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Preface

Motive for Writing This Book

After having published my first book, Computer Networks: Architecture,
Protocols, and Software, friends asked me how long it took to write the book. My
reply was that on the surface it took about three years from beginning to end; below
the surface it took more like thirty years. Yet, my job is not done unless I write a book
on computer architecture and discuss some of the background Inaterials. Most first
generation computer architects are physicists who learned everything about comput­
ers on the job. Second generation computer architects studied the basics in school
and later practiced in industry. My academic training enabled me to read the design
documents of IBM 360 Operating Systems in the 1970s. This painstaking effort
broadened my horizons about real issues, and to this day I feel very much obliged.
In the 1990s, while I studied the blue book on the telecommunication network design
by ITU-T (International Telecommunications Union - Telecommunication
Standardization Sector), I was able to make suggestions for improving the design.

As you may not know, in 1962 I came to this great country without a penny. My
life has changed ever since my late friend Bob Chen convinced me to study comput­
ers. Back then we knew so little about computers and it took us three months to find
out that a compiler is software, not hardware. Today, a compiler can be embedded in
hardware. Technologies come and go, but theories remain. May this book bring you
confidence and success.

Who Should Read This Book

This book discusses computer architectural topics from a beginner's level to an
advanced level and explains the reasons behind certain computer design. Preferably,
readers should be familiar with at least one programming language and Boolean
algebra. The intended audience mainly consists of:

• Undergraduate students of computer science (the selected topics
in this book can be lectured in 60 to 80 hours)

• Undergraduate students of computer engineering and electrical
engineering

• Professionals in the electronics industry

After grasping the system concepts, readers can proceed to study more topics on
computer hardware, system software, and networks.
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Organization of This Book

This book has ten chapters. The first four chapters cover fundamental computer
principles. Chapter 5 continues the discussion of intermediate level topics and
Chapter 6 describes microprogrammed CPUs. Chapter 7 discusses superscalar
machine principles. Chapter 8 covers vector and multiple-processor machines.
Chapter 9 is devoted to processor design case studies and virtual machines. Finally,
Chapter 10 teaches stack machine principles and the design of a virtual stack
machine. Every computer science major should read this chapter before graduation.
A brief description of each chapter is given below.

Chapter 1 introduces the history of computers, hardware components, software
components, application programs, computer simulation, and the program design
language to describe logic flow. After learning the basics of disk files and com­
mands, readers are ready to run a program on an IBM PC.

The second chapter discusses number systems and basic mathematics in regard
to computing. Topics include positional notation, radix, number conversions, inte­
gers, negative integers, floating points, packed decimals, and characters.

Chapter 3 introduces the stored program concept, instruction format, and basic
computer principles. Topics include opcodes, addresses, instruction register, and
instruction address register. A register transfer language is introduced to describe
CPU operations - instruction fetch and operand execution. Other general topics
include carry look-ahead adders, hardwired logic, microprogrammed logic, hybrid
logic, and software interpretation.

Chapter 4 covers assembly language that is used to describe the internal opera­
tions at the target machine level. The purpose is to develop basic coding skills.
Because of its popularity, the Pentium processor is used as a tool to describe instruc­
tion executions in a computer. Topics include assembly language syntax, machine
ops, pseudo ops, basic addressing modes, looping, and macros.

Chapter 5 covers the common design features of a central processor. General top­
ics include addressing modes, indexing, subroutine linking, interrupts, I/O structure,
I/O programIning, software polling, direct memory access, memory mapped I/O, and
cycle stealing.

Chapter 6 focuses on the design of a microprogrammed CPU using segment base
registers. The execution of microcode is overlapped with target instruction fetches.
Topics include microcode engine, encoding, sequence control, conditional branch,
and unconditional branch. Via a single adder, discussion is given to the algorithms
for unsigned multiply, signed multiply, unsigned divide, and signed divide, as well as
floating point operations.

Chapter 7 covers all the look-ahead, look-aside, and look-behind features of
supersca)ar machine design. A balanced system allows all the hardware components
to operate in parallel. Selected topics include storage hierarchy, resource dependen­
cies, one-clock shifter, multiplication trees for unsigned or signed numbers,
pipelined CPUs, instruction queues, instruction caches, data caches, decoupled
pipes, and virtual memory.
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Chapter 8 discusses vector and multiple-processor machines. The multiple­
processor machine class consists of multistation systems, multiprocessing systems,
and computer networks. Selected topics include processor-to-processor communi­
cations, intertask messages, protocols, local area networks, and wide area networks.

Chapter 9 focuses on processor design case studies. Examples include the IBM
mainframe, Power PC, Alpha, Itanium, and the reduced software solution computer.
At the end of chapter, we introduce virtual machines and the JAVA engine.

The final chapter continues the discussion on stack machine design. Essential
topics include postfix notation, operator stack, operand stack, S-ops, and the design
of a virtual stack machine.
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A
ace
ACIA
ACM
adc
AIX
ALU
AM
ANSI
ASCII
b
B
BCD
bit
BP
bps
Bps
BU
C
CACM
CATV
CC,cc
CD
CF
clse
com
CPI
CPU
CS
CU
D
DARPA
db
dc, DC
Disp
div
DMA
DMC
dopd
DRAM
DS

Acronyms and Abbreviations

exponential, concatenate
address; auxiliary
accumulator
asynchronous communications interface adaptor
Association of Computing Machinery
add with carry
advanced UNIX
arithmetic and logic unit
access method
American National Standards Institute
American standard code for information interchange
bit, binary digit
byte
binary coded decimal
binary digit
base pointer
bit per second
byte per second
bus unit
carry
conununications of the ACM
Community Antenna Television or Cable TV
condition code
compact disc
carry flag
complex instruction set computer
communication; commercial
clocks per instruction
central processing unit
code segment
control unit
decimal; delay; direction; displacement
Defence Advanced Research Project Agency
decibel (decimal bel); define byte
define constant; direct current; dynamic code
displacement
divide
direct memory access
differential Manchester code
destination operand
dynamic random access memory
data segment; define storage
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EA effective address
EBCDIC extended binary coded decimal for information interchange
EC
EISA
e-mail
endm
endp
ends
ENOR
EOR
Epb
EPROM
EPT
equ
ES
EU
Exp
F
FAT
IT
fixed
float
ftp
g,G
gbps
GC
ghz
GPR
GR
hex
hz
JA-32
IA-64
JAR
Ie
ID
IEEE
IH
Int
Internet
110
lOR
IP
IR
ISA
ISDN
ISR
IV

external code
extended industry standard architecture I/O bus
electronic mail
end macro
end procedure
end segment
exclusive nor
exclusive or
errors per bit
erasable progralnmable read-only memory
external page table
equate
extra segment; external symbol
execution unit
exponent, exponential
flags register
file allocation table
flip-flop
fixed point
floating point
file transfer protocol
giga: 109 to measure speed or 230 to measure memory size
gigabit per second
global code
gigahertz
general purpose register
general register
hexadecimal
hertz
Intel architecture-32 bits
Intel architecture-64 bits
instruction address register
integrated circuit
instruction decoder; identifier
Institute of Electrical and Electronics Engineers
interrupt handler
interrupt
inter-networking
Input/Output
I/O register
instruction pointer; internet protocol
instruction register
instruction set architecture; industry standard architecture I/O bus
integrated services digital network
interrupt service routine
instruction unit
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k,K
km
LAN
LUS
LRU
LSB
LSI
LT
m,M

kilo: 103 to measure speed or 210 (1024) to measure memory size
kilometer
local area network
left-hand side
least recently used
least significant bit
large scale integration
literal table
mega: 106 to measure speed or 220 (1,048,576) to measure memory
size; meter; melTIOry; more; multiplicand

MAN metropolitan area network
MAR memory address register
mbps megabit per second
MB megabyte
mBps megabyte per second
MC machine check; manchester code
MDR memory data register
MFLOPS million floating point operations per second
MIMD multiple instruction multiple data
MIPS million instructions per second
MMU memory management unit
mop machine op; micro operation
MOS metal oxide semiconductor
MOSFET MOS field effect transistor
MRU most recently used
ms milli (10-3) second
MSB most significant bit
MSI medium scale integration
mul multiply
MVS multiple virtual storage
~ micro
~IR micro instruction register
~PC micro program counter
~s micro (10-6) second
~IR micro instruction register
pPC micro program counter
NAM network access method
NBS National Bureau of Standards
NIST National Institute of Standards and Technology
NOS network operating system
os nanosecond (10-9)
o overflow
Op opcode; operation code; operator
opd operand
org origin, organization
OS operating system

P peta: 2 15 to measure memory size; parity; program; page number
PAS physical addressing space
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PB
PC
PCI
PDL
PE
PEM
PF, PFN
PFT
PN
pop
PPU
PROM
PSW
PT
PTBR
ps
R
RAM
RCL
RCR
Reg
RHS
RISe
ROL
ROM
ROR
RPM
RS
RssC
RTL
S
SAR
sbb
SC
SCSI
SDRAM
Seg
SF
SHL
SUR
SIMD
SISD
SMP
SOC
Sop
sopd
SP
SR

petabyte
program counter; personal computer; program check; printed circuit
peripheral component interconnection bus
program design language
processing element
processing element memory
page frame number
page franle table
page number
pseudo op
peripheral processing unit
programmable ROM
program status word
page table
P?ge table base re~ister

pIcosecond (10- 1 )
register, real address
random access memory
rotate with carry left
rotate with carry right
register address field
right-hand side
reduced instruction set computer
rotate left
read-only memory
rotate right
revolutions per minute
reset-set; recommended standard
reduced software solution computer
register transfer language
stack; sign; source
shift arithmetic right
subtract with borrow
static code
small computer system interface
synchronous dynamic random access memory
segment
stack frame
shift logical left
shift logical right
single instruction multiple data
single instruction single data
symmetric multiple processor
system on chip
stack machine op; sum of product
source operand
stack pointer
status register
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SRAM
SS
SSI
ST
SVC
T
TB
TLB
TO
TOS
Trans
UART
ULSI
UNIX
USB
USRT
V
VA
VAS
VC
VLSI
VM
VS
VSM
WAN
WORM
WWW
Z

static random access memory
stack segment
small scale integration
segment table
supervisor call
tera: 2 12 to measure memory size
terabyte
translation look-aside buffer
time-out
top of stack
transactions
universal asynchronous receiver/transmitter
ultra large scale integration
UNICS (Universal Information and Computing Service)
universal serial bus
universal synchronous receiver/transmitter
volt, virtual
virtual address
virtual addressing space
virtual circuit
very large scale integration
virtual machine; virtual memory
virtual storage
virtual stack machine
wide area network
write once read-only memory
World Wide Web
zero
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Chapter 1

Introduction to Computers

1.1 PROLOGUE

A computer is an electronic machine for the purpose of computation. As far as
design is concerned, there are analog computers and digital computers. An analog
signal may vary continuously, while a digital signal is represented by many digits.
For example, the slide rule is an analog computing device while the Chinese abacus
is a digital computing device.46 Both are mechanical devices for computing, but
there is a fundamental difference in concept. A slide rule has three rulerbars made
of bamboo or plastic as shown in Figure 1.1 a.

The upper and lower bars are fixed in position but the middle one can slide both
ways. Decimal numbers are carved on all the bars. To add 1.2 to 1.1, we slide the
middle bar to the right and align its reference point 0 to 1.1 on the upper bar. From
the 1.2 mark on the middle bar, its aligned position on the upper bar indicates 2.3 as
the result. That is, by adding the distance of 1.1 and 1.2, we obtain the sum of 2.3
on an analog scale. The distance is an analog signal that is linearly proportional to
the real numeric number.

In contrast, an abacus is used to perform decimal arithmetic with many fixed
columns and movable beads divided into two partitions. Each bead in the upper par­
tition carries a weight of five and each bead in the lower partition carries a weight of
one. Therefore, as shown in Figure 1.1b, the abacus displays 123,456,789. The
number has nine decimal digits: the left-most digit is one and the right-most digit is
nine. Adding 1.2 to 1.1 means adding beads on each of the two columns. Therefore,
the result is 2.3 on a digital scale.

Modem computers are designed for computation as well as information retrieval.
The term computer architecture means the structural level design of a computer that
includes the layout of instructions and registers as seen by the software developer. A
computer architect defines the instruction set and the register set of a computer. After
the instruction set is defined, a computer may be built with different hardware com­
ponents so that its speed varies. Nevertheless, all the instructions execute the same
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2 COMPUTER ARCHITECTURE

way on a functional basis if machines share the same architecture.  We say that hard-
ware components are designed to execute software, or, software is written to drive
hardware.  In that regard, the design issues of hardware and software are closely
related.  To begin, we introduce digital signals, the history of computers, hardware
components, software components, and system software tools.  PDL (program
design language) is used to describe the logical flow of software or hardware.

1.1.1  Analog vs. Digital

An analog electric signal is a voltage that may vary with time on a continuous
basis as shown in Figure 1.2a.  The vertical axis is the coordinate of voltage, and the
horizontal axis is the coordinate of time.  The voltage waveform in the box is ampli-
fied  in Figure 1.2b.

Adding a sample signal of 1.2 v (volts) to another sample signal of 1.1 v, we
obtain a sum of 2.3 v in an analog computer.  Because the voltage is proportional to
its amplitude value, it is an analog signal.  But in a digital computer, both 1.2 and 1.1
are represented by a group of ones and zeros and the two bit strings are not the same.
Adding 1.2 to 1.1, we obtain 2.3 as the sum, which is comprised of a different com-
bination of ones and zeros.  That is to say, the number is always represented in bits
(binary digits), and each bit can be one or zero.  This book covers the design issues
of digital computers.

(b)

1.1 2.3

0 1.2

(a)

Figure 1.1 Mechanical computing devices: (a) slide rule and (b) abacus.
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Figure 1.2 Signal waveforms and switch: (a) analog signal, (b) amplified amplitude,
(c) binary switch, and (d) digital signal.

1.1.2 Digitizing

Voice is an analog signal which may be converted to the form of an electric volt­
age. A voice can be digitized so that it can be transmitted and processed by a digital
computer. To begin, we take the sample amplitude of a voice signal at fixed time
intervals. As shown in Figure 1.2b, 8000 samples are taken per second, and the time
period between two consecutive samples is computed below:

Sampling period = 1 / 8000 sec.
= 125 I..ls (micro sec.)

Via electronic circuits, we can convert the amplitude of each voice sample into a
string of binary digits, in other words, analog to digital (A-D) conversion or digitiz­
ing. If we transmit the binary digits to another station fast enough before the time
interval expires, the receiving station can restore the signal from digital to analog
(D-A) at the same fixed time intervals. That is, after the voice is digitized, a com­
puter can do message handling such as send, receive, record, transfer, etc. Another
example is the digital camera. After a picture is taken, it is digitized and processed
by a computer process known as image processing. The future trend is to digitize all
information so it may be processed by a computer.

A binary digit or bit has two states, one or zero. A bit string is a sequence of ones
and zeros. Based on the bit patterns and the ways to define them, we obtain differ­
ent information. A bit may be stored on disk or in an electronic circuit. If we use
two voltage levels, 5 v for 1 and av for zero, a binary switch is a bistable device to
store one bit as depicted in Figure 1.2c. If the switch position is down, its output is
av; if the switch is in the up position, its output is 5 v. If we hold down the switch
for a while and then flip the switch up for a while and down, its output is a combi-
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nation of a low voltage, followed by a high voltage and a low voltage as depicted in
Figure 1.2d. Inside the computer, the waveforms look just like this except the
switching speed is much faster.

A computer has three major hardware components: a CPU (central processing
unit), internal memory, and input/output (I/O) devices. The CPU is a hardware
device to process data. The terms internal melTIOry, central memory, or memory are
all synonymous. The memory interacts with the CPU as it provides a temporary stor­
age for the CPU during computation. As a matter of fact, the memory contains mil­
lions or billions of binary switches. All the instructions and data look alike as bit
strings in memory. Based on physical appearance there is no difference between the
two. An instruction tells the CPU what to do, for example, find data and perform an
operation on it. If instructions and data are arranged correctly in memory, the
instructions execute correctly on the CPU as expected. Generally speaking, an
instruction is active as it tells the CPU what to do. In contrast, data are passive
because they are the result of executing an instruction. By grouping instructions and
data together, we obtain a computer program, otherwise known as software. Writing
software means writing computer programs; the person who writes programs is
called a programmer or coder.

1.2 HISTORY OF COMPUTERS

Computer architecture means the design of a computer system at the structural
level that generally includes hardware and software. The computer development
effort has gone through five generations. Each generation was characterized by some
sort of hardware break-through along with some architectural improvements.
Consequently, each generation has produced some changes, such as smaller size,
lower cost, and substantial performance increase. Some of the major events in com­
puting are briefly introduced in Table 1.1.73

1.2.1 First Generation Computers

The first generation computers were made of vacuum tubes. For example, the
ENIAC was built between 1943 and 1946 by the Moore School of the University of
Pennsylvania. The machine weighed 30 tons with more than 19,000 vacuum tubes,
1500 relays, etc. as shown in Figure 1.3.

Even though ENIAC had only 20 words of internal memory and required man­
ual operations for setting up a program on a hardwired plugboard, it was the first
electronic digital computer in history. The instruction sets of first generation com­
puters were small, 16 or less. A computer program contains instructions and data,
called machine executable code or code for short. Therefore, machine instructions,
executable code, and machine code are all synonymous. Preparing computer instruc­
tions means programming or coding, and there is great demand for good coders.
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Table 1.1 Major Events in Computing

Year
1945

1946

1947

1951

1952

1953

1957

1958

1961

1963

1964

1965

1968

1970

1971

1972

1973

1974

1975

1976

1977

1981

1982

1984

1987

1988

1990

1995

1996

2000

Description
Stored program concept

First computer bug - a moth found in a relay

ENIAC (electronic numerical integrator and computer)

Transistor

Core memory

Microprogramming

The A-O compiler by Grace Hopper

Magnetic drum, disk memories

FORTRAN programming language

Integrated circuit

Time sharing computer system

ASCII (American standard code for information interchange)

IBM 360, the first third generation 32-bit mainframe using
integrated circuits

Mouse (not in use until 1973)

CDC6600, the first supercomputer (60-bit)

PDP-8, the first minicomputer (12-bit)

Structured programming constructs

Floppy disk

E-mail

Intel 8008, the first 8-bit microprocessor

Digital calculator

Programming language C

Ethernet

Large scale integration (LSI) with 10,000 transistors on one chip

Four-kilobit MOS (metal oxide semiconductor) memory chip

RISC (reduced instruction set computer)

Laser printer

CRAY 1, the first 64-bit supercomputer

Apple II, an 8-bit personal computer

IBM PC

PacMan game - man of the year, Time Magazine
CD-ROM (compact disk-read only memory)

Very large scale integration (VLSI) with 1,000,000 transistors
on a chip

16-megabit MOS memory chip

Fiber optics as a transmission medium

WWW (World Wide Web)

JAVA programming language

Pentium, a 32-bit microprocessor

Itanium, a 64-bit microprocessor
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Figure 1.3 ENIAC (courtesy of Charles Babbage Institute, University of Minnesota).

In first generation computers, there were no programming tools and a program­
mer had to prepare the instructions by toggling switches on a hardware panel.
Subsequently, UNIVAC I and IBM 704 were developed in the early 1950s, and even­
tually evolved into second generation computers.

1.2.2 Second Generation Computers

Starting in the late 1950's, second generation computers emerged. These
machines commonly used discrete transistors and magnetic core memories. Their
processors had powerful instruction sets along with many architectural features. At
the same time, progress was being made in system software development. For exam­
ple, the operating system (OS) was developed as a set of control programs running
alongside a user application program in the computer. In addition, high-level pro­
gramming language compilers, such as COBOL and FORTRAN, were developed to
make programming much easier. A compiler is a software tool that translates a pro­
gram into some form of machine code. The popular second generation machines
included the IBM 7000 series and the CDC 6000 series. It is interesting that CDC
6600 and 7600 were the fastest computers in their era, but are now out-ranked by the
performance of personal computers (PC).
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1.2.3 Third Generation Computers

7

In 1964, while every competitor still dwelled on the second generation develop­
ment, IBM made a monumental decision to abandon its old 7000 product line and
push its 360 product line, a family of third generation computers. The IBM 360 sys­
tems, which later became 370, mainly used integrated circuits (ICs) in the system
and magnetic cores as central memory. An IC chip contains many transistors, so the
size of a circuit board is smaller. Some are fast and some consume little power.
Without dispute, Ies were the basic building blocks of third generation computers.
IBM also pioneered the concept that if a program executes on a lower model, it can
also execute on upper models. That is, all models are upward compatible because
they all share the same architecture, or ISA (instruction set architecture). However,
hardware components are different from model to model in terms of speed, size, and
cost.

The IBM 360 computer was designed with many architectural innovations. It
pioneered the concept of having 16 general purpose registers, hexadecimal notation
to represent a binary number, twos complement arithmetic, powerful interrupt struc­
tures, and sophisticated Input/Output structures. Most importantly, its as (operat­
ing system) was completely reliable. These topics will be explored in subsequent
chapters. Due to this strategic move, IBM made a quantum jump in computer design,
took the lead, and never looked back.

1.2.4 Fourth Generation Computers

As technology moved forward, fourth generation computers were characterized
by using very large scale integration (VLSI) circuits and semiconductor memories.
It is amazing that 5.4 million transistors could be packed on a single chip as small as
a fingernail.66 If we pack the electronic circuits of the entire central processor on one
chip or several chips, we obtain a microprocessor. Due to the short distance between
two hardware circuits on a chip, it is possible to operate the chip at a higher speed.
As a consequence, a fourth generation computer usually has a fast microprocessor
with a large amount of memory using VLSI circuits. That is, every new computer
system will use microprocessors in its design, regardless of whether it is a mainframe
or a supercomputer. However, the large systems are characterized by using more
sophisticated hardware, many processors, and high-capacity memory chips, along
with a very reliable operating system. Based on this notion, any PC using a micro­
processor chip fits nicely into the low end of a fourth generation computer, while the
IBM 360/370 systems have been evolved into its 390 series at the high end. Figure
1.4 shows the printed circuit board with dual microprocessors. Circuits are laid out
on the left-hand side as add-ons. There are more than 350 copper pins, some of
which are signal lines to communicate with other devices.
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Figure 1.4 Microcomputers: printed circuit board with dual processors (courtesy of Ziatech).

1.2.5 Fifth Generation Computers

It is hard to define a true fifth generation computer in regard to technological
breakthroughs. However, there was a fifth generation computer project in Japan
which worked on the design of appropriate software running on a cluster of high­
speed processors in order to perform a specific common goal.44 Such a system
requires extensive parallel computations, and the basic idea was to divide a large
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problem into pieces. Each processor could execute a program to solve one piece of
the big problem. Such systems would be useful for library searches, global weather
predictions, airplane wing design, global database searches, playing chess, etc. But
such machines have been in the works since the second generation, and the proposed
computer was just a special-purpose multiple processing system for parallel compu­
tations. The notion of interconnecting multiple computers, however, could be
extended to designing a computer network. A general purpose computer network
requires intricate system software to support interprocessor cOlnmunications
between any two computers on the globe.

Since high-speed links are used to transmit data over long distances, after exten­
sive research, fiber optics will most likely become the future transmission media.
Using a fiber wire, up to hundreds of billion bps (bits per sec) can be transmitted
between two computers. As far as architectural changes are concerned, intercon­
necting over several million computers using fiber optics is a hardware break­
through. Writing system software to support such applications over a global network
is also a breakthrough. Therefore, the design of a computer network over several
million different computers using fiber optics for data communications qualifies as
a fifth generation computer. It should be mentioned that a computer network needs
good system software to ensure reliability and performance. It took more than a
decade for designers just to agree on network standards, e.g., physical interface, pro­
tocols, design approaches, etc. More reference materials can be found in a different
book by this author. 24

1.3 HARDWARE COMPONENTS IN A COMPUTER SYSTEM

The simplified block diagram of a computer system is depicted in Figure 1.5.

CPU

//
I/O Devices

Memory

Figure 1.5 The simplified block diagram of a digital computer.
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The hardware components include a CPU, memory, and input/output devices. In
simple tenns, the CPU is the central processor where data are processed. The mem­
ory is used to store the intennediate results during the execution of a program. That
is, the CPU is similar to a processing factory and memory is the storage house. When
the program executes on the CPU, it may want to read data from an external device
for input or want to store data on an external device for output. Thus, we see that an
input device provides data to the CPU while an output device receives data from the
CPU. I/O devices are used by the CPU to communicate with the outside world. A
magnetic disk or tape is classified as an 110 device serving the purpose of external
memory. A program on disk must be loaded into central memory first before its exe­
cution can begin.

1.3.1 Central Processing Unit

The CPU is the brain of a computer and its design is quite intricate. Before the
advent of microprocessor chips, a CPU may have cost several million dollars.
Nowadays, a PC employs a microprocessor chip that has over ten million transistors
on it and the cost is one thousand dollars or less. As speed is concerned, the chip is
faster than a third generation mainframe.

A CPU is designed to execute a program, or, a program executes on a CPU. A
program is a collection of machine instructions and data in binary fonn. Before a
program can execute on the CPU, the instructions and data must first be stored in
memory. As a program executes, each instruction is loaded into the CPU one by one
and executed by hardware. In the chapters to follow, we will discuss the basic prin­
ciples of a computer and the innovative features to make it run faster. The last chap­
ter will teach how to write a simulator for a computer.

1.3.2 Memory

Memory, internal memory, and central memory are all synonymous. The mem­
ory system is the second most important component in a computer because it inter­
acts with the CPU all the time during program execution. Memory is divided into
basic addressable units called bytes, and each eight-bit byte is called an octet. As
each byte in memory is assigned an address, the address must be passed to memory
in order to fetch what is contained in the byte. The bit setting of a byte means its con­
tent (Le., the value of a character variable) in a high-level programming language.

1.3.2.1 Memory Address vs. Content

The address of a location in memory is completely different from its value or
content in that location. A variable occupies a memory location whose address never
changes, but the content at that memory location may change from time to time. That
is, a variable may occasionally be set at a different value. The memory location is
similar to a mail box at the post office. Each box has a number assigned as its address
or PO box number. Anything in the box is its content or value, such as letters. The
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content in the box may change from time to time, but its box number, i.e., the address
will never change. The memory addressing concept is also similar to the address
assigned to a house in a city. The person living in the house may change but not the
house address. The memory address is used to find an instruction or data in mem­
ory. Therefore, if a memory operation is issued during execution, the address is
transmitted to the memory system along with the memory request.

The basic addressable unit in memory is a byte of eight bits. Because a computer
uses a binary nUlnber system, the memory size is measured as 2N bytes. There are
some memory sizes worth mentioning, as shown below:

• One KB (kilobyte) means 1024, or 210 bytes.
• One MB (megabyte) means 1,048,576, or 220 bytes.
• One GB (gigabyte) means 1,073,741,824, or 230 bytes.
• One TB (terabyte) means 240 bytes.
• One PH (petabyte) means 250 bytes.

Nowadays, microcomputers tend to have 64 or 256 MB memory, while a mainframe
supports a memory of 4 GB. When a CPU retrieves an instruction or a piece of data
from memory, it must issue a memory read cycle. When a CPU decides to store data
into memory, it issues a memory write cycle. The Inemory read and write cycles or
operations are performed, back and forth, as the program executes. There are two
major types of memories: cores and semiconductors, and both are quite interesting,
as introduced below.

1.3.2.2 Core Memory

The invention of core memories was a breakthrough in the early 1950s.15 A mag­
netic core has a diameter of 20 to 30 mil (10-3 inches), and the direction of the mag­
netic flux is shown in Figure 1.6a. If the direction is counterclockwise, it is defined
as one; otherwise it is zero.

There are three electric wires, X, Y, and sense, through each core. The X and Y
wires are used to select the core, and the sense wire is used to read the content of the
core. The magnetic core has a property such that the sum of electric current flowing
through the core on X and Y must be strong enough to switch the magnetic flux from
one direction to the other. Therefore, on each wire X or Y we select the strength of
the current in such a way that the current on one single wire will not be able to switch
the flux, but the sum of currents flowing on two wires will switch the flux provided
that the original flux is in the opposite direction. Thus, in a read operation, coinci­
dent currents flow on both X and Y to switch the flux towards zero as shown in Figure
1.6b. According to the right-hand rule, the current needs to flow from left to right on
X, and from bottom to top on Y. At the same time, the sense wire will detect an
induced voltage whose magnitude depends on the total amount of flux change in the
core. If the bit contains a one, the induced voltage is big because the magnetic flux
is completely reversed 180 degrees from one to zero. If the bit contains a zero, the
induced voltage is small because the flux change towards the same direction is not

© 2001 by CRC Press LLC



12

1

~

©
a
~

© x --.

COMPUTER ARCHITECTURE

( b)

(c) (d)

Figure 1.6 Magnetic cores: (a) magnetic flux direction of a bit 1 or 0, (b) read a bit
1 or 0, (c) write a bit 1, and (d) write a bit o.

big enough due to the saturation of its magnetic flux. We have only one sense wire
in the core, yet it picks up the induced voltage due to the change of magnetic flux
surrounding it. This inductive coupling technique is also used to read or write a mag­
netic disk or tape.

The trouble comes after the core is read and the bit is cleared to zero, that is, the
magnetic flux is switched to the zero direction. If the original bit is one, it is neces­
sary to restore the original bit via a restore operation. In design, the hardware logic
does the restoring operation by writing the original bit back regardless of its state. If
the original bit is one, coincident currents will flow in the opposite direction to
switch the flux back from zero to one as shown in Figure 1.6c. If the original bit is
zero, the current will only flow on X and not on Y to avoid a magnetic flux switch­
ing as shown in Figure 1.6d. In that case, the direction of its flux remains a zero.
Since a restore operation is always necessary after a memory read, it slows down the
speed substantially. A core memory has the following attributes:

• Reliable
• Non-volatile
• Can sustain high temperatures
• Large size
• Fairly fast
• Fairly expensive
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Core memory was fast but fairly expensive as used in second and third genera­
tion computers. Its major drawback was its large size and power consumption; one
advantage was its non-volatility. In the 1970s, if a system crashed, we could always
tum off the computer and boot a program to print out the core contents. This core
dump reveals the history of executions that provides clues to a possible cause of
computer crash. In third generation computers, core memory was replaced by semi­
conductor memory. However, due to core memory's tolerance of high temperatures,
it still finds some military applications. In the 1970s, IBM had the vision to use
semiconductor memories in some of its low end 370 series computers. At that time,
because of its slow speed and low yield, it didn't succeed. However, after a series of
breakthroughs in technology, semiconductor memory finally became the dominant
force because of its speed, high density, and low cost. Today, all fourth generation
computers and beyond use semiconductor chips as their internal memory.

1.3.2.3 Semiconductor Memory

A simplified diagram of a one-bit semiconductor memory cell is depicted in
Figure 1.7. The cell is a bistable device, comprised of a semiconductor. The detailed
circuits are omitted in the diagram, and the four signal lines are for address selection,
read command, write command, and data. Note that the data line is bi-directional for
both read and write operations. For a read operation, the selection and read lines are
activated with a high voltage. After a while, the input bit stored in the cell shows up
on the data line. For a write operation, the output bit is placed on the data line, and
meanwhile the selection and write lines are activated with a high voltage.
If a single memory Ie chip whose size is smaller than a fingernail has a storage
capacity of 16 megabytes, then eight such chips would make a 128MB memory bank
with the following characteristics:

• Reliable
• Volatile
• Cannot withstand high temperature
• Small size
• Fast
• Inexpensive

Data

ct •
• ... •
•

Sele

Read

Write

Figure 1.7 One-bit semiconductor memory cell.
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There are two types of RAM (random access memory) chips: DRAM (dynamic
RAM) and SRAM (static RAM). They are for general purpose applications that
require both read and write operations. As shown in Figure 1.8, eight memory IC
chips are soldered on a PC (printed circuit) board, which is 5.25 inches by 1.25 inch,
known as a SIMM (sitlgle in-line memory module) strip. Depending on the cost,
each chip may have a storage capacity of 4MB or 16MB, so the strip has a storage
capacity of 32MB or 128MB but the wiring layout remains the same. A DIMM (dou­
ble in-line memory module) has memory IC chips on both sides of the strip, so its
capacity is doubled. A DIMM of 64MB or 256MB can be plugged into the same
motherboard slot of a PC. According to the revised Moore's Law, the number of
transistors on a chip doubles about every 18 months.53 Hence, a DIMM strip with
16 128MB chips will soon be available with a storage capacity of 2 gigabytes.

Figure 1.8 Single in-line memory module.

The second popular type of semiconductor memory is the ROM (read only mem­
ory) chip that can perform read only operations. In a ROM chip, all the bits are per­
manently set by the manufacturer so they can not be altered by a user. In a telecom­
munication switching system, software is usually placed in ROM. We say that the
system is embedded for real-time applications.

The third type of semiconductor memory is the EPROM (erasable programma­
ble ROM) chip where a user can change the bit pattern before production. The flex­
ibility that allows design changes after errors are detected makes it very attractive in
building prototypes. In relative terms, the EPROM chips are more expensive than
ROM and RAM chips.

1.3.3 Input/Output Devices

All the I/O devices can be grouped into three categories: input only, output only,
or both input and output. Input devices include the keyboard, mouse, joystick, etc.
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Output devices include the display, printer, film making devices, etc. Disks, tapes,
and laser disks are classified as I/O devices, but they are really external mass storage
devices. A disk or tape supports both input and output in that we can read from the
device as well as write to the device.

1.3.3.1 Magnetic Disk

There are two types of magnetic disks: hard disks and floppy disks. The basic
principle for each type is the same. The disk surface is coated with magnetic mate­
rials to store non-volatile bits just like core memories. A disk spins on a fixed axis
at a speed from 3000 to 5000 RPM (revolutions per minute). Figure 1.9a shows an
IBM MicroDrive, a 340MB hard disk scarcely larger than a U.S. quarter. As shown
in Figure 1.9b, the disk surface is divided into many concentric rings. Each ring is
called a track, Le., a circular path with the same radius.

(a )

Spindle

(b)

Track

(c )

Track

Figure 1.9 Magnetic disk: (a) an IBM MicroDrive, courtesy of IEEE Spectrum &
IBM, (b) concentric tracks, and (c) coil through a magnetic head.
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Usually, one read/write head is mounted on a single mechanical arm that can
move between the innermost track and the outermost track. The ann moves to select
one track on a disk. The head is made of magnetic materials, and we say it is flying
on the disk surface to read or write the track. As shown in Figure 1.9c, the head has
a cut or gap in the front to pick up magnetic flux, so current is induced through a
winding coil. That means that, while the disk is spinning, the magnetic field changes
in the head so as to induce current in the coil. During a disk write operation, an elec­
tric current flows through the coil to generate a magnetic field that changes the mag­
netic flux on the track. Because the direction of current changes, the disk surface is
magnetized like many tiny magnets aligned along the track with a property such that
two adjacent magnets are in opposite directions. During a disk read operation, the
magnetic head can pick up the magnetic flux change through its opening cut. Again
due to the change of magnetic field or inductive coupling, an electric voltage is gen­
erated in the coil. After amplifying and reshaping, the voltage waveform can be fur­
ther decoded into ones and zeros. A disk read operation does not change the data on
the track, so there is no restore operation.

There are some differences between a hard disk and a floppy disk. First, a hard disk
usually spins all the time while a floppy disk spins only as required. Second, a hard
disk pack can not be removed easily without using special tools, so it can spin much
faster. Third, the hard disk has a higher storage density, of approximately two billion
bits per square inch. In contrast, a floppy disk is a piece of flexible plastic covered with
magnetic material and wrapped in a paper bag or plastic case. Moreover, a floppy disk
can be removed from the drive by hand. The tenn file refers to a collection ofdata iden­
tified by a name. If the file is on disk, it is a disk file. Generally, a floppy of 1.44 MB
is big enough to store a whole book. Both hard and floppy disks are external or inter­
mediate storage devices in that they are slower than the central memory. In a broad
sense, they are called I/O devices to store programs and data during execution.

Magnetic tapes are similar to disks as far as magnetic recording principle is con­
cerned. There are, however, some differences. First, a reel of tape can store a trillion
bits, but it has a much slower speed. Secondly, it is a sequential access device that
needs a rewind operation before it can be read again. However, because of its relatively
inexpensive cost, it is occasionally used to store the contents of a hard disk as back-up.
In the case of a hard disk crash, the files on the tape can be loaded back into the system
to recover.

The third kind of disk is a CD (compact disk), which is a laser disk with data
stored on its surface. The read operation is performed by a laser, and the disk has a
very large data capacity. Some laser disks are writable, for example WORM (write
once read-only memory). That is to say, the disk can be written once, and after that
it is read only.

1.4 SOFTWARE COMPONENTS IN A COMPUTER

Let us examine some of the software components regarding program develop­
ment. All software components can be divided into two classes: system and appli-
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cation. The number one system component is the as (operating system), namely, a
set of control programs running with other programs in memory. Other system soft­
ware components include tools for software development. The application class of
software consists of all the programs other than system software. Software tools are
classified as system software because they are used to develop programs, systems, or
applications. Note that system software tools execute just like any other application
programs under the supervision of an as.

Any program, including the as, may reside on a floppy disk, hard disk, or optic
disk after development. The loader in the system brings the program from disk to
memory before its execution can start. The OS performs two major functions: super­
vision and service. It is correct to say that the as supervises the execution of other
programs in a computer. If a program tries to do something incorrect, the CPU hard­
ware and as work as a team to detect such a wrong move. As a consequence, the
program in execution is forced to terminate without causing further damage. This
happens a lot during program development. The terms as, control programs, super­
visors, and executives are all synonymous. The portion of as routines that resides
in memory all the time is also called the nucleus or kernel. The as also provides ser­
vices to other programs. For example, if a program needs to interact with an I/O
device, it asks the help of the as by issuing an I/O request system call. To perform
program development, we need to introduce system software tools, namely editors,
assemblers, compilers, linkers, loaders, and debuggers. In some computer systems,
the system software tools and as are bundled as one package.

1.4.1 Boot an Operating System

The bulk of an as may reside on the hard disk or floppy disk and a cold boot
means to turn on the power. When that happens, a routine at a fixed location in mem­
ory is executed. As a consequence, a small piece of the as, i.e., the boot routine, is
loaded into memory. After receiving the control, the boot routine executes to bring
the rest of the as into memory. A warm boot is slightly different in that pressing cer­
tain keys passes control to the boot routine in memory that is not damaged yet. This
also means that the as in memory is partially crashed due to some programming
errors. If the warm boot does not work, the OS is completely dead and a cold boot
is necessary. In either case, a software routine, when executed, boots the as from a
disk. A computer system usually has its as stored in low memory as shown in
Figure 1.10.

1.4.1.1 System Prompt

After booting is completed, the OS is in control and it displays a short message
on the left side of the screen followed by a blinking cursor. This short message is
called the system prompt, which may comprise a single character such as >, or a few
characters, like C:>, on a pc. The prompt signals that the as is ready to receive a
command from the keyboard and the blinking cursor shows the last character just
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Low address
as

User
partitions

High address~ ~

Figure 1.10 Operating system in memory.

typed in. The character C in the prompt denotes a disk drive ID (identifier) that is
used to store temporary results when no other drive is explicitly specified. The C
drive, therefore, is the default drive. Other systems may display a single character
prompt: % or $ followed by a blinking cursor. After seeing the system prompt, a user
can type a command on the keyboard followed by the <cr> (carriage return) or enter
key. Note that <cr> is a meta-symbol with letters enclosed in a pair of angular brack­
ets. The command is usually the name of an executable program on disk. After
receiving the cOlnnland, the as does the following:

1. Reads the name of an executable program from the keyboard
2. Loads the program from disk into memory
3. Passes control to the program and executes

The program name serves as a command to the as. System programs, Le., routines,
are referred to by names just like applications. For example, the cIs (clear screen)
command tells the as to clear the screen, the help command asks the as to display
the help menu of a particular command, etc.79 If a piece of software provi~ a ser­
vice in the system, it is a system utility program. Both cIs and help are program
names of two system utilities that usually reside in memory. Before the execution of
any program, a user must inform the as of his intention. If the program is not in
memory, the OS loads the program into memory first before its execution. While
running, the program is under the supervision of the as. When the program termi­
nates, control is returned to as.

Modem PCs use window-based operating systems in which a graphic user inter­
face (GUI) runs on top of an as. That is, a window-based as is a superset which
contains extra software to handle the graphic user interface.

Window-Based as = as + GUI
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After booting is completed, the system displays many graphic symbols as icons on
the screen, and each one represents an executable routine in nlemory. The label of
an icon represents a program name. Since the mouse is an input device, a user can
move the mouse to an icon and double click the mouse button to signal that the as
should start the execution of this routine. As a consequence, a window is displayed
on the screen. If the current routine in execution requests a keyboard input, it then
displays its own prompt in a window so the user can press keys to enter input. In
concept, a prolnpt is just a message indicating that the current routine in execution is
expecting a keyboard input from the user.

The design of an as is complicated, and some of the routines can be written in a
high-level programming language while others are written in assembly language.

1.4.1.2 File Name

A file system in the OS supports many files on disk or on tape. Each file may
have a name of up to eight letters, and it may have an optional extension name of up
to three letters. A period (.) needs to be inserted between a file name and an exten­
sion name. An extension name is used to provide extra infonnation about the file.
Some examples of file names are given in Table 1.2.

Table 1.2 Simple File Names

File Name Description

pgm1.asm program 1 in assembly language
pgm2.c program 2 in programming language C
pgm1.obj program 1 in object form
pgm1.exe program 1 in executable form

A user can change the file name via the ren (rename) command on the keyboard as
follows, ren pgml.exe hello, where pgml.exe is the old file name, and its new name
becomes hello. After renaming the file, a user would enter hello instead of pgm 1.exe
on the keyboard in order to execute the program.

1.4.2 Editor

Recall that all the system software tools are used to develop a program, system,
or application. The development job consists of many job steps, and each job step is
an independent unit of computation. Since any program must be in executable form
on disk, it takes many job steps to accomplish this goal. After writing a program in
a programming language on paper, the first job step is to store the program on disk
by executing an edit (editor) that is usually bundled with the as. The editor allows
a user to input a program via the keyboard. The program input from the keyboard is
the source code. Thus, a disk file with a source code is also called the source file or
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Figure 1.11 Execution of an editor.
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pgml.asm
as output

source module. By means of an editor, a user not only can create a source program
on disk by typing on the keyboard but can also make changes to the file while typ­
ing. In sum, an editor can read input from the keyboard, accept commands to make
changes, and save the file on disk. The execution of an editor is shown in Figure
1.11. The editor reads input from the keyboard, makes changes as commanded by
the user, and generates pgm I.asm as output.

The term processor is quite popular. Hardware people refer to it as a hardware
processing unit, and software people refer it as a processing program. Hence, a word
processor is a word processing software program and a language processor is a com­
piler. A word processor is a powerful editor because it can edit text as well as graph­
ics. We can execute a word processor to prepare a large program because a mouse is
an input device to select an edit command in a menu with no need to memorize.
Because the data output can not contain any format control information such as page
margins, numbering, line spacing, etc" it is necessary to inform the word processor
via a special command that the output file contains pure text.

For example, the commercial word processor WordPerfect (WP) is a powerful
application program to edit a large programming file. After seeing the system
prompt, we type the following command:

wp pgml.asm

where wp is the name of an executable file, followed by a space as the separator, fol­
lowed by pgml.asm, the name of the file that contains the assembly source. If
pgm I.asm is a new file, WP will create the file from scratch. If pgml.asm is an exist­
ing file, WP allows a user to make editing changes in the file. Either way, the source
program in assembly language is stored in a disk file named pgml.asm. Running
WP to prepare a program is one job step. After exiting from WP, the system prompt
shows up again on screen and the system is ready to execute the next job step, e.g.
assembly.

1.4.3 Assembler

An assembly language is a low-level programming language which may be used
to write system software as well as application programs. An assembler is a software
tool that translates a program from assembly language source to object code that is
very close to machine code. Because each assembly language statement is usually
translated into one machine instruction, assembly code programming also means
machine code programming. Thus, while a compiler is a high-level translator, an
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Figure 1.12 Execution of an assembler.

assembler is a low-level translator. Nonetheless, both are programming tools to
translate programs.

The execution of an assembler is shown in Figure 1.12. The software reads an
assembly program as input and translates it into some object code in an output file
newly created on disk. The input file pgml.asm contains the source code, and the
output tile pgm1.obj contains the object code generated by the assembler. After
translation, the original source file remains intact without being modified.

1.4.4 Compiler

Most application programs are written in high-level programming languages for
reasons of convenience and readability. Some of the programming languages are C,
C++, Fortran, COBOL, JAVA, etc. A compiler is a software program that translates
another program from a high-level language to object code. Thus, a compiler is like

pgml.c
as input

Figure 1.13 Execution of a compiler.

Compiler
pgml.obj
as output

an assembler except that it has the intelligence to parse and translate a high-level pro­
gramming language statement into one or more machine instructions. In general, a
compiler is a system utility or programming tool executing in the user partition just
like any other program under the supervision of the OS.

The execution of a compiler is shown in Figure 1.13. Suppose that a program
written in programming language C is in the disk file named pgm l.c. The C com­
piler reads the pgm l.c file as input, parses and translates each statement in the pro­
gram, and outputs the object file named pgml.obj on disk. That is, after a program
is translated by an assembler or a compiler, an output file is created on disk to con­
tain the object code that is close to the target machine code, but is not exact. The
terms source code, source file, and source module are all synonymous. Likewise,
object file also means object code or object module. In practice, it is more expensive
to purchase a source program because the code can be easily modified to save the
development cost.
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1.4.5  Linker

There are many language translators, therefore it is a good idea to standardize the
format of an object file.  In other words, the output generated by the C compiler
should not be different from the output generated by an assembler.  For performance
reasons, part of an application program is written in C and the other part can be writ-
ten in assembly.  Two translators are executed to generate two different object files.
If a standard format is enforced, a linker program can link the two object files into
one executable file as shown in Figure 1.14.  

The C program in the disk file is named pgm8.c, and the assembly routine is in
the file named pgm8x.asm.  As the C compiler translates the C program into
pgm8.obj, the assembler translates the assembly routine into pgm8x.obj.  Then, the
two files, pgm8.obj and pgm8x.obj, are read as input to the linker that combines them
into one load module named pgm8.exe.  In fact, a load module is an executable file
that contains almost 100% machine code, but not quite.  Because an object file has a
different format than an executable file, a linking step is necessary even though there
is only one object file.  That is to say, the linker links one or more object files into
one executable module.  After linking, all the object files remain intact, and some
compilers can generate an executable file directly to bypass the linking step.

1.4.6  Loader

Only an executable file may be loaded into memory before its execution.  The
loading function is performed by a routine in the OS known as the loader.  Since the
loader is executed often, its code should be compact and efficient.  Every time a sys-
tem prompt appears on the command line, a user may enter either a system command
or a user command via the keyboard.  A user command is identical to an executable
file name.  If the file is not in memory, the OS must initiate the loader routine to load
the program from disk to memory.  The loading function is implicit in that we merely
type in the executable file name without entering the loader name on the command
line.  That is, the execute step really consists of two job steps, first loading the code
and then executing the code as shown in Figure 1.15.

The load and go system concept means that after loading, the OS passes control
to the code to execute.  Note that the loader routine does not generate any output file
and it executes whenever an executable file needs to be loaded from disk to memory.

Linker
pgm8.obj

pgm8x.obj

(2 inputs)

pgm8.exe
as output

Figure 1.14 Execution of a linker.
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pgml.exe
---~as input

Figure 1.15 Load and go.
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memory. Usually after loading an executable file into memory, the loader modifies
some of the memory addresses in the code according to the exact memory locations.
In other words, the executable file on disk is a little different from its code image in
memory. From a system viewpoint, the address modification job is a nuisance, but
it is present in most systems. If special hardware and software features are provided,
as discussed in later chapters, we can implement an executable file that requires no
address modifications after loading.

1.4.7 Debugger

When a program first executes on the computer, it may not work correctly as
expected. Sometimes, the errors in the program are easy to detect. Other times, the
errors are very difficult to detect. Under such circumstances, we rely upon a pro­
gramming tool called the debugger. Debugging really means finding the design
errors in hardware or software. For fifty years we have faced the same problems of
software debugging)? Some bugs may take months or years to locate; others are
impossible to locate. The execution of a debugger is shown in Figure 1.16.

In fact, the program debug requires the loader to bring in the executable file
pgml.exe. The debug program interacts with the human user at the terminal. That
is to say, the test program executes under the control of a debugger, and a user can
obtain computation results from his program through a debug command, step by
step. Using logical deductions, a user can find errors in his program under the debug
program. It is now easily understood that an editor, assembler, compiler, linker,
loader, and debugger are all software tools to assist program development.

pgml.exe
---~Ias input

Figure 1.16 Execution of a debugger.

Debugger

Code
image
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1.5  APPLICATIONS OF COMPUTERS

When an application program executes on a CPU, it performs a particular func-
tion, such as word processing, spread sheet, accounting, banking, web site search,
and stock market trading, to name a few.  Programming tools are also application
programs, and they are used to develop other applications.  An application program
or software tool runs along with the OS in a computer.  An application program is
usually stored in a disk file that must be loaded into the computer via an OS com-
mand.  If program-to-program communications do not exist, we have a group of sin-
gle computer applications.  Otherwise, we have network computer applications that
continue to grow rapidly.

1.5.1  Single Computer Applications

If an application program executes on one CPU without communicating with
other computers, it is a single computer application.  A popular example is the word
processor (i.e., word processing application program) that is used to prepare reports,
documents, and books.  A powerful word processor not only handles the text but also
the graphics.  Since a disk file is used for both input and output, a user can store his
work on disk and fetch it later.  As far as applications are concerned, there are many
different files, some classified by file structure and others by information type.  For
example, if the file contains information in the form of machine instructions, it is an
executable file.  If the file contains data information, it is a data file.  A word proces-
sor can read a data file from an input storage device, make modifications to the file,
and store the file back on an output storage device.

Another popular single computer application program is a spread sheet, used to
prepare quotations, transactions, and reports for small businesses.  Other single com-
puter applications include banking, billing, accounting, tax preparation, and game
playing.  Furthermore, a computer can be used as a teaching tool for dancing,
singing, spelling, driving, etc.  If we connect several computers together through
telephone lines, we have a computer network.  Any user program running over a net-
work in order to achieve a particular function is a network computer application as
discussed in the next section.

1.5.2  Network Computer Applications

The demand for network computer applications is immense and the field of net-
work development is open and exciting.  As the trend dictates, any single PC will
have a connection to a global computer network of some sort.  That is, all computers
will be interconnected using either wire or wireless technology.  If so, a person can
call a teleconference, play mah-jong, bridge, or video games, watch movies, chat,
vote, pay bills, reserve tickets, request quotations, trade stocks, etc.  Using wireless
technology, a cellular phone that has a computer inside can be used to exchange elec-
tronic mail (e-mail).  Furthermore, a police officer can use a portable computer to
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validate a driver's license in a minute and a broker can trade stocks on an airplane in
real-time. The advent of computers has indeed set the third industrial revolution in
motion and the computer has become a household commodity like other appliances.
We know for sure that the computer has improved our daily life, and its impact far
exceeds our expectation. As the field for developing network computer applications
is so exciting, it is important to know how to develop a program on a computer.

1.6 HOW TO PROGRAM A COMPUTER

There are two necessary steps to program a computer. First, a programming lan­
guage must be studied, and second, a program must be written in that language.
While a simple program can be entered via the keyboard, a large program usually
requires many design phases. The program design may be written on paper first.
After many design reviews, the program is entered into the cOlnputer and a test is per­
formed. High-level language programming seems easy, but assembly coding is more
intuitive because there is nothing to hide. That is to say, a good understanding of
internal operations in a computer enables a programmer to produce elegant code.

As far as hardware is concerned, a computer operates on one level, the target
machine level. The set of target machine instructions is what the system developer
sees. As far as software is concerned, a computer can operate at one of two levels, that
is, with an as or without. When a system is first developed, its system reference man­
ual describes the set of instructions and architectural aspects so the system develop­
ers can write an as for the machine. There is also a hardware reference manual that
contains the hardware information or specs in regard to machine maintenance.

1.6.1 Raw Machine

A raw target machine means that no operating system exists in its memory, as
shown in Figure 1.17.

Raw
machine

Figure 1.17 Raw machine without an as in memory.

This is true when a CPU's hardware is first developed. The first order of busi­
ness is to write some system software tools. Second, the tools are used to write an
as for the target machine. A program running without an as is called a stand-alone
program because it has its own system software to handle the control functions nor­
mally provided by an as.
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Nevertheless, a raw machine is a valuable tool to a group of students who would
like to write an as from scratch for such a machine. If a university has a mainframe
computer that provides general computing services, students must request raw
machine block time to do system software development. Allocating machine block
time means that the whole computer is turned over to the student group so that no
one else can use the computer. In industry, machine block time is allocated for spe­
cial groups. For example, the real-time system project group often requests machine
block time to debug their system work without interference from others.

Writing an as is just like writing any other program except it is much more com­
plicated. However, if a skeleton version of the as is developed first, it can be exe­
cuted as a base, and more system components can be added to it, step by step, with
the aid of software tools.

1.6.2 Machine with an Operating System

After an as is developed, a user program can execute on top of it as shown in
Figure 1.18.

o s

Figure 1.18 Machine loaded with an OS in memory.

In Figure 1.18, the inner ring represents hardware or the raw machine, and the
outer ring represents the OS, Le., the computer has operating system support. An
application program running on top of the as really means that it executes under the
supervision or control of an as. In fact, the as executes on the CPU hardware just
like any other program, such as the editor, compiler, word processing program, etc.
The as watches the execution of other programs and provides services. In particu­
lar, if a user program needs a service, e.g., data management, it calls upon the as to
perform the service on its behalf. The concept of levels sounds confusing when we
say that the user program runs on top of the as. In reality, a user program runs under
the supervision of the as. That is to say, the as resides in memory and it provides
services to a user program in addition to supervision. If anything goes wrong with a
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user program, the as immediately takes control. Hence, the as is nicknamed the
supervisor, executive, or control program. Remember that both the as and user pro­
grams take turns executing on the CPU at the target machine level. The as runs on
the raw machine to provide control functions and system support, i.e., services.
Generally, the as prepares the tasks to execute a user program, supervises the pro­
gram while in execution, and handles the tasks after the program terminates. While
a program is running, most instructions execute directly on the CPU, but there is one
instruction, Le., system call, that passes control to the as. When that happens, the
as interprets the request and performs a service for the user program. After that, the
as usually returns control to the user program so as to resume its execution.

Note that with few exceptions, the as executes on the CPU along with other user
programs. All the programs including the as execute at the target machine level.
After the as is developed, there is a boot record on disk. After turning on the power,
a small piece of the OS in the boot record is loaded into memory. The execution of
the boot routine brings the rest of as into memory. More often, an as is bundled
with all the system software tools as one product. In other words, the package
includes an as, editor, a few compilers, an assembler, linker, loader, debugger, etc.
After editing, translating, linking, and loading, the developed program executes on
the CPU under the supervision of as. The development effort is divided into many
job steps, as shown in Figure 1.19.

~
Editor

I

Assembler

I

Linker

I

Program

I

Debugger

I

Figure 1.19 Program development steps.

© 2001 by CRC Press LLC



28 COMPUTER ARCHITECTURE

For example, when writing a program in assembly language we have the follow­
ing job steps:

I. Execute an editor, which reads the data input from the keyboard, makes
changes,and stores the assembly source code in a file named pgml.asm on
disk.

2. Execute the assembler, which reads in a source file named pgml.asm and gen­
erates an object file named pgm l.obj. If any errors exist in the program, the
assembler prints error messages, and we must go back to step 1 to make cor­
rections.

3. Execute the linker to generate an executable file named pgml.exe. If any
errors are detected during linking, we must go back to step 1 to make correc­
tions.

4. Execute the program pgml.exe to test its functions. If easy errors are found,
we go back to step 1 and try again.

5. Execute the debug program to find the tough bugs in pgml.exe. After locating
the bugs, we go back to step 1 to start over.

Job steps 1 and 2 must be repeated until an object module is generated by the assem­
bler. After loading, the program pgm 1.exe executes on the CPU in step 4. If an easy
error is detected during its execution, we go back to step 1. After making the
changes, we go through the steps and try again. If the errors are hard to find, we must
rely upon the debug program in step 5. That is, we execute the target program under
the debugger in order to locate its programming errors. This development loop is
repeated until the program is fully debugged. All the job steps, however, execute on
the computer sequentially, one at a time.

1.7 SIMULATE A COMPUTER

An as may be written in assembly language, high-level language, or a combi­
nation of both. For example, part of the as may be written in programming language
C and part of it may be written in assembly. After writing an OS for a new machine,
testing the software can start before the new hardware becomes operational. Thus,
system simulation software is written on another computer, known as the host, that
may belong to the previous generation. The new machine is said to be the target
machine. This notion is important so both hardware and software design teams can
work in parallel. In the history of computing, the OS of the Burroughs 5000 was
developed before its hardware was built.2 Nowadays, software simulation is per­
formed from the as function level to the logic gate level before the chip is built.

1.7.1 Testing an OS

In case the new machine is not ready but the old machine is available with sys­
tem software tools such as an editor, compiler, assembler, linker, and debugger, we
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can modify an existing compiler and assembler such that they generate the object
code for the new nlachine. As a result, the modified compiler is called a cross com­
piler and the modified assembler is a cross assembler. Both are cross translators run­
ning on the host machine so as to generate object code for the target machine. The
term cross means that the software tool runs on a computer that is different from the
target machine. A cross compiler or assembler is often used to write a new as. This
approach also requires a computer simulator of the host that can test all the instruc­
tions in an as for the new machine.

A computer simulator is a software program that can test all the functions of a
target computer at the instruction level. Since the new machine is not operational,
we can debug its as under the simulator. Writing a computer simulator requires a
thorough understanding of the hardware specifications of the new machine. As all
the functions of hardware components of the new machine can be simulated on a
host, we are able to find bugs not only in the new as, but also in the new hardware.

1.7.2 Data Management Services

The as provides both control functions and services to the user programs. An
as can supervise the execution of many user programs in a computer during the
same time interval, and each user program occupies a partition in memory. As far as
software development is concerned, the data management services are also tools for
a user. For example, a user nlay want to create and manipulate the files on disk. The
as supports a file system that is comprised of a file directory, files, and I/O routines,
and a user can enter a command and the as will take action accordingly.

A floppy disk has both sides magnetized, and each side is divided into many con­
centric rings. Each track or ring is divided into many sectors. A sector is the basic
unit to be accessed on a disk. The I/O routine reads a sector from a disk or writes a
sector onto a disk. The directory on the disk describes all the files including their
disk locations.

1. 7.2.1 Directory

A typical PC disk has four logical areas: boot record, file allocation table (FAT),
directory, and files, as shown in Figure 1.20a.

The boot record contains a set of PC instructions that gets loaded into memory
when the power is turned on. The execution of the boot record brings the rest of the
as into memory. Each entry in FAT contains the disk address of a file extent (i.e., a
portion of the file). The directory is an upside-down tree as shown in Figure 1.20b.
That is, the directory has many nodes arranged in a linked list. Each tree node or leaf
is a descriptor containing information to describe a file or a subdirectory. The rec­
tangular node is a file descriptor containing attributes of a file, such as file name,
extension name, creation date, starting address of the file, file type, etc. The circu­
lar node is a directory descriptor containing information about a subdirectory at a
lower level. Between two adjacent directories, the upper node is the parent and the
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Figure 1.20 Disk space: (a) four logical areas and (b) the tree structure of a file directory.

lower node is the descendent. Thus, the lower directory is a subdirectory and it may
contain either file or directory descriptors. The top node is the root directory that
usually resides at a fixed location on the disk. From the root, many nodes below can
be accessed and each lower node is either a file descriptor or a directory descriptor.
The system directory is an internal file in which the OS can search for a particular
directory or file. In fact, the file directory is separated from the data files that may
be scattered all over the disk.

This file directory resembles a file cabinet that has many drawers, and each
drawer has many folders. Each folder contains many files, e.g., letters and memos.
Each directory on a disk, hard or floppy, has Inany tree nodes, and each node
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describes one file or another directory at a lower level. The as maintains the infor­
mation of the current directory in memory. When a user issues a command on the
keyboard to access a directory or file, the OS searches for the directory to locate the
object on disk.

1.7.2.2 Path Name

Because the directory is a tree structure, in order to access any directory or file,
a user supplies a tree path name for the OS to traverse the tree. A full file path name
may start with the root symbol, a sequence of directory names, and a file name. In
MS-DOS, a backward slash (\) represents the root, and the same symbol (\) is used
as the delimiter to separate fields in any path name.79 Each directory node contains
information about its file descriptors or directory descriptors. Some file system com­
mands can be used to manipulate files or directories. In MS-DOS, three special sym­
bols are chosen to represent the root directory, the current directory, and the previous
directory, as shown in Table 1.3.

Table 1.3 Special Names Used in a Directory Tree

Symbol

\

Description
The root symbol is a backward
slash (\) in MS-DOS, but a for
ward slash (/) is used for UNIX.
The current directory symbol is
a single period (.) in most systems.
The parent or previous directory
symbol is double period (.. ) in
most systems.

The data management routines in an OS use the path name to traverse the tree. In
the path name, a delimiter is used to separate two adjacent directories, and the deliIn­
iter is usually the root symbol. The first symbol in a path name tells where to stal1:
the root, the current directory, or the previous directory. The two path names for
directory search and file search are quite similar. If the last name identifies a direc­
tory, it is a directory path name. If the last name identifies a file, it is a file path name.
If no directory name is given before a file name, the default is the current directory.
A special symbol (*) is a wild card that matches any file name or file extension name.
Some of the path nalnes to identify a directory or a file are listed in Table 1.4.

1.7.2.3 File System Command

A user can issue a command to access a directory or a file. Some of the popular
file system commands are shown in Table 1.5. If only an argument is given on the
line without a command name given, the previous command is assumed to be the
default.
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Table1.4 Path Names In a Tree Directory

Name
\ch4\chap4.wp

\ch4\*.wp

\csc215\pgm1.*

..\letters\ibm81 009.txt

Description
\ is the root directory, ch4 is
the directory name below it,
and chap4.wp is the file, where
.wp means a WordPerfect gen­
erated data file.
Same as above except the * is
a wild card to match any file,
That is, any file with wp as an
extension name.
Any file named pgm1 under the
directory csc215 with any
extension name.
The directory called letters is at
the current level, and the refer­
enced file is ibm81009.txt
dated 10-9-1998.

Table 1.5 File System Commands

Name
<Ctrl>-c
<F3>
A:
cd \ch4

wp
..\wp

cis
copy pgm1.asm test.asm
del pgm1.asm
del pgm1.*
deltree \csc215

dir

dir/w

diskcopy a: a:

Description
Cancel the current program in execution
Repeat previous command
Switch to A: as the default drive
Change directory to ch4 under the root
Change to previous directory
Change to wp under the current directory
Change to wp at the same level as the
current directory
Clear screen
Copy file pgm1.asm to test.asm
Delete file pgm1.asm
Delete all the files named pgm1
Delete the entire tree named csc215 under
the root, i.e., all the files and subdirectories
in this directory are deleted
Display the current directory with one entry
per line
Display the current directory with many
entries per line (wide option)
Disk copy from A: to A: Follow instructions
of the prompt to swap disks in and out on
drive A:
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Name
format a:
help edit
md csc215

print pgm1.asm
ran pgm1.exe hello
rd csc215

type pgm1.asm
undelete pgm1.asm

Description
Format drive A:
Help menu of the edit command
Make directory csc215 under the current
directory
Print file pgm1.asm
Rename pgm1.exe as hello
Remove directory csc215 provided that all
its files are deleted as a prerequisite
Type (display) file pgm1.asm
Undelete file pgm1.asm
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1.8 PROGRAM DESIGN LANGUAGE

The acronym PDL stands for program design language which is used to describe
the logic flow of software design or hardware design. PDL is plain English plus
structured constructs, and the language is case insensitive. The statement is readable
by means of a keyword (i.e., keyword symbol) that provides semantic meaning
explicitly. To improve readability, some keywords are written in uppercase, such as
IF, THEN, ELSE, etc. The GOTO statement passes control to a label with a colon
suffix as defined in column one. The semicolon serves as the end delimiter of a
phrase, clause, or statement. A system routine usually starts with an uppercase let­
ter, such as Attach, Detach, IH (interrupt handler), etc. A comment statement may
be enclosed in braces or written as a sentence with a semicolon in column one as
shown below.

{This task is reentrant. }
;-- This task is reentrant.

Certain syntactic rules should be observed. As spaces are delimiters, they are
used to improve the readability of the program. PDL consists of six structured con­
structs as listed below:

1. IF - THEN - ENDIF
2. IF - THEN - ELSE - ENDIF
3. CASE - ENDCASE
4. DO-WHILE - ENDDO

5. REPEAT - UNTIL

6. DO-ENDDO
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1.8.1 Short IF

COMPUTER ARCHITECTURE

The short IF construct provides a basic means to change the program flow under
a condition. The short IF construct can be used to implement any other construct, Le.,
the constructs 2-5 listed above. The flow chart of short IF is shown in Figure 1.21 a.

Condition

(a)
(b)

(c)

Condition

(d)

Condition

(e)

False

Figure 1.21 Structured programming constructs: (a) short IF, (b) long IF, (c) case,
(d) do-while, and (e) repeat-until.
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The diamond shaped box is the decision box that evaluates a condition. If the
condition is true, control is passed to the branch labeled true; otherwise, control is
passed to the other branch. Each branch indicates the direction of logic flow based
on two possible outcomes, true or false. In that regard, a condition really means the
evaluation of a logical expression. The rectangular shaped box A denotes an opera­
tion that may be one statement or a block of statements. If the result is true, we exe­
cute the operation box; otherwise the next statement after the construct is executed.
The short IF is the fundamental programming construct which provides the condi­
tional test capability to a loop that comprises a group of statements which may be
executed repeatedly if the condition is true.

1.8.2 Long IF

The long IF construct provides two possible branches, the true clause and the else
clause, as depicted in Figure 1.21 b. In the then clause we have operation box A, and
in the else clause we have operation box B. Only one box will be executed, deter­
mined by the outcome of the logical expression. After evaluation, if the condition is
true, we execute operation box A, Le., the then clause. Otherwise, we execute oper­
ation box B, that is, the else clause. After executing either box, the next statement
after the construct is executed. In either a short or long IF statement, its then clause
and else clause may contain another IF. If so, we have a nested IF that is often used
to test a series of conditions. With nested IFs, we evaluate conditions one by one,
and depending on the outcome we execute the designated branch based on the con­
dition. This leads us to discuss the CASE construct as follows.

1.8.3 Case

Figure 1.21c depicts the CASE construct. A case condition is tested at the begin­
ning of the construct and one of many possible outcomes is true. Based on the out­
come, the clause designated as the individual case for that particular outcome is exe­
cuted. After the particular case A, B, C, or D is executed, control is passed to the next
statement after the construct. This is a little different than language C, where a break
statement is needed for the case to skip.74 The CASE construct can be rewritten as
a nested IF, but as a CASE construct, it provides convenience and readability.

1.8.4 Do-While

The DO-WHILE construct is shown in Figure 1.21d. At the beginning of a loop,
we evaluate a logical expression. If the result is true, we execute the operation box
A, which is the body of the loop. After executing the loop, we go back to the begin­
ning of the loop and evaluate the logical expression again. The loop executes repeat­
edly as long as the logical expression is true. Note that in the loop, it is necessary for
the condition to be changed from false to true; otherwise we have an infinite loop. It
should also be mentioned that the body of a 00-WHILE loop may not execute at all
if the condition fails the first time.
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1.8.5  Repeat Until

The REPEAT-UNTIL construct is slightly different from the DO-WHILE as
shown in Figure 1.21e.  It provides a different way to write a loop — we evaluate the
logical expression at the end of the loop instead of at the beginning.  As a result, the
operation box A in a repeat loop executes at least once.

1.8.6  Do-Enddo

There are two types of DO blocks: repetitive and non-repetitive.  The DO con-
struct with a STEP clause executes a loop many times, as determined by a controlled
variable.  The STEP clause has a control variable, initial value, final value, and step
value separated by keywords.  An example is given below:

DO i = 0 to 4 STEP 1,    {Default step value is 1.}
...
ENDDO;

The initial value is zero, the final value is four, and the step value is one, the
default.  The loop executes five times, controlled by the variable i.  Following each
loop execution, the variable i is incremented by the step value.  When the variable i
exceeds the final value four, the loop exits.  If the step value is omitted, its default
value is one.

A DO block may be non-repetitive if there is no STEP clause at the end.  That is,
the block or group of statements executes only once.  The keyword ENDDO
improves the readability of a program as shown below:

DO;
...
ENDDO;

The PDL alone is adequate to describe the logic flow of most algorithms.
However, we need RTL (register transfer language), as will be explained in Chapter
3, to describe the movement of bits at the hardware register level.  That is to say, if
PDL is coupled with RTL, we can describe the internal operations of a computer.

It is our intention to discuss assembly language coding at both the target machine
and microcode levels.  Such languages use keyword symbols like period, comma,
left/right parentheses (), square bracket [], angular bracket <>, etc.  That is, they are
terminal symbols in the language, e.g., RTL, assembly, or microcode.  Be that as it
may, the syntax of a target language can be described by a meta-language.  Ideally,
the meta-language has its own set of symbols called meta-symbols that do not belong
to the target language.  In other words, the meta-symbols are used to describe the
syntax or an object in a target language.  Unfortunately, the symbols on a keyboard
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are limited, so some symbols in the target language are also used as meta-symbols
for the sake of convenience. For example, the set of <, >, [, J, and I in RTL are used
in the meta-language. That is, the angular bracket means class of so <value> means
class of value, e.g., 0, 50, or 100. The square bracket means an option and Imeans
or. Some meta-symbol notations are listed in Table 1.6.

Table 1.6 Meta-symbol Notations

Notation
<data type>
[<dup>]

[BIWID]

[L<length>l

Description
A class of data type.
An option that is an integer declared as a
dup (duplicate) factor.
An option that is a keyword B (byte), W
(word), or D (double).
An option that is a keyword L followed by a
class of length.

1.9 SUMMARY POINTS

1. An analog computer uses analog signals with various voltage levels, while a
digital computer uses signals with only two voltage levels.

2. Computer architecture means the design of instructions and registers as seen
by the system software developer.

3. First generation computers were made of vacuum tubes.
4. Second generation computers were mostly made of discrete transistors and

magnetic core memories.
5. Third generation computers were mainly made of integrated circuits and

core memories.
6. A fourth generation computer has many microprocessor chips inside along

with a very large memory using VLSI semiconductor circuits. That is, every
computer is comprised of one or more microprocessors, regardless of
whether it is a PC, mainframe, or supercomputer.

7. The hardware components in a digital cOlnputer include the CPU, memory,
and I/O devices.

8. A microprocessor chip may contain over ten million transistors.
9. A memory cell is a bistable device that is used to store a bit, one or zero.

10. The OS supervises the programs running on the CPU during the same time
interval, and it also provides services to a user.

11. Editor, assembler, compiler, linker, loader, and debugger are all program­
ming development tools.

12. A general purpose computer may operate at only two levels, either with an
operating system or without.
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13. After seeing the system prompt followed by a blinking cursor, a user can
type on a keyboard a command that is the name of an executable file.

14. A system command from the keyboard needs a <cr> (carriage return) at the
end so the as knows when to take action.

15. After reading the name of a program from the keyboard, the as loads the
progralTI from a disk if it is not already in memory, and control is passed to
the program to begin its execution.

16. The load function provided by the as is implied because the name of the
loader program is not typed on the command line.

17. There are three job steps to develop a software product, Le., edit, assemble
or compile, and link.

18. If programming errors are hard to locate, it is necessary to execute a debugger.
19. All system software for the target machine can be tested under a computer

simulator running on the host.
20. Data management services are also tools provided by the as.
21. Physically, the disk space is divided into tracks and sectors, but logically, it

is divided into boot record, file allocation tables, directories, and files.
22. A file system includes a directory, files, and I/O routines.

23. The directory is designed as an internal file through which the as can find
a tile or another directory.

PROBLEMS

1. What are the attributes of a third generation computer?
2. What are the attributes of a fourth generation computer?
3. Exactly how many bytes are there in one KB, MB, GB, TB, or PB?

4. What are the attributes of a core memory?
5. What are the attributes of a semiconductor memory?
6. What is a disk file?
7. Name three input devices to a computer system.
8. Name five basic programming tools in a computer system.
9. What is a system prompt?

10. Name the two operating levels of a general purpose computer system.
II. What is a compiler?
12. Describe the actions taken by the as after a user enters a command from the

keyboard.
13. After seeing the system prompt, a user can request that the as execute an

executable program by typing in the name of the program on the keyboard.
If the program is not in memory, the OS must load the program in first. Why
is this loading function implicit to the aS?

14. Explain briefly how to develop the system software for a new machine
before its hardware is developed.
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15. What are the main functions of a computer simulator?
16. In your opinion, what should be classified as a fifth generation computer

systenl?
17. On a PC, what are the four logical areas on a disk?
18. Each node in the file directory can be a file descriptor or a directory descrip­

tor. What is the difference between the two?

19. Turn on the power to boot a window-based IBM PC from the hard drive. Pop
the DOS window by clicking the icon sequence Start-Programs-Command
Prompt as described below:
A. After moving the mouse, place the cursor on the Start icon at the lower

left corner of the screen and click the left button on the mouse to open
the Start menu.

B. After moving the cursor on to the Programs command in the menu,
click again to see its menu.

C. After moving the cursor on the Command prompt in the menu, click
again to see the DOS window pop up. Press the left mouse button to
drag the mouse to any command in the menu, and release the button so
as to execute the command.

D. The blinking cursor tells you to enter a command followed by a <cr>
from the keyboard. Type edit /? to get help on edit (editor) or diskcopy
/? to get help on diskcopy.

E. To terminate DOS, click the exit command or the X button on the upper
right corner of the window. If the system crashes for whatever reason,
you must reboot by turning the power off and back on.

F. To copy a disk on drive A, enter the command diskcopy a: a: Remember
to always place the source disk on your right and the destination disk
on your left so that you will not make mistakes after working long
hours.

G. After the session, click the Start-Shutdown sequence to turn the
machine off.

39
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CHAPTER 2

Number Systems

2.1 BASIC MATHEMATICS

As all digital information is represented by binary digits, the mathematical back­
bone of designing a digital computer is Boolean algebra. Before learning instruc­
tions and data, it is necessary to know the different number systems, number con­
versions, and arithmetic operations performed by a computer. To accomplish this
goal, we must review some basic mathematics and definitions.

2.1.1 Integer Part VB. Fraction Part

Definition 1: If X is a real nunlber, positive or negative, [X] is defined to be the
greatest integer ~ X, where ~ stands for less than or equal to.

For a positive integer X, after truncating the fraction part of the number, we
obtain its integer part as the answer. A positive number in square brackets represents
an integer but, for a negative number X we need to subtract one from the negative
integer to get the correct result. The square bracket notation represents the floor
function and some examples are given below:

1. [7.45] = 7
2. [3.14159] = 3
3. [3.00] =3
4. [-5.6] = -6
5. [-6.00] = -6

Definition 2: If X is a positive number, {X} is defined to be the fraction part of
X. Therefore, we obtain,

{X}=x-[X]

41
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Therefore, a positive number in curly brackets denotes a fraction, and some
examples are listed below:

1. {7.45} = 7.45 - [7.45]
= 7.45 - 7 
= .45

2. {8.00} = .0

2.1.2  Modulus Concept

Definition 3: Assuming that / is the arithmetic divide operator, and + is the add
operator which has lower precedence than /, the Euclidean division algorithm for
positive integers is shown below:

A / B = Q + R / B
where 0 ≤ R < B

Q = [A / B]
R / B = {A / B}

Q is the quotient, and R is the remainder.
Definition 4: Integers A and B are said to be congruent of modulus N where N

is an integer, if there exists an integer k, such that

A - B = k * N

where the - sign denotes the subtract operator, and * denotes the multiply operator.
Symbolically, we have

A � B      mod N

Note that either A, B, or both can be negative integers; and more examples are given
below:

7 � -1      mod 8
7 � -1      mod 4
7 � -1      mod 2
3 � 0      mod 3

If the positive number N is equal to 2M where M is a positive integer, we have
some very interesting examples as follows:

15 � -1     mod 16 (24)
16 � 0      mod 16
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o == -16 mod 16
8 == -8 mod 16

43

Given 16 bits or 32 bits, the integer representations of 15 and -1 in a computer
are different. If we use twos complement notation to represent a negative number (as
discussed later) the lower 4 bits (mod 24) of each of the two nUlnbers are identical.
Likewise, this is true for 16 and 0, 0 and -16, 8 and -8, etc.

A high-level programming language may support either a mod function or a mod
operator. For example, in C, the mod operator is %, and the arithmetic expression
(A % B) really means: dividing A by B, we obtain a remainder as the answer. We
say that A and the remainder are congruent mod B.

2.2 POSITIONAL NOTATION

If B is a positive integer, then any integer A may be written in a positional nota­
tion as follows:

n

A = Cn * Bn +Cn_/ * Bn-I + ... + C/ * BI + Co * BO =i~Ci * Bi

where Ci is the coefficient of the ith term under the condition that 0 ::; C i < B, and B
is referred to as the base, or radix. In a decimal system, the base B is 10. If a num­
ber is written as a decimal, then all the coefficients are readily visible from its nota­
tion. For example, the number 221 in decimal form has the following meaning:

221 = 2 * 102 + 2 * I0 I + 1 * 100

=2* 100+2* 10+ 1

Each digit in the number carries a weight, and the right-most digit carries a weight
of one because any base to the power of zero is defined to be one. The second digit
from the right carries a weight of 10, and the third digit carries a weight of 100.

2.3 NUMBER SYSTEMS

To generalize the concept, any positive integer of base B may be written in a posi­
tional notation abbreviated as

If the base B is omitted in the above notation, the default base is assumed to be 10,
unless otherwise specified. A number of base 10, is said to be in decimal form. In
the above notation, Co is the least significant digit, and Cj is the leading non-zero
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digit. The number 221 in decimal form is different from a number 221 of base 8 or
base 16 as shown below:

221 )() = 2 * 102 + 2 * 101 + 1 * 100 =221
221 8 =2 * 82 + 2 * 8) + 1 * 80 = 145
221 16 = 2 * 162 + 2 * 161 + 1 * 160 =545

It is important to know that the positional notation is used to evaluate a positive inte­
ger of any base, and its decimal value serves as a reference point for number con­
versions.

2.3.1 Binary

The number system used in a computer is binary, or base two. In a binary num­
ber, each coefficient Ci in the notation carries a weight of 2i . Any piece of informa­
tion, machine instruction or data, is represented by a bit string of ones and zeroes.
While many different data types are used in a computer, they are all bits; only the
way they are used creates the difference between them. We may use four bits to rep­
resent an unsigned integer whose value is always positive; that means the four-bit
number really represents five bits with the leading bit zero hidden as a positive sign.
Since the total number of combinations is 16 (24), we can represent a total of 16 pos­
itive numbers ranging frOlTI 0 to 15. Each coefficient is indicated by a one or zero.
Obviously, a four-bit zero represents zero. To represent one, logically we need to add
1 to 0000 to get 0001. To represent two, we add 1 to 0001. Since the binary digit
can not be more than one, the sum bit becomes zero and a carry bit is added to the
next bit as shown below:

0001
+) 1

0010

Given any binary number, we can use its positional notation to compute its value in
decimal form. In the next example, the decimal value of a given binary number is
computed.

1001 0001 2 = 1 * 27 + 1 * 24 + 1 * 20
= 128 + 16 + 1
= 145

In a simple CPU, an adder is used to perform arithmetic operations between two
binary numbers A and B. The adder receives input A and input B and generates S,
the arithmetic sum. A 16-bit adder means that the adder can add two operands of 16
bits each in one adder cycle, while a 32-bit adder can add two 32-bit operands in one
adder cycle. The block diagram of a one-bit full adder is shown in Figure 2.1.
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Bi

~

Ci+1 ~--'

Figure 2.1 One-bit full adder.

Ai

~ .--Ci

Si
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The one-bit full adder has three inputs, Ai, Hi, and Ci, and two outputs, Si and
Ci+1, as described below:

Ai is bit i in A.
Bi is bit i in B.
Ci is the carry input for bit i.
Si is the sum output for bit i.
Ci+1 is the carry output for bit i or the carry input for bit i+ 1.

A one-bit full adder can add three input bits, two data bits, and one carry input bit,
so the result depends on the combination of all three bits. If an adder can add only
two input bits, it is a half-adder. To get a simple idea, picture Si and Ci+ 1 as two
output bits denoting the sum and carry after the add operation. Thus, SO carries a
weight of 2°, and C 1 carries a weight of 21• Together they constitute a two-bit
unsigned integer. If all three input bits, AO, BO, and CO, are ones, the output should
be 11 in binary form.

2.3.2 Octal

If the base is eight, the number is said to be in octal form. Octal digits range frOITI
oto 7, and there is no 8 or beyond. Because the base is different, a number in octal
has a different value than the same digits in decimal. How do we say 221 in octal?
The answer is: two, two, one octal that means two hundred, twenty, and one in octal.
But the octal hundred has a different definition than the decimal hundred and its
actual value is 64 in decimal. The positional notation is used to compute the deci­
mal value of a number of any base, and the result provides a reference point for num­
ber conversions.

2.3.3 Hexadecimal

If the base is 16, the number system is in hexadecimal form or hex for abbrevia­
tion. In a hex number system, we need 16 different symbols to represent all the hex
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digits. Conveniently, we have 10 decimal digits at hand, so we need six more. One
thought was to use the first six letters of the alphabet from A-F. A hex number A
means 10, B means 11, C means 12, D means 13, E means 14, and F means 15. The
first 16 numbers should be memorized as shown in Table 2.1.

Table 2.1 First 16 Numbers of Base 10, 2, 8, and 16

Decimal
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Octal
o
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

Hexadecimal
o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Each four-bit unsigned integer has a value ranging from 0 to 15. Because 16 means
hexadecimal, it is quite common to replace the base 16 with x (Le., hex or hexadec­
imal). Therefore, 221 16 can be written as 221x. It is simple to convert a binary num­
ber to octal or hex. A binary number is usually written in hex on modem computers
because the bit pattern can be easily visualized as explained below.

2.4 NUMBER CONVERSION

After understanding the basic concept of positional notation, we can convert a
positive integer A into a number of any base B. One method of conversion is the
divide algorithm:

Given a number N;
REPEAT
Dividing N by B, we obtain a quotient and a remainder;
The remainder is the next digit of base B starting from

the right-Inost end;
Set N to be the obtained quotient as the new number;
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UNTIL the number N is 0;
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This algorithm is explained in the below. Recall that the positive integer A of
base B can be represented as

A = Cj * B
j + Cj _1 * Ri-l + .... + Co * BO

The positive integer A has a decimal value, even though it may be written in
binary or any other base. Our challenge is to convert A to a number of any base B
and determine all the coefficients in its new positional notation. In the case that the
integer A is written in decimal form, we can easily perform the arithmetic divide
operations in decimal. Thus, dividing A by B, we obtain both the quotient and the
remainder as follows:

A == Co mod B
Ql = fA / B] = Cj * Bj-I + Cj _1 * Bj

-
2 + .... + C 1

R1 / B = {A / B} = Co / B

where Ql is the quotient, and RI or Co is the remainder. Dividing the quotient Ql
again by B, we obtain the quotient Q2 and the remainder R2, or CI. Repeat this
process until the quotient is zero, all the remainders or coefficients, and place them
from right to left in sequential order as follows:

Let us convert 145 10 to a number of base eight:

8 , 145 1 = Co

1-
8 I 18 2=C 1,-

2 =C2

After dividing, step by step, we obtain a total of three remainders as shown below:

145 10 = 221 8

Interestingly enough, using the convert by divide algorithm we can convert a posi­
tive integer A in binary to a number of any base, change each of the coefficients from
binary to a text character, and display them on the screen.

2.4.1 Convert a Number from Base B to Base Bn

If B is two and n is three or four, we have a special case of converting a binary
number to octal or hex. Because 23 is 8 and 24 is 16, we can apply a special rule. As
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a matter of fact, it is quite easy to convert a positive integer among binary, octal, and
hex. To generalize the case, we choose B as any base which is positive, and a posi­
tive integer A may be represented by the following positional notation:

A =Cj * B.i + Cj_1 * Bj-I + . . .. + CI * B I + Co

Dividing A by BO, we obtain a remainder

0::5Cn_1 *Bo-l + .... +C I *BI +Co<B"

Now, starting from the rightmost digit, if we collect digit n in a group and evaluate
its value based on its positional notation within the group, we obtain a digit of base
Bn. This concept can be extended to the next n-digit group, until the leftmost end.
Note that the leftmost group ITIay have less than or equal to n digits as shown below:

CjCj _1 •• Cj-n+1 Cj-nCj-n-I.· Cj -2n+1 •••• Cn-1 •• CICO B
\ A J \ J

v y y

::5 n digits n digits n digits

Applying the positional notation within each group, we compute the value of the n
digits in the group as follows:

(Cj * Bo-l + Cj _1 * Bo-2 + .. + Cj-n+l ) ( •••) ( ••• ) •••

(...) (Cn-I * Bo-l + CI * BI + Co) of base BO

For example, we convert 145 10 to binary, then to octal and hex.

2 145 1 = Co

2 72 O=C 1

2 36 O=C2

2 18 O=C3

2 9 1 =C4

2 4 O=Cs

2 2 O=C6

=C7
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Therefore, we have

145 = 10010001 2

=221 8

=1001 0001 2

= 91 x

Conversely, we can convert an hex number to binary, then to octal.

CBDlx =1100 1011 1101 0001 2

= 1 100 101 111 0 10 001 2

= 145721 8
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To further understand the concept, we convert a number of base B to base B", and
leave the positional notation inside each group without evaluation. For example, we
convert a number from base 2 to 23 or 24, as shown below.

A =145 10

= 10010001 2

= (1 *27 + 0*26) + (0*25 + 1*24 + 0*23) + (0*22 + 0*2 1 + 1*20)
=221 8

We can apply the conversion by divide algorithm to verify the remainders. After
dividing A by 23, we obtain

Q1 = 1 * 24 + 0 * 23 + 0 * 22 + 1 * 21 + 0 * 20
Rl = 0 * 22 + 0 * 21 + 1 * 20 = Co

Dividing QI again by 23, we obtain

Q2 =1 * 2 1 + 0 * 20

R2 =0 * 22 + 1 * 21 + 0 * 20 = c]

Dividing Q2 one more time, we obtain

Q3=O

R3 = 1 * 21 + 0 * 20 =C2

We further evaluate R 1, R2, and R3 based on positional notation within the group as
follows,

A =100100012

=C2 C. Co 8

=221 8
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How do we convert a nUlnber from base seven to base eight? Recall that in the
convert by divide algorithm, the dividend is a positive integer of any base. If we per­
form base seven arithmetic during the divide operation, we can find all the remain­
ders of base eight directly. But base seven arithmetic is not intuitive, so the alternate
way is to convert the number to decimal form first, and then divide the number by
eight using decimal arithmetic and collect all the remainders.

1457 = 1 * 72 + 4 * 71 + 5 * 70
= 49 + 28 + 5
= 8210

= 1228

= 101 00102

= 52x

Finally, we want to convert a positive nunlber from binary to base 10 and display
the number on the screen. Follow the steps below:

1. Divide the number by 10, and collect the remainders. Even though the num­
ber is in binary form, the computer knows how to divide it by 10 using binary
arithmetic.

2. After collecting all the remainders, we need to convert the decimal digits
into external characters that can be displayed on the screen.

For example, let us print out the decimal integer 221 in memory. This integer is
a binary number in the computer that may be the result of an arithmetic operation.
After dividing the integer by 10, we obtain the first remainder one, and the quotient
is 22. Dividing the quotient 22 by 10 again, we obtain a remainder two and the quo­
tient is two. But the problem is that all the remainders collected after the divide are
in binary and we need to convert them to external characters. Each character occu­
pies one eight-bit byte and we elaborate the discussions on internal and external data
in the next section.

2.5 DATA REPRESENTATION

As memory is usually divided into bytes, each byte is associated with an address.
Because the address is in binary form, the total number of bits in an address also
determines the size of memory. If the memory size is 4 GB, the total number of bits
in its address must be 32. Thus, we have a total of 4 giga (232) combinations. The
lowest address is 0000 0000 in hex and the highest address is FFFF FFFF (232 - 1).
To obtain this largest value intuitively, we can add one to it to make 232 as seen by
its positional notation. An address is needed to access data in memory and any piece
of data in nlemory occupies one or more bytes.
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There are two general data types for internal and external use. The internal data
are for computations inside a computer, and the external data are mainly used for
communicating with the outside world. In the following sections, we discuss the rep­
resentations of positive integers, negative integers, characters, floating point num­
bers, and packed decimal numbers.

2.5.1 Positive Integers

An integer in memory has 16, 32, or more bits. An integer has four bytes while a
short integer has two bytes as shown in Figure 2.2. The leftmost bit. or bI5 (bit 15),
indicates a sign and the least significant bit (LSB) is denoted as bO (bit 0) or the right­
most bit. A sign bit zero means positive while a sign bit one means negative. Looking
at the sign, we can tell whether the integer is positive or negative. In addition, the
largest positive 16-bit integer is a zero followed by 15 ones representing 215 - 1.

b15

+

high order byte

Figure 2.2 A 16-bit short integer.

low order byte

If a I6-bit integer in memory has two bytes, it occupies two consecutive
addresses, one for each byte. In a microcomputer, a memory word usually means
two bytes but in a mainframe a word means four bytes. The low order byte in a word
means the lower eight bits, while the high order byte means the upper eight bits. A
32-bit integer in memory occupies four bytes B3, B2, B1, and BO, as shown in Figure
2.3a. Byte 3 (B3) is the high order byte in the high order word and BO is the low
order byte in the low order word. There are two byte ordering methods in memory:
the little endian computer and the big endian computer. In a little endian system, the
low order word is stored before the high order word, and within the word, the low
order byte is stored first as shown in Figure 2.3b. To store in memory first means that
the low order byte has a lower address. The big endian system has the opposite order,
as shown in Figure 2.3c. That is, the high order word is stored first followed by the
low order word, and within the word, the high order byte is stored first. Note that a
32-bit positive integer has the largest value of 231 _1, that is a sign bit zero followed
by 3I-bit ones. In order to get a larger value in an integer representation, we need
more bits.

The next issue is how to represent a negative integer.
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(a )
83 82 81 BO

high order byte low order byte

address N
B3BO

address N+1
81 82

address N+2
82 B1

address N+3
B3 80

( b ) (c )

Figure 2.3 A 32-bit integer: (a) format, (b) byte ordering in the memory of a little endian
system, and (c) big endian system.

2.5.2 Negative Integers

The evolution of representing negative integers in a computer was quite interest­
ing. At first we chose a signed magnitude notation which was intuitive to humans,
but awkward for hardware. Later, we switched to twos complement notation, which
is good for machines but not easy for human users. For pedagogical reasons, we dis­
cuss signed magnitude, ones complement, and twos complement as follows.

2.5.2.1 Signed Magnitude

The signed magnitude format is shown in Figure 2.4. With 16 bits, a negative
integer has a sign bit one followed by a I5-bit magnitude. To represent a positive
value, we change the sign bit to zero. Therefore, in such a system, the sign bit pro­
vides the only difference. For example, the short integers +5 and -5 have the same
magnitude, but their sign bits are different as shown below.

+5 0000000000000101
-5 10000000 0000 0101
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The spacing is used to separate the binary number into four-bit groups for easy com­
parisons. The signed magnitude notation was phased out after the introduction of
second generation computers. Nonetheless, the concept itself has merit, and it is still
used to represent a floating number or a packed decimal number.

~ magnitude

t
sign

Figure 2.4 Signed magnitude format.

2.5.2.2 Ones Complement

We study the ones complement notation as a concept that was used by some com­
puters.5 To negate a number, we simply complement every bit in the number, posi­
tive or negative. The 16-bit +5 and -5 are compared below.

+5 0000000000000101
-5 1111111111111010

Interestingly, the ones complement notation has two drawbacks. First, there exist
two different zeroes, a +0 and a -0. A +0 contains all zeroes, and a -0 contains all
ones and both zeroes are valid. As a consequence, it requires extra hardware to con­
vert a -0 to a +0 after an arithmetic operation. Second, it has the end-around carry
problem. Given two integers A and B, the operation of (A - B) means adding A to
the ones complement of B. The result is perfect if no carry is generated at the left­
most end. In the case that an end-around carry is generated, hardware logic must pull
the carry bit back to the LSB position and add it again to the result. That is to say, it
takes two add cycles to accomplish the operation. To further understand the concept,
we subtract four from five, Le., add -4 to +5. The sum contains all zeroes but an end­
around carry is generated at the leftmost end. The hardware logic pulls the end­
around carry bit to the right, and adds it one more time to make the result perfect.

+5
+ -4

0000 0000 0000 0101
1111111111111011

1 0000 0000 0000 0000
1~ end-around carry

+ 1 0000 0000 0000 0001

© 2001 by CRC Press LLC



54

2.5.2.3 Twos Complement

COMPUTER ARCHITECTURE

A negative integer in twos complement notation means taking ones complement
first and adding one to it as shown below:

twos complement = ones complement + 1

The twos complement notation has two advantages. First, it does not have the
end-around carry problem so it takes one add cycle to accomplish an add or subtract
operation. Second, it has a unique representation of zero: +0 or -0. Given an integer
zero of 16 or 32 bits, after complementing all zeroes and adding one to it, we still
obtain zero.

Using signed magnitude, we negate an integer by flipping its sign bit. Using ones
complement, we negate an integer by flipping all the bits in it. Negating a number
in an easy way is essential in computer design. Can we negate an integer easily using
twos complement notation? The answer is yes. By taking the twos complement of
a positive integer, we obtain the negative integer. Taking the twos complement of a
negative integer, we obtain the positive integer..Henceforth, to take the twos com­
plement of an integer means to negate as shown in Figure 2.5. Logically, we tend to
think that to convert a number from negative to positive we first subtract one, and
then take the ones conlplement. However, this is the same as taking the ones com­
plement first and then adding one.

Subtract one & take one's complement = Take one's complement & add one

2 's camp 1 .

Positive integer

2 's camp 1 .

Figure 2.5 Take twos complement means to negate.

Negative integer

Using twos complement notation, we use one add cycle to subtract a number via
the adder. This is possible if a one-bit full adder is used at the LSB position. As
shown in Figure 2.6, a 16-bit carry rippled adder has 16 I-bit full adders provided
that the carry output is the carry input at the next bit position. We can use the adder
to subtract B from A where A and B are two integers, positive or negative. The trick
is to feed the ones complement of B to one input of the adder and feed A to the other
input. At the same time, we tum on the Cin (carry in) bit to add the twos comple­
ment of B to A. The Cin is denoted as CO in the figure. In the case that A is chosen
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A15815

C15

Figure 2.6 A 16-bit carry rippled adder.

C2 Cl
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to be zero, -B becomes the negated output. If there is an end-around carry generated,
we simply discard the carry.

Before we perform examples of twos complement arithmetic, let us determine
the bit patterns for +25, -25, +26, and -26. Using the convert by divide algorithm,
we first convert each number to binary form. If the number is negative, we take the
twos complement, that is, take the ones complement first and add one as follows.

+

+

+25 0000 0000 0001 1001
1111 1111 1110 a11a ... ones complement

1

-25 1111 1111 1110 0111 ... twos complement

+26 0000 0000 0001 1010
1111 1111 1110 0101 ... ones complement

1

-26 1111 1111 1110 0110 ... twos complement

A 16-bit adder can add two 16-bit numbers. Because it is easy to convert a num­
ber from binary to hex, we show the following two examples with all additions per­
formed in decimal, binary, and hex.

Example 1. 26 - 26 =O.

Decimal Binary Hex
+26 0000 0000 0001 1010 OOlA

+ -26 1111111111100110 FFE6

0 1 0000 0000 0000 0000 0000

+
carry discarded
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Example 2: 25 - 26 = -1.

COMPUTER ARCHITECTURE

Decimal
+25

+ -26

-1

Binary
0000 0000 000 1 100 1
1111111111100110

1111111111111111

Hex
0019
FFE6

FFFF

Remember that a -1 in computer language has all binary ones, regardless of whether
the integer length is 16 bits or 32 bits.

A third example clarifies the mod concept. Assume that a four-bit machine per­
forms four-bit arithlnetic using the twos complement notation to represent a negative
number. That is, a signed integer in 4 bits. There are 16 (24) combinations for both
positive and negative integers. The positive integers range from 0 to 7 with a sign bit
zero, and the negative integers range from -1 to -8 with a sign bit one. What happens
if we subtract 1 from -8 or add -1 to -8? We say that the number is busted because
its sign changes and the result is +7 ,which is incorrect as proven below:

-8 1000
+ -1 1111

10111

+
carry discarded

Recall that -9 and +7 are congruent mod 16 from the mathematical point of view. In
practice, if we examine the lower four bits of -9 and +7 represented in 16 bits or 32
bits using the twos complement, they look the same.

2.5.2.4 Serial Algorithm for Generating Twos Complement

A serial circuit may be designed to convert a binary number to its twos complement
form assuming the bit stream arrives, bit by bit, in a serial manner starting from the
LSB. As each bit arrives, we can convert the bit right away based on the algorithm
provided below:

10opI:
IF the leading bit is 0,
THEN DO;

Copy bit 0 down;
Goto loop 1; ENDDO;

ELSE copy bit 1 down; ENDIF;
100p2:
REPEAT
Complement all the subsequent bits arrived;
UNTIL the entire bit string is received;
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This algorithm converts a binary number starting from the LSB.  Search from right
to left.  If the bit is zero, we copy it down until we encounter the first bit which is not
zero.  Then copy the first bit one down and complement the rest of the bits.  Note that
this method works both ways, from positive to negative and vice versa.

We can apply this method to negate a number written in hex.  As we search from
the rightmost digit towards the left, copy down any hex digit zero, until we encounter
the first digit that is not zero; subtract its value from 16 and jot down the answer.
Subtracting the remaining digits, one by one, from 15, and jot down the answer until
all the digits are converted.  Some examples of hex number conversion are given
below for practice.

16-bit number in hex              Twos complement in hex
0000 0000
FFFF 0001
0777 F889
0019 FFE7

To negate a 32-bit number, take its ones complement and add one to it.  Therefore,
given 32 bits, we actually divide all the integers into two groups: the positive num-
ber group with a sign bit zero, and the negative number group with a sign bit one.
With 32 bits, the most negative integer in twos complement is -231. 

2.5.3  Characters

In order for one computer to communicate with a keyboard, display, printer, or
another computer in a network, it is necessary to establish an external code standard.
This is, after we press a key on the keyboard, bits flow into the computer, and a sys-
tem routine translates the bits into ASCII (American standard code for information
interchange), pronounced as as-key.  Each character is an ordered set of seven bits.
Because the basic addressable unit in memory is a byte of eight bits, we place an
ASCII character in a byte and clear its leftmost bit.  Note that ASCII and the inter-
national alphabet set number 5 (IA5) are the same as proposed by the ITU-T
(International Telecommunications Union-Telecommunication Standard Sector).
The seven-bit ASCII character set is shown in Figure 2.7a where b0 denotes the LSB.
The bit pattern of each code is specified by a two-dimensional matrix as shown in
Figure 2.7b.  The upper three bits, b6, b5, and b4 constitute a hex number ranging
from 0 to 7 which is the column number and the lower four bits, b3, b2, b1, and b0,
constitute a hex number ranging from 0 to F which is the row number.  The entire set
of ASCII is placed in a 16 x 8 matrix with 128 combinations.  To obtain the seven-
bit code of a character in the matrix, locate the character symbol first in the matrix,
and concatenate its three-bit column number with its four-bit row number.
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bOblb2b3b4

, / ,"-----------. r-----~

(a)

Column no. Row no.

(b)
b6 0 0 0 0 1 1 1 1

b5 0 0 1 1 0 0 1 1
b4 0 1 0 0 1 0 1

b3 b2 bl bO 0 2 3 4 5 6

0 0 0 0 0 NUL OLE SP 0 @ p p

0 0 0 SOH OCI A 0 a q

0 0 0 2 STX DC2 2 B R b

0 0 3 ETX DC3 II 3 C S c

0 0 a 4 EaT DC4 4 0 T d t

0 0 5 ENO NAK % 5 E U e u

0 0 6 ACK SYN & 6 F V f v

0 BEL ETB G W 9 w

0 0 0 8 BS CAN 8 H h x

0 0 9 HT EM 9 Y Y

0 0 A LF SUB * J Z z

0 B VT ESC + K k

0 0 C FF FS <

0 0 CR GS M m

0 SO RS > N n

F Sl US 0 0 DEL

Figure 2.7 ASCII: (a) 7-bit format and (b) specifications.

For example, to find zero in the matrix, its column number is three and its row
number is zero, so its code value is 30 in hex. Intuitively, the character nine should
be 39 in hex. The alphabets are arranged similarly so that the first A has a value of
41 in hex. To find Z, the last in a set of 26 alphabetical characters, we add 25 in dec-
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imal or 19 in hex to the value of A. Consequently, the value of Z is 5A in hex. The
arithmetic operations in binary, hexadecimal, and decimal are shown below:

Alphabet Binary Hex Decimal

A 01000001
+ 0001 1001

Z 0101 1010

41
19

5A

65
25

90

To obtain the value of a, we simply add 20 in hex to A. That is to say, a has a value
of 61 in hex, and z is 7A. In ASCII, a code from 00 to 1F in hex are mainly designed
for control purposes as explained below:

Code 00· OF

NUL (null)
SOH (start of header)
STX (start of text)
ETX (end of text)
EOT (end of transmission)
ENQ (enquire)
ACK (acknowledgement)
BEL (bell)
BS (back space)
HT (horizontal tabulation)
LF (line feed)
VT (vertical tabulation)
FF (form feed)
CR (carriage return)
SO (shift out)
81 (shift in)

Code 10· iF

OLE (data link escape)
OC1 (device control 1)
DC2 (device control 2)
DC3 (device control 3)
DC4 (device control 4)
NAK (negative acknowledgement)
SYN (synchronization)
ETB (end of block)
CAN (cancel)
EM (end of medium)
SUB (substitute)
ESC (escape)
FS (file separator)
GS (group separator)
RS (record separator)
US (unit separator)

The rest of the code is self explanatory, except for SP (space) and DEL (delete). The
ordering of each character in the ASCII set is called the collating sequence. In tele­
communications, we sometimes transmit an escape character followed by another
character to make a 16-bit special code known as the escape sequence. Some sys­
tems may just use the ESC character, while others use the DLE (data link escape)
character instead, but the basic concept is to change an eight-bit code to a 16-bit
code.

There are too many pes in the world, and they all use ASCII, the de facto stan­
dard. If any piece of information is coded in ASCII, it is said to be in textual fonn.
There are other types of external codes for information interchange. As an example,
the IBM mainframes use the eight-bit EBCDIC (extended binary coded decimal inter-

© 2001 by CRC Press LLC



60 COMPUTER ARCHITECTURE

change code), pronounced E-B-C-dick. The automatic teller machines use the six-bit
transcode. Others use 16 bits or 24 bits, as required to transmit Chinese characters.

2.5.4 Floating Point Numbers

In scientific applications we have real numbers, each of which has an integer part
and a fraction part separated by a radix point. The radix point is equivalent to a dec­
imal point in a decimal system or a binary point in a binary system. In practice, the
radix point does not need to be fixed. In fact, it can be floated anywhere in the num­
ber, as long as we can adjust its exponent properly. We use the positional notation to
evaluate the value of its integer part as well as its fraction part. For the sake of sim­
plicity, we assume that number A has only a fraction part and its positional notation
is shown below:

-n

A = .C_ 1 * B-1 +C-2 * B-2 + ... + C_n * B-n = Ie; * Bi
;=-1

Each coefficient in the notation has a negative subscript, and its power of base B is
also negative. In a short notation, we write down a radix point, followed by the coef­
ficients in the positional notation, followed by a base, or radix. Several examples are
given below:

.1I)0 = 1 * 10-1 + 1 * 10-2

.11 2 =1 * 2- 1+ 1 * 2-2

Therefore, .11 in decimal tells us that the first coefficient to the right of the decimal
point carries a weight of one tenth (10- 1), and the next digit to its right carries a
weight of one hundredth (10-2). The .11 of base ]0 may represent .11 dollars, or 11
cents. In contrast, .11 in binary tells us that the bit to the right of the binary point car­
ries a weight of one half (2- 1), and the next bit to its right carries a weight of a quar­
ter (2-2). Therefore, .11 in binary means 75 cents. Given a finite number of bits,
some decimal fractions can not be represented perfectly in binary just as 1/3 can not
be represented perfectly in decimal for the answer is .3333333.... However, the num­
ber 1/3 has a perfect representation .1 of base 3. We can further show that the deci­
mal .1 also needs an infinite number of bits to represent its value in binary.

Let us convert the decimal .1 to binary using the positional notation. Recall that
the convert by divide algorithm converts a positive integer from one base to another.
Converting the fraction part from one base to another, we can still use the convert by
divide algorithm except for two things. First, the divisor is 2- 1instead of 21. Second,
after dividing, we obtain a quotient which is a real number consisting of two parts:
an integer and a fraction. Because the divisor is a fraction, a real number divide
needs to performed and the integer part is the next bit after the binary point. Since
the fraction part represents the value of the remaining bits after the binary point, it
needs further division. Keep dividing the fraction and collect the integer part of the
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quotient, bit by bit, until the fraction reaches zero. Each bit obtained after the divide
operation is laid from left to right after its binary point to comprise the answer. It is
interesting to see that dividing the fraction by 2- 1really means multiplying it by 2) and
the product is a real number consisting of an integer part and a fraction part. The inte­
ger part can be a one or zero. Therefore, to convert a fraction from base 10 to base 2,
we modify the conversion by divide algorithm into conversion by multiply algorithm.

2.5.4.1 Conversion by Multiply Algorithm

RE:PEAT;

Multiplying the fraction by two, we obtain a real number
consisting of an integer part and a fraction part;

Take the integer part as the next bit and the relnaining fraction
part becomes the fraction for the next iteration;

UNTIL the fraction is 0;

Using the conversion by multiply algorithm, we obtain

. .- binary point
2 * .1 = .2 0
2 * .2 = .4 0
2 * .4 = .8 0
2 * .8 = 1.6 1
2 * .6 = 1.2 1
2 * .2 = .4 0
2 * .4 = .8 0
2 * .8 = 1.6 1
etc.

We have an infinite loop because the bit pattern 1001 is repeated forever. In other
words, it takes an infinite number of bits to convert the decimal .1 to a perfect binary
as shown below:

.1}0 = .0001 100110011001 . .. 2

In the convert by multiply algorithm, the selected base can be 16 or any positive inte­
ger. To convert a fraction from decimal to hex, we multiply the fraction by 16, and
the integer part is the first hex digit after the radix point. Multiplying the fraction
part repeatedly, we obtain a 16-digit number, .199999999999 999A in hex. The last
digit is changed from 9 to A due to rounding. This is because after looping 15 times,
we still have a fraction of .6 left, which is greater than 50%. As a result of this, we
add one to the last digit so its value is changed from 9 to A.
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In scientific applications, a real number is represented in floating point format.
After an arithmetic operation, the binary point can float at any bit position so the
number also contains an exponent part. The computer either employs a hardware
floating point unit to support floating point arithmetic or it has special software to
simulate such operations.

2.5.4.2 Floating Point Format

The basic idea is to divide the floating point number into three fields: overall
sign, biased exponent, and significand. The format is shown in Figure 2.8.
Most microcomputers use a biased exponent of base two. Other computers may use

~biased exp.~~_S_i_g_n_i_f_i_c_a_nd~~~~~~~~
t
sign bit

Figure 2.8 Floating point format.

a different base, e.g., 16, for its biased exponent defined as the characteristic, and in
such systems the significand is known as mantissa.26,75 The total number of bits in
the significand field determines the precision of a number. Assuming that a biased
exponent base two is used, if we shift the significand one bit to the left, the value of
the number is multiplied by two. If we shift the significand one bit to the right, its
value is divided by two. However, if we shift the significand one bit to the left and
decrease its exponent by one at the same time, we retain the same value of the num­
ber. By the same token, if we shift the significand one bit to the right and increase
its exponent by one, the number remains unchanged. Thus, a real number may be
represented in many different ways in floating point format because the position of
its radix point may change after each operation. A simple example is shown below:

.5 10 =.10*2 2

= 1.0 * 2-12

=.01*2+1
2

The decimal .5 has many different representations in floating point format. In
this particular case, a significand of few bits will be adequate to represent the num­
ber perfectly. We can shift the significand one bit to the left and decrease its expo­
nent by one or shift the significand one bit to the right and increase its exponent by
one. However, there is a unique way to represent a real number in normalized form.
That is, the number is represented by an integer part and a fraction part, provided that
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the integer part is always a one. If this one bit is not stored in the format, the real
number gains one extra bit in precision. One exception should be mentioned: a real
zero contains all zeroes in its format.

How many bits are needed to represent a floating point number? The answer
really depends on the type of applications. Sometimes we can not represent a real
number perfectly in binary, therefore, the more bits the better. The PentiulTI proces­
sor supports the IEEE 754 standard.28 That is, the 32-bit single precision, the 64-bit
double precision, and the 80-bit extended precision. For each format, there is one
overall sign bit to indicate whether the number is positive or negative. The remain­
ing bits constitute the biased exponent and the significand, which all have different
lengths as listed in Table 2.2.

Table 2.2 Attributes of a Floating Point Number

Attribute Single Double Extended

Total length (bit) 32 64 80
Sign 1 1 1
Biased exponent 8 11 15
Significand 24 53 64
Max exponent (value)+127 +1023 +16383
Min exponent -126 -1022 -16382

The sign bit is zero for a positive number and one for a negative number. Given two
floating point numbers, one is positive and the other one is negative with identical
magnitudes; their sign bit is the only differentiating factor. It also means that the
signed magnitude concept is applied here to represent a floating point number.

The design of an exponent is intricate. First, it is biased by adding a positive
number, which is a zero followed by all ones and the total number of bits is the same
as the exponent field. In single precision, the exponent field is eight bits long, and
the bias is +127 or 01111111 in binary. Such a biased exponent is said to be in excess
of +127.

Two questions are answered below:

1. Why is the exponent biased?
If we represent the exponent part, positive or negative, in twos comple­
ment notation, the CPU hardware would have a hard time to comparing
two numbers and determining which is bigger. Adding a bias to the expo­
nent in twos complement means that we rearrange all the exponents in
ascending order from the most negative to the most positive; all expo­
nents are treated as unsigned integers. During arithmetic operations,
addition or subtraction, we can not extract the siginificands of two num­
bers and perform the operation unless their exponents are equal. For this
reason, it is necessary for the CPU to compare the biased exponents of
the two normalized numbers as unsigned numbers and determine which
is smaller. Then, the CPU hardware shifts the significand of the floating
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point number with a smaller exponent to the right and increases its expo­
nent accordingly until its value reaches the same level as the larger expo­
nent.

2. Why add +127, instead of the unsigned 128 as we did in third generation
computers?

If the exponent field is 8 bits long, flipping its leading bit means that we
add an unsigned bias of 128 (28). The biased exponents are still in
ascending order, but the most negative one is -128 and the most positive
one becomes +127 as shown in Table 2.3.

Table 2.3 An eight-bit Exponent in Excess of Unsigned 128

Decimal value Biased exponent
+127 1111 1111

o 10000000
-127 0000 0001
-128 0000 0000

The advantage of adding +127 is the ability to represent one more positive exponent
at the high end rather than one more negative exponent at the low end. In scientific
applications, one extra large positive exponent is indeed more meaningful than a neg­
ative one as shown in Table 2.4.

Table 2.4 An eight-bit Exponent in Excess of +127

Decimal value
+128

o
126

-127

Biased exponent
1111 1111 (overflow)
0111 1111
00000001
0000 0000 (underflow)

Furthermore, the most positive exponent +128 is reserved for overflow detection and
the most negative exponent -127 is reserved for underflow detection. An overflow
condition indicates that the exponent of the result after a floating point operation is
greater than +128 and can not be represented by the machine. An underflow condi­
tion indicates that the exponent of the result is less than -127 and again the machine
just can not handle it. Another case is after subtraction, when we normalize the result
by shifting its siginificand to the left and decreasing the exponent field. If the value
of its biased exponent reaches all zeroes, we stop and declare underflow. Thus, given
an eight-bit exponent we have all the valid exponents from -126 to + 127 as shown in
Table 2.2.

Also in the table the single precision significand is 24 bits long and the double
precision is 53 bits, but the extended precision is 64 bits. This is because for a sin­
gle or double precision number, we always normalize its significand to make sure
that the number is in the form of one followed by a fraction as shown below:
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1 . xxxxxxxxx . . .

binary point

where x represents a bit in the fraction, and the leading bit one before the binary point
is not stored in the significand.  That is, the integer bit one is implicit, or hidden (so
to speak) in the representation.  Even though the integer bit one is not in the siginif-
icand, the hardware knows of its existence.  The reason for doing this is to achieve
one extra bit accuracy.  However, for extended precision, we have the integer bit
explicitly specified in the siginificand.

The exponent field in a single precision format really contains a special code that
is a twos complement notation in excess of 127, that is, uses twos complement nota-
tion to represent any exponent if it is negative and then add 127 to it.  This particu-
lar excess chosen is not totally without debate.  For example, if we multiply two very
large positive numbers, hardware will handle the arithmetics for both the exponent
and significand.  As far as the exponent is concerned, it is necessary to add the two
individual exponents together, but the result has one extra excess and it is necessary
to subtract the extra excess from the result via another add cycle.  This extra add
cycle will not hurt the speed because both exponent and significand arithmetics can
be performed in parallel, but nevertheless adds complexity.  Detecting overflow and
underflow conditions is quite complex. 

Example 1: Convert the real number .1 in decimal form to single 
precision format.

Step 1:  Find the 24-bit significand in the normalized number as shown below:

1 . 100 1100 1100 1100 1100 1101  * 2-4

binary point                                           exponent

Note that the spacing is for clarification purpose only, and the LSB is changed to one
due to rounding.  That is, after truncating the first 23 bits after the binary point, if the
next bit in the remaining bit string is one, we add this one to the LSB of the signifi-
cand as shown below.

the next bit

. . . . 1100  1100   . . . .

+                                 1                    rounding
___________________

. . . . 1101
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Because the bit one before the binary point is omitted in the notation, we have
the next 23 bits after the binary point as the significand. Note that the leading bit of
the third hex digit is the LSB of its biased exponent.

Step 2: Find the exponent -4 in excess of +127.

+

-4 in twos complement

127

-4 in excess
of 127 (123)

1111 1100

01111111

01111011

Step 3: By concatenating the sign bit zero, the eight-bit biased exponent, and the 23­
bit significand, we obtain:

a0 11 1101 1 100 1100 1100 1100 1100 1101

3 D C C C C C D (hex)

Example 2: Convert -.1 in decimal to single precision floating format.

Since the only difference is the sign bit, the answer is BDCC CCCD in hex.

Example 3: Convert. 1 in decimal to double precision.

Recall that in Table 2.2, a double precision floating point number is 64 bits. Its
exponent is 11 bits and the significand is 52 bits without showing the integer bit one
before the binary point. Because the total number of bits of the sign and the expo­
nent is 12 which is a multiple of 4, the 52-bit significand is shown as 13 4-bit groups
as follows,

1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

that is, 999999999 999A in hex, where rounding is performed at the LSB. Next, the
II-bit exponent -4 in excess of 1023 is computed as

-4 in two complement 111 1111 1100

+ 1023

-4 in excess
of 1023 (1019)

01111111111

01111111011
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which is 3FB in hex. Concatenating the sign bit zero, the biased exponent, and the
significand, we obtain the 64-bit floating point nunlber 3FB9 9999 9999 999A in hex.

Example 4: Convert the real number 178.125 in decimal form to single
precision.

This real number has an integer part and a fraction part. We use the conversion
by divide algorithm to collect the integer part and the conversion by multiply algo­
rithm to collect the fraction part, so the obtained 24 significant bits are shown below:

1011 0010 .0010000000000000

The binary point is after the first eight bits. To normalize the number, we shift the
bit string seven places to the right and increase the exponent by seven. Therefore, we
have

1 .011 0010 0010 0000 0000 0000 * 2+7

The exponent +7 in excess of 127 is computed as,

+7

+ 127

+7 in excess
of 127 (134)

00000111

01111111

10000110

Concatenating the sign bit zero, the biased exponent, and the significand, we obtain
the 32-bit number

0011 0011 0010 0010 0000 0000 0000

which is 4332 2000 in hex. Note that in hardware design, there is no binary point,
which is a concept built in the floating point arithmetic unit. In practice, the real
number +0.0 contains all zeroes, regardless of its length in bits.

Recall that floating point arithmetic is ideal for scientific applications, and the
significand length determines how many digits will be accurate in the result. For
example, with 80-bit extended precision the significand is 64 bits so as to achieve an
accuracy of 19 decimal digits as shown below:
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2.5.5 Packed Decimal Numbers

COMPUTER ARCHITECTURE

The packed decimal number concept was implemented on IBM mainframes for
the purpose of business transactions. A typical number comprises a sign field, fol­
lowed by 15 BCD (binary coded decimal) digits, and each digit has four bits ranging
froln 0 to 9. The only difference between a positive number and a negative number
with identical magnitude is the sign. With 15 digits, we may use 13 digits to repre­
sent the dollar amount, and the last two digits represent dimes and pennies. Hence,
a packed decimal number has a fixed decimal point in the digits, and after an arith­
metic operation, the position of its decimal point is still fixed. A decimal number
may be represented in two forms, packed and unpacked, as described below.

2.5.5.1 Packed Decima. Format

A packed decimal number of 18 digits on a Pentium processor is shown in Figure
2.9. The leftmost byte is the sign byte with its leading bit denoting the sign: zero
means positive and one means negative. The sign bit is followed by seven trailing
zeroes which are not part of the number. The sign byte is followed by 18 BCD dig­
its, so the total number of bits is 80. Among the 18 digits, D 17 is the leading digit,
and the rightmost digit DO is the least significant digit.

[1 000 oaooEE] I~t ~---

sign bit

Figure 2.9 The aD-bit packed decimal format.

Packed BCD digits have applications in telecommunications. During the dialing
phase, packed BCD digits are transmitted on the line as a telephone address, and their
formats are conformed to an international standard.80

To support packed decimal numbers, the processor needs a special hardware unit
to perform the BCD arithmetic.43,55 Alternately, we may write software to convert
the number to a 64-bit integer or an 80-bit floating point number with a 64-bit sig­
nificand, perform the arithmetic, and convert the number back. A BCD arithmetic
unit may be desirable in a pocket calculator. A BCD number is more readable than
a binary number, but its hardware implementation is also more complicated. For
example, when adding two BCD digits, we need to add six to the result if it is greater
than nine as described below.
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a. Algorithm to Add Two BCD Digits

IF there is a carry generated or the result is greater than 9,
THEN add 6 to the result;
ENDIF;

Example 1: Add nine and nine, and the sum digit should be eight.

9 1001
+ 9 1001

1 0010
+ 0110

8 1000

Example 2: Add nine and three, and the sum digit should be two.

9 1001
+ 3 OOJ 1

1100
+ 0110

2 1 0010

2.5.5.2 Unpacked Decima' Format

69

The unpacked BCD number is used as an intermediate step to print out packed
digits in ASCII. Therefore, each unpacked digit occupies one byte, or eight bits and
the leading four bits are all zeroes. Thus, the decimal number 215 in unpacked form
is shown in Figure 2..1Oa. The leftmost byte contains the digit two, the next byte con­
tains one, the least significant byte contains five, and each of the bytes has four lead­
ing zeroes. After obtaining the BCD digit in the unpacked form, we add a bias to it
to make an ASCII character. According to the collating sequence in ASCII, the bias
is 30 in hex. Therefore, after adding 30 we obtain the decimal number in ASCII char­
acters or text as shown in Figure 2.1 Ob.

2.5.6 Fixed Point Numbers

All the numbers in a computer can be grouped into three categories: fixed point,
floating point, and characters. The integers and packed decimal numbers all belong
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0000 0010 0000 0001 0000 0101

(a )

0011 0010 0011 0001 0011 0101

( b )

Figure 2.10 Unpacked decimal: (a) 215 in unpacked decimal and (b) 215 in ASCII.

to fixed point. After converting a binary integer, we know its radix point is to the
right of the least significant digit. However, a fixed point number may also have a
fraction with the understanding that the decimal point has a fixed position in the
number. Assume that a decimal number has two fractional digits, we can represent
this number in binary by scaling it up. Take 215.55 as an example, we multiply it by
100 to scale up to 21,555, which is a positive binary integer with a decimal point
before the last two digits. Thus, we can convert a fixed point number to binary fOnTI,
perform integer arithmetic, and convert the result back to decimal as long as we
remember where the decimal point is. The following numbers are in fixed point for­
mats with a decimal point before the last two digits.

215.55 = 21,555 * 10-2

2155.50 = 215,550 * 10-2

21555.00 = 2,155,500 * 10-2

10.00 = 1,000 * 10-2

100.00 = 10,000 * 10-2

Multiplying two fixed point numbers, we need to adjust the radix point in the
result.
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Example 1: Multiply 215.55 by 10.00.

71

215.55 * 10.00 = 21,555 * 1,000 * 10-4

=21,555,000 * 10-4

=215,550 * 10-2

Example 2: Multiply 215.55 by 100.00.

215.55 * 100.00 =21,555 * 10,000 * 10-4

= 215,550,000 * 10-4

= 2,155,500 * 10-2

In our society, we use the decimal system mainly because we have 10 fingers.
The computer system uses a binary system because it is easy to design such circuits.
A decimal number with or without a decimal point may be represented as a binary
integer or a packed decimal number as long as we remember where the decimal point
is. A fixed point number covers a range of magnitude as limited by the total number
of bits in the format. The total number of bits in a fixed point number determines its
accuracy in terms of significant digits.

In contrast, a floating point number has an exponent field, so its radix point can
be repositioned anywhere after each arithmetic operation. Thus, the number has a
broader range of magnitude at the expense of accuracy. For example, if we have a
total of 80 bits in the format, the significand field can only achieve 64 bits accuracy.

2.6 BIT STRINGS IN MEMORY

In a computer, instnlctions and data are all bit strings. Therefore, in a von
Neumann type machine instructions and data all look alike and differ only in how
they are used. The OS treats data just like an instruction until it is executed on the
CPU. We conclude that a 16-bit string in a memory word may represent:

• A short positive integer where short means 16 bits in C
• A short negative integer in twos complement notation
• A 16-bit unsigned short integer
• Two ASCII characters
• Part of any floating point number
• Four BCD digits
• A 16-bit instruction
• Part of an instruction
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2.7  SUMMARY POINTS

1. The integer representations of 7 and -1 are different in a computer using twos
complement notation, but looking at the lower 3 bits (mod 23) of each num-
ber, they appear identical.

2. The number system used in a computer is binary or base two.
3. Any piece of information in a computer is an ordered set of bits. 
4. If the base is eight, the number is octal.
5. If the base is 16, the number system is hexadecimal or hex for short.
6. An hex number is a way to represent a binary number.
7. The conversion by divide algorithm converts a positive integer from decimal

form to another base.
8. A negative integer in twos complement notation means taking the ones com-

pliment and adding one.
9. In order to communicate with a keyboard, display, printer, or another com-

puter in a network, the industry has established an external code standard
called ASCII.

10. In telecommunications, an escape character followed by another character is
transmitted to make a 16-bit special control code as the escape sequence.

11. A fixed point number may have a fraction, and after an arithmetic operation,
the decimal point is at a fixed position in the result.

12. By using the conversion by multiply algorithm, we can convert a decimal
fraction into a fraction of any base.

13. A fixed point number can be in binary or packed decimal form.
14. A packed BCD number is comprised of a sign field followed by 15 BCD dig-

its, and each digit has four bits ranging from 0 to 9.
15. A 16-bit string may represent an instruction, part of an instruction, a short

integer, two ASCII characters, four packed BCDs, two unpacked BCDs, part
of a float, etc. 

PROBLEMS

1. Using the twos complement notation, show that -9 and +7 have the same
lower four bits, so that they are congruent mod 16.

2. Show that 1024 and zero are congruent mod 1024 by looking at the lower 10
bits.

3. Given 16 bits, convert the following positive decimal numbers to binary,
octal, and hex.

a. 1           b. 100         c. 255     d. 1023     e. 215-1
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4 Using 16-bit arithmetic in twos complement notation, negate the above dec­
imal numbers and write down the answers in binary, octal, and hex.

5. Negate the following nUlnbers using twos complement notation. By inspec­
tion only, write down the hex answer directly in one step.

a. CDEF b. 1234 c. OFFO d. FFOO e. 0001

6. Convert the following numbers of a given base to 16-bit binary:

a. 221 base seven b. 221 base eight c. 221 base 16
d. 215 base seven e. 215 base 16

7. If one byte is used to store an ASCII character with b7 (bit seven) equal to
zero, write down the hex notation for each of the following characters
enclosed in single quotes.

a. 'A' b. 'a' c. 'B' d. 'b'
e. 'Z' f. 'z' g. '0' h. '9'

8. Comparing 'A' and 'a' as two unsigned integers, which one is larger? Verify
that the difference is 20 in hex.

9. Given a 64-bit double precision floating point number:
a. What is the reason for adding a bias to the exponent?
b. Why is the bias chosen as 3FF instead of 400 in hex?
c. What is the exponent to indicate an overflow condition?
d. What is the exponent to indicate an underflow condition?

10. By multiplying .1 by 16 successively, we can collect the integer part of the
quo-tient after each iteration. Verify the number can be directly obtained as
.1999 9999 9999 ... in hex.

11. Explain the rounding concept after converting a real number in decimal to a
floating point number in binary.

12. Given a real decimal number +.1875:
a. What is its single precision floating point representation?
b. What is its double precision floating point representation?

13. What is the double precision representation for .1 in decimal?
14. In an 80-bit extended precision floating point number, the significand field

is 64bits long. After normalization, it has the form of I.xxxxxx ... where X'

denotes a bit, and the implied binary point is to the right of the leading bit
one which is also shown in the format. The bias is the I5-bit 3FFF.

a. Verify that the decimal +.1 has a biased exponent of -4 as
shown below:

3FFB CCCC CCCC CCCC CCCD
b. What is the 80-bit representation for decimal -.1 ?

15. Omitting the sign, what are the packed and unpacked decimal number rep­
resentations for 1875?

73
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16. After omitting the sign, what are the packed and unpacked decimal number rep­
resentations for 1875.00 if the decimal point is assumed to be at the rightmost
end?

17. In a Von Neuman's computer, instruction and data are just bits, so what can
berepresented by a 16-bit string in memory?

18. The empire of the little guy in the galaxy uses a floating point number for­
mat that has one overall sign bit, followed by a four-bit biased exponent field
and a three-bit significand. The 4-bit biased exponent uses twos comple­
ment notation in excess seven. That is, if the exponent is positive, we add
seven to it. If the exponent is negative, then first take the twos complement
and add seven to it. All the exponents, unbiased and biased, are tabulated
below where the symbol - indicates no representation.

Value
+8
+7

+6
+5

+4

+3

+2

+1

o
-1

-2

-3

-4

-5

-6

-7

-8

Unbiased Exponent

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000

Biased Exponent
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

After normalizing a number to I.XXX, we store the three fraction bits XXX after
the biased exponent so the leading bit one is implied.

a. Determine the eight-bit representation of .1 in decimal with
rounding. Compute the exact value of this representation that
by no means is perfect.

b. What is the error in terms of percentage with rounding?
Without rounding, what is the error percentage?

19. Study the mathematical theory behind twos complement notation. Let Nt
and N2 be two positive n-bit integers of base two as shown below:

o~ Ni < 2n- 1 for i = 1, 2
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To represent Nl and N2 in twos complement notation, we picture the bit pattern
of the negative number as an unsigned integer as shown below:

-Ni = 2" - Ni for i = 1, 2

Adding -Nl and -N2, we obtain perfect -(Nl + N2) in twos complement notation
if the carry is discarded as follows:

-Nl + (-N2) =2" + 2" - (N! + N2) =2" - (Nt + N2)

+carry

Prove mathematically, that the end-around carry must be added to the result in
ones complement notation.

20. We can verify the format of a number by programming in C, or assembly.
Find a PC or UNIX machine with a C compiler on it. We can edit a program,
compile, and execute. After seeing the system prompt, enter a command to
initiate ajob step. Study the output and verify that 2's complelnent notation
is used to represent a negative integer.

/* -----------------

75

Description: This program displays the ones complement of a
32-bit integer in upper-case hex using two different approaches.
The following job steps were tested on a machine funning UNIX.

1. vi test.c {Run vi, the visual editor.
After editing, type ZZ to exit. }

2. cc test.c {Run cc, the c compiler which generates
a.out as the implied executable file.

3. cp test.c test.doc {Copy test.c into test.doc. }
4. a.out »test.doc {Run the test program and append

the output to test.doc. }
5. lpr test.doc {Generate a hard copy of

test.doc on the printer.

The test.doc file contains the C program and the output:
(1) The ones complement of zero is FFFFFFFF.
(2) The ones compliInent of zero is still FFFFFFFF.

-------------------- */
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#include <stdio.h>
void maine void)
(

inl num; /* ------------------

The variable num is declared as a 32-bit integer.

We hard code the integer in the program. But with

minor modifications, we may enter an integer from the keyboard.
------------------- */

num =0;
printf( "(1) The ones conlplemenl of 0 is %X. \n", -num);

/* ------------------

The symbol - means ones complement and %X indicates
the format control to upper-case hex. The \n indicates a

new line, i.e., a carriage return character in ASCII.

------------------- */

printf( "(2) The ones compliment of zero is still %X. \n", -nurn - 1);

/* ------------------

(twos cOlnpliment =ones compliment + 1) is the same as

(ones compliInent =twos compliment. - I)
------------------- */

21. Run the C program below to verify that 0.1 in decimal conforms with the
64-bit double precision format:

/* ------------------

Description: In C, the real constant .1 in decimal is
stored in double precision format by default. If you don't
get the correct output on your computer, use the pointer
concept as shown below:
{double *numlptr, numl =.1;
num! ptr = &numl;
printf( "The decimal .1 is represented by %X %X in hex. \n",
*nulnlptr, *numlptr+ I);}
--------------------- */

#include <stdio.h>
void maine void)
{

printf( "The decimal .1 is represented by %X %X in hex. \n", .1);

/*The decimal .1 is represented by 3FB99999 9999999A in hex. */
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CHAPTER 3

Basic Computer Principles

3.1 STORED PROGRAM CONCEPT

An instruction is a bit string that tells the CPU what to do. An instruction con­
tains an op (operation code) and address information such as where and how to find
the operand if there is one. The stored program concept was conceived by von
Neumann stating that all instructions and data must be stored in memory before their
execution can begin. Thus, instructions are retrieved from memory, one by one in
sequence, interpreted, and executed. If the operation needs an operand in memory,
the CPU issues a memory read request and waits for the arrival of the operand before
the operation can start. Instructions and data look alike and programmers can mod­
ify the address field or the whole instruction by performing arithmetic or logical
operations on them in the execution unit. This chapter discusses the design of an
instruction and its execution on the CPU.

3.1.1 Instruction Length

An instruction may have a fixed length or a variable length. A fixed length means
a uniform length in that all the instructions have the same length. For example, each
instruction on a PDP-IO has 36 bits,49 but on the POWER (performance optimized
with enhanced RISC) PC or MIPS, each instruction has 32 bits. 16,35 The Burroughs
B5000 stack machine has 12-bit instructions known as syllables. On such a machine,
no address is coded in the syllable of add or subtract instructions. Most computers
support variable length instructions, and VAX is an extreme case that has instruction
from 1 to 21 bytes.51

77
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The 16-bit instruction format on a Burks machine from the early days is shown
in Figure 3.1 a.4 Each instruction has a four-bit op (operation code) followed by a 12­
bit memory address. The reason that the instruction contains one address is because
the first source operand implied in acc (accumulator) is also the destination. In con­
sequence, only the address of the second source operand is coded in the instruction.
The op tells the CPU what action to take between the acc and the memory operand.
Take the add instruction as an example: the CPU retrieves the second source operand
from memory and adds it to acc. Because the address is 12 bits long, its memory size
is limited to 4096 (2 12) words, and each word contains 16 bits. An instruction may
contain many fields, and each field has a group of bits to specify the operand in mem­
ory, or in the CPU.

( a) G I
Address

( b )

]Op Eop

EJ(c )

I
Eop ]

(d )

EO~
I

Op Eop2

Figure 3.1 Instructions: (a) simple format, (b) op and eop are adjacent, (c) op and
eop are apart, and (d) op, eop1, and eop2.

3.1.2 Opeode VB. Extended Opeode

The op usually resides at the instruction's leftmost end, even though in theory it
may be placed anywhere in the instruction. Every instruction has an opcode. The
nop (no operation) instruction does nothing but it has an opcode. In some instruc­
tions, part of the address field is used as an eop (extended opcode). That is to say,
the opcode has two levels, op and eop. More often than not, the op and eop are adja­
cent to each other, as shown in Figure 3.1 b, but sometimes they may be apart as
shown in 3.lc. If each op or eop has four bits, the op field provides 16 combinations.
Assume that 15 combinations are used without an eop, so one combination is left to
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work in conjunction with an eop. The total number of combinations is increased
from 16 to 31 as cOlnputed below:

15+{1*16)=31

For example, the op between 0 and 14 needs no eop. If the op is 15, then a four­
bit eop is used to provide 16 more conlbinations. Often, the opcode field is extended
to three levels: op, eop 1, and eop2 as shown in Figure 3.1 d. The eap 1 provides the
first level extension, and eop2 provides the second level extension. This encoding
concept is used to design messages between two computers. The messages are for a
program running on a remote computer to interpret and execute. That is to say, the
message header contains an op with one or more eops and other information.

The CPU uses information in the address field to retrieve the operand. Because
a 12-bit address has a value ranging from zero to 4095, the CPV can access any word
in a memory of four KW. In a second generation c<;lmputer and beyond, an instruc­
tion may have many address fields, each one providing information on exactly how
to find the operand.

3.2 HARDWARE UNITS IN A CPU

A simplified block diagram shown in Figure 3.2 represents a CPU with two hard­
ware units: IU (instruction unit) and EU (execution unit). Conceptually, a control
path and a data path exist between the two units. The control path provides timing
signals for control, and the data path supplies the data operand, perhaps retrieved
from memory. The major function of IV is to fetch and decode the instructions. The
IR (instruction register) is where the current instruction resides after being fetched
from memory. After decoding the opcode, the IV generates control signals, e.g., to
fetch data from memory, route data, and execute data. The EU (execution unit) is
where that execution takes place. In a high-performance CPU, the IV and EU can be
further decomposed into many uni ts operating in parallel.

EU IU

Working registers IR

I I

Control [ ______.__~~-J
I
I

Data
Adder I IARI

~_f~ I ~

Figure 3.2 Central processing unit.
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3.3  INSTRUCTION UNIT

The instruction unit is also known as the control unit (CU) that mainly provides
timing signals to obtain, interpret, and execute instructions.  Let us trace the logical
flow of instruction execution.  After an instruction is retrieved into the IR, the hard-
wired decoder generates timing signals for further actions based on the opcode.
Several issues remain, such as, where does the IU find the instruction in memory?
We say that the address of an instruction is kept in an IAR (instruction address reg-
ister) which needs to be updated during each instruction retrieval cycle.

3.3.1  Instruction Register

The IR is hardwired in the IU and a decoder connected to it decides what actions
to follow.  The IU always fetches the instructions one by one in sequence if there is
no branch.  A more sophisticated CPU may have an instruction queue or pipe so that
a stream of instructions can flow into the queue.  The leftmost end of the queue
becomes an IR for the decoding logic positioned right on top.  The IR has a fixed
hardware location and an instruction must reside in the IR before its execution can
start.  There is a conceptual difference between hardware execution and software
interpretation.  For hardware execution, the IR is hardwired in the CPU.  For soft-
ware interpretation, the IR is a simulated variable in memory.

3.3.2  Instruction Address Register

The IAR points to the next instruction in memory.  In a simple model, after
retrieving an instruction in the IR, the IU increments the IAR by the length of instruc-
tion.  In first generation computers, each machine instruction is one word long, so the
IAR is a counter that contains a word address.  If the instruction length is fixed, the
IAR becomes a program counter.

3.3.2.1  IAR vs. Program-Counter

The program counter contains an unsigned integer as the address of the next
instruction in memory.  A program counter is incremented by an integer, provided
that all the instructions have the same length.  It is possible to design the IAR as a
counter as long as the variable instruction length is 2n where n is 1, 2, or 4.  For exam-
ple, after obtaining a 4B instruction into an IR, we can add 1 to the 3rd bit on the right
of the counter.

It should be stressed that because all the instructions on a typical RISC (reduced
instruction set computer) machine are four bytes long, its IAR is a counter as shown
in Figure 3.3.  As each instruction is four bytes, its address is an unsigned integer
with two trailing zeroes (IA1 and IA0) implied.  The program counter contains a 30-
bit block number followed by 2 zeroes and each block has four bytes.  To obtain a
32-bit byte address, we append two zeroes to the 30-bit block address so that the total
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number of bits is 32.  In hardware design, the two trailing zeroes can be hardwired
so to save two flip-flops.  Thus, the 30-bit block address in the program counter
really means a 32-bit byte address with the two trailing zeroes implied.  After an
instruction is obtained in the IR, the 30-bit program counter is incremented by one.
The byte address is incremented by four (22).

On a program counter, the instruction length may vary from 1 to 7 bytes, but the
IAR can be designed as a counter provided that the IU increments its value right after
interpreting a portion of an instruction.  After the entire instruction is executed, the
IAR contains the address of the next instruction in memory.  For this reason, we will
use program counter and IAR interchangeably in this book.

3.3.3  Memory Bus

Between the CPU and memory there exists a bundle of electric copper wires col-
lectively known as the memory bus.  As far as function is concerned, some wires are
used to transmit a memory address, while others are used to provide data and control
signals as shown in Figure 3.4.  In a modern computer, the memory bus is etched on
a printed circuit board so that single in-line memory modules (SIMMs) can be
inserted into the connector sockets.  The address bus is unidirectional: it is used to
transmit a physical address from the CPU to memory.  In contrast, the data bus is usu-
ally bidirectional, which means that in a write cycle the CPU places bits on the data
bus, but in a read cycle the CPU receives bits from the data bus.  A control signal is
placed on the line to indicate which operation is to be performed, e.g., read or write.
The memory may also provide a data available signal on the line to tell the CPU
when the data are ready.

3.3.3.1  Address Bus vs. Data Bus

The number of wires in an address bus determines the size of the physical mem-
ory which is commonly measured in bytes.  The physical memory size is defined as
the PAS (physical addressing space).  A 32-bit address is an unsigned integer that has
a total of 232 combinations so its PAS is four GB.  The data bus width is defined as
the number of bits to be transferred in one physical cycle.  That is, multiple bits are
transferred in parallel during a memory cycle, and each bit is placed on the line
(wire) with a voltage.   The data bus width of a low end controller’s memory can be
eight bits or 16 bits.
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Assume that we have a family of computers.  All the models share the same archi-
tecture (instruction set), but the data bus of each model may have a different width.
For example, the Intel 8088 processor has a memory data bus of eight bits, while the
8086 has a data bus of 16 bits.29 Therefore, it takes two physical memory cycles for
an 8088 to fetch a 16-bit operand, but it takes only one physical memory cycle for an
8086 to obtain the same operand.  In regard to system architecture, the 16-bit operand
is obtained by one logical memory cycle for both machines.  That is to say, an 8088’s
16-bit logical memory cycle is comprised of two eight-bit physical memory cycles,
and each cycle merely fetches an eight-bit portion of the operand.  An 8086’s 16-bit
logical memory cycle is one physical memory cycle.  In layman’s terms, it takes one
memory dip to fetch the entire operand.  Regardless of the different bus sizes, both
machines support the same instruction set with a difference in speed or performance.
In fact, the i386 uses a 32-bit memory data bus, the Pentium Pro uses a 64-bit data bus,
and the Pentium IV uses a 128-bit data bus.  That is to say, the CPU has logic to store
the block on a chip and can access the operand in the block.

3.4  REGISTER TRANSFER LANGUAGE

The internal operations in a computer can be described by RTL (register transfer
language).  Recall that the structured constructs in PDL are used to describe the logic
flow at the top level.  The RTL is a tool to describe the logic flow at the hardware
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register level. A comment may be placed in brace bracket or begun with a semicolon
(;) to give more details. Some RTL operator symbols are shown in Table 3.1.

Table 3.1 Operator Symbols in RTL

Operator

( 7 )
[ 7 ]
[m .. n]
<7: 7>
+, -, *, /
.EXP.
A

.MOD.

.NEG.

.NOT. , .AND.

.OR., .EOR.

.EO., .NE.

.LT. , .LE.

.GT., .GE.

.SHL

.SHR., .SAR.

Description

Transfer (the source operand specified as RHS is
copied to the destination operand specified as LHS.)
Grouping of operations
Address designator
Address or index ranging from m to n inclusive
Bit designator
Arithmetic Op: add, subtract, multiply, divide
exponential
Concatenate
Modulus
Negate
Logical Op: not, and
Or, exclusive or
Relational Op: equal, not equal
Less than, less or equal
Greater than, greater or equal
Shift logical left
Shift logical right, shift arithmetic right

3.4.1 Source Operand vs. Destination Operand

The RTL describes the movement of bits from one location to another location in
a computer. The source operand refers to the bits stored at one location while the
destination operand refers to where the bits are moved to, Le., another location. Each
operand may be in a register or memory that has a mnemonic name in letters fol­
lowed by digits. If a register is designated for a special function, it may have a
mnemonic to describe its function. For example, we have two registers in memory:
the MAR (memory address register) and the MDR (memory data register). Both are
hardware buffers that interface with the internal circuitry in memory. The EU has a
working register set to store temporary results. Each hardware register is used to
store data or an address during computation. To access an operand, we need to spec­
ify the symbolic name of a register or memory word with an address.

3.4.2 Address Designator

In order to access an operand that is a register or in memory, we specify a name
followed by an address designator, namely a left square bracket, an address, and a
right square bracket. As a simple example, if the register set is for storing addresses,

© 2001 by CRC Press LLC



84 COMPUTER ARCHITECTURE

the mnemonic may be A (address) and A[ 1] would means the second address regis­
ter. Since a computer uses zero indexing, A[O] represents the first address register.
Since the number of entries in a register set is much smaller than memory, a register
address is usually in between 3 and 5 bits. Because the double period in a square
bracket indicates a range operator, A[0..4J represents a set of five address registers,
AD to A4 inclusive.

3.4.2.1 Memory Address vs. Register Address

rhe mnemonic symbol for memory is M. At the machine level we may specify
an address in hex, so M[100000] represents the operand at the 1 MB location. The
default is memory so ifM is omitted in the notation[lOOOOO] means M[lOOOOO]. For
an operand in a general purpose register set named R, we specify its name with an
address designator to access an element in the set. The address or index in the square
bracket tells the position of the register in the set. Since the address in a computer
always starts with zero, R[O] denotes the first CPU register, R[ 1] denotes the second
register, etc. The address is either coded in the instruction or implied in the opcode.

An assembly language statement is a string of ASCII characters representing a
message to the assembler. After assembling, the entire program becomes a block of
instructions and data in binary form. An assembly statement is readable because it
is in symbolic form. The notation R[ 1] is used in RTL, so in an assembly statement,
we may use R1 (register 1) instead as an alias. That is to say, an alias is a special
name for a register. For example, if R[ 1] is used to store a unsigned integer for track­
ing the number of times that a loop is executed, CX (count) may be used as an alias
instead of R[l]. When we examine the code image in memory, its address is 001 in
binary. In general, a memory word is 16 bits, which is the default size of an operand
word.

The I/O controller has its own register set, the 10Rs (I/O registers). Each of
which is assigned an 110 address that is separated from the register or memory
addressing space. For example, IOR[3F8] means receive data register in a commu­
nication controller, and 3F8 is an I/O address in hex. The alias of this I/O register is
Rxd (receive data register). In the case that the middle bits in an operand are of inter­
est, we need to specify the bit string by spelling out the first bit and the last bit as
explained next.

3.4.3 Bit Designator

A bit designator has a left angular bracket, a beginning bit position, a colon (:),
an ending bit position, and a right angular bracket. It is used to specify a bit string
in a register or memory. The first example is M[O] <31 :0> which represents 32 bits
in memory starting at address zero. In a second exanlple, R[ 1] <7:0> represents the
lower eight bits in R[ 1]. On a Pentium processor, because ex is the 16-bit count reg­
ister, CL (count register -low order byte) represents its Jow order byte. That is, CL
and CX <7:0> are the exactly same.
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3.5 INSTRUCTION EXECUTION CYCLE
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The execution of an instruction is divided into two phases: instruction retrieval
and operand execution. Suppose the CPU has neither instruction pipe nor operand
pipe so that all the operations are sequential. First, issue a memory read request to
retrieve the next instruction in the IR. After decoding, if all the operandi are in the
CPU, the operand execution phase starts. Otherwise, if one operand is in memory,
one memory read request must be issued to retrieve the operand. If two operandi are
in memory, then two memory read requests are issued to fetch the operandi. Each
memory read request is called a memory dip, so the CPU must wait for the arrival of
the memory operand.

3.5.1 Instruction Fetch

In order to understand the sequential hardware steps performed by the CPU, we
use an add instruction as an example. The assembly language statement for add is
shown below:

add sopd2 ;add sopd2 in memory to acc

where add is the mop (machine opcode) for integer addition, and sopd2 is the sym­
bolic name of the second source operand in memory. In the Burks machine for
example, the assembler translates this statement into a 16-bit instruction as shown in
Figure 3.1a of the previous chapter. This four-bit opcode is followed by a 12-bit
memory address. Before execution starts, the IAR contains the memory address of
the add instruction. First, the CPU fetches the instruction in the IR by passing the
address through the IAR on the bus. After the instruction resides in IR, the CPU
interprets and executes its opcode. As a result of its execution, the content of a mem­
ory location named sopd2 is added to the content of a register named acc (accumu­
lator). Since the hardware location of the accumulator is implied, its address is not
part of the instruction. Using RTL, we can specify the micro-hardware steps to fetch
an instruction as follows:

Step I: MAR
Step 2: MDR
Step 3: IR
Step 4: JAR

~ IAR {bus operation}
~ M[MAR] {Memory read cycle}
~MDR

~ JAR + instruction length

In step 1, the CPU issues a memory read request by copying the address bits in the
IAR on the memory address bus along with other control signals. After obtaining the
address from the bus, the memory system reads the content bits at this address into
the MOR. Then, the data bits in MDR are placed on the data bus for the CPU to fetch
in the IR. Steps 1 to 3 represent a memory read cycle that is atomic or indivisible.
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In other words, no other processors can perform a memory read operation to the
shared memory at the same time. After decoding, the CPU also knows to increases
the JAR by the instruction length, as shown in step 4.

3.5.2 Operand Fetch

If the operand is in the CPU, execution may start right after instruction retrieval.
However, for this one-address add instruction, the CPU must issue a memory read
cycle in order to obtain the operand whose address is specified as the lower 12 bits
in the IR. In RTL, we have three Jnicro steps.

Step 5: MAR
Step 6: MDR
Step 7: T

...- IR < 11 :0> {bus operation}

...- M[MAR] {memory read cycle}

...-MDR

The temporary register T resides in the EU. When all the operandi are available in
the CPU, operand execution may begin.

3.5.3 Operand Execution

The operand execution in the EU is specified as follows.

Step 8: acc ...- acc +T {Integer add}

where acc denotes the accumulator. The EU feeds the bits in acc to one input bus of
the adder, the bits in T (temp) to the other input bus of the adder, and clocks the adder
output into acc. After the add, the accumulator contains the sum. At this point, the
CPU goes back to step 1 and repeats the new cycle, that is, the instruction execution
cycle is an infinite hardware loop. For convenience, we describe the instruction exe­
cution as follows,

add sopd2 ;acc..- acc + M[sopd2] {integer add}

After the semicolon, the RTL comment indicates that both instruction fetch and
operand fetch are implied.

As the IAR is increased by the length of the instruction, the next instruction is
fetched from memory, that is, instructions are executed in sequence until a branch
instruction is executed. A branch instruction means a goto statement in a high-level
programming language. Such an instruction has a memory address of the next
instruction. Upon its execution, the CPU places the branch address into the IAR. As
a result, the instruction at the new address will be fetched next. In other words, con­
trol is passed from one program address to another program address. A computer
also supports conditional branch instructions. Upon executing such an instruction,
the EU in the CPU performs a condition test. If the result is true, the new branch
address in the instruction is placed into the IAR, otherwise there is no branch.
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3.5.3.1 Program Termination
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How does a program terminate? Recall that every computer has an as running
side by side with the user program. Therefore, in concept, the last instruction in the
program should pass control back to the as. In modern computer design, this is
accomplished by executing an interrupt (int) instruction. As a result of its execution,
the CPU relinquishes control from the current program to a specific location in mem­
ory where the OS resides. That is, after a program terminates, the OS resumes con­
trol and executes next.

3.6 EXECUTION UNIT

The EU (execution unit) is where operand executions are performed. A simple
EU may consist of several working registers and an adder. If we incorporate the log­
ical functions and shift functions into the adder, we obtain an ALU (arithmetic and
logical unit). Note that in a high performance computer, the EU is composed of
many hardware units, such as multiply, divide, shift, etc., using parallel logic.
However, in order to illustrate the basic concept we limit our discussions to sequen­
tial operations. That is to say, the simple CPU has an ALU that can handle both unary
and binary operations, e.g., add, subtract, multiply, divide, AND, NOT, OR, EOR,
shift, etc.

3.6.1 Working Registers

The EU supports a set of working registers. Each register is an ordered set of
flip-flops. Each flip-flop is a one-bit storage device. We show a simple D flip-flop
in Figure 3.5a. The two inputs are for D (data) and Clk (clock). The two outputs are
for Q and \Q. The circle to the right of \Q indicates a complement of Q. The output
Qof this flip-flop always obeys the D input as long as there is a clock. The Clk sig­
nal is a rectangular voltage pulse that goes up from 0 v to 3.3 v and goes down as
shown in Figure 3.5b. Note that the circle at the elk input indicates that the flip-flop
changes state at the trailing edge of a clock. That also means there is one-bit delay
when a flip-flop changes state. If the clock frequency is 100 Mhz, its period is 10 ns
representing the raw speed of a CPU. Remember two things: first, without a clock
signal present as input, the flip-flop can not change state and second, a register has
its output available in both true and complement forms.

In first generation computers, there was only one register, namely the acc (accu­
mulator). For binary operations, the first source operand is in acc and the destination
is also the acc. As far as programming is concerned, more working registers provide
speed and convenience to a user. This is why a modem computer has 8, 16, or 32
working registers as shown in Table 3.2.
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Figure 3.5 One-bit: (a) 0 flip-flop and (b) 10 ns clock.

Table 3.2 Working Registers in a Computer

Computer Number of Working Number of Bits
Model Registers in Register

Burks 1 16
PDP-8 1 12
VAX 16 32
IBM360/370 16 32
CDC6600/7600 24 60, 24
CRAY 1 16 64,24
B5000 0 48 (word)
MIPS 32 32
Pentium 14 32, 16
Itanium 128 64

Number of addresses
In an add instruction

1
1
2,3
2
3
3
o
3
2
3

All the computers listed above are well known in the history of computing. The
Burks machine has a memory word of 16 bits with one address coded in the instruc­
tion. The PDP-8 is the first minicomputer with a 12-bit accumulator, so its add
instruction contains one address. The VAX (virtual address extension) machine is a
super minicomputer using 16 32-bit registers.51 The IBM mainframe has 16 32-bit
general purpose registers (GPRs).26 The CDC mainframe has eight 60-bit operand
registers plus 16 more 24-bit registers for storing addresses.5 The CRAY 1, a super­
computer, has 8 64-bit operand registers, eight 24-bit address registers, plus many
save registers as scratch pad. The Burroughs machine provides no working registers
at all, and its add instruction only has opcode.2 It is a stack machine in that all the
operandi, source and destination, are implied on the stack, and each memory word
has 48 bits.

The last three microcomputers in Table 3.2 are singled out because they have fea­
tures dictating the future trend. The MIPS machine is a RISe (reduced instruction
set computer) that has a total of 32 32-bit registers. The Pentium uses eight 32-bit
registers for data or addressing plus six more 16-bit segment registers. The Itanium
has 128 general registers and each register has 64 bits. The various computer classes
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are compared from a historical point of view, in Table 3.3.

Table 3.3 Design Features of Various Computer Classes
Class Adder Width Number of Registers OS Protection
Micro 8 4 Poor
Mini 16 8 Poor
Mainframe 32 16 Very high
Super 64 8 High

89

The adder width is defined as the number of bits that can be added in one clock
cycle. Generally speaking, a simple microcomputer has an adder of 8 or 16 bits with
a less sophisticated 1/0 structure and operating system. Quite often, the as on a
microcomputer crashes while running an application or doing some development
work. However, future microprocessors will have wider memory data buses, wider
adders, and more reliable operating systems. Future mainframes or supercomputers
will be designed as clusters of microprocessors with very sophisticated operating
systems.

3.6.2 Look-Ahead Adder

The adder in an EU is comprised of many one-bit full adders. The faster the
adder, the faster the CPU. The adder width dictates the CPU performance to a cer­
tain degree. In a family of mainframe computers sharing the same architecture, dif­
ferent models may have adders of different widths.26 For example, the lowest model
can add only eight bits at one time, so it takes four basic add cycles to add two 32­
bit integers. A higher model can add 32 bits at one time, so it takes one add cycle to
add two 32-bit integers. Regardless of their adder widths, all the models execute the
same instruction to add two 32-bit integers. Because a lower model uses less hard­
ware, its cost is low, but so is its speed.

Intuitively, the adder in an EU should have a width as same as its memory data
bus. That is to say, an operand can be fetched in one physical memory cycle so the
adder can perform its operation in one clock cycle. In general, supercomputers use
64-bit adders, the mainframes use 32-bit adders, and the microcomputers use 16-bit
adders. Today, a modern microcomputer not only uses many 32-bit or 64-bit adders,
but it also uses a 64-bit or 128-bit data bus.

The adder is the heart of a simple CPU. During an add operation, it is possible
for a carry to propagate from the LSB to the MSB. In order to reduce the number of
circuit delays, a carry look-ahead adder uses combinational logic that has many cas­
caded AND - OR gates to generate the carry output. The carry input at a particular
bit position is expanded as a function of all the input bits at the previous stages.
Consequently, the number of gate levels is reduced along with the number of circuit
delays. The ultimate goal is to perform the add operation in one clock cycle. To
illustrate this concept, we first design a four-bit carry look-ahead adder, then extend
its design to 16 bits, and finally to 64 bits. The basic logical operators are explained
below:
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1. The parentheses ( ) have the highest precedence to group several operations.
2. The backward slash \ is the NOT operator so we can key in the symbol for

logic simulations.
3. The period (.) or space is the AND operator.
4. The plus (+) is the OR operator.

The CPA (carry propagated adder) using carry look-ahead logic is composed of
many one-bit full adders. At each bit position i, the three inputs are Ai, Bi, and Ci,
and the two outputs are Si (sum i) and Ci+1 (carry i+ I) whose logical equations are
shown below:

Si = \Ai \Bi Ci + \Ai Bi \Ci + Ai \Bi \Ci + Ai Bi Ci
Ci+l =Ai Bi + Bi Ci +Ai Ci

At bit 0 (LSB), the three inputs are AD, BO, and CO and the two outputs are SO and
Cl. Figure 3.6a, shows the logic of two functions as defined below.

GO = (AD BO)
PO =(AO + BO)

{Generate function zero.}
{Propagate function zero. }

The two-input AND gate provides GO that is the generate function at bit zero. It
means that a carry output is true if AO is true, and BO is true regardless of its carry
input. The two-input OR gate provides PO, the propagate function at bit zero. It
means a carry output is true if AO or BO is true, and its carry input (CO) is also true
as an assist. Thus, a generate function does not need an assist from its RHS (right
hand side) but a propagate function does. The carry output at bit 0 is the carry input
at bit one (CI), whose logical equation is shown below:

C1 = AD BO + BO CO + AD CO
=AD BO + (AD + BO) CO
= GO + (PO CO)

We further define the following:

Pi =Ai + Bi
Gi=AiBi

{propagate function i for i = 0, 1, 2, ... }
{generate function i}

1. The Pi function propagates a carry from input to output if a carry input exists at
bit i.

2. The Gi function generates a carry output, one or zero, regardless of its carry
input at bit i.
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Figure 3.6 Carry look-ahead logic: (a) GO and PO, (b) 16-bit adder, and (c) 64-bit
adder.

© 2001 by CRC Press LLC



92 COMPUTER ARCHITECTURE

We can use AND - OR logic to represent the carry outputs C2, C3, and C4, as shown
below.

C2 = A I B I + A I C 1 + B 1 C 1
=AI Bl +(Al +BI)Cl
=Al Bl +(AI +BI)(AOBO+AOCO+BOCO)
=AI BI +(Al +Bl)AOBO+(Al +BI)(AO+BO)CO
= 0 1 + PI GO + PI PO CO

C3 =02+P2Gl+P2PIGO+P2PlPOCO
C4 = 03 + P3 G2 + P3 P2 G I + P3 P2 PI GO + P3 P2 PI PO CO

The C4 function is the sum of five products, so it is true if any of the five conditions
listed below are true.

I. The generate function at bit three is true.

2. The generate function at bit two is true, and the propagate assist at bit three
is also true.

3. The generate function at bit one is true, and the propagate assists from bit
threeand bit two are true.

4. The generate function at bit 0 is true, and the propagate assists from bits
three, two, and one are true.

5. The CO or Cin (carry in) bit is true with the propagate assists from all four
bits.

We can further expand the carries to level two and obtain a 16-bit carry look­
ahead adder as shown in Figure 3.6b. We define the following propagate functions:

PPO = P3 P2 PI PO
PP1 = P7 P6 P5 P4
PP2 = PIt PtO P9 P8
PP3 =PI5 P14 PI3 P12

The double P symbol (PP) denotes the propagate function at level two. In general,
PPi is a propagate function of the four-bit adder block i. For example, PPO is the
propagate function of the four-bit adder block zero. The generate functions of each
block are defined as follows:

OGO = G3 + P3 G2 + P3 P2 Gl + P3 P2 PI GO
GGI = G7 + P7 G6 + P7 P6 G5 + P7 P6 P5 G4
GG2=GIl +PII GIO+Pll PIOG9+PIl PIOP9G8
G03 = 015 + Pl5 G14 + P15 P14 GI3 + PI5 P14 PI3 012

The double G symbol (OG) denotes the generate function at level two. For example,
GG3 is true under four conditions or "ed" together. That is, if G 15, the generate
function at bit 15, is true, or if any generate function at the lower bit in the block is
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true, then it needs the assist from all its upper bits in the block to propagate the carry
to the end. The four carry outputs of the adder blocks are derived below:

CCI = GGO + PPO CO
CC2 =GGI + PPI GGO + PPI PPO CO
CC3 =GG2 + PP2 GGI + PP2 PPI GGO + PP2 PPI PPO CO
CC4 =GG3 + PP3 GG2 + PP3 PP2 GG 1 + PP3 PP2 PPI GGO +

PP3 PP2 PP I PPO CO

The double C (CC) means a carry output at a level two block. Comparing these carry
outputs with the carry outputs of a single four-bit adder, they share the saine
schematic with different inputs. In fact, ceo is CO, CCI is C4, CC2 is C8, CC3 is
C12, and CC4 is C16. What should be the equation for C15, the carry output at bit
l4? Intuitively, we have,

C15 = 014 + P14 G13 + PI4 PI3 Gl2 + P14 PI3 P12 CC3

If the CC3 term in the equation is not expanded, then C 15 looks just like C3 using
four-input AND and OR gates. As a challenge, we attempt to design a 64-bit look­
ahead adder. After expanding the carry equations to level three, the new adder is
shown in Figure 3.6c. The propagate functions are defined below:

PPPO = PP3 PP2 PP1 PPO
PPPI = PP7 PP6 PP5 PP4
PPP2 =PPII PPIO PP9 PP8
PPP3 =PP15 PP14 PP13 PPl2

The triple P (PPP) denotes a propagate function at level three. In general, PPPi is the
propagate function of the l6-bit adder block i. For example, PPP3 is the propagate
function of the 16-bit adder block three so the propagate functions of all the four-bit
adder blocks in it need to be true. The PP15 (P63 P62 P6l P60) is the propagate
function of the four-bit adder block 15. Similarly, the generate functions for the 16­
bit adder blocks are as follows:

GGGO = GG3 + PP3 GG2 + PP3 PP2 GG 1 + PP3 PP2 PP I GGO
GGG1 =GG7 + PP7 GG6 + PP7 PP6 GG5 + PP7 PP6 PP5 GG4
GGG2 = GGII + PPII OGIO + PPII PPIO GG9 + PPII PPIO PP9 G08
GGG3 = GG15 + PPl5 G014 + PPl5 PP14 G013 + PP15 PP14 PPl3 0012

The triple G (GGG) denotes the generate function at level three, and GGGi is the
generate function for the 16-bit adder block i that has a five-level circuit delay. We
derive the carry outputs for each 16-bit adder block as follows:
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CCC I = GGGO + PPPO CCO
CCC2 = GGGI + PPPI GGGO + PPPI PPPO CCO
CCC3 = GGG2 + PPP2 GGGI + PPP2 PPPI GGGO + PPP2 PPPI PPPO CCO
CCC4 = GGG3 + PPP3 GGG2 + PPP3 PPP2 GGGI + PPP3 PPP2 PPPI GGGO

+ PPP3 PPP2 PPP 1 PPPO CCO

We also have the following equations:

CCCI = C16
CCC2 = C32
CCC3 =C48
CCC4 = C64

Note that each of the above carry output implementations has a seven-level circuit
delay. The equation for C63, the bit before the MSB should intuitively resemble C15
or C3 as shown below.

C63 = G62 + P62 G61 + P62 P61 G60 + P62 P61 P60 CCC3

If we press the circuit delay per each gate down to 100 ps (10- 12 sec), the add cycle
can be done in one clock that is one nanosecond at one Ghz.

3.6.2.1 The Cin Input

It is important to understand that CO is the Cin (carry in) bit that plays an inge­
nious role in twos complement arithmetic. The Cin bit serves as the carry input sig­
nal to the adder at bit zero before an add operation starts. In practice, the Cin bit can
be set to zero, one, or the C (carry) flag generated from the previous adder operation
as described below:

1. Cin is zero for an add operation.
2. Cin is one for a subtract (sub) operation. A subtract operation is accom­

plished by adding the twos complement of the subtrahend to the minuend.
Thus, the minu-end is fed to one adder input, the ones complement of the
subtrahend is fed to the other adder input, and meanwhile the Cin bit is
turned on. In other words the twos complement is obtained by adding the
ones complement and one.

3. Cin is set as the C (carry) output flag generated from the previous adder
cycle. This design feature is used for implementing multiple precision arith­
metic oper-ations. Take integer add as an example. If the adder bus is eight
bits wide, we can add two 16-bit integers provided that the ADC (add with
carry) instruction is available. That is, we write software to go through the
eight-bit adder opera-tions twice. The first time we use an ADD instruction
with a Cin zero to add the lower eight bits. After the operation, we obtain
the low-order byte sum and its carry output (C8) is clocked into the carry
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output flag in the status register. The second time, we use the ADC instruc­
tion instead to compute the high-order byte sum as the Cin bit is set to be the
carry output flag generated from the previous eight-bit adder cycle.
Consequently, the adder generates two sum bytes in two different cycles to
provide the 16-bit result.

3.6.3 One-Bit Shifter

95

In some computers including the 8086, the logical and shift capabilities are built
into the adder so the unit becomes a ALU (arithmetic and logic unit). A logic func­
tion is performed by the ALU under opcode control. In addition, the shift operation
is also performed via the ALU. Specifically, a one-bit shifter can be placed in the
final stage to skew the adder output to the left or right by one bit. That is to say, the
ALU can perform one-bit shift operations under opcode control. It should be men­
tioned that an advanced shifter may be a separate unit that uses combinational logic
of gates to shift a number of bits in one clock. To illustrate the shift concept, a one­
bit shifter design that uses two-level AND - OR gates is described below.

3.6.3.1 Shift I.ogical Right

A shift operator is unary operator, and the operand lnay be in a register, or in
memory. That is, when an operand is fed to one input bus of the adder and zeroes
are fed to the other input bus, the adder output is same as the operand. For SHR (shift
logical right) one-bit operation, there is a control signal that tells the shifter what to
do. In consequence, the shifter skews the adder output to the right by one bit. Figure
3.7a shows a 16-bit operand before and after a one-bit SHR operation. As indicated
by the arrows, the bits are skewed to their immediate right, a zero flows into the sign,
and the LSB is shifted out into the carry bucket.

3.6.3.2 Shift Arithmetic Right

What does a one-bit SAR (shift arithmetic right) mean? For SHR, a zero flows
into the sign bit, but for SAR the sign bit remains unchanged. Figure 3.7b shows a
16-bit operand before and after a one-bit SAR operation. As indicated by the arrows,
the bits skew to their immediately right and the LSB is shifted out into C, but the sign
bit retains its original value. If N is a signed integer using twos complement nota­
tion, the shift arithmetic right N by one bit is equivalent to taking the square bracket
of N divided by two as shown below:

SAR N by 1 bit = [ N / 2 ]

Many one-bit SAR examples are given in Table 3.4 and their verifications at the bit
level are left as an exercise.
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Table 3.4  One-Bit Shift Arithmetic Right Examples

Notation                           Answer       

[ 5 / 2 ] 2
[ 11 / 2 ] 5
[ 1 / 2 ]                    0 {cleared}
[ -11 / 2 ]                  -6
[ -1 / 2 ] -1 {unchanged}
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1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

C

(c)

(b)

 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

C

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

C

0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

(a)

Figure 3.7 One-bit shift operations: (a) SHR, (b) SAR, and (c) SHL.
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3.6.3.3 Shift Logical Left

97

Figure 3.7c shows the 16-bit operand before and after a one-bit SHL (shift logi­
cal left). As indicated by the arrows, the bits skew one bit to their immediate left, a
zero is shifted into the LSB, and the sign bit is shifted out into C. After a one-bit left
shift, the signed integer is Inultiplied by two. However, if the sign bit changes after
the operation from zero to one, or vice versa, that indicates an overflow. In other
words, the result is no longer correct due to a programming error, which is also the
reason not to implement an opcode for SAL (shift arithmetic left).

The IV generates various control signals as described below:

NS: no shift
SHL: shift left
SHR: shift right, logical or arithmetic
ARI: arithmetic type

If the operand is 32 bits long, the logical equations for the shifter output are:

ShO = SO NS + S1 SHR
Shi = Si NS + Si-l SHL + Si+l SHR for i = 1,2, ... 30
Sh31 = S31 NS + S30 SHL + S31 ARI

where Shi is the shifter output at bit i, and Si is the adder sum bit i. The AND - OR gate
implementation for generating Shi is shown in Figure 3.8. For non-shift operations,
only no shift (NS) is one, so the adder sum bits are routed to the bus without skewing.
For shift left operations, only SHL can be one, so the adder sum bits are skewed I bit
to the left. For shift right operations, SHR is always one and the ARI bit tells whether
to retain the sign bit: one means yes, zero means no. This is a clever design, and its
explanation is left as an exercise. For generating ShO to Sh30, the sum bit is skewed to
its immediate left if SHR is one, and to its inunediate right if SHL is one. The sign bit
Sh31 is S31 if NS is one, retains S31 if ARI is one, and is S30 if SHL is 1.

3.6.4 Status Register

In a third generation computer, a status register (SR) was developed to record the
partial running environment of the current program in execution. The SR is also
known as the flags (F) register, or the program status word (PSW) register. After an
adder operation, the four condition bits constitute the CC (condition code) as
described in the following:

3.6.4.1 Carry Sit

The C (carry) flag bit in the SR (status register) serves a dual function after an
arithmetic operation. After an add operation it is a carry, but after a subtract opera­
tion it is a borrow. That is, after an add operation, the carry output generated from
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Si+l Si
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Si -1

SHL

NS

SHR

Shi

Figure 3.8 AND - OR gate implementation for generating the bit Shi.

the adder is stored in a flip-flop known as the carry bit or the carry bucket. If 32-bit
arithmetic is used, the carry output (C32) at bit position 31 is stored. On the other
hand, if eight-bit arithmetic is used, the carry output (C8) at bit position seven is
stored. Let us try two eight-bit examples. The first example is to add 4 to 3. After
the operation, the carry bit is set to zero meaning no carry output as shown below:

00000011
+ 00000100

00000111

The second example is to add zero to any source operand. Obviously, after the oper­
ation the carry output is zero, as is the C flag.

After a subtract operation, if no carry output is generated from the adder, the C
flag in the status register is set to one. Thus, the complement of the carry output from
the adder is stored in the C flag, and zero means no borrow. Again, we try two eight­
bit examples. First, after subtracting 4 from 3, the carry flag is set to one meaning a
borrow, because after adding the twos complement of the subtrahend to the minuend,
no carry output is generated, as shown below:
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1
00000011

+ 11111011

{Cin bit}
{+3}
{ones complement of +4 }

11111111 {with no carry output}

The sopd1 (+3) is one adder input, the ones complement of sopd2 (+4) is the other
input, and the Cin bit is one. Perhaps the borrow bit makes more sense visually if we
perform the subtract operation by hand as shown below:

borrow,
1 0000 0011

00000100

11111111

The second example is to subtract zero from any operand. Because the ones
complement of zero Ineans all ones and the Cin bit is one, a carry output is definitely
generated by the adder. Consequently, the carry flag is set to zero, meaning no bor­
row.

Furthermore, the carry flag is set after a shift left or a shift right operation, so we
summarize as follows:

sub:

CASE operation of
add: IF a carry output is generated,

THEN C ~ 1; {carry}
ELSE C ~ 0; ENDIF;
IF no carry is generated,
THEN C ~ I; {borrow}
ELSE C ~ 0; ENDIF;

C ~ MSB;
C ~ LSB;

shift left:
shift right:
ENDCASE;

3.6.4.2 Sign Sit

After an operation through the adder, the sign bit after the shifter (SH31) is
clocked into this flip-flop.

3.6.4.3 Zero Sit

After performing an arithmetic or logical operation through the adder, a decoder is
used to detect the output of the shifter. If all the bits are zeroes, the Z flag is set to one.
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3.6.4.4 Overflow Sit
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After an adder operation or a shift left operation, if the result is not correct, the
overflow bit is set. For arithmetic operations, an overflow occurs when the two
inputs to the adder have the same sign (+ or -), but the sign of the output changes.
There are four possibile triggers of an overflow, as listed in Table 3.5.

Table 3.5 Overflow Conditions after an Adder Crcle

Input A
( + )
( + )
( -)
( - )

Operator

+

+

Input B
( + )
( - )
( - )
( + )

Output
( - )
( . )

( + ~
(+

The adder has two inputs, A and B, and the sign of a 32-bit input is enclosed in
a pair of parentheses. When adding two positive integers, if the sign of output
changes to negative, it is an overflow condition indicating that the result is too large
for the machine to handle. In other words, in twos complement arithmetic the result
can not exceed the largest positive integer (231 - 1). This condition may also occur if
we subtract a negative integer from a positive integer. When adding two negative
integers, if the sign of output changes to positive, it is an overflow. That means the
magnitude of the negative result is larger than the magnitude of the most negative
integer (-231 ). This same condition may also occur if we subtract a positive integer
from a negative integer.

Detecting an overflow condition remains a challenge. Intuitively, overflow
occurs if both inputs to the adder have the same sign, but output has a different sign.
The inputs and the output are specified in Table 3.6.

Table 3.6 Truth Table of Overflow after an Adder Crcle
A31 831 831 OA
o 0 0 0
o 0 1 1
o 1 0 0
o 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

We see that A31 is bit 31 of the first input, B31 is bit 31 of the second input, 53] is
the sign bit of output, and OA means overflow after add. Note that it is impossible
to generate an overflow if the two inputs have opposite signs. Therefore, we have the
logic equation:

OA = A31 B31 \S31 + \A31 \B31 S31
= C32 \C31 + \C32 C31

The simplification from the first line to the second line is left as an exercise. An over-

© 2001 by CRC Press LLC



BASIC COMPUTER PRINCIPLES 101

flow condition occurs whenever the carry input to the MSB is different from its carry
output.

A shift left (SHL) operation is equivalent to multiplying the integer by two. After
the operation, if the sign bit changes, it is an overflow. If the logic variable OS is
used here to stand for overflow after shift, we obtain its equation as shown below.

OS=\A31 S31 SHL+A31 \S31 SHL

Note that a shift right operation does not generate an overflow. After merging the
two equations, the overflow (0) bit equation is shown below:

o =OA+OS
= C32 \C31 + \C32 C31 + \A31 S31 SHL +A31 \S31 SHL

3.7 ADDRESSES IN AN INSTRUCTION

As far as programming is concerned, all computers can be grouped into two
classes: register machines or stack machines. In a register machine, one, two, or
three addresses are coded in an add instruction, but in a stack machine, the add
instruction has no addresses at all. For a binary operation we need two source
operandi and after the operation we need a destination operand to store the result. If
the number of addresses in an add instruction is less than three, one or more operandi
are implied, that is, the number of addresses is reduced because the CPU knows
exactly where to find the operand. How many addresses should be coded in an
instruction? In early computers, the add instruction used only one memory address.
In modem computers, the add instruction has two or three addresses. In general, the
address in an instruction can be a memory address or a register address.

3.7.1 Three-Address Machine

A three-address machine means that there are three addresses coded in a binary
arithmetic or logical instruction. For example, we show the assembly language state­
ment of an add instruction below:

add dopd,sopdl,sopd2 ;M[dopd]~ M[sopdll+M[sopd2]

where sopd 1 is the memory address of the first source operand, sopd2 the memory
address of the second source operand, and dopd the memory address of the destina­
tion operand. The RTL in the comment block says that the CPU fetches sopdl and
sopd2, performs the integer add operation, and stores the result in dopd. The order
of addresses in an AL statement is logical because the physical order in an instruc­
tion may be different from machine to machine. For the add operation, the positions
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mode

address

of the two source operandi are irrelevant, but for the sub (subtract), operation the
minus sign in the middle means sopd2 is subtracted from sopdl. Such a design has
the advantage that after the operation, the two source operandi remain unchanged.
The format of a three-address instruction on VAX is shown in Figure 3.9a. The VAX
machine supports either two addresses or three addresses in an arithmetic instruction.
In a three-address instruction, the one-byte opcode is followed by three operand
fields. Each operand field may consist of up to five bytes - an eight-bit addressing
mode and a 32-bit long memory address, as shown in Figure 3.9b.

The addressing mode serves as an eop which tells the IV where and how to find

(a )

D__J.

t t2-bi t
8-bit
addressing

(b)

I 011 110 I j k

t t-bit
6-bit opcodeReg;ster address
Integer add

(c)

Figure 3.9 Three-address instructions: (a) the 21-byte instruction on VAX, (b) the
a-bit addressing mode with a 32-bit memory address, and (c) the 15-bit
instruction on CDC6600.

the operand. The total instruction length is 16 bytes as computed below:

1 + 5 * 3 = 16

An instruction for extended divide specifies two destination addresses: one for
the quotient and another for the remainder. Thus, this instruction is 21 (1 + 5 * 4)
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bytes long which has four long menlory addresses contained in it. If an instruction
has four memory addresses, its length is increased and so is the instruction fetch
time. It also takes longer for the CPU to fetch many operandi in Inemory. It is rea­
sonable to suggest that no more than two memory addresses should exist in an
instruction. One modern proposal is to specify one memory address in a load or store
instruction so that an operand can be moved to or from memory. After the operand
is loaded into a register, the CPU can perform register-to-register operations. 16,48

After the operation, the result is a register that can be stored in memory by a store
instruction. This idea was first pioneered on the CDC6600, a three-address machine.
On such a machine, three three-bit register addresses are coded in the instruction, as
shown in Figure 3.9c. The add instruction is 15 bits long as conlputed below:

6 + (3 * 3) =15 bits

where the opcode 36 in octal means integer add; i, j, and k are three-bit register
addresses ranging from 0 to 7. The following assembly statement is creative in that
i =5, j =2, and k =3.

IX5 X2 + X3 ;X[5] ~ X[2] + X[3] {integer add}

where I specifies integer data type, X denotes the 60-bit operand register set, and the
plus sign in the operand field means add. For any i, j, and k, we can generalize the
integer add operations as follows:

Xli] ..- XU] + X[k] for i = 0, 1, ... , 7
j =0, 1, ,7
k =0, 1, ,7

3.7.2 Two-Address Machine

A two-address machine means that only two addresses are specified in a binary
operation instruction, arithmetic or logical. An add instruction in AL (assembly lan­
guage) is shown below.

add sopdl, sopd2 ;M[sopdl] ...- M[sopdl] + M[sopd2]

The symbol sopdl is the memory address of the first source operand and sopd2 is the
memory address of second source operand. This logical ordering is based on an IBM
mainframe or Pentium. The first source operand is implied as the destination
operand so the original content in sopdl will be destroyed after the operation. This
design has an advantage that the instruction length is shorter, because the number of
addresses is reduced from three to two. The mainframes usually allow two full mem­
ory addresses coded in an instruction.26 The Pentium processor, however, allows one
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full memory address at most in an instruction in order to reduce the instruction
length.29

3.7.3 One-Address Machine

All early computers were one-address machines so as to reduce cost. On such a
machine, the acc (accumulator) is implied as the first source operand as well as the
destination operand. Since two addresses are implied, only one address is coded in
an add instruction. It should be mentioned that the address is a memory address. The
AL statement for such an add instruction with one address is shown below:

add sopd2 ;acc ..- acc + M[sopd2]

In the statement, acc is the accumulator and sopd2 represents the address of the sec­
ond source operand in memory. After the operation, the acc contains the result.

3.7.4 Zero-Address Machine

A stack machine is a zero-address machine because there are no addresses coded
in an arithmetic or logical instruction. It uses a stack in lieu of working registers.
The stack resembles one used in a restaurant, as depicted in Figure 3.1Oa. The plate
on top is the top of the stack (TOS) that changes after each push or pop. Push stack
means that a new plate is placed on top. The push instruction has an address field,
so the new plate can be brought on top. Pop stack means that a plate is taken off the
stack. The second plate below the previous top emerges as the TOS after a pop. In
practice, a stack is simulated in memory and each memory word is a stack element
that represents a plate. The stack is a last-in-first-out (LIFO) device. Some stack
machine instructions are shown below:

push #17
push #18
add

pop result

;TOS is 0011 in hex
;TOS is 0012 in hex
;pop stack into sopd2
;pop stack into sopd1
;perform (sopdl + sopd2)
;push result onto stack
;pop TOS into result

where sopd 1 means the first source operand and sopd2 means the second source
operand. Assume that the stack element is a memory word of 16 bits. After execut­
ing the first push, the TOS contains 0011 bits in hex or 17 in decimal, and the # sign
means that the number itself is pushed onto the stack, as shown in Figure 3.1 Db.
After executing the second push, the TOS contains 0012 bits in hex (18 in decimal),
as shown in Figure 3.1 Oc. The execution of the add instruction is done in four steps.
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First, pop 18 off the stack as sopd2. Second, pop 17 off the stack as sopd 1. Third,
perform the add operation (sopdl + sopd2) via the adder. Finally, push the result
onto the stack, as shown in Figure 3.10d. Note that the TOS now contains 0023 bits
in hex, which is 35 in decimal. The last pop instruction is executed in two steps.
First, it pops 0023 off the stack in one memory cycle as the destination operand.
Second, it stores the operand in a memory location named result in another menlory
cycle. After executing the four instructions, the stack goes back to the previous state
as shown in Figure 3.1 De. Because there is no address needed in an arithmetic or log­
ical instruction, the stack machine code is short. Its design principles are discussed
in the final chapter.

~-~
_~ -L-_

(a)

TOS
0012

TOS

High
Address

TOS

0011

( b)

0023

(d)

TOS

0011

(c)

(e)

Figure 3.10 Stack operations: (a) stack in a restaurant, (b) push first source operand,
(c) push second source operand, (d) add operation, and (e) pop stack into
destination.

3.8 HARDWARE EXECUTION

A computer program can generate computation results using one of two meth­
ods: hardware execution, or software interpretation. In regard to hardware execution
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we have two approaches: hardwired logic and microprogrammed logic. It is also
possible to combine the two approaches into a hybrid approach. To differentiate
between hardware execution and software interpretation, we have the following def­
initions.

1. Hardware execution means that the instruction is loaded into the IR at a fixed
location in the hardware that is not subject to change.

2. Software interpretation means that the instruction is loaded into a memory
word named IR whose address can be changed per each run.

Hardware execution is much faster than software interpretation. Furthermore, hard­
ware execution by hardwired logic is faster than execution by microprogrammed
logic. The former uses logic gates and flip-flops to interpret an instruction in the IR,
and the latter uses a microcode routine in ROM (read only memory) to interpret the
instruction in the IR. Commonly, we use the symbol fJ for micro, which is 10-6, so
JJprogram means microprogram or microcode.

3.8.1 Hardwired Logic

Hardwired logic implies gates and flip-flops not including ROM. The instruc­
tion opcode in the IR is decoded by AND gates to generate a sequence of timing con­
trol signals. In Figure 3.11a, the memory data bus is 16 bits wide so it takes one
memory cycle to obtain a 16-bit instruction in the IR. The slash (/) indicates a bus,
16 specifies the number of wires or bus width, and the Enable IR In (Ell) signal may
be a clock input to IR. If the lower 12-bit field in the IR is a memory address, it is
placed on the address bus whenever the Enable IR Out (EIO) signal is on. Figure
3.11 b depicts a silnplified block diagram without showing the enable signals and bus
width.

IR

IR

12E1o--r-r-- Memory

----I~I

EllhMemOrY

( a )

address bus

data bus

L ~----:7~1---- Memo r y bus

(b)

Figure 3.11 Instruction register and memory bus: (a) to address bus and from data bus,
and (b) simplified diagram.
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The hardware steps to execute the one-address add instruction are as follows.
The control logic in the IV needs to generate three timing signals for controlling the
operations. The tl signal in Figure 3.12a enables the lower 12 bits in IR on the
address bus, and at the same time a memory read request is issued. The t2 signal in
Figure 3.12b fetches the operand from the data bus into a temp register. The t3 sig­
nal in Figure 3.12c enables the acc to the input bus of the adder, the temp register to
the other input bus, and its trailing edge clocks the adder output into the acc.

The hardwired logic approach is fast, but it lacks flexibility. If there is a design
error, we need to make hardware or wiring changes on the chip. As an alternative,
we can place a group of microinstructions (microcode) in ROM along with a mini­
mal set of hardwired logic to support the execution of microcode. It is still neces­
sary to debug a smaller set of hardwired logic that supports the microcode execution.
Any errors found in the ROM code can be fixed without changing wiring or circuit.

Voltage..
time

-l---------L---------------------.

( a )

Voltage

time

( b )

Voltage

time

( c )

Figure 3.12 Three timing control signals: (a) t1, (b) t2, and (c) t3.
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3.8.2 Microprogrammed Logic
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Microprogrammed logic execution means that a sequence of microinstructions in
ROM is executed to interpret a target instruction in the IR. The interpreter is a
microcode program. In comparison, the speed of microcode execution is slower than
hardwired logic, but it provides more flexibility. The ROM, also called control store,
resides in the instruction unit (IV). The execution of microcode in ROM provides
control timing signals to interpret and execute a target instruction. The interpreter in
ROM along with its supporting hardwired logic is referred to as the microcode
engine. Such a design needs a different set of instruction register and program
counter for executing the microcode.

It is easy to interpret the more complex target instructions using micropro­
grammed logic. As a simple example, the multiply instruction may be decomposed
into many shift and add operations. The algorithlTI for a sequential microcode engine
to interpret such an instruction is described later in Chapter 6. At the present time,
we introduce the microcode concept that each target instruction is fetched, inter­
preted, and executed by many microinstructions stored in ROM. Remember that the
CPU still needs hardwired logic to obtain, interpret, and execute the microcode in
ROM. The speed using microcode logic is proportional to the amount of hardwired
logic employed in the engine: the more hardware, the higher the speed.

3.8.3 Hybrid Logic

The hybrid logic approach is derived from microprogrammed logic mainly
because of its flexibility.66. The instruction fetch stage is hardwired. The decode unit
or stage uses the opcode of a target instruction to map it into one or many microin­
structions fetched from a ROM. For example, an integer add or subtract instruction
between two CPU registers is mapped into one microinstruction. A complex instruc­
tion, e.g., divide, sine, or cosine, is mapped into several microinstructions defined as
a microorder. The decode unit stores the mapped micro-order in a microcode pool
waiting for its turn to execute. When all the resources required by the execution unit
are available, the micro order is dispatched from the microcode pool to the execution
unit. The target instruction fetch job can be done by the memory bus control unit, so
a stream of instructions flows into an instruction queue or pipe on a continuous basis.
The key i.dea is that a high-speed execution unit consists of many functional units that
can operate at the same time. The hybrid logic approach is attractive in that it gains
both speed and flexibility.

3.9 SOFTWARE INTERPRETATION

Software interpretation is another option for a user to submit an executable pro­
gram to be interpreted by another program running on a host computer. If we hide
the host machine in a dark room, computational results are obtained such that the
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user can not differentiate whether the program is interpreted or executed. The sub­
mitted program is composed of target machine code, but it is treated as data to the
interpreter on the host. The interpreter instructions execute on the host in two phases.
First, the target nlachine instruction is placed in a memory location called the IR.
Next, the opeode is interpreted in the IR and results are generated.

The interpreter is often written in assembly code as a computer simulator that
reads each target instruction from memory in the IR, interprets, and executes. In
assembly code, the IR is a symbolic name placed in column one before a define stor­
age statement to mean an address definition. Because the IR is a memory variable,
its address may change for each run. In fact, all the working registers of the target
machine are simulated as Inemory variables whose addresses may change for each
run.

3.9.1 Host Machine

The computer hidden in the black box is the host machine on which the software
interpretation program executes. Computational results are generated just like those
from hardware executions. The raw speed of the host machine determines how much
time the interpreter requires to complete its job. If the host machine runs a multi­
programming as, multiple users can execute on the host concurrently. The word
concurrently has a different connotation than the word simultaneously. The former
means that multiple users can take turns executing on one CPU, so that they can all
finish within a specific time interval. The latter means that multiple users can exe­
cute at the same time, which is only possible if we have multiple CPUs in the sys­
tem. That is, each user has his own processor to fetch an instruction at the same
instant, interpret, and execute. On a single CPU, the multiprogramming OS acts like
a traffic policeman who decides which program will execute next and which program
will take a break. Consequently, multiple user programs can execute during the same
interval phenomenon known as multiprogramming.

Running under a multiprogramming as, the interpreter is loaded into a memory
partition allocated by the OS. In other words, the loading address of the interpreter
is determined by the OS. Since the IR is a memory variable in the partition, its
address may also change for each run. The host machine executes the interpreter that
further interprets the target machine code.

3.9.2 Target Machine

The target machine, after being built can execute the users' program directly by
hardwired logic or microprogramming logic. However, if the target machine is not
available, we can instruct the interpreter to interpret its instruction set as long as we
understand the target machine spec thoroughly. The interpreter program is a tool
with which we can develop an OS for the target machine. First we need other pro­
gramming tools, such as an editor, an assembler, or a compiler. If the host computer
is different from the target computer, the assembler is a cross assembler that runs on
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the host but generates code for a different target machine. Likewise, the compiler is
a cross compiler.

Note that a computer simulator can also be used as a teaching tool because stu­
dents are not allowed to modify an existing as running on a university computer.
Thus, under a simulator on the host that may be the target machine, the operating sys­
tem can be developed by using the system software tools. As interpreted by the sim­
ulator, the new as can be fully debugged.

3.10 SUMMARY POINTS

1. A target machine instruction must be stored in memory before its execution
can begin.

2. Instructions and data are alike in a computer.

3. A simple CPU has two major hardware units: the IV and the EU.
4. The IU also called the CU, contains the logic to obtain an instruction from

memory into IR, interpret the opcode, and generate various control timing
signals for executing the instruction.

S. The EU has a set of working registers, and an ALU is where the operand exe­
cution takes place.

6. A working register provides the temporary storage designed as an ordered
set of flip-flops. The adder in the EU is a crucial hardware component, so
the faster the better.

7. After executing an instruction, the IV increases JAR by the length of the
instruction in bytes.

8. If the instruction length is fixed, the JAR is a counter.

9. The number of wires on an address bus determines the size of memory or
physical addressing space.

10. A wider data bus can transfer many bits in parallel so the future trend is to
have 64 bits or more on the data bus.

11. The internal computer operations can be described by RTL.

12. The memory contains two registers: MAR and MDR. Both are buffers that
interface with the internal circuitry in the memory.

13. The execution of an instruction is divided into two phases: instruction fetch
and operand execution.

14. If no memory operand is specified, operand execution may begin right after
instruction fetch.

15. The instruction is executed by an infinite hardware loop that can halt by exe­
cuting a specially designed instruction.

16. Instructions are executed in sequence unless there is a branch instruction.
17. A branch instruction changes the JAR so the next instruction is fetched from

a new address.
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No Shift
Shift Left
Shift Right
Arithmetic Type

18. When the CPU executes a branch instruction, the new branch address spec­
ified in the code is loaded into the IAR.

19. A conditional branch instruction tests a condition first, and if the result is
true, it branches.

20. After a program terminates, the as resumes control to select and execute the
next program.

21. In a register machine, the add instruction may contain three addresses, two
addresses, or one address. In a stack machine, the add instruction contains
no address.

22. Hardware execution means that the IR is fixed in hardware design while
software interpretation means that the IR is in memory. Regardless of the
approach, each instruction is obtained, interpreted, and executed.

23. There are three hardware execution approaches: hardwired logic, micropro­
grammed logic, and hybrid logic.

24. In computer simulations, the host machine and the target machine may be
the same.

PROBLEMS

1. Explain the functions of an instruction register and an instruction address
register.

2. If all the instructions are four bytes long, how can we design the JAR as a
binary counter? Justify your answer.

3. Explain the functions of MAR and MDR in memory. Are they buffers?
4. Given a one-address add instruction, use RTL to describe:

a. the instruction fetch phase
b. the operand execution phase

5. Given a 20-bit address bus, what is the physical addressing space of memory?

6. Design a four-bit look-ahead binary adder and specify the logical equations
for its carry output.

7. By expanding the carry look-ahead concept to a 16-bit adder ideal for a 16­
bit PC, what should the equations be for C15 and C16?

8. By expanding the carry look-ahead concept to a 64-bit adder, what should
the equations be for C63 and C64?

9. Explain the carry input (Cin) signal at the LSB of an adder?
10. A microinstruction may contain a shift control field that has four enable bits

defined below:

NS =
SHL =
SHR =
ARI =
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For the NS and SHL signals, if any of them is one, the other three bits in the field
must all be zeroes.  For shift logical right, the SHR bit is on but the ARI bit is off.
For shift arithmetic right, both SHR and ARI are on.  We may use two separate enable
signals, one for shift logical right enable (SLRE) and one for shift arithmetic right
enable (SARE).  Interestingly, they can be encoded into ARI and SHR, and the logic
is simpler.  The truth table is shown below:

Input  Output

ARI SHR SLRE SARE     
0 0        0       0

0    1        1      0

1     0        —       —
1     1        0       1

The dash means a don’t care because both ARI and SHR must be on at the same time.
If the operand has 32 bits, we obtain the logical equations for the shifter output as
follows:

Sh0 = S0 NS + S1 (SLRE + SARE)
Shi = Si NS + Si-1 SHL + Si+1 (SLRE + SARE)  for i = 1, 2, ... 30
Sh31 = S31 NS + S30 SHL + S31 SARE

where Shi is the shifter output at bit i, and Si is the adder sum bit i.  Use the don’t
cares and prove that the following equations are correct.

a.  SARE = ARI
b.  (SARE + SLRE) = SHR

Therefore, the final logic equations are chosen as follows:

Sh0 = S0 NS + S1 SHR
Shi = Si NS + Si-1 SHL + Si+1 SHR            for i = 1, 2, ... 30
Sh31 = S31 NS + S30 SHL + S31 ARI

11. What are the logical equations of the one-bit shifter output after a 32-bit
binary adder?

12. The overflow condition after add (OA) is true as shown below:

OA = \A31 \B31 S31 + A31 B31 \S31
= \C32 C31 + C32 \C31

a. From the condensed five-variable truth table, we see that either answer is
correct by intuitive inspection.  Derive the second line from the first by
means of the dashes (don’t care).
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b. Using 4'-bit arithmetic, verify that
i. 0 + (-8) = -8
ii. 0 - (-8) generates overflow. {Remember that Cin = I.}

13. Explain the functions of the carry (C), sign (S), and zero (Z) flags in SR.
14. Why is an overflow condition not generated after a shift right operation,

arithmetic or logical?
15. What is the key difference between hardware execution and software inter­

pretation of a target instruction?
16. Name the three design approaches to execute a target instruction by hard­

ware. Which approach do you like best?
17. Describe the execution sequence of an add instruction in a stack machine.
18. Which machine architecture do you prefer, a two-address machine or a

three-address machine? Justify your answer.
.19. Why can the adder width decide the performance of a computer?
20. What is the reason to write a computer simulator for a target machine that is

also the host machine?
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CHAPTER 4

Assembly Language Principles

4.1 INTRODUCTION

An assembler translates a source program from AL (assembly language) to object
code. Because a mop (machine opcode) statement is always translated into one
instruction, AL is referred to as machine language. The AL is used as a tool to under­
stand instruction executions at the functional level. In practice, AL is used to write
real-time applications for its speed and efficiency. In some cases, an application pro­
gram consists of two parts: one in high-level language and one in assembly code.
After translation, the two object modules are linked into one executable module. In a
PC, the BIOS (basic I/O system) and the boot routine are all written in assembly code,
and their executable routines are placed in ROM. It is also quite common for the OS
to be written in a high-level language with assembly code inserted, which is also
called in-line assembly. For debugging convenience, a C compiler often translates the
source statements into assembly code, then into object code. This chapter introduces
the Pentium processor, its instruction set, and the basic addressing modes. One objec­
tive of this chapter is to develop some basic AL coding skills.

4.2 PENTIUM PROCESSOR

The Pentium processor, also called the IA-32 (Intel architecture-32 bits) supports
two-address instructions in general. As the processor is backward compatible with
the previous generations of processors, the basic ISA (instruction set architecture)
remains the same for the 8086, 386, and 486 families. 28 The 8086 is a 16-bit
machine, while the rest are 32-bit machines as determined by adder size. The 16-bit
applications cover editors, word processors, stock market quotations, WWW (World
Wide Web) browsing, e-mail, and games. For such applications, a 16-bit adder in the
CPU would be adequate. For 32-bit applications, we need a 32-bit adder that can
perform computations at a higher speed.

115
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Regarding operand address, each instruction can specify at most one address
directly pointing to the operand in Inemory. A 16-bit address can access a 64 KB
memory segment but a 32-bit address can access a 4 GB memory segment. The
memory address in an instruction is a relative offset with respect to the segment.
Cleverly, a 16-bit segment base register is used to map a program address, i.e., off­
set into a linear memory address of 20 bits or 32 bits. Granted that a large memory
can be used to store large arrays. However, as developing software skills is con­
cerned, a memory of I MB is more than adequate.

4.2.1 Register Set

The IR resides inside an instruction queue and is left justified, as shown in Figure
4.1 a. The IV fetches the instruction stream continuously from memory into the
queue. The Pentium processor supports four accumulators, known as data registers.
The register size is 16 bits for 8086 but 32 bits for Pentium. On Pentium, the 32-bit
data registers are named EAX, EBX, ECX and EDX, where E denotes extended. As
the low order 16-bit word of a 32-bit data register is called AX, BX, CX, or DX, the
Pentium can execute 8086 instructions as well. One unique feature is that the low
order or high order byte of each low order 16-bit data register can be accessed by an
instruction. For example, the 16-bit AX consists of two bytes: AH (AX high) and AL
(AX low). Either byte, AH or AL, can be accessed by an instruction.

In programming, some of the registers are used to store addresses and they are
referred to as address registers. The number of bits in an address register determines
the program addressing space. On an 8086, four 16-bit address registers are named
SI (source index), OJ (destination index), SP (stack pointer), and BP (base pointer)
as shown in Figure 4.1c. On Pentium, the address registers are extended to 32 bits,
namely ESJ, EDI, ESP, and EBP. They are mainly used as address registers, or index
registers. The indexing scheme is innovative in that a hardware register is added to
the program address to make an EA (effective address). Note that one of the four
accumulators, BX or EBX, can be specified as an index register. The mnemonic B
stands for base, a variation of indexing.

On an 8086, there are four segment registers named CS (code segment), OS (data
segment), SS (stack segment), and ES (extra segment). The segment register con­
cept is intricate in that the segment register is used to map a program address into a
physical memory address as explained later. Normally, CS points to the code seg­
ment, DS points to the data segment, SS points to the stack segment, and ES also
points to a data segment. The Pentium processor adds FS (F segment) and GS (G
segment) for data segments so that the total is six as shown in Figure 4.1 d.

Figure 4.1e shows an IP (instruction pointer), EIP (extended IP), F (flags), and
EF (extended F). Again, the extension names are for Pentium processors. The IP is
a program counter that contains a 16-bit offset pointing to the instruction in the code
segment. The flags register contains status information, Le., a running environment,
for the current program.
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Instruction regiS:~ ]
(a)

32-bit 16-bit
31 15 7 0 Reg. Reg.

AH AL

BH BL

CH CL

DH OL

EAX AX

EBX BX

ECX CX

EOX OX
(b)

ESI SI

EOI 01

ESP SP

EBP BP (c)

CS

OS

SS

ES

FS

GS

~ J EIP IP

EF F

Figure 4.1 Register set: (a) instruction queue, (b) data registers, (c) address registers,
(d) segment registers, and (e) instruction pointer and flags register.

4.2.2 Segment Concept

(d)

(e)

The Pentium is a segment based machine. A segment is a contiguous block of
memory that is logically intact. A segment may contain instructions, data, or stack,
but a composite segment may contain a combination of those. The Pentium proces-
sor can operate in any of the modes listed below:
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1. Virtual 8086 mode
2. IA-32 real mode
3. IA-32 protected mode

COMPUTER ARCHITECTURE

The Virtual 8086 mode really means IA-16 real mode because the data register is 16
bits and the offset, Le., program address, is 16 bits. Thus, each segment size is lim­
ited to 64 KB. The IA-32 real mode means that the data register is 32 bits but the
offset is still 16 bits so the segment size is 64 KB. The IA-32 protected mode means
three things. First, the data register is extended to 32 bits. Second, the offset is
extended to 32 bits to access a segment of 4 GB. Third, the CPU uses tables in mem­
ory to map a 32-bit program address into a memory address.

4.2.2.1 Real Address Computation

When the processor operates in IA-16 or IA-32 real mode, the segment register
contains a base address pointing to the segment. The base address in a segment reg­
ister is a 16-bit paragraph number, and each paragraph is a block of 16 bytes.
Therefore, the base address can be visualized as a 20-bit linear byte address with four
trailing zeroes implied. Before accessing an operand in memory, its real memory
address, i.e. physical memory address, is computed as the sum of the offset and the
base address after being shifted to the left by four bits. Mathematically, the offset is
added to the paragraph number multiplied by 16. In other words, the lower four bits
in the offset remain unchanged in the final 20-bit linear address. This extra add cycle
is performed at run time so a total of 1 MB of physical memory can be accessed by
an instruction. Which segment register should be used to generate the 20-bit linear
address? The default rule is specified in Table 4.1.

Table 4.1 Default Rule to Select a Segment Register

Type of Segment
Reference Register

Instruction CS
Stack SS

Local Data DS

Destination ES
(Strings)

Default Selection Rules

All instruction fetches.
All stack pushes and pops.
All memory references using
BP as the base register.
All operand references except
stack and string destination.
Destination reference of all
string operations.

When fetching an instruction, the CS and IP pair is used to compute the physical
memory address. The symbol CS:IP represents a 20-bit linear address. The colon
(:) means that the IP is added to (CS * 16) at run time, so the adder output is a 20-bit
linear memory address. For instruction retrieval, the default base is in the CS and the
offset is in the IP.
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In Figure 4.2a, the CS contains 13C6 and the IP contains 0100, so the 20-bit lin­
ear address is 13060. Note that the paragraph number in the CS is appended with
four implied zeroes. As shown in Figure4.2b, the lower four bits in the offset do not
go through the adder, therefore, the adder is 16 bits. We show the arithnletic in hex
on the left and its binary equivalent on the right. We conclude that the offset in an
instruction is a logical or virtual address as seen by the programmer. At run time, this
logical address is mapped into a physical address.

For data operand retrieval, the instruction contains the 16-bit offset and the OS
contains a base address in paragraphs. The 20-bit linear memory address is com­
puted as the sum of the offset and OS after being shifted four bits to the left. That is,
the DS contains a 20-bit base address in bytes with four trailing zeroes implied. In
other words, the OS points to the first byte in a segment. The 16-bit offset is a rela­
tive displacement with respect to to the beginning of a segment. It is possible to have
multiple data segments in a program because the PAS (physical addressing space) is
1 MB.

(a)

,..----.,.---I.~I------------------i

CS I 13C6

IP
'-----'

13060

(b) 13C60

+) 0100

13060 (hex)

0001 0011 1100 0110 0000
0000 000 1 0000 0000

0001 0011 1101 0110 0000 (binary)

Figure 4.2 Instruction retrieval: (a) code segment register and instruction pointer and
(b) 20-bit linear address computation.

A segment register and offset pair must be used to access an operand in memory.
The operand can be instruction, data, or stack. An instruction may contain a field
known as an addressing mode that tells the CPU how to find the operand. Indexing
is an addressing mode that tells the CPU to compute the EA (effective address) as the
sum of an offset and the content of a hardware register. After indexing, the CPU still
needs to add the base in a segment register to the EA to form the 20-bit linear mem­
ory address. For data operand retrieval, the default base is OS as long as SI, DJ, or
BX is specified as the index register. However, remember this exception. If BP (base
pointer) is specified as the index register, the default segment base is SSe This is a
clever design so that an operand in the lniddle of the stack can be accessed.
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Just like other computers, the stack in memory grows from high address to low
address during a push operation. Whenever a push or pop instruction is executed, SS
serves as the segment register and SP (stack pointer) contains an offset pointing to
the TOS (top of the stack). As we view the memory, the stack is upside down and
the address of the TOS is represented by SS:SP, which represents a 20-bit linear
address of (SS * 16 + SP).

In a string operation, the source operand reference is just like any other operand,
so an offset is added to the base in DS. However, the destination reference coded in
an instruction uses the ES segment register as the default for the sake of convenience.
The key concepts are summarized below:

1. To fetch an instruction, CS is always the base.
2. To access the TOS, SS is always the base for stack instructions. To access

an operand in memory using BP as the index register, SS is the default base.
3. To access an operand in memory with SI, 01, or BX as the index register, OS

is the base.
4. For string operations, the source operand uses OS as the base, but the desti­

nation operand reference uses ES as the base.

5. To access an operand, source, or destination, if a one byte prefix is placed in
the front as a segment override, the prefix tells the CPU which segment reg­
ister is the base.

In real mode, the PAS is 1 MB but the operand size can be 16 or 32 bits. Note that
one or more segments may be overlapped in memory. As a special case, Figure 4.3
shows that all four segment registers contain the same base address.

CS I 13C6

OS I 13C6

5S I 13C6

ES I 13C6

L _
Figure 4.3 All the segment registers contain the same base address.
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4.3 ASSEMBLER LANGUAGE STATEMENT FORMAT

121

An assembly language program consists of many statements, each of which is a
line or string ofASCII characters divided into four fields as shown in Figure 4.4. The
language uses a free format so one or more spaces can be used to separate two fields
and there is no fixed boundary between two fields. A space line may be inserted
between statements for the purpose of clarification. The four fields, address, opcode,
operand, and comment, constitute a message that tells the assembler what to do. The
AL statement is case insensitive.

Address Ope ode Operand Comment

Figure 4.4 Assembly language statement format.

The first field may contain a synlbol as an address definition. The symbol, if
existent, represents the name of a memory address (location) where code or data bits
are stored. Thus, the terms symbol, symbolic name, and symbolic address are all
synonymous. Next is the op field: mop (machine op), pop (pseudo op), or macro call.
A mop is translated into an instruction, a pseudo op is not, and a macro call is usu­
ally expanded into many statements defined as a macro body. A pseudo op is referred
to as an assembler directive because it passes information to the assembler. A pseudo
op does not generate code except define constant or define storage. A define con­
stant code generates data in memory with a specific bit pattern, while a define stor­
age code merely reserves a memory block with whatever bits in it. The term con­
stant is similar to a Inathematical constant except in assembly programming the
defined constant can be changed by instructions in a program at run time.

In a mop statement, the operand field specifies how to locate the operand. For
define constant, the operand field specifies the bit pattern. There may be zero, one,
or more operandi separated by commas as the delimiter. The fourth field is comment
which is optional. Each comment begins with a semicolon (;), and may start in col­
umn one as a separate line.

4.3.1 Symbolic Address

There are two symbolic address types: relocatable and absolute. An absolute
symbol is translated into a binary number in the address field of an instruction by the
assembler. This is an absolute address that requires no further modifications. In con­
trast, a relocatable symbol is translated into the code as an address that is subject to
further changes during linking and loading. There is a big difference between a sym­
bol definition and a symbol reference. The former means that a symbol regardless
of its address type, must be defined before the opcode field in a statement. The lat­
ter means that the defined symbol may be referenced in the operand field of a state­
ment before or after its defini tion.
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4.3.1.1 Symbol Definition

COMPUTER ARCHITECTURE

A symbol placed before the opeode is an address definition. Because a symbol
is the name of a memory address as translated by the assembler, each symbol can
only be defined once in a program. In the case that the sa~e symbol is defined more
than once, the assembler flags this error and generates no object code. It should be
stressed that a symbol referenced in a high-level language statement represents the
content of a location, but a symbol referenced in an AL statement represents the
address of a location. That is to say, a symbol coded in the operand field is an address
reference and the assembler translates it into a binary address in the instruction. The
MASM (Microsoft assembler), editor, and debugger are available on the web or from
some text books) I The language is intuitive but some semantic rules need to be clar­
ified. For example, a symbol for a data location has no colon suffix, but a symbol for
an instruction location must have a colon suffix to mimic the label used in a high­
level language. As a result of this restriction, a program symbol may be placed after
column one in the line as long as it is preceded by spaces. It should be mentioned
that for most assemblers, a symbol must be defined in column one. Some MASM
symbol definitions are shown below: 81

HUNDRED

opdl

opd2

bOOIO:

equ 100 ;equate the absolute symbol HUNDRED to
;100 in decimal

dw 100 ;define a 16-bit word containing the
;integer 100 in decimal whose address
;is named opdl.

dw 255 ;define a 16-bit word containing 255
;in decimal whose symbolic address opd2
;is 2 bytes greater than opd1.

sub ax, ax ;ax..- ax - ax
;bOO lOis the symbolic address or label
;of the sub instruction.

The equate (equ) statement defines the symbol HUNDRED as absolute with a
value of 100 in decimal. An absolute symbol is coded in upper case letters because
it is treated as a numeric absolute address. The next two statements are also pseudo
ops because they generate data instead of instructions. The first dw (define word)
asks the assembler to prepare a 16-bit memory word in the segment whose address
is opd1 and whose value, Le., content, is 100. The next dw defines a 16-bit word con­
taining 255 in decimal whose symbolic address opd2 is 2 bytes greater than opdl.
The symbolic address of the sub instruction is defined as bOOIO (backward 0010). In
practice, a relocatable symbol usually starts with a lower case letter followed by let­
ters or digits. The subsequent English term in such a symbol may start with an upper-
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case letter so as to improve readability.  For example, we may use intExit to stand for
interrupt exit.  In the sub instruction, because the two source operandi are identical,
the result is always zero in AX after execution.  If a symbol exists before an empty
line, it represents the address of the next instruction in sequence.

4.3.1.2  Symbol Reference

If a symbol appears in the operand field of an instruction, it is a symbolic address
reference.  A symbol can be defined only once but can be referenced many times in a
program.  In contrast to a high-level language, a symbol reference is translated into the
code as a binary address, i.e., an unsigned integer.  The symbol may be referenced in the
operand field of a statement before or after the position where the symbol is defined.
The assembler knows how to translate each symbol reference in the code as an offset
with respect to the beginning of a segment.  A coding example is shown below:

mov ax, opd1 ;ax  M[ds:opd1]
jmp skip010 ;ip  skip010
...

skip010: jmp skip010 ;ip  skip010  {infinite loop}

The mov (move) instruction really means copy so the second source operand in
memory named opd1 is copied into AX, which is the destination.  After execution,
the content at opd1 remains unchanged.  In the transfer language, the 20-bit linear
address is symbolically represented by ds:opd1, a segment base and offset pair.  The
M[ds:opd1] notation can be abbreviated as M[opd1] as long as we understand that ds
is the default segment base.  A jmp (jump) instruction passes control to another
instruction whose address is specified in the operand field.  The first jmp instruction
passes control to the instruction at skip010.  At this address, a second jump instruc-
tion passes control to itself,  that is, after executing the jmp instruction, the 16-bit off-
set in the instruction is copied into an ip pointing to itself. Therefore, the second jmp
skip010 instruction is executed repeatedly in an infinite loop; this is purposefully
designed to facilitate debugging.  The jmp instruction is the same as an unconditional
goto statement in a high-level programming language.

4.3.2  Address Expression

In the operand field, we may specify an address expression as shown below:

mov   cx, opd1+2 ;cx M[ds:opd1+2]
;cx contains 255 in decimal or
;00ff in hexadecimal.

The address expression opd1+2 tells the assembler that two is added to opd1, and the
sum is placed in the code as an offset.  As a matter of fact, the assembler has the intel-
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ligence to interpret the address expression, so the addition is done at assembly time.
After the instruction is executed, the memory content at an offset that is two bytes
greater than opdl is copied into ex. Because the symbol opdl represents a relocat­
able address, the numeric two is an absolute address, so after adding the sum is
treated as a relocatable address. After execution, cx contains 255 in decimal. Again,
M[ds:opdl +2] can be written as M[opdl +2] with the understanding that ds is the
base. The basic rules to determine the address type of an address expression are
listed below:

1. If an absolute address is added to or subtracted from a relocatable address,
the result is relocatable.

2. If an absolute address is added to or subtracted from an absolute address, the
result is absolute.

3. If a relocatable address is subtracted from another relocatable address, the
result becomes absolute.

4. A relocatable address can not be added to another relocatable address
because doing so makes no sense.

Most assemblers treat all addresses equally regardless of the length of an
operand. Nevertheless, MASM performs type checking on an operand based on its
length, e.g., byte, word, or double word. Assume that we use a mov (move) instruc­
tion to store a byte in opd] that is defined as a word. Because the length attribute is
not compatible, the keyword byte ptr (pointer) is placed in front of the symbolic
address so as to override the type checking rule. Some examples are shown below:

mov byte ptr opd 1, cl
mov byte ptr opdl+l, ch
mov opdl, cx

;store low order byte
;store high order byte
;same as above

In the first instruction, the cl is copied into M[ds:opd1], the low order byte. The sec­
ond instruction copies ch into M[ds:opd 1+1], the high order byte. Therefore, as far
as function is concerned, the two mov byte instructions combined are equivalent to
the third Inov word instruction.

4.4 PSEUDO OPS

A pop (pseudo op) is used to pass information to the assembler and it does not
generate a machine instruction. Except for define constant and define storage, a pop
does not even generate code. A pop may signal the beginning or the end of a proce­
dure, segment, or program. A pseudo op is also called an assembler directive so to
differentiate froln a mop.
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4.4.1 Define Data Operand
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There is a subtle difference between define constant code and define storage. A
define constant generates a specific bit pattern in memory while a define storage
code reserves memory block with any bit pattern.

4.4.1.1 Data Operand in Memory

The four generic data types are byte, word, double word, and quad word. Let us
examine the length of each operand and not the bits contained within it. As shown
in Figure 4.5a, a byte has eight ordered bits located at address N. Because Pentium
is a little endian computer, in a memory word its low order byte is first stored at
address N, and its high order byte is stored at address N+ 1 as shown in Figure 4.5b.
The bit number ranges from 0 to 15 on top, and bO is the LSB. As in a double word,
the low order word is followed by the high order word as shown in Figure 4.5c. In
each word, the low order byte is stored first. A quad word has 8 bytes as shown in
Figure 4.5d with the low order double word stored before the high order double
word. In each double word, as usual, the low order word is stored first. It should be
mentioned that an IBM mainframe is a big endian computer. Not only does its word
have 32 bits but the byte ordering in the word is also reversed.

MASM uses the mnemonic DB (define byte) to define a sequence of bytes. If
the operand field has a specific bit pattern, it is define constant. If the operand field
is specified as a question mark, it means define storage or reserve byte. We can ver­
ify the following examples in an AL program. In the listing file, a defined constant
statement has its code image shown on the LllS, but for define storage, only a ques­
tion mark is displayed.

Example 1: Define byte.

Code image
3031 3233
?? ?? ?? ??
04 [ ?? ]

Statement
db '0', 31h, 62q, 51 ;Define 4 bytes
db ?, ?, ?, ? ;Define 48 storage
db 4 dup ( ? ) ;Same as above

On the LHS (left hand side), the code is shown in hex. The byte sequence is from
left to right, and the leftmost byte has the lower address. The first DB op generates
four bytes as specified by its operand field. The first byte is an ASCII zero that is a
zero enclosed in single quotes. The second byte is 31 in hex as denoted by the suf­
fix h (hex). The third is 62 in octal as denoted by the suffix q (octal). The fourth byte
51 has no suffix, so it is in base 10 as the default. As we can see from the code image,
the byte sequence is 30 31 32 33. Note that there is a space between every two bytes
for clarification purposes and the space character is not part of the code. The second
statement contains four question marks in its operand field, so any random bit pat­
tern is acceptable, that is, we use the question mark symbol in the operand field to
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(a)
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7 a

B
Address

15 7 a

(b) I H-Byte I L-Byte I
Address Address
N+l N

31 15 o

( c) [ Hi gh-word

Address
N+3

Low-word

Address Address
N+l N

63 47 31 15 o

~9h-dOUble wordJ~ ~_L_O_W_-d_O_U_b_l_e_w_o_r_d~I ___

Address Address Address Address Address
N+7 N+5 N+3 N+l N

(d)

Figure 4.5 Basic data operand lengths: (a) byte, (b) word, (c) double word, and
(d) quadruple word.

define storage. The third statement has an integer four followed by the dup (dupli­
cate) keyword, followed by a question mark enclosed in parentheses. The 4 dup key­
word means that whatever is specified in the parentheses is duplicated four times. In
the code image, we show symbolically that 04 is followed by [ 7? ], which means four
bytes with any bit pattern. If the symbol 7 is changed to zero, then 4 dup specifies
that a byte zero is to be duplicated four times.
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Example 2: Define word.

Code image Statement
0123 FFFF dw 0123h, -1 ;Define 2 words
FFF0 dw 0fff0h ;Define 1 word

In the 16-bit code image on the left-hand side, there is no space between two
bytes, which symbolizes a logical representation.  In memory, the word 0123 in hex
has a byte ordering, in which 23 is stored first at address N followed by 01 as shown
in Figure 4.6a.  The second operand -1 is 16-bit ones in twos complement notation.

If a number has the suffix h (hex), it is a hexadecimal constant.  Note that if the
number starts with a non-digit (a to f), it is necessary to add a prefix zero to differ-
entiate it from a symbol.  For example, in the second statement, we have 0fff0h in the
operand field which means 12 ones followed by 4 zeroes and the prefix zero is not
part of the number.  In fact, the define constant statement merely tells the assembler
to prepare the specific bit pattern in memory.  Therefore, the constant is not different
from a memory variable that can be modified as the result of instruction execution.
If a numeric constant is specified in the operand field of an instruction, it is an
absolute address, not subject to change by assembler, linker, or loader.

Example 3: Define double word and quad word.

Code image Statement
000000FF dd 255 ;Define decimal 255 in double word
??               dq     ?     ;Define a quad word
3FB999999999999A dq     0.1   ;Define a double precision float

;whose value is decimal 0.1

The first dd (define double word) statement defines four memory bytes contain-
ing decimal 255, as shown in Figure 4.6b.  The byte ordering is FF at a lower address
followed by three bytes of zeroes.  The next dq (define quad word) statement has the
? keyword in the operand field, so it means define storage of one quad word.  The
third statement defines a quad word that contains 0.1 in double precision and its 64-
bit logical representation is shown on the LHS.  To request the 80-bit extended pre-
cision, simply change dq to dt (define ten bytes).

4.4.1.2  Address Constant

A memory address constant can be stored in memory at assembly time.  That is
to say, an address may be stored in a memory location that has a symbolic name.  In
a high-level language, this symbol represents a pointer variable.  On a Pentium, a
word may contain an offset while a double word may contain an offset, followed by
a segment base address.  A pointer variable in a high-level language contains an
address, as shown by the next two examples.
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(a) Address

N

N+l

N+2

N+3

N+4

N+5

( b ) Address

N

N+l

N+2

N+3

N+4

N+5

N+6

N+7

N+8

N+9

N+10

N+11

23

01

FF

FF

FO

FF

FF

00

00

00

??

??

??

??

??

??

??

??

Figure 4.6 Memory representations in hex: (a) three words and (b) one double word
followed by one quad word.
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Example 4:

ptrl dw
farptrl dd

opd1 ;16-bit offset opd 1
DSEG:opdl ;16-bit offset opdl

;followed by DSEG

129

The symbol ptrl (pointer 1) is the name for a 16-bit memory location that con­
tains the offset opd I. Note that ptr1 is an address definition, but opd 1 is an address
reference that is, ptr1 contains an address symbolically represented by opd 1 which
is defined somewhere else. In the second line, farptr 1 (far pointer I) is the symbolic
name for an offset of a 32-bit double word. The first word contains an offset named
opdl and the second word contains a base address named DSEG. Thus, the offset
opdl is stored at a memory address named farptrl and the base address DSEG is
stored at an address farptrl +2. The offset and the segment base represent a far
address. Again, farptrl is an address definition and its operand field has two refer­
ences specified as DSEG:opd1. The assembler does not know the base address of
DSEG at assembly time. However, after linking and loading the correct 16-bit para­
graph number is prepared at farptrl+2 before program execution.

Example 5: Address constant and literal symbol.

acon2
=100

dw
dw

=100
100

In the example, the first statement defines a pointer variable whose symbolic
address is acon2. In the operand field, we see that = 100 is specified as a literal sym­
bol. The assembler knows to create the bit pattern for decimal 100 in a memory loca­
tion whose address is further stored in another location named acon2.

4.4.2 Other Pseudo Ops

Other popular pseudo ops are shown in Table 4.2.

Table 4.2 Other Pseudo Ops

Name
assume

end
endm

endp
ends

Description
Assume that at run time a segment register
contains a base address as specified
End of program
End of a macro definition

End of procedure
End of segment
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Name
equ

exitm

extern

macro

org

proc

public

segment

title

4.4.2.1 Segment

COMPUTER ARCHITECTURE

Description
Equate an absolute symbol to a numeric value

Exit macro expansion

External reference symbols
Beginning of a macro definition

Origin sets a LC (Location Count) variable in the
assembler to a specified value

Beginning of a procedure

External definition symbols

Beginning of a segment

Title of the program

Recall that a segment is a block of bits in memory. A segment pseudo op is used
to declare a segment that has a name in the front. A segment name is just like any
other symbolic address except for two things. First, when it is used in a mov instruc­
tion as the source operand address, the 16-bit paragraph number coded in the instruc­
tion is the source operand. Second, in the last statement of a segment, we must use
ends to signal the end of a segment. However, the same segment name is placed in
front of ends as a delimiter. Thus, the same segment name shows up twice in column
one. For this reason, a segment name is usually coded in upper case letters so it looks
different in appearance. A data segment is declared below:

DSEG
msg
DSEG

segment
db 'Hello world.$'
ends

The name DSEG (data segment) before the segment op is the base address defi­
nition. The same symbol placed again before the ends op is just a delimiter. The seg­
ment contains a ASCII string whose symbolic address is msg (message). The last
character ($) serves as a terminator to the OS if the string needs to be displayed on
screen.

A program stored in one or more segments may be comprised of one or more pro­
cedures. A procedure is a block of instructions grouped in a code segment. A pro­
cedure starts with the proc pop (procedure pseudo op), and its last statement is endp
(end procedure) pseudo Ope The very last statement in a program is the end pop. In
the end statement, an address may be specified in the operand field as its entry point
(Le., starting address) when execution begins.

4.4.2.2 Assume

The assume pop statement informs the assembler about the setting of segment
registers at run time. For example, consider the following:
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assume cs:CSEG, ds:CSEG, ss:CSEG

131

where the colon between the segment register and its base address really means that
the two terms are equal. The statement is not executable, so it disappears after
assembly. It tells the assembler that the segment name CSEG is the base address
stored in all three segment registers at run time. This assumption allows the assem­
bler to prepare the offset of a memory operand correctly in the code according to the
specified base. Since the OS has its own rules to set segment registers before a pro­
gram executes, a user program usually needs to set the data segment register cor­
rectly before accessing the operand in it.

4.5 THREE BASIC ADDRESSING MODES

During instruction execution, an operand may reside in memory or in the cpu.
If the operand is in memory, a memory cycle is issued to fetch the operand from
memory to the CPU. If an operand is 16 bits long and the processor has a memory
data bus of eight bits, it takes two physical memory cycles for each time only a por­
tion of the operand is retrieving. The three basic memory addressing modes are spec­
ified in Table 4.3.

Table 4.3 Three Basic Memory Addressing Modes

Name Memory Cycles Required to Fetch the Operand

Memory Direct One
Memory Immediate Zero
Memory Indirect Two

By definition, memory direct addressing means that it takes one memory cycle
to fetch the operand. In contrast, memory immediate addressing means that it takes
zero memory cycles to obtain the operand. The operand is in the CPU, so memory
immediate really means no memory reference. If the operand is coded as part of an
instruction, then it is called an immediate operand in regard to memory reference. If
it takes two or more memory cycles to fetch an operand, it is memory indirect.
Memory direct is the number one addressing mode. It is more powerful than mem­
ory immediate because the former can simulate the latter but not vice versa.

4.5.1 Memory Immediate

In general, memory immediate means that the operand is in the CPU. In prac­
tice, an operand can be coded in the address field of the instruction as shown in
Figure 4.7a. The instruction under execution resides in the IR but it still takes one
clock cycle to fetch the operand bits in the IR. That is to say, an immediate operand
means that no memory reference required. Note that an immediate operand in the
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instruction can be the source, but it makes absolutely no sense for it to be the desti­
nation. Most assemblers require that in the operand field, a pound sign (#) be placed
in front of the symbolic address or numeric absolute address to mean memory imme­
diate. For example, #opd 1, # 100, etc. are commonly used to indicate memory imme­
diate addressing.

4.5.2 Memory Direct

Memory direct addressing mode means that it takes one memory cycle to fetch
the operand. In concept, the lower 16-bit field in the IR contains an address where
the operand is stored in memory, as shown in Figure 4.7b. Specifically, the instruc­
tion contains an address directly pointing to the operand in memory.

A hardware register can be used to modify the memory address in an instruction
before accessing the operand. This is called indexing and is commonly recognized
as the second major programming concept in computing. More extensive discus­
sions on indexing are provided in the next chapter. Register direct means that the
operand is stored in a CPU register. Register indirect means that the CPU register
contains a direct address pointing to the operand in memory. If the operand is regis­
ter direct, it takes zero memory cycle to fetch the operand. Thus, based on our basic
definitions, we can classify register direct as a derivative of memory immediate. As
regards the CPU, it takes equal time to access an operand in IR or in any other work­
ing register. Similarly, register indirect is a derivative of memory direct because it
takes only one memory cycle to fetch the operand. The term indirect has caused
some confusion because we have two accesses in total, the register and the memory.
It must be mentioned that first generation computers only supported memory direct.
Later, more addressing modes, such as memory immediate and memory indirect
were added to enhance programming convenience. For the sake of satisfying curios­
ity, some of the MASM examples are explained below:

1. An absolute symbol or numeric address without indexing specifies
a memory immediate operand.

Code image Statement

B80064
880064
880064
880064

mov
mov
mov
mov

ax, HUNDRED ;ax~ 0064 {HUNDRED equ 100}
ax, 64h ;ax~ 0064
ax, 50*2 ;same as above
ax, opd2-opd1 +98 ;same if opd2=opd1 +2

Note that the instruction has three bytes. The opcode B8 specifies move AX memory
immediate, where AX is implied as destination. The address field contains 0064, but
physically, the byte 64 in hex is stored before 00.

2. A relocatable symbol with the keyword offset in the front specifies memory
immediate as shown below:
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Instruction register

Opcode j Immediate operand

( a)

Instruction register
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Opcode Address of operand

Memory

I Operand

(b)

Instruction register

I Opcode 4~ First address

Memory
.. I I
~

- Second address-

..
~

Operand

( c )

Figure 4.7 Three basic memory addressing modes: (a) memory immediate,
(b) memory direct, and (c) memory indirect.
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moy ax, offset opd1
moy di, offset opdl +2

COMPUTER ARCHITECTURE

;ax~ opdl
;di .- opdl+2

3. A segment name means an immediate operand as follows.

mov ax, CSEG ;ax.- CSEG

The segment name CSEG, often written in uppercase, is treated as an absolute sym­
bol so the 16-bit base address, a paragraph number, is copied from the IR <15:0> into
the AX.

4. A numeric address or absolute symbol with the keyword ds: in front means
memory direct.

mov ax, ds:80h ;ax .- M[ds:80] {memory direct}

5. A relocatable symbol in the instruction, with or without indexing, means
memory direct as shown below:

mov aX,opdl
mov ax, opdl lsi]

;ax .- M[ds:opdl]
;ax .- M[ds:opdl+si]

6. An absolute symbol or numeric address with indexing means memory direct
as shown below:

mov ax, lsi] ;ax .- M[ds:si]
mov dx, 100[si] ;dx .- M[ds:64+si]
mov dx, HUNDRED[si] ; same as above

The source operand of the first instruction is register indirect, Le., the SI (source
index) register contains the address of an operand. The source operand of the sec­
ond instruction is memory direct with indexing. The offset 100 in decimal form is
added to the index register named SI at run time. That is to say, the EA (effective
address) is computed as the sum of the content in SI and the offset 0064h. After that,
the result is added to DS to form the 20-bit linear address.

If a debugger is used to disassemble an instruction, we can examine the opcode
to verify the addressing mode specified. By doing single step execution, we can eas­
ily figure out the rules on addressing mode and on operand type. That is to say, the
debug program prints out the syntax based on the bit pattern in the instruction.

4.5.3 Memory Indirect

Memory indirect addressing mode means that it takes two memory cycles to
fetch the operand. The instruction contains a first address of a memory word where
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a second address is stored as shown in Figure 4.7c. After the first memory read cycle,
the second address is fetched in the CPU, and this second address directly points to
the operand. Since pointer means address, the instruction contains a pointer to a
pointer that points to the operand in memory. Itnmediately after the first memory
read cycle, a second memory read cycle is issued to fetch the operand. Therefore, it
takes a total of two memory read cycles to fetch the operand. Because memory is
relatively slower than CPU, memory indirect is not supported by most of the main­
frames. s,26 Pentium does not support memory indirect either, so we study memory
indirect as a programming concept. It should be mentioned that memory indirect
was supported by other computers.40,S1 On such a machine, an indirect address sym­
bol has the @ symbol placed in front to indicate memory indirect, e.g., @opdPtrl,
@100, etc.

4.6 MACHINE OPS

Each mop (machine op) is translated into an instruction by the assembler. All the
machine ops can be grouped into six categories: load and store, arithmetic, logical
and shift, compare and branch, I/O, and system control. Even though the opcode
mnemonic is the saIne, the syntax of an operand specified in a move, arithmetic, log­
ical, or shift instnlction may further reveal the operand length, which is either eight
bits, 16 bits, or 32 bits.

In computing, the four basic instructions are load, store, subtract, and conditional
branch. Any application program can be written in these instructions, so other
instructions are designed only to make programming faster and easier.

4.6.1 Load and Store

A load instruction is to fetch an operand from memory to the CPU, and a store
instruction does the reverse by storing an operand from the CPU to memory. As
influenced by PDP-II, the Pentium processor can use a mov (move) instruction to
do both load and store because the only difference is in direction. Note that move
does not means physically move, instead it means copy, because the source operand
remains intact. The instruction needs two operandi. If the destination operand is reg­
ister and the source is memory, it is load; otherwise, it is store. The mnemonic mov
may be translated into a different opcode depending on the direction of the move and
the size of the operand.

4.6.2 Push Stack VB. Pop Stack

The stack is a dynamic data structure that can be simulated in memory. In other
words, a memory read cycle can be issued to access an operand in a stack. The seg­
ment statement is a pseudo op to declare a stack as follows:
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SSEG segment stack
dw 80 dup ('1)

SSEG ends

push cs ;SP~ SP-2
;M[SS:SP] .- CS

pop ds ;DS .- M[SS:SP]
;SP.- SP+2

push cx ;save ex

pop cx ;restore ex

COMPUTER ARCHITECTURE

The symbol SSEG, the segment pop, and the keyword declare a stack segment
named SSEG (stack segment) that is defined as the base address. As shown in Figure
4.8a, the base address happens to be 19DF in hex, which is a paragraph number.
The dw statement reserves a block of 80 words equivalent to 160 bytes. The OS sets
SP to this initial value (OOAO in hex) before the program executes. Because an 8086
would not allow a mov instruction to transfer the CS directly to the DS, the same goal
is accomplished by pushing the es first, then popping it into the DS. At the machine
level, the push instruction decreases SP by two first and stores the CS in memory as

55 L 19 OF

5P [ 00 AO

ss I 19 OF

5P I 00 9E

19 DO

High
address

Figure 4.8 Stack segment: (a) initial state and (b) after pushing CS.
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the TOS that has 1900, as shown in Figure 4.8b. The next pop instruction loads the
TOS into the OS, then increases the SP by two so the stack goes back to its original
state before the push. In AL programming, we can save a register on a stack and fetch
it later. The third instruction pushes ex on the stack to save. After the computation
block, the last instruction pops the ex off the stack to restore.

4.6.3 Minimal Assembly Language Program

We are ready to write a minimal AL program in a file named minLasm as listed
below:

title minimal AL program
assume cs:eSEG, ds:CSEG

eSEG segment
main: push cs ;OS sets cs to eSEG

pop ds ;ds points to CSEG
mov dx, offset msg ;pointing to string
mov ah,09h ;display string
int 21h ;system call
mov ah,4ch ;system termination
int 21h

msg db 'Hello world.$' ;$ is the terminator
eSEG ends
SSEG segment stack

dw 80 dup (?)
SSEG ends

end main

The two segments in this program are named as eSEG and SSEG. Perform the fol­
lowing job steps:

1. masm /1 minLasm
2. link minLobj
3. minLexe

In the first job step, the /1 option asks the assembler to generate a listing file
named mini.lst. Upon request, the assembler translates the source into an object file
named minLobj and generates the mini.lst file containing pure ASCII. Some assem­
blers may prompt questions. If so, simply answer the prompt. The second step links
minLobj into an executable file named minLexe. The third step loads and executes
minLexe. As a result, the 12-character "Hello world." is displayed without the sin­
gle quotes because it is not part of the string.

The title statement asks the assembler to place the message in the operand field
in the listing file. The assume statement is a pop (pseudo op) to inform the assem-
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bier that the program offsets are relative to the segnlent named CSEG~ and the data
offsets are also relative to CSEG. Before a .exe file executes, MSDOS prepares a
PSP (program segment prefix) of 256 bytes in front of the machine code, as shown
in Figure 4.9. The PSP contains the addresses of some error routines, the two built­
in file control blocks for the purpose of accessing files, any arguments passed on the
command line, etc. Before passing control to an .exe file, the OS sets the OS, and
ES pointing to PSP, the CS pointing to the code segment named CSEG, and the SS
pointing to the stack segment named SSEG. If an entry point is specified in the end
statement, then the IP is set to the entry point, otherwise it is set to 0000. For this

OS 19 CO JES 19 CO

CS 19 DO

IIP 00 00

ss I 19 OF t~

Program
segment
prefix

Code
segment

Data
segment

-----------l.~I_------~

Stack
segment

SP [ 00 AO ~~~---------~~ 1----------1

High
address

Figure 4.9 Initial register settings for an .exe file.

program, the as sets the IP to the offset named main that happens to be 0000. In
addition, the as sets the SP to OOAO as the high address of a stack segment declared
to be 80 words (160 bytes).

Because the OS points to the PSP before instruction executes, it is necessary for
the programmer to set the DS correctly to the code segment before any data can be
referenced. Because the OS sets the CS to the code segment, we simply push the CS
and pop it into the OS. The next two instructions prepare two arguments for an OS
call. Therefore, the first mov instruction uses the memory immediate addressing
mode to copy the offset named msg into the DX. That is, DS:DX points to the string
in memory. The second mov instruction copies the one byte immediate operand 09
into AH as the display function code. The fifth instruction is int (interrupt), and the
number 21 in hex serves as an identifier. This instruction is a system call for request-

© 2001 by CRC Press LLC



ASSEMBLY LANGUAGE PRINCIPLES 139

ing a service from the as. That is to say, after executing this instruction, the CPU
passes control to the as in low memory. In other words, the CUtTent program relin­
quishes control to the as after the call. Subsequently, the as examines the function
code in AH and locates the address of the string in DS:DX. Then, the as prepares the
string in screen memory for the display processor to interpret. Because the $ sign is
a terminator to the as, after seeing the $ sign, the as quits display and passes control
back to the user program. The sixth instruction sets the function code 4C in AH to ask
for termination. After another system call, the as resumes control. Thus, we can
place the string "Hello world.$" below the last instruction because it is not executed.

4.6.4 Arithmetic

The two basic arithmetic operations are add and subtract (sub). If sign-magni­
tude notation is used to represent a negative integer, an add operation can be simu­
lated by sub, but not vice versa.

sopdl + sopd2 = sopdl -( -(sopd2))

The instruction below has sopd1 in AX and sopd2 in BX.

add ax, bx ;ax~ ax+bx

This instruction can be simulated by instructions as follows,

mov tempI, ax ;M[templ] .- ax
mov ax,O ;ax~O

sub ax, bx ;ax~ -bx
mov temp2, ax ;M[temp2] .- -bx
mov ax, tempI
sub ax, temp2 ;ax.- ax + bx

The temporary variables are named temp1 and temp2 in memory to store intermedi­
ate results. It should be stressed that if twos complement notation is used, then both
add and sub instructions are equally capable. Consequently, one adder is adequate
for both types of operations in a simple CPU.

In programming, if the second source operand is one, we have two special
instructions: inc (increment) and dec (decrement). In either instruction, only sopdl
is specified because sopd2 is implied as one. However, the opcode for an eight-bit
operand is different from a 16-bit operand. If sopd I specifies the length of an
operand, the assembler prepares the opcode accordingly. In the case that no infor­
mation about the size of the operand is provided in the AL statement, it is necessary
to use a special keyword before the addressing mode to specify the operand size.
Some of the coding examples are shown below:

© 2001 by CRC Press LLC



140

inc
inc

inc
inc
dec

ax
opdl

word ptr 4[si]
byte ptr 4[si]
si

COMPUTER ARCHITECTURE

;ax.- ax + 1
;M[opdl] .- M[opdl] + 1
;Opcode is based on opd 1: byte, or word.
;16-bit operand in memory
;8-bit operand in memory
;si .- si - 1

The neg (negate) instruction requires only one operand, so it is a unary operation.
The CPU negates an operand by feeding zero as one adder input, the ones comple­
ment of the operand as the other adder input, and meanwhile turning on the Cin (carry
in) bit. Then, the output of the adder is clocked into the operand if it is a register. For
example, the operand in AX is replaced by its twos complement as shown below.

neg ax ;ax.- 0 - ax

4.6.4.1 Multiple Precision Arithmetic

A program can be written to handle multiple precision arithmetic. Recall that after
executing an add instruction, the CF (C) bit in the flags register is set if there is a carry
output generated from the adder. However for a sub instruction, the C bit is set if no
carry is generated. That is to say, the C bit is a carry for an add instruction but a borrow
for a subtract instruction. The two examples below illustrate this important concept.

Example 1:

mov
add

Example 2:

mov
sub

aI, 3
aI, 4

ai, 3
aI, 4

;al <- 00000011 (binary)
;al=00000111
;C<-O

;al = 1111 11 11
;C.-t

Two special instructions, adc (add with carry) and sbb (subtract with borrow), for
multiple precision arithmetic operations are introduced. Intuitively, the adc instruc­
tion signifies that the carry flag in F is also added to the LSB. By the same token,
the sbb instruction signifies that the C flag is also subtracted from the minuend. A
subtract operation means that the twos complement of the subtrahend is added to the
minuend. Because of a subtract operation, a no carry output condition sets the C flag
to one. Thus, subtracting an extra one from the subtrahend puts it in ones comple­
ment (Le. twos complement minus one). That is to say, if there is a borrow, the ones
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complement of the subtrahend is added to the minuend.  The next example shows
how to perform 32-bit add and subtract operations using a 16-bit adder.

Example 3:

data1 dd 00008001h
data2 dd 00008002h
result1 dd ?
result2 dd ?

...
;32-bit result1 = 00010003 after add.

mov ax, word ptr data1
add ax, word ptr data2 ;add
mov    word ptr result1, ax   ;C bit remains unchanged
mov    ax, word ptr data1+2
adc    ax, word ptr data2+2   ;add with carry
mov    word ptr result1+2,  ax

;32-bit result2 = ffffffff (signed -1) after subtract.
mov    ax, word ptr data1
sub    ax, word ptr data2     ;subtract
mov    word ptr result2, ax   ;C bit remains unchanged
mov    ax, word ptr data1+2
sbb    ax, word ptr data2+2   ;subtract with borrow
mov    word ptr result2+2, ax

Note that the operand field has the keyword “word ptr” to override the defined dou-
ble word data type.  After executing the add routine, the physical byte sequence is 03,
00, 01, 00 in a memory location named result1.  The logical representation of the bits
in result1 is 00010003 in hex.  After executing the subtract routine, the byte sequence
is ff, ff, ff, ff in a memory location named result2.  Both routines work correctly
because the C bit does not change after executing a mov instruction.

In a simple processor or controller, an adder is often used to implement integer
multiply or divide operations.  The micro steps are described in Chapter 6 which
deals with microprogrammed CPU design.  The mul (unsigned multiply) instruction
is different from imul (integer multiply).  The div (unsigned divide) instruction is dif-
ferent from idiv (integer divide).  The mnemonic i really represents an integer that is
signed.  The mul instruction multiplies two unsigned numbers and the product is
unsigned.  The imul instruction multiplies two signed numbers and the product is
signed.  For example, if the signs of two binary numbers differ, the product is nega-
tive in twos complement notation.

Note that the multiplier is implied so only the multiplicand is specified in the
instruction as an operand in a data register or memory.  For eight-bit multiply instruc-
tion, the eight-bit multiplier is pre-loaded in AL and the eight-bit multiplicand can be
in an 8-bit data register or in memory.  Before the operation starts, the CPU clears AH.
After the operation, the 16-bit product is in AX.  For 16-bit multiply instructions, the

1026-Chapter 4  6/23/2001  5:03 PM  Page 141



142 COMPUTER ARCHITECTURE

multiplier is pre-loaded in AX, and the 16-bit multiplicand can be in a 16-bit data reg­
ister or in memory. Before the operation starts, the CPU clears DX. After the opera­
tion, the 32-bit product is in OX"AX that means OX is concatenated with AX.

Example 4:

mov
mov
mul

aI, 101
cl,50
cl

;ah is cleared by hardware

;ax ..- al * cI {8-bit mul}

After the eight-bit unsigned muI, ax contains 13ba in hex or 5050 in decimal.

Example 5:

mov ax, -101
mov bx, -50
imul bx ;dx"ax..- ax * bx {16-bit imul}

After 16-bit imul, the register pair dx"ax contains 000013ba in hex. If the divisor bx
is changed to opd1, a word defined in memory, then the product is represented by ax
* M[ds:opdl].

Example 6:

mov eax, 1010
mov ebx, 500
imul ebx ;edx"eax~ eax * ebx {32-bit imuI}

In the above example, after multiplying two 32-bit signed numbers, the 64-bit
signed product is in edx"eax. For a divide operation, the dividend is implied. For an
eight-bit signed divide, the AX must be pre-loaded with the 16-bit dividend. After
the divide, AL contains the quotient and AH contains the remainder that has the same
sign as the dividend, as shown below.

Example 7:

mov
mov
idiv

ax, 255
bI,10
bl

;ax~ OOff {255 in decimal}
;bl~ 10 {base 10}

After the eight-bit idiv, aI contains 19 in hex as the quotient, and ah contains five
as the remainder whose sign obeys the dividend.

For 16-bit divide, the 32-bit dividend is implied in DX"AX. For unsigned divide,
DX should be cleared if the dividend has 16 bits. For signed divide, DX should be
padded with the sign bit of AX all the way from bit zero to bit IS by executing the
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cwd (convert word to double) instruction. This instruction has one-byte opcode 99
in hex but no operand because they are implied, that is, the sign bit ofAX is extended
all over into OX. In other words, if the sign of AX is zero, J)X contains zeroes. If
the sign bit of AX is a one, OX contains all ones. The divisor must be specified in a
data register or memory. After a 16-bit idiv, the quotient is in AX, and the remain­
der, in OX, has the same sign as the dividend. To remember that after dividing, AX
contains the quotient and OX contains the remainder, think logically that if the
remainder is zero, a subsequent signed multiply should restore the dividend into
DX"AX. A 16-bit signed divide example is shown below:

Example 8:

mav
cwd
mov
idiv

aX,5050

bx, 10
bx

;ax ..- 13ba {5050 in decimal}
;convert from word to double
;bx~ 10 {base IO}

The register pair dx"ax has the dividend and bx is the divisor. After idiv, ax contains
01f9 in hex (505 in decimal), and dx contains a perfect zero as the remainder.

In the case that the quotient is too big for the hardware to handle, an overflow
condition occurs so the CPU sets the 0 (overflow) bit in the F register.

4.6.4.2 Defau't Operand Size: 16·bit VS. 32·bit

The Pentium processor can support a default operand size of 16 bits or 32 bits,
which also means real or protected mode. After loading an executable file, the OS
sets a bit in a control register: one for a 32-bit operand and zero for a 16-bit operand.
Interestingly, the processor uses the same opcode in an instruction for either a 16-bit
or 32-bit operation. For example, the one-byte opcode for cwd (convert word to dou­
ble) or cdq (convert from double to quad) is 99 in hex. If the default size is 16 bits,
the one-byte opcode extends the sign bit in AX into DX. If the default operand size
is 32 bits, the same I-byte apcode extends the sign bit in EAX into EDX.

However, with a default size of 16 bits the processor supports two sets of instruc­
tions operating on either 16 bits or 32 bits. This is done by placing a one-byte pre­
fix 66 in hex in front of the opcode to change the default operand size. Since either
operand size can be the default, this prefix actually selects the non-default size. That
is to say, if the default size is 16 bits, the prefix changes the size to 32 bits. If the
default size is 32 bits, then the prefix changes the size to 16 bits. The prefix can be
thought of as an eop (extended opcode).

When the default operand size is set at 16 bits, instructions with no prefix operate
on 16-bit registers but instructions with a prefix operate on 32-bit registers. However,
it is necessary to infonn MASM that the program executes in real address mode with
data registers to be either 16 bits or 32 bits. For this purpose, two pseudo ops are
placed in front of the program and their ordering can not be reversed as follows.
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.model medium

.586

.... {MASM code}

COMPUTER ARCHITECTURE

That is to say, MASM places the prefix 66 in front of the opcode for a 32-bit opera­
tion. Consequently, we may issue instructions to handle either operand size as
shown below.

Code image
88 FFFF
66 88 FFFFFFFF
99

6699

Statement
mov ax, -1 ;AX <- FFFF
mov eax, -1 ;EAX <- FFFFFFFF
cwd ;extend sign in AX into OX

cdq ;extend sign in EAX into EOX

In the first two AL statements, the address expression -1 is absolute so the
addressing mode is memory immediate. The first instruction has a 16-bit immediate
operand. The second instruction has the prefix, and its immediate operand is 32 bits.
The third instruction extends the sign of the 16-bit AX into DX. The fourth instruc­
tion has the prefix to extend the sign of the 32-bit EAX into EDX.

4.6.5 Logical

The logical operations are performed on a bit-wise basis. Therefore, each bit in
the operand is treated as a logical variable. Some logical instructions are given
below.

Example 1:

mov
not

ax,5005h
ax

;ax~ 0101 0000 0000 0101
;ax~ .NOT. ax
;ax = 1010 1111 1111 1010

The not instruction performs the ones complement operation on a unary operand.
Thus, every bit in AX is flipped from one to zero, or from zero to one.

Example 2:

mov
or

ax, Oaffah
ax, OfOOOh

;ax <- 101a 1111 1111 101a
;ax <- ax .OR. 1111 0000 0000 0000
;ax = 1111 1111 1111 1010
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The or instruction is used to pad a particular field in an operand with a specific
bit pattern. The padding field is shown as the leading four ones followed by 12
zeroes in the immediate operand. As a result of execution, the upper four bits in the
first source operand in AX are padded with ones but its lower 12 bits remain
unchanged.

Example 3:

mov
mov
and

aX,Offfah
cX,OOOfb
cX,ax

;ax .- 1111 1111 111 1 1010
;mask
;ax = 0000 0000 0000 1010

The and instruction is used to mask out a field in an operand. In this example,
the operand in AX is "anded" with the ex register that contains a mask of four ones
preceded by 12 zeroes. At each bit position, the bit in the destination operand is one
if the bit in the first source operand is one and the bit in the second source operand
is also one. The lower four bits of AX are masked out in ex.

Example 4:

mov
xor
xor

ax, 1
opdl, ax
opdl, ax

;ax ...- 0000 0000 0000 0001 binary
;M[ds:opdl] ...- M[ds:opdl] .XOR. ax
;LSB is toggled back.

The xor instruction has many applications. For example, it can be lIsed to toggle
a bit in an operand. In doing so, we set the LSB (least significant bit) of the second
source operand to one with 15 leading zeroes and opdl may contain any bit pattern.
Based on the definition, the resulting bit is one if the two source bits differ.
Therefore, the leading 15 bits in opdl are "exclusive ored" xor with zeroes so they
remain unchanged, but the LSB is flipped each time the instruction is executed. After
executing the second time, the LSB in the first source operand is toggled back with
the same upper 15 bits.

4.6.6 Shift

Recall that the two major types of shifts are arithmetic and logical. The purpose
of a shift instruction is to move bits around in a register or in memory. The operand
may have a different size: 8 bits, 16 bits, or 32 bits, and the shift count may be an
immediate operand coded in the instruction or placed in a register. The Pentium chip
also supports rotate shifts in either direction, some without C (carry) in the rotate
operation and others with the e bit.
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4.6.6.1  SHR (Shift Logical Right)

The shift logical right operation specifies that a bit zero flows into the MSB of
the operand, and its LSB flows into the C flag.

4.6.6.2  SAR (Shift Arithmetic Right)

For a shift arithmetic right instruction, the sign bit in the operand remains intact
and its LSB flows into C.

Example 1:

mov     ax, 1       ;ax 0000 0000 0000 0001 binary
sar     ax, 1       ;ax = 0, i.e. [ax / 2]

;C 1 {Carry}

Example 2:

mov     ax, -1      ;ax <— 1111 1111 1111 1111 binary
sar     ax, 1       ;ax = -1, i.e. [ax / 2]

;C <— 1 {Carry}

4.6.6.3  SHL (Shift Logical Left)

For any logical shift, left or right, the bit flowing into the register is always a 0
and the bit flowing out is the carry bit in the F register.  To shift logical left one bit,
a bit zero flows into the LSB of the operand, and its MSB flows out into C.  The SAL
(shift arithmetic left) instruction is identical to an SHL (shift logical left) instruction
with no difference in hardware design.  To shift arithmetic an operand one bit to the
left means to double its arithmetic value provided that its sign bit remains
unchanged.  A change in the value of the sign bit from zero to one or from one to zero
after shifting indicates an overflow condition, and the result is no longer correct.
Based on this, SHL will handle both operations, and some coding examples are
shown below:

Example 3:

mov     si, 7       ;si 0000 0000 0000 0111 binary
sal     si, 1       ;si = 0000 0000 0000 1110

;O 0  {No overflow}
;C 0  {No carry}
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Example 4:

mov     ax, 8000h   ;ax 1000 0000 0000 0000 binary
sal    ax, 1       ;ax = 0000 0000 0000 0000

;O 1 {Overflow}
;C 1 {Carry}

4.6.6.4  ROL (Rotate Left) vs. ROR (Rotate Right)

The rotate shift is like a circular shift.  The operand is viewed as a shift register
because the LSB and MSB are considered adjacent.  For a 16-bit operand, ROL or
ROR means a 16-bit rotate shift, and the difference lies only in the direction.  If the
shift count is one, the ROL instruction rotates the operand to the left as shown in
Figure 4.10a.  The top figure depicts the bit pattern in an operand before the shift,
and its MSB flows back into the LSB as shown in the bottom figure after the shift.
The ROR instruction rotates the operand to the right, and the LSB flows into the
MSB as shown in Figure 4.10b.

4.6.6.5  RCL (Rotate with Carry Left) vs. RCR (Rotate with
Carry Right)

The rotate with carry operation includes the C bit in the middle between the LSB
and the MSB.  That is, for a 16-bit operand, we have a 17-bit rotate shift.  If the shift
count is one, the rotate with carry left is shown in Figure 4.10c and the rotate with
carry right is shown in Figure 4.10d.  This feature is for multiple precision arith-
metic: add, subtract, multiply, and divide.  To shift arithmetic right 32-bit DX^AX
by one bit, we have the following code:

sar     dx, 1       ;sign bit remains the same
;C lsb in DX

rcr     ax, 1       ;msb in AX <— C
;C lsb in AX

All the instructions are normally executed in sequence and the ordering of instruc-
tion execution can be altered by executing a branch instruction.  This is a very impor-
tant programming concept, as described in the next section.

4.7  PROGRAM SEQUENCE CONTROL

Both unconditional branch instructions and conditional branch instructions are
used for sequence control.  The unconditional branch instruction has an address in the
code, and this address is placed in the IAR regardless of the CC.  Thus, the instruction
at this new address is to be fetched, interpreted, and executed in the next cycle.  We
say that control is passed to a different location in the program.  The conditional
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I~ 1 1 1 1 o 0 0 0 1 1 1 1 o 0 O~:=J

I
1 1 1 0 000 1 1 1 1 0 o 0 0 11

( a )

c:1
1 1 1 1 o 0 0 0 1 1 1 1 00 0 O~I

I
011 1 1 000 011 1 10 0 01

(b)

c

I~G~1 1 1 1 o 000 1 1 1 1 o 0 0 01:J

Q I
1 1 1 0 000 1 1 1 1 0 o 0 0 11

(c)

c

r~1 1 1 1 1 o 000 1 1 1 1 00 0 O~I

G 1
1 1 1 1 1 000 o 1 1 1 10 0 oj

Cd)

Figure 4.10 One-bit rotate shift operations: (a) ROL, (b) RDR, (c) RCL, and (d) RCR.

branch also contains an address, and its opcode specifies a condition to be tested first.
If the condition is true, this new address is placed in the IAR. Otherwise, the next
instruction in sequence is executed and this branch instruction is a nop (no operation).
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4.7.1 Flags Register
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The F register contains the partial CPU status information of the current progralTI
in execution. Figure 4.11 shows the F register supported by the 8086, and some of
the bits are not used.

11 10 9 8 7 6 4 2 o

Figure 4.11 Flags register.

Note that the Pentium uses the EF register that has 16 bits added in the front for sys­
tem control. If the mnemonic F is dropped in the naming convention, then CF (carry
flag) becomes C (carry), etc. The flag bits in the F register are described below:

• CF (bO): The carry bit is set after executing an add, subtract, shift left, or
shift right instruction.

• PF (b2): The odd parity bit for the destination operand is computed below:

Exclusive Or all the bits in the destination operand into result;
IF (result .EQ. 0),
THENP.- 1;
ELSE P~ 0; ENDIF;

Mathematically, by adding all the bits in the destination operand including the par­
ity bit, we obtain an odd number.

• AF (b4): The auxiliary carry is the carry output generated from b3 (i.e.,
fourth bit) of the adder. The A bit can be tested in a routine performing
BCD arithmetic: add or subtract. If the A bit is one, the four-bit BCD
result must be adjusted to make it correct.

• ZF (b6): The zero flag indicates that the destination operand contains all
zeroes.

• SF (b7): The sign flag is copied from the sign bit of the destination
operand.

• TF (b8): The trace flag, if it is set to one, triggers a trace interrupt after
executing each instluction. This design feature allows the debugger to sin­
gle-step through a program.

• IF (b9): The interrupt enable flag tells the CPU to accept any pending
interrupt request from inside or outside. If this bit is zero, the CPU puts all
the interrupt pending signals on hold. That means the intelTupt is tem­
porarily disabled by the CPU.
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• DF (bIO): The direction flag is used for string operations, Le., to move or
search a block in memory. A D bit one means up, so the addresses in SI
and DI will be decremented by one automatically after each byte opera­
tion. A D bit zero means down so the addresses in SI and DI will be incre­
mented by one after each byte operation.

• OF (b 11): The overflow flag indicates a fault condition after an add, sub­
tract, or shift left operation. That is, the destination operand is no longer
correct.

4.7.2 Compare

The four bits (C, Z, S, and 0) in the F register constitute the CC (condition code).
The CPU sets the CC based on the result of an add, subtract, shift, or logical instruc­
tion. A cmp (compare) instruction is designed to set the CC according to the result
of a comparison. During its execution, the CPU does an internal subtract, which
means the result is not stored into the destination, so both sopd1 and sopd2 remain
unchanged after compare. As the CPU sees no difference between signed and
unsigned numbers, the CC is set strictly based on adder output. We show the format
of a compare instruction below:

cmp sopdl,sopd2

In concept, sopd 1denotes the first source operand and sopd2 denotes the second
source operand. Recall that no more than one menlory direct address can be speci­
tied in the code.

cmp
cmp
cmp

CX, 10
bx,cx
cx, kount

;compare cx with 10.
;compare bx with cx.
;compare cx with M[ds:kount].

The first instruction compares cx with an immediate operand 10. The second
instruction compares two registers: bx and cx. The third instruction compares the
count register cx with a memory direct operand.

4.7.3 Unconditional Branches

The unconditional branch instruction tells the CPU to branch regardless. The
terms unconditional branch and unconditional jump are synonymous. The next
instruction is fetched from an address coded in the branch instruction. Because the
Pentium processor is a segment based machine, it supports near jump and far jump
as discussed below.
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A near jump Ump) instruction is three bytes long and has an opcode followed by
a two-byte relative offset with respect to IP after advancing. That is to say, the IP is
first incremented by three, then the offset is added to it. Therefore, the offset is rel­
ative to the next instruction right below the branch. The instruction is a near jump
that passes control within the segment. In contrast, the far jump instruction can pass
control out of the segment. The keyword far ptr is placed in front of the address to
ask the assembler for a different opcode. Note that the far jump instruction is five
bytes long - an opcode, an two-byte offset with respect to segment, and a two-byte
segment base address. Upon its execution, the offset is copied into the IP and the
base address is copied into the CS. Some jump instructions are shown below:

Loc
OOOC

0163
0168

L2:
L3:

Statement
jmp L2
dw 170 dup (0)
jmp far ptr L3

;near jump

;far jump

The left-hand side shows the Lac (location) count in bytes. Between the two jrnp
instructions a 340B memory block is defined. The first jrnp instruction passes con­
trol to L2 and the second jrnp instruction passes control to L3 as a far address for the
purpose of illustration. The run time code for both instructions are shown below, and
the transfer language describes the execution.

Code image Loc Statement
E90154 oooe jmp L2 ;ip~ 0154 + OOOF

{0163}
0000 ... OOOF dw 170 (0)
EA 0168 OCB1 0163 jmp L3 ;ip~ 0168

;cs~ OCB1
0168

The LHS shows the run time code iInage. After the opcode, the 16-bit logical
representation of the offset follows. As the jmp L2 instruction at location DODC in
the code segment is executed, the IP is increased by three - the length of instruc­
tion. Consequently, the IP becomes OOOF (OOOe + 3) pointing to the next instruction.
The block size is decimal 340 (0154 in hex) in bytes as coded in the instruction.
When executing the jmp instruction, the CPU adds this relative offset 0154 to the IP
after advancing, so the final answer is 0163 as the new IP. At this address, we see the
far jmp instruction which is five bytes long. Upon its execution, the IP becomes 0168
and the CS becomes OCB 1. Because the CS remains unchanged, we do a far junlp
within the same segment.
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4.7.4 Conditional Branches
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A conditional branch instruction tells the CPU to branch if the specified condi­
tion is true. That is, the execution of a conditional branch provides two possibilities.
First, if the condition is true, the CPU fetches the next instruction at the address spec­
ified in the branch. Otherwise, the CPU increases the IP by the length of the branch
instruction so that the next instruction in sequence is fetched. The opcode specifies
the condition and the test outcome decides whether or not to branch. There are two
types of conditional branch instructions, based on either signed compare or unsigned
compare. Signed compare means that both operandi are treated as signed integers
using twos complement notation, and unsigned compare means that both operandi
are treated as absolute unsigned integers. That is, if a negative integer in twos com­
plement is treated as an unsigned integer, it is greater than a positive integer because
its sign bit one is treated as the MSB. Testing the condition, the CPU knows to
branch or not, as explained in Chapter 7 which discusses microcode.

Some popular conditional jumps are jle Uump if less or equal) and jg Uump if
greater) for signed compare. The counterparts for an unsigned compare are jbe
Uump if below or equal) and ja Uump if above). Other instructions include je Uump
if equal), jne Uump if not equal), js Uump on sign), etc. The js instruction also means
jump on negative because the negative sign bit is one.

4.7.4.1 Addressabilify Problem

Like most of the microcomputers, a conditional branch instruction is two bytes
long, an opcode followed by an eight-bit address. This eight-bit field contains a
signed integer relative to the IP so the range is from -128 to +127. The addressabil­
ity problem exists if the branch address is out of range, as often flagged by the assem­
bler in a program. Fortunately, the unconditional jump instruction supports a longer
address, so we can use it to solve the problem as shown below:

Example 1:

jle bOOIO

Example 2:

jg skip0020
jmp bOOIO
skip0020:

The jle instruction passes control to bOO10 based on the less or equal condition. If
bOO lOis out of range, we must use two instructions and add a new label named
skip0020 pointing to the instruction below jmp. The first instruction is jg (jump on
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greater than) to skip0020 and the next instruction is jmp Uump) to bOO I0, which
really means less or equal.

4.8 LOOPING CONCEPT

There are four basic programming concepts: looping, indexing, subroutine, and
interrupt. Our goal is to study each one of them carefully in detail. Looping enables
a sequence of similar operations to be repeated under control as implemented in both
hardware and software design. A loop can be decomposed into four components as
shown below:

1. Initialization
2. Operation
3. Increment counter
4. Test and branch

The initialization is done once to set the initial value of all memory variables. One
of the variables is a counter that keeps track of the number of times the loop has been
through. The operation block is the body of the loop to be executed so many times
as determined by the initial counter. Usually, after each iteration, the counter is
increased by one. The last step is to test the counter and determine whether or not to
loop back. The above sequence is intuitive with the understanding that the counter
counts up.

A specially designed loop instruction counts down after each iteration. The
implied operand in the ex is decreased by one by hardware each time the loop
instruction is executed. If the ex is not zero, then control is passed to the address
coded in the instruction, otherwise the next instruction below the loop is executed.
Therefore, we initialize a loop count in the ex before the loop starts.

mov

bOOIO: int
loop

cx, 16

2Ih
bOOla

;loop count

;cx~ ex - 1
;IF (ex .NE. 0),
;THEN ip ..- bOOlO

After executing the loop instruction 16 times, the ex reaches zero so the next
instruction below the loop is executed. The loop instruction decreases the counter,
tests, and branches.

In a high-level programming language, a loop may have the test and branch step
right after initialization. Hence, if the condition is fulfilled, we execute the loop, oth­
erwise we exit. After the body, there is an unconditional jump to pass control back
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to step two so the condition is tested again. The parts are the same but the sequence
is slightly different as follows.

1. Initialization
2. Test and branch
3. Computation

4. Increment counter

5. Goto step two

4.8.1 Looping Examples

Let us use the loop instruction to construct a program that displays the string "Hello
world." a total of 16 times. We declare absolute symbols for the control characters.
The OS knows to interpret the character and prepares the screen memory for the dis­
play processor to interpret and execute. The modified program is listed as follows:

DSEG
CR
LF
BEL
msg

DSEG
SSEG

SSEG
CSEG

main:

bOOIO:

title
segment
equ
equ
equ
db

ends
segment
dw
ends
segment
assume
mov
mov
mov
mov
mov
int

h16 program

Odh
Oah
07
'Hello world.', CR, LF, BEL, '$'
;$ is the terminator

stack
80 dup (?)

cs:CSEG,ds:DSEG
aX,DSEG ;memory immediate
dS,ax
cX,16 ;loop count
dX,offset msg ;memory immediate
ah,09h ;display function code
21 h ;system call

loop
mov
int

CSEG ends
end

bOOIO
ah,4ch
21h

main

;terminate function code
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Because we declare a data segment named DSEG, the assume statement ds:DSEG
means that the data offsets are relative to OSEG. The mov instruction can not move
an immediate operand into the OS, so we perform two steps: move the base address
named OSEG to AX, and move AX to OS. Because the system call does not change
CX, AX, and OX, we can use a loop instruction as controlled by the CX. The sys­
tem call executes a total of 16 times, and each time the as interprets the function
code in AH and the address of string in OSI\DX. The two characters <cr><lf> mean
carriage return and line feed, so the as knows to skip a new line when placing the
ASCII text in screen memory for the display processor to interpret. The character
<bel> means bell, so the as rings the bell, Le., makes a sound through the speaker.
The "$" serves as an end delimiter that informs the as to quit the display. As a con­
sequence, the string "Hello world." is on screen in a single column 16 times. During
the 16th time, when the loop instruction is executed, the CX is decremented to 0, Le.
no more branch. Then, the next two instructions execute as a system call to ask the
as for termination, so control is not returned.

The second routine computes the summation of a series 1 + 2 + ... + 100.
Algebraically, the answer is (1 + 100) * 100 12, which is 5050 in decimal or 13ba in
hex. We can write a programming loop to compute the answer in a straightforward
way. In the first approach, the test and branch is placed as the last step. In the sec­
ond approach, the test and branch is moved right after initialization. We change the
code somewhat so a new address label is introduced as the exit address.

Approach 1:
sub aX,ax ;clear ax
mov cx,} ;initialize counter

again: add ax,cx ;ax contains the partial sum
inc cx ;increment counter
cmp cx,lOO ;check upper limit
jle again ;test and branch

Approach 2:
sub aX,ax ;clear ax
mov cx,l ;initialize counter

again: cmp cx,lOO ;check upper limit
je exitLoop ;test and branch
add ax,cx ;body of the loop

;and ax has the partial sum
inc cx ;increment counter
jmp again

exitLoop: ...
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4.9 MACROS

COMPUTER ARCHITECTURE

Recall that the opcode field in an AL statement may specify a macro call. A
macro is defined as a block of ASCII text, so macro processing really means ASCII
in, ASCII out. Since a macro call may generate many AL statements in the source,
macro is an open subroutine in system design. This novel concept is used in low­
level language, high-level language, and word processing applications. A macro
processor can be designed as a pre-assembly routine that perfonns two functions.
First, it processes the macro definition in the source. Second, it expands the macro
upon a call. A macro is defined only once, but it may be called many times. In gen­
eral, a macro should be short and is often written as a system call interface.

4.9.1 Macro Definition

A macro definition consists of three parts, header, body, and trailer, and it is usu­
ally placed in front of the program. For example, we may have a macro defined as a
system call to write string as shown below:

wrstr macro msg ;macro wrstr
mov dx, offset msg
mov ah,09h
int 21 h
endm

The first line is the header. In column one, we specify a macro name that is unique.
In this case, the name is chosen as wrstr (write string). In the opcode field, the key­
word macro is a pop (pseudo op). In the operand field, a list may specify zero, one,
or more dummy arguments separated by a comma or space. After the header, the
next three lines constitute the macro body. A macro body is usually comprised of
many AL statements. A dummy argument may appear anywhere in the body as an
ASCII string. In the above example, the second line has a dummy argument msg that
is to be replaced by a passing argument during a call. The trailer contains the pop
endm (end of macro).

The macro processor scans the opeode field in each AL statement for the key­
word macro. If it is found, the macro processor builds a list data structure to store
the definition.

4.9.2 Macro Expansion

The macro processor scans the opcode field for a macro name. After finding it,
the macro processor expands the macro definition block into the source. That is to
say, each macro call may generate many extra lines of AL code. During macro
expansion, each instance of a dummy argument in the macro definition block is
replaced by the argument respectively passed in the list. As the macro processor
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copies the macro definition block from the data structure statement by statement, all
the ASCII characters in a line remain unchanged, except for the dUlnmy arguments
which are replaced by the passing arguments. In the following, we see that the pass­
ing argument msgOO1 replaces the dummy argument in the macro body after the call.

+
+
+

wrstr
mov
mov
int

msgOOl ;nlacro wrstr
dx, msgOOI
ah,09h
21h

As the macro name wrstr is specified in the opcode field to indicate a call, three lines
are expanded into the source including any comment in the line. However, the first
line indicates a macro call that is only placed in the listing file but not in the source
file. In the listing file, each expanded line has a plus sign in column minus two to
indicate that the line is inserted due to macro expansion.

4.9.3 I/O System Calls

4.9.3.1 String I/O

We have discussed a basic system call to write string. In order to read a string
from the keyboard, the as requires a buffer format as explained below.

buf db 81 ;Maximum number of input characters
allowed

;including <cr>
db ? ;The OS stores the actual number of input

;characters excluding <cr>
str1 db 81 dup (?) ;buffer to store input characters

;including <cr>

mov dx, offset buf
mov ah,Oah ;read string ended with <cr> and echo
int 21h
mov ai, buf+l ;fetch the actual character count
mov ah,O
mov si, ax ;si contains the character count
mov str1[si], '$' ;replace <cr> with the $ sign as

;terminator
mov dx, offset str1
mov ah,09h ;write string
int 21h
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Assume that the user enters the string BOB<cr>.  After hitting the enter key, the
OS stores the string BOB<cr> in the buffer named str1 and stores the actual charac-
ter count 03 in the second byte.  If a null string is entered, the character count is 00
with only <cr> stored in str1.  In order to write the same string out, the character <cr>
is changed into a $ sign as a terminator.

4.9.3.2  Character I/O

System calls are provided to read one character from the keyboard or write one
character.  This design feature allows an application program to take immediate
action as soon as the user hits the keyboard.  The three basic character I/O system
calls are listed below.

1. mov     ah, 01h ;read one character in AL and echo.
int     21h

2. mov     ah, 08h ;read one character in AL,
;but don’t echo.

int     21h
3. mov     dl, ‘A’

mov     ah, 02h ;write one character in DL that 
;includes the $ sign.

int 21h

4.9.3.3  .com File

As an important concept, a .com (compact) file has no header.  That is to say,
every bit in the file is pure code.  When the file is loaded into memory, the code is
not modified at all.  Before executing a .com file, MSDOS also prepares a PSP in
front of the code and sets the CS, DS, SS, and ES all pointing to the PSP as shown
in Figure 4.12.  In addition, the OS sets the IP to 100 in hex and the SP to FFFE point-
ing to the last word in the segment.

There are three requirements to prepare a .com file.  First, the size of a .com file
code can not exceed (64K–256) bytes because the PSP occupies 256B in the segment
before the code.  Second, the code must not contain any segment base addresses.
That is to say, all segment registers point to PSP with no further change.  Relative
offsets in the code are fine because they require no modifications after loading.
Third, the entry point must be 100 in hex.  Because the assembler can not generate a
.com file directly, we rely upon a utility program named exe2bin (exe to binary).
This program converts a .exe file into an .com file and after conversion the .exe file
remains unchanged.  Note that the .exe file header contains information about the
relocatable addresses and this file has such information.  Thus, the exe2bin program
simply chops off the header as well as the 256B garbage code in the front, and writes
the pure code section into the .com file.
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Figure 4.12 Initial register settings for a .com file.

The following program computes the summation of the series 1+2+...+ 100 and
displays the result in decimal integer. In order to generate a .com file, the org state­
ment informs the assembler to set the LC (location count) to 100 in hex, which is the
size of the PSP as well as the offset of the first instruction. Therefore, the .exe file
has a 256B garbage code in the front. The structure below shows how to generate a
.com file:

;1. edit sumpgm.asm
;2. masm /1 sumpgm.asm {the option /1 requests listing. }
;3. link sumpgm.obj
;4. exe2bin sumpgm.exe sumpgm.com {conversion}
;5. sumpgm »sumpgm.asm

The symbol » is the redirect and appended operator so the as appends the out­
put to the source file instead. After execution, the output reads as:

;clear ax

cs:CSEG,ds:CSEG
100h
aX,ax
ex,l

org
sub
mov

main:

;The summation of the series 1+2+..+100 is 5050 in decimal.
title sum program

CSEG segment
assume
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again: add ax,cx ;ax contains partial sum in a loop
inc ex ;increment counter
cmp cx,lOO ;compare with upper limit
jle again ;loop back if not 100 times
mov di,offset answer+3 ;points to the Jast char
mov bx,lO ;base 10

bOOIO: ;convert binary to decimal ascii
cwd ;convert word to double
div bx
add dl,30h ;add bias to make ASCII
mov [di],dl ;store decimal ASCII in the msg
dee di
cmp ax,O
jne bOOIO ;loop if quotient .NE. O.
mov dX,offset msg ;ds:dx points to string
mov ah,09h ;display function
int 21h ;system call
mov ah,4ch ;terminate function
int 21h ;system call

msg db ';The summation of the series 1+2+..+ 100 is'
answer db 4 dup (?)

db ' in decimal.$'
CSEG ends

end main

4.10 SUMMARY POINTS

1. An assembly language statement may represent a machine instruction.
Because of this one-to-one relationship, assembly language is referred to as
the machine language.

2. If a program has two parts, one may be written in high-level language and
the other in assembly code. The linker can combine the two object modules
into one executable module.

3. Assembly code may also be inserted in a high-level language program, a
phenomenon known as in-line assembly.

4. An assembly statement may be a machine op, pseudo op, or macro call.
5. A machine op is always translated into an executable instruction, a pseudo

op is not, and a macro call is usually expanded into many assembly state­
ments grouped as a macro.

6. An address expression may be specified in the operand field and the assem­
bler interprets and evaluates the address expression into a single numeric
address in binary after assembly.
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7. An address constant in a program means that the assembler prepares an
unsigned integer in memory as an address or pointer to another memory
location containing an operand.  

8. The three basic addressing modes are memory immediate, memory direct,
and memory indirect.

9. Any application program can be decomposed into four basic instructions:
load, store, subtract, and conditional branch.

10. There are two special instructions, adc (add with carry) and sbb (subtract
with borrow), that are used to perform multiple precision addition, subtrac-
tion, multiplication, and division.

11. A logical instruction performs a bit-wise logical operation in that each bit in
the operand is treated as an independent logical variable.

12. The shift instructions are used to shift an operand in a register or memory.
The operand size may be eight bits, 16 bits, or 32 bits, and the shift count
may be an immediate operand coded in the instruction or a register direct
operand.

13. The four flag bits C, Z, S, and O in the F register are set after executing an
instruction, e.g., arithmetic, shift, or logical, and they collectively constitute
the CC (condition code).

14. In design, the CPU tests the CC based on the opcode and decides whether or
not to branch.  The two types of conditional branch instructions are based on
either signed compare or unsigned compare.

15. Any programming loop can be decomposed into four parts: initialization,
computation, increment counter, and test and branch.

16. A macro is an open subroutine.
17. A .com (compact) file contains nothing but pure code.

PROBLEMS

1. Name eight 32-bit working registers of a Pentium processor.
2. What are the default rules to use CS, DS, or SS to form the 20-bit memory

byte address before retrieving the operand in memory?
3. What default segment register should be used if BP is specified as the base

pointer in the instruction?
4. What are the three possible assembly language statements?
5. What is an address expression coded in the instruction?  How does the

assembler handle it?
6. What is an address constant in memory?
7. What are the three basic addressing modes?
8. What is the difference between register direct and memory direct?
9. What are the four basic ones machine instructions?
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10. Explain why the C (carry) bit is really a borrow after executing a subtract
instruction.

11. If we need to toggle the LSB in an operand each time in a loop, what logi­
cal instruction can be used to accomplish this goal?

12. What is the difference between ROL (rotate left) and RCL (rotate with carry
left)?

13. What are the four components in a programming loop?
14. What is the A (auxiliary carry) bit in the F register for?
15. Explain why the je (jump equal) and jz (jump zero) instructions are exactly

the same.
16. Because a machine op also passes information to the assembler, do you

agree that pseudo op is a more meaningful term than assembler directive?
17. What are the three requirements to write a .com program?
18. On an IBM PC, click the icon sequence Start-Program-command Prompt to

see the window. Modify the minLasm program to conform with .com for­
mat. First, the org IDOh statement is added. The first two instructions are
no longer needed so the minLcom file has 24 bytes. After masm, link,
exe2bin, we enter dir minLcom to see the file size. A new linker may pro­
duce a .com file directly if option It (tiny) is specified as follows:

link It minLobj

CSEG

start:

msg
CSEG

title MinLcom has 24 bytes
segment
assume cs:CSEG, ds:CSEG
org 100h
mov dx, offset msg ;memory immediate
mov ah, 09h ;display function
int 21 h ;system call
mov ah, 4ch ;system termination
int 2Ih
db 'Hello world.$'

ends
end start ;entry point

19. In the command window, type help or ? followed by a command name for
help about edit, debug, etc. Type debug minLcom to see the debug prompt.
Enter a debug command, e.g., r (register), u (unassemble), t (trace), etc.
Single-step the execution of each instruction.

20. Because the loop instruction does not change the condition code in the F reg­
ister, we can use it to control a loop that performs multiple precision arith­
metic. Write an AL loop in virtual 8086 mode to subtract the 64-bit integer
data2 from the integer datal and store the result in a quad word named
answer. Before the loop starts, issue clc to clear the carry flag. Inside the
loop, use sbb instead of sub. What is the logical representation of the result,
namely M[ds: datal] - M[ds: data2] <63:0>?
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data1     dd     00008001h
dd 0000ffffh

data2     dd    00008002h
dd 0ffff0000h

answer    dq     ?

21. Write an AL program to read a string from the keyboard.  Use indexing to
scan the string and write a message to say whether or not it is a palindrome.
Some palindromes are shown below:

ABLE WAS I ERE I SAW ELBA
MADAMIMADAM
UHU UHU ... UHU UHU
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CHAPTER 5

Computer Architecture ­
General Features

5.1 ADDRESSING MODES

The instruction set repertoire depicts the architecture of a computer. Besides
opcode, there are two major issues in designing an instruction: first, how many
addresses are placed in an instruction, and second, where to find each operand. Thus,
an instruction contains an opcode along with an addressing mode and/or addresses.
That is to say, the opcode tells the CPU what to do and the addressing mode tells how
to find the operand. An instruction may require no operand, e.g., clc (clear carry),
stc (set carry), nop (no operation), etc. An instruction may perform a unary opera­
tion that requires only one operand, or an instruction may perform a binary operation
that requires two operandi. Depending on the type, instructions may have different
length. Take a unary operation as an example. The format of such an instruction has
an opcode and one addressing mode, as shown in Figure 5.1a. The instruction
becomes longer if it also contains a memory address as shown in Figure 5.1 b. The
addressing mode can be thought of as an eop to pass additional information to the
CPU. In practice, the addressing mode can be explicit or embedded as part of the

( a) I_o_p_co_d_e_--II__A_d_d_r_rn_O_d4

( b) l~o_P_c_o_d_e_-1-I_A_d_d_r_m_o_d1Memo ry add res s

Figure 5.1 Unary op instruction format: (a) opcode and addressing mode and
(b) opcode, addressing mode, and memory address.
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main op.  Depending on its addressing mode, a shorter instruction may have its
operand in memory, while a longer instruction may have its operand elsewhere.  As
the addressing mode specifies where the operand is found, we may have the basic
memory immediate, memory direct, and memory indirect.

Each one of the three basic addressing modes may be coupled with indexing,
which was the second major programming concept developed in the second genera-
tion computers.  That is, a hardware register is used to modify the memory address
in an instruction.  In other words, the hardware register is added to the address in the
instruction to form the final address.  Because the hardware register may contain a
relative index, it is called the index register.  Conceptually, more addressing modes
can be derived by coupling indexing with memory immediate, memory direct, or
memory indirect.

5.2  INDEXING

The indexing scheme was first introduced to work with memory direct, so EA
(effective address) is computed as the sum of a register and the address coded in an
instruction as follows:

Effective address    = address coded in the instruction
+ content of an index register, if specified

The operation is done by the adder at run time, and the sum bits are placed on the
address bus to fetch the operand from memory.  Concerning software, the instruction
contains a base address and the hardware register contains an index or offset.  The
effective address points to the operand in the middle of a memory block as shown in
Figure 5.2a.

The base address points to the memory block, and the index register contains an
offset pointing to an entry below the base.  Since a memory block is also called an
array in high-level programming languages, an instruction using memory direct with
indexing can access the entry in an array.  Each time the index register is changed in
a loop, the effective address is also changed.  Therefore, the same instruction can
access a different entry in an array each time it is executed.  In other words, the mem-
ory direct addressing mode with indexing allows an instruction to modify the mem-
ory address of an operand.  Henceforth, a loop can be written to process all the entries
in an array as shown below:

;A loop to store 1, 2, 3,.., up to 100 in a memory block named
;intArray to mean integer array.
. . .
intArray dw  100 dup (?)
. . .

mov di, 0 ;initial index
mov ax, 1 ;counter
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b0010:   mov      intArray[di], ax ;store counter in array
inc ax ;increment counter by 1
add di, 2 ;increment index by 2
cmp ax, 100
jle b0010

. . .

COMPUTER ARCHITECTURE—GENERAL FEATURES 167

Instruction register

Index register

Base address

Memory

index

Operand

(a)

Instruction register

Base register

Memory

index

Operand

(b)

Opcode

Opcode

Index

Figure 5.2 Hardware index registers: (a) the register contains an index and (b) the 
register contains a base address.
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This loop stores integers from 1 to 100 in an array named intArray from top to bot­
tom in ascending order. The mov instnlction uses the OJ index register to change the
effective address from time to time as the loop is executed. After the store operation,
the count in AX is increased by one and DJ is increased by two because each word
is two bytes long. As the loop is stepped through, the count in AX is stored into a
different word in the array. The following structure shows the use of a loop instruc­
tion to cut the code short:

mov di, offset intArray + 198 ;di points to the last
;word {Note I }

mov cx, 100 ;down counter {Note 2}
bOOIO: mov ldi], cx ;store count from bottom to top

;{Note3}
sub di,2 ;decrement di by 2 {Note 4}
loop bOOIO ;{Note 5}

• Note 1: The source operand is memory immediate and the destination
operand is register direct. After execution, DJ contains an offset (intArray
+ 198) pointing to the last word in the array named intArray. The + oper­
ator is interpreted by the assembler at assembly time, and the sum result is
placed in the code.
Note 2: The source operand is memory immediate and the destination
operand is register direct. After execution, the ex count register contains
100 as the initial integer to be stored at the bottom of the array.
Note 3: The mov instruction stores ex in the memory location whose off­
set is in the destination index register DJ.
Note 4: The sub instruction decreases DJ by two so the next time the same
instruction is executed, the effective offset will be two bytes less.

• Note 5: The loop instruction decreases ex by one, and then performs the
test and branch function. If ex is not zero, control is passed to the begin­
ning of the loop. As the same mov instruction executes the second time, it
will store 99 into the second entry from the bottom. That is to say, the loop
stores all the integers 100, 99, 98, ... , and zero in reverse order. Upon exit,
the integers are correctly stored in the array in ascending order.

If memory direct is used with indexing, many variations can be derived in regard
to the usage of a register. An index stored in the register is called indexing. A base
address is stored in the register is called based addressing. An index register specified
as PC that contains the address of the instruction currently under execution is called
relative addressing. Nonetheless, from a hardware viewpoint, a register is a bunch of
flip-flops. From the software viewpoint, a register can be used to store data, an index,
or a base address. If a register is used to store data or an address, it is a GPR (general
purpose register).26 In coding, the three address registers DI, SI, and BX are all inter­
changeable. It is also possible to use BP as an index register to access a data segment
provided that a DS segment prefix override is specified (OS:BP). There are many
variations derived from indexing as explained in the following sections.
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5.2.1 Based Addressing

169

A hardware register containing a base address, as shown in Figure 5.2b, is known
as based addressing. Therefore, the register is referred to as the base register. In
hardware design, there is no difference between an index register and a base register.
However, there is a subtle difference between indexing and based addressing in soft­
ware design. If our goal is to store the integer 100 into the last word of a 1DOW block,
we can use either approach. The first approach is to use indexing as shown below:

mov di, 198 ;di contains 198
mov intArray[di], 100

The first instruction places 198 in the OJ, and the second instruction stores 100 in a
word that is 198 bytes below the base address of intArray. The second approach is
to use based addressing as follows:

mov di, offset intArray
mov 198[di], 100

Because the goal is to add the base and the offset, it does not matter where they are
positioned. The first approach is to place the base address in the instnlction and the
index in a register. The second approach is to place the index in the instruction and
the base address in a register. As far as the hardware register 0 I is concerned, there
is no difference between an index and a base.

5.2.2 Relative Addressing

When the PC is used as an index register, relative addressing is employed, as the
EA (effective address) is computed as the sum of an offset in the instruction and the
PC. If the relative addressing mode is used to fetch an instruction or an operand, the
code is relocatable. That is, the instruction can be positioned anywhere in memory
and the address field in the instruction does not need be modified. Microcomputers
usually support a relative address in a conditional branch instruction. For example,
the conditional branch instruction on an 8086 uses one-byte opcode followed by one­
byte relative offset. During adding, this relative address is sign extended so that the
offset must range from 127 to -128 with respect to the IP. If the condition is true, the
relative offset is added to IP, else IP is increases by two. The assembler will flag an
addressability error if the address is out of range.

5.2.3 Register Direct vs. Register Indirect

The term direct refers to a group of bits accessed only once directly with respect
to a given reference point. Therefore, in addressing mode, register direct and jump
direct are similar, but memory direct is different. The memory direct addressing
mode means that the address in an instruction directly points to the operand in mem-
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ory. On the other hand, the register direct addressing mode means that the register
address coded in the instruction directly points to the operand in a register. In other
words, register direct means an operand in the register. Memory ·access is memory
immediate with indexing and the address field is zero, which may be implied. In
concept, an offset zero is added to an index register to make the effective address.
Nonetheless, if addressing mode bits are used to specify register direct, the offset
zero is implied, so it can be omitted from the instruction. Consequently, the add
operation is also bypassed because it is not necessary.

Indirect means that the bits, fetched the first time with respect to a given refer­
ence point, constitute an address pointing to the operand. Using memory indirect as
an example, it takes more than one memory cycle to fetch the operand. In contrast,
register indirect means that a hardware register contains the address of an operand in
memory. Treating the register as a reference point, two accesses are performed to
obtain the operand. The first time, the register is accessed to fetch the operand
address, and the second time, the memory is accessed to fetch the operand.
Nevertheless, only one memory cycle is involved, so register indirect really means
memory direct with indexing, and the address is zero. Again, if addressing mode bits
are used to specify register indirect, the address zero does not need to be part of the
instruction. As a result, the add operation is also bypassed, as it is deemed unneces­
sary. Needless to say, register indirect is a variation of indexing that is used to access
individual elements in an array. For example, a mov instruction using register indi­
rect stores the integer 100 into the last word of a 100W array named intArray, as
shown below:

mov di, offset intArray + 198

mov [di], 100 ;same as mov O[di], 100

The first mov instruction has the source operand specified as memory immediate
(intArray + 198) and the destination operand as register direct. After execution, the
DJ contains an offset pointing to the last word in intArray because the + operator is
interpreted by the assembler at assembly time. The second mov instruction has the
source operand specified as memory immediate and the destination operand as reg­
ister indirect. As a result of its execution, the integer 100 is stored into the memory
location identified by the DI. By placing an offset zero in front of the index register
DI, we obtain memory direct with indexing.

5.2.3.1 Jump Direct vs. Jump Indirect

The jump direct instruction causes confusion because the following instruction
is treated as a memory direct operand. In terms of execution, the address field in the
IR is copied into the PC. That is, the operand is immediately available as part of the
IR. Therefore, its addressing mode is really memory immediate. Similarly, jump
indirect means that the instruction contains an address in memory where the address
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of the next instruction is stored. In terms of execution, the addressing mode is really
memory direct because it takes one memory cycle to obtain the branch address in the
PC. Because of that, PCs and other mainframes all support register indirect and jump
indirect, but not memory indirect.

5.2.4 Double Indexing

When memory direct addressing mode is specified, it is sometimes desirable to
specify two index registers, a process known as double indexing. That is, the EA is
computed as the sum of three bit strings as shown below:

Effective address =address in the instruction
+ content of the first index register if specified
+ content of the second index register if specified

Add the first register to the address, and then add the second register to the result to
obtain the final effective address. Two run-time adder cycles are needed to compute
the EA. Double indexing is attractive to process an array of records (Le., structures).
If one register is called the base and the other register is called the index, we have
what is known as based-indexing, which is just a different name for double
indexing.

5.2.4.1 Based·lndexing

Based-indexing becomes important when we need to process an array of many
heterogeneous records and each record contains many different data types. For
example, a personal record may consist of name, age, salary, hiring date, etc. Given
a name, the person's age and salary may be displayed by a search program using
based-indexing. As regards hardware, there is no difference between the two index
registers. As far as software is concerned, we can program the two registers differ­
ently as long as the effective address remains the same. We code two examples to
illustrate the concept. Assume that each record has a name field of four characters
and an age field of 16 bits (short integer), and we intend to fetch the age of the third
record into AX as shown below:

ageRecord db 'Dave'
dw 17
db 'Mary'
dw 21
db 'Max'
dw 91

-----Approach 1: Array base address in the instruction.
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mov bX,6*2 ;bx ..- oooe {record base}
mov si, 4 ;si ..- 0004 {record index}
mov ax, ageRecord[bx + si] ;ax =D05b

-----Approach 2: Array base address in bx.
mov bx, offset ageRecord
mov si,6*2
mov ax, 4[bx + si] ;ax =D05b

Because each record has two fields, a four-character name followed by a two­
byte age, the record length is six bytes. In approach 1, the base register contains an
offset (6*2) pointing to the record, and the index register contains an offset pointing
to the age field in the record. After interpreting the multiply (*) operator, the assem­
bler places the result DOOC in the address field as memory immediate because it is a
numeric number. The array base is coded in the third mov instruction. As shown by
the pointers in Figure 5.3a, the instruction contains the array base, the base register
contains a record base, and the index register contains a record index. In approach
2, we rearrange the pointers differently as shown in Figure 5.3b. That is, the instruc­
tion contains a record index, the base register contains the array base, and the index
register contains a record base.

5.2.5 Auto-Indexing

Since indexing is used to modify the memory address, we can add the capability
to modify the index register as part of the execution. One attractive feature is pre­
decreasing, Le., to decrease the index register by the length of the operand before
accessing an operand in memory. The other is post-increasing, Le., to first access an
operand in Inemory and then increase the index register. Both addressing modes are
classified as auto-indexing because the index register is automatically modified. The
value to be decreased or increased is usually determined by the length of the operand.

In the case that we implement a stack in memory, the push and pop operations
uses the auto-indexing concept in that SP (stack pointer) is the index register. That
is to say, during a push operation the index register is first decreased before writing
an operand into memory. During a pop operation, SP is increased after reading an
operand from memory.

5.2.6 Pre-Indexing vs. Post-Indexing

Assume that a computer supports memory indirect addressing coupled with
indexing. That is to say, the CPU performs two extra operations before accessing an
operand: one is memory indirect and the other one is indexing. However, there are
two design options: indexing before memory indirect or indexing after memory indi­
rect. The former is known as pre-indexing and the latter is known as post-indexing.
Either addressing mode requires two memory cycles because the instruction contains
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Instruction register
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Figure 5.3 Based-indexing: (a) the array base address is in the instruction and
(b) the array base is in the base register.
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an indirect address. Let us read an operand in memory using pre-indexing. That is,
indexing is done before retrieving the direct address in memory as shown in Figure
5.4a. After adding the indirect address coded in an instruction to the specified index
register, the EA (effective address) is placed on the address bus to fetch a second
direct address in memory. Thus, after the first read cycle, the direct address of an
operand is fetched into the CPU. By placing the direct address on the address bus
during another read cycle, the CPU fetches the operand in memory.

Instruction register

Index reg

First address

Memory

......
~

.- Second address

~

Operand

(a )

Instruction register

~_-+-_F_i_r_st_a_d_d_r_es_s-----'

Memory

~

- Second address-Index register

I T I
+-~

Operand
1-----

(b)

Figure 5.4 Memory indirect with indexing: (a) pre-indexing and (b) post-indexing.
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Post-indexing means that indexing is performed after fetching the direct address
in memory as shown in Figure 5.4b.  Let us read an operand in memory using post-
indexing.  The instruction contains an indirect address pointing to a second direct
address in memory.  After the first memory read cycle, the second direct address in
memory is fetched into the CPU.  Now, the CPU performs indexing by adding the
index register to it to form an EA.  By placing the EA on the address bus during
another memory read cycle, the CPU fetches the operand in memory.

In conclusion, either pre-indexing or post-indexing can be specified as the
addressing mode.  For example, the 6502 supports pre-indexing, the Sigma 7 com-
puter supports post-indexing, but the VAX machine supports both pre-indexing and
post-indexing.51,72 As indexing is as powerful as memory indirect, the future trend
is not to support memory indirect because the extra central memory cycle is slow.

5.3  ADDRESSING MODES OF AN 8086

An 8086 processor supports a variable instruction length ranging from 1 byte to
7 bytes while a Pentium supports a superset so its instruction length varies from 1 to
11 bytes.  In general, an instruction has one byte opcode followed by an eight-bit
addressing mode, e.g. memory direct, memory immediate, register direct, register
indirect, indexing, and double indexing.  The processor does not support memory
indirect.  There are exceptions that the addressing mode is embedded into the
opcode.  As an example, the opcode to push stack or pop stack implies auto-index-
ing.  Often times, one or more operandi can be implied in an instruction, so the code
is short.  However, they are some restrictions in coding as explained below.

1. An instruction can not contain more than one memory direct address so that
at least one source operand must be in a register or as immediate.

2. A mov segment register instruction can not take an immediate source
operand.

3. A multiply or divide instruction can not take a source operand that is mem-
ory immediate.

Note that the same set of code may support 16-bit operations for 8086 or 32-bit
operations for Pentium.  When a C compiler is used to do program development
work, debugging tools can be used to disassemble the run-time code in memory.
Knowing the target instructions is helpful, therefore, we study the layout of 8086
instruction set.

5.3.1  Instruction Format of an 8086

As hardware design is concerned, the 8086 instructions are divided into 4 groups
with few exceptions.  A unary operation instruction requires one operand but a binary
operation instruction requires two operandi.  However, if an operand is implied, it has
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no address specified in the instruction.  As shown in Figure 5.5a, each instruction in
the first group has only one-byte opcode because one or two operandi may be
implied.  The different fields in the opcode are defined in Figure 5.5e.  Single opcode
instructions include nop, clc (clear carry), stc (set carry), cbw (convert byte to word),
cwd (convert word to double), in (input), out (output), etc.

5.3.1.1  Hardware First Operand vs. Second Operand

In a binary operation, the instruction needs two operandi.  The location of the
operand is determined by the addressing mode or by the opcode if the operand is
implied.  Specifically, the opcode specifies the second operand and the addressing
mode primarily specifies the first operand.  Therefore, the ordering, first or second, is
defined by physical hardware.  Recall that the source operand one (sopd1) in the
instruction is logical, and it also serves as the destination.  But, in the instruction spec,
sopd1 may or may not be the hardware first operand.  In fact, either the hardware first
operand or the hardware second operand can be specified as the destination.

Each instruction in the second group has one operand specified as shown in
Figure 5b.  This group includes all the unary op instructions plus the multiply and
divide instructions.  Even though such an operation is binary, only one source
operand is specified because the other source operand is accumulator as implied.

The one-operand instruction has a length of up to five bytes, that is jointly
decided by the opcode and the addressing mode.  The first byte is a segment override
prefix that is optional.  If specified, the two-bit seg (segment) field specifies the over-
ride segment base register as defined in Figure 5e.  The second byte contains the
seven-bit opcode followed by the W (width) bit.  If W is one, it is a word; otherwise
it is a byte.  The third byte has the two-bit mod (mode), three-bit eop (extended op),
and three-bit R/M (register/memory).  The two-bit mod determines whether the
operand is in a register or in memory.  If the mod is 11, the operand is in a register,
so no displacement field is needed.  In addition, the three-bit R/M along with the W
bit specifies a register address, 16-bit or 8-bit.  If Mod is not 11, then the operand is
in memory.  Consequently, the fourth and fifth bytes are needed to store its displace-
ment, Disp-Lo (displacement low-order byte) and Disp-Hi (displacement high-order
byte).  If the mod is 00, the operand is in memory with no indexing.  Finally, if Mod
is 01 or 10, it is memory direct with indexing and the three-bit R/M further specifies
single indexing or double indexing.  Because only one operand is specified in the
instruction, there are three spare bits left as the eop.  That is, the seven-bit opcode
and the three-bit eop jointly define an unique operation, such as not, inc, dec, neg,
mul, imul, div, idiv, etc.

Figure 5c shows the format of a two-operand instruction whose second operand
is register direct as determined by the opcode.  As usual, the first byte is the segment
override prefix which is optional.  The second byte has a six-bit opcode followed by
two bits: D (destination) and W.  The D bit specifies which of the two operandi is the
destination.  If D is one, the hardware second operand is the destination; otherwise
the first operand is the destination.  The third byte has the two-bit mod, three-bit reg,
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a) Opcode

b)

c)
Seg001 110 Opcode

Opcode

W

W

Mod reg R/M

Disp-Lo Disp-Hi

(optional) (optional)

(d)

e) W D S

0:  Data-Lo, Data-Hi
1:  Data-Lo sign ext.

0:  Byte   
1:  Word

0: 1st opd is destination
1: 2nd opd is destination  

Seg Reg W=0 W=1 Mod

00:  ES
01:  CS
10:  SS
11:  DS

000    AL    AX
001    CL    CX
010    DL    DX
011    BL    BX
100    AH    SP
101    CH    BP
110    DH    SI
111    BH    DI

OO:  and R/M = 110
     The 1st opd is memory
     direct with no indexing.

11:  The 1st opd is register
     direct whose address
     is in R/M, same as Reg.

Mod

The 1st opd is memory direct
with indexing.

00:  Disp is implied 0.

R/M    Effective disp

000    [BX]  +  [SI]  +  Disp
001    [BX]  +  [DI]  +  Disp
010    [BP]  +  [SI]  +  Disp
011    [SP]  +  [DI]  +  Disp

Seg001 110 Opcode W Mod Eop R/M

Disp-Lo Disp-Hi

(optional) (optional)

Seg001 110 Mod Eop R/M

Data-Lo Data-Hi

(optional)

D

S

Disp-Lo Disp-Hi

(optional) (optional)

     {Register indirect [BP]
      is not allowed.}
01:  Disp is Disp-Lo sign ext.
10:  Disp is Disp-Lo, Disp-Hi

100    [SI]  +  Disp
101    [DI]  +  Disp
110    [BP]  +  Disp
111    [BX]  +  Disp

(optional)

(optional)

(optional)

Figure 5.5 Instruction format of the 8086: (a) opcode only, (b) 1-operand, (c) 2-operand 
and the second operand is register, (d) 2-operand and the second operand is
constant, and (e) field definitions.
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and three-bit RIM. The two-bit mod decides whether the first operand is in a regis­
ter or in memory. If the mod is 11, the first operand is register direct so no displace­
ment is needed. Consequently, the three-bit RIM along with the W bit specifies a reg­
ister address, 16-bit or eight-bit. If Mod is not 11, the hardware first operand is in
memory so the fourth and fifth bytes are needed to store its displacement, Disp-Lo
and Disp-Hi. If the mod is 00, the first operand is memory direct with no indexing.
If the mod is 01 or 10, the three-bit RIM further specifies single indexing or double
indexing. Because the second operand is a register, the three-bit Reg along with the
W bit specifies a register address, 16-bit or eight-bit.

Figure 5d shows the format of a two-operand instruction whose hardware second
operand is a constant (Le., memory immediate), so its hardware first operand is the
destination. The first byte is the optional segment override prefix. The second byte
contains a six-bit opcode followed by t~o bits: S (short) and W. Note that S is mean­
ingful only if W is set to one. If S is zero, the instruction contains the full 16-bit sec­
ond operand, Data-Lo (data low-order byte) and Data-Hi (data high-order byte). If
S is one, the instruction contains only Data-Lo and its sign is extended into its high­
order byte during a 16-bit operation. The third byte is the two-bit mod, three-bit eop,
and three-bit RIM. The two-bit mod and three-bit RIM jointly define the addressing
mode of the hardware first operand just like the format in Figure 5b. If the two-bit
mod is not 11, the hardware first operand is in memory, so two more bytes are needed
to store its displacement, Disp-Lo and Disp-Hi.

5.3.2 Destination Bit

If the D bit in an instruction is one, the hardware second operand is the destina­
tion; otherwise the first operand is the destination. This means that the hardware
operand merely provides a reference point in the spec - either operand can be spec­
ified as the destination. To further study the hardware operand concept, let us try to
encode a register transfer instruction. Because either register can be specified as the
first operand with the D bit set, we obtain two possible images as shown below:

Code image Statement

88 FO mov si, ax ;si .- ax {same as 89 C6}

The 16-bit code image (8B FO in hex) can be further broken down into bits as shown
below:

10001011 11 110000

IJ ~Od ~I lx (1st opd)
D (2nd opd is the destination)

If the D bit in the instruction is one, the second operand is the destination. The six
leading bits specify that the second operand is a register whose address indicates SI.
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The mod field 11 tells that the first operand is in a register whose address indicates
AX.  In the transfer language, AX is the alias for R[0] and SI is the alias for R[6].
The same function, however, can have a different code image (89 C6) as follows:

1 0 0 0 1 0 0  1 1 1 0 0 0 1 1 0

W Mod AX SI (1st opd)
D (1st opd is the destination)

Note that the D bit is zero in the opcode byte, so the first operand is the destination.
As a consequence, the two register addresses are interchanged in the second byte to
achieve the same function.  

5.3.2.1  32-bit Encoding Extensions

When a Pentium processor operates in 32-bit operand mode, some of the encod-
ing extensions are described below:

1. If the W bit is set, the operand length is 32 bits
2. If the S bit is set, sign extend the immediate data to 32 bits.
3. For disp and immediate data, each field can go up to 32 bits.  
4. For memory operand addressing, if the R/M field is three-bit 100, another

byte named SIB (scaled index base) is inserted as an extended addressing
mode.  As a consequence, not only can each of the 32-bit accumulators be
specified as an index register, but double indexing is allowed as well. 

5.4  SUBROUTINE LINKING

A subroutine is a group of instructions that performs a particular function, e.g.,
sorting, searching, etc.  The calling routine issues a call instruction to pass control to
the subroutine.  After the subroutine completes its execution, it issues a return instruc-
tion to pass control back to the calling routine as shown in Figure 5.6.  The terms sub-
routine, routine, procedure, and subprogram are all synonymous.  Concerning logic
flow, control first goes to the subroutine and returns to the calling routine in a close
loop.  This is the closed subroutine, the third major programming concept.
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Figure 5.6 Subroutine linking.
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The call and return instructions are special hardware design features. A call
instruction is similar to an uncondltional branch except the CPU saves a return
address somewhere and knows how to fetch it upon executing a return instruction.
That is, while executing a call, the CPU saves the return address and passes control
to the subroutine. When the subroutine is completed, a return instruction is executed
to pass control back to the calling program. In sum, several key concepts are listed
in the following:

1. A subroutine may be called many times from different locations in the main
program.

2. A subroutine may have multiple return instructions and each return means
that the processing of a specific case is completed.

3. A subroutine is usually placed after an unconditional branch instruction, a
return instruction, or a system termination call.

4. If working registers are modified by the subroutine, the subroutine may save
the registers before modification and restore the registers before return.

In practice, the return address is stored in one of two locations as listed below:

• Stack
• Register

ComlTIonly during a call, the return address is pushed on the stack. Thus, at the
end of the subroutine a return instruction can pop the return address off the stack into
program counter. As an alternative, the return address is placed in a register and the
return instruction becomes a branch register indirect.26AO

Near Call and Near Return
There are two types of call on a pc: near and far. A near call is an intrasegement

call to pass control within a segment. A far call is an intersegement call to pass con­
trol to a different segment. That is, the CS register remains the same in a near call,
but changes in a far call. Let us study the run-time code of a near call on an 8086 as
given below:

Code image Loc Statement

E8 32 00 003A call convert ;call near ptr convert

where convert is the symbolic address or entry point of the subroutine declared in the
same segment. The near call instruction has a one-byte opcode followed by a two­
byte relative offset with respect to the IP. Before executing the call, assume that the
IP contains an offset 003A pointing to the first byte E8 in the instruction. After inter­
preting the three-byte instruction, the IP is increased by three to become 0030, the
return address pointing to the next instruction after the call. The second byte of the
code image is 32 which is the low-order byte of the offset and the third byte is 00,
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the high-order byte. The execution of the call instruction involves save return
address and branch. First, push the return address on the stack. Second, add the rel­
ative offset to the IP to form the branch address. The hardware steps are described
by the transfer language below:

;sp <- sp - 2
;M[ss:sp] <- ip
;ip <- ip + 0032

{TOS is 003D}
{convert is 006F}

Obviously, the address or entry point of convert is 006F (0030 + 0032). There
are many variations of the ret (return) instruction, and each one has a different
opcode even though the mnemonic is the same. For example, a pseudo statement is
used to declare a procedure, near or far. For a near procedure, the ret statement is
translated by the assembler into a near ret instruction as shown below:

Code image Statement
C3 ret ;near return

;ip <- M[ss:sp]
;sp <- sp + 2

The near return instruction has one-byte opcode C3, and upon its execution the return
address is popped into the IP.

Far Call and Far Return
A far call instruction is longer in that the opcode byte 9A is followed by a far

branch address as shown below:

Code image
9A6FOOC613

Statement
call convert ;call far ptr convert

The far call pushes the far return address first and then branches. Because a far
address is represented by four bytes: a two-byte offset followed by a two-byte seg­
ment base, more hardware steps are executed, as shown below:

;sp <- sp-2
;M[ss:sp] <- cs
;sp <- sp-2
;M[ss:sp] <- ip
;ip<-006F
;cs <- 13C6

The offset in a far call instruction is an offset with respect to the segment base with
the low-order byte positioned before the high-order byte. Consequently, a far ret
instruction pops the far return address off the stack, as shown below:
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Code image Statement
CB ret

5.4.1 Argument Passing

;far return
;ip <- M[ss:sp]
;sp <- sp + 2
;cs <- M[ss:sp]
;sp <- sp + 2

COMPUTER ARCHITECTURE

A subroutine is powerful in that many arguments can be passed from the main
routine to a subroutine. Take sorting as an example; if a different array address is
passed to the sort subroutine, the integers in an array at that particular address can be
sorted. Two questions must be answered. First, where should the arguments be
stored? The answer is; push an argument on the stack or store it in a register. Second,
in what form should the argument be passed? The answer is; pass the bit string value
itself or the address of the bit string. The former is also known as call by value, and
the latter is also known as call by reference or address. Passing the arguments and
issuing the call instruction are known as the calling sequence. Deciding the type or
ordering of arguments in a calling sequence is a software design issue.

5.4.2 Call by Value

If the bit string of an argument is pushed on the stack or stored in a register before
issuing the call instruction, it is a call by value. Because each constant also occupies
a memory location in the calling routine, the subroutine being called can not change
the constant in the main routine if it is passed by value. In order to pass an array by
value, the entire array needs to be pushed on the stack, which also means overhead.
This is especially true if the array is very large. To solve the problem, we can have
a call by reference, as introduced next.

5.4.3 Call by Reference

If the address of a data structure is passed to the subroutine before the call
instruction, it is a call by reference (address). The data structure can be an integer,
an array, or a structure. This design feature is necessary provided that the subroutine
is written to interchange two variables or to sort integers in an array. In a typical sort
subroutine, the array is passed by address and the array size is passed by value. That
is to say, arguments can be passed by value, by address, or a combination of both.

A subroutine does not need to save and restore registers if the main routine does
not care whether the registers are modified or not. One example of a calling
sequence is shown below:
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; ——- Data
ans dw 13bah ;13ba in hex means 5050 in decimal.
dchar db ?, ?, ?, ?, ‘$’
...
; ——- Calling sequence

mov ax, offset dchar+3
push ax ;push destination address
mov ax, offset ans
push ax ;push address of integer
call convert

; ——- After return, the next instruction is executed.

The first line defines a 16-bit integer named ans (answer) in memory that con-
tains 13ba (5050 in decimal).  The second line reserves five characters and the last
character is the dollar sign delimiter to indicate the end of the ASCII string.  Two
arguments are pushed on the stack and both are addresses.  The stack frame is shown
in Figure 5.7a.  The first argument is the address of the fourth character in the buffer
named Dchar, which stands for destination characters.  The second argument is the
address of an integer variable named ans.  When executing the call, the CPU pushes
the return address and passes control to the subroutine return, as shown in Figure
5.7b.  The data area and the stack after, are shown in Figure 5.7c provided that the
subroutine pops the passing arguments off the stack.

The near subroutine converts the 16-bit positive integer from binary form into 4
decimal characters in ASCII.  If a system call is issued to display the string, we will
show the answer 5050 on the screen.  The coding of the convert subroutine is shown
below:

convert proc near ;declare near procedure.
mov bp, sp ;bp points to stack frame.
mov si, 2[bp] ;si has the source address.
mov di, 4[bp] ;di has the dest address.
mov bx, 10 ;radix
mov cx, 4       ;loop count
mov ax, [si]    ;ax = 13ba

loop010: cwd
div bx
add dl, 30h ;add bias
mov [di], dl ;store the remainder char.
dec di
loop loop010
ret 4 ;near ret, pop 4 more bytes

convert endp

The first line is a pseudo op that declares a procedure whose symbolic address is
convert.  Note that in the last line, the pseudo op is endp (end procedure), which has
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the same convert symbol placed in the front as a subroutine delimiter. The mov
instruction copies the SP into the BP pointing to the current stack frame.
Subsequently, the BP is used as an index register to access the entry in the stack
because SS is the default base. The body of the loop uses the divide algorithm to find
the remainder digit, add the bias to it, and store the character in the memory location
indicated by DI. After exit, we see the ret instruction and the numeric four specified
in the operand field, which means four more bytes are popped off the stack as dis­
cussed below.

SP

~--_.~~
Ans

• ~~
•

~Stack
Dchar+3

(a )

SP

_.~~ Return addr Ans

• ~~
•

~Stack
Dchar+3

( b)

Dchar+3

~

Return addr Ans

• ~~
•

~Stack

SP

(c)

Figure 5.7 Data area and stack frame: (a) before the call, (b) after the call, and
(c) after return.
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5.4.3.1 Popping ott Arguments

If the passing arguments are pushed on the stack before executing the call
instruction, either the calling routine or the subroutine being called can pop the argu­
ments off the stack. However, there is one advantage if the popping job is left to the
subroutine being called instead of the calling routine; that is, the subroutine only
needs to do it once with one single copy of code. If the calling routine pops the argu­
ments off the stack, the code needs to be placed after the call. Since there may be
many calls in a program, the same code is duplicated many times. It is clever that
the ret instruction pops the arguments off the stack as shown below:

Code image Statement
C2 04 00 ret 4 ;near return with extra pop

;ip <- M[ss:sp]
;sp <-sp + 2
;sp <- sp + 0004

Note that the ret instruction has three bytes - a one-byte opcode followed by a two­
byte immediate operand.

5.4.4 Recursive Call

ret

call routine A
call routine

A recursive call means that a subroutine can call itself directly or indirectly.

.-----. Rout i ne A

A-.~

l_
(a )

~ ~_outine A.

call routine~
call routine

1,--'__ ret

-. Routine B8_1--
~-l__ ::: 1 rout i ne A

(b)

Figure 5.8 Recursive calls: (a) routine A calls routine A directly and (b) routine A
calls routine B, and routine B then calls routines A indirectly.
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Calling directly means that routine A calls routine A, as shown in Figure 5.8a.
Calling indirectly means that routine A calls routine B and then routine B calls rou-
tine A as shown in Figure 5.8b.

A requirement for writing a recursive routine is to store the activation record of
the subroutine in a stack frame.  That is to say, all working registers and local mem-
ory variables modified by the subroutine must first be saved on the stack and restored
before return.  Usually the subroutine pushes the previous environment to save, does
the processing, and pops the previous environment to restore.  For example, let us
study the factorial function as follows:

N! = N * (N-1) * (N-2) * . . . 2 * 1      where N = 1, 2, 3, . . .
= N * (N-1)!

We can write a function subroutine under two assumptions.  First, the argument N is
a positive integer passed in BX.  Second, the AX register contains the answer after
return.  There are two approaches, iterative and recursive, and the following program
issues two different calls as shown below:

title factorial program
DSEG      segment
msg      db     ‘Job is done.’ ;for display purpose

db     0dh, 0ah, ‘$’ ;CR, LF, and terminator
DSEG      ends
SSEG      segment stack

dw     80 dup (?)
SSEG      ends
CSEG      segment

assume cs:CSEG, ds:DSEG
main      proc

mov ax, DSEG
mov ds, ax
mov bx, 5 ;call by value
call   fact1
nop ;use debug to examine result

call   fact2
nop ;ditto
mov ah, 4ch ;system termination
int 21h
; ——— The two subroutines are inserted here.

main endp
CSEG ends

end main
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5.4.4.1  Iterative Approach

The iterative routine computes the function in a loop and the assembly code is
shown below:

;  Fact   = 1
;  DO i  = 1 to N, step 1
;  Fact   = i * Fact
;  ENDDO
; ———- iterative approach
fact1     proc   near

mov   ax, 1        ;Fact = 1
mov   cx, 1        ;CX = i, BX = N

b0010: mul cx ;Fact = i * Fact 
cmp cx, bx ;compare i:N
je    exit020
inc    cx
jmp    b0010

exit020:  ret
fact1  endp

If N is 5, after return the AX register contains 78 (120 in decimal).  Note that if a large
passing argument is passed to the factorial subroutine, the result may be too large to
be stored in a 16-bit register.

5.4.4.2  Recursive Approach

The second approach is to write a recursive routine as follows:

; Push environment
; IF N is 1,
;  THEN 
;         Fact = 1
;         Goto exit040
;         ELSE
;         Fact = N * Fact( N-1)
;exit040: Restore environment
;         return
;         ENDIF
; ———- recursive approach
fact2     proc   near

push   bx           ;save environment
push   bp
mov    bp, sp       ;bp points to stack frame
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skip030:

exit040:

fact2

clnp
joe
mov
jmp
dec
call
mu}
pop
pop
ret
endp

bX,l
skip030
ax, 1
exit040
bx
fact2
word ptr 2[bp]
bp
bx

COMPUTER ARCHITECTURE

;IfN is 1,
;then Fact = I,
;pop stack, and return
;else compute N-I
;call Fact( N-1)
;Fact =N * Fact( N-l)
;restore environment

Note that the same argument five is stored in BX before the call because the factI rou­
tine never changes BX. The first time, the fact2 routine is called from the main rou­
tine and the return address is denoted as return addr 1. The next four times, fact2 is
called by itself or from inside. During each inside or recursive call, the return address
is denoted as return addr 2 pointing to the mul instruction. Consequently, after push­
ing the environment and the return address four extra times, the BX register becomes
one so the AX register is set to one to return. l'he stack frame is shown in Figure 5.9a.
Note that the mul instruction is executed after each return from an inside call with a
different environment for a total of four times. Because the argument in BX is the sec-

SP

AX

LOOOI I

return addr 2

environment 4

return addr 2

environment 3

return addr 2

environment 2

return addr 2

environment 1

return addr 1

Stack

(a)

SP

I .~
return addr 2

environment 4

return addr 2

environment 3
AX

return addr 2
I 0078

1

environment 2

return addr 2

environment 1

return addr 1...
~

Stack

( b)

Figure 5.9 Registers and stack frames: (a) after the first return and (b) after the
next four returns.
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ond word below the top, as indicated by BP, the multiplicand is specified as 2[BP]
using SS as the segment base. Following multiply operation, the product is in
DX"AX. After the last return, control is passed to the main rOlltine so the AX regis­
ter contains 0078 in hex, which is 120 in decimal, as shown in Figure 5.9b.

5.5 INTERRUPT MECHANISMS

Interrupt is the fourth major programming concept implemented in third genera­
tion computers. As far as the CPU is concerned, an interrupt pending signal may be
generated from inside or outside. Either way, the IF (interrupt enable flag) bit in the
F register must be set before the CPU can accept the pending interrupt request. When
that happens, a hardware mechanism is activated to force the current program to
relinquish control. On the other hand, if the IF bit is zero, the CPU just ignores this
interrupt signal at the moment. Note that the interrupt pending signal will not dis­
appear until the CPU takes further action. The interrupt hardware mechanism, if
activated, causes the CPU to perfonn context switching. On a microcomputer, the
CPU switches the PC (program counter) and SR (status register) referred to as par­
tial context switching. On a mainframe, switching the entire set of working registers
is a process known as full context switching.5 However, the real full running envi­
ronment still includes the code in memory and the data on disk. A task is defined as
the basic computation unit with its resources allocated by the as. During interrupt,
the CPU saves the old environment of the current task and loads a new environment
from a low memory address also called an interrupt vector. Interrupting is necessary
to protect the system from crashes and to increase throughput. With interrupts,
simultaneous I/O operations are possible along with CPU operations.

After an interrupt condition occurs, control is passed to the interrupt handler (IH)
in the as. If the set of working registers is not switched, the IH then saves the work­
ing registers on stack, analyzes the cause, and passes control to the ISR (Interrupt
Service Routine). While switching the context, further interrupts are temporarily
disabled to avoid confusion. After interrupt processing, control is passed to the dis­
patcher (Le., task scheduler) which selects the next task to execute.

In the new SR, a special bit is set to indicate that the machine is in supervisor
state. A set of privileged instructions can only be executed.26•28,4o.76 That is, the priv­
ileged instructions are not accessible to application programmers, and they are
designed for system control, e.g., modify SR, interrupt another I/O processor, return
from interrupt, etc. If a separate If0 processor is designed to run the task manage­
ment routines of an OS, then all the instructions on the I/O processor are privileged.

If an interrupt is generated inside the CPU, it is called a trap. A trap triggers the
same hardware interrupt mechanism. It is also possible for two or more interrupts to
occur at the same time. When that happens, the CPU must honor the interrupt that
is assigned with the highest priority. Therefore, each type of interrupt has a priority;
the IBM mainframe interrupts are listed in Table 5.1. 26.76
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Table 5.1

COMPUTER ARCHITECTURE

Priorities of Interrupts

Type
Machine check (MC)
Program check (PC)
Supervisor call (SVC)
External
I/O

Priority
4 (Highest)
3
3
2
1 (Lowest)

Me (machine check)
Machine check has the highest priority, so when a machine has detected a hardware
failure, all computations should be put on hold. The MC ISR displays a message for
the operator to run more diagnostic programs and call for help if necessary. All the
programs being interrupted should run again when the machine is working properly.
PC (Program Check)
Program check and SVC have equal priority because they are mutually exclusive,
Le., they never occur at the same time. Program Check occurs if a programming
error is detected. For example, when a user tries to divide an integer by zero or exe­
cute an illegal opcode, the CPU hardware triggers interrupt.
SVC (Supervisor Call)
An SVC means a system call that is a special instruction to trigger the hardware
interrupt mechanism. In consequence, control is passed to the OS which in tum, per­
forms the service. Note that the SVC instruction resembles a subroutine call except
the SR (status register) is also saved. In a program, if a user needs to read the key­
board input, the program issues a system call to the OS as an I/O request. Hence,
system call, supervisor call, trap call, and int (interrupt) are all synonymous. After
completing the service, the as usually returns control to the next instruction after the
call. Because a system call and a program check are mutually exclusive, they have
equal priority.
External
An external interrupt is a signal generated from an outside device, e.g., real-time
clock, another computer, an instrument, etc. If the external signal is important, it
should have a higher priority as demonstrated in the microcomputer design. Such a
system supports an external interrupt named NMI (nonmaskable interrupt) which
has a higher priority than any of the I/O interrupts. This makes a lot of sense if the
signal generates from an urgent real-time device.
I/O
The 110 completion interrupt signal is generated by the I/O controller, and it has the
lowest priority because the event will be served sooner or later without loss. This
design feature enables the CPU and 110 devices to operate in parallel, known as
asynchronous processing. For example, when the keyboard input character arrives
in a hardware I/O data buffer, it triggers an interrupt to signal 110 completion. After
an I/O operation of a task is completed, the CPU processes the event and marks the
task ready to execute.
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5.5.1  Context Switching

On the 8086, the occurance of an interrupt triggers the hardware interrupt mech-
anism to perform context switching.  For example, a system call to terminate is
shown below:

Code image Statement
B4 4C mov  ah, 4ch ;function code in ah
CD 21    int  21h ;system call

A function code 4C is passed by value in AH to request program termination.  The
int instruction has an opcode CD in hex, and the interrupt code 21 in hex is an imme-
diate operand used to compute the address of the interrupt vector in low memory.
Each interrupt vector has two words.  The top word is the new IP and the bottom
word is the new CS.  That is to say, the interrupt vector contains the CS:IP pair.  As
the result of executing the instruction int 21h, the six hardware steps occur as follows:

1.Push the F register.
2.Reset the IF (interrupt flag) and TF (trace flag).
3.Push the CS.
4.CS <— M[21 * 4 + 2].
5.Push the IP.
6.IP <— M[21 * 4].

Before executing the instruction, the stack frame is shown in Figure 5.10a.  After
executing the int instruction, the F, CS, and IP registers are pushed on the stack as
shown in Figure 5.10b by steps 1, 3, and 5.  Steps 2, 4 and 6 load a new environment.

In step 4, the new CS is fetched from a low memory address that is computed by
hardware.  First, shift left the interrupt code by two bits to obtain the 20-bit address
is shown in Figure 5.10c.  Next, set b1 to one to form the final address as shown in
Figure 5.10d.  In step 6, shift left the interrupt code by two bits to generate the
absolute low address.  It is crucial to know that while the CPU executes the first two
steps, special hardware is designed to disable any further interrupt.  After that, the
new F register is the same as the old F register except the two bits, IF and TF, are
cleared so no more interrupts are allowed.

5.5.1.1  Interrupt Return

After processing the interrupt, if the OS wants to return to the program being
interrupted, it does two things.  First it restores the working registers of the program,
and then it executes the iret (interrupt return) instruction as shown below:
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Code image Statement
CF                 iret      ;interrupt return

;pop ip
;pop cs
;pop f

192 COMPUTER ARCHITECTURE

0000  0000  0000  1000  0100 0000  0000  0000  1000  0110

(c) (d)

(b)

SS

SP

High
address

IP

CS

F register

Stack

(a)

High
address

SP

SS

Stack

:
:

:
:

:
:

:
:

Figure 5.10 Stack frames: (a) before executing int 21h, (b) after interrupt, (c) after 
shifting left the interrupt code by 2 bits, and (d) the physical address 
where the new CS is retrieved.

1026-Chapter 5  6/23/2001  5:02 PM  Page 192



COMPUTER ARCHITECTURE-GENERAL FEATURES 193

The iret instruction has an opeode CF that is similar to a far ret instruction except it
also pops the F register off the stack after popping the return address.

5.5.2 Multitasking

An I/O controller chip is designed to perform an I/O operation. When an I/O
operation is completed, if the controller can interrupt the CPU, then the I/O opera­
tion can be performed in parallel with the CPU. This design concept is attractive
because it allows I/O activities to overlap with CPU activities. After processing an
I/O completion event, the OS may decide to place the current program being inter­
rupted in a ready queue and execute the program whose I/O has just been completed.
That is to say, the current program is being preempted. As the as coordinates the
execution of many programs from beginning to end, all programs must take turns
executing on the CPU. Since the I/O completion event is asynchronous (i.e., unpre­
dictable), running two or more tasks in parallel is known as multitasking or asyn­
chronous processing.

5.5.3 Reentrant Task

With interrupts it is possible to run many tasks concurrently during a time inter­
val. Thus, if one user task or program gets interrupted, another user task may want
to execute the same piece of code in memory. If the block of code can be executed
the second time by another task, it is reentrant code and the task executing the code
is a reentrant task. The requirements of writing reentrant code are similar to writing
a recursive subroutine. The main system concept is, do not write into the global
addressing space. Reading or executing is fine because it does not change bits in the
code. Code sharing means that many user tasks can execute the same code during
the same time interval. The requirement is that each task has its own private address­
ing space, and data can only be written onto the stack or into the registers. This is
because the register set is part of the running environment of the current task in exe­
cution and it is saved on stack after interrupt and restored before the task resumes its
execution. That is to say, if a memory buffer is used for I/O operation, each task must
use either its own private memory slot or its own private stack.

If the return address is stored in a memory location, the code is not reentrant.
This is because in a multiprogramming environment, the OS supports many tasks
during the same time interval. If, right after entering a subroutine, the first user task
gets interrupted, the as suspends the task and executes a second task. If the second
task tries to call the same subroutine, the return address of the first task will be dam­
aged. Consequently, when the first task resumes its execution, it can not return prop­
erly to its calling program. This is why the return address is usually pushed on a
stack or stored in a register - to avoid potential damages from other running tasks.

© 2001 by CRC Press LLC



194

5.6 I/O STRUCTURE

COMPUTER ARCHITECTURE

Each 110 controller can be thought of as a small processor that has its own logic
and a set of registers. An 110 controller provides the hardware interface between the
CPU and an 110 device. Each register in the controller is called an lOR (110 regis­
ter) that can be used to store data, control functions, or status information about the
1/0 device. In general, the CPU executes an input instruction to transfer bits from an
lOR to a CPU register and an output instruction to transfer bits from a CPU register
to an lOR. Thus, the I/O instructions enable the CPU to communicate with con­
trollers. In an I/O controller, some registers are read only, some are write only, and
others allow both read and write.

CPU

._ I/O bus

I/O controller I/O device

//
, Memory bus

M

Figure 5.11 A computer system with a separate I/O bus.

5.6.1 Separate I/O Bus

A computer system may use a separate 110 bus to connect an I/O controller to the
CPU, as shown in Figure 5.11. Each lOR is assigned a short address (e.g., 12 bits)
that uniquely identifies the hardware register in a controller. As a consequence, an
I/O instruction must be executed to transfer bits between an lOR and a CPU register.
Note that the 8086 chip uses a separate 110 bus. Even though an I/O instruction
requires two register addresses to be specified, one for 110 and one for CPU. They
may be implied, so the 110 instruction has only a one-byte opcode because the
address of an 110 register is implied in DX, and the CPU register is implied in AL or
AX as a function of data length. Some coding examples are given below:
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Code image
EC
ED
EE
EF

Statement
in ai, dx
in ax, dx
out dx, al
out dx, ax

;al~ ior[dx] <7:0>
;ax.- ior[dx] <15:0>
;ior[dx] ..- al <7:0>
;ior[dx] ..- ax <15:0>

As far as addressing mode is concerned, the in (input) instruction has the desti­
nation operand specified as register direct, the source operand as register indirect,
and the data bits are transferred from an I/O register to a CPU register. For an out
(output) instruction, the source operand is register direct, the destination operand is
register indirect, and the bits are transferred from a CPU register to an I/O register.
Thus, before an I/O instruction is executed, we should place the address of an lOR
in DX. These I/O addresses are wired by hardware not subject to change. 27, 77

CPU

[_~---i-----,I7
Memory bus

M

I/O controller I/O device

Figure 5.12 A computer system with only one memory bus.

5.6.2 Memory Mapped I/O

A computer system may have only one bus so all the I/O controllers are placed
on the same memory bus as shown in Figure 5. 12.40 In other words, such a system
has no separate I/O bus. With respect to I/O addressing, the lOR is treated the same
as a memory word. Because a regular move instruction can move data between an
lOR and a CPU register, there is no need to have special I/O instructions, a technique
called memory mapped I/O.
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5.6.3 Direct Memory Access Channel

COMPUTER ARCHITECTURE

If a controller can perform block I/O functions, then it is an I/O channel or DMA
(direct memory access). Thus, a channel is a logic entity that can transfer a block of
bytes directly between memory and an I/O device without CPU intervention. A
DMA is usually connected to some I/O device, such as disk, tape, etc. A mainframe
commonly has 16 or more channels. The micro has a few, one example of which is
using the SCSI (small computer system interface) chip for the hard disk. Note that
each I/O channel can interrupt the CPU when its I/O operation is completed.

How does the CPU communicate with an I/O channel? The key concept is pass­
ing messages back and forth. Typically, a microcomputer provides I/O instructions
to write and read I/O registers in the channel. After the CPU sets the command code,
memory address, block count in bytes, and other bits, the channel knows what to do.
The memory address points to a data block whose size in bytes is the block count.
There are other bits that tell the channel what to do after an I/O is completed. After
an I/O interrupt, the as issues an input instruction to read the status register in the
channel. The status infonnation includes the completion code set by the I/O chan­
nel and device.

5.6.3.1 Cycle Stealing

Since the CPU and I/O operations can be done in parallel, it is possible for the
CPU and the I/O channel to request a memory cycle at the same time. When both
memory requests are sent to the bus arbitration unit for a decision, the rule is, device
first, then CPU. When the CPU gives the memory cycle to the I/O device, it is called
cycle stealing because the program on the CPU does not even know of the existence
of the event (the UO device takes its memory cycle). The reason to assign the I/O
device a higher priority is twofold. First, the CPU is flexible so it can afford to yield
a memory cycle to the I/O device. Second, from a system viewpoint, another task
may wait for its I/O to complete. In other words, the task can not proceed unless its
I/O operation is successfully completed. If the memory cycle is given to an I/O
device, the OS tends to run more programs in a multiprogramming environment.

5.6.3.2 Serial Port vs. Parallel Port

An I/O cable is abbreviated as cable that connects an I/O controller and an I/O
device. Each side has a connector on the hardware chassis. If the cable has one data
wire (Le., line), the controller is a serial port because data are transmitted serially on
the line. For example, a com (communication) port is serial because only one wire
in the cable is used to transmit data from one computer to another. If the I/O cable
has many data wires, the controller is a parallel port. For example, a parallel port is
used to drive a printer, so eight bits are transmitted on the line at the same time. Note
that a serial or parallel port is a physical device, while a programming port is a log­
ical device (Le., private resource) owned by a user task in a computer network.
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5.7 COMMUNICATION PORT
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Modem

A corn (communication) port is a controller, also called a UART (universal asyn­
chronous receiver/transmitter), or ACIA (asynchronous communications interface
adaptor).41,45 The chip acts as a small processor to transmit one byte at a time to the
line or receive one byte at a time from the line. As shown in Figure 5.13a, two PCs
at two locations are interconnected by a telephone line. Each side has a PC and
modem (modulator/demodulator) pair. A computer is a DTE (data terminal equip­
ment), and a modem or data set is a DCE (data communication equipment). Between
a DTE and a DCE there is an RS-232 (recommended standard 232) cable that has
many wires. One wire is TxD (transmit data), another is RxD (Receive Data), and
other lines are for signal ground and control. As far as the PC is concerned, the data
bits are transmitted serially on the TxD line and received serially from the RxD line.
That is, a com port drives the RS-232 port cable. Because the two pes can transmit
data at the same time, the transmission mode is said to be full-duplex.

Characters are transmitted asynchronously on the line. By using an oscilloscope,
we can plot the waveform at the TxD pin of the RS-232 connector. For example, the
waveform of a seven-bit ASCII b (62 in hex) is shown in Figure 5. J3b. The quies­
cent line is about -11 volts. After executing an I/O instruction to place a character in
the transmit data register, the controller swings the line voltage from -11 v to +11 v
to make the leading edge of the start bit. Because inverted logic is used by the tele­
phone industry, the start bit is considered zero. Next, we see seven data bits (bO to
b6), with bO transmitted first. Next, the controller transmits an even parity bit and
one stop bit. The even parity bit one means that after adding all the ones in the char­
acter including the parity bit, the sum is an even number (four in this case). If the
data rate is 9600 bps, then the line setting is specified as 9600 E71. This is called

PC 2

2 I
1----11 ~---

P Stop

Figure 5.13 Interprocessor communications: (a) two PCs are interconnected by a
telephone line and (b) asynchronous character transmission of 7-bit ASCII b.
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asynchronous character transmission because the leading edge of the start bit is not
predicable. The reason for having one or more stop bits is to restore the line to its
quiescent state so as to separate two adjacent characters. In fact, one stop bit is the
minimum as required in the spec.

The modem box at the sending side modulates the digital signal to make it suit­
able for transmission, and the modem box at the receiving side demodulates the volt­
age back to digital. Note that the controller at the receiving side strips the start bit,
parity bit, and stop bit. When the receiving CPU executes an input instruction to read
the receive data register, it gets the ASCII b with b7 as zero. Each controller provides
various signals to the buffer gates, and each one drives a line in the RS-232 cable.
The modem box is connected to the telephone line via a modular jack on the wall.

5.7.1 Com Port Characteristics

The com port has several I/O registers and it has the ability to interrupt the main
cpu. The controller can be programmed to set a different data rate, byte size, par­
ity bit, number of stop bits, etc. Because of the complex logic and registers, its size
is not much smaller than the cpu chip. Intuitively, after a byte arrives in the receive
data register, the receiver generates a receive interrupt signal to the CPU. The trans­
mitter interrupt is generated when the transmit data register is empty. It is clever that
the CPU can immediately write the transmit data register after being interrupted.

Each PC has one com port designated as coml (com port 1), and a second port
can be added by inserting a card into the back panel. The port can also be connected
to a mouse or any terminal as long as it uses the same serial interface. The port
addresses (Le., I/O addresses) of coml are listed in Figure 5.l4a. The registers are
TxD, RxD, Divisor Latch, LCR (line control register), IER (interrupt enable regis­
ter), LSR (line status register), MCR (modem control register), MSR (modem status
register), and interrupt ID register. The interrupt ID register contains an identifica­
tion code to denote what type of interrupt has occurred. The remaining registers are
described below.

5.7.1.1 Divisor Latch

After mapping an I/O address into a three-bit port address due to the limited num­
ber of pins, the same address may be used to access a different register depending on
the setting ofb7 in LCR, which is the DLAB (divisor latch access bit). For example,
the address 3F8 (1) with a one in the paren indicates that the address is for the LSB
of the divisor when DLAB is one. The address 3F8 (0) with a zero in the parenthe­
ses indicates that the address is for the receive data register (RxD) or the transmit
data register (TxD) when DLAB is zero. This is because there is a different com­
mand line for input for output. Consider the divisor as shown below:

line speed = 1,843,200 / (16 * divisor) bps

© 2001 by CRC Press LLC



COMPUTER ARCHITECTURE-GENERAL FEATURES 199

(a ) --

Address Register Access

3F8 (0) Tx buffer Write
3F8 (0) Rx buffer Read
3F8 (1 ) Divisor latch, LSB Read/Write
3F9 (1) Divisor latch, MSB Read/Write
3F9 (0) Int enable register Read/Write
3FA Int 10 reg Read
3FB Line control reg Read/Write
3FC Modem con t ro 1 reg Read/Write
3FD Line status reg Read/Write
3FE Modem status reg Read/Write

7 6 5 4 3 2 1 o
( b ) --

DLAB Set Stop Word
Brk bits length

i t +parity enable
Parity select

Stick parity

(c )
0 0 MSIE LS1E TRIE DR1E

(d )

(e)

( f)

0 TSRE THRE 81 FE PE OE DR

0 0 0 Loop Out2 Outl RTS OTR

,---C_D-.L--_
R
_1---'-----D_S_R---J.-.-C_T_S----l--.:-_-J-_--'--__~~J

t
Del ta CD, RI, DSR, CTS

Figure 5.14 Com port characteristics: (a) the com 1 port addresses, (b) LeA, (c) lEA,
(d) LSR, (e) MCA, and (f) MSR.
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The crystal oscillator provides a 1,843,200 Hz clock to the chip. This basic clock
is fed to a counter with a count 16 times a divisor. Thus, the counter output is another
clock at a lower frequency that is used to shift the data register for both input and out­
put. By programlning the 16-bit divisor register, we can change the frequency of the
shift clock, which is the data rate. In other words, we can write the divisor latch LSB
(least significant byte) and the divisor latch MSB (most significant byte) to set the
shift frequency. If the divisor is 12, the line speed is 9600 bps. If the divisor is
changed to six, the speed becomes 192,000 bps.

5.7.1.2 Line Control Register

As demonstrated in Figure S.14b, there are eight bits in the LCR, denoted as bO
to b7 with the following explanations:

• b7: The leading bit is DLAB. The divisor latch LSB and MSB can only
be addressed when this bit is set to one.
• b6: This is the set break bit. If this bit is set to one, the quiescent volt­
age of the line is switched from low to high and alerts the remote computer.
The line voltage is nonnal if b6 is zero.
• b5, b4, b3: If the stick parity (b5) is set to one, the parity bit never
changes. If bS is zero, then the parity select (b4) and parity enable (b3) bits
decide the parity. The three bits jointly determine the setting of the parity
bit as follows.

CASE b5 b4 b3 of
1 I 1: the parity bit is always 0;
I 0 1: the parity bit is always I;
OX 0: no parity exists; {X is a don't care}
o 1 I: even parity;
o0 1: odd parity;
ENDCASE;

• b2: This bit controls the number of the stop bit. If it is set to one, then
we have two stop bits, otherwise we have one stop bit.
• bl, bO: The last two bits jointly decide the byte size as follows.

CASE bl bO of
00: 5 bits;
o 1: 6 bits;
I 0: 7 bits;
I I: 8 bits;
ENDCASE;

One popular standard on UNIX is to set the LCR to 03 in hex, which indicates
9600 N81. Namely, the data rate is 9600 bps, there is no parity bit, there are'eight
data bits per byte, and one stop bit. If the receiving side uses the same line setting,
it can fetch the data correctly from the line.
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5.7.1.3 Interrupt Enable Register

201

The IER (interrupt enable register) has four leading zeroes and four enable bits
as specified in Figure 5.14c. For each port, the interrupts can be divided into four
different groups and each enable bit is used to gate the group. As a prerequisite, the
enable bit must be on to generate the interrupt signal from the group. Note that after
system boot, the IER contains all zeroes meaning all port interrupts are disabled.

• bO: This is the DRIE (data ready interrupt enable) bit. If set, an interrupt
signal is sent to the CPU after receiving the data in the buffer.
• bl: This is the rrRIE (transmit ready interrupt enable) bit. If it is turned
on, an interrupt signal is sent to the CPU if the transmit buffer is empty.
• b2: If the LSIE (line status interrupt enable) bit is set to one, an interrupt
signal is sent to the CPU after detecting an abnormal line status condition.
• b3: If the MSIE (modem status interrupt enable) bit is set to one, an inter­
rupt signal is sent to the CPU as a result of a modem status condition.

Recall that the CPU has the final say to accept the interrupt if its IF (interrupt
enable flag) is set to one. An I/O interrupt causes context switching just like execut­
ing a system call. As far as hardware is concerned, the com 1 interrupt is equivalent
to executing an int Dch instruction, and the com2 interrupt is like executing an int
Obh.

5.7.1.4 Line Status Register

As shown in Figure 5.14d, the status bits in the LSR reflect the status informa­
tion of the controller. After a port interrupt, the CPU program needs to examine the
LSR to know exactly what has happened. The eight-bit register has a leading bit zero
followed by seven status bits as described below:

• b6: The TSRE (Tx shift register empty) bit indicates that the entire data
byte is shifted out to the line.
• b5: The THRE (Tx holding register empty) bit indicates that the data
byte is moved down from the holding buffer to the shift register. Therefore,
the controller is ready to accept another byte to be transmitted.
• b4: The BI (break interrupt) bit indicates that an abnormal line voltage
is detected.
• b3: The FE (frame error) bit indicates that the received character has no
stop bit.
• b2: The PE (parity error) bit indicates that a parity error has been
detected.
• bl: The DE (overrun error) bit indicates that the data register is overlaid.
That is, if the receiver has new data arrive before the old data are read, we
have a data missing condition known as data overrun.
• bO: The DR (data ready) bit indicates that the data is already in the
receive buffer.
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5.7.1.5 Modem Control Reg;ster
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The MCR (modem control register) is used to interface with the modem as shown
in Figure 5.14e. The upper three bits are all zeroes and the lower five bits are
described below:

• b4: This is the loop test bit. If b4 is set to one, the transmit shift register
is connected to the receive shift register in a loop test.
• b3: When the OUT2 signal is set to one, it provides the enable interrupt
signal at the second level for the N8250 chip. Recall that the IER provides
the first level interrupt enable signals.
• b2: The OUTl signal is not used by the PC.
• bl: This is the RTS (request to send) signal to indicate that the computer
wants to transmit. If the modem is ready to accept, it activates the CTS
(clear to send) signal as set in the MSR (modem status register).
• bO: This is the DTR (data terminal ready) signal to indicate that the com­
puter is in a ready state to transmit or receive.

For full-duplex transmission, both bland bO are set to ones all the time. Note
that even if b2 is set to 1, no interrupt signal is generated unless the enable bits in IER
are set.

5.7.1.6 Modem Status Reg;ster

The MSR (modem status register) in Figure 5.14£ provides information as
described below.

• b7: The CD (carrier detection) bit is set when a carrier is detected.
• b6: The RI (ring indicator) bit is set if ringing is detected.
• b5: The DSR (data set ready) means that the modem is in a ready state
to transmit and receive.
• b4: The CTS (clear to send) is a response signal that tells the DTE go
ahead and transmit.
• b3: The delta CD (delta carrier detection) signal indicates that a change
in carrier is detected. The Greek letter delta used in a mathematical nota­
tion means a change.
• b2: The delta RI signal indicates that a change in RI is detected.
• bl: The delta DSR signal indicates that a change in DSR is detected.
• bO: The delta CTS signal indicates that a change in CTS is detected.

5.7.2 Software Polling

To program a com port, we can either write an interrupt service routine that is
active in nature, or write a passive software polling routine that means that the pro-
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gram running on the CPU checks the status of the I/O device in a loop.  For exam-
ple, the CPU program polls the DR (data ready) bit in the line status register in a com
port.  If it is set to one, then the routine issues an input instruction to read the data.
In general, the software polling technique makes the code simple but less efficient
because the CPU is tied up in a loop.  Nonetheless, we show a polling routine in the
following.

; ———- define com1 port addresses
RxD1 equ 03F8h ;receive data buffer
DLLSB1 equ 03F8h ;divisor latch LSB
DLMSB1 equ 03F9h ;divisor latch MSB
LCR1 equ 03FBh ;line control register
LSR1 equ 03FDh ;line status register
MCR1 equ 03FCh ;modem control register
; ———- Initialize com1
main: mov      al, 80h   ;set DLAB in LCR

mov       dx, LCR1
out       dx, al    ;DLAB = 1
mov       al, 0
mov       dx, DLMSB1
out       dx, al
mov       al, 0ch   ;divisor = 000c
mov       dx, DLLSB1
out       dx, al    ;9600 bps
mov       al, 03h   ;DLAB = 0,
mov       dx, LCR1  ;No parity bit, 8 data bits,
out       dx, al    ;and 1 stop bit
mov       dx, MCR1
mov       al, 0bh   ;set OUT2, RTS, and DTE
out       dx, al

;  ——— poll receive buffer status of com1
pollAgn:  mov       dx  LSR1  ;poll line status reg 1

in        al, dx
and       al, 01h   ;bit 0 => DR (Data Ready)
jz        pollAgn
mov       dx, RxD1
in        al, dx    ;read in character
. . .

end       main

The initialization routine is placed in the front.  There is a busy-wait loop to
check whether the receiver status of com1 is ready.  If so, the routine then reads the
character from the receive data register.
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5.8 PROGRAMMING INTERFACE WITH C

In embedded systeln design, it is sometimes desirable to link a piece of assem­
bly code to a C prograln or insert the assembly code in the C program. For the for­
mer approach, the piece of assembly code is a closed subroutine. For the latter
approach, the code is an open subroutine. By open, we mean that the code is exe­
cuted just once. The MSC (Microsoft C) compiler has its own coding convention to
pass arguments to the subroutine as described below:

1. Each of the symbol names has an underscore in the front.
2. All the subroutine arguments are pushed on the stack in reverse order.
3. It is the responsibility of the calling routine to pop arguments off the stack after

return.

5.8.1 Assembly Code Subroutine

The C program generates 20 pseudo random numbers first in an array named fib.
These are the 21 st to 40th Fibonacii numbers mod 1024. The main program calls the
print subroutine written in C to print out the numbers in unsorted order. It then calls
the subroutine written in asselnbly code to sort the numbers in fib. The sort routine
uses the push down nlethod in a double loop to sort the numbers in ascending order.
After return, the main routine prints out the sorted numbers in ascending order. It is
interesting to note that in the sort(fib, 20) statement, two arguments are passed to the
subroutine. The stack frame after the call is shown in Figure 5.15 with the value 20

55

. 1~·I--------1
--------

SP

•

High
ador

.......
~

IP

CS

I- • ~
0014

ess

fib array

Stack

Figure 5.15 The stack frame after executing the call.
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pushed first and the fib address pushed next. The far return address is pushed last by
executing the call instruction. Note that fib is declared as an array, so the symbol fib
alone with no ampersand (&) in front represents an address.

The main routine in C is stored in a disk file named pgm8.c as shown below.

/* -- The main program and the print subroutine are in C, but
the sort subroutine is in assembly code.
Name:
Date:
Version:
Description:

Job steps:

John Y. Hsu
1998-12-14
1.0
The C program calls two subroutines, one is written in
C and the other one in MASM.
1. The pgm8.c file contains the main program in C.
The pgm8a.asm file contains the assembly code of the
sort routine whose entry point is _sort.
To run the C compiler and the assembler, we type:
fiSC pgm8.c
masm pgm8a.asm
2. To link, we type:
link pgm8.obj + pgm8a.obj
3. To execute, we type
pgm8.exe

-------------------------- */
#include <stdio.h>
int i, j, k, num, fib[20];
void print_array();
void far sort(int*, int);
main()
{

i=O;
j =1;
for (k = 2; k < 20; k++)
{ num =i + j;

if (num >= 1024)
num = num - 1024;
i = j;
j =num; }

for (k =0; k < 20; k++)
{ fib[k] = i + j;

if (fib[k] >= 1024)
fib[k] = fib[k] - 1024;
i =j;
j =fib[k]; }

printf("This is the unsorted array of random numbers:\n");
print_array();
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sort(fib, 20);    /* ——————————————
Call the assembly subroutine to sort 
the array named fib.
——————————————*/

printf(“This is the sorted array of random numbers:\n”);
print_array();
printf(“\n\n—- Job completed. —-\n”);
return;

}
void print_array()

/* —— print subroutine ————-*/
{

for (k = 0; k < 20; k++)
printf(“%d\n”, fib[k]);
return; }

The file pgm8a.asm contains the sort subroutine written as a far procedure in assem-
bly code.  Therefore, after assembling, a far return instruction is placed at the end as
shown in the following:

;  —— This is the sort subroutine in assembly code. ——-
;  Name: John Y. Hsu
;  Date:   1998-12-14
;  Version:  1.0
;  Description: This is a far subroutine in assembly code to sort
;               an array.  The main program issues:
;               sort(fib, 20);
;              According to the C convention, value 20 is
;               pushed first, and next the address of fib.
;               Finally, the far return address is pushed on top
;               during the call.  The calling routine is
;               responsible for popping the two arguments off
;               the stack after return.
; ————————————————————————————
CSEG segment para “code”

assume  cs: CSEG, ds: CSEG
public _sort ; define entry point as external symbol

_sort   proc    far      ;declare far procedure and an underscore
;is needed before any external symbol.

push    bp
mov     bp, sp   ;bp points to stack frame
jmp     f0010

endsi   dw      0        ;upper bound of si
f0010:  push    dx

push    cx
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push    bx
push    ax
push    si
mov     cx, 8[bp] ;fetch value 20
dec     cx       ;outer loop count
mov     ax, cx
shl     ax, 1
mov     cs:endsi, ax  ;initial value is 38 decimal 
mov     bx, 6[bp]    ;fib near base address

oloop: mov    si, 0
iloop: mov     ax, [si+bx]   ;fetch the 1st element

mov     dx, 2[si+bx]  ;fetch the next element below
cmp     ax, dx
jle    skip20
mov     2[si+bx], ax ;interchange the two elements
mov     [si+bx], dx

skip20:add    si, 2
cmp     si, cs:endsi
jl      iloop
sub     cs:endsi, 2   ;no need to compare the sorted

;portion
loop    oloop
pop     si
pop    ax
pop     bx
pop     cx
pop     dx
pop     bp
ret                   ;far return

_sort endp
CSEG ends

end

5.8.2  In-Line Assembly

The in-line assembly scheme allows a block of assembly code to be inserted in
the middle of a high-level language program.  Intuitively, the compiler must be
informed that the inserted code is of assembly type, and special keyword symbols are
used as delimiters to enclose the assembly code.  The C language coding example is
shown below to illustrate the concept of in-line assembly.

<C statement>
<C statement>
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<asm statement>
<aSITI statement>

COMPUTER ARCHITECTURE

The keyword is asm preceded by an underscore (Le., _asm). After the keyword, the
assembly code block enclosed in braces just like a block structure. The pair of angu­
lar brackets are meta-symbols to mean the class of whatever is enclosed.

5.9 SUMMARY POINTS

1. Indexing is the second major programming concept invented in second gen­
eration computers.

2. The effective address of a Inemory operand is computed as the sum of the
address coded in the instruction and the content of a hardware register, as
shown below:

EA =Address coded in the instruction
+ content of an index register if specified

3. The addition operation is done by the adder, and the sum bits are placed on
the address bus to fetch the operand in memory.

4. Indexing means that a base address is coded in the instruction and an index
is stored in a hardware register. Based addressing means that an index is
coded in the instruction and a base address is stored in a hardware register.
There is no difference in hardware, but there is a subtle difference in soft­
ware.

5. Relative addressing means that the program counter is used as an index reg-
ister to compute the EA (effective address).

6. Register direct means that the operand is in a hardware register.
7. Register indirect means the memory address of an operand is in a register.
8. Double indexing, or based-indexing, means that two index registers are

used; one is used to store the base address and the other is used to store an
index.

9. Auto-indexing means that the specified index register is automatically mod­
ified before or after the operation as the result of instruction execution.

10. If indexing is coupled with memory indirect, we may have pre-indexing or
post-indexing. Pre-indexing means that indexing is performed before the
first memory read cycle. In contrast, post-indexing means that indexing is
performed after the first memory read.

11. A subroutine is a set of instructions to perform a function.
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12. A call instruction is similar to an unconditional branch except the CPU saves
a return address so as to fetch it into the pc upon executing a return instruction.

13. A call by value means that the value of an argument is passed to the subrou­
tine.

14. A call by reference or address means that the address of an argument is
passed to the subroutine.

15. Setting up the passing arguments and issuing the call instluction are known
as the calling sequence.

16. A recursive call means that a subroutine can call itself directly or indirectly.
17. The interrupt mechanism, if activated, causes the CPU to perform context

switching.
18. An interrupt generated inside of the CPU is also called a trap.
19. A system call triggers the interrupt mechanism.
20. Since the I/O completion event is asynchronous, running two or more tasks

in parallel is called multitasking or asynchronous processing.
21. Reentrant code means one copy of code can be executed by two or more

tasks during the same time interval.
22. Each I/O controller can be thought of as a small processor in that it has its

own logic and a set of registers.
23. If a separate I/O bus exists in a computer system, the CPU must execute an

input instruction to transfer bits from an lOR to a CPU register and an out­
put instruction to transfer bits from a CPU register to an lOR.

24. If a computer system has only one bus, its lOR is treated as a memory word,
and a move instruction can move data between an lOR and a CPU register,
a process called memory mapped I/O.

25. Cycle stealing is when the CPU gives a memory cycle to the I/O device.
26. A com (communication) controller or port is a processor chip called DART

(universal asynchronous receiver/transmitter) or ACIA (asynchronous com­
munications interface adaptor) that can transmit or receive one byte at a
time.

27. Asynchronous character transmission means that each character contains a
start bit, several data bits, a parity bit, and one or more stop bits.

28. A modem is a communication device.
29. Software polling means that the program running on the CPU checks the sta-.

tus of the I/O device in a loop. If it is ready, the program takes further action.
30. An interrupt mechanism makes it possible for CPU executions to overlap

with I/O operations.

PROBLEMS

1. What is an addressing mode?
2. In software design, what is the subtle difference between indexing, based

addressing, and relative addressing?
3. What is the difference between register direct and register indirect?
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4. Explain the difference among double indexing, predecreasing, and post­
increasing.

5. If indexing is used in conjunction with memory indirect, what is the differ­
ence between pre-indexing and post-indexing?

6. Describe the six hardware steps when the CPU executes the instruction int
21h.

7. What are the requirements of writing recursive code as well as reentrant
code?

8. Explain the system concept of multitasking or asynchronous processing.
9. What is the difference between an unconditional jump instruction, a sub-

routine call instruction, and an interrupt?
10. Describe the characteristics of a com (communication) port.
11. Explain the concept of memory mapped I/O.
12. Using the cycle stealing technique, why does the I/O device have a higher

priority than the CPU?
13. The mov statement copies the SI into AX, and it can be translated into a two­

byte instruction with a different bit pattern as shown on the LHS. Use the
db (define byte) statement to construct either two-byte string in a program.
Use debug to verify that they are functionally equivalent.

Code image
88CB
89 FO

Statement
mov ax, si ;ax <- si
{same as above}

14. The mov statement copies AX into a memory word whose address is in the
SI. After assembling, verify that the code image on the LHS executes cor­
rectly and the destination operand is specified as register indirect.

Code image
8904

Statement
mov [si], ax ;M[ds:si] <- ax

15. Run the rdump (register dump) program (below) which displays the content
six registers in hex. Before execution starts, the OS sets DS pointing to PSP,
so the user program must set OS to the data segment. Using address con­
stants, we write the AL program in a single loop. After each execution of the
logical and shift instructions, we obtain four bits in AX. Call the convert
subroutine to convert it to ASCII in hex. At the end, a system call is issued
to display all six registers on one line. If the divide conversion algorithm is
used, the divisor should be 16 and the program becomes much shorter. Note
that a dw statement is used to declare a pointer variable array that has six
near addresses to conform with the following C statement:

char *pointr[6] = {strl, str2, str3, str4, str5, str6};
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The keyword char * specifies that the object indicated is of char (character)
type. The array named pointr has a 6 in the square brackets, defined as size or
dimension. Since str1, str2, etc. are declared as arrays of char, the symbol
itself with no & in the front represents an address. Therefore, the pointr array
is statically assigned with six initial values as enclosed in braces.

; Name:
; Date:
; Version:

John Y. Hsu
1998-09-02
1.0

; Description: This register dump program displays the initial
setting of six registers on one line, in particular, the
original DS when the program is first entered.

;save original ds

;set new ds
;save cs

DSEG
msg
strl

str2

str3

str4

str5

str6

pointr
acon
reg
temp
DSEG
SSEG

SSEG

CSEG

main

title Register dump program
segment
db 'cs='
db 4 dup(?),', '
db 'ip='
db 4 dup(?),', '
db 'ss='
db 4 dup(?),', '
db 'sp='
db 4 dup(?),', '
db 'original ds='
db 4 dup(?),', '
db 'program ds='
db 4 dup(?)
db '$' ;end of string mark
dw strl, str2, str3, str4, str5, str6
dd CSEG:main ;far address constant
dw 6 dup(O)
dw 0
ends
segment stack
dw 80 dup(?) ;160-B stack
ends

segment
assume cs:CSEG, ds:DSEG, ss:SSE
proc far
mov cX,ds
mov aX,DSEG
mov dS,ax
mov reg,cs
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;entry point

;make A to F by adding 7 more
;store at destination address in di
;near return

;display message

;increase index pointing to next operand

;jump if less or equal - 6 times total

;convert to ASCII

;decode upper 4 bits in low order byte

;decode upper 4 bits in high order byte
;move destination address to di

main
CSEG

skip:

moy ax,word ptr acon
mov reg+2,ax ;save ip
1110Y reg+4,ss ;save ss
moy reg+6,sp ;save sp
moy reg+8,cx ;save original ds
moy reg+ 1O,ds ;save program ds
moy si,O ;initialize index
mov aX,reg[si]
nlOY temp,ax ;nlove word operand to temp
moy al,byte ptr temp+ 1
moy cl,4
shr al,cl
mov di,pointr[si]
call convert
moy al,byte ptr temp+1
and al,Ofh ;decode lower 4 bits in high order byte
inc di ;increase destination address by 1
call convert
moy ai,byte ptr temp
Inoy cl,4
shr al,cl
inc di
call convert
moy al,byte ptr temp
and al,Ofh ;decode lower 4 bits in low order byte
inc di
call convert
add si,2
cmp si,IO
jle again
mov dx,offset msg
mov ah,09h
in 21h
may ah,4ch
int 21 h ;system termination

--The convert subroutine is as follows.
convert proc near

add al,30h
cmp al,39h
jbe skip
add al,7
mov [di],al
ret

convert endp
cndp
ends
end main

again:
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CHAPTER 6

Microprogrammed CPU Design

6.1 HISTORY OF MICROPROGRAMMING

This chapter discusses the basic principles of microcode and the micropro­
grammed CPU that executes a subset of 8086 instructions. That is to say, the execu­
tion of microinstructions generates the various timing signals required to execute a
target instruction. This innovative idea was proposed by Wilkes as an alternative to
hardwired logic.68

A microinstruction is a string of bits in ROM (read-only memory) and when exe­
cuted, it generates many enable signals to control the timing of executing a target
instruction. .

Each bit in an microinstruction provides a single control function. Due to the fact
that less hardwired logic is required to execute microinstructions, it is easier to debug
the logic. A microinstruction means microcode, and it is occasionally just abbrevi­
ated as instruction.

The microprogrammed CPU has the obvious advantage of being flexible. The
trade-off is slower speed because more overhead is required to fetch, interpret, and
execute microinstructions. Thus, the microprogrammed CPU is slower than its coun­
terpart using hardwired logic. This is also the reason why in a family of computers,
low-end models are microprogrammed but high-end models are hardwired. A micro­
programmed CPU has its own merit for many reasons. When a new computer is
developed, it is preferably backward-compatible so that all the instructions of an old
processor can execute on the new processor. By using microprogrammed logic, we
can always install an emulator for the old processor. An emulator is a microcode inter­
preter in ROM along with the one for the new machine. This is referred to as emula­
tion because the interpreter in ROM can not be changed without special hardware
tools. To add or delete a target instruction, we simply modify the microcode in ROM
without any wiring change. This chapter shows that a complex target instruction, such
as multiply, divide, or floating point, can be interpreted and executed by microcode.
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6.1.1 Computer in a Computer
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By storing microcode in ROM, we obtain a computer in a computer, as shown in
Figure 6.1. The inner computer is the microcode engine that has a microinstruction
register (,.lIR), microinstruction address register (flIAR), and hardwired logic to exe­
cute microinstructions. That is to say, a microcode interpreter in ROM drives the
engine. The engine does not have an ALU, but it has its own fJIR and IlIAR that are
different from IR and IAR. Because ROM is known as the control store, the flIR is the
control instruction register containing the current microinstruction, and the flIAR is the
control instruction address register pointing to the next microinstruction in ROM. The
IlIR and IlIAR are designed for executing the microcode in ROM, while the IR and IAR
are designed for executing the target machine code in central memory.

EU

Working register

Adder

IU

IR

I AR 1..-' _

~IRc= ____'

~ IARI'-- -'

ROMl _

Figure 6.1 Microcode engine - computer in a computer.

The time spent debugging a hardware unit is exponentially proportional to its
complexity. If the complexity of the unit is doubled, its debug time is increased three
to four times. Since the engine uses much less hardwired logic, its debug time is
shortened. We trade speed for flexibility because the target instruction is interpreted
by a microprogram.

6.1.1.1 Microcode Execution

The microcode interpreter is an infinite loop implemented in ROM. The microc­
ode length is fixed in words, so the IlIAR or IlPC (micro program counter) is incre­
mented by one after obtaining a microinstruction. The bits in the microinstruction
may be routed into the flPC as a result of execution. To illustrate this concept, we
can use a sequence of five microinstructions to interpret a target instruction, as
shown below:

add sopd ;acc~ acc + M[sopd]
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1. The first microinstruction is fetched into the IlIR and the IlPC is increased by
one. Enable bits in the first Inicroinstruction route the address of the target
instruction (add) from PC to the address bus and initiate a memory read
request.

2. The second microinstruction reads the add instruction from the data bus into
the IR. At this point, the target instruction fetch phase is cOlnpleted. An
enable bit of the second microinstruction in the IlIR copies the opcode of the
target add instruction from IR into the IlPC in order to branch. That is, three
more microinstructions jointly interpret this add operation.

3. The third nlicroinstruction has bits to route the operand address from the IR to
the address bus, initiate a memory read request, and increase the IlPC by one.

4. The fourth microinstruction has bits to clock the operand from the data bus
into a temp register and increase the IlPC by one.

5. The fifth microinstruction has bits to route an accumulator to adder input A,
a temp register to adder input B, and adder output to acc. Meanwhile, a fixed
ROM address is routed from the IlIR to the IlPC so control is passed to the
beginning of the loop.

6.2 TWO BASIC MICROCODE TYPES

A microinstruction has the following characteristics:

1. All microinstructions have a uniform instruction length between 22 to 150
bits.

2. Each bit is an enable signal to open a group of gates or to activate a control
function.

3. An address field can be used to pass control to another microinstruction in
ROM. That is, there are bits set in the microinstruction to route an address
into the IlIAR based on a condition. Thus, it is possible to write a sequence
of microinstructions to interpret a complex target instruction.

4. The size of ROM is determined by the address field, usually between 256W
(word) and 4KW (kilo-word).

There are two basic types of microcode: horizontal and vertical. It is possible to have
a hybrid design by mixing horizontal microcode with vertical microcode in a
microinstruction. In a family of computers sharing the same architecture, the
microcode can be different from model to model. Yet, the main objective, to inter­
pret target instructions, remains the same. Some engines may use two sets of micro­
instructions, and in each set the instructions have a uniform length. For example, the
interpreter of the IBM 3033 mainframe is stored in 4KW ROM divided into two
halves. The first half, from address 000 to 7FF, contains 108-bit instructions, and the
second half, from address 800 to FFF, contains 126-bit instructions. Even with two
sets, the engine still increases its IlPC by one to fetch the next instruction in ROM.
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6.2.1 Horizontal Microcode
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A horizontal microcode is longer, and each bit is a direct enable signal for con­
trol. Usually, the bit serves as an enable signal for a group of gates and no decoding
circuit is required. A 16-bit horizontal microcode is shown in Figure 6.2a. The bits
are denoted as EO, EI, E2, ... , and E15, and only one bit can be set at a time. Usually,
if a bit is set, one out of 16 registers is selected as an adder input. That is, the engine
uses the bit to open a group of gates directly without decoding circuit delay. In prac­
tice, horizontal microcode is popular because much less hardwired logic is used.

6.2.2 Vertical Microcode

In Figure 6.2b, a four-bit vertical microcode field is shown to provide up to 16
enable signals after a four-bit decoding circuit. Obviously the microcode is short, but
it requires extra logic to decode the four-bit field. That is, the decoder maps the four­
bit input signal into 16 output signals with only one output on. Consider the follow­
ing examples. If the input is 0000 in binary, the EO signal is on. If the input is 1111
in binary, the El5 signal is on. That is, with four bits we have 16 possible combina-

E15 EO

(a )

E15 EO

I jI
I 4-bit decoderL_

1
L__

( b )

Figure 6.2 Basic microcode types: (a) 16-bit horizontal microcode and (b) 4-bit
vertical microcode.
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tions. Because of encoding, the ROM size is reduced. The encoding method is com­
monly used in opcode design for a processor to interpret and execute.

Vertical microcode is attractive provided that fuJly debugged logic is available
from a previous generation of processor design. For example, the PDP-II was a pop­
ular 16-bit minicomputer in the 1970's and its instruction uses a three-bit register
address to select one of eight GPRs. Its successor, the LSI-II, uses a vertical
microcode interpreter in ROM which is 2KWin size The 22-bit microinstruction has
a uniform length as shown in Figure 6.3a.56

4 1 16

(a)

I Bus controll~1 Micro-operation

I +Load return register
Translate

5 11

(b)

I ~Op ~ ~2KW address

4 4 8

(c) Icc I 256W addre~J~Op Jump

4 8 4

(d)

I [re9 _JJ-lOp Literal

8 4 4

(e)

~ I B reg JA lreg

Figure 6.3 LSI·11 microinstructions: (a) general format, (b) unconditional jump, (c) condi­
tional jump, (d) memory immediate to register, and (e) register to register.

The upper four bits are for bus control, the next two are bits for special control,
and the lower 16 bits constitute a micro-operation. A bus operation means that a
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memory cycle is initiated by executing a few microinstructions in a row. First, the
address is placed on the memory bus with the read or write bit set to initiate the cycle.
Taking the read cycle as an example, after a delay another microinstruction reads the
data bus into a temporary register. Next to the bus control field we see two special
bits. The T (translate) bit checks whether any pending interrupt request exists. If so,
control is passed to a fixed address in the control store to activate the interrupt mech­
anism. In the case of an interrupt pending condition, this bit allows the engine to
abort a tedious microinstruction sequence immediately. To the right of the T bit, the
LRR (load return register) bit allows the flPC to be loaded from the return register.
When the LRR bit is set in the last microinstruction of a subroutine, control is
returned to the next microinstruction after the call. The lower i6 bits represent a
micro-operation that has a micro-opcode (flOP) in the front, divided into four groups.

The unconditional jump operation has a five-bit flOP followed by an ii-bit ROM
address as shown in Figure 6.3b. A conditional jump operation as shown in Figure
6.3c has a four-bit fJOP followed by a four-bit CC (condition code) plus an eight-bit
microcode address. The literal micro-operation as shown in Figure 6.3d has a four­
bit flOP followed by a one-byte literal plus a four-bit register address. A literal is an
immediate operand of eight bits, same as the adder width.

The last group consists of register to register operations as shown in Figure 6.3e.
Each operation has an eight-bit flOP followed by two four-bit register addresses, reg
A and reg B. Each address selects a byte of an internal register or GPR. This means
that it takes two passes to perform a 16-bit word operation via the eight-bit adder. If
reg A or reg B contains 0000 or 0001 in binary, it means indirect mode. If the bit pat­
tern is 0000, the three-bit GPR address in the target instruction is further decoded to
select the low-order byte of a GPR. Similarly, if the bit pattern is 0001, the three-bit
GPR address in the target instruction selects the high-order byte of a GPR. Besides
GPRs, other bit patterns mean direct mode and the pattern itself is decoded directly
to select the low-order byte or the high-order byte of an internal register, such as bus
address (BA), instruction register (IR), source operand (SRC), destination operand
(DST), program status register (PSW), PC, etc. With proper bits set in the bus con­
trol field, the micro-operation may initiate a memory cycle, read or write.

6.3 MICROCODE ENGINE

The microcode engine has hardwired logic to support the execution of an inter­
preter in ROM. That is to say, the microcode in ROM drives the engine. The inter­
preter is written in microassembly language. The notion is that a microassembler
must execute in order to translate each statement into a bit string. Two approaches
can be used in designing a microassembler. The low-level approach simply sets all
bits as they are explicitly specified in a statement. The high-level approach makes
the statement look like a register transfer language. Therefore, the microassembler
has intelligence to translate the English-like syntax into a bit string.

Our goal is to describe the internal operations inside a CPU. Therefore, the
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Working registers

Internal registers
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Input Input B

~__ Adder

L-------------f-- Output C

Figure 6.4 Adder internal bus structure.

microcode interpreter is written under two conditions. First, there is an instruction
pipe, so instruction stream fetch is automatic. Second, there is no operand pipe, so
target instruction executions are sequential. That is to say, the engine does not sup­
port parallel operand executions. Those performance topics are left to the next chap­
ter. The adder has three internal buses, input A, input B, and output C, as shown in
Figure 6.4. The multiplexer used to select a particular register is omitted in the block
diagram. The engine is designed for two-address target instructions. The adder input
A is for sopdl (source operand 1), input B is for sopd2 (source operand 2), and the
adder output C is rOll ted to the destination, i.e., sopd 1.

The format of the 103-bit microinstruction is shown in Figure 6.5a. From the
rightmost side, the bit is numbered from 0 to 102. Each microinstruction has six
fields: address, sequence control, adder control, input control A, input control B, bus,
and general control.

6.3.1 Address and Sequence Control

The Addr (address) and SC (sequence control) fields are shown in Figure 6.5b
and described below:
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Addr <11 :0>: The rightmost 12-bit field contains an address of the microc­
ode in ROM that is 4KW in size.
SC <18:12>: The seven-bit field is for sequence control as to where to fetch
the next microinstruction.

The b12 is opc (opcode control). If opc is set, the upper four bits in Addr con­
catenated with the opcode in the IR are routed into the fJPC. The upper four bits des-

(a)

(b) 18 14 13 12 11 a

4KW Jump address

Opcode control

31 19
(c) L

63 55 32

(d)

~ Common set of 24 bits

91 87 64

(e)

Common set of 24 bits

102 92
(f)

Figure 6.5 Horizontal microcode: (a) 103-bit general format, (b) address and sequence con­
trol, (c) adder operation control, (d) adder input control A, (e) adder input control
B, and (f) bus and general control.
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ignated as SC <18: 15> are condition enable bits, the bl3 is BF (branch on false); and
b14 is BT (branch on true). If b12 is 0, either b 13 or b14 must be set for sequence
control based on a condition. That is, depending on the condition, the 12-bit Addr is
either copied into the fJPC to branch, or the fJPC is increased by one. Routinely, the
J.lPC is incremented by one after retrieving the current microinstruction, so if there is
no change, the next microinstruction in ROM is fetched.

6.3.2 Conditional Branches

Before exploring in further detail, the four ways for sequence control are sum­
marized as follows:

1. If b12 is set, the upper four-bit field in Addr and the eight-bit opcode byte in
the IR are concatenated and copied into the J.lPC to branch by opcode.

2. If the specified condition is true, copy the 12-bit Addr from the J.lIR into the
JlPC to branch.

3. The specified condition is always true as an unconditional branch.
4. The specified condition is never true as an unconditional no-branch.

In the case that opc is zero, the six-bit <18: 13> condition specifier determines
whether or not to branch. The four condition enable bits < 18: 15> are SE (sign
enable), OE (overflow enable), ZE (zero enable), and CE (carry enable). The four
enable bits are followed by BT and BF. Each enable bit selects the condition flag in
the SR (status register) as input, and the logic schematic is shown in Figure 6.6.

BT~O-~D­

-~~_~J

S

SE

0

OE

Z =DZE

C
CE

Figure 6.6 Condition logic schematic.

The selected Sand 0 are two inputs to an EOR gate whose output is further fed
to a three-input OR gate. The other two inputs to the OR gate are the selected Z bit
and C bit. Amazingly, the equation below covers all the compares, signed and
unsigned.
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condition = BT (((S SE) � (O OE)) + Z ZE + C CE) + 
BF \(((S SE) � (O OE)) + Z ZE + C CE)

where � means EOR (exclusive or) and the branch condition is the sum of two prod-
ucts.  The first product is the test condition gated with BT, while the second is the
complement of the test condition gated with BF.  Consequently, we have two cases
of branch as listed below:

1.If BT is set and the test condition is true, then there is branch.
2.If BF is set and the test condition is false, then there is branch.

6.3.2.1 Unconditional Branch vs. No Branch

To make an unconditional branch, clear SE, OE, ZE, CE, and BT to zeroes, but
set the BF bit to one.  Obviously, the first product is false, but the second product is
true (i.e., not false).  Suffice it to say, branch occurs unconditionally.  It is also pos-
sible to have a no branch condition.  That is, if we reset SE, OE, ZE, CE, and BF to
zeroes, but set BT to one, the selected condition is never true, so after being increased
by one, the µPC points to the next microinstruction.

6.3.2.2  Branch Addresses in Microcode and Target Machine
Code

The 12-bit address in a microinstruction is different from the address in a target
machine branch instruction.  However, a conditional branch microinstruction is exe-
cuted to interpret a conditional branch target instruction.  They are related, so the
engine always maps the opcode of the target machine conditional branch instruction
into a ROM address where a conditional branch microinstruction is fetched.
Interestingly, the microinstruction has the same test condition specified.  At the tar-
get machine level, a central memory branch address is placed in the IAR if the con-
dition is true.  Henceforth, the conditional branch microinstruction passes control to
another microinstruction to copy the target instruction branch address from the IR to
the IAR.  If the condition is false, the next microinstruction is executed to increase
the IAR by the length of the conditional branch target instruction.  That is to say, if
the microinstruction branches, the target instruction also branches.  Let us study an
example on 8086, as shown below:

Code image Loc Statement
90             0013   b0020: nop
. . .
3B C3          001F cmp  ax, bx
7D F0   0021   jge     b0020 
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On each line, the code image is followed by the location of the instruction and
the assembly statement. Assume that the nop statement has a symbol b0020 defined
as 0013 in hex with respect to the segment base. The compare instruction sets CC in
the F register based on the result of (AX - BX). If the GE (greater or equal) condi­
tion is true, branch to b0020 (0013). Otherwise, the IP is incremented to 0023 point­
ing to the next instruction. This is because the location of jge is 0021, and the
instruction length is two. Two questions must be answered. First, how is the logical
test performed? Second, how is the new branch address computed? The specified
condition is (\S \0 + S 0) which means that the sign and overflow bits are identical
(both zeroes or ones). Comparing AX with BX (AX:BX), we have four possibilities
to branch, as listed below:

1. AX is positive and BX is negative, e.g. +5 and -4.
2. AX is positive and BX is also positive but less than AX, e.g., +5 and +4.
3. AX is negative and BX is also negative, but the absolute value of the former

is less than that of the latter, e.g., -4 and -5.

4. AX is equal to BX, e.g., +5 and +5.

As shown in the fourth case, we question whether the variable Z should be
included in the sum. Boolean algebra proves that Z can be absorbed into the first two
products as follows:

condition = \5 \0 + 50 + Z
= \S \0 + 5 0 + Z (5 0 + \5 0 + 5 \0 + \5 \0)
= \S \0 (Z + \Z) + S 0 (Z + \Z) + 5 0 Z + \S \0 Z

+ \S 0 Z + 5 \0 Z {Don't cares}
= \5 \0 + 50
= \(5 EB 0)

Interestingly, because the 0 and Z conditions can not be true at the same time
(likewise for 5 and Z), the last two minterms are "do not matters". To interpret such
a condition, the enable bits 5E, OE, and BF are set in the microinstruction. However,
in a microcode assembly language statement, we can use an IF-THEN-EL5E con­
struct to determine branch or not. That is, if \(5 ED 0) is false, we execute a microin­
struction to not branch. Otherwise, a microinstruction to branch is executed. That
is, the target machine branch address is placed into the IP. In the case of a no branch,
the IP is incremented by two, the length of the jge instruction. The instruction has
one-byte opcode 7D followed by an offset FO which is sign extended. As the target
instruction is interpreted, the IP is' increased at the same time. By the time the inter­
pretation is complete, the IP is already 0023, so the offset is relative to the next tar­
get instruction. The branch address is computed below:
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0023
FFFO

0013
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The one-byte offset is a signed integer ranging from 127 to -128. In this partic­
ular example, the relative offset is -16 in twos complement notation (FFFO). In fact,
the next instruction after the conditional branch is the reference point, so the CPU
can jump ahead up to 127 bytes, or jump behind up to 128 bytes wrapped-around.
That is to say, whenever a relative offset is added to the IP, the address grows until it
reaches 64 K - I. Beyond that, the next IP address is zero so in order wrap around
64 K. It is essential to understand the system concept that the address is an unsigned
integer. After sign extension, the 16-bit unsigned integer is added to the IP, and the
final branch address is within 64 K, wrapped around. In fact, the adder adds the two
unsigned integers mod 2 16 (Le., 64 K). This notion is important because in a jump
instruction, a 16-bit unsigned relative offset is used to compute the branch address
that covers the entire 64 KB segment. All the branch instructions and their condi­
tions are listed in Table 6. 1.

Obviously, the branch condition for JL (jump on less than) is the complement of
JOE, so the bits SE, OE, and BT are set in the microcode. The condition for GT
(greater than) is derived from the GE (greater or equal) condition by excluding the
equal condition. Since the Z (zero) flag indicates an equal condition, we obtain the
branch condition for JG (jump greater) as shown below:

condition = \(S EB 0) \Z
= \«S E9 0) + Z) {De Morgan theorem}

The unsigned compare group is easy. Recall that the C flag in the SR (status reg­
ister) is really a borrow after internal subtract, so JB (jump below) means jump on
borrow, which is same as JC.

In practice, a microcode loop can be used to interpret a complex target instruc­
tion such as float mul, float div, sine, string move, string search, etc. At the end of
the loop, a conditional branch microinstruction is executed to perform the testlbranch
step. If the condition is true, a new address is placed in the fJPC so control is passed
to the beginning of the loop. Otherwise, execution is completed in order to exit.

6.3.3 Adder Operation Control

Figure 6.5c shows the 13-bit adder operation control field <31: 19> to specify
ALU operations. The lower three bits <21: 19> are for basic adder control: Clk
(clock), Cin, and Addop (adder operation).
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Table 6.1 Conditional Branch Instructions

Opcode Description Condition Specifier Bits
{Unconditional}
JMP jump \ False BF

{Single bit compare group}
JE equal Z ZE,BT
JNE not equal \l lE,BF
JZ zero {JE} l ZE,BT
JNZ not zero {JNE} \Z ZE,SF
JC carry C CE, BT
IN no carry \C CE, SF
JO overflow 0 OE,ST
JNO no overflow \0 DE, BF
JS sign S SE,BT
JNS no sign \S SE,BF

{Signed compare group}
JL less (S E9 0) SE, DE, BT
JLE less or equ (S E9 D) + Z SE, OE, lE, BT
JG greater \({S E9 0) + Z) SE, OE, ZE, SF
JGE greater or equal \(S E9 0) SE, OE, SF

{Unsigned compare group}
JB below {JC} C CE, ST
JBE below or equal (C + l) CE, lE, BT
JA above \(C + l) CE, lE, BF
JAE above or equal {JNC}\ C CE, SF

• elk (b21): This bit is set to clock the adder output to the destination. If
this bit is zero, the destination operand remains unchanged.
• Cin (b20): This is the carry input signal to the adder at bit position zero.
• Addop (b19): This bit indicates a basic adder operation, add or subtract,
and it is also an NS (no shift) signal to the one-bit shifter.

For a binary operation, two adder inputs A and B are specified. For an unary opera­
tion, only adder input B is specified while the adder input A is zero. Take the neg
(negate) instruction as an example. A string of zeroes is fed to adder input A, the
ones complement of the unary operand is fed to adder input B, and at the same time
the Cin bit (b20) is turned on. Consequently, the twos complement of the unary
operand is clocked into the destination by the Clk bit. Recall that the CPU does an
internal subtract when executing a cmp (compare) instruction. That means the Clk
bit is reset to zero so the engine sets CC in the F register and the destination is not
changed.
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The upper 10 bits in the adder operation control field are for logical and shift
operations. Precisely, the three bits <24:22> are for logical operations: AND, OR,
and EOR. Note there is no bit for the NOT operation because it is similar to negate
except the Cin bit is turned off. The next seven bits <31 :25> are for shift control:
SHL, SHR, ARI, ROL, ROR, RCL, and RCR. Recall that in Chapter 3, the ARI
(arithmetic) bit was set in conjunction with SHR (b30) in order to achieve the SAR
(shift arithmetic right) operation. The shifter design is a simple one because it can
only shift one bit at a time in one clock cycle.

6.3.4 Adder Input Control

The engine uses a 16-bit adder, and each of the two input control fields has a
common set of 24 bits. Input A has eight more bits in the front and input B has four
more bits. The adder input control A has 32 enable bits as shown in Figure 6.5d.

The common bits <55:32> include 12 accumulators. This is because the low­
order byte, the high-order byte, or the full word can be selected from any accumula­
tor, so three enable bits are necessary for each set of AX, BX, CX, and OX. Each
register signal has E (enable) appended to its name, e.g., ALE, AHE, and AXE. The
other 12 bits include four index registers: SIE, DIE, SPE, and BPE; three temp reg­
isters, TO, TI, and T2, IP, BDL (bus data low-order byte), BDH (bus data high-order
byte), 10DL (I/O data low-order byte), and IODH (I/O data high-order byte). The
BDH and BDL jointly constitute a 16-bit register BOW (bus data word) in the hard­
ware bus interface unit. If a target instruction has a 16-bit memory operand speci­
fied, the BDW (i.e., set BDH and BDL) contains the operand before a memory write
cycle or after a memory read cycle. Similarly, because the processor uses a separate
I/O bus, the 10DW (I/O Data Word) contains two bytes, 10DH and IDOL.

The eight extra enable bits <63:56> include four segment registers, eSE, DSE,
ESE, and SSE; plus F, BA (bus address), IDA (I/O address), and Zero (zero operand).
Note that the BA register has 20 bits residing in the hardware bus interface unit that
can place the address bits on the memory address bus to initiate a memory cycle. By
the same token, the IDA register is used to store the I/O address during an I/O
request. The zero bit is designed for unary operations as well as register to register
transfers. If the zero bit is one, the engine acts like a three-address machine. That is
to say, no register is selected for adder input A. As a result, an operand zero or low
voltage is fed to adder input A. A register operand, however, is enabled to adder input
B. The destination register is specified in the adder input control A field. For exam­
ple, we can transfer AX to DS as shown below:

DS <-O+AX;

In the microinstruction, both DSE and zero are set in the adder input control A
field. and AXE is set in the adder input control B field.

The adder input control B has a total of 28 bits as shown in Figure 6.5e. The
lower 24-bit <87:64> field has the common bits, but the leading four bits <91:88>
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namely Comp (complement), IRB (IR byte), IRW (IR word), and Imm (immediate),
are different.

• Comp (b91): This bit is set for complement control. If it is one, the ones
complement of the operand is selected as adder input B; otherwise just the
operand is selected.
• IRB (b90): Select the leading byte of the IR as adder input B.
• IRW (b89): Select the leading two bytes of the IR as adder input B. The
leading byte in the IR is the low-order byte in a word, and the next byte is
the high-order byte.
• Imm (b88): This bit indicates that a 16-bit immediate operand is right
justified in the input control B field <79:64> which becomes the adder input
B. That is to say, we can implement a constant in the microcode so to speak.
Usually, this constant represents +1, -1, 16, 0, etc. In a hardwired CPU,
such a constant is hardwired without using flip-flops. In a micropro­
grammed CPU, a register-immediate microinstruction allows an operation
between the two. That is to say, any 16-bit constant can be copied, masked,
or padded into a register so as to eliminate hardwired constants altogether.

6.3.5 Bus and General Control

The leftmost 11 bits <102:92> are for bus and general control as shown in Figure
6.5f. Before discussing each control bit, we need to understand the three hardware
design features described below:

1. The IR is really a part of an instruction queue or pipe. Between the IR and
the central memory bus, there is an on-chip hardware BIU (bus interface
unit), abbreviated as BU (bus unit). The BV resembles an IV (instruction
unit) that can initiate a memory request to fetch a target instruction stream
into the instruction pipe. Conceptually, the instruction bits flow from right
to left into the pipe on a continuous basis. The BU saves the 20-bit linear
memory address in a counter, so after retrieving a two-byte instruction the
BU increments the counter by two. The BU issues another read request as
long as there is empty space to the left of the instruction stream. With the
design of an instruction pipe, instruction fetch is overlapped with operand
executions. That is, the BU and EU may operate at the same time, as shown
in Figure 6.7.

As the BU starts to fetch an instruction stream, the ED waits for the arrival of the first
instruction. When the instruction reaches the head of the queue, the EU is activated
to execute the instruction. Meanwhile, the BU fetches the next instruction in
sequence. If the memory data bus is only 16 bits, it takes two physical memory
cycles to retrieve of a four-byte instruction. During execution, if the instruction has
a memory operand specified, the BU must take a break to fetch the operand first. The
EU must be stalled until the operand arrives in the bus data register so the EU may
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1__w_a_i_t_...J...-_E_x_e_c_u_t_e -l--_E_x_e_c_u_te ---J[Xecute

Figure 6.7 Overlapped operations between the au and EU.

continue. That is to say, the BU has intelligence to coordinate instruction fetch,
operand retrieval, and operand execution.

2. When the BA bit is set in a microinstruction, the engine acts like a three­
address machine for the purpose of computing a memory address since a
memory cycle is in order. For a branch, the CS (code segment) is fed to
adder input A, the upper 12-bit field in the IP is fed to input B, and the adder
output is clocked into the upper 16-bit field of BA. Thus, we compute the
20-bit linear address of the target instruction as follows:

BA ~CS+IP

In the transfer language, the CS really means (CS * 16) as the lower four bits of
IP flow directly into the lower four bits of BA. Remember two things. First, the InsF
bit in the microinstruction must be zero to indicate an instruction fetch so the BU
knows to place them in the instruction pipe. Second, the instruction pipe must be
flushed because all the instructions below the branch are no longer valid.

If an instruction contains a 16-bit offset of a memory operand, during execution
the CPU must perform a memory cycle to fetch the operand whose 20-bit linear
address is computed below:

BA <- DS + offset;

Again DS really means (DS * 16) because the lower four bits of the offset flow
directly into the lower four bits of BA. The upper 12-bit field in the offset is fed to
input B, the 16-bit DS is fed to input A, and the output is clocked into the upper 16­
bit field of BA.

3. The IP (instruction pointer) is a counter. After interpreting one byte or two
bytes in the IR, the engine does two things. First, it shifts the IR left by one
byte or two bytes. Second, the IP increases by one or two accordingly. That
is to say, if one byte is shifted, the IP is increased by one due to the setting of
SHLIR1 (SHL IR 1 byte) in the microinstruction. If two bytes are shifted, the
IP is incremented by two because SHLIR2 (SHL IR 2 bytes) is set.
Interestingly, the IP always points to the next instruction byte to be interpreted.
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In the II-bit bus and general control field, the upper four bits are for memory bus
and 1/0 bus control, namely Wr (write), Rd (read), In, and Out. The remaining seven
bits are for general control: Int (interrupt), SHLIR I, SHLIR2, Link, Ret (return),
InsF (instruction fetch), and III (illegal), as introduced below:

• Wr (bl02): Initiate a memory write cycle.
• Rd (blOt): Initiate a memory read cycle.
• In (blOO): Initiate an input operation.
• Out (b99): Initiate an output operation.
• Int (b98): This bit checks any interrupt pending condition after execut­
ing the current microinstruction. If there is one, the engine activates the
hardware interrupt mechanism to abort the execution of the current
microinstruction and the target instruction as well.
• SHLIRI (b97): Shift left the IR by one byte and the IP is incremented
by one. Therefore, the next instruction byte is left justified in the instruc­
tion pipe.
• SHLIR2 (b96): Shift left the IR by 2 bytes and IP is increased by two.
Therefore, the third byte in the instruction is left justified in the instruction
pipe.
• Link (b95): This bit is set in a branch instruction to pass control to a
micro-subroutine. That is, the return address in the J.lPC is copied into T2,
and then the branch address is copied into the J.lPC.
• Ret (b94): The Return bit in the last instruction in the micro-subroutine
is used to copy the return address from T2 into J.lPC. As a consequence, the
next instruction in ROM after the call is fetched next.
• InsF (b93): This InsF bit is of particular importance because it changes
the flow of the instruction stream. When InsF is set, the hardware BU (bus
unit) flushes the instruction queue and starts retrieving the instruction
strealn from memory based on the new address in BA. This signals a con­
tinuous operation until another bus request microinstruction is executed
with the InsF bit 011. If the InsF bit is zero in a bus request microinstruction,
then the BU writes or reads the operand as a one shot deal.
• III (b92): This bit is set to indicate that the target instruction has an ille­
gal opcode. The interrupt hardware mechanism is triggered to abort the tar­
get routine.

6.4 MICROCODE ASSEMBLY LANGUAGE

A microassembly statement has many fields separated by a semicolon. Each
microinstruction may be extended to a second line with a period as the end delimiter.
Each statement is translated into a l03-bit microinstruction by the micro assembler.
After that, all the microcode bits must be placed in ROM. The statement is case
insensitive and each line may have a label defined in column one.
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An equate file is shown in the front so mnemonics can be used to designate bit
positions.  For example, Addr (address) represents the 12-bit address field starting at
b0.  As each microinstruction is cleared to all zeroes before assembling, the default
value in the Addr field is zero.  Either Cin or b20 can be used to denote the 21st bit
in the microinstruction counting from the rightmost end.  The basic rules are:

1. A comma is used to separate bits, a semicolon is used to separate phrases,
and a period is the end delimiter.  It is possible for one microinstruction to
spread over two lines.

2. The equal sign is an assign operator and its LHS specifies the enable bits to
be set by the micro assembler.  The mnemonic helps to remember the mean-
ing of the bit.

3. The transfer language can be used to mean a run-time action so the
microassembler knows how to interpret the language and set the enable bits
accordingly.  Some microcode phrases are explained below:

AX AX - BX; {Set Addop, Clk, Cin, AXE in input A; 
Comp, BXE in input B.} 

AX AX .AND. BX; {Set And, Clk, AXE in input A, BXE in input
B.}

AX 0 + BX;      {Set Addop, Clk, Zero, AXE in input A, BXE 
in input B.}

AX BX;          {Same as above.}
µPC µPC + 1;    {Set BT with no condition code.  This also

means that µPC is incremented by 1.}.
µPC Addr^Op;    {Set b12 for branch control by the 8-bit

opcode.}
In, Zero, Clk = 1;  IOA 0 + DX;   {Set In = 1; Zero = 1;

Clk = 1; Addop = 1; IOA = 1;  DXE = 1 in
input B for an input operation.}

Addr = 100;         {Sets the Addr field to 100 in hex.}
Addr = Interp; µPC Addr.

{Set BF with no condition code to branch. 
Set Addr field to the address whose symbolic 
name is Interp so control is passed to Interp.}

Goto Interp.        {A short cut same as above.}

The IF-THEN-ELSE statement can be used to describe three microinstructions.
For example, we describe the logic below to interpret the adc (add with carry)
instruction.

IF C .EQ. 1, (Test Carry flag in SR.}
THEN Int, BF, Clk, Cin = 1; AX <— AX + BX + 1;

Goto Interp.        {Same as Addr = Interp; µPC <— Addr.}
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ELSE lnt, BF, Clk = 1; AX <- AX + BX;
Goto Interp.

231

The micro assembler can translate this IF statement into three microinstructions
as follows:

CE, BF =1; Addr =skipO 10; J1PC <- Addr.
Int, BF, elk, Cin = 1; AX <- AX + BX + 1; Goto Interp.

skipOlO:
Int, BF, elk = 1; AX <- AX + BX; Goto Interp.

The first microinstruction tests the carry flag. If it is false, branch to the third
microinstruction (the ELSE clause). Otherwise, execute the next instruction in
sequence (the THEN clause). After executing either clause, control is passed to
Interp, which is the beginning of the interpretation loop.

A microassembler translates a statement into a l03-bit string. How can we
ensure that the bits are set correctly in the microinstruction? One solution is to write
a micro-disassembler. That is, the micro-disassembler can print out all the bits with
their mnemonics in the microcode for further verifications.

6.4.1 Subset of Target Instructions

A subset of 18 instructions is listed by the lexicographical order of its opcode in
Table 6.2.

Table 6.2 A Subset of 8086 Instructions

Code image
03C3
13 C3
18 C3
28C3
38C3
7CXX

7DXX

88 DO
8808
8E 08
90
99 XXXX
A1XXXX

Statement
add ax, bx
adc ax, bx
sbb ax, bx
sub ax, bx
cmp ax, bx
jl xx

jge xx

mov dx, ax
mov bx, ax
mov ds, ax
nop
jmp xxxx
mov ax, ds:xxxx

Description
;ax~ ax+bx
;ax~ ax + bx + C
;ax~ ax - bx - C
;ax~ ax - bx
;Compare ax:bx and set CC.
;IF (8 EB 0),
;THEN ip .- ip + 2 + xx sign ext.
;ELSE ip~ ip + 2 ENDIF
;IF \(8 E9 0),
;THEN ip ..- ip + 2 + xx sign ext.
;EL8E ip~ ip + 2 ENDIF
;dx~ ax
;bx~ ax
;ds~ ax
;No operation
;ip .- ip + 3 + xxxx
;ax~ M[ds*16 + xxxx]
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Code image
88 XXXX
EC
EE
F7 DO
F7D8

Statement
mov ax, xxxx
in ai, dx
out dx, al
not ax
neg ax

COMPUTER ARCHITECTURE

Description
;ax.- xxxx
;al~ IOR[dx]
;IOR[dx] ..- al
;ax~ .NOT. ax
;ax .- -ax

6.4.2 Microcode Interpreter

The interpreter is stored in on-chip ROM and the target instructions are stored in
off-chip central memory. The execution of the very first microinstruction initiates
target instruction stream fetch. The engine is stalled until the very first target instruc­
tion is retrieved into the IR. The execution of the second microinstruction maps the
first byte, i.e., the opcode of the target instruction, into a ROM address and mean­
while shifts the IR to the left by one byte. If more actions need be taken, the subse­
quent microinstruction again maps the next byte of the target instruction into another
ROM address to proceed.

The central memory has BIOS and the system boot routine is embedded in ROM
at a high-address. The microcode engine ROM contains an interpreter as shown in
Figure 6.8. After boot, the J1PC is initialized to FFE to fetch the very first microin­
struction in the J1IR. The very first microinstruction in JlIR provides enable signals
to add the IP to the CS to form a 20-bit linear address in BA. As specified in the sys­
tem reference manual, the initial value of the CS is FFFF and the IP is 0000.
Therefore, the start address of the system boot routine is at memory address FFFFO.
Because the Rd (read) bit and the InsF (instruction fetch) bit are set in the microc­
ode, the au starts retrieving the target instruction stream. That is to say, the instruc­
tion fetch and operand execute are overlapped.

The target instruction execution is still sequential because the execution of the
next target can not start until the current instruction is completed. The interpreter
listing has an equate file in the front that defines mnemonics for bit positions. The
org (origin) statement tells the microassembler where the microinstruction is to be
loaded in ROM. For example, the address is denoted as x 'ffe'. The letter x denotes
the hex data type and the pair of single quotes are delimiters of the bit pattern ffe.
Because the microinstruction at this address has both the BA and InsF bits set, the
bus unit starts obtaining the target instruction stream. Execution stalls until an
instruction arrives in the IR. Then, the next microinstruction at address x 'fff' exe­
cutes. Logically, this is the beginning of the interpretation loop. Physically, it is at
the bottom of ROM. After this microinstruction is loaded in the J1IR, it has enable
bits to route the opcode from the IR into the fJPC in order to form the address of the
next microinstruction in low ROM. Because the opcode is eight bits, the formed
ROM address is less than 256. That is to say, the first 256 words in ROM are
reserved for the microcode sequence to start. Each of those microinstructions is
indicated by an org statement in the front so its ROM address is fixed. Due to dif­
ferent target instructions, the engine may take further actions.
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This branch control by opcode concept is crucial because a microinstruction or
group of microinstructions is needed to interpret the target operation.  In the listing,
any microcode block with a defined label resides in a ROM address higher than 256.
The microcode sequence or block is equivalent to a micro-order, and we enclose it in
a comment block for easy comparisons.

; ————————- Microcode interpreter listing
start

Wr equ  102 {Equate file: Wr is bit 102.}
Rd equ  101
. . .
org x‘ffe’{Address FFE is where the instruction retrieval microinstruction 

resides.}
InsFetch:

BT, Rd, InsF, Clk = 1; BA <— CS + IP; µPC <— µPC + 1.
{This first microinstruction at ROM address x‘ffe’ initiates instruc
tion stream retrieval.  After each execution of a branch target 
instruction, this microinstruction receives control to start retrieve
ing a new instruction stream.}

Interp:
SHLIR1 = 1; Addr = 000; µPC <— Addr^Op.
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000

FFE

FFF
Fetch instruction stream
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Figure 6.8 Microcode in ROM.
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{This microinstruction resides at address x 'fff' ,i.e., the bottom of
ROM. Because instruction retrieval is automatic, the microcode
Interp (interpreter) actually starts here. }

org x'03' ;This is for the target machine code:
;03 C3 add ax, bx
;The address x '03' is as same as the apcode.
;It receives control after opcode interpretation
;and it passes to sa03C3 (symbolic address for
;machine code 03C3)for further action.

SHLIR 1, BF = 1; Goto sa03C3.
{--This microinstruction resides at a high ROM address labeled as
sa03C3. After executing the microcode below, control is passed to the inter­
pretation loop.
sa03C3: ;ax~ ax + bx

Int, BF, Clk = 1; AX~ AX + BX; Goto Interp.-- end}
org x'13' ;13 C3 adc ax, bx

SHLIR1, BF, Clk = 1; Goto sa13C3.
{---microinstruction block:
sa13C3: ;ax .- ax + bx + C

IF C .EQ. 1,
THEN Int, BF, Clk, Cin = 1; AX~ AX + BX + 1; Goto Interp.
ELSE
Int, BF, elk = 1; AX .- AX + BX; Goto Interp.--end}

org x'IB' ; IB C3 sbb ax, bx
SHLIR1, BF, Clk = 1; Goto salBC3.

{---microinstruction block:
sa1BC3: ;ax~ ax - bx - C

IFC .EQ. 1,
THEN Int, BF, Camp, Clk = 1; AX~ AX - BX - 1; Goto Interp.
ELSE Int, BF, Camp, Clk, Cin = 1; AX~ AX - BX; Goto Interp. }

org x '2B' ;2B C3 sub ax, bx
SHLIR1, SF = 1; Goto sa2BC3.

{--- microinstruction:
sa2BC3: ;ax~ ax - bx

lnt, BF, Camp, Clk, Cin = 1; AX .- AX - BX; Goto Interp. }
org x '3B' ;3B C3 cmp ax, bx

SHLIRl, BF = 1; Goto sa3BC3.
{--- microinstruction:
sa3BC3: ;compare ax:bx

Int, BF, Comp, Cin = 1; AX .- AX - BX; Clk = 0;
Goto fJPC~ Addr. -- }

org x'7C' {7C XX jl xx}
SHLIRI, BF, Zero = 1; T1 ~ 0 + IRB sign extended;
Goto sa7C.
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{--- microinstruction block:
sa7C:

IF (S EB 0),
THEN Int, BF, elk =1; IP ..- IP + TI;
Goto InsFetch. ;Flush instruction queue
ELSE Int, BF = 1; Addr = Interp; ,...PC .- Addr. ;No branch}

'org x'7D' ;7D XX jge xx
SHLIR1, BF, Zero = 1; Tl ..- 0 + IRB sign extended;
Goto sa7D.

{--- microinstruction block:
sa7D:

IF \(S EB 0),
THEN Int, BF, Clk =1; IP ..- IP + TI;
Goto InsFetch. ;Flush instruction queue
ELSE Int, BF = 1; Addr = Interp; ,...PC .- Addr. ;No branch}

org x'8B' ;8B for Move register
SHLIRI = 1; Addr = 100; ,...PC .- Addr"Op.

org x'IDO' ;8B DO for mov dx, ax
Int, Zero, BF, Clk =1, DX ..- 0 +AX; Goto Interp.

org x' 108' ;8B D8 mov bx, ax
Int, Zero, BF, Clk = 1; BX .- 0 + AX; Goto Interp.

org x'8E' ;Move into segment register
SHLIRI =1; Addr =200; IlPC ..- Addr"Op.

org x'2D8' ;8E D8 mov ds, ax
Int, Zero, BF, Clk = 1; DS~ 0 + AX; Goto Interp.

org x '90' ;90 for No operation
Int, BF = 1; Goto Interp.

org x '99' ;99 XXXX jump direct
SHLIR2, Zero, BF, elk = 1; Tl ..- 0 + IRW; Goto sa99.

{---microinstruction block:
sa99: ;ip <- ip + 3 + xxxx

Int,BF, elk = 1; IP .- IP + Tl;
Goto InsFetch. ;Flush instruction queue -- }

org x'A1' ;Al XXXX mov ax, ds:xxxx
SHLIR2, Zero, BF, Clk =1; T1 ..- 0 + IRW;
Goto saal.

{--- microinstruction block:
saal: ;ax..- M[ds*16 + xxxx]

Rd, BA, BT, Clk = 1; BA~ OS + T 1; IlPC~ IJPC + 1.
;Wait for memory operand to arrive

Int, Zero, BF, Clk = 1; AX .- 0 + BDW; Goto Interp. -- }
org x'B8' ;B8 XXXX mov ax, XXXX

SHLIR2, Zero, BF, Clk = 1; Tl ..- 0 + IRW;
Goto sabS.

235
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{--- microinstruction block:
sab8: ;ax .- xxxx

Int, Zero, BF, Clk = 1; AX .- 0 + T1; Goto Interp. --}
org x 'F7' ;F7 XX for unary operation

SHLIR 1 = 1; Addr =100; fJPC .- AddrAOp.
org x' 1DO' ;F7 DO not ax

Int, Zero, Comp, BF, Clk =1; AX .- .NOT. AX; Goto Interp.
org x'lD8' ;F7 D8 neg ax

Int, Zero, Comp, 8F, Clk, Cin = I; AX .- 0 - AX;
Goto Interp.

org x'EC' {EC in aI, dx ;al .- IOR[dx] }
BF = 1; Gota saec.

{--- microinstruction block:
saec: ;Input byte and wait

In, Zero, Clk = 1; lOA .- 0 + OX; fJPC .- J.1PC + 1.
Int = 1; AL .- 0 + 100L; Goto Interp. -- }

org x'EE' {EE out dx, al ;IOR[dx].- all
BF = I; Goto saee.

{--- microinstruction block:
saee: ;Output byte

Clk, Zero = 1; 100L .- 0 +AL; fJPC .- J.1PC + 1.
Out, Int, Zero, elk =1; lOA .- 0 + OX; Goto Interp. -- }

End.

6.5 MULTIPLY OPERATIONS VIA ONE ADDER

Our society uses a decimal number system, and a negative number is represented
by a signed-magnitude notation. Given two positive integers M and N, their product
is shown as (M * N), where * is the multiply operator as used in a high-level pro­
gramming language. The symbol M is the multiplicand and the symbol N is the mul­
tiplier. If positional notations are used to represent M and N, the multiply operation
(M * N) result is the sum of many partial products. Assuming that M =15 and N =
15, we show the decimal multiply operation as follows:

P= 15* 15
=15*(10+5)
= (15 * 10) + (15 * 5)
= 150 + 75
=225

where the final product 225 is the sum of two partial products, 75 and 150. The mul­
tiply operation can be decomposed into a sequence of add operations provided that
the next partial product is shifted one digit to the left as shown below:
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15
* 15

75
15

225

237

The first partial product is 75 which is (15 * 5). The second partial product is 15,
which is (15 * 1). Because the multiplier digit one carries a weight of 10, we need
to shift the partial product one digit to the left to get 150. The trailing zero is not
shown in the partial product for simplicity. Because the multiplier has two digits, by
adding the two partial products, 75 and 150, we obtain the final product as 225.

If the multiplier N has more than two digits, we repeat the process by adding
more partial products. If the digit of the multiplier is a zero, its associated partial
product is zero. Therefore, the adding step can be skipped, so perform a shift oper­
ation only. The same concept works perfectly for negative numbers because our
society uses the signed-magnitude notation. That is, if Mor N is negative, we place
a minus sign (-) in front of the number to mean negative. The product is negative if
the signs of M and N differ, otherwise the product is positive.

The binary multiply operations are similar with some differences. First, the num­
ber is in binary. Second, instead of shifting the partial product to the left, we shift
the sum of partial products to the right. Third, we have two types of integers, signed
and unsigned.

6.5.1 Unsigned Multiply

The symbolic representation of an n-bit integer is shown below:

where Cn-1 is the most significant bit of an unsigned integer. The same bit string can
represent a signed integer and Cn_1 is the sign bit. As intricate as it may be, we must
determine the meaning of the sign bit.

6.5.1.1 5i9n Sit

If an n-bit integer is unsigned, it has a value as computed by the following posi­
tional notation:

where Ci (coefficient i) is bi (bit i) for i =0, 1, ... , (n-l). Because each bit carries a
positive weight as determined by its position in the notation, the value of an unsigned
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integer is always positive. As a simple example, if n = 4, the unsigned 1111 has a
value computed below:

value = 23 + 22 + 21 + 20
=8+4+2+1
= 15

where the sign bit carries a positive weight of 23. For the sake of simplicity, assume
that the hardware register is only four bits long. Thus, a four-bit unsigned integer has
a value ranging from 0 to 15. Hence, multiplying an unsigned 15 by an unsigned 15,
we obtain an unsigned 225, as shown below:

1111

* 1111

1111
1111

1111
1111

11100001

{M: unsigned 15}
{N: unsigned 15}

{P: unsigned 225 }

where the multiplicand M is an unsigned 15, the multiplier N is an unsigned 15, and
the product P is an unsigned 225. Just like multiplying two decimal numbers, an
unsigned binary multiply is also cOlnprised of a sequence of add and shift operations.
As we can see, it is not intuitive to add four binary partial products at the same time.
However, the adding job becomes easier if we perform four iterations and we merely
add two numbers per iteration. The partial product for the next bit in the multiplier
is shifted one bit to the left before adding as shown below:

1111
+ 1111

101101
+ 1111

1101001
+1111

11100001 {P: unsigned 225}

Assume that M is any four-bit unsigned integer and N is 1111; the algebraic value of
the product is computed below:
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P=M*N

= M (23 + 22 + 21 + 20)

=M 23 + M 22 + M 21 + M 20

239

From the above equation we notice that each bit in the multiplier carries a positive
weight. Assume that two four-bit registers by the name of OX and AX are used.
Before the unsigned multiply operation, the multiplier is placed in AX and the mul­
tiplicand M can be placed in a register or in memory, as shown in Figure 6.9a. After
the operation, the DX register concatenated with the AX register (Le., OXAAX) con­
stitutes an eight-bit double register to contain the unsigned product.

c ox AX = 15 M 15

GJ I 0 0 oj I 1 1

(a )

1 0 1 0
1 101

o

1

1

1 1
o 1

o 1
1 0

o
1

1 1
1 1

1 1 1 1
011 1

o 1 1 1
o 0 1 1

add
1st shr {9-bit}

add
2nd shr

add
3rd shr

1 1 100
1 110

001
000

( b)

add
4th shr

Figure 6.9 Four-bit unsigned multiply operation, 15 * 15 = 225: (a) initial register
condition and (b) register contents after each iteration.

Two clever variations are incorporated in the design. First, instead of shifting the
partial product to the left, we shift the sum to the right. That is, during each itera­
tion, test the LSB in AX first. If AX <0> is one, then add M to DX, which is the high­
order half of the product register; otherwise take no action. After the test with either
outcome, perform a double logical right shift on OX and AX by one bit. This test
and shift operation sequence is repeated a total of four times. If M is any four-bit
unsigned integer and N is 1111, the algebraic value of the unsigned product is com­
puted below:
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P = (M 24 +(M 24 +(M 24 + (M 24)/2 )/2 )/2 )/2
=M23 +M22 +M21 +M2°
=M ( 23 + 22 + 21 + 20)

=M*N

Note that adding M to the high-order half of the product register is equivalent to
adding M 24 (M with four trailing zeroes). If the unsigned M has a large magnitude,
a carry may be generated by the adder. When that happens, a total of nine bits is
needed to store the sum correctly. That is to say, after adding the unsigned multipli­
cand to OX, if there is a carry generated, a nine-bit shift logical right (SHR) opera­
tion is in order. Note that if the C bit is zero, a nine-bit SHR is no different from an
eight-bit SHR, provided that the lower eight bits are of interest. Adding one extra bit
to the adder design would mean more hardware. A clever solution is to take advan­
tage of the RCR (rotate with carry) operation. To achieve a uniform design, the sec­
ond variation is done in two steps. First, before the iteration begins, clear the C bit.
After the add or no add operation, always perform a nine-bit SHR. This is accom­
plished by performing an RCR on OX followed by an RCR on AX. Shifting logical
right both DX and AX by one bit means that the sum of all the partial products is
divided by two. Not surprisingly, this shift logical right operation always produces
a perfect quotient because the sum is an even number. The old LSB in the multiplier
is shifted out, and its left neighbor bit takes over its position as the new LSB. After
the divide operation, the multiplier bits are completely shifted out of AX.

Figure 6.9b shows the contents of OX"AX after each iteration. Whether there is
an add operation depends on the LSB in AX, but there is always a shift operation. If
the LSB in AX is one, the first line shows the register contents after the add opera­
tion, and the second line shows the register contents after the shift operation. If the
LSB in AX is zero, the add zero operation is skipped and there is only one line to
show the result after the shift. After four iterations, the OX"AX pair contains the
eight-bit unsigned product.

The basic concept works for 16-bit, 32-bit, or 64-bit unsigned multiply opera­
tions. Take the 8086 as an example; before the 16-bit unsigned multiply instruction
executes, the 16-bit multiplier N is placed in AX and the 16-bit multiplicand M is in
a register or in memory.

6.5.1.2 16·lJit Unsigned Multiply Algorithm

ClearDX;
Retrieve M into a temporary register;
Set loopCount to 16;

loopOl0: Clear the C flag;
IF the LSB of AX is 1,
THEN add M to OX; ENOIF;
RCR OX, 1 bit;
RCR AX, 1 bit;
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Decrement 100pCount by 1;
IF 100pCount is not equal to 0,
THEN goto 100pOl0; ENDIF;

exit:

The 16-bit unsigned multiply instruction is shown below:

241

mul bx ;unsigned mul

After executing the instruction, the unsigned product (BX *AX) is in DX"AX. This
instruction can be implemented by microcode or simulated by a software routine.
The symbol mask in the code represents an address of a memory word.

mov
mov

100pO10: clc
mov
and
jz
add

skipOl5: rcr
rcr
loop

exit:

6.5.2 Signed Multiply

dx, 0 ;clear dx
cx, 16 ;loop count

;Clear the C flag
mask, 1 ;test the LSB of AX
mask, ax
skipOI5 ;skip add if 0
dx, bx ;add multiplicand
dx, 1 ;rotate with carry right dx 1 bit
ax, 1 ;rotate with carry right ax 1 bit
100pOIO ;decrease cx, loop if cx .NE. 0

A signed multiply instruction can multiply two signed integers. Using four-bit
arithmetic, a signed integer has a value ranging from -8 to 7 in twos complement
notation. Multiplying -1 by -1, we obtain a product that is +1. To illustrate the con­
cept, assume that the registers DX and AX are four bits long. After a signed multi­
ply operation, the DX"AX pair contains a signed product that is eight bits long. If
M is 1111 in binary and N is also 1111, the product is +1 (0000 0001 in binary).

The signed multiply instruction can be implemented by microcode via one sin­
gle adder or by a multiplication tree using combinational logic. First, consider the
mathematical theory behind an n-bit signed integer in twos complement notation.
Recall that the integer is negative if its sign bit is one. In fact, the sign bit carries a
negative weight as determined by its bit position in the positional notation. Thus, the
value of an n-bit negative integer is computed as follows:

Value = -(2n - (Cn- I 2(n-1) + Cn-2 2(n-2) +
... + C2 22 + C 1 2 1 + Co 20»

= -Cn- I 2(n-l) + Cn-2 2(n-2) +
... + C2 22 + C 1 2 1 + Co 2°
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The Cn_1 or sign bit carries a negative weight of 2(n-l) and each bit to its right carries
a positive weight. That is to say, the n-bit negative integer can be viewed as a binary
code whose sign bit carries a negative weight. For example shown below, the arith­
metic value of four-bit 1111 is computed as -1.

Value =-23 + 22 + 21 + 20
= -8 + 4 + 2 + 1
= -8 + 7
= -1

Because the adder generates the signed sum of two signed numbers, the CPU can
interpret each bit in the multiplier from right to left and add the multiplicand accord­
ingly. Before the signed multiply operation begins, the four-bit multiplier N is
placed in AX, and the four-bit multiplicand M can be in a register or in memory. The
multiplier is 1111 (-1) and the multiplicand is also 1111 as shown in Figure 6.10a.
The top line shows the initial register condition followed by the register contents
after each iteration. During each iteration, test the LSB in AX first. If it is zero, per­
form an eight-bit shift arithmetic right (SAR) operation on DXAAX by one bit. If the
LSB of AX is one, add M to DX. After the operation, if the Overflow (0) bit is set,
we need to perform a nine-bit shift arithmetic right (SAR), otherwise perform an
eight-bit SAR. Again, the nine-bit SAR is accomplished by performing an RCR on
DX one bit followed by another RCR on the AX one-bit. If there is an add opera­
tion, the first line shows the register contents after the operation and the second line
shows the register contents after the shift. Otherwise, only one line exists to show
the register contents after the shift.

After three iterations, the sign bit of the multiplier that needs special action is
reached. If the sign bit is zero, perform an eight-bit SHR to exit. If the sign bit is
one, subtract M from DX because the bit carries a negative weight. The subtract
operation is actually done by adding the twos complement of M to DX. After that,
perform an eight-bit SAR to exit. After the signed multiply, the double word signed
product is in DXAAX. If the multiplicand M is any signed integer and the multiplier
N is -1, the algebraical value of the signed product is shown below:

P = (-M 24 +(M 24 +(M 24 + (M 24)/2 )/2 )/2 )/2
=-M 23 + M 22 + M 21 + M 20
=M ( -23 + 22 + 21 + 20)

=M*(-I)

Figure 6.1Db shows another example - when -7 is multiplied by +3, the signed
product is -21. After the second add operation, because there is an overflow condi­
tion, a nine-bit SAR is performed to take care of the sign. It should be mentioned
that this design always works, except in one extreme case when N is -23 and M is
-23 as shown in Figure 6.1 Dc.
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ox AX = -1 M = -1

(a) Q I 01 1 11 [1 1 1~0 0 0 1 1 1

0 add
1st sar 18-bitl

0 1 add
1 0 2nd sar 18-bitl

0 0 1 add
1 0 0 3rd sar 18-bitl

0 0 0 0 0 1 subtract
0 0 0 0 0 0 4th sar 18-bitl

LJ I ° ° oj
(b)

c

o

OX

001
100

AX = 3

o 0

001
100

M = -7

add
1st sar 18-bitl

o 1
1 0

1
o

001
100

add loverflowl
2nd sar 19-bitl

OX

o 1
1 0

o 1
1 a

AX = -8

o
1

3rd sar 18-bitl
4th sar 18-bitl

M = -8

(c) CJ IL...--°_0_01 I 1 ° ° 01 I 1 ° ° oJ
o

o

o 0 0 0

o 0 0 0

o 0 0 0

1 000

o 1 a °

000

o 0 1 0

o 0 0 1.

o 0 a a
° a 0 0

1st sar 18-bitl

2nd sar 18-bitl

3rd sar 18-bitl

subtract

4th shr 18-bitl

Figure 6.10 Four-bit signed multiply operations: (a) -1 * -1 = 1: (b) -7 * 3 =-21,
and (c) -8 * -8 =64.

The problem arises after subtracting the multiplicand M from DX during the final
iteration. That is because when we take the twos complement of -23, the result is still
the same negative number. Therefore, after performing the final 8-bit SAR, we
obtain a product -26 instead of +26. To solve this anomaly, we need to test OX first
after the final subtraction. If DX contains the bit pattern 1000, then perform an eight-
bit SHR; otherwise perform an eight-bit SAR.

The 16-bit signed multiply instruction can be simulated by the following algo-
rithm provided that the 16-bit multiplier N is in AX and the 16-bit multiplicand M is
in a register or in memory.
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6.5.2.1  16-bit Signed Multiply Algorithm

Clear DX;
Retrieve M into a temporary register;
Set loopCount to 15;

loop020:  IF the lsb of AX is 1,
THEN add M to DX;

IF Overflow, THEN
RCR DX, 1 bit;
RCR AX, 1 bit;
Goto f0024; ENDIF; ENDIF;

SAR DX, 1 bit;
RCR AX, 1 bit;

f0024:    Decrease loopCount by 1;
IF loopCount is not 0,
THEN goto loop020; ENDIF;
IF the lsb of AX is 1,
THEN subtract M from DX;

IF DX is not 8000 in hex,
THEN goto skip026;
ELSE
SHR DX, 1 bit;
RCR AX, 1 bit;
goto exit028; ENDIF; ENFIF;

skip026:  SAR DX, 1 bit;
RCR AX, 1 bit;

exit028:  . . .

After executing the instruction, the 32-bit signed product is in DX^AX. For
example, the following instruction,

imul     bx     ;integer, i.e., signed multiply

can be simulated by the assembly code below:
mov    dx, 0       ;clear dx
mov    cx, 15      ;loop count

loop020:  mov     mask, 1     ;test the lsb of AX
and     mask, ax
jz      skip022 ;skip add if 0
add  dx, bx
jno  skip022  ;jump on no overflow
rcr  dx, 1    ;33-bit sar
rcr  ax, 1
jmp  f0024

skip022: sar   dx, 1   ;32-bit sar
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rcr ax, 1
f0024: loop Ioop020

mov mask, 1 ;test the divisor sign
' and mask, ax
jz skip026
sub dx, bx
cmp dx, SOOOh
jne skip026
shr dx, 1 ;32-bit shr
rcr ax, 1
jmp f0028

skip026: sar dx, 1 ;32-bit sar
rcr ax, 1

f0028:

After iterating 15 times, the original sign bit of the multiplier becomes the LSB
in AX. If the bit is one, the multiplier is negative, so we subtract M from DX. After
the final subtract, if the DX contains the bit pattern 8000 in hex, perform a 32-bit
SHR, otherwise perform a 32-bit SAR before exiting.

In early computers, DX was considered to be the accumulator and AX was the
MQ (multiplier/quotient) register. Before a multiply operation, the MQ register con-
tained the multiplier. After the operation, the accumulator and MQ register pair con-
tained a double word product. The next chapter demonstrates that a multiplication
tree using combinational logic can add all the shifted multiplicands at once. As a
result, it takes only one clock to do a four-bit multiply: unsigned or signed.

6.6 DIVIDE OPERATIONS VIA ONE ADDER

Both divide operations, unsigned and signed, are intricate. We perform a deci-
mal divide operation on paper, as shown below:

14

15 I 224
15

74
60

14

The dividend 224 is placed on the right and the divisor 15 is placed on the left.
Starting from the leftmost digit of the dividend, we compare a group of leading dig-
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its of the dividend with the divisor. The group of digits in the dividend is treated as
a partial dividend. If the value of the partial dividend is less than the divisor, the quo­
tient digit is zero, otherwise we divide the divisor into the partial dividend to obtain
the quotient digit. In our example, after examining the first two digits, the partial div­
idend 22 is greater than the divisor 15, so a quotient digit one is placed on top of the
second most significant digit of the dividend. Multiply the divisor by the quotient
digit to obtain the partial product. Subtracting the partial product from the partial
dividend, we obtain a difference of seven as the leading digit of the remaining divi­
dend. Pull down another digit from the dividend and compare the group of digits
with the divisor again. The same operation is repeated until the remaining dividend
(remainder) is less than the divisor. In this example, after the decimal divide opera­
tion, the quotient is 14 and the remainder is also 14 as a coincidence.

An unsigned binary divide operation is similar with the understanding that the
quotient in each iteration is a bit instead of a decimal digit. Thus, if the quotient bit
is one, the partial product is simply the divisor. The operation of dividing 15 into 224
in binary arithlnetic is shown below:

1 1 10 ~ quotient

1 1 1 1 I 1 110 0000
111 1

1 10 10
1 1 1 1

1 0 1 1 0
1 1 1 1

1 110 ~ remainder

For simplicity reasons, the dividend is an eight-bit unsigned integer 224 and the divi­
sor is a four-bit unsigned integer 15. After the unsigned divide operation, the quo­
tient has a decimal value of 14 and the remainder also has a decimal value of 14.
Starting from the leftmost bit of the dividend, compare the leading bits of the divi­
dend with the divisor. If the value of the leading bits of the dividend is less than the
divisor, we pull another bit of the dividend down. Because the value of the leading
five bits is greater than the divisor, a quotient bit one is placed on top of the fifth sig­
nificant bit of the dividend.

In a case where the value of the leading bits is not greater than the divisor, a quo­
tient zero is placed on top. However, all the leading zeroes in the quotient are not
shown. Just like in decimal divide, we multiply the quotient by the divisor to com­
pute the partial product. Intuitively, if the quotient bit is one, the product is the divi­
sor, otherwise the product is zero. In the above example, the subtract operation is
shown as an explicit binary subtract. In a computer, the twos complement of the divi-
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sor is added to the leading bits of the dividend. Pull down the next trailing bit from
the dividend and compare again. The process is repeated a total of four times. At the
end, a four-bit partial dividend is left as the remainder.

6.6.1 Unsigned Divide

During an unsigned divide operation, an interrupt on divide overflow means that
the quotient is too big for a CPU register to store it correctly. As a result, the divide
operation is aborted. Testing an overflow condition is quite easy because the divi­
dend and the divisor are both unsigned integers. Assume that the OX and AX regis­
ters are four bits long. Before the unsigned divide operation begins, the DXAAX
contains the eight-bit dividend, and the divisor 0 is in a four-bit register or in mem­
ory, as shown in Figure 6.11a. First, compare the divisor with DX, which contains
the four leading bits of the dividend. If there is no borrow, it is an unsigned divide
overflow because the quotient requires five bits. For example, a divisor zero will
generate an overflow. If there is no overflow, iterate four times to generate a remain­
der in OX and the quotient in AX.

c OX AX COXJ\AX = 224) o = 15

[J I 1~ 0 0 0 01 ~~
( a )

0 0 0 0 0 0 1st sh 1
0 1 0 0 0 1 subtract and set AX <0>

0 0 0 0 0 2nd shl
0 1 0 0 1 subtract and set AX <0>

0 0 0 0 3rd sh 1
0 1 0 1 subtract and set AX <0>

0 0 0 4rd sh 1

( b)

Figure 6.11 Four-bit unsigned divide operation, 224/15 =(14) + (14)/15: (a) initial
register condition and (b) register contents after each iteration.

Recall that in each iteration of an unsigned multiply, we perform a sequence of
add and shift logical right operations. For unsigned divide, we perform a sequence
of shift logical left and subtract operations. After each shift, the engine compares DX
with the divisor. It then performs a subtract operation only if the partial dividend in
DX is greater than or equal to the divisor. The register contents after each iteration,
are shown in Figure 6.11b. At the end, we obtain a quotient 14 in AX and a remain­
der in DX that is also 14. In the equation, each unsigned integer is enclosed in a pair
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of parentheses. During each iteration, a nine-bit shift logical left is performed. The
carry flag is the sign bit of the partial dividend. If the C flag is one, then, we subtract
the divisor from DX because the dividend is definitely greater than the divisor. If the
C flag is zero, the engine needs to compare DX with the divisor. Recall that the inter­
nal subtract operation is implemented by adding the twos complement of the divisor
to DX, so the C flag is a borrow. Only if the C flag is 0 (no borrow), does the engine
perform the subtract operation.

In practice, both DX and AX and are 16-bit registers. Before the 16-bit unsigned
divide instruction executes, we place the 32-bit dividend in DX"AX, the divisor in a
16-bit register or in memory.

6.6.1.1 16·bit Unsigned Divide Algorithm

loop030:

Fetch divisor D into a temp register;
Compare DX with D;
IF C flag is 0, {no borrow means above or equal}
THEN interrupt on overflow and abort; ENDIF;
Set loopCount to 16; {no overflow}
SHL (Shift Logical Left) DX"AX by 1 bit;

{shl ax, 1 followed by rcl dx, I}
CASE C flag of,
1: Subtract D from DX; {DX above divisor}

Set the Isb of AX to 1; {AX <0> <- I}
0: Compare DX with D;

IF C flag is 0, {no borrow}
THEN Subtract D from DX;

Set the Isb of AX to 1;
ENDIF;

ENDCASE;
Decrease IoopCount by 1;
IF 100pCount is not 0,
THEN Goto 100p030; ENDIF;

{After 16 iterations, DX contains remainder
and AX contains quotient. }

Exit;

6.6.2 Signed Divide

Signed divide is more intricate. After studying for several hundred hours, the
author failed to develop a direct signed divide algorithm without too many patches.
The trouble arises when the divisor is one or most negative and the dividend is neg­
ative. However, by converting a negative dividend or divisor to positive, we turn the
problem into unsigned divide with minor modifications because the overflow condi-
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tion is a little different. After the iterations, we negate the quotient and/or the remain­
der as determined by its sign combinations. The dividend sign and the divisor sign
are decoded into a two-bit sign flag as shown below:

00: Both DX and D are positive.
01: DX is positive but D is negative.
10: DX is negative but D is positive.
11: Both DX and D are negative.

With sign flag 00 or 11, the quotient is positive because the two signs are equal. With
sign flag 01 or 10, the quotient is negative because the two signs are different. l'he
remainder obeys the sign of the dividend. Thus, sign flag 00 or 01 means a positive
remainder while sign flag 10 or 11 means a negative remainder.

We use four-bit arithmetic to illustrate the concept so DX and AX are four-bit
registers. The eight-bit signed dividend is in DXAAX, and the signed divisor D can
be in a four-bit register or in memory. The key ideas are described below:

1. Decode the sign of DX and D into a two-bit sign flag. For DXAAX or D, if
its sign is one, we negate the operand.

2. Using four-bit arithmetic, an interrupt on overflow occurs if the quotient is
greater than 7 or less than -8. The quotient can not be correctly stored in a
four-bit register, so the operation is aborted. For signed divide, the overflow
condition is tested in two phases.

3. Before the first SHL (shift logical left), if OX is greater than or equal to 0,
it is an overflow.

4. After the first SHL, if DX is greater than or equal to D and the two signs are
the same, it is an overflow. However, it is valid if OX is equal to D and the
two signs are different. Such a design allows the most negative integer as a
quotient.

Four cases of signed divide are shown in Figure 6.12. The dividend has a magnitude
of 23 and the divisor has a magnitude of three, but their sign flags are different.
Because any negative number is converted to positive, all the shift and subtract oper­
ations look the same as shown in (a). The final quotient and remainder are negated
according to the 2-bit sign flag. As shown in (a), the quotient is 7 and the remainder
is 2. In (d), the quotient is 7 and the remainder is -2.

This algorithm is attractive for three reasons. First, it handles overflow correctly.
Second, it allows the most negative number as a divisor because taking the twos com
plement of -23 means no change. Third, it allows the most negative integer as quo­
tient so long as the two signs are different. As shown in Figure 6.13, when -56 is
divided by +7, the quotient is -8 and the remainder is zero. After the loop, the
unsigned eight is in AX, but after negation we obtain the same quotient treated as -8.
Using a 32-bit adder, the engine can handle both signed divide operations, and the
operand can be 16 bits or 32 bits. If OX and AX are 16-bit registers, we have the fol­
lowing algorithm.
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C OX AX (OX"AX = 23) 0=3

D I 0 0 0 1 I [ a 1 I I a 0 1 I

SignFlag = 00 Both OX and 0 are positive.
Compare OX:O and pass.

0 0 0 0 0 1st shl

0 0 1 0 1 0 0 2nd shl
0 0 0 1 0 0 1 subtract. set AX <0>

0 0 1 0 1 0 0 3rd shl
0 0 0 1 0 0 1 subtract. set AX <0>

0 1 0 0 0 0 0 4rd shl
0 0 0 0 0 0 1 subtract. set AX <0>

(a)

SignFlag = 01 OX is positive and 0 is negative.

0 0 0 0 0 1 1 subtract. set AX <0>
0 0 0 1 0 0 negate AX

(b)

SignFlag = 10 OX is negative and 0 is positive.

0 0 0 0 0 1 1 subtract. set AX <0>
1 1 0 1 0 0 negate OX and negate AX

(c)

SignFlag = 11 Both OX and 0 are negative.

0 0 0 0 0 1 subtract. set AX <0>
1 1 a a 1 negate OX

(d)

Figure 6.12 Four-bit signed divide operations: (a) 23/3= (+7) + (+2)/3, (b) 23/-3 = (-7)
+ (+2)/-3, (c) -23/3 = (-7) + (-2)/3, and (d) -23/-3 =(+7) + (-2)/-3.
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0=8

Both OX and 0 are negative.
Compare DX:O and pass.

1st shl

2nd shl
subtract. set AX <0>

3rd sh1
subtract. set AX <0>

4rd shl
subtract. set AX <0>
negate OX

o 0 0 0

o 000
000 1

000
001

o 0
o 1
o 1

(OX"AX = 56)

__0_03

C OX AX

[J ~_O_1~ 1
1

SignFlag = 11

0 0

0 1 0
0 0 0

0 1 0 0
0 0 0 0

0 1 0 0 0
0 0 0 0 0

0 0 0 0

Figure 6.13 Four-bit signed divide, -56/-8 =(+7) + (0)/-8.

6.6.2.1 16-bit Signed Divide Algorithm

Retrieve divisor D into a temp register;
Decode the signs of DX and D into 2-bit sign Flag;
CASE signFlag of,
01: negate divisor D;
10: negate dividend in DXI\AX;
11: negate both dividend and divisor; ENDCASE;
Compare DX with D;
IF C flag is 0, (no borrow}
THEN interrupt on overflow and abort; ENDIF;
SHL DXI\AX by 1 bit;
Compare DX with D;
IF Z (Zero) flag is 1 and the two signs differ,
THEN subtract D from DX;

set the Isb of AX to 1;
{This patch allows the most negative integer as quotient.}

ELSE
IF C flag is 0, {no borrow}
THEN interrupt on overflow and abort; ENDIF; ENDIF;
Set 100pCount to 15; {Divide loop}

100p040: SHL DXI\AX by 1 bit;
CASE C flag of
1: Subtract 0 from DX; {OX above divisor}

Set the Isb of AX to 1;
0: Compare DX with 0;
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IF C flag is 0,
THEN Subtract D from DX;
Set the Isb of AX to 1;
ENDIF;

ENDCASE;
Decrease loopCount by 1;
IF loopCount is not 0,
THEN Goto 100p040; ENDIF;
CASE signFlag of,
01: negate quotient in AX;
10: negate quotient in AX;

negate remainder in DX;
11: negate remainder in DX;
ENDCASE; .

Exit;

6.7 OTHER TYPES OF MICROINSTRUCTIONS

Some other microinstructions are worth mentioning, and examples include
microcode subroutine linking, interrupt, floating point instructions, etc.

6.7.1 Microcode Subroutine Linking

The discussion of micro-subroutine linking is important as a concept. The rea­
son to have a micro-subroutine is that the small set of code can be used repeatedly
by other microinstructions. Micro-subroutine implementation is simpler than the
subroutine at the target machine level.

6.7.1.1 Microcode Subroutine Call

Recall that during a target subroutine call, the return address in the IP is pushed on
the stack before the IP is replaced by the branch address. At the microcode level,
because a one-level call is adequate, the return address can be placed in a particular
temp register, e.g., T2. Where to store the return register is a hardware decision
because the return instruction must know where to find the address. If a branch
microinstruction has the link bit set, it is a call instruction. Thus, the microcode engine
implements the call in two steps. The first step is to store the fJPC in T2 because it has
already been increased by one when the branch microinstruction was obtained from the
control store. The second step is to store the branch address in the fJPC.

6.7.1.2 Microcode Return

If any microinstruction has the return bit set, it becomes the micro-return instruc­
tion, and it is usually the last instruction, in a micro-subroutine. After a micro-return
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instruction is executed, the return address in T2 is copied into the fJPC which points
to the next microinstruction in the control store after the call.

6.7.2 Microcode Interrupt Routine

When the Int bit is set in a microinstruction, the engine checks if there is any
interrupt pending condition. If so, the engine passes control to a particular ROM
address that contains the microcode interrupt routine. As a result of executing the
microcode interrupt routine, the CS and IP are saved on the stack, the IF (interrupt
flag) and TF (trace flag) in the F register are reset to zero, and the CS and IP are
loaded from the interrupt vector in low central memory.

6.7.3 Microcode Floating Point Routines

The floating point instruction can be implemented by microcode. In a modem
computer, a scientific function can be written as a routine of target machine instruc­
tions or implemented by microcode. If one single target instruction is executed to
obtain the result of a scientific function, the microcode routine is usually a loop that
performs floating point arithmetic. That is to say, a microcode sequence can be used
to compute a complex scientific function. Therefore, at the target instruction level,
we can implement functions, such as square root, sine, cosine, tangent, arctangent,
natural log, decimal log, etc.

6.7.3.1 Floating Point Add/Subtract

Assume that the first source operand has its biased exponent denoted as bexp I
and the second source operand has bexp2. After the operation, the destination
operand has its biased exponent denoted as bexp3. The floating add and subtract
operations are similar except for a subtract operation; the sign bit of the subtrahend
is flipped as a pre-operation step. The four sign bit combinations are 00, 11, 10, and
01, and a sign bit zero means positive. The floating point add or subtract operation
is done in three steps:

1. Locate the float number with a smaller exponent and shift its significand to
the right. After each shift of the significand by one bit, increase its biased
exponent by one. This shift right operation continues until the two expo­
nents are equal.

2. Compute the sum or difference of the two significands as determined by the
two signs. If the two signs are equal, positive or negative, conlpute the sum
of the two significands; otherwise compute the difference. This is done by
feeding the positive significand to one adder input and the twos complement
of the negative significand to the other input.

3. Negate the adder output if it is negative, normalize the significand, adjust its
biased exponent, and determine its final sign.
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6.7.3.2 Floafing Poinf Multiply

COMPUTER ARCHITECTURE

The floating point multiply operation is done in four steps, as shown below:

1. Add the biased exponent of the multiplier (bexp2) to the biased exponent of
the multiplicand (bexp1) so the result has one extra bias.

2. Subtract the bias from the result to obtain a biased exponent for the destina­
tion operand.

3. Multiply the two significands to generate a product.
4. Normalize the product, adjust its biased exponent (bexp3), and determine

the overall sign.

6.7.3.3 Floafing Poinf Divide

The floating point divide operation is done in four steps, as shown below:

1. Subtract the biased exponent of the divisor (bexp2) from the biased exponent
of the dividend (bexp 1) so the result has one less bias.

2. Add the bias to the result.
3. Divide the significand of the divisor into the significand of the dividend to

generate a quotient.
4. Normalize the quotient, adjust its biased exponent (bexp3), and determine

the overall sign.

6.8 SUMMARY POINTS

1. The microprogrammed CPU approach has the major advantage of flexibil­
ity.

2. If the microcode interpreter is stored in ROM in the CPU, we have a com­
puter in a computer.

3. A horizontal microcode is longer because each bit is a direct enable signal
for control. In contrast, a vertical microcode is shorter because the field is
encoded.

4. In general, each microinstruction can be divided into six fields: address,
sequence control, adder control, input control A, input control B, and bus
control.

5. The sequence control field decides where and how to fetch the next microin­
struction.

6. After a micro-assembler is developed, we can write a micro-disassembler to
print out the bits in the microcode for verification.

7. The instruction queue or pipe is designed to allow overlapped operations
between the BU and ED.
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8. When the BA bit is set in the microinstruction, the engine acts like a three­
address machine.

9. After interpreting the opcode in the IR, the engine passes control to differ­
ent places in ROM to take further action.

10. A binary multiply may be implemented as a sequence of add and shift oper­
ations.

11. A binary divide may be implemented a sequence of shift and subtract oper­
ations.

12. A target instruction may compute a scientific function, such as square root,
sine, cosine, tangent, arctangent, natural log, log, etc.

PROBLEMS

1. Explain the concept of a computer in a computer?
2. What is the difference between horizontal microcode and vertical microcode?
3. Describe the functions of the JlIR and JlIAR in a microcode engine, and jus­

tify that the JlIAR is really a program counter.
4. Explain why the branch condition for the jge instruction is (\S \0 + S 0)

instead of (\S \0 + S 0 + Z).
5. What is the logical equation of the branch condition for the jl instruction?
6. What is the condition specifier for jae, Le., jump above or equal for unsigned

compare?
7. What are the differences among cmp (compare), sub (subtract), and sbb

(subtract with borrow) instructions?
8. What is the difference between executing a neg (negate), and a not instruction?
9. Some instructions, such as nop, increase AX, decrease AX, etc., have a sin­

gle byte opcode. Design the microcode sequence to execute the three fol­
lowing instructions.

Code image Statement

40 inc ax ;ax <- ax + 1
48 dec ax ;ax <- ax - 1
90 nap ;ip <- ip + 1

10. What is the advantage of designing an instruction queue or pipe?
11. Why is the IP (instruction pointer) designed as a counter?

The next five problems deal with extreme cases under the assumption that both
DX and AX are four-bit registers.

12. Show the sequence of the unsigned multiply operations of

a. (15 * 14) b. (15 * 15)

13. Show the sequence of the signed multiply operations of

a. (7 * +7) b. (7 * -7) c. (-7 * +7) d. (-7 * -7)
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14. Show the micro sequence of unsigned divide operations as follows.

a. (225 /15) b. (225/ 14)

15. Show the quotient and remainder of the following signed divide operations.

a. (49/ +7) b. (49/-7) c. (-49/ +7) d. (-49/-7)

16. Show that the following four signed divide operations are all valid using
four-bit arithmetic.

a. (-56 / 7) = (-8) + (0) /7
c. (-57 /7) = (-8) + (-1) /7

b. (56 / -8) =(-7) + (0) / -8
d. (55/-8) =(6) + (-7) / -8

17. How can we implement a micro-subroutine call?
18. What is the advantage of designing a target instruction that can compute a

scientific function?
19. On most microcomputers, after a subtract operation, the C (carry) flag is

same as the complement of the carry output from the adder. Therefore, the
C flag bit is truly a borrow. Let us change our design such that if C is zero,
it means a borrow. By doing so, we can copy the carry output of the adder
into the C flag bit regardless of the operation, add or subtract. Based on this
new definition, answer the following questions:

a. What should be the microinstruction routine to implement the adc (add with
carry) and sbb (subtract with borrow) instructions?

b. Ifwe design a hardwired logic CPU, can we feed the Carry flag as Cin (carry
in) to the adder for adc or sbb?

20. Exponent overflow or underflow means that the result is incorrect after a float­
ing point operation: add, subtract, multiply, or divide. We make the following
assumptions:

a. Given two floating point numbers, the magnitude of each number is one.
b. The exponent field has four bits, so the excess is seven (0111 in binary).

Note that the first floating point number has bexp1 (biased exponent 1), the
second operand has bexp2 (biased exponent 2), and the result has bexp3
(biased exponent 3).

If bexpl is +7 (unsigned 14) and bexp2 is +2 (unsigned 9), then bexp3 is too big a
positive number after a floating point multiply, and it generates an exponent overflow
interrupt, as shown below.

bexpl +7 1110
+ bexp2 +2 1001

0111 (intermediate result)
+ -7 1001

bexp3 (overflow) 0000
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The signs of both bexp I and bexp2 are ones, but after adding the twos complement
of seven to the intermediate result, the sign of bexp3 changes to zero to signal an
exponent overflow.

An exponent underflow condition may occur after a divide operation. If the div­
idend has bexpl as -2 and the divisor has bexp2 as +7, subtracting bexp2 means
adding its twos complement. The sign bits of both adder inputs are zeroes, but after
adding seven to the intennediate result, the sign of bexp3 changes to one to signal
underflow.

Verify that an exponent underflow occurs after a multiply operation if bexp I is ­
2 and bexp2 is -7. When bexp 1 and bexp2 are fed to the adder, both sign bits are
zeroes, but after subtracting seven from the intermediate result, bexp3 has its sign bit
changed to one.

21. On a Pentium, verify the 16-bit imul instruction can handle the product of the two
most negative integers. Write a program named imul.asm with the following
instructions:

mov ax, 8000h
mov bx, 8000h
imul bx

After assembling and linking, execute the debugger by entering:
debug imul.exe

Enter the t (trace) command to verify that the product in dx"ax is 4000"0000.

22. Write the program named idiv.asm that has the following instructions:

mov dx, 4000h
mov ax, OOOOh
mov bx, 8000h
idiv bx

After executing the debugger, use the r command to change ip, dx, ax, and bx before
executing the idiv instruction. Verify the following extreme cases. On the left, we
show the dividend, divisor, and product. On the right, using four-bit arithmetic we
enclose the equivalent decimal numbers in braces.

a. 4000 0000 / 8000 = (8000) + (0000) / 8000 {64/-8 }
b. 4000 7fff / 8000 = (8000) + (7fft) / 8000 {71/-8}
c. cOOO 8001 / 8000 =(7ffe) + (8001) / 8000 {-55/-8 }
d. cOOO 7fff / 8000 =(7fft) + (ffff) / 8000 {-57/-8}
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CHAPTER 7

Superscalar Machine Principles
If we view the instruction flow and data flow in a computer system, all the

machines can be grouped into three classes: SISD (Single Instruction Single Data),
SIMD (Single Instruction Multiple Data), and MIMD (Multiple Instruction Multiple
Data). 13 A SISD machine contains a scalar processor - each instruction can oper­
ate on one piece of data. A SIMD machine contains a vector processor as each
instruction can operate on a vector, i.e. array of data. A MIMD machine means that
many processors are interconnected. This chapter discusses the design principles of
a superscalar machine. The discussions of SIMD and MIMD machines are found in
the next chapter.

7.1 PARALLEL OPERATIONS

A superscalar processor is a processor that allows the executions of many instruc­
tions at the same time, but each instruction still operates on only one piece of data.

In terms of instruction functions, a superscalar processor is not different from a
scalar processor except in speed and complexity. That is, a superscalar processor is
able to run much faster because all the operations are performed in parallel. This
parallelism includes memory too, so the CPU speed is balanced with its operand
access time. A powerful CPU is usually supported by a memory system that has
many components operating at different speeds. The goal is to achieve parallel oper­
ations at all levels. That is to say, the CPU and all the memory components must be
kept busy. In practice, there are two approaches to designing a fast CPU, a pipe or a
decoupled pipe. Let us explore the memory structures before discussing CPU design
in a balanced system.

7.1.1 Storage Hierarchy

Memory and storage are synonymous. As shown in Figure 7.1, a hierarchical
storage system commonly has four levels: the registers, cache, central memory, and
disk. The first two levels are on chip and the next two levels are off-chip. As the
level is closer to the CPU, the storage is smaller in size but faster in speed. The goal
is to keep the storage system busy at all levels.

259
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Register set

Cache

Memory

Disk (
Figure 7.1 The four-level storage structure includes register set, cache, memory,

and disk.

The first level includes registers and its access time is one clock, e.g., 2 ns at 500
Mhz. The second level is the cache memory, or cache for short. A cache on-chip is
comprised of many high-speed temporary registers. Based on its design, the access
time of a cache usually varies from one to two clocks. In concept, the cache is an
extra layer containing the duplicate copy of a portion of memory that is transparent
to a user program. The cache was first employed by the IBM 360/85 to shorten the
memory access time. Generally, the bigger the cache, the slower the speed. In prac­
tice, the instruction cache is separated from the data cache in order to improve per­
formance. That is to say, instructions are fetched from the instruction cache while
data operandi are fetched from the data cache. Cache memory design will be dis­
cussed later in this chapter.

The third level storage is central memory where results are stored during com­
putation. In general, a mainframe computer has 4 GB or more of memory, but a PC
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has about 128 MB to meet the requirements of graphic applications. The memory
data bus can be 64 bits, but its bandwidth can be increased as described below.

7.1.1.1 Memory Address Interleaving

Figure 2 shows a central memory that has two banks. In the memory, the left
bank contains blocks with even addresses and the right bank contains blocks with
odd addresses. We say that the memory is two-way interleaved in regard to
addresses. The purpose is to allow both banks to be busy at the same time. As a
result, if the memory cycle time is shortened, its bandwidth is increased. Assume
that each bank can provide 64-bit data in one memory cycle. That is, upon a mem­
ory request, a block address is placed on the address bus to access the eight-byte
block. In order to fully utilize the two-way address interleaved feature, the memory
system has two ports as each has its own memory bus. One port is connected to the
CPU while the other is connected to an I/O processor.

Port 1 Port 2

,.--M_em_o_r_
y _---=-1 l -----.

Even address
blocks

Odd address
blocks

Figure 7.2 Two-way memory address interleaving. The left bank contains even
address blocks and the right bank contains odd address blocks.

The memory is designed to operate in two modes as determined by the control
line named opdsize (operand size): zero for 64 bits and one for 128 bits. That is, the
CPU can retrieve a 64-bit block in one atomic cycle. Because of the two-way address
interleaving feature, the CPU can also retrieve a 128-bit block on the same data bus
in one atomic cycle. In doing so, the memory provides two data available signals:
one for the first 64-bit block and one for the second 64-bit block. The CPU can issue
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a 128-bit data request by setting the opdsize bit to one while placing a block address
on the bus. If the block address is even, the memory reads the even block first and
the odd block after it. If the block address is odd, the memory reads the odd block
first and the even block after it. When the first 64-bit block of data is ready, the mem­
ory places data on the bus and asserts its first data available signal. When the second
block of data becomes ready, the memory places it on the same data bus and asserts
its second data available signal.

Because the two banks can operate at the same time, the memory keeps a busy
flag for each bank. Thus, the memory can allow two 64-bit data requests at the same
time, and the arbitration logic in memory can grant a cycle as long as the bank is not
busy. After receiving a request, the memory bank becomes busy and any subsequent
request must be deferred until the previous cycle is completed. In sum, a two-way
interleaved memory can deliver 128 bits in one cycle to double its bandwidth.

The fourth level storage is hard disk. A hard disk spins at a much faster speed
than a floppy and has a much larger capacity. A hard disk with six stacked platters
is depicted in Figure 7.3a. Each platter is a plastic plate coated with magnetic mate­
rial. Except the top side and the bottom side, each platter in the middle uses both
sides to store digital information. The six platters spin as one unit, so on the side
there are 10 disk heads mounted on a mechanical arm to select a cylinder, Le., a
group of tracks with the same radius. This disk has many cylinders, each consisting
of 10 tracks, as shown in Figure 7.3b. In order to select a particular cylinder, the arm
and 10 heads move as one unit with precision. There is no arm movement to access
the tracks in the same cyHnder.

Spindle

head

Track

... ~
Direction of
motion

(a) (b) ( c )

Figure 7.3 Physical layout of a hard disk: (a) six platters with one mechanical arm,
(b) a cylinder with 10 tracks, and (c) a track with eight sectors.
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A track or concentric ring on the disk surface is further divided into sectors, as
shown in Figure 7.3c. A sector is a physical record of fixed size. In general, the
physical record size ranges from 512B to 4KB, which is also the allocated I/O buffer
size. Each time the I/O routine can read a physical record from disk or write a phys­
ical record onto disk. Usually, a high-performance disk has a bit density of 4 giga­
bit or more per square inch.

The latency time is the time required to move the mechanical arm from the cur­
rent cylinder to the addressed cylinder, which obviously depends on the relative dis­
tance between the current track and the destination track. If the destination track is
the same as the current track, the latency time is zero because it is in the same cylin­
der. From the innermost track to the outermost track, or vice versa, the latency time
may be about .25. There are also high-speed disks with fixed heads, i.e., each track
has a head at a fixed position, so the latency time is always zero.

The time to access the sector on a track varies as a linear function of the relative
distance between the head position and the accessed record. The access time on
average is the time to spin half a revolution. If a disk spins at 10,000 Rpm (revolu­
tions per minute), the access time is 3 milliseconds:

Access time =(1/2) / 10,000 Rpm
= (1/2) * 60 * 1000/ 10,000 ms
= 3 ms

7.1.2 Data Dependencies

A high-speed CPU may be simply designed as a three-stage pipe: instruction
retrieval, decode, and execute. The third stage may contain multiple functional units,
each of which has a different execution time. Thus, many instructions can enter the
third stage as long as there are no data dependency problems known as hazards. The
three data dependency conditions are listed below:

I.RAW (read after write).
2.WAR (write after read).
3.WAW (write after write).

The RAW data dependency problem occurs when the source operand of the cur­
rent instruction is the destination of the previous instruction, as shown below:

R[2] <- R[O] * R[I]
R[3] <- R[2] - R[I]

;10 (instruction zero)
;1 I

Instruction 11 can enter the execution stage if the data in R[2] is ready, and the
required resource, a functional unit, must be ready. Because it takes longer to exe­
cute 10, which is a multiply instruction, 11 can not enter the execution stage until 10
is completed, Le., the data in R[2] is ready.
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The WAR data dependency problem occurs when the destination operand of the
current instruction is the source of the previous instruction, as shown below:

R[O] <- R[2] * R[3] ;12
R[3] <- R[2] - R[l] ;13

The execution of 13 changes R[3] which is the sopdl of 12. Therefore, the machine
state after executing ]3 can not be made permanent until 12 is completed. To solve
the WAR problem, use a temporary register to store the result of 13 in the execution
stage. Next, retire instructions in program sequence so 13 is after 12.

The WAW data dependency problem occurs when the destination operand of the
current instruction is also the dopd of the previous instruction, as shown below:

R[3] <- R[O] * R[2] ;14
R[3] <- R[2] + R[l] ;15

As far as programming is concerned, this is not correct because a register, after being
written, should be referenced at least once before being written again. Nonetheless,
the race problem is eliminated by using a temporary register to store the result of 15
in the execution stage. If 14 is retired after 15, the result in R[3] is the sum instead of
the product.

7.1.3 Control Dependencies

The control dep~l!dency problem occurs when the instruction execution
sequence changes. Ther.eJore, any operations after this instruction in the pipe must
be abandoned. Since an instructioQ.changes the program counter, all the instructions
retrieved after the instruction must "be discarded. There are two types of branches:
unconditional and conditional. A conditional branch, if not detected early, causes a
bigger headache than an unconditional branch.

7.1.3.1 Unconditional Branches

Normally, the CPU preretrieves instructions in a queue so the instruction is ready
when needed. This idea works fine without a branch condition. Because a branch
condition changes the flow of instructions, any instructions in the queue after the
branch must be discarded. In the CPU there are many different ways to trigger an
unconditional branch. Fortunately, the event is deterministic, so actions can be taken
immediately. That is, as soon as an unconditional branch condition is detected, the
CPU flushes all the instructions in the instruction queue. Usually, the ~ecode unit
can signal this condition quickly. There are four ways to trigger a branch condition,
as described below:
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1. Unconditional branch instruction
2. Subroutine call and system call
3. Subroutine return and interrupt return
4. Interrupt

265

A system call is an instruction that triggers interrupt. There are many other types
of interrupts. Whenever an interrupt occurs, the CPU saves environment, flushes
instruction queue, and abandons all the operations after the current instruction. As
an example, if a program check occurs, all the operations after the instruction that
triggers the interrupt must be discarded because they are no longer valid.

7.1.3.2 Conditional Branches

When a conditional branch instruction executes, the CPU performs a logic test to
determine whether or not to branch. The CPU can preretrieve instructions right after
the conditional branch instruction. Because there is a greater chance of branching
occurring than not occurring, the CPU should preretrieve the instructions at the pre­
dicted branch address. If the test condition is true, all the operations after the pre­
dicted branch address are valid. If the test condition is false, the program counter is
increased by the length of the branch instruction, and any mispredicted operations
must be abandoned. This is why in a programming loop, we should minimize the
use of branch instructions, conditional or unconditional.

7.1.4 Multiple Functional Units

A functional unit (Le., subunit) performs an operation on one or two registers. As
shown in Figure 7.4a, many of the design concepts were pioneered by CDC6600.65

First, execute instructions to load data from memory into registers. Next, execute
instructions to operate on one or two registers. After that, execute store instructions
to store results from registers to memory. As each instruction is retrieved in the IR,
the decoder prepares information in decoded forms in an operation register. The
decoded information includes opcode, addresses of source registers, and addresses
of destination registers that may be temporary. If there is no data dependency prob­
lem and the functional unit is available, the operation register is passed to the func­
tional unit. Consequently, the unit executes and places the result in a temp register.
If there is no control dependency problem, the result is clocked into the destination
register to make the machine state permanent.

Each functional unit may have a different execution time. If the unit is frequently
used, it may be duplicated in quantities. In addition, many functional units can be
grouped into one execution unit, so a fixed unit can handle integer add, subtract,
shift, and logical operations. A multiply unit can handle multiplications, either fixed
point or floating point. The function units are described below:

© 2001 by CRC Press LLC



266 COMPUTER ARCHITECTURE

( a )
Load/store Float

add/sub

( b)
register

Stage 4

Stage 3

Stage 2

Stage 1

Stage 0

(c) Multiplier

{ 4

Multiplicand

f 4

Logic to prepare 4 multiplicands

7-bit CSA

6-bit CSA

5-bit CPA

~ 8
Product

Figure 7.4 Functional units: (a) seven types, (b) one-clock shifter, and (c) four-bit
multiplication tree.
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1. Load/store
The load/store unit computes the EA (effective address) of the operand, initiates a read
or write memory request, and handles the data transfer between a register and memory.

2. Shifter
If a five-bit shift count is given as (C4 C3 C2 C1 CO), where Ci is bit i, its count value
ranges from 0 to 31 in decimal. The shifter logic can perform the shift operation,
arithmetic or logical, in one clock. The shifter needs five stages of logic gates with
no flip-flops. Based on the shift type, source operand, shift count, and destination
operand, the shifter propagates the source operand through five stages of combina­
tional logic and clocks the shifted result into the destination register. For illustration
purpose, we use a DO loop to explain the logic below:

DO i = 0 to 4, step 1
IF the Ci bit in the shift count is 0,
THEN transfer stage i to stage i+1 in parallel with no shift;
ELSE shift stage i into stage i+ 1 by a count of 21\i; ENDIF;

ENDDO;

If a count is (1 1 1 1 1) for a left shift, stage zero shifts left one (20) bit, stage one
shifts two (21) bits, stage two shifts 4 (22) bits, stage three shifts eight (23) bits, and
stage four shifts 16 (24) bits. Altogether, the source is shifted 31 bits to the left as
indicated by the five skewed arrows shown in Figure 7.4b.

3. Fixed
The fixed unit handles fixed point add and subtract as well as logical operations in
one clock. Since twos complement notation is used to represent a negative integer,
the unit mainly consists of a carry look-ahead adder with logic to handle AND, OR,
and EOR operations. The unit accepts two inputs and clocks the result into a temp
register that is retired into the destination register at a later time.

4. Float add/sub
The float add/sub unit handles floating point add or subtract operations. The unit
consists of a carry look-ahead adder plus logic to perform many operations in paral­
lel. Before feeding the two operandi to the adder, the biased exponents are com­
pared. Shift right the significand with a smaller exponent and increase its exponent.
Repeat this process until the two exponents are equal. Then perform the add opera­
tion and normalize the result.

5. Multiply
The multiply unit has a multiplication tree that can add all the unsigned or signed
multiplicands in five clocks. The idea was derived from a Wallace tree that uses
many cascaded CSAs (carry save adder) followed by a CPA (carry propagated
adder).67 Each CSA comprises many independent one-bit full adders with no inter-
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connections. At each bit position the CSA accepts three input bits and generates two
output bits, Le., sum and carry. In other words, each CSA can add three binary num­
bers and produce the bit-wise logical sum vector and the bit-wise logical carry vec­
tor. The tenn carry save really means that the carry vector is saved for a subsequent
operation. The key concept is that in the final stage, a CPA with carry look-ahead
logic must exist in order to add the two binary numbers into an arithmetic sum.

As shown in Figure 7.4c, the four-bit multiplication tree has a logic box, a seven­
bit CSA, a six-bit CSA, and a five-bit CPA. Except for the first one, each multipli­
cand is properly shifted to the left as determined by the bit in the multiplier. If the
multiplier bit is zero, the multiplicand is not enabled, so it is zero. Because the LSB
of the first lTIultiplicand is the rightmost product bit, the next adder width is reduced
by one bit. In fact, each CSA accepts three inputs and generates two outputs, so it
reduces one row. In order to obtain an arithmetic sum, a CPA in the final stage adds
the final bit-wise carry after being skewed one bit to the left to the final bit-wise sum.
In this case, the CPA in the final stage needs only five bits. For example multiply the
unsigned 15 by an unsigned 15, yielding a product of 225.

0 0 0 0 1st multiplicand ( 15)
0 0 0 1 2nd multiplicand ( 30)
0 () 1 1 3rd multiplicand ( 60)

+ 0 1 1 1 4th multiplicand (120)

1 1 1 0 0 0 0 I eight-bit unsigned product (225)
P7 P6 P5 P4 P3 P2 PI PO

The binaries are on the LHS, while their decimal equivalents are on the RHS. We exam­
ine the CSA output stage by stage. Because PO (product bit zero) is the LSB of the first
multiplicand, the first seven-bit CSA generates the two vector outputs as shown below:

o 0
o 0
o 1

o
1
1

o SVI (sum vector 1)
CV 1 (carry vector 1)
4th multiplicand

After the first CSA reduces one row, the second six-bit CSA can handle the fourth
multiplicand. Because PI (Product bit 1) is the rightmost sum bit from the seven-bit
CSA, the second CSA needs only six bits. Similarly, because P2 (product bit two) is
the rightmost sum bit from the six-bit CSA, the final CPA needs only five bits. The
two vector outputs from the six-bit CSA are added by the five-bit CPA to generate
the five-bit arithmetic sum as shown below:

+
o
o

o
1

o SV2 (Sum Vector 2)
CV2 (Carry Vector 2)

1 1 100
P7 P6 P5 P4 P3

Arithmetic sum from CPA
Upper five-bit product
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As we can see for unsigned mul, the logic box on top prepares four multiplicands
under two conditions. First, each multiplicand is zero extended. Second, each
enabled multiplicand is properly shifted to the left as detennined by the bit position
in the multiplier. Interestingly, the same tree can handle four-bit signed multiply in
one clock. Recall that all the shifted multiplicands should be sign extended. In addi­
tion, the sign bit in the multiplier indicates that, in concept, the twos complement of
the multiplicand should be input to the six-bit CSA. A four-bit signed multiply
example is left as an exercise. We say that a 32-bit multiplication tree has 30 cas­
caded CSAs and the final stage has a 33-bit CPA.

For floating point multiply, the same multiplication tree can be used in addition
to an adder and temporary registers. The tree has a data path of up to 64 bits to sup­
port single, double, and extended precisions. Again, many operations are done in
parallel. Add the two biased exponents and subtract one bias from the result. At the
same time, multiply the two unsigned significands. Finally, normalize the product
and adjust the biased exponent accordingly.

6. Divide
It is interesting that the fixed divide instruction is not supported by Alpha and
CDC6600. On such a machine, the programmer must convert the integers to float
first, perform float divide, and convert the quotient back to integer. However, we can
design a fixed divide unit that is hardwired using gates and flip-flops. The unit
employs a loop, and the subtract and shift operations are performed in one clock
each time they complete the loop.

For a float divide operation, the fixed divide unit is used along with logic to han­
dle exponent arithmetic. In consequence, the divide time is fixed, and for example,
the 32-bit float divide operation requires 40 clocks on a Pentium.28

7. Branch
If the test and branch executions are grouped as one instruction, the branch func­
tional unit compares the test condition first. If the tested condition is true, the unit
sends the target branch address to the IV. Consequently, the IV fetches the instruc­
tion stream at this new address. If the test condition is false, the conditional branch
instruction is treated as a nop, so the next instruction below the branch is retrieved.

Since the functional units in the EV (execution unit) can operate in parallel, we
can design a decoupled pipe so the CPU can perform out-of-order executions regard­
less of whether it is hardwired or microprogrammed. Before discussing this a clever
idea, we introduce the pipelined CPU, which handles in-order executions.

7.2 PIPELINED CPU

For the sake of simplicity, a hardwired five-stage pipe is shown in Figure 7.5a
with the following assumptions:
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( b) lope I sopd 1
I sopd2 I dopd I resultl

(c)

TO

Add

Tl T2 T3 T4

(d)

(e)

Store l_LJ'----J'-------.J
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Figure 7.5 Pipelined CPU: (a) a hardwired five-stage pipe, (b) the mop register,
(c) add instruction in pipe at TO, (d) store instruction in pipe, and
(e) load instruction in pipe.

1. The CPU is hardwired so that only register operations are allowed. That is,
a load instruction must be issued to load a memory operand into a register.
After an operation, a store instruction may be issued to store the result from
register to memory.

2. Each instruction is executed in five phases or less.
3. Each phase executes in one clock.

The five stages are retrieval, decode, fixed point, menlory access, and write
back. 19 Only in-order operations are allowed, so each stage indicates a progress
point regarding the execution of an instruction. Load and store instructions actually
go through the memory access phase but other instructions just bypass it. Five
instructions can coexist in the pipe with in-order logic flow.

The retrieval unit brings an instruction into the IR. The decode unit prepares a
mop (micro operation) register that has many fields, as shown in Figure 7.5b. The
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ope (operation control) is in decoded form, but the addresses can be either in decoded
or encoded forms as dictated by senliconductor technology. For RR (register-regis­
ter) operations, sopdl (source operand 1) and sopd2 (source operand 2) are used to
select two registers as inputs to the fixed point unit (i.e., ALU). For a load or store
operation, sopd1 and sopd2 are also inputs to ALU, but sopd1 is the index register
and sopd2 represents a register to store the memory address. That is to say, the
decode unit copies the address field from the IR into a temp register that is named
sopd2. The result field in mop specifies a temp register to store the result from ALU.
The dopd (destination operand) is a different register that is used to store the result
from ALU, the MD (memory data) before write, or the MD after read. The three
mop registers are lined up in a queue, and each one is passed to the next stage that
may use different fields coded in the mop. By executing three instructions, add,
store, and load, we can describe what happens in the pipe.

1. At TO (time 0), Le., the first clock cycle, the add instruction is retrieved into
the IR as shown in Figure 7.5c. At TI, the decode unit prepares opc, sopdl,
sopd2, result, and dopd in a mop register. At T2, the mop register is passed
to the fixed point unit that performs integer add. At T3, the result remains
unchanged (Le., nap). At T4, the write back unit copies result to dopd to
make the machine state permanent.

2. At TI, the store instruction is retrieved in the IR, as shown in Figure 7.5d.
At T2, the decode unit prepares opc, sopdl (index), sopd2 (address), result,
and dopd. At T3, after adding the index register to the address, the pipe
places the EA (effective address) in the result. At T4, the memory access
stage issues a memory write by placing the result on the address bus and
dopd on the data bus. At T5, the write back unit does nothing.

3. At T2, the load instruction is retrieved in the IR, as shown in Figure 7.5e. At
T3, the decode unit prepares opc, sopdl (index), sopd2 (address), result, and
dopd. At T4, the fixed point stage adds the index to the address to form the
EA in the result. At T5, the memory access stage issues a memory read by
placing result on the address bus and by obtaining the MD from the data bus
after the cycle. At T6, the write back unit copies the MD to dopd to make
the machine state permanent.

Conceptually, a pipelined CPU is like an automobile assembly line. The line
receives a car body frame from one end, assembles different components at different
stages, and outputs a car at the other end. Because the cars are of the same type, all
the operations can be performed on a continuous basis. The assembly line is full all
the time except for occasional interruptions. In contrast, a pipelined CPU can not be
full all the time due to data dependency or branch dependency problems. In other
words, holes are developed in the pipe from time to time. Therefore occasionally,
certain stages are left idle for a few clock cycles. In an ideal case, the pipe has five
instructions all the time and each instruction is progressing in a stage.
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7.2.1 CPU Speed
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If instructions and operandi are retrieved in advance into the CPU, as discussed
later in this chapter, it is reasonable to assume that each stage takes one clock cycle
to perform its function in the pipe. Thus, a total of five clocks are needed to execute
one instruction on a unpiped CPU, but it takes one clock on average to execute the
same instruction on a piped CPU. This is because five instructions are executed in
parallel to achieve the ideal execution rate, as computed below:

Number of clocks issued to execute an
instruction on a unpiped CPU

Ideal CPU rate =
Number of stages in the pipe

= 5/5
= 1 clock/instruction

7.2.2 Clocks per Instruction

We define CPI (clocks per instruction) as the average number of clocks required
to execute an instruction on piped cpu. Assume that when the pipe is 100% full, it
takes one clock cycle to execute one instruction, defined as the ideal CPU rate. If the
pipe is 80% full on average, its utilization factor is 80%. As a result, it takes 1.25
clocks on average to execute one instruction, as computed below:

CPI = ideal CPU rate / utilization factor
=1 /.8
=1.25

7.2.3 Million Instructions per Second

The raw speed of a CPU is often measured in terms of MIPs (million instructions
per second) as defined below:

MIPS =Clock rate in Mhz / CPI

If the CPU supports a clock rate of 500 Mhz with a CPI equal to 1.25, it is a 400
MIPS machine, as computed below:

MIPS = 500 / 1.25
=400
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If computations are numerically oriented, it is necessary to measure the speed in
terms of MFLOPS (million floating operations per second) as defined below:

MFLOPS = clock rate in Mhz/clocks per FLOP

That refers to how fast its floating point unit can operate. If it takes an average of
two clocks to execute a FLOP (floating point operation), add or subtract, it is a 250
MFLOPS machine, as computed below:

MFLOPS =500 / 2
= 250

We can use a stop watch to time a benchmark that is composed of fixed point, float­
ing point, logic, load, store, and branch instructions in a loop. Benchmark results70

and tools71 are free as they are available from the Internet. It should be stressed that
CPU speed alone can not decide the performance or sales of a computer system.
Other factors include reliability, system software, application software, cost, mar­
keting, support, momentum, etc.

7.3 CACHE MEMORY

In a conventional memory, the address is not stored as part of the word, so the
full address is decoded to select the word or block. [n contrast, the cache memory
or cache is an associative memory, Le., content addressable. That means each cache
entry, either a word or a line, contains both address and data as shown in Figure 7.6a.
Depending on its design, the address field may contain a full rnemory address or part
of an address. Its associated data field contains the copy or mirror image of a block
in memory. Conceptually, the cache serves as an extra layer between registers and
central memory not seen by the programmer. As shown in (b), the fully associative
cache memory has four entries: EO, El, E2, and E3. The entry EO contains AO
(Address 0) and DO (Data 0). For entry EO, the key is said to be AO and its associ­
ated data block is DO.

7.3.1 Cache Hit vs. Cache Miss

During a read cycle, the cache compares the given address with the key in a cache
entry. If a match is found, it is defined as a cache hit so its data field is retrieved. If
a match is not found, it is defined as a cache miss, meaning the data block of inter­
est in not ready in cache. As a result, the cache memory reads the central memory.
Any old data to be replaced must be written into central memory. The data read from
central memory and its address are inserted into the cache entry to complete the
cache read cycle.
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[jdd r_e_ss . Da_t_a _

Address 0 Data 0

Address 1 Data 1

Address 2 Data 2

Address 3 Data 3

Address 2 Data 2

Address 0 Data 0

Address 1 Data 1

Address 3 Data 3

Address 4 Data 4

Address 2 Data 2

Address 0 Data 0

Address 1 Data 1

Figure 7.6 Cache memory entries: (a) the format of an entry, Le., slot, word, or line,
(b) a fully associative cache has four entries: EO, E1, E2, and E3, (c) pull
out the matched entry E2 and push it on top, and (d) push the new entry

E4 on top.

7.3.2 Fully Associative

Fully associative means that the address fields of all the cache entries are searched at
the same time so the key field contains a full blown address. If a central memory has
64 GB, its physical address is 36 bits. To read a block of eight bytes, its block
address is 33 bits (36 - 3). During a cache read cycle, the 33-bit address is used to
match the key field in each cache entry. Depending on the applications, a cache entry
may contain some extra bits for special control functions.
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Because a prograln has the property of locality, a cache should not contain the LRU
(least recently used) entries for they are not likely to be accessed again. If the cache
has four entries, the cache can be designed as a hardware queue that ensures the
usage ordering from top to bottom. The top is always the MRU (most recently used),
then the next entry, the third entry, and the bottom entry is the LRU (least recently
used). The LRU replacement algorithm throws away the LRU entry in the cache as
described below.38

IF a match is found:
THEN Pull the match~d entry out and push it on top;
ELSE Issue a central memory request to read the new entry;

Wait until the new entry arrives, then push it on top;
ENDIF;

Due to the property of flip-flops, all the cache updates can be done in one clock
cycle. In Figure 7.6c, pull out the matched entry E2 and push it on top. Thus, the
entries EO and El drop one level and El fills the hole once occupied by E2. Later, if
a new entry E4 needs to be inserted, push it on top and the bottom entry E3 falls out
as shown in Figure 7.6d.

If the fully associative cache has four entries, we need four hardware compara­
tors as shown in Figure 7.7. Given a 33-bit block address as the key, the 8B block
can be fetched in one clock. Henceforth, the address is compared with the key of
every entry at the same time. The MAR (memory address register) contains the 33­
bit address as the search key, and each comparator has 33 EOR gates. If a match is
found, the comparator fires a signal to select the data field of the matched entry. Only
one comparator can fire, so the data outputs of the E (enable) gate are OR-tied to the
MDR (memory data register), which is connected to the 64-bit cache data bus.
Because the full address is the key, the cache word length is 97 (64 +33) bits. A fully
associative cache has a speed advantage, but its smaller size is its limitation. Note
that in a virtual memory system, the processor uses a fully associative TLB (transla­
tion look-aside buffer) that contains the MRU translation records. The speed of the
TLB must be fast, as discussed later.

There are two other cache designs: direct mapping and set associative. The LI
instruction cache may use direct mapping, while the L1 data cache uses set associa­
tive search. In either case, the data operand in the cache may vary from one byte to
four bytes. The L2 cache is usually off-chip and it is an optional design in the sys­
tem. Usually, the L2 cache uses set associative search and its entry is an 8B block
containing both instructions and data. To speed up instruction retrieval, we may also
have the instruction queue that is designed as a parallel shift register. The instruction
queue contains the IR as a subset left justified. That is, if the queue contains an
instruction, it can be clocked into the IR in 2 ns or less. Therefore, the instruction
queue can be thought of as the LO instruction cache as introduced next.
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7.3.4  Instruction Queue

If the instructions can have two different lengths, 16 bits or 32 bits, the alignment
problem is intricate.  This is especially true if an instruction is allowed to cross the
boundary of a quadword.  To alleviate the problem, an instruction queue can supple-
ment the instruction cache.  That is, if a cache miss is encountered, instructions are
retrieved from memory into the L1 instruction cache and then loaded into the instruc-
tion queue.

For example, the instruction queue is an 8W parallel shift register such that 16 or
32 bits can be shifted in one clock.  As shown in Figure 7.8a, the queue is empty due
to a branch condition so its hole size is 8W.  The hole size is kept in a four-bit counter,
so 1000 in binary means that the queue is 100% empty and 0000 means that the
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Comparator 0 Address 0 Data 0

E

E    - Enable
MAR  - Memory address register
MDR  - Memory data register

33-bit key

Comparator 1 Address 1 Data 1

Comparator 2 Address 2 Data 2

Comparator 3 Address 3 Data 3

E

E

E

64-bit data

MAR MDR

Figure 7.7 Four comparators operate in parallel in a fully associative cache.
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Hole size 1000

( a)

[~==r==J
Hole size 0100

( b)
6 leading bytes I 10 J 1-=1 l

Hole size = 0111

(c )
I 10 CJ L=r=r [=0
Hole size 0100

(d ) III 12 =r!3~1=~=~_LJ

Hole size 0101

(e) I 12 I 13 [
Hole size 0111

( f)

1

13

Figure 7.8 The holes in an instruction queue: (a) after a branch, (b) after loading an
instruction block, (c) after shifting the leading bytes, (d) after shifting 10,
(e) after shifting 11, and (f) after shifting 12.

queue is 100% full. A number in between means that the instruction queue is par­
tially full. The leftmost field in the queue is the IR where the decoding circuit is
hardwired. Any instruction must be left justified in the queue before decoding can
start. After decoding and shifting the queue, the hole is increased by the instruction
length of one or two words. The hole size also tells the starting position in the queue
where the next instruction block is being loaded. After loading a 4W block, the hole
size is decreased by four.

© 2001 by CRC Press LLC



278

7.3.4.1 Instruction Queue Management:
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IF a branch condition is encountered,
THEN
Flush the queue and set the hole size to 8W;
retrieve and wait for the 4W instruction block from the instruction cache;
After loading the block into the hole left justified, decrement the hole size
by 4;

IF the branch address starts in the middle of block,
THEN
Shift left the queue x bytes where x is the lower 3-bit integer
in PC (i.e., instruction address register);
Increase the hole size accordingly;
ENDIF; {Now, the instruction is left justified in IR.}

ENDIF;
IF the queue contains a complete instruction,
THEN
After decoding, shift left the queue and increase the hole size accordingly;

IF the hole size is greater than or equal to 4 in words,
THEN

IF the next 4W instruction block is ready in the instruction queue,
THEN load the block into the queue and decrement the hole
size by 4; ENDIF;

ENDIF;
ELSE
Stall decoding;
Wait for the next 4W instruction block to be loaded;
ENDIF;

Let us trace the instruction queue and its hole size. To begin with, a branch con­
dition generates an 8W hole, as shown in Figure 7.8a. After a 4W instruction block
is loaded into the hole left justified, the hole size is reduced to 4W, as shown in Figure
7.8b. For example, assume that 10 (instruction 0) is retrieved at the branch address
that has a lower three-bit 110. As 10 must reside in the IR before decoding can start,
one clock is wasted to shift left the queue by 3W (Le. six bytes) as shown in Figure
7.8c. Accordingly, the hole size is increased by three to become seven. After decod­
ing 10, the queue is shifted to the left, so the hole size is eight. However, at the same
time the next 4W instruction block is loaded, as shown in Figure 7.8d and the hole
size is four. Now, we have 11 (instruction 1), 12, and 13 in the queue. After decod­
ing 11, shift left the queue by one word so the hole size is five as shown in Figure
7.8e. After decoding 12 that is two words long, the hole size becomes seven as shown
in Figure 7.8f. In sum, the instruction cache always anticipates the next block in
order to fill the hole. Decoding continues as long as the instruction queue has a com­
plete instruction. As soon as the hole is greater or equal to 4W, the cache tends to
load the next 4W instruction block left justified and reduce the hole size.
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The L 1 instruction cache may have an access time of two clocks with a cache line
of eight bytes. The CPU looks into the instruction cache to fill up the instruction
queue. The instruction cache always looks ahead to retrieve a memory block of 16
bytes upon a miss. If the target instruction at a backward loop branch resides in the
instruction cache, the target instruction can be obtained in two clocks. How is an
instruction cache designed? First, the number of entries in the cache is determined.
A search technique is selected. If each cache entry contains an 8 B data field, then
64 entries would provide a 512 B block of instructions (deemed adequate for most
applications). Because the instruction stream is obtained from one segment at a time,
The direct mapping search method is more attractive.

7.3.5.1 Direct Mapping

If the physical block address has 33 bits, the upper 27 bits are stored as the key,
and the lower six bits are decoded to directly select a cache entry. This entry con­
tains only a partial address because its lower six bits are implied to obtain the block.
That is, the six lower bits constitute an index to the instruction cache. Because the
six lower bits are decoded to select the entry, the cache requires only one compara­
tor. After the comparison, if a match is found, it is a hit; otherwise it is a miss. The
format of a directly mapped entry is shown in Figure 7.9a. The entry of 91 (64 + 27)
bits includes a 27-bit key and a 64-bit data.

In Figure 7.9b, the cache has 64 entries, EO, El, ... , E63. The search operation is
done in two steps. First, the lower six bits in a given block address are decoded to
select the entry into the MOR. Next, the upper 27 bits in the MOR are compared
with the key field in the MAR. If it is a hit, the 64-bit data field is enabled as output
as clocked into the instruction queue. If it is a miss, the cache then retrieves two 64­
bit instruction blocks from central memory at the given address. The two blocks are
then stored into two consecutive entries in the cache. The index to the first entry is
determined by the lower six bits in the block address. After adding one to it, we
obtain the index to the second entry.

Because the instruction cache only supports read operations, this does not mean
that instructions in a program can not be modified. In fact, any instruction can be
modified just like data if it is loaded into a data register first. This leads to our dis­
cussion of a data cache which handles both load and store operations. In other
words, if the data block in the cache is written, its memory image must be changed
accordingly.

7.3.6 Data Cache

An Ll data cache which can use a two-way set associative search technique
resides on the processor chip. If a data cache entry has eight bytes, a 16 KB cache
may be divided into 1 K sets and each set has two entries grouped as a pair. The indi-
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(a) I 27-bit addre~_-_b_i_t_d_a_t_a~~~~~~~~

MAR

27-bit key

Address Data

64-bit data bus

MDR

o
E

Decode
Enable

( b )

EO

E63

Figure 7.9 Direct mapping cache: (a) the 91-bit entry and (b) one 27-bit comparator
for 64 entries.

vidual data operand may be eight bits, 16 bits, 32 bits, or 64 bits. Because the data
cache is on-chip, it is labeled as the L1 data cache. Assuming that a word is aligned
in word boundary, a double word in double word boundary, and a quad word in quad
word boundary, the data cache must handle the alignment problem when accessing
the operand. That is to say, the central memory can access a 64-bit block but the L1
data cache can handle an operand of different size. In order to access an 8 B block
in central memory, only the upper 33 bits of the 36-bit byte address are needed on
the address bus. In order to access an operand in the Ll data cache, the full 36-bit
byte address must be given, so the upper 33 bits are used to access cache entry, and
the three least significant bits are further decoded to select the byte level in the block.
In other words, the lower three bits of the 36-bit byte address and the generic data
type jointly specify the offset and size of the operand in the cache entry.
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Typically, a data cache is larger than an instruction cache, so its design is some­
what different. In a program, data are usually obtained from two segments, static and
dynamic. A static segment contains read only data while a dynamic segment con­
tains writable data. It is possible for two pieces of data to both be recently used, and
to have the same lower 10 bits in their block addresses. Both data should be in the
cache, so we design a two-way associative set. Because each set contains two
entries, the two-way set associative cache uses two comparators. Similarly, in a four­
way set associative cache there are four entries in a set, so it needs four comparators.
In concept, the set associative cache is a compromise between direct mapping and
fully associative. The fully associative cache has one set with multiple entries, and
the direct mapping cache has many sets and each set has only one entry.

In a two-way set associative cache, the 16 KB memory is divided into 1 K sets,
and each set has two entries. As shown in Figure 7.10a, each entry has 88 bits: a 23­
bit key, a 64-bit data, and the dirty bit. As shown in Figure 7.1 Ob, we have 1024 sets,
denoted as SO, S 1, ... , and S 1023 and two 23-bit comparators. l'he MAR contains a
full 36-bit byte address divided into a 23-bit key, a 10-bit set address, and a three-bit
byte address. Because a set has two entries, the middle 10 bits in a 33-bit block
addresses can be indexed into the set of two entries at the same time. That is to say,
the middle 10 bits are fed to 0 (decoder) to select the set that is loaded into the MDR
of 176 (88 * 2) bits. Next, the 23-bit key in the block address is compared with each
of the two keys in the MDR at the same time, a process called set associative search.
If anyone of the comparators fires, the data field of the selected entry is enabled to
the output logic box. In sum, the set associative search is performed in two steps.
First, the lower bits in a block address are decoded to select a set of multiple entries.
Second, the upper bits in a block address are compared with the key in each entry to
determine a hit or miss.

Let us try to read a byte from the data cache. In the MAR, the lower three bits
are used to locate the byte in the data field if it is ready. The middle 10 bits are
decoded to select a set of two entries in the MDR. Then, the upper 23 bits in the
MAR are compared with the two keys in the MDR in parallel. If a match is found,
the fire signal enables the selected data field to the enable gate. The lower three bits
in the MAR are then decoded to select the byte in the data field of the matched entry.
After a write operation the dirty bit in the entry is set, so a store operation is in order.
In general, there are two methods to write a dirty entry into memory as described
below.

7.3.6.2 Write-Through

The write through method means whenever the entry is written in, the dirty bit is
set and the cache immediately writes the entry into Inemory.. Unfortunately, if the
same word is written 10 times by an instruction in a loop, the write through opera-
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Figure 7.10 Two-way set associative cache: (a) the SS-bit entry and (b) two compara­
tors for 1 K slot pairs.

tion is performed a total of 10 times. Such a design is simple but initiates too many
write operations. A lot of memory bandwidth is wasted. As an alternative, the store
operation can be deferred until the entry is to be replaced by a new one.
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The write back method is clever in that when the entry is written in, the dirty bit is
set but the cache defers the write operation until the entry is ready to be replaced by a
new one. That is to say, the data cache does not write the entry into memory each time
it is modified. The data cache uses extra logic to defer the write operation, Le., the data
cache writes back the dirty entry only when it is ready to be replaced. Thus, the cache
may write the central memory 10 times in write through mode, but only once if oper­
ating in write back mode. That is, a data cache can be turned on (enabled) or off (dis­
abled). If the cache is on, it can operate in either write through or write back mode.

Finally, we study how to replace an entry in a two-way set associative cache.
With two entries, each set can be designed as a queue using the LRU replacement
algorithm. As shown in Figure 7.11 a, the set has two entries, EO and E 1.

(a )

( b)

(c )

(d)

Address 0 Data

~~Address 1 Data

o~jAddress 0 Data

Matched entry

Address 1 Data 1

Address 0 Data 0

3Address 2 Data 2

Address 1 Data 1

Figure 7.11 Replacement in a two-way set: (a) the set has two entries EO and E1,
(b) the bottom entry is matched, (c) after interchange, and (d) push the
new entry E2 on top.

7.3.6.4 Replacement Algorithm in a Two-Way Set
Associative Cache

CASE of the matched entry;
Top: Take no action;
Bottom: Interchange the top and the bottom;
Write the interchanged pair to cache;

None: Retrieve and wait for the new entry from central memory;
Push it on top and the bottom falls out;

ENDCASE;
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Of the two entries in the set, the top is the MRU. Thus, if the top entry EO is
matched, take no action. If the bottom entry E1 is matched as shown in Figure 7.11 b,
interchange EO and El as shown in Figure 7.11c. In addition, write the interchanged
pair to the cache. If no match is found, retrieve and wait for the new entry E2 from
central memory. When E2 arrives, push it on top as shown in Figure 7.IId.

If the central memory is too slow, an off-chip L2 cache that contains both instruc­
tions and data may be considered. However, this design is merely an added option
in order to speed up memory access. By doing so, control lines are needed between
the L2 cache and the memory on the host system bus.

7.4 PENTIUM DECOUPLED PIPE

Ll DcacheL1 Icac~

The Pentium processor is designed as a decoupled pipe whose block diagram is
simplified in Figure 7.12.28 The off-chip L2 cache is an intermediate storage
between the central melnory and the CPU to supply instructions and data. On the
chip, the L1 ICache (instruction cache) supplies instructions, and the L 1 DCache
(data cache) supplies data. There are four major hardware units to constitute a 12­
stage superpipeline. All stages are decoupled in order to achieve a higher clock rate.
Features include branch prediction, speculative instruction retrieval and execution,
and data flow analysis. The overlapped operations ensure high performance as
described below.

System bus

Fetch/decode
unit

Dispatch/
execute

Retire
unit

Instruction pool

Figure 7.12 Block diagram of a Pentium CPU.
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The four major hardware units are BIU (bus interface unit), FDU (fetch and
decode unit), DEU (dispatch and execute unit), and RU (retire unit). The BID is an
external unit while the other three are internal units. The BIU provides load/store
interface between the L1 instruction or data caches and the L2 cache. In other words,
the BIU connects three internal units or engines to the outside world.

If an internal unit operates in sequence, it is an in-order unit. Otherwise, it is an
out-order unit. Thus, each unit is a stage in a decoupled pipe using microcoded logic.
The three internal units jointly work with an instruction pool that contains micro
orders to be executed, or have been executed but not yet retired. Such a design allows
an instruction to be started in any order, but it must always be completed in the orig­
inal program order. Let us fetch and decode four instructions as follows:

R[l] <- M[R[O]] ;10 (instruction 0)
R[2] <- R[I] + R[2] ;11
R[5] <- RL5] + 1 ;12
R[6] <- Rf6] - R[3] ;13

The first instruction 10 loads Rl with a memory operand. If a Ll DCache miss is
encountered, the OEU looks at its instruction pool for subsequent micro orders to
execute rather than being stalled. Obviously, the second instruction I1 h~s R1 spec­
ified as a sopd (source operand), which is also the dopd (destination operand) from
10. Therefore, the data dependency problem prevents 11 from being executed.
Nonetheless, 12 and 13 do not have such a problem so they can be executed out of
order.

7.4.1.1 Bus Interface Unit

The BIU handles two types of memory access: load and store. After receiving a
flOP (micro operation or order), the unit carries out its execution. A load operation
needs the memory address, operand size, and temporary result as encoded into a sin­
gle flOP. A store operation needs to specify the memory address, operand size, and
source operand to be written. In contrast, a store operation is encoded into two flOps.
The first one generates the address, the second one generates data, and the two must
recombine later for the store operation to complete.

7.4.1.2 Fetch and Decode Unit

The FDU is an in-order unit that provides two functions, fetch (retrieve) and
decode. The fetch unit retrieves the instruction stream from the ICache. A register
named BTB (branch target buffer) contains the predicted address of a conditional
branch. Another subunit named NextIP provides the start ICache index, based on
inputs from the current instruction, BTB, trap/interrupt status, or branch mispredic-
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tion indications from the execution unit. The ICache fetches the 64-bit cache line
and the next line according to NextIP and presents 16 aligned bytes to the decoder.
The lower three bits in the full instruction byte address constitute a byte count to shift
left the instruction. After that, it is justified for the decoder. Because the beginning
and end of the instructions are marked, the three parallel instruction decoders (10)
can accept this stream and proceed to decode the instructions in parallel. Each
decoder converts the instruction into f..l0ps that represent the data flow of the instruc­
tion. The J..lop is triadic in the sense that it contains two logical sources and one log­
ical destination. Most instructions are converted directly into single f..l0ps, some are
converted into 2 - 4 J..lops, yet the complex ones require microcode. In the FDU, a
store named MIS (microcode instruction sequence) provides the microcode, Le., a
sequence of normal f..l0ps.

The f..l0ps are queued, and sent to the RAT (register alias table) unit, where the
logical register references are converted into physical register reference (i.e.,
decoded form). The allocator stage in the RAT unit adds status information to the
f..lops and enters them into the instruction pool. The status bits may indicate to be
executed, executed but not yet retired, etc. Note that a branch f..l0P is tagged with the
fall-through address if the prediction is wrong and it also contains the predicted des­
tination address. The instruction pool is an array of content addressable memory
called the ROB (reorder buffer). Note that some f..l0ps in the pool may be specula­
tive, therefore their executions are discarded if not needed later.

7.4.1.3 Dispatch and Execute Unit

The DEU is an out-order unit that accepts the data flow stream and schedules the
execution of J..lops. The dispatch unit selects f..l0ps from the instruction pool to the EU
(execution unit) upon their status. If the status indicates that the f..l0P has all of its
data ready, then the dispatch unit checks if the execution resource needed by the f..l0P
is also available. Each resource is a functional unit, and the resources include fixed
point, floating point, address compute for load, address compute for store, and jump.
That is to say, in order to dispatch a f..l0P its data and ED must be ready. Conceptually,
the dispatch unit keeps a busy flag register for all the resources including the data
registers. A bit zero indicates that the data or resource is free. The hardwired logic
masks the busy flag register with the operation control and sources in the f..lop. If the
result is zero, the two conditions are met, so the unit removes that IJOp from the pool
to the resource where execution takes place. The DEU also provides registers for
temporary execution results that may be speculative so the results of the f..l0P are
returned to the instruction pool for later examination.

Recall when a branch type instruction is decoded, the decode unit sets the BTB
to the predicted branch address. Thus, the ICache can retrieve instructions at the new
address. If during execution, the branch address coincides with this predicted
address, then all the instructions retrieved after the branch address are valid in the
pool and they will be duly retired. If the branch address does not coincide with this
predicted address, e.g. no more branch to exit a loop, then the jump execution unit
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(JEU) does two things. First, it sets the BTB to the fall-through address so the fetch
unit can restart the pipeline from this new instruction address. Second, it changes the
status of those 1J0ps right after the predicted branch address to invalid so they can be
discarded later by the retire unit.

7.4.1.4 Refire Unit

The RU is an in-order unit that knows exactly when and how to commit (Le.,
retire) the temporary, speculative results to a permanent architectural machine state.
The retire unit looks for those 1J0ps that have been executed and can be removed from
the pool. The unit first reads the instruction pool and finds the potential candidates
for retirement. It then checks the status of the fJOps in the instruction pool, decides
which fJops are completed, and imposes the original program order on them. It must
also do this in the face of interrupts, traps, and mispredictions. This is why the fJop
should contain the full physical address of the instruction being executed. The RU
is capable of retiring up to three fJOps in one clock.

For programming convenience, the Pentium CPU supports a few vector instruc­
tions, such as push/pop all registers, move a block of memory, search a block of
memory, etc.

7.4.2 Push All VB. Pop All

On a Pentium, the pusha (push all) instruction shares the same one-byte opcode
with the pushad (push all double) instruction. Each instruction can push eight regis­
ters of 16 bits or 32 bits, as the operand size is specified in a hardware register by the
OS. Similarly, the popa (pop all) and popad (pop all double) instructions also share
the same opcode to pop all eight registers from the TOS, as shown below.

Code image Statement Description
60 pusha Push eight 16-bit registers.
60 pushad Push double eight 32-bit registers.
61 papa Pop eight 16-bit registers.
61 popad Pop double eight 32-bit registers.

The pusha/pushad and popa/popad operations are shown below:

Mnemonic
pushalpushad

Description
;IF the operand size is 16 bits,
;THEN Temp <- sp
;Push ax, ex, dx, bx
;Push temp, bp, si, di
;ELSE Temp <- asp
;Push eax, eex, edx, ebx
;Push temp, ebp, esi, edi
;ENDIF
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;IF the operand size is 16 bits,
;THEN Pop di, si, bp
;sp <- sp + 2 {skip next 2 bytes.}
;Pop bx, dx, ex, ax
;ELSE Pop edi, esi, ebp
;sp <- sp + 4 {skip next 4 bytes.}
;Pop ebx, edx, ecx, eax
;ENDIF

Note that the pop sequence is the reverse of push, and one opeode is adequate for
either push or pop regardless of the operand size. The reason for this is that the CPU
can only operate in 16-bit or 32-bit mode as determined by the D bit (b22) in the seg­
ment descriptor to specify the operand size. If the D bit is one, it means one 32-bit
operand, otherwise we have a 16-bit operand. That is to say, one bit is specified in
the CPU as an extended opcode to determine the operand size.

7.4.3 String Instructions

There are five string instructions: lods (load string), stos (store string), movs
(move string), cmps (compare string), and scas (scan string). Each instruction has a
six-bit opcode followed by a D (destination) bit, and a W (width) bit. Since the
operand can be one byte or one word (two bytes), the W bit in the main opcode makes
the difference. Also, the D bit makes the difference between load and store. Note
that each instruction contains no addresses because all the operandi are implied as
listed in Table 7.1.

Table 7.1 String Instructions

Code image Mnemonic Description
AC lodsb Load string byte

al <- M[ds:si] {DS is the base.}
AD lodsw Load string word

ax <- M[ds:si]
AA stosb Store string byte

M[es:di] <- al {ES is the base.}
AS stosw Store string word

M[es:di] <- ax
A4 movsb Move string byte

M[es:di] <- M[ds:si] <7:0>
A5 movsw Move string word

M[es:di] <- M[ds:si]
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Code image Mnemonic Description

AS cmpsb

A7

AE

AF

cmpsw

scasb

scasw

Compare string byte
Compare M[ds:si]:M[es:di] <7:0>
and set CC.

Compare string word

Compare M[ds:si]:M[es:di] and set CC.

Scan string byte

Compare al:M[es:di] <7:0> and set CG.

Scan string word
Compare ax:M[es:di] and set CG.

The lods instruction loads an operand from memory to the accumulator while the
stos instruction stores an operand from the accumulator to memory. The movs
instruction moves an operand from memory to memory. The scas instruction com­
pares the accumulator with memory and set ec in the F register. Similarly, the cmps
instruction compares memory with memory and set ce accordingly.

A string instruction is often issued in conjunction with a prefix, namely REP
(repeat), REPE (repeat while equal), or REPNE (repeat while not equal) as listed in
Table 7.2.

Table 7.2 Repeat Prefixes

Code image
F3

F3
F2

Mnemonic
REP

REPE
REPNE

Description
Repeat

Repeat While Equal
Repeat While Not Equal

If a one-byte prefix (i.e., opcode) is specified in the front, the two-byte instruc­
tion becomes a hardware loop. The implied registers must be properly set, and the
ex register should contain a loop count. While the REP prefixes work with lods,
stos, or movs, the REPE or REPNE prefix works with a compare type, such as scas,or
cmps. Each prefix acts like a DO-WHILE construct as shown below:

DOWHILE (eX .NE. 0) .OR. (compare condition);
cx <-cx - I;
Do the operation; {Note: compare operation sets CC. }
Modify SI;
Modify DI;
ENDDO;
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If either of two cases is true, the loop continues, otherwise the loop terminates.
As the first case, CX is not zero.  In the second case, the compare condition is true.
After the loop terminates, either CX is decreased to zero or the condition changes to
false after the comparison.  In fact, the REP prefix means repeat while not end-of-
string and shares the same opcode as REPE.  Furthermore, after the operation, the
index registers are increased or decreased by the operand size based on the DF
(direction flag) in the F register.  For example, if the operand size is one byte and DF
is zero, the index registers SI and DI are each increased by one after the operation.

Note that the REP or REPE prefix has an LSB (least significant bit) equal to 1
and the REPNE prefix has an LSB of zero.  If the LSB is denoted as z (pronounced
zee), after the operation, the compare condition in the DO-WHILE is as follows:

compare condition = ZF .EQ. z

The compare condition is true if the z bit is the same as ZF.  If the z bit is differ-
ent from ZF, then the compare condition becomes false.  Note that it is not necessary
for a programmer to initialize ZF before the repeat loop.  A coding example to move
a 256B block from one memory location to another location is shown below.

; _____ Recall for string operations, the destination operand
;        uses ES as the default segment register.  The implied
;        SI is a source index, DI is a destination index, CX
;        contains a count, and the direction flag is 0 to move 
;        up so both SI and DI are increased by 1 after each
;        move.  The CX register always counts down and the REP
;        MOVSB instruction moves a byte block as follows:
;        DO-WHILE (CX .NE. 0);
;        CX <— CX - 1
;        M[es:di] <— M[ds:si] <7:0>  {CC is not changed.}
;        SI <— SI + 1
:        DI <— DI + 1
;        ENDDO;
; —————————————————————————————

. . .
mov    ax, ds
mov    es, ax
mov  si, offset blk1
mov  di, offset blk2
cld          ;clear DF to move up
mov  cx, 100h ;block count is 256 in bytes.
rep movsb

A scas instruction internally subtracts the destination string indicated by the DI
from the implied accumulator, and sets the .  Similarly, the cmps instruction inter-
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nally subtracts the destination string indicated by the DI from the source string indi-
cated by the SI and sets the CC.  Because the destination string uses the ES as the
base, the ES is set to the DS in this example.  Either string, destination or source,
remains unchanged after an internal subtract.  Using the prefix REPE or REPNE with
scas or cmps, we can search a string, and a coding example is shown below.

. . .
str1     db     `THIS IS TEXT′
. . .

mov    ax, ds
mov    es, ax
mov    di, offset str1
mov    al, ‘E’
mov    cx, 12        ;byte count
mov    bx, cx        ;save a copy

repne scasb
; ——— DO-WHILE (CX .NE. 0) .OR. (ZF .EQ. 0)
; CX <— CX - 1
; Compare M[ds:si]:M[es:di] <7:0> to set CC.
; SI <— SI + 1
; DI <— DI + 1
; ENDDO

jne    notFound   ;Note 1
sub    bx, cx        ;Note 2

. . .

The jne instruction is tricky because the ZF in F is tested.  If control is passed to
notFound, it means no match.  If control is passed to the next sub instruction, a match
is found.  Since CX is decreased by one each time in the loop, it is possible to have
CX equal to zero so the last char is the matched character.  In this example, CX con-
tains two after exiting.  After the sub instruction, BX contains 10, which means the
10th character in the string is the matched ‘E’.

7.4.4  Multimedia Instructions

The Pentium processor has eight 64-bit MMX registers, denoted as MM0, MM1,
..., and MM7 to support multimedia applications as shown in Figure 13a.50 As shown
from Figure 7.13b-e, an MMX register may contain eight bytes, four words, two dou-
ble words, or one quad word.  Based on the MMX technology, the instructions are
designed for some of the unary and binary operations.  The operand size can be two,
four, or eight bytes, and a binary MMX instruction operates between two MMX reg-
isters.  Even though the number of parallel operations is limited, the design has the
flavor of a SIMD processor.
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(a )

( b )

(c )

(d )

(e )
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MMO

MMI

MM7

~l J,--~_~D

Figure 7.13 Multimedia registers: (a) 54-bit MMO to MM7, (b) an MMX register
contains eight bytes, (c) four words, (d) two double words, and (e) one
quadword.

7.4.4.1 Wrap-around Mode vs. Saturated Mode

If the display supports a resolution of 1024 by 1024 pixels, the number of pixels
is one mega. In fact, each pixel is composed of three colors, R (red), G (green), and
B (blue), and each color is an unsigned byte representing intensity. Wrap-around
mode means regular twos complement arithmetic. That is, after adding two unsigned
integers FOOO and 3000 in hex, the result is 2000 as shown in Figure 7.14a. Because
a carry is generated, the sum result has a smaller magnitude. If intensity is of con­
cern, the result becomes lighter instead of darker. To solve the problem, saturated
mode arithmetic is developed for both add and subtract operations. That is, if a carry
is generated after add, the result is all ones to be the largest unsigned integer (Le.,
FFFF), as shown in Figure 7.14b. If a borrow is generated after subtract, the result
is zero as shown in Figure 7.14c.

Other MMX operations include multiply, shift, and logical. A move instruction
can load a 64-bit block from memory to a register and store in the reverse direction.
Moreover, two instructions can pack or unpack one register into another'register.
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(a ) FOOD in hex 1111 0000 0000 0000 i n binary

+) 3000 0011 0000 0000 0000

2000 0010 0000 0000 0000

(b) FOOO in hex 1111 0000 0000 0000 i n binary
3000 0011 0000 0000 0000

+)

FFFF 1111 1111 1111 1111

(c) 3000 in hex 0011 0000 0000 0000 i n binary

- )
FOOO 1111 0000 0000 0000

0000 0000 0000 0000 0000

Figure 7.14 Operation modes: (a) wrapped-around after add, (b) saturated after add,
and (c) saturated after subtract.

Before packing a word to byte operation, each of the source words has a hole byte in
the front, as shown in Figure 7.15a. After packing, the four holes are eliminated, and
the four respective low-order bytes are right justified in the destination register, as
shown in Figure 7.I5b. The unpack operation does the reverse. Figure 7.I5b also
shows the four packed bytes, BO, B I, B2, B3 before unpacking. After unpacking, the
destination register contains the unpacked bytes, as shown in Figure 7.I5a.

( a )

( b)

D~3J_I-B_2~LiiJ__~J

Figure 7.15 Pack and unpack operations: (a) four unpacked bytes, 80, 81, 82, 83, in
an MMX register before pack or after unpack and (b) four packed bytes
after pack or before unpack.

The summary of MMX instructions is listed in Table 7.3 and the first letter P in
the mnemonic stands for parallel.
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Table 7.3 Summary of the MMX Instruction Set

Description

Psub[blwld]

Padd[blwld]

Pcmpeq[blwld]

Pmaddwd

Pmullw

Pmulhw

Pcmpgt[blwld]

Psra[wld]

PslI[wldlq]

Psrl[wldlq]

Add byte, word, double word in wrap around or
saturated mode.
Subtract byte, word, double word in wrap around
or saturated mode.
Multiply low of 4 signed words. The low-order
16 bits are in the destination register.
Multiply high of 4 signed words. The high-order
16 bits are in the destination register.
Multiply and .add 4 signed words. Adjacent
pairs of 32-bit product are added and the result
is a double word.
Compare equal. If true, then the result is mask

of ones otherwise zeroes.
Compare greater than. If true, the result is mask
of ones otherwise zeroes.
Shift right arithmetic with shift count in
register or immediate.

Shift left logical with shift count in register
or immediate.
Shift right logical with shift count in register
or immediate.

Punpackl[bwlwdldq] Unpack low byte to word, word to double, or
double to quad.

Punpackh[bwlwdldq] Unpack high byte to word, word to double, or
double to quad.
Pack word to byte, or double to word in saturated
mode.
And two 64-bit registers
Nand
Or
Exclusive or
Move between memory and register

Packss[wbldw]

Pand
Pandn
Por
Pxor
Mov[dlq]

Mnemonic

7.5 VIRTUAL MEMORY

A program address is a logical address pointing to an instruction or data in a pro­
gram. With indexing, a program address becomes a program effective address abbre­
viated as EA, which is the sum of an address coded in the instruction and any index
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registers if specified. Without virtual memory, the progralTI address is a physical or
real address. With virtual memory, the program address is a virtual address. To
access memory, address mapping, also called DAT (dynamic address translation) is
required to convert a VA (virtual address) to a PA (physical address).

The VAS (virtual addressing space) is defined to be the logical programming
space as seen by a user. The PAS (physical addressing space) is the real memory
size. That is, the number of address pins on the processor chip sets the limit. If a
system supports a VAS of 16 MB, a user believes that he has 16 MB, but in reality,
the memory size may be only 8 MB. In theory, a VAS may be greater than, equal to,
or less than a PAS. There are many virtuallnemory systems with the same goal of
solving the relocation, protection, and overlay problems.

7.5.1 Segmentation

A segment is a contiguous block of code with a variable size. More often than
not, a segment is logically intact and relocatable. A virtual memory may support one
single segment or multiple segments with or without paging.

7.5.1.1 Single Segment Systems

With only one segment, the computed EA is a relative offset to the beginning of
the segment. The PC determines the size of virtual memory. A single segment sys­
tem without paging uses one RA (relocation address) register containing the physi­
cal address of a segment.5 That is, the base address of a segment is in a hardware
register. Before a memory cycle, the VA or computed EA is added to the RA regis­
ter to generate the physical address. Simply put, the adder maps a VA to a PA, as
shown below:

PA= RA+VA

There are two types of RA registers: implicit and explicit. An implicit base
means that the RA register address is not coded in the instruction. An explicit base
means that the register address of RA is specified in an instruction. In practice, the
RA register is associated with a limit or FL (field length) that contains the segment
length. If EA is greater than FL, it is out of bounds and an interrupt (address excep­
tion) is triggered.

In fact, many computers support only one single segment. However, the segment
can be implemented by one-level paging, two-level paging, or three-level paging. As
an example, the IBM 360/370/390 system uses a two-level paging system for one
segment. Because the computed EA is 32 bits and its IAR is also 32 bits, the maxi­
mum segment size is 4 GB. Later, we will discuss paging, a technique to solve the
fragmentation problems.

© 2001 by CRC Press LLC



296

7.5.1.2 Multiple-Segment Systems
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If a virtual memory has multiple segments, we obtain a multiple segment system.
In such a system, each segment resides in a contiguous memory block indicated by
an RA register. If a virtual memory has 4 GB, its 32-bit VA can be divided into an
eight-bit S (segment) and a 24-bit 0 (displacement) as shown in Figure 7.16a. That
is, the system has up to 256 segments and each segment. has up to 16 MB.

(a) I 8-bit 51 24-bit 0 S
D

Segment number
Displacement

RA [S4~--------------4

( b)

+
D

I---------------t~
Operand

(c)
Segment N

Instruction X

Instruction X
Segment N+l

Figure 7.16 Linear segment system: (a) the virtual address is an ordered pair (S, D),
(b) the operand in a segment, and (c) the instruction X crosses segment
boundary.

The eight-bit S represents an RA register address, and the 24-bit 0 is an index to the
segment of 16 MB, as shown in Figure 7.16b. Note that the D field in a virtual
address is different from the Disp coded in an instruction. The D field in a VA is an
index to a segment, while the disp in an instruction is relative to a base address in the
program. When forming the virtual address (S, D), S is an independent segment
number not subject to change and D is the sum of Disp and an index register, if spec­
ified. That is, the computed 0 is a segment displacement, so segment boundary is
not crossed.7
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Mathematically, the computed VA is an order pair of Sand D. The PA is the sum
of D and an RA register addressed by S, as shown below:

VA =(5, D)
PA = RA[S] + D

A total of 256 RA registers can be implemented by hardware. If a system sup­
ports a large S, the RA registers can be implemented by software. Nevertheless, an
add operation is required to compute the sum of the base address from a table entry in
memory and the displacement. If extra bits denoted by S are provided in an instruc­
tion to select an RA register, the computed EA is independent of S. As a result, the
system supports multiple independent segments, and mathematically \ve have

VA =(S, EA)
PA = RA[S] + EA

The VA is an ordered pair of S and EA. If the computed EA is 32 bits, each seg­
ment can go up to 4 GB. If S is small, the hardware RA registers can be used to store
segment descriptors. That is, each RA register contains the physical base address,
control bits, and limit of the segment, as shown in Figure 7.17. If a segment is allo­
cated in blocks, the base address is less than 32 bits. To make it simple, an R bit can
be used to indicate that the segment is read only. That is, if the R bit is one, a write
operation would trigger an interrupt (protection exception). The limit means seg­
ment length or size in bytes. At run time, any computed EA greater than the limit
would trigger an interrupt (address exception).

Base add~~_L_i_m_it~~ __~~~_c_on_t_r_O_l_1

Figure 7.17 The format of a segment descriptor.

In a pure segment system, a large segment resides in a large memory block. As pro­
gram terminates, if a new program can not fit in an old block, holes are developed in
memory. That is to say, the memory becomes fragmented as explained below.

7.5.1.3 Fragmentation Problem

If segment base registers are used, holes or free space may be developed in memory
from time to time. This is known as the fragmentation problem. Because all the user
tasks do not terminate in sequence, when one user task terminates, it is possible that
another task can not fit in an old segment once occupied by the previous run. As
shown in Figure 7.18a, three holes are generated after segment zero, two, and four
are purged. If the new task can not fit in any of the holes, the as may take action to
compact many small holes into a big hole. That is, the as moves code blocks, seg­
ment partitions one, three, and five to a contiguous area in low memory so a big hole
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is left in high memory, as shown in Figure 7.18b. The system chore is quite easy if
the code is relocatable. Compaction is an important system concept. The disk space
may also become fragmented if files are deleted and created too many times.
Usually, a sequential file need not occupy a contiguous block on disk. However, if
all the files need to occupy a contiguous block for performance reasons, a disk com­
paction is in order. That is, the OS moves and packs all the files to a contiguous disk
area in low address so a big hole is left in high address.

( a )

( b)

Operating system

Hole (segment 0)

Segment 1

Hole (segment 2)

Segment 3

Hole (segment 4)

Segment 5

Operating system

Segment 1

Segment 3

Segment 5

Big hole

Figure 7.18 Compaction: (a) three holes in memory before compaction and (b) a big
hole in high memory after compaction.

© 2001 by CRC Press LLC



SUPERSCALAR MACHINE PRINCIPLES 299

Paging is another alternative as discussed in the next section. A single segment
may be implemented by way of paging. If the VA has 32 hits, the segment size is 4
GB. The lower bits in the VA constitute a page nunlber, and the upper bits constitute
a page nunlber that can be divided into one or two fields. If the upper bits in the VA
represent a large page number in one field, we obtain a one-level paging system. If
it is divided into two fields, we obtain a two-level paging system. That is to say, the
VA is a triple: the first level page number, the second level page number, and the dis­
placement. The terminologies may be different as the first level page number is also
known as a segment number by IBM or a page directory number by Intel.

7.6 PAGING SYSTEM

A page is a contiguous block of code of fixed size designed to solve fragmentation
problems. Various single segment models are implemented by one-level paging,
two-level paging, or three-level paging. A VA is computed as the sum of the address
in an instruction and any index registers if specified. Mathematically, the VA is a (P,
D) pair in a one-level paging system.34 Assume that the 32-bit VA is divided into 12­
bit P and 20-bit D, as shown in Figure 7.l9a. Because the computed P may contain
bit pattern, all the pages are linear in a segment. From the given VA, we know that
the VAS is 4 GB with 4 K pages, and each page, is 1 MB. In concept, each P selects
an RA register that contains a page descriptor as shown in Figure 7.19b. The physi­
cal base address is a PF (page frame) or PFN (page frame number) provided that the
PAS is divided into many PFs. Each page frame is 1 MB so a page is loaded into a
free page frame just like a picture is placed in an empty picture frame. The pages,
PO, PI, P2, etc are sequential in the VAS as shown in Figure 7.19c. Because a page
has a fixed size, it is possible to split an instruction or data between two consecutive
pages. Physically, the pages scatter all over in memory as shown in Figure 7.19d.

If the RA registers are hardware, we need a total of 4K such registers. Because
of fixed page size, after mapping PF is concatenated with D to form PA as shown
below:

VA = (P, D)
PA = (PF, D)

=PF"D

In a one-level paging system, the VA is an ordered pair of P and D. After map­
ping, PF is concatenated with D (PF"D) to fonn the physical address in bytes with­
out going through an add operation. Note that P, PN (page number), and virtual page
number all mean a virtual memory block address. Similarly, PF, PFN (page frame
number), and physical block number mean a physical memory block address.

Even though the 4 K RA registers can be implemented by hardware, it is even
better if the registers are implemented by software. That is, a page table (PT) is pre­
pared in memory that contains page descriptors. One hardware page table base reg-
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Figure 7.19 One-level paging system: (a) the virtual address is an order pair (R D),

(b) the page descriptor, (c) the pages are sequential in VAS, and (d) the
pages may be scattered in PAS.

ister (PTBR) contains a physical hase address pointing to the page table. The page
number, P, in conjunction with the address in the PTBR, is used to retrieve a PF in
the page table entry. Note that the entry is just like a hardware register except it takes
one extra memory cycle to fetch the PF field in it. The PT is a local data base, owned
by the user task but managed by the paging supervisor.

It should be mentioned that the SR (status register) has a bit nanled V=R (virtual
equal to real). If this bit is set, the CPU bypasses dynalnic address translation, so the
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computed program address is a real address. In fact, when the nucleus or a real-time
program is running, the dynamic address translation (DAT) is bypassed for perfor­
mance reasons. If the PT is in memory, the one extra cycle slows down the CPU. A
clever scheme presented in the next section potentially solved this problem.

7.6.1 Translation Look-Aside Buffer

A translation look-aside buffer (TLB) is a fully associative cache that contains
the most recent translation records; its entry is shown in Figure 7.20. Given the 12­
bit P as the key, if a match is found in the TLB, the PF is retrieved in one clock. The
bit length of the PF determines the physical memory size. There are three possible
designs, as listed below:

12-bit P

Figure 7.20 Translation look-aside buffer entry.

12-bit PF G

1. If the number of bits in PF < 12, then VAS> PAS.

2. If the number of bits in PF= 12, then VAS = PAS.

3. If the number of bits in PF > 12, then VAS < PAS.

The TLB speeds up address translation and the hardware unit DAT, Le., MMU
(memory management unit)26,28 contains the TLB plus logic for address mapping. In
addition to the physical base address, the PTBR may also contain access right and
limit, Le., the largest page number allowed. Each PT entry is a page descriptor that
contains the PF and control. In the control field, the P (presence) bit tells whether
the page is in memory or not. After retrieving a PT entry, if the P bit is one, the PF
is obtained to complete mapping. A P bit of zero, triggers interrupt, i.e., page fault.
The R (read only) bit, if set to one, specifies that the page can not be written in. Other
pages may allow write access; when the OS removes such a page from memory, it
must be written back to disk.

During address mapping, first use P as the key to search the TLB. If a match is
found, mapping is done. Otherwise, P is used as an index to search the PT. The phys­
ical address of the PT entry is formed by hardware without going through add. If the
PT contains 4 K entries and each entry is 2 B, the block base address in PTBR is
appended with P and an implied zero. That is, the byte displacement in the block is
f times two as shown below:

Physical address of the PT entry = PTBR"(P * 2)

While fetching the block base address in the PTBR, the page number P is com­
pared with the limit. If P is out of the limit, an interrupt (address exception) is trig-
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gered. Otherwise, the PT entry is retrieved and it has a PF for the page. Note that an
extra memory cycle is used to read the PT so a TLB is necessary to improve perfor­
mance. As a simple example, each TLB entry contains P, PF, and the R bit. During
an update, the R bit is copied from the PT for write protection. Given P as the key,
all the TLB entries are searched in parallel. If a matched is found, the PF is fetched
and mapping is done. If a match is not found, P is used again as an index to search
the PT. If there is no address or protection exception and the page is in memory, the
PF is fetched to complete mapping. Meanwhile, the new entry is the most recent
translation record so it is pushed onto the TLB based on the LRU (least recently
used) algorithm. Since each user task has its own VAS, before a new task is sched­
uled to execute, the as issues a privileged instruction to purge the TLB.

7.6.2 Paging Supervisor

The paging supervisor is part of the OS nucleus that receives control after a page
fault. This OS routine manages two sets of addresses: virtual and physical. Only the
paging supervisor developers know the existence of physical addresses. Other
groups, including the job scheduler and programming tools, do not see the physical
addresses. Demand paging is designed such that a page is brought into memory lit­
erally on demand at run time. A large amount of system overhead is spent to utilize
the memory space more efficiently. The P (presence) bit is in PT, and if P is zero, the
hardware, while searching the PT, triggers page fault. Consequently, the paging
supervisor takes over control and loads the missing page from disk into memory.

7.6.2.1 External Page Table

The PT (page table) entry mainly contains the base address of the page, and the
EPT (external page table) entry mainly contains its disk addresses. Both tables are
local to the user task. The PT of a user task is shown in Figure 7.21a and its associ­
ated EPT is shown in Figure 7.21 b. In a demand paging system, each PT entry con­
tains a valid PF if the page is in memory. In contrast, the corresponding entry in the
EPT always contains its disk address and access right. It is possible to eliminate the
disk address field in an EPT entry if P can be converted into a disk address directly.
That is, every page in the VAS must occupy a block on disk. Therefore, if the VAS
is very large, there will be many hole blocks on disk if some of the pages are not in
use. The EPT is part of a load module but the PT is not.

7.6.2.2 Page Frame Table

After a page fault occurs, the paging supervisor first allocates a free page frame
for the page. The page frame table (PFf) is a global data base, as shown in Figure
7.21 c. After boot, the table is initialized so that each of its entries contains infonna­
tion about a page frame that is swappable. Because the page frames in low memory
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Figure 7.21 Data structures in a paging system: (a) page table, (b) external page table,
and (c) page frame table.

are not swappable, they have no representations in the PFf. The search index N is
equal to (PF-offset) * 4, where offset is the number of non-swappable frames in low
memory and 4 is the entry size in bytes. Because the PF number can be derived from
the search index, one design is to not store it in the 32-bit entry, as described below:

• Task id - the 8-bit local (internal) number for the task
• P - the 12-bit private page number of the occupied page frame
• DC - the 8-bit use count of a shared page (number of current users)
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• B - the busy bit means the page frame is occupied
• F - the fixed bit means the page can not be swapped out
• 2 reserved bits

7.6.2.3 Next Search Method

The routine uses the N index to search the 'next' free frame in the PFr as
follows:

REPEAT;
IF the entry pointed by N is free,
THEN report the free frame and set the Done flag;
ELSE increase N by 4,' the size of the entry;

IF N is equal to the size of PFT,
THEN wrap around so N points to the beginning of PFf; ENDIF;
IF N is equal to its original value before the search,
THEN report no free frame in PFr and set the Done flag;
ENDIF; ENDIF;

UNTIL Done.

7.6.2.4 Dynamic Address Translation

The DAT algorithm is based on three steps. The first two steps are done by hard­
ware. The third step is done by software in a demand paging system that uses the
next search method to find a free page frame.

1. Search TLB;
IF a match is found,
THEN fetch PF and exit; ENDIF;

2. Search PT;
IF the P (Presence) bit is 1,
THEN
Fetch PF;
Push new entry on TLB based on LRU algorithm and exit;
ELSE trigger page fault; ENDIF; {Delnand paging system. }

3. Paging supervisor takes over control;
Locate the disk address from EPT;
Next search PFT;
IF a free page frame is found,
THEN goto to 10adPage; ENDIF;
Throwaway an old page;

{A preferred sequence may be the read-only page
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first, dirty page, and shared page. }
Reset the P bit in its PT to 0;

{The old page is no longer in memory.}
IF the old page is written in,
THEN issue a request to write it back on disk; ENDIF;

10adPage: Issue a disk read request to load the new page into
the page frame;
Wait for the arrival of the new page;
Set the task id, B (Busy) bit, P (Page) no. in PFT;
Set the P (Presence) bit and its PF (Page Frame) no. in its
PT;
Pass control to Dispatcher.

305

If the interrupted task has the highest priority, it will be dispatched next. After
restoring its environment and purging the TLB, the dispatcher passes control to the
task. Thus, the instruction that triggered the page fault executes a second time. If
the search of the TLB fails, the PT is searched. If the entry is there, the PF is fetched
and the applications exits. At the same time, the new translation record is pushed on
the TLB. Suppose the address that caused the page fault is an instruction address.
After increasing the PC, if its P (page number) remains unchanged, then the TLB
contains the translation record. Hence, during the next cycle, the PF of the instruc­
tion is fetched from the TLB and the application exits.

In a two-level paging system, the VA is a triple (PI, P2, D), where PI is the first
level page number, P2 is the second level page number, and D is the displacement in
page. The basic concept is similar, as discussed later.

7.6.3 Relationship between the MMU and L1 Caches

The LI instruction and data caches can be implemented along with paging. Both
the Ll caches and the MMU are transparent to the users. Where should the Ll
caches be positioned logically, before or afterthe MMU? Both the L I caches should
reside after MMU for two reasons. First, if a physical address is used as the key to
search the cache, there is no need to flush the cache after control is switched to a new
task. Second, upon a TLB miss, the DAT tends to fetch the PT entry from the LI data
cache. If the PT entry is already in the data cache, it can be fetched in less time.

7.6.4 Paging Related Problems

7.6.4.1 Physical Addresses in the I/O Controller

If a system supports virtual memory, the CPU must pass the physical address of
a memory buffer to the 1/0 controller because the controller has no address mapping
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hardware. This means extra system overhead is needed to translate a VA to a PA
before issuing a direct memory access I/O.

7.6.4.2 Page Fix

Not all the pages in memory can be swapped. There is an F bit in the PFf, indi­
cating that the page can not be swapped to disk. An example is an I/O buffer. If the
memory buffer is swapped out and the I/O operation continues, the bits stored in the
page will no longer be correct. To solve this problem, the OS sets the F bit in the
PFT, so the page is fixed or locked in memory.

7.6.4.3 Thrashing

Thrashing in a paging system occurs when the physical memory size is not ade­
quate. As a consequence, page fault occurs too frequently and the system does non­
productive work by swapping pages in and out. When that happens, the paging disk
rattles. As a solution, the operator simply kills some of the user tasks (Le., jobs) in
memory and therefore relieves memory requirement. As a rule, the ratio between the
VAS and PAS should not be greater than two. In other words, a small real memory
just can not support a large VAS under heavy load.

7.7 SEGMENTATION WITH PAGING

If the VAS is divided into independent segments and each segment is further
divided into pages, we have segmentation with paging for implementing a very large
VAS. Let us use the Pentium processor to illustrate the concept. When operating in
protected mode, each extended address register or PC is 32 bits, so the EA is 32 bits
to address a 4 OB segment. Adding the EA to the relocation address results in a 32­
bit linear address. The paging feature is optional. Without paging, the linear address
is a physical address and the entire segment is either in memory or not. With pag­
ing, the generated linear address, is translated into a physical address but the entire
segment may be partly in memory and partly in disk storage. According to the spec,
the processor chip has 33 address pins to access a block, and the data bus is 64 bits
(8 B). Because the full PA in bytes can be 36 bits, the PAS can be as large as 64 OB.

7.7.1 Supporting Registers

A few control registers are specifically designed to facilitate paging. In particu­
lar, eRO (control register zero) contains control bits to set the mode and status of
CPU operations. B31 in CRO is the PG (paging) bit. If PO is one, then paging is
enabled after segmentation. Otherwise, paging is bypassed. If paging is enabled,
then CR3 is the page directory base register (PDBR). The upper bits in the linear
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address represent the page directory number. Therefore, the page directory table is
equivalent to a segment table in a linear segment system.

Note that Pentium supports multiple segments, and each segment is independent.
That is, a program address is added to a relocation address to form the linear address
in a segment. Four base registers are implemented on top. The global descriptor
table register (GDTR) is shown in Figure 7.22a and it points to the GDT in Figure
7.22b. The interrupt descriptor table register (IOTR) is shown in Figure 7.22c and it
points to lOT in Figure 7.22d. The local descriptor table register (LDTR) as shown
in Figure 7.22e points to LOT in Figure 7.22f. Finally, the task register (TR) in
Figure 7.22g points to task segment status (TSS) as shown in Figure 7.22h. Each reg­
ister at least contains a 64-bit segment descriptor. All the descriptors are similar with
some minor differences. That is to say, each descriptor contains the basic segment
attributes, such as base address, limit, and access/control bits. The GDTR contains
the segment descriptor for the GDT (global descriptor table), and its full name should
be global segment descriptor table base register. Note that GOT is a segment but it
has no entry in itself, so the GOTR does not have a selector in front. The LOTR con­
tains the segment descriptor for the LDT (local descriptor table), and its full name
should be Local Segment Descriptor Table Base Register. However, the LDT has an
entry in the GDT, so the LDTR has a 16-bit system segment register in front to select
an entry from either descriptor table, GOT or LDT. The IDTR contains the segment
descriptor for the lOT (interrupt descriptor table) and it has no selector either. When
an interrupt occurs, the interrupt vector is used as an index to access a gate descrip­
tor in the lOT. The gate descriptor specifies the starting address of an interrupt han­
dIer. The TR contains the TSS (task state segment) descriptor retrieved from the
GOT and it has a selector. The TSS descriptor contains status information of the run­
ning task. For example, a B (busy) bit of one indicates that the task is running or
ready to run. If the busy bit is zero, the task is in wait, Le. blocked state. The TSS
descriptor has the base and the limit for the task state segment that mainly contains
the running environment, (Le., register save area), of the task.

Several instructions are provided to load and store the four descriptor registers. A
segment selector, selector in short, is used to access a segment descriptor in the GOT
or LOT, as shown in Figure 7.23a. In the selector, the upper 13-bit field contains an
index to the entry in a segment descriptor table, global or local. That is, if the TI (table
indicator) bit is 0, the entry in the LDT is accessed, otherwise the GOT is accessed.
The two-bit field, bland bO, denotes a request privilege level (RPL) with 00 to have
the highest privilege. During an intersegment reference, if the calling segment has a
lower privilege, then an interrupt (Le., protection exception) is triggered. The logi­
cal layout of a 64-bit segment descriptor has the base, limit, and access/control bits
as shown in Figure 7.23b.

The 32-bit base is the physical address of a segment, the 20-bit limit indicates the
segment size in 4 KB blocks, and the remaining 12-bit field provides both access
control and status information of the segment. In particular, the data bit (physically,
b22) indicates the operand size: one means 32 bits and zero means 16 bits. The P
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Figure 7.22 Top-level base registers and tables: (a) GOTR, (b) GOT, (c) IOTR,
(d) lOT, (e) LOTA, (f) LOT, (g) TA, and (h) TSS.

(presence) bit (physically, b15) indicates whether the segment is in memory: one
means in and zero means not in. During a segment reference, if bI5 is zero, a seg­
ment fault is triggered to implement a demand segment system. Other bits may indi­
cate access right, such as ReadlWrite, Read Only, privilege level, etc.
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Figure 7.23 Registers: (a) the 16-bit selector, (b) the logical layout of a 64-bit segment
descriptor in GOT or LOT, (c) the six segment registers.

The six segment registers are shown in Figure 7.23c and each register has two
parts: visible and invisible. The visible part is a 16-bit segnlent selector, and the
invisible part is its associated 64-bit segment descriptor. Usually, a mov (move)
instruction is issued to change a segment register, namely the index, TI, and RPL.
Based on TI, the index is used to fetch the entry in the descriptor table, GDT or LDT,
and load the invisible part accordingly. In general, the OS uses the GDT and a user
task uses the LOT.

7.7.2 Page Translation

On a Pentium, a program or logical address is always added to the base in one of
the six segment descriptors in order to form the 32-bit linear address. Each segment,
CS, SS, DS, ES, FS, and GS, has a visible segment selector and an invisible segment
descriptor. If paging is enabled, this linear address is further mapped into a physical
address through two memory references. The linear address in the segment is
divided into a IO-bit PO (page directory number), a IO-bit P (page number), and a
12-bit D (displacement), as shown in Figure 7.24a. The PDT (page directory table)
and PT (page table) have I K entries each. Because each table entry is 4 B, the size
of the PDT, PT, or page is the same, that is 4 KB. The PO in the linear address is an
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index to an entry in the PDT. The base address of the page directory table is a 22-bit
PF (page frame) or physical block address stored in CR3, aka PDBR (page directory
base register) as shown in Figure 7.24b. Concatenating the PF fetched from the
PDBR with the PO, we obtain the physical address of the PO entry without going
through an add operation.

(a) [iO-bit PO ] IO-bit P 12-bit 0

PO Page directory number
P Page number
o Displacement

PDBR

( b )
• 22-bit PF access/control

PDT (Page directory table)
( c ) It

: PO

If
: P

y
• 22-bit PF I access/control

PT (Page table)
"""'--( d )

11. 0

__Op_e_ra_n_d----------11

y
• 22-bit PF I access/control

Page
.....-(e )

Figure 7.24 Data structures for address translation: (a) 32-bit linear address,
(b) page directory base register, (c) page directory entry,
(d) page table entry, and (e) operand in page.
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As shown in Figure 7.24c, the fetched PDT entry contains a 22-bit PF pointing
to the PT plus control bits. Concatenating the PF fetched from the PDT with P, we
obtain the physical address of the entry in the PT. The fetched PT entry contains a
22-bit PF (page frame number) indicating the page plus some bits for access, con­
trol, and status, as shown in 7.24d. If the P (presence) bit is zero, the page is not in
memory and so triggers a page fault. As a result, the paging supervisor takes over
and loads the page from the disk to memory. Meanwhile, all the related tables are
updated. If the P bit is one, the page is in memory, so the fetched PF in the PT entry
is concatenated with D to form the physical byte address of the operand, as shown in
Figure 7.24e. Obviously, the two extra memory cycles mean a penalty in speed. To
alleviate the problem, a TLB is designed to contain the most recently used transla­
tion records, and the key is the 20-bit PDI\P (PD concatenated with P). If the TLB
search is successful, then address mapping is completed without having to search the
PDT and PT.

7.7.3 Concluding Remarks

A time-sharing system may support a VAS that is smaller than its PAS in order
to solve the relocation problem. If the relocation address is stored in a base register,
mapping can be done fast enough so as not to impose any speed penalty. Paging
tends to solve the fragmentation problem. As pages are swapped in and out between
memory and and disk at high speed, the CPU can run more user programs that are
1/0 bound.

A very large VAS solves the overlay problem, but the price paid is stiff. As mem­
ory is getting cheaper and cheaper, fragmentation is no longer an issue. Thus, the
debate is whether paging should be implemented at all. In, a single segment system
with paging, more programs are executed so the throughput is increased by 1.5 per­
cent. However, this is still application dependent, and there have been cases where
the vendor was told to strip the paging hardware because of the decrease in perfor­
mance. For example, when compute bound jobs or real-time jobs are running,
dynamic address translation is turned off. At the system level, a large VAS with pag­
ing requires an EPT in the load module. In the nucleus, the nlemory space occupied
by the global PFT and local PTs is just too large.

7.8 SUMMARY POINTS

1. Based on instruction and data flows, all the machines can be generally clas­
sified into SISD, SIMD, and MIMD.

2. An SISD machine is a scalar or superscalar processor in that each instruc­
tion, arithmetic or logical, acts on one piece of data.

3. A superscalar processor allows many instructions executed in parallel, but
each instruction still operates on one piece of data.

4. The four-level storage structure consists of a register set, cache, central
memory, and disk.
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5. In a memory system with addresses interleaved in two ways, the two physi­
cal banks can be busy at the same time.

6. A two-port memory may receive requests from both the CPU and the 1/0
processor at the same time. Its arbitration logic grants the cycle to the I/O if
the addressed bank is free.

7. To achieve overlapped operations in a CPU, we have data dependency and
control dependency problems.

8. The CPI of a machine is defined as the average number of clocks required to
execute an instruction.

9. The MIPS is the clock rate in MhZ/CPI.
10. The MFLOPS is the clock rate in Mhz/Clocks per FLOP.
II. A cache is an associative memory, and each entry mainly contains two

fields: key and data.
12. There are three cache memory search techniques: fully associative, direct

mapping, and set associative.

13. A direct mapping cache uses one comparator, while a two-way set associa­
tive cache uses two comparators.

14. An instruction queue coupled with an instruction cache reduces the instruc­
tion retrieval (fetch) and decode time.

15. A superscalar machine may support a few vector instructions, such as push,
pop, move, search, etc.

16. The VAS is the logical programming space as seen by a user, while the PAS
is the real memory size.

17. A VAS may be greater than, equal to, or less than a PAS.
18. A DAT box or MMU contains a TLB and logic to search through tables in

memory.
19. A segment is a contiguous code block of variable size, while a page is a con­

tiguous code block of fixed size.
20. In a multi-segment system, the computed EA can not cross segment bound­

aries.
21. Pages are linear in a segment to solve fragmentation problems.
22. The paging supervisor, part of the OS nucleus, receives control after a page

fault interrupt.
23. A TLB is a fully associative cache that contains the MRU translation

records.
24. The Ll caches should be placed after the MMU.
25. An entry in the EPT mainly contains the disk address and access right of the

page.
26. The PFr is the global data base in the OS nucleus, and each PFT entry

describes the status of a page frame.
27. A paging system has many related problems, e.g., physical address in an I/O

controller, page fixed, and thrashing.
28. Segmentation with paging means that the VAS is divided into segments, and

each segment is further divided into pages.
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PROBLEMS

1. Based on instruction flow and data flows, briefly describe the three classes
of computer systems.

2. What is a superscalar processor?
3. What is a four-level storage structure?
4. Describe the concept of memory interleaving.
5. Describe the data dependency and control dependency problems in a

pipelined CPU.
6. Define the CPI (clocks per instruction) of a machine.
7. Describe the difference between MIPS and MFLOPS.
8. As shown in Figure 7.4c, the logic box (on top) can prepare signed multi­

plicands. That is, the sign is extended all the way to the left. To multiply
signed -1 by signed -1, the product is +1 as follows.

313

1 1 1 1
1 1 1 1
1 1 1 ]

+ 0 0 0 0

00000001
P7 P6 P5 P4 P3 P2 PI PO

First multiplicand (-1)
Second multiplicand (-2)
Third multiplicand (-4)
Twos complement of the Fourth
multiplicand (+8)

Eight-bit signed product (+ 1)

The tricky part is to generate the twos complement of the fourth multiplicand
in two steps. First, feed the ones complement of the fourth nlultiplicand to the
six-bit CSA. Second, during the final arithmetic add cycle, remember to tum
on the Cin (carry in) bit of the CPA. If so, what are the bits in SV1, CVI, SV2,
CV2, and Cin?

9. In a 32-bit multiplication tree, how many CSAs are cascaded before the final
33-bit CPA?

10. Name the three search techniques used in cache memory design.
11. Describe the difference between an instruction queue and an instruction

cache.
12. Is it true that a VAS may be greater than, equal to, or less than a PAS?
13. What is the difference between a linear segment system and an independent

segment system?
14. What is the key difference between a segment and a page?
15. During address mapping, describe the two hardware steps in a paging system.
16. What is contained in a TLB (translation look-aside buffer)?
17. Describe the functions performed by the paging supervisor.
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18. Describe the difference between a PT and its EPT. Under what condition
can the disk address in the EPT be eliminated?

19. Why do we set the V=R bit in the PSW to bypass the DAT?
20. What are the three related problems caused by a paging system?
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CHAPTER 8

Vector and Multiple-Processor
Machines

8.1 VECTOR PROCESSORS

A SIMD machine provides a general purpose set of instructions to operate on
arrays, namely, vectors. As an example, one add vector instruction can add two
arrays and store the result in a third array. That is, each corresponding word in the
first and second array are added and stored in the corresponding word in the third
array. This also means that after a single instruction is fetched and decoded, its EU
(execution unit) provides control signals to fetch many operandi and execute them in
a loop. As a consequence, the overhead of instruction retrievals and decodes are
reduced. As a vector means an array in programming, the terms vector processor,
array processor, and SIMD machine are all synonymous. A vector processor pro­
vides general purpose instructions, such as integer arithmetic, floating arithmetic,
logical, shift, etc. on vectors. Each instruction contains an opcode, the size of the
vector, and addresses of vectors. A SIMD or vector machine may have its data
stream transmitted in serial or in parallel. A parallel data machine uses more hard­
ware logic than a serial data machine.

8.1.1 Serial Data Transfer

The execution unit is called the processing element (PE) where the operations are
perfonned. If one PE is connected to one processing element memory (PEM), we
have a SIMD machine with serial data transfer as shown in Figure 8.1 a. That is, after
decoding a vector instruction in the CU (control unit), an operand stream is fetched
and executed serially in a hardware loop. That is, serial data are transferred on the
data bus between the PE and PEM on a continuous basis until the execution is com­
pleted. In a serial data SIMD machine, there is one PE and one PEM. However, one
instruction retrieval is followed by many operand fetches.

315
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Figure 8.1 SIMD machines: (a) serial data transfer and (b) parallel data transfer.

8.1.2 Parallel Data Transfer

If multiple PEs are tied to the CU and each PE is connected to a PEM, we have
a parallel data machine, as shown in Figure 8.1 b. For example, the ILLIAC IV
(Illinois Advanced Computer IV) has 64 PEs denoted as PEO, PEl, ... ,PE63. Each
PE is connected to its own PEM denoted as PEMO, PEMI, ..., PEM63. Operations
are performed in parallel because the data transfer is done in parallel. On a SISD
machine, if we multiply two arrays A and B and place the result in array C, we write
a loop as shown below:

DO i = 1 to 64, step 1
C[i] =A[i] * B[i];
ENDDO;

In the loop, each entry in anoay A is multiplied by its corresponding entry in array B,
and the product is stored in the corresponding entry in array C. The same operation
is repeated a total of 64 times. But on an ILLIAC IV, this loop is translated into one
vector instruction, and when executing this instruction, there are 64 multiply opera­
tions in parallel. One can argue that the market of vector machines is never good for
two reasons. First, if the vector instruction is frequently used, it can be implemented
on a superscalar machine as an enhancement. Second, many processors can be inter­
connected, so a cluster of machines can do team work, as introduced next.

By definition, a MIMD machine consists of many processors that are intercon­
nected. Because each processor can execute its own set of instructions on an inde­
pendent basis, we see that multiple instructions and multiple data are fetched at the
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same time. In other words, each processor can act on its own data fetched from mem­
ory. In a broad sense, the MIMD class consists of all the multiple-processor
machines, namely the multistation systems, multiprocessing systems, and computer
networks. Due to its sophisticated software structure of network lID, a computer net­
work stands out as its own class. There are many issues in designing a multiple com­
puter systems. We start from the basics and move to more advanced topics in the fol­
lowing sections.

8.2 INTERPROCESSOR COMMUNICATIONS

A hardware connection must exist between two processors. If the connection is
wireless, it is not visible. Thus, a connection means that one side has a transmitter
and the other side has a receiver. As far as hardware is concerned, there are three
ways to facilitate interprocessor communications as follows:

• Interrupt
• Shared Memory
• Via Channel-to-Channel I/O

8.2.1 Via Interrupt

As shown in Figure 8.2a, an interrupt bus exists between two CPUs. Usually,
CPU 1 is the main processor and CPU 2 is an I/O processor. When CPU 2 finishes
its I/O, it generates a hardware signal to interrupt CPU 1. That is, CPU 2 can force
CPU 1 to relinquish control of its current program in execution. As a result, an inter­
rupt service routine (ISR) on CPU 1 takes over control and processes this event. If
a microcomputer has many lID controllers, each controller is classified as a process­
ing unit. The controller sends an interrupt request signal after an lID completion to
the CPU. After accepting the request, the CPU sends an acknowledge signal to the
controller. Since each of the lID controllers can issue an interrupt request at the same
time, an arbitration scheme is needed for the CPU to accept one interrupt. Thus, a
request-acknowledge mechanism using daisy chain is different from centralized con­
trol that uses separate control lines.

8.2.1.1 Daisy Chain vs. Centralized Control

As shown in Figure 8.2b, the interrupt bus connects the main CPU to three I/O
controllers in a daisy chain. The interrupt bus provides request, acknowledge, and
data signals. The interrupt request signal from each controller is or-tied to a com­
mon line, which means many controllers can request interrupt at the same time. The
interrupt grant signal from the CPU ripples through a daisy chain. Therefore, each
controller has an input port to receive the grant signal and an output port to transmit
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Figure 8.2 Interrupt buses: (a) an interrupt bus between two CPUs, (b) the
request/grant bus as a daisy chain, and (c) the centralized request/grant
pairs.

the grant signal. The first controller receives the grant signal directly from the CPU
and the last controller in the chain can only receive the signal and can not transmit it.

The daisy chain concept works as follows. The CPU does not know whose inter­
rupt request this is. If the CPU is in a state to respond to the interrupt, the CPU trans­
mits a grant (acknowledge) signal. After receiving a grant signal, the first controller
takes action based on whether it has requested an interrupt. If it has, the I/O con­
troller does not pass the grant signal to the next processor. Thus, the controller, after
being acknowledged, may place an interrupt vector address on the interrupt data
lines. If the controller has no interrupt request, it passes the grant signal to the next
controller in the chain. That is to say, any controller with an interrupt request waits
in the chain until its tum comes to receive a grant signal. The assigned priority is
determined by the position of each processor in the chain. The leftmost processor
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has the highest priority and the rightmost processor has the lowest priority. In fact,
the priority is fixed by the position of each processor. This scheme works fine
because only one controller can respond at one time.

The acknowledge control mechanism Inay be centralized, as shown in Figure
8.2c. Each controller has an interrupt request line and an interrupt grant line. In con­
cept, each controller may send an interrupt signal to the CPU. If the CPU is in a state
to respond to an interrupt, it transmits the grant signal to the controller with the high­
est priority on a separate wire. That is to say, the CPU acknowledges an intemlpt
based on priority as physically assigned by its line position. In a more sophisticated
system, the bus priority can be dynamically changed by a software routine to suit
application requirements. This arbitration idea can be applied to memory contention
so many CPUs may issue requests to access a shared memory at the same time.

We now understand that after an I/O completion, the I/O processor can interrupt
the CPU. But, the CPU can also interrupt an I/O processor. In practice, after the I/O
routine prepares I/O messages in shared memory, it issues a privileged instruction or
writes to a special location in shared memory to interrupt the 110 processor. An
example of executing a privileged instruction is shown below:

SIO x'284' ;Start I/O device

where SID means Start I/O, and the I/O address of a particular device is 284 in hex.
As a result of its execution, the UO processor gets interrupted. Consequently, its ser­
vice routine fetches the 1/0 message, interprets, and starts I/O. Each I/O Inessage
contains the operation code, memory block address, and block count in bytes. Note
that on some mainframes, the I/O processor runs the OS so executing an exchange
jump instruction interrupts the main CPU as shown below:5•65

EXN ;Exchange Jump

where EXN stands for exchange jump which is privileged. In fact, all the instruc­
tions on the I/O processor are privileged because they can not be accessed by a user.
The execution of EXN causes the main CPU hardware to perform context switching
that is, save the register set and load a new set from memory whose address is coded
in a PPU register so the CPU executes a new program from an address in its program
counter. The SIO or EXN instruction is different from a system call because the
instruction interrupts the other processor, not itself.

At the system level, the interrupt hardware mechanism means a one-bit message
sent from one processor to the other processor. A string of bits can be passed from
one processor to another processor by placing the message in shared memory or
transmitting it over an I/O channel.

8.2.2 Via Shared Memory

If two processors are located in one room, the message can be placed in a shared
memory, as shown in Figure 8.3. The memory has two connections; one goes to the
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Figure 8.3 The shared memory system.

CPU and the other goes to the 110 processor. It is also possible that both processors
are main CPUs. If a system has shared memory, it is classified as a closely coupled
system. There is a subtle difference between interprocessor communication and
intertask communication. The former is a hardware connection and the latter is a
software capability. A task is a program in memory that has all the resources allo­
cated by the OS. We define intertask communication as a system capability that one
task can send a message to another task on a different processor. A hardware con­
nection scheme must exist between the two processors, and special network 110 soft­
ware must be written to support intertask communications over the network.

Note that the shared memory concept can be extended to a DMA controller,
which can be classified as an 110 processor. Each hardware register in the controller
is an lOR (110 register) that is connected to a separate 110 bus or mapped into a mem­
ory word. In either case, the lOR is shared by both processors. That is, the main
CPU writes into the lOR for the 110 processor to read, interpret, and execute. Upon
110 completion, the controller writes into the status register for the CPU to read and
interpret. Thus, the 10Rs act like shared memory because both processors have
access to them.

8.2.2.1 Cache Coherency

Assume the design of a dual processor system that uses shared memory to com­
municate, with each CPU having its own data cache, as shown in Figure 8.4.

Because both CPUs can access the shared memory, the rule is established that
only one CPU can write a block at one time. This works fine if there is no data cache.
With a data cache enabled, it is possible for CPU 1 to write into the shareq memory
block while CPU 2 still has a stale copy of the old data. This is defined as the data
cache coherency problem. That is, the copy in the data cache is not consistent with
the copy in memory. One common solution is to use the snooping hardware tech­
nique, as described below:63
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Figure 8.4 Data caches and shared memory in a dual processor system.

8.2.2.2 Snooping Technique

There are special command lines between the two CPUs. One of them is the
snoop command line and others may be response lines. Before CPU 1 writes the
memory block, it sets its data cache to write-through mode so data is written into
memory immediately. While CPU 1 writes the shared block, it also asserts the snoop
line to signal CPU 2. Because the snoop line is asserted, CPU 2 uses the address on
the shared bus and reads its cache lines. If there is a hit, it invalidates the matched
entry. After that it asserts a response to signal CPU 1 that action has been taken.

However, the coherency problelTI can be solved if the data cache entry can be
invalidated by an instruction. Suppose the central memory has two ports, as shown in
Figure 8.5. One port is used by the CPU, while the other port is used by an I/O proces­
sor. As one processor places a message in shared memory, the other processor fetches
and interprets. The problem arises when the main CPU has a data cache but the I/O
processor does not. The I/O processor needs no data cache because its data rate is
slow. The main CPU has the cache coherency problem because after the I/O proces­
sor writes into memory, the data is not reflected in its cache. In other words, the data
cache in the main CPU may contain an old copy of the data. Take the read operation
for example; after the I/O processor moves data from an I/O device to memory, it
places a channel status word at a fixed location in shared memory to indicate that the
data block is ready. Nevertheless, the status word written by the I/O processor is not
stored in the data cache as seen by the main CPU. As one solution, the main CPU may
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Figure 8.5 The shared central memory has two ports.

issue an instruction to invalidate the data cache by the address before it reads the I/O
status word from shared memory. Another solution, at the cost of system perfor­
mance, is to disable or turned off the data cache altogether.

8.2.3 Via Channel-Io-Channel I/O

The third hardware connection scheme is channel-to-channel I/O, as shown in
Figure 8.6. As far as hardware is concerned, one processor transmits a message via its
110 channel and the message is received by the remote processor via its I/O channel.
Thus, the software on one host processor issues a write request to its channel to trans­
mit bits on the line while the remote routine issues a read request to its channel to receive
bits. Each I/O channel or processor may have its own communication controller.

CPUI CPU2

Memory

Figure 8.6 Channel-to-channel I/O connection.

Memory

8.3 INTERPROCESSOR MESSAGES

An I/O message is passed from the main CPU to the I/O processor and vice versa.
Usually, the I/O message can be placed in shared memory for the other processor to
fetch, interpret, and execute, or the messages can be transmitted on the line via its
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I/O channel between two processors. The format of a message is application depen­
dent so it is a software design issue. The messages for a disk controller, display con­
troller, or communication processor are described below.

8.3.1 Channel Command Word vs. Channel Status Word

On an IBM 370 mainframe, the CPU places a channel command word (CCW) in
shared memory for the 110 processor to fetch, interpret, and execute.26 In return, the
I/O processor places a channel status word (CSW) containing the status of an I/O
operation. If we want the freedom to place a CCW anywhere in shared memory, we
need to have a command address word (CAW) that must have a fixed address in low
memory. That is to say, the CAW points to the CCW list, as shown in Figure 8.7a.
Because the I/O instructions and the low memory are protected, a user must issue a
system call to request an I/O service from the OS. Usually, the I/O routine on the CPU
prepares the CCW list and issues an SID instruction. After that, the I/O processor gets
intenupted so its ISR takes over control. First, it fetches the CAW at the fixed address.

CAW CCW

(a) I~_---,.~I _
CSW

( b)

Figure 8.7 Processor - channel communication messages: (a) CAW points to CCW
and (b) CSW.

Next, from the pointer in the CAW, it fetches the CCW, interprets, and executes. A
typical CCW contains an opcode, flag bits, a 24-bit byte count, and a 32-bit physical
memory address. After executing the CCW, the flag bits tell the I/O processor what
to do next. Let us try to read a sector from a disk or tape into memory. The CCW
contains opcode, flag bits, a memory address, and the block size in bytes. After exe­
cuting the CCW, the ISR on the I/O processor examines the flag bits in the CCW and
decides what action to follow. More often than not, the flag bits tell the 110 proces­
sor to interrupt the CPU.

The flag bits tell the 110 processor to fetch the next CCW in sequence and inter­
pret it. As a matter of fact, it is possible to construct the CCW list in a loop so that
the last CCW branches to the beginning of the loop. Such a design was often used
to handle I/O operations of real-time data acquisition. As the main CPU continues
to receive and process data, the 110 processor continues to supply data. After each
real-time data frame arrives, the 110 processor signals interrupt to the main CPU to
request attention.
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After the I/O is completed, the I/O processor sends an interrupt request signal to
the CPU. If the interrupt request is acknowledged, the I/O processor places a mes­
sage in shared memory at a fixed low address. This reply message is known as the
CSW, as shown in Figure 8.7b. A CSW contains the address of the last CCW being
executed by the I/O processor, a channel status byte, a device status byte, and a resid­
ual block count. If the I/O completion is successful, the residual block count is zero.
However, if the I/O operation is not successful, the residual block count contains a
non-zero integer indicating the number of bytes yet to be transferred.

After the main CPU gets interrupted, its ISR fetches the CSW and examines the
residual block count, the channel status byte, and the device status byte. The ISR
posts the I/O event if it is a successful completion. Posting an I/O event means to
wake up the task which originally issued the I/O request. In case of any error, the
ISR on the main CPU will tell the I/O routine to retry. In computer network parlance,
the CCW is a request message to the service provider, and the CSW is a confirm mes­
sage to the service user. Both the CCW and CSW are I/O messages to describe an
I/O operation.

8.3.2 Message for Display

The PC contains the display controller or processor whose job is to fetch bits in its
screen memory, interpret, and execute. The screen memory for display is divided into
bit planes that are mapped into main memory at a fixed high address. That is, the screen
memory for display is shared so the CPU program prepares the display messages in it.
Note that the display message is passive because the main CPU does not issue a signal
to interrupt the display processor. Thus, the display controller, (Le. processor) must rou­
tinely fetch the bits from the shared memory, interpret, and execute.

The display screen is a cathode ray tube whose glass surface area is divided into
pixels (picture elements). Each pixel is a dot on the screen, and the total number of
pixels on the screen surface defines its resolution. The display controller can oper­
ate in text or graphics mode, and each mode has its own display messages. In text
mode, the screen is divided into 80 columns by 25 rows, so the total number of char­
acters on screen is 2,000. For each character, the message is composed of two bytes.
The low-order byte is the ASCII character, and the high-order byte is its color
attribute, as shown in Figure 8.8a. The cathode ray tube has three basic color guns:
R (red), G (green), and B (blue). The lower four bits in the attribute byte specify a
foreground color. By mixing the basic colors with the I (intensity) bit, we can derive
a specific color. The next three bits specify the background color and the last bit tells
whether to blink the character or not.

In graphics mode, each pixel is a dot on the surface with its associated color
attribute. A resolution can be high or low as determined by·the number of colors
allowed. Take the SVGA (super video graphics array) card for example; its resolu­
tion is 1024 by 768 with 256 colors. That is to say, the number of pixels on the screen
is (1024 * 768), and each pixel is represented by a one-byte color attribute as shown
in Figure 8.8b. The screen (shared) memory size on the card is 768 KB. On the other
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Figure 8.8 Messages for display processor: (a) the ASCII character and its attribute,
(b) the one-byte color pixel, and (c) the four-byte color pixel.

hand, an advanced display may support a resolution of 1280 by 1024 pixels. If each
pixel is represented by a four-byte attribute, the screen memory size is 5.12 MB for
just one screen, as shown in Figure8.8c. In such a design, each of the first three bytes
represents a basic color with 256 intensity levels, and the last byte is called the alpha
(alphanumeric) plane for overlaying text on graphics. The program on the CPU must
move bits in the screen memory fast enough. In other words, the CPU has quite a
demanding graphics processing requirement.

8.3.3 Message for Communication Processor

There are two network models: VC (virtual circuit) and datagram. The message on
a VC model is called a packet and the message on a datagram model is called a data­
gram. The difference between them lies in the fact that a packet follows a fixed route
and a datagram does not. Each corporate computer site may have a two-processor pair:
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Figure 8.9 Network communications: (a) host A to host 0 connection, (b) the packet,
and (c) the datagram.

the host and the communication processor. Typically, the host processor passes a
message to its communication processor via shared memory. The communication
processor passes the message to another processor in a network. Eventually, at the
remote site, the message is received by the communication processor which, in tum,
passes the message to its destination host. Figure 8.9a depicts a host to host VC con­
nection with the communication processors omitted on purpose.

The host computer A in San Francisco is called the origination node that initiates
the connection phase. The host computer D in New York is the destination node.
There is a VC between the two hosts, and the two nodes Band C are intermediate
nodes in the middle of the route. In our example, node B is in Denver and node C is
in Chicago. Both Band C are communication processors with or without a host. The
packet is the basic transmission unit as seen by the two hosts. The packet layout is
shown in Figure 8.9b and its short header contains opcode, data type, and routing
information, e.g., VC ide In contrast, a datagram model has no connection phase, so
its route is not fixed. The datagram header is longer and contains opcode, source
(sending) node address, destination (receiving) node address, etc., as shown in
Figure 8.9c. In either model, the header of a packet or datagram provides routing
information so that each node in the route knows how to relay the message from the
sending host to the receiving host. 22,24
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A multistation system has one main CPU surrounded by many I/O processors.
Each I/O processor is called an I/O station that moves data between memory and an
I/O device. The I/O processor known as the PPU (peripheral processing unit), has a
much slower speed than the main CPU. This concept was first employed by main­
frames, so ~ll processors can operate at the same time. Nowadays, even a personal
computer has many I/O stations, such as keyboard, display, communications, etc.
The as usually runs on the main CPU if it is a scalar or superscalar processor.
However, in a few exceptions, the OS runs on an I/O processor.5 Note that the main
CPU can be a vector processor. In such a design, the OS runs on one or several I/O
processors. For example, the CPU of the ILLIAC IV is a powerful array processor;
its OS runs on a team of I/O processors made of mainframes.

8.5 MULTIPROCESSING SYSTEM

A multiprocessing system consists of multiple processors interconnected and
characterized by (1) a program running on one CPU can communicate with another
program running on a different CPU; and (2) the CPUs are usually homogeneous,
interchangeable, and adjacent.

In a multiprocessing system, each CPU may have its own memory in addition to
shared memory. Each CPU performs a specific function provided that a supervisor
routine runs on one CPU to dispatch workload to other CPUs. In a closely coupled sys­
tem, the processors are adjacent so they use shared memory to pass messages. In a
loosely coupled system, the processors can communicate via channel-to-channel I/O.

One design case is to designate one processor as the master (i.e., supervisor) and
the rest as slaves. After receiving a message from the master, the slave interprets and
carries out the execution. The master coordinates the work done by all the slaves.
Each time as the master dispatches work load to the slave, it also monitors the com­
pleted results. If the master fails due to hardware glitches, it can not act as the mon­
itor. Well designed software will ensure that the system operates with a smooth tran­
sition in passing power to the next node. Henceforth, the supervisor running on the
master computer leaves messages in shared memory constantly to claim its position
as the boss. The processor that is second in the command chain checks the message
on a periodic basis to make sure that the master is in command. If at any time the
master is not able to leave a message in shared memory, the next processor in com­
mand declares its position as the new boss and takes over the duties of the master.

In a broad sense, a multiprocessing system can be thought of as a simple com­
puter network where intertask communications are provided so that all the CPUs
work as a team to achieve a common goal. Some of the communication issues are
addressed below.
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As regards processor interconnection, all the pins on the chip constitute a host
system or local bus to communicate with the outside world. The memory bus has
many address, data, and control signals that may be shared by other CPUs or con­
trollers. Because the number of pins on the chip keeps changing, the host bus struc­
ture also changes accordingly. For example, the 8088 chip has 40 pins and the 286
has 64 pins. The Pentium chip has 242 pins, including a 33-bit address bus, a 64-bit
data bus, many pins for voltages, ground, control, etc. The new IA-64 chip has even
more pins, including a 128-bit data bus so that many instructions or data can be
accessed in a bundle. Because the I/O devices have their own characteristics, a com­
mon I/O bus standard is desired so that manufacturers can connect their I/O devices
to the bus via a bus controller.77 In practice, some standard I/O buses in the field are
Multibus, Micro Channel, ISA (industry standard architecture), EISA (extended
ISA), PCI (peripheral component interconnect), and Ethernet, to name a few.
Generally, each I/O bus uses many copper wires -to transmit control, address, and
data signals. In concept, the address and some of the control lines are simplex (Le.,
transmission is allowed in one direction). The data lines are mostly bi-directional,
parallel, and half-duplex (Le., transmission is allowed in both directions but only one
at a time). In the following, we introduce two well-known buses: the 188-pin PCI
and the two-wire Ethernet.

8.5.1.1 PC, Bus

In the 1990s, Intel patented the ISS-pin PCI bus standard and placed the mechan­
ical, electrical, and functional specifications in the public domain.61 Consequently,
manufacturers can connect their I/O devices or CPUs to the bus. The signal pins on
a particular processor chip constitute its host system or local bus, which is propri­
etary. However, the host processor can be connected to a PCI bus via a host - PCI
bridge, as shown in Figure 8.10. This bus bridge is the controller on a card that con­
nects two buses. On the host side, we see the CPU, L2 cache, and central memory
modules. The L2 cache is optional since it contains the mirror image of a portion of
memory that includes instruction and data. Both the L2 cache and memory modules
are tied to the host system bus. Thus, a block of instructions or data can be accessed
from the L2 cache or memory per each request. The PCI side contains the graphics
controller which drives a display. On either side of the bus bridge, the address and
data wires are multi-dropped so they are shared by all the processors and devices.
In other words, when a processor or controller places bits on the bus, other logical
devices on the bus can read the bits at the same time. A bus bridge controller can
make signal conversions and can arbitrate bus requests from multiple processors.
That is, after each processor makes a request, it must receive a grant signal from the
bridge so that it can become the bus master of the next cycle. Without receiving a
bus grant signal, the requesting processor must patiently wait for its tum. If multi­
ple requests exist at the same titne, the bridge is the centralized arbiter and only one
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Figure 8.10 The host to PCI bridge.

processor with the highest priority can receive the grant signal. Conceptually, a bus
master is active because it can request a bus cycle. In contrast, the L2 cache or mem­
ory is a passive bus target that can not initiate a cycle request.

Interestingly, on the PCI bus the address and data signals are transmitted on the
same wires, Le., the wires are time-shared to save pin numbers. To request a mem­
ory write, the bridge places an address on the lines, and after a while it places data
on the same lines. To request a memory write, the bridge places and address on the
lines, and after a while it reads the data bits from the same set of lines. In order to
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stay flexible, the PCI bus can handle 32-bit data transfers as well as 64-bit. The PCI
bus cycle can go up to 100 Mhz, so if an eight-byte block is transferred per cycle, the
bandwidth of the bus is 800 MBps (megabytes per second). In addition, the PCI bus
can operate in either 32-bit or 64-bit address mode.

Since there are many standard buses, there are many different bridges. The PCI
- PCI bridge connects one PCI bus, to another PCI bus, thus expanding the number
of PCI peripheral devices. The PCI - ISA bridge connects a PCI bus to an ISA bus.
Consequently, some 110 devices, such as printer, sound card, and modem on the ISA
side can transmit 16 data bits in parallel. A third type of bridge, the PCI - USB
bridge, connects the PCI bus to USB (universal serial bus) that supports one data sig­
nalline. On the USB side, the mouse and the keyboard use serial data transfers. An
I/O device on one bus can be connected to another bus via a bus bridge without hav­
ing to change its hardware interface.

8.5.1.2 Ethernet Bus

The term "wire technology" means that the transmission medium is a coaxial
cable, twisted pair, or optical fiber. The first two schemes use copper to transmit
electric signals and the third one uses fiber to transmit light rays. Using copper, the
line can be multi-dropped, Le., shared access by all the processors. The term "wire­
less technology" means no wire, so the transmission medium is air or a vacuum, that
is not visible.

To make the I/O bus more flexible, we can reduce the number of wires to two,
signal and ground, known as Ethernet. The address and data bits are all transmitted
serially, as shown in Figure 8.11a. One coaxial cable can be used to transmit data at
10 Mbps (megabits per second). A different design, e.g., the fast Ethernet uses a
group of four twisted pairs to achieve a combined data rate of 100 Mbps. There are
also Ethernets using fiber optics to achieve data rates of gbps.

By way of an Ethernet, we can connect many local computers in a network. Each
processor can place bits on the line as a data link (OL) frame. A data link (Le., link)
means a com port with its associated software. That is to say, the software drives the
physical link in hardware. Each OL frame contains a header, the info (information)
field, and a trailer as shown in Figure 8.11b. The header contains the 48-bit address
of the sending node and the 48-bit address of the receiving node. The info field has
a variable length of up to 1500 bytes. The trailer contains FCS-32 (32-bit frame
check sequence) as an error detecting code (explained by Hsu).24 All the node
addresses are unique and they must be assigned by Xerox.

The rules of how to place bits on the bus by each processor constitute the
Ethernet OL protocol. Ethernet data transmission is half-duplex, so each processor
takes turns placing bits on the line. However, when one processor transmits, every
node on the bus (including itself) can receive the transmitted bits at the same time.
The data signal is Manchester code as a combination of high-low rectangular volt­
ages. Because there is neither carrier nor modulation in the transnlission, it is base-
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Figure 8.11 Ethernet connections: (a) multi-drop coaxial cable, (b) data link frame, and
(c) Ethernet network bridge.

band. If two or more processors transmit at the same time, bits are corrupted on the
line, which is defined as a collision. Whenever a collision occurs, the system I/O
software retransmits the bits after waiting for a random period of time.

A network bridge is a switching device that connects two Ethernet networks as
shown in Figure 8.llc. The network bridge has its own processor to run network sys­
tem software. After receiving bits from one side of the bus, the software on the
bridge examines the destination address in the DL frame header. If the address
belongs to the same side, the bridge does nothing. If the address belongs to the other
side, the bridge retransmits the bits on the other side. That is, the Ethernet bridge
relays the bits to the other side if necessary.
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8.5.2 Semaphore

COMPUTER ARCHITECTURE

If one processor updates a shared memory block while the other processor does
the same, there may be a problem. As a simple example, if one processor adds one
to a variable in memory and the other processor also adds one to the same variable,
the end result should be the addition of two. However, if both processors fetch the
same variable in two subsequent cycles, add one and store the result in memory, the
final result is adding one instead of two. Of course, this is incorrect. Therefore, we
must set up rules that allow only one processor to update a block in shared memory
at one time. In other words, we need to guard the block of memory.

In concept, a binary semaphore is very much like a token in a plate. Whoever
gets the token first has the right to write the memory block. After writing the block,
the owning processor must put the token back on the plate. Thus, only one proces­
sor is allowed to write the memory block at one time. The block in shared memory
usually contains a message queue that facilities communications between two sys­
tem routines running on two processors.

A binary semaphore can be implemented as a memory word containing a one or
zero. Using positive logic, a one means that the token is available while a zero means
that the token is gone. The remaining problem is how to protect the semaphore, so
no two processors can grab an available token at the same time. To accomplish this
goal, we need hardware support. That is, reading the semaphore, testing its value,
and setting it to a new value must be performed in one memory bus cycle that is indi­
visible. In other words, a read - modify - write hardware memory cycle must be
atomic. That is, when the first CPU is testing and setting the semaphore, no other
CPU can break into the middle of the cycle and do the same. In the seventies, core
memories were popular and each tiny core was used to store one bit. Reading the
core, we always switch its magnetic flux to zero. After reading, we need to restore
the core's original magnetic flux by switching it to the other direction if the bit is one,
that is, the memory always supports a full read - write cycle. A read - modify - write
cycle means that the cycle time is prolonged so the processor can read the operand,
modify it, and write it back in memory. If two or more CPUs want the token at the
same time, only one CPU can grab the token based on its priority on the bus.

The 8086 processor uses half cycles to either read or write the semiconductor
memory.27 A special one-byte opcode known as the lock prefix must be placed in
front of an instruction to lock the memory bus if desired. Locking the bus means that
no other processor can access the memory at the same time. The lock prefix is a spe­
cial opcode that tells the CPU hardware to lock the memory bus when the current
instruction starts to execute.

A writable memory block is guarded by a semaphore, as shown in Figure 8.12a.
Any task on a CPU must execute the code at the front before it can write into the
block of shared memory. In Figure 8.12b, a counting semaphore is implemented in
assembly language on a PC. The semaphore is initialized to one meaning only one
token is available. Decrement the semaphore by one and set the condition code in
the SR (status register) based on the result. There are two possible outcomes. If the
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(a )
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tryLater: lock dec
jz
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jmp
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semaphore
gotlt
semaphore
tryLater

{Update the shared momory block.}

lock inc semaphore

(b)

tryLater: mov ax, 0 :move o into ax register
lock xchg ax, semaphore ;swap ax and semaphore
test ax
jz tryLater

gotlt:
(Update the shared memory block. }

inc semaphore

(c)

:no lock required

Figure 8.12 Semaphores: (a) semaphore and writable memory block, (b) counting
semaphore, and (c) binary semaphore.

result is zero, control is passed to the label named gotIt, which means the CPU can
proceed and update the shared memory block. The jz instruction means jump if
result is zero. The second possibility is that the result is negative, which means
another CPU has already grabbed the token, so the current CPU increments the
semaphore to restore its original value and tries later. If the token is available, after
grabbing it the task updates the message block. At the end of the update, the task
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must increment the semaphore by one to put the token back. If there are three CPUs,
it is possible for one CPU to own the token while the other two CPUs in the loop are
still competing for the token. Thus, it is possible to have the semaphore as -2 and
then its absolute value indicates the number of tasks currently waiting on that sema­
phore. Consequently, when the owning task returns the token by incrementing its
value by one, it is also possible for the semaphore to stay negative because the other
two CPUs may have already decremented the semaphore in the same time period.
Eventually, after incrementing more times, the semaphore will become one indicat­
ing that the token is available. This scheme works if the inc and dec instructions have
a lock prefix.

An improved scheme is to use a binary semaphore whose value can be zero or
one as shown in Figure 8.l2c. The exchange instruction exchanges a register and a
memory word containing the binary semaphore, and it needs a lock prefix. The xchg
instruction replaces the decrease instruction to ensure that the token becomes avail­
able as soon as the holder task increases it, and no lock prefix is needed for the last
increase instruction. In essence, the semaphore is a one-bit message to the receiving
task. It is important to know that when the xchg instruction executes on a Pentium,
the memory bus is automatically locked by hardware.

If we extend the multiple processor concept to multiple computers, we obtain a
distributed system or a general purpose computer network. That is, each node may
be located at a distance. In addition, each node can be made of different hardware
running different OSs and all the host computers in a network have equal status
regardless of their speeds.

8.6 COMPUTER NETWORKS

Physically, a computer network consists of many host computers interconnected
via I/O channels. There are general purpose computer networks as well as distrib­
uted systems. A distributed system is a special purpose computer network that sup­
ports transaction processing, such as banking, credit checking, reservations, or mon­
itoring a chemical plant or mine. The same functions can be achieved by a general
purpose computer network as long as the right application software has been pro­
vided. The basic concept is that one processor may communicate with other proces­
sors via an I/O channel. A computer network has the following characteristics:

• Autonomous computers interconnected via I/O communication channels
• Intertask communications via I/O communication channels with routing
intelligence
• Distributed hardware, software, and data base

Each node in the network is autonomous and the computer is usually heteroge­
neous with its own OS. A global network may contain several million or more com­
puters. In a distributed system or in a general purpose computer network, note that
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the same set of network I/O routines are used to provide intertask communications.
That is to say, a task on one CPU may communicate with another task running on a
different CPU located several thousand miles away. Writing the network software is
tedious, and challenging, yet manageable. The objectives of computer networks are
listed below:

• Resource sharing
• Parallel computation
• Redundancy

The primary goal of designing a generalized computer network is to share
resources: hardware, software, and data. Expensive shared I/O devices include color
laser printers, high performance disks, and special devices for making films.
Software routines implemented as remote procedure calls are also shared by many
users at different locations. Data, such as disk file, stock market quotations,and e­
mail are also considered resources.

Parallel computation can be achieved if all the processors work as a tealTI to
search, compute, etc. Redundancy means that the network system is fault tolerant to
a certain degree. For instance, a small network may be ideal for flight control. Each
decision must be voted by the majority of main processors. Anyone failed proces­
sor will not affect the majority vote. Such a system is also designed for real-time
transactions that must be fault tolerant. One failed hardware component should not
bring down the entire system.

As far as technology is concerned, computer networks can be classified into
LANs (local area networks) and WANs (wide area networks). A third category is
MANs (metropolitan area networks), which are really LANs. For example, a MAN
may be designed as a token ring LAN using the same hardware and software. The
only difference is that a MAN covers an area as big as a city but the basic design
remains the same. In contrast, the design of a LAN is quite different from a WAN.
For example, the network I/O software routines, also called NAMs (network access
method) are different in their NOSs (network operating system).24

8.6.1 Local Area Networks

A LAN contains all its computers within a local area, for example, a few square
miles, as characterized by:

• Fast data rate, up to 100 Mbps or over
• Low error rate, 10-8 to 10-11 Epb (errors per bit)
• Simple routing
• Moderate distance between two nodes
• Mostly homogeneous computers
• Innovative technologies
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Some LANs use copper wires, fiber-optics, or a combination of both. Because
all the computers are close to each other, high speed data rates over 100 Mbps are not
uncommon. As technology advances, Gbps (gigabit per sec) LANs are developed in
laboratories. Because the distance between two nodes is usually less than 2.5 kIn, its
error rate is low. With fiber optics, roughly one bit flips out of 100 gigabits trans­
mitted. In a single LAN, each computer has one transmitter and one receiver. After
one node transmits, every other node on the network sees the bits almost immedi­
ately. Consider a token-ring for exanlple; when one node transmits, the bits pass
through each node on the ring and return to the sender. That is to say, most of the
nodes in a LAN have no routing intelligence.

However, a LAN can be connected to another network by a special switching
processor, a bridge or router, to handle the switching function. In order to ease the
maintenance problem, most companies prefer homogeneous nodes running the same
set of software. But in a university environment, there may exist several different
types ofLANs that are connected to a backbone. Protocol conversions are often nec­
essary to tie different LANs into a single computer network.

8.6.2 Metropolitan Area Networks

A MAN is a LAN that covers a larger physical area, e.g., the CATV (community
antenna television) network. In terms of hardware or software design, a MAN is the
same as a LAN. In the example of a token-ring LAN, the distance between two adja­
cent nodes can be 2 km. With 360 nodes maximum, the perimeter can be as long as
720 km, or 450 miles. A future proposal is to use the DQDB (distributed queue and
dual bus) LAN to transmit TV signals. Such a design not only eliminates the colli­
sion problem of an Ethernet, but also negates the token passing problem on a token­
ring, yet it covers an area as large as a city.

8.6.3 Wide Area Networks

The WAN technology was developed to connect two computers at a distance of,
for example, 7000 miles. In a WAN, when the data bits arrive at the destination node,
translnission stops right there. Even in one room, two PCs may be interconnected as
a WAN. That is, if one PC is moved several thousand miles away and the other one
stays in the room, the network applications still run on the network with no changes
made to the hardware or software. Hence, WANs and LANs differ in technology but
not in size. Well-known WANs are listed below.

• SNA (IBM System Network Architecture)
• Internet (Inter-networking)
• ISDN (Integrated Services Digital Network)

SNA is popular in industry for perform transaction processing or general purpose
computing. The Internet is the oldest network that ties together all computers in edu-
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cational institutions, government, organizations, and cOlnmercial companies all over
the world. In other words, different computer networks are interconnected in a
global network. The Internet was evolved from the Advanced Research Project
Agency Network (ARPANET) in the early 1970s. Since then, ARPANET has
changed its name a few times and is now called DDN (Defense Data Network), part
of the Internet.

After understanding computer architecture from a system perspective, we can
explore some contemporary processor designs in the next chapter.

8.7 SUMMARY POINTS

1. A vector machine may employ a design such that its data stream is trans­
mitted in serial or in parallel.

2. In a broad sense, a MIMD machine consists of many processors operating in
parallel.

3. A multistation system has one powerful CPU surrounded by many I/O
processors.

4. Interprocessor communications are achieved via interrupt, shared memory,
or channel-to-channel I/O.

5. The SID (start I/O) or EXN (exchange jump) instruction is different from a
system call because the instruction interrupts the other processor, not itself.

6. A multiprocessing system has multiple processors, and the processors are
interchangeable and adjacent.

7. The memory bus has many address, data, and control wires that may be
shared by other CPUs or controllers.

8. A bus bridge connects two buses and has logic to make signal conversions
and to arbitrate simultaneous bus requests from multiple processors.

9. Reading a semaphore, testing its value, and setting it to a new value must be
performed in one memory bus cycle in a multiprocessing system.

10. In a computer network, many autonomous computers are interconnected,
and intertask communications are done via I/O communication channels.

11. The objectives of computer networks are resource sharing, parallel compu­
tation, and redundancy.

12. As far as technology is concerned, computer networks can be classified into
LANs (local area networks) and WANs (wide area networks).

13. A network bridge is a switching device that connects two local area net­
works.

14. A distributed system is a special purpose computer network.
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PROBLEMS

COMPUTER ARCHITECTURE

1. Explain the conceptual difference between serial data transfer and parallel
data transfer in a SIMD machine.

2. What is a multistation system?
3. What is a multiprocessing system?
4. The key concept for the communication of two CPUs is passing messages.

What are the three ways for one CPU to pass a message to another CPU?
5. On an IBM mainframe, explain the difference between the CAW (command

address word), CCW (channel command word), and CSW (channel status
word).

6. What is the difference between a system call and an SIO (start I/O) or EXN
(exchange jump) instruction regarding interrupt?

7. In a multiprocessing OS, what is the hardware requirement to design a sem­
aphore scheme so that only one CPU can enter a routine to modify a shared
data base?

8. What is the functional difference between a bus bridge and an Ethernet net­
work bridge?

9. What are the objectives of designing a cOJnputer network?
10. What is the key difference between a distributed system and a computer net­

work?
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CHAPTER 9

Processor Design Case Studies

9.1 COMPLEX INSTRUCTION SET COMPUTER

This chapter introduces many processors: IBM mainframe, PowerPC, Alpha,
Itanium, and the reduced software solution computer. Issues include reliability,
speed, system overhead, and cost. The chapter discusses CISC (complex instruction
set computer), RISC (reduced instruction set computer), and VM (virtual machine).
A software based VM can be implemented on any superscalar machine.

Generally speaking, a RISC machine uses less logic in a pipe that has an execu­
tion rate of one stage per clock. As technology advances, a CISC machine can be
designed as a decoupled pipe and its stage can also execute in one clock. However,
in regard to architecture, there are some fundamental differences. A CISC machine
has the attributes listed below:

• Variable instruction length
• eight-bit opeode with two addresses
• Operations allowed between memory and register
• Many addressing modes
• Less extensive register set
• Hardwired or microprogrammed pipe

The two most famous CISC designs are the IBM 360/370/390 and Pentium.
Both machines have two addresses in an add instruction. As far is external code is
concerned, the former uses EBCDIC (extended binary coded decimal interchange
code), while the latter uses ASCII. The IBM mainframe has enjoyed popularity in
the corporate world for its reliability. On the other hand, the Pentium processor is
popular on desktops for its market timing. Since the Pentium processor has been dis­
cussed in the previous chapters, it is now time to introduce the IBM mainframe.
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9.1.1 IBM Mainframe

COMPUTER ARCHITECTURE

The IBM mainframe generation has evolved from the 360/370/390 and beyond.
Each family or generation consists of many models, and each model supports the
same instruction set architecture (ISA) with a different execution speed. The
machine has 16 32-bit GPRs (general purpose register) denoted as RO to R15 and
four 64-bit floating point registers. Each GPR can be used as an index register, and
RO is assumed to be zero if it is used as an index. The instructions are grouped into
five types: RR (register - register), RX (register - storage, indexed), RS (register ­
storage), SI (storage - immediate), and SS (storage - storage). Generally, each
instruction has a one-byte opcode followed by two addresses. If the address points
to a register, the field has four bits. If the address points to memory, the displace­
ment is 12 bits augmented by one or two index registers. The format of a two-byte
RR instruction is shown in Figure 9.1 a.

8 4 4

( a) i Op ~
8 4 4 4 12

(b) I Op ~ 02

( c) I
~IOn 02

(d) i Op I 12 E 01

(e) I Op
I L ~ 0 02

Figure 9.1 IBM 360/370/390 instructions: (a) RR, (b) RX, (c) RS, (d) 51, and (e) 58.

The four-bit R1 denotes source register 1, the first source that is also the desti­
nation. The four-bit R2 denotes source register 2, the second source. The digit 1 or
2 after the mnemonic represents the ordering of the operand. The next three types
are RX, RS, and SI. Each instruction has four bytes with two addresses, and one of
the two is a memory address. As shown in Figure 9.1 b, the RX instruction uses two
index registers, X2 and B2. That is to say, for source operand 2, X2 is the index reg­
ister, B2 is the base, and D2 (displacement 2) is a 12-bit offset. The GPR zero can
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be used as a scratch pad (accumulator), but when it is used as an index, its content is
assumed to be zero. In other words, if the X2 field is zero in the instruction, no
indexing is specified. The short displacenlent field has caused some confusion about
its addressing range. The index register is 32 bits long and address constant can be
used. That is, by loading a 32-bit address constant in an index register, we obtain an
addressing space of up to 4 GB (232 B). As shown in Figure 9.lc, an RS instruction
can load or store multiple registers, so it has the capability of limited vector opera­
tions. Because R3 specifies the upper bound of a register set and R1 specifies the
lower bound, only one index register B2 is left as the base. Figure 9.ld shows the SI
instruction. Note that the 12 field contains an immediate byte, and the destination
operand is in memory. With 16 bits left, the index field is Bland D 1 is the 12-bit
offset. The six-byte SS instruction is shown in Figure 9.1e. The instruction can
move a block of 256 bytes from one memory location to another memory location.
The one-byte L (length) specifies the block size in bytes, and for each address only
one index register can be specified.

Instructions are provided to round, normalize, and perform floating point arith­
metic for 32-bit, 64-bit, or 128-bit operands. Each machine may have a virtual mem­
ory using two-level paging. That is to say, the virtual memory has one single linear
segment up to 4 GB. For example, the 32-bit virtual address of a second source
operand is the sum of D2, R[X2], and R[B2]. The VA is an ordered triple (5, P, D),
where S is called the segment number, P the page number, and 0 the displacement.
The integer S is really a first level page index or page directory index to fetch a PT
base address in ST (Segment Table). The integer P is really a second level page index
to fetch a PFN in the PT.

Each machine supports an I/O structure of 16 I/O channels or more, and each
channel can be tied to 256 I/O devices. Thus, up to 4096 I/O devices can access the
central memory via the channels. Finally, the machine supports privileged I/O
instructions and its OS is reliable inside out.

9.2 REDUCED INSTRUCTION SET COMPUTER

The VAX machine of the 1980s was a fast elsc machine with 304 instructions and
21 addressing modes. The idea was the more, the better. However, the complexity of
a VAX processor triggered a revolution in computer design as the concept changed to
less is more. Actually, the early CDC6600 and IBM801 were RISC machines. The
concept did not receive much attention until Patterson and Hennessy published their
research results. 18,47 A RISC machine is characterized by the following attributes:

• Uniform 32-bit instruction length.
• Six-bit opcode with three addresses.
• Load/Store architecture with register - register operations.
• Extensive register set, 32 or more.
• Hardwired pipe.
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Logically, the instructions on a RISe machine have basically the same format.
The RR instruction is shown in Figure 9.2a. The six-bit opcode is followed by five­
bit sreg 1 (source register 1), five-bit sreg 2 (source register 2), 5-bit dreg (destina­
tion register), and II-bit eop (extended op). The bit positions in an instruction may
be arranged differently, but the semantics remain the same. For example, the eop
may contain a function code or a five-bit shift count. The RX instruction contains a
memory address as shown in Figure 9.2b. In addition to opcode and sreg 1, the sreg
2 field contains an index register address followed by the 16-bit disp (displacement).
As an example, a load instruction has sreg 1 as the destination. The source operand
2, whose EA (effective address) is the sum of the index register and disp. is indexed
in memory In a store instruction, sreg 1 represents the data to be stored at the effec­
tive address using indexing. The compare and conditional branch operations are
combined into one instruction. That is to say, sreg 1 and sreg 2 are compared and
branched if the condition is true. Usually, a relative addressing mode is used, so the
branch address is the sum of the relative disp and program counter.

6 5 5 5 11

(a )
Op sregll sregl! Dreg Eop

6 5 5 16

( b )
Op sreg11 sre g2 1 Disp

Figure 9.2 Power PC instructions: (a) AA and (b) AX.

Because the instruction length is fixed, it is easy to retrieve an instruction from
the instruction cache. Note that the fixed length instruction concept was tried on
many second generation computers. For example, the second generation main­
frames IBM 704 and PDP-I0 all support fixed length instructions.3 Such a design
maps an instruction into a memory word of 36 bits. As a result of this design, some
bits are not fully utilized, so the code size is larger. In practice, a typical RIse
machine supports 32 general registers (GR) and 32 float registers (FR). A large reg­
ister set has two advantages. First, during a subroutine call, the arguments are passed
in registers instead of stack. As a stack is simulated in memory, the number of mem­
ory references is reduced. Likewise, after return, there is no need to pop the stack.
Second, the registers can be used to store local and global variables in lieu of mem­
ory. Compilers can generate code to eliminate data dependencies. In consequence,
parallel operations can be achieved in the execution unit. However, one obvious dis-
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advantage is slow context switching during an interrupt because it takes longer to
save and restore a larger set of registers.

RISC machines have not posed a threat to either mainframes or pes. Power PCs
are popular in embedded systems for many reasons. First, the RISC machine lacks
a sophisticated I/O structure. Second, it is not protected without paging, which
means overhead. It can not compete well in a multiprogramming system. Third, it
lacks market timing or momentum. Nonetheless, discuss the design of the Power
PC, Alpha, and Itanium in the following sections.

9.2.1 Power PC

The acronym POWER stands for performance optimized with enhanced
RISC.35,58 It represents a new technology, and the machine was intended to run the
UNIX-like operating system for both scientific and commercial applications. The
CPU has a hardwired pipe with 64 GRs and 64 FRs. An early model supported a reg­
ister size of 32 bits, but a later model increased the register size to 64 bits. The chip
has a 40-bit address bus and a 64-bit data bus to support PCI. Its pipelined CPU has
many independent execution units, namely FXU (fixed point unit), FPU (floating
point unit), LSU (load/store unit), BPU (branch processor unit), and CU (completion
unit). The CU is similar to an RU (retire unit) that retires instructions in the program
order. The system also supports an instruction queue, instruction cache, and data
cache. The pipe is able to execute each stage in one clock.

In addition, the processor has a TLB (translation look-aside buffer) and an MMU
(memory management unit) to support a two-level paging system. Just like an IBM
360/370 mainframe, the Power PC is a linear segment system. Thus, the VA is an
ordered triple (S, P, D) where S is four bits, P is 16 bits, and 0 is 12 bits. As a result,
the page is 4 KB, the segment is 256 MB, and the VAS is 4 GB. After mapping, the
PAS is also 4 GB. The later model of the Power PC supports a virtual address of 64
bits, and the physical address is increased to 44 bits (16 TB).

9.2.2 Alpha Processor

The Alpha chip was the first 64-bit microprocessor on the market with an
astounding clock rate of 417 Mhz.6o It has many design features, as listed below:

• 32 GRs and 32 FRs, 64 bits each.
• No integer divide instructions.
• Conditional moves based on register content.
• Large VAS (55-bit).
• Large PAS (48-bit).
• Three-level linear paging.

The Alpha also uses fixed length 32-bit instructions, and each instruction has a
six-bit opcode followed by three addresses. There are 32 GRs and 32 FRs. Each reg-
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ister is 32 bits on lower models and 64 bits on higher models with a 64-bit adder. Just
like the CDC6600, the alpha has no integer divide instructions. To divide an integer,
floating arithmetic is used instead in three steps. Data conversions are required
before and after the divide operation. The machine supports conditional move
instructions. That is, the instruction executes upon a condition, true or false, as set
by a register. The goal is to implement an IF - THEN - ELSE construct without
using branches. This clever idea is incorporated into the design of IA-64 (Intel archi­
tecture-64 bits) described later.

The alpha chip supports a three-level linear paging system because the VA is an
ordered quadruple that supports a very large VAS. For example, the 55-bit VA is a
program address, as shown in Figure 9.3a. The upper bits in front of D can be con­
sidered a large page number if a one-level paging system is implemented. Such a
design would require a too large PT (page table). To solve that problem, the large
page number is divided into three fields: PI, P2, and P3. The integer PI is the first
level page index; P2 is the second level page index; and P3 is the third level page
index. The lower bits in the VA constitute D, the displacement, in a page. The TLB
entry contains the large page number (PI, P2, P3), the 32-bit PF, plus control bits as
shown in Figure 9.3b.

During address translation, the hardware searches the TLB first. If there is no
match in the TLB, a three-level page table search method is used to find the PF (page
frame number) for the page. That is, upon a TLB miss, the DAT hardware expends
three extra memory cycles to poke through three different page tables in order to find
the PF for the page. The page table entry at each level has 8 bytes (64 bits) divided
into a 32-bit PF, 16 unused bits, and 16 control bits as shown in Figure 9.3c. The list
structure of three-level page tables is shown in Figure 9.3d. A fixed length PF is
retrieved from the PT each time. The hardware PTBR (PT base register) contains a
PF that is the physical block address of the first level page table. Using PI as an
index to access the entry in the first level PT, we obtain the PF of the second level
PT. Using P2 as an index to access the entry in the second level PT, we obtain the
PF of the third level PT. Using P3 as an index to access the entry in the third level
PT, we obtain the PF of the accessed page. The address translation is completed at
run time, as shown in Figure 9.3e.

Note that the Alpha machine supports four different page sizes: 8 KB, 16 KB, 32
KB, and 64 KB. For each page size, the D (Displacement) field has different num­
ber of bits so the VAS is different. Regardless of the page size, two design rules
remain true. First, the PI, P2, and P3 all have the same number of bits. If the D (Le.,
page size) field is increased by one bit, the length of PI, P2, and P3 is also increased
by one bit. Second, after each level of PT look-up, the fetched PF (page frame num­
ber) always has 32 bits, Le., a fixed length. Both the VAS and PAS are determined
by the page size as summarized in Table 9.1.
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Figure 9.3 Alpha virtual memory: (a) VA, (b) TLB entry, (c) PT entry, (d) three-level
paging, and (e) PA.
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Table 9.1
Virtual Addressing Space vs. Physical Addressing Space on Alpha

Page Size
(Bytes)

8K

16 K

32 K

64 K

D
(bits)

13
14
15

16

P1,P2,P3
(bits)

10

11

12

13

VA
(bits)

43

47
51

55

PA
(bits)

45

46

47
48

In concept, the Alpha program counter (PC) has 64 bits. Since each instruction
is 32 bits long, the PC always has two trailing zero bits as implied. As the VA can go
up to 55 bits, the virtual addressing space is 32 PB (peta byte) with seven leading
zeroes in the PC. That is to say, the actual PC is shorter than 64 bits. In the field, the
Alpha chip is considered a fast compute engine that uses a 750 Mhz clock as pow­
ered in many work stations.

9.3 ITANIUM PROCESSOR

The Itanium chip is the first IA-64 (Intel architecture-64 bits) processor based on
the technology known as EPIC (explicit parallel instruction computing). The
Itanium processor represents a family of chips. The low end will have tens of mil­
lions of transistors while the high end will have hundreds of millions. The design
concept was derived from the research of VLIW (very large instruction word)
machines.6 The term VLIW means a long instruction word is retrieved in one mem­
ory cycle. The total number of bits in a long word also implies the number of data
pins on the chip. As an example for multimedia applications, a 64-bit long instruc­
tion word may contain two 32-bit instructions, so both may be decoded and executed
at the same time. Moreover, the VLIW processor may support two execution units
but also supports two separate register files. Thus, after decoding, each execution
unit operates on its own register file. As a result, we achieve two operations in par­
allel due to a superwide CPU. The concept of EPIC is similar because three instruc­
tions are always grouped in a 128-bit instruction bundle. If there are no dependen­
cies, all three instructions are decoded and executed in parallel. The design features
of the IA-64 are listed below: 11,30

• 128 GRs (general registers), 64 bits each
• 128 FRs (floating point registers), 82 bits each
• 128 ARs (application registers), 64 bits each
• 64 PRs (predicate registers), 1 bit each
• 8 BRs (branch registers), 64 bits each
• 128-bit instruction bundle
• 41-bit instructions
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• An RR instruction with opcode, predicate, and three addresses
• 64-bit data bus to be extended to 128 bits in the future
• Backward-compatible with IA-32

9.3.1 Operating Environments

347

The IA-64 architecture provides binary compatibility with the IA-32 instruction
set. The Itanium processor supports two operating system environments, the IA-64
as environment and the IA-32 as environment as shown in Table 9.2.

Table 9.2 IA·64 Processor Operating Environments

System Application Description
Environment Environment
IA-64 IA-32

protected mode

IA-32 real mode

IA-32

Virtual IA-32
IA-64
instruction set
IA-32
instruction set

IA-32 protected mode
applications
IA-32 real mode applica­
tions
Virtual 86 applications
IA-64 applications

IA-32 protected mode,
IA-32 real mode, and
virtual 8086 mode
applications

In the IA-64 OS environment, IA-64 processors can run IA-32 applications under
a native IA-64 OS that supports execution of all the IA-32 applications. In the IA­
32 OS environment, IA-64 processors can run IA-32 application binaries under an
IA-32 legacy operating system provided that the platform and firmware support
exists in the system.

In addition, the IA-64 architecture provides the capability to support mixed IA-32
and IA-64 code execution. Within the IA-64 as environtnent, the processor can exe­
cute either IA-32 or IA-64 instructions at any time. In order to provide hardware assist,
the processor implements three special instructions. By executing any of these instruc­
tions, the CPU switches the hardware execution environment, as explained below:

1. jrnpe (IA-32 instruction): jump to an IA-64 target instruction to change the
instruction set from IA-32 to IA-64.

2. br.ia (IA-64 instruction): jump to an IA-32 target instruction to change the
instruction set from IA-64 to IA-32.

3. rti (IA-64 instruction): the mnemonic means return from interrupt. The
result of executing this instruction returns to an IA-32 or IA-64 instruction
that was interrupted.
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9.3.2 Instruction Bundle

COMPUTER ARCHITECTURE

As demonstrated in Figure 9.4a, each bundle consists of three 41-bit instructions
and one five-bit template. The leftmost instruction is denoted as slot zero, the next
instruction as slot one and the rightmost instruction slot two. The template contains
information to tell the pipe about resource dependencies. That is to say, the three
instructions in a bundle can execute in parallel if the template is 00 (00000 in binary),
which means no stop. A stop is a non-zero bit pattern that asks one or more speci­
fied execution units to wait. The template is encoded because of many cOlnbinations
of execution units that need to wait in the pipe. Different execution units are ALU
integer, non-ALU integer, memory, float, branch, etc. As a simple example, if the
template contains 01 (00001 in binary), the non-ALU resource for instruction in slot
two is not available at this time so execution must be stalled until the resource
becomes available. If the template is three (00011 in binary), the non-ALU resource
for each of the two instructions in slot two and one are not available. As a result,
both of their executions must be stalled. However, if the compiler finds a group of
16 instructions that have no mutual dependencies, they can be packaged into six dif­
ferent bundles. Each of the first five bundles contains three instructions with no stop.
The sixth bundle has one instruction from the group and two other instructions with
stop. The template in each of the first five bundles is 00, so the instructions are exe­
cuted at the same time, bundle by bundle. Two points are observed. First, because
the bundled instructions need not be in their original program order, they may repre­
sent different paths of a branch condition such as IF - THEN - ELSE. Second,
because both dependent and independent instructions can be placed in a bundle,
there is less chance for the compiler to insert nops into empty slots in the bundle.

Conceptually, the logical format of a 41-bit RR instruction is shown in Figure
9.4b. The opcode, including eop, is 14 bits, the predicate is six bits, and each of the
three register addresses has seven bits. Usually, sreg 1 stands for source register 1,
sreg 2 means source register 2; and dreg means destination register. The predicate
register is one bit indicating true or false. At run time, the pipe first scans the tem­
plates, then picks out the instructions with no dependencies, and dispatches them to
the execution units in parallel. The pipe then schedules instructions that are resource
dependent according to their requirements. When the instruction is about to retire,
the predicate condition is already known so the RU (retire unit) can make the
machine state permanent according to the predicate.

9.3.3 Predication

The goal of predication is to eliminate conditional branches and execute as many
operations as possible. As a solution, the pipe actually performs two sets of opera­
tions. After the condition is tested, the pipe discards one set of operations without
retiring to permanent state. Thus, the processor performs the operations regardless
of the condition of true or false. As a consequence, even though half of the opera­
tions are thrown away, the pipe can still increase throughput. The first example of
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Figure 9.4 IA-64: (a) 128-bit instruction bundle, (b) 40-bit RR instruction, and (c) register
stack.

this, shown below, uses conditional execution which is a precursor of predication. Its
sole purpose is to implement an IF - THEN - ELSE construct without branches, as
shown below:

IF Rl .EQ. 0,
THEN R3 <- R4;
ELSE R4 <- R5; ENDIF;
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On a conventional machine, we generate two labels, Ll and L2, as branch addresses,
and the assembly code is as follows.

LI:
L2:

CMP
JNE
MOV
JMP
MOV

RI,O
LI
R3,R4
L2
R4,R5

On an Itanium, we issue two move instructions based on a test condition to get
rid of the branches.

CMOVZ R3, R4, R1 ;If R1 is 0, R3 <- R4
CMOVN R4, R5, R 1 ;If R 1 is not 0, R4 <- R5

The mnemonic CMOVZ stands for compare move if zero, and CMOVN stands
for compare move if not zero. The zero condition is tested in the third operand R1.
A more complicated IF - THEN-ELSE may execute a block of code of any type of
operations. Thus, we rely upon using a predicate, as shown below:

IF RI .EQ. R2,
THEN R3 <- R4 + R5;
ELSE R3 <- R4 - R5; ENDIF;

We have the hypothetical Itanium assembly code as follows:

CMPEQ RI, R2, PO ;If RI .EQ. R2,
;then PO <- 1

PI <-0
;else PO <-0

PI <-1
<PO> ADD R3, R4, R5
<PI> SUB R3, R4, R5

The basic concept is that two predicates work as a pair. An even predicate teams
up with an odd predicate in the next order. That is to say, PO teams with PI, P2 teams
with P3, etc. The conditional compare sets a pair of two predicates based on the
tested condition. If the condition is true, the even predicate is set to true, but at the
same time the odd predicate is reset to false. The reverse is done if the tested condi­
tion is false. The instructions in the THEN clause, as well as those in the ELSE
clause, are conditionally executed based on the predicate pair. That is to say, by the
time an instruction retires the predicate condition is already known and the instruc­
tions with false predicates are simply discarded without making the machine state
permanent. Because there are 32 pairs of predicate registers, the IF - THEN - ELSE

© 2001 by CRC Press LLC



PROCESSOR DESIGN CASE STUDIES 351

structure can be nested. For each pair of THEN - ELSE clauses, a pair of predicates
is specified.

9.3.4 Speculative Loading

The speculative loading concept means that the compiler physically moves a load
instruction from after the branch condition to before the branch. This concept is
known as hoisting, a way of physically moving a load instruction to an earlier point
in the instruction stream before a branch. Assume that the logic of a program is listed
below:

Rl <-Rl + 1;
IF Rl .GT. R2,
THEN R3 <- M[RI - R2];

M[R3] <- M[R3] + 1; ENDIF:

The compiler realizes the memory operand M[R 1 - R2] is data independent after
increasing RI. Therefore, it moves the load instruction before the IF test and marks
it as load.speculative (ld.s). If the load instruction generates an intemlpt, page fault,
or address exception, the interrupt is deferred by marking a token bit associated with
the destination register. This interrupt will be honored later by a check.speculative
(check.s) instruction that is inserted at the same position as the original load.
Symbolically, we show the logic of the resulting code as follows:

Rl <-RI + 1;
ld.s R8 <- M[RI - R2];
IF Rl .GT. R2,
THEN check.s R8;

R3 <-R8;
M[R3] <- M[R3] + 1; ENDIF:

When the check.s instruction executes, it does nothing if the token bit of R8 is not set.
If it detects an address exception, control is passed to fixed code in the OS that termi­
nates the user task. If it detects a page fault, the as (paging supervisor) brings in the
page. After that, the execution of load is carried out and the execution of the instruc­
tion is resumed after check.s. That is to say, the interrupt is deferred but honored later.

9.3.5 Register Stack

Subroutine calls occur quite often in a program. After the calling routine issues
a call, control is passed to the routine being called. The calling routine is referred to
as the caller, and the routine being called is known as the callee. As a common prac­
tice, the callee saves all registers before they can be modified. The callee also
restores all registers from memory before return. The register saving/restoring
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means overhead. To eliminate this overhead, the Itanium implements its register file
as a stack. That is to say, a routine can issue an instruction to allocate a frame of reg­
isters for its local variables.

The register file is divided into two subunits: static and stacked. The static sub­
unit contains the lower 32 ORs, denoted as RO to R31, so its boundary is fixed. In
programming, this subunit contains the global variables that are visible to all proce­
dures. In contrast, the stacked subunit is designed as a register stack that contains
dynamic data. The stacked subunit can further so divided into many register frames
and each frame contains the local variables seen by each procedure. The register
stack is a data structure rather than a working stack as in a stack machine.

Suppose routine A is the caller and routine B is the callee. Because routine A is
the main routine, it has the first register frame allocated, whose size can vary from 0
to 96. Routine B is at the second level, so it can only allocate a register frame whose
size is litnited by the unused portion in the stacked subunit. For either routine A or B,
its register frame always begins with R32 by renaming the general register addresses
as a side effect of a call or return. Some of the key concepts are listed below:

I. Each of the first 32 OR addresses in an instruction is a physical register
address.

2. Each of the remaining 96 OR addresses in an instruction is a virtual register
address that is mapped into a physical register address at run time.

3. When executing a call, the CPU does two extra things. First, it saves the
CFM (current frame marker) of the caller into the PFM (previous frame
marker). Then, the CPU sets the CFM containing the frame status of callee.
The CFM contains physical register bases, the sol (size of local), sof (size of
frame), etc. The PFM is a field in AR64 (application register 64) referred to
as PFS (previous function status).

4. When executing a return, the CPU restores the CFM from the PFM in AR64.

It is advised that each routine allocates registers to store its own local variables
if there is unused or free space in the stacked subunit. If the number of registers allo­
cated is less than the number of local variables, the routine should be responsible for
storing and loading registers during computation. That is, the routine uses its regis­
ters in a time-shared manner. The caller allocates registers to store passing argu­
ments as its output, Le., the input of the callee. The output or input is for communi­
cations between two adjacent routines: the caller and its callee.

In practice, the first instruction in a routine is an alloc (allocate) that has three
immediate operandi: size of input, size of local variables, and size of output. Adding
the size of input and the size of local variables, we obtain the sol (size of local).
Adding all three immediates, we obtain the sof (size of frame). Therefore, we divide
each register frame into two parts. The first part is for storing all the local variables
with input overlaid in the front, and the second part is for output that is overlaid with
the locals of the callee as input.
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The CFM (current frame marker) contains register base addresses (general, float,
and predicate), the sol, and sof. During a call, the CPU does two extra things. First,
the CFM is copied into PFM (previous frame marker). Second, the CPU modifies
CFM so its sol is always 0 and its sof is equal to the size of caller's output. Once
after receiving control, the callee issues an alloc instruction so the CFM reflects its
new register frame status.

Figure 9.4c, shows the register frame status of routine A and B. In the left col­
umn, routine A issues alloc 6, 12, 6. As a result of its execution, the CFM contains
a sol of 18 (6 + 12) and an sof of 24 (6 + 12 + 6). The lower 32 general registers con­
stitute the global area. Because routine A is the main routine, its first register in the
frame is a physical R32. The middle column shows the frame status when routine A
calls routine B. After executing the call, the CFM contains the new sol zero and the
new sof six which is the difference between the sof and sol of routine A. The right
column shows the frame status when routine B issues alloc 6, 12,6. As a result, the
CFM contains an sol of 18 and an sof of 24. However, routine B also sees the first
register in its register frame as R32, a virtual register address. At run time, the vir­
tual R32 is mapped into the physical R50 because the base 18 (so] of routine A) is
added to the virtual register address. In other words, the sum of 18 and 32 is 50,
which is the physical register address. After routine B issues a return, the original
CFM is restored from the PFM. Interestingly, routine B may call another routine or
even itself.

IA-64 is a powerful engine for compute bound jobs for three reasons. First, it has
extensive parallel operations. Second, it has fewer branches. Third, it has no regis­
ter saving and restoring during subroutine linking. Nevertheless, if applications are
I/O bound such as Web searches, games, and word processing, the IA-64 may not
greatly impact the speed. There are other debatable issues. First, branch conditions
always exist in a computer, e.g., looping, call, return, and interrupt. If we somehow
design a CPU in such a way that the same time is spent to execute a branch; condi­
tional or unconditional, we simply flush the instruction pipe. Second, during context
switching the three extensive register sets cause too much overhead. In fact, some
applications do not need a large register set. In addition, if the Ll cache size is
reduced, it can match the speed of registers because both are on-chip. Third, a large
code size slows down loading and transmission. Hence, we explore a new processor
design from a different angle.

9.4 REDUCED SOFTWARE SOLUTION COMPUTER

The acronym RssC (pronounced arsk) stands for reduced software solution com­
puter, which has an enhanced architecture derived from mainframes. 1•5,78 The
machine supports four explicit segments without paging. The size of each segment
can be up to 1 GB and the processor has multiple execution units. It is designed for
real-time applications that include DSP (digital signal processor) applications.36,81
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The machine supports floating point arithmetic via a microcode sequence. For sci­
entific applications, a vector math unit can be added. In addition, many clusters can
be interconnected, and each cluster has many CPUs sharing one memory. Such a
system qualifies as a supercomputer system. The application program running on
one CPU can place messages in shared memory for the other CPUs in the same clus­
ter to interpret and execute.

The RssC machine supports 32 GRs (general registers) and 16 of them can be
used as index registers. Some registers are designated for special functions, e.g.,
some are reserved for branch or floating point operations. Because each functional
unit has a different speed, an instruction can be dispatched out of order. In other
words, the CPU is a decoupled pipe. The machine supports an instruction queue in
addition to an instruction cache so the instruction retrieval time can be reduced.

The instruction length can be one, two, or four bytes, so the program counter is
truly a 32-bit counter. After decoding, the program counter is increased by the
instruction length in bytes. An instruction usually has a six-bit primary opcode fol­
lowed by two addresses. However, an instruction may have only one operand or no
operand. The RR type instruction has two register addresses. The RX type has one
register address and one memory address plus indexing. The register is the first
source as well as the destination in a two-address machine. The 32 GRs are used to
support scalar operations; but for load or store operation, one instruction can handle
a vector of eight registers.

9.4.1 Compact Code

In Table 9.3, compares the opcode length, instruction length, number of
addresses, number of registers, and their lengths for the popular computers.

Table 9.3 Comparisons of CISC, RISC, and Rase Machines

Name Opcode Instruction
Bits Bytes Addresses Registers/Bits

IBM370 8 2,4,6 2 16/32

RISC 6 4 3 32/32 or 64

Pentium 8 1-13 2 8/32

IA-64 14 41 bits 3 128/64

Bytecode 8 1-5 0 0

RssC 6 1,2,4 2 32/32

In general, the code size of a RISC machine is bigger than that of a clse machine.82

The Pentium (IA-32) instruction length ranges from 1 to 13 bytes in byte increments.
Similarly, the bytecode ranges from 1 byte to 5 bytes in byte increments. In either
case, the shortest instruction has only one-byte opcode. The IBM mainframe also
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has a variable instruction length of 2, 4, 6 bytes, so its IAR is not a counter. Most of
the RISe machines use one uniform instruction length, e.g., 32 bits. Because there
are ways to expedite instruction execution, the RssC machine supports variable
length instructions, namely 1, 2, or 4 bytes, for the sake of reducing the code size.
The machine also supports vector instructions to a limited degree. The processor
eliminates paging hardware and software altogether, so it is a good candidate for
SOC (system on chip).

9.4.2 Register Set

The 32 GRs are denoted as RO, R 1, ... , and R31 in Figure 9.5a. Each register has
32 bits, and the generic data types are byte, 16-bit word, 32-bit double word, and 64­
bit quad word. Among the GRs, the first 16 can be used as index registers.

The PC has 32 bits as shown in Figure 9.Sb. The SR (status register) also has 32
bits, as shown in Figure 9.5c and its lower eight bits constitute the SRB (status reg­
ister byte) that can be programmed by an application programmer. The one-byte
field includes carry flag, overflow flag, direction flag, branch flag, data cache
enabled, data cache write-through, overflow enable, and operand size (16 or 32 bits).
The upper 24 bits of the SR can only be modified by a privilege instruction. The field
mainly contains bits for system control, such as supervisor state, hardware wait state,
interrupt enables, and interrupt code. The PC contains a 32-bit byte address so each
task can take up to 4GB virtual addressing space. Each task may have four explicit
segments, namely SC (static code), DC (dynamic code), EC (extra code), and GC
(global code) as shown in Figure 9.5d. For each segment, there is an RA (relocation
address) register containing the segment descriptor. Each RA has the first half con­
taining a 32-bit segment base address in paragraphs of 16 bytes and the second half
containing one bit for read-only access and a 3D-bit limit in bytes. Therefore, each
segment is limited to a size of one gigabyte. Because the segment base address has
four trailing zeroes implied, the physical address space is 64 GB, meaning a 36-bit
PAS. In assembly code, a segment declaration is shown below:

scode

dcode

segment static, read-only
{Assembly statements.}

ends
segment dynamic

{Assembly statements.}
ends

The s~mple program has two code segments: static and dynamic. The symbol
defined in column 1 represents the base address of the segment. If a segment is read­
only, any attempt to write the segment will trigger interrupt. The segment declara­
tion is a pseudo op with attributes specified in the operand field. The last statement
is ends (end segment), also a pseudo Ope Between two pseudo ops there may be a
group of assembly statements.
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Figure 9.5 RssC register set: (a) 32 GPRs, (b) PC, (c) SR, and (d) four RA registers,
SC, DC, EC, and GC.
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9.4.3 Instruction Set Architecture
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Because the instruction can be 8, 16, or 32 bits, the code size is reduced by one­
third. An eight-bit instruction contains opcode only, as shown in Figure 9.6a. There
are two types of 16-bit instruction. First, an instruction may have an II-bit op and
one operand, as shown in Figure 9.6b. Such an instruction may perform a unary
operation on a register. Second, the instruction has a six-bit op followed by a five­
bit Rl and R2 for binary operations, as shown in Figure 9.6c. The R 1 is the first
source operand as well as the destination, and the R2 is the second source operand.

8

( a )

( b)

Op

Op

6

11

5

5

Rl

5

(c )
Op J_R_1--1-_R2_

(d )

6

Op

2

5

Rl

5

X2

3

02

16

J
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L..----

RA _ 1 X (Index)

6 5 5 5 5 6

( f)
_O_p_~_R1_~X_1----,-_X_2--,-_X_3-1_EO_P__l

Figure 9.6 Asse instructions: (a) B-bit op, (b) 11-bit op and 5-bit A1, (c) 6-bit op and
5-bit A1 and R2, (d) 6-bit op, 5-bit R1, 5-bit X2, and 16-bit D2, (e) the 5­
bit X2 field, and (f) 6-bit op followed by R1, X1, X2, X3, and eop.

As shown in Figure 9.6d, a 32-bit instruction contains two addresses. The R1
field specifies a register, and the five-bit X2 and the 16-bit D2 represent a memory
address. For example, the instruction may load an operand from memory into a reg­
ister or store an operand from a register to memory. A scalar instruction operates on
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a single register, while a limited vector instruction operates on a vector of eight reg­
isters. Each X2 field represents a 2-bit RA and a 4-bit index as shown in 9.6e. This
is because the second bit in X2 is shared by both the RA and the index. That is, the
trailing bit of the RA is the leading bit of the index register field, so the index regis­
ter address ranges from zero to 15. Thus, a total of 16 index registers can be speci­
fied. The D2 field contains an offset that is added to the index register to form the
effective address in a segment. The proposed vector instruction format is shown in
Figure 9.6g where eop means extended op and Rl specifies a register containing the
vector length. Each of the Xl, X2, and X3 fields represents a memory address, and
the RA field selects one of fOUf segment base registers as shown below:

00 SC (static code)
01 DC (dynamic code)
10 EC (extra code)
11 GC (global code)

The index registers are based on the following rules:

I. Registers 1 - 7 are index registers if SC or EC are specified.
2. Registers 9 - 15 are index registers if DC or GC are specified.
3. For string or vector operations, the index register may contain an operand or

a pointer to an operand.
4. RO or R8 implies zero which also means that no indexing is specified.
5. The SP (stack pointer) means R31, which is specially designed for stack

operations in the dynamic code segment.

9.4.4 Addressing Space

The VAS is 4 GB per task, and the physical addressing space is 64 GB. That is
to say, each task may take up to four segments and each segment may be up to 1 GB.
In the case that the prograITI is larger than 4 GB, the user task can issue a system call
to dynamically load the segment. In other words, the composite code segment with
data can be fetched from disk into memory and overlaid. The PAS is determined by
the block address in the RA. Because the physical block address has 32 bits and each
block has 16 bytes, the PAS is 64 GB (236). That is, a segment must reside in 16 B
block boundary in memory. If the accessed unit of memory is an 8 B aligned block,
the physical block address on the bus has 33 bits, which is also the number of address
pins on the chip. If the memory addresses are two-way interleaved, the bandwidth
is effectively doubled.

9.5 OTHER DISTINCTIONS

The CPU is designed as a decoupled pipe that consists of an instruction queue,
instruction cache, data cache, fetch/decode unit, microcode pool, dispatch/execute
unit, and a retire unit.
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The bus interface unit issues memory cycles to access the Icache (instruction
cache) and Dcache (data cache). The IfetchlIdecode unit is decomposed into three
units: the Ifetch (instruction fetch) unit and two Idecode (instruction decode) units.
The Ifetch unit retrieves a 64-bit instruction block from the Icache into the instruction
queue. Conceptually, the instruction block flows into the 16 B queue from right to left.
After an instruction is justified to the left, the queue passes the instruction to an Idecode
unit. At the same time, the queue is shifted to the left by the instruction length.

As the hole in the instruction queue becomes bigger or equal to 64 bits, the next
instruction block is loaded to fill up the hole. The 512 B Icache uses the direct-map­
ping method to search for its entries. After a branch condition is detected, search the
Icache to see if it has the target instruction. If a miss is encountered, the Icache issues
a memory read cycle to fetch two consecutive 64-bit instruction blocks from the cur­
rent one. The instruction retrieval time is shortened if the Icache can supply the
instruction stream on a continuous basis. The two Idecode units generate flOps
(micro-operations) in parallel and store them in the microcode pool that is content
addressable. A 16 KB data cache on-chip uses two-way set associative search, and
each set contains two LRU (least recently used) entries.

The dispatch/execute unit has two units, dispatch and execution. The ED (exe­
cution unit) consists of six functional units, namely two fixed point units, load/store,
branch, multiply, and float. The dispatch unit dispatches J-lOps from the microcode
pool to the execution unit provided that both the data and the functional unit are
ready. The pipe can execute an operation out of order so another floP is returned to
the microcode pool after execution. Based on its programming order, the RU (retire
unit) retires the executed instructions and honors the interrupt.

9.5.2 Compact Load Module

The load module is compact because it contains pure code if the segment attrib­
utes are placed in the file descriptor. The code is memory position independent and
fully protected in that a user task can not crash another user task or the as. Without
the page frame table, page tables, and external page tables, the BIOS and nucleus can
be embedded in ROM less than 1 MB. Consequently, the nucleus of the as imme­
diately executes after the power is turned on. In addition, because of its smaller size,
a load module can be down loaded from a server computer in the network in less
time. If the so-called sliding window protocol is implemented to transfer files in the
network, bits remain intact after down loading. Moreover, the network maintains the
latest version of a program on the server computer, which alleviates the maintenance,
piracy, and virus problems.
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9.5.3 Special Features
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As the RssC supports four explicit segments, it takes one add cycle to compute
the linear program address. However, this penalty is alleviated by two design fea­
tures. First, the bus interface unit keeps two physical address counters: one for
instruction and one for data. The instruction fetch overhead is reduced because the
next instruction block address is increased in the address counter. That is to say, after
an 8 B instruction block is fetched into the Icache, the instruction address counter is
increased by eight, so it points to the next instruction block without going through an
add cycle again. The data fetch overhead is reduced by supporting vector load and
store instructions. A vector is limited to eight registers, and the type can be byte,
word, double word, or quad word. Each time an operand is fetched, the operand
address counter is increased by 2N where N varies from 0 to 3 depending on the
operand size. Second, when the OS operates in supervisor mode, no base register is
used, so the extra add cycle is bypassed meaning V=R.

The machine supports no speculative branch prediction for the following rea­
sons. The leading two bits of the opcode tell the instruction length, so the instruc­
tion boundary is detennined quickly. In addition, the branch execution unit is hard­
wired, and a conditional branch, condition can be detected just like an unconditional
branch as explained below.

9.5.3.1 Branch Instruction

The machine supports register indirect branches: unconditional and conditional.
The machine supports relational compares, and the execution of such an instruction
sets a system branch flag in the SR to either true or false. A conditional branch reg­
ister on true (BRT) or false (BRF) tests the flag so as to pass the branch address from
a register to the bus interface unit. A programming loop is constructed below:

LD Rl, =A'LOOIO' ;Ioad doubleword literal address
;constant LOOIO in Rl as index

LOOIO:

EQ R24, R25 ;if R24 .EQ. R25, flag <- 1
BRT [Rl] ;branch register indirect on true

If the branch unit decoder is hardwired at the instruction queue level, a condi­
tional branch executes just like an unconditional branch because the opcode and the
system branch flag are decoded at the same time. That is, if the test condition is true,
the instruction branches and the instruction queue is flushed. Otherwise, no branch
occurs and the instruction executes like a nope In either case, current operations in
the pipe remain valid.
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A set of privileged instructions are designed to perform system control functions,
such as load/store RA registers, load SR, return from interrupt, and I/O instructions,
in order to make the machine fully protected. Any I/O operation request must be
issued via a system call. Therefore, the as interprets and initiates the I/O operation.
That is to say, the I/O supervisor leaves messages in low memory for an I/O proces­
sor to retrieve, interpret, and execute.

9.5.3.3 Vector Instructions

The machine supports a set of limited vector instructions to load or store a fixed
number (4 or 8) of registers wrapped around. The generic operand can be byte, word,
double word, or quad word. For example, the L8D instruction can load an eight-dou­
ble word memory block into eight registers, and the ST8D instruction can store eight
registers into an eight double word block. The machine also supports string pro­
cessing instructions such as move block and search block on equal or not equal. In
addition, if a floating point unit is implemented on-chip, a single float instruction can
operate on vectors of large sizes.

Because the load modules are short, the required memory size is reduced. In addi­
tion, the loading time is reduced and so is the transmission time. For PC applications,
the memory and 110 are the bottlenecks, not the cpu. Thus, a predicate-based CPU
would increase the code size but would not increase its throughput by much.

Ethe r net------------------- --------------------------------------------- ---- ---- -------- ------- --­---- -- ----------------- --------------------------------------- -- --- -1- --- .. _--

Controller

POO [ji7 }-
PIO PI?

I P27--=-P20

P30 ~ I P3? r-
O~-

64GB 64GB
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Figure 9.7 Eight clusters of RssC computers.
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Note that a large register set also hurts speed if context switching is frequently per­
formed. In contrast, the RssC machine runs the as more efficiently in a multitask­
ing environment. For more computing power, a system may contain a vector unit for
floating point operations. Of course, a machine may have many clusters and each
cluster may have many RssCs.

For example, a SMP (symmetric multiple processor) design of 4 x 8 nodes is
shown in Figure 9.7. The I/O structures are omitted in the block diagram.
Horizontally, there are eight clusters connected by an Ethernet bus. In each cluster,
there are four vertical RssC machines sharing one memory of 64 GB and one con­
troller driving the Ethernet bus. Each processor has a node address XV, where X is
the row number and Y is the column number. For example, P37 is the processor in
the fourth row and eighth column. The number of clusters and the number of nodes
in a cluster may be increased for a particular application.

It is our hope that future desktop pes should work like vacuum cleaners or cars.
Tum them on; use them; and tum them off. The PC should consume less power and
cost less, yet run an efficient as in small memory. There should be no waiting time,
no virus, and no system crash.

9.6 VIRTUAL MACHINES

The term virtual machine (VM) was coined by IBM. Suppose there are three
physical machines in a room. Each machine shares the same architecture but runs
under its own operating system, e.g., as 1, OS2, and OS3. The memory layouts of
three physical machines are shown in Figure 9.8a. The VM tends to replace all three
old machines with one new machine and make the user believe that his old machine
is still in the machine room. The memory layout of a VM is shown in Figure 9.8b.
That is to say, all the old programs running on the new machine require no modifi­
cations whatsoever. The new machine has a VM monitor which is the native as run­
ning in supervisor mode. Any old as and its user programs are running under the
VM in user mode. Because the architecture of the old machines and the new
machine is the same, it is possible for a new machine to execute more than 95% of
the instructions in an old program and interpret less than 5%.

9.6.1 Virtual Program Status Word

Any old as, while running under a VM, has its own PSW (program status word)
in memory. Therefore, the PSW in an old machine is virtual because it does not
occupy hardware. In the virtual PSW, the problem state bit (b 14) is zero denoting
supervisor mode, but again it is virtual. The VM has a real PSW in the hardware reg­
ister that has b14 equal to zero, so the VM runs in real supervisor mode. The idea is
clear. Whenever an interrupt occurs, the VM monitor interprets the event. If a sys­
tem call is issued by the user program, interrupt occurs so control is passed to the VM
monitor. As a result, after the VM interprets the SVC instruction, it passes control to
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Figure 9.8 Memory layouts: (a) the memories of three real machines and (b) the
memory of a virtual machine.
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the old as and execution continues. Because a privileged instruction may be issued
by the user task or the old as, its execution results in an interrupt because the PSW
in the hardware register specifies the user mode. After context switching, the VM
monitor examines the virtual PSW in memory. There are two possible scenarios. If
the virtual PSW indicates supervisor mode, the privileged instruction is legal
because it is issued by the old as. Thus, the Vf\1 carries out the privileged operation
for the old as. If the virtual PSW indicates the user mode, the privileged instruction
is a privileged exception, Le., illegal, because it is issued by the user task.
Accordingly, the VM monitor aborts the user task. How are program interrupts han­
dled? Since such an interrupt is caused by a programming error, the user task should
be terminated.

All three old OSs can run concurrently in the memory of the new machine and
they are all page swappable. This implies a lot of disk swapping if the old OSs are
moved in and out of memory all the time. Therefore, for the sake of performance,
all the user programs under the same OS should run as a batch under the VM because
the old OS can stay in memory without being swapped.

9.6.2 Java Virtual Machine

A computer simulator or interpreter is a virtual machine in that it generates com­
putation results. A user may not even know that the target machine does not exist. That
is to say, a VM can be 100% software based. More often than not, the target machine
is chosen as a stack machine whose architecture is described in the last chapter.
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The JAVA virtual machine is divided into two parts, and each part is ajob step.
The first part is the JAVAC (JAVA compiler), which translates the JAVA language
statements into bytecode.9t33 The second part is the JAVA (JAVA interpreter), which
interprets bytecode in order to generate computation results.

The bytecode is so named because its length varies from one to five bytes. As a
matter of fact, the bytecode is stack machine code of variable length. The JAVA VM
or engine has gained momentum for two reasons. First, it can run on any host that is
a superscalar machine. Second, it is extremely flexible. Because of the fast raw
speed of a CPU, the flexibility of an interpreter outweighs its slower speed in inter­
pretation. That is to say, the application platform is as independent for the pro­
grammer because the interpreter handles all communication services provided by
NOS (network operating system). In other words, a programmer can write JAVA
programs without knowing much about system calls or network protocols.

9.7 SUMMARY POINTS

1. A CISC machine has instructions of different lengths and a smaller register
set.

2. An IBM mainframe is a two-address machine with variable length instructions.
3. A RISC machine has fixed length instructions and a large set of general reg­

isters.
4. The IA-64 processor uses a 128-bit instruction bundle that contains three 41­

bit instructions and one 8-bit template. A typical RR instruction has opcode,
predicate, and three register addresses.

5. The IA-64 processor has a 64-bit data bus and it is backward-compatible
with IA-32.

6. The RssC machine supports instructions of 1, 2, or 4 bytes in order to reduce
code size. Each task may take up to four explicit segments, and each seg­
ment can go up to 1 GB.

7. A VM can replace many physical machines in a room without software
changes.

PROBLEMS

1. Use one sentence to describe why the IBM mainframe is popular in corpo­
rate computing.

2. Briefly describe the execution units of a Power PC.
3. What is the instruction length of a MIPS, Power PC, Alpha, and IA-64?
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4. Briefly describe the 128-bit instruction bundle of the IA-64.

5. Use one sentence to explain why each register address in an instruction
above R32 is virtual, as demonstrated by the routine being called.

6. Briefly describe why the RssC machine supports a VAS of 4 GB per task and
a PAS of 64 GB?

7. Why can the RssC machine alleviate the conditional branch in the pipe?

8. What is a virtual machine?

9. On an IBM VM, why is the percentage of execution much larger than the
percentage of interpretation?

10. Explain why the user OS runs in user mode instead of supervisor mode on
an IBMVM?
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CHAPTER 10

Stack Machine Principles
It is a pleasure to teach the bright minds on earth.

Mencious (390 - 305 B.C.)

10.1 STACK MACHINE BASICS

A stack machine means that no address is coded in an arithmetic or logical
instruction, unary or binary. That is to say, any operand, source or destination, is
implied on the stack. Usually, a software based virtual machine is divided into two
parts: translator and interpreter. First, the translator software routine translates the
source statements into intermediate code. Next, the interpreter software routine
interprets the intermediate code to obtain computation results. The translator can be
written in a high-level language, but the interpreter is often written in assembly code.

The stack machine code is an ideal intermediate language for two reasons. First,
the compiling or translation job step is fast because the generated code has little room
for optimization. Second, t,he interpretation process is sequential in nature. That is
to say, fetch an instruction, interpret the opcode, and execute. The next instruction
is not fetched until the execution of the current instruction is completed. Therefore,
a target machine with two or three addresses in its instruction would not improve the
speed. As far as hardware design is concerned, a stack machine can not match the
performance of a register machine due to the sequential nature of stack operations.
Efforts were made, to no avail, to execute stack instructions in parallel.

A stack machine uses a working stack in lieu of working registers. This working
or operand stack is designed for both unary and binary operations. Typically, in an
arithmetic or logical instruction, the opcode field has an op and an eop (extended
op). If the eop specifies a unary operation, the CPU pops the source operand off the
stack, performs an operation on the operand, and pushes the result back on the stack.
If the eop specifies a binary operation, the CPU pops the stack once to fetch sopd 2,
pops it again to fetch sopd 1, performs the operation, and pushes the result back on

367
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the stack. However, some of the stack machine instructions do have addresses. As
an example, a push instruction has a memory address to tell the CPU where the
operand is stored. Our main goal is to write a simulator for a stack machine. As pro­
gramming is concerned, on a three-address, two-address, or one-address machine,
we think in infix notation, but on a zero-address machine we think in postfix Polish
notation as introduced below.

10.2 POSTFIX POLISH NOTATION

In programming language C, the infix notation is used to represent an assign
statement, as shown below:

<var> =<arith exp>;

The LHS is a single variable, the RHS is an arithmetic expression, and the equal
sign (=) is an assign operator. An arithmetic expression contains both unary and
binary operators. For a unary operation, the operator is placed before the operand.
For a binary operation, the operator resides between two operandi as shown below:

X=A+B * C;

In the statement, X, A, B, and C are symbolic names for addresses and the semicolon
is a delimiter to signal the end of a statement. Based on operator precedence, the
underscore line describes the sequence of operations: multiply first, add next, and
assign last.

A postfix notation has different rules for positioning the operators. For unary
operation, we place the operator after the operand. For binary operation, we place
the first operand first, the second operand next, and the operator last. Note that in an
infix notation, parentheses are needed to resolve the operator precedence problem.
In a postfix notation, no parentheses are needed because the operator precedence is
built in stack operations. Let us translate the above infix notation into a postfix nota­
tion, as shown below:

#XAB C * +=;

Note that the operand X is preceded by a pound (#) sign, but not the operandi A,
B, and C. The # sign has special meaning in that the address of X is of interest. The
symbol #X means to push the address of X, and the symbol X means to push the
content or value of X. There is no confusion in parsing because of the equal sign (=)
right after the symbol X. The parser knows to take special action to output #X
instead of X. The semicolon is left in the notation to signal the end of a statement.
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This ingenious notation was invented by the Polish mathematician Lukaciewiz; each
symbol can be mapped into a stack machine instruction, as shown below:

PH#
PH
PH
PH
MUL
ADD
STW

X
A
B
C

;push address of X
;push content of A
;push content of B
;push content of C
;multiply
;add
;store word

Starting from the left, these instructions show the opcode, the address field, and
the comment. Except for PH# and PH, there is no address coded in the instructions.
The PH# instruction means to push memory immediate, so the address field in this
instruction is pushed on the stack. In contrast, the PH instruction means to push
memory direct, so the content at this address is pushed on the stack. Each of the
instructions MUL (Inultiply), ADD (add), and STW (store word) has opcode only.
The execution sequence is described as follows:

I.Push the address of X.
2.Push the content of A.
3.Push the content of B.
4.Push the content of C.

5.Pop the second source operand, pop the first source operand, multiply, and push
result.

6. Pop the second source operand, pop the first source operand, add, and push
result.

7. Pop the source operand, pop the destination address, and store the source
operand at this address.

The stack frame changes dynamically, as shown in Figure 10.1. A symbol with
# means an address and a symbol alone means content or value. The stack frame
after four pushes is shown in Figure 10.1a and SP points to operand C. After MUL,
the stack looks like Figure 10.1 band SP points to the product of Band C. After
ADD, the stack looks like Figure 10.1c. After executing the STW instruction, the
stack goes back to its original state before the assign statement, as shown in Figure
10.1d. Suppose that we wish to perform A + B before multiply in the above state­
ment. The infix notation below shows that the add operation in enclosed in a pair of
parentheses that has the highest precedence.

x = (A + B) * C;
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Figure 10.1 Stack frames: (a) after four pushes, (b) after mul, (c) after add, and
(d) after store.

After parsing, we obtain a different postfix notation for this assignment statement as
follows:

#XA B +C * =;

Two important notions must be observed. First, the relative positions of all operandi
should be the same. Second, there is no parentheses in the notation, and the opera­
tor positions may be changed as determined by precedence. In this case, the add
operation is performed before multiply. Interestingly, we can parse a statement from
infix notation into postfix notation by inspection or by programming. Either way, we
need to understand operator precedence as introduced in the following section.

10.3 OPERATOR PRECEDENCE

In compiler design, we have had two generations. A parser is a software routine
that translates a language statement into some kind of intermediate form. The first
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generation compiler uses operator precedence parsing that is syntax controlled. The
second generation compiler uses syntax directed parsing based on grammar. That is
to say, the syntax of a language statement is defined by a set of grammatical rules.
The syntax directed parser follows the flow of grammar and is more viable because
of its correctness. After generating the intermediate code, a conlpiler takes another
step to translate it into target machine code that is stored in an object module. The
interpreter, on the other hand, stores the intermediate code in an object module on
disk. Later, in another job step, the interpreter interprets the intermediate code to
generate computation results.

Two famous syntax directed parsing techniques are top-down and bottom-up.83
As far as implementation is concerned, we need only to choose one. Top-down and
bottom-up, which is better and more intuitive? The answer may be subjective.
However, my former student, an IBM associate, took a long time to convince me that
top-down is better for two reasons. First, there is one-to-one mapping between the
grammar and the language statement. Second, since the programming language C
provides interactive output, it is easy to examine the printout after each parsing step.
In consequence, all bugs can be detected easily, and the code is easy to maintain.

The interpreter approach has gained popularity for two reasons. First, the inter­
mediate code and the operating environment are host machine independent. Second,
the intermediate code can also be saved on disk in an object module or a data file.
Later, the interpreter can interpret the code without going through the translation
phase again. Our focus is to write an interpreter for the stack machine. For the sake
of simplicity, we discuss operator precedence parsing to generate stack machine
code. The operator precedence concept is described in Table 10.1. The priority of
each operator is listed in descending order. The pair of parentheses on top has the
highest precedence and the assign operator at bottom has the lowest.

Table 10.1 Operator Precedence

Symbol

()
.NEG.
.EXR

*, /
+, -

"
{.EO., .NE., .GT.,
.GE., .LT., .LE.}
.NOT.
.AND.
.OR.
.EOR.

=

Description

Parentheses for grouping
Negate
Exponential
Multiply, divide
Add, subtract
Concatenate
All relational ops have equal precedence.

NOT
AND
OR
Exclusive OR
Assign
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10.3.1 Parsing By Inspection
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Using operator precedence, we can generate the postfix notation by inspection.
That is, by scanning an assignment statement from left to right, we write down the
operandi, one by one. Next, based on the operator precedence, we can insert opera­
tors one by one after the operand pair. Thus, the following parsing algorithm is
based on operator precedence by inspection:

REPEAT
Scan all the operators from left to right;

IF the operator has a higher precedence than the subsequent
operator;
THEN
Move the operator after the operand pair to form a triple
treated as a single result operand; ENDIF;

UNTIL all the operators are moved to the proper places;

Example 1: The assignment statement is given below.

X4 = (XO - Xl) / (X2 - X3);

The underscore lines indicate the operation sequence based on operator precedence.
Obviously, the two subtract operations between XO and Xl and between X2 and X3
should be performed first in the form of triples. A triple means an operand pair fol­
lowed by an operator. Next, a divide operator is placed after the two results. Finally,
the assign operator is placed at the end in a triple. Therefore, the postfix notation is
as follows:

#X4 XO Xl - X2 X3 - / =;

It should be stressed that no parentheses are needed in a postfix notation. However,
in order to grasp the concept, we may use parentheses to enclose each triple, as
shown below:

(#X4 «XQ Xl -) (X2 X3 -) /) =);
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Example 2: The assignment statement is given below.

15 = 11 + 12 - 13 + 14 / 2;

The postfix notation is derived as follows:

#15 II 12 + 13 - 14 2 / + =;

373

The + operator between 11 and 12 and the / operator between 14 and 2 should be per­
formed first. Therefore, we move + after 12 and / after 2. Note that the numeric 2
is treated like a literal, a memory address where the integer two is stored.
Subsequently, the - operator should be moved after 13, and the + operator after 13 is
moved after the triple (14 2 I). Finally the assign operator = is moved to the end.

Example 3: The quadratic equation below has A, B, and C as real coef­
ficients.

A*X2 + B*X + C =0;

In FORTRAN, we may use one assignment statement to compute one of the two
roots, as shown below:

Xl = (-B + (B * B - 4.0 * A * C) ** .5) / (2.0 * A);

We use two meta-symbols in the postfix notation below. First, the symbol .neg.
means negate. Next, the symbol .exp. means exponential, and the exponent of .5
means the square root.

#Xl B .neg. B B * 4.0 A * C * -.5 .exp. + 2.0 A * / =;
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The spaces inserted between symbols are for clarification.  The float constants are
in literal form, and each represents a memory address where the  float constant is
stored.  Next, we will write a software parser based on operator precedence.

10.3.2  Parsing by Software Algorithm

Operator precedence parsing by inspection can be done by humans.  Parsing by
software, though intricate, is also possible based on the same principles.  Thus, by
scanning the statement from left to right, we take appropriate actions.  Intuitively, if
the symbol is an operand, we output.  If the symbol is an operator, we can not output
if its precedence is lower than the next operator to follow.  Thus, we use an operator
stack to contain all operators whose actions are yet to be taken.

10.3.2.1  Operator Stack

The operator stack is a data structure in memory for the parser to generate the
postfix notation.  The operator stack is different from the operand stack.  The latter
is a working stack for execution.  In practice, the operand stack on a stack machine
can be simulated in memory or designed as hardware.  The operand stack is used to
store temporary results during the execution of a postfix notation, while the operator
stack is a software tool for parsing.  That is, the infix notation is examined from left
to right, which is known as scanning.  Actions taken are based on the current sym-
bol.  If the current symbol is an operand, we always output.  If the symbol is an oper-
ator, we either output or push it on the operator stack depending on the status of the
operator stack, i.e., the precedence of its TOS.  Suppose we are parsing an assign
statement with arithmetic operators.  The operator stack precedence is specified in
Table 10.2.

Table 10.2  Precedence of Operator Stack

TOS     Priority      Description

(       6,0            Left paren for grouping
.neg. 5             Negate, a unary op
.exp. 4             Exponential
*, /    3             Multiply, Divide
+, -    2             Add, Subtract
=       1             Assign operator
<nul>   0             Stack empty

The left parenthesis has the highest precedence.  After being pushed on stack, its
priority drops to 0, so any actions must be deferred until more operators in the paren-
theses are examined.  The meta-symbol <nul> has the lowest precedence indicating
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an empty stack, so during parsing the first operator symbol is always pushed.  For
other operators, actions are taken as determined by the current operator and the sta-
tus of stack.  Note that the right parentheses is not in the stack because it is never
pushed.  In fact, a popping action must follow until a left parentheses is popped out
as a match.

10.3.2.2  Operator Precedence Parsing Algorithm

The following algorithm has two assumptions.  First, the assign statement is syn-
tactically correct.  Second, its postfix notation is generated as output after parsing.

1. If the current symbol is an operand, we have two cases.  If the operand sym-
bol is followed by an equal sign (=), we output the # sign and the symbol so
its address is of interest; otherwise we output the symbol alone.

2. If the current symbol is a left parentheses, push it onto the stack.
3. If the current symbol is an operator, not a right parentheses and it has strictly

higher precedence than the TOS, push it onto the stack; otherwise do the fol-
lowing:  First, pop the operator stack and output until the TOS has strictly
lower precedence.  Then, push the current operator onto stack.  Interestingly,
if the operator has equal precedence, we should pop the stack and output
because the left to right rule applies. 

4. If the current symbol is a right parentheses operator, pop the operator stack
one by one, and output until a left parentheses is popped out.  Then, discard
the pair so that the right parentheses is matched with a left parentheses.

5. If the current symbol is a semicolon, pop the operator stack and output one
by one until the stack is empty.  Then, output the semicolon as the final
delimiter. 

Therefore, the algorithm is as follows.

Program;
REPEAT;
Scan the infix notation statement from left to right;

CASE current symbol of,
Operand followed by an equal sign:

Output a pound (#) sign first and the operand;
Operand with no equal sign:

Output the operand;
Operator:

CASE operator of,
Left paren:  Push on the operator stack;
Right paren: Pop the operator stack and output until the 

matching of a left paren is popped out;
Discard the pair of parentheses;
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Semicolon: REPEAT
Pop the operator stack and output;
UNTIL the stack is empty;
Output the semicolon;
Exit;

ELSE:
IF its precedence is higher than TOS,
THEN
Push the operator on the operator stack;
ELSE
REPEAT
Pop the operator stack and 9utput
UNTIL TOS has strictly a lower precedence;

Push the operator on the operator stack; ENDIF;
ENDCASE;

ENDCASE;
UNTIL forever;
END.

The parsing steps of an assign statement and its operator stack are shown in Table
10.3.

Table 10.3 Assignment Statement Parsing

Current Symbol Action Operator Stack

X Output #X

= Push =
( Push =(
( Push = ( (

11 Output 11 = ( (
+ Push = (( +
12 Output 12 = (( +
) Pop + and output = ( (

Pop ( and discard =(
/ Push = (/
( Push = (/ (

13 Output 13 =(/ (
Push =(/ (-

14 Output 14 =(/ (-
) Pop - and output = (/ (

Pop ( and discard = (/
Pop / and output =(
Pop ( and discard =
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Current Symbol
/
2

Action
Push
Output 2
Pop / and output
Pop =and output
Output semicolon ;

Operator Stack
=/
=/
=
empty

Note: Input: X =((11 + 12) / ( 13 - 14)) /2;
Output: #X 11 12 + 13 14 - / 2/ =;

10.4 SIMPLE STACK MACHINE

For pedagogical reasons, this section defines a simple stack Inachine code narned
SSM315. Each word is 16 bits long denoted by <15:0>, and bit zero is the LSB. This
is a little endian computer, so the low order byte is stored in memory before the high
order byte. Twos complement notation is used to represent negative integers. The
execution unit can handle both arithmetic and logical operations via a stack simu­
lated in memory.

10.4.1 Register Set

As described in Table 10.4, the SSM315 has seven registers of 16 bits each pri­
marily for address control.

Table 10.4 SSM315 Register Set

Register
FL

IR

PC

RA

SF
SP

SR

Description
Field length contains the length of the entire program
in bytes.

Instruction register contains the current instruction in
execution.

Program counter points to the next instruction in memory
with respect to the segment base.

Relocation address contains the physical base address of
the entire program segment.

Stack frame points to the lowest address of the stack frame.
Stack pointer points to the TOS.

Status register contains the status of the current running
environment.

Before executing a program, the as sets the RA register that contains the base
address of the program segment. Note that RA is an implicit base register because it
is not specified in the opcode. Any address in an instruction or other register is a pro-
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gram address, also called virtual address. The program segment includes code, data,
and stack, and the sole reason is to simplify interpreter design. The total length of
the composite segment is specified in the FL register. To fetch an operand instruc­
tion or data in memory, the relative address is added to RA to form its absolute mem­
oryaddress. That is, the program address is relative, and a relative address greater
than the FL triggers an interrupt, Le., address exception. Therefore, a program can
only cause damage within its own partition.

The SF (stack frame) is a relative index pointing to the lowest address of the stack
segment. The SP (stack pointer) is also a relative index pointing to the top of the
stack frame.

10.4.2 Stack Machine Ops

Stack machine opcodes, s-ops, and stack machine instructions are all synony­
mous. All the SSM315 instructions have a uniform length of 16 bits. The push direct
and push immediate instructions are shown in Figure 10.2a. The four-bit opcode is
followed by a 12-bit disp (displacement) relative to the segment base in the RA.
There are many operator call instructions and each one has a four- bit op followed by
a 12-bit eop as shown in Figure 10.2b. In Figure 10.2c, the 12- bit SVC code in an
SVC instruction is defined by the OS.

15 11 a
(a )

( b)

15

Op I Displacement

11

Op I Extended op

a

( c )

15 11

Op I SVC code

a

Figure 10.2 The SSM 315 instruction format: (a) push instructions, (b) operator call,
and (c) supervisor call.
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10.4.2.1 Stack Operations

The symbol S[O] denotes the TOS, S being a mnemonic for stack. The stack is
simulated in memory and it grows from high address to low address as depicted in
Figure 10.3. The entry S[O] represents M[RA + SP + 0], and 0 is an index with
respect to the stack top. Thus, S[2] represents the next word below the TOS with the
integer 2 as an index. At any time during execution, the SP can not be greater than
the FL or less than the SF. The four-bit main opcodes are defined in Table 10.5.
Except for SP+, SP-, PH (Push) and PH# (Push Immediate), no other instructions
contain addresses.

0000 Fting systeml

·1 ~ -rUser program

Static data FL

• 1
~

Stack

·1 ~

RA 1'-----_

sp 1,---------,

SF

Figure 10.3 Memory layout: operating system and user partition.

Table 10.5 SSM315 Instruction Set

Opcode Mnemonic Descriptions
0000
0001

0010

0011

ILL

SP+

SP-

SVC

Illegal opcode

Increase SP

SP <-- SP + Disp;
Decrease SP

SP <-- SP - Disp;
Supervisor call where the 12-bit disp

is an SVC code.

© 2001 by CRC Press LLC



380

0100

1000

1100

PH

PH#

COMPUTER ARCHITECTURE

Operator call and the 12-bit disp

is an eop and each one has a

different mnemonic.

Push word, memory direct

SP <-- SP - 2;

S[O] <-- M[RA + Disp] <15:0>;

Push address, memory immediate

SP <-- SP - 2;
8[0] <-- disp <11 :0>;

8[0] <-- 0 <15:12>;

If an instruction has four leading zeroes, it is an illegal op. The SP+ instruction
increases the SP by a length that is its 12-bit displacement. Similarly, the SP­
instruction decreases the SP by a length that is its 12-bit displacement. For both SP+
and SP-, the second source operand is memory immediate. The push and push
immediate instructions contain a 12-bit displacement relative to the segment base as
specified in the RA.

The SVC instruction is a supervisor call, and the SVC code design is determined
by software. Each SVC code tells the OS what to do. In order to write a test pro­
gram, we merely study two SVC codes, 10 and O. The SVC 10 instruction is issued
to request termination, and SVC 0 is issued to display a string on the screen. If there
are any passing arguments, they are pushed on the stack before the call. Take the out­
put driver call as an example; first we push an address constant pointing to the buffer.
The address constant is symbolically represented by =a 'buffer' denoting the address
of buffer. The string in the buffer has a property such that the first character is not
printed because it is the length or byte count of the string. The first instruction
pushes the argument, and the second is a supervisor call, as shown below:

ph =a 'buffer' ;push 2B address constant
svc 0 ;Output driver call

It must be emphasized that the interpreter does not simulate the interrupt mechanism
at the machine level. Instead, it performs the service and returns control to the user
program. The interpreter pops the passing argument off the stack before returning to
the calling task.

An opcode of four or 0100 in binary, means an operator call. That is, the lower 12­
bit displacement is an eop as shown in Table 10.6. The three-digit hex code is followed
by its mnemonic and description. The BAL (branch and link) instruction replaces a
call instruction, the B (branch) instruction is the same as a return instruction, and the
BF (branch on false) instruction handles the IF - THEN - ELSE construct.

At the end of the table, we show the privileged instructions; each one is denoted
by an asterisk. They are IRT (interrupt return), LRA (load RA), LFL (load FL), InB

© 2001 by CRC Press LLC



STACK MACHINE PRINCIPLES 381

(input byte), OutB (output Byte), InW (input word), and OutW (output word). These
instructions can be executed only if the supervisor bit in PSWR is set. The IRT
instruction restores the register set from low memory. The input byte instruction
places the I/O address (i.e., TOS) on the I/O bus, and the input byte replaces the old
TOS. Before executing any input instruction, the I/O address must first be pushed.
The execution of an output instruction is a little different. Before its execution, we
push not only an I/O address but also an operand. Both the address and the operand
are placed on the I/O bus and, consequently, the stack is popped off four bytes.

Table 10.6 SSM315 Extended Opcode

Eop
000

001

002

003

004

005

006

007

008

009

Mnemonic
ADD

8UB

MUL

DIV

NOT

AND

OR

EOR

EO

NE

Descriptions
Integer add

The operation is as follows:

Temp2 <-- 8[0];

8P <-- 8P + 2;
Temp1 <-- 8[0];

8[0] <-- Temp1 + Temp2;

Statically, we have

8[2] <-- 8[2] + 8[0];

{SP <-- 8P + 2 implied}

Integer subtract

8[2] <-- 8[2] - 8[0];

Signed multiply

8[2] <-- 8[2] * 8[0] <15:0>;
8igned divide

8[2] <-- Quo( 8[2] / 8[0]);

Not

8[0] <-- .NOT. 8[0];

And

8[2] <-- 8[2] .AND. 8[0];

Or

8[2] <-- 8[2] .OR. 8[0];

Exclusive or
8[2] <-- 8[2] .EOR. 8[0];

Equal

IF 8[2] .EO. 8[0],

THEN 8[2] <-- 1;

ELSE 8[2] <-- 0; ENDIF;

Not equal
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OOA LT Less than

OOB LE Less equal

OOc GT Greater than

000 GE Greater equal

ODE BT Branch on true

IF (8[2] .AND. 1) .Ea. 1,
THEN PC <-- 8[0]; ENDIF;
{8P <-- 5P + 4 implied}

OOF BF Branch on false

IF (8[2] .AND. 1) .Ea. 0,

THEN PC <-- S[O]; ENDIF;

010 B Branch {same as return}

PC <-- 5[0];

{5P <-- 5P + 2 implied}

011 BAL Branch and link {same as call}

PC <--> 8 [0]; {interchange}

012 NEG Negate

5[0] <-- -S[O];

013 ABS Absolute

S[O] <-- IS[O]I; {absolute value}
014 LW Load word

S[O] <-- M[RA + S[O]];
015 STW Store word

M[RA + 5[2]] <-- S[O];
016 LC Load character

8[0] <-- M[RA + S[O]] <7:0>;

017 STC Store character

M[RA + 8[2]] <-- 8[0] <7:0>;
018 MOD Modulus

8[2] <-- 5[2] .MOD. S[O];
{ S[2] <-- Rem( 5[2] / 8[0]) }

01A INC Increment the T08 by one.

8[0] <-- 5[0] + 1;
018 DEC Decrement the TOS by one.

8[0] <-- S[O] - 1;
030 MVC Move characters from memory to memory

{The length is specified in 8[0],
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the source address is RA + 8[2], and
the destination address is RA + S[4].
SP <-- SP + 6 implied}

031 CVB Convert from five decimal digits in
ASCII to binary.

M[RA+8[2]]<15:0> <-- Convert

M[RA+S[0]]<39:0>; {ASCII to binary}

{SP <-- SP + 4 implied}
032 CVC Convert from binary to five decimal

digits in ASCII.
M[RA+S[2]]<39:0><--Convert

M[RA+8[O]]<15:0>; {binary to ASCII}

{SP <-- SP + 4 implied}

033 SW Switch the TOS

S[O] <--> 8[2];

04X SHL 8hift logical left the T08 X bits

05X SHR Shift logical right the TOS X bits

06X SAR Shift arithmetic right the TOS X bits

800 *IRT Interrupt return to restore registers

SP,SF,RA,FL,SR,PC <-- 8[0] <95:0>;

{SP <-- SP + 12 implied}

801 *LRA Load relocation address register

RA <-- 8[0];

{SP <-- SP + 2 implied}

802 *LFL Load Field Length register
FL <-- 8[0];

{SP <-- SP + 2 implied}

803 *ln8 Input byte

S[O] <-- IOR[S[O]] <7:0>;

804 *OutB Output byte
IOR[S[2]] <-- S[O] <7:0>;
{SP <-- SP + 4 implied}

805 *lnW Input word

S[O] <-- IOR[S[O]];

806 *OutW Output word

IOR[S[2]] <-- S[O];

{SP <-- SP + 4 implied}

© 2001 by CRC Press LLC



384

10.4.3 Interrupt Mechanisms

COMPUTER ARCHITECTURE

Upon interrupt, an interrupt code is set in the SR. The CPU then performs con­
text switching by saving the entire register set on the stack and loading the new set
from a memory block at address zeroes. The sequence operations are specified as
follows,

SR <15:8> <-- interrupt code;
S[O] <95:0> <-- SP, SF, RA, FL, SR, PC;
SP <-- SP - 12;SP, SF, RA, FL, SR, PC <-- M[OOOO] <95:0>;

10.4.4 Status Register

The SR has 16 bits as defined below:

Bit 1- 0:
2:
3:
4:
5:

6-7:
8 -15:

Interrupt enable: bO fo£· channel 0, b1 for channel 1
Machine check enable
External interrupt enable
Wait
Privileged
Reserved
Interrupt code

A hardware timer is implemented in memory at address 0080 in hex whose content
is decreased by one every 10 ms. When the timer changes from positive to negative,
an external interrupt is triggered if bit three in the SR is set. For debugging purposes,
a programmer may store an ID onto the stack before executing a branch instruction.
If a branch address is outside the limit (Le., greater than the FL), interrupt is trig­
gered, and the ID on the stack indicates the branch instruction that caused the error.

10.5 STACK MACHINE ASSEMBLY LANGUAGE

All the SSM315 assembly statements are case insensitive, and they are divided
into machine ops and pseudo ops. The following sections discuss the pseudo ops,
the load and store ops, the instructions to translate an IF statement, and the instruc­
tions to access arrays.

10.5.1 Pseudo Ops

The pseudo ops are start, end, org, DC, DS, stack, and equ. In the define con­
stant statement, the operand field has the following syntax:
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[<dup>] <data type> [L<length>] '<value>'

385

The first optional integer tells the number of times that the data structure will be
duplicated. There are two kinds of data types: generic and explicit. The generic
types are B (byte), W (word), and D (double word) whose length is implied. The
explicit types are X (hex), 0 (octal), C (character), A (address), I (integer), etc. If no
data type is specified, the default is integer in decimal. The data type may have a
explicit length specifier, that is, the keyword L followed by a decimal integer indi­
cating the length in bytes. Any specific value or bit pattern must be enclosed in sin­
gle quotes. For example, a decimal integer 315 of two bytes can be specified as
iL2'315', W'315', or xL2' 13B'. An address constant has its symbol enclosed with
the understanding that it will be translated into an address by the assembler. Note
that if a define constant has no value specified, it is equivalent to a define storage.
Some coding examples are listed in Table 10.7.

Table 10.7 Data Operand Types

Example
iL2'1021'

xL2'3FD'

w'100'

100w'0'

cL12' is a prime.'

iLl'80', 80c"

wL2

cL81

2048w

a'buffer'

Od

Description
16-bit integer whose value is 1021 in decimal

16-bit integer whose hex value is 3FD, Le. 1021
in decimal

16-bit word with decimal 100

1DO-word block of zeroes

ASCII string of 12 bytes

A byte count of decimal 80 is followed by 80

ASCII space characters so the total storage area
is 81 bytes

Define two bytes in word boundary

Define an 81 byte storage block

Reserve a 2084 word storage block with any bit
pattern

Address constant of two bytes, e.g., buffer has a
value 01 OC in hex

Zero double word so align the next address to the
double word boundary

10.5.2 Push Direct vs. Push Immediate

The opcode of a push (direct) instruction is different from the opcode of a push
immediate instruction. To push a 16-bit zero on the stack, we can use push immedi­
ate or push, as shown below:
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ph#
ph

o
='0'
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;push immediate 0
;push Iiteral 0

The first instruction pushes a 12-bit immediate operand zero with zero extended on
the stack. If an unsigned operand has a value between 4 K and (64 K-l), the push
immediate instruction can not do the work. Therefore, the second instruction is used
instead to push a literal. The literal symbol = '0' means =iL2 '0' where i stands for
integer, L2 means length of two bytes, and zero is the value. Note that the literal
operand must reside in the first 4 KB of the segment to be accessible. As far as the
source operand is concerned, the first instruction uses the addressing mode of mem­
ory immediate. The second instruction uses the addressing mode of memory direct.
After executing either instruction, the TOS (top of stack) is zero. The reason that we
call the ='0' symbol a literal is because the assembler recognizes the symbol, pre­
pares the bit pattern in the code, and inserts its memory address in the push instruc­
tion. That is, ='0' represents an address where the 16-bit zero is stored. A literal
symbol is no different from a symbolic name except it is not explicitly defined.
Some assemblers may allow an equal sign to be placed before the literal value, such
as =0, =300, etc. By scanning the literal symbol, the assembler knows to construct
the bit pattern for the integer and insert its address in the instruction. A literal is not
mandatory if the constant is explicitly defined.

10.5.3 Store VS. Pop

The following block of code is executed to push immediate X, evaluate an
expression, and store the result.

ph# X
<expression>
slw

The two instructions, first and last, have caused some debate concerning whether a
pop instruction can replace the pair, as shown below:

<expression>
pop X ;M[RA + Xl <-- 5[0]

The pop instruction has an opcode followed by a 12-bit displacement. After its exe­
cution, the TOS is popped into a memory location named X, so the SP is increased
by two. The pop instruction is more intuitive, but it changes the relative operand
positions in the postfix notation, so it is not pure stack machine code. In addition, its
address field is not a full 16 bits, so it can not access the entire 64 KB. In contrast,
if we push a full literal address on the stack under the assumption that it is within 4
KB, we can use the STW instruction to access the entire 64 KB addressing space, as
shown below:
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ph =a'X' ;S[O] <-- M[RA + =a'X']
<expression>
stw

Recall that the literal symbol =a' X' represents an address where the address X is
stored. In other words, the literal symbol =a'X' is a pointer variable that contains the
address of X.

10.5.4 Translation of IF Statements

In a short or long IF statement, a logical expression is evaluated first. Control
may be passed to one location or another based on the outcome. A short IF statement
has only the THEN clause, but a long IF statement also has an ELSE clause, as shown
below:

IF (n .mod. i) .eq. 0,
THEN <statement 1>;
ELSE <statement 2>; ENDIF;

If the condition is true, the statement 1 block is executed, otherwise the statement 2
block is executed. The two keywords THE'N and ELSE are treated as operators, and
after parsing, the postfix notation becomes:

n i .mod. 0 .eq. THEN <statement 1> ELSE <statement 2>;

In this notation, there is a one to one relationship between each symbol and the
stack machine code. Note that both the statement 1 block and the statement 2 block
are expressed in postfix notations. Inside the block, it is possible to have more nested
IF statements. When the statement is translated into assembly code, an internally
generated label FOOOIO is placed before <statement 2>, where F Ineans forward
jump and the suffix 00010 is a randomly selected number to indicate some sort of
ordering. The THEN operator is translated into BF (branch on false), so control is
passed to <statement 2> in the case that the condition is false. The ELSE operator
after <statement 1> is translated into B (unconditional branch) to pass control to the
next statement after IF. This is designed to skip the statenlent 2 block after execut­
ing the statement 1 block. Thus, the stack machine code is as follows.

ph
ph
mod
ph
eq

n

='0'

;push n
;push i
;push remainder of (n/i)
;push literal integer 0
;IF S[2] .eq. S[O],
;THEN push TRUE flag,
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ph#
bf

FOOOIO
;ELSE push FALSE flag, ENDIF.
;push address FOOD I0
;IF S[2] .eq. FALSE,
;THEN PC <-- S[O], ENDIF.

<statement 1>
ph# F00020
b

;push address F00020
;PC <-- S[O]

FOOOIO:
<statement 2>

F00020:

Interestingly, the THEN operator rule is applied to a short IF statement. That is, con­
trol is passed to the next statement if the:condition is false. In the comment, the stack
pointer (SP) is updated accordingly after each push or pop.

10.5.5 Translation of Subscripted Variables

The stack machine does not use index registers, so any subscripted variable must
be taken into account with special attention. Study the postfix notation for the
assignment statement given below:

array[i] =array[i] + I;

Assume that zero indexing is used and each entry in the array is n bytes long.
Array[i] on the LHS represents an effective address which is the sum of the starting
address of the array and a relative displacement computed as (i * n). Hence, the pair
of square brackets is treated like a subscript operator. After parsing, we obtain the
following postfix notation,

#array i sub #array i sub 1 +=;

;push starting address of array
;push index
;push element lengthn

array
1

where the sub operator requires special action in order to generate the correct stack
machine code as shown below:

ph#
ph
ph

mul
add
ph# array
ph i
ph n
mul
add
ex

;compute displacement
;add to starting address

;exchange--pop address, fetch the
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push
add
stw

=' I'

389

;operand at this address and push it
;on the stack
;push literal 1

Our goal is to implement a software based VSM (virtual stack machine). First,
we write a test program. Next, we hand translate the test program into assembly
code, and then into binary s-ops.

10.6 TEST PROGRAM FOR SSM315

The common programming language (CPL) is a direct translation from the chi­
nese programming language.23 It is a tool to describe the logical flow at the pro­
gramming level. Some of the syntactic and semantic rules are highlighted below:

• A declaration block is placed in the front enclosed by the delimiters, DCL
(declare) and ENDDCL (end declare).

• The declaration block consists of single variables, each of which is fol­
lowed by a colon (:) and attributes. Grouping variables is also allowed.

• Structured constructs are supported just like POL or any other high-level
languages.

• The assign operator is an equal sign, and each statement ended with a
semicolon. Some of the operators may be enclosed by two periods, like
RTL.

• Each I/O statement is associated with a file along with a format to
describe the ASCII layout in a record. A read file statement is shown
below.

Readfile x into (PC, codelen, datalen, stacklen)
fomlat(x4, 3(skip 1 char, x4»);

The first line reads the record in the sequential file represented by x. The record
has fours fields, and the separator between two fields can be a space character or a
comma. The record is read into four variables, namely PC (program counter), code­
len (code length), datalen (data length), and stacklen (stack length). The second line
for format control, tells how to read the record and convert the data. The first con­
trol field x4 means that four hex characters will be converted into an integer and
stored in the PC. The next control field has a three followed by a parentheses to mean
grouping. The integer three is the duplicate factor so whatever enclosed in the paren­
theses is repeated three times. Each time, as one character is skipped, the next four
hex characters are converted into an integer and stored in codelen, datalen, and
stacklen respectively. All four variables are declared as 16-bit short integers. The
print statement has a built in default conversion format, as shown below:
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Print n, 'is not a priIne.';

The integer n is converted into a decimal ASCII string in a buffer, and the rest of char­
acters are padded with whatever string enclosed in single quotes. For example, if n
is 1023, the message' 1023 is not a prime.' will be displayed.

10.6.1 Test Program Source

Given an integer, the program tests whether that integer is a prime. The test pro­
gram is hand translated into assembly code and then into s-ops. Finally, an inter­
preter interprets the binary s-ops to generate computation results. A compiler, if
available, can translate the source into s-ops. First, the test program is translated to
assembly code. Second, the assembly code is translated into s-ops. The high-level
source is listed below:

PROGRAM Test;
{Declare variables.
n: integer to be tested,
i: integer as the divisor,
done: logical flag,
TRUE: logical constant 1,
FALSE: local constant O.}

{In this loop, divide n by i. If
remainder is 0, it is not a prime.
Otherwise,find out how big i is. If i is
greater than the quotient, then n is a
prime. Otherwise, increase i by 1, loop
back, and divide again.}

DCL (n, i): integer;
done: logical; ENDDCL;

done = .FALSE;
n = 1021;
i = 2;
DO WHILE (.not. done)

IF (n .mod. i) .eq. 0,
THEN

DO;
Print n, 'is not a prime.';
done = TRUE;

ENDDO;
ELSE

IF i .gt. n/i,
THEN
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DO;
Print n, 'is a prime.';
done = TRUE;
ENDDO;

ELSE
i=i+l;

ENDIF; ENDIF; ENDDO;
END.

10.6.2 S-ops

391

The test source program is in the file test.aSID. Each statement is either a machine
op or a pseudo Ope If no assembler is available, each mop is hand translated into an
s-op and the executable file is test.exe. The test.asm file contains ASCII characters.
Normally, the test.exe file contains pure binary code without <cr> and <If> as delim­
iters. However, for the sake of easy preparations, we make two deviations. First,
each 16-bit s-op is represented by four hex digits in ASCII in the test.exe file.
Second, we must type four hex digits and press the enter key on the line via an edi­
tor. Thus, the end of each line has <cr> and <If> as delimiters. However, each line
or group represents 16 bits after being loaded into memory. The C compiler can gen­
erate code in the interpreter that reads four hex digi ts in ASCII and converts them into
a 16-bit integer in memory. If the interpreter is written in MASM, the conversion job
must be handled by the interpreter routine. Note that by using ASCII digits, the code
size on the disk is doubled.

The assembly source and the executable code of the test program are compared
in Table 10.8. The left-hand side shows the assembly source, and the right-hand side
shows the code in hex. The remaining translation work is left as an exercise. The
load module has a header, which is the first record. The line has four initial
addresses, PC, FL, SF, and SP, followed by <cr> and <If>.

Table 10.8 Test.asm vs. Test.exe

test.asm
pgm1 start

ph#
ph#
stw
ph#
ph
stw
ph#
ph

done
o

n
='1021'

='2'

test.exe
00000106 005a 1000
c106
cO00
4015
c108
808e
4015
c10a
8090
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stw 4015
L01 ph done 8106

not 4004
ph# L05 c08c
bf
ph n
ph i
mod
ph ='0'
eq
ph# L02
bf
ph# buffer
ph# space
ph# 81
mvc
ph# buffer + 1
ph# n
eve
ph# buffer + 11
ph# str1
phI 16
mve
ph =a'buffer'
svc 0 ;Output driver call
ph# done
phI 1
stw
phI L04
b

L02 ph i
ph n
ph i
div
gt
ph# L03
bf
phI buffer
ph# space
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phi 81
mve
phi buffer + 1
phi n
eve
phi buffer + 11
phi str2
phi 12
mve
ph =a'buffer'
sve 0
phi done
phi 1
stw
phi L04
b

L03 phi
ph
ph ='1'
add
stw

L04 phi L01
b

L05 sve 10 ;exit to as 300a
='1021' de iL2' 1021' 03fd
='2' de iL2'2' 0002
='0' de iL2'0' 0000
=a 'buffer' de a'buffer' 010e
='1' de iL2'1' 0001
space de iL1'80', 80e' , 2050 2020 2020 ...
str1 de eL16' is not a prime.'
str2 de eL12' is a prime.'
done ds wL2 ;word address
n ds wL2
i ds wL2
buffer ds eL81

ds Od ;align double word address
stack 2048w
end pgm1 ;entry point
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During the assembly process, a symbol table is constructed to contain all the
symbols and their addresses. Any symbol reference is translated into a binary
address in the code by the assembler via a symbol table look-up. All the symbols in
the test program and their hexadecimal addresses are listed in Table 10.9.

Table 10.9 Symbol Table for the Test Program

Symbol
pgm1
L01
L02
L03

L04

LOS
='1021'
='2'
='0'
=a'buffer'
='1'
space
str1
str2

done
n
i
buffer

12·bit address in hex
000
012
04c
07e
088
08c

08e
090
092
094
096
098
Oe9
Ot9
106 {codelen = 01 06}
108
10a

10c {datalen = 005a; stacklen =1000}

The address for str2 is computed as 0f9 in hex, and the length of the string is 12
in decimal. Thus, the address for the next variable should be 105 (0f9 + Dc) in hex.
However, the done flag is declared as a word, so the address for that variable is
aligned as an even number. Consequently, one extra byte is padded at the end of the
block, so its address becomes 106 in hex (Le., the code length). The data length is
the length of the defined storage that does not need to be loaded. Nevertheless, this
length is passed to the OS. If the stack is aligned in double words, the data length is
computed as:

data length = 2 + 2 + 2 + 81 + 3 (padded bytes)
= 90 (decimal)
= 5a (hex)

Since a stack is defined as 2048 words or 4 KB at the end of a program, the stack
length is 1000 in hex. The header in the load module has four fields. The first field
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is the entry point specified as 0000 in hex. The codelen (code length) is specified as
0106, the datalen (data length) as 005a, and the stacklen (stack length) as 1000. After
loading, the as computes the initial values for the PC, FL, SF, and SP as follows:

PC = 0000
FL = codelen + datalen + stacklen = 1160
SF = codelen + datalen =0160

SP= 1160

10.7 VIRTUAL STACK MACHINE

The software based VSM (virtual stack machine) means a computer simulator or
interpreter, as shown in Figure 10.4. The inner circle represents the host machine
hardware that can be a PC running with its as. The VSM executes on top of the as
as an application program. All the registers of the target machine are declared as
memory variables and all the target machine instructions are treated as data by the
VSM. There are many software components in the VSM. The main program is LOa
(load and go), Le., after loading, go ahead and interpret. There are two procedures
SVC (supervisor call) and OPC (operator call). The former passes control to the as
requesting a system service. The latter just interprets s-ops. There is no as in
SSM315 memory, so the interrupt mechanism is not interpreted at the machine level.

VSM

as

Host

/
Figure 10.4 Virtual stack machine layers. Figure A.1 The 2-variable Karnaugh maps

for: (a) \A 8 + A \8 and (b) A + B.
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That is to say, the interpreter carries out the service for the test program by means of
the real OS services on the host. Using PDL and RTLjointly, we describe the design
of the VSM as follows.

; Author: John Y. Hsu
; Date: Nov. 12, 1998
; Program design:

Program Lgo;
Declare global variables and local procedures;

Proc Load;
Proc Go;
Proc Svc;
Proc Ope;
Function StackOF;
Function StackUF;

Initialize RA;
Call Load; {Load and initialize PC, FL, SF, SP.}
Initialize SR;
Call Go;

; End.

The main program is Lgo (load and go) which also simulates the OS functions. All
the registers are declared as global variables in memory. At the second level, there
are four procedure subroutines and two function subroutines. Each function returns
a value, TRUE or FALSE. The first function checks stack overflow, and the second
checks stack underflow. We merely simulate the condition in a few instructions as a
token in design. After initializing the RA register, the main program calls Load
(loader) to read the executable file into an array named M. The executable file has a
header containing the running information about the program, such as the program
counter, code length, data length, and stack length. All the addresses in the code seg­
ment are relative and relocatable. After loading, all the address registers are set.
After initializing the status register, the main program calls Go to interpret and exe­
cute. After compiling and linking, we run the program by typing:

Lgo test.exe

10.7.1 Interpreter Source

The program listing in CPL is self explanatory, as shown below.

PROGRAM Lgo( argc, argv); {This program loads an executable
file in memory, interprets and
executes. Global variables are:
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endpgm - end program flag;
FL - Field Length;
IR - Instruction Register;
M - Memory array;
PC - Program Counter;
RA - Relocation Address;
SF - Stack Frame;
SP - Stack Pointer;
SR - Status Register;
temp - temporary; }

argv[], x
endpgm

DCL;
(argc, FL, IR, PC, RA, SF, SP, SR, temp): short integer;

M[O .. (64 * 1024 - 1)]: short integer;
{Declare memory array as short integer
with index ranging from 0 to (64K-l). }
: pointer;
: logical; ENDDCL;

PROC Load;

{x points to the file name
'test.exe' in our design. }

Readfile x into (PC, codelen, datalen, stacklen)
format(x4, 3(skip 1 char, x4));

{In the format, we have 4 char in
hex for PC, and 3 is the duplicate
factor. Each time, skip 1 char and
the 4-char in hex is for codelen,
datalen, and stacklen. }

{count - counter,
codelen - code length,
datalen - data length,
stacklen - stack length.}

DCL; (count, codelen, datalen, stacklen): integer; ENDDCL;
x = argv[l];
Openfile x;

count = 0;
REPEAT;
Readfile x into M[RA + count]

format(x4); {Read 4 hex char into a 16-bit menlory word. }
count =count + 2;
UNTIL (count .GE. codelen);
FL = codelen + datalen + stacklen;
SF = codelen + datalen
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SP= FL;
return;
ENDPROC;

PROCGo;
DCL; (mop, disp): short integer; ENDDCL;{mop - machine op,

disp - displacement}
REPEAT;
IR = M[RA + PC]; {Fetch instruction.}
PC =PC +2;
mop = IR .SHR. 12; {Shift logical right 12 bits.}
disp = IR .AND. x'Offf;

CASE mop of
x'O': DO; {Illegal op}

Writefile display from ('Illegal opcode at PC ="
PC-2) forrnat(c, skip 4 char, x4);

{The string uses the variable char fonnat, followed
by 4 spaces and 4-char address in hex.}

endpgm = TRUE;
ENDDO;

x'I': SP = SP + disp; {SP+}
IF StackUF, THEN return; ENDIF;

x'2': SP = SP - disp; {SP-}
IF StackOF, THEN return; ENDIF;

x'3': Call Svc; {Supervisor call}
x'4': Call Opc; {Operator call }
x'g': DO; {Push memory direct.}

SP = SP - 2;
IF StackOF, THEN return;
ELSE M[RA + SP] = M[RA + disp]; ENDIF;

ENDDO;
x'c': DO; {Push immediate.}

Sp = SP - 2;
IF StackOF, THEN return;
ELSE M[RA + SP] =disp; ENDIF;

ENDDO;
ELSE: DO; {Undefined op }

Writefile display from ('Undefined opcode at PC = "
PC - 2) forrnat(c, skip char, x4);

endpgm = TRUE;
ENDDO;
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ENDCASE;
IF endpgm, THEN return; ENDIF;

UNTIL forever;
ENDPROC;

{Supervisor Call }

{Not written. }

PROC Svc;
CASE disp of
x'OOO': DO; {Write buffer on screen.}

Writefile display from M[RA + SP] -> format( c);
{The symbol -> means the object
pointed by.}
{Pop argument off stack. }SP = SP + 2;

ENDDO;
x'OOA': endpgm =TRUE;
ELSE: interpret Svc;
ENDCASE;
ENDPROC;

PROC Opc; {Operator Call.}
DCL; shiftCount: short integer; ENDDCL;
CASE disp of
x'OOQ': IF StackUF,

THEN return;
ELSE

DO; {Add}

M[RA + SP + 2] = M[RA + SP + 2] + M[RA + SP];
SP =SP + 2; ENDDO; ENDIF;

x'QOl': IF StackUF,

THEN return;
ELSE
DO; {Subtract}

M[RA + SP + 2] = M[RA + SP + 2] - M[RA + SP];
SP =SP + 2; ENDDO; ENDIF;

x '002': DO; {Multiply--stack underflow check implied.}
M[RA + SP + 2] = M[RA + SP + 2] * M[RA + SP] <15:0>;
SP =SP + 2; ENDDO;

x'003': DO; {Divide}

M[RA + SP + 2] = M[RA + SP + 2] / M[RA + SP];
SP = SP + 2; ENDDO;

x'004': M[RA + SP] = .NOT. M[RA + SP];
x'005': DO;
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M[RA + SP + 2] = M[RA + SP + 2] .AND. M[RA + SP];

SP = SP + 2; ENDDO;

x'006': DO;

M[RA + SP + 2] =M[RA + SP + 2] .OR. M[RA + SP];

SP = SP + 2; ENDDO;
x'007': DO;

M[RA + SP + 2] = M[RA + SP + 2] .EOR. M[RA + SP];

SP =SP + 2; ENDDO;
x'008': DO; {Equal}

IF M[RA + SP +2] .EQ. M[RA + SP],

THEN M[RA + SP + 2] = x'OOOI'; {TRUE flag}

ELSE M[RA + SP + 2] = x'OOOO'; ENDIF;

SP =SP + 2; ENDDO;

x'009': DO; {Not Equal}

IF M[RA + SP +2] .NE. M[RA + SP],

THEN M[RA + SP + 2] =x'OOOI';

ELSE M[RA + SP + 2] = x'OOOO'; ENDIF;

SP =SP + 2; ENDDO;

x'OOA': DO; {Less Than}

IF M[RA + SP +2] .LT. M[RA + SP],

THEN M[RA + SP + 2] =x'OOOI';

ELSE M[RA + SP + 2] = x'OOOO'; ENDIF;
SP = SP + 2; ENDDO;

x'OOB': DO; {Less Equal}

IF M[RA + SP +2] .LE. M[RA + SP],

THEN M[RA + SP + 2] = x'OOOI';

ELSE M[RA + SP + 2] = x'OOOO'; ENDIF;

SP = SP + 2; ENDDO;

x'OOC': DO; {Greater Than}

IF M[RA + SP +2] .GT. M[RA + SP],

THEN M[RA + SP + 2] = x'OOOI';

ELSE M[RA + SP + 2] = x'OOOO'; ENDIF;
SP = SP + 2; ENDDO;

x'OOD': DO; {Greater Equal}

IF M[RA + SP +2] .GE. M[RA + SP],

THEN M[RA + SP + 21 =x'OOOI ';

ELSE M[RA + SP + 2] = x '0000'; ENDIF;

SP = SP + 2; ENDDO;
x'OOE': DO; {Branch on True}

IF (M[RA + SP + 2] .AND. x'OOOl ') .EQ. x'OOOI',
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THEN PC = M[RA + SP]; ENDIF;

SP = SP + 4; ENDDO;
x'OOF': 00; {Branch on False}

IF (M[RA + SP + 2] .AND. x'OOOl ') .EQ. x'OOOO',

THEN PC = M[RA + SP]; ENOIF;

SP =SP + 4; ENOOO;

x'OlO': DO; {Branch}

PC =M[RA + SP];

SP = SP + 2; ENDDO;

x'Dl!': DO; {Branch and link.}
temp = M[RA + SP];
M[RA + SPj = PC;

PC = temp; ENDOO;

x'012': M[RA + SP] = - M[RA + SP]; {Negate}

x'Dl3': M[RA + SP] =1M[RA + SP] I; {Absolute}

x'OI4': M[RA + SP] = M[RA + M[RA + SP]];{Load word.}
x'015': DO; {Store word.}

M[RA + M[RA + SP + 2]] = M[RA + SP];
SP = SP + 4; ENDDO;

x'016': M[RA + SP] = M[RA + M[RA + SP]] <7:0>; {Load char.}

x'D17': DO; {Store char.}

M[RA + M[RA + SP + 2J] =M[RA + SP] <7:0>;

SP = SP + 4; ENDDO;
x'018': DO; {Modulus}

M[RA + SP + 2] =M[RA + SP + 2] .MOD. M[RA + SP]);

SP = SP + 2; ENDDO;

x'OlA': M[RA + SP] =M[RA + SP] + 1; {Increase}

x'01B': M[RA + SP] =M[RA + SP] - 1; {Decrease}
x'030': 00; {Move characters.}

Call Mvc( RA + M[RA + SP + 4]), RA + M[RA + SP + 2],
M[RA + SP]);

SP = SP + 6; ENODO;

x'D31': DO; {Convert to binary. }
Call Cvb( RA + M[RA + SP + 2], RA + M[RA + SP]);
SP =SP + 4; ENDDO;

x' 032': 00; {Convert to char. }

Call Cvc( RA + M[RA + SP + 2], RA + M[RA + SP]);

SP = SP + 4; ENDDO;

x'033': DO; {Switch TOS.}

401
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temp = M[RA + SP];
M[RA + SP] = M[RA + SP + 2];
M[RA + SP + 2] = temp; ENDDO;

x'040' to x'04f': {Shift Logical Left.}
DO; shiftCount = disp .AND. x'OOOf';
M[RA + SP] =M[RA + SP] .SHL. shiftCount; ENDDO;

x'050' to x'05f': DO; {Shift Logical Right.}
shiftCount = disp .AND. x'OOOf;
M[RA + SP] =M[RA + SP] .SHR. shiftCount; ENDDO;

x'060'to x'06f': DO; {Shift Arithmetic Right.}
shiftCount =disp .AND. x'OOOf';
M[RA + SP] = M[RA + SP] .SAR. shiftCount; ENDDO;

ELSE: interpretOpc; {Not written. }
ENDCASE;
return;
ENDPROC;

FUNCTION StackOF: logical;
IF (SP .LT. SF),

THEN
Writefile display from ('Stack overflow at PC = " PC - 2)

format(c, skip 4 char, x4);
endpgm = TRUE; ENDIF;

return;
ENDFUNC;

FUNCTION StackUF: logical;
IF (SP .GT. FL),
THEN
Writefile display from ('Stack underflow at PC =', PC - 2)

format(c, skip 4 char, x4);
endpgm = TRUE; ENDIF;

return;

ENDFUNC;
; -------------Main program starts here.
RA = x' 1000';
Call Load;
SR = x'OOOf'; {Interrupts are enabled, user mode.}
endpgm = FALSE;
Call Go;
END.
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10.8 CONCLUSIONS

403

In the interpreter design, the entry in an array is referenced by an index or rela­
tive offset in bytes. It presents no problems in assembly code. However, if the inter­
preter is written in C, every other entry in the array is wasted because the index is
measured in 2 B short integers. Nonetheless, the routine works fine as the code mim­
ics the machine specifications in RTL.

We can make several improvements. First, the main opcode field can be reduced
to two bits for push direct and push immediate so the displacement is increased to 14
bits. Second, the operand size can be increased to 32 bits, or 48 bits. Third, the top
two words in the stack can be data cache.2 Fourth, if the RA register contains a 16 B
paragraph number, the PAS is 1 MB.

10.9 SUMMARY POINTS

1. In a stack machine, no addresses is coded in a unary or binary instruction.
2. To program a stack machine, think in postfix notation.
3. Each symbol in the postfix notation is translated into an S-op.
4. For a unary operation, pop the stack to fetch sopd, perform an operation, and

push the result back on the stack.
5. For a binary operation, pop the stack to fetch sopd 2, pop the stack again to

fetch sopd 1, perform an operation, and push the result back on the stack.
6. A software-based VM has a translator and an interpreter.
7. Stack machine code is often used as an immediate language.
8. In a postfix notation, no parentheses are required.

9. The VSM has three layers: host machine hardware, as, and interpreter.

PROBLEMS

1. Find the postfix notations for the following infix notations:

a. X =A + B * C;
b. X = (A + B) * C;
c. X = (A - B) / C + 2;
d. X = (A - 4095) / C - 2;
e. X = A - 4095 / (C - 2);

2. Find the postfix notations for the following infix notations:
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a. X4 = (XO - Xl) I (X2 - X3);
b. X4 =XO - XII X2 - X3;
c. X4 = XO - (Xl / X2 - X3);

d. X4 = XO * (Xl / (X2 - X3»;

e. X4 = XO * XII (X2 - X3);

COMPUTER ARCHITECTURE

3. Find the postfix notations for the infix IF statement as shown below:

a. IF i .Ie. 100, THEN sum = sum + i; ENDIF;
b. IF (n .mod. i) .eq. 0,

THEN i = i + 1; ELSE i = i-I; ENDIF;

4. State the software parsing algorithm based on operator precedence.
5. A unifonn syntax notation is used to define a constant in SSM315, as shown

below.

[<dup>] <data type> [L <length>] '<value>'
a. Use the 0 (octal) data type and define a block of 16 16-bit integers

(each one is 177770 in octal).

b. Use the x (hexadecimal) data type and define a block of 16 16-bit
integers (each one is FFF8 in hex).

c. Does either notation prepare the same block in memory?

6. What is the difference between the instructions, STW (store word) and pop?
7. Write down the register transfer language for the s-ops as shown below.

a. BAL (Branch and link). b. BF (Branch on false).
c. BT (Branch on true). d. B (Branch)

8. If the mnemonic Ret is used as a return instruction, what should be its
opcode, BAL, BF, BT, or B?

9. The stack machine instruction is short. If we place the address constants in
the lower 4 KB and the operand size is 32 bits, what is the total addressing
space using byte address?

10. Complete the translation of all the hex code in the test.exe file shown in Table
10.8. Explain why the code is relocatable after being loaded in memory.

11. Ifwe allow the cOlnposite segment to be written in, the code is not reentrant,
e.g., test.exe. However, let us change the design to have two segment base
registers and obey the rule as follows. One segment base is used to store sta­
tic code, instruction and data, which is read-only. The other base is used to
store dynamic code, data and stack, that is writable but private. We say the
code is reentrant if each user has his own private addressing space. Why?

12. Translate the following statements into s-ops.

a. sum=sum+i;
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b. i = j / (k - 1) + 2;
c. IF (i .LE. 100),

THEN GOTO LOOO 1; ENDIF;
{Hint: After optimization, only five s-ops are required for this statement
provided that yo~ use bt (branch on true) after the test.}

13. In practice, the target machine in a JAVA engine or Pascal engine is stack
based. Why?

14. Form a project team of up to three students and write an interpreter for
SSM315 in C, assembly, or any other language. Select your own leader who
calls design meetings and coordinates the effort. You can write machine
spec of whatever kind and design a creative test program. The project report
should include design specifications and list the source as an appendix.
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