to obtain inequality (3) and complete the proof of Theorem (1.1) �

2 The Hp-Asymptotic Method on First Order
Differential Equations

For some given and regular functions a; b; f ; with a(x) 
= 0 over the interval
of study, we consider the problem of finding a numerical solution, on a large
interval Ω=]0, T [ to{

a(x)u′(x) + b(x)u(x) = f(x) x ∈ Ω
u(0) = α0

. (10)

We use the discretization of the domain Ω obtained in the previous section. In
each sub-interval Ωi =]xi, xi+1[ we consider the problem of finding a solution
to {

a(x)u′(x) + b(x)u(x) = f(x) x ∈ Ωi
u(0) = αi

(11)

Using the Taylor expansion for functions a, b, and f , we set

a(x) =
q∑
j=0

(x− xi)j
j!

a(j)(xi) +
(x− xi)q+1

(q + 1)!
ã(x)
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b(x) =
q∑
j=0

(x− xi)j
j!

b(j)(xi) +
(x− xi)q+1

(q + 1)!
b̃(x)

f(x) =
q∑
j=0

(x− xi)j
j!

f (j)(xi) +
(x− xi)q+1

(q + 1)!
f̃(x)

where ã, b̃, f̃ are some regular functions.
Consider the vector space V generated by the base

B = {v0(x) , v1(x) , · · · , vi(x) , · · · , vq(x)}

where vj(x) = (x−xi)
j

j! . We state

Theorem 2.1 Consider some regular and given functions a, b, defined over
an interval Ω=]o, T [. For any real constant h; 0 < h < 1 and any subinterval
Ωi =]xi, xi + h[⊂ Ω, for any prescribed and arbitrary q, there exists a unique
element ui ∈ V such that ui is a (q+2)-th order approximation to the solution
of problem (10). More precisely, we have

|u(x)− ui(x)| ≤ C.hq+2 (12)

for x ∈ Ωi and C is a constant independent of h.

Proof of Theorem 2.1. Assume

ui(x) =
q∑
j=0

(x− xi)j
j!

vj(x).

We have to prove that the coefficients functions vj exist, are unique and that
inequality (12) holds true.

We determine, by construction, the coefficient functions vj such that ui is
solution to {

a(x)ui(x) + b(x)ui(x) = f(x) x ∈ Ωi
ui(xi) = αi

(13)

Using the precedent Taylor expansions, we get

a(x)u′i(x) =
2q−1∑
k+j=0

k≤q; j≤q

(x− xi)k+j
k!j!

a(k)(xi)
(
vj+1 + v′j

)
+

q∑
k=0

(x− xi)k+q
k!q!

a(k)(xi) + v′q
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and

b(x)ui(x) =
2q∑

k+j=0
k≤q; j≤q

(x− xi)k+j
k!j!

b(k)(xi)vj .

Restricting the computing to the q-th order terms, we drop off the terms of
power in (x− xi) greater than q to get

a(x)u′i(x) =
q∑

k+j=0
k≤q; j≤q−1

(x− xi)k+j
k!j!

a(k)(xi)
(
vj+1 + v′j

)
+

+
(x− xi)q
q!

a(xi)v′q. (14)

and

b(x)ui(x) =
q∑

k+j=0
k≤q; j≤q−1

(x− xi)k+j
k!j!

b(k)(xi)vj +
(x− xi)q
q!

b(xi)vq. (15)

The identification of alike powers in (x− xi) leads to the following system of
first order differential equations with constant coefficients⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k+j=t; 0≤t≤q−1

k≤q; j≤q−1

[
(k + j)!
k!j!

a(k)(xi)
(
vj+1 + v′j

)
+

+ (k+j)!
k!j! b

(k)(xi)vj
]

= f (t)(xi)

∑
k+j=q

k≤q; j≤q−1

[
(k + j)!
k!j!

a(k)(xi)
(
vj+1 + v′j

)
+

+ (k+j)!
k!j! b

(k)(xi)vj
]
+

+a(xi)v′q + b(xi)vq = f (q)(xi).

(16)

The System (16) can be written as

A.V ′ +B.V = F (17)

where A and B are two (q + 1) × (q + 1) constant matrices and V and V ′

are two q + 1 dimensional vectors such that V (i) = vi(x);V ′(i) = v′i(x); 1 ≤
i ≤ q + 1.
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Supplemented with some initial conditions given at x = xi, the system (17)
has a unique solution, say V. From (11) and (13), we get that w = u− ui is
solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x)w′(x) + b(x)w(x) =

(x−xi)
q+1

(q+1)!

[
ã(x)u′i(x) + b̃ui(x) + f̃

]
x ∈ Ωi

w(xi) = 0.

(18)

Set g(x) = − (x−xi)
q+1

(q+1)!

[
ã(x)u′i(x) + b̃ui(x)− f̃

]
. Since the coefficient func-

tions in (13) are regular, ui and u′i are continuous. Set M0 ∈ R,M0 > 0 to
be such that

Max
[

Max
0≤i≤q

(
Max
x∈Ωi

|ui(x)|
)
, Max
0≤i≤q

(
Max
x∈Ωi

|u′i(x)|
)]
≤M0

The solution w has the following representation form

w(x) = exp
(
−
∫ x

xi

b(y)
a(y)
dy

)
×
∫ x

xi

[
g(y)
a(y)

exp
(∫ x

xi

b(y)
a(y)
dy

)]
dy. (19)

Since a(x) 
= 0; x ∈ Ω and a is continuous over Ω, there exist a constant τ
and a constant M1 such that 0 < τ ≤ |a(x)| ≤ M1;x ∈ Ωi. Same way, since
b is continuous over Ω then there exists a constant M2 such that |a(x)| ≤
M1;x ∈ Ωi. Of course the constants τ, M1, M2 are independent of Ωi.
Taking the estimates M0, τ, M1, M2 into the representation (19), setting
h = xi+1 − xi, we get to

|w(x)| ≤ Chq+2

where C is a constant independent of h. This ends the proof of Theorem
(2.1). �

2.1 A Linear Example

To make clear the numerical method described above, we consider the problem
of solving

3y′ + 2y = 2cos(2x); x ∈]0, T [; y(0) = 0. (20)

In every subinterval ]xi, xi+1[, xi+1 = xi + h we will be looking for a 3th
order approximation in the constant h. Assume we know vi(xi) = y(xi) and
v′i(xi) = y′(xi). We set

vi(x) = v0(x) + (x− xi)v1(x) (21)



The High Performance Asymptotic Method in Numerical Simulation 39

f(x) = 2cos(2x) and substitute vi for y in the equations of problem (20). To
get the unknown coefficient functions v0 and v1 we have to solve the following
system of first order differential equations

3v0′ + 2v0 + 3v1 = f(xi)
3v1′ + 2v1 = f ′(xi). (22)

Set D to be the differential operator with regard to the variable x. Then the
operational determinant ∆ to system (22) is∣∣∣∣L1 L3

L3 L4

∣∣∣∣
where

L1 = 3D + 2, L2 = 0, L3 = 3, L4 = 3D + 2.

The coefficient functions are then solutions to

(3D + 2)2v0 = 2f(xi)− 3f ′(xi)
(3D + 2)2v1 = 2f ′(xi) (23)

They have the following general forms

v0(x) = c01 exp(−2x/3) + c02x exp(−2x/3) + (1/4) [2f(xi)− 3f ′(xi)]
v1(x) = c11 exp(−2x/3) + c12x exp(−2x/3) + (1/2)f ′(xi)

As in singular perturbation, we select the constant coefficients to make the
functions v0 and v1 are “stable” as possible. We set c02 = c12 = 0 to get

v0(x) = c01 exp(−2x/3) + (1/4) [2f(xi)− 3f ′(xi)]
v1(x) = c11 exp(−2x/3) + (1/2)f ′(xi). (24)

The determination of v0 and v1 is achieved in determining the remaining
constant coefficients from the conditions

v0(xi) = vi(xi)

v0′(xi) + v1(xi) = v′i(xi)

vi(x) = v0(x) + (x− xi)v1(x) (25)

v′i(x) = v0′(x) + v1(x) + (x− xi)v1′(x); x ∈]xi, xi+1[

y(xi+1) = vi(xi+1)
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The following picture shows the outcome of a simulation with a meshsize
h = 1/1000. over an interval I =]0, 5[.
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Solutions to 3dy/dx+2y = 2cos(2t), y(0)=0, h=1/1000, I = ]0,5[

ye exact solution
hp−snd order solution
first order solution

2.2 A Nonlinear Example

Consider the following nonlinear first order differential problem

y′(x) = y2(x), x ∈]2, T [; y(2) = −1 (26)

We discretize the interval I =]2, T [ along with a mesh size h. We consider
the sub-interval Ii =]xi, xi+1[. We set

vi(x) = v0(x) + (x− xi)v1(x). (27)

Assume we know vi(xi) = y(xi) and v′i(xi) = v2i (xi). From the following
identity which is valid within Ii

v0′ + v1 + (x− xi)v1′ = y2(xi) + 2(x− xi)y3(xi) (28)

we draw the following system which will lead to the determination of the
coefficient functions v0 and v1:

v0′ + v1 = y2(xi)

v1′ = 2y3(xi). (29)
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The operational determinant to system (29) is∣∣∣∣L1 L3
L3 L4

∣∣∣∣
where

L1 = D, L2 = 0, L3 = 1, L4 = D.

The unknown coefficient functions are solution to

D2v0 = −2y3(xi)
D2v0 = 0.

We select among the solutions v0 = −y3(xi)x2+b0x+c0 and v1 = b1x+c1 the
most stable solutions which are constant solutions. The following algorithm
guides along the entire interval I to determine the hp-asymptotics approxi-
mation to y :

c0 = vi(xi)
c1 = v2i (xi)

v0(xi) = c0 (30)

v1(xi) = c1
vi(x) = v0(x) + (x− xi)v1(x), x ∈]xi, xi+1[

y(xi+1) = vi(xi+1).

Some outputs from this computation are shown in the pictures below.
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3 The Hp-Asymptotic Method on Higher Order
Ordinary Equations

Consider a nth order ordinary differential equation with regular coefficients
functions defined over a large interval Ω =]0, T [⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=0

ak(x)u(k)(x) = f(x); x ∈ Ω

u(k)(0) = αk

0 ≤ k ≤ n− 1.

(31)

Set

u(x) =
q∑
j=0

(x− xi)j
j!

uj(x)

ak(x) =
q∑
j=0

(x− xi)j
j!

a
(j)
j (xi); 0 ≤ k ≤ n

f(x) =
q∑
j=0

(x− xi)j
j!

f (j)(xi).

We consider, for 0 ≤ k ≤ n:

ak(x)u(k)(x) =

⎡
⎢⎣ q∑

m+j=0
m≤q; j≤q

(x− xi)j
j!

a
(j)
k

⎤
⎥⎦×

⎡
⎢⎣ q∑

p=0
k≤m

(
k

p

)
(x− xi)m−k

(m− k)! v
(k−p)
m (x)+

q∑
r=0

⎛
⎜⎝ k∑

p=0
k≥j+1

(
k

p

)
v(k−p)r (x)

⎞
⎟⎠
⎤
⎥⎦ = f(x) (32)

Over Ωi, we will supplement (32) with some imposed conditions at the mesh
point xi. These conditions are

uk(xi) = uk(xi) = αk,i; 0 ≤ k ≤ n− 1.

Our concern will be to determine the approximation function u via its coef-
ficient functions uj .
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In fact since we are looking for analytical solutions which are resistant to nu-
merical oscillations, we can take the mesh size h as small as possible and then
content ourself with a qth approximation solution with q = 1. So within the
current section from now on and unless otherwise stated we assume q = 1.

Over Ωi =]xi, xi+1[ we set

ak(x) = ak(xi) + (x− xi)a′k(xi); 0 ≤ k ≤ n
u(x) = u0(x) + (x− xi)u′1(x)
f(x) = f(xi) + (x− xi)f ′(xi)

Then we have

u(k)(x) = u(k)0 (x) + ku(k−1)
1 (x) + (x− xi)u(k)1 (x); k ∈ N

and

aku
(k) = ak(xi)

[
u

(k)
0 (x) + ku(k−1)

1 (x)
]
+

(x− xi)
[
ak(xi)u

(k)
1 (x) + a′k(xi)

(
u

(k)
0 (x) + ku(k−1)

1 (x)
)]
.

Equation (32) supplemented with the conditions set at x = xi becomes⎧⎪⎨
⎪⎩

n∑
k=0

aku
(k) = f(x); x ∈ Ωi

uk(xi) = αk,i; 0 ≤ k ≤ n− 1
(33)

To determine the coefficients functions uj we equate power terms in x − xi
in the left hand side to alike terms in the right hand to get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0(xi)u0(x) +
n∑
k=1

ak(xi)
[
u

(k)
0 (x) + ku(k−1)

1 (x)
]

= f(xi)

a0(xi)u1(x) + a′0(xi)u0(x)+
n∑
k=1

[
ak(xi)u

(k)
1 (x) + a′k(xi)×(

u
(k)
0 (x) + ku(k−1)

1 (x)
)]

= f ′(xi).

(34)

We claim

Theorem 3.1 u and all its (n− 1)th first derivatives converge strongly to u
and its correspondent derivatives. More precisely, we have for x ∈ Ωi

| (u− u)(i) (x)| ≤ C 1
3!
h3exp (h‖A‖m); 0 ≤ i ≤ n− 1 (35)

where h = xi+1 − xi, ‖.‖m stands for a matrix norm and A is a constant
matrix to be identified.
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Proof of Theorem 3.1. Set w = u − u and set X to be a nth dimensional
vector such that X(1) = X1 = w and X(i) = Xi = wi−1; 2 ≤ i ≤ n. We
notice in first place that

ak(x)− ak(x) =
(x− xi)2

2!
ãk(x); 0 ≤ k ≤ n

f(x)− f(x) =
(x− xi)2

2!
f̃(x)

where ã and f̃ are two regular functions. We have∑
k

aku
(k) −

∑
k

aku
(k) =

(x− xi)2
2!

f̃(x); (36)

where we may further compute the left hand side term to get∑
k

aku
(k) −

∑
k

aku
(k) =

∑
k

akw
(k) +

(x− xi)2
2!

∑
k

ãk(x)u(k)(x). (37)

From (36) and (37) we get

∑
k

akw
(k) =

(x− xi)2
2!

(
f̃(x)− ãk(x)u(k)(x)

)
; 0 ≤ k ≤ n (38)

Converting (38) into a system of n first order differential equations completed
with the initial conditions we get{

d
dtX(x) = AX(x) + (x−xi)

2

2! F (x); x ∈ Ωi
X(xi) = 0

(39)

where

F (x) =

⎛
⎜⎜⎜⎝

0
0
...

f̃(x)− ãk(x)u(k)(x)

⎞
⎟⎟⎟⎠

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
... · · · · · · . . . · · · 0
... · · · . . . . . . . . . 0
... · · · · · · . . . . . . 1

− a1
ak
− a2
ak
− a3
ak
− a4
ak
· · · −an−1

ak

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Problem (39) is a Cauchy problem in finite dimension which solution is
given by

X(x) =
∫ x

xi

exp (A(x− t))F (t)dt. (40)

We have, using the definition of the matrix exponential

‖exp (A(x− t))‖m ≤
+∞∑
j=1

hj‖A‖jm
j!

= exp (t‖A‖m) . (41)

Set C = Max
x∈Ω1

|F (x)| to get

|X(x)| ≤ Ch3 1
3!

exp (t‖A‖m) .

This ends the proof of Theorem (3.1). �

3.1 An Example: A Second Order Equation

{
y′′ + 2y′ + y = −2 sin(x)
y(0) = 5, y′(0) = 1

. (42)

The exact solution to system (42) is

ye(x) = 4 exp(−x) + 5x exp(−x) + cos(x).

In a subinterval I =]xi, xi+1[, we set

vi(x) = v0(x) + (x− xi)v1(x). (43)

We apply the same reasoning as previously. We select stable hp-asymptotic
coefficients which in each subinterval are

v0(x) = a0 exp(−x) + f(xi)− 2 f ′(xi)

and
v1(x) = a0 exp(−x) + f ′(xi).

Then if vi(xi) = y(xi) and v′i(xi) = y′(xi) are known, the algorithm for the
computation is defined by

a0 = exp(xi)[vi(xi)− f(xi) + 2f ′(xi)]
b0 = exp(xi)[v′i(xi)− f ′(xi)]
v0 = a0 exp(−x)− f(xi) + 2f ′(xi) (44)

v1(x) = b0 exp(−x) + f ′(xi)
vi(xi+1) = v0(xi+1) + hv1(xi+1)
v′i(xi+1) = v0′(xi+1) + v1(xi+1) + h v1′(xi+1).

The outcome of a simulation is shown below.
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4 The Hp-Asymptotic Method on Elliptic Equations

We consider a large rectangular domain Ω =]0, a[×]0, b[ where the constants
a and b are considered very large. We call Γ the boundary of Ω. We set
Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. Consider the elliptic problem in two dimensions

∆u(x, y) = f(x, y); (x, y) ∈ Ω
u(x, 0) = g1(x) x ∈ Γ1
u(0, y) = g2(y) y ∈ Γ2 (45)
u(x, b) = g3(x) x ∈ Γ3
u(a, y) = g4(y) y ∈ Γ4

We assume that f is regular and the functions gi on the boundary are
regular and compatible that is

g1(0) = g2(0); g2(b) = g3(0); g3(a) = g4(b); g4(0) = g1(a) (46)
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We decompose u to find some analytical approximations to it. We set

u = u0 + u1 + u2 + u4 (47)

where

∆u0(x, y) = f(x, y); (x, y) ∈ Ω
u0 = 0 on Γ ; (48)

∆u1(x, y) = 0; (x, y) ∈ Ω
u1(x, 0) = g1(x) x ∈ Γ1 (49)

u1 = 0 on Γ2 ∪ Γ3 ∪ Γ4

∆u2(x, y) = 0; (x, y) ∈ Ω
u2(0, y) = g2(y) y ∈ Γ2 (50)

u2 = 0 on Γ1 ∪ Γ3 ∪ Γ4

∆u3(x, y) = 0; (x, y) ∈ Ω
u3(x, b) = g3(x) x ∈ Γ3 (51)

u3 = 0 on Γ1 ∪ Γ2 ∪ Γ4

∆u4(x, y) = 0; (x, y) ∈ Ω
u4(a, y) = g4(y) y ∈ Γ4 (52)

u4 = 0 on Γ1 ∪ Γ2 ∪ Γ3

To solve every system above, one has to compute the separated solutions to
the attached Sturm-Liouville problems and then apply the classical Fourier
method. We get:

u1(x, y) =
+∞∑
n=1

αn sin
(nπx
a

)
sinh

(
nπ(b− y)
a

)

u2(x, y) =
+∞∑
n=1

βn sin
(nπy
b

)
sinh

(
nπ(a− x)
b

)
(53)

u3(x, y) =
+∞∑
n=1

γn sin
(nπx
a

)
sinh

(nπy
a

)

u4(x, y) =
+∞∑
n=1

δn sin
(nπy
b

)
sinh

(nπx
b

)
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where the coefficients are such that⎧⎪⎨
⎪⎩
αn = an/An; γn = cn/An;
βn = bn/Bn; δn = dn/Bn;
An = sinh

(
nπb
a

)
; Bn = sinh

(
nπa
b

)
,

(54)

and

an =
2
a

∫ a

0

g1(x) sin
nπx

a
dx

bn =
2
b

∫ b

0

g2(y) sin
nπy

b
dy

cn =
2
a

∫ a

0

g3(x) sin
nπx

a
dx (55)

dn =
2
b

∫ b

0

g4(y) sin
nπy

b
dy

n ≥ 1.

We look for a particular solution to system (48). It is really about the comput-
ing of u0 that the hp-asymptotic method is used. We discretize the domain
Ω. Set

ωi,j = {(x, y);x ∈]xi, xi+1[; y ∈]yj , yj+1[}.
Over the cell ωi,j , we have

f(x, y) = f(xi, yj) + (x− xi)
∂f

∂x
(xi, yj) + (y − yj)

∂f

∂y
(xi, yj). (56)

We assume that for x ∈]xi, xi+1[ and y ∈]yj , yj+1[, u0 is of the form

u0(x, y) = w0(x, y) + (x− xi)w1(y) + (y − yj)w2(x). (57)

From equality (57) we draw

∆u0 = ∆w0 + (y − yj)
d2w2

dx2
(x) + (x− xi)

d2w1

dy2
(y). (58)

Put together this equality above and system (48), and identify alike terms in
the factors (x−xi) and (y− yj) to obtain the following equations depending
on the coefficient functions w0, w1, and w3, to be determined,

∆w0(x, y) = f(xi, yj)
d2w1

dy2
(y) =

∂f

∂x
(xi, yj)

d2w2

dx2
(x) =

∂f

∂y
(xi, yj) (59)

x ∈]xi, xi+1[; y ∈]yj , yj+1[.
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Together system (48) and identity (57) allow us to determine the boundary
conditions attached to the equations above. Those boundary conditions are
found to be⎧⎪⎨

⎪⎩
w0(x, 0) = 0, w0(0, y) = 0, w0(x, b) = 0, w0(a, y) = 0,
w1(0) = 0, w1(b) = 0,
w2(0) = 0, w1(a) = 0.

(60)

The functions w1 and w2 are easy to compute and

w1(y) =
1
2
∂f

∂x
(xi, yj) [y (y − b)] ,

w2(x) =
1
2
∂f

∂y
(xi, yj) [x (x− a)] . (61)

To solve the system (60), first we turn it into an homogeneous problem. We
set

w4(x, y) = w0(x, y)− w3(x, y) (62)

where
w3(x, y) =

1
2
f(xi, yj) [y (y − b)] (63)

is the particular solution to

d2w3

dy2
(x, y) = f(xi, yj)

obtained under the conditions

w3(0) = 0, w3(b) = 0.

We obtain then that w4 satisfies the Laplace equation

∆w4(x, y) = 0; (64)

which separated solutions via its Sturn Liouville problems have the form

sin
(nπy
b

) [
an sinh

(nπx
b

)
+ bn cosh

(nπx
b

)]
.

We use the following boundary conditions to determined the coefficients an
and bn

w4(x, 0) = 0, w4(0, y) = −w3(0, y), w4(x, b) = 0, w4(a, y) = −w3(a, y)

We get

w4(x, y) = w4,2(x, y) + w4,4(x, y)

w4,2(x, y) =
+∞∑
n=1

βn,w sin
(nπy
b

)
sinh

(
nπ(a− x)
b

)
(65)

w4,4(x, y) =
+∞∑
n=1

δn,w sin
(nπy
b

)
sinh

(nπx
b

)
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where {
βn,w = bn,w/Bn,w; δn,w = dn,w/Bn,w;
Bn,w = sinh

(
nπa
b

)
,

(66)

and

bn,w = −2
b

∫ b

0

w3(y) sin
nπy

b
dy

dn,w = bn,w, n ≥ 1.

Further computation brings∫ b

0

w3(y) sin
nπy

b
dy = f(xi, yj)

(
b

nπ

)3

[(−1)n − 1] (67)

which leads to

bn,w = −2f(xi, yj)
b2

(nπ)3
[(−1)n − 1] ,

βn,w = bn,w/Bn,w, (68)

Bn,w = sinh
(nπa
b

)
or

bn,w = 0, n even

bn,w = 4f(xi, yj)
b2

(nπ)3
, n odd

βn,w = bn,w/Bn,w, (69)

Bn,w = sinh
(nπa
b

)
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Modelling the Thermal Operation
in a Catalytic Converter of an Automobile’s
Exhaust

O.D. Makinde

Summary. Catalytic converter in an automobile’s exhaust system is made up of
a finely divided platinum–iridium catalyst (i.e. forming a porous matrix) and pro-
vides a platform for exothermic chemical reaction where unburned hydrocarbons
completely combust. In this paper, the steady-state solutions of a strongly exother-
mic reaction of a viscous combustible fluid (fuel) in a catalytic converter-modelled
as a cylindrical pipe filled with a saturated porous medium under Arrhenius kinet-
ics, neglecting reactant consumption, are presented. The Brinkman flow model is
employed. Having known the velocity distribution, the nonlinear energy equation
is solved using a perturbation technique together with a special type of Hermite–
Padé approximants and the important properties of the temperature field including
bifurcations and thermal criticality are discussed.

Keywords: Catalytic converter; Reactive viscous flow; Bifurcation study;
Hermite–Padé approximants

1 Introduction

It is indeed important nowadays to have vehicles that will help you reach
your destinations; however, vehicles are among those that contribute much
to pollution. Good thing, innovations are fast to its guard; technology has
introduced techniques to lessen or better yet to prevent vehicles from emit-
ting harmful elements that can contribute to pollution. Aside from the many
techniques invented, laws and regulations regarding such problems were intro-
duced. Such laws stated standards on emission controls. Catalytic converter
is one innovation that had helped a lot in emission problems.

Before catalytic converters, there are lots of other techniques to lessen the
effects of vehicle emissions to the air. Standards have been passed and ap-
proved for the redesigning of engines and engine systems; auto manufacturers
and engine makers have made ways to convert elements from engine’s com-
bustions into less harmful elements [2, 6, 10]. Nowadays, performance quality
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catalytic converters are all you need and every vehicle produced are required
to have at least one catalytic converter. These performance parts are impor-
tant as they help clean the gases produced by the vehicles as it burns fuel
when operating. They help control harmful gas emissions from your vehicles
like hydrocarbon, carbon monoxide and nitrogen oxide [9]. Usually, catalytic
converters are being installed between the exhaust manifold and the muffler;
it uses chemical that act as catalyst. Catalytic converters work in three stages,
the reduction catalyst, oxidization catalyst and the control system (see Figs. 1
and 2). Meanwhile, in order to ignite, stabilize and operate under steady-state
conditions, the thermal criticality of a burner based on combustion in inert
porous media like catalytic converter must be determined [10].

Mathematically speaking, thermal ignition and heat transfer in inert
porous media constitutes a nonlinear reaction diffusion problem and the long-
time behaviour of the solutions in space will provide us an insight into in-
herently complex physical process of thermal runaway in the system, [3, 8].
The theory of nonlinear reaction diffusion equations is quite elaborate and
their solution in rectangular, cylindrical and spherical coordinate remains an
extremely important problem of practical relevance in the engineering sci-
ences, [1, 9]. Several numerical approaches have developed in the last few
decades, e.g. finite differences, spectral method, shooting method, etc. to
tackle this problem. More recently, the ideas on classical analytical meth-

Fig. 1. A picture showing the operation of a catalytic converter in an exhaust pipe

Fig. 2. A ceramic honeycomb catalyst structure of a catalytic converter
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ods have experienced a revival, in connection with the proposition of novel
hybrid numerical–analytical schemes for nonlinear differential equations. One
such trend is related to Hermite–Padé approximation approach, [5, 7, 11]. This
approach, over the last few years, proved itself as a powerful benchmarking
tool and a potential alternative to traditional numerical techniques in various
applications in sciences and engineering. This semi-numerical approach is also
extremely useful in the validation of purely numerical scheme.

In this paper, we intend to construct approximate solution for a steady-
state reaction diffusion equation that models the thermal operation of a cat-
alytic converter in an exhaust pipe using perturbation technique together with
a special type of Hermite–Padé approximants. The mathematical formulation
of the problem is established and solved in sections two and three. In section
four we introduce and apply some rudiments of Hermite–Padé approximation
technique. Both numerical and graphical results are presented and discussed
quantitatively with respect to various parameters embedded in the system in
section five.

2 Mathematical Model

We modelled the thermal operation in a catalytic converter as a steady-
state hydrodynamically and thermally developed unidirectional flow of a vis-
cous combustible reacting fluid in the z-direction inside a cylindrical pipe
of uniform cross-section with impermeable isothermal wall at r = a, filled
with a homogeneous and isotropic porous medium as illustrated in Fig. 1
below.

Neglecting reactant consumption, the governing momentum and energy
balance equations are

d2u

dr2
+

1
r

du

dr
− u
K
− 1
µ

dP

dz
= 0 (1)

d2T

dr2
+

1
r

dT

dr
+
QC0A

k
e−

E
RT +

µ

k

(
du

dr

)2

+
µu2

Kk
= 0 (2)

Equation (1) is a well-known Brinkman momentum equation (Brinkman [2])
while the additional viscous dissipation term in (2) is due to Al-Hadhrami
et al. [1] and is valid in the limit of very small and very large porous medium
permeability.
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r u= 0, T=T0 r = a

u

z combustible viscous material r = 0

Fig. 3. Geometry of the problem

The appropriate boundary conditions are

u = 0, T = T0, on r = a, (3)

du

dr
= 0,

dT

dr
= 0, on r = 0, (4)

where T is the absolute temperature, P the fluid pressure, T0 the geometry
wall temperature, k the thermal conductivity of the material, K the porous
medium permeability parameter, Q the heat of reaction, A the rate constant,
E the activation energy, R the universal gas constant, C0 the initial concentra-
tion of the reactant species, a the pipe radius, (r, z) the distance measured in
the radial and axial directions, respectively, and µ is the combustible material
dynamic viscosity coefficient. Let M = −(a/Uµ)(dP/dz) be a constant axial
pressure gradient parameter and U the fluid characteristic velocity (Fig. 3).
We introduce the following dimensionless variables into (1)–(4);

θ =
E(T − T0)
RT 2

0

, ε =
RT0
E
, r̄ =

r

a
, λ =

QEAa2C0e
− E

RT0

T 2
0Rk

,

z̄ =
z

a
, W =

u

UM
, δ =

µM2U2e
E

RT0

QAa2C0
, β =

√
1
Da
, Da =

K

a2
,

(5)

and obtain the dimensionless governing equation together with the corre-
sponding boundary conditions as (neglecting the bar symbol for clarity);

d2W

dr2
+

1
r

dW

dr
− β2W + 1 = 0, (6)

d2θ

dr2
+

1
r

dθ

dr
+ λ(e(

θ
1+εθ ) + δ

(
dW

dr

)2

+ δβ2W 2) = 0, (7)

W (1) = θ(1) = 0, (8a)

dW

dr
(0) = 0,

dθ

dr
(0) = 0, (8b)
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where λ, ε, δ, β, Da represent the Frank–Kamenetskii parameter, activation
energy parameter, the viscous heating parameter, the porous medium shape
factor parameter and the Darcy number respectively. In the following sections,
(6–8) are solved using both perturbation and multivariate series summation
techniques.

3 Perturbation Method

It is very easy to obtain the solution for the fluid velocity profile exactly, how-
ever, due to the nonlinear nature of the temperature field (7), it is convenient
to form a power series expansion in the Frank–Kamenetskii parameter λ, i.e.,

θ(r) =
∞∑
i=0

θiλ
i. (9)

Substituting the solution series (9) into (7) and collecting the coefficients of
like powers of λ, we obtained and solved the equations of the coefficients of
solution series iteratively. The solution for the velocity and temperature fields
are given as

W (r;β > 0) =
1
β2

(
1− I0(βr)

I0(β)

)
, (10a)

W (r;β → 0) = −1
4
(r2 − 1)− β

2

64
(r2 − 1)(r2 − 3)

− β4

2304
(r2 − 1)(r4 − 8r2 + 19) +O(β6), (10b)

θ(r) = − 1
7372800

λ(r2 − 1)
(
18δβ6r8 + 1350δβ4r6 − 207δβ6r6 + 25600δβ2r4

+ 893δβ6r4 − 9850δβ4r4 + 115200δr2 − 89600δβ2r2 + 22550δβ4r2

−1807δβ6r2 + 25600δβ2 − 20650δβ4 + 1843200 + 2243δβ6 + 115200δ
)

+ O(λ2) (11)

Using a computer symbolic algebra package (MAPLE), we obtained the first
21 terms of the above solution series (11) as well as the series for the fluid
maximum temperature θmax = θ(r = 0; λ, ε, β, δ). We are aware that the
power series solution in (11) is valid for large Darcy number (β → 0) and very
small Frank–Kamenetskii parameter values (λ→ 0). However, using Hermite–
Padé approximation technique, we have extended the usability of the solution
series beyond small parameter values as illustrated in the following section.
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4 Thermal Criticality and Bifurcation Study

The concept of thermal criticality or non-existence of steady-state solution to
nonlinear reaction diffusion problems for certain parameter values is extremely
important from application point of view. This characterizes the thermal sta-
bility properties of the materials under consideration and the onset of thermal
runaway phenomenon. In order to determine the appearance of thermal run-
away in the system together with the evolution of temperature field as the
exothermic reaction rate increases (i.e. λ > 0), we employ a special type of
Hermite–Padé approximation technique. Suppose that the partial sum

UN−1(λ) =
N−1∑
i=0

aiλ
i = U(λ) +O(λN ) as λ→ 0, (12)

is given. We are concerned with the bifurcation study by analytic continuation
as well as the dominant behaviour of the solution by using partial sum (12).
We expect that the accuracy of the critical parameters will ensure the accuracy
of the solution. It is well known that the dominant behaviour of a solution of
a differential equation can often be written as Guttamann [4],

U(λ) ≈
{
H(λc − λ)α
H(λc − λ)α ln |λc − λ|

for α 
= 0, 1, 2, . . .
for α = 0, 1, 2, . . . as λ→ λc, (13)

where H is some constant and λc is the critical point with the exponent α.
However, we shall make the simplest hypothesis in the contest of nonlinear
problems by assuming the U(λ) is the local representation of an algebraic
function of λ. Therefore, we seek an expression of the form

Fd(λ,UN−1) = A0N (λ) +Ad1N (λ)U (1) +Ad2N (λ)U (2) +Ad3N (λ)U (3), (14)

such that

A0N(λ) = 1, AiN (λ) =
d+i∑
j=1

bijλ
j−1, (15)

and
Fd(λ,U) = O(λN+1) as λ→ 0, (16)

where d ≥ 1, i = 1, 2, 3. The condition (15) normalizes the Fd and ensures
that the order of series AiN increases as i and d increase in value. There
are thus 3(2 + d) undetermined coefficients bij in the expression (15). The
requirement (16) reduces the problem to a system of N linear equations for
the unknown coefficients of Fd. The entries of the underlying matrix depend
only on the N given coefficients ai. Henceforth, we shall take

N = 3 (2 + d), (17)



Modelling the Thermal Operation in a Catalytic Converter 57

so that the number of equations equals the number of unknowns. (16) is
a new special type of Hermite–Padé approximants. Both the algebraic and
differential approximants forms of (16) are considered. For instance, we let

U (1) = U, U (2) = U2, U (3) = U3, (18)

and obtain a cubic Padé approximant. This enables us to obtain solution
branches of the underlying problem in addition to the one represented by the
original series. In the same manner, we let

U (1) = U, U (2) = DU , U (3) = D2U, (19)

in (15), where D is the differential operator given by D = d/dλ. This leads
to a second order differential approximants. It is an extension of the inte-
gral approximants idea by Hunter and Baker [5] and enables us to obtain the
dominant singularity in the flow field i.e. by equating the coefficient A3N (λ)
in the (16) to zero. Meanwhile, it is very important to know that the ratio-
nale for chosen the degrees of AiN in (15) in this particular application is
based on the simple technique of singularity determination in second order
linear ordinary differential equation with polynomial coefficients as well as
the possibility of multiple solution branches for the nonlinear problem [12].
In practice, one usually finds that the dominant singularities are located at
zeroes of the leading polynomial A(d)

3N coefficients of the second order linear
ordinary differential equation. Hence, some of the zeroes of A(d)

3N may provide
approximations of the singularities of the series U and we expect that the
accuracy of the singularities will ensure the accuracy of the approximants.

The critical exponent αN can easily be found by using Newton’s polygon
algorithm. However, it is well known that, in the case of algebraic equations,
the only singularities that are structurally stable are simple turning points.
Hence, in practice, one almost invariably obtains αN = 1/2. If we assume a
singularity of algebraic type as in (13), then the exponent may be approxi-
mated by

αN = 1− A2N (λCN )
DA3N (λCN )

. (20)

5 Results and Discussion

The bifurcation procedure above is applied on the first 21 terms of the solution
series and we obtained the results shown in Tables 1 and 2 below:

The result in Table 1 shows the rapid convergence of our procedure for
the dominant singularity (i.e. λc) together with its corresponding critical ex-
ponent αc with gradual increase in the number of series coefficients utilized
in the approximants. In Table 2, we noticed that the magnitude of thermal
criticality at very large activation energy (ε = 0) decreases with a decrease
in the porous medium permeability (β > 0). This shows clearly that reducing
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Table 1. Computations showing the procedure rapid convergence for ε = 0.0,
δ = 0.0

d N θmax λc αcN

1 9 1.386540593950578 2.0000471922705 0.499999
3 15 1.386294361119890 2.0000000000000 0.500000
5 21 1.386294361119890 2.0000000000000 0.500000

Table 2. Computations showing thermal ignition criticality for different parameter
values (δ, β, ε)

δ β ε θmax λc αcN

1.0 0.0 0.1 1.8491492 2.2068382 0.500000
1.0 0.5 1.0 1.8508176 2.2062313 0.500000
0.0 0.0 0.0 1.3865405 2.0000000 0.500000
1.0 0.0 0.0 1.4157385 1.9454358 0.500000
1.0 0.1 0.0 1.4158015 1.9453932 0.500000
1.0 0.3 0.0 1.4162698 1.9450999 0.500000
1.0 0.5 0.0 1.4170165 1.9447578 0.500000

II

I

2.0

0.0 2.0 4.0

lc

4.0

6.0

λ

qmax

Fig. 4. A slice of approximate bifurcation diagram in the (λ, θmax(β, ε)) plane

the permeability of a porous medium will enhance the early appearance of
ignition in a reactive viscous flow of a combustible fluid. It is noteworthy that
a decrease in the combustible fluid activation energy (i.e. ε > 0) will lead to
an increase in the magnitude of thermal ignition criticality, hence, delaying
the appearance of thermal runaway in the system. A slice of the bifurcation
diagram for 0 ≤ ε� 1 is shown in Fig. 4. In particular, for every β ≥ 0 , there
is a critical value λc (a turning point) such that, for 0 ≤ λ < λc there are two
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Fig. 5. Fluid velocity profile: −−−−−−β = 1; ooooooo β = 3.0; ++++++β = 5.0

Fig. 6. Fluid temperature profile: β = 1; ε = 0; δ = 1;−−−−−−λ = 0.5; oooooo
λ = 0.7;+ + + + + + λ = 1

solutions (labeled I and II) and the solution II diverges to infinity as λ → 0.
The fully developed dimensionless velocity distribution is shown in Fig. 5. We
observed that the magnitude of the fluid velocity increases and tend to that
of Poiseuille flow with a gradual increase in the porous medium permeability
(i.e. β → 0). Similarly, an increase in the fluid temperature is observed with
increasing values of λ due to a combined effects of viscous dissipation and
exothermic reaction as shown in Fig. 6.
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6 Conclusion

The thermal stability of a reactive viscous fluid flowing through a porous-
saturated pipe is investigated using perturbation technique together with
a special type of Hermite–Padé approximants. We obtained accurately the
steady-state thermal ignition criticality conditions as well as the solution
branches. It is observed that a reduction in porous medium permeability will
enhance complete combustion, hence, improving the effectiveness of engineer-
ing equipments like the catalytic converter used in an automobile’s exhaust
system. Finally, the above analytical and computational procedures are ad-
vocated as effective tool for investigating several other parameter dependent
nonlinear boundary-value problems.

Nomenclature

a Pipe radius
A rate constant
C0 concentration of the reactant
Da Darcy number
E activation energy
k thermal conductivity
K permeability
P fluid pressure
Q heat of reaction
R universal gas constant
T0 wall temperature
T absolute temperature
W fluid velocity
z axial distance
r radial distance

Greek symbols

µ fluid dynamics viscosity
λ Frank–Kamenetskii
ε activation energy parameter
δ viscous heating parameter
β porous medium shape factor
θ dimensionless temperature
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Modelling Transmission Dynamics
of Childhood Diseases in the Presence
of a Preventive Vaccine: Application
of Adomian Decomposition Technique

O.D. Makinde

Summary. In recent time, diligent vaccination campaigns have resulted in high
levels of permanent immunity against the childhood disease among the population,
e.g. measles, mumps, rubella, poliomyelitis, etc. In this paper, a SIR model that mon-
itors the temporal dynamics of a childhood disease in the presence of a preventive
vaccine is developed. The qualitative analysis reveals the vaccination reproductive
number for disease control and eradication. Adomian decomposition method is also
employed to compute an approximation to the solution of the non-linear system of
differential equations governing the problem. Graphical results are presented and
discussed quantitatively to illustrate the solution.

Keywords: Childhood disease model; Preventive vaccine; Stability analysis;
Adomian decomposition

1 Introduction

Diseases such as measles, mumps, chicken pox, poliomyelitis, etc. to which
children are born susceptible, and usually contract within the first five years
are generally refereed to childhood diseases. Young children are in particularly
close contact with their peers, at school and playground; hence such diseases
can spread quickly. Meanwhile, the development of vaccines against infectious
childhood diseases has been a boon to mankind and protecting children from
diseases that can be prevented by vaccination is a primary goal of health
administrators. For instance, measles is an acute, highly communicable viral
disease with prodromal fever and can be prevented by the MMR (Measles|
Mumps|Rubella) vaccine. The primary reason for continuing high childhood
measles morbidity and mortality in sub-Saharan Africa is the failure to deliver
at least one dose of measles vaccine to all infants (see Table 1).

Figure 1 shows the 2002 UNICEF measles campaign in a remote village
in central Senegal during which Serigne Dame Léye – Headman of Ngouye
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Table 1. Estimated measles deaths for 2004 with uncertainty bounds by World
Bank geographical region [4]

Region Estimated measles deaths Uncertainty bounds

Sub-Saharan Africa 216,000 [216,000 - 279,000]
South Asia 202,000 [145,000 - 264,000]
East Asia & Pacific 32,000 [21,000 - 47,000]
Middle East & North Africa 4,000 [2,000 - 5,000]
Europe & Central Asia <1,000 [–]
Latin America & Caribbean <1,000 [–]
High income countries <1,000 [–]

Fig. 1. Picture showing children after receiving their individual vaccinations against
measles – Measles Campaign 2002 by UNICEF

Diaraf remarked “We used to bury two or three children every week because of
measles. This does not happen anymore because our children are immunized”.

Another illustrative example of childhood disease with preventive vaccine
is poliomyelitis [4]. This is a highly contagious, incurable viral infection of
the nervous system which can cause crippling paralysis or even death within
hours of infection. At its peak, polio paralyzed and killed up to half a million
people every year, before Jonas Salk invented a vaccine in 1955, (see Fig. 2).

According to Fig. 3, with only four polio endemic countries left in the
world, with constant vaccination strategy-polio transmission could be stopped
in every country by the end of 2006. The world could then be certified polio-
free by end-2010.

Since vaccination is considered to be the most effective strategy against
childhood diseases, the development of a framework that would predict the
optimal vaccine coverage level needed to prevent the spread of these diseases is
crucial. The SIR model is a standard compartmental model that has been used
to describe many epidemiological diseases [8–11]. The way several childhood
diseases spread through a population fits into this framework. The model has
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Fig. 2. (a) Members of a mobile Polio immunization team in Kano, Nigeria. (b) A
child receives a dose of oral polio vaccine

Fig. 3. The map showing the World Polio endemic countries [4]

a susceptible group designated by S, an infected group I, and a removed group
R, denoting vaccinated as well as recovered people with permanent immunity.
This model assumes that the efficacy of the vaccine is 100% and the natural
death rates µ in the classes remain unequal to births, so that the population
size N is realistically not constant. Citizens are born into the population at a
constant birth rate π with extremely very low childhood disease mortality rate.
We denote the fraction of citizens vaccinated at birth each year as P (with
0 < P < 1) and assume the rest are susceptible. A susceptible individual
will move into the infected group through contact with an infected individual,
approximated by an average contact rate β. An infected individual recovers at
a rate γ, and enters removed group. The removed group also contains people
who are vaccinated. The differential equations for the SIR model are
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(1-P)p βIS γ
S I R

mS mI mR

pP

Fig. 4. Flow chart for the SIR model

dS

dt
= (1− P )πN − βSI

N
− µS, (1)

dI

dt
= β
SI

N
− (γ + µ)I, (2)

dR

dt
= PπN + γI − µR. (3)

We also have the relationship N = S + I + R and assume µ, π, β, γ, µ are
all positive constant parameters. Adding (1)–(3), we obtain

dN

dt
= (π − µ)N, (4)

so that we are now dealing with a varying total population, [6].
A summary of the process is drawn in a flow chart in Fig. 1 below: (Fig. 4)
The groups can be scaled by population N using the new variables, s =

S/N, i = I/N , and r = R/N . The population is now normalised, meaning
s+ i+ r = 1, and we have the new system,

ds

dt
= (1− P )π − βsi− πs, (5)

di

dt
= βsi− (γ + π)i, (6)

dr

dt
= Pπ + γi− πr. (7)

2 Qualitative Analysis

Since r does not appear in the (5) and (6), we can analyse the sys-
tem qualitatively by studying the subsystem in the closed set Γ =
{(s, i) ∈ �+ |0 ≤ s+ i ≤ 1} . A qualitative investigation of the subsystem
described by (5) and (6) reveals that the long-term behaviour, falls into
two categories: endemic or die out. When the disease dies out naturally, the
solution asymptotically approaches a disease free equilibrium E0 of the form,

E0 = (1− P, 0), (8)
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The threshold that determines the stability of this equilibrium is the vaccina-
tion reproduction number,

Rv =
β(1− P )
γ + π

, (9)

The disease free equilibrium is locally stable if Rv < 1. Global asymptotic
stability for disease free equilibrium is also achieved using a Bendixson–Dulac
argument for Rv < 1 i.e. there are no periodic solutions [5]. Equation (9)
also reveals that there is a critical vaccination proportion Pc = (β − γ − π)/β
above which the disease free equilibrium is stable i.e. P > Pc. Thus, in order
to successfully prevent disease, the vaccination proportion should be large
enough. When the disease free equilibrium is unstable, there exists an endemic
equilibrium Eu of the form,

Eu =
(

1− P
Rv
,
π

β
(Rv − 1)

)
. (10)

From equation (10) it very obvious thatEu will only exist providedRv>1. The
eigenvalues (δ1,2) of the Jacobian matrix evaluated at the endemic equilibrium
Eu is given as

δ1,2 = −π
2
Rv ±

1
2

√
π2R2

v − 4Rvπ(γ + π). (11)

The endemic equilibrium Eu is locally asymptotically stable provided

1 < Rv ≤
4(γ + π)
π

, (12)

i.e. the eigenvalues are complex with negative real part and Eu can be clas-
sified as a spiral sink. This behavior can be interpreted as follows; for initial
low levels of infectives, the numbers of susceptibles build. Then, the number
of infectives begins to increase until that process is faster than the number
of susceptibles being added to the population. Eventually there are too few
people to infect, the outbreak ends, and the number of susceptibles begins to
increase again.

3 Adomian Decomposition Technique

In order to explicitly construct approximate non-perturbative solutions of the
system described by (5)–(7), Adomian decomposition method well addressed
in [1–3, 7] is employed. The advantage of this method is that it provides a
direct scheme for solving the problem, i.e., without the need for linearization,
perturbation, massive computation and any transformation.

The equivalent canonical form of this system is as follows:
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s(t) = s(0) + (1− P )πt− β
∫ t

0

sidt− π
∫ t

0

sdt, (13)

i(t) = i(0) + β
∫ t

0

sidt− (γ + π)
∫ t

0

idt, (14)

r(t) = r(0) + Pπt+ γ
∫ t

0

idt− π
∫ t

0

rdt. (15)

As usual in Adomian decomposition method the solutions of (13)–(15) are
considered to be as the sum of the following series

s =
∞∑
n=0

sn, i =
∞∑
n=0

in, r =
∞∑
n=0

rn. (16)

Then we approximate the nonlinear terms in the system as follows:

si =
∞∑
n=0

Fn(s0, . . . , sn, i0, . . . , in), (17)

where

Fn =
1
n!

⎡
⎢⎢⎣
dn
( ∞∑
k=0

skλ
k

)( ∞∑
k=0

ikλ
k

)
dλn

⎤
⎥⎥⎦
λ=0

. (18)

The nonlinear functions Fn are called Adomian’s polynomials. Substitut-
ing (16)–(18) into (13)–(15), we get:

∞∑
n=0

sn = s(0) + (1− P )πt− β
∫ t

0

∞∑
n=0

Fndt− π
∫ t

0

∞∑
n=0

sndt, (19)

∞∑
n=0

in = i(0) + β
∫ t

0

∞∑
n=0

Fndt− (γ + π)
∫ t

0

∞∑
n=0

indt, (20)

∞∑
n=0

rn = r(0) + Pπt+ γ
∫ t

0

∞∑
n=0

indt− π
∫ t

0

∞∑
n=0

rndt. (21)

From (19)–(21) we define the following scheme:

s0 = s(0) + (1− P )πt, i0 = i(0), r0 = r(0) + Pπt, (22)

sn+1 = −β
∫ t

0

Fndt− π
∫ t

0

sndt, (for n ≥ 0), (23)

in+1 = β
∫ t

0

Fndt− (γ + π)
∫ t

0

indt, (for n ≥ 0), (24)

rn+1 = γ
∫ t

0

indt− π
∫ t

0

rndt, (for n ≥ 0). (25)
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Using (18), we compute some of the Adomian polynomials as follows:

F0 = s0i0, F1 = s0i1 + s1i0, F2 = s0i2 + s1i1 + s2i0,
F3 = s0i3 + s1i2 + s2i1 + s3i0, F4 = s0i4 + s1i3 + s2i2 + s3i1 + s4i0,
F5 = s0i5 + s1i4 + s2i3 + s3i2 + s4i1 + s5i0, . . . (26)

Substituting (22)–(26) into (19)–(21), and using MAPLE we obtained a few
terms approximation to the solutions as

sN =
N∑
n=0

sn, iN =
N∑
n=0

in, rN =
N∑
n=0

rn, (27)

where

s(t) = limit
N→∞

(sN ), i(t) = limit
N→∞

(iN ), r(t) = limit
N→∞

(rN ). (28)

The decomposition method yields rapidly convergent series solutions by using
a few iterations for both linear and non-linear deterministic equations. For
the convergence of the Adomian decomposition method the reader is referred
to [1].

4 Numerical Results and Discussion

In this section, we monitor the effect of vaccination on the dynamics of a
childhood disease described by the SIR model (5)–(7) using Adomian decom-
position technique. For illustration purposes the parameter values in Table 2
below are used.

Figure 5 depicts case 1 and shows the impact of high vaccination coverage
on the disease free initial population groups. As expected, the population of
the susceptible group decreases with time while that of the removed group
gradually increases due to inclusion of vaccinated susceptible group. It is very

Table 2. Effect of vaccination coverage at various parameter values

Case s(0) i(0) r(0) β γ π P Rv Comments

1 1 0 0 0.8 0.03 0.4 0.9 0.18604 E0 stable (disease
eradication)

2 0.8 0.2 0 0.8 0.03 0.4 0.9 0.18604 E0 stable (disease
eradication)

3 0.8 0.2 0 0.8 0.03 0.4 0.3 1.30223 Eu stable (no erad-
ication)

4 0.8 0.2 0 0.8 0.03 0.4 0.0 1.86046 Eu stable (no erad-
ication)
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Fig. 5. Population fraction vs. time for case 1: P = 0.9; ———, Susceptible fraction;
oooooo, infectives fraction; + + + + ++, removed fraction

interesting to note that the entire population generally remains disease free
with all the time. Figure 6 depicts case 2 and illustrates the impact of high
vaccination coverage on the initial population groups with low level of infective
group. The populations of the susceptible and infective groups decrease with
time while that of the removed group increases due to inclusion of vaccinated
and recovered people with permanent immunity and the disease outbreak
ends. Case 3 is represented in Fig. 7 and illustrates the effect of low vaccination
coverage on the initial population groups with low levels of infective group.
The population of the susceptible group decreases with time. A small increase
in the population of removed group is also noticed. However, it is noteworthy
that the population of infective group will never disappear with time and
the endemic situation persists. This confirmed that a disease free equilibrium
couldn’t be achieved once the vaccination coverage level is lower than a certain
threshold and the endemic equilibrium remains stable.

Finally, case 4 is shown in Fig. 8 and illustrates the impact of initial
low levels of infective group on the vaccination free population. As expected,
the population of susceptible group decreases while that of infective group
temporally increases. The disease rapidly spread to the entire population. The
only contribution to removed group is the very small proportion of recovered
people with permanent immunity.

5 Conclusions

An epidemiological model for the transmission dynamics of a childhood disease
in the presence of a preventive vaccine was qualitatively and quantitatively
studied. It is observed that the disease free equilibrium is stable provided
the vaccination coverage level exceeds a certain threshold (Pc). Adomian
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Fig. 6. Population fraction vs. time for case 2: P = 0.9; ——–, Susceptible fraction;
oooooo, infectives fraction; + + + + ++, removed fraction

Fig. 7. Population fraction vs. time for case 3: P = 0.3; ——–, Susceptible fraction;
oooooo, infectives fraction; + + + + ++, removed fraction

decomposition method is employed to construct an approximate solution
to the problem. The method avoids the difficulties and massive computa-
tional work that usually arise from the parallel techniques and finite-difference
method.

Appendix

According to the values introduced in the Table 2 the following approximate
solutions can are derived;
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Fig. 8. Population fraction vs. time for case 4: P = 0; ———, Susceptible fraction;
oooooo, infectives fraction; + + + + ++, removed fraction

Case 1

s(t) = 1.0− 0.36t + 0.72× 10−1t2 − 0.96× 10−2t3 + 0.96× 10−3t4

− 0.768× 10−4t5 − 0.5688888892× 10−6t6

r(t) = 0.36t− 0.72× 10−1t2 + 0.96× 10−2t3 − 0.96× 10−3t4

+ 0.768× 10−4t5 − 0.512× 10−5t6

Case 2

s(t) = 0.8− 0.408t + 0.1008∗t2 − 0.8223999996× 10−2t3

− 0.1811776× 10−2t4 + 0.2838500158× 10−3t5

− 0.4866281149× 10−4t6 − 0.1973168518× 10−5t7

+ 0.1567280763× 10−7t8 + 0.4557699387× 10−9t9

− 0.1747626667× 10−11t10

i(t) = 0.2 + 0.42× 10−1t− 0.2823× 10−1t2 − 0.1169699999× 10−2t3

+ 0.2759918751× 10−2t4 − 0.3762609484× 10−3t5

+ 0.4741940899× 10−4t6 + 0.1990139977× 10−5t7

− 0.1540349563× 10−7t8 − 0.4575903832× 10−9t9

+ 0.1747626667× 10−11t10
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r(t) = 0.366t− 0.7257× 10−1t2 + 0.93937× 10−2t3

− 0.94814275× 10−3t4 + 0.9241093251× 10−4t5

− 0.4445486401× 10−5t6 − .1697145904× 10−7t7 − 0.269312× 10−9t8

+ 0.1820444445× 10−11t9

Case 3

s(t) = 0.8− 0.168t + 0.336× 10−1t2 − 0.2464× 10−2t3 − 0.125216× 10−3t4

+ 0.22308159× 10−5t5 − 0.1932440964× 10−3t6

− 0.7803698863× 10−4t7 + 0.4251830616× 10−5t8

+ 0.1094303622× 10−5t9 − 0.293723614× 10−7t10

i(t) = 0.2 + 0.42× 10−1t− 0.903× 10−2t2 − 0.721699999× 10−3t3

+ 0.44919875× 10−3t4 − 0.308446284× 10−4t5

+ 0.1860204709× 10−3t6 + 0.7869655811× 10−4t7

− 0.41594566× 10−5t8 − 0.1098674509× 10−5t9

+ 0.293723614× 10−7t10

r(t) = 0.126t− 0.2457× 10−1t2 + 0.31857× 10−2t3 − 0.32398275× 103t4

+ 0.286138125× 108t5 + 0.1534736535× 10−5t6

− 0.6595694941× 10−6t7 − 0.9237401597× 10−7t8

+ 0.4370887113× 10−8t9

Case 4

s(t) = 0.8− 0.48× 10−1t + 0.416× 10−3t3 + 0.26864× 10−4t4

− 0.7711584× 10−5t5 − 0.2076444349× 10−3t6

− 0.1402303147× 10−3t7 + 0.1075760762× 10−4t8

+ 0.4557699387× 10−5t9 − 0.1747626667× 10−6t10

i(t) = 0.2 + 0.42× 10−1t + 0.57× 10−3t2 − 0.4977× 10−3t3

− 0.1496125× 10−4t4 + 0.68491314× 10−5t5 + 0.19838225× 10−3t6

+ 0.141400832× 10−3t7 − 0.1048829562× 10−4t8

− 0.4575903832× 10−5t9 + 0.1747626667× 10−6t10

r(t) = 0.6× 10−2t− 0.57× 10−3t2 + 0.817× 10−4t3 − 0.1190275× 10−4t4

+ 0.86245251× 10−6t5 + 0.3573295998× 10−5t6

− 0.1170517333× 10−5t7 − 0.269312× 10−6t8

+ 0.1820444445× 10−7t9
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A New MPFA Formulation for Subsurface
Flow Problems on Unstructured Grids:
Derivation of the Discrete Problem

A. Njifenjou and I.M. Nguena

Summary. The accurate computation of solutions for multiphase flow problems in
a geologically complex subsurface is a great scientific and environmental challenge.
Some authors have developed finite volume methods of new generation (the so-called
Multi-Point Flux Approximation methods, commonly called MPFA methods) for
addressing this kind of problems. This communication presents some finite-volume
based flexible MPFA methods which display strong capabilities to handle flow prob-
lems in geologically complex reservoirs. It is well known that the flux continuity
across grid-block interfaces combined with the local mass conservation (i.e., mass
conservation at grid-block scale) make the finite volume methods a powerful compu-
tational tool for flow problems. These properties are met by the variants of MPFA
methods presented in this paper. In addition, these new variants provide some added
values as (1) an approximate pressure which is continuous in the whole domain,
(2) sharp results are provided even on relatively coarse grids, (3) large scale flow
problems governed by a symmetric and nonsymmetric full effective permeability
tensor can be addressed. A Numerical implementation of these variants of MPFA
methods has been done for solving a real-life problem, namely the Darcy flow in the
Andra Couplex 1 test case.

1 Introduction and the Model Problem

The multiphase flow in geologically complex media is one of the most impor-
tant issues related to environmental problems. A better understanding of this
phenomenon by simulations requires that challenging numerical schemes are
designed and implemented. In this connection, several numerical methods are
proposed by many authors. Among these methods, let us mention the most
important ones: (1) The Galerkin finite element which unfortunately displays
limitations about the local conservativity which is an essential condition in
fluid flow simulation, (2) The mixed and mixed hybrid finite element methods
are two avatars of a same approach which is based upon a pressure-velocity
formulation. This formulation meets the local mass conservativity and leads
to satisfactory results. However some draw-backs concerning this approach
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have been pointed out like the violation of the discrete maximum principle
near the drillings for flow within aquifers (see [8]), (3) The finite volume, due
to its great flexibility toward complex applications and its local mass con-
servativity, is considered today as the most comfortable numerical way for
addressing fluid dynamic problems. Let us mention some recent significant
contributions for finite volume solutions to flow problems in anisotropic non-
homogeneous media: (1) The Multi-Point Flux Approximation method (see
for instance [1, 2, 5, 7, 10, 12, 13]), (2) An extended K-orthogonal grid method
has been developed for addressing diffusion problems with full matrix coeffi-
cients (see for instance [4, 6]).

The aim of this paper is to present two variants of the MPFA methods
involving some novelties as:

(1) The construction of an approximate pressure respecting the continuity
condition across the mesh interfaces (recall that, except [12] and [13], the
MPFA solution of above mentioned authors does not meet the interele-
ments continuity condition). The prize to pay is that one should solve a
larger discrete system since discrete unknowns are located at cell points
and corner points of the primary mesh.

(2) The capability of addressing flow problems governed by non symmetric
full tensors. Note that when dealing with large scale flow equations, the
effective permeabilities governing the flow may be nonsymmetric (see [14]
for instance).

For presenting our MPFA finite volume formulation, let us introduce a 2D
flow problem which consists in finding a pressure U which satisfies the fol-
lowing steady-state diffusivity equation associated with a Dirichlet boundary
condition:

− div(D grad U) = f in Ω (1)

U = 0 on Γ, (2)

where f is a given function (commonly called source/sink term), Ω is a given
open polygonal domain inside which the diffusivity equation is valid and Γ
denotes the boundary of Ω. D = D(x), with x = (x1, x2) ∈ Ω, is a full matrix
(describing the spatial variation of the permeability tensor) and satisfies the
uniform ellipticity, i.e.,

∃γ ∈ R
∗
+ such that ∀ε ∈ R

2 εTD(x)ε ≥ γ |ε|2 a.e. in Ω, (3)

where | . | denotes the euclidian norm in R2, Dij(.) ∈ L∞ (Ω) represents the
components of the permeability tensor D.

This paper is organized as follows. In the Sect. 2 we deal with the spatial
discretization of the model problem. Section 3 presents in details two new
variants of MPFA method for solving the system (1)–(2). In the Sect. 4, some
numerical simulations are performed for homogeneous and nonhomogeneous
anisotropic media. Section 5 is devoted to conclusions and perspectives of the
work.
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Fig. 1. Detail of primary (full lines) and secondary (dotted lines) grids for Dirichlet
boundary conditions

2 Spatial Discretization

One starts with a primary grid consisting of a collection of polygonal cells
made up of full lines. Each polygonal cell is naturally associated with a set
of corner points. Inside each cell, a point is arbitrary fixed and defines what
we call in the sequel a “cell point.” The value of the numerical solution of
the system (1)–(2) is computed either at the corner points or cell points (of
the primary grid). We denote x(i) either a cell or a corner point, and ui the
corresponding value of the numerical solution.

Let us introduce the notions of cluster and interaction region which play
a key role in the discretization process. A collection of mesh cells with one
common corner point is called a cluster. The number of cells in a cluster
defines the degree of the corresponding corner point. Associated with each
cluster is an interaction region which is defined as follows: on each cell edge,
choose an arbitrary point e(i) and draw straight dotted lines from this point
to the cell points in the two neighboring cells. Inside the cluster, the dotted
lines will define a polygon called an interaction region. The set of interaction
regions defines the secondary mesh or dual mesh (see Fig. 1).

Each discrete equation is associated with a cell point or a corner point,
and is derived from the mass balance equation in a suitable control volume.
More precisely, expressing the mass balance in each cell from the primary
and secondary mesh, and using convenient quadrature formulas leads to the
discrete problem. A detailed description of our technique is presented in the
following sections.

3 Finite Volume Formulation

3.1 Description of New Variants of MPFA Methods

Our aim in this section is to present two novel multipoint flux approximation
methods designed for flow computations over unstructured irregular grids as
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Fig. 2. A cluster (full lines) with its interaction region (dotted lines) involved in a
local computation of the flux

the one shown in Fig. 2. We start with the mass balance equation in every cell
C from the primary or secondary mesh

−
∫
C

div [Dgradu] dx =
∫
C

f(x) dx.

Applying the Ostrogradski theorem to the left hand side of this equality yields
what follows:

−
∫

ΓC

[DgradU ] · nds =
∫
C

f(x) dx,

where ΓC is the boundary of C, and where the symbol · denotes the stan-
dard scalar product in R

2. The first integral term in this equality may be
transformed as follows:

−
∫

ΓC

[DgradU ] · nds = −
∑
[EA]

∫
[EA]

[DgradU ] · nEA ds

leading to the following approximation relation:

−
∑
[EA]

∫
[EA]

[D grad U ] · nEA ds ≈ −
∑
[EA]

EA
[
(D grad U · nEA)(xA)

]
, (4)

where [EA] is a partial edge from the cell C and where nEA is the unit normal
vector to [EA] exterior to C, xA = (xA1 , x

A
2 ) are the spatial coordinates of the

point A. One can perform the flux approximation in two manners (1) demand-
ing that the flux continuity be satisfied on each partial edge; (2) demanding
that the flux continuity be satisfied on each entire edge. In each grid-block one
may decide that the degrees of freedom of the approximate pressure U are cell
center and corner values of U . This choice will lead to a globally continuous
and piecewise linear approximate solution. However another choice is possible
as shown in [11] in a square primary grid. In what follows we present in details
our strategy.

3.1.1 Derivation of the Flux Approximation Imposing Continuity
per Partial Edge

We focus in what follows on the flux computation across the partial edges,
under a continuity condition.
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Fig. 3. Flux molecule for formulating the flux continuity over the partial edge [EA]

For performing the flux across the partial edge [EA] (see Fig. 3), one should
calculate ∂U

∂x1
and ∂U

∂x2
at the point A (whose coordinates are xA = (xA1 , x

A
2 ))

in view to apply the approximation (4). The following change is made on the
space variables:⎧⎪⎨

⎪⎩
x1 = xA1 + (x(1)1 − xA1 )X1 + (xE1 − xA1 )X2

x2 = xA2 + (x(1)2 − xA2 )X1 + (xE2 − xA2 )X2

.

Denoting det(1) the determinant of the preceding system, it is easily seen that

det(1) =
(
x

(1)
1 − xA1

) (
xE2 − xA2

)
−
(
xE1 − xA1

) (
x

(1)
2 − xA2

)
∂X1

∂x1
=

(
xE2 − xA2

)
det(1)

,
∂X1

∂x2
=

(
xA1 − xE1

)
det(1)

,

∂X2

∂x1
=

(
xA2 − x

(1)
2

)
det(1)

,
∂X2

∂x2
=

(
x

(1)
1 − xA1

)
det(1)

.

Since that A is a point from the triangle AE(1) and accounting with the
change of spatial variables, the partial derivatives of U at xA are given by(

∂U

∂x1

)
(1)

(
xA
)

=
∂U

∂X1

∂X1

∂x1
+
∂U

∂X2

∂X2

∂x1
,

(
∂U

∂x2

)
(1)

(
xA
)

=
∂U

∂X1

∂X1

∂x2
+
∂U

∂X2

∂X2

∂x2
.

Then these partial derivatives are approximated as follows:

∂U

∂X1

∂X1

∂x1
+
∂U

∂X2

∂X2

∂x1
≈
(
U(1) − UA

) (xE2 − xA2 )
det(1)

+ (UE − UA)
(xA2 − x

(1)
2 )

det(1)
,

(5)

∂U

∂X1

∂X1

∂x2
+
∂U

∂X2

∂X2

∂x2
≈
(
U(1) − UA

) (xA1 − xE1 )
det(1)

+ (UE − UA)
(x(1)1 − xA1 )
det(1)

.

(6)
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On the other hand, the normal vector n(1) is defined as

n(1) = ε
(
xE2 − xA2
AE

,
xA1 − xE1
AE

)t
,

where ε = ±1 is chosen such that n(1) is steered toward the outside of the
triangle AE(1) (see Fig. 3).
We deduce that

[D grad U ] · n(1) = ε
[
xE2 − xA2
AE

xA1 − xE1
AE

]([
D11 D12

D21 D22

][ ∂U
∂x1
∂U
∂x2

])
.

Setting

αE
(1) = ε

(
D11

xE
2 − xA

2

AE
+ D21

xA
1 − xE

1

AE

)
, βE

(1) = ε

(
D12

xE
2 − xA

2

AE
+ D22

xA
1 − xE

1

AE

)
it follows that

(D grad U) · n(1) = αE(1)
∂U

∂x1

(
xA
)

+ βE(1)
∂U

∂x2

(
xA
)
.

Recall that approximations of partial derivatives of U at xA are given by
relations (5)–(6), when considering that A is a point of the triangle EA(1).
Similarly, considering that A is also a point from the triangle EA(2), we have(

∂U

∂x1

)
(2)

(
xA
)

=
(
U(2) − UA

) (xE2 − xA2 )
det(2)

+ (UE − UA)
(xA2 − x

(2)
2 )

det(2)(
∂U

∂x2

)
(2)

(
xA
)

=
(
U(2) − UA

) (xA1 − xE1 )
det(2)

+ (UE − UA)
(x(2)1 − xA1 )
det(2)

,

where we have set

det(2) = (x(2)1 − xA1 )(xE2 − xA2 )− (xE1 − xA1 )(x(2)2 − xA2 ).

Therefore, the flux continuity equation on [EA] reads

αE(1)

(
∂U

∂x1

)
(1)

+ βE(1)

(
∂U

∂x2

)
(1)

+αE(2)

(
∂U

∂x1

)
(2)

+ βE(2)

(
∂U

∂x2

)
(2)

= 0 . (7)

Setting for i = 1, 2

C
(i)E
11 =

xE
2 − xA

2

det(i)
, C

(i)E
12 =

xA
2 − x

(i)
2

det(i)
, C

(i)E
21 =

xA
1 − xE

1

det(i)
, C

(i)E
22 =

x
(i)
1 − xA

1

det(i)

and for i, j = 1, 2
S

(i)E
1j = αE(i)C

(i)E
1j + βE(i)C

(i)E
2j
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one deduces from the discrete version of the flux continuity equation (7) that

UA =
S

(1)E
11 U(1) + (S(1)E

12 + S(2)E
12 )UE + S(2)E

11 U(2)

S
(1)E
11 + S(1)E

12 + S(2)E
12 + S(2)E

11

≡γE(1)U(1)+γEEUE+γE(2)U(2).

Setting also

Φ(1) = U(1)(S
(1)E
11 − γE(1)(S

(1)E
11 + S(1)E

12 )) + UE(S(1)E
12 − γEE (S(1)E

11 + S(1)E
12 ))

−γE(2)U(2)(S
(1)E
11 + S(1)E

12 )

the flux across [EA] may be written finally as follows:

Φ(1)
[EA] = − AE Φ(1) . (8)

One should note that the methodology presented above is completely gen-
eral. This means it applies to all the interior partial edges of cells from the
primary and secondary grids. On the other hand, for a boundary partial
edge [EA], there is no need to write the continuity equation since UA is given
by the Dirichlet condition. Thus, the global discrete system may be easily
derived following what precedes.

Remark 3.1. In the case of a Dirichlet–Neumann boundary problem, one
should deal with the case where a partial edge [EA] is included in a Neumann’s
boundary. The flux across [EA] is exactly given by the Neumann condition.

3.1.2 Derivation of the Flux Approximation Imposing Continuity
per Edge

In the previous subsection, the mass balance is performed under the constraint
of the flux continuity on partial edges. Unfortunately, it may happen when
dealing with the primary mesh, that the expression S(1)E

11 + S(1)E
12 + S(2)E

12 +
S

(2)E
11 be null, and therefore it is not possible to compute the flux across [EA],

namely Φ(1)
[EA]. To overcome this difficulty, one may write the flux continuity

equation on the entire edge [EF ] (see Fig. 4).
For this purpose, let us set

Φ[EF ]
(1) = AE

[
αE(1)

(
∂U

∂x1

)
(1)

+ βE(1)

(
∂U

∂x2

)
(1)

]

+AF

[
αF(1)

(
∂U

∂x1

)
(1)

+ βF(1)

(
∂U

∂x2

)
(1)

]
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Fig. 4. Flux molecule for formulating the flux continuity over the edge [EF ]

Φ[EF ]
(2) = AE

[
αE(2)

(
∂U

∂x1

)
(2)

+ βE(2)

(
∂U

∂x2

)
(2)

]

+AF

[
αF(2)

(
∂U

∂x1

)
(2)

+ βF(2)

(
∂U

∂x2

)
(2)

]
.

Therefore the flux continuity equation over [EF ] reads

Φ[EF ]
(1) + Φ[EF ]

(2) = 0 . (9)

The last equation permits to express the numerical potential UA in terms of
U(1), U(2), UE , and UF . To solve this equation, one may consider two cases:
the case where the elements I and II (see Fig. 4) are from the primary mesh,
and the case where these elements are from the secondary mesh.

First case: the elements I and II are from the primary grid. Solving the
flux continuity equation (9), where UA is the unknown, leads to the following
expression of the flux Φ[EF ]

(1) :

Φ[EF ]
(1) = −EF

[
C1(U(1) − U(2)) +RC2(UE − UF )

]
, (10)

where we have set

C1 =
S

(1)E
11 S

(2)E
11

S
(1)E
11 + S(2)E

11

, C2 =
S

(1)E
12 S

(2)E
11 − S(1)E

11 S
(2)E
12

S
(1)E
11 + S(2)E

11

, and R =
EA

EF
.

(11)

Second case: the elements I and II are from the secondary grid. In this
case, the flux across [EF ] reads as follows:

Φ[EF ]
(1) = θ1U(1) + θ2U(2) +AE S(1)E

12 UE +AF S(1)F
12 UF , (12)

where we have set

θ1 = −1
2

(
AE S

(1)E
11 +AF S(1)F

11 +AE S(1)E
12 +AF S(1)F

12

)
(13)

θ2 =
1
2

(
AE S

(1)E
11 +AF S(1)F

11 −AE S(1)E
12 −AF S(1)F

12

)
. (14)
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Remark 3.2. Due to the discontinuity of the permeability (located on inter-
faces of the primary grid), the expression S(1)E

11 +S(1)E
12 +S(2)E

12 + S(2)E
11 may

be equal to zero over the discontinuity interface. An example for rectangular
grids is provided in [13]. On the other hand, this kind of singularity should not
occur for partial or entire edges computation of flux in the dual grid. Indeed,
when dealing with the dual grid, the expression S(1)E

11 +S(1)E
12 +S(2)E

12 +S(2)E
11

is reduced to S(1)E
11 + S(2)E

11 which is never null.

3.1.3 Combining the Two Approaches

One can prove that S(1)E
11 +S(1)E

12 +S(2)E
12 +S(2)E

11 could be null in the scheme
(8) only when dealing with cells from the primary grid. It is therefore suitable
to use this scheme for cells of the secondary grid. The schemes (10)–(14) apply
for cells from the primary grid and those from the secondary grid as well.

3.2 Construction of the Discrete System

3.2.1 Dealing with the Elements of the Primary Mesh

We suppose that the primary mesh consists of polygons. Therefore each mesh
element ei is associated with ni edges. The data structure used to draw the
mesh allow us to obtain from each edge all the corresponding mesh elements.

For a given mesh element ei from the primary mesh, one carries out the
computation of the total flux across its boundary in the following way. One
considers all the facets of this element and for each facet, one calculates the
flow exchanged by using the relations (8) or (10) depending on the chosen
variant of the proposed method. The element is cut out in triangles whose
vertices are the cell point and the two extremities of a facet. The integral in
the right hand side of the balance equation over the element is obtained by
summing the integrals calculated over these triangles.

3.2.2 Dealing with the Elements of the Dual Mesh

First of all, let us recall that the cell point associated with every element of
the dual mesh is a vertex of the primary mesh. In order to do the flux balance
in an element of the dual mesh (denoted edi), one has to consider the set of
facets from the primary mesh elements admitting edi as one of the vertices.
Let us call this set bdi. To illustrate, let us consider the dual mesh element
centered on the point C (see Fig. 5). Let us call it ed1. Therefore bd1 is the
following set:

bd1 = {[CA], [CB], [CD], [CE], [CF ], [CG]}.

Each facet ai from this set admits C as an end. The other end of ai is the
center of another element of the dual mesh, having a common edge with ed1.
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Fig. 5. A local numbering of nodes for a local flux balance

The vertices of the two half-edges of the common frontier are the center of the
edge ai and the center of the two elements of the primary mesh sharing the
edge ai. For instance, let us consider the facet [CD] of the set bd1. The vertex
D of the primary mesh is the center of another element of the dual mesh.
The frontier between this element and ed1 is made by the two half-edges (9,8)
and (8,7). Using the relation (8) or (10) together with triangles (C,7,8) and
(D,7,8), one can compute the flux through the first half-edge. Using the same
equation and the triangles (C,8,9) and (D,8,9), it is also possible to compute
the flux across the second half-edge.

In order to compute the right hand side of the balance equation, each
element is divided into triangles defined by its center, the middle of each edge
of bdi and the centers of the primary mesh elements sharing this edge. As an
example, one can consider the triangles (12, C, 1) and (11, C, 12) in Fig. 5. The
integral in the right hand side of the balance equation is obtained by summing
integrals over these triangles.

3.3 Definition of an Approximate Solution in Terms of Function

Recall that the proposed variants of MPFA method lead to solving a square
system of equations involving all the discrete unknowns Um representing the
approximate pressure at cell centers and cell corners (with respect to the
primary grid). Once these unknowns are computed, one utilizes them as in-
terpolation data in the construction of an approximate solution denoted Uh
defined as a piecewise linear function (more details are given below).

The computed quantities Um actually correspond to the values of Uh at
cell centers and cell corners. Thus these quantities satisfy the relation

Um = Uh(x(m)),

where x(m) is a node, i.e., a cell center or a corner point.
We should do some comments about the definition of Uh. Without any

loose of generality, let us consider a triangular grid cell of the primary grid.
To define Uh at every point of that grid cell, we divide it into three triangular
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Fig. 6. A grid block divided into three triangles for a piecewise linear approximation
of the solution

elements constructed by joining the cell center to the three cell corners (see
Fig. 6).

Definition 3.3. Let x(i) , x(j) and x(k) denote the vertices of a triangular
element T obtained from the division of a primary grid cell. The approximate
solution Uh of the diffusion problem (1)–(2) is defined in T as follows:

Uh(x) = α · (x−x(i)) + Ui , (15)

where x = (x1 , x2)
t, α = (α1 , α2)

t, x(i) = (x(i)
1
, x(i)

2
)t, and Ui = Uh(x(i)), with

(., .)t denoting the transposition operator. The components of the vector α are
easily calculated thanks to the fact that Uj = Uh(x(j)) and Uk = Uh(x(k)) are
given (from the solution of the finite volume discrete system).

Proposition 3.4. The approximate solution Uh is a continuous function in
Ω (closure of Ω). Moreover Uh is in the space H1

0 (Ω).

Before carrying out the proof of this Proposition, let us recall that for an
open subset D of R

2, the spaces H1(D) and H1
0 (D) are defined as follows:

H1(D) =
{
v ∈ L2 (D) ;

∂v

∂xi
∈ L2 (D) for i = 1, 2

}
(16)

H1
0 (D) =

{
v ∈ H1(D); v = 0 on Γ

}
, (17)

where L2 (D) is the space (of classes) of functions v such that
∫
D
v2dx con-

verges, and where ∂v
∂xi

denotes partial derivatives in a distributional sense (see
for instance [3] for more details). The mapping

v �−→
[∫

Ω

|grad v|2 dx
] 1

2

(18)

defines the well-known H1
0 (Ω)− norm.

Proof. One easily checks that Uh is continuous on grid blocks boundaries. This
follows from the fact that Uh is linear in each triangular element T (inside
grid blocks) and is continuous at the corner points (of the primary grid). So
Uh is continuous over Ω. Since the restriction of Uh in each triangular element
T is in H1 (T ) and Uh takes zero value on the boundary Γ of Ω, then Uh is in
H1

0 (Ω). �



86 A. Njifenjou and I.M. Nguena

4 Numerical Experiments

In this section, we present some numerical results following two purposes.
The first one is to compare our MPFA solution with the one found in the
literature concerning a real-life problem, namely the Andra Couplex 1. The
second objective is to compare our MPFA solution with the one given by
the so-called MPFA O-method (see [1]).

4.1 The Andra Couplex 1 Test Case [9]

This Andra Couplex test case consists to compute a simplified 2D far field
model used in nuclear waste management simulation. From the mathematical
point of view, one should solve a system of an elliptic equation (hydrody-
namic problem) and a hyperbolic equation (transport problem, with a very
concentrated nature of the source). We should focus in what follows on the
hydrodynamic problem for testing our MPFA formulation.

4.1.1 Preliminaries

The repository lies at a depth of 450 m (meters) inside a clay layer which has
above it a layer of limestone and a layer of marl and below it is a layer of
dogger limestone. The water flows slowly (creeping flow) through these porous
media and convects the radioactive materials once the containers leak. There
is also a dilution effect which in mathematical terms is similar to diffusion.
The problem involves three main technical difficulties:

(1) The diffusion constants are very different from one layer to another (max-
imal ratio equal to 8× 106).

(2) There is a large contrast between the width (25,000 m) and the height
(695 m).

(3) The imposed boundary conditions create a flow which is neither parallel
nor orthogonal to layers interfaces.

4.1.2 The Geometry

In this First test case, the computation is restricted to a 2D section of the
disposal site. The geometry is summarized in Fig. 7.

4.1.3 The Flow Computation

The permeability tensor D, assumed constant in each layer is given in Table 1
below.
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Fig. 7. Geometry of Andra Couplex 1 computational domain

Marl Limestone Clay Dogger
K (m/year) 3.1536e-5 6.3072 3.1536e-6 25.2288

Table 1. Permeability tensor in the four rock layers

On the boundary, conditions are:
H = 289 on {25000} × (0, 200),
H = 310 on {25000} × (350, 595),
H = 180 + 160x/25000 on (0, 25000)× {695},
H = 200 on {0} × (295, 595),
H = 286 on {0} × (0, 200),
∂H
∂n = 0 elsewhere.

Fig. 8. Pressure computation. Left : Mixed hybrid finite element solution from [9] on
a relatively fine grid (54,432 elements involving 130,000 unknowns). Right : MPFA
solution on a relatively coarse grid (23,280 elements corresponding to 34,500 un-
knowns)

Let us mention that the quadruple precision were utilized when imple-
menting the mixed hybrid finite element (MHFE) as this method did not
converge for usual linear solver performing with the double precision (Fig. 8).
The proposed MPFA combined with linear solver has displayed a capability
to yield satisfactory results based upon double precision (Fig. 9). The MPFA
methods remain challenging even when they are implemented on coarse grids
for problems with strong discontinuities (Fig. 10).



88 A. Njifenjou and I.M. Nguena

Fig. 9. (a) Log of L∞-error for the proposed method, with the convergence rate
which is equal to 2.69. (b) Log of L2 -error for the proposed method, with the
convergence rate which is equal to 2.55

Fig. 10. (a) Log of L∞-error for the O-method, with the convergence rate which
is equal to 1.22. (b) Log of L2-error for the O-method, with the convergence rate
which is equal to 2

4.2 Second Test Problem

We consider the following elliptic problem governed by a full matrix of diffu-
sion:

−div(D grad u) = f in ]0, 1[2 with D =
[

1 10
10 1000

]

which possesses the exact solution ϕ (x1, x2) = sin(πx1) sin(πx2).

5 Conclusions and Perspectives

We have presented in this work a new MPFA method for addressing flow
problems in anisotropic nonhomogeneous media. This method has displayed a
large capability for computing, with a satisfactory accuracy, the flows within
nonhomogeneous media involving strong anisotropies (see numerical experi-
ments of 5). A numerical experiment have been performed with an example
extracted from the literature, namely the Andra Couplex 1 test case.

Theoretical investigations concerning the stability and the convergence of
this method have been done for rectangular grids (see [13] and [11]). We have
been investigating the case of unstructured irregular grids.
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Analysis of a New MPFA Formulation for Flow
Problems in Geologically Complex Media

A. Njifenjou and M. Mbehou

Summary. This work analyzes some mathematical aspects of a new Multi-Point
Flux Approximation (MPFA) formulation for flow problems. This MPFA formula-
tion has been developed in [12, 13] for quadrilateral grids and [10] for unstructured
grids. Our MPFA formulation displays capabilities for handling flow problems in
geologically complex media modelled by spatially varying full permeability tensor.
However in this work, we focus our attention on the case of anisotropic homoge-
neous porous media. In this framework, the proposed MPFA formulation leads to
a well-posed discrete problem which is a linear system whose associated matrix is
symmetric and positive definite, even if the permeability tensor governing the flow is
only positive definite. Following the spirit of the finite element theory, we have intro-
duced the concept of globally continuous and piecewise linear approximate solution.
The convergence analysis of this solution is strongly based upon another concept:
the weak approximate solution. Stability and convergence results for the weak ap-
proximate solution are proven for L2- and L∞-norm, and for a discrete energy norm
as well. These results permit to prove some error estimates related to the globally
continuous and piecewise linear approximate solution.

1 Introduction and the Model Problem

Due to their local mass conservation properties, their flexibility for complex
geometries and the flux continuity, the mixed finite element (MFE) methods
have been widely used for modelling subsurface flow problems. Note that the
local mass conservation and the flux continuity ensure the global mass con-
servation. Moreover, the MFE methods allow an accurate computation of the
flow velocity and also handle well discontinuous coefficients. A computational
drawback of these methods is the need to solve an algebraic system of saddle
point type.

The multipoint flux approximation (MPFA) methods (see for instance
[1, 2, 6, 13]) have been developed these last years, as finite volume methods
of new generation for addressing flow problems governed by full permeability
tensors, over distorted meshes. The MPFA methods combine the advantages
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of the MFE methods, i.e., local and global mass conservation principles, accu-
racy for rough grids and discontinuous full permeability tensors. In addition,
the gridding flexibility makes the MPFA methods more competitive than the
classical finite volume methods. Several MPFA methods lead to cell-centered
stencil, for the pressures, which is relatively easy to solve. However a recent
variant of MPFA (see [12, 13]) giving higher order approximate solutions,
leads to cell-centered and vertex-centered stencils for the pressures. Since a
variational formulation of MPFA methods is an ongoing research issue (at our
knowledge), there exist only limited theoretical results in the literature con-
cerning the well posedness and convergence of these methods (see [4, 7, 8, 13]).

This work is a contribution to the theoretical analysis of the MPFA formu-
lation. It is also the continuation of the work done in [13] and is enriched with
the concept of globally continuous and locally linear approximate solution
following the spirit of the finite element theory [15].

For presenting our MPFA finite volume formulation, let us consider the
2D flow problem consisting in finding a function U (i.e. the pressure) which
satisfies the following partial differential equation associated with a Dirichlet
boundary condition:

−div(D grad U) = f in Ω (1)

U = 0 on Γ (2)

where f is a given function (commonly called source/sink term), Ω is a
given open square domain and Γ denotes its boundary. D = D(x), with
x = (x1, x2) ∈ Ω, is a full symmetric matrix describing the spatial variation
of the permeability tensor which satisfies the uniform ellipticity i.e.

∃γmin, γmax ∈ R
∗
+ such that ∀ξ ∈ R

2, ξ 
= 0

γmin |ξ|2 ≤ ξTD(x)ξ ≤ γmax |ξ|2 a.e. in Ω
(3)

where | . | denotes the euclidian norm in R
2, Dij(.) are the components of

D and are L∞ (Ω) functions.
This paper is organized as follows. The second section deals with an MPFA

finite volume formulation of the model problem. Within this section we bring
an affirmative answer to the well posedness issue concerning the discrete prob-
lem. In the third section we introduce a notion of approximate solution in
terms of globally continuous and piecewise linear functions. In the fourth sec-
tion, we investigate the theoretical properties (stability and error estimates
in convenient discrete norms) for the solution of the discrete problem. Based
upon the discrete solution properties, convergence results are given in terms
of error estimates for the approximate solution in the fifth section. The sixth
section is devoted to conclusions and perspectives of this work.
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2 An MPFA Formulation

In what follows we are dealing with the case of flow phenomena governed by
piecewise constant full permeability tensors. This assumption is not restrictive.
Indeed when the permeability tensor is spatially varying, Petroleum Engineers
looks for its mean value over each grid-block from the primary grid. Therefore
from the practical point of view this assumption is very realistic (see [5, 14]
for instance).

2.1 The Discrete Problem

Our purpose in this section is to describe the matrix form of our MPFA finite
volume formulation for (1)–(2). Let us suppose that the spatial domain Ω
is ]0, 1[×]0, 1[. However the method applies to bounded polygonal domains as
shown in [10]. We assume that Ω is covered with a square primary grid denoted
P whose size is h = 1

N , where N is a given positive integer. On the other hand,

we denote Kij the grid block defined by: Kij =
[
x
i− 1

2
1 , x

i+ 1
2

1

]
×
[
x
j− 1

2
2 , x

j+ 1
2

2

]
where xi+

1
2

1 =xi−
1
2

1 +h, xj+
1
2

2 =xj−
1
2

2 +h, for i, j=1, . . . , N with x
1
2
1 =x

1
2
2 =0.

Recall that L2 (Ω) is the space (of classes) of functions v such that
∫
Ω
v2dx

is a finite quantity, and for any positive integer m the so-called Sobolev space
Hm (Ω) is defined by:

Hm (Ω) =
{
v ∈ L2 (Ω) ;

∂|α|v

∂xα1
1 ∂x

α2
2

∈ L2 (Ω) , with ∀0 ≤ |α| = α1 + α2 ≤ m
}

where the partial derivatives are taken in the distributional sense. We de-
note ‖·‖m,Ω the standard norm of Hm (Ω) and we adopt the convention that
H0 (Ω) = L2 (Ω), which implies that ‖·‖0,Ω = ‖·‖L2(Ω).

From the boundary-value problem theory (see for instance [3]), the system
(1)–(2) possesses a unique solution in H2 (Ω) under the assumption (3) and
the condition f ∈ L2 (Ω).

In what follows we assume that the solution of (1)–(2) is sufficiently
regular for our purpose (more precisions will be given later about the
solution regularity). We should look for a finite volume formulation
of the problem (1)–(2) in terms of a linear system which is derived
from the elimination of auxiliary unknowns, namely interface pressures,
from flux balance equations over grid-blocks. This linear system involves
{ui,j}1≤i,j≤N and

{
ui+ 1

2 ,j+
1
2

}
1≤i,j≤N−1

as discrete unknowns which are

expected to be reasonable approximations of {ϕi,j}1≤i,j≤N (cell center pres-

sures) and
{
ϕi+ 1

2 ,j+
1
2

}
1≤i,j≤N−1

(cell corner pressures) respectively, where

ϕi,j = ϕ
(
xi1, x

j
2

)
and ϕi+ 1

2 ,j+
1
2

= ϕ
(
x
i+ 1

2
1 , x

j+ 1
2

2

)
, with:
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xi1 =
x
i− 1

2
1 + xi+

1
2

1

2
, xj2 =

x
j− 1

2
2 + xj+

1
2

2

2
1 ≤ i , j ≤ N (4)

We also adopt the following conventions:

x01 = x
1
2
1 , x

N+1
1 = xN+ 1

2
1 , x02 = x

1
2
2 , x

N+1
2 = xN+ 1

2
2 (5)

It is easy to check that the exact solution ϕ satisfy the following systems
(see [9]):

2Dij
22D

ij+1
22

Dij
22+D

ij+1
22

[ϕi,j − ϕi,j+1] +
(
Dij

22D
ij+1
21 +Dij+1

22 Dij
21

Dij
22+D

ij+1
22

) [
ϕi− 1

2 ,j+
1
2
− ϕi+ 1

2 ,j+
1
2

]

+ 2Dij
22D

ij−1
22

Dij
22+D

ij−1
22

[ϕi,j − ϕi,j−1] +
(
Dij

22D
ij−1
12 +Dij−1

22 Dij
12

Dij
22+D

ij−1
22

)[
ϕi+ 1

2 ,j− 1
2
− ϕi− 1

2 ,j− 1
2

]

+ 2Dij
11D

i+1j
11

Dij
11+D

i+1j
11

[ϕi,j − ϕi+1,j] +
(
Dij

11D
i+1j
21 +Di+1j

11 Dij
21

Dij
11+D

i+1j
11

)[
ϕi+ 1

2 ,j− 1
2
− ϕi+ 1

2 ,j+
1
2

]

+ 2Dij
11D

i−1j
11

Dij
11+D

i−1j
11

[ϕi,j − ϕi−1,j] +
(
Dij

11D
i−1j
12 +Di−1j

11 Dij
12

Dij
11+D

i−1j
11

)[
ϕi− 1

2 ,j+
1
2
− ϕi+ 1

2 ,j+
1
2

]
≈
∫
Kij
f(x)dx ∀1 ≤ i, j ≤ N

(6)

(
Dij+1

11 Di+1j+1
21 +Di+1j+1

11 Dij+1
21

Dij+1
11 +Di+1j+1

11

)
[ϕi,j+1 − ϕi+1,j+1]

+
(

(Di+1j+1
12 −Dij+1

12 )(Dij+1
21 −Di+1j+1

21 )
2(Dij+1

11 +Di+1j+1
11 ) + Dij+1

22 +Di+1j+1
22

2

)[
ϕi+ 1

2 ,j+
1
2
− ϕi+ 1

2 ,j+
3
2

]

+
(
Di+1j

11 Dij
21+D

ij
11D

i+1j
21

Dij
11+D

i+1j
11

)
[ϕi+1,j − ϕi,j ]

+
(

(Di+1j
12 −Dij

12)(Dij
21−D

i+1j
21 )

2(Dij
11+D

i+1j
11 ) + Dij

22+D
i+1j
22

2

)[
ϕi+ 1

2 ,j+
1
2
− ϕi+ 1

2 ,j− 1
2

]

+
(
Di+1j

22 Di+1j+1
12 +Di+1j+1

22 Di+1j
12

Di+1j
22 +Di+1j+1

22

)
[ϕi+1,j − ϕi+1,j+1]

+
(

(Di+1j+1
21 −Di+1j

21 )(Di+1j
12 −Di+1j+1

12 )
2(Di+1j

22 +Di+1j+1
22 ) + Di+1j

11 +Di+1j+1
11

2

)[
ϕi+ 1

2 ,j+
1
2
− ϕi+ 3

2 ,j+
1
2

]

+
(
Dij+1

22 Dij
12+D

ij
22D

ij+1
12

Di+1j
22 +Di+1j+1

22

)
[ϕi,j+1 − ϕi,j ]

+
(

(Dij+1
21 −Dij

21)(Dij
12−D

ij+1
12 )

2(Dij
22+D

ij+1
22 ) + Dij

11+D
ij+1
11

2

)[
ϕi+ 1

2 ,j+
1
2
− ϕi− 1

2 ,j+
1
2

]
≈
∫
K

i+ 1
2 ,j+ 1

2

f(x)dx ∀ 1 ≤ i, j ≤ N − 1

(7)
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where we have set

ϕi+ 1
2 ,

1
2

= ϕi+ 1
2 ,N+ 1

2
= ϕ 1

2 ,j+
1
2

= ϕN+ 1
2 ,j+

1
2

= 0 ∀0 ≤ i, j ≤ N (8)

and

ϕi,0 = ϕ0,j = ϕi,N+1 = ϕN+1,j = 0 ∀1 ≤ i, j ≤ N (9)

The discrete problem consists in finding {ui,j}1≤i,j≤N and{
ui+ 1

2 ,j+
1
2

}
1≤i,j≤N−1

, real quantities such that:

2Dij
22D

ij+1
22

Dij
22+D

ij+1
22

[ui,j − ui,j+1] +
(
Dij

22D
ij+1
21 +Dij+1

22 Dij
21

Dij
22+D

ij+1
22

)[
ui− 1

2 ,j+
1
2
− ui+ 1

2 ,j+
1
2

]

+ 2Dij
22D

ij−1
22

Dij
22+D

ij−1
22

[ui,j − ui,j−1] +
(
Dij

22D
ij−1
12 +Dij−1

22 Dij
12

Dij
22+D

ij−1
22

)[
ui+ 1

2 ,j− 1
2
− ui− 1

2 ,j− 1
2

]

+2Dij
11D

i+1j
11

Dij
11+D

i+1j
11

[ui,j − ui+1,j ]+
(
Dij

11D
i+1j
21 +Di+1j

11 Dij
21

Dij
11+D

i+1j
11

)[
ui+ 1

2 ,j− 1
2
− ui+ 1

2 ,j+
1
2

]

+ 2Dij
11D

i−1j
11

Dij
11+D

i−1j
11

[ui,j − ui−1,j ] +
(
Dij

11D
i−1j
12 +Di−1j

11 Dij
12

Dij
11+D

i−1j
11

)[
ui− 1

2 ,j+
1
2
− ui+ 1

2 ,j+
1
2

]
=
∫
Kij
f(x)dx ∀1 ≤ i, j ≤ N

(10)

(
Dij+1

11 Di+1j+1
21 +Di+1j+1

11 Dij+1
21

Dij+1
11 +Di+1j+1

11

)
[ui,j+1 − ui+1,j+1]

+
(

(Di+1j+1
12 −Dij+1

12 )(Dij+1
21 −Di+1j+1

21 )
2(Dij+1

11 +Di+1j+1
11 ) + Dij+1

22 +Di+1j+1
22

2

)[
ui+ 1

2 ,j+
1
2
− ui+ 1

2 ,j+
3
2

]

+
(
Di+1j

11 Dij
21+D

ij
11D

i+1j
21

Dij
11+D

i+1j
11

)
[ui+1,j − ui,j ]

+
(

(Di+1j
12 −Dij

12)(Dij
21−D

i+1j
21 )

2(Dij
11+D

i+1j
11 ) + Dij

22+D
i+1j
22

2

)[
ui+ 1

2 ,j+
1
2
− ui+ 1

2 ,j− 1
2

]

+
(
Di+1j

22 Di+1j+1
12 +Di+1j+1

22 Di+1j
12

Di+1j
22 +Di+1j+1

22

)
[ui+1,j − ui+1,j+1]

+
(

(Di+1j+1
21 −Di+1j

21 )(Di+1j
12 −Di+1j+1

12 )
2(Di+1j

22 +Di+1j+1
22 ) + Di+1j

11 +Di+1j+1
11

2

)[
ui+ 1

2 ,j+
1
2
− ui+ 3

2 ,j+
1
2

]
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+
(
Dij+1

22 Dij
12+D

ij
22D

ij+1
12

Di+1j
22 +Di+1j+1

22

)
[ui,j+1 − ui,j ]

+
(

(Dij+1
21 −Dij

21)(Dij
12−D

ij+1
12 )

2(Dij
22+D

ij+1
22 ) + Dij

11+D
ij+1
11

2

)[
ui+ 1

2 ,j+
1
2
− ui− 1

2 ,j+
1
2

]
=

∫
K

i+ 1
2 ,j+ 1

2

f(x)dx ∀1 ≤ i, j ≤ N − 1

(11)

where we have set

ui+ 1
2 ,

1
2

= ui+ 1
2 ,N+ 1

2
= u 1

2 ,j+
1
2

= uN+ 1
2 ,j+

1
2

= 0 ∀ 0 ≤ i, j ≤ N (12)

and

ui,0 = u0,j = ui,N+1 = uN+1,j = 0 ∀ 1 ≤ i, j ≤ N (13)

If the preceding discrete problem gets a unique solution, one can deduce
the approximate values of the potential at the midpoints of interfaces using the
following relations which expresses the flux continuity at grid-block interfaces.
For 0 ≤ i ≤ N and 1 ≤ j ≤ N :

ui+ 1
2 ,j

= 1

2(Di,j
11 +Di+1,j

11 )

{
2Di,j11 uij + 2Di+1,j

11 ui+1,j

+
[
Di+1,j

12 −Di,j12

] [
ui+ 1

2 ,j+
1
2
− ui+ 1

2 ,j− 1
2

]} (14)

For 1 ≤ i ≤ N and 0 ≤ j ≤ N :

ui,j+ 1
2

= 1

2(Di,j
22 +Di,j+1

22 )

{
2Di,j22 uij + 2Di,j+1

22 ui,j+1

+
[
Di,j+1

21 −Di,j21

] [
ui+ 1

2 ,j+
1
2
− ui− 1

2 ,j+
1
2

]} (15)

Therefore, one can deduce the fluxes over the grid-block interfaces from the
following relations

qi+ 1
2 ,j

= Dij12
[
ui+ 1

2 ,j− 1
2
− ui+ 1

2 ,j

]
+ 2Dij11

[
uij − ui+ 1

2 ,j

]
+Dij12

[
ui+ 1

2 ,j
− ui+ 1

2 ,j+
1
2

] (16)

qi,j+ 1
2

= −Dij21
[
ui+ 1

2 ,j+
1
2
− ui,j+ 1

2

]
+ 2Dij22

[
uij − ui,j+ 1

2

]
−Dij21

[
ui,j+ 1

2
− ui− 1

2 ,j+
1
2

] (17)
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2.2 Existence and Uniqueness for a Solution of the Discrete
Problem

We are going to deal now with the existence and uniqueness of a solution
for the discrete problem (10)–(11). Before giving the two main results of this
subsection, let us shortly comment about this discrete problem. Its matrix
form may be expressed as follows:(

A B
BT C

)(
Ucc
Uvc

)
=
(
Fcc
Fvc

)
(18)

where we have set:

Ucc = {ui,j}1≤i,j≤N and Uvc =
{
ui+ 1

2 ,j+
1
2

}
1≤i,j≤N−1

(19)

and where:
Fcc is a sub-vector with N2 components defined by the right hand side of (10)
only as we account with (12) and (13).
Fvc is a sub-vector with (N − 1)2 components defined by the right hand

side of (11) only as we account with (12) and (13).
A is a N×N symmetric positive definite matrix, associated to the classical

grid-centered finite volume when D is diagonal i.e. D12 = D21 = 0.
C is a (N − 1) × (N − 1) symmetric positive definite matrix, associated

with the classical vertex-centered finite volume when D is diagonal matrix.
B is a N × (N − 1) matrix and BT is its transpose.
Let us give now the two main results of this subsection.

Proposition 2.1. The discrete problem consisting to find {ui,j}1≤i,j≤N and{
ui+ 1

2 ,j+
1
2

}
1≤i,j≤N−1

such that the equations (10)–(11) are satisfied under the

conditions (12) and (13), possesses a unique solution.

Proposition 2.2. The matrix
(
A B
BT C

)
associated with the discrete problem

(10)–(11) is symmetric and positive definite.

The proof of Proposition 2.1 and 2.2, can be found in [9].

3 The Approximate Solution in Terms of Piecewise
Linear Function

Solving the discrete problem (10)–(11) leads to determining all the discrete
unknowns at grid-block centers and grid-block corners (with respect to the
primary grid). In what follows, we make use of the simplified notation um
representing either uij , ui+ 1

2 j+
1
2
, ui+ 1

2 j
or uij+ 1

2
.
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Fig. 1. A (primary) grid block divided into four triangular elements T for a piece-
wise linear approximation of the solution. The symbol • represents a degree of
freedom (which is a nodal value) of the approximate solution over triangular elements

We start by dividing each grid-block (of the primary grid P) into four
triangular elements, whose generic name is T , constructed by joining each
grid-block center to the corresponding grid-block corners (see Fig. 1). By doing
so, one generates over Ω a new grid denoted T . Let UhT be the piecewise
linear approximate solution associated with the new grid T . The quantities
um actually correspond here to the values of UhT at grid-block centers and
grid-block corners. Thus these quantities satisfy the following relation

um = UhT (x(m))

where x(m) is a node i.e. a grid-block center or a grid-block corner.

Definition 3.1. Let x(i) , x(j) and x(k) denote the vertices of a triangular
element T ∈ T . The approximate solution UhT of the flow problem (1)–(2) is
defined in T as follows:

UhT (x) = α · (x−x(i)) + ui

where x = (x1 , x2)
t, α = (α1 , α2)

t, x(i) = (x(i)
1
, x(i)

2
)t and ui = Uh(x(i)), with

(., .)t denoting the transposition operator. The components of the vector α are
easily calculated due to the fact that uj = UhT (x(j)) and uk = UhT (x(k)) are
given (from the solution of the discrete problem).

Proposition 3.2. The approximate solution UhT is a continuous function in
Ω (closure of Ω). Moreover UhT belongs to the space H1

0 (Ω).

Before carrying out the proof of this proposition, let us recall that H1
0 (Ω)

is defined as follows:

H1
0 (Ω) =

{
v ∈ H1(Ω); v = 0 on Γ

}
(20)

The mapping

v �−→
[∫

Ω

|grad v|2 dx
] 1

2

(21)

defines the well-known H1
0 (Ω)− norm.
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Proof. One easily checks that UhT is continuous on grid-block boundaries. This
follows from the fact that UhT is linear in each triangular element T ∈ T and
is continuous at the corner points (of the primary grid). So UhT is continuous
over Ω. Since the restriction of UhT in each triangular element T is in H1 (T )
and UhT takes zero value on the boundary Γ of Ω, it is clear that UhT is in
H1

0 (Ω). �

4 Stability and Error Estimates for the Solution
of the Discrete Problem

4.1 Preliminaries: Notion of “Weak Approximate Solution”

We start by considering an additive grid L associated with the primary grid
(see Fig. 2). The elements of L are made of rhombi L completely imbedded
in Ω. We denote ΓL the boundary of L ∈ L and E(L) the space of functions
v defined almost everywhere in Ω such that v is constant in every L ∈ L and
zero elsewhere. This space is obviously non-empty since it contains the null
function.

Let us endow E(L) with the following discrete energy norm. For all v ∈
E(L) we set:

‖v‖1,h =

[∑
s∈S

(∆sv)

] 1
2

(22)

where

(∆sv) =
∑

L, K∈L such that
ΓK∩ΓL={s}

|vL − vK |2 (23)

and where S is the set of vertices.
Note that a vertex s ∈ S could belong to the boundary Γ of the domain

Ω. In this case, there exists a unique element L of L such that s belongs to
the boundary ΓL of L. It is therefore natural to define (∆sv) in this case by

Fig. 2. An example of grid L made of lozenges associated with a primary rectangular
grid
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(∆sv) = |vL|2 . The norm defined by (22) could be viewed as a discrete version
of the classical H1

0 (Ω) norm.
Let us introduce the space

C0

(
Ω
)

= {v : Ω −→ R is continuous, and v = 0 on Γ}
and the following operator:

Π : C0

(
Ω
)
−→ E (L)

v �→ Πv

with:

[Πv] (x) =

{
v(x

L
), if x ∈ Int(L), withL ∈ L

0 elsewhere

where L ∈ L and where x
L

= (xL
1
, xL

2
) are the coordinates of the center of L.

Since the approximate solution Uh of the diffusion problem (1)–(2) is in
C0

(
Ω
)

(see Subsection 3.2 for the definition of Uh), we have:

[ΠUh] (x) =

{
UL, if x ∈ Int(L), with L ∈ L

0 elsewhere
(24)

Definition 4.1. Let v be a function of E(L). v|Ω is a weak approximate solu-
tion for the diffusion problem (1)–(2) if there exists an approximate solution
V of (1)–(2) in the sense of Definition 3.1 such that v = ΠV .

Remark 4.2. According to this definition, ΠUhT , is a weak approximate so-
lutions of (1)–(2). Moreover it is denoted Uh in the sequel for the sake of
simplicity of notations.

Note that UL represents ui,j or ui+ 1
2 ,j+

1
2

depending on whether x
L

is a
grid-block center point or a grid-block corner from the primary grid.

4.2 Stability of the Weak Approximate Solution

We are going to prove here the stability of the weak approximate solution in
the sense of the discrete energy norm (22). The main ingredient for the proof
of this result is a discrete version of the Poincaré inequality which reads as
follows.

Lemma 4.3. (discrete version of Poincaré inequality)
There exists a strictly positive number P such that

‖v‖L2(Ω) ≤ P ‖v‖1,h ∀ v ∈ E(L)

where we have set

‖v‖L2(Ω) =
(∫

Ω

v2dx

) 1
2

Proof. See [9]. �
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Proposition 4.4. (Stability result)
The weak approximate solution uh of the diffusion problem (1)–(2) satisfies
the following inequality:

‖uh‖1,h ≤ C ‖f‖L2(Ω)

where C is a strictly positive real number not depending on the spatial dis-
cretization.

For the proof of this proposition one may see [9].

Remark 4.5. This stability result implies the L2−stability of the weak approx-
imate solution. This follows from Lemma 4.3.

4.3 Error Estimates for the Weak Approximate Solution

Let us define a function εh almost everywhere in R
2 in the following way:

εh (x) =
{
εL if x ∈ Int(L)

0 elsewhere with L ∈ L (25)

where we have set εL = ϕL−uL for all L ∈ L. Note that the element L of the
additive mesh L is necessary centered on a point whose cartesian coordinates
are of the form

(
xi1, x

j
2

)
or
(
x
i+ 1

2
1 , x

j+ 1
2

2

)
. εL is the generic name for εi,j or

εi+ 1
2 ,j+

1
2
.

One can check easily that the following quantities {εi, j}1≤ i, j≤ N and{
εi+ 1

2 , j+
1
2

}
1≤ i, j≤N−1

are a solution of a discrete problem of the form (10)–

(13). Therefore,

2Dij
22D

ij+1
22

Dij
22+D

ij+1
22

[εi,j − εi,j+1] + Dij
22D

ij+1
21 +Dij+1

22 Dij
21

Dij
22+D

ij+1
22

[
εi− 1

2 ,j+
1
2
− εi+ 1

2 ,j+
1
2

]

+ 2Dij
22D

ij−1
22

Dij
22+D

ij−1
22

[εi,j − εi,j−1] + Dij
22D

ij−1
12 +Dij−1

22 Dij
12

Dij
22+D

ij−1
22

[
εi+ 1

2 ,j− 1
2
− εi− 1

2 ,j− 1
2

]

+ 2Dij
11D

i+1j
11

Dij
11+D

i+1j
11

[εi,j − εi+1,j ]+
Dij

11D
i+1j
21 +Di+1j

11 Dij
21

Dij
11+D

i+1j
11

[
εi+ 1

2 ,j− 1
2
− εi+ 1

2 ,j+
1
2

]

+ 2Dij
11D

i−1j
11

Dij
11+D

i−1j
11

[εi,j − εi−1,j ] + Dij
11D

i−1j
12 +Di−1j

11 Dij
12

Dij
11+D

i−1j
11

[
εi− 1

2 ,j+
1
2
− εi+ 1

2 ,j+
1
2

]
=

∑
e∈Ei,j

hRei,j ∀ 1 ≤ i, j ≤ N

(26)
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Dij+1

11 Di+1j+1
21 +Di+1j+1

11 Dij+1
21

Dij+1
11 +Di+1j+1

11

)
[εi,j+1 − εi+1,j+1]

+
(

(Di+1j+1
12 −Dij+1

12 )(Dij+1
21 −Di+1j+1

21 )
2(Dij+1

11 +Di+1j+1
11 ) + Dij+1

22 +Di+1j+1
22

2

)[
εi+ 1

2 ,j+
1
2
− εi+ 1

2 ,j+
3
2

]

+
(
Di+1j

11 Dij
21+D

ij
11D

i+1j
21

Dij
11+D

i+1j
11

)
[εi+1,j − εi,j ]

+
(

(Di+1j
12 −Dij

12)(Dij
21−D

i+1j
21 )

2(Dij
11+D

i+1j
11 ) + Dij

22+D
i+1j
22

2

)[
εi+ 1

2 ,j+
1
2
− εi+ 1

2 ,j− 1
2

]

+
(
Di+1j

22 Di+1j+1
12 +Di+1j+1

22 Di+1j
12

Di+1j
22 +Di+1j+1

22

)
[εi+1,j − εi+1,j+1]

+
(
(Di+1j+1

21 −Di+1j
21 )(Di+1j

12 −Di+1j+1
12 )

2(Di+1j
22 +Di+1j+1

22 ) + Di+1j
11 +Di+1j+1

11
2

)[
εi+ 1

2 ,j+
1
2
− εi+ 3

2 ,j+
1
2

]

+
(
Dij+1

22 Dij
12+D

ij
22D

ij+1
12

Di+1j
22 +Di+1j+1

22

)
[εi,j+1 − εi,j ]

+
(

(Dij+1
21 −Dij

21)(Dij
12−D

ij+1
12 )

2(Dij
22+D

ij+1
22 ) + Dij

11+D
ij+1
11

2

)[
εi+ 1

2 ,j+
1
2
− εi− 1

2 ,j+
1
2

]
=

∑
e∈E

i+ 1
2 ,j+ 1

2

hRe
i+ 1

2 ,j+
1
2

∀ 1 ≤ i, j ≤ N − 1

(27)

with, due to (8), (9), (12) and (13)

εi+ 1
2 ,

1
2

= εi+ 1
2 ,N+ 1

2
= ε 1

2 ,j+
1
2

= εN+ 1
2 ,j+

1
2

= 0 ∀ 0 ≤ i, j ≤ N (28)

εi,0 = ε0,j = εi,N+1 = εN+1,j = 0 ∀ 1 ≤ i, j ≤ N (29)

We have the following result.

Theorem 4.6. (Error estimates in following norms: L∞(Ω) and ‖.‖1,h)
Assume that the permeability tensor D in the flow problem (1)–(2) is a sym-
metric positive definite full matrix with piecewise constant coefficients. Assume
also that the unique variational solution ϕ of (1)–(2) satisfies ϕ ∈ C2

(
Ω
)

and
consider the space E(L) made up of functions v defined almost everywhere in
Ω such that v is constant in each element of the mesh L (see Fig. 2 for the
definition of L) and zero elsewhere. Recall that Πϕ is a function of E( L)
defined as follows:

Πϕ|L(x) = ϕL ≡ value of ϕ at the center of L, for all L ∈ L

and (of course) zero elsewhere.
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Then, the function εh = ϕh − uh, where εh is defined by (25) and uh =
ΠUh, satisfies the following inequalities:

(i) ‖εh‖1,h ≤ Ch
(ii) ‖εh‖L∞(Ω) ≤ Ch

1
2

Moreover, if D is uniformly constant and the unique variational solution
ϕ of (1)–(2) lies in C3

(
Ω
)

then:

(i) ‖εh‖1,h ≤ Ch2

(ii) ‖εh‖L∞(Ω) ≤ Ch
3
2

where C represents miscellaneous strictly positive constants without depen-
dence on h.

The proof of this theorem can found in [9, 13]. From Lemma 4.3 (discrete
version of Poincaré inequality), one gets:

Corollary 4.7. (Error estimate in L2(Ω)− norm)
εh satisfies the following inequality
First case: D is piecewise constant and the unique variational solution ϕ

of (1)–(2) lies in C2
(
Ω
)
.

‖εh‖L2(Ω) ≤ Ch.

Second case: D is uniformly constant and the unique variational solution
ϕ of (1)–(2) belongs to C3

(
Ω
)
.

‖εh‖L2(Ω) ≤ Ch2.

where C represents miscellaneous strictly positive constants without depen-
dence on h.

5 Convergence Results

In what follows, C denotes miscellaneous constants without dependence on
h and Λ is the classical Lagrange interpolation operator associated with the
nodes of the grid T .

Let us carry out the error estimates for the approximate solution intro-
duced in the section 3. The notations introduced in the previous sections are
conserved here. In this connection, we recall that ϕ denotes the exact solution
of the boundary-value problem (1)–(2).

We give in this section the error estimates for the piecewise linear approx-
imate solution introduced in section 3.
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Proposition 5.1. First case: D is piecewise constant and the unique vari-
ational solution ϕ of (1)–(2) lies in C2

(
Ω
)
. Then the linear approximate

solution UhT satisfy the following inequality:∥∥ϕ − UhT ∥∥0,Ω
≤ C h

Second case: D is uniformly constant and the unique variational solution
ϕ of (1)–(2) is in C3

(
Ω
)
. Then the linear approximate solution UhT satisfy

the following inequalities: ∥∥ϕ − UhT ∥∥0,Ω
≤ C h2.

The proof of this proposition can be found in [9].

6 Conclusions and Perspectives

We have presented in this work the formulation of a MPFA finite volume
scheme for flow problems in anisotropic heterogeneous media. The well posed-
ness of the discrete problem was not an obvious issue and was solved affir-
matively. The stability and the convergence of the weak approximate solution
have been shown for L2 and L∞−norm in the one hand and in a discrete
energy norm in the other hand. It is also proven that the error estimates of
the weak approximate solution play a key role for the derivation of the error
estimates of the piecewise linear approximate solution introduced in the third
section.

The analysis of the presented MPFA finite volume method on unstructured
irregular meshes is our objective today as we have successfully implemented
it for such meshes.
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A Small Eddy Correction Algorithm
for the Primitive Equations of the Ocean

T. Tachim Medjo and R. Temam

Summary. Considering the interaction between the baroclinic and barotropic flows
and using the idea of the Newton iteration, a small eddy correction method is pro-
posed for approximating and numerically solving the primitive equations of the
ocean. We assume that the barotropic approximation to the solution is known. For-
mally applying the Newton iterative procedure to the baroclinic flow equation, we
then generate approximate systems. It is shown that the first step leads to the well
known quasi-geostrophic equations. The convergence analysis is presented and the
results show that the small eddy correction method can greatly improve the accuracy
of the quasi-geostrophic approximate solution. More precisely, we prove that the ap-
proximate system derived from the procedure converges to the primitive equations
of the ocean and we estimate the rate of convergence as a function of the aspect
ratio of the ocean. Some numerical simulations of a wind-driven circulation problem
are presented to illustrate the method.

1 Introduction

In dynamical systems theory the objective is to study the long-term behav-
ior of solutions of an evolution equation. When the equation is dissipative all
solutions converge as t �−→ ∞ to a complicated set A, the global attractor,
which may be a fractal set. This set embodies the large-time dynamics of
the equations, corresponding to all sorts of regimes, including turbulent ones.
Although this set may be fairly complicated, in general it has finite dimen-
sion, see e.g., [7, 23, 26]. Despite the considerable increase in the available
computing power during the past few years, the numerical approximation of
the global attractor remains a difficult task specially for important systems
such as the Navier–Stokes (NS) equations or the primitive equations (PEs)
of the ocean. For the NS flows, there are some approaches to deriving simpli-
fied behavioral laws for the smallest structure set in motion with the aim of
reducing the computational cost, see e.g., [4, 19]. In the nonlinear Galerkin
(NLG) method introduced in [19], the small scales are given as a function of
the large scales and the nonlinear interaction between the large and the small
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scales is only approximately modelled. In [11], the authors presented a small
eddy correction method for the 2D NS equations. It is shown that the first
step of this iterative method leads to the standard Galerkin method and the
second step yields the nonlinear Galerkin method.

Although the source of the extensive scale variability differs for the NS and
the PEs models (the scale variability in the NS system is mainly the result
of the nonlinear term, while the sources are more varied for the PEs model),
there exists an energy cascade that is similar for the two models, and for which
one can apply the main principle of description given by Charney [3].

Every mode undergoes constraints due to wind. Even for a fairly constant
wind, there is still an infinite number of modes stimulated by the boundary
conditions. These modes will exhibit different behaviors with respect to the
stimulations based on their position in the spectrum. They can be grouped
into three categories:

– At the largest scales, geophysical flows such as the ocean and the at-
mosphere are essentially two-dimensional (barotropic component). These
barotropic modes transmit their energy in the two following ways:
(1) At modes of greater dimension, through an inverse kinetic energy

cascade. The surplus energy is then dissipated by the boundary
conditions.

(2) At modes of smaller dimension, through an enstrophy barotropic cas-
cade.

– At the medium scales, we have the baroclinic modes. These modes will
redistribute their energy as a baroclinic energy cascade, thus transporting
the energy to the viscous dispersal area. This cascade is similar to the
energy cascade predicted by Kolmogorov for the Navier–Stokes system,
[4, 21].

– At the very small scales, the energy provided by the surface forces is
insufficient to oppose the viscous dispersion constraint.

Given the similarities with the NS system and inspired by the results ob-
tained for the 2D NS equations with the NLG method, we present in this
article a small eddy correction method for the PEs of the ocean. Consider-
ing the interaction between the baroclinic and barotropic flows and using the
idea of the Newton iteration, a small eddy correction method is proposed
for approximating and numerically solving the PEs of the ocean. We assume
that the barotropic approximation to the solution is known. Formally apply-
ing the Newton iterative procedure to the baroclinic flow equation, we then
generate approximate systems. It is shown that the first step leads to the well
known quasi-geostrophic equations. The convergence analysis is presented and
the results show that the small eddy correction method can greatly improve
the accuracy of the quasi-geostrophic approximate solution. More precisely,
we prove that the approximate system derived from the procedure converges
to the original PEs with a rate of convergence O(δ(3/2)

l

), where δ is the shape
ratio of the ocean and l is the number of small eddy iterations.
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The article is organized as follows. In Sect. 2, we recall the PEs of the
ocean and their mathematical setting. Section 3 is devoted to the existence
and uniqueness of strong solutions when the aspect ratio is small enough
and the initial condition and body forces satisfy some restrictive conditions.
For the latest results concerning the existence and uniqueness of solutions of
the primitive equations in space dimension 2 and 3, see [2, 14, 15] and the
review articles [22, 28]. For flows in shallow domains see [17] which however
does not apply here as the boundary conditions are different; also because
our approach here differs from that of [17] because the vertical height has
been normalized to 1, thus introducing the shape factor δ in the equations.
Note that the issues of existence and uniqueness of solutions are not our main
objective here and they are presented as a step toward the introduction of the
small-eddy algorithm. Section 4 presents the small eddy correction method
and studies its boundedness. Section 5 is devoted to the convergence of the
small eddy correction models to the PEs of the ocean as the aspect ratio
goes to zero. We derive an estimate on the rate of convergence as a power
of the aspect ratio of the ocean. Although the approach used here bear some
similarities with [11], there are several differences between the work of [11]
and the one presented here. First, our model is more complicated. In fact, the
PEs of the ocean possess some specific difficulties to circumvent, for instance
the nonlocal constraint (incompressible condition) and the integral expression
of the vertical velocity lead to a strong nonlinear term(∫ 0

z

divvds
)
∂v

∂z
. (1)

More importantly, in [11] the authors used the eigenvalues of the Stokes op-
erator to split the solution between the large and small scales, while in this
article the large scale is the depth average (barotropic mode) of the solu-
tion and the small scale is the deviation (baroclinic mode), a decomposition
commonly used in ocean modeling. To illustrate the method, some numerical
simulations are presented in the last section of this article. See also related
but different ideas on multilevel methods in [5, 17, 18].

2 A Navier–Stokes Type Equation and its Mathematical
Setting

2.1 Governing Equations

Throughout this article, we use ∆, ∇, div to denote the two-dimensional
gradient, Laplacian and divergence operators on the horizontal plane. The
nondimensional domain M occupied by the fluid is given by

M = O × (−h, 0), (2)
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where O ⊂ R2 is a smooth convex, bounded open set of R2 with boundary
∂O, and h > 0 is a constant.

The boundary of M consists of

∂M = Γi ∪ Γl ∪ Γb, (3)

where

Γi(z = 0) = upper boundary of the ocean (interface with air),
Γl = lateral boundary, i.e., Γl = ∂O × (−h, 0),
Γb(z = −h) = bottom of the ocean.

(4)

We first recall the set of equations which describe the motion and state of an
idealized ocean. In the nondimensional form, the equations read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t
− 1
Re1
∆u− 1

δ2Re2

∂2u
∂z2

+∇L(u) + fk0 × u+ (u · ∇)u

+W (u)∂u
∂z

+ grad p+ grad
∫ 0

z

ρds = F1,

div
∫ 0

−h
u dz = 0,

∂ρ
∂t
− 1
Rt1
∆ρ− 1

δ2Rt2

∂2ρ
∂z2

+ (u · ∇)ρ+W (u)∂ρ
∂z

= F2.

(5)

The boundary conditions are

∂u

∂z
= 0,

∂ρ

∂z
= 0 on Γi ∪ Γb, u = 0, ρ = 0 on Γl, (6)

and the initial conditions are

(u, ρ) = a = (a1, a2) at t = 0. (7)

In (5), the unknown functions are the horizontal velocity u = (u1, u2) and
the density ρ of the fluid. The constants Re1 = µ

L1U1
> 0, Re2 = ν

L1U1
> 0,

Rt1 = µT

L1U1
> 0 and Rt2 = νT

L1U1
> 0 are nondimensional Reynolds numbers,

δ = H1
L1

is the aspect ratio, p = p(x, y) is the surface pressure of the fluid, F1, F2

are the volume forces and k0 is the unit vector in the vertical direction. Here
U1 is the reference value for the horizontal velocity, L1 is the reference value
for the horizontal length scale, H1 is the reference value for the vertical length
scale, µ and ν are the effective molecular dissipations in the horizontal and
vertical directions, µT and νT reflect the heat diffusion [16–18].

The Coriolis parameter f is defined by f = f0 + βy, where β > 0, f0 > 0
are positive constants. The operator W is defined by

W (u) =
∫ 0

z

divuds, (8)

and it represents the vertical velocity of the fluid [16].
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The operator L is defined by

L(u) =
∫ 0

z

L1(u)ds, L1(u) = − 1
Re1
∆W (u)− 1

δ2Re2

∂2W (u)
∂z2

. (9)

Remark 2.1. Hereafter, for simplicity we will consider only homogeneous
boundary conditions and we will assume that the function τ0 in (5) is identi-
cally zero, that is τ0 = 0. Let us mention that with a boundary data of the form
τ0 = c sinπy that is commonly used in oceanography to simulate the double-
gyre phenomena [6, 8, 29], the boundary conditions in (5) present a disconti-
nuity on ∂O×{z = 0}. This discontinuity may affect the accuracy/stability of
the numerical schemes if special care is not taken. To overcome this problem,
it is common in oceanography to take τ0 = 0 and to compensate with a body
force F = g(z)τ0 in the momentum equations. The function g(z) is chosen
such that the forcing F is nonzero only on a thin layer from the surface of the
ocean, the goal being to reproduce the effect of the wind-stress on the ocean
circulation.

2.2 Mathematical Setting

In this section we first define the function spaces suitable for the mathematical
setting of (5), see [1] and [12, 16] for details. Let �n be the unit outward
normal vector to the boundary ∂O of the domain O. We denote by Hs(O)
(resp. Hs(M)), for s ∈ R, the Sobolev spaces constructed on L2(O) (resp.
L2(M)), and by Hs

0(O) (resp. Hs
0(M),) for s > 1/2, the closure of C∞

c (O)
(resp. C∞

c (M)) in Hs(O) (resp. Hs(M)), the space of infinitely differentiable
functions with compact support in O (resp. M).

The Velocity Function Spaces

Motivated by the boundary conditions for the velocity field, we define

V1 = {u ∈ (C∞(M))2; u = 0 in a neighborhood of Γl, W (u) ∈ H1
0 (M),∫ 0

−h
div udz = 0},

and denote by H1 (resp. V1) the closure of V1 in (L2(M))2 (resp. (H1(M))2).

The scalar product in H1 is denoted by 〈u, v〉 =
∫
M
u · vdM, that on V1

is denoted by

((u, v)) =
∫
M

(
∇u · ∇v +

∂u

∂z
· ∂v
∂z

)
dM

and the associated norms are denoted by | · |L2 and ‖ · ‖ respectively.
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We also equip V1 with the norm

‖u‖2w = ‖u‖2 + ‖W (u)‖2.

We will denote by P1 the orthogonal projector of the space (L2(M))2 onto
the space H1.

Throughout this article, we will use the notation

B1(u, v) = P1

(
(u · ∇)v +W (u)

∂v

∂z

)
, ∀u, v ∈ V1. (10)

For u, v ∈ V1, we set

a11(u, v) = 1
Re1
〈∇u,∇v〉+ 1

Re1
〈∇W (u),∇W (v)〉 ≡ 〈A11u, v〉,

a12(u, v) = 1
Re2

〈
∂u
∂z
, ∂v
∂z

〉
+ 1

Re2
〈divu,divv〉 ≡ 〈A21u, v〉,

e1(u, v) = 〈fk0 × u, v〉 ≡ 〈E1u, v〉,

a1 = a11 + a12, A1 = A11 +A12.

(11)

The operator A1 is the isomorphism from V1 onto the dual V ′
1 of V1 defined by:

〈A1u, v〉V ′
1 ,V1 = a1(u, v), ∀u, v ∈ V1,

where 〈·, ·〉V ′,V is the duality bracket between V ′
1 and V1. The operator A1 is

also a linear unbounded operator in H1 with domain D(A1) = (H2(M))2∩V1.
Let us recall (see [28]) that there exists a positive constant c such that

‖v‖H2(M) ≤ c|A1v|L2 , ∀v ∈ D(A1). (12)

Lemma 2.2. For all u, v ∈ D(A1) such that ∂u
∂z

= ∂v
∂z

= 0 on Γi∪Γb, we have

〈
−∇

∫ 0

z

∆W (u)ds, v
〉

= 〈∇W (u),∇W (v)〉,〈
−∇

∫ 0

z

∂2W (u)
∂z2

ds, v

〉
=
〈
∂W (u)
∂z

,
∂W (v)
∂z

〉
,

〈−∆u,A12v〉 =
1
Re2

〈
∂∇u
∂z
,
∂∇v
∂z

〉
+

1
Re2

〈∇divu,∇divv〉,

〈∇L(u), v〉 =
1
Re1

〈∇W (u),∇W (v)〉+
1

δ2Re2
〈divu, divv〉

=
1
Re1

〈∇W (u),∇W (v)〉

+
1

δ2Re2

〈
∂W (u)
∂z

,
∂W (v)
∂z

〉
.

(13)

Proof. See [28]. �
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Proposition 2.3. The following properties hold true

a1(u, u) ≥ α1‖u‖2w, ∀u ∈ V1,

〈B1(u, v), v〉 = 0, e1(u, u) = 0, ∀u, v ∈ V1,

|B1(u, v)|L2 ≤ c‖u‖w‖v‖
1
2 |A1v|

1
2
L2 , ∀u ∈ V1, v ∈ D(A1),

|B1(ū, v)|L2 ≤ c‖ū‖‖v‖ 1
2 |A1v|

1
2
L2 , ∀ū ∈MV1, v ∈ D(A1),

|〈B1(u, v), w〉| ≤ c‖u‖w‖v‖|w|
1
4
L2‖w‖

3
4 , ∀u, v, w ∈ V1,

|〈B1(u�, v̄), w�〉| ≤ c|u�|
1
2
L2‖u�‖

1
2 ‖v̄‖|w�|

1
2
L2‖w�‖

1
2 , ∀u�, w� ∈ NV1, v̄ ∈MV1,

(14)

where c > 0 and α1 > 0 are constants depending only on M, Re1 , Re2 and the
operators M and N are defined in (24)–(25) below.

Proof. The proof of (14)1 − (14)5 is given in [16], see also [28]. For (14)6, we
have∫

M
(u�∇v̄) · w�dM ≤

∫ 0

−1

|u�|L4(O)|∇v̄|L2(O)|w�|L4(O)dz

≤ c|∇v̄|L2(O)

∫ 0

−1

|u�|
1
2
L2(O)

|∇u�|
1
2
L2(O)

|w�|
1
2
L2(O)

|∇w�|
1
2
L2(O)

dz

≤ c|u�|
1
2
L2‖u�‖

1
2 ‖v̄‖|w�|

1
2
L2‖w�‖

1
2

(15)
and (14)6 follows. �

We also define the following function spaces

Ṽ1 = {u ∈ (C∞
0 (O))2; div u = 0},

and denote by H̃1 (resp. Ṽ1) the closure of Ṽ1 in (L2(O))2 (resp. (H1(O))2);
we have

H̃1 = {u ∈ (L2(O))2; div u = 0 in O, u · �n = 0 on ∂O}

and
Ṽ1 = {u ∈ (H1

0 (O))2; div u = 0 in O}.

The scalar product in H̃1 is denoted by 〈u, v〉 =
∫
O
u · vdxdy, that on Ṽ1 is

denoted by

((u, v)) =
∫
O
∇u · ∇vdxdy,

and the associated norms are also denoted by | · |L2 and ‖ · ‖, respectively.
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We denote by Ã1 the Stokes operator, defined as an isomorphism from Ṽ1
onto the dual Ṽ ′

1 of Ṽ1 such that, for u ∈ Ṽ1, Ã1u is defined by

〈Ã1u, v〉Ṽ ′
1 ,Ṽ1

= ((u, v)), ∀u, v ∈ Ṽ1,

where 〈·, ·〉Ṽ ′
1 ,Ṽ1

is the duality bracket between Ṽ ′
1 and Ṽ1. The operator Ã1

can also be seen as a linear unbounded operator in H1 with domain D(Ã1) =
(H2(O))2 ∩ Ṽ1 when ∂O is of class C2. We also denote by P2 the Leray–Hopf
projector, which is the orthogonal projector of the space (L2(O))2 onto the
space H̃1. The Stokes operator is related to P2 by

Ã1u = −P2(∆u), ∀u ∈ D(Ã1).

We also define the bilinear mapping B̃1 by

B̃1(u, v) = P2 ((u · ∇)v) , ∀u, v ∈ Ṽ1,

which maps Ṽ1 into Ṽ ′
1 .

The following properties hold true, [28].

〈B̃1(u, v), v〉 = 0, ∀u, v ∈ Ṽ1,

|B̃1(u, v)|L2 ≤ c|u|
1
2
L2 |Ã1u|

1
2
L2‖v‖, ∀u ∈ D(Ã1), v ∈ Ṽ1,

(16)

where c is a constant depending only on O.
We define the function spaces X1 and X̃1 by

X̃1 =
{
ū ∈ L2(0, T ;D(Ã1)),

dū

dt
∈ L2(0, T ; H̃1)

}
,

X1 =
{
u� ∈ L2(0, T ;D(A1)),

du�

dt
∈ L2(0, T ;H1)

}
.

The spaces X̃1 and X1 are endowed with the norms

‖ū‖X̃1
=

(
‖ū‖2

L2(0,T ;D(Ã1))
+
4444dūdt

44442

L2(0,T ;H̃1)

) 1
2

,

‖u�‖X1 =

(
‖u�‖2L2(0,T ;D(A1))

+
4444du�dt

4444
2

L2(0,T ;H1)

) 1
2

.

Let us recall that

X̃1 ⊂ C(0, T ; Ṽ1), X1 ⊂ C(0, T ;V1),

with continuous injections.
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The Density Function Spaces

We also define the following function spaces

V2 = {ρ ∈ C∞(M); ρ = 0 in a neighborhood of Γl, },

and denote by H2 (resp. V2) the closure of V2 in L2(M) (resp. H1(M)).

The scalar product in H2 is denoted by 〈ρ, φ〉 =
∫
M
ρ · φdM, that on V2

is denoted by

((ρ, φ)) =
∫
M

(
∇ρ · ∇φ+

∂ρ

∂z

∂φ

∂z

)
dM

and the associated norms are denoted by | · |L2 and ‖ · ‖, respectively.
Throughout this article, we will use the notation

B2(u, ρ) = (u · ∇)ρ+W (u)
∂ρ

∂z
, ∀u ∈ V1, ρ ∈ V2. (17)

For ρ, φ ∈ V2, we set

a21(ρ, φ) =
1
Rt1

〈∇ρ,∇φ〉 ≡ 〈A21ρ, φ〉,

a22(ρ, φ) =
1
Rt2

〈
∂ρ

∂z
,
∂φ

∂z

〉
≡ 〈A22ρ, φ〉,

Λ2ρ =
∫ 0

z

grad ρds,

a2 = a21 + a22, A2 = A21 +A22.

(18)

The operator A2 is the isomorphism from V2 onto the dual V ′
2 of V2 defined by:

〈A2ρ, φ〉V ′
2 ,V2 = a2(ρ, φ), ∀ρ, φ ∈ V2,

where 〈·, ·〉V ′,V is the duality bracket between V ′
2 and V2. The operator A2

is extended to H2 as a linear unbounded operator with domain D(A2) =
H2(M) ∩ V2. Let us recall that (see [28]) there exists a positive constant c
such that

‖φ‖H2(M) ≤ c|A2φ|L2 , ∀φ ∈ D(A2). (19)

Proposition 2.4. We have the following inequalities:

a2(ρ, ρ) ≥ α2‖ρ‖2, ∀ρ ∈ V2,
〈B2(u, ρ), ρ〉 = 0, ∀u ∈ V1, ρ ∈ V2,

|B2(u, ρ)|L2 ≤ c‖u‖w‖ρ‖
1
2 |A2ρ|

1
2
L2 , ∀u,∈ V1, ρ ∈ D(A2),

|B2(ū, ρ)|L2 ≤ c‖ū‖‖ρ‖ 1
2 |A2ρ|

1
2
L2 , ∀ū ∈MV1, ρ ∈ D(A2),
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|〈B2(u, ρ), φ〉| ≤ c‖u‖w‖ρ‖|φ|
1
4
L2‖φ‖

3
4 , ∀u ∈ V1, ρ, φ ∈ V2,

|〈B2(u�, ρ̄), φ�〉| ≤ c|u�|
1
2
L2‖u�‖

1
2 ‖ρ̄‖|φ�|

1
2
L2‖φ�‖

1
2 ,

∀u� ∈ NV1, φ� ∈ NV2, ρ̄ ∈MV2, (20)

where c > 0 and α2 > 0 are constants depending only on M, Rt1 , Rt2 .

Proof. The proof is similar to that of Proposition 2.2. �

We introduce the function space Ṽ2 = C∞
0 (O), and denote by H̃2 (resp. Ṽ2)

the closure of Ṽ2 in L2(O) (resp. H1(O)).

The scalar product in H̃2 is denoted by 〈ρ, φ〉 =
∫
O
ρ · φdxdy, that on Ṽ2

is denoted by

((ρ, φ)) =
∫
O
∇ρ · ∇φdxdy,

and the associated norms are also denoted by | · |L2 and ‖ · ‖, respectively.
We denote by Ã2 the operator defined as an isomorphism from Ṽ2 onto

the dual Ṽ ′
2 of Ṽ2 by: Ã2ρ is defined by

〈Ã1ρ, φ〉Ṽ ′
2 ,Ṽ2

= ((ρ, φ)), ∀ρ, φ ∈ Ṽ2,

where 〈·, ·〉Ṽ ′
2 ,Ṽ2

is the duality bracket between Ṽ ′
2 and Ṽ2. The operator Ã2

is extended to H̃2 as a linear unbounded operator with domain D(Ã2) =
H2(O) ∩ Ṽ2 when ∂O is of class C2.

We also define the bilinear mapping B̃2 by

B̃2(u, ρ) = (u · ∇)ρ, ∀u ∈ Ṽ1,∀ρ ∈ Ṽ2,

which maps Ṽ1 × Ṽ2 into Ṽ ′
1 × Ṽ ′

2 .
The following properties hold true, [28].

〈(u · ∇)v, v〉 = 0, ∀u, v ∈ Ṽ1,

|(u · ∇)v|L2 ≤ c|u|
1
2
L2 |Ã1u|

1
2
L2‖v‖, ∀u ∈ D(Ã1),∀v ∈ Ṽ1,

〈(u · ∇)ρ, ρ〉 = 0, ∀u ∈ Ṽ1,∀ρ ∈ Ṽ2,

|(u · ∇)ρ|L2 ≤ c|u|
1
2
L2 |Ã1u|

1
2
L2‖ρ‖, ∀u ∈ D(Ã2),∀ρ ∈ Ṽ2,

(21)

We also define the function spaces Y1 and Y2 by

Ỹ1 =
{
ρ̄ ∈ L2(0, T ;D(Ã2)),

dρ̄

dt
∈ L2(0, T ; H̃2)

}
,

Y1 =
{
ρ� ∈ L2(0, T ;D(A2)),

dρ�

dt
∈ L2(0, T ;H2)

}
.



Primitive Equations 117

The spaces Ỹ1 and Y1 are endowed with the norms

‖ρ̄‖Ỹ1
=

(
‖ρ̄‖2

L2(0,T ;D(Ã2))
+
4444dρ̄dt

44442

L2(0,T ;H̃2)

) 1
2

,

‖ρ�‖Y1 =

(
‖ρ�‖2L2(0,T ;D(A2))

+
4444dρ�dt

4444
2

L2(0,T ;H2)

) 1
2

.

Let us recall that

Ỹ1 ⊂ C(0, T ; Ṽ2), Y1 ⊂ C(0, T ;V2),

with continuous and dense injections.
Now we set V = V1×V2, H = H1×H2, X = X1×Y1, Ṽ = Ṽ1× Ṽ2, H̃ =

H̃1 × H̃2 and X̃ = X̃1 × Ỹ1.
For u = (u, ρ), v = (v, φ) ∈ V, we set

B(u,v) = (B1(u, v), B2(ρ, φ)) , A1u = (A11u,A21ρ),

A2u = (A12u,A22ρ), A = A1 +A2,

Eu = (E1u, 0), Λu = (Λ2ρ, 0).

(22)

For ū = (ū, ρ̄), v̄ = (v̄, φ̄) ∈ Ṽ , we set

B̃(ū, v̄) =
(
B̃1(ū, v̄), B̃2(ρ̄, φ̄)

)
, Ãū = (Ã1u, Ã2ρ). (23)

We also equip V with the norm

‖u‖2w = ‖u‖2w + ‖ρ‖2,

for u = (u, ρ) ∈ V.
Hereafter, if Z is any other Hilbert space, we will denote by 〈·, ·〉Z the

scalar product in Z and by ‖ · ‖Z the associated norm. We will also denote by
c a numerical constant that depends only on the data.

We will use the following notations. We define the operators M and N by

Mu =
1
h

∫ 0

−h
udz, Nu = u−Mu. (24)

For u ∈ L2(M), we set

ū =Mu, u� = Nu = u−Mu. (25)

In oceanography, the vertical average ū is referred to as the barotropic flow
and u� is called the baroclinic flow [8, 29]. The following properties hold.
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Proposition 2.5. The following properties hold true

〈ū, v�〉 = 0, ∀u, v ∈ L2(M),

|u�|L2 ≤ 2h
∣∣∣∣∂u∂z

∣∣∣∣
L2

, ∀u ∈ H1(M),

〈
∆ū, v�

〉
= 0, ∀u ∈ H2(M),∀v ∈ L2(M),〈

ū,∆v� + ∂2v�

∂z2

〉
= 0, ∀u ∈ L2(M),∀v ∈ H2(M)

satisfying ∂v
∂z = 0 on Γi ∪ Γb,〈

∆ū,∆v� + ∂2v�

∂z2

〉
= 0, ∀u ∈ H2(M),∀v ∈ H2(M)

satisfying
∂v

∂z
= 0 on Γi ∪ Γb.

(26)

Proof. See [25]. �

Hereafter, we assume that the initial data a = ā + a� and the forcing
F = F̄ + F � satisfy the following smallness assumptions. There exist positive
constants c1, c2 and k, with 0 < k < 1, such that

|∇ā|2L2 +
∫ T

0

|F̄ |2L2dt ≤ c1δk,
∣∣∣∣∂a�∂z

∣∣∣∣
2

L2

+
∣∣∣div a�

∣∣∣2
L2

=
∣∣∣∣∂a�∂z

∣∣∣∣
2

L2

+
∣∣∣∣∂W (a�)
∂z

∣∣∣∣
2

L2

≤ c2δ2. (27)

Remark 2.6. Although the conditions (27) impose some restrictions on the
data, they are still physically relevant as (27) is satisfied, for δ small enough,
by all data ā,a�, F̄ that are uniformly bounded (in L∞) with a bound of
order 1; more generally, if we denote by µ the uniform bound of all these
quantities, then (27) is satisfied for δ small, 0 < δ < δ∗, with δ∗ depending
on µ. Moreover, there is no restriction on the size of F � = NF. Furthermore,
since k < 1, (27)1 is less restrictive than (27)2.

Using the previous notations and setting u = (u, ρ), it is easy to check
that a weak formulation of (5) reads:

Find u ∈ L2(0, T ;V ) satisfying

du
dt

+A1u + δ−2A2u + Eu +B(u,u) + Λu = F in V ′, u(0) = a. (28)

Taking the vertical average of (28), we derive that the barotropic and baro-
clinic flows ū and u� satisfy the following functional equations:
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dū
dt

+ Ã1ū + Eū +MB(ū + u�, ū + u�) = F̄ in (MV )′, ū(0) = ā, (29)

du�

dt
+A1u�+δ−2A2u�+Eu�+NB2(ū+u�, ū+u�)+Λ(ū+u�) = F � in (NV )′,

u�(0) = a�. (30)

Let us note that MΛ(ū + u�) = 0 in (MV )′ and NΛ(ū + u�) = Λ(ū + u�) in
(NV )′.

2.2.1 The 2D Navier–Stokes

We first recall the following 2D Navier–Stokes equations (with a Coriolis force)
with an associated transport equation:⎧⎪⎪⎨

⎪⎪⎩
∂v̄

∂t
− 1
Re1
∆v̄ + fk0 × v̄ + (Ū · ∇)v̄ + (v̄ · ∇)Ū + (v̄ · ∇)v̄

+grad p = F̄1,
div v̄ = 0, v̄ = 0, on ∂O, v̄ = ā1 at t = 0,

(31)

⎧⎨
⎩
∂q̄

∂t
− 1
Rt1
∆q̄ + (Ū · ∇)q̄ + (v̄ · ∇)ψ̄ + (v̄ · ∇)q̄ = F̄2,

q̄ = 0, on ∂O, q̄ = ā2 at t = 0,
(32)

or equivalently

dv̄
dt

+ Ã1v̄ + Ev̄ + B̃(Ū, v̄) + B̃(v̄, Ū) + B̃(v̄, v̄) = F̄ in (MV )′, v̄(0) = ā,

(33)

where v̄ = (v̄, q̄), Ū = (Ū , ψ̄).
In (31), the unknown functions are the velocity v̄ and the pressure p. The

volume force F̄1 and the initial condition ā1 = Ma1 are given. The Coriolis
parameter f is given by f = f0 +βy, where f0 > 0, β > 0 are given constants.

In (32), the unknown function is the density q̄. The volume force F̄2 and
the initial condition ā2 = Ma2 are given. The scalar function ψ̄ is given and
v̄ = (v̄1, v̄2) is the solution to (31) (note that the systems (31) and (32) are
decoupled).

We assume the following regularity conditions:

F̄1,∈ L2(0, T ; H̃1), ∀ T > 0, ā1 ∈ Ṽ1, F̄2,∈ L2(0, T ; H̃2), ā2 ∈ Ṽ2,
Ū ∈ L∞(0, T ; Ṽ1) ∩ L2(0, T ;D(Ã1)), ψ̄ ∈ L∞(0, T ; Ṽ2) ∩ L2(0, T ;D(Ã2)).

(34)

The domain O occupied by the fluid is a smooth, convex and bounded open
set ofR2 with boundary ∂O. Finally the constants Re1 > 0, Rt1 > 0 are the
nondimensional Reynolds numbers.
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Proposition 2.7. The Navier–Stokes system (31) has a unique solution v̄ ∈
L2(0, T ;D(Ã1)) ∩ L∞(0, T ; Ṽ1). The system (32) has a unique solution q̄ ∈
L2(0, T ;D(Ã2)) ∩ L∞(0, T ; Ṽ2). Moreover, we have the estimates:

|v̄(t)|2L2 + |q̄(t)|2L2 ≤ eM0(t)

(
|ā|2L2 +

∫ T

0

|F̄ |2L2ds

)
,

∫ T

0

(
‖v̄‖2 + ‖q̄‖2

)
dt ≤ eM0(T )

(
|ā|2L2 +

∫ T

0

|F̄ |2L2ds

)
,

‖v̄(t)‖2 + ‖q̄(t)‖2 ≤ eM1(t)

(
‖ā‖2 +

∫ T

0

|F̄ |2L2ds

)
,

∫ T

0

(
|Ã1v̄|2L2 + |Ã2q̄|2L2

)
dt ≤ eM1(T )(‖ā‖2 +

∫ T

0

|F̄ |2L2ds),

(35)

where

M0(t) = c
∫ t

0

(
‖Ū‖2 + ‖ψ̄‖2

)
ds,

M1(t) = c
∫ t

0

(
|Ū |L2 |Ã1Ū |L2 + |ψ̄|L2 |Ã2ψ̄|L2

)
ds

+ e2M0(t)

(
|ā|2L2 +

∫ T

0

|F̄ |2L2ds

)2

+
∫ t

0

‖ψ̄‖4ds,

(36)

and

ā =
(
ā1, ā2

)
∈ Ṽ1 × Ṽ2, F̄ =

(
F̄1, F̄2

)
∈ L2(0, T ; H̃1)× L2(0, T ; H̃2). (37)

Proof. The existence and uniqueness of solutions to (31), (32), are well-known,
see e.g., [26]. The estimates (35) are also standard, but for the sake of com-
pleteness, we give a sketch of the proof.

For (35)1, multiplying (31) by v̄, (32) by q̄ and summing yield

1
2
d

dt

(
|v̄|2L2 + |q̄|2L2

)
+α3

(
‖v̄‖2 + ‖q̄‖2

)
≤ c|v̄|L2‖v̄‖‖Ū‖+ c|v̄|

1
2
L2‖v̄‖

1
2 ‖ψ̄‖|q̄|

1
2
L2‖q̄‖

1
2 + c|F̄1|L2 |v̄|L2 + c|F̄2|L2 |q̄|L2

≤ α3

2
(
‖v̄‖2+‖q̄‖2

)
+c|v̄|2L2‖Ū‖2+c‖ψ̄‖2

(
|v̄|2L2+|q̄|2L2

)
+c|F̄1|2L2+c|F̄2|2L2 ,

(38)

which gives

d

dt

(
|v̄|2L2+|q̄|2L2

)
+α3

(
‖v̄‖2+‖q̄‖2

)
≤ c

(
‖Ū‖2+‖ψ̄‖2

) (
|v̄|2L2+|q̄|2L2

)
+c|F̄ |2L2 ,

(39)
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where α3 = Min
(

1
Re1
, 1
Rt1

)
and (35)1 follows from the Gronwall’s

Lemma, [26].
For (35)2, multiplying (31) by Ã1v̄, (32) by Ã2q̄, summing and using (21)

yield

1

2

d

dt

(
‖v̄‖2 + ‖q̄‖2

)
+ α3

(
|Ã1v̄|2L2 + |Ã2q|2L2

)
≤ c|v̄|L2 |Ã1v̄|L2 + c|Ū |

1
2
L2 |Ã1Ū |

1
2
L2‖v̄‖|Ã1v̄|L2 + c|v̄|

1
2
L2 |Ã1v̄|

3
2
L2‖Ū‖

+c|v̄|
1
2
L2‖v̄‖|Ã1v̄|

3
2
L2 + c|Ū |

1
2
L2 |Ã1Ū |

1
2
L2‖q̄‖|Ã2q̄|L2 + c|v̄|

1
2
L2 |Ã1v̄|

1
2
L2‖ψ̄‖|Ã2q̄|L2

+c|v̄|
1
2
L2 |Ã1v̄|

1
2
L2‖q̄‖|Ã2q̄|L2 + c|F̄ |L2

(
|Ã1v̄|L2 + |Ã2q̄|L2

)
≤ α3

2

(
|Ã1v̄|2L2 + |Ã2q̄|2L2

)
+ c|v̄|2L2 + c|F̄ |2L2

+c|Ū |L2 |Ã1Ū |L2

(
‖v̄‖2 + ‖q̄‖2

)
+ c

(
|v̄|2L2+|q̄|2L2

) (
‖v̄‖2+‖q̄‖2

)2
+c‖ψ̄‖4‖v̄‖2.

(40)

Let

h(t) = c|Ū |L2 |Ã1Ū |L2 + c(|v̄|2L2 + |q̄|2L2)(‖v̄‖2 + ‖q̄‖2) + c‖ψ̄‖4.

Then∫ t

0

h(s)ds ≤ c
∫ t

0

|Ū |L2 |Ã1Ū |L2ds+ sup
s

(
|v̄(s)|2L2 + |q̄(s)|2L2

)
×
∫ t

0

(
‖v̄‖2 + ‖q̄‖2

)
ds+ c‖ψ̄‖4

≤ c
∫ t

0

(|Ū |2L2 + |Ã1Ū |2L2)ds+ e2M0(t)

(
|ā|2L2 +

∫ t

0

|F̄ |2L2ds

)2

+
∫ t

0

‖ψ̄‖4ds ≡M1(t),

(41)

where M0(t) is given by (36).

Therefore

1
2
d

dt

(
‖v̄‖2 + ‖q̄‖2

)
+ α3(|Ã1v̄|2L2 + |Ã2q̄|2L2)

≤ c|F̄ |2L2 + c|v̄|2L2 + h(t)
(
‖v̄‖2 + ‖q̄‖2

)
, (42)

and the estimates (35) follow from the standard Gronwall Lemma. �
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2.2.2 The 3D Linear System

We also consider the following 3D heat type equations

dv�

dt
+A1v� + δ−2A2v� + Ev� + Λv� = F � in (NV )′, v�(0) = a�, (43)

which is equivalent to

dv�

dt
+A11v

� + δ−2A12v
� + E1v

� + Λ2φ
� = F �1 in (NV1)′, v�(0) = a�1, (44)

dφ�

dt
+A21φ

� + δ−2A22φ
� = F �2 in (NV2)′, φ�(0) = a�2, (45)

with v� = (v�, φ�).
In (43), the unknown function is v� = (v�, φ�); the volume force F � and

the initial condition a� are given. The Coriolis parameter f and the aspect
ratio δ << 1 are given.

We assume the following regularity condition

a� ∈ V, F � ∈ L2(0, T ;H). (46)

We also assume the additional condition∫ 0

−h
F �dz = 0,

∫ 0

−h
a�dz = 0. (47)

Remark 2.8. Condition (47) appears in the equations for the baroclinic flow

u� of the PEs (5). From (47), the flow v� of (43) must satisfy
∫ 0

−h
v�dz = 0.

Proposition 2.9. The heat type equation (43) has a unique solution v� =
(v�, φ�) ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V ). Moreover, we have the estimates:

‖v�(t)‖2w = ‖v�(t)‖2w + ‖φ�(t)‖2 ≤ c(|∇a�|2L2 + c2+
∫ T

0

|F �|2L2ds) ≡ c3,∫ T

0

|Av�|2L2dt =
∫ T

0

(|A1v
�|2L2 + |A2φ

�|2L2)dt ≤ c3,∫ T

0

‖v�‖2wdt =
∫ T

0

(‖v�‖2w + ‖φ�‖2)dt ≤ δ2c3,

|v�(t)|2L2 = |v�(t)|2L2 + |φ�(t)|2L2 ≤ δ2c3.
(48)
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Proof. Multiplying (45) by φ� gives

|φ�(t)|2L2 + c
∫ t

0

(
|∇φ�|2L2 + δ−2

∣∣∣∣∂φ�∂z
∣∣∣∣
2

L2

)
dt ≤ c(|a�2|2L2 +

∫ t

0

|F �2 |2L2ds). (49)

We also note that

|∇φ�|L2 ≤ c
∣∣∣∣ ∂∂z∇φ�

∣∣∣∣
L2

, (50)

since
∫ 0

−h
∇φ�dz = 0.

Now, multiplying (45) by A21φ
� + δ−2A22φ

� yields (see (13))

|∇φ�(t)|2L2 + δ−2

∣∣∣∣∂φ�∂z (t)
∣∣∣∣
2

L2

+c
∫ T

0

(
|A21φ

�|2L2 + δ−2

∣∣∣∣ ∂∂z∇φ�
∣∣∣∣2
L2

+ δ−4|A22φ
�|2L2

)
dt

≤ c|∇Na2|2L2 +
c

δ2

∣∣∣∣∂Na2

∂z

∣∣∣∣2
L2

+ c
∫ t

0

|F �2 |2L2ds

≤ c(|∇Na2|2L2 + c2 +
∫ t

0

|F �2 |2L2ds) ≡ c3, (51)

and (48) follows from (51) (note that δ << 1) for the second component φ�

of v�.
Multiplying (43) by v� gives

|v�(t)|2L2 + c
∫ T

0

(
|∇v�|2L2 + |∇W (v�)|2L2 + δ−2

∣∣∣∣∂v�∂z
∣∣∣∣
2

L2

+ δ−2
∣∣∣div v�

∣∣∣2
L2

)
dt

≤ c(|Na1|2L2 +
∫ T

0

|F �1 |2L2ds). (52)

We also note that

|∇v�|L2 ≤ c
∣∣∣∣ ∂∂z∇v�

∣∣∣∣
L2

, (53)

since
∫ 0

−h
∇v�dz = 0.
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Now, multiplying (43) by A11v
� + δ−2A12v

� yields (see (13))

|∇v�(t)|2L2 + |∇W (v�)(t)|2L2 + δ−2

∣∣∣∣∂v�∂z (t)
∣∣∣∣
2

L2

+ δ−2
∣∣∣div v�

∣∣∣2
L2

+c
∫ T

0

(
|A11v

�|2L2 + δ−2

∣∣∣∣ ∂∂z∇v�
∣∣∣∣2
L2

+ δ−2
∣∣∣∇div v�

∣∣∣2
L2

+ δ−4|A12v
�|2L2

)
dt

+c
∫ T

0

|A1v
�|2L2dt

≤ c|∇Na1|2L2 + c|∇W (Na1)|2L2 + cδ−2

∣∣∣∣∂Na1

∂z

∣∣∣∣2
L2

+ cδ−2
∣∣div Na1

∣∣2
L2

+c
∫ T

0

|F �1 |2L2ds

≤ c(|∇Na1|2L2 + c2 +
∫ T

0

|F �1 |2L2ds) ≤ c3, (54)

and (48) follows from (53) and the fact that |Λ2φ
�|L2 ≤ c|∇φ�|L2 . �

3 Existence of Strong Solution to (5)

To (28), we associate the following system:

du0

dt
+A1u0 + δ−2A2u0 + Eu0 + Λu0 = F in V ′, u0(0) = a. (55)

Taking the vertical average of (55), we derive the following equations for the
barotropic component ū0 and baroclinic flow u�0 :

dū0

dt
+ Ã1ū0 + Eū0 = F̄ in (MV )′, ū0(0) = ā, (56)

du�0
dt

+A1u�0+δ−2A2u�0+Eu�0+Λ(ū0+u�0) = F � in (NV )′, u�0(0) = a�. (57)

Remark 3.1. Note that (56) (resp. (57)) has a unique solution ū0 (resp. u�0)
and estimates similar to (35) (resp. (48)) hold. In particular, we have

‖ū0‖2X̃ ≤ δ
kα2

0,

‖u0‖2X ≡ ‖ū0‖2X̃ + ‖u�0‖2X ≤ α2
0,∫ T

0

‖u�0‖2wdt ≤ δ2α2
0, |u�0(t)|2L2 ≤ δ2α2

0,

(58)
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where

α2
0 ≡ c(c1 + c2 + |∇a�|2L2 +

∫ T

0

|F �|2L2dt), and k is as in (27), 0 < k < 1.

Now let us set v = u− u0. Then v satisfies

dv
dt

+A1v+δ−2A2v+Ev+B(v+u0,v+u0)+Λ(v+u0) = 0 in V ′, v(0) = 0.

(59)

Taking the vertical average of (59), we derive the following equations for the
barotropic flow v̄ and the baroclinic flow v�.

dv̄
dt

+ Ã1v̄ +Ev̄ +MB(v + u0,v + u0) = 0 in (MV )′, v̄(0) = 0, (60)

dv�

dt
+A1 + δ−2A2v� +Ev� +NB(v +u0,v +u0) +Λ(v +u0) = 0 in (NV )′,

v�(0) = 0. (61)

Let us note that

MB(v + u0,v + u0) = B̃(v̄ + ū0, v̄ + ū0) +MB(v� + u�0,v
� + u�0),

NB(v + u0,v + u0) = B(v̄ + ū0,v� + u�0) +B(v� + u�0, v̄ + ū0)

+NB(v� + u�0,v
� + u�0). (62)

We also have

MB(v̄,w�) =MB(v�, w̄) = 0, ∀v�,w� ∈ NV, ∀v̄, w̄ ∈MV. (63)

To solve (60)–(3), we consider the sequences (v̄n), (v�n) given by the systems:

dv̄n+1

dt
+ Ã1v̄n+1 + Ev̄n+1 + B̃(v̄n+1 + ū0, v̄n+1 + ū0)

+MB(v�n + u�0,v
�
n + u�0) = 0 in (MV )′,

v̄n+1(0) = 0,
(64)

dv�n+1

dt
+A1v�n+1 + δ−2A2v�n+1 + Ev�n+1 +NB(vn + u0,vn + u0)

+Λ(vn+1 + u0) = 0 in (NV )′,
v�n+1(0) = 0,

(65)

for (v̄0, v�0) given such that

‖v̄0‖2X̃ ≤ δ
kR2,

‖v0‖2X ≡ ‖v̄0‖2X̃ + ‖v�0‖2X ≤ R2,

∫ T

0

‖v�0‖2wdt ≤ δ2R2, |v�0(t)|2L2 ≤ δ2R2,

(66)
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where R = R(a, g, T,Re1 , Re2) > 0 will be defined later (see (87), (83)), and
k is as in (27), 0 < k < 1.

Note that for v�n, v̄n given, v̄n+1 and v�n+1 are solutions of a 2D Navier–
Stokes equations and a 3D heat equation, respectively. Therefore, the existence
and uniqueness of v̄n+1 are v�n+1 is well known provided that v�n are v̄n are
regular enough. Moreover, estimates similar to (35) and (48) hold for v̄n+1

and v�n+1, respectively.
Let us set

rn =MB(v�n + u�0,v
�
n + u�0) +B1(ū0, ū0),

sn = NB(vn + u0,vn + u0) + Λ(v̄n+1 + ū0 + u�0) = B(v̄n + ū0,v�n + u�0)

+B(v�n + u�0, v̄n + ū0) +NB(v�n + u�0,v
�
n + u�0) + Λ(v̄n+1 + ū0 + u�0).

(67)
Then (64) and (65) can be rewritten into the form

dv̄n+1

dt
+ Ã1v̄n+1 + Ev̄n+1 + B̃(v̄n+1, ū0) + B̃(ū0, v̄n+1)

+B̃(v̄n+1, v̄n+1) + rn = 0 in (MV )′,
v̄n+1(0) = 0,

(68)

dv�n+1

dt
+A1v�n+1 + δ−2A2v�n+1 + Ev�n+1 + Λv�n+1 + sn = 0 in (NV )′,

v�n+1(0) = 0. (69)

In the next step, we derive some estimates on the barotropic and baroclinic
components v̄n+1 and v�n+1, respectively, assuming some regularity conditions
on v̄n, v�n, ū0 and u�0. The goal is to prove (using a fixed-point argument)
that for a suitable choice of R, the sequence (vn) is convergent for δ small
enough.

Proposition 3.2. We assume that

‖v̄n‖2X̃ ≤ δ
kR2,

‖vn‖2X ≡ ‖v�n‖2X + ‖v̄n‖2X̃ ≤ R
2,

∫ T

0

‖v�n‖2wdt ≤ δ2R2,

(70)

where k is as in (27), 0 < k < 1.
Then the following estimates hold true for rn and sn :∫ T

0

|rn|2L2dt ≤ c(δR2‖vn‖2X + δR4 + δα4
0 + δkα4

0),∫ T

0

|sn|2L2dt ≤ c(δR2‖vn‖2X + δR4 + δα4
0 + δkα2

0) + c
∫ T

0

‖v̄n+1‖2dt. (71)
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Proof. Using (14), (21), (58) and (70) we have

|rn|2L2 ≤ c‖v�n + u�0‖2w|A(v�n + u�0)|L2‖v�n + u�0‖+ c|ū0|L2 |Ã1ū0|L2‖ū0‖2,
(72)

and ∫ T

0

|rn|2L2dt ≤ c sup ‖v�n + u�0‖2w
∫ T

0

|A(v�n + u�0)|L2‖v�n + u�0‖dt

+c sup |ū0|L2‖ū0‖
∫ T

0

|Ã1ū0|L2‖ū0‖dt

≤ c‖vn + u�0‖2X(R+ α0)2δ + cδkα4
0

≤ cδ(R2‖vn‖2X + α4
0 +R4) + cδkα4

0.

(73)

We also have (note that |NB(v�n+u�0,v
�
n+u�0)|L2 ≤ |B(v�n+u�0,v

�
n+u�0)|L2)

|sn|2L2 ≤ c‖v̄n + ū0‖2|A(v�n + u�0)|L2‖v�n + u�0‖

+c‖v�n + u�0‖2|Ã1(v̄n + ū0)|L2‖v̄n + ū0‖

+c‖v�n + u�0‖2w|A(v�n + u�0)|L2‖v�n + u�0‖

+c(‖v̄n+1‖2 + ‖ū0‖2 + ‖u�0‖2) (74)

and ∫ T

0

|sn|2L2dt ≤ c sup ‖v̄n + ū0‖2
∫ T

0

|Ã1(v̄n + ū0)|L2‖v�n + u�0‖dt

+c sup ‖v̄n + ū0‖ sup ‖v�n + u�0‖
∫ T

0

|Ã1(v̄n + ū0)|L2‖v�n + u�0‖dt

+c sup ‖v�n + u�0‖2w
∫ T

0

|A(v�n + u�0)|L2‖v�n + u�0‖dt+ cδkα2
0

+c
∫ T

0

‖v̄n+1‖2dt

≤ c(‖vn‖2X + α2
0)(R+ α0)2δ + cδkα2

0 + c
∫ T

0

‖v̄n+1‖2dt

≤ cδ(R2‖vn‖2X + α4
0 +R4) + cδkα2

0 + c
∫ T

0

‖v̄n+1‖2dt. (75)

�

Proposition 3.3. We assume that (70) holds true. Then there exists a con-
stant δ0 > 0 such that for 0 < δ < δ0, we have
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‖vn+1‖2X ≡ ‖v�n+1‖2X + ‖v̄n+1‖2X̃ ≤ δ
kR2,

∫ T

0

‖v�n+1‖2wdt ≤ δ2R2, |v�n+1(t)|2L2 ≤ δ2R2,

(76)

where k is as in (27), 0 < k < 1.

Proof. It clearly follows from Proposition 2.5 and (71) that

|v̄n+1(t)|2L2 ≤ ceN0(T )(δR2‖vn‖2X + δα4
0 + δR4 + δkα4

0),

‖v̄n+1(t)‖2 ≤ eN1(T )(δR2‖vn‖2X + δα4
0 + δR4 + δkα4

0),∫ T

0

|Ã1v̄n+1|2L2dt ≤ eN1(T )(δR2‖vn‖2X + δα4
0 + δR4 + δkα4

0),

(77)

where

N0(t) = c
∫ t

0

‖ū0‖2dt ≤ cα2
0,

N1(t) = c
∫ t

0

|ū0|L2 |Ã1ū0|L2dt+ ce2N0(t)(δR4 + δα4
0 + δR4 + α4

0)
2

+
∫ t

0

‖ū0‖4dt

≤ cα2
0 + ce2α

2
0(δR4 + δα4

0 + α4
0)

2 + cδkα4
0

≤ cα2
0 + ce2α

2
0(δR8 + δα8

0 + α8
0) + cα4

0 ≡ N2. (78)

It also follows from Proposition 2.6 and the estimates (75), (77) that

|v�n+1(t)|2L2 ≤ c(eN2 + 1)(δR2‖vn‖2X + δα4
0 + δR4 + δkα2

0 + δkα4
0),

‖v�n+1(t)‖2w ≤ c(eN2 + 1)(δR2‖vn‖2X + δα4
0 + δR4 + δkα2

0 + δkα4
0),∫ T

0

|Av�n+1|2L2dt ≤ c(eN2 + 1)(δR2‖vn‖2X + δα4
0 + δR4 + δkα2

0 + δkα4
0).

(79)
From (77), (79) we can write

‖vn+1‖2X ≡ ‖v̄n+1‖2X̃ + ‖v�n+1‖2X ≤ ε‖vn‖2X + L0, (80)

where

ε = cδ(eN2 + 1)R2 = δkε0, ε0 = cδ1−k(eN2 + 1)R2,
L0 = cδ(eN2 + 1)(α4

0 +R4) + cδk(eN2 + 1)(α4
0 + α2

0) = δkκ0,

κ0 = cδ1−k(eN2 + 1)(α4
0 +R4) + c(eN2 + 1)(α4

0 + α2
0).

(81)
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Note that

ceN2 = c exp (cα2
0 + ce2α

2
0α8

0 + cα4
0) exp (cδ2e2α

2
0(R8 + α8

0))
= L1 · L2,

(82)

where
L1 = c exp (cα2

0 + ce2α
2
0α8

0 + cα4
0),

L2 = exp (cδ2e2α
2
0(R8 + α8

0)),
(83)

and N2 is given by (78). Therefore

κ0 = cδ1−keN2α4
0(α

4
0 +R4) + c(eN2 + 1)(α4

0 + α2
0)

= δ1−k(L1L2 + c)(α4
0 +R4) + (L1L2 + c)(α4

0 + α2
0).

(84)

Note that the constant c that appears in (81)–(83) is independent of R and δ
(see Propositions 2.5, 2.6 and 3.1).

Using inequality (80) successively, we get

‖vn+1‖2X ≤ εn‖v0‖2X + 1− εn
1− ε L0

≤ δkεn0‖v0‖2X + 1− εn
1− ε δ

kκ0

≤ δk
(
εn0R

2 + 1− εn
1− ε κ0

)
.

(85)

The goal is to choose R (independent of δ) such that

‖vn+1‖2X ≤ δkR2, (86)

for δ small enough (depending on R).
Now let us set

R2 = 12(L1 + c)(α4
0 + α2

0), (87)

where L1 is given by (83) and c is the constant that appears in (83). We then
choose δ such that

δ1−k(L1L2 + c)(α4
0 +R4) ≤ L1(α4

0 + α2
0),

L2 ≤ 2,
ε0 ≤ 1

2 .
(88)

It follows that

κ0 ≤ L1(α4
0 + α2

0) + (2L1 + c)(α4
0 + α2

0) ≤
R2

4
, (89)

and (86) follows from (85) to (89).
It is clear that (76)2 follows directly from Proposition 2.6 and the estimate

(75). �
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Proposition 3.4. Let R be given by (87). We assume that δ is small enough
so that (88) is satisfied. Let v0 = v̄0 + v�0 ∈ X such that (66) is satisfied.
Then the sequences (v̄n), (v�n) given by (64)–(65) satisfy the estimates

‖vn‖2X ≡ ‖v�n‖2X + ‖v̄n‖2X̃ ≤ δ
kR2,

∫ T

0

‖v�n‖2wdt ≤ δ2R2, |v�n(t)|2L2 ≤ δ2R2,

(90)

where k is as in (27), 0 < k < 1.

Proof. This result follows from the previous estimates. �

Now, let us set wn+1 = vn+1 − vn. Then w̄n+1 and w�
n+1 satisfy

dw̄n+1

dt
+ Ã1w̄n+1 + Ew̄n+1 + B̃(w̄n+1, v̄n+1 + ū0) + B̃(v̄n + ū0, w̄n+1)

+hn = 0 in (MV )′,
w̄n+1(0) = 0,

(91)
dw�

n+1

dt
+A1w�

n+1 + δ−2A2w�
n+1 + Ew�

n+1 + Λw�
n+1 + kn = 0 in (NV )′,

w�
n+1(0) = 0, (92)

where
hn =MB(w�

n,v
�
n + u�0) +MB(v�n+1 + u�0,w

�
n), (93)

and

kn = NB(wn,vn + u0) +NB(vn−1 + u0,wn) + Λw̄n+1

= B(w̄n,v�n + u�0) +B(w�
n, v̄n + ū0)

+NB(w�
n,v

�
n + u�0) +B(v̄n−1 + ū0,w�

n) +B(v�n−1 + u�0, w̄n)
+NB(v�n−1 + u�0,w

�
n) + Λw̄n+1.

(94)

Proposition 3.5. We assume that δ is small enough so that (88) holds. Then
the following estimates hold:∫ T

0

|hn|2L2dt ≤ c4δk‖wn‖2X ,

∫ T

0

|kn|2L2dt ≤ c4δk‖wn‖2X + c
∫ T

0

‖w̄n+1‖2dt.

(95)

where c4 = c4(α0) depends on α0 for δ small enough.

Proof. From (14), we have

|hn|2L2 ≤ c‖w�
n‖2w|A(v�n + u�0)|L2‖v�n + u�0‖+ c‖v�n+1 + u�0‖2w|Aw�

n|L2‖w�
n‖
(96)
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and∫ T

0

|hn|2L2dt ≤ c sup ‖w�
n‖2w

∫ T

0

|A(v�n + u�0)|L2‖v�n + u�0‖dt

+c sup ‖w�
n‖‖v�n+1 + u�0‖w

∫ T

0

|Aw�
n|L2‖v�n+1 + u�0‖wdt

≤ c4δ‖wn‖2X . (97)

We also have

|kn|2L2 ≤ c‖w̄n‖2|A(v�n +u�0)|L2‖v�n +u�0‖+ c‖w�
n‖2w|Ã1(v̄n+ ū0)|L2‖v̄n+ ū0‖

+c‖w�
n‖2w|A(v�n + u�0)|L2‖v�n + u�0‖+ c‖v̄n−1 + ū0‖2|Aw�

n|L2‖w�
n‖

+c‖v�n−1 + u�0‖2w|Ã1w̄n|L2‖w̄n‖+ c‖v�n−1 + u�0‖2w|Aw�
n|L2‖w�

n‖

+c‖w̄n+1‖2,
(98)

which gives∫ T

0

|kn|2L2dt ≤ c sup ‖w̄n‖2
∫ T

0

|A(v�n + u�0)|L2‖v�n + u�0‖dt

+c sup ‖v̄n + ū0‖‖w�
n‖w

∫ T

0

|Ã1(v̄n + ū0)|L2‖w�
n‖wdt

+c sup ‖v̄n−1 + ū0‖2
∫ T

0

|Aw�
n|L2‖w�

n‖dt

+c sup ‖v�n−1 + u�0‖w‖w̄n‖
∫ T

0

|Ã1w̄n|L2‖v�n−1 + u�0‖wdt

+c sup ‖v�n−1 + u�0‖w‖w�
n‖
∫ T

0

|Aw�
n|L2‖w‖w�

n‖dt

+c
∫ T

0

‖w̄n+1‖2dt

≤ c4δ‖w̄n‖2X + c4δk‖wn‖2X + c4δk‖w�
n‖2X + c4δ‖w�

n‖2X

+c4δ‖w�
n‖2X + c

∫ T

0

‖w̄n+1‖2dt

≤ c4δk‖wn‖2X + c
∫ T

0

‖w̄n+1‖2dt, (99)

and (95) follows. �
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Proposition 3.6. The assumptions are the same as in Proposition 3.4. Then
the following estimate holds true:

‖wn+1‖2X ≤ c4δk‖wn‖2X . (100)

Proof. From Proposition 2.5 and the estimates (95) on hn, we derive that
w̄n+1 satisfies

|w̄n+1(t)|2L2 ≤ c4δk‖wn‖2X ,

‖w̄n+1(t)‖2 ≤ c4δk‖wn‖2X ,∫ T

0

|Ã1w̄n+1|2L2dt ≤ c4δk‖wn‖2X .

(101)

From Proposition 2.6 and the estimates (95) and (101), we derive that
w�
n+1 satisfies

|w�
n+1(t)|2L2 ≤ c4δk‖wn‖2X ,

‖w�
n+1(t)‖2w ≤ c4δk‖wn‖2X ,∫ T

0

|Aw�
n+1|2L2dt ≤ c4δk‖wn‖2X .

(102)

We conclude that the flow wn+1 = w̄n+1 + w�
n+1 satisfies

‖w�
n+1‖2X ≤ c4δk‖wn‖2X . (103)

Finally from (101) to (102), we get

‖wn+1‖2X ≤ c4δk‖wn‖2X .� (104)

Hereafter, we also assume that δ is small enough such that (88) and

c4δ
k < 1 (105)

hold true.
Therefore (104) proves that the sequence (vn = v̄n + v�n) is a Cauchy

sequence. Moreover we have

v̄n −→ v̄, v�n −→ v�, (106)

in X̃ and X, respectively and the following rate of convergence holds true

‖vn − v‖2X ≡ ‖v̄n − v̄‖2
X̃

+ ‖v�n − v�‖2X

≤ c (c4δk)n

1− c4δk
.

(107)

Therefore, the following main result is proved.
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Proposition 3.7. We assume that δ is small enough so that (88) and (105)
are satisfied. Then the sequence (vn = v̄n+v�n) defined by (64),(65) converges
to a solution v = v̄ + v� of (59) in X, and v is the unique solution of (59) in
X that satisfies ‖v‖2X ≤ R2. Furthermore the following convergence rate holds
true:

‖vn − v‖2X = ‖v̄n − v̄‖2
X̃

+ ‖v�n − v�‖2X
≤ c (c4δk)n

1− c4δk
.

(108)

Remark 3.8. The conditions (88) and (105) show that for any initial data and
volume force satisfying (27), there exists δ0 such that for 0 < δ < δ0, the PEs
(5) have a unique strong solution u ∈ X that satisfies

‖u− u0‖2X ≤ R2.

4 A Small Eddy Correction Method

Hereafter we set

F (ū,u�) =
(
du�

dt
+A1u� + δ−2A2u� + Eu� +NB(ū + u�, ū + u�)

+Λ(ū + u�)− F �, u�(0)− a�
)
. (109)

Then, (30) is equivalent to

F (ū,u�) = (0, 0) in (NV )′ ×NV. (110)

Supposing that the barotropic flow ū is know, formally applying the Newton
iteration to (110), we get the following iterative procedure: assuming that the
initial guess for the baroclinic (or the small eddy) component u�0 = 0 and the
(j − 1)th approximation u�j−1 ∈ NV is known for some integer j, find the jth
approximation u�j ∈ NV such that

Du�F (ū,u�)(u�j − u�j−1) = −F (ū,u�j−1). (111)

Simple calculations show that (111) reduces to

du�j
dt

+A1u�j + δ−2A2u�j + Eu�j + B̃(ū,u�j) + B̃(u�j , ū)
+NB(u�j−1,u

�
j) +NB(u�j ,u

�
j−1)−NB(u�j−1,u

�
j−1) + Λ(ū + u�j)

= F � in (NV )′, u�j(0) = a�.

(112)

Combining (112) with the barotropic equation (29) (with ū replaced by v),
we obtain the following small eddy correction method: let w0 = 0 and l be a
fixed positive integer:
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dv
dt

+A1v + Ev +MB(v + wl,v + wl) = F̄ in (MV )′, v(0) = ā, (113)

dwj

dt
+A1wj + δ−2A2wj + Ewj + B̃(v,wj) + B̃(wj ,v)

+NB(wj−1,wj) +NB(wj ,wj−1)−NB(wj−1,wj−1) + Λ(v + wj)
= F � in (NV )′, wj(0) = a�,

(114)
for j = 1, 2, . . . , l.

Remark 4.1. For l = 0, (113)–(114) reduces to (since w0 = 0)

dv
dt

+ Ã1v + Ev + B̃(v,v) = F̄ in (MV )′, v(0) = ā, (115)

which gives the well known QG model.

For l = 1, (113)–(114) become

dv
dt

+ Ã1v + Ev +MB(v + w1,v + w1) = F̄ in (MV )′, v(0) = ā, (116)

dw1
dt

+A1w1 + δ−2A2w1 + Ew1 + B̃(v,w1) + B̃(w1,v) + Λ(v + w1)
= F � in (NV )′, w1(0) = a�,

(117)

which has the form of the multilevel (nonlinear Galerkin) method studied in
[27, 13, 19, 20] for the 2D Navier–Stokes equations.

4.1 Some A Priori Estimates

In this part, we prove the existence and uniqueness of strong solution to
(113)–(114) when the aspect ratio δ is small enough.

Hereafter we set X = X̃ ×X l. For v = (v̄,w1,w2, . . . ,wl) ∈ X, we set

‖v‖2X = ‖v̄‖2
X̃

+ sup
i
‖wi‖2X . (118)

The existence and uniqueness of a strong solution is proved as in Sect. 2.
Therefore, we will only sketch the proof.

4.1.1 Linear Problems

As previously, to (113)–(114) we associate the following system:

dv0

dt
+ Ã1v0 + Ev0 = F̄ in (MV )′, v0(0) = ā, (119)

and for j = 1, 2, . . . , l
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dw0
j

dt
+A1w0

j + δ−2A2w0
j + Ew0

j + Λ(v0 + w0
j ) = F � in (NV )′, w0

j (0) = a�.

(120)

Following Propositions 2.5 and 2.6, the unique strong solution (v0,w0
1,

w0
2, . . . ,w

0
l ) ∈ X to (119)–(120) satisfied

‖v0‖2
X̃
≤ δkα2

0,

‖v0‖2
X̃

+ sup
j
‖w0

j‖2X ≤ α2
0,

sup
j

∫ T

0

‖w0
j‖2wdt ≤ δ2α2

0, sup
j
|w0

j (t)|2L2 ≤ δ2α2
0,

(121)

where k is as in (27), 0 < k < 1.

4.1.2 Nonlinear Problems

Now let us set ϑ = v − v0, ηj = wj −w0
j . Then ϑ and ηj satisfy

dϑ

dt
+ Ã1ϑ+Eϑ+ B̃(ϑ,v0)+ B̃(v0, ϑ)+ B̃(ϑ, ϑ)+S1 = 0 in (MV )′, ϑ(0) = 0,

(122)
dηj
dt

+A1ηj + δ−2A2ηj + Eηj + Ληj + S2 = 0 in (NV )′, ηj(0) = 0, (123)

where

S1 = B̃(v0,v0) +MB(ηl + w0
l , ηl + w0

l ),

S2 = B̃(ϑ+ v0, ηj + w0
j ) + B̃(ηj + w0

j , ϑ+ v0) +NB(ηj−1 + w0
j−1, ηj + w0

j )

+NB(ηj + w0
j , ηj−1 + w0

j−1)−NB(ηj−1 + w0
j−1, ηj−1 + w0

j−1) + Λϑ.
(124)

To solve (122)–(123), we consider the following iterative process

dϑn+1

dt
+ Ã1ϑ

n+1 + Eϑn+1 + B̃(ϑn+1,v0) + B̃(v0, ϑn+1)

+B̃(ϑn+1, ϑn+1) + Sn1 = 0 in (MV )′,

ϑn+1(0) = 0,

(125)

dηn+1
j

dt
+A1η

n+1
j +δ−2Aηn+1

j +Eηn+1
j +Ληn+1

j +Sn2 = 0 in (NV )′, ηn+1
j (0) = 0,

(126)
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where

Sn1 = B̃(v0,v0) +MB(ηnl + w0
l , η

n
l + w0

l ),

S2 = B̃(ϑn + v0, ηnj + w0
j ) + B̃(ηnj + w0

j , ϑ
n + v0)

+NB(ηnj−1 + w0
j−1, η

n
j + w0

j ) +NB(ηnj + w0
j , η

n
j−1 + w0

j−1)

−NB(ηnj−1 + w0
j−1, η

n
j−1 + w0

j−1) + Λϑn+1. (127)

for (v0, η
0
1 , η

0
2 , . . . , η

0
l ) ∈ X such that

‖ϑ0‖2
X̃
≤ δkR2,

‖ϑ0‖2
X̃

+ sup
j
‖η0j ‖2X ≤ R2,

sup
j

∫ T

0

‖η0j ‖2wdt ≤ δ2R2, sup
j
|η0j (t)|2L2 ≤ δ2R2,

(128)

where R = R(a, g, T,Re1 , Re2) > 0 is given by (87) and k is as in (27),
0 < k < 1.

As in Sect. 3, the goal is to prove (using a fixed-point argument) that the
sequence (ϑn, ηnj ) is convergent for δ small enough.

Proposition 4.2. We assume that

‖ϑn‖2
X̃
≤ δkR2,

‖ϑn‖2X1
+ sup

j
‖ηnj ‖2X ≤ R2,

sup
j

∫ T

0

‖ηnj ‖2wdt ≤ δ2R2,

(129)

where k is as in (27), 0 < k < 1.
Then the following estimates hold true for Sn1 and Sn2 :∫ T

0

|Sn1 |2L2dt ≤ c(δR2(‖ϑn‖2
X̃

+ sup
k
‖ηnk ‖2X) + δR4 + δα4

0 + δkα4
0),

∫ T

0

|Sn2 |2L2dt ≤ c(δR2(‖ϑn‖2
X̃

+ sup
k
‖ηnk ‖2X) + δR4 + δα4

0) + c
∫ T

0

‖ϑn+1‖2dt.
(130)

Proof. The proof, which is very similar to that of Proposition 3.1, follows from
the inequalities
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|Sn1 |2L2 ≤ c‖ηnl + w0
l ‖2w|A2(ηnl + w0

l )|L2‖ηnl + w0
l ‖+ c|v0|L2 |Ã1v0|L2‖v0‖2,

(131)
which gives ∫ T

0

|Sn1 |2L2dt ≤ cδ(R2 sup
j
‖ηnj ‖2X + α4

0 +R4) + cδkα4
0. (132)

We also have

|Sn2 |2L2 ≤ c‖ϑn + v0‖2|A(ηnj + w0
j )|L2‖ηnj + w0

j‖+ c‖ηnj

+w0
j‖2|Ã1(ϑn + v0)|L2‖ϑn + v0‖+ c‖ηnj−1

+w0
j−1‖2w|A(ηnj + w0

j )|L2‖ηnj

+w0
j‖+ c‖ηnj + w0

j‖2w|A(ηnj−1 + w0
j−1)|L2‖ηnj−1 + w0

j−1‖

+c‖ηnj−1 + w0
j−1‖2w|A(ηnj−1 + w0

j−1)|L2‖ηnj−1 + w0
j−1‖+ c‖ϑn+1‖2, (133)

which gives∫ T

0

|Sn2 |2L2dt ≤ cδ(R2(‖ϑn‖2
X̃

+ sup
j
‖ηnj ‖2X) + α4

0 +R4) + c
∫ T

0

‖ϑn+1‖2dt.

(134)
�

Proposition 4.3. Let R be given by (87). We assume that (129) holds true.
Then for δ < δ0, we have

‖ϑn+1‖2
X̃

+ sup
j
‖ηn+1
j ‖2X ≤ δkR2,

sup
j

∫ T

0

‖ηn+1
j ‖2wdt ≤ δ2R2, sup

j
|ηn+1
j (t)|2L2 ≤ δ2R2,

(135)

where k is as in (27), 0 < k < 1.

Proof. It clearly follows from Propositions 2.5 and 4.1 that

|ϑn+1(t)|2L2 ≤ ceN0(T )(δR2(‖ϑn‖2
X̃

+ sup
j
‖ηnj ‖2X) + δα4

0 + δR4 + δkα4
0),

‖ϑn+1(t)‖2 ≤ eN2(δR2(‖ϑn‖2
X̃

+ sup
j
‖ηnj ‖2X) + δα4

0 + δR4 + δkα4
0),

∫ T

0

|Ã1ϑ
n+1|2L2dt ≤ eN2(δR2(‖ϑn‖2

X̃
+ sup

j
‖ηnj ‖2X) + δα4

0 + δR4 + δkα4
0).

(136)
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It also follows from Propositions 2.6 and 4.1, the estimates (134) and (136),
that

sup
j
|ηn+1
j (t)|2L2 ≤ c(eN2 + 1)(δR2(‖ϑn‖2

X̃
+ sup

j
‖ηnj ‖2X) + δα4

0 + δR4 + δkα4
0),

sup
j
‖ηn+1
j (t)‖2w ≤ c(eN2 + 1)(δR2(‖ϑn‖2

X̃
+ sup

j
‖ηnj ‖2X) + δα4

0 + δR4 + δkα4
0),

sup
j

∫ T

0

|Aηn+1
j |2L2dt

≤ c(eN2 + 1)(δR2(‖ϑn‖2
X̃

+ sup
j
‖ηnj ‖2X) + δα4

0 + δR4 + δkα4
0).

(137)

It is clear that (135)2 follows from Proposition 2.6 and (134) (see Proof of
Proposition 3.3). �
Proposition 4.4. Let R be given by (87). We assume that δ is small enough
so that (88) is satisfied. Let (ϑ0, η01 , . . . , η

0
l ) ∈ X such that (128) is satisfied.

Then the sequence (ϑn, ηn1 , η
n
2 , . . . , η

n
l ) ∈ X given by (125)–(126) satisfy the

estimates
‖ϑn‖2

X̃
+ sup

j
‖ηnj ‖2X ≤ δkR2,

sup
j

∫ T

0

‖ηnj ‖2wdt ≤ δ2R2, sup
j
|ηnj (t)|2L2 ≤ δ2R2,

(138)

where k is as in (27), 0 < k < 1.

Proof. It follows from the previous estimates. �
Now, let us set θn+1 = ϑn+1 − ϑn, qn+1

j = ηn+1
j − ηnj . Then (θn+1, qn+1

j )
satisfy

dθn+1

dt
+ Ã1θ

n+1 + Eθn+1 + B̃(θn+1, ϑn+1 + v0)

+B̃(ϑn + v0, θn+1) +Kn
1 = 0 in (MV )′, θn+1(0) = 0, (139)

dqn+1
j

dt
+A1q

n+1
j + δ−2A2q

n+1
j +Eqn+1

j +Λqn+1
j +Kn

2 = 0 in (NV )′,

qn+1
j (0) = 0, (140)

where
K1
n =MB(qnl , η

n−1
l + w0

l ) +MB2(ηnl + w0
l , q

n
l ), (141)

and

K2
n = B̃(θn, ηnj + w0

j ) + B̃(qnj , ϑ
n + v0) +NB(qnj , η

n
j + w0

j )

+B̃(ϑn−1 + v0, qnj ) + B̃(ηn−1
j + w0

j , θ
n) +NB(ηn−1

j + w0
j , q

n
j ) + Λθn+1.

(142)
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Proposition 4.5. We assume that δ is small enough so that (88) holds. Then
the following estimates hold:∫ T

0

|K1
n|2L2dt ≤ c4δk(‖θn‖2X̃ + sup

j
‖qnj ‖2X),

∫ T

0

|K2
n|2L2dt ≤ c4δk(‖θn‖2X̃ + sup

j
‖qnj ‖2X) + c

∫ T

0

‖θn+1‖2dt.

(143)

Proof. The proof is very similar to that of Proposition 3.4. �

Proposition 4.6. We assume that δ is small enough so that (88) holds. Then
the following estimates hold:

‖θn+1‖2
X̃

+ sup
j
‖qn+1
j ‖2X ≤ c4δk

(
‖θn‖2

X̃
+ sup

j
‖qnj ‖2X

)
. (144)

Proof. The proof, which is similar to that of Proposition 3.5, follows from
(143). Moreover, the following results is proved. �

Proposition 4.7. We assume that δ is small enough so that (88) and
(105) are satisfied. Then the sequence (ϑn, ηn1 , η

n
2 , . . . , η

n
l ) ∈ X defined by

(125),(126) converges to a solution (ϑ, η1, η2, . . . , ηl) to (125)–(126) in X.
Moreover, (ϑ, η1, η2, . . . , ηl) is the unique solution to (122)–(123) in X that
satisfies

‖ϑn − ϑ‖2
X̃

+ sup
j
‖ηnj − ηj‖2X ≤ R2.

Furthermore the following convergence rate holds true:

‖ϑn − ϑ‖2
X̃

+ sup
j
‖ηnj − ηj‖2X ≤ c

(c4δk)n

1− c4δk
. (145)

5 Convergence of the Method

In this part, we study the convergence of the small eddy correction method
presented in Sect. 4. We prove that the method converges and we estimate the
rate of convergence with respect to the aspect ratio δ.

Hereafter, we set ul = v + wl, ζ = u− ul, εj = wj −wj−1. In particular,
ε1 = w1.

Using (28) and (113)–(114), it is clear that ul and ζ satisfy:

dul
dt

+A1ul+δ−2A2ul+Eul+B(ul,ul)−NB(εl, εl)+Λul = F in V ′, ul(0) = a,

(146)
dζ

dt
+A1ζ+δ−2A2ζ+Eζ+B(ζ,u)+B(ul, ζ)+NB(εl, εl)+Λζ= 0 in V ′, ζ(0)= 0.

(147)
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Taking the vertical average of (147), we derive that the barotropic and baro-
clinic flows ζ̄ and ζ� satisfy

dζ̄

dt
+ Ã1ζ̄+Eζ̄+ B̃(ζ̄ , ū)+ B̃(v, ζ̄)+MB(ζ�,u�)+MB(wl, ζ

�) = 0 in (MV )′,

ζ̄(0) = 0, (148)

dζ�

dt
+A1ζ

� + δ−2A2ζ
� + Eζ� + B̃(ζ̄ ,u�) + B̃(ζ�, ū) + B̃(v, ζ�) + B̃(wl, ζ̄)

+NB(ζ�,u�)+NB(wl, ζ
�) +NB(εl, εl)+ Λ(ζ̄ + ζ�) = 0 in (NV )′, ζ�(0) = 0.

(149)
Hereafter, we set α = min(α1, α2), where α1, α2 are given by (14), (20).

Note that

|〈B̃(ζ̄, ū), ζ̄〉| ≤ c‖ζ̄‖|ζ̄|L2‖ū‖ ≤ α8 ‖ζ̄‖
2 + c‖ū‖2|ζ̄|2L2 , (150)

|〈MB(ζ�,u�), ζ̄)〉| ≤ |〈B(ζ�, ζ̄),u�〉|

≤ c|ζ�|
1
2
L2‖ζ�‖

1
2 ‖ζ̄‖|u�|

1
2
L2‖u�‖

1
2

≤ α8 ‖ζ̄‖
2 + c|ζ�|L2‖ζ�‖|u�|L2‖u�‖,

(151)

|〈MB(wl, ζ
�), ζ̄)〉| ≤ |〈B(wl, ζ̄), ζ�〉|

≤ c|wl|
1
2
L2‖wl‖

1
2 ‖ζ̄‖|ζ�|

1
2
L2‖ζ�‖

1
2

≤ α8 ‖ζ̄‖
2 + c|wl|L2‖wl‖|ζ�|L2‖ζ�‖,

(152)

Therefore, multiplying (148) by ζ̄ and using (150)–(152) yields

|ζ̄(t)|2L2 + c
∫ t

0

‖ζ̄‖2ds ≤ c sup
s

(|u�(s)|L2‖u�(s)‖+ |wl(s)|L2‖wl(s)‖)

×
∫ T

0

‖ζ�‖2wds.

(153)

We also have

|〈B̃(ζ̄,u�), ζ�)〉| = |〈B̃(ζ̄, ζ�),u�〉|

≤ c|ζ̄|
1
2
L2‖ζ̄‖

1
2 ‖ζ�‖|u�|

1
2
L2‖u�‖

1
2

≤ α8 ‖ζ
�‖2 + c‖ζ̄‖2|u�|L2‖u�‖,

(154)

|〈B̃(ζ�, ū), ζ�)〉| ≤ c‖ζ�‖w‖ū‖|ζ�|
1
4
L2‖ζ�‖

3
4 ≤ α8 ‖ζ

�‖2w + c‖ū‖8|ζ�|2L2 , (155)
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|〈NB(ζ�,u�), ζ�)〉| ≤ c‖ζ�‖w‖u�‖|ζ�|
1
4
L2‖ζ�‖

3
4 ≤ α8 ‖ζ

�‖2w + c‖u�‖8|ζ�|2L2 ,

(156)

|〈B(wl, ζ̄), ζ�〉| ≤ c|wl|
1
2
L2‖wl‖

1
2 ‖ζ̄‖|ζ�|

1
2
L2‖ζ�‖

1
2

≤ α8 ‖ζ
�‖2 + c|wl|L2‖wl‖‖ζ̄‖2,

(157)

|〈NB(εl, εl), ζ�〉| ≤ c‖εl‖w‖εl‖|ζ�|
1
4
L2‖ζ�‖

3
4 ≤ α

8
‖ζ�‖2w + c‖εl‖4w, (158)

|Λζ̄|L2 ≤ c‖ζ̄‖. (159)

Therefore, multiplying (149) by ζ� and using (154)–(159) yields

|ζ�(t)|2L2 + c
∫ t

0

(
‖ζ�‖2w + δ−2

∣∣∣∣∂ζ�∂z
∣∣∣∣
2
)
ds ≤ c sup

s
(|u�(s)|L2‖u�(s)‖

+|wl(s)|L2‖wl(s)‖)
∫ t

0

‖ζ̄‖2ds+ c sup
s
‖εl(s)‖2w

∫ t

0

‖εl‖2wds+ c
∫ t

0

‖ζ̄‖2ds,

≤ c sup
s

(|u�(s)|L2‖u�(s)‖+ |wl(s)|L2‖wl(s)‖)2
∫ t

0

‖ζ�‖2wdt+ cδ‖εl‖3X

+ sup
s

(|u�(s)|L2‖u�(s)‖+ |wl(s)|L2‖wl(s)‖)
∫ t

0

‖ζ�‖2wdt.
(160)

From Remark 3.1, Propositions 3.2 and 4.2, we have

|u�(s)|L2 ≤ c4δ, |wl(s)|L2 ≤ c4δ. (161)

Therefore, (121) and (138) yield

|ζ�(t)|2L2 + (c− c4δ)
∫ T

0

‖ζ�‖2wds+
c

δ2

∫ T

0

∣∣∣∣∂ζ�∂z
∣∣∣∣
2

ds ≤ cδ‖εl‖3X . (162)

Finally, for δ small enough such that

c− c4δ > 0, (163)

we have (see (153))

|ζ�(t)|2L2 ≤ c4δ‖εl‖3X ,
∫ T

0

|ζ�(t)|2L2dt ≤ c4δ3‖εl‖3X ,
∫ T

0

‖ζ�‖2wds ≤ c4δ‖εl‖3X ,

|ζ̄(t)|2L2 ≤ c4δ‖εl‖3X ,
∫ T

0

|ζ̄(t)|2L2dt ≤ c4δ3‖εl‖3X .
(164)

The next step is to derive some a priori estimates on εk.
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Note that εj satisfies (for 2 ≤ j ≤ l)

dεj
dt

+A1εj + δ−2A2εj + Eεj + B̃(v, εj) + B̃(εj ,v)

+NB(wj−1, εj) +NB(εj ,wj−1) +NB(εj−1, εj−1) + Λεj = 0 in (NV )′,

εj(0) = 0.
(165)

We also have

|〈B̃(εj ,v), εj〉| ≤ c‖εj‖w‖v‖|εj |
1
4
L2‖εj‖

3
4 ≤ α

8
‖εj‖2w + c‖v‖8|εj |2L2 , (166)

〈NB(wj−1, εj), εj〉 = 0, (167)

|〈NB(εj ,wj−1), εj〉| ≤ c‖εj‖w‖wj−1‖|εj |
1
4
L2‖εj‖

3
4

≤ α
8
‖εj‖2w + c‖wj−1‖8|εj |2L2 ,

(168)

|〈NB(εj−1, εj−1), εj〉| ≤ c‖εj−1‖w‖εj−1‖|εj |
1
4
L2‖εj‖

3
4

≤ α
8
‖εj‖2w + c‖εj−1‖2w‖εj−1‖2,

(169)

Therefore, multiplying (165) by εj and using (166)–(169) yields

|εj(t)|2L2 + c
∫ t

0

‖εj‖2wds ≤ c4δ‖εj−1‖3X (170)

We also have

|〈B̃(εj ,v),Aεj〉| ≤ c‖εj‖w‖v‖
1
2 |Ã1v|

1
2
L2 |Aεj |L2

≤ α8 |Aεj |
2
L2 + c‖εj‖2w‖v‖|Ã1v|L2 ,

(171)

|〈B̃(v, εj),Aεj〉| ≤ c‖v‖w‖εj‖
1
2 |Aεj |

1
2
L2 |Aεj |L2 ≤ α

8
|Aεj |2L2 + c‖v‖4w‖εj‖2,

(172)

|〈NB(wj−1, εj),Aεj〉| ≤ c‖wj−1‖w‖εj‖
1
2 |Aεj |

1
2
L2 |Aεj |L2

≤ α8 |Aεj |
2
L2 + c‖wj−1‖4w‖εj‖2,

(173)

|〈NB(εj ,wj−1),Aεj〉| ≤ c‖εj‖w‖wj−1‖
1
2 |Awj−1|

1
2
L2 |Aεj |L2

≤ α8 |Aεj |
2
L2 + c‖wj−1‖|Awj−1|L2‖εj‖2,

(174)

|〈NB(εj−1, εj−1),Aεj)〉| ≤ c‖εj−1‖w‖εj−1‖
1
2 |Aεj−1|

1
2
L2 |Aεj |L2

≤ α8 |Aεj |
2
L2 + c‖εj−1‖2w|Awj−1|L2‖εj−1‖.

(175)
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Therefore, multiplying (165) by Aεj and using (171)–(175) yields

‖εj(t)‖2w + c
∫ t

0

|Aεj |2L2ds ≤ c sup
s
‖εj−1(s)‖‖εj−1(s)‖w

∫ T

0

‖εj−1‖w|Aεj−1|L2dt

≤ c4δ‖εj−1‖3X .
(176)

Finally we have (for j ≥ 2)

‖εj‖2X ≤ c4δ‖εj−1‖3X , (177)

which gives

‖εl‖X ≤ δ−1
(
δ1/2

)(3/2)l−1 (
c4δ

1
2 ‖ε1‖X

)(3/2)l−1

. (178)

Hereafter, we assume that δ is small enough such that

c4δ
1
2 ‖ε1‖X < 1. (179)

Note that ‖ε1‖X = ‖w1‖X is bounded (although not necessary small).
Therefore, we have (see (178))

‖εl‖3X ≤ δ−3δ(3/2)
l

, ‖εl‖2X ≤ δ−2δ(3/2)
l−1
, (180)

and (164) yields

|ζ(t)|2L2 = |ζ̄(t)|2L2 + |ζ�(t)|2L2 ≤ c4δ2‖εl‖2X ≤ c4δ(3/2)
l−1
,

∫ T

0

|ζ(t)|2L2dt ≤ c4‖εl‖3X ≤ c4δ(3/2)
l

.

(181)

Finally, the following convergence result is proved.

Theorem 5.1. We assume that the data satisfy (27). Then there exits a
constant δ1 > 0 independent of l such that for 0 < δ < δ1, the error
ζ(t) = u(t)− ul(t) satisfies

|ζ(t)|2L2 ≤ c4δ(3/2)
l−1
,

∫ T

0

|ζ(t)|2L2dt ≤ c4δ(3/2)
l

. (182)

6 Numerical Results

In this section, we present some numerical simulations of the PEs of the ocean
with continuous density stratification. The goal is to compare the solution
obtained for the PEs (29)–(30) to that of the small eddy correction algorithms
presented above. Hereafter we restrict ourselves to l = 1. More simulations
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for larger values of l will be presented elsewhere. To avoid dealing with the
divergence-free condition, we first rewrote the barotropic equations in the
vorticity stream-function formulation.

In our experiments, the basin configuration is the (nondimensional) cube
[0, 1]× [0, 1]× [−1, 0]. Let us simply recall that this is a two-gyre, wind-driven
ocean problem with a steady sinusoidal wind stress (maximum τ0 = 1 dyne
cm−4 ) in a basin that is L1 × L1 × H1 km (east–west × north–south ×
bottom-surface extent). The Coriolis parameter is given by f = f0 + βy,
f0 = 9.3 × 10−5s−1, β = 2. × 10−11 m−1s−1. The model does not in-
clude bottom topography. The ocean is forced by a steady wind stress τ0 =
(τx0 , τ

y
0 ) = (−10−4 cos(2πy/L1), 0) and a density variation. Others dimen-

sional quantities are given by U1 = 10−1ms−1, g = 9.8m s−2, L1 = 2.106 m
and H1 = 4, 000m, which gives δ = H1/L1 = 2.10−3. The initial condition
is given by v = ρ = 0 at t = 0. The details on the numerical method is
given in [24]. Let us simply recall that all the operators in (29)–(30) are dis-
cretized using a second order central difference scheme. The Jacobian operator
is approximated using Arakawa’s method [29]. For the time integration of the
model, we use a fourth-order Adams–Bashforth method. In all the computa-
tions presented in this article, the (nondimensional) time step is �t = 10−4.
For the space discretization, we take 100 × 100 points in the x–y plane and
10 points on the vertical direction. For the boundary condition (6), we take
τv = ρ∗ = 0 and we compensate with a forcing term F1 in (5)1 defined by

F1 = c(g(z)τ0, 0), (183)

where g(z) is defined by

g(z) = 0.5(1 + tanh ((z/H1 + z1)/ε1)), (184)

where z1 and ε1 are very small constants chosen such that the forcing F1 is
nonzero only on the first couple layers from the surface of the ocean.

The forcing term F2 in (5)3 has the form

F2(z) = c
∂2ρs
∂z2
/ρ0, (185)

where ρs is given by

ρs(z) = 1028− 3 exp (10z/H1), (186)

and c is a constant.
Simulations 1 (steady state solutions). In this simulation, we compare

the two models (29)–(30) and (116)–(117) when the solution converges to a
steady state. For Re1 = Re2 = Rt1 = Rt2 = 100, the solutions obtained
with the two models converge to a steady state characterized by two gyres,
one subpolar cyclonic and one subtropical anticyclonic. The two gyres are
separated by a meandering jet, [9, 10]. Figure 1 shows the barotropic stream-
functions obtained with the two models. As one can see, model (116)–(117)
approximates very well the PEs (29)–(30).
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Fig. 1. Barotropic stream-function at the steady state, δ = 1.10−3. PEs on the left
and reduced model (116)–(117) on the right
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Fig. 2. Snapshot at the (nondimensional) time t = 5 of the barotropic stream-
function and the total density at x = 0.25. PEs on the left and reduced model
(116)–(117) on the right
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Fig. 3. Snapshot at the (nondimensional) time t = 5 of the surface density deviation
and the total density at (x, y) = (0.5, 0.5). PEs on the left and reduced model (116)–
(117) on the right

Simulations 2 (time-dependent solutions). For the two models (29)–(30)
and (116)–(117), the following Figs. 2–5 show a time-sequence of the surface
density deviation (that is ρ(x, y, 0)), the barotropic stream-functions, the to-
tal density at x = 0.25 (that is (ρs + ρ)(0.25, y, z)) and the total density at
(x, y) = (0.5, 0.5), (that is (ρs+ρ)(0.5, 0.5, z)) for the Reynolds numbers Re1 =
2.103, Re2 = 102, Rt1 = 103, Rt2 = 102. For these values of the Reynolds num-
ber, the flow remains time-dependent. From these figures, it is clear that the
density fields obtained with the two models are similar. The situation is a lit-
tle different for the barotropic stream-functions as the solutions obtained with
the two models present more differences. However, Fig. 6 shows that the time-
average of the two flows are very similar. This seems to confirm what is already
believed in oceanography that, from the climate point of view (where the main
focus is on the time-average of the flow) the interactions between the baro-
clinic and the barotropic mode do not need to be accurately represented [6].
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Fig. 4. Snapshot at the (nondimensional) time t = 10 of the barotropic stream-
function and the total density at x = 0.25. PEs on the left and reduced model
(116)–(117) on the right

7 Conclusion

The purpose of this article was to present a small eddy correction method
for the numerical solution of the PEs of the ocean. Considering the interac-
tion between the baroclinic and barotropic flows and using the idea of the
Newton iteration, a small eddy correction method was proposed for the PEs
of the ocean. We assume that the barotropic approximation to the solution
is known. Formally applying the Newton iterative procedure to the baroclinic
flow equation, we then generate approximate systems. It was shown that the
initial step (l = 0) leads to the well known quasi-geostrophic equations and
the next step (l = 1) yields a nonlinear Galerkin type approximation. Some
numerical simulations for l = 1 show that the method can accurately approx-
imate the PEs of the ocean. For the simulations presented in this article, we
did not observed any CPU gain for the reduced model (116)–(117) compared
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Fig. 5. Snapshot at the (nondimensional) time t = 10 of the surface density devia-
tion and the total density at (x, y) = (0.5, 0.5). PEs on the left and reduced model
(116)–(117) on the right
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Fig. 6. Time-average (over [0, 10]) of the barotropic stream-function. PEs on the
left and reduced model (116)–(117) on the right
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to the PEs (29)–(30), the primary reason being the simplicity of the time
discretization used in this article (a fourth-order Adams–Bashforth method
for both the barotropic and baroclinic flows). An efficient time discretization
of the model presented in this article may lead to considerable savings in cal-
culation costs. In fact, such method should take advantage of the time scale
differences between the barotropic and baroclinic modes. For instance:

– One can use different time steps for the small and large scales.
– One can use different schemes for the small and large scales.
– One can freeze the small scales over an interval of time.

These approaches, already used with success (significant reduction in CPU
time cost) for the Navier–Stokes equations (see [4, 13]) are currently under
development by the authors.
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Aspects of Modeling Transport in Small
Systems with a Look at Motor Proteins

D. Kinderlehrer

1 Introduction

Diffusion-mediated transport is a phenomenon in which directed motion is
achieved as a result of two opposing tendencies: diffusion, which spreads the
particles uniformly through the medium, and transport, which concentrates
the particles at some special sites. It is implicated in the operation of many
molecular level systems. These include some liquid crystal and lipid bilayer
systems, and, especially, the motor proteins responsible for eukaryotic cellular
traffic. All of these systems are extremely complex and involve subtle inter-
actions on widely varying scales. The chemical/mechanical transduction in
motor proteins is, by contrast to many materials microstructure situations,
quite distant from equilibrium. These bio-systems function in a dynamically
metastable range. There is an enormous biological literature about this and
a considerable math-biology and biophysics literature, e.g., [1, 2, 8, 9, 14, 15,
19, 20, 23, 25–28].

Our approach is to look at a dissipation principle for such situations and
its relationship to the Monge–Kantorovich mass transfer problem, e.g., [16].
In effect, we begin with simple – but not too simple – assumptions of mo-
tion along a track followed by statistical assumptions which provide us an
ensemble. The procedure permits us to establish consistent thermodynami-
cal dissipation principles from which evolution equations follow. In a given
instance, the dissipation principle identifies the thermodynamic free energy,
the conformational changes that result, for example, from ATP hydrolysis
reactions, and dissipation.

The simplest diffusional transport equation in this context is the Fokker–
Planck Equation with a periodic potential. Diffusion spreads density and po-
tential attracts density to specific cites but this typical system does not exhibit
biased transport. Something else has to be present in system for transport to
take place. We investigate possible relationships between the potentials in the
system and the conformational changes that lead to the accumulation of mass
at one end of the track.
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2 A Dissipation Principle

Our dissipation principle, based on extending the simple spring-mass-dashpot
to an ensemble, provides natural weak topology kinetics for the motion of
molecular motors. The dissipation, we shall see, is related to the Wasserstein
metric, a Monge–Kantorovich metric on probability distributions. The motion
of a spring-mass-dashpot in a highly viscous environment may be expressed
by the ordinary differential equation

γ
dξ

dt
+ ψ′(ξ) = 0, 0 < t < τ

ξ(0) = x .
(1)

We think of x ∈ Ω = (0, 1) and τ > 0 a relaxation time. ψ is a given potential.
Multiplying the equation by (1) by dξ/dt and integrating gives

γ

∫ τ

0

(
dξ

dt
)2 + ψ(ξ(τ)) = ψ(x), (2)

expressing that, in this simple system, the dissipation plus energy at the termi-
nal state is the initially supplied energy. We have a trajectory like as pictured
in Fig. 1 left. Consider now an ensemble {ξ(t, x)} of spring-mass-dashpots
distributed by a density ρ∗(x). We average (2) over Ω, which renders the in-
dividual spring-mass-dashpots indistinguishable, Fig. 1 right. We must, thus,
contribute entropy to the resulting configuration. The most convenient such
entropy is combinatorial indeterminacy leading us to

γ

τ∫
0

∫
Ω

(
dξ

dt
)2ρ∗(ξ(τ, x))dxdt+

∫
Ω

{ψ(ξ(τ, x))ρ∗(ξ(τ, x))

+σρ∗(ξ(τ, x)) log ρ∗(ξ(τ, x))}dx

�
∫

Ω

{ψ(x)ρ∗(x) + σρ∗(x) log ρ∗(x)}dx.

(3)

Fig. 1. A trajectory (left) and an ensemble of trajectories (right)
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This Lagrangian formulation (3) may be written in Eulerian terms by setting

φ(x, t) = ξ(t, x), family of transfer mappings
v(ξ, t) = φt(x, t),with ξ = φ(x, t) velocity
ρ(ξ, t) family of transformations given by∫

Ω

ζρdξ =
∫

Ω

ζ(φ(x, t))ρ∗(x)dx.

(4)

The descriptions are linked by the continuity equation

∂

∂t
ρ+

∂

∂x
(vρ) = 0. (5)

The Eulerian expression of (3) is

γ

∫ τ

0

∫
Ω

v2ρdxdt+
∫

Ω

{ψρ+σρ log ρ}dx �
∫

Ω

{ψρ∗+σρ∗ log ρ∗}dx. (6)

The dissipation principle is to choose the most likely configuration satisfying
(6) among all probability densities on Ω, which means minimizing its left hand
side. In particular, we can begin by minimizing the first term for given initial
state ρ∗ and terminal state ρ. This gives rise to a Monge–Kantorovich metric
or Wasserstein metric d(ρ, ρ∗), namely

1
τ
d(ρ, ρ∗)2 = min

A

∫ τ

0

∫
Ω

v2ρdxdt, (7)

where the minimum is taken over the set A of deformations and velocities
satisfying the continuity condition (5) and initial state ρ∗ and terminal state
ρ. The Wasserstein metric may be defined in several ways, in particular,

d(ρ, ρ∗)2 = min
P

∫
Ω×Ω

|x− ξ|2dp(x, ξ),

where P denotes the set of joint distributions whose marginal densities are
ρ∗ and ρ. Obviously it can be extended to probability measures and the re-
sulting metric induces the weak-* topology on bounded subsets of C(Ω̄)′, cf.
Villani, [29]. The equivalence (7) is due to Benamou and Brenier [3], and is
also found in work of Otto [22].

Thus we are led to the dissipation interpretation of the variational princi-
ple: given ρ∗ find ρ subject to

1
2τ
d(ρ, ρ∗)2 +

∫
Ω

{ψρ+ σρ log ρ}dx = min . (8)

Metrics and variational principles give rise to implicit schemes. Given ρ(k−1),
determine ρ(k) by setting ρ(k−1) = ρ∗ and ρ(k) = ρ, the solution, in (8). For
fixed τ we set
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Fig. 2. The stationary solution of a Fokker–Planck Equation with its potential
illustrating diffusion and transport but not biased transport

ρτ (x, t) = ρ(k)(x), kτ � t < (k + 1)τ. (9)

According to Jordan et al. [16] and Otto [21],

ρτ → ρ,

where ρ is the solution of the Fokker–Planck Equation

∂ρ

∂t
=
∂

∂x

{
σ
∂ρ

∂x
+ ψ′ρ

}
, in Ω, t > 0

σ
∂

∂x
ρ+ ψ′ρ = 0 on ∂Ω, t > 0.

(10)

The iteration scheme (8) expresses the Fokker–Planck Equation as a form
of gradient flow in the weak* topology for a natural free energy. Equation
(10) itself illustrates diffusion and transport as described in the introduction.
Diffusion spreads density and the potential attracts density to specific sites. It
does not show biased transport, cf. Fig. 2. For this, something additional must
be present in the system. We shall investigate this by looking at a description
of kinesin 1 molecular motors.

3 A Look at Multiple State Motors

Conventional kinesin has two identical head domains (heavy chains) which
walk in a hand over hand fashion along a rigid microtubule. This is an intri-
cate process with a complicated transformation path comprising both the ATP
hydrolysis (chemical states) and the motion (mechanical states), [14, 28]. For
a crude reckoning, at a gross combinatorial level, each head is attached or in
motion and is nucleotide bound or not. Assuming that a given motor has one
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head bound and one free at any instant leads to eight possible pathways for
each cycle. We shall give a simplified description by considering the nucleotide
binding and then the subsequent motion. Our dissipation/variational principle
is flexible enough to accommodate this process. We shall consider an ensem-
ble of motors with n states, which in the earlier mechanical language may
be described as an ensemble of conformation changing spring-mass-dashpots.
Conformation changes occur, typically, at specific places and are represented
by changes in population among the various states. More complicated types of
conformation changes are possible and we reserve this for a future discussion.
For details of how this scheme is applied to kinesin 1, we refer to [5, 10, 12].

Let σ > 0, ψ1, . . . , ψn be smooth non-negative functions of period 1/N , and
A = (aij) a smooth rate matrix of period 1/N , that is, aij are 1/N−periodic
functions with

aii � 0, aij � 0 for i 
= j and∑
i=1,...,n

aij = 0, j = 1, . . . , n.
(11)

Note that for τ > 0 small, the matrix P = 1+ τA is a probability matrix. Let

F (η) =
∫

Ω

∑
i=1,...,n

{ψiηi + σηi log ηi}dx (12)

ηi � 0 and
∫

Ω

∑
i=1,...,n

ηidx = 1

denote the free energy. Now given a state ρ∗, determine its successor state ρ
by resolving the variational principle

1
2τ

∑
i=1,...,n

d(ρi, (Pρ∗)i)2 + F (ρ) = min,

∫
Ω

ρidx =
∫

Ω

(Pρ∗)idx,

(13)

where P is the probability matrix above. For this functional we can perform
the same iterative procedure that we indicated for the original one (8): deter-
mine ρ(k) by setting ρ(k−1) = ρ∗ and ρ(k) = ρ, the solution, in (13). Again we
may set

ρτ (x, t) = ρ(k)(x), kτ � t < (k + 1)τ (14)

and ask about ρ = (ρ1, . . . , ρn) which arises as

ρ = lim
τ→0
ρτ .
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It is the solution of the weakly coupled parabolic system

∂ρi
∂t

=
∂

∂x
(σ
∂ρi
∂x

+ ψ′
iρi) +

∑
j=1,...,n

aijρj = 0 in Ω, t > 0,

σ
∂ρi
∂x

+ ψ′
iρi = 0 on ∂Ω, t > 0, i = 1, . . . , n,

ρi � 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1, t > 0. (15)

The possibility of including terms of inferior order in this type of implicit
scheme seems to have been first observed in [18].

Before proceeding further, let us review what we intend by transport. In
a chemical or conformational change process, a reaction coordinate (or coor-
dinates) must be specified. This is the independent variable. In a mechanical
system, it is usually evident what this coordinate must be. In our situation,
even though both conformational change and mechanical effects are present,
it is natural to specify the distance along the motor track, the microtubule,
here the interval Ω, as the independent variable. We interpret the migration of
density during the evolution to one end of the track as evidence of transport.
This leads us to the stationary state of the system ρ� where

ρ(x, t) → ρ�(x) as t→∞. (16)

We shall omit the superscript, writing ρ(x) = ρ�(x). So, obviously, ρ is the
solution of the stationary system of ordinary differential equations

d

dx
(σ
dρi
dx

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω

σ
dρi
dx

+ ψ′iρi = 0 on ∂Ω, i = 1, . . . , n,

ρi � 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1.

(17)

Directed transport results from functional relationships in the system (15) or
(17). First note that detailed balance for the conformational changes must be
broken. In this situation, where the solution ρ of (17) satisfies

Aρ = 0 in Ω, (18)

the ordinary differential equations decouple leading to a collection of functions
ρ1, . . . , ρn any of which has a plot like that depicted in Fig. 2. Let us first
direct our attention to the potentials ψ1, . . . , ψn. In Fig. 3 two configurations
with symmetric wells are depicted. Detailed balance, (18), is not satisfied and
there is lack of transport. Asymmetric potentials are thought to play a role
in transport. In Fig. 4, we see that this is not necessarily the case.
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Fig. 3. Solutions of (17) for two state systems with symmetric potentials placed
symmetrically (left) and symmetric potentials placed asymmetrically (right) show-
ing lack of transport of density. A was chosen constant to optimize the possibility
of transport. Detailed balance is not satisfied by the solutions

Fig. 4. Slightly shifted asymmetric wells, left, and the solutions of (17), right, illus-
trating lack of transport. The matrix A was chosen to optimize transport possibilities

If we adopt the pragmatic notion that in a two species system, the two
species function in the same way, we are led to interdigitated potentials ψj
of the form in Fig. 5. This is not a reason, of course. We discuss this further
below. We are led to the intriguing question of the relationship between the
ψj and A. Even under the most propitious circumstances, one may always add
to the system independent uncoupled equations. So it is necessary, in view of
(11), that

aii 
≡ 0 in Ω.

The basic mechanism of diffusional transport is that mass is transported to
specific sites determined by minima and local minima of the potential. For
directed transport, to the left toward x = 0, for example, in any subinterval
of a period interval, there should be some ψi which is increasing. This explains
the result shown in Fig. 4, where the potentials are asymmetric and transport
is not present. Moreover, some interchange must take place: mass in states
associated to each of the ψj which is decreasing should have the opportunity



160 D. Kinderlehrer

Fig. 5. Asymmetric periodic potentials symmetrically interdigitated, the configu-
ration which promotes transport

to change to the ith-state. This is reminiscent of an ergodic hypothesis. It does
not say that all states are connected, but it will be a very strong condition
since it will be required to hold near all the minima of all of the potentials. In
the neck linker example we have mentioned, the condition fails and so does
the conclusion of our theorem. We give a more precise statement with this
theorem, [11], and see [4] for a different point of view.

Theorem 3.1. Suppose that ρ is a positive solution of (17), where the coeffi-
cients aij , i, j = 1, . . . , n and the ψi, i = 1, . . . , n are smooth and 1/N-periodic
in Ω. Suppose that (11) holds and also that the following conditions are sat-
isfied.

(1) Each ψ′i has only a finite number of zeros in Ω.
(2) There is some interval in which ψ′i > 0 for all i = 1, . . . , n.
(3) In any interval in which no ψ′i vanishes, ψ′j > 0 in this interval for at least

one j.
(4) If I, |I| < 1/N , is an interval in which ψ′i > 0 for i = 1, . . . , p and ψ′i < 0

for i = p + 1, . . . , n, and a is a zero of at least one of the ψ′k which lies
within ε of the right-hand end of I, then for ε sufficiently small, there is
at least one index i, i = 1, . . . , p, with aij > 0 in (a−η, a) for some η > 0,
all j = p+ 1, . . . , n.

Then, there exist positive constants K, M independent of σ such that

n∑
i=1

ρi(x+
1
N

) � Ke−M
σ

n∑
i=1

ρi(x), x ∈ Ω, x < 1− 1
N

(19)

for sufficiently small σ.

An example is given in Fig. 6, where the potentials from Fig. 5 were employed
and the 2×2 matrix A had support in a neighborhood of the well minima. This
situation is consistent with the experimental results reported some time ago by
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Fig. 6. Computed solution for two state rachet for interdigitated asymmetric po-
tentials, period 4. Plot shows summed density ρ1 + ρ2

Hackney [8]. The methods described here may be elaborated to include some
additional features, even without incorporating multiple reaction coordinates,
for example. In [12] we describe how the kinesin 1 necklinker, described in [28]
and analyzed in [9] falls into this framework. The central feature of additional
conformational changes, or more generally rapid localized changes, is that
they act by altering the populations of the species but without potentials.
Thus, one is led to a dissipation principle

1
2τ

∑
i=1,...,m

d(ρi, (Pρ∗)i)2 + F (ρ) = min,

∫
Ω

ρidx =
∫

Ω

(Pρ∗)idx,

(20)

where the number m of species is larger than the number n of potentials. The
resulting equations are a mixed system of partial differential equations and
ordinary differential equations.

Finally we note that there are other mechanisms of diffusion mediated
transport, in particular, the flashing rachet. This is discussed in [2] and from
the analysis point of view in [7] and [17]. Not all apparent rachet type mech-
anisms are in fact such. For a discussion of this in relation to the Parrondo
coin toss, see [13].
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Optimal Control of Ill-Posed Parabolic
Distributed Systems

A. Omrane

Summary. We show that the low-regret notion of Lions [C. R. Acad. Sci. Paris Ser.
I Math. 315:1253–1257, 1992] is well adapted for the control of the ill-posed heat
problem. Passing to the limit, we give a characterization of the no-regret control by
a singular optimality system. No Slater hypothesis on the admissible set of controls
Uad is necessary, since we use a corrector of order zero argument. The result is a
generalization of the low-regret control [Dorville et al., Appl. Math. Lett. 17:549–
552, 2004; Dorville et al., C. R. Acad. Sci. Paris Ser. I Math. 338:921–924, 2004] to
the no-regret control optimality system.

1 Introduction

The question of existence and characterization of the optimal control for sin-
gular problems, and thus for ill-posed problems has not been considered in
detail, since there is a lack of regularity of the state solution. Moreover, the as-
sumptions on the control problem are mostly chosen in such a way that some
standard methods can be applied to derive the existence of solutions. Most of
the work is then to derive necessary or sufficient optimality conditions.

We consider in this paper the prototype of ill-posed problems: the ill-posed
backward heat problem, with controls v in a non-empty closed convex subset
Uad of the Hilbert space L2, and a cost functional.

It is well known that if we add the Slater type hypothesis as: Uad having a
non-empty interior, then we ensure the existence of an optimal control, using
standard methods (see [4]). But, we do not know if this hypothesis is really
necessary!

One way to deal with this problem – instead of answering to the question –
is to propose another approach, where the Slater hypothesis on Uad is not
needed. Convex cones as (L2)+ which are of empty interior may be used as
set of admissible controls v. We here use the regularization approach in a first
part, and the null-controllability approach in a second part. In both methods,
a new data is introduced. This data is supposed to be chosen as largely as
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possible, say in a vector space. That is the data is incomplete, and in this
case, the standard methods as the penalization method are not adapted (see
[6, 9, 10]). We then seek for the low-regret control of the distributed system
of incomplete data obtained. And thus, the no-regret control of the original
problem appears naturally by passage to the limit, which is possible without
the Slater hypothesis.

Roughly speaking, the low-regret control uγ satisfies to the following in-
equality:

J(uγ , g) ≤ J(0, g) + γ‖g‖2Y ∀ g in a Hilbert space Y,

where γ is a small positive parameter (g being the pollution or the incomplete
data). With the low-regret control we admit the possibility of making a choice
of controls v ‘slightly worse’ than by doing better than v = 0 – but ‘not much’
if we choose γ small enough – compared to the worst things that could happen
with the ‘pollution’ g.

In the no-regret concept, we search for the control u, if it exists, which
makes things better than v = 0, for any given perturbation parameter. It is
the limit when γ → 0, of the family of low-regret controls uγ .

This concept is previously introduced by Savage [11] in statistics. Lions was
the first to use it to control distributed systems of incomplete data, motivated
by a number of applications in economics, and ecology as well (see for instance
[7, 8]).

In [9] (see also [10]), Nakoulima et al. give a precise optimality system
(which is a singular optimality system). In [10], the no-regret control for
problems of incomplete data, in both the stationary and evolution cases is
characterized. A number of applications is given too.

In the literature mentioned above, the regular problems are considered
only. Moreover, the set of controls was a Hilbert space. In this article, we
generalize the study to the control of ill-posed problems, where the controls
are in a closed convex subset of a Hilbert space only. Without loss of generality,
we consider the prototype of ill-posed problems: the ill-posed backward heat
problem.

2 Existence Problem

We recall below some basic properties of the most significant parabolic prob-
lems: the heat equation and backward heat equation.

2.1 The Heat and Backward Heat Problems

Consider an open domain Ω ⊂ IRN with regular frontier ∂Ω, and denote by
Q = (0, T ) × Ω, and by Σ = (0, T ) × ∂Ω. Then it is well known that the
following heat system: {

z′ −∆ z = v in Q,
z = 0 on Σ, (1)
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and
z(0) = 0 in Ω, (2)

is well-posed. Here, z = z(t, x) is the state solution and v = v(t, x) ∈ L2(Q).
Moreover, any solution z of (1)–(2) is a.e. continuous from [0, T ] to H−1(Ω)
and we have

z′ ∈ L2
(
]0, T [;H−2(Ω)

)
and z|

Σ
∈ H−1

(
]0, T [;H− 1

2 (∂Ω)
)
.

But, the above system does not admit a solution for arbitrary data. Indeed,
in the case of final data, i.e. replacing (2) by

z(T ) = 0 in Ω, (3)

there is no solution for the backward heat problem, even for regular control v,
as we can see in the following one-dimensional example:

For Ω =]0, π[, T = 1, consider the backward heat system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂z

∂t
− ∂

2z

∂x2
= v in ]0, π[×]0, 1[,

z(0, t) = z(π, t) = 0 in ]0, 1[,

z(x, 1) = 0 in ]0, π[,

(4)

where v ∈ L2(]0, 1[;L2(]0, π[)) is the uniformly convergent series

v(t, x) =

√
2
π

∑
m≥1

sinmx
m2

.

If z ∈ L2(]0, 1[;L2(]0, π[)) is a solution to (4), such that z(t, x) =∑
m≥1

zm(t)wm(x), where wm(x) =
√

2
π

sinmx (wm is an eigenvector for

− ∂
2

∂x2
related to the eigenvalue m2), then we have⎧⎨

⎩
dzm
dt

(t) +m2zm(t) =
1
m2

in ]0, 1[,

zm(1) = 0,

so that

zm(t) =
1
m2

∫ t

1

em
2(s−t)ds =

1
m4

(
1− em2(1−t)

)
.

For every t ∈ [0, 1[, we then obtain ‖z‖2L2(]0,π[) =
∑
m≥1

∣∣∣∣ 1
m4

(
1− em2(1−t)

)∣∣∣∣2.
But,

lim
m→+∞

∣∣∣∣ 1
m4

(
1− em2(1−t)

)∣∣∣∣2 = +∞, ∀ t ∈ [0, 1[.

Hence, the series diverges and the solution z of (4) does not exist.
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2.2 Existence of a Solution for the Ill-Posed Heat Problem

The prototype of ill-posed problems is the following backward heat problem:∣∣∣∣∣∣
z′ −∆ z = v in Q,
z = 0 on Σ,
z(T ) = 0 in Ω.

(5)

This problem has however a unique solution z in some dense subset of L2(Q)
that we explicit now: Consider the vector space

V =

{
w =

N∑
i=1

λiwi : −∆wi = 0, wi = 0 on Γ, and wi ∈ L2(Ω)

}
.

(6)
Then, there exist f ∈ L2(]0, T [) and w ∈ V such that

v(t, x) = f(t)

(
N∑
i=1

wi(x)

)
,

for given v ∈ L2(]0, T [)⊗ V (which is dense in L2(Q)). It suffices to take z of
the form z(t, x) = ζ(t)w(x), ζ = (ζ1, ..., ζN ). So, ζi is solution of{

∂ζi
∂t
− λζi = f in ]0, T [,

ζi(0) = 0 in Ω,

which defines ζ in a unique manner.

3 Optimal Control of the Backward Heat Problem

3.1 Preliminaries

Consider v ∈ Uad, Uad a non-empty closed convex subset of the Hilbert space
of controls L2(Q), and the quadratic function

J(v, z) =
∥∥∥z − zd∥∥∥2

L2(Q)

+N
∥∥∥v∥∥∥2

L2(Q)

, (7)

where zd ∈ L2(Q), N > 0, and where
∥∥∥.∥∥∥

X
is the norm on the corresponding

Hilbert space X.
If a pair (v, z) ∈ Uad × L2(Q) satisfying to (5) exists, then it is called a

control-state admissible pair. Denote by Xad the set of admissible pairs. We
suppose in what follows that Xad is non-empty. Then for every (v, z) ∈ Xad,
we associate the cost function defined by (7), and we consider the optimal
control problem:

inf J(v, z) , (v, z) ∈ Xad (8)

which admits a unique solution (u, y) that we should characterize.
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Lemma 3.1. The problem (8) admits a unique solution (u, y) called the
optimal pair.

Proof. The functional J : L2(Q) × L2(Q) −→ IR is a lower semi-continuous
function, strictly convex, and coercitive. Hence there is a unique admissible
pair (u, y) solution to (8). �

A classical method to control the system (5) and (7) is the well-known
penalization method, which consists in approximating (u, y) by a penalized
problem. More precisely, for ε > 0 we define the penalized cost function

Jε(v, z) = J(v, z) +
1
2ε
‖z′ −∆z − v‖2

L2(Q)
.

The optimal pair (uε, yε) then converges to (u, y).
The optimality conditions of Euler-Lagrange for (uε, yε) are the following:

d

dt
Jε(uε, yε + t(z − yε))|t=0 = 0, ∀z ∈ F (9)

and
d

dt
Jε(uε + t(v − uε), yε)|t=0 ≥ 0 ∀v ∈ U

ad
, (10)

then an optimality system is obtained by the introduction of the adjoint state

pε = −1
ε
(yε′ −∆yε − uε).

A priori estimates (consisting in bounding pε in L2(Q)) have to be obtained,
which allows the passage to the limit under some hypothesis: For the problem
(5) and (7)–(8), Lions obtained in [4] a singular optimality system, under the
supplementary hypothesis of Slater type:

Uad has a non-empty interior. (11)

The following theorem is due to Lions: [3, 4]:

Theorem 3.2. Under hypothesis (11), there is a unique (u, y, p) ∈ Uad ×
L2(Q)×L2(Q), solution to the optimal control problem (5) and (7)–(8). More-
over, this solution is characterized by the following singular optimality system
(SOS): ⎧⎪⎨

⎪⎩
y′ −∆y = u, −p′ −∆p = y − zd in Q,
y(T ) = 0, p(0) = 0 in Ω,
y = 0, p = 0 on Σ

(12)

with the variational inequality:

(p+Nu, v − u)L2(Q) ≥ 0 ∀v ∈ Uad . (13)

Proof. For a proof of this theorem see [3, 4]. �
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Remark 3.3. In some applications, the Slater hypothesis (11) is not satisfied.
It is the case when Uad =

(
L2(Q)

)+ which has an empty interior. In what
follows, we propose another approach which avoids the use of (11).

When Uad = L2(Q), the hypothesis (11) is satisfied and the above theorem
holds.

4 The Low-Regret Optimal Control

In this section, an elliptic regularization of the ill-posed parabolic problem (5).
We obtain a well-posed problem but with a new unknown data. We then let the
classical control notion away, to consider the one of no-regret and low-regret
control as introduced by Lions [6], and recently developed by Nakoulima et al.
in [9, 10].

4.1 The Regularization Approach

For any ε > 0, we consider the regularized problem:∣∣∣∣∣∣∣∣
z′ε − εz′′ε −∆zε = v in Q,

zε(0) = g in Ω,
zε(T ) = 0 in Ω,
zε = 0 on Σ,

(14)

where g ∈ L2(Ω).
It is clear that for any ε > 0, and any given (v, g), there is a unique state

solution zε = zε(v, g) of (14) for which we associate a cost function given by

Jε(v, g) =
∥∥∥zε(v, g)− zd∥∥∥2

L2(Q)

+N
∥∥∥v∥∥∥2

L2(Q)

, g ∈ L2(Ω). (15)

We are concerned with the optimal control of the problem (14)–(15). Clearly
we want

inf
v∈Uad

Jε(v, g) ∀g ∈ L2(Ω).

The above minimization problem has no sense since L2(Ω) is infinite! One
natural idea is to consider the following minimization problem:

inf
v∈Uad

(
sup

g∈L2(Ω)

Jε(v, g)

)
,

but Jε is not upper bounded since supg∈L2(Ω) Jε(v, g) = +∞. The idea of
Lions is then to look for controls v – if they exist – such that

Jε(v, g) ≤ Jε(0, g) ∀g ∈ L2(Ω),
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and thus
Jε(v, g)− Jε(0, g) ≤ 0 ∀g ∈ L2(Ω).

Those controls doing better than v = 0 for every pollution g are called no-
regret controls. We have precisely the

Definition 4.1. We say that u ∈ Uad is a no-regret control for (14)–(15) if u
is a solution to the following problem:

inf
v∈Uad

(
sup

g∈L2(Ω)

(Jε(v, g)− Jε(0, g))
)
. (16)

Lemma 4.2. For any v ∈ Uad we have

Jε(v, g)−Jε(0, g) = Jε(v, 0)−Jε(0, 0)+2〈ξε′(0), g〉
L2(Ω)

∀g ∈ L2(Ω), (17)

where ξε satisfies to:

−ξ′ε−εξ′′ε −∆ξε = yε(v, 0) in Q, ξε(0) = ξε(T ) = 0 in Ω, ξε = 0 on Σ.
(18)

Proof. A simple calculus gives

Jε(v, g)− Jε(0, g) = Jε(v, 0)− Jε(0, 0) + 2〈 zε(v, 0) ; zε(0, g) 〉L2(Q)
.

Using the Green formula we find

〈 zε(v, 0) ; zε(0, g) 〉 = ε 〈 ξε′(0) ; g 〉
L2(Q)

,

where ξε is given by (18). �

Remark 4.3. Of course the problem (16) is defined only for the controls v ∈ Uad

such that
sup

g∈L2(Ω)

(Jε(v, g)− Jε(0, g)) <∞.

From (17) this is realized iff v ∈ K, where K = {w ∈ Uad, 〈 ξε(w), g 〉 = 0 ∀g ∈
L2(Ω)

}
. This set is difficult to characterize. As in [9], for any γ > 0, we

introduce then the low-regret control.

Definition 4.4. The low-regret control for (14)–(15), is the solution to the
following perturbed system:

inf
v∈Uad

(
sup

g∈L2(Ω)

(
Jε(v, g)− Jε(0, g)− γ‖g‖2

L2(Ω)

))
. (19)

We notice the following :

inf
v∈Uad

(
sup

g∈L2(Ω)

(
Jε(v, g) − Jε(0, g) − γ‖g‖2

L2(Ω)

))
= inf

v∈Uad

(
Jε(v, 0) − Jε(0, 0) +

(
sup

g∈L2(Ω)
2〈 zε(v, 0) ; zε(0, g) 〉

L2(Q)
− γ‖g‖2

L2(Ω)

))
.
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Thanks to the conjugate, we obtain the classical control problem:

inf
v∈Uad

J γ
ε (v), (20)

where

J γ
ε (v) = Jε(v, 0)− Jε(0, 0) +

ε2

γ

∥∥∥ξ′ε(T, v)∥∥∥2

L2(Ω)

, (21)

and where ξε satisfies to (18).

Remark 4.5. Then as we can see, the low-regret control method allows us to
transform systematically a problem with uncertainty to a standard control
problem. Hence, we can use the Euler–Lagrange method.

We can replace now (19) by (20) and (21) for the low-regret control.

Lemma 4.6. The problem (14) and (20)–(21) has a unique solution uγε , called
the ‘approximate’ low-regret control.

Proof. We have J γ
ε (v) ≥ −Jε(0, 0) = −‖zd‖2L2(Ω) ∀v ∈ Uad . Then d =

infv∈Uad
J γ
ε (v) exists. Let vn be a minimizing sequence such that d =

limn→∞ J γ
ε (vn). We have

−‖zd‖2
L2(Ω)

≤ J γ
ε (vn) = Jε(vn, 0)− Jε(0, 0) +

1
γ

∥∥∥ξε′(0)
∥∥∥2

L2(Ω)

≤ dγ + 1.

Then we deduce the bounds∥∥∥vn∥∥∥
L2(Q)

≤ c, 1√
γ

∥∥∥ξ′ε(vn)(0)
∥∥∥
L2(Ω)

≤ c,
∥∥∥yε(vn, 0)− zd

∥∥∥
L2(Q)

≤ c,

where the constant c is independent of n.
There exists uγε ∈ Uad such that vn ⇀ uγε weakly in Uad (which is closed).

Also, yε(vn, 0) → yε(uγε , 0) (continuity w.r.t the data). We also deduce from
the strict convexity of the cost function J γ

ε that uγε is unique. �

Proposition 4.7. The ‘approximate’ low-regret control uγε is characterized by
the unique quadruplet {uγε , yγε , ργε , pγε}, solution to the system:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yγε
′ − εyγε ′′ −∆yγε = uγε , ργε

′ − εργε ′′ −∆ργε = 0, and
−pγε ′ − εpγε ′′−∆pγε = yγε − zd + ργε in Q,

yγε (0) = yγε (T ) = 0, ργε (T ) = 0, ργε (0)=
ε

γ
ξγε

′(0),

pγε (0) = pγε (T ) = 0 in Ω,

yγε = 0, ργε = 0, pγε = 0 on Σ,

with (18), and the variational inequality:

〈 pγε +Nuγε , v − uγε 〉 ≥ 0, ∀ v ∈ Uad .
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Proof. The Euler condition of first order to (20) and (21) gives:

〈 yγε − zd, yε(w, 0) 〉
L2(Q)×L2(Q)

+N〈uγε , w 〉L2(Q)×L2(Q)

+ 〈 ε
2

γ
ξγε

′(0), ξε′(0, w) 〉
L2(Ω)×L2(Ω)

≥ 0,

where yγε = yε(uγε , 0), and ξγε = ξε(uγε , 0). We then introduce ργε = ρε(uγε , 0)
solution to ργε

′−εργε ′′−∆ργε = 0, ργε (0) = (ε/γ)ξγε
′(T ), ργε (T ) = 0, and ργε = 0

on Σ, such that:

〈 ε2
γ
ξγε

′(0), ξε′(0, w)
〉

L2(Ω)×L2(Ω)

= 〈 εργε (0), ξε′(0, w) 〉
L2(Ω)×L2(Ω)

= 〈 ργε , yε(w, 0) 〉
L2(Q)×L2(Q)

using the Green formula.

Introduce now the adjoint state pγε = pε(uγε , 0) as follows : we solve −pγε ′−
εpγε

′′ −∆pγε = yγε − zd + ργε , p
γ
ε (T ) = pγε (0) = 0, and pγε = 0 on Σ. Hence we

have
〈 yγε − zd + ργε , yε(w, 0)〉

L2(Q)×L2(Q)
= 〈 pγε , w 〉L2(Q)×L2(Q)

.

Finally,
〈 pγε +Nuγε , w 〉L2(Q)×L2(Q)

≥ 0. �

4.2 A Priori Estimates

In this section we give the S.O.S for the low-regret control of the backward
heat equation. We first show the following estimates:

Proposition 4.8. There is a positive constant C, and, for any small η > 0,
there is a constant Cη > 0 such that:

‖uγε‖L2(Q)
≤ C, ‖yγε ‖L2(Q)

≤ C, ε√
γ
‖ξγε ′(0)‖

L2(Ω)
≤ C, (22)

ε
∥∥yγε ′∥∥L2 (Q)

+ ‖yγε ‖L2 (Q) ≤ C,
∥∥yγε ′∥∥L2 (]0,T−η[;H−1(Ω))

≤ Cη, (23)

and,

ε
∥∥ξγε ′∥∥L2 (Q)

+ ‖ξγε ‖L2 (Q) ≤ C,
∥∥ξγε ′∥∥L2 (]η,T [;H−1(Ω))

≤ Cη, (24)

ε
∥∥ργε ′∥∥L2 (Q)

+ ‖ργε‖L2 (Q) ≤ C,
∥∥ργε ′∥∥L2 (]0,T−η[;H−1(Ω))

≤ Cη, (25)

ε
∥∥pγε ′∥∥L2 (Q)

+ ‖pγε‖L2 (Q) ≤ C,
∥∥pγε ′∥∥L2 (]η,T [;H−1(Ω))

≤ Cη. (26)

Proof. We know that

J γ
ε (uγε ) ≤ J γ

ε (v) ∀v ∈ Uad .
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We then have for the particular case v = 0,

Jε(uγε , 0)− Jε(0, 0) +
ε2

γ

∥∥∥ξε′(uγε )(0)
∥∥∥2

L2(Ω)

≤ ε
2

γ

∥∥∥ξε′(uγε )(0)
∥∥∥2

L2(Ω)

.

But yε(0, 0)(t, x) = ξε(0)(t, x) = 0 in [0, T ]× Ω, hence:

∥∥∥yε(uγε , 0)− zd
∥∥∥2

L2(Q)

+N
∥∥∥uγε∥∥∥2

L2(Q)

+
∥∥∥ ε√
γ
ξε

′(uγε )(0)
∥∥∥2

L2(Ω)

≤
∥∥∥zd∥∥∥2

L2(Q)

= constant, (27)

so we have (22).
Now, from the Poincaré formula, there exists a constant C1 > 0 such that:(
ε

∥∥∥∥∂yγε∂t
∥∥∥∥
L2 (Q)

+ ‖yγε ‖L2 (Q)

)
‖yγε ‖L2 (Q) ≤ C1‖uγε‖L2 (Q)‖yγε ‖L2 (Q),

thus, there is another constant C2 > 0 such that

ε

∥∥∥∥∂yγε∂t
∥∥∥∥
L2 (Q)

+ ‖yγε ‖L2 (Q) ≤ C2,

that is the first part of (23). Now, we start from −ε∂
2
yε
∂t2

+
∂yε
∂t

= v + ∆yε.

Denote by gε = v + ∆yε, then gε remains in a bounded subset of L
2
(Q).

Introduce a function ϕ ∈ C1([0, T ]) such that ϕ(0) = 1 and ϕ(T ) = 0,
then we multiply

−ε∂
2
yε
∂t2

+
∂yε
∂t

= gε

by ϕ
∂yε
∂t

and we integrate over Q. We have

−ε
2

∫ T

0

ϕ
d

dt

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt+
∫ T

0

ϕ

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt =
∫ T

0

ϕ

(
gε,
∂yε
∂t

)
L2 (Ω)

dt.

(28)
And,∫ T

0

ϕ
d

dt

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt = −
∥∥∥∥∂yε∂t (0)

∥∥∥∥2

L2 (Ω)

−
∫ T

0

dϕ

dt

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt,

thus

ε

2

∥∥∥∥∂yε∂t (0)
∥∥∥∥2

L2 (Ω)

+
ε

2

∫ T

0

dϕ

dt

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt+
∫ T

0

ϕ

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt

=
∫ T

0

ϕ

(
gε,
∂yε
∂t

)
L2 (Ω)

dt.
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The second term is of O(1), so∫ T

0

ϕ

∥∥∥∥∂yε∂t
∥∥∥∥2

L2 (Ω)

dt =
∫ T

0

ϕ

(
gε,
∂yε
∂t

)
L2 (Ω)

dt+O(1).

We finally deduce (23) from the triangular inequality.
The estimates (24), (25) and (26) follow easily. �

Theorem 4.9. The low-regret control uγ = lim
ε→0
uγε for the backwards heat

equation (5) is characterized by the unique {uγ , yγ , ξγ , ργ , pγ}, solution to the
system:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yγ ′ −∆yγ = uγ , −ξγ ′ −∆ξγ = yγ , ργ ′ −∆ργ = 0, and
−pγ ′ −∆pγ = yγ − zd + ργ in Q,

yγ(0) = 0, ξγ(T ) = 0, and
ργ(0) = λγ(0), pγ(T ) = 0 in Ω,

yγ = 0, ξγ = 0, ργ = 0, pγ = 0 on Σ,

with the following weak limits

yγ = lim
ε→0
yγε , ξγ = lim

ε→0
ξγε , ργ = lim

ε→0
ργε , pγ = lim

ε→0
pγε ,

and the variational inequality:

〈 pγ +Nuγ , v − uγ 〉 ≥ 0 ∀v ∈ Uad ,

where

uγ , yγ , pγ , ργ , ξγ ∈ L2(]0, T [;L2(Ω)), λγ(0) ∈ L2(Ω).

Proof. We use the estimates of proposition 4.8. From (27), we deduce the
following limits:

uγε ⇀ uγ weakly in Uad ,
yγε ⇀ yγ weakly in L2(Q),

ε√
γ

∂ξε(uγε )
∂t

(0) ⇀ λγ(0) weakly in L2(Ω),
(29)

(up to extract a subsequences (uγε ), (yγε ) and
(
ε√
γ

∂ξε(uγε )
∂t

(T )
)

).

For every fixed γ > 0, the adjoint state pγε is also bounded in ε (from
(26)). �

5 The Now-Regret Optimal Control

For the no-regret optimal control to the original problem, we now introduce
the notion of corrector of order 0 of Lions [5] for elliptic regularizations, instead
of using the Slater hypothesis (11).
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5.1 Corrector of Order Zero

It is well known, the passage to the limit gives no information on yγ(T ).
Moreover, yγ(T ) 
= 0 in general.

We make the following hypothesis:

yγ(T ) ∈ H1
0 (Ω), yγ ′ ∈ L2

(Q). (30)

Denote by

V = {ϕ ∈ L2
(]0, T [;H1

0 (Ω)) such that ϕ′ ∈ L2
(Q)},

and by
V0 = {ϕ ∈ V such that ϕ(0) = 0, ϕ(T ) = 0}.

Definition 5.1. We say that a function θγε ∈ V is a corrector of order 0 iff∣∣∣∣∣∣
ε(θγε

′, ϕ′)L2 (Q) + (θγε
′, ϕ)L2 (Q) + (∇θγε ,∇ϕ)L2 (Q) =

√
ε (fε, ϕ)L2 (Q) ∀V0,

θγε (T ) + yγ(T ) = 0,
(31)

where we suppose that

‖fε‖L2 (]0,T [;H−1(Ω)) ≤ C. (32)

5.1.1 Calculus of a Corrector or Order 0

We recall how to calculate a corrector of order 0 :
We define ϕγε by writing{−εϕγε ′′ + ϕγε

′ = 0,
ϕγε (T ) = −yγ(T ),

ϕγε decreasing rapidly when t→ −∞,

then
θγε (t) = −yγ(T )e−

T−t
ε . (33)

If we suppose that yγ(T ) ∈ H1
0 (Ω), the function

θγε = mϕγε

∣∣∣∣m = 1 in the neighbourhood of t = T,
m = 0 in the neighbourhood of t = 0

is a corrector of order 0.
We then satisfy the variational equation, the main term being

m∆ yγ(T ) e−
T−t

ε =
√
ε hγε .

Hence, under the above hypothesis we have:∫ T

0

‖hγε‖2H−1(Ω)
dt ≤ C ε−1

∫ T

0

e−
2(T−t)

ε dt = 0(1).
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We then have the theorem:

Theorem 5.2. Let be θγε a corrector of order 0 defined by (31) and (32). We
then have

‖yγε − (yγ + θγε )‖L2 (]0,T [;H1
0 ) ≤ C

√
ε. (34)

Moreover,
d

dt
[yγε − (yγ + θγε )]⇀ 0 weakly in L

2
(Q), (35)

when ε tends to 0.

Proof. If we put wγε = yγε − (yγ + θγε ), then

ε(wγε
′, ϕ′)L2 (Q) + (wγε

′, ϕ)L2 (Q) + (∇wγε ,∇ϕ)L2 (Q)

= −ε (yγ ′, ϕ′)L2 (Q) −
√
ε (fε, ϕ)L2 (Q) ∀V0. (36)

Particularly, if ϕ = wγε , then

ε‖wγε ′‖2L2 (Q)
+ ‖wγε ‖2L2 (Q)

≤ C
√
ε
[√
ε‖wγε ′‖L2 (Q) + ‖wγε ‖L2 (Q)

]
.

Thus the inequalities (34) and (35) hold. �

5.2 Passage to the Limit

We use the regularity properties of the heat equation, the well posed one, as
follows:

First, we notice that ‖yγ‖L2(Q) ≤ C by the above proposition. It remains
to see that ξγ (resp. pγ) formally satisfies to the well-posed system:

(∗)

∣∣∣∣∣∣∣
−ξγ ′ −∆ξγ = yγ ∈ L2(Q),
ξγ = 0,
ξγ(T ) = 0,

(
resp. (∗∗)

∣∣∣∣∣∣∣
−pγ ′ −∆pγ = yγ − zd,
pγ = 0 on Σ,
pγ(T ) = 0,

)

with the mean of a zero corrector. But (∗) implies that

‖ξγ‖L2(0,T ;H1
0 (Ω)) + ‖ξγ ′‖L2(0,T ;H−1(Ω)) ≤ C,

(resp. (∗∗) gives ‖pγ‖L2(0,T ;H1
0 (Ω)) + ‖pγ ′‖L2(0,T ;H−1(Ω)) ≤ C.)

Then ξγ ⇀ ξ (resp. pγ ⇀ p) weakly in L2(0, T ; H1
0 (Ω)), and by compact-

ness ξγ → ξ (resp. pγ → p) stronly in L2(0, T ; L2(Ω)).
Also, ∣∣∣∣∣∣∣

ργ ′ −∆ργ = 0,
ργ = 0,
ργ(0) = λγ(0),

implies that ργ → ρ strong in L2(0, T ; L2(Ω)) by the same arguments, because

‖λγ(0)‖L2(Ω) ≤ lim
ε→0

ε√
γ
‖ξε′(uγε )(0)‖

L2(Ω)
≤ C, then λγ(0)⇀ λ(0)∈L2(Ω).
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We then can announce the theorem:

Theorem 5.3. The no-regret control u for the backward heat ill-posed prob-
lem (5), is characterized by the unique quadruplet {u, ξ, ρ, p} solution to the
optimality system:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y′ −∆y = u, −ξ′ −∆ξ = y, ρ′ −∆ρ = 0,
and − p′ −∆p = y − zd + ρ in Q,

y(0) = 0, ξ(T ) = 0, and
ρ(0) = λ(0), p(T ) = 0 in Ω,

y = 0, ξ = 0, ρ = 0, p = 0 on Σ,

and the variational inequality:

〈 p+Nu, v − u 〉 ≥ 0 ∀v ∈ Uad ,

with u ∈ Uad , y ∈ L2(0, T ; L2(Ω)) and

p, ρ, ξ ∈ L2(0, T ; H2(Ω) ∩H1
0 (Ω)), λ ∈ L2(Ω).

Remark 5.4. As we have seen in this work, the hypothesis (11) is replaced by
the no-regret notion. This method gives another point of view of solving the
control problem of singular distributed systems.
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A Parametric Study of Low Reynolds Number
Blood Flow in a Porous, Slowly Varying,
Stenotic Artery with Heat Transfer

A. Ogulu

Summary. Blood vessels are modelled as porous media in this study. Asymptotic
series expansions about a small parameter, ε, is employed to obtain the axial velocity
and temperature distributions from which shear stresses at the tube wall and rates
of heat transfer are evaluated. Results obtained, which compare favourably with
previously reported studies, show that the shear stress increases as the distance,
while the rate of heat transfer increases initially, attains a peak value before dropping
to equilibrium value.

1 Introduction

The flow of blood in the cardiovascular system of humans and animals has been
studied by quite a few workers, see for instance, Bestman [1], Latinopoulos
and Ganoulis [2], Misra and Chakravarty [3], Haldar [4], Misra and Chauhan
[5], Haldar and Ghosh [6], Cavaleanti [7], Hung and Tsai [8] and Tay and
Ogulu [9]. The flow of a viscous fluid in a tube of slowly varying section
is of fundamental importance with obvious applications in physiology and
physiological fluid dynamics. Some of the more recent works on blood flow
include Vajravelu et al [10], Filipovic and Kojic [11], Ogulu and Abbey [12],
Mandal [13] and Ogulu [14].

In this study we consider the flow of a viscous fluid, which blood is, in a
tube of slowly varying section to simulate stenosis of the blood vessel. Studies
of this type form an important basis for the early diagnosis and treatment
of heart diseases arising from blockages in the circulatory system. Manton
[15] considered the steady flow in axis-symmetric rigid tubes of slowly varying
radius as a perturbation to lubrication theory.

Ogulu and Bestman [16, 17] proposed a mathematical model for blood flow
during deep heat muscle treatment. This study is an extension of Ogulu and
Bestman [16, 17]. Here we are concerned with the stresses on the blood vessel
arising from heat transfer to the blood vessel regarded as a porous medium
with varying cross-section.
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2 The Problem

The problem is formulated thus, since we are interested only in flow in one
direction (the axial direction) so we consider swell-free blood flow in cylindrical
polar coordinate system (r′, z′) with velocity component w′ such that r′ = 0
is the axis of symmetry of the tube where we regard the vessel as a porous
medium and we take into account heat transfer. We know that the wall of
our blood vessel is not rigid but distends and contracts so we define the vessel
wall as

r′ = a0s
(
εz′

a0

)
(1)

In (1) ε is a small parameter and a0 is a constant, say the radius of the tube.
The modified Navier–Stokes equation governing for the flow which we propose
here are:

ρ

(
∂w′

∂t′

)
+ ρw′ ∂w

′

∂z′
= −∂p

′

∂z′
+ µ

(
1
r′
∂

∂r′

(
r′
∂w′

∂r′

)
+
∂2w′

∂z′2

)
− ρgβ (T − T∞) sinφ (2)

ρ cp

[(
∂T

∂t′

)
+ w′ ∂w

′

∂z′

]
= k

((
∇′2T

)
−∇.qr

)
(3)

where ∇′2 = ∂2

∂r′2 + 1
r′

∂
∂r′

k is the thermal conductivity, p′ is pressure, µ is the molecular viscosity
and cp is the specific heat at constant pressure. In the undisturbed fluid ρ is
the density, T is the dimensional temperature, qr is the radiative flux vector
and gravitation, ĝ, is assumed to make an angle, φ with the radial axis of the
tube. (2) and (3) are to be solved subject to the boundary conditions

w′ = 0; T = Tw on r′ = a0s (εz′/a0)
w, T, <∞ on r′ = 0 (4)

Assuming Boussinesq approximation is valid we can write the equation of
state for a Boussinesq fluid as

ρ∞ − ρ = ρ∞β (T − T∞) (5)

where β is the coefficient of volume expansion.
In this study, we describe the heat flux using the general differential ap-

proximation for radiation for a non-grey fluid near equilibrium, Elbarbary and
Elgazery [19], so that the last term in equation (3) can be written as

∇.q′r = 4 (T − Tw)

∞∫
0

α2

(
∂B

∂T

)
∂λ (6)
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α is the absorption coefficient, B is Planck’s constant and λ is frequency. For
an optically thin fluid9 which blood is, α << 1.

We now introduce the following non-dimensional quantities and parameters.

r′ = a0r, z′ =
a0z

ε
, (εw′) =

(εw)
U∞
, t′ =

t

ω
, θ=

T − T∞
Tw − T∞

, p=
(p′ − p∞) a0
µU∞

,

Pr =
µcp
k
, Pe =

µcp
k

a0U∞
ν
, σ =

ω1a
2
0

ν
, Gr =

gβa20 (Tw − T∞)
νU∞

,

Ra =
16σa0T

3αk
. (7)

U∞ is a typical axial velocity, ω is the frequency of the driving pressure pulse,
Pr is Prandtl number, Gr is Grashoff number, Ra is the radiation parameter,
Re is Reynolds number, Da is Darcy parameter and ε is a small parameter
(ε << 1). In virtue of (10) and (11) the governing equations become

σ
∂w

∂t
+ Re ε

(
w
∂w

∂z

)
= −ε∂p

∂z
+
(

1
r

∂

∂r

(
r
∂w

∂r

)
+ ε2

∂2w

∂z2

)
− εGr θ sinφ, (8)

σPr
∂θ

∂t
+ Pe ε

(
w
∂T

∂z

)
=

1
r

∂

∂r

(
r
∂θ

∂r

)
+ ε
∂2θ

∂z2
+Ra2θ. (9)

σ = a2
0ω1
ν is the Womersley number, and Pe is the Peclet number. The bound-

ary conditions are now

w = 0, θ = θw on r = s(z),

w, θ <∞ on r = 0. (10)

The problem therefore depends on the Reynolds number of the flow, Re, the
Grashoff number (or the free convection parameter), Gr, the Peclet number,
Pe, the Womersley parameter, σ, and the radiation parameter Ra.

The mathematical statement of the problem is now complete; it embodies
the solution of (8) and (9) subject to the conditions in (10). We see that the
problem depends on oscillation (Womersley parameter), the radiation para-
meter, the Peclet number, the Prandtl number, Reynolds number and the free
convection parameter (Grashoff number).

3 Asymptotic Solutions

Since ε is small, we seek a perturbative solution in the form of a power series
in ε as in Ogulu [14]. As shown in Bestman [20] a scheme of the type advanced
in (11) converges very rapidly. For the velocity and temperature we put
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w = w0 (r, z) + εw1 (r, z) + · · · · · · · · · · · ·
θ = θ0 (r, z) + εθ1 (r, z) + · · · · · · · · · · · · · ·

While for the pressure we put

p =
1
ε
p(0) (z) + p(1) (r, z) + εp(2) (r, z) (11)

Substituting (11) into our leading equations we obtain the following sequence
of approximations for the leading terms

σ
∂w

∂t
= −∂p0

∂z
+

1
r

∂

∂r

(
r
∂w0

∂r

)
(12)

σPr
∂θ0
∂t

=
1
r

∂

∂r

(
r
∂θ0
∂r

)
+Ra2θ0 (13)

Subject to the boundary conditions

−∂p0
∂z

(r, 0, t) = A0 +A sin (ω1t)

w0 = 0, θ0 = θw on r = s(z)
w0, θ0 > 0 on r = 0 (14)

A0 is the steady state part of the pressure gradient, El-Shahed [18], A1 is the
amplitude of the oscillatory part, ω1 = 2πf1, f1 is the heart pulse frequency.

Continuing our substitutions we obtain the sequence of equations for the
higher approximation as

σ
∂w1

∂t
+ Re w0

∂w0

∂z
= −∂p1

∂z
+

1
r

∂

∂r

(
r
∂w1

∂r

)
−Grθ0 sin φ (15)

σ Pr
∂θ1
∂t

+ Pe
(
w0
∂θ0
∂z

)
=
(
∇2 +Ra2

)
θ0 (16)

The boundary conditions are now

w1 = 0 = θ1 on r = s(z)
∂p1
∂z

(r, 0, t) = 0 (17)

4 Solutions for the Leading Approximations

Obviously, p0 = p0 (z), only.
We now put

w0 = w(0)
0 (r, z) + w(1)

0 (r, z, t) + · · · · · · · ·
θ0 = θ(0)0 (r, z) + θ(1)0 (r, z, t) + · · · · · · · · · (18)
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Substituting (18) into (12) and (13) we obtain the following steady state
equations

∂p
(0)
0

∂z
=

1
r

∂

∂r

(
r
∂w

(0)
0

∂r

)
(19)

(
∇2 +Ra

)
θ
(0)
0 = 0. (20)

With the conditions,

−∂p
(0)
0

∂z
= A0, w

(0)
0 = 0, θ(0)0 = θw on r = s(z) (21)

And the following oscillatory state equations

σ
∂w

(1)
0

∂t
= −∂p

(1)
0

∂z
+

1
r

∂

∂r

(
r
∂w

(1)
0

∂r

)
, (22)

σPr
∂θ

(1)
0

∂t
=
(
∇2 +Ra2

)
θ
(1)
0 . (23)

With the conditions

∂p
(1)
0

∂z
= A sin (ω1 t), w

(1)
0 = 0, θ(1)0 = 0 on r = s(z). (24)

The solution of (19) and (20) subject to the conditions in (21) can be put in
the form

w
(0)
0 =

A0

4

(
1−

(r
s

)2
)
, (25)

θ
(0)
0 = θw

J0 (Rar)
J0 (Ras)

, (26)

Where, Jn is the Bessel function of the first kind of order n. (25) gives the
classic Poiseuille flow velocity.

For the solution of (22) and (23), we follow the method in Bestman [20]
writing

w
(1)
0 =

1
2

(
h0e

it +
�

h0e
it
)
,

θ
(1)
0 =

1
2

(
γ0e

iRat + �
γ0e

iRat
)
, (27)

p
(1)
0 =

1
2i

(
p
(1)
0 e

it + �
p

(1)

0 e
it
)
,

Where, we have used a tilde to indicate complex conjugate. When we substi-
tute (27) into (22) and (23) subject to the conditions in (24) gives
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h0 =
1
iσ

∂p
(1)
0

∂z

{
1− J0 (ζr)
J0 (ζs)

}
, (28)

γ0 =
1

iPr Ra σ

⎧⎨
⎩1−

J0

(√
PrRa ζ r

)
J0

(√
PrRa ζ s

)
⎫⎬
⎭ . (29)

ζ2 = −iσ, J0 (x) is Bessel function of the first kind of order zero.

5 Higher Approximate Solutions

This order of our approximations is given by (15), (16) and (17). In conformity
with flow in porous media, Tay and Ogulu [9], we drop the inertial terms, hence
we have

σ
∂w1

∂t
= −∂p1

∂z
+

1
r

∂

∂r

(
r
∂w1

∂r

)
−Gr θ0 sin φ, (30)

σPr
∂θ1
∂t

+ Pe
(
w0
∂θ0
∂z

)
=
(
∇2 +Ra2

)
θ0. (31)

Again we put

w1 = w(0)
1 (r, z) + w(1)

1 (r, z, t) + . . . . . . ..

θ1 = θ(0)1 (r, z) + θ(1)1 (r, z, t) + . . . . . . .. (32)

Then (32) separates into

σPr
∂θ

(1)
1

∂t
+ Pe w0

∂θ
(1)
0

∂z
=
(
∇2 +Ra2

)
θ
(1)
1 , (33)

Pe w0
∂θ

(0)
0

∂z
=
(
∇2 +Ra2

)
θ
(0)
1 (34)

And (32) separates into

σ
∂w

(1)
1

∂t
= −∂p

(0)
1

∂z
+

1
r

∂

∂r

(
r
∂w

(1)
1

∂r

)
−Gr θ(1)0 sin φ, (35)

0 = −∂p
(0)
1

∂z
+∇2w

(0)
1 −Grθ(0)0 sinφ. (36)

On solution of (33)–(36) subject to appropriate boundary conditions we obtain
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w
(0)
1 = −p

(0)
1

4

[
1−

(r
s

)2
]

+
Gr θw
Ra

[
1− J0 (Ra r)
J0 (Ras)

]
sin φ, (37)

θ
(0)
1 = Pe θ(0)

′

0

{
A0

4

[
1− r4

15s2

]
− p

(1)′

0

ζ2

[
1− rJ1 (ζ r)

2J0 (ζ s)

] [
1
ζ
− 1

]}

−Pe θ(0)
′

0

J0 (Ra r)
J0 (Ras)

{
A0

4

[
1− s

2

15

]
− p

(1)′

0

ζ2

[
1− sJ1 (ζ s)

2J0 (ζ s)

] [
1
ζ
− 1

]}
,

(38)

w
(1)
1 =

p
(1)′

1

3

(
r2 − s

2I0 (ζ r)
I0 (ζ s)

)
+

Gr

iPr Ra σ

[
1√

Pr Ra ζ
− 1

]

×
{(

1−rJ1
(√

Pr Ra ζ r
)

2J0
(√

Pr Ra ζ s
))−I0 (ζ r)

I0 (ζ s)

(
1−sJ1

(√
Pr Ra ζs

)
2J0

(√
Pr Ra ζs

))} sinφ,

(39)

θ
(1)
1 = Pe θ(0)

′

0

{
A0

4

[
1− r4

15s2

]
− p

(1)′

0

ζ2

[
1− rJ1 (ζ r)

2J0 (ζ s)

] [
1
ζ
− 1

]}

−Pe θ(0)
′

0

J0 (Ω r)
J0 (Ω s)

{
A0

4

[
1− s

2

15

]
− p

(1)′

0

ζ2

[
1− sJ1 (ζ s)

2J0 (ζ s)

] [
1
ζ
− 1

]}
,

(40)

Ω2 =
(
Ra2 + ζ2Pr

)
and a prime here is used to denote differentiation with

respect to z.
Having obtained the expressions for the axial velocity and the temperature

we can terminate the solution of the order 1(ε) problem here without loss of
generality.

6 Shear Stress and Heat Transfer

We can define the shear stress at the wall τw as

τw =
[
−µdw
dr

]
r=s(z)

(41)

and the local rate of heat transfer qw as

qw =
[
dθ

dr

]
r=s(z)

. (42)
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7 Results and Discussion

In the previous three sections we have formulated and solved asymptotically
the problem of blood flow as obtained during deep heat muscle treatment
modelling the blood vessel as a porous medium. For the purpose of this nu-
merical discussion we shall only consider a locally dilating tube of the form
s = ez. For the wall temperature of the blood vessel we take θw = 2, and
z = 0 we shall assume is the entrance to the aorta.

We shall only focus on the shear stress and the rate of heat transfer at the
wall of the vessel since the other effects are discussed in the literature. (See
for instance Ogulu [14].) Figures 1, 2, and 3 show the effect of shear stress
variation with time at different locations where we observe an increase in the
shear stress as z, the position increases. For any chosen position (constant
z), we observe very little variation in the shear stress as time increases for a
normal heart. Further we observe from Fig. 3 that when f1 is increased from
0.6 to 1.2 the shear stress begins to oscillate for large values of z.

Figures 4 and 5 show the rate of heat transfer at the wall for different times
and locations. The rate of heat transfer increases slightly as time increases but
rapidly as the radiation parameter and the position are increased.

Fig. 1. Variation of wall shear stress with time for different locations, f1 = 0.6
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Fig. 2. 3-D Plot of variation of wall shear stress with time for different locations,
f1 = 0.6 Hz

Fig. 3. 3-D Plot of variation of wall shear stress at different locations f1 = 1.2 Hz
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Fig. 4. Variation of wall rate of heat transfer with time for different values of the
radiation parameter Ra

Fig. 5. 3-D plot of wall rate of heat transfer variation with time for different values
of the radiation parameter Ra
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Stability of Generalized Convexity
and Monotonicity

P.T. An

Summary. It was shown that well-known kinds of generalized convex functions
(generalized monotone maps, respectively) are often not stable with respect to
the property they have to keep during the generalization. Then the so-called
s-quasiconvex functions, s-quasimonotone maps and strictly s-quasiconvex functions
were introduced in Optimization, vol. 38, vol. 55 and Journal of Inequalities in
Pure and Applied Mathematics, vol. 127, respectively. In this paper, some stabil-
ity properties of such functions and a use of s-quasimonotonicity in an economics
model are presented. Furthermore, an algorithm for finding the stability index for
strict s-quasiconvexity of a given continuously twice differentiable function on IR1

is presented.

1 Introduction

Convex functions belong to the most important objects investigated in math-
ematical programming. They have many interesting properties, for instance:

(L) Each lower level set is convex
(M)Each local minimizer is a global minimizer
(S) Each stationary point is a global minimizer
(E) If the considered function attains global maximum on a compact convex

set then it attains global one at least at one extreme point of this set.

Definition 1.1. A function f : D ⊂ IRn → IR is said to be stable with respect
to some property (P) if there exists ε > 0 such that f + ξ fulfill (P) for all
linear function ξ satisfying ‖ξ‖ < ε.

It was shown in [14] that well-known kinds of generalized convex functions
are often not stable with respect to the property they have to keep during the
generalization, for example, quasiconvex functions (pseudoconvex functions,
respectively) are not stable with respect to the property (L) ((S), respectively).
Then the so-called s-quasiconvex functions were introduced by Phu
in [14]. They are stable with respect to the properties (L), (M) and (S).
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A subclass of s-quasiconvex functions, namely strictly s-quasiconvex func-
tions which guarantee the uniqueness of the minimizer was introduced
in [2].

Various kinds of generalized monotonicity were introduced (see [8, 9]).
Among others, pseudomonotonicity was introduced by Karamardian in 1976.
This concept is used in economics. We now denote IRn>0 the subset of IRn with
all positive coordinates. In an n-good competitive economy, F : D ⊂ IRn>0 →
IRn is said to be an excess demand if it is homogeneous in p ∈ D and satisfies
Walras’ Law (see [5, 6]). In [11] John showed that a demand which yields a
pseudomonotone excess demand if it is combined with an arbitrary supply (in
particular, a constant function) is necessarily monotone.

There arises a question: What kind of a demand is it if “arbitrary supply”
is replaced by “supply with sufficiently small norm”?

Definition 1.2. A map F : D ⊂ IRn → IRn is said to be stable with respect
to some property (P) if there exits ε > 0 such that

F (x) + a satisfies (P) whenever ‖a‖ < ε

(a ∈ IRn).
The supremum of the set of all ε in Definitions 1.1–1.2 is called the stability

index for the property (P) of f (of F , respectively) and is denoted by sf (sF ,
respectively).

In [1] we showed that quasimonotonicity and pseudomonotonicity are
not stable with respect to their first-order characterizations and introduced
the notion of s-quasimonotonicity. In [3] we showed that a demand which
yields a pseudomonotone excess demand if it is combined with a supply
(in particular, a constant function) with sufficiently small norm, is neces-
sarily s-quasimonotone. In this paper some properties of s-quasiconvex func-
tions and s-quasimonotone maps are presented in Sects. 2 and 3. A use of
s-quasimonotonicity in an economics model is presented in Sect. 4. The prob-
lem to find the stability index for strict s-quasiconvexity of a given contin-
uously twice differentiable function f on D ⊂ IR1 is presented in Sect. 5.
Algorithm to find the stability index for s-quasiconvexity of a given f (for
s-quasimonotonicity of a given F , respectively) on D ⊂ IR1 can be introduced
in the same manner. Some questions and future tasks are given in Sect. 6.

Before we start the analysis, we recall some definitions and properties
from [8, 13]. Let F : D ⊂ IRn → IRn and D be convex. Denote by T the ma-
trix transposition. We recall that f is convex (strictly convex, respectively)
if for every x0, x1 ∈ D,λ ∈ ]0, 1 [, we have f(xλ) ≤ (1 − λ)f(x0) + λf(x1)
(f(xλ) < (1− λ)f(x0) + λf(x1), respectively). f is quasiconvex (strictly qua-
siconvex, respectively) if for every x0, x1 ∈ D,λ ∈ ]0, 1 [, we have f(xλ) ≤
max{f(x0), f(x1)} (f(xλ) < max{f(x0), f(x1)}, respectively), where xλ : =
(1−λ)x0+λx1. It is well-known that f is quasiconvex if it has the property (L).
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A differentiable function f is pseudoconvex if for every x0, x1 ∈ D,

f(x1)− f(x0) < 0 implies (x1 − x0)T � f(x0) < 0.

Obviously, if x∗ is a stationary point of f (i.e., �f(x∗) = 0), then x∗ is a
global minimizer of f . Thus, such a function has the property (S).
F is called quasimonotone if for every x0, x1 ∈ D,

(x1 − x0)TF (x0) > 0 implies (x1 − x0)TF (x1) ≥ 0.

F is called pseudomonotone if for every x0, x1 ∈ D,

(x1 − x0)TF (x0) ≥ 0 implies (x1 − x0)TF (x1) ≥ 0.

In [8], Karamardian and Schaible showed that a differentiable function f is
quasiconvex (pseudoconvex, respectively) if gradient �f is quasimonotone
(pseudomonotone, respectively).

2 S-Quasiconvex Functions

We recall the definition of s-quasiconvex functions (“s” stands for “stable”).

Definition 2.1. ([14]) f : D ⊂ IRn → IR is said to be s-quasiconvex if there
exists σ > 0 such that

f(x0)− f(x1)
‖x0 − x1‖

≤ δ ⇒ f(xλ)− f(x1)
‖xλ − x1‖

≤ δ

for |δ| < σ, x0, x1 ∈ D,x0 
= x1, xλ = (1− λ)x0 + λx1 andλ ∈ [0, 1[ .

Clearly, every convex function is s-quasiconvex and a s-quasiconvex func-
tion is quasiconvex.

Theorem 2.2. ([14]) Suppose f : D ⊂ IRn → IR.
a) f is s-quasiconvex iff f is stable with respect to quasiconvexity;
b) f is s-quasiconvex iff f is stable with respect to s-quasiconvexity.
Let us recall the concept of strictly s-quasiconvex functions.

Definition 2.3. ([2]) f : D ⊂ IRn → IR is said to be strictly s-quasiconvex
if there exists σ > 0 such that

f(x0)− f(x1)
‖x0 − x1‖

≤ δ ⇒ f(xλ)− f(x1)
‖xλ − x1‖

< δ

for |δ| < σ, x0, x1 ∈ D,x0 
= x1, xλ = (1− λ)x0 + λx1 andλ ∈ ]0, 1[ .
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Clearly, a strictly convex function f is strictly s-quasiconvex. Further-
more, every strictly s-quasiconvex function is s-quasiconvex and every strictly
s-quasiconvex function is strictly quasiconvex. A complete description of the
relations existing between strictly s-quasiconvex function, s-quasiconvex func-
tions and known generalized convex functions was given in [2].

Theorem 2.4. ([2]) Suppose f : D ⊂ IRn → IR.
a) f is strictly s-quasiconvex if f is stable with respect to strict quasiconvexity;
b) f is strictly s-quasiconvex if f is stable with respect to strict s-
quasiconvexity.

It follows from the proof of Theorem 2.4 (see [2]) that the supremum of
the set of all σ in Definition 2.3 of the strictly s-quasiconvex function f is sf .
Hence, if f is strictly quasiconvex then sf = +∞ for strict s-quasiconvexity.

Our next objective is to give a necessary and sufficient condition for a
continuously differentiable function to be strictly s-quasiconvex.

Theorem 2.5. ([2]) A continuously differentiable function f on D ⊂ IRn is
strictly s-quasiconvex if there exists α > 0 such that f is strictly convex on
every segment [x0, x1] satisfying∣∣∣∣ (x1 − x0)T‖x1 − x0‖

∇f(xλ)
∣∣∣∣ < α for all xλ ∈ [x0, x1].

In the proof above, to prove the sufficiency we set σ : = ε and to prove the
necessity we set ε : = σ (see [2]). Therefore, sf is the supremum of the set of
all α. It follows directly from Theorem 2.5 the following

Corollary 2.6. A continuously differentiable function f on D ⊂ IR1 is
strictly s-quasiconvex iff there exists α > 0 such that f is strictly convex on
the level set

L(|f ′|, α) : = {x ∈ D : |f ′(x)| < α}.
Furthermore, sf = sup{α : f is strictly convex on L(|f ′|, α)}.

3 S-Quasimonotone Maps

Let us recall the concept of s-quasimonotone maps.

Definition 3.1. ([1]) F : D ⊂ IRn → IRn is s-quasimonotone if there exists
σF > 0 such that

(x1 − x0)T
‖x1 − x0‖

F (x0) ≥ δ ⇒ (x1 − x0)T
‖x1 − x0‖

F (x1) ≥ δ

for |δ| < σF , x0, x1 ∈ D.
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Obviously, every monotone map is s-quasimonotone. By setting δ = 0,
every s-quasimonotone map is pseudomonotone.

Stability with respect to pseudomonotonicity (or s-quasimonotonicity) is
a necessary and sufficient condition for a map to be s-quasimonotone.

Theorem 3.2. ([1]) 1) F is s-quasimonotone iff F is stable with respect to
pseudomonotonicity.
2) F is s-quasimonotone iff F is stable with respect to s-quasimonotonicity.

We now establish a relationship between s-quasimonotonicity and s-
quasiconvexity.

Theorem 3.3. ([1]) Suppose that f is continuously differentiable. Then f is
s-quasiconvex iff �f is s-quasimonotone.

Note that not all s-quasimonotone maps arise as gradients of s-quasi
-convex functions. For example, consider F (x) : = (x1, x2 + φ(x1)), x =
(x1, x2) ∈ IR2, where φ is a differentiable function of the univariable x1 ∈ IR1

such that |φ(x1)− φ(x′1)| ≤ |x1 − x′1| for all x1, x′1 ∈ IR1 (see [10], pp. 208–
209). Then F is monotone therefore it is s-quasimonote while there is some φ
such that F does not arise as a gradient of any function.

Proposition 3.4. ([1])

(1) A univariate polynomial F of even degree is s-quasimonotone iff F has
no roots.
(2) A univariate polynomial F of odd degree is s-quasimonotone iff the
coefficient of highest power in F is greater than 0 and F has a unique
root.

It follows directly from Theorem 3.2 and Proposition 3.4 the following

Corollary 3.5.

(1) A univariate polynomial f of odd degree is s-quasiconvex iff �f has
no roots.
(2) A univariate polynomial f of even degree is s-quasiconvex iff the co-
efficient of highest power in �f is greater than 0 and �f has a unique
root.

4 A Use of S-Quasimonotonicity in an Economics Model

In an n-good competitive economy, Z : P ⊂ IRn>0 → IRn is said to be an excess
demand function if it is homogeneous in p ∈ P , i.e., Z(p) = Z(λp), λ > 0 and
satisfies Walras’ Law, pTZ(p) = 0. The following property is called Wald’s
Axiom:

p, q ∈ P, pTZ(q) ≤ 0 and qTZ(p) ≤ 0 ⇒ Z(q) = Z(p)

(see [5, 6]). Some strong versions of Wald’s Axiom were given in [4, 7, 12],
. . . A strong version of Wald’s Axiom is introduced in [3] as follows:
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∃σ > 0 such that

p, q ∈ D, |δ| < σ
F (q) 
= F (p), qTF (p)− δ ≤ 0

}
⇒ pTF (q) + δ > 0.

By setting δ = 0, the version above implies Wald’s Axiom. Moreover, this
version is actually stronger than the Wald’s Axiom. To see it, in [3] we consider
Z : P ⊂ IR2

> → IR2 such that

Z(p) =
(
−f(p1
p2

);
p1
p2
f(
p1
p2

)
)
,

where P : = ]0, 2]× ]0, 2] and f(x) = x4
(
2 + sin 1

x

)
, x > 0. Then Z satisfies

Walras’ Law and it is homogeneous in p ∈ P . Z satisfies the Wald’s Axiom.
But Z does not satisfy the strong version of Wald’s Axiom (see [3]).

Theorem 4.1. ([3]) S-quasimonotonicity of −F is equivalent to the strong
version of Wald’s Axiom.

By Theorem 4.1, we get directly the following result.

Proposition 4.2. ([3]) A demand which yields a pseudomonotone excess de-
mand if it is combined with a supply (in particular, a constant function) with
sufficiently small norm, is necessarily s-quasimonotone.

5 Stability Index of Generalized Convex Functions

First of all, it is of interest to know if sf = +∞ (for strict s-quasiconvexity)
implies that f is strictly convex.

Proposition 5.1. f : D ⊂ IRn → IR is strictly convex iff f + ξ is strictly
quasiconvex for all linear functional ξ on IRn.

Proof. Clearly, if f is strictly convex then f + ξ is strictly convex for all linear
functional ξ on IRn therefore f + ξ is strictly quasiconvex. Conversely, we
prove that f is strictly convex if f + ξ is strictly quasiconvex for all linear
functional ξ on IRn. Let x0, x1 ∈ D, and choose a linear functional ξ on IRn

such that ξ(x1 − x0) = f(x0)− f(x1). Since f + ξ is strictly quasiconvex, for
any xλ = x0 + λ(x1 − x0) with λ ∈ ]0, 1[ , it holds

(f + ξ)(x0) > (f + ξ)(xλ) = f(xλ) + λξ(x1 − x0) + ξ(x0)
= f(xλ) + λ(f(x0)− f(x1)) + ξ(x0).

This yields that
f(xλ) < (1− λ)f(x0) + λf(x1).

Hence, f is strictly convex.
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Corollary 5.2. f : D ⊂ IRn → IR is strictly convex iff sf = +∞ for strict
s-quasiconvexity.

Proof. It follows directly from Theorem 2.2 and Proposition 5.1.

It follows from Corollaries 2.6 and 5.2 the following

Corollary 5.3. Suppose that continuously differentiable function f : D ⊂
IR1 → IR is strictly s-quasiconvex. If it is not strictly convex, then the set of
all α > 0 given in Corollary 2.6 is bounded above.

Proof. Assume the contrary that the set of all α > 0 given in Corollary 2.6 is
not bounded above. Then, sf = +∞ and therefore, by Corollary 5.2, f must
be strictly convex, a contradiction.

Algorithm
Given continuously twice differentiable function f : D ⊂ IR1 → IR, small-

est double precision real number zmin allowed by a compiler, and step length
γ. Find the stability index sf for strict s-quasiconvexity of f .

1. If f is strictly convex on D (i.e., f ′′(x) > 0 for all x ∈ D) then, by
Corollary 5.2, sf = +∞. STOP.
Else, choose the initial α > zmin and flag : = 0.

2. If f is strictly convex on L(|f ′|, α) : = {x ∈ D : |f ′(x)| < α} (i.e.,
f ′′(x) > 0 for all x ∈ L(|f ′|, α)), set flag : = 1 and α : = α + γ,
go to 2.

3. If flag : = 0, go to 4.
Else, set sf = α− γ. STOP.

4. Set α = α − γ. If α ≤ zmin then f is not strictly s-quasiconvex,
sf : = 0. STOP.

5. If f is strictly convex on L(|f ′|, α) (i.e., f ′′(x) > 0 for all x ∈
L(|f ′|, α)), set sf : = α. STOP.
Else, go to 4.

Note that the set L(|f ′|, α) above is convex ([14]). By virtue of Corollary 5.3,
the algorithm stops after a finite number of steps. Algorithm to find the sta-
bility index for s-quasiconvexity of a given f (for s-quasimonotonicity of a
given F , respectively) on D ⊂ IR1 can be introduced in the same manner.

6 Some Questions and Future Tasks

An exhaustive study of stability of generalized convexity and monotonicity is
impossible here. Actually, there arises some questions and future tasks:

1. A suitable replacement of inequalities by strict inequalities, as in
Definition 3.1 of s-quasimonotonicity, gives rise to new type of gener-
alized monotonicities which is also stable.
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2. To find the stability index in case D ⊂ IRn, n > 1, is still open.
3. What kinds of generalized convex functions are stable with respect to the

property (E)?
4. In Definition 1.1 (Definition 1.2, respectively) the disturbance is linear

(constant, respectively). Stability investigation in case of nonlinear dis-
turbances (nonconstant disturbances, respectively) will be considered.

5. Stability investigation for generalized convex vector valued functions will
be considered.
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Are Viscoelastic Flows Under Control
or Out of Control?

M. Renardy

Summary. We discuss the controllability of viscoelastic shear flows. Both linear
and nonlinear results are reviewed. An interesting aspect of the problem is that the
nonlinear problem introduces new stress components which are automatically zero
in the linear case. It is therefore a challenging problem to determine to what extent
these stresses are controllable.

1 Introduction

Many engineering problems are concerned with steering a system in a desirable
direction by using inputs we can control. In the context of fluid dynamics, for
instance, the process of filling a mold aims to direct the flow inside the mold by
controlling the flow at the inlet. Active control of turbulence aims to suppress
turbulence by blowing or sucking air at certain locations.

Mathematical control theory is an abstraction of such problems. In control
theory we consider a system governed by differential equations which we want
to steer from a given initial condition to a desirable outcome, using an input
from a given class. There are a number of possible ways to make this notion
precise and formulate mathematically well-defined problems. In this paper,
we focus on the notion of controllability. A problem of controllability has the
form

ẋ = φ(x, f), (1)

where x lies in some Banach space X and the control f lies in another Banach
space Y or a subset thereof. We are given an initial condition x(0) = x0 and
a desired final state x(T ) = xf . We want to choose f(t) in such a way that
the state xf is reached at time T . If this is always possible with an admissible
control, we call the system controllable.

Linear control problems have the form

ẋ = Ax+ f(t). (2)
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Of course, if f(t) is completely arbitrary, the system is trivially controllable.
In applications, however, we are interested in the case where f is restricted
to a subspace. In the context of partial differential equations, f is usually
restricted to a subset of the spatial domain or to its boundary.

In problems arising from continuum mechanics, a possible choice of control
is a body force added to the equation of momentum balance. An extensive
literature has developed on controllability of such systems in classical fields of
continuum mechanics, such as the Navier–Stokes equations or elasticity. The
author’s recent work has been concerned with viscoelastic flows, which raise
fundamentally new issues.

Some results on controllability of linear viscoelastic media appeared in
the 1980s [2–5]. in those papers, the viscoelastic medium is treated as a per-
turbation of the elastic case and the variables which are controlled are the
displacement (if the material is a solid) and velocity. This misses an impor-
tant issue, however. In contrast to elasticity, displacement and velocity are
not sufficient information to determine the future evolution of a viscoelastic
medium; in particular, zero displacement and velocity do not guarantee that
the stresses are zero either at the present or at any future time. In practice,
controlling stresses can actually be more important than controlling the mo-
tion; for instance in a manufacturing process stresses can cause subsequent
deformation or damage.

In [1], the authors study linear viscoelastic fluids of Maxwell or Jeffreys
type. For those equations, the state of the system is characterized by veloc-
ities and viscoelastic stresses, and the authors state an affirmative result on
controllability. Unfortunately, their results do not hold as stated. Consider,
for instance, the linear Maxwell fluid, with a constitutive law given by

Tt + λT = µ(∇v + (∇v)T ), (3)

where T is the stress tensor and v is the velocity. It is obvious from this
constitutive equation that, if at any time T is the symmetric part of the
gradient of a vector field, then this will also be so at later times. At best,
therefore, T can be controlled within the subspace of those tensors which are
symmetric parts of the gradient of a divergence-free vector field, in contrast
to the theorems announced in [1]. It is likely that a suitably corrected version
of the results in [1] holds.

This raises new questions, however. For nonlinear models of viscoelastic
flow, it is in general not the case that T is the symmetric part of a gradient.
Hence we encounter a situation where the linear problem has an invariant
subspace which does not persist in the nonlinear case. Controllability in the
linear case is restricted to this invariant subspace, and we are left with no
intuition from this what to expect in the nonlinear case. Indeed, elementary
examples show that there are many possibilities. Consider, for instance the
system

ẋ = −x+ f(t), ẏ = x2, (4)
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with initial and final conditions

x(0) = x0, y(0) = y0, x(T ) = xf , y(T ) = yf . (5)

If we linearize, i.e. neglect the x2-term, then it is clear that we can control the
x variable, but on the other hand yf = y0 no matter what f is. On the other
hand, if we include the x2-term, we can reach any final state with yf > y0,
with equality possible only if x0 = xf = 0. We shall encounter situations in
viscoelastic flows which behave essentially like this elementary example.

In the rest of this paper, we shall consider viscoelastic shear flows. The
flow domain is the interval 0 < x < L, and the equation of motion is

ρut = τx + f(x, t), (6)

where u is the velocity, τ is the shear stress, ρ is the density, and f(x, t) is
a body force (the control) which can be prescribed on some subinterval [a, b]
of [0, L]. For simplicity, we shall consider homogeneous Dirichlet boundary
conditions for the velocity: u(0, t) = u(L, t) = 0.

We shall consider linear and nonlinear problems. In the linear case, we
shall assume that the shear stress is related to the velocity by a multimode
Maxwell model, i.e.

τ(x, t) =
N∑
i=1

τi(x, t), λi(τi)t + τi = µiux, (7)

where λi ≥ 0, µi > 0, and all the λi are different. We allow one of the λi to
be zero, which corresponds to a Newtonian contribution to the stress.

In the nonlinear case, only single-mode models have so far been analyzed.
For these models, we have a system of differential equations of the form

Tt = g(T, ux), (8)

and T is a matrix of the form

T =
(
σ τ
τ ψ

)
. (9)

The components σ and ψ, known as normal stresses, are simply zero if the
system is linearized, but in the nonlinear problem they become nonzero. It
turns out to be a nontrivial problem in general to characterize the values
which they can take.

2 Linear Controllability

Controllability of linear shear flows was analyzed in [6], and we refer to this
paper for further details and proofs. We note that homogeneous boundary
conditions for the velocity imply that
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0

ux(x, t) dx = 0, (10)

and we shall impose the corresponding condition∫ L

0

τi(x, t) dx = 0 (11)

on the shear stress for the rest of this section. We denote by L2
0(0, L) the

space of those functions in L2(0, L) which satisfy this integral constraint. For
the case of a single relaxation mode, we have an exact controllability result
analogous to those known for the wave equation. Indeed, the problem can be
recast in a form equivalent to a lower order perturbation of the wave equation,
which forms the basis (see [9]) of the following result from [6].

Theorem 2.1. Assume T > 2
√

ρλ
µ max(a, L − b). For any choice of initial

conditions

u(x, 0) = u0(x) ∈ L2(0, L), τ(x, 0) = τ0(x) ∈ L2
0(0, L), (12)

there exists f ∈ L2((a, b)× (0, T )) such that the solution of the problem

ρut = τx + f, λτt + τ = µux, (13)

with initial conditions

u(x, 0) = u0(x) ∈ L2(0, L), τ(x, 0) = τ0(x) ∈ L2
0(0, L) (14)

and boundary conditions

u(0, t) = u(L, t) = 0 (15)

satisfies
u(x, T ) = τ(x, T ) = 0. (16)

We note that if we can control to the final condition uf = τf = 0, we can
control to any other final state, because the initial value problem is well-posed
in both directions.

There is also an exact controllability result for several relaxation modes,
but only in the case where the control is available on the entire interval [0, L].
To state such a result, we need to be careful about identifying the right reg-
ularity assumptions. For concreteness, we focus on the case of two relaxation
modes; the general case is analogous (as long as none of the relaxation times
are zero). We thus consider the system

ρut = τx + σx + f(x, t)
λ1τt + τ = µ1ux,

λ2σt + σ = µ2ux. (17)
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For the further discussion, it is convenient to introduce the new variables

τ + σ = p,
λ1
µ1
τ − λ2
µ2
σ = q. (18)

In these new variables, we have the following regularity result; note that
p and q are treated differently in this result.

Theorem 2.2. Assume that f ∈ L2((0, T );L2(0, L)) and that the initial data
satisfy u0 ∈ L2(0, L), p0 ∈ L2

0(0, L), q0 ∈ L2
0(0, L) ∩H1(0, L). Then (17) has

a solution with the regularity u ∈ C([0, T ];L2(0, L)), p ∈ C([0, T ];L2
0(0, L)),

q ∈ C([0, T ];L2
0(0, L) ∩H1(0, L)).

The corresponding result on controllability is the following.

Theorem 2.3. For any initial data u(·, 0) = u0 ∈ L2(0, L), p(·, 0) = p0 ∈
L2

0(0, L), and q(·, 0) = q0 ∈ L2
0(0, L) ∩H1(0, L), and any T > 0, there exists

f ∈ L2((0, T );L2(0, L)) such that the corresponding solution of (17) satisfies
u(·, T ) = p(·, T ) = q(·, T ) = 0.

For multiple relaxation modes and control on a part of the interval, we
can prove a result on approximate controllability.

Theorem 2.4. Let

G =
N∑
i=1

µi
λi
, (19)

and assume that
T > 2

√
ρ/Gmax(a, L− b). (20)

For any given initial data u(·, 0) = u0 ∈ L2(0, L), τi(·, 0) = τ0i ∈ L2
0(0, L),

there is a dense set of final states uf ∈ L2(0, L), (τi)f ∈ L2
0(0, L) which can

be reached at time T with some control f ∈ L2((a, b)× (0, T )).

3 Nonlinear Controllability

For nonlinear shear flows, the stress has more than one non-zero component.
Linear results therefore tell us nothing about controllability of the nonlinear
problem, even for small data. In general, we can expect it to be quite difficult
to characterize the set of states which can be reached from a given initial
condition. The simplest case which can be considered is that of homogeneous
shear flow. In [7], this problem was consider for a number of popular consti-
tutive models. In homogeneous shear flow, the velocity gradient is given by

∇u =
(

0 γ̇(t)
0 0

)
, (21)
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and the stress tensor is
T =

(
σ τ
τ ψ

)
. (22)

We regard the shear rate γ̇(t) as the control which we are free to pick, and
we want to characterize the set of stresses which can be reached for a given
constitutive model.

The models considered in [7] include the following:

1. The upper convected Maxwell (UCM) model:

Ṫ− (∇u)T−T(∇u)T + λT = µ(∇u + (∇u)T ). (23)

2. The Phan-Thien-Tanner (PTT) model:

Ṫ− (∇u)T−T(∇u)T + λT + κ(trT)T = µ(∇u + (∇u)T ). (24)

3. The Giesekus model:

Ṫ− (∇u)T−T(∇u)T + λT + κT2 = µ(∇u + (∇u)T ). (25)

4. The Johnson–Segalman (JS) model:

Ṫ − a+ 1
2

((∇u)T + T(∇u)T )− a− 1
2

((∇u)TT + T(∇u))

+ λT = µ(∇u + (∇u)T ). (26)

For the case of homogeneous shear flow, the UCM model assumes the
following form:

σ̇ − 2τ γ̇ + λσ = 0,
τ̇ − ψγ̇ + λτ = µγ̇,

ψ̇ + λψ = 0. (27)

Clearly, ψ is unaffected by the shear rate and will be zero for all time if
we assume that the flow history is also one of shear flow. Concerning the
remaining stress components, we note that

d

dt
(µσ − τ2) = −λ(µσ − τ2) + λτ2. (28)

It follows that

µσ(t)− τ(t)2 = e−λt(µσ(0)− τ(0)2) + λ
∫ t

0

e−λ(t−s)τ(s)2 ds, (29)

and hence, at the final time T , we have

µσ(T )− τ(T )2 ≥ e−λT (µσ(0)− τ(0)2), (30)
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with equality possible only if τ is zero throughout the interval (0, T ). On the
other hand, we can pick a function τ(t) such that

τ(0) = A, τ(T ) = B,
∫ T

0

e−λ(T−s)τ(s)2 ds = C (31)

with arbitrary choices of A, B and C > 0 (with C = 0 also possible if A =
B = 0). Having chosen such a τ , we can then define γ̇ by the second equation
of (27). Hence the set of attainable states (σ(T ), τ(T )) is defined precisely by
the inequality (30).

Hence the attainable stresses for the UCM model form a subset of a two-
dimensional manifold (i.e. ψ = 0), which is defined by the inequality (30). For
the PTT, Giesekus, and JS models, the result is qualitatively similar, although
the analysis is more complicated. That is, the attainable stresses are also a
subset of a two-dimensional manifold which is characterized by an inequality.
For specifics, I refer to [7].

Inhomogeneous shear flows are far more difficult to analyze. Only the
upper convected Maxwell model has been studied at this point [8]. That is,
we consider the system

ρut = τx + f(x, t),
τt = −λτ + µux,
σt = −λσ + 2τux, (32)

with homogeneous boundary conditions for u, initial data at time t = 0 and
final conditions at time t = T . The body force f is the control we can adjust.
Clearly, a necessary condition is that the inequality (30) is satisfied pointwise
for every x, and it is natural to ask whether this condition is sufficient. In
[8], it is shown that this is indeed the case if the control f is applied over the
entire spatial interval [0, L]. If, on the other hand, the control is applied only
on a subinterval, then the attainable stresses satisfy other constraints which
are not of a pointwise nature.
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On Topological Optimization and Pollution
in Porous Media

I. Faye, A. Sy, and D. Seck

Summary. Using the tools of topological optimization, we propose a method for
the location of pollution in the porous media. Thus we propose a modeling of the
problem and we study the nonlinear partial differential equation arising in the model.

1 Introduction

In this paper we deal about the location of the pollution in a porous medium.
This type of problem may arise in agriculture. More generally, it may be meet
when we manipulate chemical products. For illustration let us consider the
water under the soil. If some chemical product is injected in the soil, the
chemical body goes through the soil until reaching the water. In our world,
drinkable water is nowadays rare resources. And it would be interesting to try
to understand the evolution of the pollution in the water. It is obvious that
this topic is studied by scientists. But we are not aware that people study these
problems by using topological optimization. It is important to remark that
these problems can be interpreted as inverse problems. In fact the problem is
to quantify the rate of pollution in the water under the soil after measuring
the quantity of the pollution on the accessible boundary.

Typically our aim is to locate the concentration of the pollution. For this,
we use tools of topological optimization to get the distribution of the pollution
in the porous media.

What is topological optimization? It is a topic belonging to the family of
shape optimization. The goal in shape optimization is to optimize a criteria
depending on the domain (or the design of the domain) in which state equa-
tions are verified. Most of the time these state equations are partial differential
equations.

In classical shape optimization, the aim is to get an optimal condition
without modifying the topology of the domain.

Unfortunately it is not always possible to get the best shape of the domain
conserving however its topology.
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There are some problems in classical shape optimization which don’t get
solution if there are not additional restrictive assumptions on the class of
domain.

In relaxation theory and homogenization theory the problems studied
could allow to overcome this gap that classical shape optimization lies around
in some cases. But it is important to note the large progress that the classical
shape optimization provide in industry (for example the improvement of the
shape of wings of planes, cars, etc.), in mechanics, etc.

To take account other problems which cannot be treated by classical shape
optimization, there is the advent of topological optimization. Here, it is pos-
sible to optimize the domain (to get an optimality condition) by changing the
geometry and the topology of the domain. And it is important to emphasize
that in that topic it is possible to change the topology by putting a hole.
And on the boundaries of the holes on can even put Dirichlet or Neumann
conditions.

In this paper, we focus our analysis on the pollution problem. But it would
be interesting to use topological optimization in thermo-elasticity, evolution
of tumor, image processing. We are about to end some works on these topics
cf. [6, 12, 15].

This paper is organized as follows: In Sect. 2 we give a model from which
we will do mathematical analysis. In Sect. 3, we study nonlinear partial dif-
ferential equations coming from the model in the stationary case. Section 4
is devoted to topological optimization. This section gives theoretical results
in asymptotic analysis. These results allows us to get ideas and information
about the topological variation of the domain. In Sect. 5, we will present nu-
merical simulations which give the location of the pollution.

2 A Model

Let D be a porous medium. Let us introduce, for x ∈ D and t ∈ (0, T1) T1 > 0
is a fixed time

ε(x, t) the effective porosity given by

ε(x, t) =
dVl
dVtotal

,

where dVl is an element of the volume of the fluid and dVtotal an element
of the total volume
σ(x, t) the porosity given by

σ(x, t) =
dVv
dVtotal

,

where dVv is an element of the volume of the vacuum and q the Darcy
velocity vector given by
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q = εV ,

where V is the velocity vector of the fluid.
Ω is considered as an elementary domain of a porous domain D.
We have M(Ω, t) =

∫
Ω
dm; dm is an element of the mass of the fluid.

dm = ρ(x, t)ε(x, t); ρ(x, t) is the fluid density of the solution.
For our model we will use these notations: ρs(kg m−3) the fluid density of
the solution given by

ρs =
dmsolution

dvsolution
.

W(x,t) the fraction of the mass (concentration):

W (x, t) =
dmsolute

dmsolution

dmsolution is an element of the mass of the solution and dmsolute is an
element of the mass of the pollutant.

2.1 The Conservation of the Mass of the Solution

We have
dmsolution = ρsdvsolution = ρs

dvsolution
dvtotal

dvtoal

= ρsε(x, t)dvtotal

Msolution(Ω, t) =
∫

Ω

dmsolution =
∫

Ω

ρsεdx.

The principle of conservation of the mass stipulate that the variation of the
mass in Ω is equal to the flux through the boundary of Ω with velocity V

dMsolution(Ω, t)
dt

= −
∫
∂Ω

ρsεV νdσ.

Hence, ∫
Ω

∂

∂t
(ρsε) +

∫
∂Ω

ρsεV νdσ = 0 .

By the Green formula we obtain∫
Ω

(
∂

∂t
(ρsε) + div(ρsεV ))dx = 0 ∀ Ω ⊂ D .

Hence
∂(ρsε)
∂t

+ div(ρsq) = 0 in D . (1)
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2.2 Conservation of the Mass of Pollutant Liquid

Here we consider for example that our pollutant liquid is: water + chemical
concentration (it is homogeneous). By the formula given W (x, t) we have

dmsolute =W (x, t)dmsolution =W (x, t)ρs(x, t)ε(x, t)dvtotal

M(Ω, t) =
∫

Ω

dmsolute =
∫

Ω

Wρsεdx.

We use the principle conservation of the mass. This imply that∫
Ω

(
∂

∂t
(Wρsε) + div(Wρsq + J))dx = 0,

where J is the flux of dispersion diffusion. Hence

∂

∂t
(Wρsε) + div(Wρsq + J) = 0 ∀ Ω ⊂ D

∂

∂t
(Wρsε) + div(Wρsq + J) = 0 in D . (2)

2.3 Conservation of the Momentum

If the porous medium is homogeneous the Darcy law is given by

q = −K
µ

(∇p+ ρsge3) ,

where e3 is third vector of the canonical basis of R
3; p is the pressure, ge3 = �g

is the gravity field, K the intrinsic permeability tensor, µ the dynamic viscos-
ity and K/µ hydraulic conductivity. We will assume the following ellipticity
condition:
K
µ (x)ξ.ξ ≥ α1‖ξ‖2; α1 is a positive constant.

If we have some weak concentration the flux of dispersion diffusion J is
determined by the Fick law

J = −ρsD∇W ,

where D be the tensor of dispersion diffusion. We assume also the ellipticity
condition D = (dij)1≤i,j≤n; dijξiξj ≥ α2‖ξ‖2, where α2 a positive constant.

Remark 2.1. ρs = ρs(T, p,W ). For our study we suppose that ρs satisfy the
relation

ρs = ρ0 exp(βT (T − T0) + βp(p− p0) + γW ),

here βT , βp et γ are constants; p designates the pressure of the fluid, T the
temperature and W the concentration. ρ0 = ρ(T0, p0, 0) is a reference den-
sity; T0 and p0 are respectively the reference temperature and the reference
pressure. This expression is used in engineering science see for instance [14].
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Finally we have a system of equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ερs

∂t + div(ρq) = 0
∂(ερsW )

∂t + div(ρsWq + J) = 0
J = −ρsD∇W

ρs = ρ0 exp[βT (T − T0) + βp(p− p0) + γW ]
q = −K

µ (∇p+ ρsge3)

. (3)

Remark 2.2. The porosity ε of the medium can be given by many laws. We
can quote [16]

1. The Garner law(1958) given by

ε =
εs − εr

1 + (αh)β
+ εr for h ≤ 0

ε = εs for h > 0

2. The Brooks and Correy law (1964) where

ε = (εs − εr)(
h

h0
)β + εr for h ≤ hl

ε = a.h5 + bh4 + εs for hl < h ≤ 0

ε = εs for h > 0

3. The Van Genuchten Law (1980) where

ε = (εs − εr)(1 + (αh)β)τ + εr for h ≤ 0

ε = εs for h > 0

with τ = 1− 1/β

h is the pressure measured relatively at the atmospheric pressure and ex-
pressed in columns of water.

To fix the idea we will use the Van Genuchten law for our model.
Solving these equations in the porous medium is very difficult. To overcome

these difficulties, the following hypothesis:

• H-1 ρs is a constant.Replacing q by its expression in the first equation of
(3) we obtain the expansion of the divergence

∂

∂t
ε− div(K

µ
∇p)− ρsgdiv(

K

µ
e3) = 0 in Ω× (0, T1), (4)

where T1 is a fixed time.
Replacing q and J by their expressions in the second equation (3) and
after simplifications we have

∂

∂t
(εW )−div(WK

µ
∇p)−ρsgdiv(

K

µ
We3)−div(D∇W ) = 0 in Ω×(0, T1).

(5)
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• H-2 The hydraulic conductivity tensor is a constant positive:
(Kµ = βId3, β > 0) and D is a constant positive (D = aId3, a > 0).
Using the hypothesis (H-2), (4) and (5) become respectively

∂ε

∂t
− K
µ

∆p = 0 in Ω× (0, T1). (6)

∂

∂t
(εW )− K

µ
div(W∇p)− ρsg

K

µ

∂W

∂z
− a∆W = 0 in Ω× (0, T1). (7)

Using (6), (7) becomes

ε
∂

∂t
W − K

µ
∇W∇p− ρsg

K

µ

∂W

∂z
− a∆W = 0 in Ω× (0, T1). (8)

To (6) and (8) we are going to add boundaries conditions adapted to
pollution in porous medium. We obtain finally some boundaries and initial
value problems given by⎧⎪⎪⎨

⎪⎪⎩
∂ε
∂t − β∆p = 0 Ω× (0, T1)
ε(x, 0) = ε0 in Ω× {t = 0}
ε = ε1 ∂Ω \ Γ1 × (0, T1)
ε = εs Γ1 × (0, T )

(9)

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε∂W∂t − k

µ∇W∇p− k
µρsg

∂W
∂z −D∆W = 0 in Ω× (0, T1)

∂W
∂n = 0 ∂Ω\Γ1 × (0, T1)
W = V Γ1 × (0, T1)

W (x, 0) =W0 in Ω× {t = 0}

. (10)

Other assumptions to get the model which we will study in the next section
are:

• H-3 In the porous medium we have a steady state, this means that ∂
∂t = 0.

• H-4 The evolution is isotherm.

Let us recall that by hypothesis (H-1) ρs is constant and is given by the
expression

ρs = ρ0 exp[βT (T − T0) + βp(p− p0) + γW ].

Using hypotheses (H-1) and (H-4) we can find a relation between p the
pressure and W the concentration:

log
ρs
ρ0

= βp(p− p0) + γW

then,
p = p0 +

1
βp

[log
ρs
ρ0
− γW ].
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We deduce
∇p = − γ

βp
∇W.

Applying the hypotheses (H-1)–(H-4) and replacing ∇p by its value in (10)
we obtain ⎧⎪⎨

⎪⎩
−∆p = 0 in Ω1

p =
[(

ε1−εr
εs−εr

)−
1
m −1]

1
n

α on ∂Ω \ Γ1

p = 0 on Γ1

(11)

and ⎧⎨
⎩

+β|∇W |2 − βρsg ∂W∂z −
D0
ρ0

∆W = 0 in Ω
∂
∂nW = 0 on ∂Ω\Γ1

W = V on Γ1

. (12)

Remark 2.3. The boundary condition of (11) is obtained by the Van
Genuchten law.

In the following section we will study the above boundaries value problems.

3 Study of Partial Differential Equation (PDE)

After our model we fall on a second-order partial differential equation.

3.1 Fixed Point Theorem Approach

In this section we want to study this PDE (12) via a Schauder fixed point
theorem which can be found in [2].

3.1.1 Solution of PDE in H1
0(Ω)

First of all we are interested by the resolution of the boundary value problem{
−∆u+ |∇u|2 − ∂u

∂xN
= 0 in Ω

u ∈ H1
0 (Ω)

, (13)

where u : Ω ⊂ R
N → R, with Ω a bounded open set of R

N , N ≥ 2.

Proposition 3.1. Let Ω be a bounded open set of R
N . There exist a solution

of (13).

Proof. We are going to use a fixed point theorem to prove the Proposition 3.1.
The objective here is “to disappear” the nonlinearity of the term |∇u|2. For
this we introduce, for v ∈ L2(Ω), the following boundary value problem:{

−∆u+∇u∇v − ∂u
∂xN

= 0 in Ω

u ∈ H1
0 (Ω)

. (14)
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We transform the nonlinear problem into a linear boundary value problem
for all v ∈ L2(Ω). Multiplying the first equation by a test function ϕ ∈ H1

0 (Ω)
and by integrating we have∫

Ω

∇u∇ϕ+
∫

Ω

∇u∇vϕ−
∫

Ω

∂u

∂xN
ϕ = 0 ,∀u, ϕ ∈ H1

0 (Ω).

Let
av(u, ϕ) =

∫
Ω

∇u∇ϕ+
∫

Ω

∇u∇vϕ−
∫

Ω

∂u

∂xN
ϕ

be the variational form of the boundary value problem. We look for u ∈ H1
0 (Ω)

such that av(u, ϕ) = 0 for all v ∈ L2(Ω) and ϕ ∈ H1
0 (Ω). It is easy to show

that av(·, ·) is a bilinear form and is continuous. It remains to show that av(., .)
is coercive, i.e., ∃α > 0 such that av(u, u) ≥ α‖u‖H1

0 (Ω). For ϕ = u we have

av(u, u) =
∫

Ω

|∇u|2 +
∫

Ω

∇u∇v u−
∫

Ω

∂u

∂xN
u.∫

Ω

∇u∇v u =
∫

Ω

∇v∇uu =
∫

Ω

∇v∇(
1
2
u2)

=
N∑
i=1

∫
Ω

∂v

∂xi
.
∂

∂xi
(
1
2
u2).

Using the Green formula we obtain

=
N∑
i=1

∫
∂Ω

∂v

∂xi
.(

1
2
u2)−

N∑
i=1

∫
Ω

∂2v

∂x2i
.
1
2
u2.

As u ∈ H1
0 (Ω) the first term of the right-hand side disappear and∫

Ω

∇u∇v.u = −1
2

∫
Ω

div(∇v)u2.

For the last term of av(u, u) we have∫
Ω

∂u

∂xN
.u =

∫
∂Ω

u.unN −
∫

Ω

u.
∂u

xN
,

where n = (n1, . . . , nN ) is the unit exterior normal. This imply

2
∫

Ω

∂u

∂xN
.u =

∫
∂Ω

u.u.nN = 0

because u ∈ H1
0 (Ω). For v ∈ H1

0 (Ω), we have

av(u, u) =
∫

Ω

|∇u|2 − 1
2

∫
Ω

div(∇v)u2.
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If we introduce the set

K = {v ∈ H1
0 (Ω) such that m < div(∇v) ≤ 0},

where m is a negative constant, av(u, u) ≥
∫
Ω
|∇u|2 which is a square norm in

H1
0 (Ω), then av(·, ·) is coercive. By Lax–Milgram theorem for all v ∈ L2(Ω),

there exists u = u(v) solution of the variational problem

find u ∈ K such that av(u, ϕ) = 0 ∀ϕ ∈ K.

Let us introduce the operator

T : L2(Ω) → L2(Ω)

v �→ T (v)

and let u = T (v) ∈ K be the solution of the linear boundary value problem
(14). T is continuous because is a composition of continuous functions. In fact
we have

T : L2(Ω) → L2(Ω) → K → L2(Ω)

v �→ v �→ uv �→ uv = T (v).

For u = T (v) the variational formulation becomes∫
Ω

∇T (v)∇ϕ+
∫

Ω

∇v∇T (v)ϕ−
∫

Ω

∂T (v)
∂xN

ϕ = 0.

For ϕ = T (v), we have∫
Ω

|∇T (v)|2 +
∫

Ω

∇v∇T (v).T (v)−
∫

Ω

∂T (v)
∂xN

T (v) = 0.

If we consider the trilinear form

b(v, u, ϕ) =
∫

Ω

∇v∇uϕ =
N∑
i=1

∫
Ω

∂v

∂xi

∂u

∂xi
ϕ.

Then we have

b(v, u, ϕ) + b(v, ϕ, u) =
N∑
i=1

∫
Ω

∂v

∂xi

∂u

∂xi
ϕ+

N∑
i=1

∫
Ω

∂v

∂xi

∂ϕ

∂xi
u

=
N∑
i=1

∫
Ω

∂v

∂xi
(
∂u

∂xi
ϕ+

∂ϕ

∂xi

u)

=
N∑
i=1

∫
Ω

∂v

∂xi

∂

∂xi
(uϕ).
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Using the Green formula we have

b(v, u, ϕ) + b(v, ϕ, u) = −
∫

Ω

∆v.uϕ.

Taken ϕ = u we obtain

b(v, u, u) = −1
2

∫
Ω

∆v.u2.

For u = T (v)∫
Ω

∇v∇T (v).T (v) = b(v, T (v), T (v)) = −1
2

∫
Ω

∆T (v).T 2(v).

The variational form gives∫
Ω

|∇T (v)|2 = −1
2

∫
Ω

∆T (v).T 2(v).

Hence, ∫
Ω

|∇T (v)|2 ≤ −m
2

∫
Ω

T 2(v) ≤ −mc‖T (v)‖H1
0 (Ω)

≤ mc′‖∇T (v)‖L2(Ω)

‖∇T (v)‖L2(Ω) ≤ mc′ .

Let us introduce

C = {v ∈ H1
0 (Ω), m < ∆v < 0, et ‖v‖L2(Ω) ≤ mc′}.

We can say that T (C) ⊂ C. The injection of H1
0 (Ω) ↪→ C is compact. C is

compact and convex by construction. By Schauder fixed theorem there exists
a fixed point such that T (u) = u. �

Remark 3.2. For the following problem⎧⎪⎨
⎪⎩

∆u = 0 Ω
|∇u|2 − ∂u

∂xN
= 0 Ω

u ∈ H1
0 (Ω)

(15)

we consider the space

K = {v ∈ H1
0 (Ω), such that ∆v = 0}.

By the same approach as above we show that this problem admits a solution.
The variational problem gives

∫
Ω
|∇u|2 = 0. Then |∇u| = 0 almost everywhere

hence u is a constant a.e.
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3.1.2 The Case of Mixed Boundary Condition

We study here the partial differential equation meted in the proposed model
with mixed boundaries value conditions⎧⎪⎨

⎪⎩
−α∆u+ β|∇u|2 − γ ∂u

∂xN
= 0 in Ω

u = 0 on Γ1

∂u
∂n = 0 on Γ2

, (16)

where ∂Ω = Γ1 ∪ Γ2 and Γ̇1 ∩ Γ̇2 = ∅ where Γ̇ denotes the interior of Γ.

Proposition 3.3. Let Ω be a bounded open set of R
N , N ≥ 2. Then there

exists a solution of problem (16).

Proof. We use here the Schauder fixed point theorem to prove the proposition.
Let us consider the linear mixed boundary values problem derived from (16).⎧⎪⎨

⎪⎩
−α∆u+ β∇u∇v − γ ∂u

∂xN
= 0 in Ω

u = 0 on Γ1

∂u
∂n = 0 on Γ2

(17)

Multiplying the first equation by a test function and integrating we obtain
the variational formula

α

∫
Ω

∇u∇ϕ+ β
∫

Ω

∇u∇vϕ− α
∫
∂Ω

∂u

∂n
ϕ− γ

∫
Ω

∂u

∂xN
ϕ = 0,

where α, β et γ are constants strictly positives and n the exterior unit normal.
We work with a set of the form

V = {v ∈ Hs(Ω) such that v = 0 on Γ1,
∂v

∂n
= 0 on Γ2}

with s ≥ 2. The variational problem can be sum up as follows: for all v, ϕ ∈ V
we look for u ∈ V such that

α

∫
Ω

∇u∇ϕ+ β
∫

Ω

∇u∇vϕ− γ
∫

Ω

∂u

∂xN
ϕ = 0 ∀ϕ ∈ V.

We have already calculated the trilinear form b(v, u, ϕ), in the above section.
Using the Green formula in the last integral and taking u = ϕ, we have∫

Ω

u
∂u

∂xN
=

1
2

∫
∂Ω

u2nN .

Then ∫
Ω

u
∂u

∂xN
=

1
2

∫
∂Ω

u2nN .
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Then

av(u, u) = α
∫

Ω

|∇u|2 +
β

2

N∑
i=1

∫
∂Ω

u2
∂v

∂xi
ni −

β

2

∫
Ω

∆v.u2 − γ
2

∫
∂Ω

u2nN .

If we suppose that ∆v ∈ L∞(Ω) then the accounts take sense. For that reason
we choose v ∈ L4(Ω) and the condition m ≤ ∆v ≤ δ < 0, i.e., ∆v negative
and bounded. The objective is to obtain a set V2 in which our bilinear form
is continuous and coercive. We can take

V2 = {v ∈W 1,4(Ω) such that
∂v

∂n
= 0 on Γ2, v = 0 on Γ1 and

m ≤ ∆v ≤ δ < 0}.

As Ω is bounded, the set V2 ⊂ L4(Ω) and V2 ⊂W 1,2(Ω). We use here the
norm of W 1,2(Ω) as the norm of V2; the injection of

L∞(Ω) ↪→W 1,4(Ω)

is continuous. To prove this assertion we can see [5]. For all these hypothesis we
have V2 ⊂W 1,4(Ω), i.e., all functions of V2 are bounded. Another hypothesis
is to choose n the exterior unit normal so that nN (x) should be negative for
all x ∈ ∂Ω. This choice is possible because it is a natural condition if Ω is
regular. Under these hypothesis, the bilinear form satisfies the inequality

av(u, u) ≥ α
∫

Ω

|∇u|2 − δ
2

∫
Ω

u2

≥ min{α,−δ/2}‖u‖2H1(Ω)

which proves the coercivity of the bilinear form. By Lax–Milgram theorem
there exists a weak solution of the mixed boundary value problem in V2.

Let u = φ(v) ∈ V2 the solution of the mixed boundary problem. φ is
defined φ : L4(Ω) → L4(Ω). The variational problem gives

α

∫
Ω

|∇φ(v)|2 + β
∫

Ω

∇v∇φ(v).φ(v)− γ
∫
∂Ω

∂φ(v)
∂xN

φ(v) = 0.

This gives

α

∫
Ω

|∇φ(v)|2 − β
2

∫
Ω

∆v.φ2(v) =
γ

2

∫
Γ2
φ2(v)nN

=
1
2

∫
∂Ω

φ(v).φ(v)nN

≤ C
2

∫
∂Ω

|φ(v)|

≤ C

2︸︷︷︸
K0

‖φ(v)‖H1(Ω)
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hence,
‖φ(v)‖H1(Ω) ≤ K0.

We choose
C = {v ∈ V2, ‖v‖H1(Ω) ≤ K0}.

Then φ(C) ⊂ C and φ is continuous. By Schauder fixed theorem the fixed
point exists. �

Remark 3.4. For the following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α∆u = 0 on Ω
β|∇u|2 − γ ∂u

∂xN
= 0 on Ω

u = 0 in Γ1

∂u
∂n = 0 in Γ2

(18)

we consider

V2 = {v ∈W 1,4(Ω) such as
∂v

∂n
= 0 on Γ2, v = 0 on Γ1 and

∆v = 0}.
We show by the same approach that this problem admits a solution.

3.2 Change of Variables Approach

Let Ω be an open subset of R
N .We consider here an initial-value problem for

a quasilinear parabolic equation⎧⎪⎨
⎪⎩
ut −∆u+ α|∇u|2 + ∂u

∂z = 0 in Ω× (0, T1)
u = f on ∂Ω× (0, T1)

u(x, 0) = g in Ω× (t = 0)
, (19)

where α > 0. This king of nonlinear partial differential equation arises in
pollution as seen in the model.

Proposition 3.5. The problem (19) has at least one solution.

Proof. Let us suppose at first that u is the solution of (19). Let us set

ω := φ(u),

where φ : R → R is a smooth function, not yet specified. We will choose φ
such that ω solve a linear equation. We have

ωt = φ′(u)ut, ∇ω = φ′(u)∇u, and ∆ω = φ′(u)∆u+ φ′′(u)|∇u|2
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and consequently (19) implies

ωt = φ′(u)ut = φ′(u)
[
∆u− α|∇u|2 − ∂u

∂z

]

= φ′(u)∆u︸ ︷︷ ︸
=∆ω−φ′′(u)|∇u|2

−αφ′(u)|∇u|2 − φ′(u)∂u
∂z︸ ︷︷ ︸

= ∂ω
∂z

ωt = ∆ω − |∇u|2(φ′′(u) + αφ′(u))− ∂ω
∂z
.

Thus
ωt −∆ω +

∂ω

∂z
= −|∇u|2(φ′′(u) + αφ′(u)) = 0

provided that we choose φ to satisfy φ′′(u) +αφ′(u) = 0. We solve this differ-
ential equation and we obtain φ(u) = λe−αu, λ ∈ R. Note that we have just
to prove that such φ exists. Thus if u satisfies (19), then

ω = λe−αu (20)

solves this initial-value problem⎧⎨
⎩
ωt −∆ω + ∂ω

∂z = 0 on Ω× (0, T1)
ω = λe−αf in ∂Ω× (0, T1)
ω = λe−αg in Ω× (t = 0)

. (21)

Let us remark that using Galerkin’s method, one can prove that (21) have a
unique weak solution for all λ ∈ R see for instance [5] for more details. We
can choose λ = 1 for the following.

Conversely, let ω be the solution of (21), and u = − 1
α logω, then ω = e−αu

ωt = −αute−αu, ∇ω = −α∇ue−αu

∆ω = −αe−αu(∆u− α|∇u|2), ∂ω

∂z
= −αe−αu ∂u

∂z

thus

ωt −∆ω +
∂ω

∂z
= −αe−αu

(
ut −∆u+ α|∇u|2 +

∂u

∂z

)
= 0

consequently u solve the partial differential equation⎧⎪⎨
⎪⎩
ut −∆u+ α|∇u|2 + ∂u

∂z = 0 in Ω× (0, T1)
u = f on ∂Ω× (0, T1)
u = g in Ω× {t = 0} �

.

Remark 3.6. When ∂ω
∂z = 0, Ω = R

N and t > 0 (21) becomes{
ut −∆u = 0 in R

N × (0, T1)
u = e−αg in R

N × {t = 0} (22)
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the unique bounded solution of (22) is

ω(x, t) =
1

4πt

∫
RN

e−
|x−y|2

4t e−αg(y)dy (x ∈ R
N , t > 0);

and as (20) implies

u = − 1
α

logω,

we obtain thereby the explicit formula

u(x, t) = − 1
α

log
(

1
4πt

∫
RN

e−
|x−y|2

4αt e−αg(y)dy

)
(x ∈ R

N , t > 0); (23)

for a solution of (19).
In the stationary case, we have{

−∆u+ α|∇u|2 = 0 on Ω
u = g in ∂Ω . (24)

As in above, setting u = − 1
α log(ω), it follows that ω solve the partial linear

differential equation {
−∆ω = 0 on Ω
ω = e−αg in ∂Ω (25)

which can be easily solved see for example [5].

4 Topological Optimization

In this section we optimize the functional

J(Ω,W ) =
∫

Ω

(W −W1)2dx,

where W1 is a given function in L2(Ω) which represents a target and W is the
solution of the partial differential equation⎧⎪⎨

⎪⎩
+β|∇W |2 − βρsg ∂W∂z − a∆W = 0 in Ω

∂
∂nW = 0 on ∂Ω\Γ1

W = V on Γ1

(26)

with α, β and γ are positive constants. In the model we have supposed that

ρs = ρ0 exp(βT (T − T0) + βp(p− p0) + γW )

is a constant.
The expression of ρs gives a relation between the pressure p and the con-

centration W. It is given by
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p = p0 +
1
βp

[log
ρs
ρ0
− γW ].

The porosity of the medium also is given by the Van Genuchten law

ε = (εs − εr)(1 + (αp)n)−m + εr.

Then we obtain

p =
[( ε−εr

εs−εr
)−

1
m − 1]

1
n

α
,

the boundary condition of p:

• ε = εs in Γ1 then p = 0 on Γ1.
• ε = εs in ∂Ω \ Γ1 then

p =
[( ε1−εr

εs−εr
)−

1
m − 1]

1
n

α
on ∂Ω \ Γ1.

We are going to replace this expression by a more general one

p = p1 on ∂Ω \ Γ1,

where p1 is a given function. Finally p satisfy the boundary value problem⎧⎨
⎩
−∆p = 0 in Ω
p = p1 on ∂Ω \ Γ1

p = 0 on Γ1

. (27)

W is solution of a nonlinear boundary value problem. As p and W are
linked by the law of ρs, we transform the problem in W into a problem in p.

In fact using the relation between p and W the topological optimization
problem in W is equivalent to look for Ω with

min
Ω(ε)
J(Ω(ε)),

where
J(Ω(ε)) =

∫
Ω(ε)

(1/γ[ln
ρs
ρ0
− βp(pε − p0)]−W1)2dx, (28)

where ε ∈ (0, 1) is a small parameter and pε is solution of⎧⎪⎪⎨
⎪⎪⎩
−∆pε = 0 in Ω(ε)
pε = p1 on ∂Ω \ Γ1

pε = 0 on Γ1

pε = 0 on ∂ωε

(29)

under the constraint

|∇pε|2 − gρs
∂pε
∂z

= 0 in Ω(ε).
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Topological optimization appears as a generalization of shape optimization.
The topological optimization of a shape functional J(Ω) is introduced in order
to characterize the variation of J(Ω) with respect to the variation of topology
of the domain. It permits us to obtain the new optimality condition

J(Ω0) = inf
Ω
J(Ω).

In optimization process, we consider a set Ω ⊂ R
N regular in which we dug

some small halls ωε depending on ε ∈ (0, 1) and we introduce the set Ω(ε) =
Ω \ ω̄ε. We evaluate the difference J(Ω(ε)) − J(Ω) to obtain the topological
derivative.

It is very difficult to obtain this topological derivative for surface func-
tional. In fact, let us consider a continuous function g and ωε = B(x0, ε), x0 ∈
Ω. Let us consider the functional J

J(Ω) =
∫

Ω

gdx+
∫
∂Ω

ds,

where Ω is a open set of R
2

J(Ω(ε))− J(Ω) = −
∫
B(x0,ε)

gdx+
∫
∂B(x0,ε)

ds.

Using the mean value theorem, we get∫
B(x0,ε)

gdx = g(zε)vol(B(x0, ε)).

Then
J(Ω(ε))− J(Ω) = −g(zε)πε2 + 2πε.

J(Ω(ε))− J(Ω)
πε2

= −g(zε) +
2
ε
.

As ε→ 0, zε → x0 and then we get

J(Ω(ε))− J(Ω)
πε2

→ +∞.

Here the topological derivative cannot generate a hole. This prove the principal
difficulty for obtaining topological derivative.

4.1 First Approach

We use the topological optimization by using the approach of Nazarov and
Sokolowski in [13] in which the operator associated with the boundary value
problem is an homogenous linear second order operator for more details
cf. [13]. But we are going to give some steps and tools presented in their work.
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Let us define the sets ωε and Ωε. Let Ω and ω be two domains in R
N with

compact closures and ∂Ω and ∂ω are regulars boundaries We assume that
0 ∈ ω ⊂ B1 ⊂ B2 ⊂ Ω with BR = {x ∈ R

N/|x| ≤ R}. We introduce the sets

ωε = {x ∈ R
N ; ξ = ε−1x ∈ ω}; Ω(ε) = Ω\ω̄ε ,

where ε is a small parameter belonging in (0,1). We obtain the topological
derivative of the integral functional if we evaluate

T (0) = lim
ε→0

J1(Ω(ε))− J1(Ω)
f(ε)

,

where f(ε) −→ 0 if ε −→ 0.

4.1.1 Existence of Solution of Boundary Value Problem

We introduce here two boundary value problems to define the expansion of
the solution to problem (29). The first problem is obtained by filing the cavity.
We study the problem ⎧⎨

⎩
−∆p = 0 in Ω
p = p1 on ∂Ω \ Γ1

p = 0 on Γ1

. (30)

By the variational formula this problem admits a unique solution in the space

V1 = {v ∈ H1(Ω) such that v = 0 in Γ1 and v = p1 in ∂Ω \Γ1} .

The second problem is obtained by replacing the variable x by the fast
variable ξ. The boundary of Ω disappears and goes to infinity. We obtain{

−∆p2 = 0 in R
N\ω̄

p2 = g ∂ω
. (31)

The set R
N\ω is unbounded and there is no limit condition at infinity.

This is the exterior problem of Laplace. We look for a solution satisfying the
condition lim|x|→∞ u(x) = c. If g is a continuous function the boundary value
problem (31) has a unique solution u verifying the condition at infinity. If ω
is a ball B(x0, r0) the solution of (31) is given by

p2(x) = (1− (
r0

|x− x0|
)N−2)c+

1
r0σN

∫
∂B

|x− x0|2 − r20
|t− x|N g(t)dγ(t)

for all function g ∈ C0(∂Ω). We see easily that

lim
|x|→∞

u(x) =
1

2πr0

∫
∂B

g(t)dγ(t).
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4.1.2 Power Solutions and Polarization Matrix

In this section we define the power solutions of homogenous system. We recall
that in [13] vectors (u1, . . . , uT ), T ≥ 1 are considered. In our case we have
a scalar vector, i.e., T is equal to 1. The Dirichlet condition is defined in the
boundary of the domain ω. The basis of homogenous polynomials is consti-
tuted by a unique vector U verifying the condition U(zx) = zτ1U(x), τ1 = 0
with U constant. Then U = δ11.

The function U− is defined by U− = U(−∇x)Φ(x) = Φ(x) where Φ is the
fundamental solution of the Laplacian operator, i.e., is a solution of ∆Φ =
δ in R

N .

Definition 4.1. The function

Φ(x) =
{ − 1

2π log |x| (N = 2)
1

−(N−2)α(N)
1

|x|N−2 N ≥ 3

defined for all x ∈ R
N is the fundamental solution of the Laplace operator.

α(N) is the hyper surface of the unit sphere of R
N .

Definition 4.2. The Green function associated to the domain is given by

G(x, y) = Φ(x− y)− Φx(y) x, y ∈ Ω, x 
= y,

Φx is the solution of {
∆Φx = 0 in Ω

Φx = Φ(x− y) on ∂Ω.

We recall that here we work with a scalar vector. As the Dirichlet condi-
tion is prescribed the polarization mω is a 1 × 1 matrix. And by the Propo-
sition 3.2 in [13] we can claim that the matrix mω is negative. mω is defined
by the following proposition. This proposition gives a description of solution
of homogenous problem (31).

Proposition 4.3. The linear space of solution of boundary value (31) is given
by a linear hull of the function

ζ(ξ) = U(ξ) + z(ξ),

where z is the solution of boundary value problem{
−∆z = 0 in R

N\ω̄
z = U on ∂ω

.

In addition we have the representation

ζ(ξ) = U(ξ) +mωU−(ξ) + z̃(ξ),

where z̃ is the remainder in the development of the function z.
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The proof of this proposition is similar to the proof of Proposition 3.1 in [13].
In the proof of this proposition the polarization is given by the expression
mω = −(g, ζ)∂Ω with

ζ = U +mωU− + ζ̃

et
gω = g = U.

After neglecting the remainders ζ̃, mω becomes

mω = −(g, ζ)∂ω = −(−U,−ζ1)∂ω
= −(U, (U +mωU−))∂ω
= −(U,U)∂ω −mω(U,U−)∂ω
= −(U,U)∂ω − (U,mωU−)∂ω

(., .) is the inner product. We obtain finally

mω = − (U,U)∂ω
1 + (U,U−1)∂ω

= −
∫
∂ω
dx

1 +
∫
∂ω
U−(x)dx

.

In the case where ω ⊂ R
3 the scalar matrix becomes

mω = −
∫
∂ω
dx

1 +
∫
∂ω
E3(x)dx

.

We suppose here that ω is ball B(0, r0) such that 0 < r0 < 1.We use here the
spherical coordinate to compute the exact value of the integral. Let

x1 = r sin θ cosϕ; x2 = r sin θ sinϕ; x3 = r cos θ,

where 0 ≤ r ≤ r0; θ ∈ (0, π) and ϕ ∈ (−π, π). The Jacobian of the transfor-
mation is r2 sin θ. We can calculate the integral∫

∂ω

E3(x)dx =
∫
∂B

− 1
σ3

1
|x|dx =

∫ r0

0

∫ π

0

∫ π

−π

−1
σ3
r sin θdrdθdϕ = 2πr20.

The polarization matrix depending only on ω is

mω = − 4πr0

1− r20
2

.

4.1.3 Asymptotic Expansion of the Functional

In this section we give the principal theorem stating the asymptotic of the
functional Jε(p) = J(pε). The expansion of the functional is deduced by the
expansion of solution pε.



On Topological Optimization and Pollution in Porous Media 229

Theorem 4.4. Let pε be the solution of (29) and Jε the functional

Jε(p) = J(pε) =
∫

Ω(ε)

(1/γ[ln
ρs
ρ0
− βp(pε − p0)]−W1)2dx.

Then the following expansion holds

∣∣Jε(p)−J0(p)−ε

∫
Ω

2

(
−βp

γ

)
(1/γ[ln

ρs

ρ0
−βp(p−p0)]−W1)η(x)mωp(0)dx

∣∣ ≤ Cε1+δ

δ > 0, where p is solution of (30), η is the Green function solution of{
−∆η = δ Ω
η = 0 ∂Ω .

In addition the topological derivative is given by the expression∣∣Jε(p)− J0(p)− εV (0)mωp(0)
∣∣ ≤ Cε1+δ. (32)

V is the solution of the adjoint problem⎧⎨
⎩−∆V = 2

(−βp
γ

)
(1/γ[ln ρs

ρ0
− βp(pΩ − p0)]−W1) Ω

V = 0 ∂Ω
. (33)

Proof. Before beginning the proof of the theorem we determine the first and
the second expansion of the solution p(ε, x) = pε(x) of problem (29). The first
and the second expansion are in the following form

p(ε, x) = p(x) + a(ε)η(x)

p(ε, x) = b(ε)ζ(ε−1x),

where p solve the problem (30) and η the Green function of the Laplacian
operator satisfying the boundary condition η = 0 on ∂Ω; ζ is defined in
Proposition 4.3. Here we apply the method of matched asymptotic expansions.
The matching conditions imposed by the method imply that (see Sect. 4.2 [13])
the coefficients a(ε) and b(ε) are given by

a(ε) = {I − εN−2mωmΩ}−1εN−2mωv(0)

and
b(ε) = {I − εN−2mωmΩ}−1v(0),

where I denotes the identity matrix and mω, mΩ are polarizations matrix
defined in ∂ω and ∂Ω. In our case a p is scalar function and N = 3 these
expressions becomes

a(ε) =
εmωv(0)

1− εmωmΩ
and b(ε) =

v(0)
1− εmωmω

.



230 I. Faye et al.

To determine the asymptotic of the solution we will use uniquely the first
expansion of the solution

Jε(p) =
∫

Ω(ε)

(pε − p0)2 + 2(p− p0)a(ε)η(x) + a2(ε)η2(x)

−
∫
ω̄ε

(pε − p0)2 + 2(p− p0)a(ε)η(x) + a2(ε)η2(x)︸ ︷︷ ︸
bounded

.

Replacing a(ε) by its value this expression follow

Jε(p)−J0(p)−ε
∫

Ω

2(p−p0)η(x)mωp(0)dx = ε2
∫

Ω

(mω)2η2(x)
(1− εmωmΩ)2

+mes(ωε)h(x).

Finally if ωε is a ball of radius ε, we have mes(ωε) = ε22π, then we get the
desired inequalities.

To obtain the expression (32) we multiply the first equation of (33) by the
Green function η and integrate∫

Ω

∇V∇η =
∫

Ω

2
(−βp
γ

)
(1/γ[ln

ρs
ρ0
− βp(p− p0)]−W1)η.

Using the Green formula in the first integral we have∫
Ω

−∆ηV =
∫

Ω

2
(−βp
γ

)
(1/γ[ln

ρs
ρ0
− βp(p− p0)]−W1)η.

As −∆η = δ in Ω this expression yields∫
Ω

δV = V (0) =
∫

Ω

2
(−βp
γ

)
(1/γ[ln

ρs
ρ0
− βp(p− p0)]−W1)η,

this proof the theorem. �
We obtain the topological derivative of the functional J at the point con-

sidered. The topological derivative at the point x0 is given by the formula

T (x0) =

∫
Ω

2

(
−βp

γ

)
(1/γ[ln

ρs

ρ0
−βp(p−p0)]−W1)η(x)mωp(x0)dx=V (x0)m

ωp(x0),

where V is the solution of the adjoint problem (33), p the solution of problem
(30) and mω the polarization matrix. The principal difficulties to get the
topological sensitivity is the calculus of the polarization matrix. In our case
we calculate explicitly in the preceding section this matrix which is a scalar.

4.2 Second Approach

In this section, we present a general framework for topological sensitivity. This
method was introduced by J. Cea, M. Masmoudi and al. For more details
see [3, 10, 11]. Meanwhile we are going to present some fundamental steps of
this method.
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4.2.1 A Generalized Adjoint Method

Let V be a fixed Hilbert space and L(V) (resp L2(V)) denotes the spaces of
linear (resp bilinear) forms on V. We make the following hypothesis:

• H-5: There exists a real function f , a bilinear form δa ∈ L2(V) and a
linear form δl ∈ L(V) such that

f(ε) −→ 0, ε −→ 0+ (34)

‖aε − a0 − f(ε)δa‖L2(V) = o(f(ε)) (35)

‖lε − l0 − f(ε)δl‖L(V) = o(f(ε)). (36)

• H-6: The bilinear form a0 is coercive: There exists a constant α > 0 such
that

a0(u, u) ≥ α‖u‖2, ∀u ∈ V.
According to (35), the bilinear form aε depend continuously on ε, hence
there exists ε0 and β > 0 such that for ε ∈ [0, ε0], the following uniform
coercivity condition holds

aε(u, u) ≥ β‖u‖2 ∀u ∈ V.

According to Lax–Milgram’s theorem, for ε ∈ [0, ε0], the problem find
uε ∈ V such that

aε(uε, v) = lε(v) ∀ v ∈ V (37)

gets a unique solution.

Lemma 4.5. If hypothesis H-5 and H-6 hold, then

‖uε − u0‖ = O(f(ε)).

For the proof we can refer to [7].
• H-7: We consider now a cost function j(ε) = J(uε), where the functional
J is differentiable: For u ∈ V there exists a linear and continuous form
DJ(u) ∈ L(V) and δJ such that

J(v)− J(u) = DJ(u)(v − u) + f(ε)δJ (u) + o(‖v − u‖V). (38)

For ε ≥ 0, we define the Lagrangian Lε see for example [10]

Lε(u, v) = aε(u, v)− lε + J(u) ∀u v ∈ V.

The next theorem gives the asymptotic expansion of j(ε) and the proof can
be founds in [1, 7, 8].
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Theorem 4.6. If hypothesis H-5, H-6, and H-7 are satisfied, then

j(ε)− j(0) = f(ε)δL(u0, v0) + o(f(ε)), (39)

where u0 is the solution of (37) with ε = 0, v0 is the solution to the adjoint
problem: find v0 such that

a0(w, v0) = −DJ(u0)w ∀w ∈ V (40)

and
δL(u, v) = δa(u, v)− δl(v) + δJ(u).

4.2.2 Position of the Problem

The function pε solution of (29) is defined on the variable open set Ωε. Thus
it belong to a functional space which depend on ε. Hence, if we want to derive
the asymptotic expansion of the functional

j(ε) = J(pε), (41)

we cannot apply directly the tool of the above section, which require a fixed
functional space. However, a functional space independent on ε can be con-
structed by using a domain truncation technique. This technique has been
introduced in topological optimization by Masmoudi in [11]. It allows only
to do theoretical analysis, and will never be used for practical computation.
During optimization process, the two systems which have to be solved are
(27) and the adjoint problem associated to the cost function (28).

4.2.3 The Truncated Problem and the Topological Gradient

We present also some steps of the truncation method. For more details
cf. [1, 7, 8]. Let R > 0 be a real such that the closed ball B(x0, R) is in-
cluded in Ω. It is also supposed that ε remains small so that ωε ⊂ B(x0, R).
The truncated open subset is defined by ΩR = Ω\B(x0, R) and B(x0, R)\ωε
is denoted by Dε. For ϕ ∈ H1/2(ΓR) and ε > 0, let pϕε be the solution of the
problem: find pϕε such that⎧⎨

⎩
−∆pϕε = 0 in ΩR

pϕε = 0 in ∂ωε
pϕε = ϕ in ΓR

, (42)

where ΓR is the boundary of B(x0, R).
For ε = 0, pϕ0 is solution to{

−∆pϕ0 = 0 on B(x0, R)
pϕ0 = ϕ in ΓR

. (43)
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For ε > 0 we consider the Dirichlet-to-Neumann operator (see [4] or [9] for
details) Tε is defined by

Tε : H1/2(ΓR) −→ H−1/2(ΓR)
ϕ −→ Tεϕ = ∇pϕε .n ,

where the normal n is chosen exterior to Dε on ΓR and Dε.
For ε ≥ 0, we define pRε as the solution of the truncated problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∆pRε = 0 on ΩR

pRε = p1 in ∂Ω \ Γ1

pRε = 0 in Γ1

pRε − Tεϕ = 0 in ΓR

. (44)

The variational formulation associated to (44) is: find pRε ∈ VR such that

aε(pRε , v) = l(v), ∀v ∈ VR, (45)

where the Hilbert space V, the bilinear form aε and the linear form lε are
defined by

VR =
{
p ∈ H1(ΩR) /p = p1 on ∂Ω \ Γ1 and p = 0 on Γ1

}
(46)

aε(p, v) =
∫

ΩR

∇p∇vdx+
∫

ΓR

(Tεϕ)vdσ(x); lε(v) =
∫
∂Ω\Γ1

p1vdx. (47)

dσ is the Lebesque measure on the boundary. It is standard to prove that
(45) has a unique solution in VR which is the restriction to ΩR of the solution
of (39).

We have now a fixed Hilbert space, as required in Theorem 4.6.
The main theorem is the following. The proof is based on the single layer

potential, the exterior and interior problems and the Dirichlet-to-Neumann
(or capacity) operator. As our coast functional is a particulary case of the
more general one studied in [8], we refer there for the proof (Proposition 5.3,
for the three-dimensional case and Proposition 5.5 for the two-dimensional
case).

Theorem 4.7. Let

JΩ(p) =
∫

Ω

∣∣∣∣ 1γ
(

ln
(
ρs
ρ0

)
− βp(p− p0)

)
−W1

∣∣∣∣2 dx
be the cost function. Let V ∈ VR be the solution to the adjoint equation

a0(V,w) = −DJ(p, w) ∀w ∈ VR. (48)

Then the function j(ε) = JΩε
(pε) have the following asymptotic expansion

j(ε) = j(0) + f(ε)δa(p, V ) + δJ(p)− δl(V ) + o(f(ε)). (49)
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The function δj(x0) = δa(p(x0), V (x0))+ δJ (p(x0))− δl(V (x0)) is called topo-
logical sensitivity or topological gradient and can be used as descent direction
in optimization processus. Moreover, as j is independent of R and δj is inde-
pendent of ε, it follows from the uniqueness of the asymptotic expansion that
δj is also independent of R.

Corollary 4.8. When ωε = B(x0, ε) is a ball, δa, δJ can be computed explic-
itly and we have

δj(x0) = −4π(p(x0).V (x0)),

where p is the solution of the direct state V is the solution of the adjoint
equation.

Remark 4.9. In the case of Neumann condition on the boundary of the hole,
the topological sensitivity can be computed. When ωε = B(x0, ε), we have

δj(x0) = −4π
(
∇p(x0).∇V (x0)

+
∣∣∣∣ 1γ
(

ln
(
ρs
ρ0

)
− βp(p(x0)− p0(x0))

)
−W1(x0)

∣∣∣∣2
)
,

where p is the solution of the direct state V is the solution of the adjoint
equation.

5 Numerical Simulations

In this section we present a numerical solution which illustrate the topological
derivative. We consider the square Ω = (−1, 1)× (−1, 1). We denote by p the
solution of the boundary value problem{

−∆p = 0 Ω
p = r ∂Ω (50)

with r is a continuous function in ∂Ω given by and V is the solution of the
adjoint state. The integral functional is given by

J(Ω, p) =
∫

Ω(ε)

(1/γ[ln
ρs
ρ0
− βp(pΩ(ε) − p0)]−W1)2dx.

After a choice of our constant we compute the topological derivative of the
integral functional. We use a finite element method to represent the solution
and its adjoint state. We present also the topological derivative of the func-
tional. For all the examples we use p0 = |2x − y|, γ = log(2), ρs

ρ0
= 1 and

βp = 0, 5.
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Examples

The first example concerns Figs. 1 and 2. In this example we set r = |x − y|
and W1 = |tan(x2 + y2 + 1)|.

The second example concerns Figs. 3 and 4. In this example, we set r = 1
and W1 = 1/3|x− 2y|.

Fig. 1. On the top, we have: left : the direct solution, right : the adjoint solution and
in the bottom: the topological gradient

−1
0

1

−1
0

1
−400

−200

0

Topological gradient g(x,y) in 3D

Level sets

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−200

−150

−100

−50

−1
0

1

−1
0

1
0

200

400

− g(x,y) in 3D

Fig. 2. On the top, we have: left : the topological derivative in 3D, right : −g(x, y)
and in the bottom: the level sets
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Fig. 3. On the top, we have: left : the direct solution, right : the adjoint solution and
in the bottom: the topological gradient
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Fig. 4. On the top, we have: left : the topological derivative in 3D, right : −g(x, y)
and in the bottom: the level sets

In our examples, we see that the topological derivative is negative. It per-
mits us to see the distribution of the pollution in the medium. Then we locate
the more polluted zones. The topological gradient in 3D gives the pikes of
pollution. This pikes are determined where the gradient is more negative, i.e.,
where W −W1 is very big.
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6 Some Open Problems

(1) Does it possible to compute the topological gradient with the nonlinear
equation got in this paper?
In fact we use the linear equation of the pressure to compute the topolog-
ical derivative.

(2) What’s happen in the case of nonpermanent evolution? Note that we have
only studied the problem in the steady case.

(3) Does it possible to give some weak hypothesis and to prove the uniqueness
of the solution for the studied nonlinear equations in this paper?

(4) What’s happen if ρs is not a constant?
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11. M. MASMOUDI, The topological asymptotic, in computational methods for con-
trol applications, H. Kawarada and J. Periaux, eds., GAKUTO Internat. Ser.
Math. Sci. Appl. Gakkotōsho, Tokyo, 2002.
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Dynamical Analysis of Infectious Diseases
in Spatially Heterogeneous Environments

J.M. Tchuenche

Summary. Over many decades, mathematical biology has been the subject of many
beautiful modeling experiments and a proving ground for a wealth of mathematical
theories, both linear and non-linear. We analyze a malaria model first proposed
in [10] using functional analytical technique – crude estimates of solutions to the
model equations are given, a priori bounds of some parameters obtained as well as
stability result. We also study the dynamics of infected individuals in the indirectly
transmitted model when the total population equals that of mosquitoes.

1 Introduction

Models of spatially heterogeneous environments are difficult to build and an-
alyze but an understanding of these models can be crucial to a wide variety of
problems, ranging from population biology (infectious disease transmission) to
chemical dynamics. Recently, Rodriguez and Torres-Sorando [10] have under-
taken a detailed model building of such systems and they obtained conditions
for the disease to become established.

A major aspect of the spread of infectious diseases is the problem of the
geographical distribution of cases. This is in general a very difficult matter,
especially in view of the complications that readily arise, even when the spatial
aspect is ignored [2]. In general, the solubility of the resulting equations is not
always guarantee, whence the necessity to switch to numerical simulation,
which we are not dwelling into here.

Homogeneous mixing may be quite reasonable for small groups such as
families, and some children’s classrooms but there are limitations to its ap-
plicability in larger groups. The possibility of allowing non-homogeneous mix-
ing is by recognizing two or more distinct groups (localities) of individuals.
A few deterministic results for the case of only two groups were first given
many years ago by Wilson and Worceter [17]. Watson [16] studied a more
general model for many groups in which the members of any group mix ho-
mogeneously amongst themselves, but to a lesser extend with individuals of
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other groups. However, there is an obvious tendency in many communities
for susceptibles who are situated a long way from infected persons, to have
a smaller chance of infection than those who are in closer contact with the
disease.

In the work at hand, we wish to survey analytic approaches to the prob-
lem and to illustrate some new relationships of the parameters of the model
equations given in [10], since the authors have formulated the model, but did
not attempt any analytical solutions. The notations and model equations are
basically theirs. Our purpose differs in the sense that we use functional an-
alytical technique to explain observations by means of biologically plausible
assumptions.

We expect that this would give a domain of parameter space that yields
outputs within the acceptable ranges.

1.1 Notations and Hypotheses

We assume that:

• N is the total population of humans
• X(t) is the number of infected individuals at time t.
• g is the per capita rate of recovery, so that 1

g is the duration of the disease.
• b is the transmission rate per susceptible and per infected individuals.
• Y (t) is the number of infected mosquitoes at time t
• M their total number
• m the per capita death rate of mosquitoes
• α is the number of hosts bitten by a mosquito per unit time.
• β is the proportion of infectious bites on humans that produce infection.
• γ is the proportion of bites of susceptible mosquitoes on infected human

that produce an infection.
• min inf(m, g) = σ; max sup(M,N) = κ
• |Xi| = |Xj |;

∑
vij =

∑
vji = v

• b+ v = 1

2 The Model

Here, we are mainly interested in the analytic solubility of the model equations
proposed by Rodriguez and Torres-Sorando [10].

2.1 Spatially Homogeneous Environment

(a) Direct transmission. A simple susceptible-infectious-susceptible (SIS)
model equation is the following

dX(t)
dt

= b(N −X(t))X(t)− gX(t), (1)
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which also represents the logistic equation of population growth with
X(0) = X0. Its solution is simply

X(t) =
bN − g

b+
(
bN−g
X0

− b
)
e−(bN−g)t

. (2)

The limiting value X∞ = N − g
b also represents the value of X(t) at the

non-trivial equilibrium X∗, say, and the maximum value X̃ = 1
2X

∗, where
X̃ is the point of inflexion, whenever (bN − g) > 0.
Three cases present themselves: X∞ > 0, X∞ = 0 and X∞ < 0. The
latter case is biologically irrelevant.

(b) Indirect transmission. In [10], the authors considered the malaria model
of Ross–Macdonald. The classical equations are of the form

dX(t)
dt

=
( α
N
β
)

(N −X(t))Y (t)− gX(t),

dY (t)
dt

=
( α
N
γ
)

(M − Y (t))X(t)−mY (t).

(3)

Equation (3)1 can readily be solved by obtaining approximate values as
follows:

X(t) = exp(−gt)
∫ t

0

( α
N
β
)

exp(gτ)(N −X(τ))Y (τ)dτ +X(0) (4)

By letting X(0) = X0, an a priori estimate of (4) yields after some alge-
braic manipulations

|X(t)| ≤
αβ
g (egt − 1)|Y (t)|+X0

1− αβ
Ng (e

gt − 1)|Y (t)|
. (5)

Similarly, an estimate for Y (t) can be obtained.
It is assumed that the denominator of (5) is not identically zero, but
positive. Hence, the disease would persist in the population as long as

t <
ln
(
gN
αβȲ

+ 1
)

g
, (6)

with Ȳ := |Y (t)|. Equation (5) can be interpreted as: infected humans re-
ceive treatment and apply protection measures to avoid reinfection (since
there is no immunity).

By further assuming that
αβ

N
=
αγ

N
= b.

Equation (6) takes the form

t <
ln
(
g
bȲ

+ 1
)

g
, (7)
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while (3) can be written as

dX

dt
= bNY − bXY − gX,

dY

dt
= bMX − bXY −mY.

(8)

If at a particular instant t the total number of humans equals that of
mosquitoes while the per capita death rate of mosquitoes equals the per
capita rate of recovery of humans, i.e., N =M and m = g, then

(X − Y )(t) = (X0 − Y0)e−(bM+g)t (9)

If M <
−g
b

, then it is obvious that αβ < −g while X(t)− Y (t) → +∞ as
t→∞ implying that the number of humans exceeds that of mosquitoes.
This last assumption is not realistic in malaria endemic regions where
it is often posited that the number of humans relative to the number of
mosquitoes is low, this seems to be a more logical assumption [10]. Also, if
bM + g > 0, then, X(t) = Y (t) for t large and the host population might
go extinct if closed, since the disease is fatal. The limiting value of (9)
suggests the following:
(i) X0 > Y0, in this case we have more infected humans than infected

mosquitoes at the beginning of the process. This can be ascertain by
the fact that a mosquito can infect more than one individual (although
in [10], it was hypothesized that a mosquito has a limiting capacity of
biting humans.

(ii)X0 < Y0, a human can infect many mosquitoes if he does not protect
himself from bites.

These two cases seem realistic if we take into account the slowness of
recovery, the absence of immunity in the model equations [2]. The duration
of the disease may be short, but actual infectiousness may persist for a
long time. Because the model equations are coupled, closed form solutions
are difficult to come by, but without loss of generality, we can estimate
each equation separately in order to have a little insight of some key
parameters that drives the disease dynamics.
From (4), let min inf(m, g) = σ, and max sup

∑
(M,N) = κ. Then,

X(t) + Y (t)eσt ≤ b
∫ t

0

eστ{κ(X + Y )− 2XY }dτ +X0 − Y0,

⇒ |(X + Y )|(t) ≤ (X0 + Y0)e(bκ−σ)t. (10)

A sharper estimate gives

|X(t) + Y (t)| ≤
(
1 +
g

σ

)
|X0 + Y0|e(bκ−σ)t, (11)

where |XY | ≤ |X0 + Y0|.
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In a close environment, as times goes on, the number of infected humans
as well as infected mosquitoes increases whenever bκ > σ.
Let Ȳ � N , then

|X(t)| ≤
αβ
g (egt − 1)Ȳ (t) +X0

1− αβ
g (egt − 1)

. (12)

Substituting the value of |Y (t)| into (11) above we obtain

|X(t)| ≤

(
1 + αβ

m

)
X0 + αβ

g Y0e
gt − α

(
α
me

mtX0 + β
g Y0

)
1− α

{
β
g (egt − 1) + γ

m (emt − 1)
} . (13)

The following heuristic assumption
γ

m
=
β

g
= 1 leads to

|X(t)| ≤ (1 + α− αemt)X0 + Y0(κegt − 1)
1− α(egt + emt − 2)

, (14)

which is feasible if

D := 1− α(egt + emt − 2) > 0.

That is,

cosh(gt) < 1 +
1
2α

; m = −g,
or

t <
2α+ 1
α(g +m)

. (15)

In deriving (14) we have made use of the fact that |ex + ey| > |x + y|.
It is more interesting to look at (12) by substituting it into the following
equation

|Y (t)| ≤ αγ
N

∫ t

0

emτ (M − Y (τ))|X(τ)|dτ + Y0. (16)

Choosing t such that egt − 1 <∞, for instance let g =
ln 2
t

then

|Y (t)| ≤ αγ
N

∫ t

0

emτ (M − Y (τ))
(
αY (τ) +X0

1− α

)
dτ + Y0

≤ α2γ

|1− α|N

∫ t

0

emτ
{
−Y 2(τ)−

(
X0

α
−M

)
Y (τ) +

MX0

α

}
dτ + Y0
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≤ α2γ

|1− α|N

∫ t

0

emτ

[
−
{
Y (τ) +

1
2

(
X0

α
−M

)}2

+
1
4

(
X0

α
−M

)2

+
MX0

α

]
dτ + Y0

≤ α2γ

|1− α|N

∫ t

0

emτ

{
1
4

(
X0

α
−M

)2

+
MX0

α

}
dτ + Y0

≤ α2γ

|1− α|N

(
X0

α
+M

)2 ∫ t

0

emτdτ + Y0

≤ αb

|1− α|Nm

(
X0

α
+M

)2

+ Y0, (17)

where m is scaled such that |emt− 1| ≈ 1. Equation (17) can be rewritten
as follows.

|Y (t)| ≤ 1
|1− α|Nm (X0 + αM)2 + Y0. (18)

If the number of hosts bitten by a mosquito per unit time is negligible,
then

|Y (t)| ≤ X
2
0

Nm
+ Y0. (19)

This suggests that the total population of humans must always be very
large so as to outweigh that of mosquitoes. Also, if the initial number
of infected humans is small, then the estimated number of infected mos-
quitoes can be kept to its barest minimum by protection from bites. A
similar reasoning can be given for |X(t)|, but we are not going to delve
into it as the argument seems trivial from (19). The ultimate boundedness
of Y (t) is related to the persistence of mosquitoes in endemic areas.
In finding the points of inflexion of (8), we obtained

b2(N −X) = (bX +m)(bY + g), (20)

which cannot be moved further.
Without loss of reality, we could use this to find an estimate for |N −X|.
By following the earlier arguments and assumptions, we have

|N −X(t)| ≤
(
1 +
σ

b

)
(X0 + Y0), (21)

assuming mg negligible.
Also, on applying the method of coupled differential equations developed
in [1, 7], we have from (8) that
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Y (t) = Y0 + bN
∫ t

0

e−mτX(τ)dτ

= Y0 + bN
∫ t

0

e−mτ
(
X0 + bN

∫ τ

0

e−gαY (α)dα
)
dτ

= Y0 +
bN

m
X0(1− e−mt) + (bN)2

∫ t

0

e−mτ
(∫ τ

0

e−gαY (α)dα
)
dτ

= Y0 +
αβ

m
X0(1− e−mt) + (bN)2

∫ t

0

e−mτ
(∫ τ

0

e−gαY (α)dα
)
dτ.

Let ∫ τ

0

e−gαY (α)dα < M,

then

Y (t) ≤ Y0 +
αβ

m
X0(1− e−mt) + (bN)2

M

m
(1− e−gt)

= Y0 +
αβ

m

[
X0(1− e−mt) + αβM(1− e−gt)

]
. (22)

For the population of infected mosquitoes to be kept below its initial value
at any time t, the total number of mosquitoes must equal

M =
X0

αβ

(e−mt − 1)
(1− e−gt) . (23)

If α and β are small enough, so that (αβ)2 is negligible, then, from (23)

Y∞ ≤ Y0 + αβX0. (24)

(c) Indirect transmission with time delay. Consider again the malaria model
above. The previous formulation assumes that there is no time lag between
a mosquito bite and the development of malaria. This is somewhat restric-
tive. It has long been noted that a population often takes a finite time τ
to react to changes in the environment [15] or to respond to changes in
population size [6]. Therefore, we assume that the product term XY is of
convolution type. This assumption enables us to carry over the operation
of Laplace transform.
Equation (8) becomes

dX

dt
= bNY (t)− bX(t− τ)Y (τ)− gX(t)

dY

dt
= bMX(t)− bY (τ)X(t− τ)−mY (t)

. (25)

Since the Laplace transform technique is suitable for unknown functions
and their derivatives whose coefficients are independent of time [11], let
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p be the transform variable and L the Laplace transform operator with
X̂ the transform of X(t) ∈ L1

[0,∞) (which is sufficiently smooth or well-
behaved), then applying this operator on (25)1, we obtain

L[Ẋ; p] = pX̂(p)−X0 = bNŶ (p)− bX̂(p)Ŷ (p)− gX̂(p), (26)

i.e.,

X̂(p) =
bNŶ (p) +X0

p+ g + bŶ (p)
. (27)

As assumed earlier, if X̂(p) = Ŷ (p), then

X̂(p) =
bN − (p+ g)±

√
(p+ g − bN)2 + 4bX0

2b
. (28)

It is worth noting here that in general p is a complex number, but for
many applications such as above, it is enough to regard it as a real para-
meter [5]. Isn’t it fascinating and perhaps exhilarating finding the inverse
Laplace transform of (28)? We shall keep this for future study, together
with approach of finding the inverse Laplace transform of a constant, if it
exists.

2.2 Spatially Heterogeneous Environment

In the regulation of population growth, boundedness and stability are two
concepts most likely to be given prominence [14]. We now consider that the
habitat is partitioned into k localities. The subscript i denotes the ith locality
(i = 1, 2, . . . , k). Rodriguez and Torres-Sorando [10] considered three patterns
of contact between localities. We shall concentrate only on the patterns of
contact between localities with visitation between those localities. In the case
of no contact between localities, the model of the directly transmitted disease
and malaria model equation are the same, except for the fact that N , M , X
and Y are replaced by Ni, Mi, Xi and Yi, i = 1, 2, . . . , k. If we assume that
a fraction vij of the time devoted by humans to reside in locality i per unit
time is devoted to visit locality j (i 
= j; i, j = 1, . . . , k), and that after the
visit these humans return to their locality of origin, the malaria model (8)
becomes (see [10])

dXi(t)
dt

= b(Ni −Xi(t))Yi(t)− gXi(t) + b(Ni −Xi(t))
∑
j �=i
vijYj(t),

dYi(t)
dt

= b(Mi − Yi(t))Xi(t)−mYi(t) + b(Mi − Yi(t))
∑
j �=i
vjiXj(t). (1)

It is explicitly assumed that hosts have a constant residence time, during
which they stay in their locality of origin. During the rest of the time unit,
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there are visitations to other localities. This is similar to the migratory effects
on the spread of AIDS [8]. In the above malaria model, it is further assumed
that human can travel but mosquitoes cannot.

An analytic solution of (1) is difficult to obtain, but an estimate can be
given.

Equation (1)1 can readily be transformed to give

Xi(t) = exp(−gt)
∫ t

0

exp(gτ)(bYi(t)+
∑
j �=i
vijYj(τ))(Ni−Xi(τ))dτ+Xi0. (2)

By denoting |Yi(t)| = K = |Yj(t)| and |Xi(t)| = |Xj(t)| = Q, and taking the
estimate of (2), where it is further assumed that

∑
vij =

∑
vji = v, we obtain

the following:

|Xi(t)| ≤
∫ t

0

egt(b|Yi(τ)|+
∑
j �=i
vij |Yj(τ)|)(Ni + |Xi(τ)|)dτ +Xi0

≤ (b+ v)(Ni +Q)K
(egt − 1)
g

+Xi0. (3)

A simple and straightforward algebra and a little rearrangement yields

|Xi(t)| ≤
(b+ v)|Yi(t)|Ni + gXi0e−gt

ge−gt − (b+ v)|Yi(t)|
. (4)

Equation (4) is positive provided

t > −1
g

ln
{

(b+ v)K
g

.

}
(5)

The above estimate in (4) is not sharp enough because of the assumptions
made earlier, that is, |Xi| = |Xj | and |Yi| = |Yj |. This may not be true in gen-
eral. In a future study, we hope to work out a sharper estimate. The estimate
of equation (1)2 can be worked out in a similar manner, thus, substituting its
value into (4) yields

gQ− gXi0 −
[(b+ v)QNiemt +mYi0][(b+ v)Ni + (b+ v)Qegt]

m− (b+ v)Qemt
≤ 0. (6)

A trivial algebraic manipulation gives

Q2[−g(b+v)emt−(b+v)2Nie(m+g)t]+Q[gm−(b+v)2N2
i e

(m+g)t−m(b+v)Yi0egt

+Xi0g(b+ v)emt]− gmXi0 −mYi0(b+ v)Niegt ≤ 0, (7)

which takes the form
AQ2 +BQ+ C ≤ 0, (8)
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with

A = −g(b+ v)emt − (b+ v)2Nie(m+g)t,

B = gm− (b+ v)2N2
i e

(m+g)t −m(b+ v)Yi0egt + gXi0(b+ v)emt,
C = −m(gXi0 + Yi0(b+ v)Niegt).

Lemma 1. By taking equality in (8) and letting t = 0, then Q > 0 whenever
AC > 0.

Proof. Without loss of reality, let us assume that b and v are scaled such that
their sum b+ v = 1, then AC reduces to

m[g2Xi0 + gYi0Ni + gXi0Ni +N2
i Yi0], (9)

while B2 takes the form

gX2
i0 + 2mgXi0 + g2m2 + 2mgXi0Yi0 − 2gXi0N2

i

+ 2gm2Yi0 +m2Y 2
i0 − 2mYi0Ni +N2

i . (10)

Despite all these assumptions on the modified equation (8), it has no equal
roots, and this ascertain the fact that |Xi| is not necessarily equal to
|Xj |. The over assumptions made above lead to loss of generality and we
hope to circumvent this difficulty in a nearby future by weakening these
assumptions. �

3 Stability

In [10], the authors posited that for the disease to become established, the
trivial equilibrium must be unstable. One of the standard approaches for an-
alyzing solutions to (8) consists of constructing a Lyapunov function that
is non-increasing along trajectories. The arguments necessary for this result
have appeared in several recent literature (and from the time of Lyapunov)
and will not be given here. The global asymptotic stability result would be
base on our succeeding to construct a suitable Lyapunov function or with a
certain abuse of terminology, a Lyapunov structure [4]. The construction is
long and tedious, but rigorous enough under stringent conditions.

Now, we define a Lyapunov function V (X,Y ) : C[0,∞] → IR+ by

2V (X,Y ) = K1X
2 +K2Y

2 + 2K3XY, (11)

where K1, K2 and K3 are to be determined. A more suitable Lyapunov func-
tion would probably involve integrals [9].

Theorem 3.1. A necessary and sufficient condition for the equilibrium
(X∗, Y ∗) to be asymptotically stable is that V̇ (X,Y ) be directly proportional
to −X2 or −Y 2.
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Proof. This proof is basically based on finding a Lyapunov function V such
that V̇ < 0. Calculating the derivative of V along the solution path, we have

V̇ (X,Y )=−X2(K1bY+K1g−K3bM+K3bY )−Y 2(K2bX−K2m+K3b(N−X))

+XY (K1bN +K2bM −K3g −K3m). (12)

If we assume that V̇ is proportional to −X2, then X must satisfies

X =
b2N(K1N +K2M)−K2m(m− g)
b2(K1N +K2M)−K2b(m+ g)

. (13)

This results from the fact that the second and the last expressions in (12)
both equal zero, while

K1

K2

= M
N
− g +m
bN

; N 
= X (14)

for (13) to be valid.
Since −X2 is a decreasing function of X, then we require that ∃ ε > 0

such that
V̇ (·, ·) ≤ −εX2. (15)

K2 does not appear explicitly in the first expression on the right-hand side
of (12). If for brevity and without any ambiguity we let K2 = 0, then (13)
reduces to X = N and the disease invades. If K2 = 1, from (14), we have the
following inequality

K1(bY + g)−K3b(M − Y ) = ε > 0, (16)

i.e.,
K1

K3
>
b(M − Y )
bY + g

. (17)

All the parameters on the right hand side of (17) are assumed known at time
t = 0. With this choice of constants K1 and K3,

V̇ (X,Y ) ≤ −ε.X2

Also from (16) and the fact that

K3 =
K2(m− bX)
b(N −X)

, (18)

we have,

K1 =
K2[(g +m)(m− bX)− b2(N −X)M ]

b2N(N −X)
. (19)

Thus K3 also satisfies

K3 =
b(K1N +M)
g +m

. (20)
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Substituting K1 in (19) and solving for X yields

X = N − 1
bN
. (21)

Equation (20) shows the possibility of the disease to invade which might be
due to the instability of the trivial equilibrium [10]. We note that if Y > −g

b
,

then X − Y < m+ g
b
,

⇒ X < m
b

(22)

This procedure is based on an idea that is closely related to the guessing
principle, and it includes (15) as a special case. Nevertheless, we have made
use of (16) and (18), with K1 = K2 = 1, thus obtaining

N −X
M − Y >

X − m
b

Y + g
b

. (23)

It should probably be of interest in applications to have a clear picture of
what such a lower bound (23) means.

A disease free equilibrium would exist if no endemic equilibrium point
exists X = 0 [3]; If (15) is satisfies, then every solution (X,Y ) → 0, giving
rise to a mosquito-free environment.

Stability analysis of the limiting values of (2) reveals that X∞ > 0 is
stable, while X∞ = 0 is unstable. Hence, if the disease is introduce into the
community and g

b < N , it will always remain in the society, reaching a stable
situation when N− g

b of its members are infected and the other g
b are healthy.

The disease is therefore endemic and persistent within the population for this
equilibrium state.

If g
b ≥ N , then the disease dies out independent of the number who are

initially infected. For large values of N , this case corresponds to the situation
when recovery rate g is much greater than the contact rate b. �

Sowunmi [12] gave conditions under which there is possibility of asymptot-
ically vanishing sets of infected humans and mosquitoes at a predetermined
rate, while in [13], he obtained a threshold theorem. To attempt any quan-
tification of model cost, more realistic models would be required, but the
mathematical tractability must be at the forefront in order for such models to
be usable and useful. Their realism should be judged within their self-imposed
limits. Applications should be cost effective so as to reduce the drawbacks at
the time of assessing the implications for control.

We hope the results obtained here together with those in [10] shed more
light on more subtlety in model building with heterogeneous mixing.

4 Future Trends

Future research will involve the concept of saturation, with the rate of new
infections satisfying the Generalized Law of the Minimum in some form.
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Approximate Scale-Invariant Random Fields:
Review and Current Developments

O.I. Yordanov

Summary. During the last several decades, a great variety of irregular time-
dependent phenomena and spatial morphologies have been shown to possess sto-
chastic scale-invariance. This led to the development of models based on random
fractal processes and, in general, (multi-dimensional) random fractal fields. In con-
trast to the ideal fractals, commonly assumed to be “scale-free” (reflected for ex-
ample in the assumption of a simple power-law type correlation functions), the real
scale-invariant hierarchies have a finite extend, limited by both a smallest and a
largest scales.

In this paper I review a class of random fields which incorporates both the scale
invariance and the finite size effects. The fields are constructed in the Fourier space
and involve domains where their spectra are represented by power-law functions. The
fields’ two-point correlation functions are defined over the entire real line and are
shown to be analytic. The scaling arises as an asymptotic behavior and therefore is
only approximate. The effect of the finite sizes is imbalanced and inflicts systematic
biases in the evaluation of the fractal dimensions and other scaling exponents. I also
present applications and discuss certain technical and statistical subtleties involved
in the construction and validation of models based on approximately scale-invariant
fields.

1 Introduction

Scale invariant are structures and processes, which does not change or ap-
pears qualitatively the same when examined under different magnifications or
respectively time scales. Mathematically, such property satisfy functions, solu-
tions of the homogeneous functional equation, f(λx) = λχf(x), where λ ∈ R,
λ > 0, χ ∈ R and x ∈ R

d. (Sometimes f is called positively homogeneous
function; generalizations involving complex functions will not be considered
here.) Indeed the equation says that if we magnify/reduce the argument by
a factor λ, this is equivalent of re-scaling the function by a factor of λχ. In
a common jargon we say that f(x) “scales in x with exponent χ”. Another
frequently used names are self-similar or self-affine functions. An example
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Fig. 1. Illustration of the exactly scale-invariant function f(x1, x2) = (x2
1/a2)µ +

(x2
2/b2)µ−c

(
(x2

1/a2)(x2
2/b2)

)µ/2
. The scaling exponent for this plot is χ = 2µ = 1.2.

Observe that the domain of the graph in panel (b) is reduced by a factor λ = 10−2,
consequently f(x1, x2) is “magnified” by a factor of λ−χ to obtain the same values
as in panel (a)

of a solution of the functional equation in R
2, with χ = 2µ is the function

f(x1, x2) = (x21/a
2)µ + (x22/b

2)µ − c
(
(x21/a

2)(x22/b
2)
)µ/2, where µ, a, b and c

are real parameters. This function for µ = 0.6, a = 2.0, b = 1.0 and c = 2.0,
is illustrated in both panels (a) and (b) of Fig. 1. The graphs appear to be
identical, notice however that the domain in the right panel is reduced by a
factor of λ = 10−2, consequently the values of f(x1, x2) are “magnified” by a
factor of λ−χ = 102.4 ≈ 251.

The classical “fundamental” laws of physics – the Newton’s law of grav-
itation, the Coulomb’s law of electrostatics – are examples of scale-invariant
functions, both as functions of distance and the functions of masses/charges.
Scale invariance is frequently “inherited” in relationships derived on basis of
scale-invariant laws. One of the earliest discovered such relationship is the
third Kepler’s law, which could be stated as: “The orbital period of the plan-
ets P scales in the average distance to the sun a with exponent 3/2; P = ka3/2,
where k originally was thought to be a constant. Another scaling relationship
involving planetary motion and hence steaming from the gravitation law is
called “rotational curve”: The average velocity of a body orbiting around a
center of gravity scales as a1/2, where a is the average radius of the orbit.
In electrostatics or magnetostatic, to take simple examples, the field at large
distance from a dipole scales with exponent −3, from a quadruple with −4
and so on.

Scale-invariance arises also in complex phenomena, where the dynamics
is affected by many and possibly different factors. The complexity of such
phenomena implies a stochastic approach for their description. How then the
scale-invariance manifests in a stochastic function x(t)? (Traditionally, a sto-
chastic function of a single argument is called random process, i.e., time-
dependent, while a stochastic function with domain in R

d, d > 1, is called a
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Fig. 2. Illustration of stochastic scale-invariant curve, (1), with power-law, power
spectrum with parameters A = 1 and α = 1.2, see the text. The domain of the
realization of the upper panel is reduced by a factor of λ = 1/24, consequently the
random curve is rescaled by λ−(α−1)/2. Although the two realizations are not exactly
identical, their behavior is closely similar and in particular the mean of the bottom
realization is the same as the rescaled mean of the upper (marked by the horizontal
lines)

random field.) It is natural to assume that the scaling applies to each of the
realizations of x(t): x(r)(λt) = λχx(r)(t), where the superscript (r) is intro-
duced to distinguish a realization from the random function itself. Since the
domain of x(r)(λt) is different from that of x(r)(t), these functions are two dif-
ferent realizations and hence the values of x(r)(λt) are not equal to λχx(r)(t).
However, the graphs of the realizations should have similar behavior and the
scale-invariance shows up in the statistical moments/functions of x(t). This,
referred to as a stochastic scale-invariance, is illustrated in Fig. 2, where two
computer realizations of the random process

xT (t) =
N/2∑
k=0

ck cos (ωkt+ φk) (1)

are plotted. In (1), referred to as harmonic process, the randomness is brought
in solely by the phases φk, assumed to be independent, uniformly distributed
in the interval [−π, π] random variables. The time domain of xT (t) is taken to
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be 2T , which defines the (circular) frequencies, ωk = kπ/T , k = 0, 1, . . . , N/2.
The amplitudes ck are determined from the requirement that xT (t) has a pres-
elected power spectral density function S(ω); for this purpose ck ∝

√
∆ωS(ω);

details of the construction and the numerical evaluation of (1) are presented
in the appendix. In particular, for the graphs in Fig. 2, I have chosen S(ω) =
Aω−α for ω ≥ ω1 and S(0) = S(ω1), where the parameters A and α are called
spectral constant and exponent, respectively. This choice makes xT (t) sto-
chastic scale-invariant: an easy check shows xλT (λt) = λ(α−1)/2xT (t). In par-
ticular, since the mean of the curve is given by E {xT (t)} = c0 =

√
∆ωS(0),

it follows that λ−(α−1)/2E {xλT (t)} = E {xT (t)}, which is indicated by the
position of the horizontal lines in Fig. 2.

The scaling relationships in Nature are not valid universally, that is, not
valid for all time or distance scales. Even the Coulomb’s law tested in ex-
periments of electron–proton scattering seems to fail at distances less than
10−16 m. Due to a much serious experimental hurdles, the law of gravity was
tested down to the sub-centimeter range distances only [1, 2] but is expected
to break down at distances where the quantum effects become important.
The third Kepler’s law is meaningless at orbital distances below the radius of
the Sun. In the cases where complex structures or interactions are involved,
the range of validity of the scaling relationships is limited from both below
and above and typically are only approximate. An emblematic example is pro-
vided by the rotational curve of a galaxy, where the deviation of the expected
scaling served as the first evidence for the presence of an unseen mass. There-
fore it is of interest to study structures that inherently have limited range of
scale-invariant hierarchy. It turns out that the scale-invariance for such system
is approximate.

In this paper I review current studies of approximately scale-invariant ran-
dom fields. The review begins with a generic example of exact scale-invariant
random fields, presented in the next section. This field is representative of an
ideal fractal object with non-integer Hausdorff dimension. I consider a more
realistic scale-invariant fields in Sect. 3. They are constructed with a limited
self-affine hierarchy, which shows up in the leading asymptotic behavior of
their second-order statistical functions and therefore are approximately scale-
invariant only. In Sect. 4, I focus on some of the applications these field find
and discuss directions for future studies. The list of references is by far not
complete. A special care is taken to list, whenever possible, entries that are
freely available.

2 Exactly Scale-Invariant Stochastic Fields

There is a generic example of a Gaussian stochastic field which is exactly scale-
invariant [3]. The example is constructed from the spectral representation,
which for an arbitrary homogeneous random field, f : R

d → R, is given in
terms of the Fourier–Stielties integral [4, 5]
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f(x) =
∫

exp(ik · x) dz(k), (2)

where k ∈ R
d. The is a complex random field z(k) is assumed with zero mean,

E {z(k)} = 0, and independent,

E {dz∗(k) dz(q)} = δ(k− q)S(k)dkdq, (3)

for k 
= q. The function S(k) in (3) is referred to as (power) spectral density
function (shortly, spectrum), c.f. with the discrete example discussed in the
appendix. The spectrum defines the field (2) up to moments of second order.
If z(k) is a Gaussian field, S(k) determines the field throughout arbitrary
order. The ideal scale-invariant random fields are generated by choosing in
(3):

S(k) = Ak−α, (4)

for every k = |k|. The (spectral) constant A must be positive and the values
of the spectral exponent are restricted within d < α < d + 2, where d is
the dimension of the domain of the field. Since S(k) depends on k through
its Euclidean length k only, it follows that the field is isotropic, f = f(x),
x = |x|.

This field has a number of peculiar properties. For example, its variance
and the variances of the higher derivatives of the field are not finite. Its autoco-
variance function (AcF) also does not exist. However, mean-square-increment
function (MSIF), also called structure function, and defined by

B(f)(x) = E
{

[f(x0 + x)− f(x0)]
2
}
, (5)

is finite. We remark that B(f)(x) is a second-order, two-point characteristics of
the field. MSIF is related to the variance of the f , σ2

(f), and its AcF, A(f)(x),
when they exist, through B(f)(x) = 2σ2

(f) − 2A(f)(x).
Using (2) and (3), it is straightforward to obtain an integral representation

for the function B(f)(x). In particular, for isotropic fields

B(f)(x) =
4πd/2

Γ(d/2)

∫ ∞

0

[
1− 0F1

(
d

2
;−k

2x2

4

)]
S(k)kd−1 dk, (6)

where Γ and 0F1 denote the Euler’s Gamma function and type (0,1) hyperge-
ometric function, respectively. (0F1 from these parameter and argument can
be expressed in terms of order (d/2 − 1) Bessel function.) Inserting (4) into
(6) and taking the integral we obtain [6]:

B(f)(x) = τd+2−αxα−d, (7)

where

τd+2−α =
Aπd/22d+2−αΓ ((d+ 2− α)/2)

(α− d)Γ(α/2)
. (8)
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Equation (7) shows that up to the second order, f(x) is scale-invariant with
scaling exponent H = (α−d)/2. In dimension d = 1, H is called the Hurst ex-
ponent. However, since f is Gaussian, (7) determines all statistical properties
of the field. Also, Eq. (7) shows that the scale-invariance holds for every x,
i.e., the field does not have a characteristic length; such structures are termed
“scale-free”. Therefore, f is exactly scale-invariant with exponent H. Further,
it has been proven by Orey [7], see also [8], that if the MSIF of the random
process f(x) behaves at zero as B(f)(x) ∼ xµ, x → 0+, with 0 < µ < 2, then
the realizations of the process have a non-trivial Hausdorff dimension given
by DH = (4− µ)/2. In dimension d, Orey’s result can be generalized to yield
DH = d+1−µ/2 and therefore using (7) we find that the Hausdorff dimension
of the field is related to the spectral exponent α by,

DH = d+ 1− (α− d)/2. (9)

The Orey’s theorem shows that the realizations of the random functions
defined by (4) are fractals (according to Mandelbrot’s tentative definition [9]).
We shall refer to this field as the ideal fractal case. Equation (7) furnishes a
simple (scaling) method for practical evaluation of DH : draw a log–log plot
of B(f)(x), which in virtue of the power-law form will be a straight line; the
slope of this line is (α − d), and using the obtained value of α, calculate DH
from (9).

When f is used as a model of rough surfaces, in dimension d = 2, τ is
called topothesy [10]. If, in general, f(x) has a physical dimension identical
to x, then τ has the same dimension and (7) shows that over a “distance”
x = τ , the mean increment of f is precisely τ . The expression (8) diverges in
both α→ d and α→ d+ 2 limits. Graphs of the behavior of τ as function of
the scaling exponent H are depicted in [6].

Equation (4), respectively (7) are considered to be adequate model for
variety of natural phenomena and structures. It is easily seen, however, that
the ideal fractal models have serious drawbacks. Indeed, the experimentally
observed structures always have finite variances. The sample AcFs calculated
from experimental data are also finite. Real structures and processes always
have finite hierarchy of scales. In terms of the spectrum, the latter translates
to a spectrum with limited wave-number/frequency content. Hence, the way
toward a more realistic self-affine models is to modify the ideal fractal process
by introducing an appropriate form of spectral fall-off regions.

3 Approximate Scale-Invariant Fields

The simplest path towards physically more realistic stochastic fields is to take
spectra defined by a power-law with two sharp cut-offs [11]:

S(k) =
{
Ak−α, if k0 ≤ k ≤ k1
0, otherwise. . (10)
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I will show below that such fields are scale-invariant, however only approxi-
mate. The latter makes them appropriate basic blocks for building elaborate
models possessing approximate scale-invariance.

First, note that the variance of the field, which is represented by half of
the first term in the representation (6), is finite. Using (10) one immediately
obtains: σ2

(f) = 1
2B(f)(∞) = σ2

0 − σ2
1 , where

σ2
p =

2Aπd/2

Γ(d/2)
kd−αp

(α− d) , p = 0, 1, (11)

see also [6]. Next, the AcF, which is represented by half of the second term in
(6), is also finite and can be calculated exactly:

A(f)(x) = σ2
0As(d, α; k0x)− σ2

1As(d, α; k1x), (12)

where As is a function, which is expressed in terms of type (1, 2) hypergeomet-
ric function As(µ, α; z) = 1F2

(
µ−α

2 ; µ+2−α
2 , µ2 ;− z2

4

)
. It is shown in [12] that

As(µ, α; z) satisfies a third-order linear ordinary differential equation with
coefficients involving the parameters µ and α. The point z = 0 is a regular
singular point of the equation with As(µ, α; z) representing one of the three
linearly independent solutions about zero. The other two being: w(z) = zα−µ,
which is scale-invariant, and w(z) = z2−µAs(4 − µ, 2 + α − µ; z), which is
scale-invariant for small z only. The function As(µ, α; z), however, is an entire
function with a series representation involving the even powers of z only. In
particular, the leading term dominating how A(f)(x) decreases from σ2

(f) for
small x, x < k−1

1 , is quadratic,

A(f)(x) ∼ σ2
(f) −A

πd/2kd+2−α
1

(
1− δd+2−α)

Γ(d/2)d(d+ 2− α) x2 +O
[
(k1x)

4
]
, (13)

where the ratio of the spectral cut-offs, δ = k0/k1 � 1, is introduced. How
then the scale-invariance of (12) arises? To understand this, I turn to the
asymptotic expansion for large z. The asymptotic expansion of As reads:

As(µ, α; z) ∼ Γ
(µ

2

) Γ [(µ− α)/2 + 1]
Γ(α/2)

(z
2

)α−µ
−
(
α− µ
2
√
π

)(
2
z

)(µ+1)/2

Γ
(µ

2

)
cos

(
z − µ+ 1

4
π

)
, (14)

where for simplicity I wrote down the leading and the next order terms only.
In the applications, we almost always deal with spectra for which k1 ! k0.
Then for intermediate values of the argument k−1

1 � x � k−1
0 , we use the

series expansion in the first term of (12) and its asymptotic form of As in the
second. Up to the leading orders
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A(f)(x) ∼ σ2
(f) −

1
2
τd+2−αxα−d − σ2

0

2(α− d)
d(d+ 2− α)

(
k0x

2

)2

+σ2
1

[
1 +

(
α− d
2
√
π

)
Γ
(
d

2

)(
2
k1x

) d+1
2

cos
(
k1x−

µ+ 1
4
π

)]

+O
[
(k0x)4, (k1x)−

d+3
2

]
. (15)

Equation (15) represents a decreasing from σ2
(f) function. The ratio of the

third (the quadratic in x) over the second (the power-law) term is of order
∼(k0x)d+2−α. Since (k0x) < 1, it follows that the third term is significant
compared to the second only for α values close to its upper limit of d + 2.
Likewise, the ratio between the forth (involving σ2

1) and the second term is of
order ∼1/(k1x)α−d and hence affects the values of A(f)(x) for α close to its
lower limit d. Thus, the dominant term is the second, power-law one (note it
does not depend on the smallest or largest scales of the random field) which
constitutes the approximate scale-invariance of the random field. Comparing
with (7), we see that the scale-invariance of A(f)(x) is characterized by ex-
ponent identical to the exponent of the ideal fractal case. On this ground
one loosely speaks of a fractal dimension D of the band-limited random field
with value given again by (9). It should be stressed that this quantity has no
meaning of Hausdorff dimension. Indeed, as (13) demonstrates, B(f)(x) ∼ x2
as x→ 0+, and therefore Orey’s theorem yields DH = d.

On the other hand, notice that the third and the fourth terms involve
only the small and the large cutoffs k0 and k1, respectively. The imbalance of
the contribution of these terms which depends on the value of α, reflects the
imbalance of the two finite size effects for α 
= d + 1. It systematically alters
the slope of the MSIF (or equivalently the AcF) in log–log scale and leads to
the errors of fractal dimension estimates [11]. These errors were first found in
[13] using numerical simulations.

The asymptotic expansions of A(f)(x) for large x > k−1
0 shows that it

approaches zero in an oscillatory manner; the full asymptotic expansion in
this regime for d = 1 is developed in [11]. Here I provide the leading term in
the case of arbitrary dimension d;

A(f)(x) ∼ −
A

πkα−d0

(
2π
k0x

) d+1
2

×
[
cos

(
k0x−

µ+ 1
4
π

)
− δ 2α+1−d

2 cos
(
k1x−

µ+ 1
4
π

)]
. (16)

Such a behavior is often observed in the experimental AcFs, which is an evi-
dence that despite its simplicity, the random processes/fields considered here
might be expected to be relatively realistic models in variety of circumstances.
It is important to note that the absolutely sharp cutoffs assumption is justi-
fied when the largest and the smallest scales are not physical but implicitly
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imposed within the power branch of the spectrum by not enough length or
resolution of the data.

4 Applications: Future Work

The detailed analysis of the approximate scale-invariant fields, which I re-
viewed in the preceding section, naturally suggests a method for building sto-
chastic models of complex processes and structures that possess scale-invariant
symmetry. The method involves: compute the sample AcF (alternatively the
sample MSIF) from the experimental data and fit these values with expres-
sion (12) using a nonlinear, least-square algorithm. The method have several
advantages:

(i) It is based on exact expressions, which can be evaluated with a controlled
precision over wide range of arguments.

(ii) The fit renders the values of all spectral parameters: spectral expo-
nent, spectral constant (strength), and the extent of the wavenumber/
frequency band. In contrast, for example the classical spectral analysis
provides reliable estimates of the spectral exponent only.

(iii) The methodology explicitly accounts for the finite-size effects and re-
moves the systematic errors in the estimation of the spectral scaling
exponents.

(iv) The models can easily be improved by augmenting the spectrum (10)
with other power-law spectral segments.

The method does have certain drawbacks stemming chiefly from the fact that
the “experimental” AcFs are estimated with certain biases and typically have
large sampling variances in their “tails”. Throughout the end of this section
I present subtleties of the method’s implementation.

4.1 Initial Values of the Model’s Parameters

Obtaining approximate values for the model parameters makes up an useful
preliminary step in several ways. First, it provides initial parameters to start
the fitting procedure, already close to the best solution. Second, it gives a
rough idea of the overall behavior of the selected model. Third, it suggests how
good the final fit we shall hope to be. Fourth, it hints about the experimental
points one should put more weight on at the final fit. Finally, since, as we shall
see in a moment, the approximation of the parameters rests essentially on the
scaling analysis, the displacement of the initial AcF from the best fitted one
is a measure of the finite size effects.

The calculation of the approximate values of the model is simple: First, it
is almost always good enough to approximate the value of the upper cutoff k1
by the Nyquist wavenumber k(N) = π/2, where ∆x is the sampling interval of
the data. Next, estimate the spectral exponent α. For this purpose calculate



262 O.I. Yordanov

the sample MSIF from the sample ACF using the relation B(f)(x) = 2σ2
(f) −

2A(f)(x) and plot its values in a log–log scale; if the data show up scale-
invariance, slope of this graph should be α − d. (This is equivalent to some
of scaling plots used for determining the fractal dimension.) The spectral
constant A and the lower cutoff k0 are found by solving numerically a system
of two equations. The latter are obtained by equating the model’s and the
sample variances, and the first zero crossings of (12) and the sample ACF. An
approximation of the second of these equations, accurate enough provided α
is not close to d and d+2 is given in [14]. An alternative and simpler approach
to estimate k0 is available when the experimental AcF has a well defined first
minimum. Using the leading asymptotic order dictating the AcF oscillatory
behavior for x > k−1

0 , see (16), the position of the minimum is approximately:

xmin =
(d+ 1)π

4k0
. (17)

Taking xmin from the graph, we determine the value of k0.

4.2 Numerical Evaluation of the Function As(d, α; kpx)

This issue arises due to the need to compute As within an extremely wide
interval of arguments and for all admissible values of its parameters, d, α,
and kp, p = 0, 1. For relatively small intermediate values of its argument,
As is easy to calculate from its series representation. In fact, As is an entire
function which converges faster compared to the exponential function from the
same argument. For large arguments, however, the “numerical convergence”
of the series is limited by the computer precision. It can be shown that the
convergent series summation fails above

xp =M ln 10/kp, (18)

where M is the maximum number of digits not rounded off by the computer.
For x > xp, I use the (divergent) asymptotic summation. A helpful scheme
is so-called optimal truncation rule [15], which I found always reliable in the
evaluation of the As from its asymptotic series. Another thing to be noted
is that in the neighborhood of xp, the series and the asymptotic summations
agree to within seven digits. This is especially important since A(f)(x) is
computed as a difference between numbers which are 5–7 orders of magnitude
greater that its own value.

4.3 Multi-Segmented Power-Law Spectra

Experimental data often show multiple scaling regimes. That is, scaling with
different exponent within different ranges of resolution of the instruments. I
sketch next how the results presented in Sect. 3 can easily be generalized to
model such complex systems. Let k0 = 0, k1, . . . , kn+1 = k(N) be a partition
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of the spectral domain, where k(N) is the Nyquist wavenumber. I shall refer
to kp, p = 0, 1, . . . , n + 1 as cross-over wavenumbers. Define S(k) as piece-
wise continuous function, which in each of the intervals kp ≤ k ≤ kp+1, p =
1, 2, . . . , n+ 1, is represented by a power-law function, S(p) = Apk−αp , where
all Ap > 0. The leftmost segment, i.e., the segment defined over 0 ≤ k ≤ k1 is
given by S(0)(k) = B0 + c0kα0 . This form of S(0) with the condition α0 > 0
ensures the finiteness of the spectra at zero and at the same time makes this
segment amenable to the same analytical and numerical methods as the other
segments, see below. Imposing continuity at kp, p = 2, 3, . . . , n, I express all
spectral constants by A1:

Ap = A1k
−α1
2 (k2/k3)

α2 · · · (kp−1/kp)
αp−1 kαp

p , p > 1 (19)

Introducing for convenience A0 = B0k
α1/A1 and using the continuity condi-

tion at k1, we have

S(0)(k) = A1k
−α1
1 [A0 + (1−A0) (k/k1)α0 ] . (20)

Note that A0 = S(0)/S(k1) and that α0 = 0 produces a flat leftmost branch
of the spectrum. The number of the free parameters of the spectrum is 2n+3:
n + 1 spectral exponents αp, p = 0, 1, . . . , n; n crossover wavenumbers kp,
p = 1, . . . , n and two spectral constants A0 and A1. Not dwelling into further
details of the model, I remark that according to the MSIF integral repre-
sentation, (6), the contribution of the individual segments to B(f), and thus
to the AcF is additive. In this way, the implementation and the verification
of a multi-segmented model requires no additional developments than those
presented so far.

4.4 Examples and Problems

Single-segment spectra were used as models of morphologies of gold deposits
on a quartz substrates [14] and of Cr deposits on a highly polished BK7
glass. The latter were further smoothed via ion beam sputtering under glanc-
ing incidence [16]. Single-segment spectra, however, with incorporated white
noise component, were used for cultivated soil roughness [17]. A model with
two-segments, a principle segment in the form of (10) and a high-frequency
fall-off region was shown to be a very accurate model of the statistical behav-
ior of the series generated by the X-component of the Lorenz chaotic system
[18]. Three-segment spectra were needed to characterize the statistics of two
other low-dimensional chaotic systems, N and B systems in the nomenclature
of Sprott, see [19]. The last applications, I would like to note here, involve
approximate scale-invariant stochastic models of computer generated mor-
phologies mimicking ballistic deposition and molecular beam epitaxy [20, 21].

As already noted, the principle hurdle that needs to be overcomed is as-
sociated with the estimates of the experimental AcFs. Two sample estimates
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that exist [5] can employed each with a tradeoff. The first estimate is unbi-
ased when the mean of the field is known. This estimate typically has large
sample variances and in particular for large distance/time lags. The variances
can be reduced by averaging the AcFs of several measurements if available.
The second estimate is biased but has a lower sample variances. In addition,
this estimate has the important advantage of being finite Fourier transform
of the sample estimate of the spectrum. An important development would be
to construct an estimate, which combines the virtues of both the biased and
the unbiased estimates.

I conclude this review by discussing possible directions of future develop-
ments. First, the fitting procedure described in this section needs a reliable
algorithm for assessment of the confidence intervals of the retrieved para-
meters. Such an algorithm might be based on the method of synthetic data
simulation [22]. For this purpose, the random curve generation presented in
the appendix should be extended for wider class of spectra and dimensions
d > 1. Such a result would not only improve the validation of the models but
also will facilitate predictions and large scale simulations of real phenomena.
It would be very interesting to construct examples of scale-invariant fields
that are not: (i) isotropic, (ii) homogeneous/stationary, and (iii) linear. Such
models are certain to find a rich scope of applications.

5 Appendix

In this appendix I present developments leading to (1) and provide details of
its numerical implementation. The goal is to obtain an approximation of ran-
dom curve with a given spectral power density function. Since the numerical
realization would necessarily be over a finite time domain, I consider a curve
xT (t) defined for |t| ≤ T at the outset of the construction. Accordingly, xT (t)
is represented by a Fourier series rather than a Fourier integral,

xT (t) =
+∞∑

k=−∞
Ake

−iωkt, (21)

where ωk = 2πfk, fk = k/2T , are discrete circular frequencies. It is easy to
check that

∫ T
−T e

i(ωn−ωk)tdt = 2Tδnk, where δnk denotes the Kronecker delta
symbol, and hence the inverse of (21) is

Ak =
1

2T

∫ T

−T
xT (t)eiωktdt. (22)

Since xT (t) is a random function,Ak, k = 0,±1,±2, . . ., is a (complex) random
sequence of amplitudes. The “spectral energy” of xT (t), carried by the compo-
nent with frequency ωk, is Φ(ωk) = (2T 2/π)E

{
|Ak|2

}
, where E denotes the

expectation operator; c.f. with the general definition energy spectral density,
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see e.g., [23]. The power spectral density, that is the spectral energy per unit
of time, is then defined by

S(ωk) =
1

2T
Φ(ωk) =

T

π
E
{
|Ak|2

}
. (23)

Note that ∆ωk = ωk+1 − ωk = π/T and hence E
{
|Ak|2

}
= ∆ωS(ωk).

To proceed further we have to specify a probability model for Ak. Taking
what can be perceived as the simplest choice, I consider Ak = |Ak| exp (−iφk),
where

|Ak| =
√
S(ωk)∆ω (24)

and the phases φk are independent random variables uniformly distributed in
the interval [−π, π]. It follows that E {Ak} = 0 and (23) holds for any appro-
priate choice of S(ωk). Hence, specifying S(ωk) one defines Ak and therefore
xT (t). Observe, however, that for xT (t) real, (22) requires A∗

k = A−k; hence,
S(ωk) must be an even function, and φ−k = −φk. In particular, φ0 ≡ 0.
Changing k �→ −k into the negative part of sum (21) we obtain

xT (t) =
+∞∑
k=0

ck cos (ωkt+ φk) , (25)

where c0 =
√
S(0)∆ω and ck = 2

√
S(ωk)∆ω, k = 1, 2, . . . Note also that

E {xT (t)} = c0. Another important remark concerning xT (t): although we
begun with a function not defined outside the interval −T ≤ t ≤ T , we ended
up with a function periodic over the entire real line with a period of 2T ,
xT (t + 2nT ) = xT (t), for n = ±1,±2, . . .. This of course is a consequence of
the fact that discrete Fourier transform was used in the construction.

In order to employ (21) or (25) for numerical simulation of random curves,
we need to truncate the series and discretize the time. The truncation number,
say N/2, should ultimately depends on the high-frequency behavior of S(ω)
and is related to the time interval T . Let ∆t = 2T/N be the discretisation
interval, tn = n∆t, n = 0,±1,±2, . . . Then the truncated (21) is

xT (tn) =
+N/2∑

k=−N/2

√
S(ωk)∆ωe−iφke−2πikn/N ; (26)

note that the discretized process have period N , xT (tn+N ) = xT (tn). The
exponents in (26) have the same periodicity with respect to k and thus by
shifting the negative part of the sum, k �→ k+N , we can cast xT (tn) into the
following form

xT (tn) =
1
N

N−1∑
k=0

Xke
−2πikn/N . (27)

In the above expression, X0 = N
√
S(0)∆ω, Xk = N

√
S(ωk)∆ωe−iφk

for k = 1,. . . , N/2 − 1, XN/2 = 2N
√
S(ωN/2)∆ω cos(φN/2), and
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Xk = N
√
S(ωk−N )∆ωe−iφk for k = N/2 + 1, . . . , N − 1. (Since φk are

independent the indexing φN−k is equivalent to φk.) Equation (27) is directly
amenable to Fast Fourier Transform (FFT), see [22].
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Non-Stationary Vibrations of Viscoelastic
Circular Cylindrical Thick Shell
Under the Influence of Temperature

F.A. Amirkulova

Summary. In the represented work, free from hypotheses and preconditions used in
known classical and refined theories, the new refined theory of non-stationary vibra-
tions of the circular cylindrical viscoelastic thin and thin walled shells and columns
concerning the temperature is developed. The developed method of a deduction
of the partial differential vibration equations is based on the 3D problems’ exact
mathematical formulation of the theory of elasticity and their general solutions in
transformations. As the basic unknown functions the displacements of intermediate
surface of the shell which can change into median, external or internal surface are
accepted. The calculation algorithm of temperature, stress and displacement field by
values of the unknown functions is offered, allowing to formulate applied problems
on its vibrations. On the basis of the developed approach a number of applied prob-
lems are solved and numerical results are received. The thermo-stressed state of the
semi-infinite viscoelastic cylindrical thick walled shell excited by kinematic influence
at the end face and temperature influence on the shell’s surfaces is explored.

1 Introduction

Engineering constructions that can maintain the action of intensive external
load have been widely applied in aircraft construction, rocket engineering, me-
chanical engineering, shipbuilding, civil engineering and other areas of econ-
omy. Modern requirements to decrease weight clearance parameters of flying
devices and industrial civil constructions under condition of maintenance of
necessary durability and reliability have made calculating their stress-strain
state a problem of interest in mechanics. Among these problems, the prob-
lems of studying of non-stationary interaction of construction element with
the environment are rather complex. At present in a number of areas of en-
gineering and construction there is an interest in the problems adjoining to
the mentioned above actual problems and connected to dynamic behavior of
constructional elements.

During the investigation of stressed-strained state of circular cylindri-
cal layers and shells subject to connected fields use vibration’s equations
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of cylindrical shell of Kirchhoff–Love theory and Timoshenko type theories
[9, 10, 12, 14]. For interacting connected field (e.g. temperature) correspond-
ing characteristic equation is used. Then with boundary, physical and other
conditions are interconnected parameters, which enter in basic equations and
are subject for definition. Above-mentioned theories are based on using of dif-
ferent hypothesis, which simplify the form of basic resolving vibration equation
and at the same time lead to essential disadvantages and errors. To avoid such
errors, in this work the refined equations of longitudinal-radial vibrations of
termoviscoelastic cylindrical shell are developed [1–4, 6–8] and used which are
suitable for thick-walled cylindrical layers and more general than Timoshenko
type equations and Herrmann–Mirsky [7, 11] equations of longitudinal-radial
vibrations of termoviscoelastic cylindrical shell and take into account the effect
of transversal shear deformation and the rotary inertia.

2 Derivation the Refined Equations
of Longitudinal-Radial Vibrations
of Thermoviscoelastic Cylindrical Shell

Let’s consider circular cylindrical shell with inner r1 and outer r2 radius
in cylindrical coordinate system (r, θ, z). Material of shell is viscoelastic,
isotropic and homogeneous. Furthermore the change in temperature appear-
ing under deformation of shell is neglected, i.e. formulation of problem is
done on the base of disconnected theory. Assume for viscoelastic and thermal
isotropic material when temperature increases on ∆T = T − T0, the changes
in length in all directions are equal, i.e. only prolongation appears, there are
not shears. So, relationship between tensor’s component of stress and strain
and also temperature assume the form

σii = L(ε) + 2M(εii)− α0N(T ); σij =M(εij), (i 
= j), (1)

where ε - cubic strain, L,M - viscoelastic operators

(L, M)ς = (λ, µ)

⎡
⎣ς(t)− t∫

0

[K1(t− τ)] , K2(t− τ)

⎤
⎦ ς(τ)dτ ; N = L+

2
3
M ;

λ, µ - Lame coefficients; α0 - coefficient of thermal expansion. Assume that
operators L, M are reversible, cores K1(t) and K2(t) are arbitrary.

The motion of shell points as 3D thermoviscoelastic body under small
strain is described by equation

(L+ 2M) grad (div �u)−M [rot (rot �u)] = ρ �̈u+ α0N(grad T ), (2)

where �u is displacement vector.
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The temperature T on the base of disconnected theory of thermoviscoelas-
ticity and finitude of heat propagation velocity is satisfied to equation:

∆T − 1
c20
T − 1

c2
T̈ = 0; c20 =

k0
ρcp

; c2 =
c20
τ0
, (3)

where c - temperature propagation velocity, c0 - thermal diffusivity, cp - heat
capacity under stationary pressure, τ0 - relaxation time of heat flows, k0 -
thermal conductivity, ρ - density of shell’s material.

Let’s assume that longitudinal-radial vibrations of cylindrical shell are
excited by external force on its r = ri surfaces:

σrr = f (i)
r (z, t); σrz = f (i)

rz (z, t) (4)

and temperature condition on shell surfaces has form

T = G(i)(z, t) for r = ri (i = 1, 2). (5)

Initial conditions are taken as zero.
Having presented vector of displacement �u by potentials of longitudinal Φ

and transversal Ψ1 wave and solving jointly (2) and (3) we can easily get

T = 1
α0
N−1

[
L1 (∆Φ)− ρΦ̈

]
; M (∆Ψ1) = ρΨ̈1;

L1

(
∆2Φ

)
−
[
L1

(
1
c20

∂
∂t + 1

c2
∂2

∂t2

)
+ ρ ∂

2

∂t2

]
∆Φ + ρ

(
1
c20

∂3

∂t3 + 1
c2

∂4

∂t4

)
Φ = 0,

(6)
where L1 = L+ 2M .

For solving problem potentials Φ, Ψ1 and temperature T are presented in
form

[Φ, T ] =

∞∫
0

sin kz
− cos kz

}
dk

∫
(l)

(ϕ, T0) eptdp; Ψ1 =

∞∫
0

cos kz
sin kz

}
dk

∫
(l)

Ψ10e
ptdp

(7)
Substitution of (7) into (6) gives simple differential equations, the general

solutions of which subject to T. Boggio theorem [13] and their limitedness for
r →∞ and r = 0 have form

Ψ10(r) = B1I0(βr) +B2K0(βr);

ϕ(r) = A1I0 (α1r) +A2K0 (α1r) +A3I0 (α2r) +A4K0 (α2r) ;

T = ω1 [A1I0 (α1r) +A2K0 (α1r)] + ω2 [A3I0 (α2r) +A4K0 (α2r)] ,

(8)
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where

β2 = k2 + ρp2M−1
0 ; M0 = µ [1−K20(p)] α2

i = k2 + �α2
i ; (i = 1, 2),

K20(p) =

∞∫
0

K2(t)e−ptdp; ωi =L10 (α0N0)
−1 (
α2
i − α2

)
; α2 = k2+ ρp2L−1

10 ;

ᾱ2
1+ �α2

2 = p
[

1
c20

+
(

1
c2

+ ρL−1
10

)
p

]
; ᾱ2

1 · �α2
2 = ρp2L−1

10

(
p

c20
+

1
c2
p2
)
, (i = 1, 2).

(9)

Constants of integration Ai (i = 1, 4), B1 and B2 will be expressed in
terms of main parts of displacements and temperature. For this purpose dis-
placements Uz, Ur and temperature T are presented as (7) and instead of
ϕ and ψ10 their expressions (8) are substituted. Hereinafter in the derived
expressions Bessel’s functions are transformed into a power series of radial
coordinate r and their first term when r = ξ are considered which will be
main part of transformed displacement and temperature (ξ - radius of the
intermediate surface).

In classical vibration equation of cylindrical shell as basic unknown the
displacement of points of median surface are taken. In experimental investi-
gations we get information of displacement of points of external and internal
shell surfaces. So considering cylindrical shell it is reasonable as unknown to
choose the displacement of points such shell surface which goes for bar into
axis line, for thin shells it passes into the meridian surface.

Considering the up given as unknown quantities we choose displacement,
stress and temperature in surface points of cylindrical shell, radius of which
is defined as

ξ =
r1
2

(
χ− r1
r2

)
; 2 +

r1
r2
≤ χ ≤ 2

r2
r1

+
r1
r2
,

where ξ - radius of the intermediate surface.
Assume

U
(0)
r,0 = α2

1A10 + α2
2A30 − kβ2B20; U

(0)
r,1 =

1
ξ

(A2 +A4 − kB2) ;

U
(0)
z,0 = k (A10 +A30)− β2B20; U

(0)
z,1 =

1
ξ

(
k(A2 +A4)− β2B2

)
; (10)

T0,0 = ω1A10 + ω2A30; T0,1 =
1
ξ
(ω1A2 + ω2A4),

where

[Ai0, B20] = [Ai, B1]−[Ai+1, B2]
[
ln

(α1, α2, β) ξ
2

− ψ(1)− 1
2

]
; (i = 1, 3).

Having solved the system (10) relatively to A10, A30, B20, A2, A4, B22

the following is obtained
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A10 =
ω2

[
U

(0)
r,o − k U (0)

z,o

]
−
(
α2

2 − k2
)
T0,0

ω2 (α2
1 − k2)− ω1 (α2

2 − k2)
,

A30 =

(
α2

1 − k2
)
T0,0 − ω1

[
U

(0)
r,o − k U (0)

z,o

]
ω2 (α2

1 − k2)− ω1 (α2
2 − k2)

,

A2 = ξ
ω2

[
β2U

(0)
r,1 − k U

(0)
z,1

]
−
(
β2 − k2

)
T0,1

(β2 − k2) (ω2 − ω1)
,

A4 = ξ

(
β2 − k2

)
T0,1 − ω1

[
β2U

(0)
r,1 − k U

(0)
z,1

]
(β2 − k2) (ω2 − ω1)

,

B20 =

(
ω1α

2
2 − ω2α

2
1

)
U

(0)
z,o + k (ω2 − ω1)U

(0)
r,o + k

(
α2

1 − α2
2

)
T0,0

β2 [ω2 (α2
1 − k2)− ω1 (α2

2 − k2)]
, (11)

B22 = ξ
kU

(0)
r,1 − U

(0)
z,1

β2 − k2 .

By converting boundary conditions (4), (5) and substituting (8) into converted
expressions the system six equations relatively to constantAi andBj is derived[

L10M
−1
0

(
α2

1 − k2
)

+ 2k2
]
[A1I0 (α1ri) +A2K0 (α1ri)] +

+
[
L10M

−1
0

(
α2

2 − k2
)

+ 2k2
]
[A3I0 (α2ri) +A4K0 (α2ri)]−

−2α1

ri
[A1I1 (α1ri)−K1 (α1ri)A2]−

2α2

ri
[A3I1 (α2ri)−A4K1 (α2ri)]−

−2kβ2

{[
I0 (βri)−

1
β r
I1 (β ri)

]
B21 +

[
K0 (βri) +

1
β r
K1 (β ri)

]
B22

}
=

=M−1
0

[
f

(i0)
r

]
, (i = 1, 2),

2kα1 [A1I1 (α1ri)−A2K1 (α1ri)] + 2kα2 [A3I1 (α2ri)−A4K1 (α2ri)]−
−β(β2 + k2) [B21I1 (β ri)−B22K1 (β ri)] =M−1

0

[
f

(i0)
rz

]
, (i = 1, 2),

ω1 [A1I0 (α1ri) +A2K0 (α1ri)] + ω2 [A3I0 (α2ri) +A4K0 (α2ri)] =

= G(i0)
0 (k, p), (i = 1, 2). (12)

Using standard expansion of Bessel’s functions into a power series of ra-
diuses r1 and r2 in the derived equations and consecutively substituting into
expansion the value of constant by formulas (10) it is got the system of six
algebraic equations relatively to the entered functions U (0)

r,0 , U
(0)
r,1 , U

(0)
z,0 , U

(0)
z,1 ,

T0,0, T1,0. Step of going from Laplace and Fur’e transforms to the original
time and space function is realized and the following system of equations is
obtained
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χ11Ur,0 + χ12Uz,0 + χ13T0 + χ14Ur,1 + χ15Uz,1 + χ16T1 = F (i)
r ,

χ21Ur,0 + χ22Uz,0 + χ23T0 + χ24Ur,1 + χ25Uz,1 + χ26T1 = F (i)
rz ,

χ31Ur,0 + χ32Uz,0 + χ33T0 + χ34Ur,1 + χ35Uz,1 + χ36T1 = F (i)
0 , (i = 1, 2).

(13)
Herewith operators χl j(l = 1, 3̄; j = 1, 6̄), λq(q = 1, 4̄) and Qn (n =
1, 2, 3, ...) as well as functions F (k)

r , F
(k)
rz , F

(k)
0 have form

χ11(ri) =

∞∑
n=0

{
L1M

−1

[
λ1Q̄n+1 −

(
λ2

4 −
∂2

∂z2
λ1

)
Q̄n − ∂2

∂z2
λ2

4Q̄n−1

]
−

−2
∂2

∂z2

[
λ1Q̄n − λ2

4Q̄n−1

]
− 1

n + 1
×

×
[
λ1Q̄n+1 − λ2

4Q̄n

]
+
(
2 − 1

n + 1

)
∂2

∂z2
λn

2

}
(ri/2)2n

(n!)2
,

χ12(ri) =
∂

∂z

∞∑
n=0

{
L1M

−1

[
λ1Q̄n+1 +

(
λ2

4 −
∂2

∂z2
λ1

)
Q̄n +

∂2

∂z2
λ2

4Q̄n−1

]
−

−2
∂2

∂z2

[
λ1Q̄n − λ2

4Q̄n−1

]
− 2λ1λ

n
2 − 1

n + 1

[
λ1Q̄n+1 − λ1λ

n
2− λ2

4 Q̄n

] } (ri/2)2n

(n !)2
,

χ13(ri) =

∞∑
n=0

{
α0N

[
M−1

(
λ2

4 +
∂2

∂z2
λ3 +

∂4

∂z4

)
Q̄n + 2

∂2

∂z2
L−1

1 ×

×
(
−λn

2 − λ2
4Q̄n−1 −

∂2

∂z2
Q̄n

)]
− 1

n + 1

[
∂2

∂z2
Q̄n+1 + λ2

4Q̄n − ∂2

∂z2
λn

2

]}
(ri/2)2n

(n!)2
,

χ14(ri) = −ξ

∞∑
n=0

{
η3,n(ri)L

−1
1 M

[
L1M

−1

{
λ1Q̄n+1 −

(
λ2

4 −
∂2

∂z2
λ1

)
Q̄n −

− ∂2

∂z2
λ2

4Q̄n−1

}
− 2

∂2

∂z2
×

×
{
λ1Q̄n − λ2

4Q̄n−1 − λn
2

}]
· λ2 −

η1,n(ri)

n + 1
L−1

1 Mλ2

(
λ1Q̄n+1 + λn

2

2

z2
− λ2

4Q̄n

)}
×

× (ri/2)2n

(n!)2
+

2ξ

r2
i

ρL−1
1

∂2

∂t2
,

χ15(ri) = −ξ
∂

∂ z

∞∑
n=0

{
η3,n(ri)L

−1
1 M

[
L1M

−1

(
λ1Q̄n+1 −

(
λ2

4 − λ1
∂2

∂z2

)

Q̄n − ∂2

∂z2
λ2

4Q̄n−1

)
− 2

∂2

∂z2
×

×
(
λ1Q̄n − λ2

4Q̄n−1

)
− 2λn+1

2

]
− η1,n(ri)

n + 1
L−1

1 M
(
λ1Q̄n+1 − λ2

4Q̄n+1 − 2λn+1
2

)}
×

× (ri/2)2n

(n!)2
+

2ξ

r2
ρL−1

1

∂3

∂t2∂z
,



Non-Stationary Vibrations of Viscoelastic Shell 277

χ16(ri) = −ξ

∞∑
n=0

{
η3,n(ri)α0ρNL−2

1

∂2

∂t2

[
L1M

−1

[
Q̄n+1 +

∂2

∂z2
Q̄n

]
− 2

∂2

∂z2
Q̄n

]
−

−η1,n(ri)

n + 1
α−1

0 ρN−1
0 L−2

1

∂2

∂ t2
Q̄n+1

}
(ri/2)2n

(n !)2
,

χ21(ri) = −
∞∑

n=0

∂

∂z

[
2
(
λ1Q̄n+1 − λ2

4Q̄n

)
−
(

λ2 −
∂2

∂z2

)
λn

2

]
(ri/2)2n+1

n!(n + 1)!
,

χ22(ri) =

∞∑
n=0

[
2

∂2

∂z2

(
λ1Q̄n+1 − λ2

4Q̄n

)
− λ1

(
λ2 −

∂2

∂z2

)
λn

2

]
(ri/2)2n+1

n!(n + 1)!
,

χ23(ri) = −
∞∑

n=0

α0NL−1
1 z

[
2

(
∂2

∂z2
Q̄n+1 + λ2

4Q̄n

)
−
(

λ2 −
∂2

∂z2

)
λn

2

]
(ri/2)2n+1

n!(n + 1)!
,

χ24(ri) = ξ

∞∑
n=0

η1,n(ri)

[
2
(
λ1Q̄n+1 − λ2

4Q̄n

)
−
(

λ2 −
∂2

∂z2

)
λn

2

]
×

×L−1
1 M · λ2

∂

∂z
· (ri/2)2n+1

n!(n + 1)!
+

ξ

ri
ρL−1

1

∂3

∂z∂t2
,

χ25(ri) = ξ

∞∑
n=0

L−1
1 M

[
−2

∂2

∂z2

(
λ1Q̄n+1 − λ2

4Q̄n

)
−
(

λ2 −
∂2

∂z2

)
λn+1

2

]
×

×η1,n(ri)
(ri/2)2n+1

n!(n + 1)!
− ξ

ri
ρL−1

1

∂2

∂t2
,

χ26(ri) = 2ξ

∞∑
n=0

η1,n(ri)α0ρNL−2
1

∂3

∂t2∂z
Q̄n+1

(ri)
2n+1

n!(n + 1)!
,

χ31(ri) = −
∞∑

n=0

α−1
0 L1N

−1
(
λ2

4 − λ1λ3 + λ2
1

)
Q̄n

(ri/2)2n

(n!)2
,

χ32(ri) = −
∞∑

n=0

L1 (α0N)−1
(
λ2

4 − λ1λ3 + λ2
1

) ∂

∂z
Q̄n

(ri/2)2n

(n!)2
,

χ33(ri) =

∞∑
n=0

[
∂2

∂z2
Q̄n+1 +

(
λ2

4 −
∂2

∂z2
λ1

)
Q̄n − λ1 · λ2

4Q̄n−1

]
(ri/2)2n

(n!)2
,

χ34(ri) = ξ

∞∑
n=0

η3,n(ri)M (α0N)−1
(
λ2

4 − λ1λ3 + λ2
1

)
λ2Q̄n

(ri/2)2n

(n!)2
,

χ35(ri) = ξ

∞∑
n=0

η3,n(ri)M (α0N)−1
(
λ2

4 − λ1λ3 + λ2
1

) ∂

∂z
Q̄n

(ri/2)2n

(n!)2
,

χ36(ri) = −ξ

∞∑
n=0

η3,n(ri)ρL−1
1

∂2

∂t2

(
Q̄n+1 − λ1Q̄n

) (ri/2)2n

(n!)2
,
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λn
1 =

[
ρL−1

1

(
∂2

∂t2

)
− ∂2

∂z2

]n

, λn
2 =

[
ρM−1

1

(
∂2

∂t2

)
− ∂2

∂z2

]n

,

λn
3 =

{
∂

∂t

[
a2
0 +

(
a2
1 + ρL−1

1

) ∂

∂t

]
− 2

∂2

∂z2

}n

,

Q̄(0)
n =

n−1∑
i=0

α
2(n−i−1)
2 α2i

1 , λ2
4 · Q̄−1 = −1,

F (i)
r = ρL−1

1 M−1

(
∂2

∂t2
f (i)

r

)
, F (i)

rz = ρL−1
1 M−1

(
∂2

∂t2
f (i)

rz

)
,

F
(i)
0 = ρL−1

1

(
∂2

∂t2
G

(i)
0

)
.

Equation (13) is the system of general equations of longitudinal radial vi-
brations of cylindrical shell with initial stresses. According to form of operators
λni , aij , bij this system of equations contains the n-th time and directional
derivatives of functions Ur,0, Ur,1, Uz,0, Uz,1. Therefore it is reasonable to
restrict a number of terms in equations for using them in applied problems.
Here we can get different approximate and refined vibration equation and
consider various limited cases. Thus bounding the first approximation in (13)
the following system of integral-differential equations is derived

4ν−1
1−2ν M̃

−1
[
∂2Ur,0
∂ t2

]
+ 2(1−4ν)

1−2ν M̃
−1
[
∂3Uz,0
∂ t2∂ z

]
−

− 1
2

(
M̃−2

[
∂4Ur,1
∂ t4

]
− M̃−1

[
∂4Ur,1
∂ t2∂ z2

]
+ 2

r2
i

· M̃−1
[
∂2Ur,1
∂ t2

])
+ 3

2M̃
−1
[
∂3Uz,1
∂ t2∂ z

]
−

−∂3Uz,1
∂ z3 − 1+ν

3(1−2ν)M̃
−1
[
∂2T1
∂ t2

]
= ρ

λ·µM̃
−2
(
∂2f(i)

r

∂ t2

)
; (i = 1, 2)

1−4ν
1−2ν rM̃

−1
[
∂3Ur,0
∂ t2∂ z

]
+ r

2 ·
(

4−6ν
1−2ν · M̃−1

[
∂4Uz,0
∂ t2∂ z2

]
− 8ν

1−2ν ·
∂4Uz,0
∂ z4 −

− M̃−2
[
∂4Uz,0
∂ t4

]
− 1

rM̃
−1
[
∂2Uz,1
∂ t2

]
−− r(1+ν)

3(1−2ν)

(
M̃−1

(
∂2

∂ t2

)
− 4 · ∂2

∂ z2

)
∂T0
∂ z −

− 1
r · M̃−1

[
∂3Ur,1
∂ t2∂ z

]
+ ri

2 · 1+ν
3ν · M̃−1

[
∂3Ur,1
∂ t2∂ z

]
= ρ

λ·µM̃
−2
(
∂2f(i)

rz

∂ t2

)
; (i = 1, 2){

M̃−1
(
∂2

∂ t2

)
+ r2i

4 M̃
−1
(
∂2

∂ t2

)(
a20

∂
∂ t + a201 · M̃−1

(
∂2

∂ t2

)
− ∂2

∂ z2

)}
· T0+

+
{
M̃−1

(
∂2

∂ t2

)
− r2i

8 M̃
−1
(
∂2

∂ t2

)(
a20

∂
∂ t + a201 · M̃−1

(
∂2

∂ t2

)
− ∂2

∂ z2

)}
· T1 =

= ρ
λM̃

−1

(
∂2G

(i)
0

∂ t2

)
, (i = 1, 2)

(14)
where ν = const - Poisson’s ratio, a20 = 1/c20; a201 = 1/c2; Uz,0, Uz,1-
main parts of longitudinal displacement; Ur,0, Ur,1 - main parts of radial
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displacement, z - longitudinal coordinate; r - radial coordinate; t - time; T0,
T1 - main parts of temperature T ; α0 - thermal expansion factor; G(i)

0 - temper-
ature condition on the shell surface; non-dimensional variables are introduced
by formulas

z = z∗ξ; bt = t∗ξ; r = r∗ξ; Ur,1 = U∗
r,1ξ; r2 = r∗2ξ;

Uz,0 = U∗
z,0ξ; Uz,1 = U∗

z,1; Ur,0 = U∗
r,0; r1 = r∗1ξ;

a20 = a∗0
2/b · ξ; a201 = a∗01

2/b; α0T0 = T ∗
0 ; ξα0T1 = T ∗

1 ,

(15)

and stars (*) for convenience are omitted, here b is transversal wave prop-
agation velocity in material of shell; ξ is radius of the intermediate surface.
Algorithm allowing to calculate the fields of stresses, strains and temperature
by the field of unknown function, is devised; the stressed-strained state and
temperature pattern of the shell is defined by formulas

Uz = Uz,0 +
3− 2ν

3ν

(
∂2

∂ t2

)−1
∂T0
∂ z

; Ur =
r

2
Ur,0 −

1
r
Ur,1;

M̃−1 [σrr] = µ
2ν

1− 2ν

{
4ν − 1
1− 2ν

Ur,0 +
2
r2i
Ur,1+

+
2(1− 4ν)
1− 2ν

∂Uz,0
∂ z

− 1
2

(
M̃−1

[
∂2Ur,1
∂ t2

]
− ∂

2Ur,1
∂ z2

)
+

+
3
2
∂Uz,1
∂ z

− M̃
(
∂2

∂ t2

)−1 [
∂3Uz,1
∂ z3

]
− 1 + ν

3(1− 2ν)
T1

}
; (16)

M̃−1 [σrz] = µ 2ν
1−2ν

{
1−4ν
1−2ν r

∂Ur,0
∂ z + r

2 ·
(

4−6ν
1−2ν ·

∂2Uz,0
∂ z2 − 8ν

1−2ν ·
∂4Uz,0
∂ z4

−M̃−1
[
∂2Uz,0
∂ t2

])
− r(1+ν)

3(1−2ν)

(
∂T0
∂ z − 4 · M̃

(
∂2

∂ t2

)−1 [
∂3T0
∂ z3

])
− 1

r ·
∂Ur,1
∂ z

− 1
rUz,1 + 1+ν

3ν · ∂T1
∂ z

}
;

T = T0 −
(

ln(r) +
1
2

)
T1.

3 Longitudinal Impact on Viscoelastic Cylindrical Shell

As test problem the problem of longitudinal-radial vibrations of circular cylin-
drical viscoelastic shell is solved, which is excited by sudden applied impact
load on the shell face on which rigid undeformed ring with small width is
put on [5].
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Boundary conditions of the problem are when z = 0

Ur =
∂

∂r
Ur = 0; σzz = −EH(t)

1− ν2 , (17)

when z →∞
Uz = Ur = 0,

where H(t) - unit function of Heveside.
Initial conditions are zero.
As basic resolving equations are taken the refined vibration equations (14).

Problem is solved on base of equations of (14) ignoring the influence of tem-
perature using Laplace transformation. Step of going from a transformation
to the original time function is realized with using shift theorem and theorem
of functions’ convolution and it is got the following solution of problem:

Ur,1 = γ41γ21

t∫
z/c0

e−c1τ/2J0

(
γ2

√
τ2 − z2

/
c20

)⎡⎣ t−τ∫
0

f (ξ) dξ

⎤
⎦ dτ−

−γ41γ18
t∫

z

G1 (t− τ) e−c1τ/2J0
(
γ1
√
τ2 − z2

)
dτ,

Uz,1 = −γ41γ3γ18
t∫
z

e−c1τ/2G2 (t− τ) J0
(
γ1
√
τ2 − z2

)
dτ+

+γ41γ4γ21c0

t∫
z/c0

e−c1τ/2G2 (t− τ) J0
(
γ2

√
τ2 − z2

/
c20

)
dτ,

G1 (t) = f ′ (t) +
3c1
2
f (t) +

c21
2

t∫
0

f (ξ) dξ, G2 (t) = f (t)− c1
t∫

0

f (ξ) dξ,

Uz,0 = −γ41
c0

{
c20

t∫
z/c0

e−c1τ/2G3 (t− τ) I0
(
c01

√
τ2 − z2

/
c20

)
dτ+

+γ18
t∫
z

e−c1τ/2G4 (t− τ) J0
(
γ1
√
τ2 − z2

)
dτ−

− γ42
t∫

z/c0

e−c1τ/2G5 (t− τ) J0
(
γ2

√
τ2 − z2

/
c20

)
dτ

}
,

G3 (t) = γ54f ′ (t) + γ55f (t) + γ56
t∫
0

f (ξ) dξ,

G5 (t) = γ44f ′′ (t) + 2c1γ44f ′ (t) + γ45f (t) ,

G4 (t) = γ42f ′′ (t) + 2c1γ42f ′ (t) +
(
γ43 + γ42c21

)
f (t) + c1γ43

t∫
0

f (ξ) dξ,
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Ur,0 = −νγ41
{
G6

(
t− z
c0

)
e−

c1z

2c0 − c01z
c0

t∫
z/c0

e−c1τ/2G6 (t− τ)

×
I1

(
c01

√
τ2 − z2

/
c20

)
√
τ2 − z2

/
c20

dτ

⎫⎪⎬
⎪⎭− (18)

−γ12γ41γ51
t∫

z

e−c1τ/2G7 (t− τ)J0
(
γ1
√
τ2 − z2

)
dτ+

+γ21γ41c0

t∫
z/c0

e−c1τ/2G8 (t− τ) J0
(
γ2

√
τ2 − z2

/
c20

)
dτ,

G6 (t) = γ46
(1−ν)ω1

[f ′′ (t) + 2c1f ′ (t)] + γ49f (t) + c1γ50
t∫
0

f (ξ) dξ,

G7 (t) = f ′ (t) + 3c1
2 f (t) + c21

2

t∫
0

f (ξ) dξ,

G8 (t) = γ52
[
f ′ (t) + 3c1

2 f (t)
]
+ γ53

t∫
0

f (ξ) dξ, γij = const.

Substituting last expressions into formulas (16) the stressed-strained state
of arbitrary shell section is defined. Calculations are performed for viscoelastic
material the physical characteristics of which are as follow:

α1 = 0, 6; τ1 = 0, 16 · 105 mks; a = 2220m/s; b = 1040m/s;
ν = 0, 36; ρ = 1, 28 · 10−6 kGs2/sm4; α1 = 0, 3; τ2 = 0, 14 · 107 mks;
E = 3, 6 · 104kG/sm2; α3 = 0, 1; τ1 = 0, 11 · 108 mks;

K (t) =
3∑

n=1
αnτ

−1
n e

−t/τn .

(19)

Herewith external load is given as unit function of Heveside: f(t) = H(t).
Displacements are calculated by formulas (16) ignoring the temperature. Re-
sults of calculations of displacement are given on Figs. 1 and 2, where Uz and
Ur are longitudinal and radial displacement of meridian shell surface. From
graph we can see that proposed theory gives satisfactory results nearly on all
region z ∈

(
0,
√

2 + 2ν
)
, except only for points of shell, which are very closed

to face, which is under external action, where boundary effect of Sen–Venan
is very strong. The process of longitudinal deformation may be divided into
three sections. In the first section, when z ≤ 2, 8, boundary effects are suffi-
ciently strong. The second section is enclosed in the zone from z > 3 till the
second wave front z ≤ 10. This section is characterizing by smooth decreasing
of value of Uz, which indicates that in this section influent of viscosity is signif-
icant. Because of the influence of viscosity in the first section where z ≤ 2, 8,
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Uz
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4
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8

Figure 1

Figure 2

12 z

z

Figs. 1-2. Plots of longitudinal Uz and radial Ur displacements as functions of
coordinate z for ν = 0, 22 (curve 1) and ν = 0, 33 (curve 2)

this section is run by wave for time t ≈ 2,8√
2+2ν

, which is too short. So in this
section shell behaves as elastic. The longitudinal displacement is very small
behind the first wave front wave till the second one and may be neglected.
Radial displacement is also damping fast with the increase of distance from
the face and for z > 5 we can neglect it.

4 Analysis of Thermo-Stressed State of Viscoelastic
Circular Cylindrical Shell

Now let’s consider the thermo-stressed state of semi-infinite circular cylin-
drical shell with inner r1 and outer r2 radius, excited by kinematical action
on its rigid restrained face with heat conditions on the surfaces of the shell.
Shell material is viscoelastic, isotropic and homogeneous. Surfaces of shell are
free from mechanical effect. In this case the proposed vibration equations in
non-dimensional variables (r, z, t) have the form:(

2
r2i

+
1
2

+ ln ri

)
M̃−1

[
∂2Uz,1
∂t2

]
− 4ν − 1

1− 2ν
M̃−1

[
∂2Ur,0
∂t2

]
+

+
2(1− 3ν)
1− 2ν

M̃−1

[
∂3Uz,0
∂z∂t2

]
+
{
M̃−1

(
∂2

∂t2

)
×

×
(

2
r2i

+ ln ri +
1
2

)
+

1− 2ν
2ν

[
ln riM̃−2

(
∂4

∂t4

)
− M̃−1

(
∂4

∂t2∂z2

)]}
Ur,1+

+
{

ln ri
1− 4ν

2ν
M̃−1

(
∂2

∂t2

)
+ ln ri

∂2

∂z2

}
∂Uz,t
∂z

−

−
{(

ln ri +
1
2

)
2(1 + ν)
3(1− 2ν)

− ln ri
1 + ν
3ν

}
M̃−1

[
∂2T1
∂t2

]
= 0; (i = 1, 2)
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ri(1− 3ν)
1− 2ν

· M̃−1

[
∂3Ur,0
∂t2∂z

]
+

+
ri
2

{
4− 6ν
1− 2ν

· M̃−1

(
∂4

∂t2∂z2

)
− 8ν

1− 2ν
· ∂

4

∂z4
− M̃−2

(
∂4

∂t4

)}
Uz,0−

−2ri(1 + ν)
3(1− 2ν)

·
[
M̃−1

(
∂3T0
∂t2∂z

)]
− 1
ri
M̃−1

[
∂3Ur,1
∂z∂t2

]
+

+
{
ln ri

[
5v − 1
ν
M̃−1

(
∂4

∂z2∂t2

)
+ 4

4v2

(1− 2v)2
∂4

∂z4
− (1− 2v)2

4v2
M̃−2

(
∂4

∂t4

)]
−

− 1
ri
· M̃−1

(
∂2

∂t2

)}
Uz,1 +

ri
2

ln ri
1 + ν
3ν
M̃−1

[
∂3T1
∂z∂t2

]
= 0, (i = 1, 2)

M̃−1

[
∂2T0
∂t2

]
− M̃−1

[
∂2T1
∂t2

](
ln ri +

1
ri

)
= M̃−1

[
∂2G

(i)
0

∂t2

]
, (i = 1, 2)

(20)

where M̃(ξ) = ξ(t)−
t∫
0

ξ(τ)K(t− τ)dτ, K(t−τ) - arbitrary integrable core of

viscoelastic operator, ν = const - Poisson’s ratio; non-dimensional variables
are introduced by formulas (15).

The stressed-strained of state and temperature pattern of the shell defined
by formulas (16).

Assume that temperature condition is given as: on inner surface r = r1:

G
(1)
0 = a1e−(k1z+ω1t), (21)

on outer surface r = r2 :

G
(2)
0 = a2e−(k2z+ω2t). (22)

Also proceed on the assumption that shell vibrations are excited by me-
chanical action applied on the face. In this case boundary conditions have
form:
for z = 0

Uz = −f(t), Ur = 0, σrr = 0, (23)

as z →∞
Uz = 0. (24)

Initial conditions are as zero.
For solving problem the Laplace transformation on time is used with fur-

ther using of method of constant’s variation and method of exception. Step of
going from a transformation to the original time function is realized with using
shift theorem and theorem of functions’ convolution. It is obtained the closed
solution substitution of which into formulas (16) lets fully define temperature
pattern and stressed-strained state of arbitrary shell section:



284 F.A. Amirkulova

T1(z, t) =
[
a1 · e−(k1z+ω1t) − a2 · e−(k2z+ω2t)

]
: ln
r2
r1

;

T0(z, t) =
ln r1 + 1/r
ln(r2/r1)

·
[
a1 · e−(k1z+ω1t) − a2 · e−(k2z+ω2t)

]
+ a1 · e−(k1z+ω1t);

Uz,1(z, t) =
γ23
γ22
e−c1t/2

t∫
γ3z

J0

(
γ0

√
τ2 − γ23z2

)
dτ+

+
γ24
γ22
e−c1t/2

t∫
γ4z

J0

(
γ0

√
τ2 − γ24z2

)
dτ ;

Ur,1(z, t) =
γ23γ48
γ22γ3

e−c1t/2
[
J0

(
γ0

√
t2 − γ23z2

)
H(t− γ3z)

]
+

+
δ1
γ3
e−c1t/2

t∫
γ3z

J0

(
γ0

√
τ2 − γ23z2

)
dτ+

+
γ24γ53
γ22γ4

e−c1t/2
[
J0

(
γ0

√
t2 − γ24z2

)
H (t− γ4z)] +

+
δ2
γ4
e−c1t2

t∫
γ4z

J0

(
γ0

√
τ2 − γ24z2

)
dτ+

+δ0
[
a1e

−k1z−ω1t− a2e−k2z−ω2t
]
; (25)

Uz,0(z, t) =

t∫
γ5z

F1(t− τ)e−c1/t2J0
(
γ0

√
τ2 − γ25z2

)
dτ+

+δ82

[
e−c1t/2J0

(
γ0

√
t2 − γ25z2

)
H (t− γ5z)

]
+

+

t∫
γ6z

F1(t− τ)e−c1τ/2J0
(
γ0

√
τ2 − γ26z2

)
dτ+

+ δ86
[
e−c1t/2 J0

(
γ0

√
t2 − γ26z2

)
H (t− γ6z)

]
+ δ87e−c1t/2×

×
t∫

γ5z

J0

(
γ0

√
τ2 − γ25z2

)
dτ+δ88e−c1t/2

t∫
γ6z

J0

(
γ0

√
τ2 − γ26z2

)
dτ+

+e−k1zδ97 − δ99e−k2z + δ91

[
e−c1t/2J0

(
γ0

√
t2 − γ23z2

)
H (t− γ3z)] +
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+δ6e−c1t/2
t∫

γ3z

J0

(
γ0

√
τ2 − γ23z2

)
dτ+

+δ91

[
e−c1t/2J0

(
γ0

√
t2 − γ24z2

)
H (t− γ4z)

]
+

+δ95e−c1t/2
t∫

γ4z

J0

(
γ0

√
τ2 − γ24z2

)
dτ ;

F1(t) = − 1
γ22

[
γ25f

′(t) +
(
γ26 +

c1
2
γ25

)
f(t)

]
;

F2(t) = − 1
γ22

[
γ10f

′(t) +
(
γ11 +

γ10c1
2

)
f(t)

]
;

Ur,0 = −q1
q5

{
δ53

[
e−c1t/2J0

(
γ0

√
t2 − γ23z2

)
H(t− γ3z)

]
+

+δ6e−c1t2
t∫

γ3z

J0

(
γ0

√
τ2 − γ23z2

)
dτ+

+δ57

[
e−c1t/2J0

(
γ0

√
t2 − γ24z2

)
H(t− γ4z)

]
+

+δ10δ014e
−c1t/2

t∫
γ4z

J0

(
γ0

√
τ2 − γ24z2

)
dτ+

+

t∫
γ5z

F3(t− τ)e−c1τ/2J0
(
γ0

√
τ2 − γ25z2

)
dτ+

+δ64

[
e−c1t/2J0

(
γ0

√
t2 − γ25z2

)
H (t− γ5z)

]
+

+

t∫
γ5z

F4(t− τ)e−c1τ/2J0
(
γ0

√
τ2 − γ26z2

)
dτ+

+δ71

[
e−c1t/2J0

(
γ0

√
t2 − γ26z2

)
H (t− γ6z)] +

+e−k1za1δ75 + γ43a1e−(k1z+ω1t) − e−k2za2δ79 − δ48a2e−(k2z+ω2t);

F3(t) = δ27 (γ25f ′′(t) + δ58f ′(t) + δ59f(t)) ;

F4(t) = δ28 (γ10f ′′(t) + δ65f ′(t) + δ66f(t)) .
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Calculations are performed by formulas (16) for viscoelastic material the
physical characteristics of which have form (19), herewith external load is
given as function: f(t) = g0 sin2 [πt/t1] , (t1 = 20).

On Figs. 3–12 dependence of change in temperature, longitudinal and ra-
dial displacements and radial stress σrr of shell’s external surface points with
coordinate are presented for fixed value of time t = 10 and different values of
non-dimensional parameters ω1, ω2, a1, a2, k1, k2, r2, where k1, k2, ω1 and ω2

are correspondingly damping factors by coordinate and time.
On Figs. 3–6 this dependence is given at ω1 = ω2 = k1 = k2 = 0, 2; r2 =

1, 2 for different values of temperature parameters a1, a2:0, 004; 0, 006; 0, 008;
0, 01. It can be seen from pictures that the change curves of temperature,
displacement and stress are damping with the growth of distance. Herewith
temperature changes according to given heat condition and has exponential
damping character. Graphs of displacements and stresses have harmoniously
damping form caused by action of external loading. Besides from Fig. 4 it
can be seen that with the increase of the temperature parameters a1, a2
the value of longitudinal displacement also increases, while changes in radial

T
0.002

0.0018

0.0012

0.0008

0.0004

0.004 0.008 0.008 0.1 0.012 0.014 0.004 0.006 0.008 0.01

−8

−6

−4

−2

0
Uz

0
0 2 4 6

z z
8 10

0 2 4 6 8 10 12

Fig. 3. The dependence of temperature
change with coordinate z for different
values of a1 and a2
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displacement and stress are insignificant (Figs. 5–6). On Fig. 7 the graphs of
displacement change are presented at various values of thickness h = 0, 2
(corresponding to r1 = 1, 0; r2 = 1, 2); h = 0, 1 (r1 = 1, 0; r2 = 1, 1),
h = 0, 08 (r1 = 1, 0; r2 = 1, 08), at the following values of parameters:
a1 = a2 = 0, 004; ω1 = ω2 = k1 = k2 = 0, 2. With reduction of shell thickness,
here the increase in values of displacement of shell surface points is observed.
Changes of thickness of a layer (h = 0, 2) or shell (h = 0, 1; h = 0, 08)
lead to essential change of longitudinal displacements in the sections bounded
with coordinates in an interval 0 ≤ z ≤ 12. In the further, with growth of
coordinate z the displacement disturbance is not observed.

On Figs. 8–10 the results of temperature T and displacements change for
value of parameters of temperature a1 = a2 = 0, 008 and factors k1 = k2 =
0, 2, at values of factors ω1 = ω2 = 0, 2 (continuous line) and ω1 = ω2 = 0, 4
(dashed line) depending on longitudinal coordinate are presented.

On Figs. 11–12 this dependence is presented for a1 = a2 = 0, 008 and ω1 =
ω2 = 2 at various values of factors k1, k2, equal to 0,2; 0,4; 0,6. Comparison
of the dates resulted on these graphs shows, that reduction of temperature
and displacement values is observed with increase in values of factors k1, k2
and ω1, ω2. Herewith from Figs. 9 and 10 it can be seen, that in sections
situating in immediate proximity to the face at increasing the values ω1, ω2,
displacements decrease 2–3 times whereas at increasing the values k1, k2 the
difference of displacement values makes 15–20.

On Figs. 13–14 the dependence of values change of temperature T and
radial displacement of points of external surface in time in the fixed shell
sections: z = 5 and z = 10 are represented at the following values of:
a1 = a2 = 0, 008, ω1 = ω2 = 0, 2, k1 = k2 = 0, 2. Here the drop of dis-
placements and temperature values in time is observed. Thus in section z = 5
displacement change has oscillatory character with the damping amplitude
tending to constant value. In section z = 10 such vibrations occur with small
amplitudes and graphs of displacement change have smooth form. In both
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cases starting at t ≥ 0, Ur displacement disturbance tends to constant value
eventually.

In conclusion we can say that the proposed vibration theory of termo-
viscoelastic cylindrical shell gives satisfactory results and has enough broad
applicability area even in case of suddenly applied load. If loading and temper-
ature changes smoothly enough, they allow to define a stress and temperature
actually at all sections of shell and displacements of its arbitrary points.
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Mathematical Vibration Modelling
of the Pre-Stressed Viscoelastic
Thick-Walled Cylindrical Shell

Feruza Abdukadirovna Amirkulova

Summary. In the paper the mathematical model of the pre-stressed viscoelastic
thick walled cylindrical shell’s axisymmetrical vibrations, based on the deduction of
the integro-differential vibration equations of such shell, is developed. The deduction
of the general and approximate vibrations equations of the thick-walled shell, which
in limiting cases can proceed in the vibration equations of column and thin-walled
cylindrical shell, is based on the use of exact solutions of the three-dimensional
problem of the elasticity theory in transformations concerning potentials of longitu-
dinal and transversal waves. The received equations belong to hyperbolic type and
describe the waves distribution concerning dispersion. Herewith proposed approach
allows different particular cases and generalizations. Alongside with the vibration
equations, the algorithm, allowing by results of the solution of the vibration equa-
tions uniquely define the stress–strain state of considered system in its any section
at the arbitrary time moment and correctly formulate initial and boundary condi-
tions at the formulation of applied mechanics problems, is developed. Using Laplace
transformation and the constants’ variation method at the various boundary and
initial conditions, a number of applied problems are solved. Reverse transition in
the area of originals has been realized by means of the reversion table using shift
theorem and theorem of folding function. Plots show how the change in the value of
initial displacements affects on the strain–stress distribution.

1 Introduction

Initial stresses in structure elements can result from various physical and
chemical processes and technological operations. It is also arises in earth’s
under action of different geostatic and geodynamic influence, in composites,
rocks, blood vessels and etc. Besides many design elements are influenced
by pre-stresses caused by imperfections of technology at their manufactur-
ing and mistakes at their installation and other reasons. At the same time,
the preliminary stressed state can be created also purposefully proceeding
from the certain constructive reason, therefore it is necessary to consider the
prestressed-strained state of structures at the calculation of their stress–strain
state under action of non-stationary loadings.
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Grin [13], Trusdell [21], Guz [14–16] and others have made the essen-
tial contribution in creation of modern linearized dynamic theory in initially
stressed bodies. At present investigations on specified problem are conducted
not only in solid mechanics but also in rock mechanics, acoustics, seismol-
ogy, solid physics, geophysics and a number of other areas of science and
technology. Results of these investigations were reflected in numerous publi-
cations [10–12, 18–20, 22] where elastic body’s motion was described by 2D
applied theories created by applying Kirchhoff–Love hypotheses which sim-
plify equations and at the same time lead to essential lacks and mistakes.

Despite of a plenty of researches and basic works there is a significant cir-
cle of not enough investigated questions keeping the urgency: creation of the
exact and effective approached analytical and numerical methods of studying
the influence of initial stresses on the stressed–strained state of structure in
view of variety of boundary conditions and complexities of external influence.
Questions concerns to this circle of problems are studied in the represented
work where axisymmetric vibrations of initially stressed viscoelastic circular
cylindrical shell are studied on the base of proposed refined vibration equa-
tions of initially stressed cylindrical shell [1–9, 17]. These equations take into
account the effect of deformation on transversal shear and the rotary inertia
and are more generally than equations of Timoshenko type and Herrmann-
Mirsky.

2 The Basic Relations

The circular cylindrical viscoelastic shell of constant thickness with internal
r1 and external r2 radiuses is considered. It is supposed, that the material of
a layer is homogeneous, isotropic and preliminary strained, and pre-stressed
state is homogeneous, and dependences between stresses and deformations
are linear. In this case dependence between tensor components of stress and
deformation have form

σii = L(ε) + 2M(εii); σij =M(εij), (i 
= j), (1)

where ε - cubic strain; L,M - viscoelastic operators

(L, M)ς = (λ, µ)

⎡
⎣ς(t)− t∫

0

[K1(t− τ), K2(t− τ)]

⎤
⎦ ς(τ)dτ ;

λ, µ - Lame coefficients; it is assumed that operators L,M are reversible and
cores K1(t) and K2(t) are arbitrary.

Let’s admit, that pre-stressed state is homogeneous. Generally, when thick-
ness of shell is changeable initial displacements have form

U (0)
z = a0z+ bθ+ c0r; U

(0)
θ = a1z+ b1θ+ c1r, U (0)

r = a2z+ b2θ+ c2z, (2)
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where ai, bi, c2 - are generally constant and are not small and c2 is a function
of ai, bi.

Let’s note some special cases when dependence (2) takes simple form:
Case 10. Let’s admit thickness of a considered cylindrical shell is constant,

then a2 = b2 = c0 = c1 = 0 in (2) and initial displacements are equal to

U (0)
z = a0z + b0θ; U

(0)
θ = a1z + b1θ; U (0)

r = c2r. (3)

Let’s designate through Uz, Ur, Uθ accordingly disturbed longitudinal, radial
and torsional displacements and consider them as small quantities. Then dis-
placements subject to initial displacement (2) will become as

Ūz = (1 + a0)Uz + a1Uθ; Ūθ = (1 + b1)Uθ + b0Uz; Ūr = (1 + c2)Ur, (4)

and in the further for convenience of writing we shall neglect “hyphens” above
displacements.

In this case stresses depending on small disturbed and homogeneous finite
deformations have form

σrr = (1 + c2)(L+ 2M)
(
∂Ur
∂r

)
+(1 + a0)L

(
∂Uz
∂z

)
+ a1L(Uθ)+ a1L

(
∂Uθ
∂z

)
+

+
1
r

[
(1 + b1)L

(
∂Uθ
∂θ

)
+ b0L

(
∂Uz
∂θ

)
+ (1 + c2)L(Ur)

]
;

σzz = (1 + c2)L
(
∂Ur
∂r

)
+ (1 + a0)(L+ 2M)

(
∂Uz
∂z

)
+ a1(L+ 2M)Uθ +

+
1
r

[
(1 + b1)L

(
∂Uθ
∂θ

)
+ b0L

(
∂Uz
∂θ

)
+ (1 + c2)L(Ur)

]
+ a1L

(
∂Uθ
∂z

)
;

σθθ = (1 + c2)L
(
∂Ur
∂r

)
+ (1 + a0)L

(
∂Uz
∂z

)
+ a1L(Uθ) +

1 + b1
r

(L+ 2M)×

×
(
∂Uθ
∂θ

)
+
b0
r

(2M + L)
(
∂Uz
∂θ

)
+

1 + c2
r

(L+ 2M)(Ur) + a1L
(
∂Uθ
∂z

)
;

(5)

Similarly density of initially stressed material of shell is distinguished from
density of setting out material, i.e. its density ρ and is equal to

ρ1 =
ρ

(1 + a0)(1 + c2)2
.

Case10
a. For longitudinal-radial vibrations Uθ = 0, b0 = b1 = 0 and initial

longitudinal and radial displacement are equal to

U (0)
z = a0 · z; U (0)

r = c2 · r. (6)

Displacements subject to initial displacements have form

Ūz = (1 + a0)Uz; Ūr = (1 + c2)Ur; (7)
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stresses depending on deformation

σrr = (1 + c2)(L+ 2M)
(
∂Ur
∂r

)
+ (1 + a0)L

(
∂Uz
∂z

)
+

1
r
(1 + c2)L(Ur);

σzz = (1 + c2)L
(
∂Ur
∂r

)
+ (1 + a0)(L+ 2M)

(
∂Uz
∂z

)
+

1
r
(1 + c2)L(Ur); (8)

σθθ = (1 + c2)L
(
∂Ur
∂r

)
+ (1 + a0)L

(
∂Uz
∂z

)
+

1
r
(L+ 2M) (Ur) ;

σrz = (1 + a0)M
(
∂Uz
∂r

)
+ (1 + c2)M

(
∂Ur
∂z

)
.

Case10
b . For torsional vibrations Uz = Ur = 0, a1 = 0 , displacements

subject to initial displacements (4) have form

Ūθ = (1 + b1)Uθ (9)

and σ ÷ ε dependence subject to initial displacement takes following form

σrθ = (1 + b1)M
(
∂Uθ
∂ r

)
− 1 + b1

r
M(Uθ);

σzθ = (1 + b1)M
(
∂Uθ
∂z

)
. (10)

3 Longitudinal-Radial Vibrations of Pre-Stressed
Circular Cylindrical Shells

3.1 Derivation of General Equations of Longitudinal-Radial
Vibrations Equations of Initially Stressed Isotropic Circular
Cylindrical Shells

The longitudinal-radial vibrations of cylindrical shell are excited by stresses
on its surfaces r = ri (i = 1, 2)

σrr = f (i)
rr (z, t), σrz = f (i)

rz (z, t). (11)

Shell motion is described by equations

∂σrr
∂ r

+
∂σzr
∂ z

+
σrr − σθθ
r

= ρ
∂2Ur
∂ t2

∂σrz
∂ r

+
∂σzz
∂z

+
σrz
r

= ρ
∂2Ur
∂ t2
.
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Subject to relationship (8) between stresses and displacements the equa-
tions of shell motion will take form

(1 + c2)
{

(L+ 2M)
(
∂2Ur
∂r2

+
1
r

∂Ur
∂r

− 1
r2
Ur

)
+M

(
∂2Ur
∂z2

)}
+

+ (1 + a0)
(
∂2Ur
∂r∂z

)
= ρ
∂2Ur
∂t2
,

(1 + c2) (L+M)
(
∂

∂ r
+

1
r

)
∂Ur
∂ z

+

+ (1 + a0)
{
M

(
∂2Uz
∂ r2

+
1
r

∂Uz
∂ r

)
+ (L+ 2M)

(
∂2Uz
∂ z2

)}
= ρ
∂2Uz
∂ t2
. (12)

Representing displacements as

Ur =

∞∫
0

sin kz
− cos kz

}
dk

∫
(l)

Ūre
ptdp,

Uz =

∞∫
0

cos kz
sin kz

}
dk

∫
(l)

Ūze
ptdp (13)

and substituting into motion equations (12), we can obtain

∆0Ūr −
[
M̄
(
L̄+ 2M̄

)−1
k2 +

1
1 + c2

(
L̄+ 2M̄

)−1
ρp2

]
Ūr−

−1 + a0
1 + c2

kḠ1
dŪz
dr

= 0,

∆0
dŪz
dr

−
[
M̄−1

(
L̄+ 2M̄

)
k2 +

1
1 + a0

M̄−1ρp2
]
dŪz
dr

+

+k
1 + c2
1 + a0

M̄−1
(
L̄+ 2M̄

)
∆0Ūr = 0, (14)

where

Ḡ1 =
(
L̄+ M̄

) (
L̄+ 2M̄

)−1 ; ∆0 =
d2

dr2
+

1
r

d

dr
− 1
r2

;

L̄÷ L; M̄ ÷M ; Ūr ÷ Ur; Ūz ÷ Uz.
The general solution of (14) takes form

Ūr = C1I1 (α1r) +D1K1 (α1r) + C2I1 (α2r) +D2K1 (α2r) ;

Ūz =
1 + c2
1 + a0

Ḡ1
α2

1 − α2

kα1
[C1I0 (α1r)−D1K0 (α1r)] +

+
α2

2 − α2

kα2
[C2I0 (α2r)−D2K0 (α2r)] , (15)
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where
α2 =

1
1 + c2

(
L̄+ 2M̄

)−1
ρp2 + M̄

(
L̄+ 2M̄

)−1
k2,

α2
1 + α2

2 = N̄2p
2 + N̄3k

2, α2
1α

2
2 = N̄1p

4 + N̄2p
2k2 + k4,

N̄1 =
ρ2

(1 + a0)(1 + c2)
(
L̄+ 2M̄

)−1
M̄−1;

N̄2 =
ρ

(1 + a0)
M̄−1 +

1
(1 + c2)

(
L̄+ 2M̄

)−1 ;

N̄3 =
(
L̄+ 2M̄

)
M̄−1 +

(
L̄+ 2M̄

)−1
M̄ −

(
L̄+ M̄

)2 (
L̄+ 2M̄

)−1
M̄−1.

Let’s transform into a power series of radial coordinate r expressions (15)
and enter auxiliary functions Ūr,0, Ūz,0, Ūr,1, Ūz,1 by formulas

Ūr,0 = α1C10 + α2C20, Ūr,1 = ξ−1
(
α−1

1 D1 + α−1
2 D2

)
,

Ūz,0 =
α2

1 − α2

kα1Ḡ1
C10 +

α2
2 − α2

kα2

(0)

B
1

C20,

ξŪz,1 =
α2

1 − α2

kα1Ḡ1
D1 +

α2
2 − α2

kα2Ḡ1
D2, (16)

where

[C10, C20] = [C1, C2] + [D1, D2] ·
[
ln

(α1, α2)ξ
2

− ψ(1)
]
.

For unknowns Ūr, Ūz using (16) we can get

Ūz =
1 + c2
1+0

1
α2kḠ1

∞∑
n=0

k Ḡ1α
2
1α

2
2

(
P̄n − α2P̄n−1

)
Ūz,0

(r/2)2n

(n!)2

−1 + c2
1+0

{
1

α2kḠ1

∞∑
n=0

(
α2

1 − α2
) (
α2

2 − α2
)
P̄nŪr,0 }

(r/2)2n

(n!)2

− ξ

k G1

∞∑
n=0

η6,n (r)
[
k G1

(
P̄n+1−α2 Pn

)
Ūz,1

−
(
α2

1 − α2
) (
α2

2 − α2
)
Pn Ūr,1

] (r/2)2n

(n!)2

}
,

Ūr=
ξ

r
Ūr,1+

1
α2

∞∑
n=0

[(
α2
P
n+1

−α2
1α

2
2 P
n

)
Ūr,0 + kḠ1α

2
1α

2
2Ūz,0

] (r/2)2n

(n!) (n+ 1)!
+

+ξ
∞∑
n=0

η7,n (r)
[(
α2
P
n+1

−α2
1α

2
2 P
n

)
Ūr,1 + kḠ1 P

n+1
Ūz,1

]
(r/2)2n

n! (n+ 1)!
,

(17)
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where

P
n

=
n−1∑
i=0

α
2(n−i−1)
2 α2i

1 ; P
0
≡ 0; P

1
≡ 1; P

2
= α2

1 + α2
2; α2

1α
2
2 P−1

= −1;

η6,n (r) = #n
r

ξ
−

n∑
k=1

1
k

; η7,n (r) = η6,n (r)− 1
2 (n+ 1)

;

ξ is a radius of the intermediate surface of cylindrical shell defined as

ξ =
r1
2

(
χ− r1
r2

)
, (18)

where constant χ fulfils with inequality

2 +
r1
r2
≤ χ ≤ 2

r2
r1

+
r1
r2
.

Substituting general solutions into transformed by Laplace and Fur’e
boundary conditions we get(

α2
1 − α2 + k2Ḡ1

)
[C1I1 (α1ri) +D1K1 (α1ri)] +

+
(
α2

2 − α2k2Ḡ1

)
[C2I1 (α2ri) +D2K1 (α2ri)] +

=
1

1 + c2
Ḡ1M̄

−1
[
kf (i0)

rz (k, p)
]
, (i = 1, 2) (19)

[
α1Ḡ1

(
L̄+ 2M̄

)
− α

2
1 − α2

α1
L̄

]
[C1I0 (α1ri)] +

+
[
α2Ḡ1

(
L̄+ 2M̄

)
− α

2
2 − α2

α2
L̄

]
[C2I0 (α2ri)−D2K0 (α2r)]−

+
2 M̄ Ḡ1

r
[C1I1 (α1ri) +D1K1 (α1ri) + C2I1 (α2ri) +D2K1(α2ri)]

=
1

1 + c2
Ḡ1

[
f̄ (i)
r (k, p)

]
, (i = 1, 2) .

Using standard expansion of Bessel’s functions into a power series of ra-
diuses r1 and r2 in the derived equations we can get the system of four alge-
braic equations relatively to entered functions Ūr,0, Ūr,1, Ūz,0, Ūz,1. Step of
going from Laplace and Fur’e transforms to the original time and space func-
tions is realized, and it is obtained the system of vibration equations taking
form

a1iUz,0 + a2iUr,0 + ξ (a3iUz,1 + a4iUr,1) =
1

1 + c2
G1M

−1λ1

[
∂

∂z
f (i)
rz (z, t)

]
,

b1iUz,0 + b2iUr,0 + ξ (b3iUz,1 + b4iUr,1) =
1

1 + c2
G1λ1

[
f (i)
rz (z, t)

]
. (20)
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Here operators aij , bij (i = 1, 2; j = 1, 4) are defined by formulas

a1i =
∞∑
n=0

G1λ
2
2

∂

∂z

[
Pn+1 −

(
λ1 +

∂2

∂z2
B1

)
Pn

]
(ri/2)2n+1

n! (n+ 1)!
;

a2i = −
∞∑
n=0

[
λ1Pn+2 −

(
λ21 + λ22 + λ1 ∂2

∂z2G1

)
Pn+1 +

(
λ1 + ∂2

∂z2G1

)
Pnλ

2
2

]
× (ri/2)

2n+1

n!(n+1)! ;

a3i =

∞∑
n=0

η7,n (ri) G1λ
2
2

∂

∂z

[
Pn+2 −

(
λ1 +

∂2

∂z2
G1

)
Pn+1

]
(ri/2)2n+1

n! (n + 1)!
+

1

ri
G1

∂

∂z
λ1;

a4i = −
∞∑
n=0

η7,n (ri)λ1

[
λ1Pn+2 −

(
λ21 + λ22 + λ1

∂2

∂z2
G1

)
Pn+1

+
(
λ1 +

∂2

∂z2
B1

)
Pnλ

2
2

]
(ri/2)2n+1

n! (n+ 1)!
+

1
ri
G1
∂2

∂z2
λ1;

b1i = −
∞∑
n=0

G1λ2
2

∂

∂z

[
(G1(L + 2M) − L) Pn + λ1LPn−1 − G1M

(n + 1)
Pn

]
(ri/2)2n

(n!)2
;

b2i =
∞∑
n=0

[
G1(L+ 2M) (λ1Pn+1 − Pn+2) + L

(
λ21 − λ1λ3 + λ22

)
Pn−

− G1M

(n+ 1)
(
λ1Pn+1 − λ22Pn

)] (ri/2)2n

(n!)2
;

b3i = −
∞∑
n=0

λ1

{
η6,n (ri)

∂

∂z
[G1(L+ 2M)−G1L (Pn+1̄λ1Pn)] −

−η7,n (ri) ·
∂

∂z
· MG

2
1

(n+ 1)
Pn+1

}
(ri/2)2n

(n!)2
+

1
ri
λ1;

b4i =
∞∑
n=0

λ1η6,n (ri)
[
G1(L+ 2M)

(
λ1Pn+1̄ − λ22Pn

)
+ L

(
λ21 − λ1λ3 + λ22

)
Pn
]

− η7,n (ri) ·
MG1

(n+ 1)
(
λ1Pn+1 − λ22Pn

) (ri/2)2n

(n!)2
.

Herewith operators λn1 , λ
n
2 , λ

n
3 , Pn are equal to

λn1 = (L+ 2M)−n
[(

ρ

1 + c2

2

t2
−M

2

z2

)n]
;

λn3 =
{
N2

(
2

t2

)
−N3

(
2

z2

)}n
; λ22P−1 = −1;
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λ2n2 = A−n
11

[
N1

(
4

t4

)
−
[
ρ

1 + c2
M−1 +

ρ

1 + a0
(L+ 2M)−1

](
4

t2z2

)
+

4

z4

]n
;

N1 ÷ N̄1; N2 ÷ N̄2; N3 ÷ N̄3;

P0 ≡ 0; P1 ≡ 1; P2 = λ3; P3 = λ23 − λ22;
P4 = λ5

(
λ23 − 2λ22

)
; P5 = λ43 − 3λ22λ

3
3 + λ42; . . .

Equations (20) are general equations of longitudinal-radial vibrations of
cylindrical shell with initial stresses. Here we can get different approximate
and refined vibration equation and consider various limited cases. Accord-
ing to form of operators λni , aij , bij system (20) contains the nth time and
directional derivatives of functions Ur,0, Ur,1, Uz,0, Uz,1. Therefore it is rea-
sonable to restrict the number of terms in equations for using them in applied
problems.

3.2 Formulas for Definition of Displacements and Stresses in Shell
Sections

Having inverted expressions (17) on z and t formulas for displacements are
deduced

Uz =
1 + c2
1 + a0

·
{

(G1 · λ1)−1 ·
∞∑
n=0

[λ4 ·G1· (P.n − λ1 · Pn−1) Uz,0+

+
(
∂

∂z

)−1

·
[
λ4 − λ1 · λ3 + λ21

]
QnUr,0]

(r\2)2n

(n!)
+

+
∞∑
n=0

{(P.n+1 − λ1 · Pn)Uz,1+

+G−1
1 ·

(
∂

∂z

)−1 [
λ4 − λ1 · λ3 + λ21

]
PnUr,1

(r\2)2n

(n!)2
,

Ur = λ−1
1 ·

∞∑
n=0

[
λ1 (P.n+1 − λ4 · Pn) · Ur,0 −G1 · λ4 ·

(
∂uz,0
∂z

)]
(r\2)2n

n!(n+ 1)!
+

+
∞∑
n=0

ηz,n(r) ·
[
(λ1Pn+1 − λ4Pn)Ur,1 − Pn+1

(
∂uz,1
∂z

)]
(r\2)2n

n!(n+ 1)!
+

1
r
· Ur,1.

(21)
Being limited to zero approximation from (21) we shall have

Uz =
1 + c2
1 + a0

[
Uz,0 + ln Uz,1

]
;

Ur =
1

r
Ur,1 +

r

2

[
Ur,0 − G1λ4λ−1

1

∂Uz,0
∂ z

]
+
(
ln r − 1

2

)[
λ1Ur,1 − ∂

∂z
G1Uz,1

]
r

2
.

(22)



300 F.A. Amirkulova

Similar formulas take place for components of stress tensor

σrr = λ−1
1 B

−1
1 [b1Uz,0 + b2Ur,0 + ξ (b3Uz,1 + b4Ur,1)] ,

σrz = B−1
1 λ

−1 [a1Uz,0 + a2Ur,0 + ξ (a3Uz,1 + a4Ur,1)] , (23)

where
ai = aij |ri=r

, bi = bij |ri=r
, B1 = G1M

−1 ∂

∂ z
.

3.3 Limiting Cases and Particular Forms
of the Longitudinal-Radial Vibrations
Equations of the Preliminary-Strained Shell

The derived vibration equations (20) and formulas for stress and displace-
ments suppose the following limiting and special cases:

1. If shell material is elastic, i.e. M = µ, L = λ, (20) will pass in the
corresponding equations for an elastic shell.

2. If r1 = 0, then ξ = 0 and from (20) we can get longitudinal vibrations
equations of preliminary-strained circle cylinder

a1Uz,0 + a2Ur,0 =
1

1 + c2
G1M

−1λ1

[
∂ f

(2)
rz (z, t)
∂ z

]
,

b1Uz,0 + b2Ur,0 =
1

1 + c2
G1M

−1λ1

[
∂ f

(2)
r (z, t)
∂ z

]
, (24)

where ai = aij |ri=r
, bi = bij |ri=r

.
If r2 = r1(1 + ε) and ε > 0 is small quantity, then from (20) will follow

vibration equations for initially stressed thin walled cylindrical shell.
At zero approach and a constancy of Poisson factor these equations in

dimensionless variables (r, z, t) will become as

M̃−1

(
∂3Uz,0
∂ t2∂ z

)
− 2(1− ν)

1− 2ν
∂3Uz,0
∂ z3

− q1
∂2Ur,0
∂ z2

+
1
r2i

∂Uz,1
∂ z

−

−1
2

(
M̃−1

(
∂3Uz,1
∂ z∂ t2

)
− ∂

3Uz,1
∂ z3

)
+ q1d2

1− 2ν
4(1− ν)×

×
(
M̃−1

(
∂4Ur,1
∂t2∂z2

)
− ∂

4Ur,1
∂z4

)
+

1
r2i

∂2Ur,1
∂z2

= 0; (i = 1, 2) (25)

2ν
1− 2ν

· ∂Uz,0
∂z

+
1

1− 2ν
· Ur,0 −

1
2
∂Uz,1
∂z

− 2Ur,1
r2i

+

1− 2ν
4(1− ν)

(
d2M̃

−1

(
∂2Ur,1
∂t2

)
− ∂

2Ur,1
∂z2

)
= 0, (i = 1, 2)
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where ν - Poisson factor, dimensionless variables are entered by formulas

z = z∗ξ; bt = t∗ξ; r1 = r∗2ξ; r2 = r∗2ξ;
Ur,1 = U∗

r,1ξ; Uz,0 = U∗
z.0ξ; Uz,1 = U∗

z.1; Ur,0 = U∗
r,0,

(26)

b - velocity of transversal wave propagation in the shell material.
4. If a0 = 0 and c2 = 0, then (20) coincide with the refined equations of a

cylindrical layer without taking into account the pre-stress.

4 The Torsional Vibration Equations of Circular
Cylindrical Shell with Initial Displacements

Torsional vibrations of cylindrical shell are excited on its surface by stresses

σrθ = f (i)
rθ (r, t), r = ri (i = 1, 2). (27)

Shell motion is described by equation

∂σrθ
∂r

+
∂σzθ
∂z

+
2
r
σrθ = ρ

∂2Uθ
∂t2
. (28)

At torsional vibrations displacements in view of initial displacements have
form (9). Dependence between stress and small disturbed and initial displace-
ments have form (10). Substitution of the last in the motion equations (28)
leads to next the equation

(1 + b1)
{
∂2

∂r2
− 1
r2

+
1
r

∂

∂r
+
∂2

∂z2

}
Uθ = ρM−1 ∂

2Uθ
∂t2
. (29)

Let’s assume

Uθ =

∞∫
0

sin kz
− cos kz

}
dk

∫
l

Ūθe
ptdp, (30)

then from (29) we can get

d2Ūθ
dr2

+
1
r

∂Ūθ
∂r

−
(
β2 +

1
r2

)
Ūθ = 0, (31)

where

β2 = k2 + (1 + b1)−1ρ p2M̄−1, M̄ = µ
[
1− f̄(p)

]
.

General solution of (31) is equal to

Ūθ = A1I1(β r) +A2K1(β r). (32)
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Having presented external acting stresses also in the form of

f
(i)
rθ (z, t) =

∞∫
0

sin kz
− cos kz

}
dk

∫
l

f̄
(i)
rθ e

ptdp, r = ri (i = 1, 2) (33)

and substituting them into boundary conditions (27) we will get equations

∂Ūθ
∂r

− 1
r
Ūθ =

1
1 + b1

M̄−1
[
f̄

(i)
rθ

]
, r = ri (i = 1, 2). (34)

Having substituted general solution (32) into (34) we get

β [A1I1(β ri)−A2K2(β ri)] =
1

1 + b1
M̄−1

[
f̄

(i)
rθ

]
, (i = 1, 2). (35)

Let’s expand solution (32) into a power series of radius r

Ūθ =
A2

β2
+

∞∑
n=0

{
A1 +A2

[
ln
β r

2
− 1

2
ψ(n+ 1)− 1

2
ψ(n+ 2)

]}
(β r/2)2n+1

n!(n+ 1)!

and enter main parts of transformed torsional displacement Ūθ of intermediate
surface of shell.

Assume
A10 =

2
β
Ūθ,0; A2 = βξŪθ,1, (36)

where A10 = A1 +A2

[
ln βξ

2 − 1
2ψ(1)− 1

2ψ(2)
]
.

Substituting last values of integration constant Ai into transformed tor-
sional displacement we can get

Ūθ =

[
r

ξ
+ ξ

∞∑
n=0

η4,n
( r/2)2n+1

n!(n+ 1)!
β2n+2

]
Ūθ,1 + 2

∞∑
n=0

( r/2)2n+1

n!(n+ 1)!
β2nŪθ,0 , (37)

where

η4,n(r) = ln
r

ξ
− 1

2

n∑
k=1

2k + 1
k(k + 1)

. (38)

Similarly, having expanded boundary conditions (35) into a power series
of ri we can get

1
2

(
1− 4
β2r2i

)
βA2 +

∞∑
n=0

[A10 + η5,n(ri)A2]
β2n+3 (r/2)2n+2

n!(n+ 2)!
=

=
1

1 + b1
M̄−1

[
f̄

(i)
rθ (k, p)

]
; (i = 1, 2), (39)

where
η5,n(ri) =

1
n+ 2

.
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Substituting values of expressions (36) in (39) we have

ξ

(
β2

2
− 2
r2i

)
Ūθ,1 + 2

∞∑
n=0

( r/2)2n+2

n!(n+ 2)!
β2n+2Ūθ,0+

+ξ
∞∑
n=0

η5,n
( r/2)2n+2

n!(n+ 2)!
β2n+4Ūθ,1 =

=
1

1 + b1
M̄−1

[
f̄

(i)
rθ (k, p)

]
, (i = 1, 2). (40)

Having converted last equations we get

c1i Uθ,0 + ξ c2i Uθ,1 =
1

1 + b1
M̄−1

[
f̄

(i)
rθ (k, p)

]
, (i = 1, 2) (41)

where

c1i = 2
∞∑
n=0

(ri/2)2n+2

n!(n+ 2)!
λn+1

1 ;

c2i =
1
2

(
λ1 −

4
r2i

)
+

∞∑
n=0

η5,n(ri)
(ri/2)2n+2

n!(n+ 2)!
λn+1;

λn1 =
{
ρ

1 + b1
M−1

[
∂2

∂t2

]
− ∂

2

∂z2

}n
.

Equations (41) are general equations of torsional vibrations of isotropic
viscoelastic cylindrical shell subject to initial stresses. At zero approach system
(41) will take form

r21
4
λ1Uθ,0 + ξ

{
1
2

(
λ1 −

2
r21

)
+
(

ln
r1
ξ
− 1

2

)
r21
8
λ21

}
Uθ,1 =

=
1

1 + b1
M̄−1

[
f̄

(1)
rθ (k, p)

]
,

r22
4
λ1Uθ,0 + ξ

{
1
2

(
λ1 −

2
r22

)
+
(

ln
r2
ξ
− 1

2

)
r22
8
λ21

}
Uθ,1 =

=
1

1 + b1
M̄−1

[
f̄

(2)
rθ (k, p)

]
, (42)

where

λ1 =
ρ

1 + b1
M−1

[
∂2

∂t2

]
− ∂

2

∂z2
.

Further we shall result formulas for determination of stressed–strained
state of shell. Having converted on k and p expression (37) we get formula for
displacement

Uθ(r, z, t) = g1Uθ,0 + g2Uθ,1, (43)
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where

g1 = 2
∞∑
n=0

(r/2)2n+1

n!(n+ 1)!
λn, g2 =

1
r

+
∞∑
n=0

η4,n(r)
(r/2)2n+1

n!(n+ 1)!
λn+1.

Using the above-stated analogy it is easy to derive formulas for component
of stress tensor through unknown functions

σrθ = (1 + b1)M [c1 Uθ,0 + ξ c2 Uθ,1] ,

σzθ = (1 + b1)M
[
g1
∂Uθ,0
∂z

+ ξ g2
∂Uθ,1
∂z

]
, (44)

where c1 = c1i |ri=r ; c2 = c2i |ri=r .
Formulas (43) and (44) allow to determine values of displacement and

stress in arbitrary section of shell.

5 Application of Vibration Equations for Solving
Problems

For approbation of the derived vibration equations as test problems are solved
the problems of axisymmetrical vibrations of pre-stressed semi-infinite circular
cylindrical thick shell at kinematical excitement on the end face.

5.1 Longitudinal-Radial Vibrations of Pre-Stressed Cylindrical
Shell with Rigid Restrained Face

Let’s consider the problem of longitudinal-radial vibrations of semi-infinite
cylindrical shell with rigid restrained face, taking into account pre-stress and
viscous parameters of material. The problem is solved taking the Laplace
transform with further using method of variation of constant on the base
of refined equations. The stressed–strained state of shell subject to initial
displacements is defined.

Vibrations equations (20) ignoring external loading will take form

M̃−1

(
∂3Uz,0
∂ t2∂ z

)
− 2(1− ν)

1− 2ν
∂3Uz,0
∂ z3

− q1
∂2Ur,0
∂ z2

+
1
r2i

∂Uz,1
∂ z

−

−q1d2
(

ln ri −
1
2

)
1− 2ν

2(1− ν) ×
(
M̃−1

(
∂4Ur,1
∂t2∂z2

)
− ∂

4Ur,1
∂z4

)
+

+
1
r2i

∂2Ur,1
∂z2

+
(

ln ri −
1
2

)(
M̃−1

(
∂3Uz,1
∂ z∂ t2

)
− ∂

3Uz,1
∂ z3

)
= 0; (i = 1, 2)
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2ν
1− 2ν

· ∂Uz,0
∂z

+
1

1− 2ν
·Ur,0−

(
ln ri +

1
2

)
∂Uz,1
∂z

− 2Ur,1
r2i

+
(

ln ri
1− 2ν

+
1
2

)
×

× 1− 2ν
2(1− ν)

(
d2M̃

−1

(
∂2Ur,1
∂t2

)
− ∂

2Ur,1
∂z2

)
= 0, (i = 1, 2) (45)

ν - Poisson factor;

q1 =
1− 2v

2v
− 4(1− v)2

1− 2v
; d1 =

1
(1 + c2)2(1 + a0)2

; d2 =
1

(1 + c2)3(1 + a0)

Initial condition are zero. Boundary conditions at the rigid restrained face
have form:

when z = 0
Uz = −f(t), Ur = 0, (46)

as z →∞
Uz,0 = Uz,1 = 0, Ur,0 = Ur,1 = 0.

Stressed–strained state of shell is defined by formulas

Uz =
1 + c2
1 + a0

[Uz,0 + ln rUz,1] ;

Ur =
1
r
Ur,1 +

r

2
Ur,0 +

(
ln r − 1

2

)[
λ1Ur,1 −

∂

∂z
G1Uz,1

]
r

2
;

σrz = M̃(1 + c2)
{
r

2
·
[
(1 + c2)2M̃−1

(
∂2Uz,0
∂t2

)
− 2(1− v)

1− 2v
· ∂

2Uz,0
∂z2

]
−

−r
2
q1 ·
∂Ur,0
∂z

+
r

2

(
ln r − 1

2

)[
(1 + c2)2 · M̃−1

(
∂2Uz,1
∂t2

)
− q2

∂2Uz,1
∂z2

]
+

−
[
(1 + c2)(1 + a0)

1− 2v
2(1− v) · M̃

−1

(
∂3Ur,1
∂t2∂z

)
− 1− 2v

2(1− v) · ∂
3Ur,1
∂z3

]
×

×r
2
(ln r − 1

2
)q1 +

1
r
· ∂Ur,1
∂z

+
1
r
Uz,1

}
; (47)

σrr = M̃(1 + c2)
2v

1− 2v
· ∂Uz,0
∂ z

+
1

1− 2ν
· Ur,0−

−
(

ln r +
1
2

)
∂Uz,1
∂ z

− 2
r2
· Ur,1 +

(
ln r

1− 2ν
+

1
2

)
×

× 1− 2ν
2(1− ν)

[
(1 + c2)(1 + a0)M̃−1

(
∂2Ur,1
∂ t2

)
− ∂

2Ur,1
∂ z2

,

where

λ1 = M̃−1(1 + c2)(1 + a0) ·
1− 2v

2(1− v) ·
∂2

∂ t2
− 1− 2v

2(1− v) ·
∂2

∂ z2
.
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Having applied Laplace transformation on time to system (45), with the
subsequent using of method of constants variation the solution in transfor-
mations is received. Step of going from Laplace and Fur’e transforms to the
original time and space function is realized using shift theorem and theorem
of functions’ convolution. It is got closed solution which substitution into for-
mulas (47) lets fully define stressed–strained state of arbitrary shell section

Uz,1 =
γ51
γ7

t∫
γ7z

e−
c1
2 τF1(t− τ)I0

(
γ9

√
τ2 − γ27z2

)
dτ−

−γ50
γ5

t∫
γ5z

e−
c1
2 τF2(t− τ)I0

(
γ8

√
τ2 − γ25z2

)
dτ ;

F1(t) = γ80

t∫
0

f(ξ)dξ + γ81
(
f

′
(t)
c1
2
f(t)

)
;

F2(t) = γ82

t∫
0

f(ξ)dξ + γ84
(
f

′
(t) +

c1
2
f(t)

)
;

Ur,1 = γ50

t∫
γ5z

f(t− τ)e−
c1
2 τI0

(
γ8

√
τ2 − γ25z2

)
dτ−

−γ51
t∫

γ7z

f(t− τ)e−
c1
2 τI0

(
γ9

√
τ2 − γ27z2

)
dτ ;

Uz,0 =
1
γ10

t∫
γ10z

⎡
⎣γ60F0(t− τ) + γ61

t−τ∫
0

f(ξ)dξ

⎤
⎦×

×e−
c1
2 τI0

(
γ0

√
τ2 − γ210z2

)
dτ−

−q4
{

1
γ5

t∫
γ5z

e−
c1
2 τI0

(
γ8

√
τ2 − γ25z2

)
×

×

⎡
⎣γ62F0(t− τ) + γ63

t−τ∫
0

f(ξ)dξ

⎤
⎦ dτ+ (48)

+
1
γ7

t∫
γ7z

⎡
⎣γ64F0(t− τ) + γ65

t−τ∫
0

f(ξ)dξ

⎤
⎦×
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×e−
c1
2 τI0

(
γ9

√
τ2 − γ27z2

)
dτ ;

F0 = f ′(t) +
c1
2
f(t);

Ur,0 =
1
γ10

t∫
0

[
γ70f

′
(t− τ) + γ71f

′
(t− τ) + γ72f (t− τ)

]
×

×I0
(
γ0

√
τ2 − γ210z2

)
e−

c1
2 τdτ +

γ50
γ5
×

×
t∫

0

[
γ73f

′′
(t− τ) + γ73c1f

′
(t− τ) + γ75f (t− τ)

]

I0

(
γ8

√
τ2 − γ25z2

)
e−

c1
2 τdτ−

−γ51
γ10

t∫
γ7z

[
γ76f

′′
(t− τ) + γ76c1f

′
(t− τ) + γ78 f(t− τ)

]

I0

(
γ9

√
τ2 − γ27z2

)
e−

c1
2 dτ.

Calculations are performed by formulas (47) for viscoelastic material the
physical characteristics areas follow:

α1 = 0, 78;α2 = 0, 18;α1 = 0, 1;

τ1 = 80mks ; τ2 = 0, 14 · 106mks; τ3 = 0, 11 · 107;

K (t) =
3∑

n=1

αnτ
−1
n e

−t/τn .

Results are represented on Figs. 1–6.
On Figs. 1 and 2 dependence of change in longitudinal displacement and

radial stress σrr with coordinate are presented for fixed value of time t = 10
when external load is given as function: where H(t) - unit function of Heave-
side, A0 = const. From the resulted graphs it is visible, that in the sections
close to end face (0 < z < 4) the influence of factor of preliminary intensity
(a0) is strong. Depending on the value of factor a0 in points close to the end
face displacement can increase two (a0 = −0, 68) - three (a0 = −0, 7) time.
The similar picture is observed or stress σrr which can accept big values in
sections close to the face depending on a0, and in sections removed from the
end face on distance z = 6 and more the full drop of displacement and stress
is observed. From here follows, that at z > 6 for loadings as H(t)-type the
influence of factor of preliminary intensity can be neglected.
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Fig. 1. Plot of displacement Uz/A0 as
functions of coordinate z for t = 10

Fig. 2. The dependence of change in
stress with coordinate z

Fig. 3. Plot of displacement Ur against
coordinate z

Fig. 4. The change of displacement Uz

with coordinate for various values of a0

On Figs. 3 and 4 graphs of displacements and Ur against coordinate z are
presented when external loading is has form: f(t) = g0 sin2 [πt/t1] for t = 20
and various fixed values of a0. From these graphs follows, that general pic-
ture of changes of displacements and Ur looks like previous ones, but unlike
here displacement Ur at a0 ≥ −0, 04 will be bigger, and at a0 ≤ −0, 07 will
be less than one at a0 = 0. On Figs. 5 and 6 graph of change of radial dis-
placement in time are presented, here also loading is given in the form of
smooth harmonic function. On Fig. 5 results in section z = 5 are presented in
view of initial displacements (a0 = −0, 01; −0, 02; −0, 03; −0, 04) and ignor-
ing them (a0 = 0). Apparently from graphs it can be seen at initial moments of
action of external loading the sharp increase in value of displacement which
eventually at t = 0 passes in the stable state is observed, moreover with
increase of initial displacements the value of radial displacement increases.
On Fig. 6 values of change of radial displacement in various shell sections
(z = 5, 10, 15) at a0 = 0 are resulted. With growth of distance from the face
in shell sections reduction of displacement values is observed.
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Fig. 5. The change of displacement Ur

in time in section z = 5 for different
values of a0

Fig. 6. Plot of displacement Ur as
function of time in various shell sec-
tions at a0 = 0

5.2 Torsional Waves in Viscoelastic Cylindrical Shell with Initial
Stresses

Let’s consider vibration process in semi-infinite pre-stressed viscoelastic circu-
lar cylindrical shell, at kinematical excitement at the face. Mathematical for-
mulation of problem is based on using of refined vibration equations, which at
the absence of external loadings in dimensionless variables (r, z, t) take form

r2i
4

(
1

1 + b1
M̃−1

[
∂2Uθ,0
∂ t2

]
− ∂

2Uθ,0
∂ z2

)
+

1
2

((
1

1 + b1
M̃−1

[
∂2Uθ,1
∂ t 2

]
− ∂

2Uθ,1
∂ z2

)
−

− 4
r2i
Uθ,1

)
+
(

ln ri −
1
2

)
r2i
8
×

×
(

1
(1 + b1)2

M̃−2

[
∂4Uθ,1
∂ t 4

]
− 2

1 + b1
M̃−1

[
∂4Uθ,1
∂ t2∂ z2

]
− ∂

4Uθ,1
∂ z 4

)
= 0, (i = 1, 2)

(49)

where M̃ = 1−
t∫
0

K(t− τ)dτ ,K(t) - core of viscoelastic operator dimensionless

variables are introduced by formulas

z = z∗ξ; bt = t∗ξ; r1 = r∗1ξ; r2 = r∗2ξ; Uθ,1 = U∗
θ,1ξ; Uθ,0 = U∗

θ.0,

ξ - radius of intermediate surface, Uθ,0, Uθ,1 - main parts of torsional displace-
ment Uθ, b - velocity of transversal wave propagation in material of shell.

Initial torsional displacement has form

Ūθ = (1 + b1)Uθ (b1 = const).

Boundary conditions of the problem: when z = 0:

Uθ = −f(t); σzθ = 0; σrθ = 0;
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as z →∞
Uθ = 0. (50)

Initial conditions are zero.
Stressed–strained state of shell is defined by formulas

Uθ =
(

1
r

+
r

2
ln r · λ1

)
Uθ,1 + rUθ;

σzθ = (1 + b1)µM̃
{
r
∂Uθ,0
∂z

+
[
1
2

+ ln r · λ1
]
∂Uθ,1
∂z

}
; (51)

σrθ = (1 + b1)µ M̃
{
r2

4
λ1Uθ,0 +

[
1
2

(
λ1 −

4
r2

)
+
(

ln r − 1
2

)
r2

8
λ21

]
Uθ,1

}
,

where

λ1 =
1

1 + b1
M̃−1

[
∂2

∂t2

]
− ∂

2

∂z2
.

The problem is solved using Laplace transformation on time. Step of going
from Laplace and Fourier transforms to the original time and space function
is realized using shift theorem and theorem of functions’ convolution.

Uθ,1 = exp−c1t
{[
I0

(
γ0

√
t2 − γ21z2

)
δ(t− γ1z) +

∂

∂t
I0

(
γ0

√
t2 − γ21z2

)
×

×H(t− γ1z) −
c1
2
I0

(
γ0

√
t2 − γ21z2

)
H(t− γ1z)

]
+

1
γ1

(
γ90 +

c1

2
γ91

)
×

×I0
(
γ0

√
t2 − γ21z2

)
H(t− γ1z) +

γ92
γ1

t∫
γ1z

I0

(
γ0

√
t2 − γ21z2

)
dτ+

+
γ93
γ2

[
I0

(
γ3

√
t2 − γ22z2

)
δ (t− γ2z)

] [
γ100 + γ84

∂3

∂t3
+ γ98

∂2

∂t2
+ γ99

∂

∂z

]
×

×
((
e−

c1
2 t
)
· I0

(
γ0

√
t2 − q20z2

)
+H(t− q0z)

)
+

1
γ1
×

+
∂

∂t

(
I0

(
γ3

√
t2 − γ22z2

))
H(t− γ2z)−

c1

2
I0

(
γ0

√
t2 − γ22z2

)
H(t− γ2z)

]
+

+
1
γ2

(
γ94 +

c1

2
γ93

)
I0

(
γ3

√
t2 − γ22z2

)
H(t− γ2z)+

+
γ95
γ2

t∫
γ2z

I0

(
γ3

√
t2 − γ22z2

)
dτ

⎫⎬
⎭+ γ96e−k1z;



Mathematical Vibration Modelling of the Pre-Stressed Cylindrical Shell 311

Uθ,0 = −γ97
q0

t∫
q0z

t−τ∫
0

f(ξ)dξe−c1τI0

(
γ0

√
t2 − γ21z2

)
dτ+

+
e−k1z

q20

{
−q11

(
∂2

∂t2
+ c1

∂

∂t
+
c21
4

)
+ γ82

}
+

+e−c
∗
1t

(
1
q∗0

)
γ100I0

(
γ0

√
t2 − q20z2

)
H(t− q0z)+γ88

t∫
q0z

I0

(
γ0

√
t2 − q20z2

)
dτ+

+
1
γ1

⎡
⎣γ102I0(γ0√t2 − γ21z2

)
H(t− γ1z) + γ77γ74

t∫
γ1z

I0

(
γ0

√
t2 − γ21z2

)
dτ

⎤
⎦+

+
1
γ2

⎡
⎣γ104I0(γ3√t2 − γ22z2

)
H(t− γ2z) + γ68γ71

t∫
γ2z

I0

(
γ0

√
t2 − γ22z2

)
dτ

⎤
⎦
⎫⎬
⎭ .

(52)
Substituting last expressions into formulas (51), stress tensor component

σrθ and displacement Uθ as function of coordinate and time are calculated for
viscoelastic material parameters of which was given above. External loading
again is given as smooth function

f(t) = g0 sin2 [πt/t1] .

The results are presented on Figs. 7–12. On Figs. 7 and 8 graphs of stress
change in time for fixed section z = 5 and different values of parameter b1
(0; 0, 05; 0, 1; 0, 15; 0, 2) are presented, herewith case b1 = 0 is corresponded to
case without initial displacements. Here we can see the influence of factor of
initial displacement on change of stress which is essential at initial moments

Fig. 7. Plot of σzθ stress change in
time for z = 5

Fig. 8. Plot of stress σrθ as function of
time for z = 5
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of interaction. By these graphs it is possible to draw a conclusion, that in
the beginning of interaction the sharp increase in stress values is observed,
and eventually oscillatory process is stabilized and passes in the established
condition.

On Figs. 9 and 10 graphs of displacement and stresses are presented as
function of coordinate, at the fixed values of time t and factor b1. On Figs. 9
and 10 accordingly graphs of stresses σrθ and are presented at t = 1 and vari-
ous values of factor b1. From graphs it is visible, that with growth of distance
from an end face the stress amplitude falls and on distance approximately
6–7 radiuses from an end face it can be neglected, and this is observed at any
value of factor b1.

On Figs. 11 and 12 graphs of displacement change and stress in view of
(b1 = 0, 2-dashed line) and without taking into account (b1 = 0-continuous
line) factor of initial displacement are presented for the various fixed values of
time t = 1, 5, 10, 15. Here eventually reduction of values of displacement and
stress is observed. Herewith graphs of torsional displacement presented on

Fig. 9. Plot of σrθ stress change in co-
ordinate for t = 1

Fig. 10. Plot of stress σzθ as function
of coordinate z for t = 1

Fig. 11. Plot of displacement Uθ as
function of z for fixed values of time
t = 1, 5, 10, 15

Fig. 12. Plot of σrθ stress as function
of coordinate for t = 1, 5, 10, 15
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Fig. 11 at t = 1 have harmonious character, and in other cases more smooth
form.

On Fig. 12 in sections close to the face the sharp increase in values of stress
σrθ is observed, which in the process of removal from an end face gradually de-
creases. From the presented graphs it is visible, that in the shell sections equal
to 5–6 radiuses the values of displacement and stresses might be neglected.
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Viscoelastic Fluids in a Thin Domain:
A Mathematical Study for a Non-Newtonian
Lubrication Problem

G. Bayada, L. Chupin, and S. Martin

Summary. After describing the process allowing obtaining classical Reynolds equa-
tion describing thin flow model for Newtonian fluids, we give a short description of
the present state of art in the modelling of various non Newtonian thin flows. At
last, we give some recent results concerning visco-elastic flows for which it is not
possible to gain a generalized Reynolds equation. At the contrary, the thin flow
corresponding model relies primary on the computation of the velocity field.

1 Mathematical Aspect of Lubrication Problems

In many fields of engineering and applied sciences, different technologies re-
duce friction and wear between relative moving surfaces. Lubrication is part
of a larger discipline, the tribology, which included also the study of friction
and wear [1]. Lubrication is mainly concerned with the presence of a lubricant
used to prevent contact between close surfaces in relative motion [2].

In some sense it is primary a fluid mechanics problem whose originality
deals with the thin gap in which the fluid stays. Moreover, contrary to the
classical problems in fluid mechanics, the velocity is not the primary unknown.
People in the field of lubrication are mainly interested by the knowledge of
the pressure which, due the thin gap, can reach more than one Giga Pascal.

Let us consider the classical Navier–Stokes system defined in Ω = ω ×
(O, H(x1, x2)) in which ω is a smooth domain of the (x1, x2) plane:

ρ U.Grad(U) = −grad(p) + η∆U + F,

div(U) = 0. (1)

Assuming that H is small with respect of the dimensions of ω, so that the
pressure can be considered as a function of (x1, x2) only and, after suitable
dimensionless procedure, retaining leading terms in the preceding system,
we get:

η
∂2ui
∂ x3

=
∂p

∂xi
i = 1, 2

∂p

∂x3
= 0.
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It is now possible to integrate these equations in the x3-direction, using
velocity boundary conditions on the lover and upper part of Ω, namely:

U(x1, x2,H(x1, x2)) = 0, U(x1, x2, 0) = (s, 0, 0),

so obtaining the velocity as a function of the pressure.
Putting this last expression in the divergence free equation and integrating

it also in the x3 direction allows us to eliminate the velocity and to obtain an
equation in pressure only: the so-called Reynolds equation which dates back
to 1886.

∂

∂x1

(
H3 1

12 n
∂p

∂x1

)
+
∂

∂x2

(
H3 1

12 n
∂p

∂x2

)
= s/2

∂H

∂x1
. (2)

Such procedure can be rigorously described by way of asymptotic expan-
sion with respect of the small parameter ε = H/L in which L is the charac-
teristic length of ω ([3], [4]).

In some sense Reynolds equation is for the Navier–Stokes system similar
to the plate equation for the full 3-D elasticity system.

Such Reynolds equation is a classical elliptic one. However in most of the
lubricated devices, a biphasic phenomena occurs: the cavitation (the occur-
rence of a bubbles of air into the fluid) and a free boundary formulation has
to be introduced.

The classical one is a variational inequality (VI) of the first kind which
takes full account of the fact that pressure into the fluid cannot fall below the
saturation pressure (taken as zero for convenience):

Let K = (ϕ,ϕ ∈ H1(ω), ϕ ≥ 0), then p is searched as the solution in K of
the VI: ∫∫

ω

H3 1
12 n

(
∂p

∂x1

∂(ϕ− p)
∂x1

+
∂p

∂x2

∂(ϕ− p)
∂x2

)
dx1dx2

≥ −
∫∫
ω

s/2
∂H

∂x1
(ϕ− p)dx1dx2 ∀ϕ,ϕ ∈ K.

Numerous studies exist about existence, uniqueness and various properties
of solution of this inequality [5].

As this VI model is not a conservative one, another more complex model
has been proposed in the literature: the pressure saturation model. In this ap-
proach, the pressure is no longer the only unknown and a saturation function
θ is introduced. The problems read now as:

Find p and θ such that: p ≥ 0, 0 ≤ θ ≤ 1, p(1− θ) = 0∫∫
ω

H3 1
12 n

(
∂p

∂x1

∂ϕ

∂x1
+
∂p

∂x2

∂ϕ

∂x2

)
dx1dx2

=
∫∫
ω

s/2
∂ϕ

∂x1
Hθ dx1dx2 ∀ϕ,ϕ ∈ H1(ω). (3)
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Mathematical results about this elliptic-hyperbolic free boundary problem
can be found in ([6, 7]).

Remark. Clearly, the procedure is not a rigorous one as if the way to passed
from (1) to (2) can be justified, there does not exist so far a rigorous way to
pass to a 3-D diphasic model, to be defined, to (3). This is still an open
question.

2 Thin Film Non-Newtonian Fluid

In the preceding section, the fluid has been considered as a Newtonian
one. However it is well known that numerous biological fluids, blood or
physiological secretions like tears or synovial fluids present non-Newtonian
characteristic. In engineering applications, people are interested to control the
characteristic of the flows in order to suit various requirements such as main-
taining its qualities in a wide range of temperature and stresses. Commercial
lubricants are then modified with different additives to be able to protect en-
gines both in winter and in summer with the same product. This addition
leads also a non-Newtonian behaviour of the actual lubricant: the usual as-
sumption of a linear relation ship of shear stress and shear strain may failed
due to the additives contained in the lubricant and to the very severe operating
conditions.

Moreover, it is to be noticed that, in most of the practical applications,
the geometry of the flow to be considered is anisotropic. This is the case in
lubrication studies which are mainly devoted to thin film flows, in the study
of the spreading of tears or in the description of polymers through thin dies.

The idea is then to try to obtain generalized Reynolds equations describing
non-Newtonian effects and easier to manage than the full 3-D non-Newtonian
Navier–Stokes system.

Near all models for non-Newtonian flows are associated to a thin film as-
ymptotic lubrication model in a somewhat heuristic way. These models are
often discussed in the engineering literature. The main reason is the non lin-
earity of the basic non-Newtonian 3-D equation which induces some difficulty
by passing to the limit making ε tends to zero. Moreover, these non-Newtonian
3-D models are most often depending of some rheological parameters whose
dependence with respect to ε is almost always an important feature in the
formal or rigorous asymptotic process to get a Reynolds type equation.

Micropolar fluids are perhaps the closest to Newtonian one by its math-
ematical aspect. They are used to model flow in which there are a lot of
small rigid particles. A new field (the micro rotation) together with a supple-
mentary equation is added to the Stokes system [8]. Additional parameter,
the characteristic length of the micro-rotation effects is introduced and has
to be compared with the gap, so leading to define a critical ratio involving
these two parameters. One of the first studies concerning micropolar lubrica-
tion appears in [9] in which a modified Reynolds equation is introduced. The
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related mathematical proof has been given in [10]. From practical use, the dif-
ficulty lies in the knowledge of the boundary condition to be satisfied by the
micro rotation at the fluid-solid interface. Assuming homogeneous boundary
conditions is of common use. However a more physical situation assuming a
“boundary viscosity effect” condition can be introduce [11] and leads natu-
rally to a slip conditions on this interface [12]. Various situations have been
considered in [13].

Another class of problems for which the asymptotic procedures are math-
ematically well described included quasi Newtonian fluids (Carreau’s law,
power law, Willamson’s law, in which various stresses velocity relations are
chosen) ([14]–[16]). For the Carreau law, for example the asymptotic law
strongly depends on the values of the Reynolds number Re written as Re = εγ

and of the coefficients r in the power law. In some cases a Reynolds–Carreau
equation can be obtained while for other cases it is not possible to decoupled
velocity and pressure equations. In [17] a general approach is described with
zero stress boundary conditions on the lateral boundaries which induce addi-
tional difficulties. Neither the less it has been possible to find an equation for
the pressure only. This is not the case for Bingham fluid [18] in which the limit
inequality appears in term of both pressure and velocity. Near all these papers
however are devoted to problems with zero velocity at the boundary. They are
not representative of lubrication boundaries conditions which are character-
ized by relative velocity between upper and lower surfaces of the devices. So,
application of these results in lubrication need to revisit the proof especially
in terms of dependence of the rheological coefficients with respect to ε.

The second order flow, including several rate of strain terms in the consti-
tutive equation has also been considered for lubrication in several mechanical
papers ([19], [20]) and corresponding references. Due to the non linearity var-
ious assumptions are made to gain a limit problem and resulting equations
are not the same, although numerical results are close one together.

3 Thin Film Viscoelastic Fluids

The case of visco elastic fluid is less clear from the mathematical aspect. Intro-
ducing viscoelasticity behaviour is primary described by the Deborah number
De which is associated to the relaxation time. One of the family of laws used
to describe this phenomena is the Olroyd-B model based upon a constitutive
equation which is an interpolation between purely elastic and purely viscous
behaviour, thus introducing a supplementary parameter r describing the rel-
ative proportion of both behaviours (solvent to solute ratio) [21].

ρ U.Grad(U)− η(1− r)∆U + grad(p)− div(σ) = F,

div(U) = 0,
λ (U.Grad(σ) + U.∇σ + ga(∇U,σ) + f(σ)σ = +2η rD(U).
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The parameter λ is proportional to 1/De and the bilinear application ga is
defined up to D(U) and W(u), the symmetric and skew symmetric parts of
the velocity gradient by

ga(∇U, σ) = σ.W (U)−W (U).σ − a(σ.D(U) +D(U).σ) 0 ≤ a ≤ 1.

As a particular case, this model retains the generalized Maxwell model
(r = 1, f = Identity) and Phan-Thein Tanner model for example. From
mathematical aspects, few results exist concerning these models and the way
how to obtain thin film approximation is highly heuristic.

Using Maxwell equation as starting point, a way has been to take the ε

parameter as a leading small parameter and then to use the Deborah number
as a perturbation parameter [22]. Another approach has been to choose theDe
of the same order of magnitude than ε [23]. This assumption allows balancing
the order of Newtonian and non-Newtonian contribution (see also [24] for
mechanical comments). Boundary conditions are chosen in order to be applied
to usual lubrication problems. In all these cases a Reynolds-type equation is
gained.

With the same assumption and starting with the full Olroy-B model leads
to a limit problem which has both the velocity field and the pressure as un-
knowns. Let us describe briefly the procedure:

After scaling both equations and stress tensor in an adequate way, an
asymptotic 2D problem is obtained [25] from the OLROYD-B system:

− (1− r)∂
2ui
∂ x3

− r ∂
∂x3

(
B

(
∂ui
∂x3

))
= − ∂p
∂xi

+ Fi i = 1, 2. (4)

div (U) = 0

In which the non linear operator B is defined by:

B(t) =
t

1 +D2
e(1− a2) t2

.

This result generalizes the work of ([23], [24]), concerning not only the rhe-
ological model but also the dimension (2D instead of 1D for the pressure
asymptotic problem). Obtaining the asymptotic problem is partly the result
of an heuristic process, so that the solvability of this problem has to be rigor-
ously proved.

As already mentioned, one feature of this system is that it is not possible
to eliminate the velocity so obtaining an equation with respect to the pressure.
The basic idea is to make exactly the contrary. The pressure has to be first
eliminated by working in a weak sense in a divergence free space. Then a non
linear equation with unknowns (u1, u2) is posed in that kind of space which
is defined by:
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Let KI = (ϕ, ϕ ∈ (L2(Ω))2, ∂ϕ∂ x3
(s, 0) ∈ (L2(Ω))2, ϕ(x1, x2,H(x1, x2)) = 0,

ϕ(x1, x2, 0) = (s, 0)

such that ∀θ, θ ∈ D(ω ),
∫∫
ω

(∇xθ.

H(x)∫
0

ϕ(x3)dx3)dx1dx2 = 0.

So that the problem becomes:
Find U in KI such that for any ϕ in KI, we have:

(1− r)
∫∫∫

Ω

∂(U)
∂x3

∂(ϕ−U)
∂x3

dX + r
∫∫∫

Ω

B(
∂U
∂x3

)
∂(ϕ−U)
∂x3

dX

≥
∫∫∫

Ω

F.(ϕ−U)dX. (5)

It is easy to prove that the left hand side of this inequality is a bounded
monotone and coercive operator for 0 < r < 8/9. Following [25], this gives the
existence and uniqueness of the solution of this inequality. The pressure as a
function of (x1, x2) is easily recovered using De Rham theorem.

Interestingly this range of parameter for which the problem can be solved
is exactly the same for which the 3-D Olroyld initial problem has a solution.

A new algorithm related to the Uzawa one is presented and convergence
theorems can be found in [26].

Remark: Taking diphasic phenomena as the cavitation in a visco elastic
fluid is not clear at all. Even if the constraint can be written on term of
pressure as for a Newtonian fluid, it is not possible to include it in (5) which
relies only on the velocity.
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From the African sona Tradition
to New Types of Designs and Matrices

Paulus Gerdes

Introduction: Mathematics in African History

From the earliest times onwards humans in Africa have created and developed
mathematical ideas. For an annotated bibliography of mathematics in African
history and cultures, see Gerdes and Djebbar (2004, 2007).1

Among the earliest “mathematical artifacts” known worldwide, several
are from Africa. A small piece of the fibula of a baboon, marked with 29
notches, was found in a cave in the Lebombo mountains between South Africa
and Swaziland. The bone has been dated to approximately 35,000 BC. Well
known and widely discussed is another bone found at Ishango (Congo), dated
at 20,000 BC.

One of the oldest mathematical texts from Ancient Egypt is a collection
of problems composed by the scribe Ahmose (ca. 1,650 BC), probably copied
from a text about 200 years older. It contains various methods of approx-
imate solution. For instance, the length of the side of the square that has
approximately the same area as that of the circle is determined as 8/9 of the
diameter of the circle, which implies 3.1605 as a close approximation for the
value of π. The “pinnacle of achievement” of mathematics in Ancient Egypt
is the exact result for the volume of a truncated pyramid with square base.
In his paper “Africa, the cradle of world mathematics?” (1985), presented
in Nairobi for the University of the United Nations, Henri Hogbe-Nlend, the
first president (1976–1986) of the African Mathematical Union, stated that
mathematics in Pharaonic Africa was intuitive, demonstrative and rational.
Furthermore, that Africa is the mother of geometry. In his book “Egyptian
Geometry: Contribution of Ancient Africa to World Mathematics”, the Con-
golese linguist and Egyptologist Théophile Obenga underlines that the title
1 This bibliography is the outcome of work done by AMUCHMA, the Com-

mission on the History of Mathematics in Africa, created in 1986 by the
African Mathematical Union (AMUCHMA webpage: http://www.math.buffalo.
edu/mad/AMU/amuchma online.html).
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of the Ahmose papyrus presents the oldest known description or definition
of what mathematics is about: “Correct method of investigation of nature in
order to understand all that exists, each mystery, all secrets” (Obenga, 1995,
p. 290).

During the Hellenistic period and its aftermath, famous mathematicians
worked in Alexandria, like the geometers Euclid (ca. 365–300 BC), Heron
(ca. 100 AD), Claudius Ptolemeus (second century AD), and the number
theorist Diophantus (third century AD). Hypathia of Alexandria (ca. 370–415
AD) is the first female mathematician known in history. In the same period,
several other mathematicians are known from the Maghreb, like Theodorus
(ca. 465–398 BC), Eratosthenes (ca. 276–194 BC), and Nicotelese (ca. 250
BC), all of Cyrene, Theodoses (second century BC) of Tripoli and Apuleius
of Madaura (ca. 124–170 AD).

North Africa played an important role in the genesis of algebra in Islamic
culture (for an overview, see Djebbar 2005). North African mathematicians
from Egypt to the Maghreb made their contributions, like Abu Kamil (d. 930),
Abu Bakr al-Hassar (twelfth century), Samaw’al (d. 1175), Ibn al-Yasamin
(d. 1204), Ibn Rashiq (c. 1275), Ibn al-Banna (1256–1321), Uqbani (1320–
1408), Ibn Qunfudh (1339–1407), Ibn al-Ha’im (1352–1412), Ibn Haydur
(d. 1413), Ibn al-Majdi (1365–1447), Qatrawani (fifteenth century), Sibt al-
Maradini (1423–1506), Ibn Ghazi (1437–1513). Important mathematicians
born outside Africa worked for many years in North Africa, like Ibn al-
Haytham (965–1041), Al-Qurashi (d. 1184), and Al-Qalasadi (1412–1485).
Ibn Muncim (d. 1228) of Andalusian origin settled in Marrakech where he
laid the foundations of combinatorial analysis, including a presentation of
the so-called triangle of Pascal, more than four centuries before Blaise Pascal
(1623–1662). Several mathematical notations used today had been conceived
in the Maghreb. In recent years many mathematical manuscripts from the
medieval Maghreb have been discovered, analysed and edited, underscoring
the mathematical heritage of North Africa.

Mathematical ideas from Ancient Egypt to Islamic Egypt and from the
Maghreb during the ‘Middle Ages’ found their way to Europe and have
contributed substantially to the international development of mathematics
(Djebbar 2001, 2005). Leonardo de Pisa (Fibonacci) had studied in Algeria
before he wrote his famous Liber Abaci (1202).

Hundreds of mathematical manuscripts – written in Arabic and in various
African languages – from Timbuktu in today’s Mali remain to be analysed to
lift the veil from some of the mathematical connections between Africa South
of the Sahara and the North of the continent. Only one manuscript from Tim-
buktu, written by al-Arwani (probably sixteenth century) has been partially
analysed so far. The astronomer-mathematician Muhammed ibn Muhammed
al Katsinawi (ca. 1740) from Katsina in today’s Nigeria was well known in
Egypt and the Middle East.

Thomas Fuller (1710–1790), brought from West Africa as a slave to
North America in 1724, became famous in the “New World” for his mental
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Fig. 1. Examples of one-colour and two-colour litema patterns (cf. Gerdes, 1998)

calculations (see Fauvel and Gerdes, 1990). As an old man in 1788, he was
able to calculate the answer to questions like 7 × 7 × 7 × 7 × 7 × 7 × 7 = ?
and “How many seconds lived a man 70 years, 17 days and 12 hours old” in
an instant. “Discovered” by the anti-slavery militants, he turned into one of
their important examples that the “black man is not mentally inferior to the
white man” (cf. Fauvel and Gerdes, 1990). His example shows also that there
were strong traditions of mental calculation in the African region from which
he originated, probably the Gulf of Benin.

Our Cameroonian colleague Edward Njock stressed in 1985, that geometry
is omnipresent in African culture: “Pure mathematics is the art of creating
and imagining. In this sense black art is mathematics.” As an illustration the
litema wall decoration by women in Lesotho may serve (cf. Gerdes, 1998,
87–170). Figure 1 presents examples of one-colour and two-colour litema
patterns.

For an overview of geometrical and other mathematical ideas from Africa
south of the Sahara, see Zaslavsky’s classic study (1973, 1999), Eglash (1999),
and Gerdes (1998, 1999a). Geometrical ideas in basket and mat weaving are
analysed in several studies by Gerdes and Bulafo (1994) and Gerdes (2000a,b,
2003a,b, 2004).

Due to the slave trade, wars of conquest and colonial occupation, many
African scientific and technological traditions entered into decline. Substantial
knowledge was lost.

With the end of the colonial period and the conquest of national inde-
pendence a period of mathematical revival started on the African continent
(cf. Sica 2005). Only a few African mathematicians had received a doctorate
before independence, like the Egyptians Ali Mostafa Mosharafa (Ph.D. 1923)
and Mohamed Mursy-Ahmed (Ph.D. 1931) (Independence Egypt 1937), the
Nigerians Chike Obi (1950), Adegoke Olubummo (1955) and James Ezeilo
(1959) (Independence Nigeria 1960), and the Sierra Leonen Awadagin
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Williams (1958) (Independence Sierra Leone 1961). Since Independence,
African mathematicians were awarded doctoral degrees by universities in
(at least) 53 different countries, mostly situated in three continents: Africa
(44%), Europe (36%) and America (20%). During the second half of the twen-
tieth century more than 3,000 Africans earned a doctorate in mathematics.
Hundreds have been working as researchers in Europe and North America
(Gerdes 2007a). The percentage of female doctorate holders is still only 11%.
African mathematicians have organized themselves in national and regional
associations. In 1976 the African Mathematical Union was created. African
mathematicians are doing research in various fields of pure and applied math-
ematics, including applications to urgent problems the continent is facing,
like desertification, malaria and HIV/AIDS.

One aspect of the African mathematical renaissance is the reconstruction
of partially lost knowledge and the exploration of its potential both in math-
ematics education and research. The case of sona geometry seems to me a
particular powerful example in this respect, as will be shown.

Sona Geometry

In southern central Africa the sona drawing and story telling tradition in-
corporated various geometrical ideas (cf. Gerdes 1995, 1997a, 2006a). This
tradition of drawings in the sand called sona (sing. lusona) was developed
among the Cokwe of northeast Angola and related peoples. Each boy learnt
the meaning and execution of the easier sona during the initiation rites. Draw-
ing specialists, called akwa kuta sona, transmitted the more complicated sona
to their male descendants. These drawing experts were at the same time the
story tellers who used the sona as illustrations, referring to proverbs, fables,
games, riddles, animals. Figure 2 presents a lusona and tells the corresponding
story of ‘The hunter and the dog.’

The sona drawings were executed in the following way: After cleaning and
smoothing the ground, the drawing experts first set out with their fingertips
a net of equidistant points and then they draw a line figure that embraces the
points of the network. The experts execute the drawings swiftly. Once drawn,
the designs are generally immediately wiped out.

Slave trade, colonial penetration and occupation provoked a cultural
decline and the loss of a great deal of knowledge about sona. On the basis
of an analysis of sona reported by missionaries, colonial administrators and
ethnographers, it was possible to reconstruct some mathematical elements in
the sona tradition.

As the examples in Fig. 3 suggest, symmetry and monolinearity played
an important role as cultural values: most Cokwe sona are symmetrical or
monolinear. Monolinear means composed of only one (smooth) line; a part of
the line may cross another part of the line, but never a part of the line may
touch another part.
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The Hunter and the Dog 

An old storyteller said that a certain hunter, named Tshipinda,
went on a hunt, taking the dog Kawa, and caught a wild goat.  Upon
returning to the village, the hunter divided the meat with Calala, the
owner of the dog.  Kawa was left with the bones. 

After some time, Tshipinda again asked for the services of the dog,
but the latter refused to help him.  He told the hunter to take Calala 
since it was with him that he was accustomed to dividing the meat.

Fig. 2. In this drawing, the isolated point in the centre represents the hunter, and
the isolated point on the left side, the dog.

Fig. 3. Examples of symmetrical, monolinear sona (cf. Gerdes, 2006a–c, p. 70,
43, 87)

The drawing experts developed a whole series of geometric algorithms for
the construction of monolinear, symmetrical designs. Figure 4 displays two
monolinear sona belonging to the same class in the sense that, although the
dimensions of the underlying grids are different, both sona are drawn applying
the same geometric algorithm.

The drawing experts also invented various rules for the building up mono-
linear sona. The following presents a first example. Figure 5 shows three mono-
linear sona. They are similar to each other: each presents a basic design of
triangular form. Figure 6 presents another example: each hand draws simul-
taneously one half!

The drawing experts who invented these sona probably began with trian-
gular patterns and transformed them into monolinear patterns with the help
of one or more loops (see the example in Fig. 7). The monolinear patterns
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Fig. 4. Two sona drawn with the same geometric algorithm (cf. Gerdes, 2006a–c,
p. 71, 72)

Fig. 5. (a) An eagle carrying a chicken (b) A person dead to fatigue (c) A thimunga
bird in flight (cf. Gerdes, 2006a–c, p. 115, 116)

so obtained were adapted topologically (maybe later by other drawing spe-
cialists) so that they could express the ideas the drawers wanted to transmit
through them.

Sona experts also discovered various rules for chaining monolinear sona
to form bigger monolinear sona. Figure 8 displays an example of the use of
a chain rule: it indicates how the appearance of the monolinear drawing in
Fig. 8c may be explained on the basis of the monolinearity of the two patterns
in Fig. 8a and the way they have been chained together (see Fig. 8b).

When analysing and reconstructing mathematical elements of the sona
tradition, the author found that there are reported sona, which clearly do not
conform to the cultural values of symmetry and monolinearity. We seem to
be dealing with “mistakes”. Figure 9a gives an example of a reported lusona
with mistakes; and Fig. 9b the reconstructed drawing without mistakes.
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Fig. 6. Trunks of the kajana tree (cf. Gerdes, 2006a–c, cover design)

a

b

c
d

Fig. 7. Transformation of a triangular design (a) into monolinear designs (b, c, d)
(cf. Gerdes, 2006a–c, p. 118)

The drawing experts may have committed consciously some of these “mis-
takes” to deceive some reporters – the “white man”, associated with slave
trade, colonial administration and Christianity–, and so to protect their knowl-
edge. The consistency, however, of the sona tradition as a whole makes it
possible to reconstruct part of it, like the example in Fig. 9b, and to analyse
mathematical rules and theorems underlying the building up of monolinear
or symmetrical sona (see the books Gerdes, 1995, 1997a, 2006a–c).

In the books (Gerdes, 1997b; 1999a–c; 2007c) and in several papers exam-
ples are presented of how the reconstructed sona tradition may be explored
in mathematics education to present stimulating, challenging problems to the
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Fig. 8. Example of the application of a chain rule (cf. Gerdes, 2006a–c, p. 42)

a b

Fig. 9. (a) Reported lusona, representing a lioness with her two cubs. The drawing is
neither symmetrical nor monolinear. (b) Reconstructed symmetrical and monolinear
line drawing (the tails are added at the end) (cf. Gerdes, 2006a–c, p. 166, 167)
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pupils and students, and to motivate, in particular, young Africans to take
proud in their scientific heritage. The study of mathematical aspects of the
sona tradition led to the discovery of new mathematical ideas, like Lunda-
designs and various classes of matrices, like cycle matrices, as will be shown
in the next section.

Mathematical Research Inspired by the Reconstructed
Sona Tradition

Wolfgang Jaritz of the University of Graz (Austria) may have been the first
to do mathematical research inspired by the sona tradition. Informed about
sona by the anthropologist Gerhard Kubik, Jaritz studied the properties of a
particular class of what we called plaited-mat sona and compared these line
drawings to the paths of a ball at a billiard table (Jaritz, 1983). In 1990 I pub-
lished a first paper on a larger class sona that includes the plaited-mat designs,
wherein the concept of mirror curves is proposed and where Lunda-designs are
presented for the first time (Gerdes, 1990). Inspired by this research, Slavik
Jablan (University of Belgrade, Serbia) has studied mirror curves and their
relationship with mathematical knot theory (Jablan, 1995, 2001). In the early
1990s Robert Lange (Brandeis University MA, USA) developed sona tiles.
Franco Favilli and his students at the University of Pisa (Italy) have been
developing software for the construction of mirror curves and Lunda-designs
(Favilli et al. 2002; Vitturi and Favilli, 2006). Mark Schlatter (Centenary Col-
lege of Louisiana, USA) has been studying mirror curves and permutations
(Schlatter, 2000, 2001, 2004, 2005; cf. Peterson, 2001). Nils Rossing of the
University of Science and Technology (Trondheim, Norway) and Christoph
Kirfel of the University of Bergen (Norway) applied methods of sona analysis
by mirror curves to the mathematical analysis of a class of traditional Norwe-
gian rope mats (Rossing and Kirfel, 2003). Myself, I advanced with the study
of Lunda-designs (cf. Gerdes, 1999b [Chap. 4]; Gerdes, 1996, 1997a, 1999a–c,
2000b, 2002a,h, 2005) and a sub-class called Liki-designs (Gerdes, 2002b,c). I
found several interesting classes of matrices, like cycle (Gerdes, 2002b, 2006b,c,
2007b), helix (Gerdes, 2002e), cylinder (Gerdes, 2002f) and chessboard matri-
ces (Gerdes, 2002g). Several of these papers were published in Visual Math-
ematics (∗) and other on-line journals. Earlier links between Lunda-designs,
determinants and magic squares were established (Gerdes, 2000b). The new-
ness and the multiple relationships of mathematical ideas arising from the
analysis of the sona tradition with other areas of mathematics reflects the
profoundness and the mathematical fertility of the ideas of the Cokwe master
drawers.

In this section I will briefly show how the study of the sona tradition from
Angola led me to discover and analyse successively mirror curves, Lunda- and
Liki-designs, and cycle matrices.
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(a) Mirror curves

The “chased-chicken-path” lusona (Fig. 4a) may be considered as a mirror
curve, that is:

∗ It is the smooth version of the polygonal path described by a light ray
emitted from the starting place S at an angle of 45◦ to the rows of the
grid (see Fig. 10);

∗ As the ray travels through the grid it is reflected by the sides of the
rectangle and by the “double-sided mirrors” it encounters on its path.
The mirrors are placed horizontally and vertically, midway, between two
neighbouring grid points, as in Fig. 11.

Figure 12 presents the position of the mirrors in the case of the “chased-
chicken-path” design. Once defined the concept of mirror curve in general,
I started to look for the properties of mirror curves.

To facilitate the execution of mirror curves, one may draw them on squared
paper with a distance of two units between two successive grid points. In this
way, a monolinear drawing such as the “chased-chicken” path passes exactly
once through each of the unit squares inside the rectangle surrounding the
grid (see Fig. 13).

This gives the possibility of enumerating the small squares modulo 2, being
1 the number attributed to the unit square where one starts the line, and 0
the number of the second unit square through which the curve passes, and
so on successively 101010 . . . until the closed curve is complete. In this way a
{0, 1}-matrix is produced. Colouring the unit squares with number 1 black,
and the ones with number 0 white, a black-and-white design is obtained.

S

Fig. 10. Emission of the light ray

Fig. 11. Possible mirror positions
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Fig. 12. Mirror-design of the “chased-chicken” path

Fig. 13. “Chased-chicken” path drawn on squared paper

(b) Lunda-designs and matrices

As this type of black-and-white design generated by mirror curves was dis-
covered in the context of analysing sona from the Cokwe, who predominantly
inhabit the Lunda region of Angola, I gave them the name of Lunda-designs.
Figure 14 presents two examples of Lunda-designs.

Searching for the common characteristics of Lunda-designs, the following
symmetry properties may be observed and proved:

(i) In each row there are as many black unit squares as there are white unit
squares;

(ii) In each column there are as many black unit squares as there are white
unit squares;

(iii) Along the border each grid point always has one black unit square and
one white unit square associated with it (see Fig. 15);

(iv) Of the four unit squares between two arbitrary (vertical or horizontal)
neighboring grid points, two are always black (see Fig. 16).

Conversely, it holds that any rectangular black-and-white design that sat-
isfies the properties (i), (ii), (iii), and (iv) is a Lunda-design. In other words,
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Fig. 14. Two examples of Lunda-designs

Fig. 15. Border situation

Fig. 16. Possible situations between vertically or horizontally, neighbouring grid
points

for any rectangular black-and-white design that satisfies the properties (i),
(ii), (iii), and (iv) a mirror curve that generates it may be constructed (cf.
Gerdes 1996).

The characteristics (i), (ii), (iii), and (iv) may be used to define Lunda-
designs (of dimensions mxn). Moreover, the local symmetry characteristics
(iii) and (iv) are sufficient for this definition, as they imply the global symme-
try properties (i) and (ii). The particular symmetry characteristics of Lunda-
designs turn them often aesthetically attractive (cf. Gerdes 2005).

Lunda-designs may be generalized in several ways. Circular and hexagonal
Lunda-designs are some interesting possibilities (cf. Gerdes 2002a). Figure 17
presents an example of a hexagonal grid and a hexagonal Lunda-design (cf.
Gerdes 1996, 1999a). Instead of enumerating the unit squares through which
a mirror curve passes modulo 2, they can be enumerated modulo t, if t is a
divisor of 4mn, wherem and n are the dimensions of the rectangle. In this way
t-valued matrices and t-Lunda-designs are created. Figure 18 gives examples
of 3 and 4-Lunda-designs.
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Fig. 17. Example of a hexagonal grid and hexagonal Lunda-design

3-Lunda-design 4-Lunda-design

Fig. 18. Examples of a 3- and a 4-Lunda-design

Fig. 19. Stronger condition

(c) Liki-designs

It was on the eve of the fourth anniversary of my daughter Likilisa that I
started to analyse a particular class of 2-Lunda-designs. As these designs
turned out to have some interesting properties I gave them the name of Liki-
designs.

In the case of Liki-designs, the fourth property is substituted by the
following stronger condition:

(iv’) Of the four unit squares between two arbitrary (vertical or horizontal)
neighbouring grid points, two adjacent unit squares are always black, while
the other two are white (see Fig. 19).
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Fig. 20. Diagonally opposed unit square always have different colours

a

1 0 1 0 0 1 0 1 1 0
0 0 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 1 0 1
0 1 0 1 1 0 1 1 0 0
0 1 0 1 1 0 0 0 1 1
1 1 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0
1 0 1 1 0 0 0 0 1 1
1 0 0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1 0 1

b

Fig. 21. Example of a square Liki-design and associated Liki-matrix

The new condition (iv’) may be described as follows. Consider the four
unit squares between two vertically or horizontally neighbouring grid points.
Two of them that belong to different rows and different columns always have
different colours (Fig. 20).

The two properties (i) and (iv’) imply that a square Liki-design and its
associated Liki-matrix are composed of cycles of alternating black and white
unit squares and of cycles of alternating 1s and 0s, respectively.

Figure 21 presents an example of a square Liki-design and its correspond-
ing Liki-matrix. The matrix has five {0,1} – cycles; one cycle is represented in
bold (Fig. 21b). A question that naturally emerges is what will happen with
the powers of Liki-matrices.

Figure 22 displays the first powers of Liki-matrix A. The third power has
the same cycle structure as the first power: the first cycle of the third power
is composed of alternating 16s and 9s, the second cycle of alternating 15s
and 10s, etc. The even powers do not have the same cycle structure. Their
diagonals are constant and they present other cycles, like the cycle of 2s of
the second power. Figure 23 compares the cycle structures of the odd and
even powers of the Liki-matrix A. A cycle structure of the first type I call a
first order cycle structure. A cycle structure of the second type I call a second
order cycle structure.
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5 2 2 1 1 3 3 3 3 2
2 5 1 2 3 1 3 3 2 3
2 1 5 3 2 3 1 2 3 3
1 2 3 5 3 2 2 1 3 3
1 3 2 3 5 2 2 3 1 3
3 1 3 2 2 5 3 2 3 1
3 3 1 2 2 3 5 3 2 1
3 3 2 1 3 2 3 5 1 2
3 2 3 3 1 3 2 1 5 2
2 3 3 3 3 1 1 2 2 5

A2

16 9 15 10 9 16 12 13 15 10 75 60 60 53 53 68 68 66 66 56
9 10 16 16 15 13 9 10 12 15 60 75 53 60 68 53 66 68 56 66
15 16 9 9 12 10 15 16 10 13 60 53 75 68 60 66 53 56 68 66
10 16 9 13 16 10 15 15 9 12 53 60 68 75 66 60 56 53 66 68
9 15 12 16 15 9 10 10 13 16 53 68 60 66 75 56 60 66 53 68
16 13 10 10 9 15 16 12 15 9 68 53 66 60 56 75 66 60 68 53
12 9 15 15 10 16 13 9 16 10 68 66 53 56 60 66 75 68 60 53
13 10 16 15 10 12 9 9 16 15 66 68 56 53 66 60 68 75 53 60
15 12 10 9 13 15 16 16 10 9 66 56 68 66 53 68 60 53 75 60
10 15 13 12 16 9 10 15 9 16 56 66 66 68 68 53 53 60 60 75

A3 A4

Fig. 22. The first powers of the Liki-matrix A

Fig. 23. First and second order cycle structure

The powers of a Liki-matrix, like the matrices A2,A3, etc., are themselves
not Liki-matrices, but they display cycle structures. Let us call them cycle
matrices. As the numbers on the cycles on the odd powers are alternating,
we may say that these cycle matrices have period 2. As the numbers on the
cycles on the even powers are constant, we say that these cycle matrices have
a period 1.
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(d) Cycle matrices

In this way we may introduce the concept of a cycle matrix of period 2,
independent of the context of Liki-designs in which the concept was discovered.
Figure 24 displays two cycle matrices of period 2. Both have a first order
cycle structure whereas their products AB and BA have a second order cycle
structure. The cycles of AB and BA have a difference in phase of one unit,
and A + B is a cycle matrix of period 1.

The following table holds for the multiplication of cycle matrices of
period 2 (Table 1).

As this multiplication table is similar to the multiplication table of nega-
tive and positive numbers, we may call matrices that have a first order cycle
structure negative cycle matrices, and matrices that have a second order cycle
structure positive cycle matrices.

The study of cycle matrices of period 2 led me to the study of cycle ma-
trices of any period. Figure 25 displays two (positive) cycle matrices E and
F of period 3. For instance, the first cycle of E is composed of repeating
{−2, 1, 4}’s. The product EF is a positive cycle matrix of period 3.

The same multiplication table is true for even and odd cycle matrices of
any period p. Figure 26 presents an example of two negative cycle matrices

-1 3 -4 6 -2 0 4 -2 3 5 -3 2
3 6 -1 0 -4 -2 -2 5 4 2 3 -3
-4 -1 -2 3 0 6 3 4 -3 -2 2 5
6 0 3 -2 -1 -4 5 2 -2 -3 4 3
-2 -4 0 -1 6 3 -3 3 2 4 5 -2
0 -2 6 -4 3 -1 2 -3 5 3 -2 4

A

14 7 5 -17 18 -9 14 5 7 18 -17 -9
5 14 18 7 -9 -17 7 14 -17 5 -9 18
7 -17 14 -9 5 18 5 18 14 -9 7 -17
18 5 -9 14 -17 7 -17 7 -9 14 18 5
-17 -9 7 18 14 5 18 -9 5 -17 14 7
-9 18 -17 5 7 14 -9 -17 18 7 5 14

AB

B

BA

Fig. 24. Two cycle matrices of period 2 and their products

Table 1. Multiplication table of cycle matrices of period 2

A B AB

First order First order Second order
First order Second order First order
Second order First order First order
Second order Second order Second order
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-2 1 3 -3 5 0 5 -1 2 -3 4 -2 -22 11 -22 42 31 34

-4 5 -4 2 5 2 3 4 3 0 4 0 7 64 19 7 4 19

-3 1 0 -2 5 3 -3 -1 -2 5 4 2 -22 31 -22 34 11 42

3 5 -2 0 1 -3 2 4 5 -2 -1 -3 42 11 34 -22 31 -22

2 5 2 -4 5 -4 0 4 0 3 4 3 19 4 7 19 64 7

0 5 -3 3 1 -2 -2 4 -3 2 -1 5 34 31 42 -22 11 -22

E F EF

Fig. 25. Two positive cycle matrices of period 3 and their product

1 2 -1 -3 4 5 0 3 2 2 1 -2 -1 -2 -1 2 0 1
0 4 3 -3 6 4 1 3 5 0 4 2 3 6 2 -3 0 1
8 5 6 4 2 7 1 0 1 7 5 -3 4 4 5 -4 3 2
7 0 4 1 5 1 8 2 6 5 3 4 2 5 -4 7 4 -3
1 6 5 3 3 0 4 4 -3 -3 6 1 2 0 0 2 4 3
5 3 -3 2 2 0 1 4 -1 -1 0 -1 1 1 2 2 -2 -2
0 4 2 -1 3 1 5 2 -3 2 -2 1 -2 0 2 -1 1 -1
4 3 -3 5 4 1 0 6 3 2 0 3 1 4 -3 0 6 2
1 2 1 6 0 8 7 5 4 -4 4 2 -3 3 7 5 5 4

G H

-39 27 5 5 14 25 7 19 26
-28 76 9 20 52 71 -1 57 54
63 84 -10 45 68 39 27 34 8
27 68 8 -10 34 63 39 84 45
71 57 20 54 76 -1 -28 52 9
7 14 26 5 19 -39 25 27 5
25 19 5 26 27 7 -39 14 5
-1 52 54 9 57 -28 71 76 20
39 34 45 8 84 27 63 68 -10

GH

Fig. 26. The negative cycle matrices of period 6 and their product

G and H of dimensions 9× 9 of period 6. The product GH is a positive cycle
matrix. Figure 27 displays the cycle structure of negative and positive cycle
matrices of dimensions 9× 9.

(e) Final comments

Mathematical research may appear as an unending story of discovering new
concepts, new relationships, new theorems, and new applications. The exam-
ple of the discovery of mirror curves, Lunda-designs and cycle matrices shows
how an old African cultural practice may inspire and stimulate mathematical
research. This line of research does not stop with cycle matrices. Other con-
cepts like helix and cylinder matrices (Gerdes, 2002 e,f) were discovered and
surely many more will follow. The book (Gerdes, 2007b) presents an intro-
duction the attractive, visual properties of cycle matrices.
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Fig. 27. Cycle structure of negative and positive cycle matrices of dimensions 9× 9
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Gerdes, Paulus (1997b), Recréations géométriques d’Afrique – Lusona – Geometrical
recreations of Africa, L’Harmattan, Paris, 127 pp. [ISBN 2-7384-5168-3].

Gerdes, Paulus (1998), Women, Art and Geometry in Southern Africa, Africa World
Press, Trenton NJ, 200 pp. [ISBN 0-86543-601-0 (hardback), ISBN 0-86543-602-9
(paperback)].

Gerdes, Paulus (1999a), Geometry from Africa: Mathematical and Educational Ex-
plorations, The Mathematical Association of America, Washington DC, 210 pp.
[ISBN 0-88385-715-4].

Gerdes, Paulus (1999b) On Lunda-designs and some of their symmetries, Visual
Mathematics, Belgrade, 1(1).∗2

Gerdes, Paulus (1999c), On the geometry of Celtic knots and their Lunda-designs,
Mathematics in School, Leicester, 28(3), 29–33.

Gerdes, Paulus (2000a), Le cercle et le carré: Créativité géométrique, artis-
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Finite Dynamical Systems: A Mathematical
Framework for Computer Simulation

A.S. Jarrah and R. Laubenbacher

Summary. Dynamical systems over finite fields provide a natural mathematical
framework for interaction-based computer simulation of complex systems. This pa-
per provides an introduction to a theory of these systems. Motivating examples of
agent-based simulations are given.

1 Introduction

Modeling and simulation are playing an increasingly important role in the
analysis of highly complex natural and technological systems. A variety of
modeling frameworks, each with its own advantages and disadvantages, are
available. In particular, the analysis of social, socio-technical, and biologi-
cal systems, such as social networks, road traffic networks, epidemiological
networks, or the immune system can benefit from approaches other than
differential-equations-based mathematical modeling, since their dynamics is
generated by the local interactions of a large number of heterogeneous indi-
viduals. Interaction-based, or rule-based, simulations are being used success-
fully to simulate the dynamics of networks of this type, predominantly using
cellular automata and Boolean network approaches. By an interaction-based
simulation, we mean a collection of variables, each equipped with a function
or a set of rules, that computes the state of each variable from the state of
other variables that are interacting with it. An excellent survey of recent work
in this direction can be found in the talks at the November 2003 “Hot Top-
ics Workshop on Agent-based Modeling and Simulation” at the Institute for
Mathematics and its Applications at the University of Minnesota [22].

One of the main advantages of such models is their ability to reflect indi-
vidual differences in behavior rather than an average over a large number of
individuals. An important disadvantage of interaction-based models, however,
is that there are very few mathematical tools available for their design and
subsequent analysis of their dynamics.
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The basic approach to a mathematical specification of an interaction-based
model is to represent it as a dynamical system of some sort. Typically, in such
simulations, each variable is allowed to take on finitely many different states.
One possible mathematical framework, therefore, is that of discrete dynamical
systems

f = (f1, . . . , fn) : Rn −→ Rn,
where R is a finite field or the commutative ring Z/rZ, for some integer r.
(It is important to impose some kind of mathematical structure on the set
R of states of the variables, since otherwise one studies set functions only. In
practice, this is often very easy to do. See, e.g., [27].) This framework includes
many cellular automata and Boolean networks (by choosing R to be the field
with two elements), in addition to other multi-state models. We refer to such
a system as a finite dynamical system. In the case where R is a finite field, it
is a well-known fact that any such system f can be described by a collection
of polynomial functions in n variables [31, p. 369]. Polynomial algebra has
seen tremendous progress over the last 15 years, both in conceptual and in
computational terms, all of which can now be brought to bear on the problem
of a mathematical analysis of finite dynamical systems over finite fields (See
[16] for a recent survey of algorithms.)

While many computer models of complex systems are stochastic we will
focus here on deterministic models, for simplicity and because their theory is
much better developed.

2 Examples of Interaction-Based Computer Simulations

We first describe in some detail two examples of interaction-based models for
concreteness and to motivate the mathematical developments.

2.1 Simulation of Socio-technical Networks

First we describe a simulation method for road traffic networks called TRAN-
SIMS [24], which is exemplary for similar approaches to other socio-technical
networks, such as wireless communication systems, or power grids. TRAN-
SIMS, developed at Los Alamos National Laboratory, represents a new, dis-
aggregate approach to traffic demand modeling, and is designed to give traffic
planners more accurate, complete information on factors impacting travel de-
mand and traffic flow in urban areas. It is part of the Travel Model Im-
provement Program sponsored by the U.S. Department of Transportation, the
U.S. Environmental Protection Agency, and the U.S. Department of Energy.
TRANSIMS creates a virtual metropolitan region, with a complete represen-
tation of the population, at the level of individuals, their daily activities, and
a faithful representation of the transportation infrastructure. Disaggregated
demographic data and detailed activity surveys of the population are used to
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create activity schedules and travel choices for each individual. TRANSIMS
then simulates the movement of travelers and vehicles across the transporta-
tion grid, using multiple modes, such as car, bus, bicycle, and foot, on a
second-by-second basis. The interaction of individual vehicles and travelers
produces realistic traffic dynamics, whose features can then be analyzed.

Simulation at this level of resolution requires a very complex software de-
sign on a parallel computation architecture. A single 24-hour simulation run
can take several hours to complete and produce gigabytes of output. In light
of such complexity, simulation design, implementation, software verification,
validation, and analysis all become crucial issues in determining the validity
and usefulness of large-scale simulations such as TRANSIMS. These issues
are magnified when TRANSIMS is combined with other simulations, such
as in EPISIMS [19], a simulation of the spread of infection by an airborne
pathogen in an urban area. EPISIMS combines a model of the spread of a
pathogen cloud over an urban area with an epidemiological model of infectiv-
ity, and movement of humans in relation to the pathogen cloud is generated
by TRANSIMS.

In order to address these issues, the designers of TRANSIMS and
EPISIMS initiated a research program to provide a mathematical foundation
for interaction-based computing and simulation. The goal of the program is
to create mathematical objects which are general enough to capture the key
features of interaction-based simulations, but which have enough structure
to allow a rich mathematical theory that provides tools to address the issues
raised above. We will return to this topic in the next section.

2.2 Computational Immunology

Next we discuss an interaction-based simulation of certain aspects of the hu-
man immune system. Comprised of a large number of interacting cells whose
motion is constrained by the body’s anatomy, the immune system lends it-
self very well to simulation by interaction-based models. In particular, these
models can take into account three-dimensional anatomical variation as well
as small-scale variability in cell distributions. For instance, while the number
of T-cells in the human body is astronomical, the number of antigen-specific
T-cells, for a specific antigen, can be quite small, thereby creating many spa-
tial inhomogeneities. Also, little is known about the global structure of the
system to be modeled.

The first discrete model to incorporate a useful level of complexity was
ImmSim [10,11], developed by Seiden and Celada, a stochastic cellular au-
tomaton simulation. It includes B cells, T cells, antigen presenting cells
(APCs), antibodies, antigens, and antibody-antigen complexes. Receptors are
represented by bit strings, and antibodies use bit strings to represent their epi-
topes and peptides. The bit string approach was initially introduced in [20].
Specificity and affinity are defined by using bit string similarity. The model is
implemented on a regular two-dimensional grid, which can be thought of as
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a slice of a lymph node, for instance. It has been used to study various phe-
nomena, including the optimal number of human leukocyte antigens in human
beings [10], the autoimmunity and T lymphocyte selection in the thymus [35],
antibody selection and hyper-mutation [12], and the dependence of the se-
lection and maturation of the immune response on the antigen-to-receptor’s
affinity [7].

The computational limitations of the Seiden-Celada model have been over-
come by a modified model, CImmSim, implemented on a parallel architecture.
Its complexity is several orders of magnitude larger than its predecessor. It
has been used to model hypersensitivity to chemotherapy [8], the selection
of escape mutants from immune recognition during HIV infection [6], and
mechanisms leading to persistence of the Epstein-Barr virus [9].

An important application for CImmSim is as a tool to explore different
types of interventions that affect immune response to pathogens. With an
appropriate mathematical specification for this model one could develop an
appropriate control theory that might provide a mathematical basis for the
study of interventions. Mathematical methods to control dynamical systems
play an extremely important role in engineering, and there is a vast liter-
ature on the subject, in both engineering and in mathematics. There have
been several promising applications in computational immunology, with the
goal of discovering ways to enhance immune response to pathogen attacks. A
well-developed control theory for immune system models would represent an
invaluable tool. Working hand-in-hand with model building, it would allow
the in silico exploration of known control mechanisms and would aid in the
discovery of new ones.

In [39], an optimal control theory approach is applied to a model for the
response of the innate immune system to infection and to therapy. The model,
consisting of four nonlinear ordinary differential equations, is an enhancement
of one in [1], with control variables added. The mathematical analysis can
suggest single- and multi-agent therapies that enhance the innate response of
the immune system. In [37], control theory applied to ODE models is used to
study optimal choice of effectors during an immune response. A similar theme
is studied in [38], again by an ODE approach. In [36] a model is studied that
represents the coupling between the immune, nervous, and endocrine systems.
The model is a hybrid ODE and logical model that is used to study optimal
immune response to infections that are accompanied by immune toxicity.

For discrete computer models like CImmSim, no mathematical tools are
available for rigorous approaches to the systematic study of immune response
modification, since a mathematical specification is typically absent. In par-
ticular, no method exists to understand the structure of the enormous phase
spaces of such systems. In [27] tools were developed that can be used in
principle to construct a deterministic, finite dynamical system model of in-
dividual CImmSim components, for which a control theory framework has
been developed [28, 32, 33]. In order to apply this method to build a compre-
hensive mathematical specification of a simulation as complex as CImmSim,
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it is necessary to develop mathematical methods for the decomposition of fi-
nite dynamical systems, while keeping control of the decomposition’s effect
on the dynamics. It is also necessary to develop tools for the design of finite
dynamical systems from modular components and understand the resulting
dynamics. Finally, one needs to have methods to compare finite dynamical
systems in a meaningful way, such as through the use of transformations. We
will address some of these issues below.

3 Background

Some of the mathematical problems raised here in the context of specific
interaction-based computer simulations have also appeared in other contexts,
which we review briefly, together with some solutions. The problem of under-
standing the relationship between the structure of a discrete model and the
resulting dynamics goes back at least half a century. In [18], the author studies
the question for Boolean networks, from the point of view of applications to
the length of sequences produced by feedback shift registers. He also points
out applications to radar and communication systems and automatic error
correction circuits. He provides a method to compute the length of all limit
cycles for linear Boolean networks (that is, networks whose Boolean functions
are constructed using the logical operation XOR). The paper also contains a
generalization to networks that take values in an arbitrary finite field with
a prime number of elements, that is, in Z/pZ where p is prime. For affine
Boolean linear networks (that is, networks whose local functions are Boolean
linear polynomials which might have constant terms), a method to analyze
cycle length has been developed in [34]. After embedding the matrix of the
transition function, which is of dimension (n× (n+ 1)), into a square matrix
of dimension n+ 1, the problem is reduced to the linear case.

The main objective in [40, 34] is to study the inverse problem of construct-
ing Boolean networks with specified dynamics, in the context of logical neural
networks (LNNs). The authors point to the lack of a theoretical understanding
of the link between structure and dynamics as an important limiting factor in
the theory of neural networks. In [15] a very elegant construction is given to
reduce the problem for the nonlinear case to the study of a linear system, at
least for a determination of the limit cycles. Unfortunately, if the system has
dimension n, then the corresponding linear system has dimension 2n, so that
the approach is algorithmically impractical.

In the context of cellular automata some theoretical work on the problem
of relating structure to dynamics has been done by Wolfram [41]. For instance,
in [42], the authors prove (Theorem 4.3) that the phase space of an additive
one-dimensional cellular automaton (CA) has the identical tree structure of
transients at each node of each limit cycle. But such a CA can be viewed as a
linear n-dimensional system over the field with two elements, where n is equal
to the number of cells. The question of describing the phase space of a linear
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cellular automaton from the structure of the rule alone can now be answered
completely, since it is a special case of a more general recent result about
linear finite dynamical systems over an arbitrary finite field [21]. In particular
the result in [42] mentioned above follows as a very special case from this
paper. We briefly describe the result, as an example of how progress can be
made by formulating the question within a rich mathematical framework.

Let k be an arbitrary finite field, and let f : kn −→ kn be a linear finite
dynamical system over k of dimension n. For instance, k could be the field
with two elements, and f could be the transition rule of a 1-dimensional
cellular automaton. Then, after choosing a basis for the vector space kn, the
function f can be described by an (n × n) square matrix M . An algorithm
for the structure of the limit cycles of f had already been determined in
[18]. Hernandez [21] shows that the exact number and length of each limit
cycle as well as the structure of the transients can be determined from the
factorization of the elementary divisors of M . It is shown that the structure
of the tree of transients at each node of each limit cycle is the same, and can
be completely determined from the elementary divisors of the form xa. It is
a fact that the system f is invertible if and only if f has no such elementary
divisors, equivalently, if zero is not an eigenvalue of f .

Even the one-dimensional case of the general problem is very interest-
ing and very challenging. Here, we are given a finite field k and a function
f : k −→ k. It is well-known [31, p. 369] that f can be represented as a poly-
nomial in one variable. The problem is to infer the phase space of f from the
structure of this polynomial. The related question about when such a func-
tion is invertible has been studied extensively. Such polynomials are known
as permutation polynomials. Many results have been obtained about special
classes of permutation polynomials, notably monomials and binomials. For a
survey of known results and related conjectures, see [31, Ch. 7] and [29, 30].

4 Definitions and Examples

This section contains the basic definitions and examples of finite dynamical
systems. The main outline of the theory for sequentially updated systems is
contained in the series of papers [2–5]. The mathematical concept at the core
of the theory is that of a sequential dynamical system. For simplicity we will
focus on systems over the field with two elements.

Definition 4.1. Let k = {0, 1} be the field with two elements. A sequential
dynamical system (SDS) F = F(Y, {fi}, π) in n binary variables x1, . . . , xn is
a function

f : kn −→ kn,
constructed from the following data:

1. a finite graph Y on the vertices 1, 2, . . . , n, called the dependency graph
of F;
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2. a family of “local” update functions fi : kn −→ kn, i = 1, . . . , n, in the
variables x1, . . . , xn, which computes the binary state of the variable xi
and leaves the other coordinates unchanged. The fi are assumed to be
symmetric in their inputs. Furthermore, fi depends only on xi and those
variables whose index is connected to i in the dependency graph Y ;

3. an “update schedule” π, which specifies an order on the vertices of Y ,
represented by a permutation π ∈ Sn.

The function f is then constructed by composing the local update functions
according to the update schedule π, that is,

f = fπ(n) ◦ · · · ◦ fπ(1) : kn −→ kn.

The dynamics of F is generated by iteration of the function f .

The function f is then a finite dynamical system, obtained from the SDS F.
The concept of an SDS incorporates the key features of an interaction-based
simulation: a collection of entities (the xi) which interact with each other,
the interaction is “local” (given by the 1-neighborhood of the variables in
the dependency graph), and the entities act according to a specified update
schedule. In the language of agent-based simulation, the pairs (xi, fi) can be
thought of as the agents that interact with each other. Thus, an SDS is a
special type of time-discrete, sequentially updated dynamical system over the
field with two elements.

Example 1. Consider the SDS F = F(Y, {fi}, π), where Y is the graph in
Fig. 1, and the local functions fi be the Nand function. For example,

f2(x1, x2, x3)=(x1, Nand(x1, x2, x3), x3), where Nand(x1, x2, x3)=1+x1x2x3.

101

2 3

1

Y

001

011

100

010

111

000

110

S(f)

Fig. 1. The dependency graph Y and the phase space S(f) of the system in
Example 1.
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For the permutation π =
(

1 2 3
3 2 1

)
, the FDS of F(Y, {fi}, π) is

f = f1 ◦ f2 ◦ f3 : k3 −→ k3.

To understand the dynamics of a FDS f , one needs to analyze and under-
stand the phase space of f .

Definition 4.2. Let f : Rn −→ Rn be a finite dynamical system. The
phase space S(f) of f is the directed graph with the elements of Rn as ver-
tices. (Observe that Rn has 2n elements, in the case of an SDS.) There is a
directed edge from an n-tuple u to another n-tuple v if and only if f(u) = v.
Those vertices that are part of a directed cycle are called periodic points, and
a directed cycle is called a limit cycle. The other vertices are transients.

It is straightforward to see that the phase space of a system consists of
several components, each of which consists of a single directed cycle, with
“trees” feeding into the nodes of the cycle.

Example 2. The phase space of the system in Example 1 is given in Figure 1.
In order to see how an interaction-based simulation could be represented

as a finite dynamical system we refer back to the two examples given earlier.
In the case of TRANSIMS the variables are the cells making up the road
network. The cell state contains information about whether or not the cell is
occupied by a vehicle as well as the velocity of the vehicle. One may assume
that each cell takes on states from the same set of possible states, which may
be chosen to support the structure of a finite field.

The cells/variables interact with each other, but typically a cell only in-
teracts with a small subset of other cells, its neighbors. Through such an
interaction a cell changes its state based on the states (or other aspects) of
the cells with which it interacts. We will refer to the process where a variable
modifies its state through interaction as a variable update. The precise way in
which a variable modifies its state is governed by the nature of the particular
variable. In TRANSIMS the neighbors of a cell are the adjacent road network
cells. From this adjacency relation one obtains a dependency graph of the
variables. The local update function for a given variable can be obtained from
the rules governing traffic flow between cells.

The updates of all the agents may be scheduled in different ways, e.g.,
synchronous, asynchronous or event-driven schemes. The choice will depend
on system properties or particular considerations about the simulation imple-
mentation.

In the case of CImmSim, the situation is somewhat more complicated. Here
the variables are also the spatial units of the system, each representing a small
volume of lymph tissue. The total volume is represented as a 2-dimensional
cellular automaton, in which every variable has 4 neighbors, so that the de-
pendency graph is a regular 2-dimensional grid. The state of each variable
is a collection of counts for the various immune cells and pathogens that are
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present in this particular unit of space (volume). Movement between spaces
is implemented as diffusion. Immune cells can interact with each other and
with pathogens while they reside in the same volume. Thus, the local update
function for a given cell of the simulation is made up of the two components
of movement between cells and interactions within a cell. For instance, a B
cell could interact with the Epstein–Barr virus in a given volume and tran-
sition from uninfected to infected by the next time step. Interactions as well
as movement are stochastic, resulting in a stochastic finite dynamical system.
The update order is parallel.

Several results that link the structure of the local update functions fi to
the structure of the phase space S(f) are known. For instance, it is shown
[2, Prop. 5] that the Nand system (logical Nand functions as local update
functions) on a complete graph does not have any fixed points, see Figure 1.
Other results pertain to the number of fixed points of special types of systems
and classifications of certain families of invertible systems, that is, systems
that do not have any transients. See [2–4] for details.

One of the first research problems about SDS was the question of how a
change of update schedule affects the dynamics of an SDS. This question is
motivated by the sequential nature of TRANSIMS and other large simulations
like it. Moving the simulation from one platform to another can quite possibly
change the update schedule. Precisely formulated, the question becomes that
of how many different finite dynamical systems one obtains simply by varying
the update schedule of an SDS, that is, how many different functions f :
kn −→ kn result from changing π in the data for F = F(Y, {fi}, π). The
answer is given as a sharp upper bound in terms of the number of acyclic
orientations of the dependency graph Y [2, Sect. 2.2]. (The number of acyclic
orientations of a graph is closely related to its chromatic number.)

In summary, SDS were created in order to provide a mathematical foun-
dation for large-scale interaction-based computer simulations. The goal is to
create mathematical specifications of simulations whose properties can guide
the design of simulations, and can aid in the analysis of their dynamics. Re-
sults obtained focus on the effect of certain structural components of an SDS
on its dynamics, mainly the update schedule. The complexity of their proofs
make it clear that the effect of the update schedule of a sequentially updated
simulation is very subtle and difficult to understand.

5 Mathematical Results

As we mentioned already, an important problem is the determination of the
dynamics of a finite dynamical system f : Rn −→ Rn from the structure of
the transition function alone. Observe that f can be described in terms of its
coordinate functions:

f = (f1, . . . , fn),
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with fi : kn −→ k. It is well-known [31] that each fi can be represented as a
multivariate polynomial function, that is, an element in the polynomial ring
k[x1, . . . , xn]. Furthermore, this polynomial can be chosen uniquely so that
every variable appears to a power less than the number of elements in the
field. In particular, if k is the field with two elements, then this result implies
that every Boolean function can be described as a square-free polynomial
function with binary coefficients. Thus, the set of all functions fi : kn −→
k over the field k with two elements is in bijection with the quotient ring
k[x1, . . . , xn]/〈x2j −xj , j = 1, . . . , n〉. This allows the application of tools from
computational commutative algebra, as demonstrated in [27].

Systems of polynomials generated by monomials have proven to play a
very special role in the theory and are amenable to characterization through
combinatorial invariants of their exponent vectors. It is natural therefore to
study monomial dynamical systems over finite fields, that is, systems where
the local functions fi are monomials. An example of a monomial system is

f = (x1x2, x3, x1x3) : k3 −→ k3.
One problem that has been studied in this context is the characterization of

all monomial systems that have only fixed points as their limit cycles, so called
fixed-point systems. The problem is motivated by the use of polynomial models
to describe biochemical networks. The two papers [14, 13] contain necessary
and sufficient conditions for a monomial system over a finite field to be a
fixed point system. This result was proved first in [14] for Boolean monomial
systems (here, the field has two elements, k = F2). This class includes, in
particular, all systems whose functions are constructed using only the logical
AND operator. To describe the main result of this paper, we introduce a slightly
modified definition of the dependency graph of a finite dynamical system.

Definition 5.1. Let
f = (f1, . . . , fn) : kn → kn

be a dynamical system, described in terms of its coordinate functions. Then
each fi can be assumed to be in the polynomial ring k[x1, . . . , xn]. The
dependency graph of f is the directed graph on the vertex set {1, . . . , n, ε}.
For i, j ∈ {1, . . . , n}, there is a directed edge i → j if and only if xj appears
in fi. There is a directed edge i→ ε if fi = 0.

A directed graph G is strongly connected if there is a directed path from
any vertex to any other vertex. For a strongly connected directed graph G we
can define a numerical invariant that reflects its loop structure. Let v ∈ G be
a vertex, and consider the set of all directed loops at v. For any pair of loops
we can form the absolute value of the difference of their lengths, that is the
difference of the respective numbers of edges in the loops. The minimum of
all nonzero differences is called the loop number of G. Alternatively, it can
be defined as the greatest common divisor of the lengths of all directed loops
based at v. It is straightforward to show that this number does not depend
on the choice of v. One of the main results in [14] is the following.
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Theorem 5.2. Let G be the dependency graph of the Boolean monomial sys-
tem f : kn −→ kn. Then the following are equivalent.

1. The system f is a fixed point system.
2. One of the following three conditions holds for each vertex v ∈ G:

a) the strongly connected component of G containing v has loop number 1;
b) there is a walk in G from v to ε;
c) there is no walk of length greater than or equal to 1 from v to v.

The paper contains a polynomial time algorithm to compute the strongly
connected components of the dependency graph and their loop numbers.

The paper also introduces a “glueing operation” that joins monomial sys-
tems to form larger ones, and we show that if one glues two fixed point systems
together, then one obtains again a fixed point system, see [14].

In the second paper [13] fixed point monomial systems over arbitrary finite
fields are studied, that is, systems of the form f = (f1, . . . , fn) : Fnq −→ Fnq ,
where fi = xαi1

1 · · ·xαin
n , and 0 ≤ αij < q. One can define two new systems

from f .

Definition 5.3. Consider the system f above. Define the following two sys-
tems. Let

• g = (g1, . . . , gn) : Fn2 −→ Fn2 , be the Boolean monomial system, where
gi(a) = fi(a) mod 2, and

• h = (h1, . . . , hn) : Zn
q−1 −→ Zn

q−1, be the linear system, where hi =
αi1x1 + · · ·+ αinxn.

We proved the following theorem in [13].

Theorem 5.4. The system f is a fixed point system if and only if g and h
are fixed point systems.

To see whether the Boolean system g is a fixed point system we use the
theorem above from [14]. Notice that, since the system h is over the ring
Z/(q− 1)Z which, in general, is not a field, we can NOT use the results from
[18, 21] to find out if h is a fixed point system. In [13] this question is studied
and necessary and sufficient conditions are given for h to be a fixed point
system.

Using the Chinese Reminder Theorem, it follows that, if r = pγ1
1 · · · pγt

t ,
then

Z/rZ ∼= Z/pγ1
1 Z× · · · ×Z/pγt

t Z.

Now let f = (f1, . . . , fn) : (Z/rZ)n −→ (Z/rZ)n be a linear system over
Z/rZ. For each i = 1, . . . , t, define the linear system hpi

: (Z/pγi

i Z)n −→
(Z/pγi

i Z)n such that hpi
(a) = [f(a)]pi

γi , where [−]µ is the vector of remainders
after dividing each coordinate by µ.
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Fig. 2. The phase spaces of f, h2 and h3.

Theorem 5.5. The state space of f is isomorphic to the product of the state
spaces of hp1 , . . . , hpt

. That is S(f) = S(hp1)⊗ · · · ⊗ S(hpt
).

Example 3. Let f : Z/6Z −→ Z/6Z be given by f(x) = 2x. Then h2 :
Z/2Z −→ Z/2Z is given by h2(x) ≡ 0, and h3 : Z/3Z −→ Z/3Z is given
by h3(x) = 2x. Figure 2 shows that S(f) = S(h2) ⊗ S(h3). Therefore, it is
sufficient to study systems only over the ring Z/pγZ.

In [13], the following theorem is proved.

Theorem 5.6. Let f : (Z/pγZ)n −→ (Z/pγZ)n be a linear map, and let g be
the projection map of f on Z/p. That is g = (g1, . . . , gn) : (Z/p)n −→ (Z/p)n,
where gi = fi mod p. Then the phase space of g is isomorphic to a subgraph
of the phase space of f .

In particular, the theorem above implies that if g is not a fixed point system,
then f is not a fixed point system.

As with other classes of mathematical objects it is natural to study trans-
formations between them. For finite dynamical systems such transformations
play a very important role. For instance, a transformation between models of
a complex system could represent a dimensional reduction of models or the
simulation of one model by another. In [25, 26] the notion of sequential dy-
namical system was generalized to allow for a richer theory, and the notion of
a transformation, or morphism, of sequential dynamical systems was defined.
The definition is quite complicated, largely due to the subtleties introduced
by the presence of an update schedule (which was generalized to be a partially
ordered set rather than a permutation). (The next section contains a descrip-
tion of transformations in the context of parallel-update polynomial systems,
which is substantially simpler.) This definition is reasonable since the com-
position of transformations is again a transformation and, most importantly,
that a transformation of SDS induces a transformation of the corresponding
phase spaces.

6 An Open Problem

An important motivation for studying transformations of finite dynamical
systems is to develop a mathematical process by which one can amalgamate
systems along common subsystems, in a way that allows some control over the
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Fig. 3. The system f as a fiber product of g1and g2 over h.

resulting dynamics. We give a simple example in terms of monomial systems
over k = F2. Consider the system in three variables

f = (xy, 1, yz) : k3 −→ k3.

That is, f(x, y, z) = (xy, 1, yz). We can construct this 3-dimensional system
by amalgamating two copies of the 2-dimensional system g(x, y) = (1, xy)
over the 1-dimensional system h(x) = (1), see Fig. 3. We denote this decom-
position as

(xy, 1, yz) = (1, xy)×(1) (1, xy).

We can think of this construction as a fiber product of systems over a com-
mon subsystem. In fact, it is very tedious but straightforward to show that
f satisfies the appropriate universal property that characterizes it as a fiber
product.

The phase space of f is the amalgamation of the phase spaces of g1 :
(Z/2Z)2 −→ (Z/2Z)2 and g2 : (Z/2Z)2 −→ (Z/2Z)2 over the common phase
space of h : Z/2Z −→ Z/2Z, where g1(y, x) = (1, xy), g2(y, z) = (1, yz), and
h(y) = 1.

It is clear that S(g1) = S(g2), and the subgraph of S(g1×g2) on the vertex
set (y, x, y, z) is isomorphic to the phase space of f , see Fig. 4.

It is an open question what happens in general. That is, when we carry out
this fiber product construction, how can one identify the result with a finite
dynamical system? Fiber products of this type play two important roles. On
the one hand, they allow the decomposition of systems into systems of lower
dimension, thus making their analysis easier. On the other hand, they can be
used as an important design principle for systems by building them up from
smaller, overlapping “local” systems.
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Fig. 4. Phase space of f is isomorphic to a subgraph of S(g1 × g2).

7 Conclusion

In this paper we have introduced the class of dynamical systems over finite
fields as a mathematical framework for interaction-based computer simulation.
It is a natural framework that allows the development of a body of mathemat-
ical results important for applications. However, finite dynamical systems are
of mathematical interest in their own right and deserve to be studied more ex-
tensively. A very useful tool for the exploration of a variety of questions about
them is the simulation and visualization program Discrete Visual Dynamics
(DVD) which can be used as a web-based tool or downloaded [23]. It uses
the software package GraphViz [17] for the visualization part. DVD takes as
input a ring Z/rZ and a system of polynomial functions. For r = 2, the user
can also input a system of Boolean functions, which the software translates
into polynomial functions. It then computes the complete phase space and
visualizes it, for small systems. For very large systems, the user can specify
a particular initialization, and DVD computes the transient and limit cycle
starting at that initialization. The user has the choice to update in parallel or
sequentially.
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New Pedagogical Models for Instruction
in Mathematics

W. Greenberg and M. Williams

Summary. A computer emporium is a large ensemble of computers accessible to
students and faculty, where courses and coursework can be addressed. A model
of emporium instruction of mathematics, developed at Virginia Tech, will be de-
scribed. The model was initially created to deal with instruction under the burden
of increased class sizes and increasing demands on faculty time. It has turned out
to be an effective pedagogical method with particular advantages for instruction
in less developed nations. In this article, we will describe the emporium model: its
structure, software development and impact on pedagogy.

1 Setting

With approximately 20,000 undergraduate students and 5,000 graduate stu-
dents, Virginia Tech is the largest university in the state of Virginia. Because
of its large College of Engineering, with more than 5,000 students, and because
of the requirement that every undergraduate student take a mathematics
courses, the number of students serviced by the Department of Mathemat-
ics is typically in excess of 10,000 in each semester.

The reduction of government support for higher education, which has oc-
curred in Virginia over the past 15 years, has significantly increased faculty
teaching-loads. Although the Mathematics faculty numbers about 60 profes-
sors and instructors, the burden of teaching so many students has motivated
the Mathematics Department to build a Mathematics Emporium. This some-
what whimsical term extends the definition of emporium as an open market
place: the Mathematics Emporium should be a place where the market of ideas
would be freely exchanged among students, faculty and computers. Despite
having initially viewed the project as a response to the need to teach very
large numbers of students, we have found that teaching mathematics in an
emporium style has a number of advantages for the students over traditional
lecture courses.

The Emporium itself contains a large ensemble of computers, located in
a now-defunct supermarket building adjacent to campus. A particular style
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of designing and presenting mathematics courses has been developed both to
deliver expository information and to provide quizzes on material the student
is expected to have mastered. It is this style of course development that is the
topic of this presentation.

At the present time, the Mathematics Emporium is available to every stu-
dent enrolled at the university in any disciple, and to the faculty of every
department and institute. In fact, however, while there is utilization of the
Emporium by nearly all departments of the university, the largest segment of
its use is by the Mathematics Department. Indeed, at present, three math-
ematics courses with annual enrollment of approximately 4,500 students are
taught entirely at the Emporium (i.e., no classroom component), and half a
dozen additional courses handling more than 5,500 students each year have
major segments of the course taught at the Emporium. A great number of the
remaining courses in mathematics have occasional Emporium assignments.

In this article, we will describe two emporium models: their structure,
software development and impact on pedagogy.

2 Program Structure

In the United States, the vast majority of university courses consist of a
set of weekly lectures, with weekly or periodic homework. Homework, for
example in mathematics courses, consists of a set of problems based on the
current lectures, which the student is expected to work out independently
on his own time and submit for grading. Then periodically there are written
examinations based on a collection of homework sets, and generally a written
final examination at the end of the semester, based on all homework sets. The
students grade is determined by his performance on the homework sets, the
periodic exams and the final exam. (In some courses, especially upper level
courses, the only examinations may be a written mid-semester exam and the
written final exam.) Oral examinations are much rarer in the United States
than in many other countries. Office hours by the faculty member, where
students can get help with their course, are scheduled by the faculty member
at a frequency determined by him to be adequate.

The chief burden on the faculty member, in addition to the preparation
and delivery of the lectures, is in grading: homework, exams and the final
examination. With increased class size, many faculty members have considered
the burden to be onerous.

The notion of an emporium was first considered as a response to these bur-
dens [4]. However, our experience with several models of instruction indicate
that emporium instruction not only relieves the faculty of much of this burden,
but is in fact an improvement for the student over the conventional methods
of pedagogy used for generations at American universities. We begin with a
description of the two models we employ at the mathematics emporium.
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A primary distinguishing feature of the independent model is that the
students never meet in a classroom. Their introduction to the on-line courses
is an orientation session, which exposes them to course resources that include
tutoring labs, on-line course web pages, the testing system, on-line videos, etc.
Thereafter, subject to unit deadlines, the students have complete autonomy
over their schedules.

The course is made up of a sequence of weekly lesson-practice-quiz cy-
cles with periodic exams, all accessible from the Emporium computers. The
lessons are given by mildly interactive web page presentations. Individual les-
son web pages consist of three overlays: explanation, examples and a challenge
problem. The default schedule would require a student to master about ten
of these units per week, followed by a quiz.

Additionally, there are five examinations and a final exam. A student may
proceed at any pace he wishes as long as he does not fall behind the default
schedule. Theoretically, the able and energetic student could finish the entire
course in a few weeks, although that is rarely the case.

What distinguishes this model from the typical on-line course is that the
software consists of modules related to each lesson and exam. These mod-
ules are entirely accessible to the individual professor, and can be modified or
changed with great ease even by professors who have little or no prior experi-
ence with programming. A further distinction is the powerful test engine (in
both models), which will be described below.

In the lecture model we continue to meet the students in a classroom
setting several times a week for conventional lectures, covering the material
to be mastered for the course. However, in lieu of homework, there is a weekly
practice quiz/quiz-for-credit, which can be taken by the student from any
Internet site anywhere in the world. In particular, he does not have to appear
at the Emporium, as long as he has access to a computer and a reliable
Internet connection. Since Virginia Tech requires each entering student to
obtain a computer, most students are able to take the quizzes from their
apartments or dormitories.

The weekly quiz consists of approximately eight mathematics problems,
presented in the format of a multiple choice quiz. Each mathematics problem is
designed to test the understanding of a specific concept covered in the lecture,
and is presented with, in general, six to twelve possible answers, a number and
choice of wrong answers intended to reduce the importance of guessing and to
catch many of the more common mistakes. The actual problems are created
by a test generator which will be described below. Because the problems are
written in code which allows a variety of choices, each individual problem
typically has 1,000 or more variants. Therefore, the student is encouraged to
practice the quiz as often as he wishes (the practice quiz) before he chooses
to take it one time for credit (the quiz-for-credit). Whether it is a practice
quiz or a quiz-for-credit, the quiz is graded immediately upon its completion,
the student is given his answers and the correct answers, and he may request
further information on each problem he has answered incorrectly. This help
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information can be of a general nature about solving the problem, or can be
programmed to refer specifically to the particular answer given by the student.
Moreover, it is geared specifically to the individual variant of each problem
generated on the specific quiz taken by the student.

One should compare this to homework in the traditional setting, where a
single set of problems is assigned, the student in most cases will not know the
correct answers until the homework is graded and returned, if the answer is
wrong the student is unlikely to get help until he can meet the instructor in an
office hour, and, in any case, he has no real opportunity to redo the homework
(or, if such opportunity is available, it is very unlikely to be utilized).

It is essential, in understanding (both the models), to appreciate that
the practice quizzes are, in our opinion, where nearly all of the “learning”
takes place [1, 2, 3]. They replace the practicum, recitation, or homework
employed in various nations as follow-ups to the lecture, and, we believe, they
are actually a better, more effective product than these other alternatives for
the reasons iterated above. Moreover, once the course machinery is set up,
there is no effort or time required by the professor.

Approximately every five weeks, the student is required to take an exam-
ination which will cover problems from a number of previous quizzes, and at
the end of the course a final exam. Unlike the quizzes, the examinations and
final must be taken at the Mathematics Emporium, where they are subject to
fail-safe proctoring. Although the quizzes (which are not proctored) in total
may count only about 15% of the final grade, and the exams (which are proc-
tored) up to 85%, because the student knows that the pool of problems for
the quizzes and for the examinations is the same, there is every motivation for
the student to practice the quizzes as often as necessary until he is confident
he has mastered the material covered by each quiz problem.

While the student is allowed to take the quizzes outside the Emporium,
there are considerable advantages for him to go to the Emporium even for the
practice quizzes. An important feature of the Emporium is the availability
of one-on-one help provided typically within one minute of the request by a
support staff versed in all offered subjects [4]. The support staff varies from
Full Professor to advanced undergraduates. Just-in-time help is naturally more
effective than a general lecture and a much later office hour.

Whether the student chooses to take quizzes at the Emporium or at an
outside location, he is able to do this at any time of the day or night (al-
though one-on-one help will not be available at all times). This is because the
Mathematics Emporium is open 24 h a day, 7 days a week (not quite 52 weeks
a year, since there are short closures during important vacation and inter-
session periods), and, of course, the servers which provide Internet access are
available at all times. Surprisingly, we have found this at times to present
a cultural difficulty in some nations. It appears that the notion of keeping
a university facility open day and night seems sometimes to be a difficult
adaptation, even in nations where labor costs are exceptionally low (since the
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emporium site needs to be manned with at least a minimal check-in staff, and
in some locations a guard).

For both the independent model and the lecture model, a robust test engine
is required. A test engine is a system set up to deliver assessments (practice
quizzes, quizzes, exams) to an end user, a student, presenting the practice
tests and examinations on demand, grading them, providing the student with
access to the results and to correct answers, recording, saving, and sending
spreadsheet data to the instructor, etc. Each time a practice quiz, quiz or
examination is called up, the student sees a different set of problems. Conse-
quently, the engine has to be capable of delivering large volumes. In fact, our
test engine generates more than 10 million mathematics problems each year.
We believe it to be the largest such engine in existence. Our typical courses
have 1,500 students. For each quiz, each student takes on average about ten
practice quizzes. The typical quiz has eight problems, with exams having from
15 to 30 problems. Since each mathematics problem must be individually gen-
erated for each student each time the problem is accessed, it is evident that
the volume is quite massive.

In addition, these volumes must be delivered in a fashion which is insensi-
tive to the users platform, and indifferent to the network connection – dial up,
T1 link, Emporium connection. We are not aware of any other test engines
which are currently capable of delivering these volumes.

Because of the very high level of usage, a much richer set of problems is
required for this setup than is usually found in a test database. One needs to
be sure that students see a different problem each time a problem is accessed.
This dictates that the model of problem database that relies on static lists of
problems is insufficient, and that problems must be generated from programs
that introduce sufficient variety to distinct problems.

To be platform independent at the student end requires use of a common
interface that is available ubiquitously. The obvious choice is the web browser.

On the server side, we constrained ourselves to open standards and mod-
ular design. In this way as course components are improved, and the delivery
system upgraded, these changes can be easily implemented. A paramount
consideration at all times was to ensure that the system was scalable to large
transaction volumes.

3 Hardware Requirements

These simple design requirements imply that the server consist of a standard
web server (we use Apache) and a page delivery service capable of very high
volumes of transactions. Apache is public domain, which means it is standards-
compliant and free to use. Apache has proven to be extremely robust. In order
to retain sufficient programming control to attain these transaction volumes,
the most practical environment is java server-pages (JSP). JSP permits a
maximum of computational speed and processing in a rich environment.
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With this architecture, a high-powered machine as server is not necessary.
We utilize a pair of aging Sun 3000 servers with 4G of memory and RAID
storage. Though they are more than 7 years old, and we have not found the
need to upgrade. If we were to replace them at this time, we would use off-
the-shelf LINUX systems. One of the machines does the web serving, while
the other accommodates the database. Except when we do builds, we rarely
see usage exceed 10% of capacity on any machine.

We use Oracle as the database management system. This relational system
holds and links data on the students (ID numbers, major discipline, course
registrations, email addresses, etc.), on the raw assessments and on the com-
pleted exams and quizzes. An instructors gradebook server regularly taps this
database to update this information in gradebook for each student, and passes
relevant information to the faculty.

New tests and exams are supplied to the main server through a separate
engine that uses Mathematica to generate the individual tests on-demand. As
a practical matter we use the test engine to establish caches of new exams
in every category. This prevents slowdowns or gaps in service should the test
engine server be unavailable, or should the demand for specific quizzes exceed
available generation resources.

Each of these engines currently resides on one of the two Sun systems or
one of the handful of Apple XServes we have available. Because of our modular
design, there are no constraints, other than adequate communications links, on
where the individual services are located. In this way we gain easy redundancy,
guarding against downtime.

At the student or instructor end, as mentioned above, any personal com-
puter, which can support a modern browser, independent of platform, can
access the system.

4 Operations

In order to gain economies of scale from our program, we maximized the
amount of sharing of resources. Therefore, we established the Math Empo-
rium in a 7,000 m2 former department store, whose interior is undivided. It is
populated with 550 computer workstations on hexagonal pods of six stations
evenly spaced throughout this large open area. The students, independent of
which course they are enrolled in, come to the Emporium to use the computer
systems and to avail themselves of the mathematics instructional support. The
instructional support staff is available approximately 14 h per day, although
the Emporium itself is open 24 h per day.

Instructional support is provided by a cadre of senior undergraduate stu-
dents, graduate students and some regular instructional faculty, who are avail-
able to roam throughout the floor and respond to any student in any course
who has signaled for help.
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This support is a key component of retaining human interactions with
the students, especially in the independent model. The support consists of
personalized just-in-time help for each individual student as he encounters an
issue in solving a mathematics problem, and should be contrasted with the
traditional lecture delivery system of one teacher many students, which can
neither adapt to the different speeds of comprehension of each student, nor
deal with individual problems each student encounters in trying to solve a
specific problem [5].

At the present time, for reasons of security, quizzes and examinations
for credit must be taken at the Mathematics Emporium itself. However, we
reiterate that the practice quizzes and examinations themselves are accessible
to any students enrolled in the corresponding courses at any time and at
any place, through the Internet. The Emporium is of course available to any
student who does not otherwise have access to a computer, or who chooses to
study the practice quizzes in an environment where he or she has immediate
access to instructional support.

5 Test Problems

For the types of courses we have developed, the practice quiz plays the most
fundamental role in the learning process, and also serves as the pool from
which all exam problems are chosen. This introduces a burden on the problem
writer of generating questions of variety and repeatability.

A key feature of the test engine is that it has been made accessible to all
of the faculty. We have created an environment where any faculty member
can create his own course on-line, with virtually no prior experience in pro-
gramming. Indeed, we have a number of faculty who are currently involved in
placing their courses in the Emporium and whose prior use of computers was
restricted to receiving and sending email!

Mathematica, due to its versatility and sophistication, has been chosen as
the environment for creating these tests. We have created a series of utili-
ties that simplify the task. The utilities provide a series of commands, func-
tions and shortcuts to compile and display the quiz problems. The instructor
needs only to insert the mathematical specifics for each quiz problem into
pre-constructed quiz modules, placing, for example, the correct answer in its
appropriate location, a series of wrong answers in a corresponding appropriate
location, the statement of the problem likewise in its location, etc.

We must be careful not to oversimplify the burden on the instructor. The
problems have to be created in a manner that is programmable and allows for
distinct versions of the same problem. Moreover, there are many nuances to
assuring that duplicate answers are not created, that a wrong answer might be
correct for extraneous reasons, that patterns are not unconsciously established
among the set of answers which will tip off students as to the correct choice,
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etc. Finally, there is the overriding pedagogical need to assure that the quiz
problems teach and test the desired mathematical principles.

Because of the modular construction of the utilities, and their assistance
in programming the problems, we have found by experience that mathemat-
ics faculty with no prior experience in computer programming can learn to
effectively start making quiz problems after one afternoon of preparatory in-
struction and a selection of model problems.

6 An Example Problem

Here we present an example of a Mathematica program that generates a simple
geometry problem.

ProblemInfo[”Q2.09”]={1,”Tests understanding of collision points”};
makeproblem[”Q2.09”,str ]:=Module[{a,b,c,f,e,a0,a1,a2,b1,b2,b3,c1,

c2,c3,p,q,r,px,qy,qy2,x1,y1,x2,y2, test1},
ClearAll[t,x,y,s];
test1=True;
While[test1,
{a,b}=ChooseRandom[Range[1,5],2];
{c}=ChooseRandom[Range[1,3],1];
{f}=ChooseRandom[Range[0,1],1];
{a0,a1,a2}=ChooseRandom[Range[1,5],3];
{b1,b2,b3}=ChooseRandom[Range[1,5],3];
{c1,c2,c3}=ChooseRandom[Range[1,5],3];
e=c+f;
p[t ]=a2 t2+a1 t+a0;
q[t ]=-b3 t3+b2 t2+ b1 t;
r[t ]=c3 t3-c2 t2+ c1 t;
px[t ]=Simplify[(t-a) (t-b)+p[t]];
qy[t ]=Simplify[q[t]-q[a]+c q[a]];
qy2[t ]=Simplify[r[t]-r[a]+e q[a]];
{x1[t ],y1[t ]}={px[t],qy[t]};
{x2[s],y2[s]}={p[s],qy2[s]};
test1=Length[Union[{{x1[a],y1[a]}, {x1[b],Abs[y1[b]]}, {x1[a+1],
Abs[y1[b-1]]},
{x1[b+1],Abs[y1[a-1]]}, {x1[a-3],Abs[y1[b+3]]}, {x1[b-1], Abs[y1[a+1]]}}]]<6
‖{{f==1}&&{qy(a)==qy2(a)}}‖{{f==1}&&{qy(b)==qy2(b)}}‖{{f==1}&

&{q(a)==0}};];
ProblemText[str]={{”Problem”,{StringJoin[”Suppose a particle travels on
the path given by x = ”, tF[ x1[t]],”, y = ”, tF[ y1[t]], ” at time ”,tF[t],”, and
another particle travels on the path given by x = ”,tF[ x2[s]],”, y = ”, tF[
y2[s]]”\ n at time ”,tF[s],”. Do they collide, and, if so, at what point?” ]}},
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{”Right”,{If[f<1,StringJoin[”Collide at (”,tF[x1[a]],”, ”,tF[y1[a]],”) ”],”Do not
collide.”] }},
{”Wrong”,{If[f>0,StringJoin[”Collide at (”,tF[x1[a]],”, ”,tF[y1[a]],”) ”],” Do
not collide.”] }},
{”Wrong”,{StringJoin[”Collide at (”,tF[x1[b]],”, ”,tF[Abs[y1[b]]],”) ”]}},
{”Wrong”,{StringJoin[”Collide at (”,tF[x1[a+1]],”, ”,tF[Abs[y1[b-1]]],”) ”]}},
{”Wrong”,{StringJoin[”Collide at (”,tF[x1[b+1]],”, ”,tF[Abs[y1[a-1]]],”) ”]}},
{”Wrong”,{StringJoin[”Collide at (”,tF[x1[a-3]],”, ”,tF[Abs[y1[b+3]]],”) ”]}},
{”Wrong”,{StringJoin[”Collide at (”,tF[x1[b-1]],”, ”,tF[Abs[y1[a+1]]],”) ”]}},
{”Comment”,{“Since collisions occur at the same time, change both parame-
ters to t. Then set the xs and ys equal. Solve whichever is easier for t. The
other equation will give either an identity or a contradiction.” }} };];

One iteration of the compiled problem:

Suppose a particle travels on the path given by

x = 5t2 − 4t+ 14, y = −t3 + 3t2 + 4t+ 24

at time t, and another particle travels on the path given by

x = 4s2 + 3s+ 2, y = 2s3 − 3s2 + 4s− 3

at time s. Do they collide, and, if so, at what point?

Collide at (47,36)
Do not collide
Collide at (78,24)
Collide at (78,36)
Collide at (119,36)
Collide at (14,144)
Collide at (47,24)

While the program may appear daunting to the novice, a template and a
multitude of exemplars from current production programs substantially ease
the difficulty of writing new problem programs. The experienced Mathematica
user will notice many functions that are not part of the Mathematica pack-
age. These add-ons simplify the recurrent tasks. For example, makeproblem
[ ] := Module[, and ProblemText[str] = “Problem”, are part of the templates
provided to instructional faculty wishing to author quizzes. Our own expe-
rience is that new faculty users with no prior programming experience can
write effective problems with a half day of instruction, a number of example
problems, and occasional assistance in debugging.

For this problem, the Comment (which the student receives only if he
requests help from the quiz) is general to any variant of the problem and any
answer. However, this help aid can also give different responses for different
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wrong answers, can refer to the particular values of parameters in the problem,
and can give references to precise locations in course texts or in online course
material.

It should be easy to see that changing an existing course into another
language is, with the assistance of a translator whose mathematics knowl-
edge need extend only to translating a few common mathematics words, a
rather trivial task. Indeed, to change this problem into Bambara, say, one
need only replace the words surrounded by quotation marks in the line be-
ginning with ProblemText and the line beginning with Comment with their
Bambara translation. In that manner, an entire course should be translatable
in no more than a day.

7 Economics and Conclusions

The conversion of traditional classroom-based course offerings to the models
described in the preceding has reduced costs by an average of 75%. This is
due to the fact that the demand for one-on-one help (sometimes provided by
advanced undergraduates) is dwarfed by the costs of more senior lecturers in
so many classrooms. Furthermore, when the performance in later courses of
students who have completed courses under the new models are compared to
those who learned the material under the traditional model, we find that the
former significantly out-perform the latter. We believe this is due to increased
time-on-task and an increased independence.

More important, the Math Emporium has permitted us to make a dis-
continuous change to the methods of operation of our course offerings. We
have used this unique asset to transform traditional classroom-based courses
into more efficient technology-based learning programs. The structure of the
program is very different from the conventional one, having a new set of ex-
pectations and motivations. To summarize, the results include:

Students are more self-reliant
Students budget their time more effectively and satisfyingly
We enjoy a substantial cost savings
Students demonstrate increased proficiency in down-stream course work
We have learned much about distance learning
We have a new fully automated testing system which broadens the impact
of testing
We have a stream-lined process which takes source material into structured
web resources effectively and quickly
We have shown the models we are using scales well (e.g., savings increase)
to larger enrollment courses

We continue to aggressively pursue further course conversions.
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